
www.allitebooks.com

http://www.allitebooks.org

INTRODUCTION TO

JAVA
PROGRAMMING

COMPREHENSIVE VERSION

Tenth Edition

Y. Daniel Liang
Armstrong Atlantic State University

®

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

www.allitebooks.com

http://www.allitebooks.org

To Samantha, Michael, and Michelle

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2013, 2011 Pearson Education, Inc., publishing as Prentice Hall, 1 Lake Street, Upper Saddle
River, New Jersey, 07458. All rights reserved. Printed in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Procurement Specialist: Linda Sager

Cover Designer: Marta Samsel
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Image Permission Coordinator:
Cover Art: © Blend Images—PBNJ Productions/Getty

Images
Media Project Manager: Renata Butera
Full-Service Project Management: Haseen Khan,

Laserwords Pvt Ltd

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-376131-2
ISBN 13: 978-0-13-376131-3

www.allitebooks.com

http://www.allitebooks.org

iii

PREFACE
Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements. The new edition:

■ Replaces Swing with JavaFX. JavaFX is a new framework for developing Java GUI pro-
grams. JavaFX greatly simplifies GUI programming and is easier to learn than Swing.

■ Introduces exception handling, abstract classes, and interfaces before GUI programming to
enable the GUI chapters to be skipped completely if the instructor chooses not to cover GUI.

■ Covers introductions to objects and strings earlier in Chapter 4 to enable students to use
objects and strings to develop interesting programs early.

■ Includes many new interesting examples and exercises to stimulate student interests. More
than 100 additional programming exercises are provided to instructors only on the Com-
panion Website.

Please visit www.pearsonhighered.com/liang for a complete list of new features as well as
correlations to the previous edition.

The book is fundamentals first by introducing basic programming concepts and techniques
before designing custom classes. The fundamental concepts and techniques of selection
statements, loops, methods, and arrays are the foundation for programming. Building this
strong foundation prepares students to learn object-oriented programming and advanced Java
programming.

This book teaches programming in a problem-driven way that focuses on problem solv-
ing rather than syntax. We make introductory programming interesting by using thought-
provoking problems in a broad context. The central thread of early chapters is on problem
solving. Appropriate syntax and library are introduced to enable readers to write programs for
solving the problems. To support the teaching of programming in a problem-driven way, the
book provides a wide variety of problems at various levels of difficulty to motivate students.
To appeal to students in all majors, the problems cover many application areas, including
math, science, business, financial, gaming, animation, and multimedia.

The book seamlessly integrates programming, data structures, and algorithms into one text.
It employs a practical approach to teach data structures. We first introduce how to use various
data structures to develop efficient algorithms, and then show how to implement these data
structures. Through implementation, students gain a deep understanding on the efficiency of
data structures and on how and when to use certain data structures. Finally we design and
implement custom data structures for trees and graphs.

The book is widely used in the introductory programming, data structures, and algorithms
courses in the universities around the world. This comprehensive version covers fundamentals
of programming, object-oriented programming, GUI programming, data structures, algorithms,
concurrency, networking, database, and Web programming. It is designed to prepare students
to become proficient Java programmers. A brief version (Introduction to Java Programming,
Brief Version, Tenth Edition) is available for a first course on programming, commonly known
as CS1. The brief version contains the first 18 chapters of the comprehensive version. The first
13 chapters are appropriate for preparing the AP Computer Science exam.

The best way to teach programming is by example, and the only way to learn program-
ming is by doing. Basic concepts are explained by example and a large number of exercises

what is new?

fundamentals-first

problem-driven

comprehensive version

brief version

AP Computer Science

examples and exercises

data structures

www.allitebooks.com

www.pearsonhighered.com/liang
http://www.allitebooks.org

iv Preface

with various levels of difficulty are provided for students to practice. For our programming
courses, we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and sug-
gestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang@gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

ACM/IEEE Curricular 2013 and ABET
Course Assessment
The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge
organized into 18 Knowledge Areas. To help instructors design the courses based on this book,
we provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The sample
syllabi are for a three semester course sequence and serve as an example for institutional cus-
tomization. The sample syllabi are available to instructors at www.pearsonhighered.com/liang.

Many of our users are from the ABET-accredited programs. A key component of the ABET
accreditation is to identify the weakness through continuous course assessment against the course
outcomes. We provide sample course outcomes for the courses and sample exams for measuring
course outcomes on the instructor Website accessible from www.pearsonhighered.com/liang.

What’s New in This Edition?
This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

■ Updated to Java 8.

■ Since Swing is replaced by JavaFX, all GUI examples and exercises are revised using
JavaFX.

■ Lambda expressions are used to simplify coding in JavaFX and threads.

■ More than 100 additional programming exercises with solutions are provided to the
instructor on the Companion Website. These exercises are not printed in the text.

■ Math methods are introduced earlier in Chapter 4 to enable students to write code using
math functions.

■ Strings are introduced earlier in Chapter 4 to enable students to use objects and strings to
develop interesting programs early.

■ The GUI chapters are moved to after abstract classes and interfaces so that these chapters
can be easily skipped if the instructor chooses not to cover GUI.

■ Chapters 4, 14, 15, and 16 are brand new chapters.

■ Chapters 28 and 29 have been substantially revised with simpler implementations for min-
imum spanning trees and shortest paths.

www.allitebooks.com

www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
http://www.allitebooks.org

Preface v

Pedagogical Features
The book uses the following elements to help students get the most from the material:

■ The Objectives at the beginning of each chapter list what students should learn from the
chapter. This will help them determine whether they have met the objectives after completing
the chapter.

■ The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

■ Key Points highlight the important concepts covered in each section.

■ Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

■ Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

■ The Chapter Summary reviews the important subjects that students should under-
stand and remember. It helps them reinforce the key concepts they have learned in the
chapter.

■ Quizzes are accessible online, grouped by sections, for students to do self-test on pro-
gramming concepts and techniques.

■ Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning
programming is practice, practice, and practice. To that end, the book provides a great
many exercises. Additionally, more than 100 programming exercises with solutions are
provided to the instructors on the Companion Website. These exercises are not printed in
the text.

■ Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valu-
able advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide
Provides guidelines for designing programs.

Flexible Chapter Orderings
The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
recursion, generics, and the Java Collections Framework to be covered earlier or later. The
diagram on the next page shows the chapter dependencies.

www.allitebooks.com

http://www.allitebooks.org

v
i

P
reface

Chapter 39 Web Services

Chapter 42 Testing Using JUnit

Chapter 38 JavaServer Pages

Chapter 25 Binary Search Trees

Chapter 26 AVL Trees

Chapter 29 Weighted Graphs
and Applications

Chapter 28 Graphs and
Applications

Chapter 21 Sets and Maps

Chapter 22 Developping
Efficient Algorithms

Chapter 1 Introduction to
Computers, Programs, and
Java

Chapter 2 Elementary
Programming

Chapter 5 Loops

Chapter 7 Single-Dimensional
Arrays

Chapter 8 Multidimensional
Arrays

Chapter 4 Mathematical
Functions, Characters,
and Strings

Part I: Fundamentals of
Programming

Chapter 3 Selections

Chapter 9 Objects and Classes

Chapter 17 Binary I/O

Note: Chapters 1–18 are in the
brief version of this book.

Note: Chapters 1–33 are in the
comprehensive version.

Note: Chapters 34–42 are bonus
chapters available from the
Companion Website.

Chapter 10 Thinking in Objects

Chapter 11 Inheritance and
Polymorphism

Chapter 12 Exception
Handling and Text I/O

Chapter 13 Abstract Classes
and Interfaces

Chapter 6 Methods

Part II: Object-Oriented
Programming

Chapter 30 Multithreading and
Parallel Programming

Chapter 36 Internationalization

Chapter 31 Networking

Chapter 32 Java Database
Programming

Chapter 33 JavaServer Faces

Chapter 35 Advanced Database
Programming

Chapter 37 Servlets

Part V: Advanced Java
Programming

Chapter 14 JavaFX Basics

Chapter 15 Event-Driven
Programming and
Animations

Chapter 20 Lists, Stacks, Queues,
and Priority Queues

Chapter 16 JavaFX Controls
and Multimedia

Chapter 34 Advanced GUI
Programming

Part III: GUI Programming

Chapter 18 RecursionCh 7

Chapter 19 Generics

Chapter 24 Implementing Lists,
Stacks, Queues, and Priority
Queues

Part IV: Data Structures and
Algorithms

Ch 13

Ch 16

Ch 9

Chapter 40 2-4 Trees and B-
Trees

Chapter 41 Red-Black Trees

Chapter 27 Hashing

Chapter 23 Sorting

www.allitebooks.com

http://www.allitebooks.org

Preface vii

Organization of the Book
The chapters can be grouped into five parts that, taken together, form a comprehensive introduc-
tion to Java programming, data structures and algorithms, and database and Web programming.
Because knowledge is cumulative, the early chapters provide the conceptual basis for under-
standing programming and guide students through simple examples and exercises; subsequent
chapters progressively present Java programming in detail, culminating with the development
of comprehensive Java applications. The appendixes contain a mixed bag of topics, including an
introduction to number systems, bitwise operations, regular expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1–8)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning
Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques
with primitive data types, variables, constants, assignments, expressions, and operators (Chapter 2),
selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4), loops
(Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After Chapter 7, you can jump to
Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9–13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide
great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces
(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14–16 and Bonus Chapter 34)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for
developing GUI programs, but also an excellent pedagogical tool for learning object-oriented
programming. This part introduces Java GUI programming using JavaFX in Chapters 14–16.
Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes
(Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI
controls (Chapter 16), and playing audio and video (Chapter 16). You will learn the architec-
ture of JavaFX GUI programming and use the controls, shapes, panes, image, and video to
develop useful applications. Chapter 34 covers advanced features in JavaFX.

Part IV: Data Structures and Algorithms (Chapters 18–29 and Bonus Chapters 40–41)

This part covers the main subjects in a typical data structures and algorithms course. Chapter 18
introduces recursion to write methods for solving inherently recursive problems. Chapter 19
presents how generics can improve software reliability. Chapters 20 and 21 introduce the
Java Collection Framework, which defines a set of useful API for data structures. Chapter 22
discusses measuring algorithm efficiency in order to choose an appropriate algorithm for
applications. Chapter 23 describes classic sorting algorithms. You will learn how to implement
several classic data structures lists, queues, and priority queues in Chapter 24. Chapters 25 and
26 introduce binary search trees and AVL trees. Chapter 27 presents hashing and implement-
ing maps and sets using hashing. Chapters 28 and 29 introduce graph applications. The 2-4
trees, B-trees, and red-black trees are covered in Bonus Chapters 40–41.

Part V: Advanced Java Programming (Chapters 30–33 and Bonus Chapters 35–39, 42)

This part of the book is devoted to advanced Java programming. Chapter 30 treats the use
of multithreading to make programs more responsive and interactive and introduces parallel
programming. Chapter 31 discusses how to write programs that talk with each other from
different hosts over the Internet. Chapter 32 introduces the use of Java to develop database

www.allitebooks.com

http://www.allitebooks.org

viii Preface

projects. Chapter 33 introduces modern Web application development using JavaServer Faces.
Chapter 35 delves into advanced Java database programming. Chapter 36 covers the use of
internationalization support to develop projects for international audiences. Chapters 37 and
38 introduce how to use Java servlets and JavaServer Pages to generate dynamic content from
Web servers. Chapter 39 discusses Web services. Chapter 42 introduces testing Java programs
using JUnit.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and
their usage. Appendix E discusses special floating-point values. Appendix F introduces num-
ber systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G
introduces bitwise operations. Appendix H introduces regular expressions. Appendix I covers
enumerated types.

Java Development Tools
You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found
under Tutorials on the Student Companion Website at www.pearsonhighered.com/liang.

Student Resource Website
The Student Resource Website www.pearsonhighered.com/liang provides access to some of the
following resources. Other resources are available using the student access code printed on the
inside front cover of this book. (For students with a used copy of this book, you can purchase
access to the premium student resources through www.pearsonhighered.com/liang.)

■ Answers to review questions

■ Solutions to even-numbered programming exercises

■ Source code for the examples in the book

■ Interactive quiz (organized by sections for each chapter)

■ Supplements

■ Debugging tips

■ Algorithm animations

■ Errata

Instructor Resource Website
The Instructor Resource Website, accessible from www.pearsonhighered.com/liang, provides
access to the following resources:

■ Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

■ Solutions to all programming exercises. Students will have access to the solutions of even-
numbered programming exercises.

IDE tutorials

www.allitebooks.com

www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
www.pearsonhighered.com/liang
http://www.allitebooks.org

Preface ix

■ More than 100 additional programming exercises organized by chapters. These exercises
are available only to the instructors. Solutions to these exercises are provided.

■ Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

■ Sample exams. Most exams have four parts:

■ Multiple-choice questions or short-answer questions

■ Correct programming errors

■ Trace programs

■ Write programs

■ ACM/IEEE Curricula 2013. The new ACM/IEEE Computer Science Curricula 2013
defines the Body of Knowledge organized into 18 Knowledge Areas. To help instructors
design the courses based on this book, we provide sample syllabi to identify the Knowl-
edge Areas and Knowledge Units. The sample syllabi are for a three semester course
sequence and serve as an example for institutional customization. Instructors can access
the syllabi at www.pearsonhighered.com/liang.

■ Sample exams with ABET course assessment.

■ Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the sys-
tem automatically detects errors in the logic and syntax of their code submissions and offers
targeted hints that enable students to figure out what went wrong—and why. For instructors,
a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted
by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit www.myprogramminglab.com.

VideoNotes
We are excited about the new VideoNotes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how to
solve problems completely, from design through coding. VideoNotes are available from
www.pearsonhighered.com/liang.

VideoNote

www.allitebooks.com

www.pearsonhighered.com/liang
www.myprogramminglab.com
www.pearsonhighered.com/liang
http://www.allitebooks.org

x Preface

Algorithm Animations
We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-
panion Website.

Acknowledgments
I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me in writing what I teach. Teaching is the source of inspiration for
continuing to improve the book. I am grateful to the instructors and students who have offered
comments, suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan
Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre
(Rochester Institute of Technology), David Champion (DeVry Institute), James Chegwidden
(Tarrant County College), Anup Dargar (University of North Dakota), Charles Dierbach (Towson
University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of
Wisconsin at Parkside), Deena Engel (New York University), Henry A. Etlinger (Rochester Institute
of Technology), James Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac
Fuentes (University of Texas at El Paso), Edward F. Gehringer (North Carolina State University),
Harold Grossman (Clemson University), Barbara Guillot (Louisiana State University), Stuart
Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron
Hofman (Red River College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic
(Georgia Southern University), Edwin Kay (Lehigh University), Larry King (University of
Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogiannakis (Illinois
Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman Krumpe (Miami
University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong Atlantic State University),
James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College),
Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield
(Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand
Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California
State University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen (University of
Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin
Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson
(Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli
(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De
Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana
University), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State
University), David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University),
Daniel Spiegel (Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin
Tao (Pace University), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser
University), Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent
Vidrine (George Washington University), and Bahram Zartoshty (California State University
at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Yez Alayan, Carole Snyder, Scott Disanno, Bob
Engelhardt, Haseen Khan, and their colleagues for organizing, producing, and promoting this
project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Animation

xi

1 Introduction to Computers, Programs,
 and Java 1

2 Elementary Programming 33

3 Selections 75

4 Mathematical Functions, Characters,
 and Strings 119

5 Loops 157

6 Methods 203

7 Single-Dimensional Arrays 245

8 Multidimensional Arrays 287

9 Objects and Classes 321

10 Object-Oriented Thinking 365

11 Inheritance and Polymorphism 409

12 Exception Handling and Text I/O 449

13 Abstract Classes and Interfaces 495

14 JavaFX Basics 535

15 Event-Driven Programming
 and Animations 585

16 JavaFX UI Controls and Multimedia 629

17 Binary I/O 677

18 Recursion 705

19 Generics 737

20 Lists, Stacks, Queues,
 and Priority Queues 761

21 Sets and Maps 797

22 Developing Efficient Algorithms 821

23 Sorting 861

24 Implementing Lists, Stacks, Queues,
 and Priority Queues 895

25 Binary Search Trees 929

26 AVL Trees 965

27 Hashing 985

28 Graphs and Applications 1015

BRIEF CONTENTS
29 Weighted Graphs and Applications 1061

30 Multithreading and Parallel Programming 1097

31 Networking 1139

32 Java Database Programming 1173

33 JavaServer Faces 1213

Chapters 34–42 are bonus Web chapters
34 Advanced JavaFX 34-1

35 Advanced Database Programming 35-1

36 Internationalization 36-1

37 Servlets 37-1

38 JavaServer Pages 38-1

39 Web Services 39-1

40 2-4 Trees and B-Trees 40-1

41 Red-Black Trees 41-1

42 Testing Using JUnit 42-1

Appendixes

A Java Keywords 1263

B The ASCII Character Set 1266

C Operator Precedence Chart 1268

D Java Modifiers 1270

E Special Floating-Point Values 1272

F Number Systems 1273

G Bitwise Operatoirns 1277

H Regular Expressions 1278

I Enumerated Types 1283

Index 1289

xii

 Chapter 1 Introduction to Computers, Programs,
 and Java 1

1.1 Introduction 2
1.2 What Is a Computer? 2
1.3 Programming Languages 7
1.4 Operating Systems 9
1.5 Java, the World Wide Web, and Beyond 10
1.6 The Java Language Specification, API, JDK, and IDE 11
1.7 A Simple Java Program 12
1.8 Creating, Compiling, and Executing a Java Program 15
1.9 Programming Style and Documentation 18

1.10 Programming Errors 20
1.11 Developing Java Programs Using NetBeans 23
1.12 Developing Java Programs Using Eclipse 25

 Chapter 2 Elementary Programming 33
2.1 Introduction 34
2.2 Writing a Simple Program 34
2.3 Reading Input from the Console 37
2.4 Identifiers 39
2.5 Variables 40
2.6 Assignment Statements and Assignment Expressions 41
2.7 Named Constants 43
2.8 Naming Conventions 44
2.9 Numeric Data Types and Operations 44

2.10 Numeric Literals 48
2.11 Evaluating Expressions and Operator Precedence 50
2.12 Case Study: Displaying the Current Time 52
2.13 Augmented Assignment Operators 54
2.14 Increment and Decrement Operators 55
2.15 Numeric Type Conversions 56
2.16 Software Development Process 59
2.17 Case Study: Counting Monetary Units 63
2.18 Common Errors and Pitfalls 65

 Chapter 3 Selections 75
3.1 Introduction 76
3.2 boolean Data Type 76
3.3 if Statements 78
3.4 Two-Way if-else Statements 80
3.5 Nested if and Multi-Way if-else Statements 81
3.6 Common Errors and Pitfalls 83
3.7 Generating Random Numbers 87
3.8 Case Study: Computing Body Mass Index 89
3.9 Case Study: Computing Taxes 90

3.10 Logical Operators 93
3.11 Case Study: Determining Leap Year 97
3.12 Case Study: Lottery 98
3.13 switch Statements 100
3.14 Conditional Expressions 103

CONTENTS

 xiii

3.15 Operator Precedence and Associativity 104
3.16 Debugging 106

 Chapter 4 Mathematical Functions, Characters,
 and Strings 119

4.1 Introduction 120
4.2 Common Mathematical Functions 120
4.3 Character Data Type and Operations 125
4.4 The String Type 130
4.5 Case Studies 139
4.6 Formatting Console Output 145

 Chapter 5 Loops 157
5.1 Introduction 158
5.2 The while Loop 158
5.3 The do-while Loop 168
5.4 The for Loop 170
5.5 Which Loop to Use? 174
5.6 Nested Loops 176
5.7 Minimizing Numeric Errors 178
5.8 Case Studies 179
5.9 Keywords break and continue 184

5.10 Case Study: Checking Palindromes 187
5.11 Case Study: Displaying Prime Numbers 188

 Chapter 6 Methods 203
6.1 Introduction 204
6.2 Defining a Method 204
6.3 Calling a Method 206
6.4 void Method Example 209
6.5 Passing Arguments by Values 212
6.6 Modularizing Code 215
6.7 Case Study: Converting Hexadecimals to Decimals 217
6.8 Overloading Methods 219
6.9 The Scope of Variables 222

6.10 Case Study: Generating Random Characters 223
6.11 Method Abstraction and Stepwise Refinement 225

 Chapter 7 Single-Dimensional Arrays 245
7.1 Introduction 246
7.2 Array Basics 246
7.3 Case Study: Analyzing Numbers 253
7.4 Case Study: Deck of Cards 254
7.5 Copying Arrays 256
7.6 Passing Arrays to Methods 257
7.7 Returning an Array from a Method 260
7.8 Case Study: Counting the Occurrences of Each Letter 261
7.9 Variable-Length Argument Lists 264

7.10 Searching Arrays 265
7.11 Sorting Arrays 269
7.12 The Arrays Class 270
7.13 Command-Line Arguments 272

 Chapter 8 Multidimensional Arrays 287
8.1 Introduction 288
8.2 Two-Dimensional Array Basics 288

xiv Contents

8.3 Processing Two-Dimensional Arrays 291
8.4 Passing Two-Dimensional Arrays to Methods 293
8.5 Case Study: Grading a Multiple-Choice Test 294
8.6 Case Study: Finding the Closest Pair 296
8.7 Case Study: Sudoku 298
8.8 Multidimensional Arrays 301

 Chapter 9 Objects and Classes 321
9.1 Introduction 322
9.2 Defining Classes for Objects 322
9.3 Example: Defining Classes and Creating Objects 324
9.4 Constructing Objects Using Constructors 329
9.5 Accessing Objects via Reference Variables 330
9.6 Using Classes from the Java Library 334
9.7 Static Variables, Constants, and Methods 337
9.8 Visibility Modifiers 342
9.9 Data Field Encapsulation 344

9.10 Passing Objects to Methods 347
9.11 Array of Objects 351
9.12 Immutable Objects and Classes 353
9.13 The Scope of Variables 355
9.14 The this Reference 356

 Chapter 10 Object-Oriented Thinking 365
10.1 Introduction 366
10.2 Class Abstraction and Encapsulation 366
10.3 Thinking in Objects 370
10.4 Class Relationships 373
10.5 Case Study: Designing the Course Class 376
10.6 Case Study: Designing a Class for Stacks 378
10.7 Processing Primitive Data Type Values as Objects 380
10.8 Automatic Conversion between Primitive Types

and Wrapper Class Types 383
10.9 The BigInteger and BigDecimal Classes 384

10.10 The String Class 386
10.11 The StringBuilder and StringBuffer Classes 392

 Chapter 11 Inheritance and Polymorphism 409
11.1 Introduction 410
11.2 Superclasses and Subclasses 410
11.3 Using the super Keyword 416
11.4 Overriding Methods 419
11.5 Overriding vs. Overloading 420
11.6 The Object Class and Its toString() Method 422
11.7 Polymorphism 423
11.8 Dynamic Binding 424
11.9 Casting Objects and the instanceof Operator 427

11.10 The Object’s equals Method 431
11.11 The ArrayList Class 432
11.12 Useful Methods for Lists 438
11.13 Case Study: A Custom Stack Class 439
11.14 The protected Data and Methods 440
11.15 Preventing Extending and Overriding 442

 Chapter 12 Exception Handling and Text I/O 449
12.1 Introduction 450
12.2 Exception-Handling Overview 450

Contents xv

12.3 Exception Types 455
12.4 More on Exception Handling 458
12.5 The finally Clause 466
12.6 When to Use Exceptions 467
12.7 Rethrowing Exceptions 468
12.8 Chained Exceptions 469
12.9 Defining Custom Exception Classes 470

12.10 The File Class 473
12.11 File Input and Output 476
12.12 Reading Data from the Web 482
12.13 Case Study: Web Crawler 484

 Chapter 13 Abstract Classes and Interfaces 495
13.1 Introduction 496
13.2 Abstract Classes 496
13.3 Case Study: the Abstract Number Class 501
13.4 Case Study: Calendar and GregorianCalendar 503
13.5 Interfaces 506
13.6 The Comparable Interface 509
13.7 The Cloneable Interface 513
13.8 Interfaces vs. Abstract Classes 517
13.9 Case Study: The Rational Class 520

13.10 Class Design Guidelines 525

 Chapter 14 JavaFX Basics 535
14.1 Introduction 536
14.2 JavaFX vs Swing and AWT 536
14.3 The Basic Structure of a JavaFX Program 536
14.4 Panes, UI Controls, and Shapes 539
14.5 Property Binding 542
14.6 Common Properties and Methods for Nodes 545
14.7 The Color Class 546
14.8 The Font Class 547
14.9 The Image and ImageView Classes 549

14.10 Layout Panes 552
14.11 Shapes 560
14.12 Case Study: The ClockPane Class 572

 Chapter 15 Event-Driven Programming
 and Animations 585

15.1 Introduction 586
15.2 Events and Event Sources 588
15.3 Registering Handlers and Handling Events 589
15.4 Inner Classes 593
15.5 Anonymous Inner Class Handlers 594
15.6 Simplifying Event Handling Using Lambda Expressions 597
15.7 Case Study: Loan Calculator 600
15.8 Mouse Events 602
15.9 Key Events 603

15.10 Listeners for Observable Objects 606
15.11 Animation 608
15.12 Case Study: Bouncing Ball 616

 Chapter 16 JavaFX UI Controls and Multimedia 629
16.1 Introduction 630
16.2 Labeled and Label 630

xvi Contents

16.3 Button 632
16.4 CheckBox 634
16.5 RadioButton 637
16.6 TextField 639
16.7 TextArea 641
16.8 ComboBox 644
16.9 ListView 647

16.10 ScrollBar 651
16.11 Slider 654
16.12 Case Study: Developing a Tic-Tac-Toe Game 657
16.13 Video and Audio 662
16.14 Case Study: National Flags and Anthems 665

 Chapter 17 Binary I/O 677
17.1 Introduction 678
17.2 How Is Text I/O Handled in Java? 678
17.3 Text I/O vs. Binary I/O 679
17.4 Binary I/O Classes 680
17.5 Case Study: Copying Files 691
17.6 Object I/O 692
17.7 Random-Access Files 697

 Chapter 18 Recursion 705
18.1 Introduction 706
18.2 Case Study: Computing Factorials 706
18.3 Case Study: Computing Fibonacci Numbers 709
18.4 Problem Solving Using Recursion 712
18.5 Recursive Helper Methods 714
18.6 Case Study: Finding the Directory Size 717
18.7 Case Study: Tower of Hanoi 719
18.8 Case Study: Fractals 722
18.9 Recursion vs. Iteration 726

18.10 Tail Recursion 727

 Chapter 19 Generics 737
19.1 Introduction 738
19.2 Motivations and Benefits 738
19.3 Defining Generic Classes and Interfaces 740
19.4 Generic Methods 742
19.5 Case Study: Sorting an Array of Objects 744
19.6 Raw Types and Backward Compatibility 746
19.7 Wildcard Generic Types 747
19.8 Erasure and Restrictions on Generics 750
19.9 Case Study: Generic Matrix Class 752

 Chapter 20 Lists, Stacks, Queues,
 and Priority Queues 761

20.1 Introduction 762
20.2 Collections 762
20.3 Iterators 766
20.4 Lists 767
20.5 The Comparator Interface 772
20.6 Static Methods for Lists and Collections 773
20.7 Case Study: Bouncing Balls 777
20.8 Vector and Stack Classes 781

Contents xvii

20.9 Queues and Priority Queues 783
20.10 Case Study: Evaluating Expressions 786

 Chapter 21 Sets and Maps 797
21.1 Introduction 798
21.2 Sets 798
21.3 Comparing the Performance of Sets and Lists 806
21.4 Case Study: Counting Keywords 809
21.5 Maps 810
21.6 Case Study: Occurrences of Words 815
21.7 Singleton and Unmodifiable Collections and Maps 816

 Chapter 22 Developing Efficient Algorithms 821
22.1 Introduction 822
22.2 Measuring Algorithm Efficiency Using Big O Notation 822
22.3 Examples: Determining Big O 824
22.4 Analyzing Algorithm Time Complexity 828
22.5 Finding Fibonacci Numbers Using Dynamic Programming 831
22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 833
22.7 Efficient Algorithms for Finding Prime Numbers 837
22.8 Finding the Closest Pair of Points Using Divide-and-Conquer 843
22.9 Solving the Eight Queens Problem Using Backtracking 846

22.10 Computational Geometry: Finding a Convex Hull 849

 Chapter 23 Sorting 861
23.1 Introduction 862
23.2 Insertion Sort 862
23.3 Bubble Sort 864
23.4 Merge Sort 867
23.5 Quick Sort 870
23.6 Heap Sort 874
23.7 Bucket Sort and Radix Sort 881
23.8 External Sort 883

 Chapter 24 Implementing Lists, Stacks, Queues,
 and Priority Queues 895

24.1 Introduction 896
24.2 Common Features for Lists 896
24.3 Array Lists 900
24.4 Linked Lists 906
24.5 Stacks and Queues 920
24.6 Priority Queues 924

 Chapter 25 Binary Search Trees 929
25.1 Introduction 930
25.2 Binary Search Trees 930
25.3 Deleting Elements from a BST 943
25.4 Tree Visualization and MVC 949
25.5 Iterators 952
25.6 Case Study: Data Compression 954

 Chapter 26 AVL Trees 965
26.1 Introduction 966
26.2 Rebalancing Trees 966
26.3 Designing Classes for AVL Trees 969

xviii Contents

26.4 Overriding the insert Method 970
26.5 Implementing Rotations 971
26.6 Implementing the delete Method 972
26.7 The AVLTree Class 972
26.8 Testing the AVLTree Class 978
26.9 AVL Tree Time Complexity Analysis 981

 Chapter 27 Hashing 985
27.1 Introduction 986
27.2 What Is Hashing? 986
27.3 Hash Functions and Hash Codes 987
27.4 Handling Collisions Using Open Addressing 989
27.5 Handling Collisions Using Separate Chaining 993
27.6 Load Factor and Rehashing 993
27.7 Implementing a Map Using Hashing 995
27.8 Implementing Set Using Hashing 1004

 Chapter 28 Graphs and Applications 1015
28.1 Introduction 1016
28.2 Basic Graph Terminologies 1017
28.3 Representing Graphs 1019
28.4 Modeling Graphs 1024
28.5 Graph Visualization 1034
28.6 Graph Traversals 1037
28.7 Depth-First Search (DFS) 1038
28.8 Case Study: The Connected Circles Problem 1042
28.9 Breadth-First Search (BFS) 1045

28.10 Case Study: The Nine Tails Problem 1048

 Chapter 29 Weighted Graphs and Applications 1061
29.1 Introduction 1062
29.2 Representing Weighted Graphs 1063
29.3 The WeightedGraph Class 1065
29.4 Minimum Spanning Trees 1072
29.5 Finding Shortest Paths 1078
29.6 Case Study: The Weighted Nine Tails Problem 1086

 Chapter 30 Multithreading and Parallel
 Programming 1097

30.1 Introduction 1098
30.2 Thread Concepts 1098
30.3 Creating Tasks and Threads 1098
30.4 The Thread Class 1102
30.5 Case Study: Flashing Text 1105
30.6 Thread Pools 1106
30.7 Thread Synchronization 1108
30.8 Synchronization Using Locks 1112
30.9 Cooperation among Threads 1114

30.10 Case Study: Producer/Consumer 1119
30.11 Blocking Queues 1122
30.12 Semaphores 1124
30.13 Avoiding Deadlocks 1126
30.14 Thread States 1126
30.15 Synchronized Collections 1127
30.16 Parallel Programming 1128

Contents xix

 Chapter 31 Networking 1139
31.1 Introduction 1140
31.2 Client/Server Computing 1140
31.3 The InetAddress Class 1147
31.4 Serving Multiple Clients 1148
31.5 Sending and Receiving Objects 1151
31.6 Case Study: Distributed Tic-Tac-Toe Games 1156

 Chapter 32 Java Database Programming 1173
32.1 Introduction 1174
32.2 Relational Database Systems 1174
32.3 SQL 1178
32.4 JDBC 1189
32.5 PreparedStatement 1197
32.6 CallableStatement 1199
32.7 Retrieving Metadata 1202

 Chapter 33 JavaServer Faces 1213
33.1 Introduction 1214
33.2 Getting Started with JSF 1214
33.3 JSF GUI Components 1222
33.4 Processing the Form 1226
33.5 Case Study: Calculator 1230
33.6 Session Tracking 1233
33.7 Validating Input 1235
33.8 Binding Database with Facelets 1239
33.9 Opening New JSF Pages 1245

Bonus Chapters 34–42 are available from the Companion Website at
www.pearsonhighered.com/liang:

 Chapter 34 Advanced JavaFX 34-1

 Chapter 35 Advanced Database Programming 35-1

 Chapter 36 Internationalization 36-1

 Chapter 37 Servlets 37-1

 Chapter 38 JavaServer Pages 38-1

 Chapter 39 Web Services 39-1

 Chapter 40 2-4 Trees and B-Trees 40-1

 Chapter 41 Red-Black Trees 41-1

 Chapter 42 Testing Using JUnit 42-1

www.allitebooks.com

www.pearsonhighered.com/liang
http://www.allitebooks.org

xx Contents

APPENDIXES

Appendix A Java Keywords 1263

 Appendix B The ASCII Character Set 1266

 Appendix C Operator Precedence Chart 1268

 Appendix D Java Modifiers 1270

 Appendix E Special Floating-Point Values 1272

 Appendix F Number Systems 1273

 Appendix G Bitwise Operations 1277

 Appendix H Regular Expressions 1278

 Appendix I Enumerated Types 1283

INDEX 1289

xxi

Chapter 1 Introduction to Computers, Programs,
 and Java 1

Your first Java program 12

Compile and run a Java program 17

NetBeans brief tutorial 23

Eclipse brief tutorial 25

Chapter 2 Elementary Programming 33
Obtain input 37

Use operators / and % 52

Software development process 59

Compute loan payments 60

Compute BMI 72

Chapter 3 Selections 75
Program addition quiz 77

Program subtraction quiz 87

Use multi-way if-else statements 90

Sort three integers 110

Check point location 112

Chapter 4 Mathematical Functions,
Characters, and Strings 119
Introduce math functions 120

Introduce strings and objects 130

Convert hex to decimal 143

Compute great circle distance 151

Convert hex to binary 153

Chapter 5 Loops 157
Guess a number 161

Multiple subtraction quiz 164

Minimize numeric errors 178

Display loan schedule 194

Sum a series 195

Chapter 6 Methods 203
Define/invoke max method 206

Use void method 209

Modularize code 215

Stepwise refinement 225

Reverse an integer 234

Estimate p 237

Chapter 7 Single-Dimensional Arrays 245
Random shuffling 250

Deck of cards 254

Selection sort 269

VideoNotes
Locations of VideoNotes
http://www.pearsonhighered.com/liang

Command-line arguments 272

Coupon collector’s problem 281

Consecutive four 283

Chapter 8 Multidimensional Arrays 287
Find the row with the largest sum 292

Grade multiple-choice test 294

Sudoku 298

Multiply two matrices 307

Even number of 1s 314

Chapter 9 Objects and Classes 321
Define classes and objects 322

Use classes 334

Static vs. instance 337

Data field encapsulation 344

The Fan class 362

Chapter 10 Object-Oriented Thinking 365
The Loan class 367

The BMI class 370

The StackOfIntegers class 378

Process large numbers 384

The String class 386

The MyPoint class 400

Chapter 11 Inheritance and Polymorphism 409
Geometric class hierarchy 410

Polymorphism and dynamic binding demo 424

The ArrayList class 432

The MyStack class 439

New Account class 446

Chapter 12 Exception Handling and Text I/O 449
Exception-handling advantages 450

Create custom exception classes 470

Write and read data 476

HexFormatException 489

Chapter 13 Abstract Classes and Interfaces 495
Abstract GeometricObject class 496

Calendar and GregorianCalendar classes 503

The concept of interface 506

Redesign the Rectangle class 530

Chapter 14 JavaFX Basics 535
Understand property binding 542

Use Image and ImageView 549

Use layout panes 552

VideoNote

http://www.pearsonhighered.com/liang

xxii VideoNotes

Use shapes 560

Display a tictactoe board 578

Display a bar chart 580

Chapter 15 Event-Driven Programming
 and Animations 585

Handler and its registration 592

Anonymous handler 595

Move message using the mouse 602

Animate a rising flag 608

Flashing text 614

Simple calculator 621

Check mouse point location 622

Display a running fan 625

Chapter 16 JavaFX UI Controls and Multimedia 629
Use ListView 647

Use Slider 654

TicTacToe 657

Use Media, MediaPlayer, and MediaView 662

Audio and image 666

Use radio buttons and text fields 669

Set fonts 671

Chapter 17 Binary I/O 677
Copy file 691

Object I/O 693

Split a large file 702

Chapter 18 Recursion 705
Binary search 716

Directory size 717

Fractal (Sierpinski triangle) 722

Search a string in a directory 733

Recursive tree 736

INTRODUCTION
TO COMPUTERS,
PROGRAMS,
AND JAVA

Objectives
■ To understand computer basics, programs, and operating systems

(§§1.2–1.4).

■ To describe the relationship between Java and the World Wide Web
(§1.5).

■ To understand the meaning of Java language specification, API, JDK,
and IDE (§1.6).

■ To write a simple Java program (§1.7).

■ To display output on the console (§1.7).

■ To explain the basic syntax of a Java program (§1.7).

■ To create, compile, and run Java programs (§1.8).

■ To use sound Java programming style and document programs properly
(§1.9).

■ To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

■ To develop Java programs using NetBeans (§1.11).

■ To develop Java programs using Eclipse (§1.12).

CHAPTER

1

2 Chapter 1 Introduction to Computers, Programs, and Java

1.1 Introduction
The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you use
word processors to write documents, Web browsers to explore the Internet, and e-mail pro-
grams to send and receive messages. These programs are all examples of software. Software
developers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language
was invented for a specific purpose—to build on the strengths of a previous language, for
example, or to give the programmer a new and unique set of tools. Knowing that there are
so many programming languages available, it would be natural for you to wonder which
one is best. But, in truth, there is no “best” language. Each one has its own strengths and
weaknesses. Experienced programmers know that one language might work well in some
situations, whereas a different language may be more appropriate in other situations. For this
reason, seasoned programmers try to master as many different programming languages as
they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other languages.
The key is to learn how to solve problems using a programming approach. That is the main
theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems. If you are already familiar
with such terms as CPU, memory, disks, operating systems, and programming languages, you
may skip Sections 1.2–1.4.

1.2 What Is a Computer?
A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that
a program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

 ■ A central processing unit (CPU)

 ■ Memory (main memory)

 ■ Storage devices (such as disks and CDs)

 ■ Input devices (such as the mouse and keyboard)

 ■ Output devices (such as monitors and printers)

 ■ Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

Key
Point

what is programming?
programming

program

Key
Point

hardware
software

bus

Owner
Highlight
to develop a software.

Owner
Highlight
If Humans behave like computers, then aren't we computers as well?

Owner
Highlight

Owner
Highlight
The basic hardware components for a computer

Owner
Highlight
what humans use to create software.

Owner
Highlight
software that instruct computers hardware .

Owner
Highlight
the physical elements of computers.

Owner
Highlight
deliveries the instructions to hardware.

Owner
Highlight

Owner
Highlight

Owner
Highlight
Computer "highway" allows the flow of info from one components to other!

1.2 What Is a Computer? 3

the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together.

1.2.1 Central Processing Unit
The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other
components. The arithmetic/logic unit performs numeric operations (addition, subtraction,
multiplication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s, computers
measured clocked speed in megahertz (MHz), but CPU speed has been improving continuously;
the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest proces-
sors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

1.2.2 Bits and Bytes
Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence of
switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s
and 1s are interpreted as digits in the binary number system and are called bits (binary digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit into a
single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes.
As a programmer, you don’t need to worry about the encoding and decoding of data, which
the computer system performs automatically, based on the encoding scheme. An encoding
scheme is a set of rules that govern how a computer translates characters, numbers, and sym-
bols into data the computer can actually work with. Most schemes translate each character

motherboard

CPU

speed

hertz

megahertz
gigahertz

core

bits

byte

encoding scheme

FIGURE 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

Memory

e.g., Disk, CD,
and Tape

e.g., Modem
and NIC

e.g., Keyboard,
Mouse

e.g., Monitor,
Printer

CPU

Bus

Storage
Devices

Communication
Devices

Input
Devices

Output
Devices

Owner
Highlight
connects all parts of the computer...

Owner
Highlight

Owner
Highlight
Central Processing Unit: The brain of a computer.

Owner
Highlight
this clock is what allow computer to emits electronic pulse use to determine the pase of operations

Owner
Highlight

Owner
Highlight
the unit of measurement for computer clock speed.

Owner
Highlight
the rate of which a computer process information. given by the internal clock electronic pulse.

Owner
Highlight
megaH= 1990s clock speedgigaH= modern clock measurement ex:(3 GHz)

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight
Parts of the processor that perform the reading and executing.

Owner
Highlight

Owner
Highlight

Owner
Highlight
A coding scheme is what govern how a computer translate characters, numbers and symbols into compatible data for the computer.

Owner
Highlight

4 Chapter 1 Introduction to Computers, Programs, and Java

into a predetermined string of bits. In the popular ASCII encoding scheme, for example, the
character C is represented as 01000011 in one byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

 ■ A kilobyte (KB) is about 1,000 bytes.

 ■ A megabyte (MB) is about 1 million bytes.

 ■ A gigabyte (GB) is about 1 billion bytes.

 ■ A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory
A computer’s memory consists of an ordered sequence of bytes for storing programs as well as
data that the program is working with. You can think of memory as the computer’s work area
for executing a program. A program and its data must be moved into the computer’s memory
before they can be executed by the CPU.

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM).

kilobyte (KB)

megabyte (MB)

gigabyte (GB)

terabyte (TB)

memory

unique address

RAM

FIGURE 1.2 Memory stores data and program instructions in uniquely addressed memory
locations.

01000011
01110010
01100101
01110111
00000011

Encoding for character ‘C’
Encoding for character ‘r’
Encoding for character ‘e’
Encoding for character ‘w’
Encoding for number 3

2000
2001
2002
2003
2004

Memory address Memory content

Today’s personal computers usually have at least 4 gigabyte of RAM, but they more com-
monly have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

1.2.4 Storage Devices
A computer’s memory (RAM) is a volatile form of data storage: any information that has
been stored in memory (i.e., saved) is lost when the system’s power is turned off. Programs
and data are permanently stored on storage devices and are moved, when the computer storage devices

Owner
Highlight

Owner
Highlight

Owner
Highlight
Memory is ordered sequence of information the program is working with.

Owner
Highlight

Owner
Highlight
This is use to for storing and accessing data.

Owner
Highlight
RAM or Random-Access Memory refers to bytes, which can be access in any order within the memory.

Owner
Highlight
RAM are like CPU's

1.2 What Is a Computer? 5

actually uses them, to memory, which operates at much faster speeds than permanent storage
devices can.

There are three main types of storage devices:

 ■ Magnetic disk drives

 ■ Optical disc drives (CD and DVD)

 ■ USB flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks
A computer usually has at least one hard disk drive. Hard disks are used for permanently stor-
ing data and programs. Newer computers have hard disks that can store from 500 gigabytes to
1 terabytes of data. Hard disk drives are usually encased inside the computer, but removable
hard disks are also available.

CDs and DVDs
CD stands for compact disc. There are two types of CD drives: CD-R and CD-RW. A CD-R is
for read-only permanent storage; the user cannot modify its contents once they are recorded.
A CD-RW can be used like a hard disk; that is, you can write data onto the disc, and then
overwrite that data with new data. A single CD can hold up to 700 MB. Most new PCs are
equipped with a CD-RW drive that can work with both CD-R and CD-RW discs.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-
only) and DVD-RW (rewritable).

USB Flash Drives
Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use a USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum. It acts like a portable hard drive that can be plugged into your
computer’s USB port. USB flash drives are currently available with up to 256 GB storage
capacity.

1.2.5 Input and Output Devices
Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard
A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F.
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the nor-
mal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

drive

hard disk

CD-R

CD-RW

DVD

function key

modifier key

numeric keypad

arrow keys

Owner
Highlight

Owner
Highlight

Owner
Highlight
CD-R: read onlyCD-RW: re writable

Owner
Highlight
Function: depend on the software being useModifier key: change the purpose of other keys when press at once. (shift, alt, crtl)

6 Chapter 1 Introduction to Computers, Programs, and Java

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse
A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor
The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper
and clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6 Communication Devices
Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

 ■ A dial-up modem uses a phone line and can transfer data at a speed up to 56,000 bps
(bits per second).

 ■ A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

 ■ A cable modem uses the cable TV line maintained by the cable company and is gen-
erally faster than DSL.

 ■ A network interface card (NIC) is a device that connects a computer to a local area
network (LAN). LANs are commonly used in universities, businesses, and government
agencies. A high-speed NIC called 1000BaseT can transfer data at 1,000 million bits
per second (mbps).

 ■ Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

Note
Answers to checkpoint questions are on the Companion Website.

1.1 What are hardware and software?

1.2 List five major hardware components of a computer.

1.3 What does the acronym “CPU” stand for?

1.4 What unit is used to measure CPU speed?

1.5 What is a bit? What is a byte?

1.6 What is memory for? What does RAM stand for? Why is memory called RAM?

1.7 What unit is used to measure memory size?

Insert key

Delete key
Page Up key
Page Down key

screen resolution

pixels

dot pitch

dial-up modem

digital subscriber line (DSL)

cable modem

network interface card (NIC)
local area network (LAN)

million bits per second
(mbps)

✓Point✓Check

Owner
Highlight
Dial modem, DSL(digial subscriber line)

Owner
Highlight
Picture Element

Owner
Highlight
The amount of space between pixels(picture elements)

Owner
Highlight

Owner
Highlight
links a computer to LAN(local area network)

Owner
Highlight
has limit of 56k bps(bits per second)

Owner
Highlight
A hardware is the visible elements of a computer. And the software are the programs that direct and control hardware functions

Owner
Highlight
CPU, input and output devices, [communication devices, memory]

Owner
Highlight
Central Processing Unit

Owner
Highlight
Hertz

Owner
Highlight
A bit is the accumulation of byte and a byte is the lowest from of memory

Owner
Highlight
The purpose of memory is access stored data in a computer.

Owner
Highlight
RAM= Random-access-Memory

Owner
Highlight
Memory is call RAM because it can be randomly access at any given time

Owner
Highlight
byte

1.3 Programming Languages 7

1.8 What unit is used to measure disk size?

1.9 What is the primary difference between memory and a storage device?

1.3 Programming Languages
Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a
computer can use. There are hundreds of programming languages, and they were developed
to make the programming process easier for people. However, all programs must be converted
into the instructions the computer can execute.

1.3.1 Machine Language
A computer’s native language, which differs among different types of computers, is its
machine language—a set of built-in primitive instructions. These instructions are in the form
of binary code, so if you want to give a computer an instruction in its native language, you
have to enter the instruction as binary code. For example, to add two numbers, you might have
to write an instruction in binary code, like this:

1101101010011010

1.3.2 Assembly Language
Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-
bers and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you
might write an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used
to translate assembly-language programs into machine code, as shown in Figure 1.3.

Key
Point

machine language

assembly language

assembler

FIGURE 1.3 An assembler translates assembly-language instructions into machine code.

Assembly Source File

...
add 2, 3, result

...

Machine-Code File

...
1101101010011010

...

Assembler

Writing code in assembly language is easier than in machine language. However, it is
still tedious to write code in assembly language. An instruction in assembly language essen-
tially corresponds to an instruction in machine code. Writing in assembly requires that you
know how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

low-level language

www.allitebooks.com

Owner
Highlight
The prime languages of computer. Its in binary code(10110)

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight
use words such as add and sub (know as mnemoic) this translate it to machine language.

Owner
Highlight
convert assembly language into machine code.

Owner
Highlight

http://www.allitebooks.org

8 Chapter 1 Introduction to Computers, Programs, and Java

TABLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was
developed for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and
portability of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-independent
Internet applications.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple,
structured, general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop graphical user
interfaces.

1.3.3 High-Level Language
In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a
circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

high-level language

statement

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

 ■ An interpreter reads one statement from the source code, translates it to the machine code
or virtual machine code, and then executes it right away, as shown in Figure 1.4a. Note
that a statement from the source code may be translated into several machine instructions.

 ■ A compiler translates the entire source code into a machine-code file, and the
machine-code file is then executed, as shown in Figure 1.4b.

1.10 What language does the CPU understand?

1.11 What is an assembly language?

1.12 What is an assembler?

1.13 What is a high-level programming language?

1.14 What is a source program?

source program

source code
interpreter

compiler

✓Point✓Check

Owner
Highlight
instructions in high level language

Owner
Highlight

Owner
Highlight

1.4 Operating Systems 9

1.15 What is an interpreter?

1.16 What is a compiler?

1.17 What is the difference between an interpreted language and a compiled language?

FIGURE 1.4 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the
entire source program into a machine-language file for execution.

Machine-Code File

...
0101100011011100
1111100011000100

...

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(b)

Compiler Executor

High-Level Source File

...
 area = 5 * 5 * 3.1415;

...

(a)

Interpreter
Output

Output

1.4 Operating Systems
The operating system (OS) is the most important program that runs on a computer.
The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot
run unless an operating system is installed and running on the computer. Figure 1.5 shows the
interrelationship of hardware, operating system, application software, and the user.

Key
Point

operating system (OS)

FIGURE 1.5 Users and applications access the computer’s hardware via the operating system.

User

Application Programs

Operating System

Hardware

The major tasks of an operating system are as follows:

 ■ Controlling and monitoring system activities

 ■ Allocating and assigning system resources

 ■ Scheduling operations

10 Chapter 1 Introduction to Computers, Programs, and Java

1.4.1 Controlling and Monitoring System Activities
Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure
that different programs and users working at the same time do not interfere with each other.
In addition, the OS is responsible for security, ensuring that unauthorized users and programs
are not allowed to access the system.

1.4.2 Allocating and Assigning System Resources
The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

1.4.3 Scheduling Operations
The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support techniques such as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs to run simultaneously by sharing the same
CPU. The CPU is much faster than the computer’s other components. As a result, it is idle
most of the time—for example, while waiting for data to be transferred from a disk or waiting
for other system resources to respond. A multiprogramming OS takes advantage of this
situation by allowing multiple programs to use the CPU when it would otherwise be idle. For
example, multiprogramming enables you to use a word processor to edit a file at the same time
as your Web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same application. These two
tasks may run concurrently.

Multiprocessing, or parallel processing, uses two or more processors together to per-
form subtasks concurrently and then combine solutions of the subtasks to obtain a solution
for the entire task. It is like a surgical operation where several doctors work together on
one patient.

1.18 What is an operating system? List some popular operating systems.

1.19 What are the major responsibilities of an operating system?

1.20 What are multiprogramming, multithreading, and multiprocessing?

1.5 Java, the World Wide Web, and Beyond
Java is a powerful and versatile programming language for developing software
running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling
at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called
Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances.
In 1995, renamed Java, it was redesigned for developing Web applications. For the history of
Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced
to its design characteristics, particularly its promise that you can write a program once
and run it anywhere. As stated by its designer, Java is simple, object oriented, distributed,

multiprogramming

multithreading

multiprocessing

✓Point✓Check

Key
Point

www.java.com/en/javahistory/index.jsp

1.6 The Java Language Specification, API, JDK, and IDE 11

interpreted, robust, secure, architecture neutral, portable, high performance, multi-
threaded, and dynamic. For the anatomy of Java characteristics, see www.cs.armstrong.edu/
liang/JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop
robust mission-critical applications. Today, it is employed not only for Web programming but
also for developing standalone applications across platforms on servers, desktop computers,
and mobile devices. It was used to develop the code to communicate with and control the
robotic rover on Mars. Many companies that once considered Java to be more hype than sub-
stance are now using it to create distributed applications accessed by customers and partners
across the Internet. For every new project being developed today, companies are asking how
they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the
Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around
for more than forty years. The colorful World Wide Web and sophisticated Web browsers are
the major reason for the Internet’s popularity.

Java initially became attractive because Java programs can be run from a Web browser.
Such programs are called applets. Applets employ a modern graphical interface with but-
tons, text fields, text areas, radio buttons, and so on, to interact with users on the Web and
process their requests. Applets make the Web responsive, interactive, and fun to use. Applets
are embedded in an HTML file. HTML (Hypertext Markup Language) is a simple scripting
language for laying out documents, linking documents on the Internet, and bringing images,
sound, and video alive on the Web. Today, you can use Java to develop rich Internet appli-
cations. A rich Internet application (RIA) is a Web application designed to deliver the same
features and functions normally associated with deskop applications.

Java is now very popular for developing applications on Web servers. These applications
process data, perform computations, and generate dynamic Web pages. Many commercial
Websites are developed using Java on the backend.

Java is a versatile programming language: you can use it to develop applications for desk-
top computers, servers, and small handheld devices. The software for Android cell phones is
developed using Java.

1.21 Who invented Java? Which company owns Java now?

1.22 What is a Java applet?

1.23 What programming language does Android use?

1.6 The Java Language Specification, API, JDK, and IDE
Java syntax is defined in the Java language specification, and the Java library is
defined in the Java API. The JDK is the software for developing and running Java
programs. An IDE is an integrated development environment for rapidly developing
programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a
program, the computer will not be able to understand it. The Java language specification and
the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming
language’s syntax and semantics. You can find the complete Java language specification at
http://docs.oracle.com/javase/specs/.

The application program interface (API), also known as library, contains predefined
classes and interfaces for developing Java programs. The API is still expanding. You can
view and download the latest version of the Java API at http://download.java.net/jdk8/docs/api/.

✓Point✓Check

Key
Point

Java language specification

API

library

www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
www.cs.armstrong.edu/liang/JavaCharacteristics.pdf
http://docs.oracle.com/javase/specs/
http://download.java.net/jdk8/docs/api/

12 Chapter 1 Introduction to Computers, Programs, and Java

Java is a full-fledged and powerful language that can be used in many ways. It comes in
three editions:

 ■ Java Standard Edition (Java SE) to develop client-side applications. The applica-
tions can run standalone or as applets running from a Web browser.

 ■ Java Enterprise Edition (Java EE) to develop server-side applications, such as Java
servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

 ■ Java Micro Edition (Java ME) to develop applications for mobile devices, such as
cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon
which all other Java technology is based. There are many versions of Java SE. The latest,
Java SE 8, is used in this book. Oracle releases each version with a Java Development Toolkit
(JDK). For Java SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8
or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command line, for
developing and testing Java programs. Instead of using the JDK, you can use a Java devel-
opment tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated
development environment (IDE) for developing Java programs quickly. Editing, compiling,
building, debugging, and online help are integrated in one graphical user interface. You simply
enter source code in one window or open an existing file in a window, and then click a button
or menu item or press a function key to compile and run the program.

1.24 What is the Java language specification?

1.25 What does JDK stand for?

1.26 What does IDE stand for?

1.27 Are tools like NetBeans and Eclipse different languages from Java, or are they
dialects or extensions of Java?

1.7 A Simple Java Program
A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the
console. (The word console is an old computer term that refers to the text entry and display
device of a computer. Console input means to receive input from the keyboard, and console
output means to display output on the monitor.) The program is shown in Listing 1.1.

LISTING 1.1 Welcome.java
1 public class Welcome {
2 public static void main(String[] args) {
3 // Display message Welcome to Java! on the console
4 System.out.println("Welcome to Java!");
5 }
6 }

Note that the line numbers are for reference purposes only; they are not part of the program.
So, don’t type line numbers in your program.

Java SE, EE, and ME

Java Development
Toolkit (JDK)

JDK 1.8 = JDK 8

Integrated development
environment

✓Point✓Check

Key
Point

what is a console?
console input

console output

class
main method
display message

VideoNote
Your first Java program

line numbers

Welcome to Java!

1.7 A Simple Java Program 13

Line 1 defines a class. Every Java program must have at least one class. Each class has a
name. By convention, class names start with an uppercase letter. In this example, the class
name is Welcome.

Line 2 defines the main method. The program is executed from the main method. A class
may contain several methods. The main method is the entry point where the program begins
execution.

A method is a construct that contains statements. The main method in this program con-
tains the System.out.println statement. This statement displays the string Welcome to
Java! on the console (line 4). String is a programming term meaning a sequence of charac-
ters. A string must be enclosed in double quotation marks. Every statement in Java ends with
a semicolon (;), known as the statement terminator.

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used
for other purposes in the program. For example, when the compiler sees the word class, it
understands that the word after class is the name for the class. Other reserved words in this
program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is constructed. Comments
help programmers to communicate and understand the program. They are not programming
statements and thus are ignored by the compiler. In Java, comments are preceded by two
slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several
lines, called a block comment or paragraph comment. When the compiler sees //, it ignores
all text after // on the same line. When it sees /*, it scans for the next */ and ignores any text
between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program
 displays Welcome to Java! */

A pair of curly braces in a program forms a block that groups the program’s components.
In Java, each block begins with an opening brace ({) and ends with a closing brace (}). Every
class has a class block that groups the data and methods of the class. Similarly, every method
has a method block that groups the statements in the method. Blocks can be nested, meaning
that one block can be placed within another, as shown in the following code.

class name

main method

string

statement terminator

reserved word
keyword

comment

line comment

block comment

block

Tip
An opening brace must be matched by a closing brace. Whenever you type an opening

brace, immediately type a closing brace to prevent the missing-brace error. Most Java

IDEs automatically insert the closing brace for each opening brace.

Caution
Java source programs are case sensitive. It would be wrong, for example, to replace

main in the program with Main.

You have seen several special characters (e.g., { }, //, ;) in the program. They are used
in almost every program. Table 1.2 summarizes their uses.

The most common errors you will make as you learn to program will be syntax errors.
Like any programming language, Java has its own syntax, and you need to write code that

match braces

case sensitive

special characters

common errors

public class Welcome {
 public static void main(String[] args) {

 System.out.println("Welcome to Java!");
}

}

Method block
Class block

14 Chapter 1 Introduction to Computers, Programs, and Java

conforms to the syntax rules. If your program violates a rule—for example, if the semicolon
is missing, a brace is missing, a quotation mark is missing, or a word is misspelled—the Java
compiler will report syntax errors. Try to compile the program with these errors and see what
the compiler reports.

Note
You are probably wondering why the main method is defined this way and why

System.out.println(...) is used to display a message on the console. For the

time being, simply accept that this is how things are done. Your questions will be fully

answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it
is easy to extend it to display more messages. For example, you can rewrite the program to
display three messages, as shown in Listing 1.2.

LISTING 1.2 WelcomeWithThreeMessages.java
1 public class WelcomeWithThreeMessages {
2 public static void main(String[] args) {
3 System.out.println("Programming is fun!");
4 System.out.println("Fundamentals First");
5 System.out.println("Problem Driven");
6 }
7 }

syntax rules

class
main method
display message

Programming is fun!
Fundamentals First
Problem Driven

0.39759036144578314

TABLE 1.2 Special Characters

Character Name Description

{} Opening and closing braces Denote a block to enclose statements.

() Opening and closing parentheses Used with methods.

[] Opening and closing brackets Denote an array.

// Double slashes Precede a comment line.

" " Opening and closing quotation marks Enclose a string (i.e., sequence of characters).

; Semicolon Mark the end of a statement.

Further, you can perform mathematical computations and display the result on the console.

Listing 1.3 gives an example of evaluating
10.5 + 2 * 3

45 - 3.5
.

LISTING 1.3 ComputeExpression.java
1 public class ComputeExpression {
2 public static void main(String[] args) {
3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
4 }
5 }

class
main method
compute expression

1.8 Creating, Compiling, and Executing a Java Program 15

The multiplication operator in Java is *. As you can see, it is a straightforward process
to translate an arithmetic expression to a Java expression. We will discuss Java expressions
further in Chapter 2.

1.28 What is a keyword? List some Java keywords.

1.29 Is Java case sensitive? What is the case for Java keywords?

1.30 What is a comment? Is the comment ignored by the compiler? How do you denote a
comment line and a comment paragraph?

1.31 What is the statement to display a string on the console?

1.32 Show the output of the following code:

public class Test {
public static void main(String[] args) {

 System.out.println("3.5 * 4 / 2 – 2.5 is ");
 System.out.println(3.5 * 4 / 2 – 2.5);
 }
}

1.8 Creating, Compiling, and Executing a Java Program
You save a Java program in a .java file and compile it into a .class file. The .class file
is executed by the Java Virtual Machine.

You have to create your program and compile it before it can be executed. This process is
repetitive, as shown in Figure 1.6. If your program has compile errors, you have to modify
the program to fix them, and then recompile it. If your program has runtime errors or does not
produce the correct result, you have to modify the program, recompile it, and execute it again.

You can use any text editor or IDE to create and edit a Java source-code file. This section
demonstrates how to create, compile, and run Java programs from a command window.
Sections 1.10 and 1.11 will introduce developing Java programs using NetBeans and Eclipse.
From the command window, you can use a text editor such as Notepad to create the Java
source-code file, as shown in Figure 1.7.

Note
The source file must end with the extension .java and must have the same exact name

as the public class name. For example, the file for the source code in Listing 1.1 should

be named Welcome.java, since the public class name is Welcome.

A Java compiler translates a Java source file into a Java bytecode file. The following com-
mand compiles Welcome.java:

javac Welcome.java

Note
You must first install and configure the JDK before you can compile and run programs.

See Supplement I.B, Installing and Configuring JDK 8, for how to install the JDK and set

up the environment to compile and run Java programs. If you have trouble compiling

and running programs, see Supplement I.C, Compiling and Running Java from the

Command Window. This supplement also explains how to use basic DOS commands

and how to use Windows Notepad to create and edit files. All the supplements are

accessible from the Companion Website at www.cs.armstrong.edu/liang/intro10e/

supplement.html.

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class
extension. Thus, the preceding command generates a file named Welcome.class, as shown

✓Point✓Check

Key
Point

command window

file name Welcome.java,

compile

Supplement I.B

Supplement I.C

.class bytecode file

www.cs.armstrong.edu/liang/intro10e/supplement.html
www.cs.armstrong.edu/liang/intro10e/supplement.html

16 Chapter 1 Introduction to Computers, Programs, and Java

in Figure 1.8a. The Java language is a high-level language, but Java bytecode is a low-level
language. The bytecode is similar to machine instructions but is architecture neutral and can
run on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.8b. Rather
than a physical machine, the virtual machine is a program that interprets Java bytecode. This
is one of Java’s primary advantages: Java bytecode can run on a variety of hardware plat-
forms and operating systems. Java source code is compiled into Java bytecode and Java byte-
code is interpreted by the JVM. Your Java code may use the code in the Java library. The JVM
executes your code along with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute the bytecode
on any platform with a JVM, which is an interpreter. It translates the individual instructions
in the bytecode into the target machine language code one at a time rather than the whole pro-
gram as a single unit. Each step is executed immediately after it is translated.

The following command runs the bytecode for Listing 1.1:

java Welcome

bytecode

Java Virtual Machine (JVM)

interpret bytecode

run

FIGURE 1.6 The Java program-development process consists of repeatedly creating/modifying source code, compiling,
and executing programs.

Create/Modify Source Code

Result

Compile Source Code
e.g., javac Welcome.java

Saved on the disk

Stored on the disk
If compile errors occur

If runtime errors or incorrect result

Source code (developed by the programmer)

Bytecode (generated by the compiler for JVM
to read and interpret)

…
Method Welcome()
 0 aload_0

…

Method void main(java.lang.String[])
 0 getstatic #2 …
 3 ldc #3 <String "Welcome to Java!">
 5 invokevirtual #4 …
 8 return

public class Welcome {
 public static void main(String[] args) {
 System.out.println("Welcome to Java!");

}
}

Run Bytecode
e.g., java Welcome

Source Code

Bytecode

“Welcome to Java ” is displayed on the console

Welcome to Java!

FIGURE 1.7 You can create a Java source file using Windows Notepad.

1.8 Creating, Compiling, and Executing a Java Program 17

Figure 1.9 shows the javac command for compiling Welcome.java. The compiler gener-
ates the Welcome.class file, and this file is executed using the java command.

Note
For simplicity and consistency, all source-code and class files used in this book are

placed under c:\book unless specified otherwise.

javac command

java command

c:\book

VideoNote

Compile and run a Java

program

FIGURE 1.8 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with a
Java Virtual Machine.

Ja

va
Virtual Machine

Any
Computer

Java Bytecode

Welcome.java
(Java source-

code file)

Welcome.class
(Java bytecode
executable file)

Library Code

JVMJava
Compiler

compiled
by generates

executed
by

(a) (b)

FIGURE 1.9 The output of Listing 1.1 displays the message “Welcome to Java!”

Compile

Show files

Run

Caution
Do not use the extension .class in the command line when executing the program.

Use java ClassName to run the program. If you use java ClassName.class

in the command line, the system will attempt to fetch ClassName.class.class.

Tip
If you execute a class file that does not exist, a NoClassDefFoundError will occur.

If you execute a class file that does not have a main method or you mistype the main

method (e.g., by typing Main instead of main), a NoSuchMethodError will occur.

Note
When executing a Java program, the JVM first loads the bytecode of the class to mem-

ory using a program called the class loader. If your program uses other classes, the class

loader dynamically loads them just before they are needed. After a class is loaded, the

JVM uses a program called the bytecode verifier to check the validity of the bytecode and

java ClassName

NoClassDefFoundError

NoSuchMethodError

class loader
bytecode verifier

www.allitebooks.com

http://www.allitebooks.org

18 Chapter 1 Introduction to Computers, Programs, and Java

to ensure that the bytecode does not violate Java’s security restrictions. Java enforces

strict security to make sure that Java class files are not tampered with and do not harm

your computer.

Pedagogical Note
Your instructor may require you to use packages for organizing programs. For example,

you may place all programs in this chapter in a package named chapter1. For instructions

on how to use packages, see Supplement I.F, Using Packages to Organize the Classes

in the Text.

1.33 What is the Java source filename extension, and what is the Java bytecode filename
extension?

1.34 What are the input and output of a Java compiler?

1.35 What is the command to compile a Java program?

1.36 What is the command to run a Java program?

1.37 What is the JVM?

1.38 Can Java run on any machine? What is needed to run Java on a computer?

1.39 If a NoClassDefFoundError occurs when you run a program, what is the cause of
the error?

1.40 If a NoSuchMethodError occurs when you run a program, what is the cause of the
error?

1.9 Programming Style and Documentation
Good programming style and proper documentation make a program easy to read and
help programmers prevent errors.

Programming style deals with what programs look like. A program can compile and run
properly even if written on only one line, but writing it all on one line would be bad pro-
gramming style because it would be hard to read. Documentation is the body of explanatory
remarks and comments pertaining to a program. Programming style and documentation are
as important as coding. Good programming style and appropriate documentation reduce the
chance of errors and make programs easy to read. This section gives several guidelines. For
more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Com-
panion Website.

1.9.1 Appropriate Comments and Comment Styles
Include a summary at the beginning of the program that explains what the program does, its
key features, and any unique techniques it uses. In a long program, you should also include
comments that introduce each major step and explain anything that is difficult to read. It is
important to make comments concise so that they do not crowd the program or make it dif-
ficult to read.

In addition to line comments (beginning with //) and block comments (beginning with
/*), Java supports comments of a special type, referred to as javadoc comments. javadoc com-
ments begin with /** and end with */. They can be extracted into an HTML file using the
JDK’s javadoc command. For more information, see Supplement III.Y, javadoc Comments,
on the companion Website.

Use javadoc comments (/** ... */) for commenting on an entire class or an entire
method. These comments must precede the class or the method header in order to be extracted
into a javadoc HTML file. For commenting on steps inside a method, use line comments (//).

use package

✓Point✓Check

Key
Point

programming style

documentation

javadoc comment

1.9 Programming Style and Documentation 19

To see an example of a javadoc HTML file, check out www.cs.armstrong.edu/liang/javadoc/
Exercise1.html. Its corresponding Java code is shown in www.cs.armstrong.edu/liang/javadoc/
Exercise1.java.

1.9.2 Proper Indentation and Spacing
A consistent indentation style makes programs clear and easy to read, debug, and maintain.
Indentation is used to illustrate the structural relationships between a program’s components
or statements. Java can read the program even if all of the statements are on the same long
line, but humans find it easier to read and maintain code that is aligned properly. Indent each
subcomponent or statement at least two spaces more than the construct within which it is
nested.

A single space should be added on both sides of a binary operator, as shown in the follow-
ing statement:

System.out.println(3+4*4); Bad style

System.out.println(3 + 4 * 4); Good style

1.9.3 Block Styles
A block is a group of statements surrounded by braces. There are two popular styles, next-line
style and end-of-line style, as shown below.

indent code

public class Test
{

public static void main(String[] args)
 {
 System.out.println("Block Styles");
 }
}

Next-line style

public class Test {
public static void main(String[] args) {

 System.out.println("Block Styles");
 }
}

End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the
end-of-line style saves space and may help avoid some subtle programming errors. Both are
acceptable block styles. The choice depends on personal or organizational preference. You
should use a block style consistently—mixing styles is not recommended. This book uses the
end-of-line style to be consistent with the Java API source code.

1.41 Reformat the following program according to the programming style and documen-
tation guidelines. Use the end-of-line brace style.

public class Test
{

// Main method
public static void main(String[] args) {
/** Display output */

 System.out.println("Welcome to Java");
 }
}

✓Point✓Check

www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.html
www.cs.armstrong.edu/liang/javadoc/Exercise1.java
www.cs.armstrong.edu/liang/javadoc/Exercise1.java

20 Chapter 1 Introduction to Computers, Programs, and Java

1.10 Programming Errors
Programming errors can be categorized into three types: syntax errors, runtime
errors, and logic errors.

1.10.1 Syntax Errors
Errors that are detected by the compiler are called syntax errors or compile errors. Syntax
errors result from errors in code construction, such as mistyping a keyword, omitting some
necessary punctuation, or using an opening brace without a corresponding closing brace.
These errors are usually easy to detect because the compiler tells you where they are and
what caused them. For example, the program in Listing 1.4 has a syntax error, as shown in
Figure 1.10.

LISTING 1.4 ShowSyntaxErrors.java
 1 public class ShowSyntaxErrors {
 2 public static main(String[] args) {
 3 System.out.println("Welcome to Java);
 4 }
 5 }

Four errors are reported, but the program actually has two errors:

 ■ The keyword void is missing before main in line 2.

 ■ The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to
fix errors from the top line and work downward. Fixing errors that occur earlier in the program
may also fix additional errors that occur later.

Key
Point

syntax errors
compile errors

FIGURE 1.10 The compiler reports syntax errors.

Compile

Tip
If you don’t know how to correct it, compare your program closely, character by char-

acter, with similar examples in the text. In the first few weeks of this course, you will

probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java

syntax and can quickly fix syntax errors.

1.10.2 Runtime Errors
Runtime errors are errors that cause a program to terminate abnormally. They occur while
a program is running if the environment detects an operation that is impossible to carry out.
Input mistakes typically cause runtime errors. An input error occurs when the program is

fix syntax errors

runtime errors

1.10 Programming Errors 21

waiting for the user to enter a value, but the user enters a value that the program cannot handle.
For instance, if the program expects to read in a number, but instead the user enters a string,
this causes data-type errors to occur in the program.

Another example of runtime errors is division by zero. This happens when the divisor is
zero for integer divisions. For instance, the program in Listing 1.5 would cause a runtime
error, as shown in Figure 1.11.

LISTING 1.5 ShowRuntimeErrors.java
 1 public class ShowRuntimeErrors {
 2 public static void main(String[] args) {
 3 System.out.println(1 / 0);
 4 }
 5 }

 runtime error

FIGURE 1.11 The runtime error causes the program to terminate abnormally.

Run

Celsius 35 is Fahrenheit degree
67

1.10.3 Logic Errors
Logic errors occur when a program does not perform the way it was intended to. Errors of
this kind occur for many different reasons. For example, suppose you wrote the program in
Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

LISTING 1.6 ShowLogicErrors.java
 1 public class ShowLogicErrors {
 2 public static void main(String[] args) {
 3 System.out.println("Celsius 35 is Fahrenheit degree ");
 4 System.out.println((9 / 5) * 35 + 32);
 5 }
 6 }

logic errors

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the divi-
sion for integers is the quotient—the fractional part is truncated—so in Java 9 / 5 is 1. To
get the correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct because the compiler gives
indications as to where the errors came from and why they are wrong. Runtime errors are not
difficult to find, either, since the reasons and locations for the errors are displayed on the console
when the program aborts. Finding logic errors, on the other hand, can be very challenging. In the
upcoming chapters, you will learn the techniques of tracing programs and finding logic errors.

1.10.4 Common Errors
Missing a closing brace, missing a semicolon, missing quotation marks for strings, and mis-
spelling names are common errors for new programmers.

22 Chapter 1 Introduction to Computers, Programs, and Java

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must be matched
by a closing brace. A common error is missing the closing brace. To avoid this error, type a
closing brace whenever an opening brace is typed, as shown in the following example.

public class Welcome {

} Type this closing brace right away to match the opening brace

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
brace for each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer forgets to place
a statement terminator for the last statement in a block, as shown in the following example.

public static void main(String[] args) {
 System.out.println("Programming is fun!");
 System.out.println("Fundamentals First");
 System.out.println("Problem Driven")

}
Missing a semicolon

Common Error 3: Missing Quotation Marks

A string must be placed inside the quotation marks. Often, a new programmer forgets to place
a quotation mark at the end of a string, as shown in the following example.

 System.out.println("Problem Driven);

Missing a quotation mark

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing
quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new programmers. For exam-
ple, the word main is misspelled as Main and String is misspelled as string in the follow-
ing code.

 1 public class Test {
 2 public static void Main(string[] args) {
 3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
 4 }
 5 }

1.42 What are syntax errors (compile errors), runtime errors, and logic errors?

1.43 Give examples of syntax errors, runtime errors, and logic errors.

1.44 If you forget to put a closing quotation mark on a string, what kind error will be
raised?

1.45 If your program needs to read integers, but the user entered strings, an error would
occur when running this program. What kind of error is this?

1.46 Suppose you write a program for computing the perimeter of a rectangle and you
mistakenly write your program so that it computes the area of a rectangle. What kind
of error is this?

✓Point✓Check

1.11 Developing Java Programs Using NetBeans 23

1.47 Identify and fix the errors in the following code:

 1 public class Welcome {
 2 public void Main(String[] args) {
 3 System.out.println('Welcome to Java!);
 4 }
 5 }

1.11 Developing Java Programs Using NetBeans
You can edit, compile, run, and debug Java Programs using NetBeans.

NetBeans and Eclipse are two free popular integrated development environments for devel-
oping Java programs. They are easy to learn if you follow simple instructions. We recom-
mend that you use either one for developing Java programs. This section gives the essential
instructions to guide new users to create a project, create a class, compile, and run a class in
NetBeans. The use of Eclipse will be introduced in the next section. For instructions on down-
loading and installing latest version of NetBeans, see Supplement II.B.

1.11.1 Creating a Java Project
Before you can create Java programs, you need to first create a project. A project is like a
folder to hold Java programs and all supporting files. You need to create a project only once.
Here are the steps to create a Java project:

1. Choose File, New Project to display the New Project dialog box, as shown in Figure 1.12.

2. Select Java in the Categories section and Java Application in the Projects section and
click Next to display the New Java Application dialog box, as shown in Figure 1.13.

3. Type demo in the Project Name field and c:\michael in Project Location field. Uncheck
Use Dedicated Folder for Storing Libraries and uncheck Create Main Class.

4. Click Finish to create the project, as shown in Figure 1.14.

1.11.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following
steps:

1. Right-click the demo node in the project pane to display a context menu. Choose New,
Java Class to display the New Java Class dialog box, as shown in Figure 1.15.

Key
Point

VideoNote

NetBeans brief tutorial

FIGURE 1.12 The New Project dialog is used to create a new project and specify a project type.

24 Chapter 1 Introduction to Computers, Programs, and Java

FIGURE 1.14 A New Java project named demo is created.

FIGURE 1.15 The New Java Class dialog box is used to create a new Java class.

FIGURE 1.13 The New Java Application dialog is for specifying a project name and location.

2. Type Welcome in the Class Name field and select the Source Packages in the Location
field. Leave the Package field blank. This will create a class in the default package.

3. Click Finish to create the Welcome class. The source code file Welcome.java is placed
under the <default package> node.

4. Modify the code in the Welcome class to match Listing 1.1 in the text, as shown in Figure 1.16.

1.12 Developing Java Programs Using Eclipse 25

FIGURE 1.16 You can edit a program and run it in NetBeans.

Edit pane

Output pane

1.11.3 Compiling and Running a Class
To run Welcome.java, right-click Welcome.java to display a context menu and choose Run File,
or simply press Shift + F6. The output is displayed in the Output pane, as shown in Figure 1.16.
The Run File command automatically compiles the program if the program has been changed.

1.12 Developing Java Programs Using Eclipse
You can edit, compile, run, and debug Java Programs using Eclipse.

The preceding section introduced developing Java programs using NetBeans. You can also
use Eclipse to develop Java programs. This section gives the essential instructions to guide
new users to create a project, create a class, and compile/run a class in Eclipse. For instruc-
tions on downloading and installing latest version of Eclipse, see Supplement II.D.

1.12.1 Creating a Java Project
Before creating Java programs in Eclipse, you need to first create a project to hold all files.

Here are the steps to create a Java project in Eclipse:

1. Choose File, New, Java Project to display the New Project wizard, as shown in Figure 1.17.

2. Type demo in the Project name field. As you type, the Location field is automatically set
by default. You may customize the location for your project.

3. Make sure that you selected the options Use project folder as root for sources and class
files so that the .java and .class files are in the same folder for easy access.

4. Click Finish to create the project, as shown in Figure 1.18.

1.12.2 Creating a Java Class
After a project is created, you can create Java programs in the project using the following steps:

1. Choose File, New, Class to display the New Java Class wizard.

2. Type Welcome in the Name field.

Key
Point

VideoNote

Eclipse brief tutorial

26 Chapter 1 Introduction to Computers, Programs, and Java

FIGURE 1.17 The New Java Project dialog is for specifying a project name and properties.

FIGURE 1.18 A New Java project named demo is created.

3. Check the option public static void main(String[] args).

4. Click Finish to generate the template for the source code Welcome.java, as shown in
Figure 1.19.

1.12 Developing Java Programs Using Eclipse 27

FIGURE 1.19 The New Java Class dialog box is used to create a new Java class.

FIGURE 1.20 You can edit a program and run it in Eclipse.

Edit pane

Output pane

1.12.3 Compiling and Running a Class
To run the program, right-click the class in the project to display a context menu. Choose Run,
Java Application in the context menu to run the class. The output is displayed in the Console
pane, as shown in Figure 1.20.

www.allitebooks.com

http://www.allitebooks.org

28 Chapter 1 Introduction to Computers, Programs, and Java

Note
The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the key

terms and descriptions in the book, organized by chapters.

CHAPTER SUMMARY

1. A computer is an electronic device that stores and processes data.

2. A computer includes both hardware and software.

3. Hardware is the physical aspect of the computer that can be touched.

4. Computer programs, known as software, are the invisible instructions that control the
hardware and make it perform tasks.

5. Computer programming is the writing of instructions (i.e., code) for computers to perform.

6. The central processing unit (CPU) is a computer’s brain. It retrieves instructions from
memory and executes them.

7. Computers use zeros and ones because digital devices have two stable states, referred to
by convention as zero and one.

Supplement I.A

KEY TERMS

Application Program Interface (API) 11
assembler 7
assembly language 7
bit 3
block 13
block comment 13
bus 2
byte 3
bytecode 16
bytecode verifier 17
cable modem 6
central processing unit (CPU) 3
class loader 17
comment 13
compiler 8
console 12
dot pitch 6
DSL (digital subscriber line) 6
encoding scheme 3
hardware 2
high-level language 8
integrated development environment

(IDE) 12
interpreter 8
java command 17
Java Development Toolkit (JDK) 12
Java language specification 11

Java Virtual Machine (JVM) 16
javac command 17
keyword (or reserved word) 13
library 11
line comment 13
logic error 21
low-level language 7
machine language 7
main method 13
memory 4
modem 00
motherboard 3
network interface card (NIC) 6
operating system (OS) 9
pixel 6
program 2
programming 2
runtime error 20
screen resolution 6
software 2
source code 8
source program 8
statement 8
statement terminator 13
storage devices 4
syntax error 20

8. A bit is a binary digit 0 or 1.

9. A byte is a sequence of 8 bits.

10. A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1
billion bytes, and a terabyte about 1,000 gigabytes.

11. Memory stores data and program instructions for the CPU to execute.

12. A memory unit is an ordered sequence of bytes.

13. Memory is volatile, because information is lost when the power is turned off.

14. Programs and data are permanently stored on storage devices and are moved to memory
when the computer actually uses them.

15. The machine language is a set of primitive instructions built into every computer.

16. Assembly language is a low-level programming language in which a mnemonic is used
to represent each machine-language instruction.

17. High-level languages are English-like and easy to learn and program.

18. A program written in a high-level language is called a source program.

19. A compiler is a software program that translates the source program into a machine-
language program.

20. The operating system (OS) is a program that manages and controls a computer’s activities.

21. Java is platform independent, meaning that you can write a program once and run it on
any computer.

22. Java programs can be embedded in HTML pages and downloaded by Web browsers to
bring live animation and interaction to Web clients.

23. The Java source file name must match the public class name in the program. Java source
code files must end with the .java extension.

24. Every class is compiled into a separate bytecode file that has the same name as the class
and ends with the .class extension.

25. To compile a Java source-code file from the command line, use the javac command.

26. To run a Java class from the command line, use the java command.

27. Every Java program is a set of class definitions. The keyword class introduces a class
definition. The contents of the class are included in a block.

28. A block begins with an opening brace ({) and ends with a closing brace (}).

29. Methods are contained in a class. To run a Java program, the program must have a
main method. The main method is the entry point where the program starts when it is
executed.

Chapter Summary 29

30 Chapter 1 Introduction to Computers, Programs, and Java

30. Every statement in Java ends with a semicolon (;), known as the statement terminator.

31. Reserved words, or keywords, have a specific meaning to the compiler and cannot be
used for other purposes in the program.

32. In Java, comments are preceded by two slashes (//) on a line, called a line comment, or
enclosed between /* and */ on one or several lines, called a block comment or para-
graph comment. Comments are ignored by the compiler.

33. Java source programs are case sensitive.

34. Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors. Errors reported by a compiler are called syntax errors or compile
errors. Runtime errors are errors that cause a program to terminate abnormally. Logic
errors occur when a program does not perform the way it was intended to.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Note
Solutions to even-numbered programming exercises are on the Companion Website.

Solutions to all programming exercises are on the Instructor Resource Website.

Additional programming exercises with solutions are provided to the instructors on the

Instructor Resource Website. The level of difficulty is rated easy (no star), moderate (*),

hard (**), or challenging (***).

1.1 (Display three messages) Write a program that displays Welcome to Java,
Welcome to Computer Science, and Programming is fun.

1.2 (Display five messages) Write a program that displays Welcome to Java five times.

*1.3 (Display a pattern) Write a program that displays the following pattern:

 J A V V A
 J A A V V A A
J J AAAAA V V AAAAA
 J J A A V A A

1.4 (Print a table) Write a program that displays the following table:

a a^2 a^3
1 1 1
2 4 8
3 9 27
4 16 64

1.5 (Compute expressions) Write a program that displays the result of

9.5 * 4.5 - 2.5 * 3

45.5 - 3.5
.

1.6 (Summation of a series) Write a program that displays the result of

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

level of difficulty

www.cs.armstrong.edu/liang/intro10e/quiz.html

1.7 (Approximatep) p can be computed using the following formula:

p = 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ c ≤

 Write a program that displays the result of 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
≤

and 4 * ¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+

1

13
≤. Use 1.0 instead of 1 in your

program.

1.8 (Area and perimeter of a circle) Write a program that displays the area and perim-
eter of a circle that has a radius of 5.5 using the following formula:

perimeter = 2 * radius * p
area = radius * radius * p

1.9 (Area and perimeter of a rectangle) Write a program that displays the area and
perimeter of a rectangle with the width of 4.5 and height of 7.9 using the following
formula:

area = width * height

1.10 (Average speed in miles) Assume a runner runs 14 kilometers in 45 minutes and 30
seconds. Write a program that displays the average speed in miles per hour. (Note
that 1 mile is 1.6 kilometers.)

*1.11 (Population projection) The U.S. Census Bureau projects population based on the
following assumptions:

 ■ One birth every 7 seconds
 ■ One death every 13 seconds
 ■ One new immigrant every 45 seconds

 Write a program to display the population for each of the next five years. Assume the
current population is 312,032,486 and one year has 365 days. Hint: In Java, if two
integers perform division, the result is an integer. The fractional part is truncated. For
example, 5 / 4 is 1 (not 1.25) and 10 / 4 is 2 (not 2.5). To get an accurate result with
the fractional part, one of the values involved in the division must be a number with a
decimal point. For example, 5.0 / 4 is 1.25 and 10 / 4.0 is 2.5.

1.12 (Average speed in kilometers) Assume a runner runs 24 miles in 1 hour, 40 minutes,
and 35 seconds. Write a program that displays the average speed in kilometers per
hour. (Note that 1 mile is 1.6 kilometers.)

*1.13 (Algebra: solve 2 * 2 linear equations) You can use Cramer’s rule to solve the fol-
lowing 2 * 2 system of linear equation:

ax + by = e

cx + dy = f
x =

ed - bf

ad - bc
y =

af - ec

ad - bc

 Write a program that solves the following equation and displays the value for x and y :

3.4x + 50.2y = 44.5

2.1x + .55y = 5.9

Programming Exercises 31

This page intentionally left blank

ELEMENTARY
PROGRAMMING

Objectives
■ To write Java programs to perform simple computations (§2.2).

■ To obtain input from the console using the Scanner class (§2.3).

■ To use identifiers to name variables, constants, methods, and classes (§2.4).

■ To use variables to store data (§§2.5–2.6).

■ To program with assignment statements and assignment expressions
(§2.6).

■ To use constants to store permanent data (§2.7).

■ To name classes, methods, variables, and constants by following their
naming conventions (§2.8).

■ To explore Java numeric primitive data types: byte, short, int,
long, float, and double (§2.9.1).

■ To read a byte, short, int, long, float, or double value from the
keyboard (§2.9.2).

■ To perform operations using operators +, -, *, /, and % (§2.9.3).

■ To perform exponent operations using Math.pow(a, b) (§2.9.4).

■ To write integer literals, floating-point literals, and literals in scientific
notation (§2.10).

■ To write and evaluate numeric expressions (§2.11).

■ To obtain the current system time using
System.currentTimeMillis() (§2.12).

■ To use augmented assignment operators (§2.13).

■ To distinguish between postincrement and preincrement and between
postdecrement and predecrement (§2.14).

■ To cast the value of one type to another type (§2.15).

■ To describe the software development process and apply it to develop
the loan payment program (§2.16).

■ To write a program that converts a large amount of money into smaller
units (§2.17).

■ To avoid common errors and pitfalls in elementary programming (§2.18).

CHAPTER

2

34 Chapter 2 Elementary Programming

2.1 Introduction
The focus of this chapter is on learning elementary programming techniques to solve
problems.

In Chapter 1 you learned how to create, compile, and run very basic Java programs. Now you
will learn how to solve problems by writing programs. Through these problems, you will learn
elementary programming using primitive data types, variables, constants, operators, expres-
sions, and input and output.

Suppose, for example, that you need to take out a student loan. Given the loan amount, loan
term, and annual interest rate, can you write a program to compute the monthly payment and
total payment? This chapter shows you how to write programs like this. Along the way, you
learn the basic steps that go into analyzing a problem, designing a solution, and implementing
the solution by creating a program.

2.2 Writing a Simple Program
Writing a program involves designing a strategy for solving the problem and then
using a programming language to implement that strategy.

Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?

Writing a program involves designing algorithms and translating algorithms into pro-
gramming instructions, or code. An algorithm describes how a problem is solved by listing
the actions that need to be taken and the order of their execution. Algorithms can help the
programmer plan a program before writing it in a programming language. Algorithms can be
described in natural languages or in pseudocode (natural language mixed with some program-
ming code). The algorithm for calculating the area of a circle can be described as follows:

1. Read in the circle’s radius.

2. Compute the area using the following formula:

area = radius * radius * p

3. Display the result.

Tip
It’s always good practice to outline your program (or its underlying problem) in the form

of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a pro-
gram. You already know that every Java program begins with a class definition in which the
keyword class is followed by the class name. Assume that you have chosen ComputeArea
as the class name. The outline of the program would look like this:

public class ComputeArea {
// Details to be given later

}

As you know, every Java program must have a main method where program execution
begins. The program is then expanded as follows:

public class ComputeArea {
public static void main(String[] args) {

// Step 1: Read in radius

// Step 2: Compute area

Key
Point

Key
Point

problem

algorithm

pseudocode

2.2 Writing a Simple Program 35

// Step 3: Display the area
 }
}

The program needs to read the radius entered by the user from the keyboard. This raises
two important issues:

 ■ Reading the radius.

 ■ Storing the radius in the program.

Let’s address the second issue first. In order to store the radius, the program needs to declare
a symbol called a variable. A variable represents a value stored in the computer’s memory.

Rather than using x and y as variable names, choose descriptive names: in this case, radius
for radius, and area for area. To let the compiler know what radius and area are, specify their
data types. That is the kind of data stored in a variable, whether integer, real number, or some-
thing else. This is known as declaring variables. Java provides simple data types for represent-
ing integers, real numbers, characters, and Boolean types. These types are known as primitive
data types or fundamental types.

Real numbers (i.e., numbers with a decimal point) are represented using a method known
as floating-point in computers. So, the real numbers are also called floating-point numbers. In
Java, you can use the keyword double to declare a floating-point variable. Declare radius
and area as double. The program can be expanded as follows:

public class ComputeArea {
public static void main(String[] args) {

double radius;
double area;

// Step 1: Read in radius

// Step 2: Compute area

// Step 3: Display the area
 }
}

The program declares radius and area as variables. The reserved word double indicates
that radius and area are floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will soon learn
how to prompt the user for information. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code; later, you’ll modify the program
to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius *
radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the
System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in
Figure 2.1.

LISTING 2.1 ComputeArea.java
 1 public class ComputeArea {
 2 public static void main(String[] args) {
 3 double radius; // Declare radius
 4 double area; // Declare area
 5
 6 // Assign a radius

variable
descriptive names

data type

declare variables

floating-point number

primitive data types

36 Chapter 2 Elementary Programming

 7 radius = 20; // radius is now 20
 8
 9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " is " + area);
15 }
16 }

FIGURE 2.1 The program displays the area of a circle.

Compile

Run

line# radius area

3 no value

 4 no value

 7 20

10 1256.636

Variables such as radius and area correspond to memory locations. Every variable has
a name, a type, a size, and a value. Line 3 declares that radius can store a double value.
The value is not defined until you assign a value. Line 7 assigns 20 into variable radius.
Similarly, line 4 declares variable area, and line 10 assigns a value into area. The following
table shows the value in the memory for area and radius as the program is executed. Each
row in the table shows the values of variables after the statement in the corresponding line in
the program is executed. This method of reviewing how a program works is called tracing a
program. Tracing programs are helpful for understanding how programs work, and they are
useful tools for finding errors in programs.

declare variable

assign value

tracing program

The plus sign (+) has two meanings: one for addition and the other for concatenating (com-
bining) strings. The plus sign (+) in lines 13–14 is called a string concatenation operator. It
combines two strings into one. If a string is combined with a number, the number is converted
into a string and concatenated with the other string. Therefore, the plus signs (+) in lines
13–14 concatenate strings into a longer string, which is then displayed in the output. Strings
and string concatenation will be discussed further in Chapter 4.

Caution
A string cannot cross lines in the source code. Thus, the following statement would

result in a compile error:

System.out.println("Introduction to Java Programming,
by Y. Daniel Liang");

To fix the error, break the string into separate substrings, and use the concatenation

operator (+) to combine them:

System.out.println("Introduction to Java Programming, " +
"by Y. Daniel Liang");

concatenate strings

concatenate strings with
numbers

break a long string

2.3 Reading Input from the Console 37

2.1 Identify and fix the errors in the following code:

 1 public class Test {
 2 public void main(string[] args) {
 3 double i = 50.0;
 4 double k = i + 50.0;
 5 double j = k + 1;
 6
 7 System.out.println("j is " + j + " and
 8 k is " + k);
 9 }
10 }

2.3 Reading Input from the Console
Reading input from the console enables the program to accept input from the user.

In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to
modify the source code and recompile it. Obviously, this is not convenient, so instead you can
use the Scanner class for console input.

Java uses System.out to refer to the standard output device and System.in to the
standard input device. By default, the output device is the display monitor and the input
device is the keyboard. To perform console output, you simply use the println method to
display a primitive value or a string to the console. Console input is not directly supported
in Java, but you can use the Scanner class to create an object to read input from System.in,
as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syntax
Scanner input declares that input is a variable whose type is Scanner. The whole line
Scanner input = new Scanner(System.in) creates a Scanner object and assigns its
reference to the variable input. An object may invoke its methods. To invoke a method on
an object is to ask the object to perform a task. You can invoke the nextDouble() method to
read a double value as follows:

double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.
Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.

LISTING 2.2 ComputeAreaWithConsoleInput.java
1 import java.util.Scanner; // Scanner is in the java.util package

 2
 3 public class ComputeAreaWithConsoleInput {
 4 public static void main(String[] args) {
 5 // Create a Scanner object
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter a radius
 9 System.out.print("Enter a number for radius: ");
10 double radius = input.nextDouble();
11
12 // Compute area
13 double area = radius * radius * 3.14159;
14
15 // Display results

✓Point✓Check

Key
Point

Obtain input

VideoNote

import class

create a Scanner

read a double

www.allitebooks.com

http://www.allitebooks.org

38 Chapter 2 Elementary Programming

16 System.out.println("The area for the circle of radius " +
17 radius + " is " + area);
18 }
19 }

Enter a number for radius: 2.5
The area for the circle of radius 2.5 is 19.6349375

Enter a number for radius: 23
The area for the circle of radius 23.0 is 1661.90111

Line 9 displays a string "Enter a number for radius: " to the console. This is
known as a prompt, because it directs the user to enter an input. Your program should always
tell the user what to enter when expecting input from the keyboard.

The print method in line 9

System.out.print("Enter a number for radius: ");

is identical to the println method except that println moves to the beginning of the next
line after displaying the string, but print does not advance to the next line when completed.

Line 6 creates a Scanner object. The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enter key, the program reads the number
and assigns it to radius.

More details on objects will be introduced in Chapter 9. For the time being, simply accept
that this is how to obtain input from the console.

The Scanner class is in the java.util package. It is imported in line 1. There are two
types of import statements: specific import and wildcard import. The specific import spec-
ifies a single class in the import statement. For example, the following statement imports
Scanner from the package java.util.

import java.util.Scanner;

The wildcard import imports all the classes in a package by using the asterisk as the
wildcard. For example, the following statement imports all the classes from the package
java.util.

import java.uitl.*;

The information for the classes in an imported package is not read in at compile time or
runtime unless the class is used in the program. The import statement simply tells the compiler
where to locate the classes. There is no performance difference between a specific import and
a wildcard import declaration.

Listing 2.3 gives an example of reading multiple input from the keyboard. The program
reads three numbers and displays their average.

LISTING 2.3 ComputeAverage.java
 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAverage {
 4 public static void main(String[] args) {
 5 // Create a Scanner object
 6 Scanner input = new Scanner(System.in);
 7

prompt

print vs. println

specific import

wildcard import

no performance difference

import class

create a Scanner

2.4 Identifiers 39

 8 // Prompt the user to enter three numbers
 9 System.out.print("Enter three numbers: ");
10 double number1 = input.nextDouble();
11 double number2 = input.nextDouble();
12 double number3 = input.nextDouble();
13
14 // Compute average
15 double average = (number1 + number2 + number3) / 3;
16
17 // Display results
18 System.out.println("The average of " + number1 + " " + number2
19 + " " + number3 + " is " + average);
20 }
21 }

read a double

Enter three numbers: 1 2 3
The average of 1.0 2.0 3.0 is 2.0

enter input in one line

Enter three numbers: 10.5
11
11.5
The average of 10.5 11.0 11.5 is 11.0

enter input in multiple lines

The code for importing the Scanner class (line 1) and creating a Scanner object (line
6) are the same as in the preceding example as well as in all new programs you will write for
reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10–12. You
may enter three numbers separated by spaces, then press the Enter key, or enter each number
followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In Chapter 12,
you will learn how to handle the exception so that the program can continue to run.

Note
Most of the programs in the early chapters of this book perform three steps—input,

process, and output—called IPO. Input is receiving input from the user; process is pro-

ducing results using the input; and output is displaying the results.

2.2 How do you write a statement to let the user enter a double value from the keyboard?
What happens if you entered 5a when executing the following code?

double radius = input.nextDouble();

2.3 Are there any performance differences between the following two import statements?

import java.util.Scanner;
import java.util.*;

2.4 Identifiers
Identifiers are the names that identify the elements such as classes, methods, and
variables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, number1, number2, number3,
and so on are the names of things that appear in the program. In programming terminology,
such names are called identifiers. All identifiers must obey the following rules:

 ■ An identifier is a sequence of characters that consists of letters, digits, underscores
(_), and dollar signs ($).

runtime error

IPO

✓Point✓Check

Key
Point

identifiers
identifier naming rules

40 Chapter 2 Elementary Programming

 ■ An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot
start with a digit.

 ■ An identifier cannot be a reserved word. (See Appendix A for a list of reserved words.)

 ■ An identifier cannot be true, false, or null.

 ■ An identifier can be of any length.

For example, $2, ComputeArea, area, radius, and print are legal identifiers, whereas
2A and d+4 are not because they do not follow the rules. The Java compiler detects illegal
identifiers and reports syntax errors.

Note
Since Java is case sensitive, area, Area, and AREA are all different identifiers.

Tip
Identifiers are for naming variables, methods, classes, and other items in a program.

Descriptive identifiers make programs easy to read. Avoid using abbreviations for identi-

fiers. Using complete words is more descriptive. For example, numberOfStudents

is better than numStuds, numOfStuds, or numOfStudents. We use descriptive

names for complete programs in the text. However, we will occasionally use variable

names such as i, j, k, x, and y in the code snippets for brevity. These names also

provide a generic tone to the code snippets.

Tip
Do not name identifiers with the $ character. By convention, the $ character should be

used only in mechanically generated source code.

2.4 Which of the following identifiers are valid? Which are Java keywords?

miles, Test, a++, ––a, 4#R, $4, #44, apps

class, public, int, x, y, radius

2.5 Variables
Variables are used to represent values that may be changed in the program.

As you see from the programs in the preceding sections, variables are used to store values
to be used later in a program. They are called variables because their values can be changed.
In the program in Listing 2.2, radius and area are variables of the double type. You can
assign any numerical value to radius and area, and the values of radius and area can
be reassigned. For example, in the following code, radius is initially 1.0 (line 2) and then
changed to 2.0 (line 7), and area is set to 3.14159 (line 3) and then reset to 12.56636
(line 8).

1 // Compute the first area
2 radius = 1.0; radius: 1.0
3 area = radius * radius * 3.14159; area: 3.14159
4 System.out.println("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0; radius: 2.0
8 area = radius * radius * 3.14159; area: 12.56636
9 System.out.println("The area is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by
telling the compiler its name as well as what type of data it can store. The variable declaration

case sensitive

descriptive names

the $ character

✓Point✓Check

Key
Point

why called variables?

2.6 Assignment Statements and Assignment Expressions 41

tells the compiler to allocate appropriate memory space for the variable based on its data type.
The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations:

int count; // Declare count to be an integer variable
double radius; // Declare radius to be a double variable
double interestRate; // Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to addi-
tional data types, such as byte, short, long, float, char, and boolean.

If variables are of the same type, they can be declared together, as follows:

datatype variable1, variable2, ..., variablen;

The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables

Variables often have initial values. You can declare a variable and initialize it in one step.
Consider, for instance, the following code:

int count = 1;

This is equivalent to the next two statements:

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type
together. For example,

int i = 1, j = 2;

Tip
A variable must be declared before it can be assigned a value. A variable declared in a

method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will

make the program easy to read and avoid programming errors.

Every variable has a scope. The scope of a variable is the part of the program where the
variable can be referenced. The rules that define the scope of a variable will be introduced
gradually later in the book. For now, all you need to know is that a variable must be declared
and initialized before it can be used.

2.5 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = k + 2;
4 System.out.println(i);
5 }
6 }

2.6 Assignment Statements and Assignment
Expressions

An assignment statement designates a value for a variable. An assignment statement
can be used as an expression in Java.

declare variable

initialize variables

✓Point✓Check

Key
Point

42 Chapter 2 Elementary Programming

After a variable is declared, you can assign a value to it by using an assignment statement. In
Java, the equal sign (=) is used as the assignment operator. The syntax for assignment state-
ments is as follows:

variable = expression;

An expression represents a computation involving values, variables, and operators that,
taking them together, evaluates to a value. For example, consider the following code:

int y = 1; // Assign 1 to variable y
double radius = 1.0; // Assign 1.0 to variable radius
int x = 5 * (3 / 2); // Assign the value of the expression to x
x = y + 1; // Assign the addition of y and 1 to x
double area = radius * radius * 3.14159; // Compute area

You can use a variable in an expression. A variable can also be used in both sides of the =
operator. For example,

x = x + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the state-
ment is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 = x; // Wrong

Note
In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2 * x

+ 1 is an assignment statement that evaluates the expression 2 * x + 1 and assigns

the result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value
to be assigned to the variable on the left side of the assignment operator. For this reason, an
assignment statement is also known as an assignment expression. For example, the following
statement is correct:

System.out.println(x = 1);

which is equivalent to

x = 1;
System.out.println(x);

If a value is assigned to multiple variables, you can use this syntax:

i = j = k = 1;

which is equivalent to

k = 1;
j = k;
i = j;

Note
In an assignment statement, the data type of the variable on the left must be compat-

ible with the data type of the value on the right. For example, int x = 1.0 would be

assignment statement

assignment operator

expression

assignment expression

2.7 Named Constants 43

illegal, because the data type of x is int. You cannot assign a double value (1.0) to

an int variable without using type casting. Type casting is introduced in Section 2.15.

2.6 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = j = k = 2;
4 System.out.println(i + " " + j + " " + k);
5 }
6 }

2.7 Named Constants
A named constant is an identifier that represents a permanent value.

The value of a variable may change during the execution of a program, but a named con-
stant, or simply constant, represents permanent data that never changes. In our ComputeArea
program, p is a constant. If you use it frequently, you don’t want to keep typing 3.14159;
instead, you can declare a constant for p. Here is the syntax for declaring a constant:

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is
a Java keyword for declaring a constant. For example, you can declare p as a constant and
rewrite Listing 2.1 as in Listing 2.4.

LISTING 2.4 ComputeAreaWithConstant.java
 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConstant {
 4 public static void main(String[] args) {
 5 final double PI = 3.14159; // Declare a constant
 6
 7 // Create a Scanner object
 8 Scanner input = new Scanner(System.in);
 9
10 // Prompt the user to enter a radius
11 System.out.print("Enter a number for radius: ");
12 double radius = input.nextDouble();
13
14 // Compute area
15 double area = radius * radius * PI;
16
17 // Display result
18 System.out.println("The area for the circle of radius " +
19 radius + " is " + area);
20 }
21 }

There are three benefits of using constants: (1) you don’t have to repeatedly type the same
value if it is used multiple times; (2) if you have to change the constant value (e.g., from 3.14
to 3.14159 for PI), you need to change it only in a single location in the source code; and
(3) a descriptive name for a constant makes the program easy to read.

✓Point✓Check

Key
Point

constant

final keyword

benefits of constants

44 Chapter 2 Elementary Programming

2.8 Naming Conventions
Sticking with the Java naming conventions makes your programs easy to read and
avoids errors.

Make sure that you choose descriptive names with straightforward meanings for the variables,
constants, classes, and methods in your program. As mentioned earlier, names are case sensi-
tive. Listed below are the conventions for naming variables, methods, and classes.

 ■ Use lowercase for variables and methods. If a name consists of several words, con-
catenate them into one, making the first word lowercase and capitalizing the first
letter of each subsequent word—for example, the variables radius and area and
the method print.

 ■ Capitalize the first letter of each word in a class name—for example, the class names
ComputeArea and System.

 ■ Capitalize every letter in a constant, and use underscores between words—for exam-
ple, the constants PI and MAX_VALUE.

It is important to follow the naming conventions to make your programs easy to read.

Caution
Do not choose class names that are already used in the Java library. For example, since

the System class is defined in Java, you should not name your class System.

2.7 What are the benefits of using constants? Declare an int constant SIZE with value 20.

2.8 What are the naming conventions for class names, method names, constants, and
variables? Which of the following items can be a constant, a method, a variable, or a
class according to the Java naming conventions?

MAX_VALUE, Test, read, readDouble

2.9 Translate the following algorithm into Java code:

Step 1: Declare a double variable named miles with initial value 100.

Step 2: Declare a double constant named KILOMETERS_PER_MILE with value
1.609.

Step 3: Declare a double variable named kilometers, multiply miles and
KILOMETERS_PER_MILE, and assign the result to kilometers.

Step 4: Display kilometers to the console.

 What is kilometers after Step 4?

2.9 Numeric Data Types and Operations
Java has six numeric types for integers and floating-point numbers with operators +,
-, *, /, and %.

2.9.1 Numeric Types
Every data type has a range of values. The compiler allocates memory space for each var-
iable or constant according to its data type. Java provides eight primitive data types for
numeric values, characters, and Boolean values. This section introduces numeric data types
and operators.

Table 2.1 lists the six numeric data types, their ranges, and their storage sizes.

Key
Point

name variables and methods

name classes

name constants

name classes

✓Point✓Check

Key
Point

2.9 Numeric Data Types and Operations 45

Note
IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers

for representing floating-point numbers on computers. The standard has been widely

adopted. Java uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754

for the double type. The IEEE 754 standard also defines special floating-point values,

which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and long. Choose the type that is
most appropriate for your variable. For example, if you know an integer stored in a variable
is within a range of a byte, declare the variable as a byte. For simplicity and consistency, we
will use int for integers most of the time in this book.

Java uses two types for floating-point numbers: float and double. The double type
is twice as big as float, so the double is known as double precision and float as single
precision. Normally, you should use the double type, because it is more accurate than the
float type.

2.9.2 Reading Numbers from the Keyboard
You know how to use the nextDouble() method in the Scanner class to read a double
value from the keyboard. You can also use the methods listed in Table 2.2 to read a number
of the byte, short, int, long, and float type.

byte type

short type

int type

long type

float type

double type

integer types

floating-point types

Name Range Storage Size

byte -27 to 27 - 1 (-128 to 127) 8-bit signed

short -215 to 215 - 1 (-32768 to 32767) 16-bit signed

int -231 to 231 - 1 (-2147483648 to 2147483647) 32-bit signed

long -263 to 263 - 1 64-bit signed

(i.e., -9223372036854775808 to 9223372036854775807)

float Negative range: -3.4028235E + 38 to -1.4E - 45 32-bit IEEE 754

Positive range: 1.4E - 45 to 3.4028235E + 38

double Negative range: -1.7976931348623157E + 308 to
-4.9E - 324

64-bit IEEE 754

Positive range: 4.9E - 324 to 1.7976931348623157E + 308

TABLE 2.1 Numeric Data Types

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

TABLE 2.2 Methods for Scanner Objects

46 Chapter 2 Elementary Programming

Here are examples for reading values of various types from the keyboard:

 1 Scanner input = new Scanner(System.in);
 2 System.out.print("Enter a byte value: ");
 3 byte byteValue = input.nextByte();
 4
 5 System.out.print("Enter a short value: ");
 6 short shortValue = input.nextShort();
 7
 8 System.out.print("Enter an int value: ");
 9 int intValue = input.nextInt();
10
11 System.out.print("Enter a long value: ");
12 long longValue = input.nextLong();
13
14 System.out.print("Enter a float value: ");
15 float floatValue = input.nextFloat();

If you enter a value with an incorrect range or format, a runtime error would occur. For
example, you enter a value 128 for line 3, an error would occur because 128 is out of range
for a byte type integer.

2.9.3 Numeric Operators
The operators for numeric data types include the standard arithmetic operators: addition (+),
subtraction (–), multiplication (*), division (/), and remainder (%), as shown in Table 2.3. The
operands are the values operated by an operator.

operators +, -, *, /, %

4 12

12
0

3

8 26

24
2

3

Remainder

Quotient

Divisor Dividend13 20

13
7

1

7 3

0
3

0

3 7

6
1

2

TABLE 2.3 Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

When both operands of a division are integers, the result of the division is the quotient
and the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and –5 / 2 yields
-2, not –2.5. To perform a float-point division, one of the operands must be a floating-point
number. For example, 5.0 / 2 yields 2.5.

The % operator, known as remainder or modulo operator, yields the remainder after divi-
sion. The operand on the left is the dividend and the operand on the right is the divisor. There-
fore, 7 % 3 yields 1, 3 % 7 yields 3, 12 % 4 yields 0, 26 % 8 yields 2, and 20 % 13 yields 7.

operands

integer division

The % operator is often used for positive integers, but it can also be used with negative inte-
gers and floating-point values. The remainder is negative only if the dividend is negative. For
example, -7 % 3 yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7.

2.9 Numeric Data Types and Operations 47

Remainder is very useful in programming. For example, an even number % 2 is always 0
and an odd number % 2 is always 1. Thus, you can use this property to determine whether a
number is even or odd. If today is Saturday, it will be Saturday again in 7 days. Suppose you
and your friends are going to meet in 10 days. What day is in 10 days? You can find that the
day is Tuesday using the following expression:

Enter an integer for seconds: 500
500 seconds is 8 minutes and 20 seconds

 Day 6 in a week is Saturday
A week has 7 days

(6 + 10) % 7 is 2

After 10 days Day 2 in a week is Tuesday
Note: Day 0 in a week is Sunday

The program in Listing 2.5 obtains minutes and remaining seconds from an amount of time
in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

LISTING 2.5 DisplayTime.java
 1 import java.util.Scanner;
 2
 3 public class DisplayTime {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 // Prompt the user for input
 7 System.out.print("Enter an integer for seconds: ");
 8 int seconds = input.nextInt();
 9
10 int minutes = seconds / 60; // Find minutes in seconds
11 int remainingSeconds = seconds % 60; // Seconds remaining
12 System.out.println(seconds + " seconds is " + minutes +
13 " minutes and " + remainingSeconds + " seconds");
14 }
15 }

import Scanner

create a Scanner

read an integer

divide
remainder

line# seconds minutes remainingSeconds

8 500

10 8

11 20

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the min-
utes using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after
taking away the minutes.

The + and - operators can be both unary and binary. A unary operator has only one
operand; a binary operator has two. For example, the - operator in -5 is a unary operator
to negate number 5, whereas the - operator in 4 - 5 is a binary operator for subtracting 5
from 4.

unary operator

binary operator

www.allitebooks.com

http://www.allitebooks.org

48 Chapter 2 Elementary Programming

2.9.4 Exponent Operations
The Math.pow(a, b) method can be used to compute ab. The pow method is defined in
the Math class in the Java API. You invoke the method using the syntax Math.pow(a, b)
(e.g., Math.pow(2, 3)), which returns the result of ab (23). Here, a and b are parameters
for the pow method and the numbers 2 and 3 are actual values used to invoke the method. For
example,

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.println(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, -2)); // Displays 0.16

Chapter 5 introduces more details on methods. For now, all you need to know is how to
invoke the pow method to perform the exponent operation.

2.10 Find the largest and smallest byte, short, int, long, float, and double. Which
of these data types requires the least amount of memory?

2.11 Show the result of the following remainders.

56 % 6
78 % -4

-34 % 5
-34 % -5
 5 % 1
 1 % 5

2.12 If today is Tuesday, what will be the day in 100 days?

2.13 What is the result of 25 / 4? How would you rewrite the expression if you wished
the result to be a floating-point number?

2.14 Show the result of the following code:

System.out.println(2 * (5 / 2 + 5 / 2));
System.out.println(2 * 5 / 2 + 2 * 5 / 2);
System.out.println(2 * (5 / 2));
System.out.println(2 * 5 / 2);

2.15 Are the following statements correct? If so, show the output.

System.out.println("25 / 4 is " + 25 / 4);
System.out.println("25 / 4.0 is " + 25 / 4.0);
System.out.println("3 * 2 / 4 is " + 3 * 2 / 4);
System.out.println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

2.16 Write a statement to display the result of 23.5.

2.17 Suppose m and r are integers. Write a Java expression for mr2 to obtain a floating-
point result.

2.10 Numeric Literals
A literal is a constant value that appears directly in a program.

For example, 34 and 0.305 are literals in the following statements:

int numberOfYears = 34;
double weight = 0.305;

Math.pow(a, b) method

✓Point✓Check

Key
Point

literal

2.10 Numeric Literals 49

2.10.1 Integer Literals
An integer literal can be assigned to an integer variable as long as it can fit into the variable. A
compile error will occur if the literal is too large for the variable to hold. The statement byte
b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable
of the byte type. (Note that the range for a byte value is from –128 to 127.)

An integer literal is assumed to be of the int type, whose value is between
-231 (-2147483648) and 231 - 1 (2147483647). To denote an integer literal of the long
type, append the letter L or l to it. For example, to write integer 2147483648 in a Java pro-
gram, you have to write it as 2147483648L or 2147483648l, because 2147483648 exceeds
the range for the int value. L is preferred because l (lowercase L) can easily be confused
with 1 (the digit one).

Note
By default, an integer literal is a decimal integer number. To denote a binary integer

literal, use a leading 0b or 0B (zero B), to denote an octal integer literal, use a leading

0 (zero), and to denote a hexadecimal integer literal, use a leading 0x or 0X (zero X).

For example,

System.out.println(0B1111); // Displays 15
System.out.println(07777); // Displays 4095
System.out.println(0XFFFF); // Displays 65535

Hexadecimal numbers, binary numbers, and octal numbers are introduced in Appendix F.

2.10.2 Floating-Point Literals
Floating-point literals are written with a decimal point. By default, a floating-point literal is
treated as a double type value. For example, 5.0 is considered a double value, not a float
value. You can make a number a float by appending the letter f or F, and you can make
a number a double by appending the letter d or D. For example, you can use 100.2f or
100.2F for a float number, and 100.2d or 100.2D for a double number.

Note
The double type values are more accurate than the float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

binary, octal, and hex literals

suffix f or F

suffix d or D

double vs. float

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

x
displays 1.0F / 3.0F is 0.33333334

 8 digits

sSystem.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

A float value has 7 to 8 number of significant digits and a double value has 15 to 17 number
of significant digits.

2.10.3 Scientific Notation
Floating-point literals can be written in scientific notation in the form of a * 10b. For example,
the scientific notation for 123.456 is 1.23456 * 102 and for 0.0123456 is 1.23456 * 10-2.
A special syntax is used to write scientific notation numbers. For example, 1.23456 * 102 is
written as 1.23456E2 or 1.23456E+2 and 1.23456 * 10-2 as 1.23456E-2. E (or e) repre-
sents an exponent and can be in either lowercase or uppercase.

50 Chapter 2 Elementary Programming

Note
The float and double types are used to represent numbers with a decimal point.

Why are they called floating-point numbers? These numbers are stored in scientific nota-

tion internally. When a number such as 50.534 is converted into scientific notation,

such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new position.

Note
To improve readability, Java allows you to use underscores between two digits in a

number literal. For example, the following literals are correct.

long ssn = 232_45_4519;
long creditCardNumber = 2324_4545_4519_3415L;

However, 45_ or _45 is incorrect. The underscore must be placed between two digits.

2.18 How many accurate digits are stored in a float or double type variable?

2.19 Which of the following are correct literals for floating-point numbers?
12.3, 12.3e+2, 23.4e-2, –334.4, 20.5, 39F, 40D

2.20 Which of the following are the same as 52.534?
5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

2.21 Which of the following are correct literals?
5_2534e+1, _2534, 5_2, 5_

2.11 Evaluating Expressions and Operator Precedence
Java expressions are evaluated in the same way as arithmetic expressions.

Writing a numeric expression in Java involves a straightforward translation of an arithmetic
expression using Java operators. For example, the arithmetic expression

3 + 4x

5
-

10(y - 5)(a + b + c)
x

+ 9¢ 4
x

+
9 + x

y
≤

can be translated into a Java expression as:

(3 + 4 * x) / 5 – 10 * (y - 5) * (a + b + c) / x +
9 * (4 / x + (9 + x) / y)

Though Java has its own way to evaluate an expression behind the scene, the result of
a Java expression and its corresponding arithmetic expression is the same. Therefore, you
can safely apply the arithmetic rule for evaluating a Java expression. Operators contained
within pairs of parentheses are evaluated first. Parentheses can be nested, in which case the
expression in the inner parentheses is evaluated first. When more than one operator is used
in an expression, the following operator precedence rule is used to determine the order of
evaluation.

 ■ Multiplication, division, and remainder operators are applied first. If an expression
contains several multiplication, division, and remainder operators, they are applied
from left to right.

 ■ Addition and subtraction operators are applied last. If an expression contains several
addition and subtraction operators, they are applied from left to right.

why called floating-point?

underscores in numbers

✓Point✓Check

Key
Point

evaluating an expression

operator precedence rule

2.11 Evaluating Expressions and Operator Precedence 51

Here is an example of how an expression is evaluated:

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

54 – 1

53

(1) inside parentheses first

(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

Enter a degree in Fahrenheit: 100
Fahrenheit 100.0 is 37.77777777777778 in Celsius

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula

celsius = (5
9)(fahrenheit - 32).

LISTING 2.6 FahrenheitToCelsius.java
 1 import java.util.Scanner;
 2
 3 public class FahrenheitToCelsius {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a degree in Fahrenheit: ");
 8 double fahrenheit = input.nextDouble();
 9
10 // Convert Fahrenheit to Celsius
11 double celsius = (5.0 / 9) * (fahrenheit - 32);
12 System.out.println("Fahrenheit " + fahrenheit + " is " +
13 celsius + " in Celsius");
14 }
15 }

divide

Be careful when applying division. Division of two integers yields an integer in Java. 59 is
translated to 5.0 / 9 instead of 5 / 9 in line 11, because 5 / 9 yields 0 in Java.

2.22 How would you write the following arithmetic expression in Java?

a.
4

3(r + 34)
- 9(a + bc) +

3 + d(2 + a)

a + bd

b. 5.5 * (r + 2.5)2.5 + t

integer vs. floating-point
division

✓Point✓Check

line# fahrenheit celsius

8 100

11 37.77777777777778

52 Chapter 2 Elementary Programming

2.12 Case Study: Displaying the Current Time
You can invoke System.currentTimeMillis() to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean
Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMillis method in the System class returns the current time in mil-
liseconds elapsed since midnight, January 1, 1970 GMT, as shown in Figure 2.2. This time
is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was the year
when the UNIX operating system was formally introduced.

Key
Point

Use operators / and %

VideoNote

currentTimeMillis

UNIX epoch

FIGURE 2.2 The System.currentTimeMillis() returns the number of milliseconds
since the UNIX epoch.

UNIX epoch
01-01-1970

00:00:00 GMT

Elapsed
time

Current time
System.currentTimeMillis()

Time

You can use this method to obtain the current time, and then compute the current second,
minute, and hour as follows.

1. Obtain the total milliseconds since midnight, January 1, 1970, in totalMilliseconds
by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

2. Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000
(e.g., 1203183068328 milliseconds / 1000 = 1203183068 seconds).

3. Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds
% 60 = 8, which is the current second).

4. Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g.,
1203183068 seconds / 60 = 20053051 minutes).

5. Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes %
60 = 31, which is the current minute).

6. Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g., 20053051
minutes / 60 = 334217 hours).

7. Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 = 17,
which is the current hour).

Listing 2.7 gives the complete program.

LISTING 2.7 ShowCurrentTime.java
 1 public class ShowCurrentTime {
 2 public static void main(String[] args) {
 3 // Obtain the total milliseconds since midnight, Jan 1, 1970
 4 long totalMilliseconds = System.currentTimeMillis();
 5
 6 // Obtain the total seconds since midnight, Jan 1, 1970
 7 long totalSeconds = totalMilliseconds / 1000;
 8
9 // Compute the current second in the minute in the hour
10 long currentSecond = totalSeconds % 60;

totalMilliseconds

totalSeconds

currentSecond

2.12 Case Study: Displaying the Current Time 53

11
12 // Obtain the total minutes
13 long totalMinutes = totalSeconds / 60;
14
15 // Compute the current minute in the hour
16 long currentMinute = totalMinutes % 60;
17
18 // Obtain the total hours
19 long totalHours = totalMinutes / 60;
20
21 // Compute the current hour
22 long currentHour = totalHours % 24;
23
24 // Display results
25 System.out.println("Current time is " + currentHour + ":"
26 + currentMinute + ":" + currentSecond + " GMT");
27 }
28 }

totalMinutes

currentMinute

totalHours

currentHour

preparing output

Current time is 17:31:8 GMT

Line 4 invokes System.currentTimeMillis() to obtain the current time in millisec-
onds as a long value. Thus, all the variables are declared as the long type in this program. The
seconds, minutes, and hours are extracted from the current time using the / and % operators
(lines 6–22).

In the sample run, a single digit 8 is displayed for the second. The desirable output
would be 08. This can be fixed by using a method that formats a single digit with a prefix 0
(see Exercise 6.37).

2.23 How do you obtain the current second, minute, and hour? ✓Point✓Check

line#

variables

4 7 10 13 16 19 22

totalMilliseconds 1203183068328

totalSeconds 1203183068

currentSecond 8

totalMinutes 20053051

currentMinute 31

totalHours 334217

currentHour 17

54 Chapter 2 Elementary Programming

2.13 Augmented Assignment Operators
The operators +, -, *, /, and % can be combined with the assignment operator to form
augmented operators.

Very often the current value of a variable is used, modified, and then reassigned back to the
same variable. For example, the following statement increases the variable count by 1:

count = count + 1;

Java allows you to combine assignment and addition operators using an augmented (or
compound) assignment operator. For example, the preceding statement can be written as

count += 1;

The += is called the addition assignment operator. Table 2.4 shows other augmented
assignment operators.

Key
Point

addition assignment operator

TABLE 2.4 Augmented Assignment Operators

Operator Name Example Equivalent

+= Addition assignment i += 8 i = i + 8

-= Subtraction assignment i -= 8 i = i – 8

*= Multiplication assignment i *= 8 i = i * 8

/= Division assignment i /= 8 i = i / 8

%= Remainder assignment i %= 8 i = i % 8

The augmented assignment operator is performed last after all the other operators in the
expression are evaluated. For example,

x /= 4 + 5.5 * 1.5;

is same as

x = x / (4 + 5.5 * 1.5);

Caution
There are no spaces in the augmented assignment operators. For example, + = should

be +=.

Note
Like the assignment operator (=), the operators (+=, -=, *=, /=, %=) can be used to

form an assignment statement as well as an expression. For example, in the following

code, x += 2 is a statement in the first line and an expression in the second line.

x += 2; // Statement
System.out.println(x += 2); // Expression

2.24 Show the output of the following code:

double a = 6.5;
a += a + 1;

✓Point✓Check

2.14 Increment and Decrement Operators 55

System.out.println(a);
a = 6;
a /= 2;
System.out.println(a);

2.14 Increment and Decrement Operators
The increment operator (++) and decrement operator (––) are for incrementing and
decrementing a variable by 1.

The ++ and —— are two shorthand operators for incrementing and decrementing a variable by
1. These are handy because that’s often how much the value needs to be changed in many pro-
gramming tasks. For example, the following code increments i by 1 and decrements j by 1.

int i = 3, j = 3;
i++; // i becomes 4
j——; // j becomes 2

i++ is pronounced as i plus plus and i—— as i minus minus. These operators are known as
postfix increment (or postincrement) and postfix decrement (or postdecrement), because the
operators ++ and —— are placed after the variable. These operators can also be placed before
the variable. For example,

int i = 3, j = 3;
++i; // i becomes 4
——j; // j becomes 2

++i increments i by 1 and ——j decrements j by 1. These operators are known as prefix
increment (or preincrement) and prefix decrement (or predecrement).

As you see, the effect of i++ and ++i or i—— and ——i are the same in the preceding exam-
ples. However, their effects are different when they are used in statements that do more than
just increment and decrement. Table 2.5 describes their differences and gives examples.

Key
Point

increment operator (++)
decrement operator (−−)

postincrement
postdecrement

preincrement

predecrement

TABLE 2.5 Increment and Decrement Operators

Operator Name Description Example (assume i = 1)

++var preincrement Increment var by 1, and use the
new var value in the statement

int j = ++i;

// j is 2, i is 2

var++ postincrement Increment var by 1, but use the
original var value in the statement

int j = i++;

// j is 1, i is 2

——var predecrement Decrement var by 1, and use the
new var value in the statement

int j = ——i;

// j is 0, i is 0

var—— postdecrement Decrement var by 1, and use the
original var value in the statement

int j = i——;

// j is 1, i is 0

Here are additional examples to illustrate the differences between the prefix form of ++ (or
——) and the postfix form of ++ (or −−). Consider the following code:

int i = 10;
int newNum = 10 * i++;

System.out.print("i is " + i
 + ", newNum is " + newNum);

Same effect as
int newNum = 10 * i;
i = i + 1;

i is 11, newNum is 100

56 Chapter 2 Elementary Programming

In this case, i is incremented by 1, then the old value of i is used in the multiplication. So
newNum becomes 100. If i++ is replaced by ++i as follows,

i is 11, newNum is 110

int i = 10;
int newNum = 10 * (++i);

System.out.print("i is " + i
 + ", newNum is " + newNum);

Same effect as i = i + 1;
int newNum = 10 * i;

i is incremented by 1, and the new value of i is used in the multiplication. Thus newNum
becomes 110.

Here is another example:

double x = 1.0;
double y = 5.0;
double z = x–– + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0.0.

Tip
Using increment and decrement operators makes expressions short, but it also

makes them complex and difficult to read. Avoid using these operators in expres-

sions that modify multiple variables or the same variable multiple times, such as this

one: int k = ++i + i.

2.25 Which of these statements are true?

a. Any expression can be used as a statement.

b. The expression x++ can be used as a statement.

c. The statement x = x + 5 is also an expression.

d. The statement x = y = x = 0 is illegal.

2.26 Show the output of the following code:

int a = 6;
int b = a++;
System.out.println(a);
System.out.println(b);
a = 6;
b = ++a;
System.out.println(a);
System.out.println(b);

2.15 Numeric Type Conversions
Floating-point numbers can be converted into integers using explicit casting.

Can you perform binary operations with two operands of different types? Yes. If an integer
and a floating-point number are involved in a binary operation, Java automatically converts
the integer to a floating-point value. So, 3 * 4.5 is same as 3.0 * 4.5.

✓Point✓Check

Key
Point

2.15 Numeric Type Conversions 57

You can always assign a value to a numeric variable whose type supports a larger range of
values; thus, for instance, you can assign a long value to a float variable. You cannot, however,
assign a value to a variable of a type with a smaller range unless you use type casting. Casting is
an operation that converts a value of one data type into a value of another data type. Casting a type
with a small range to a type with a larger range is known as widening a type. Casting a type with
a large range to a type with a smaller range is known as narrowing a type. Java will automatically
widen a type, but you must narrow a type explicitly.

The syntax for casting a type is to specify the target type in parentheses, followed by the
variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a double value is cast into an int value, the fractional part is truncated.
The following statement

System.out.println((double)1 / 2);

displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the statement

System.out.println(1 / 2);

displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

Caution
Casting is necessary if you are assigning a value to a variable of a smaller type range,

such as assigning a double value to an int variable. A compile error will occur if cast-

ing is not used in situations of this kind. However, be careful when using casting, as loss

of information might lead to inaccurate results.

Note
Casting does not change the variable being cast. For example, d is not changed after

casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

Note
In Java, an augmented expression of the form x1 op= x2 is implemented as x1 =

(T)(x1 op x2), where T is the type for x1. Therefore, the following code is correct.

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement
sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Note
To assign a variable of the int type to a variable of the short or byte type, explicit

casting must be used. For example, the following statements have a compile error:

int i = 1;
byte b = i; // Error because explicit casting is required

However, so long as the integer literal is within the permissible range of the target vari-

able, explicit casting is not needed to assign an integer literal to a variable of the short

or byte type (see Section 2.10, Numeric Literals).

The program in Listing 2.8 displays the sales tax with two digits after the decimal point.

casting

widening a type

narrowing a type

possible loss of precision

casting in an augmented
expression

www.allitebooks.com

http://www.allitebooks.org

58 Chapter 2 Elementary Programming

LISTING 2.8 SalesTax.java
 1 import java.util.Scanner;
 2
 3 public class SalesTax {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter purchase amount: ");
 8 double purchaseAmount = input.nextDouble();
 9
10 double tax = purchaseAmount * 0.06;
11 System.out.println("Sales tax is $" + (int)(tax * 100) / 100.0);
12 }
13 }

casting

Enter purchase amount: 197.55
Sales tax is $11.85

line# purchaseAmount tax output

8 197.55

10 11.853

11 11.85

The variable purchaseAmount is 197.55 (line 8). The sales tax is 6% of the purchase, so
the tax is evaluated as 11.853 (line 10). Note that

tax * 100 is 1185.3

(int)(tax * 100) is 1185

(int)(tax * 100) / 100.0 is 11.85

So, the statement in line 11 displays the tax 11.85 with two digits after the decimal point.

2.27 Can different types of numeric values be used together in a computation?

2.28 What does an explicit casting from a double to an int do with the fractional part of
the double value? Does casting change the variable being cast?

2.29 Show the following output:

float f = 12.5F;
int i = (int)f;
System.out.println("f is " + f);
System.out.println("i is " + i);

2.30 If you change (int)(tax * 100) / 100.0 to (int)(tax * 100) / 100 in line
11 in Listing 2.8, what will be the output for the input purchase amount of 197.55?

2.31 Show the output of the following code:

double amount = 5;
System.out.println(amount / 2);
System.out.println(5 / 2);

formatting numbers

✓Point✓Check

2.16 Software Development Process 59

2.16 Software Development Process
The software development life cycle is a multistage process that includes requirements
specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter how
large or how small, have the same life cycle: requirements specification, analysis, design,
implementation, testing, deployment, and maintenance, as shown in Figure 2.3.

Key
Point

VideoNote

Software development process

FIGURE 2.3 At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

Requirements
Specification

System Analysis

System
Design

Testing

Input, Process, Output
IPO

Implementation

Maintenance

Deployment

Requirements specification is a formal process that seeks to understand the problem that
the software will address and to document in detail what the software system needs to do.
This phase involves close interaction between users and developers. Most of the examples
in this book are simple, and their requirements are clearly stated. In the real world, however,
problems are not always well defined. Developers need to work closely with their customers
(the individuals or organizations that will use the software) and study the problem carefully to
identify what the software needs to do.

System analysis seeks to analyze the data flow and to identify the system’s input and out-
put. When you do analysis, it helps to identify what the output is first, and then figure out what
input data you need in order to produce the output.

System design is to design a process for obtaining the output from the input. This phase
involves the use of many levels of abstraction to break down the problem into manageable
components and design strategies for implementing each component. You can view each
component as a subsystem that performs a specific function of the system. The essence of
system analysis and design is input, process, and output (IPO).

Implementation involves translating the system design into programs. Separate programs
are written for each component and then integrated to work together. This phase requires
the use of a programming language such as Java. The implementation involves coding, self-
testing, and debugging (that is, finding errors, called bugs, in the code).

requirements specification

system analysis

system design

IPO

implementation

60 Chapter 2 Elementary Programming

Testing ensures that the code meets the requirements specification and weeds out bugs. An
independent team of software engineers not involved in the design and implementation of the
product usually conducts such testing.

Deployment makes the software available for use. Depending on the type of software,
it may be installed on each user’s machine or installed on a server accessible on the
Internet.

Maintenance is concerned with updating and improving the product. A software
product must continue to perform and improve in an ever-evolving environment. This
requires periodic upgrades of the product to fix newly discovered bugs and incorporate
changes.

To see the software development process in action, we will now create a program that
computes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan.
For an introductory programming course, we focus on requirements specification, analysis,
design, implementation, and testing.

Stage 1: Requirements Specification

The program must satisfy the following requirements:

 ■ It must let the user enter the interest rate, the loan amount, and the number of years
for which payments will be made.

 ■ It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis

The output is the monthly payment and total payment, which can be obtained using the fol-
lowing formulas:

monthlyPayment =
loanAmount * monthlyInterestRate

1 -
1

(1 + monthlyInterestRate)numberOfYears * 12

totalPayment = monthlyPayment * numberOfYears * 12

So, the input needed for the program is the monthly interest rate, the length of the loan in
years, and the loan amount.

Note
The requirements specification says that the user must enter the annual interest rate, the

loan amount, and the number of years for which payments will be made. During analy-

sis, however, it is possible that you may discover that input is not sufficient or that some

values are unnecessary for the output. If this happens, you can go back and modify the

requirements specification.

Note
In the real world, you will work with customers from all walks of life. You may develop

software for chemists, physicists, engineers, economists, and psychologists, and of

course you will not have (or need) complete knowledge of all these fields. Therefore,

you don’t have to know how formulas are derived, but given the monthly interest rate,

the number of years, and the loan amount, you can compute the monthly payment in

this program. You will, however, need to communicate with customers and understand

how a mathematical model works for the system.

testing

deployment

maintenance

VideoNote

Compute loan payments

2.16 Software Development Process 61

Stage 3: System Design

During system design, you identify the steps in the program.

Step 1. Prompt the user to enter the annual interest rate, the number of years, and the
loan amount.

(The interest rate is commonly expressed as a percentage of the principal for a period of
one year. This is known as the annual interest rate.)

Step 2. The input for the annual interest rate is a number in percent format, such as
4.5%. The program needs to convert it into a decimal by dividing it by 100. To
obtain the monthly interest rate from the annual interest rate, divide it by 12,
since a year has 12 months. So, to obtain the monthly interest rate in decimal
format, you need to divide the annual interest rate in percentage by 1200. For
example, if the annual interest rate is 4.5%, then the monthly interest rate is
4.5/1200 = 0.00375.

Step 3. Compute the monthly payment using the preceding formula.

Step 4. Compute the total payment, which is the monthly payment multiplied by 12 and
multiplied by the number of years.

Step 5. Display the monthly payment and total payment.

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to com-
pute (1 + monthlyInterestRate)numberOfYears * 12, which can be obtained using Math.pow(1 +
monthlyInterestRate, numberOfYears * 12).

Listing 2.9 gives the complete program.

LISTING 2.9 ComputeLoan.java
 1 import java.util.Scanner;
 2
 3 public class ComputeLoan {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Enter annual interest rate in percentage, e.g., 7.25%
 9 System.out.print("Enter annual interest rate, e.g., 7.25%: ");
10 double annualInterestRate = input.nextDouble();
11
12 // Obtain monthly interest rate
13 double monthlyInterestRate = annualInterestRate / 1200;
14
15 // Enter number of years
16 System.out.print(
17 "Enter number of years as an integer, e.g., 5: ");
18 int numberOfYears = input.nextInt();
19
20 // Enter loan amount
21 System.out.print("Enter loan amount, e.g., 120000.95: ");
22 double loanAmount = input.nextDouble();
23
24 // Calculate payment
25 double monthlyPayment = loanAmount * monthlyInterestRate / (1
26 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));

Math.pow(a, b) method

import class

create a Scanner

enter interest rate

enter years

enter loan amount

monthlyPayment

62 Chapter 2 Elementary Programming

27 double totalPayment = monthlyPayment * numberOfYears * 12;
28
29 // Display results
30 System.out.println("The monthly payment is $" +
31 (int)(monthlyPayment * 100) / 100.0);
32 System.out.println("The total payment is $" +
33 (int)(totalPayment * 100) / 100.0);
34 }
35 }

totalPayment

casting

casting

Enter annual interest rate, e.g., 5.75%: 5.75
Enter number of years as an integer, e.g., 5: 15
Enter loan amount, e.g., 120000.95: 250000
The monthly payment is $2076.02
The total payment is $373684.53

line#

variables

10 13 18 22 25 27

annualInterestRate 5.75

monthlyInterestRate 0.0047916666666

numberOfYears 15

loanAmount 250000

monthlyPayment 2076.0252175

totalPayment 373684.539

Line 10 reads the annual interest rate, which is converted into the monthly interest rate in
line 13.

Choose the most appropriate data type for the variable. For example, numberOfYears is
best declared as an int (line 18), although it could be declared as a long, float, or double.
Note that byte might be the most appropriate for numberOfYears. For simplicity, however,
the examples in this book will use int for integer and double for floating-point values.

The formula for computing the monthly payment is translated into Java code in lines 25–27.
Casting is used in lines 31 and 33 to obtain a new monthlyPayment and totalPayment

with two digits after the decimal points.
The program uses the Scanner class, imported in line 1. The program also uses the Math

class, and you might be wondering why that class isn’t imported into the program. The Math
class is in the java.lang package, and all classes in the java.lang package are implicitly
imported. Therefore, you don’t need to explicitly import the Math class.

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether
the output is correct. Some of the problems may involve many cases, as you will see in later
chapters. For these types of problems, you need to design test data that cover all cases.

Tip
The system design phase in this example identified several steps. It is a good approach

to code and test these steps incrementally by adding them one at a time. This approach

makes it much easier to pinpoint problems and debug the program.

java.lang package

incremental code and test

2.17 Case Study: Counting Monetary Units 63

2.32 How would you write the following arithmetic expression?

-b + 2b2 - 4ac

2a

2.17 Case Study: Counting Monetary Units
This section presents a program that breaks a large amount of money into smaller
units.

Suppose you want to develop a program that changes a given amount of money into smaller
monetary units. The program lets the user enter an amount as a double value representing a
total in dollars and cents, and outputs a report listing the monetary equivalent in the maximum
number of dollars, quarters, dimes, nickels, and pennies, in this order, to result in the mini-
mum number of coins.

Here are the steps in developing the program:

1. Prompt the user to enter the amount as a decimal number, such as 11.56.

2. Convert the amount (e.g., 11.56) into cents (1156).

3. Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using
the cents remainder 100.

4. Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining
cents using the remaining cents remainder 25.

5. Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining
cents using the remaining cents remainder 10.

6. Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining
cents using the remaining cents remainder 5.

7. The remaining cents are the pennies.

8. Display the result.

The complete program is given in Listing 2.10.

LISTING 2.10 ComputeChange.java
 1 import java.util.Scanner;
 2
 3 public class ComputeChange {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Receive the amount
 9 System.out.print(
10 "Enter an amount in double, for example 11.56: ");
11 double amount = input.nextDouble();
12
13 int remainingAmount = (int)(amount * 100);
14
15 // Find the number of one dollars
16 int numberOfOneDollars = remainingAmount / 100;
17 remainingAmount = remainingAmount % 100;
18
19 // Find the number of quarters in the remaining amount
20 int numberOfQuarters = remainingAmount / 25;

✓Point✓Check

Key
Point

import class

enter input

dollars

quarters

64 Chapter 2 Elementary Programming

21 remainingAmount = remainingAmount % 25;
22
23 // Find the number of dimes in the remaining amount
24 int numberOfDimes = remainingAmount / 10;
25 remainingAmount = remainingAmount % 10;
26
27 // Find the number of nickels in the remaining amount
28 int numberOfNickels = remainingAmount / 5;
29 remainingAmount = remainingAmount % 5;
30
31 // Find the number of pennies in the remaining amount
32 int numberOfPennies = remainingAmount;
33
34 // Display results
35 System.out.println("Your amount " + amount + " consists of");
36 System.out.println(" " + numberOfOneDollars + " dollars");
37 System.out.println(" " + numberOfQuarters + " quarters ");
38 System.out.println(" " + numberOfDimes + " dimes");
39 System.out.println(" " + numberOfNickels + " nickels");
40 System.out.println(" " + numberOfPennies + " pennies");
41 }
42 }

dimes

nickels

pennies

output

Enter an amount, for example, 11.56: 11.56
Your amount 11.56 consists of
 11 dollars
 2 quarters
 0 dimes
 1 nickels
 1 pennies

line#

variables

11 13 16 17 20 21 24 25 28 29 32

amount 11.56

remainingAmount 1156 56 6 6 1

numberOfOneDollars 11

numberOfQuarters 2

numberOfDimes 0

numberOfNickels 1

numberOfPennies 1

The variable amount stores the amount entered from the console (line 11). This variable
is not changed, because the amount has to be used at the end of the program to display the
results. The program introduces the variable remainingAmount (line 13) to store the chang-
ing remaining amount.

The variable amount is a double decimal representing dollars and cents. It is converted to
an int variable remainingAmount, which represents all the cents. For instance, if amount

2.18 Common Errors and Pitfalls 65

is 11.56, then the initial remainingAmount is 1156. The division operator yields the inte-
ger part of the division, so 1156 / 100 is 11. The remainder operator obtains the remainder
of the division, so 1156 % 100 is 56.

The program extracts the maximum number of singles from the remaining amount and
obtains a new remaining amount in the variable remainingAmount (lines 16–17). It then
extracts the maximum number of quarters from remainingAmount and obtains a new
remainingAmount (lines 20–21). Continuing the same process, the program finds the maxi-
mum number of dimes, nickels, and pennies in the remaining amount.

One serious problem with this example is the possible loss of precision when casting a
double amount to an int remainingAmount. This could lead to an inaccurate result. If you
try to enter the amount 10.03, 10.03 * 100 becomes 1002.9999999999999. You will
find that the program displays 10 dollars and 2 pennies. To fix the problem, enter the amount
as an integer value representing cents (see Programming Exercise 2.22).

2.33 Show the output with the input value 1.99.

2.18 Common Errors and Pitfalls
Common elementary programming errors often involve undeclared variables, unini-
tialized variables, integer overflow, unintended integer division, and round-off errors.

Common Error 1: Undeclared/Uninitialized Variables and Unused Variables

A variable must be declared with a type and assigned a value before using it. A common error
is not declaring a variable or initializing a variable. Consider the following code:

double interestRate = 0.05;
double interest = interestrate * 45;

This code is wrong, because interestRate is assigned a value 0.05; but interestrate
has not been declared and initialized. Java is case sensitive, so it considers interestRate
and interestrate to be two different variables.

If a variable is declared, but not used in the program, it might be a potential programming
error. So, you should remove the unused variable from your program. For example, in the fol-
lowing code, taxRate is never used. It should be removed from the code.

double interestRate = 0.05;
double taxRate = 0.05;
double interest = interestRate * 45;
System.out.println("Interest is " + interest);

If you use an IDE such as Eclipse and NetBeans, you will receive a warning on unused
variables.

Common Error 2: Integer Overflow

Numbers are stored with a limited numbers of digits. When a variable is assigned a value that
is too large (in size) to be stored, it causes overflow. For example, executing the following
statement causes overflow, because the largest value that can be stored in a variable of the int
type is 2147483647. 2147483648 will be too large for an int value.

int value = 2147483647 + 1;
// value will actually be -2147483648

Likewise, executing the following statement causes overflow, because the smallest value that
can be stored in a variable of the int type is -2147483648. -2147483649 is too large in size
to be stored in an int variable.

loss of precision

✓Point✓Check

Key
Point

what is overflow?

66 Chapter 2 Elementary Programming

int value = -2147483648 - 1;
// value will actually be 2147483647

Java does not report warnings or errors on overflow, so be careful when working with num-
bers close to the maximum or minimum range of a given type.

When a floating-point number is too small (i.e., too close to zero) to be stored, it causes
underflow. Java approximates it to zero, so normally you don’t need to be concerned about
underflow.

Common Error 3: Round-off Errors

A round-off error, also called a rounding error, is the difference between the calculated
approximation of a number and its exact mathematical value. For example, 1/3 is approxi-
mately 0.333 if you keep three decimal places, and is 0.3333333 if you keep seven decimal
places. Since the number of digits that can be stored in a variable is limited, round-off errors
are inevitable. Calculations involving floating-point numbers are approximated because these
numbers are not stored with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are stored precisely. Therefore, calcula-
tions with integers yield a precise integer result.

Common Error 4: Unintended Integer Division

Java uses the same divide operator, namely /, to perform both integer and floating-point
division. When two operands are integers, the / operator performs an integer division. The
result of the operation is an integer. The fractional part is truncated. To force two integers to
perform a floating-point division, make one of the integers into a floating-point number. For
example, the code in (a) displays that average is 1 and the code in (b) displays that average
is 1.5.

what is underflow?

floating-point approximation

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2;
System.out.println(average);

(a)

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2.0;
System.out.println(average);

(b)

Common Pitfall 1: Redundant Input Objects

New programmers often write the code to create multiple input objects for each input. For
example, the following code reads an integer and a double value.

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

BAD CODE

The code is not wrong, but inefficient. It creates two input objects unnecessarily and may
lead to some subtle errors. You should rewrite the code as follows:

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();
System.out.print("Enter a double value: ");
double v2 = input.nextDouble();

2.34 Can you declare a variable as int and later redeclare it as double?

2.35 What is an integer overflow? Can floating-point operations cause overflow?

2.36 Will overflow cause a runtime error?

2.37 What is a round-off error? Can integer operations cause round-off errors? Can
floating-point operations cause round-off errors?

GOOD CODE

✓Point✓Check

KEY TERMS

algorithm 34
assignment operator (=) 42
assignment statement 42
byte type 45
casting 57
constant 43
data type 35
declare variables 35
decrement operator (––) 55
double type 45
expression 42
final keyword 43
float type 45
floating-point number 35
identifier 39
increment operator (++) 55
incremental code and testing 62
int type 45
IPO 39
literal 48
long type 45

narrowing (of types) 57
operands 46
operator 46
overflow 65
postdecrement 55
postincrement 55
predecrement 55
preincrement 55
primitive data type 35
pseudocode 34
requirements specification 59
scope of a variable 41
short type 45
specific import 38
system analysis 59
system design 59
underflow 66
UNIX epoch 52
variable 35
widening (of types) 57
wildcard import 00

CHAPTER SUMMARY

1. Identifiers are names for naming elements such as variables, constants, methods, classes,
packages in a program.

2. An identifier is a sequence of characters that consists of letters, digits, underscores (_),
and dollar signs ($). An identifier must start with a letter or an underscore. It cannot start
with a digit. An identifier cannot be a reserved word. An identifier can be of any length.

3. Variables are used to store data in a program. To declare a variable is to tell the compiler
what type of data a variable can hold.

Chapter Summary 67

www.allitebooks.com

http://www.allitebooks.org

68 Chapter 2 Elementary Programming

4. There are two types of import statements: specific import and wildcard import. The
specific import specifies a single class in the import statement; the wildcard import
imports all the classes in a package.

5. In Java, the equal sign (=) is used as the assignment operator.

6. A variable declared in a method must be assigned a value before it can be used.

7. A named constant (or simply a constant) represents permanent data that never changes.

8. A named constant is declared by using the keyword final.

9. Java provides four integer types (byte, short, int, and long) that represent integers
of four different sizes.

10. Java provides two floating-point types (float and double) that represent floating-
point numbers of two different precisions.

11. Java provides operators that perform numeric operations: + (addition), – (subtraction),
* (multiplication), / (division), and % (remainder).

12. Integer arithmetic (/) yields an integer result.

13. The numeric operators in a Java expression are applied the same way as in an arithmetic
expression.

14. Java provides the augmented assignment operators += (addition assignment), –= (sub-
traction assignment), *= (multiplication assignment), /= (division assignment), and %=
(remainder assignment).

15. The increment operator (++) and the decrement operator (––) increment or decrement
a variable by 1.

16. When evaluating an expression with values of mixed types, Java automatically converts
the operands to appropriate types.

17. You can explicitly convert a value from one type to another using the (type)value
notation.

18. Casting a variable of a type with a small range to a variable of a type with a larger range
is known as widening a type.

19. Casting a variable of a type with a large range to a variable of a type with a smaller range
is known as narrowing a type.

20. Widening a type can be performed automatically without explicit casting. Narrowing a
type must be performed explicitly.

21. In computer science, midnight of January 1, 1970, is known as the UNIX epoch.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

www.cs.armstrong.edu/liang/intro10e/quiz.html

PROGRAMMING EXERCISES

Debugging TIP
The compiler usually gives a reason for a syntax error. If you don’t know how to correct it,

compare your program closely, character by character, with similar examples in the text.

Pedagogical Note
Instructors may ask you to document your analysis and design for selected exercises. Use

your own words to analyze the problem, including the input, output, and what needs to be

computed, and describe how to solve the problem in pseudocode.

Sections 2.2–2.12

2.1 (Convert Celsius to Fahrenheit) Write a program that reads a Celsius degree in
a double value from the console, then converts it to Fahrenheit and displays the
result. The formula for the conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Hint: In Java, 9 / 5 is 1, but 9.0 / 5 is 1.8.

Here is a sample run:

learn from examples

document analysis and design

Enter a degree in Celsius: 43
43 Celsius is 109.4 Fahrenheit

Enter the radius and length of a cylinder: 5.5 12
The area is 95.0331
The volume is 1140.4

Enter a value for feet: 16.5
16.5 feet is 5.0325 meters

2.2 (Compute the volume of a cylinder) Write a program that reads in the radius
and length of a cylinder and computes the area and volume using the following
formulas:

area = radius * radius * p
volume = area * length

Here is a sample run:

2.3 (Convert feet into meters) Write a program that reads a number in feet, converts it
to meters, and displays the result. One foot is 0.305 meter. Here is a sample run:

Programming Exercises 69

70 Chapter 2 Elementary Programming

2.4 (Convert pounds into kilograms) Write a program that converts pounds into kilo-
grams. The program prompts the user to enter a number in pounds, converts it
to kilograms, and displays the result. One pound is 0.454 kilograms. Here is a
sample run:

Enter the time zone offset to GMT: −5
The current time is 4:50:34

Enter the number of minutes: 1000000000
1000000000 minutes is approximately 1902 years and 214 days

Enter a number in pounds: 55.5
55.5 pounds is 25.197 kilograms

Enter the subtotal and a gratuity rate: 10 15
The gratuity is $1.5 and total is $11.5

Enter a number between 0 and 1000: 999
The sum of the digits is 27

*2.5 (Financial application: calculate tips) Write a program that reads the subtotal
and the gratuity rate, then computes the gratuity and total. For example, if the
user enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5
as gratuity and $11.5 as total. Here is a sample run:

**2.6 (Sum the digits in an integer) Write a program that reads an integer between 0 and
1000 and adds all the digits in the integer. For example, if an integer is 932, the
sum of all its digits is 14.

Hint: Use the % operator to extract digits, and use the / operator to remove the
extracted digit. For instance, 932 % 10 = 2 and 932 / 10 = 93.

Here is a sample run:

*2.7 (Find the number of years) Write a program that prompts the user to enter the
minutes (e.g., 1 billion), and displays the number of years and days for the min-
utes. For simplicity, assume a year has 365 days. Here is a sample run:

*2.8 (Current time) Listing 2.7, ShowCurrentTime.java, gives a program that displays
the current time in GMT. Revise the program so that it prompts the user to enter
the time zone offset to GMT and displays the time in the specified time zone. Here
is a sample run:

Programming Exercises 71

2.9 (Physics: acceleration) Average acceleration is defined as the change of velocity
divided by the time taken to make the change, as shown in the following formula:

a =
v1 - v0

t

Write a program that prompts the user to enter the starting velocity v0 in meters/
second, the ending velocity v1 in meters/second, and the time span t in seconds,
and displays the average acceleration. Here is a sample run:

Enter v0, v1, and t: 5.5 50.9 4.5
The average acceleration is 10.0889

Enter the amount of water in kilograms: 55.5
Enter the initial temperature: 3.5
Enter the final temperature: 10.5
The energy needed is 1625484.0

Enter the number of years: 5
The population in 5 years is 325932970

Enter speed and acceleration: 60 3.5
The minimum runway length for this airplane is 514.286

2.10 (Science: calculating energy) Write a program that calculates the energy needed
to heat water from an initial temperature to a final temperature. Your program
should prompt the user to enter the amount of water in kilograms and the initial
and final temperatures of the water. The formula to compute the energy is

Q = M * (finalTemperature – initialTemperature) * 4184

where M is the weight of water in kilograms, temperatures are in degrees Celsius,
and energy Q is measured in joules. Here is a sample run:

2.11 (Population projection) Rewrite Programming Exercise 1.11 to prompt the user
to enter the number of years and displays the population after the number of years.
Use the hint in Programming Exercise 1.11 for this program. The population
should be cast into an integer. Here is a sample run of the program:

2.12 (Physics: finding runway length) Given an airplane’s acceleration a and take-off
speed v, you can compute the minimum runway length needed for an airplane to
take off using the following formula:

length =
v2

2a

Write a program that prompts the user to enter v in meters/second (m/s) and the
acceleration a in meters/second squared (m/s2), and displays the minimum run-
way length. Here is a sample run:

72 Chapter 2 Elementary Programming

**2.13 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. Thus, the monthly inter-
est rate is 0.05/12 = 0.00417. After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and
displays the account value after the sixth month. (In Exercise 5.30, you will use a
loop to simplify the code and display the account value for any month.)

Enter weight in pounds: 95.5
Enter height in inches: 50
BMI is 26.8573

Enter x1 and y1: 1.5 -3.4
Enter x2 and y2: 4 5
The distance between the two points is 8.764131445842194

Enter the monthly saving amount: 100
After the sixth month, the account value is $608.81

*2.14 (Health application: computing BMI) Body Mass Index (BMI) is a measure of
health on weight. It can be calculated by taking your weight in kilograms and
dividing by the square of your height in meters. Write a program that prompts the
user to enter a weight in pounds and height in inches and displays the BMI. Note
that one pound is 0.45359237 kilograms and one inch is 0.0254 meters. Here is
a sample run:

VideoNote

Compute BMI

2.15 (Geometry: distance of two points) Write a program that prompts the user to enter
two points (x1, y1) and (x2, y2) and displays their distance between them.
The formula for computing the distance is 2(x2 - x1)

2 + (y2 - y1)
2. Note that

you can use Math.pow(a, 0.5) to compute 2a. Here is a sample run:

2.16 (Geometry: area of a hexagon) Write a program that prompts the user to enter the
side of a hexagon and displays its area. The formula for computing the area of a
hexagon is

Area =
323

2
s2,

Programming Exercises 73

*2.17 (Science: wind-chill temperature) How cold is it outside? The temperature alone
is not enough to provide the answer. Other factors including wind speed, rela-
tive humidity, and sunshine play important roles in determining coldness outside.
In 2001, the National Weather Service (NWS) implemented the new wind-chill
temperature to measure the coldness using temperature and wind speed. The
formula is

twc = 35.74 + 0.6215ta - 35.75v0.16 + 0.4275tav
0.16

where ta is the outside temperature measured in degrees Fahrenheit and v is the
speed measured in miles per hour. twc is the wind-chill temperature. The formula
cannot be used for wind speeds below 2 mph or temperatures below -58 ºF or
above 41ºF.

Write a program that prompts the user to enter a temperature between -58 ºF and
41ºF and a wind speed greater than or equal to 2 and displays the wind-chill tem-
perature. Use Math.pow(a, b) to compute v0.16. Here is a sample run:

Enter the side: 5.5
The area of the hexagon is 78.5895

Enter the temperature in Fahrenheit between -58°F and 41°F:
5.3
Enter the wind speed (>=2) in miles per hour: 6
The wind chill index is -5.56707

Enter three points for a triangle: 1.5 -3.4 4.6 5 9.5 -3.4
The area of the triangle is 33.6

where s is the length of a side. Here is a sample run:

2.18 (Print a table) Write a program that displays the following table. Cast floating-
point numbers into integers.

a b pow(a, b)
1 2 1
2 3 8
3 4 81
4 5 1024
5 6 15625

*2.19 (Geometry: area of a triangle) Write a program that prompts the user to enter
three points (x1, y1), (x2, y2), (x3, y3) of a triangle and displays its area.
The formula for computing the area of a triangle is

s = (side1 + side2 + side3)/2;

area = 2s(s - side1)(s - side2)(s - side3)

Here is a sample run:

74 Chapter 2 Elementary Programming

Sections 2.13–2.17

*2.20 (Financial application: calculate interest) If you know the balance and the annual
percentage interest rate, you can compute the interest on the next monthly pay-
ment using the following formula:

interest = balance * (annualInterestRate/1200)

Write a program that reads the balance and the annual percentage interest rate and
displays the interest for the next month. Here is a sample run:

Enter investment amount: 1000.56
Enter annual interest rate in percentage: 4.25
Enter number of years: 1
Accumulated value is $1043.92

Enter the driving distance: 900.5
Enter miles per gallon: 25.5
Enter price per gallon: 3.55
The cost of driving is $125.36

Enter balance and interest rate (e.g., 3 for 3%): 1000 3.5
The interest is 2.91667

*2.21 (Financial application: calculate future investment value) Write a program that
reads in investment amount, annual interest rate, and number of years, and dis-
plays the future investment value using the following formula:

futureInvestmentValue =

investmentAmount * (1 + monthlyInterestRate)numberOfYears*12

For example, if you enter amount 1000, annual interest rate 3.25%, and number
of years 1, the future investment value is 1032.98.

Here is a sample run:

*2.22 (Financial application: monetary units) Rewrite Listing 2.10, ComputeChange
.java, to fix the possible loss of accuracy when converting a double value to an
int value. Enter the input as an integer whose last two digits represent the cents.
For example, the input 1156 represents 11 dollars and 56 cents.

*2.23 (Cost of driving) Write a program that prompts the user to enter the distance to
drive, the fuel efficiency of the car in miles per gallon, and the price per gallon,
and displays the cost of the trip. Here is a sample run:

SELECTIONS

Objectives
■ To declare boolean variables and write Boolean expressions using

relational operators (§3.2).

■ To implement selection control using one-way if statements (§3.3).

■ To implement selection control using two-way if-else statements
(§3.4).

■ To implement selection control using nested if and multi-way if
statements (§3.5).

■ To avoid common errors and pitfalls in if statements (§3.6).

■ To generate random numbers using the Math.random() method (§3.7).

■ To program using selection statements for a variety of examples
(SubtractionQuiz, BMI, ComputeTax) (§§3.7–3.9).

■ To combine conditions using logical operators (!, &&, ||, and ^)
(§3.10).

■ To program using selection statements with combined conditions
(LeapYear, Lottery) (§§3.11–3.12).

■ To implement selection control using switch statements (§3.13).

■ To write expressions using the conditional expression (§3.14).

■ To examine the rules governing operator precedence and associativity
(§3.15).

■ To apply common techniques to debug errors (§3.16).

CHAPTER

3

76 Chapter 3 Selections

3.1 Introduction
The program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java,
the program displays an invalid result. If the radius is negative, you don’t want the program to
compute the area. How can you deal with this situation?

Like all high-level programming languages, Java provides selection statements: statements
that let you choose actions with alternative courses. You can use the following selection state-
ment to replace lines 12–17 in Listing 2.2:

if (radius < 0) {
 System.out.println("Incorrect input");
}
else {
 area = radius * radius * 3.14159;
 System.out.println("Area is " + area);
}

Selection statements use conditions that are Boolean expressions. A Boolean expression is
an expression that evaluates to a Boolean value: true or false. We now introduce Boolean
types and relational operators.

3.2 boolean Data Type
The boolean data type declares a variable with the value either true or false.

How do you compare two values, such as whether a radius is greater than 0, equal to 0, or less
than 0? Java provides six relational operators (also known as comparison operators), shown
in Table 3.1, which can be used to compare two values (assume radius is 5 in the table).

Key
Pointproblem

selection statements

Boolean expression

Boolean value

Key
Point

boolean data type
relational operators

Java Operator Mathematics Symbol Name Example (radius is 5) Result

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

TABLE 3.1 Relational Operators

Caution
The equality testing operator is two equal signs (==), not a single equal sign (=). The

latter symbol is for assignment.

The result of the comparison is a Boolean value: true or false. For example, the follow-
ing statement displays true:

double radius = 1;
System.out.println(radius > 0);

A variable that holds a Boolean value is known as a Boolean variable. The boolean
data type is used to declare Boolean variables. A boolean variable can hold one of the

== vs. =

Boolean variable

3.2 boolean Data Type 77

two values: true or false. For example, the following statement assigns true to the
variable lightsOn:

boolean lightsOn = true;

true and false are literals, just like a number such as 10. They are treated as reserved words
and cannot be used as identifiers in the program.

Suppose you want to develop a program to let a first-grader practice addition. The program
randomly generates two single-digit integers, number1 and number2, and displays to the student
a question such as “What is 1 + 7?,” as shown in the sample run in Listing 3.1. After the student
types the answer, the program displays a message to indicate whether it is true or false.

There are several ways to generate random numbers. For now, generate the first integer
using System.currentTimeMillis() % 10 and the second using System.current-
TimeMillis() / 7 % 10. Listing 3.1 gives the program. Lines 5–6 generate two numbers,
number1 and number2. Line 14 obtains an answer from the user. The answer is graded in
line 18 using a Boolean expression number1 + number2 == answer.

LISTING 3.1 AdditionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class AdditionQuiz {
 4 public static void main(String[] args) {
 5 int number1 = (int)(System.currentTimeMillis() % 10);
 6 int number2 = (int)(System.currentTimeMillis() / 7 % 10);
 7
 8 // Create a Scanner
 9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13
14 int number = input.nextInt();
15
16 System.out.println(
17 number1 + " + " + number2 + " = " + answer + " is " +
18 (number1 + number2 == answer));
19 }
20 }

Boolean literals

generate number1
generate number2

show question

display result

What is 1 + 7? 8
1 + 7 = 8 is true

What is 4 + 8? 9
4 + 8 = 9 is false

Program addition quiz

VideoNote

line# number1 number2 answer output

5 4

6 8

14 9

16 4 + 8 = 9 is false

78 Chapter 3 Selections

3.1 List six relational operators.

3.2 Assuming that x is 1, show the result of the following Boolean expressions:

(x > 0)
(x < 0)
(x != 0)
(x >= 0)
(x != 1)

3.3 Can the following conversions involving casting be allowed? Write a test program to
verify your answer.

boolean b = true;
i = (int)b;

int i = 1;
boolean b = (boolean)i;

3.3 if Statements
An if statement is a construct that enables a program to specify alternative paths of execution.

The preceding program displays a message such as “6 + 2 = 7 is false.” If you wish the
message to be “6 + 2 = 7 is incorrect,” you have to use a selection statement to make this
minor change.

Java has several types of selection statements: one-way if statements, two-way if-else
statements, nested if statements, multi-way if-else statements, switch statements, and
conditional expressions.

A one-way if statement executes an action if and only if the condition is true. The syntax
for a one-way if statement is:

if (boolean-expression) {
 statement(s);
}

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an if statement.
A flowchart is a diagram that describes an algorithm or process, showing the steps as boxes
of various kinds, and their order by connecting these with arrows. Process operations are
represented in these boxes, and arrows connecting them represent the flow of control. A dia-
mond box denotes a Boolean condition and a rectangle box represents statements.

✓Point✓Check

Key
Point

why if statement?

if statement

flowchart

FIGURE 3.1 An if statement executes statements if the boolean-expression evaluates to true.

Statement(s)

boolean-
expression

true

false

(a)

area = radius * radius * PI;
System.out.println("The area for the circle of" +
 " radius " + radius + " is " + area);

(radius >= 0)

true

false

(b)

3.3 if Statements 79

if i > 0 {
 System.out.println("i is positive");
}

(a) Wrong

if (i > 0) {
 System.out.println("i is positive");
}

(b) Correct

The block braces can be omitted if they enclose a single statement. For example, the fol-
lowing statements are equivalent.

if (i > 0) {
 System.out.println("i is positive");
}

(a)

if (i > 0)
 System.out.println("i is positive");

(b)

Equivalent

Note
Omitting braces makes the code shorter, but it is prone to errors. It is a common mistake

to forget the braces when you go back to modify the code that omits the braces.

Listing 3.2 gives a program that prompts the user to enter an integer. If the number is a
multiple of 5, the program displays HiFive. If the number is divisible by 2, it displays HiEven.

LISTING 3.2 SimpleIfDemo.java
 1 import java.util.Scanner;
 2
 3 public class SimpleIfDemo {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.println("Enter an integer: ");
 7 int number = input.nextInt();
 8
 9 if (number % 5 == 0)
10 System.out.println("HiFive");
11
12 if (number % 2 == 0)
13 System.out.println("HiEven");
14 }
15 }

Omitting braces or not

enter input

check 5

check even

If the boolean-expression evaluates to true, the statements in the block are executed.
As an example, see the following code:

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}

The flowchart of the preceding statement is shown in Figure 3.1b. If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in (a) is
wrong. It should be corrected, as shown in (b).

80 Chapter 3 Selections

FIGURE 3.2 An if-else statement executes statements for the true case if the Boolean-
expression evaluates to true; otherwise, statements for the false case are executed.

Statement(s) for the true case Statement(s) for the false case

boolean-
expression

true false

Enter an integer: 4
HiEven

Enter an integer: 30
HiFive
HiEven

The program prompts the user to enter an integer (lines 6–7) and displays HiFive if it is
divisible by 5 (lines 9–10) and HiEven if it is divisible by 2 (lines 12–13).

3.4 Write an if statement that assigns 1 to x if y is greater than 0.

3.5 Write an if statement that increases pay by 3% if score is greater than 90.

3.4 Two-Way if-else Statements
An if-else statement decides the execution path based on whether the condition is
true or false.

A one-way if statement performs an action if the specified condition is true. If the condition
is false, nothing is done. But what if you want to take alternative actions when the condition
is false? You can use a two-way if-else statement. The actions that a two-way if-else
statement specifies differ based on whether the condition is true or false.

Here is the syntax for a two-way if-else statement:

if (boolean-expression) {
 statement(s)-for-the-true-case;
}
else {
 statement(s)-for-the-false-case;
}

The flowchart of the statement is shown in Figure 3.2.

✓Point✓Check

Key
Point

If the boolean-expression evaluates to true, the statement(s) for the true case are
executed; otherwise, the statement(s) for the false case are executed. For example, consider
the following code:

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}
else {
 System.out.println("Negative input");
}

If radius >= 0 is true, area is computed and displayed; if it is false, the message
"Negative input" is displayed.

As usual, the braces can be omitted if there is only one statement within them. The braces
enclosing the System.out.println("Negative input") statement can therefore be
omitted in the preceding example.

Here is another example of using the if-else statement. The example checks whether a
number is even or odd, as follows:

if (number % 2 == 0)
 System.out.println(number + " is even.");
else

 System.out.println(number + " is odd.");

3.6 Write an if statement that increases pay by 3% if score is greater than 90, other-
wise increases pay by 1%.

3.7 What is the output of the code in (a) and (b) if number is 30? What if number is 35?

two-way if-else statement

✓Point✓Check

3.5 Nested if and Multi-Way if-else Statements 81

if (number % 2 == 0)
 System.out.println(number + " is even.");

System.out.println(number + " is odd.");

(a)

if (number % 2 == 0)
 System.out.println(number + " is even.");
else

 System.out.println(number + " is odd.");

(b)

3.5 Nested if and Multi-Way if-else Statements
An if statement can be inside another if statement to form a nested if statement.

The statement in an if or if-else statement can be any legal Java statement, including
another if or if-else statement. The inner if statement is said to be nested inside the outer
if statement. The inner if statement can contain another if statement; in fact, there is no
limit to the depth of the nesting. For example, the following is a nested if statement:

if (i > k) {
if (j > k)

 System.out.println("i and j are greater than k");
}
else

 System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.
The nested if statement can be used to implement multiple alternatives. The statement

given in Figure 3.3a, for instance, prints a letter grade according to the score, with multiple
alternatives.

Key
Point

nested if statement

82 Chapter 3 Selections

The execution of this if statement proceeds as shown in Figure 3.4. The first condition
(score >= 90.0) is tested. If it is true, the grade is A. If it is false, the second condition
(score >= 80.0) is tested. If the second condition is true, the grade is B. If that condition
is false, the third condition and the rest of the conditions (if necessary) are tested until a
condition is met or all of the conditions prove to be false. If all of the conditions are false,
the grade is F. Note that a condition is tested only when all of the conditions that come before
it are false.

FIGURE 3.4 You can use a multi-way if-else statement to assign a grade.

grade is A

true

false

false

false

false

grade is B

score >= 80

true

grade is C

score >= 70

true

grade is D

score >= 60

true

grade is F

score >= 90

FIGURE 3.3 A preferred format for multiple alternatives is shown in (b) using a multi-way
if-else statement.

if (score >= 90.0)
 System.out.print("A");
else

if (score >= 80.0)
 System.out.print("B");

else
if (score >= 70.0)

 System.out.print("C");
else

if (score >= 60.0)
 System.out.print("D");

else
 System.out.print("F");

(a)

if (score >= 90.0)
 System.out.print("A");
else if (score >= 80.0)
 System.out.print("B");
else if (score >= 70.0)
 System.out.print("C");
else if (score >= 60.0)
 System.out.print("D");
else
 System.out.print("F");

(b)

Equivalent

This is better

3.6 Common Errors and Pitfalls 83

The if statement in Figure 3.3a is equivalent to the if statement in Figure 3.3b. In fact,
Figure 3.3b is the preferred coding style for multiple alternative if statements. This style,
called multi-way if-else statements, avoids deep indentation and makes the program easy
to read.

3.8 Suppose x = 3 and y = 2; show the output, if any, of the following code. What is
the output if x = 3 and y = 4? What is the output if x = 2 and y = 2? Draw a
flowchart of the code.

if (x > 2) {
if (y > 2) {

 z = x + y;
 System.out.println("z is " + z);
 }
}
else

 System.out.println("x is " + x);

3.9 Suppose x = 2 and y = 3. Show the output, if any, of the following code. What is
the output if x = 3 and y = 2? What is the output if x = 3 and y = 3?

if (x > 2)
if (y > 2) {

int z = x + y;
 System.out.println("z is " + z);
 }
else

 System.out.println("x is " + x);

3.10 What is wrong in the following code?

if (score >= 60.0)
 System.out.println("D");
else if (score >= 70.0)
 System.out.println("C");
else if (score >= 80.0)
 System.out.println("B");
else if (score >= 90.0)
 System.out.println("A");
else

 System.out.println("F");

3.6 Common Errors and Pitfalls
Forgetting necessary braces, ending an if statement in the wrong place, mistaking ==
for =, and dangling else clauses are common errors in selection statements.
Duplicated statements in if-else statements and testing equality of double values
are common pitfalls.

The following errors are common among new programmers.

Common Error 1: Forgetting Necessary Braces

The braces can be omitted if the block contains a single statement. However, forgetting the
braces when they are needed for grouping multiple statements is a common programming
error. If you modify the code by adding new statements in an if statement without braces,
you will have to insert the braces. For example, the following code in (a) is wrong. It should
be written with braces to group multiple statements, as shown in (b).

multi-way if statement

✓Point✓Check

Key
Point

84 Chapter 3 Selections

Common Error 2: Wrong Semicolon at the if Line

Adding a semicolon at the end of an if line, as shown in (a) below, is a common mistake.

if (radius >= 0)
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);

(a) Wrong

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(b) Correct

Logic error

if (radius >= 0);
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(a)

if (radius >= 0) { };
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(b)

Empty block

Equivalent

This mistake is hard to find, because it is neither a compile error nor a runtime error; it is a
logic error. The code in (a) is equivalent to that in (b) with an empty block.

This error often occurs when you use the next-line block style. Using the end-of-line block
style can help prevent this error.

Common Error 3: Redundant Testing of Boolean Values

To test whether a boolean variable is true or false in a test condition, it is redundant to
use the equality testing operator like the code in (a):

if (even == true)
 System.out.println(

"It is even.");

if (even)
 System.out.println(

"It is even.");

(a)

Equivalent

This is better
(b)

Instead, it is better to test the boolean variable directly, as shown in (b). Another good
reason for doing this is to avoid errors that are difficult to detect. Using the = operator instead
of the == operator to compare the equality of two items in a test condition is a common error.
It could lead to the following erroneous statement:

if (even = true)
 System.out.println("It is even.");

This statement does not have compile errors. It assigns true to even, so that even is
always true.

Common Error 4: Dangling else Ambiguity

The code in (a) below has two if clauses and one else clause. Which if clause is matched
by the else clause? The indentation indicates that the else clause matches the first if clause.

3.6 Common Errors and Pitfalls 85

However, the else clause actually matches the second if clause. This situation is known as
the dangling else ambiguity. The else clause always matches the most recent unmatched if
clause in the same block. So, the statement in (a) is equivalent to the code in (b).

dangling else ambiguity

int i = 1, j = 2, k = 3;

if (i > j)
if (i > k)

 System.out.println("A");
else
 System.out.println("B");

(a)

Equivalent

This is better
with correct
indentation

int i = 1, j = 2, k = 3;

if (i > j)
if (i > k)

 System.out.println("A");
else

 System.out.println("B");

(b)

Since (i > j) is false, nothing is displayed from the statements in (a) and (b). To force
the else clause to match the first if clause, you must add a pair of braces:

int i = 1, j = 2, k = 3;

if (i > j) {
if (i > k)

 System.out.println("A");
}

else

 System.out.println("B");

This statement displays B.

Common Error 5: Equality Test of Two Floating-Point Values

As discussed in Common Error 3 in Section 2.18, floating-point numbers have a limited pre-
cision and calculations; involving floating-point numbers can introduce round-off errors. So,
equality test of two floating-point values is not reliable. For example, you expect the follow-
ing code to display true, but surprisingly it displays false.

double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;
System.out.println(x == 0.5);

Here, x is not exactly 0.5, but is 0.5000000000000001. You cannot reliably test equality
of two floating-point values. However, you can compare whether they are close enough by
testing whether the difference of the two numbers is less than some threshold. That is, two
numbers x and y are very close if |x−y| < e for a very small value, e. e, a Greek letter pro-
nounced epsilon, is commonly used to denote a very small value. Normally, you set e to 10-14

for comparing two values of the double type and to 10-7 for comparing two values of the
float type. For example, the following code

final double EPSILON = 1E-14;
double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;
if (Math.abs(x - 0.5) < EPSILON)
 System.out.println(x + " is approximately 0.5");

will display that

0.5000000000000001 is approximately 0.5

The Math.abs(a) method can be used to return the absolute value of a.

86 Chapter 3 Selections

Common Pitfall 1: Simplifying Boolean Variable Assignment

Often, new programmers write the code that assigns a test condition to a boolean variable
like the code in (a):

if (number % 2 == 0)
 even = true;
else
 even = false;

(a)

Equivalent
boolean even
 = number % 2 == 0;

(b)

This is shorter

This is not an error, but it should be better written as shown in (b).

Common Pitfall 2: Avoiding Duplicate Code in Different Cases

Often, new programmers write the duplicate code in different cases that should be combined
in one place. For example, the highlighted code in the following statement is duplicated.

if (inState) {
 tuition = 5000;

System.out.println("The tuition is " + tuition);
}
else {
 tuition = 15000;

System.out.println("The tuition is " + tuition);
}

This is not an error, but it should be better written as follows:

if (inState) {
 tuition = 5000;
}
else {
 tuition = 15000;
}
System.out.println("The tuition is " + tuition);

The new code removes the duplication and makes the code easy to maintain, because you only
need to change in one place if the print statement is modified.

3.11 Which of the following statements are equivalent? Which ones are correctly
indented?✓Point✓Check

if (i > 0) if
(j > 0)
x = 0; else
if (k > 0) y = 0;
else z = 0;

(a)

if (i > 0) {
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
}
else
 z = 0;

(b)

if (i > 0)
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
else

 z = 0;

(c)

if (i > 0)
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
else

 z = 0;

(d)

3.12 Rewrite the following statement using a Boolean expression:

if (count % 10 == 0)
 newLine = true;
else

 newLine = false;

3.7 Generating Random Numbers 87

3.13 Are the following statements correct? Which one is better?

if (age < 16)
 System.out.println
 ("Cannot get a driver's license");
if (age >= 16)
 System.out.println
 ("Can get a driver's license");

(a)

if (age < 16)
 System.out.println
 ("Cannot get a driver's license");
else
 System.out.println
 ("Can get a driver's license");

(b)

3.14 What is the output of the following code if number is 14, 15, or 30?

if (number % 2 == 0)
 System.out.println
 (number + " is even");
if (number % 5 == 0)
 System.out.println
 (number + " is multiple of 5");

(a)

if (number % 2 == 0)
 System.out.println
 (number + " is even");
else if (number % 5 == 0)
 System.out.println
 (number + " is multiple of 5");

(b)

3.7 Generating Random Numbers
You can use Math.random() to obtain a random double value between 0.0 and 1.0,
excluding 1.0.

Suppose you want to develop a program for a first-grader to practice subtraction. The program
randomly generates two single-digit integers, number1 and number2, with number1 >=
number2, and it displays to the student a question such as “What is 9 - 2?” After the student
enters the answer, the program displays a message indicating whether it is correct.

The previous programs generate random numbers using System.currentTimeMillis().
A better approach is to use the random()method in the Math class. Invoking this method
returns a random double value d such that 0.0 … d 6 1.0. Thus, (int)(Math.random() *
10) returns a random single-digit integer (i.e., a number between 0 and 9).

The program can work as follows:

1. Generate two single-digit integers into number1 and number2.

2. If number1 < number2, swap number1 with number2.

3. Prompt the student to answer, "What is number1 – number2?"

4. Check the student’s answer and display whether the answer is correct.

The complete program is shown in Listing 3.3.

LISTING 3.3 SubtractionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class SubtractionQuiz {
 4 public static void main(String[] args) {
 5 // 1. Generate two random single-digit integers
 6 int number1 = (int)(Math.random() * 10);
7 int number2 = (int)(Math.random() * 10);
 8
 9 // 2. If number1 < number2, swap number1 with number2
10 if (number1 < number2) {
11 int temp = number1;

Key
Point

VideoNote

random() method

random number

Program subtraction quiz

88 Chapter 3 Selections

12 number1 = number2;
13 number2 = temp;
14 }
15
16 // 3. Prompt the student to answer ”What is number1 – number2?”
17 System.out.print
18 ("What is " + number1 + " - " + number2 + "? ");
19 Scanner input = new Scanner(System.in);
20 int answer = input.nextInt();
21
22 // 4. Grade the answer and display the result
23 if (number1 - number2 == answer)
24 System.out.println("You are correct!");
25 else {
26 System.out.println("Your answer is wrong.");
27 System.out.println(number1 + " - " + number2 +
28 " should be " + (number1 - number2));
29 }
30 }
31 }

get answer

check the answer

What is 6 - 6? 0
You are correct!

What is 9 - 2? 5
Your answer is wrong
9 - 2 is 7

line# number1 number2 temp answer output

6 2

7 9

11 2

12 9

13 2

20 5

26 Your answer is wrong

9 – 2 should be 7

To swap two variables number1 and number2, a temporary variable temp (line 11) is used
to first hold the value in number1. The value in number2 is assigned to number1 (line 12),
and the value in temp is assigned to number2 (line 13).

3.15 Which of the following is a possible output from invoking Math.random()?

323.4, 0.5, 34, 1.0, 0.0, 0.234

3.16 a. How do you generate a random integer i such that 0 … i 6 20?

 b. How do you generate a random integer i such that 10 … i 6 20?

c. How do you generate a random integer i such that 10 … i … 50?

d. Write an expression that returns 0 or 1 randomly.

✓Point✓Check

3.8 Case Study: Computing Body Mass Index 89

3.8 Case Study: Computing Body Mass Index
You can use nested if statements to write a program that interprets body mass index.

Body Mass Index (BMI) is a measure of health based on height and weight. It can be cal-
culated by taking your weight in kilograms and dividing it by the square of your height in
meters. The interpretation of BMI for people 20 years or older is as follows:

Key
Point

BMI Interpretation

BMI < 18.5 Underweight

18.5 ≤ BMI < 25.0 Normal

25.0 ≤ BMI < 30.0 Overweight

30.0 ≤ BMI Obese

Write a program that prompts the user to enter a weight in pounds and height in inches and
displays the BMI. Note that one pound is 0.45359237 kilograms and one inch is 0.0254
meters. Listing 3.4 gives the program.

LISTING 3.4 ComputeAndInterpretBMI.java
 1 import java.util.Scanner;
 2
 3 public class ComputeAndInterpretBMI {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter weight in pounds
 8 System.out.print("Enter weight in pounds: ");
 9 double weight = input.nextDouble();
10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble();
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
21 double bmi = weightInKilograms /
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.println("BMI is " + bmi);
26 if (bmi < 18.5)
27 System.out.println("Underweight");
28 else if (bmi < 25)
29 System.out.println("Normal");
30 else if (bmi < 30)
31 System.out.println("Overweight");
32 else

33 System.out.println("Obese");
34 }
35 }

input weight

input height

compute bmi

display output

90 Chapter 3 Selections

The constants KILOGRAMS_PER_POUND and METERS_PER_INCH are defined in lines
15–16. Using constants here makes programs easy to read.

You should test the input that covers all possible cases for BMI to ensure that the program
works for all cases.

3.9 Case Study: Computing Taxes
You can use nested if statements to write a program for computing taxes.

The United States federal personal income tax is calculated based on filing status and tax-
able income. There are four filing statuses: single filers, married filing jointly or qualified
widow(er), married filing separately, and head of household. The tax rates vary every year.
Table 3.2 shows the rates for 2009. If you are, say, single with a taxable income of $10,000,
the first $8,350 is taxed at 10% and the other $1,650 is taxed at 15%, so, your total tax is
$1,082.50.

test all cases

Key
Point

VideoNote

Enter weight in pounds: 146
Enter height in inches: 70
BMI is 20.948603801493316
Normal

line# weight height weightInKilograms heightInMeters bmi output

9 146

13 70

19 66.22448602

20 1.778

21 20.9486

25 BMI is

20.95

31 Normal

TABLE 3.2 2009 U.S. Federal Personal Tax Rates

Marginal
Tax Rate Single

Married Filing Jointly
or Qualifying Widow(er) Married Filing Separately Head of Household

10% $0 – $8,350 $0 – $16,700 $0 – $8,350 $0 – $11,950

15% $8,351 – $33,950 $16,701 – $67,900 $8,351 – $33,950 $11,951 – $45,500

25% $33,951 – $82,250 $67,901 – $137,050 $33,951 – $68,525 $45,501 – $117,450

28% $82,251 – $171,550 $137,051 – $208,850 $68,526 – $104,425 $117,451 – $190,200

33% $171,551 – $372,950 $208,851 – $372,950 $104,426 – $186,475 $190,201 – $372,950

35% $372,951+ $372,951+ $186,476+ $372,951+

Use multi-way if-else
statements

You are to write a program to compute personal income tax. Your program should prompt
the user to enter the filing status and taxable income and compute the tax. Enter 0 for single
filers, 1 for married filing jointly or qualified widow(er), 2 for married filing separately, and
3 for head of household.

3.9 Case Study: Computing Taxes 91

Your program computes the tax for the taxable income based on the filing status. The filing
status can be determined using if statements outlined as follows:

if (status == 0) {
// Compute tax for single filers

}
else if (status == 1) {

// Compute tax for married filing jointly or qualifying widow(er)
}
else if (status == 2) {

// Compute tax for married filing separately
}
else if (status == 3) {

// Compute tax for head of household
}
else {

// Display wrong status
}

For each filing status there are six tax rates. Each rate is applied to a certain amount of
taxable income. For example, of a taxable income of $400,000 for single filers, $8,350 is
taxed at 10%, (33,950 – 8,350) at 15%, (82,250 – 33,950) at 25%, (171,550 – 82,250) at 28%,
(372,950 – 171,550) at 33%, and (400,000 – 372,950) at 35%.

Listing 3.5 gives the solution for computing taxes for single filers. The complete solution
is left as an exercise.

LISTING 3.5 ComputeTax.java
 1 import java.util.Scanner;
 2
 3 public class ComputeTax {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter filing status
 9 System.out.print("(0-single filer, 1-married jointly or " +
10 "qualifying widow(er), 2-married separately, 3-head of " +
11 "household) Enter the filing status: ");
12
13 int status = input.nextInt();
14
15 // Prompt the user to enter taxable income
16 System.out.print("Enter the taxable income: ");
17 double income = input.nextDouble();
18
19 // Compute tax
20 double tax = 0;
21
22 if (status == 0) { // Compute tax for single filers
23 if (income <= 8350)
24 tax = income * 0.10;
25 else if (income <= 33950)
26 tax = 8350 * 0.10 + (income - 8350) * 0.15;
27 else if (income <= 82250)
28 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
29 (income - 33950) * 0.25;
30 else if (income <= 171550)
31 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
32 (82250 - 33950) * 0.25 + (income - 82250) * 0.28;

input status

input income

compute tax

92 Chapter 3 Selections

33 else if (income <= 372950)
34 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
35 (82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
36 (income - 171550) * 0.33;
37 else

38 tax = 8350 * 0.10 + (33950 - 8350) * 0.15 +
39 (82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 +
40 (372950 - 171550) * 0.33 + (income - 372950) * 0.35;
41 }
42 else if (status == 1) { // Left as an exercise
43 // Compute tax for married file jointly or qualifying widow(er)
44 }
45 else if (status == 2) { // Compute tax for married separately
46 // Left as an exercise
47 }
48 else if (status == 3) { // Compute tax for head of household
49 // Left as an exercise
50 }
51 else {
52 System.out.println("Error: invalid status");
53 System.exit(1);
54 }
55
56 // Display the result
57 System.out.println("Tax is " + (int)(tax * 100) / 100.0);
58 }
59 }

exit program

display output

line# status income tax output

13 0

17 400000

20 0

38 117683.5

57 Tax is 117683.5

(0-single filer, 1-married jointly or qualifying widow(er),
2-married separately, 3-head of household)
Enter the filing status: 0
Enter the taxable income: 400000
Tax is 117683.5

The program receives the filing status and taxable income. The multi-way if-else state-
ments (lines 22, 42, 45, 48, 51) check the filing status and compute the tax based on the filing
status.

System.exit(status) (line 53) is defined in the System class. Invoking this method
terminates the program. The status 0 indicates that the program is terminated normally. A
nonzero status code indicates abnormal termination.

An initial value of 0 is assigned to tax (line 20). A compile error would occur if it had
no initial value, because all of the other statements that assign values to tax are within the
if statement. The compiler thinks that these statements may not be executed and therefore
reports a compile error.

System.exit(status)

3.10 Logical Operators 93

To test a program, you should provide the input that covers all cases. For this program,
your input should cover all statuses (0, 1, 2, 3). For each status, test the tax for each of the six
brackets. So, there are a total of 24 cases.

Tip
For all programs, you should write a small amount of code and test it before moving on

to add more code. This is called incremental development and testing. This approach

makes testing easier, because the errors are likely in the new code you just added.

3.17 Are the following two statements equivalent?

test all cases

incremental development and
testing

✓Point✓Check

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

TABLE 3.3 Boolean Operators

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150)
is false.

TABLE 3.4 Truth Table for Operator !

if (income <= 10000)
 tax = income * 0.1;
else if (income <= 20000)
 tax = 1000 +
 (income – 10000) * 0.15;

if (income <= 10000)
 tax = income * 0.1;
else if (income > 10000 &&
 income <= 20000)
 tax = 1000 +
 (income – 10000) * 0.15;

3.10 Logical Operators
The logical operators !, &&, ||, and ^ can be used to create a compound Boolean
expression.

Sometimes, whether a statement is executed is determined by a combination of several condi-
tions. You can use logical operators to combine these conditions to form a compound Boolean
expression. Logical operators, also known as Boolean operators, operate on Boolean values
to create a new Boolean value. Table 3.3 lists the Boolean operators. Table 3.4 defines the
not (!) operator, which negates true to false and false to true. Table 3.5 defines the and
(&&) operator. The and (&&) of two Boolean operands is true if and only if both operands are
true. Table 3.6 defines the or (||) operator. The or (||) of two Boolean operands is true
if at least one of the operands is true. Table 3.7 defines the exclusive or (^) operator. The
exclusive or (^) of two Boolean operands is true if and only if the two operands have differ-
ent Boolean values. Note that p1 ^ p2 is the same as p1 != p2.

Key
Point

94 Chapter 3 Selections

p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false

false true false (age > 28) && (weight <= 140) is true,
because (age > 28) is false.

true false false

true true true (age > 18) && (weight >= 140) is true,
because (age > 18) and (weight >= 140) are
both true.

TABLE 3.5 Truth Table for Operator &&

p1 p2 p1 || p2 Example (assume age = 24, weight = 140)

false false false (age > 34) || (weight >= 150) is false, because
(age > 34) and (weight >= 150) are both false.

false true true

true false true (age > 18) || (weight < 140) is true, because
(age > 18) is true.

true true true

TABLE 3.6 Truth Table for Operator ||

p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is false, because (age > 34) and
(weight > 140) are both false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34) is
false but (weight >= 140) is true.

true false true

true true false

TABLE 3.7 Truth Table for Operator ^

Listing 3.6 gives a program that checks whether a number is divisible by 2 and 3, by 2 or
3, and by 2 or 3 but not both:

LISTING 3.6 TestBooleanOperators.java
 1 import java.util.Scanner;
 2
 3 public class TestBooleanOperators {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Receive an input
 9 System.out.print("Enter an integer: ");
10 int number = input.nextInt();
11
12 if (number % 2 == 0 && number % 3 == 0)
13 System.out.println(number + " is divisible by 2 and 3.");
14

import class

input

and

3.10 Logical Operators 95

15 if (number % 2 == 0 || number % 3 == 0)
16 System.out.println(number + " is divisible by 2 or 3.");
17
18 if (number % 2 == 0 ^ number % 3 == 0)
19 System.out.println(number +
20 " is divisible by 2 or 3, but not both.");
21 }
22 }

or

exclusive or

Enter an integer: 4
4 is divisible by 2 or 3.
4 is divisible by 2 or 3, but not both.

Enter an integer: 18
18 is divisible by 2 and 3.
18 is divisible by 2 or 3.

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number is
divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15) checks
whether the number is divisible by 2 or by 3. (number % 2 == 0 ^ number % 3 == 0) (line
18) checks whether the number is divisible by 2 or 3, but not both.

Caution
In mathematics, the expression

1 <= numberOfDaysInAMonth <= 31

is correct. However, it is incorrect in Java, because 1 <= numberOfDaysInAMonth is

evaluated to a boolean value, which cannot be compared with 31. Here, two operands

(a boolean value and a numeric value) are incompatible. The correct expression in

Java is

(1 <= numberOfDaysInAMonth) && (numberOfDaysInAMonth <= 31)

Note
De Morgan’s law, named after Indian-born British mathematician and logician Augustus

De Morgan (1806–1871), can be used to simplify Boolean expressions. The law states:

!(condition1 && condition2) is the same as
 !condition1 || !condition2
!(condition1 || condition2) is the same as
 !condition1 && !condition2

For example,

! (number % 2 == 0 && number % 3 == 0)

can be simplified using an equivalent expression:

(number % 2 != 0 || number % 3 != 0)

As another example,

!(number == 2 || number == 3)

is better written as

number != 2 && number != 3

incompatible operands

De Morgan’s law

96 Chapter 3 Selections

If one of the operands of an && operator is false, the expression is false; if one of the
operands of an || operator is true, the expression is true. Java uses these properties to
improve the performance of these operators. When evaluating p1 && p2, Java first evaluates
p1 and then, if p1 is true, evaluates p2; if p1 is false, it does not evaluate p2. When
evaluating p1 || p2, Java first evaluates p1 and then, if p1 is false, evaluates p2; if p1 is
true, it does not evaluate p2. In programming language terminology, && and || are known
as the short-circuit or lazy operators. Java also provides the unconditional AND (&) and OR
(|) operators, which are covered in Supplement III.C for advanced readers.

3.18 Assuming that x is 1, show the result of the following Boolean expressions.

(true) && (3 > 4)
!(x > 0) && (x > 0)
(x > 0) || (x < 0)

(x != 0) || (x == 0)
(x >= 0) || (x < 0)
(x != 1) == !(x == 1)

3.19 (a) Write a Boolean expression that evaluates to true if a number stored in variable
num is between 1 and 100. (b) Write a Boolean expression that evaluates to true if
a number stored in variable num is between 1 and 100 or the number is negative.

3.20 (a) Write a Boolean expression for 0 x - 5 0 6 4.5. (b) Write a Boolean expression
for 0 x - 5 0 7 4.5.

3.21 Assume that x and y are int type. Which of the following are legal Java expressions?

x > y > 0
x = y && y
x /= y
x or y
x and y
(x != 0) || (x = 0)

3.22 Are the following two expressions the same?

a. x % 2 == 0 && x % 3 == 0

b. x % 6 == 0

3.23 What is the value of the expression x >= 50 && x <= 100 if x is 45, 67, or 101?

3.24 Suppose, when you run the following program, you enter the input 2 3 6 from the
console. What is the output?

public class Test {
public static void main(String[] args) {

 java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();
double y = input.nextDouble();
double z = input.nextDouble();

 System.out.println("(x < y && y < z) is " + (x < y && y < z));
 System.out.println("(x < y || y < z) is " + (x < y || y < z));
 System.out.println("!(x < y) is " + !(x < y));
 System.out.println("(x + y < z) is " + (x + y < z));
 System.out.println("(x + y > z) is " + (x + y > z));
 }
}

3.25 Write a Boolean expression that evaluates to true if age is greater than 13 and less
than 18.

short-circuit operator
lazy operator

✓Point✓Check

3.11 Case Study: Determining Leap Year 97

3.26 Write a Boolean expression that evaluates to true if weight is greater than
50 pounds or height is greater than 60 inches.

3.27 Write a Boolean expression that evaluates to true if weight is greater than
50 pounds and height is greater than 60 inches.

3.28 Write a Boolean expression that evaluates to true if either weight is greater than
50 pounds or height is greater than 60 inches, but not both.

3.11 Case Study: Determining Leap Year
A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 400.

You can use the following Boolean expressions to check whether a year is a leap year:

// A leap year is divisible by 4
boolean isLeapYear = (year % 4 == 0);

// A leap year is divisible by 4 but not by 100
isLeapYear = isLeapYear && (year % 100 != 0);

// A leap year is divisible by 4 but not by 100 or divisible by 400
isLeapYear = isLeapYear || (year % 400 == 0);

Or you can combine all these expressions into one like this:

isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

Listing 3.7 gives the program that lets the user enter a year and checks whether it is a leap
year.

LISTING 3.7 LeapYear.java
 1 import java.util.Scanner;
 2
 3 public class LeapYear {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter a year: ");
 8 int year = input.nextInt();
 9
10 // Check if the year is a leap year
11 boolean isLeapYear =
12 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
13
14 // Display the result
15 System.out.println(year + " is a leap year? " + isLeapYear);
16 }
17 }

Key
Point

input

leap year?

display result

Enter a year: 2008
2008 is a leap year? true

Enter a year: 1900
1900 is a leap year? false

98 Chapter 3 Selections

3.12 Case Study: Lottery
The lottery program involves generating random numbers, comparing digits, and
using Boolean operators.

Suppose you want to develop a program to play lottery. The program randomly generates a
lottery of a two-digit number, prompts the user to enter a two-digit number, and determines
whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is $10,000.

2. If all digits in the user input match all digits in the lottery number, the award is $3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is $1,000.

Note that the digits of a two-digit number may be 0. If a number is less than 10, we assume
the number is preceded by a 0 to form a two-digit number. For example, number 8 is treated
as 08 and number 0 is treated as 00 in the program. Listing 3.8 gives the complete program.

LISTING 3.8 Lottery.java
 1 import java.util.Scanner;
 2
 3 public class Lottery {
 4 public static void main(String[] args) {
 5 // Generate a lottery number
 6 int lottery = (int)(Math.random() * 100);
 7
 8 // Prompt the user to enter a guess
 9 Scanner input = new Scanner(System.in);
10 System.out.print("Enter your lottery pick (two digits): ");
11 int guess = input.nextInt();
12
13 // Get digits from lottery
14 int lotteryDigit1 = lottery / 10;
15 int lotteryDigit2 = lottery % 10;
16
17 // Get digits from guess
18 int guessDigit1 = guess / 10;
19 int guessDigit2 = guess % 10;
20
21 System.out.println("The lottery number is " + lottery);
22
23 // Check the guess
24 if (guess == lottery)
25 System.out.println("Exact match: you win $10,000");
26 else if (guessDigit2 == lotteryDigit1
27 && guessDigit1 == lotteryDigit2)
28 System.out.println("Match all digits: you win $3,000");
29 else if (guessDigit1 == lotteryDigit1
30 || guessDigit1 == lotteryDigit2
31 || guessDigit2 == lotteryDigit1
32 || guessDigit2 == lotteryDigit2)
33 System.out.println("Match one digit: you win $1,000");

Key
Point

generate a lottery number

enter a guess

exact match?

match all digits?

match one digit?

Enter a year: 2002
2002 is a leap year? false

3.12 Case Study: Lottery 99

34 else

35 System.out.println("Sorry, no match");
36 }
37 }

Enter your lottery pick (two digits): 15
The lottery number is 15
Exact match: you win $10,000

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

line#

variable

6 11 14 15 18 19 33

lottery 34

guess 23

lotteryDigit1 3

lotteryDigit2 4

guessDigit1 2

guessDigit2 3

Output Match one digit:

you win $1,000

The program generates a lottery using the random() method (line 6) and prompts the user
to enter a guess (line 11). Note that guess % 10 obtains the last digit from guess and guess
/ 10 obtains the first digit from guess, since guess is a two-digit number (lines 18–19).

The program checks the guess against the lottery number in this order:

1. First, check whether the guess matches the lottery exactly (line 24).

2. If not, check whether the reversal of the guess matches the lottery (lines 26–27).

3. If not, check whether one digit is in the lottery (lines 29–32).

4. If not, nothing matches and display "Sorry, no match" (lines 34–35).

100 Chapter 3 Selections

3.13 switch Statements
A switch statement executes statements based on the value of a variable or an
expression.

The if statement in Listing 3.5, ComputeTax.java, makes selections based on a single true
or false condition. There are four cases for computing taxes, which depend on the value of
status. To fully account for all the cases, nested if statements were used. Overuse of nested
if statements makes a program difficult to read. Java provides a switch statement to sim-
plify coding for multiple conditions. You can write the following switch statement to replace
the nested if statement in Listing 3.5:

switch (status) {
case 0: compute tax for single filers;

break;
case 1: compute tax for married jointly or qualifying widow(er);

break;
case 2: compute tax for married filing separately;

break;
case 3: compute tax for head of household;

break;
default: System.out.println("Error: invalid status");

 System.exit(1);
}

The flowchart of the preceding switch statement is shown in Figure 3.5.

Key
Point

FIGURE 3.5 The switch statement checks all cases and executes the statements in the
matched case.

Compute tax for single filers

Compute tax for married jointly or qualifying widow(er)

Compute tax for head of household

Default actions

status is 0

status is 1

status is 2

status is 3

default

break

break

break

break

Compute tax for married filing separately

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that
order. If matched, the corresponding tax is computed; if not matched, a message is displayed.
Here is the full syntax for the switch statement:

switch (switch-expression) {
case value1: statement(s)1;

break;

switch statement

case value2: statement(s)2;
break;

 ...
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The switch statement observes the following rules:

 ■ The switch-expression must yield a value of char, byte, short, int, or String
type and must always be enclosed in parentheses. (The char and String types will be
introduced in the next chapter.)

 ■ The value1, . . ., and valueN must have the same data type as the value of the switch-
expression. Note that value1, . . ., and valueN are constant expressions, meaning
that they cannot contain variables, such as 1 + x.

 ■ When the value in a case statement matches the value of the switch-expression,
the statements starting from this case are executed until either a break statement or the
end of the switch statement is reached.

 ■ The default case, which is optional, can be used to perform actions when none of the
specified cases matches the switch-expression.

 ■ The keyword break is optional. The break statement immediately ends the switch
statement.

Caution
Do not forget to use a break statement when one is needed. Once a case is matched,

the statements starting from the matched case are executed until a break statement or

the end of the switch statement is reached. This is referred to as fall-through behavior.

For example, the following code displays Weekdays for day of 1 to 5 and Weekends

for day 0 and 6.

without break

fall-through behavior

3.13 switch Statements 101

switch (day) {
case 1:
case 2:
case 3:
case 4:
case 5: System.out.println("Weekday"); break;
case 0:
case 6: System.out.println("Weekend");

}

Tip
To avoid programming errors and improve code maintainability, it is a good idea to put

a comment in a case clause if break is purposely omitted.

Now let us write a program to find out the Chinese Zodiac sign for a given year. The
Chinese Zodiac is based on a twelve-year cycle, with each year represented by an animal—
monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, or sheep—in this cycle,
as shown in Figure 3.6.

Note that year % 12 determines the Zodiac sign. 1900 is the year of the rat because 1900
% 12 is 4. Listing 3.9 gives a program that prompts the user to enter a year and displays the
animal for the year.

102 Chapter 3 Selections

LISTING 3.9 ChineseZodiac.java
 1 import java.util.Scanner;
 2
 3 public class ChineseZodiac {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a year: ");
 8 int year = input.nextInt();
 9
10 switch (year % 12) {
11 case 0: System.out.println("monkey"); break;
12 case 1: System.out.println("rooster"); break;
13 case 2: System.out.println("dog"); break;
14 case 3: System.out.println("pig"); break;
15 case 4: System.out.println("rat"); break;
16 case 5: System.out.println("ox"); break;
17 case 6: System.out.println("tiger"); break;
18 case 7: System.out.println("rabbit"); break;
19 case 8: System.out.println("dragon"); break;
20 case 9: System.out.println("snake"); break;
21 case 10: System.out.println("horse"); break;
22 case 11: System.out.println("sheep");
23 }
24 }
25 }

enter year

determine Zodiac sign

Enter a year: 1963
rabbit

Enter a year: 1877
ox

FIGURE 3.6 The Chinese Zodiac is based on a twelve-year cycle.

rat
0: monkey
1: rooster
2: dog
3: pig
4: rat
5: ox
6: tiger
7: rabbit
8: dragon
9: snake
10: horse
11: sheep

ox

tiger

rabbit

dragon

snakehorse

sheep

monkey

rooster

dog

pig

year % 12 =

3.29 What data types are required for a switch variable? If the keyword break is not
used after a case is processed, what is the next statement to be executed? Can you
convert a switch statement to an equivalent if statement, or vice versa? What are
the advantages of using a switch statement?

✓Point✓Check

3.14 Conditional Expressions 103

3.30 What is y after the following switch statement is executed? Rewrite the code using
an if-else statement.

x = 3; y = 3;
switch (x + 3) {

case 6: y = 1;
default: y += 1;

}

3.31 What is x after the following if-else statement is executed? Use a switch state-
ment to rewrite it and draw the flowchart for the new switch statement.

int x = 1, a = 3;
if (a == 1)
 x += 5;
else if (a == 2)
 x += 10;
else if (a == 3)
 x += 16;
else if (a == 4)
 x += 34;

3.32 Write a switch statement that displays Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, if day is 0, 1, 2, 3, 4, 5, 6, accordingly.

3.14 Conditional Expressions
A conditional expression evaluates an expression based on a condition.

You might want to assign a value to a variable that is restricted by certain conditions. For
example, the following statement assigns 1 to y if x is greater than 0, and -1 to y if x is less
than or equal to 0.

if (x > 0)
 y = 1;
else

 y = -1;

Alternatively, as in the following example, you can use a conditional expression to achieve
the same result.

y = (x > 0) ? 1 : -1;

Conditional expressions are in a completely different style, with no explicit if in the state-
ment. The syntax is:

boolean-expression ? expression1 : expression2;

The result of this conditional expression is expression1 if boolean-expression is true;
otherwise the result is expression2.

Suppose you want to assign the larger number of variable num1 and num2 to max. You can
simply write a statement using the conditional expression:

max = (num1 > num2) ? num1 : num2;

For another example, the following statement displays the message “num is even” if num is
even, and otherwise displays “num is odd.”

System.out.println((num % 2 == 0) ? "num is even" : "num is odd");

Key
Point

conditional expression

104 Chapter 3 Selections

As you can see from these examples, conditional expressions enable you to write short and
concise code.

Note
The symbols ? and : appear together in a conditional expression. They form a

conditional operator and also called a ternary operator because it uses three operands.

It is the only ternary operator in Java.

3.33 Suppose that, when you run the following program, you enter the input 2 3 6 from
the console. What is the output?

public class Test {
public static void main(String[] args) {

 java.util.Scanner input = new java.util.Scanner(System.in);
double x = input.nextDouble();
double y = input.nextDouble();
double z = input.nextDouble();

 System.out.println((x < y && y < z) ? "sorted" : "not sorted");
 }
}

3.34 Rewrite the following if statements using the conditional operator.

conditional operator

ternary operator

✓Point✓Check

if (ages >= 16)
 ticketPrice = 20;
else
 ticketPrice = 10;

3.35 Rewrite the following conditional expressions using if-else statements.

a. score = (x > 10) ? 3 * scale : 4 * scale;
b. tax = (income > 10000) ? income * 0.2 : income * 0.17 + 1000;
c. System.out.println((number % 3 == 0) ? i : j);

3.36 Write conditional expression that returns -1 or 1 randomly.

3.15 Operator Precedence and Associativity
Operator precedence and associativity determine the order in which operators are
evaluated.

Section 2.11 introduced operator precedence involving arithmetic operators. This section
discusses operator precedence in more detail. Suppose that you have this expression:

3 + 4 * 4 > 5 * (4 + 3) – 1 && (4 - 3 > 5)

What is its value? What is the execution order of the operators?
The expression within parentheses is evaluated first. (Parentheses can be nested, in which

case the expression within the inner parentheses is executed first.) When evaluating an expres-
sion without parentheses, the operators are applied according to the precedence rule and the
associativity rule.

The precedence rule defines precedence for operators, as shown in Table 3.8, which con-
tains the operators you have learned so far. Operators are listed in decreasing order of prec-
edence from top to bottom. The logical operators have lower precedence than the relational
operators and the relational operators have lower precedence than the arithmetic operators.
Operators with the same precedence appear in the same group. (See Appendix C, Operator
Precedence Chart, for a complete list of Java operators and their precedence.)

Key
Point

operator precedence

3.15 Operator Precedence and Associativity 105

If operators with the same precedence are next to each other, their associativity determines
the order of evaluation. All binary operators except assignment operators are left associative.
For example, since + and – are of the same precedence and are left associative, the expression

operator associativity

TABLE 3.8 Operator Precedence Chart

Precedence Operator

var++ and var–– (Postfix)

+, – (Unary plus and minus), ++var and ––var (Prefix)

(type) (Casting)

!(Not)

*, /, % (Multiplication, division, and remainder)

+, – (Binary addition and subtraction)

<, <=, >, >= (Relational)

==, != (Equality)

^ (Exclusive OR)

&& (AND)

|| (OR)

=, +=, –=, *=, /=, %= (Assignment operator)

a - b + c – d
is equivalent to

((a - b) + c) - d

a = b += c = 5
is equivalent to

a = (b += (c = 5))

Assignment operators are right associative. Therefore, the expression

Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated, a
becomes 6, b becomes 6, and c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Note
Java has its own way to evaluate an expression internally. The result of a Java evaluation

is the same as that of its corresponding arithmetic evaluation. Advanced readers may

refer to Supplement III.B for more discussions on how an expression is evaluated in Java

behind the scenes.

3.37 List the precedence order of the Boolean operators. Evaluate the following expressions:

true || true && false
true && true || false

3.38 True or false? All the binary operators except = are left associative.

3.39 Evaluate the following expressions:

2 * 2 - 3 > 2 && 4 – 2 > 5
2 * 2 - 3 > 2 || 4 – 2 > 5

behind the scenes

✓Point✓Check

106 Chapter 3 Selections

3.40 Is (x > 0 && x < 10) the same as ((x > 0) && (x < 10))? Is (x > 0 ||
x < 10) the same as ((x > 0) || (x < 10))? Is (x > 0 || x < 10 && y
< 0) the same as (x > 0 || (x < 10 && y < 0))?

3.16 Debugging
Debugging is the process of finding and fixing errors in a program.

As mentioned in Section 1.10.1, syntax errors are easy to find and easy to correct because the
compiler gives indications as to where the errors came from and why they are there. Runtime
errors are not difficult to find either, because the Java interpreter displays them on the console
when the program aborts. Finding logic errors, on the other hand, can be very challenging.

Logic errors are called bugs. The process of finding and correcting errors is called
debugging. A common approach to debugging is to use a combination of methods to help
pinpoint the part of the program where the bug is located. You can hand-trace the program
(i.e., catch errors by reading the program), or you can insert print statements in order to show
the values of the variables or the execution flow of the program. These approaches might work
for debugging a short, simple program, but for a large, complex program, the most effective
approach is to use a debugger utility.

JDK includes a command-line debugger, jdb, which is invoked with a class name. jdb is
itself a Java program, running its own copy of Java interpreter. All the Java IDE tools, such
as Eclipse and NetBeans, include integrated debuggers. The debugger utilities let you follow
the execution of a program. They vary from one system to another, but they all support most
of the following helpful features.

 ■ Executing a single statement at a time: The debugger allows you to execute one
statement at a time so that you can see the effect of each statement.

 ■ Tracing into or stepping over a method: If a method is being executed, you
can ask the debugger to enter the method and execute one statement at a time in the
method, or you can ask it to step over the entire method. You should step over the
entire method if you know that the method works. For example, always step over
system-supplied methods, such as System.out.println.

 ■ Setting breakpoints: You can also set a breakpoint at a specific statement. Your
program pauses when it reaches a breakpoint. You can set as many breakpoints as
you want. Breakpoints are particularly useful when you know where your program-
ming error starts. You can set a breakpoint at that statement and have the program
execute until it reaches the breakpoint.

 ■ Displaying variables: The debugger lets you select several variables and display
their values. As you trace through a program, the content of a variable is continuously
updated.

 ■ Displaying call stacks: The debugger lets you trace all of the method calls. This
feature is helpful when you need to see a large picture of the program-execution flow.

 ■ Modifying variables: Some debuggers enable you to modify the value of a vari-
able when debugging. This is convenient when you want to test a program with dif-
ferent samples but do not want to leave the debugger.

Tip
If you use an IDE such as Eclipse or NetBeans, please refer to Learning Java Effectively

with Eclipse/NetBeans in Supplements II.C and II.E on the Companion Website. The

supplement shows you how to use a debugger to trace programs and how debugging

can help in learning Java effectively.

Key
Point

bugs

debugging
hand-traces

debugging in IDE

CHAPTER SUMMARY

1. A boolean type variable can store a true or false value.

2. The relational operators (<, <=, ==, !=, >, >=) yield a Boolean value.

3. Selection statements are used for programming with alternative courses of actions.
There are several types of selection statements: one-way if statements, two-way
if-else statements, nested if statements, multi-way if-else statements, switch
statements, and conditional expressions.

4. The various if statements all make control decisions based on a Boolean expression.
Based on the true or false evaluation of the expression, these statements take one of
two possible courses.

5. The Boolean operators &&, ||, !, and ^ operate with Boolean values and variables.

6. When evaluating p1 && p2, Java first evaluates p1 and then evaluates p2 if p1 is
true; if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first
evaluates p1 and then evaluates p2 if p1 is false; if p1 is true, it does not evaluate
p2. Therefore, && is referred to as the conditional or short-circuit AND operator, and
|| is referred to as the conditional or short-circuit OR operator.

7. The switch statement makes control decisions based on a switch expression of type
char, byte, short, int, or String.

8. The keyword break is optional in a switch statement, but it is normally used at the
end of each case in order to skip the remainder of the switch statement. If the break
statement is not present, the next case statement will be executed.

9. The operators in expressions are evaluated in the order determined by the rules of
parentheses, operator precedence, and operator associativity.

10. Parentheses can be used to force the order of evaluation to occur in any sequence.

11. Operators with higher precedence are evaluated earlier. For operators of the same
precedence, their associativity determines the order of evaluation.

12. All binary operators except assignment operators are left-associative; assignment
operators are right-associative.

KEY TERMS

Boolean expression 76
boolean data type 76
Boolean value 76
conditional operator 104
dangling else ambiguity 85
debugging 106
fall-through behavior 101

flowchart 78
lazy operator 96
operator associativity 105
operator precedence 104
selection statement 76
short-circuit operator 96

Chapter Summary 107

108 Chapter 3 Selections

TEST QUESTIONS

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Pedagogical Note
For each exercise, carefully analyze the problem requirements and design strategies for

solving the problem before coding.

Debugging Tip
Before you ask for help, read and explain the program to yourself, and trace it using

several representative inputs by hand or using an IDE debugger. You learn how to

program by debugging your own mistakes.

Section 3.2

*3.1 (Algebra: solve quadratic equations) The two roots of a quadratic equation
ax2 + bx + c = 0 can be obtained using the following formula:

r1 =
-b + 2b2 - 4ac

2a
and r2 =

-b - 2b2 - 4ac

2a

b2 - 4ac is called the discriminant of the quadratic equation. If it is positive, the
equation has two real roots. If it is zero, the equation has one root. If it is negative,
the equation has no real roots.

Write a program that prompts the user to enter values for a, b, and c and displays
the result based on the discriminant. If the discriminant is positive, display two
roots. If the discriminant is 0, display one root. Otherwise, display “The equation
has no real roots”.

Note that you can use Math.pow(x, 0.5) to compute 2x. Here are some
sample runs.

think before coding

learn from mistakes

Enter a, b, c: 1.0 3 1
The equation has two roots -0.381966 and -2.61803

Enter a, b, c: 1 2.0 1
The equation has one root -1

Enter a, b, c: 1 2 3
The equation has no real roots

3.2 (Game: add three numbers) The program in Listing 3.1, AdditionQuiz.java, gen-
erates two integers and prompts the user to enter the sum of these two integers.
Revise the program to generate three single-digit integers and prompt the user to
enter the sum of these three integers.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Sections 3.3–3.7

*3.3 (Algebra: solve 2 * 2 linear equations) A linear equation can be solved using
Cramer’s rule given in Programming Exercise 1.13. Write a program that prompts
the user to enter a, b, c, d, e, and f and displays the result. If ad - bc is 0, report
that “The equation has no solution.”

Enter a, b, c, d, e, f: 9.0 4.0 3.0 -5.0 -6.0 -21.0
x is -2.0 and y is 3.0

Enter a, b, c, d, e, f: 1.0 2.0 2.0 4.0 4.0 5.0
The equation has no solution

Enter today's day: 1
Enter the number of days elapsed since today: 3
Today is Monday and the future day is Thursday

Enter today's day: 0
Enter the number of days elapsed since today: 31
Today is Sunday and the future day is Wednesday

Enter weight in pounds: 140
Enter feet: 5
Enter inches: 10
BMI is 20.087702275404553
Normal

Programming Exercises 109

**3.4 (Random month) Write a program that randomly generates an integer between 1
and 12 and displays the English month name January, February, …, December for
the number 1, 2, …, 12, accordingly.

*3.5 (Find future dates) Write a program that prompts the user to enter an integer for
today’s day of the week (Sunday is 0, Monday is 1, …, and Saturday is 6). Also
prompt the user to enter the number of days after today for a future day and dis-
play the future day of the week. Here is a sample run:

*3.6 (Health application: BMI) Revise Listing 3.4, ComputeAndInterpretBMI.java, to
let the user enter weight, feet, and inches. For example, if a person is 5 feet and 10
inches, you will enter 5 for feet and 10 for inches. Here is a sample run:

3.7 (Financial application: monetary units) Modify Listing 2.10, ComputeChange
.java, to display the nonzero denominations only, using singular words for single
units such as 1 dollar and 1 penny, and plural words for more than one unit such
as 2 dollars and 3 pennies.

110 Chapter 3 Selections

*3.8 (Sort three integers) Write a program that prompts the user to enter three integers
and display the integers in non-decreasing order.

**3.9 (Business: check ISBN-10) An ISBN-10 (International Standard Book Number)
consists of 10 digits: d1d2d3d4d5d6d7d8d9d10. The last digit, d10, is a checksum,
which is calculated from the other nine digits using the following formula:

(d1 * 1 + d2 * 2 + d3 * 3 + d4 * 4 + d5 * 5 +
d6 * 6 + d7 * 7 + d8 * 8 + d9 * 9) % 11

If the checksum is 10, the last digit is denoted as X according to the ISBN-10
convention. Write a program that prompts the user to enter the first 9 digits and
displays the 10-digit ISBN (including leading zeros). Your program should read
the input as an integer. Here are sample runs:

VideoNote

Enter the first 9 digits of an ISBN as integer: 013601267
The ISBN-10 number is 0136012671

Enter the first 9 digits of an ISBN as integer: 013031997
The ISBN-10 number is 013031997X

Enter a three-digit integer: 121
121 is a palindrome

Enter a three-digit integer: 123
123 is not a palindrome

Sort three integers

3.10 (Game: addition quiz) Listing 3.3, SubtractionQuiz.java, randomly generates a
subtraction question. Revise the program to randomly generate an addition ques-
tion with two integers less than 100.

Sections 3.8–3.16

*3.11 (Find the number of days in a month) Write a program that prompts the user
to enter the month and year and displays the number of days in the month. For
example, if the user entered month 2 and year 2012, the program should display
that February 2012 had 29 days. If the user entered month 3 and year 2015, the
program should display that March 2015 had 31 days.

3.12 (Palindrome number) Write a program that prompts the user to enter a three-digit
integer and determines whether it is a palindrome number. A number is palin-
drome if it reads the same from right to left and from left to right. Here is a sample
run of this program:

*3.13 (Financial application: compute taxes) Listing 3.5, ComputeTax.java, gives the
source code to compute taxes for single filers. Complete Listing 3.5 to compute
the taxes for all filing statuses.

3.14 (Game: heads or tails) Write a program that lets the user guess whether the flip of
a coin results in heads or tails. The program randomly generates an integer 0 or 1,
which represents head or tail. The program prompts the user to enter a guess and
reports whether the guess is correct or incorrect.

**3.15 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a three-
digit number. The program prompts the user to enter a three-digit number and
determines whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is
$10,000.

2. If all digits in the user input match all digits in the lottery number, the award is
$3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is
$1,000.

3.16 (Random point) Write a program that displays a random coordinate in a rectangle.
The rectangle is centered at (0, 0) with width 100 and height 200.

*3.17 (Game: scissor, rock, paper) Write a program that plays the popular scissor-rock-
paper game. (A scissor can cut a paper, a rock can knock a scissor, and a paper can
wrap a rock.) The program randomly generates a number 0, 1, or 2 representing
scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or draws. Here are sample runs:

scissor (0), rock (1), paper (2): 1
The computer is scissor. You are rock. You won

scissor (0), rock (1), paper (2): 2
The computer is paper. You are paper too. It is a draw

Programming Exercises 111

*3.18 (Cost of shipping) A shipping company uses the following function to calcu-
late the cost (in dollars) of shipping based on the weight of the package (in
pounds).

c(w) = d 3.5, if 0 6 w 6 = 1

5.5, if 1 6 w 6 = 3

8.5, if 3 6 w 6 = 10

10.5, if 10 6 w 6 = 20

Write a program that prompts the user to enter the weight of the package and
display the shipping cost. If the weight is greater than 50, display a message “the
package cannot be shipped.”

**3.19 (Compute the perimeter of a triangle) Write a program that reads three edges for
a triangle and computes the perimeter if the input is valid. Otherwise, display that
the input is invalid. The input is valid if the sum of every pair of two edges is
greater than the remaining edge.

*3.20 (Science: wind-chill temperature) Programming Exercise 2.17 gives a formula
to compute the wind-chill temperature. The formula is valid for temperatures in
the range between −58ºF and 41ºF and wind speed greater than or equal to 2.
Write a program that prompts the user to enter a temperature and a wind speed.
The program displays the wind-chill temperature if the input is valid; otherwise,
it displays a message indicating whether the temperature and/or wind speed is
invalid.

112 Chapter 3 Selections

Comprehensive

**3.21 (Science: day of the week) Zeller’s congruence is an algorithm developed by
Christian Zeller to calculate the day of the week. The formula is

h = ¢q +
26(m + 1)

10
+ k +

k

4
+

j

4
+ 5j≤ % 7

where

 ■ h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday, 4:
Wednesday, 5: Thursday, 6: Friday).

 ■ q is the day of the month.

 ■ m is the month (3: March, 4: April, …, 12: December). January and February
are counted as months 13 and 14 of the previous year.

 ■ j is the century (i.e.,
year

100
).

 ■ k is the year of the century (i.e., year % 100).

Note that the division in the formula performs an integer division. Write a pro-
gram that prompts the user to enter a year, month, and day of the month, and
displays the name of the day of the week. Here are some sample runs:

Enter year: (e.g., 2012): 2015
Enter month: 1-12: 1
Enter the day of the month: 1-31: 25
Day of the week is Sunday

Enter year: (e.g., 2012): 2012
Enter month: 1-12: 5
Enter the day of the month: 1-31: 12
Day of the week is Saturday

Enter a point with two coordinates: 4 5
Point (4.0, 5.0) is in the circle

Enter a point with two coordinates: 9 9
Point (9.0, 9.0) is not in the circle

(Hint: January and February are counted as 13 and 14 in the formula, so you need
to convert the user input 1 to 13 and 2 to 14 for the month and change the year to
the previous year.)

**3.22 (Geometry: point in a circle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the circle centered at (0, 0)
with radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the
circle, as shown in Figure 3.7a.

(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10.

The formula for computing the distance is 2(x2 - x1)
2 + (y2 - y1)

2. Test your
program to cover all cases.) Two sample runs are shown below.

VideoNote

Check point location

**3.23 (Geometry: point in a rectangle?) Write a program that prompts the user to enter
a point (x, y) and checks whether the point is within the rectangle centered at
(0, 0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and
(6, 4) is outside the rectangle, as shown in Figure 3.7b. (Hint: A point is in the
rectangle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and its
vertical distance to (0, 0) is less than or equal to 5.0 / 2. Test your program to
cover all cases.) Here are two sample runs.

FIGURE 3.7 (a) Points inside and outside of the circle. (b) Points inside and outside of the
rectangle.

x-axis(0, 0)

(a) (b)

y-axis

(4, 5)

(9, 9)

(2, 2)
(6, 4)

x-axis

y-axis

(0, 0)

Enter a point with two coordinates: 2 2
Point (2.0, 2.0) is in the rectangle

Enter a point with two coordinates: 6 4
Point (6.0, 4.0) is not in the rectangle

The card you picked is Jack of Hearts

Programming Exercises 113

**3.24 (Game: pick a card) Write a program that simulates picking a card from a deck
of 52 cards. Your program should display the rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card.
Here is a sample run of the program:

*3.25 (Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and (x2,
y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 3.8a–b.

The intersecting point of the two lines can be found by solving the following
linear equation:

(y1 - y2)x - (x1 - x2)y = (y1 - y2)x1 - (x1 - x2)y1

(y3 - y4)x - (x3 - x4)y = (y3 - y4)x3 - (x3 - x4)y3

This linear equation can be solved using Cramer’s rule (see Programming Exer-
cise 3.3). If the equation has no solutions, the two lines are parallel (Figure 3.8c).

114 Chapter 3 Selections

Write a program that prompts the user to enter four points and displays the inter-
secting point. Here are sample runs:

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 5 -1.0 4.0 2.0 -1.0 -2.0
The intersecting point is at (2.88889, 1.1111)

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 7 6.0 4.0 2.0 -1.0 -2.0
The two lines are parallel

Enter an integer: 10
Is 10 divisible by 5 and 6? false
Is 10 divisible by 5 or 6? true
Is 10 divisible by 5 or 6, but not both? true

(0, 100)

(0, 0) (200, 0)

p2

p1

Enter a point's x- and y-coordinates: 100.5 25.5
The point is in the triangle

FIGURE 3.8 Two lines intersect in (a and b) and two lines are parallel in (c).

(x1, y1)

(x2, y2) (x3, y3)

(x4, y4)

(a) (b) (c)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

3.26 (Use the &&, || and ^ operators) Write a program that prompts the user to enter
an integer and determines whether it is divisible by 5 and 6, whether it is divisible
by 5 or 6, and whether it is divisible by 5 or 6, but not both. Here is a sample run
of this program:

**3.27 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as
shown below. The right-angle point is placed at (0, 0), and the other two points
are placed at (200, 0), and (0, 100). Write a program that prompts the user to enter
a point with x- and y-coordinates and determines whether the point is inside the
triangle. Here are the sample runs:

**3.28 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 3.9. Test your program to cover all cases.

Enter a point's x- and y-coordinates: 100.5 50.5
The point is not in the triangle

FIGURE 3.9 (a) A rectangle is inside another one. (b) A rectangle overlaps another one.

(a)

w1

(x1, y1)
(x2, y2)

w2

h2h1

(b)

w1

(x1, y1)

(x2, y2)

w2

h2

h1

Enter r1's center x-, y-coordinates, width, and height: 2.5 4 2.5 43
Enter r2's center x-, y-coordinates, width, and height: 1.5 5 0.5 3
r2 is inside r1

Enter r1's center x-, y-coordinates, width, and height: 1 2 3 5.5
Enter r2's center x-, y-coordinates, width, and height: 3 4 4.5 5
r2 overlaps r1

Enter r1's center x-, y-coordinates, width, and height: 1 2 3 3
Enter r2's center x-, y-coordinates, width, and height: 40 45 3 2
r2 does not overlap r1

Enter circle1's center x-, y-coordinates, and radius: 0.5 5.1 13
Enter circle2's center x-, y-coordinates, and radius: 1 1.7 4.5
circle2 is inside circle1

Programming Exercises 115

Here are the sample runs:

**3.29 (Geometry: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle is
inside the first or overlaps with the first, as shown in Figure 3.10. (Hint: circle2 is
inside circle1 if the distance between the two centers 6 = |r1 - r2| and circle2
overlaps circle1 if the distance between the two centers <= r1 + r2. Test your
program to cover all cases.)

Here are the sample runs:

116 Chapter 3 Selections

*3.30 (Current time) Revise Programming Exercise 2.8 to display the hour using a
12-hour clock. Here is a sample run:

FIGURE 3.10 (a) A circle is inside another circle. (b) A circle overlaps another circle.

(a) (b)

(x1, y1)

(x2, y2)

r2

r1

(x1, y1)

r1

(x2, y2)

r2

Enter the time zone offset to GMT: -5
The current time is 4:50:34 AM

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 0
Enter the dollar amount: 100
$100.0 is 681.0 yuan

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 5
Enter the RMB amount: 10000
10000.0 yuan is $1468.43

Enter circle1's center x-, y-coordinates, and radius: 3.4 5.7 5.5
Enter circle2's center x-, y-coordinates, and radius: 6.7 3.5 3
circle2 overlaps circle1

Enter circle1's center x-, y-coordinates, and radius: 3.4 5.5 1
Enter circle2's center x-, y-coordinates, and radius: 5.5 7.2 1
circle2 does not overlap circle1

*3.31 (Financials: currency exchange) Write a program that prompts the user to enter
the exchange rate from currency in U.S. dollars to Chinese RMB. Prompt the user
to enter 0 to convert from U.S. dollars to Chinese RMB and 1 to convert from
Chinese RMB and U.S. dollars. Prompt the user to enter the amount in U.S. dol-
lars or Chinese RMB to convert it to Chinese RMB or U.S. dollars, respectively.
Here are the sample runs:

*3.32 (Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1,
y1), you can use the following condition to decide whether a point p2(x2, y2) is
on the left of the line, on the right, or on the same line (see Figure 3.11):

(x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0) c 70 p2 is on the left side of the line

=0 p2 is on the same line

60 p2 is on the right side of the line

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 5
Incorrect input

FIGURE 3.11 (a) p2 is on the left of the line. (b) p2 is on the right of the line. (c) p2 is on
the same line.

p0

p2
p1

p0

p2

p1

p0

p2

p1

(a) (b) (c)

Enter three points for p0, p1, and p2: 4.4 2 6.5 9.5 -5 4
(-5.0, 4.0) is on the left side of the line from (4.4, 2.0) to (6.5, 9.5)

Enter three points for p0, p1, and p2: 1 1 5 5 2 2
(2.0, 2.0) is on the line from (1.0, 1.0) to (5.0, 5.0)

Enter three points for p0, p1, and p2: 3.4 2 6.5 9.5 5 2.5
(5.0, 2.5) is on the right side of the line from (3.4, 2.0) to (6.5, 9.5)

Enter weight and price for package 1: 50 24.59
Enter weight and price for package 2: 25 11.99
Package 2 has a better price.

Programming Exercises 117

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, on the right, or on
the same line. Here are some sample runs:

*3.33 (Financial: compare costs) Suppose you shop for rice in two different packages.
You would like to write a program to compare the cost. The program prompts the
user to enter the weight and price of the each package and displays the one with
the better price. Here is a sample run:

118 Chapter 3 Selections

*3.34 (Geometry: point on line segment) Programming Exercise 3.32 shows how to test
whether a point is on an unbounded line. Revise Programming Exercise 3.32 to
test whether a point is on a line segment. Write a program that prompts the user
to enter the three points for p0, p1, and p2 and displays whether p2 is on the line
segment from p0 to p1. Here are some sample runs:

Enter three points for p0, p1, and p2: 1 1 2.5 2.5 1.5 1.5
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.5, 2.5)

Enter three points for p0, p1, and p2: 1 1 2 2 3.5 3.5
(3.5, 3.5) is not on the line segment from (1.0, 1.0) to (2.0, 2.0)

Enter weight and price for package 1: 50 25
Enter weight and price for package 2: 25 12.5
Two packages have the same price.

MATHEMATICAL
FUNCTIONS,
CHARACTERS,
AND STRINGS

Objectives
■ To solve mathematical problems by using the methods in the Math class (§4.2).

■ To represent characters using the char type (§4.3).

■ To encode characters using ASCII and Unicode (§4.3.1).

■ To represent special characters using the escape sequences (§4.4.2).

■ To cast a numeric value to a character and cast a character to an integer (§4.3.3).

■ To compare and test characters using the static methods in the Character
class (§4.3.4).

■ To introduce objects and instance methods (§4.4).

■ To represent strings using the String object (§4.4).

■ To return the string length using the length() method (§4.4.1).

■ To return a character in the string using the charAt(i) method (§4.4.2).

■ To use the + operator to concatenate strings (§4.4.3).

■ To return an uppercase string or a lowercase string and to trim a string (§4.4.4).

■ To read strings from the console (§4.4.5).

■ To read a character from the console (§4.4.6).

■ To compare strings using the equals method and the compareTo methods
(§4.4.7).

■ To obtain substrings (§4.4.8).

■ To find a character or a substring in a string using the indexOf method (§4.4.9).

■ To program using characters and strings (GuessBirthday) (§4.5.1).

■ To convert a hexadecimal character to a decimal value (HexDigit2Dec)
(§4.5.2).

■ To revise the lottery program using strings (LotteryUsingStrings) (§4.5.3).

■ To format output using the System.out.printf method (§4.6).

CHAPTER

4

120 Chapter 4 Mathematical Functions, Characters, and Strings

4.1 Introduction
The focus of this chapter is to introduce mathematical functions, characters, string
objects, and use them to develop programs.

The preceding chapters introduced fundamental programming techniques and taught you how
to write simple programs to solve basic problems using selection statements. This chapter intro-
duces methods for performing common mathematical operations. You will learn how to create
custom methods in Chapter 6.

Suppose you need to estimate the area enclosed by four cities, given the GPS locations (latitude
and longitude) of these cities, as shown in the following diagram. How would you write a program
to solve this problem? You will be able to write such a program after completing this chapter.

Key
Point

problem

Orlando (28.5383355, –81.3792365)

Savannah (32.0835407, –81.0998342)

Charlotte (35.2270869, –80.8431267)

Atlanta
(33.7489954, –84.3879824)

Method Description

sin(radians) Returns the trigonometric sine of an angle in radians.

cos(radians) Returns the trigonometric cosine of an angle in radians.

tan(radians) Returns the trigonometric tangent of an angle in radians.

toRadians(degree) Returns the angle in radians for the angle in degree.

toDegree(radians) Returns the angle in degrees for the angle in radians.

asin(a) Returns the angle in radians for the inverse of sine.

acos(a) Returns the angle in radians for the inverse of cosine.

atan(a) Returns the angle in radians for the inverse of tangent.

TABLE 4.1 Trigonometric Methods in the Math Class

Because strings are frequently used in programming, it is beneficial to introduce strings
early so that you can begin to use them to develop useful programs. This chapter gives a brief
introduction to string objects; you will learn more on objects and strings in Chapters 9 and 10.

4.2 Common Mathematical Functions
Java provides many useful methods in the Math class for performing common mathe-
matical functions.

A method is a group of statements that performs a specific task. You have already used the
pow(a, b) method to compute ab in Section 2.9.4, Exponent Operations and the random()
method for generating a random number in Section 3.7. This section introduces other useful
methods in the Math class. They can be categorized as trigonometric methods, exponent methods,
and service methods. Service methods include the rounding, min, max, absolute, and random meth-
ods. In addition to methods, the Math class provides two useful double constants, PI and E (the
base of natural logarithms). You can use these constants as Math.PI and Math.E in any program.

4.2.1 Trigonometric Methods
The Math class contains the following methods as shown in Table 4.1 for performing
trigonometric functions:

Key
Point

VideoNote

Introduce math functions

4.2 Common Mathematical Functions 121

The parameter for sin, cos, and tan is an angle in radians. The return value for asin,
acos, and atan is a degree in radians in the range between -p/2 and p/2. One degree is
equal to p/180 in radians, 90 degrees is equal to p/2 in radians, and 30 degrees is equal to
p/6 in radians.

For example,

Math.toDegrees(Math.PI / 2) returns 90.0

Math.toRadians(30) returns 0.5236 (same as π/6)
Math.sin(0) returns 0.0

Math.sin(Math.toRadians(270)) returns -1.0

Math.sin(Math.PI / 6) returns 0.5

Math.sin(Math.PI / 2) returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6) returns 0.866

Math.cos(Math.PI / 2) returns 0

Math.asin(0.5) returns 0.523598333 (same as π/6)
Math.acos(0.5) returns 1.0472 (same as π/3)
Math.atan(1.0) returns 0.785398 (same as π/4)

4.2.2 Exponent Methods
There are five methods related to exponents in the Math class as shown in Table 4.2.

Method Description

exp(x) Returns e raised to power of x (ex).

log(x) Returns the natural logarithm of x (ln(x) = loge(x)).

log10(x) Returns the base 10 logarithm of x (log10(x)).

pow(a, b) Returns a raised to the power of b (ab).

sqrt(x) Returns the square root of x (2x) for x 7 = 0.

TABLE 4.2 Exponent Methods in the Math Class

For example,

Math.exp(1) returns 2.71828

Math.log(Math.E) returns 1.0

Math.log10(10) returns 1.0

Math.pow(2, 3) returns 8.0

Math.pow(3, 2) returns 9.0

Math.pow(4.5, 2.5) returns 22.91765

Math.sqrt(4) returns 2.0

Math.sqrt(10.5) returns 4.24

4.2.3 The Rounding Methods
The Math class contains five rounding methods as shown in Table 4.3.

Method Description

ceil(x) x is rounded up to its nearest integer. This integer is returned as a double value.

floor(x) x is rounded down to its nearest integer. This integer is returned as a double value.

rint(x) x is rounded up to its nearest integer. If x is equally close to two integers, the even one is returned as a double value.

round(x) Returns (int)Math.floor(x + 0.5) if x is a float and returns (long)Math.floor(x + 0.5) if x is a double.

TABLE 4.3 Rounding Methods in the Math Class

122 Chapter 4 Mathematical Functions, Characters, and Strings

For example,

Math.ceil(2.1) returns 4.0

Math.ceil(2.0) returns 2.0

Math.ceil(-2.0) returns -2.0

Math.ceil(-2.1) returns -2.0

Math.floor(2.1) returns 2.0

Math.floor(2.0) returns 2.0

Math.floor(-2.0) returns –2.0

Math.floor(-2.1) returns -4.0

Math.rint(2.1) returns 2.0

Math.rint(-2.0) returns –2.0

Math.rint(-2.1) returns -2.0

Math.rint(2.5) returns 2.0

Math.rint(4.5) returns 4.0

Math.rint(-2.5) returns -2.0

Math.round(2.6f) returns 3 // Returns int
Math.round(2.0) returns 2 // Returns long
Math.round(-2.0f) returns -2 // Returns int
Math.round(-2.6) returns -3 // Returns long
Math.round(-2.4) returns -2 // Returns long

4.2.4 The min, max, and abs Methods
The min and max methods return the minimum and maximum numbers of two numbers (int,
long, float, or double). For example, max(4.4, 5.0) returns 5.0, and min(3, 2)
returns 2.

The abs method returns the absolute value of the number (int, long, float, or double).
For example,

Math.max(2, 3) returns 3

Math.max(2.5, 3) returns 4.0

Math.min(2.5, 4.6) returns 2.5

Math.abs(-2) returns 2

Math.abs(-2.1) returns 2.1

4.2.5 The random Method
You have used the random() method in the preceding chapter. This method generates a ran-
dom double value greater than or equal to 0.0 and less than 1.0 (0 <= Math.random() <
1.0). You can use it to write a simple expression to generate random numbers in any range.
For example,

(int)(Math.random() * 10)
Returns a random integer
between 0 and 9.

50 + (int)(Math.random() * 50)
Returns a random integer
between 50 and 99.

a + Math.random() * b
Returns a random number between a

and a + b, excluding a + b.

In general,

4.2 Common Mathematical Functions 123

4.2.6 Case Study: Computing Angles of a Triangle
You can use the math methods to solve many computational problems. Given the three sides
of a triangle, for example, you can compute the angles by using the following formula:

A

B

C

a

b

c

x1, y1

x2, y2

x3, y3

A = acos((a * a - b * b - c * c) / (-2 * b * c))
B = acos((b * b - a * a - c * c) / (-2 * a * c))
C = acos((c * c - b * b - a * a) / (-2 * a * b))

Don’t be intimidated by the mathematic formula. As we discussed early in Listing 2.9,
ComuteLoan.java, you don’t have to know how the mathematical formula is derived in order
to write a program for computing the loan payments. Here in this example, given the length of
three sides, you can use this formula to write a program to compute the angles without having
to know how the formula is derived. In order to compute the lengths of the sides, we need to
know the coordinates of three corner points and compute the distances between the points.

Listing 4.1 is an example of a program that prompts the user to enter the x- and y-coordinates
of the three corner points in a triangle and then displays the three angles.

LISTING 4.1 ComputeAngles.java
 1 import java.util.Scanner;
 2
 3 public class ComputeAngles {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter three points
 8 System.out.print("Enter three points: ");
 9 double x1 = input.nextDouble();
10 double y1 = input.nextDouble();
11 double x2 = input.nextDouble();
12 double y2 = input.nextDouble();
13 double x3 = input.nextDouble();
14 double y3 = input.nextDouble();
15
16 // Compute three sides
17 double a = Math.sqrt((x2 - x3) * (x2 - x3)
18 + (y2 - y3) * (y2 - y3));
19 double b = Math.sqrt((x1 - x3) * (x1 - x3)
20 + (y1 - y3) * (y1 - y3));
21 double c = Math.sqrt((x1 - x2) * (x1 - x2)
22 + (y1 - y2) * (y1 - y2));
23
24 // Compute three angles
25 double A = Math.toDegrees(Math.acos((a * a - b * b - c * c)
26 / (-2 * b * c)));
27 double B = Math.toDegrees(Math.acos((b * b - a * a - c * c)
28 / (-2 * a * c)));
29 double C = Math.toDegrees(Math.acos((c * c - b * b - a * a)
30 / (-2 * a * b)));
31
32 // Display results
33 System.out.println("The three angles are " +
34 Math.round(A * 100) / 100.0 + " " +

enter three points

compute sides

display result

124 Chapter 4 Mathematical Functions, Characters, and Strings

35 Math.round(B * 100) / 100.0 + " " +
36 Math.round(C * 100) / 100.0);
37 }
38 }

Enter three points: 1 1 6.5 1 6.5 2.5
The three angles are 15.26 90.0 74.74

The program prompts the user to enter three points (line 8). This prompting message
is not clear. You should give the user explicit instructions on how to enter these points as
follows:

System.out.print("Enter the coordinates of three points separated "
 + "by spaces like x1 y1 x2 y2 x3 y3: ");

Note that the distance between two points (x1, y1) and (x2, y2) can be com-
puted using the formula2(x2 - x1)

2 + (y2 - y1)
2. The program computes the dis-

tances between two points (lines 17–22), and applies the formula to compute the angles
(lines 25–30). The angles are rounded to display up to two digits after the decimal point
(lines 34–36).

The Math class is used in the program, but not imported, because it is in the java.
lang package. All the classes in the java.lang package are implicitly imported in a Java
program.

4.1 Evaluate the following method calls:✓Point✓Check (a) Math.sqrt(4)

(b) Math.sin(2 * Math.PI)

(c) Math.cos(2 * Math.PI)

(d) Math.pow(2, 2)

(e) Math.log(Math.E)

(f) Math.exp(1)

(g) Math.max(2, Math.min(3, 4))

(h) Math.rint(-2.5)

(i) Math.ceil(-2.5)

(j) Math.floor(-2.5)

(k) Math.round(-2.5f)

(l) Math.round(-2.5)

(m) Math.rint(2.5)

(n) Math.ceil(2.5)

(o) Math.floor(2.5)

(p) Math.round(2.5f)

(q) Math.round(2.5)

(r) Math.round(Math.abs(-2.5))

4.2 True or false? The argument for trigonometric methods is an angle in radians.

4.3 Write a statement that converts 47 degrees to radians and assigns the result to a
variable.

4.4 Write a statement that converts π / 7 to an angle in degrees and assigns the result
to a variable.

4.5 Write an expression that obtains a random integer between 34 and 55. Write an
expression that obtains a random integer between 0 and 999. Write an expression
that obtains a random number between 5.5 and 55.5.

4.6 Why does the Math class not need to be imported?

4.7 What is Math.log(Math.exp(5.5))? What is Math.exp(Math.log(5.5))?
What is Math.asin(Math.sin(Math.PI / 6))? What is Math.sin(Math.
asin(Math.PI / 6))?

4.3 Character Data Type and Operations 125

4.3 Character Data Type and Operations
A character data type represents a single character.

In addition to processing numeric values, you can process characters in Java. The character
data type, char, is used to represent a single character. A character literal is enclosed in single
quotation marks. Consider the following code:

char letter = 'A';
char numChar = '4';

The first statement assigns character A to the char variable letter. The second statement
assigns digit character 4 to the char variable numChar.

Caution
A string literal must be enclosed in quotation marks (" "). A character literal is a single

character enclosed in single quotation marks (' '). Therefore, "A" is a string, but 'A'

is a character.

4.3.1 Unicode and ASCII code
Computers use binary numbers internally. A character is stored in a computer as a sequence
of 0s and 1s. Mapping a character to its binary representation is called encoding. There are
different ways to encode a character. How characters are encoded is defined by an encoding
scheme.

Java supports Unicode, an encoding scheme established by the Unicode Consortium to
support the interchange, processing, and display of written texts in the world’s diverse lan-
guages. Unicode was originally designed as a 16-bit character encoding. The primitive data
type char was intended to take advantage of this design by providing a simple data type
that could hold any character. However, it turned out that the 65,536 characters possible in
a 16-bit encoding are not sufficient to represent all the characters in the world. The Unicode
standard therefore has been extended to allow up to 1,112,064 characters. Those characters
that go beyond the original 16-bit limit are called supplementary characters. Java supports
the supplementary characters. The processing and representing of supplementary characters
are beyond the scope of this book. For simplicity, this book considers only the original 16-bit
Unicode characters. These characters can be stored in a char type variable.

A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal digits that
run from \u0000 to \uFFFF. Hexadecimal numbers are introduced in Appendix F, Number
Systems. For example, the English word welcome is translated into Chinese using two char-
acters, . The Unicodes of these two characters are \u6B22\u8FCE. The Unicodes for the
Greek letters a b g are \u03b1 \u03b2 \u03b4.

Most computers use ASCII (American Standard Code for Information Interchange), an
8-bit encoding scheme for representing all uppercase and lowercase letters, digits, punctuation
marks, and control characters. Unicode includes ASCII code, with \u0000 to \u007F cor-
responding to the 128 ASCII characters. Table 4.4 shows the ASCII code for some commonly
used characters. Appendix B, ‘The ASCII Character Set,’ gives a complete list of ASCII
characters and their decimal and hexadecimal codes.

Key
Point

char type

char literal

encoding

Unicode

original Unicode

supplementary Unicode

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039

'A' to 'Z' 65 to 90 \u0041 to \u005A

'a' to 'z' 97 to 122 \u0061 to \u007A

TABLE 4.4 ASCII Code for Commonly Used Characters

126 Chapter 4 Mathematical Functions, Characters, and Strings

You can use ASCII characters such as 'X', '1', and '$' in a Java program as well as
Unicodes. Thus, for example, the following statements are equivalent:

char letter = 'A';
char letter = '\u0041'; // Character A's Unicode is 0041

Both statements assign character A to the char variable letter.

Note
The increment and decrement operators can also be used on char variables to get the

next or preceding Unicode character. For example, the following statements display

character b.

char ch = 'a';
System.out.println(++ch);

4.3.2 Escape Sequences for Special Characters
Suppose you want to print a message with quotation marks in the output. Can you write a
statement like this?

System.out.println("He said "Java is fun"");

No, this statement has a compile error. The compiler thinks the second quotation character
is the end of the string and does not know what to do with the rest of characters.

To overcome this problem, Java uses a special notation to represent special characters, as
shown in Table 4.5. This special notation, called an escape sequence, consists of a backslash
(\) followed by a character or a combination of digits. For example, \t is an escape sequence
for the Tab character and an escape sequence such as \u03b1 is used to represent a Unicode.
The symbols in an escape sequence are interpreted as a whole rather than individually. An
escape sequence is considered as a single character.

So, now you can print the quoted message using the following statement:

System.out.println("He said \"Java is fun\"");

The output is

He said "Java is fun"

Note that the symbols \ and " together represent one character.

ASCII

char increment and
decrement

escape sequence

Escape Sequence Name Unicode Code Decimal Value

\b Backspace \u0008 8

\t Tab \u0009 9

\n Linefeed \u000A 10

\f Formfeed \u000C 12

\r Carriage Return \u000D 13

\\ Backslash \u005C 92

\" Double Quote \u0022 34

TABLE 4.5 Escape Sequences

The backslash \ is called an escape character. It is a special character. To display this
character, you have to use an escape sequence \\. For example, the following code

System.out.println("\\t is a tab character");

displays

\t is a tab character

escape character

4.3 Character Data Type and Operations 127

4.3.3 Casting between char and Numeric Types
A char can be cast into any numeric type, and vice versa. When an integer is cast into a char,
only its lower 16 bits of data are used; the other part is ignored. For example:

char ch = (char)0XAB0041; // The lower 16 bits hex code 0041 is
// assigned to ch

System.out.println(ch); // ch is character A

When a floating-point value is cast into a char, the floating-point value is first cast into an
int, which is then cast into a char.

char ch = (char)65.25; // Decimal 65 is assigned to ch
System.out.println(ch); // ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified
numeric type.

int i = (int)'A'; // The Unicode of character A is assigned to i
System.out.println(i); // i is 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise,
explicit casting must be used. For example, since the Unicode of 'a' is 97, which is within
the range of a byte, these implicit castings are fine:

byte b = 'a';
int i = 'a';

But the following casting is incorrect, because the Unicode \uFFF4 cannot fit into a byte:

byte b = '\uFFF4';

To force this assignment, use explicit casting, as follows:

byte b = (byte)'\uFFF4';

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character
implicitly. Any number not in this range must be cast into a char explicitly.

All numeric operators can be applied to char operands. A char operand is automati-
cally cast into a number if the other operand is a number or a character. If the other oper-
and is a string, the character is concatenated with the string. For example, the following
statements

int i = '2' + '3'; // (int)'2' is 50 and (int)'3' is 51
System.out.println("i is " + i); // i is 101
int j = 2 + 'a'; // (int)'a' is 97
System.out.println("j is " + j); // j is 99
System.out.println(j + " is the Unicode for character "
 + (char)j); // 99 is the Unicode for character c
System.out.println("Chapter " + '2');

display

i is 101
j is 99
99 is the Unicode for character c
Chapter 2

numeric operators on
characters

128 Chapter 4 Mathematical Functions, Characters, and Strings

4.3.4 Comparing and Testing Characters
Two characters can be compared using the relational operators just like comparing two
numbers. This is done by comparing the Unicodes of the two characters. For example,

'a' < 'b' is true because the Unicode for 'a' (97) is less than the Unicode for 'b' (98).

'a' < 'A' is false because the Unicode for 'a' (97) is greater than the Unicode for 'A' (65).

'1' < '8' is true because the Unicode for '1' (49) is less than the Unicode for '8' (56).

Often in the program, you need to test whether a character is a number, a letter, an uppercase
letter, or a lowercase letter. As shown in Appendix B, the ASCII character set, that the Uni-
codes for lowercase letters are consecutive integers starting from the Unicode for 'a', then for
'b', 'c', . . ., and 'z'. The same is true for the uppercase letters and for numeric characters.
This property can be used to write the code to test characters. For example, the following code
tests whether a character ch is an uppercase letter, a lowercase letter, or a digital character.

if (ch >= 'A' && ch <= 'Z')
 System.out.println(ch + " is an uppercase letter");
else if (ch >= 'a' && ch <= 'z')
 System.out.println(ch + " is a lowercase letter");
else if (ch >= '0' && ch <= '9')
 System.out.println(ch + " is a numeric character");

For convenience, Java provides the following methods in the Character class for testing
characters as shown in Table 4.6.

Method Description

isDigit(ch) Returns true if the specified character is a digit.

isLetter(ch) Returns true if the specified character is a letter.

isLetterOfDigit(ch) Returns true if the specified character is a letter or digit.

isLowerCase(ch) Returns true if the specified character is a lowercase letter.

isUpperCase(ch) Returns true if the specified character is an uppercase letter.

toLowerCase(ch) Returns the lowercase of the specified character.

toUpperCase(ch) Returns the uppercase of the specified character.

TABLE 4.6 Methods in the Character Class

For example,

System.out.println("isDigit('a') is " + Character.isDigit('a'));
System.out.println("isLetter('a') is " + Character.isLetter('a'));
System.out.println("isLowerCase('a') is "
 + Character.isLowerCase('a'));
System.out.println("isUpperCase('a') is "
 + Character.isUpperCase('a'));
System.out.println("toLowerCase('T') is "
 + Character.toLowerCase('T'));
System.out.println("toUpperCase('q') is "
 + Character.toUpperCase('q'));

displays

isDigit('a') is false
isLetter('a') is true

4.3 Character Data Type and Operations 129

isLowerCase('a') is true
isUpperCase('a') is false
toLowerCase('T') is t
toUpperCase('q') is Q

4.8 Use print statements to find out the ASCII code for '1', 'A', 'B', 'a', and 'b'.
Use print statements to find out the character for the decimal codes 40, 59, 79, 85,
and 90. Use print statements to find out the character for the hexadecimal code 40,
5A, 71, 72, and 7A.

4.9 Which of the following are correct literals for characters?

'1', '\u345dE', '\u3fFa', '\b', '\t'

4.10 How do you display the characters \ and "?

4.11 Evaluate the following:

int i = '1';
int j = '1' + '2' * ('4' - '3') + 'b' / 'a';
int k = 'a';
char c = 90;

4.12 Can the following conversions involving casting be allowed? If so, find the converted
result.

char c = 'A';
int i = (int)c;

float f = 1000.34f;
int i = (int)f;

double d = 1000.34;
int i = (int)d;

int i = 97;
char c = (char)i;

4.13 Show the output of the following program:

public class Test {
public static void main(String[] args) {

char x = 'a';
char y = 'c';

 System.out.println(++x);
 System.out.println(y++);
 System.out.println(x - y);
 }
}

4.14 Write the code that generates a random lowercase letter.

4.15 Show the output of the following statements:

System.out.println('a' < 'b');
System.out.println('a' <= 'A');
System.out.println('a' > 'b');
System.out.println('a' >= 'A');
System.out.println('a' == 'a');
System.out.println('a' != 'b');

✓Point✓Check

130 Chapter 4 Mathematical Functions, Characters, and Strings

4.4 The String Type
A string is a sequence of characters.

The char type represents only one character. To represent a string of characters, use the data
type called String. For example, the following code declares message to be a string with
the value "Welcome to Java".

String message = "Welcome to Java";

String is a predefined class in the Java library, just like the classes System and Scanner.
The String type is not a primitive type. It is known as a reference type. Any Java class can
be used as a reference type for a variable. The variable declared by a reference type is known
as a reference variable that references an object. Here, message is a reference variable that
references a string object with contents Welcome to Java.

Reference data types will be discussed in detail in Chapter 9, Objects and Classes. For the
time being, you need to know only how to declare a String variable, how to assign a string
to the variable, and how to use the methods in the String class. More details on using strings
will be covered in Chapter 10.

Table 4.7 lists the String methods for obtaining string length, for accessing characters
in the string, for concatenating strings, for converting a string to upper or lowercases, and for
trimming a string.

Key
Point

VideoNote

Introduce strings and objects

Method Description

length() Returns the number of characters in this string.

charAt(index) Returns the character at the specified index from this string.

concat(s1) Returns a new string that concatenates this string with string s1.

toUpperCase() Returns a new string with all letters in uppercase.

toLowerCase() Returns a new string with all letters in lowercase

trim() Returns a new string with whitespace characters trimmed on both sides.

TABLE 4.7 Simple Methods for String Objects

Strings are objects in Java. The methods in Table 4.7 can only be invoked from a spe-
cific string instance. For this reason, these methods are called instance methods. A non-
instance method is called a static method. A static method can be invoked without using
an object. All the methods defined in the Math class are static methods. They are not tied
to a specific object instance. The syntax to invoke an instance method is reference-
Variable.methodName(arguments). A method may have many arguments or no argu-
ments. For example, the charAt(index) method has one argument, but the length()
method has no arguments. Recall that the syntax to invoke a static method is ClassName
.methodName(arguments). For example, the pow method in the Math class can be invoked
using Math.pow(2, 2.5).

4.4.1 Getting String Length
You can use the length() method to return the number of characters in a string. For exam-
ple, the following code

String message = "Welcome to Java";
System.out.println("The length of " + message + " is "
 + message.length());

instance method

static method

4.4 The String Type 131

displays

The length of Welcome to Java is 15

Note
When you use a string, you often know its literal value. For convenience, Java allows

you to use the string literal to refer directly to strings without creating new variables.

Thus, "Welcome to Java".length() is correct and returns 15. Note that ""

denotes an empty string and "".length() is 0.

4.4.2 Getting Characters from a String
The s.charAt(index) method can be used to retrieve a specific character in a string s,
where the index is between 0 and s.length()–1. For example, message.charAt(0)
returns the character W, as shown in Figure 4.1. Note that the index for the first character in
the string is 0.

string literal

empty string

charAt(index)

FIGURE 4.1 The characters in a String object can be accessed using its index.

Indices
message

message.charAt(0) message.charAt(14)message.length() is 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

Caution
Attempting to access characters in a string s out of bounds is a common pro-

gramming error. To avoid it, make sure that you do not use an index beyond

s.length() – 1. For example, s.charAt(s.length()) would cause a

StringIndexOutOfBoundsException.

4.4.3 Concatenating Strings
You can use the concat method to concatenate two strings. The statement shown below, for
example, concatenates strings s1 and s2 into s3:

String s3 = s1.concat(s2);

Because string concatenation is heavily used in programming, Java provides a convenient
way to accomplish it. You can use the plus (+) operator to concatenate two strings, so the
previous statement is equivalent to

String s3 = s1 + s2;

The following code combines the strings message, " and ", and "HTML" into one string:

String myString = message + " and " + "HTML";

Recall that the + operator can also concatenate a number with a string. In this case, the
number is converted into a string and then concatenated. Note that at least one of the operands
must be a string in order for concatenation to take place. If one of the operands is a nonstring

string index range

s1.concat(s2)

s1 + s2

concatenate strings and
numbers

132 Chapter 4 Mathematical Functions, Characters, and Strings

(e.g., a number), the nonstring value is converted into a string and concatenated with the other
string. Here are some examples:

// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

If neither of the operands is a string, the plus sign (+) is the addition operator that adds two
numbers.

The augmented += operator can also be used for string concatenation. For example, the
following code appends the string "and Java is fun" with the string "Welcome to
Java" in message.

message += " and Java is fun";

So the new message is "Welcome to Java and Java is fun".
If i = 1 and j = 2, what is the output of the following statement?

System.out.println("i + j is " + i + j);

The output is "i + j is 12" because "i + j is " is concatenated with the value of
i first. To force i + j to be executed first, enclose i + j in the parentheses, as follows:

System.out.println("i + j is " + (i + j));

4.4.4 Converting Strings
The toLowerCase() method returns a new string with all lowercase letters and the
toUpperCase() method returns a new string with all uppercase letters. For example,

"Welcome".toLowerCase() returns a new string welcome.
"Welcome".toUpperCase() returns a new string WELCOME.

The trim() method returns a new string by eliminating whitespace characters from both
ends of the string. The characters ' ', \t, \f, \r, or \n are known as whitespace characters.
For example,

"\t Good Night \n".trim() returns a new string Good Night.

4.4.5 Reading a String from the Console
To read a string from the console, invoke the next() method on a Scanner object. For
example, the following code reads three strings from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter three words separated by spaces: ");
String s1 = input.next();
String s2 = input.next();
String s3 = input.next();
System.out.println("s1 is " + s1);
System.out.println("s2 is " + s2);
System.out.println("s3 is " + s3);

toLowerCase()

toUpperCase()

whitespace character

trim()

read strings

4.4 The String Type 133

The next() method reads a string that ends with a whitespace character. You can use
the nextLine() method to read an entire line of text. The nextLine() method reads a
string that ends with the Enter key pressed. For example, the following statements read a
line of text.

Scanner input = new Scanner(System.in);
System.out.println("Enter a line: ");
String s = input.nextLine();
System.out.println("The line entered is " + s);

whitespace character

Enter three words separated by spaces: Welcome to Java
s1 is Welcome
s2 is to
s3 is Java

Enter a line: Welcome to Java
The line entered is Welcome to Java

Important Caution
To avoid input errors, do not use nextLine() after nextByte(), nextShort(),

nextInt(), nextLong(), nextFloat(), nextDouble(), or next(). The

reasons will be explained in Section 12.11.4, ‘How Does Scanner Work?’

4.4.6 Reading a Character from the Console
To read a character from the console, use the nextLine() method to read a string and then
invoke the charAt(0) method on the string to return a character. For example, the following
code reads a character from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");
String s = input.nextLine();
char ch = s.charAt(0);
System.out.println("The character entered is " + ch);

4.4.7 Comparing Strings
The String class contains the methods as shown in Table 4.8 for comparing two strings.

avoid input errors

Method Description

equals(s1) Returns true if this string is equal to string s1.

equalsIgnoreCase(s1) Returns true if this string is equal to string s1; it is case insensitive.

compareTo(s1) Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether this string is greater
than, equal to, or less than s1.

compareToIgnoreCase(s1) Same as compareTo except that the comparison is case insensitive.

startsWith(prefix) Returns true if this string starts with the specified prefix.

endsWith(suffix) Returns true if this string ends with the specified suffix.

contains(s1) Returns true if s1 is a substring in this string.

TABLE 4.8 Comparison Methods for String Objects

134 Chapter 4 Mathematical Functions, Characters, and Strings

How do you compare the contents of two strings? You might attempt to use the == operator,
as follows:

if (string1 == string2)
 System.out.println("string1 and string2 are the same object");
else

 System.out.println("string1 and string2 are different objects");

However, the == operator checks only whether string1 and string2 refer to the same
object; it does not tell you whether they have the same contents. Therefore, you cannot use the
== operator to find out whether two string variables have the same contents. Instead, you should
use the equals method. The following code, for instance, can be used to compare two strings:

if (string1.equals(string2))
 System.out.println("string1 and string2 have the same contents");
else

 System.out.println("string1 and string2 are not equal");

For example, the following statements display true and then false.

String s1 = "Welcome to Java";
String s2 = "Welcome to Java";
String s3 = "Welcome to C++";
System.out.println(s1.equals(s2)); // true
System.out.println(s1.equals(s3)); // false

The compareTo method can also be used to compare two strings. For example, consider
the following code:

s1.compareTo(s2)

The method returns the value 0 if s1 is equal to s2, a value less than 0 if s1 is lexico-
graphically (i.e., in terms of Unicode ordering) less than s2, and a value greater than 0 if s1
is lexicographically greater than s2.

The actual value returned from the compareTo method depends on the offset of the first
two distinct characters in s1 and s2 from left to right. For example, suppose s1 is abc and s2
is abg, and s1.compareTo(s2) returns -4. The first two characters (a vs. a) from s1 and
s2 are compared. Because they are equal, the second two characters (b vs. b) are compared.
Because they are also equal, the third two characters (c vs. g) are compared. Since the char-
acter c is 4 less than g, the comparison returns -4.

Caution
Syntax errors will occur if you compare strings by using relational operators >, >=, <, or

<=. Instead, you have to use s1.compareTo(s2).

Note
The equals method returns true if two strings are equal and false if they are not.

The compareTo method returns 0, a positive integer, or a negative integer, depending

on whether one string is equal to, greater than, or less than the other string.

The String class also provides the equalsIgnoreCase and compareToIgnore-
Case methods for comparing strings. The equalsIgnoreCase and compareToIgnore-
Case methods ignore the case of the letters when comparing two strings. You can also
use str.startsWith(prefix) to check whether string str starts with a specified prefix,
str.endsWith(suffix) to check whether string str ends with a specified suffix, and str
.contains(s1) to check whether string str contains string s1 . For example,

"Welcome to Java".startsWith("We") returns true.
"Welcome to Java".startsWith("we") returns false.
"Welcome to Java".endsWith("va") returns true.

==

string1.equals(string2)

s1.compareTo(s2)

4.4 The String Type 135

"Welcome to Java".endsWith("v") returns false.
"Welcome to Java".contains("to") returns true.
"Welcome to Java".contains("To") returns false.

Listing 4.2 gives a program that prompts the user to enter two cities and displays them in
alphabetical order.

LISTING 4.2 OrderTwoCities.java
 1 import java.util.Scanner;
 2
 3 public class OrderTwoCities {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two cities
 8 System.out.print("Enter the first city: ");
 9 String city1 = input.nextLine();
10 System.out.print("Enter the second city: ");
11 String city2 = input.nextLine();
12
13 if (city1.compareTo(city2) < 0)
14 System.out.println("The cities in alphabetical order are " +
15 city1 + " " + city2);
16 else

17 System.out.println("The cities in alphabetical order are " +
18 city2 + " " + city1);
19 }
20 }

input city1

input city2

compare two cities

Enter the first city: New York
Enter the second city: Boston
The cities in alphabetical order are Boston New York

The program reads two strings for two cities (lines 9, 11). If input.nextLine() is replaced
by input.next() (line 9), you cannot enter a string with spaces for city1. Since a city name
may contain multiple words separated by spaces, the program uses the nextLine method to
read a string (lines 9, 11). Invoking city1.compareTo(city2) compares two strings city1
with city2 (line 13). A negative return value indicates that city1 is less than city2.

4.4.8 Obtaining Substrings
You can obtain a single character from a string using the charAt method. You can also
obtain a substring from a string using the substring method in the String class, as shown
in Table 4.9.

For example,

String message = "Welcome to Java";
String message = message.substring(0, 11) + "HTML";
The string message now becomes Welcome to HTML.

Method Description

substring(beginIndex) Returns this string’s substring that begins with the character at the specified beginIndex and extends
to the end of the string, as shown in Figure 4.2.

substring(beginIndex,

endIndex)

Returns this string’s substring that begins at the specified beginIndex and extends to the character at index
endIndex – 1, as shown in Figure 4.2. Note that the character at endIndex is not part of the substring.

TABLE 4.9 The String class contains the methods for obtaining substrings.

136 Chapter 4 Mathematical Functions, Characters, and Strings

Note
If beginIndex is endIndex, substring(beginIndex, endIndex) returns an

empty string with length 0. If beginIndex > endIndex, it would be a runtime error.

4.4.9 Finding a Character or a Substring in a String
The String class provides several versions of indexOf and lastIndexOf methods to find
a character or a substring in a string, as shown in Table 4.10.

beginIndex <= endIndex

FIGURE 4.2 The substring method obtains a substring from a string.

Indices
Message

message.substring(0, 11) message.substring(11)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

W e l c o m e t o J a v a

Method Description

index(ch) Returns the index of the first occurrence of ch in the string. Returns -1 if not matched.

indexOf(ch, fromIndex) Returns the index of the first occurrence of ch after fromIndex in the string. Returns -1 if not matched.

indexOf(s) Returns the index of the first occurrence of string s in this string. Returns -1 if not matched.

indexOf(s, fromIndex) Returns the index of the first occurrence of string s in this string after fromIndex. Returns -1 if not
matched.

lastIndexOf(ch) Returns the index of the last occurrence of ch in the string. Returns -1 if not matched.

lastIndexOf(ch, fromIndex) Returns the index of the last occurrence of ch before fromIndex in this string. Returns -1 if not
matched.

lastIndexOf(s) Returns the index of the last occurrence of string s. Returns -1 if not matched.

lastIndexOf(s, fromIndex) Returns the index of the last occurrence of string s before fromIndex. Returns -1 if not matched.

TABLE 4.10 The String class contains the methods for finding substrings.

For example,

"Welcome to Java".indexOf('W') returns 0.
"Welcome to Java".indexOf('o') returns 4.
"Welcome to Java".indexOf('o', 5) returns 9.
"Welcome to Java".indexOf("come") returns 3.
"Welcome to Java".indexOf("Java", 5) returns 11.
"Welcome to Java".indexOf("java", 5) returns -1.

"Welcome to Java".lastIndexOf('W') returns 0.
"Welcome to Java".lastIndexOf('o') returns 9.
"Welcome to Java".lastIndexOf('o', 5) returns 4.
"Welcome to Java".lastIndexOf("come") returns 3.
"Welcome to Java".lastIndexOf("Java", 5) returns -1.
"Welcome to Java".lastIndexOf("Java") returns 11.

Suppose a string s contains the first name and last name separated by a space. You can use the
following code to extract the first name and last name from the string:

int k = s.indexOf(' ');
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

indexOf

lastIndexOf

4.4 The String Type 137

For example, if s is Kim Jones, the following diagram illustrates how the first name and last
name are extracted.

Indices
Message

0 1 2 3 4 5 6 7 8

K i m J o n e s

s.substring
(k + 1) is Jones

k is 3

s.substring
(0, k) is Kim

4.4.10 Conversion between Strings and Numbers
You can convert a numeric string into a number. To convert a string into an int value, use the
Integer.parseInt method, as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as "123".
To convert a string into a double value, use the Double.parseDouble method, as

follows:

double doubleValue = Double.parseDouble(doubleString);

where doubleString is a numeric string such as "123.45".
If the string is not a numeric string, the conversion would cause a runtime error. The

Integer and Double classes are both included in the java.lang package, and thus they are
automatically imported.

You can convert a number into a string, simply use the string concatenating operator as
follows:

String s = number + "";

4.16 Suppose that s1, s2, and s3 are three strings, given as follows:

String s1 = "Welcome to Java";
String s2 = "Programming is fun";
String s3 = "Welcome to Java";

What are the results of the following expressions?

Integer.parseInt method

Double.parseDouble
method

number to string

✓Point✓Check

(a) s1 == s2

(b) s2 == s3

(c) s1.equals(s2)

(d) s1.equals(s3)

(e) s1.compareTo(s2)

(f) s2.compareTo(s3)

(g) s2.compareTo(s2)

(h) s1.charAt(0)

(i) s1.indexOf('j')

(j) s1.indexOf("to")

(k) s1.lastIndexOf('a')

(l) s1.lastIndexOf("o", 15)

(m) s1.length()

(n) s1.substring(5)

(o) s1.substring(5, 11)

(p) s1.startsWith("Wel")

(q) s1.endsWith("Java")

(r) s1.toLowerCase()

(s) s1.toUpperCase()

(t) s1.concat(s2)

(u) s1.contains(s2)

(v) "\t Wel \t".trim()

138 Chapter 4 Mathematical Functions, Characters, and Strings

4.17 Suppose that s1 and s2 are two strings. Which of the following statements or
expressions are incorrect?

String s = "Welcome to Java";
String s3 = s1 + s2;
String s3 = s1 - s2;
s1 == s2;
s1 >= s2;
s1.compareTo(s2);
int i = s1.length();
char c = s1(0);
char c = s1.charAt(s1.length());

4.18 Show the output of the following statements (write a program to verify your results):

System.out.println("1" + 1);
System.out.println('1' + 1);
System.out.println("1" + 1 + 1);
System.out.println("1" + (1 + 1));
System.out.println('1' + 1 + 1);

4.19 Evaluate the following expressions (write a program to verify your results):

1 + "Welcome " + 1 + 1
1 + "Welcome " + (1 + 1)
1 + "Welcome " + ('\u0001' + 1)
1 + "Welcome " + 'a' + 1

4.20 Let s1 be " Welcome " and s2 be " welcome ". Write the code for the following
statements:

(a) Check whether s1 is equal to s2 and assign the result to a Boolean variable
isEqual.

(b) Check whether s1 is equal to s2, ignoring case, and assign the result to a
Boolean variable isEqual.

(c) Compare s1 with s2 and assign the result to an int variable x.

(d) Compare s1 with s2, ignoring case, and assign the result to an int

variable x.

(e) Check whether s1 has the prefix AAA and assign the result to a Boolean
variable b.

(f) Check whether s1 has the suffix AAA and assign the result to a Boolean
variable b.

(g) Assign the length of s1 to an int variable x.

(h) Assign the first character of s1 to a char variable x.

(i) Create a new string s3 that combines s1 with s2.

(j) Create a substring of s1 starting from index 1.

(k) Create a substring of s1 from index 1 to index 4.

(l) Create a new string s3 that converts s1 to lowercase.

(m) Create a new string s3 that converts s1 to uppercase.

(n) Create a new string s3 that trims whitespace characters on both ends of s1.

4.5 Case Studies 139

(o) Assign the index of the first occurrence of the character e in s1 to an int

variable x.

(p) Assign the index of the last occurrence of the string abc in s1 to an int

variable x.

4.5 Case Studies
Strings are fundamental in programming. The ability to write programs using strings
is essential in learning Java programming.

You will frequently use strings to write useful programs. This section presents three examples
of solving problems using strings.

4.5.1 Case Study: Guessing Birthdays
You can find out the date of the month when your friend was born by asking five questions.
Each question asks whether the day is in one of the five sets of numbers.

Key
Point

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

9 10 11
12 13 14 15
24 25 26 27
28 29 30 31

5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

2 3 6 7
10 11 14 15
18 22 23
26 27 30 31

3 5 7
9 11 13 15

17 19 1921 23
25 27 29 31

Set1 Set2 Set3 Set4 Set5

= 19

841

+

The birthday is the sum of the first numbers in the sets where the day appears. For example,
if the birthday is 19, it appears in Set1, Set2, and Set5. The first numbers in these three sets
are 1, 2, and 16. Their sum is 19.

Listing 4.3 gives a program that prompts the user to answer whether the day is in Set1
(lines 41–44), in Set2 (lines 50–53), in Set3 (lines 59–62), in Set4 (lines 68–71), and in Set5
(lines 77–80). If the number is in the set, the program adds the first number in the set to day
(lines 47, 56, 65, 74, 83).

LISTING 4.3 GuessBirthday.java
 1 import java.util.Scanner;
 2
 3 public class GuessBirthday {
 4 public static void main(String[] args) {
 5 String set1 =
 6 " 1 3 5 7\n" +
 7 " 9 11 13 15\n" +
 8 "17 19 21 23\n" +
 9 "25 27 29 31";
10
11 String set2 =
12 " 2 3 6 7\n" +

140 Chapter 4 Mathematical Functions, Characters, and Strings

13 "10 11 14 15\n" +
14 "18 19 22 23\n" +
15 "26 27 30 31";
16
17 String set3 =
18 " 4 5 6 7\n" +
19 "12 13 14 15\n" +
20 "20 21 22 23\n" +
21 "28 29 30 31";
22
23 String set4 =
24 " 8 9 10 11\n" +
25 "12 13 14 15\n" +
26 "24 25 26 27\n" +
27 "28 29 30 31";
28
29 String set5 =
30 "16 17 18 19\n" +
31 "20 21 22 23\n" +
32 "24 25 26 27\n" +
33 "28 29 30 31";
34
35 int day = 0;
36
37 // Create a Scanner
38 Scanner input = new Scanner(System.in);
39
40 // Prompt the user to answer questions
41 System.out.print("Is your birthday in Set1?\n");
42 System.out.print(set1);
43 System.out.print("\nEnter 0 for No and 1 for Yes: ");
44 int answer = input.nextInt();
45
46 if (answer == 1)
47 day += 1;
48
49 // Prompt the user to answer questions
50 System.out.print("\nIs your birthday in Set2?\n");
51 System.out.print(set2);
52 System.out.print("\nEnter 0 for No and 1 for Yes: ");
53 answer = input.nextInt();
54
55 if (answer == 1)
56 day += 2;
57
58 // Prompt the user to answer questions
59 System.out.print("Is your birthday in Set3?\n");
60 System.out.print(set3);
61 System.out.print("\nEnter 0 for No and 1 for Yes: ");
62 answer = input.nextInt();
63
64 if (answer == 1)
65 day += 4;
66
67 // Prompt the user to answer questions
68 System.out.print("\nIs your birthday in Set4?\n");
69 System.out.print(set4);
70 System.out.print("\nEnter 0 for No and 1 for Yes: ");
71 answer = input.nextInt();
72

day to be determined

in Set1?

in Set2?

in Set3?

4.5 Case Studies 141

73 if (answer == 1)
74 day += 8;
75
76 // Prompt the user to answer questions
77 System.out.print("\nIs your birthday in Set5?\n");
78 System.out.print(set5);
79 System.out.print("\nEnter 0 for No and 1 for Yes: ");
80 answer = input.nextInt();
81
82 if (answer == 1)
83 day += 16;
84
85 System.out.println("\nYour birthday is " + day + "!");
86 }
87 }

in Set4?

in Set5?

Is your birthday in Set1?
 1 3 5 7
 9 11 13 15
17 19 21 23
25 27 29 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set2?
 2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set3?
 4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set4?
 8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 1
Your birthday is 19!

142 Chapter 4 Mathematical Functions, Characters, and Strings

This game is easy to program. You may wonder how the game was created. The mathematics
behind the game is actually quite simple. The numbers are not grouped together by accident—
the way they are placed in the five sets is deliberate. The starting numbers in the five sets are
1, 2, 4, 8, and 16, which correspond to 1, 10, 100, 1000, and 10000 in binary (binary num-
bers are introduced in Appendix F, Number Systems). A binary number for decimal integers
between 1 and 31 has at most five digits, as shown in Figure 4.3a. Let it be b5b4b3b2b1. Thus,
b5b4b3b2b1 = b50000 + b4000 + b300 + b20 + b1,as shown in Figure 4.3b. If a day’s binary
number has a digit 1 in bk, the number should appear in Setk. For example, number 19 is
binary 10011, so it appears in Set1, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011
or decimal 1 + 2 + 16 = 19. Number 31 is binary 11111, so it appears in Set1, Set2, Set3,
Set4, and Set5. It is binary 1 + 10 + 100 + 1000 + 10000 = 11111 or decimal 1 + 2 +
4 + 8 + 16 = 31.

mathematics behind the game

line# day answer output

35 0

44 1

47 1

53 1

56 3

62 0

71 0

80 1

83 19

85 Your birthday is 19!

FIGURE 4.3 (a) A number between 1 and 31 can be represented using a five-digit binary
number. (b) A five-digit binary number can be obtained by adding binary numbers 1, 10,
100, 1000, or 10000.

Decimal Binary

1 00001
2 00010

000113
...
19 10011
...
31 11111

10000
10

1+
10011

19 31

10000
1000

100
10

+ 1
11111

0
0 0

0
0

0

b5

b4
b3

b2

b1

b5 b4 b3 b2 b1

0

0 00

+

(a) (b)

4.21 If you run Listing 4.3 GuessBirthday.java with input 1 for Set1, Set3, and Set4 and 0
for Set2 and Set5, what will be the birthday?

4.5.2 Case Study: Converting a Hexadecimal Digit to a Decimal Value
The hexadecimal number system has 16 digits: 0–9, A–F. The letters A, B, C, D, E, and F
correspond to the decimal numbers 10, 11, 12, 13, 14, and 15. We now write a program that
prompts the user to enter a hex digit and display its corresponding decimal value, as shown
in Listing 4.4.

✓Point✓Check

4.5 Case Studies 143

LISTING 4.4 HexDigit2Dec.java
 1 import java.util.Scanner;
 2
 3 public class HexDigit2Dec {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter a hex digit: ");
 7 String hexString = input.nextLine();
 8
 9 // Check if the hex string has exactly one character
10 if (hexString.length() != 1) {
11 System.out.println("You must enter exactly one character");
12 System.exit(1);
13 }
14
15 // Display decimal value for the hex digit
16 char ch = hexString.charAt(0);
17 if (ch <= 'F' && ch >= 'A') {
18 int value = ch - 'A' + 10;
19 System.out.println("The decimal value for hex digit "
20 + ch + " is " + value);
21 }
22 else if (Character.isDigit(ch)) {
23 System.out.println("The decimal value for hex digit "
24 + ch + " is " + ch);
25 }
26 else {
27 System.out.println(ch + " is an invalid input");
28 }
29 }
30 }

VideoNote

Convert hex to decimal

input string

check length

is A-F?

is 0-9?

Enter a hex digit: AB7C
You must enter exactly one character

Enter a hex digit: B
The decimal value for hex digit B is 11

Enter a hex digit: 8
The decimal value for hex digit 8 is 8

Enter a hex digit: T
T is an invalid input

The program reads a string from the console (line 7) and checks if the string contains a
single character (line 10). If not, report an error and exit the program (line 12).

The program invokes the Character.toUpperCase method to obtain the character ch as
an uppercase letter (line 16). If ch is between 'A' and 'F' (line 17), the corresponding deci-
mal value is ch – 'A' + 10 (line 18). Note that ch – 'A' is 0 if ch is 'A', ch – 'A' is 1

144 Chapter 4 Mathematical Functions, Characters, and Strings

if ch is 'B', and so on. When two characters perform a numerical operation, the characters’
Unicodes are used in the computation.

The program invokes the Character.isDigit(ch) method to check if ch is between
'0' and '9' (line 22). If so, the corresponding decimal digit is the same as ch (lines 23–24).

If ch is not between 'A' and 'F' nor a digit character, the program displays an error message
(line 27).

4.5.3 Case Study: Revising the Lottery Program Using Strings
The lottery program in Listing 3.8, Lottery.java, generates a random two-digit number, prompts
the user to enter a two-digit number, and determines whether the user wins according to the
following rule:

1. If the user input matches the lottery number in the exact order, the award is $10,000.

2. If all the digits in the user input match all the digits in the lottery number, the award is
$3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is $1,000.

The program in Listing 3.8 uses an integer to store the number. Listing 4.5 gives a new
program that generates a random two-digit string instead of a number and receives the user
input as a string instead of a number.

LISTING 4.5 LotteryUsingStrings.java
 1 import java.util.Scanner;
 2
 3 public class LotteryUsingStrings {
 4 public static void main(String[] args) {
 5 // Generate a lottery as a two-digit string
 6 String lottery = "" + (int)(Math.random() * 10)
 7 + (int)(Math.random() * 10);
 8
 9 // Prompt the user to enter a guess
10 Scanner input = new Scanner(System.in);
11 System.out.print("Enter your lottery pick (two digits): ");
12 String guess = input.nextLine();
13
14 // Get digits from lottery
15 char lotteryDigit1 = lottery.charAt(0);
16 char lotteryDigit2 = lottery.charAt(1);
17
18 // Get digits from guess
19 char guessDigit1 = guess.charAt(0);
20 char guessDigit2 = guess.charAt(1);
21
22 System.out.println("The lottery number is " + lottery);
23
24 // Check the guess
25 if (guess.equals(lottery))
26 System.out.println("Exact match: you win $10,000");
27 else if (guessDigit2 == lotteryDigit1
28 && guessDigit1 == lotteryDigit2)
29 System.out.println("Match all digits: you win $3,000");
30 else if (guessDigit1 == lotteryDigit1
31 || guessDigit1 == lotteryDigit2
32 || guessDigit2 == lotteryDigit1
33 || guessDigit2 == lotteryDigit2)
34 System.out.println("Match one digit: you win $1,000");

generate a lottery

enter a guess

exact match?

match all digits?

match one digit?

4.6 Formatting Console Output 145

35 else

36 System.out.println("Sorry, no match");
37 }
38 }

Enter your lottery pick (two digits): 00
The lottery number is 00
Exact match: you win $10,000

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

The program generates two random digits and concatenates them into the string lottery
(lines 6–7). After this, lottery contains two random digits.

The program prompts the user to enter a guess as a two-digit string (line 12) and checks the
guess against the lottery number in this order:

 ■ First check whether the guess matches the lottery exactly (line 25).

 ■ If not, check whether the reversal of the guess matches the lottery (line 27).

 ■ If not, check whether one digit is in the lottery (lines 30–33).

 ■ If not, nothing matches and display “Sorry, no match” (line 36).

4.6 Formatting Console Output
You can use the System.out.printf method to display formatted output on the
console.

Often, it is desirable to display numbers in a certain format. For example, the following code
computes interest, given the amount and the annual interest rate.

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $" + interest);

Key
Point

Interest is $16.404674

146 Chapter 4 Mathematical Functions, Characters, and Strings

Because the interest amount is currency, it is desirable to display only two digits after the
decimal point. To do this, you can write the code as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $"
 + (int)(interest * 100) / 100.0);

Interest is $16.40

Interest is $16.4

However, the format is still not correct. There should be two digits after the decimal point:
16.40 rather than 16.4. You can fix it by using the printf method, like this:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.printf("Interest is $%4.2f",
 interest);

printf

% 2 f4 .

field width

precision

conversion code

format specifier

The syntax to invoke this method is

System.out.printf(format, item1, item2, ..., itemk)

where format is a string that may consist of substrings and format specifiers.
A format specifier specifies how an item should be displayed. An item may be a numeric

value, a character, a Boolean value, or a string. A simple format specifier consists of a percent
sign (%) followed by a conversion code. Table 4.11 lists some frequently used simple format
specifiers.

format specifier

Format Specifier Output Example

%b a Boolean value true or false

%c a character ‘a’

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string “Java is cool”

TABLE 4.11 Frequently Used Format Specifiers

Here is an example:

int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

4.6 Formatting Console Output 147

Items must match the format specifiers in order, in number, and in exact type. For example,
the format specifier for count is %d and for amount is %f. By default, a floating-point value
is displayed with six digits after the decimal point. You can specify the width and precision in
a format specifier, as shown in the examples in Table 4.12.

Example Output

%5c Output the character and add four spaces before the character item, because the
width is 5.

%6b Output the Boolean value and add one space before the false value and two spaces
before the true value.

%5d Output the integer item with width at least 5. If the number of digits in the item is
6 5, add spaces before the number. If the number of digits in the item is 7 5, the
width is automatically increased.

%10.2f Output the floating-point item with width at least 10 including a decimal point
and two digits after the point. Thus, there are 7 digits allocated before the decimal
point. If the number of digits before the decimal point in the item is 6 7, add spaces
before the number. If the number of digits before the decimal point in the item is
7 7, the width is automatically increased.

%10.2e Output the floating-point item with width at least 10 including a decimal point, two
digits after the point and the exponent part. If the displayed number in scientific
notation has width less than 10, add spaces before the number.

%12s Output the string with width at least 12 characters. If the string item has fewer
than 12 characters, add spaces before the string. If the string item has more than
12 characters, the width is automatically increased.

TABLE 4.12 Examples of Specifying Width and Precision

If an item requires more spaces than the specified width, the width is automatically
increased. For example, the following code

System.out.printf("%3d#%2s#%4.2f\n", 1234, "Java", 51.6653);

displays

1234#Java#51.67

The specified width for int item 1234 is 3, which is smaller than its actual size 4. The
width is automatically increased to 4. The specified width for string item Java is 2, which is
smaller than its actual size 4. The width is automatically increased to 4. The specified width
for double item 51.6653 is 4, but it needs width 5 to display 51.67, so the width is automati-
cally increased to 5.

By default, the output is right justified. You can put the minus sign (-) in the format
specifier to specify that the item is left justified in the output within the specified field. For
example, the following statements

System.out.printf("%8d%8s%8.1f\n", 1234, "Java", 5.63);
System.out.printf("%-8d%-8s%-8.1f \n", 1234, "Java", 5.63);

display

right justify
left justify

where the square box (n) denotes a blank space.

8
1234 Java 5.6

1234 Java 5.6

8 8

148 Chapter 4 Mathematical Functions, Characters, and Strings

Caution
The items must match the format specifiers in exact type. The item for the format

specifier %f or %e must be a floating-point type value such as 40.0, not 40. Thus, an

int variable cannot match %f or %e.

Tip
The % sign denotes a format specifier. To output a literal % in the format string, use %%.

Listing 4.6 gives a program that uses printf to display a table.

LISTING 4.6 FormatDemo.java
 1 public class FormatDemo {
 2 public static void main(String[] args) {
 3 // Display the header of the table
 4 System.out.printf("%-10s%-10s%-10s%-10s%-10s\n", "Degrees",
 5 "Radians", "Sine", "Cosine", "Tangent");
 6
 7 // Display values for 30 degrees
 8 int degrees = 30;
 9 double radians = Math.toRadians(degrees);
10 System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees,
11 radians, Math.sin(radians), Math.cos(radians),
12 Math.tan(radians));
13
14 // Display values for 60 degrees
15 degrees = 60;
16 radians = Math.toRadians(degrees);
17 System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees,
18 radians, Math.sin(radians), Math.cos(radians),
19 Math.tan(radians));
20 }
21 }

display table header

values for 30 degrees

values for 60 degrees

Degrees Radians Sine Cosine Tangent
30 0.5236 0.5000 0.8660 0.5773
60 1.0472 0.8660 0.5000 1.7320

The statement in lines 4–5 displays the column names of the table. The column names are
strings. Each string is displayed using the specifier %-10s, which left-justifies the string. The
statement in lines 10–12 displays the degrees as an integer and four float values. The integer is
displayed using the specifier %-10d and each float is displayed using the specifier %-10.4f,
which specifies four digits after the decimal point.

4.22 What are the format specifiers for outputting a Boolean value, a character, a decimal
integer, a floating-point number, and a string?

4.23 What is wrong in the following statements?

(a) System.out.printf("%5d %d", 1, 2, 3);

(b) System.out.printf("%5d %f", 1);

(c) System.out.printf("%5d %f", 1, 2);

✓Point✓Check

4.24 Show the output of the following statements.

(a) System.out.printf("amount is %f %e\n", 32.32, 32.32);

(b) System.out.printf("amount is %5.2%% %5.4e\n", 32.327, 32.32);

(c) System.out.printf("%6b\n", (1 > 2));

(d) System.out.printf("%6s\n", "Java");

(e) System.out.printf("%-6b%s\n", (1 > 2), "Java");

(f) System.out.printf("%6b%-8s\n", (1 > 2), "Java");

KEY TERMS

char type 125
encoding 125
escape character 127
escape sequence 126
format specifier 146

instance method 130
static method 130
supplementary Unicode 125
Unicode 125
whitespace character 133

CHAPTER SUMMARY

1. Java provides the mathematical methods sin, cos, tan, asin, acos, atan, toRadians,
toDegree, exp, log, log10, pow, sqrt, cell, floor, rint, round, min, max,
abs, and random in the Math class for performing mathematical functions.

2. The character type char represents a single character.

3. An escape sequence consists of a backslash (\) followed by a character or a combina-
tion of digits.

4. The character \ is called the escape character.

5. The characters ' ', \t, \f, \r, and \n are known as the whitespace characters.

6. Characters can be compared based on their Unicode using the relational operators.

7. The Character class contains the methods isDigit, isLetter, isLetterOrDigit,
isLowerCase, isUpperCase for testing whether a character is a digit, letter, lower-
case, and uppercase. It also contains the toLowerCase and toUpperCase methods for
returning a lowercase or uppercase letter.

8. A string is a sequence of characters. A string value is enclosed in matching double
quotes ("). A character value is enclosed in matching single quotes (').

9. Strings are objects in Java. A method that can only be invoked from a specific object is
called an instance method. A non-instance method is called a static method, which can
be invoked without using an object.

Chapter Summary 149

150 Chapter 4 Mathematical Functions, Characters, and Strings

10. You can get the length of a string by invoking its length() method, retrieve a char-
acter at the specified index in the string using the charAt(index) method, and
use the indexOf and lastIndexOf methods to find a character or a substring in
a string.

11. You can use the concat method to concatenate two strings, or the plus (+) operator to
concatenate two or more strings.

12. You can use the substring method to obtain a substring from the string.

13. You can use the equals and compareTo methods to compare strings. The equals
method returns true if two strings are equal, and false if they are not equal. The
compareTo method returns 0, a positive integer, or a negative integer, depending on
whether one string is equal to, greater than, or less than the other string.

14. The printf method can be used to display a formatted output using format
specifiers.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Section 4.2

4.1 (Geometry: area of a pentagon) Write a program that prompts the user to enter
the length from the center of a pentagon to a vertex and computes the area of the
pentagon, as shown in the following figure.

r

 The formula for computing the area of a pentagon is Area =
5 * s2

4 * tan¢p
5
≤ , where

s is the length of a side. The side can be computed using the formula s = 2r sin
p

5
,

 where r is the length from the center of a pentagon to a vertex. Round up two digits
after the decimal point. Here is a sample run:

Enter the length from the center to a vertex: 5.5
The area of the pentagon is 71.92

www.cs.armstrong.edu/liang/intro10e/quiz.html

*4.2 (Geometry: great circle distance) The great circle distance is the distance between
two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the geographi-
cal latitude and longitude of two points. The great circle distance between the two
points can be computed using the following formula:

d = radius * arccos(sin(x1) * sin(x2) + cos(x1) * cos(x2) * cos(y1 - y2))

Write a program that prompts the user to enter the latitude and longitude of two
points on the earth in degrees and displays its great circle distance. The average
earth radius is 6,371.01 km. Note that you need to convert the degrees into radians
using the Math.toRadians method since the Java trigonometric methods use
radians. The latitude and longitude degrees in the formula are for north and west.
Use negative to indicate south and east degrees. Here is a sample run:

Programming Exercises 151

Enter point 1 (latitude and longitude) in degrees: 39.55, -116.25
Enter point 2 (latitude and longitude) in degrees: 41.5, 87.37
The distance between the two points is 10691.79183231593 km

*4.3 (Geography: estimate areas) Find the GPS locations for Atlanta, Georgia;
Orlando, Florida; Savannah, Georgia; and Charlotte, North Carolina from
www.gps-data-team.com/map/ and compute the estimated area enclosed by these
four cities. (Hint: Use the formula in Programming Exercise 4.2 to compute the
distance between two cities. Divide the polygon into two triangles and use the
formula in Programming Exercise 2.19 to compute the area of a triangle.)

4.4 (Geometry: area of a hexagon) The area of a hexagon can be computed using the
following formula (s is the length of a side):

Area =
6 * s2

4 * tan¢p
6
≤

 Write a program that prompts the user to enter the side of a hexagon and displays
its area. Here is a sample run:

VideoNote

Compute great circle distance

Enter the side: 5.5
The area of the hexagon is 78.59

*4.5 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in
which all sides are of the same length and all angles have the same degree (i.e., the
polygon is both equilateral and equiangular). The formula for computing the area
of a regular polygon is

Area =
n * s2

4 * tan¢p
n
≤

www.gps-data-team.com/map/

152 Chapter 4 Mathematical Functions, Characters, and Strings

 Here, s is the length of a side. Write a program that prompts the user to enter the
number of sides and their length of a regular polygon and displays its area. Here is
a sample run:

Enter the number of sides: 5
Enter the side: 6.5
The area of the polygon is 74.69017017488385

*4.6 (Random points on a circle) Write a program that generates three random points
on a circle centered at (0, 0) with radius 40 and display three angles in a triangle
formed by these three points, as shown in Figure 4.7a. (Hint: Generate a random
angle a in radians between 0 and 2p, as shown in Figure 4.7b and the point deter-
mined by this angle is (r*cos(a), r*sin(a)).)

FIGURE 4.7 (a) A triangle is formed from three random points on the circle. (b) A random
point on the circle can be generated using a random angle a. (c) A pentagon is centered at
(0, 0) with one point at the 0 o’clock position.

65

55

60

0 o’clock positionx = r × cos(α) and y = r ×sin(α)

(a) (b) (c)

(0, 0)

p2

p1

p5p4

p3

(x, y)

α

r
r

*4.7 (Corner point coordinates) Suppose a pentagon is centered at (0, 0) with one point
at the 0 o’clock position, as shown in Figure 4.7c. Write a program that prompts
the user to enter the radius of the bounding circle of a pentagon and displays the
coordinates of the five corner points on the pentagon. Here is a sample run:

Enter the radius of the bounding circle: 100
The coordinates of five points on the pentagon are
(95.1057, 30.9017)
(0.000132679, 100)
(-95.1056, 30.9019)
(-58.7788, -80.9015)
(58.7782, -80.902)

Sections 4.3–4.6

*4.8 (Find the character of an ASCII code) Write a program that receives an ASCII code
(an integer between 0 and 127) and displays its character. Here is a sample run:

Enter an ASCII code: 69
The character for ASCII code 69 is E

*4.9 (Find the Unicode of a character) Write a program that receives a character and
displays its Unicode. Here is a sample run:

Programming Exercises 153

Enter a character: E
The Unicode for the character E is 69

*4.10 (Guess birthday) Rewrite Listing 4.3, GuessBirthday.java, to prompt the user to
enter the character Y for Yes and N for No rather than entering 1 for Yes and 0
for No.

*4.11 (Decimal to hex) Write a program that prompts the user to enter an integer between
0 and 15 and displays its corresponding hex number. Here are some sample runs:

Enter a decimal value (0 to 15): 11
The hex value is B

Enter a decimal value (0 to 15): 5
The hex value is 5

Enter a decimal value (0 to 15): 31
31 is an invalid input

4.12 (Hex to binary) Write a program that prompts the user to enter a hex digit and
displays its corresponding binary number. Here is a sample run:

Enter a hex digit: B
The binary value is 1011

Enter a hex digit: G
G is an invalid input

*4.13 (Vowel or consonant?) Write a program that prompts the user to enter a letter and
check whether the letter is a vowel or consonant. Here is a sample run:

VideoNote

Convert hex to binary

Enter a letter: B
B is a consonant

Enter a letter grade: a
a is a vowel

Enter a letter grade: #
is an invalid input

154 Chapter 4 Mathematical Functions, Characters, and Strings

*4.14 (Convert letter grade to number) Write a program that prompts the user to enter a
letter grade A, B, C, D, or F and displays its corresponding numeric value 4, 3, 2,
1, or 0. Here is a sample run:

Enter a letter grade: B
The numeric value for grade B is 3

Enter a letter grade: T
T is an invalid grade

*4.15 (Phone key pads) The international standard letter/number mapping found on the
telephone is shown below:

 Write a program that prompts the user to enter a letter and displays its correspond-
ing number.

Enter a letter: A
The corresponding number is 2

Enter a letter: a
The corresponding number is 2

Enter a letter: +
+ is an invalid input

4.16 (Random character) Write a program that displays a random uppercase letter
using the Math.random() method.

*4.17 (Days of a month) Write a program that prompts the user to enter a year and the
first three letters of a month name (with the first letter in uppercase) and displays
the number of days in the month. Here is a sample run:

Enter a year: 2001
Enter a month: Jan
Jan 2001 has 31 days

Programming Exercises 155

*4.18 (Student major and status) Write a program that prompts the user to enter two
characters and displays the major and status represented in the characters. The first
character indicates the major and the second is number character 1, 2, 3, 4, which
indicates whether a student is a freshman, sophomore, junior, or senior. Suppose
the following chracters are used to denote the majors:

M: Mathematics
C: Computer Science
I: Information Technology

Here is a sample run:

4.19 (Business: check ISBN-10) Rewrite the Programming Exercise 3.9 by entering the
ISBN number as a string.

4.20 (Process a string) Write a program that prompts the user to enter a string and dis-
plays its length and its first character.

*4.21 (Check SSN) Write a program that prompts the user to enter a Social Security
number in the format DDD-DD-DDDD, where D is a digit. Your program should
check whether the input is valid. Here are sample runs:

Enter a year: 2016
Enter a month: Feb
Jan 2016 has 29 days

Enter two characters: M1
Mathematics Freshman

Enter two characters: C3
Computer Science Junior

Enter two characters: T3
Invalid input

Enter a SSN: 232-23-5435
232-23-5435 is a valid social security number

Enter a SSN: 23-23-5435
23-23-5435 is an invalid social security number

Enter string s1: ABCD
Enter string s2: BC
BC is a substring of ABCD

4.22 (Check substring) Write a program that prompts the user to enter two strings and
reports whether the second string is a substring of the first string.

156 Chapter 4 Mathematical Functions, Characters, and Strings

Enter string s1: ABCD
Enter string s2: BDC
BDC is not a substring of ABCD

*4.23 (Financial application: payroll) Write a program that reads the following infor-
mation and prints a payroll statement:

Employee’s name (e.g., Smith)
Number of hours worked in a week (e.g., 10)
Hourly pay rate (e.g., 9.75)
Federal tax withholding rate (e.g., 20%)
State tax withholding rate (e.g., 9%)

A sample run is shown below:

Enter employee's name: Smith
Enter number of hours worked in a week: 10
Enter hourly pay rate: 9.75
Enter federal tax withholding rate: 0.20
Enter state tax withholding rate: 0.09

Employee Name: Smith
Hours Worked: 10.0
Pay Rate: $9.75
Gross Pay: $97.5
Deductions:
 Federal Withholding (20.0%): $19.5
 State Withholding (9.0%): $8.77
 Total Deduction: $28.27
Net Pay: $69.22

Enter the first city: Chicago
Enter the second city: Los Angeles
Enter the third city: Atlanta
The three cities in alphabetical order are Atlanta Chicago Los Angeles

*4.24 (Order three cities) Write a program that prompts the user to enter three cities and
displays them in ascending order. Here is a sample run:

*4.25 (Generate vehicle plate numbers) Assume a vehicle plate number consists of three
uppercase letters followed by four digits. Write a program to generate a plate
number.

*4.26 (Financial application: monetary units) Rewrite Listing 2.10, ComputeChange.
java, to fix the possible loss of accuracy when converting a float value to an int
value. Read the input as a string such as "11.56". Your program should extract
the dollar amount before the decimal point and the cents after the decimal amount
using the indexOf and substring methods.

LOOPS

Objectives
■ To write programs for executing statements repeatedly using a while

loop (§5.2).

■ To follow the loop design strategy to develop loops (§§5.2.1–5.2.3).

■ To control a loop with a sentinel value (§5.2.4).

■ To obtain large input from a file using input redirection rather than
typing from the keyboard (§5.2.5).

■ To write loops using do-while statements (§5.3).

■ To write loops using for statements (§5.4).

■ To discover the similarities and differences of three types of loop
statements (§5.5).

■ To write nested loops (§5.6).

■ To learn the techniques for minimizing numerical errors (§5.7).

■ To learn loops from a variety of examples (GCD, FutureTuition,
Dec2Hex) (§5.8).

■ To implement program control with break and continue (§5.9).

■ To process characters in a string using a loop in a case study for check-
ing palindrome (§5.10).

■ To write a program that displays prime numbers (§5.11).

CHAPTER

5

158 Chapter 5 Loops

5.1 Introduction
A loop can be used to tell a program to execute statements repeatedly.

Suppose that you need to display a string (e.g., Welcome to Java!) a hundred times. It
would be tedious to have to write the following statement a hundred times:

Key
Pointproblem

System.out.println("Welcome to Java!");
System.out.println("Welcome to Java!");
...
System.out.println("Welcome to Java!");

100 times

So, how do you solve this problem?
Java provides a powerful construct called a loop that controls how many times an operation

or a sequence of operations is performed in succession. Using a loop statement, you simply
tell the computer to display a string a hundred times without having to code the print statement
a hundred times, as follows:

int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count++;
}

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it
executes the loop body to display the message Welcome to Java! and increments count
by 1. It repeatedly executes the loop body until count < 100 becomes false. When count
< 100 is false (i.e., when count reaches 100), the loop terminates and the next statement
after the loop statement is executed.

Loops are constructs that control repeated executions of a block of statements. The concept
of looping is fundamental to programming. Java provides three types of loop statements:
while loops, do-while loops, and for loops.

5.2 The while Loop
A while loop executes statements repeatedly while the condition is true.

The syntax for the while loop is:

while (loop-continuation-condition) {
 // Loop body
 Statement(s);
}

Figure 5.1a shows the while-loop flowchart. The part of the loop that contains the state-
ments to be repeated is called the loop body. A one-time execution of a loop body is referred to
as an iteration (or repetition) of the loop. Each loop contains a loop-continuation-condition, a
Boolean expression that controls the execution of the body. It is evaluated each time to deter-
mine if the loop body is executed. If its evaluation is true, the loop body is executed; if its
evaluation is false, the entire loop terminates and the program control turns to the statement
that follows the while loop.

The loop for displaying Welcome to Java! a hundred times introduced in the pre-
ceding section is an example of a while loop. Its flowchart is shown in Figure 5.1b. The

loop

Key
Point

while loop

loop body

iteration
loop-continuation-
condition

In this example, you know exactly how many times the loop body needs to be executed
because the control variable count is used to count the number of executions. This type of
loop is known as a counter-controlled loop.

Note
The loop-continuation-condition must always appear inside the parentheses.

The braces enclosing the loop body can be omitted only if the loop body contains one

or no statement.

Here is another example to help understand how a loop works.

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
 i++;
}
System.out.println("sum is " + sum); // sum is 45

If i < 10 is true, the program adds i to sum. Variable i is initially set to 1, then is incre-
mented to 2, 3, and up to 10. When i is 10, i < 10 is false, so the loop exits. Therefore,
the sum is 1 + 2 + 3 + ... + 9 = 45.

What happens if the loop is mistakenly written as follows?

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
}

This loop is infinite, because i is always 1 and i < 10 will always be true.

counter-controlled loop

FIGURE 5.1 The while loop repeatedly executes the statements in the loop body when the
loop-continuation-condition evaluates to true.

loop-
continuation-

condition?

true

false

(a)

(count < 100)?

true

false

(b)

count = 0;

System.out.println("Welcome to Java!");
count++;

Statement(s)
(loop body)

int count = 0;
while (count < 100) {
 System.out.printIn("Welcome to Java!"); loop body
 count++;
}

loop-continuation-condition

5.2 The while Loop 159

loop-continuation-condition is count < 100 and the loop body contains the follow-
ing two statements:

160 Chapter 5 Loops

Note
Make sure that the loop-continuation-condition eventually becomes false

so that the loop will terminate. A common programming error involves infinite loops

(i. e., the loop runs forever). If your program takes an unusually long time to run and

does not stop, it may have an infinite loop. If you are running the program from the

command window, press CTRL+C to stop it.

Caution
Programmers often make the mistake of executing a loop one more or less time. This

is commonly known as the off-by-one error. For example, the following loop displays

Welcome to Java 101 times rather than 100 times. The error lies in the condition,

which should be count < 100 rather than count <= 100.

int count = 0;
while (count <= 100) {
 System.out.println("Welcome to Java!");
 count++;
}

Recall that Listing 3.1, AdditionQuiz.java, gives a program that prompts the user to enter
an answer for a question on addition of two single digits. Using a loop, you can now rewrite
the program to let the user repeatedly enter a new answer until it is correct, as shown in
Listing 5.1.

LISTING 5.1 RepeatAdditionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class RepeatAdditionQuiz {
 4 public static void main(String[] args) {
 5 int number1 = (int)(Math.random() * 10);
 6 int number2 = (int)(Math.random() * 10);
 7
 8 // Create a Scanner
 9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13 int answer = input.nextInt();
14
15 while (number1 + number2 != answer) {
16 System.out.print("Wrong answer. Try again. What is "
17 + number1 + " + " + number2 + "? ");
18 answer = input.nextInt();
19 }
20
21 System.out.println("You got it!");
22 }
23 }

infinite loop

off-by-one error

generate number1
generate number2

show question

get first answer

check answer

read an answer

What is 5 + 9? 12
Wrong answer. Try again. What is 5 + 9? 34
Wrong answer. Try again. What is 5 + 9? 14
You got it!

The loop in lines 15–19 repeatedly prompts the user to enter an answer when number1
+ number2 != answer is true. Once number1 + number2 != answer is false, the
loop exits.

5.2.1 Case Study: Guessing Numbers
The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user
to enter a number continuously until the number matches the randomly generated number. For
each user input, the program tells the user whether the input is too low or too high, so the user
can make the next guess intelligently. Here is a sample run:

VideoNote

Guess a number

Guess a magic number between 0 and 100
Enter your guess: 50
Your guess is too high
Enter your guess: 25
Your guess is too low
Enter your guess: 42
Your guess is too high
Enter your guess: 39
Yes, the number is 39

The magic number is between 0 and 100. To minimize the number of guesses, enter 50
first. If your guess is too high, the magic number is between 0 and 49. If your guess is too
low, the magic number is between 51 and 100. So, you can eliminate half of the numbers from
further consideration after one guess.

How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think how you would solve the problem without writing a program. You
need first to generate a random number between 0 and 100, inclusive, then to prompt the user
to enter a guess, and then to compare the guess with the random number.

It is a good practice to code incrementally one step at a time. For programs involving loops,
if you don’t know how to write a loop right away, you may first write the code for executing
the loop one time, and then figure out how to repeatedly execute the code in a loop. For this
program, you may create an initial draft, as shown in Listing 5.2.

LISTING 5.2 GuessNumberOneTime.java
 1 import java.util.Scanner;
 2
 3 public class GuessNumberOneTime {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
10
11 // Prompt the user to guess the number
12 System.out.print("\nEnter your guess: ");
13 int guess = input.nextInt();
14
15 if (guess == number)
16 System.out.println("Yes, the number is " + number);

intelligent guess

think before coding

code incrementally

generate a number

enter a guess

correct guess?

5.2 The while Loop 161

162 Chapter 5 Loops

17 else if (guess > number)
18 System.out.println("Your guess is too high");
19 else

20 System.out.println("Your guess is too low");
21 }
22 }

When you run this program, it prompts the user to enter a guess only once. To let the user
enter a guess repeatedly, you may wrap the code in lines 11–20 in a loop as follows:

while (true) {
// Prompt the user to guess the number

 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();

if (guess == number)
 System.out.println("Yes, the number is " + number);

else if (guess > number)
 System.out.println("Your guess is too high");

else

 System.out.println("Your guess is too low");
} // End of loop

This loop repeatedly prompts the user to enter a guess. However, this loop is not correct,
because it never terminates. When guess matches number, the loop should end. So, the loop
can be revised as follows:

while (guess != number) {
// Prompt the user to guess the number

 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();

if (guess == number)
 System.out.println("Yes, the number is " + number);

else if (guess > number)
 System.out.println("Your guess is too high");

else

 System.out.println("Your guess is too low");
} // End of loop

The complete code is given in Listing 5.3.

LISTING 5.3 GuessNumber.java
 1 import java.util.Scanner;
 2
 3 public class GuessNumber {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
10
11 int guess = -1;
12 while (guess != number) {
13 // Prompt the user to guess the number
14 System.out.print("\nEnter your guess: ");

too high?

too low?

generate a number

15 guess = input.nextInt();
16
17 if (guess == number)
18 System.out.println("Yes, the number is " + number);
19 else if (guess > number)
20 System.out.println("Your guess is too high");
21 else

22 System.out.println("Your guess is too low");
23 } // End of loop
24 }
25 }

enter a guess

too high?

too low?

The program generates the magic number in line 6 and prompts the user to enter a guess
continuously in a loop (lines 12–23). For each guess, the program checks whether the guess
is correct, too high, or too low (lines 17–22). When the guess is correct, the program exits the
loop (line 12). Note that guess is initialized to -1. Initializing it to a value between 0 and 100
would be wrong, because that could be the number to be guessed.

5.2.2 Loop Design Strategies
Writing a correct loop is not an easy task for novice programmers. Consider three steps when
writing a loop.

Step 1: Identify the statements that need to be repeated.

Step 2: Wrap these statements in a loop like this:

while (true) {
 Statements;
}

Step 3: Code the loop-continuation-condition and add appropriate statements for
controlling the loop.

while (loop-continuation-condition) {
 Statements;
 Additional statements for controlling the loop;
}

line# number guess output

6 39

11 –1

iteration 1
15 50

20 Your guess is too high

iteration 2
15 25

22 Your guess is too low

iteration 3
15 42

20 Your guess is too high

iteration 4
15 39

18 Yes, the number is 39

5.2 The while Loop 163

164 Chapter 5 Loops

5.2.3 Case Study: Multiple Subtraction Quiz
The Math subtraction learning tool program in Listing 3.3, SubtractionQuiz.java, generates just
one question for each run. You can use a loop to generate questions repeatedly. How do you
write the code to generate five questions? Follow the loop design strategy. First identify the
statements that need to be repeated. These are the statements for obtaining two random numbers,
prompting the user with a subtraction question, and grading the question. Second, wrap the state-
ments in a loop. Third, add a loop control variable and the loop-continuation-condition
to execute the loop five times.

Listing 5.4 gives a program that generates five questions and, after a student answers all
five, reports the number of correct answers. The program also displays the time spent on the
test and lists all the questions.

LISTING 5.4 SubtractionQuizLoop.java
 1 import java.util.Scanner;
 2
 3 public class SubtractionQuizLoop {
 4 public static void main(String[] args) {
 5 final int NUMBER_OF_QUESTIONS = 5; // Number of questions
 6 int correctCount = 0; // Count the number of correct answers
 7 int count = 0; // Count the number of questions
 8 long startTime = System.currentTimeMillis();
 9 String output = " "; // output string is initially empty
10 Scanner input = new Scanner(System.in);
11
12 while (count < NUMBER_OF_QUESTIONS) {
13 // 1. Generate two random single-digit integers
14 int number1 = (int)(Math.random() * 10);
15 int number2 = (int)(Math.random() * 10);
16
17 // 2. If number1 < number2, swap number1 with number2
18 if (number1 < number2) {
19 int temp = number1;
20 number1 = number2;
21 number2 = temp;
22 }
23
24 // 3. Prompt the student to answer "What is number1 – number2?"
25 System.out.print(
26 "What is " + number1 + " - " + number2 + "? ");
27 int answer = input.nextInt();
28
29 // 4. Grade the answer and display the result
30 if (number1 - number2 == answer) {
31 System.out.println("You are correct!");
32 correctCount++; // Increase the correct answer count
33 }
34 else

35 System.out.println("Your answer is wrong.\n" + number1
36 + " - " + number2 + " should be " + (number1 - number2));
37
38 // Increase the question count
39 count++;
40
41 output += "\n" + number1 + "-" + number2 + "=" + answer +
42 ((number1 - number2 == answer) ? " correct" : " wrong");

VideoNote

Multiple subtraction quiz

get start time

loop

display a question

grade an answer

increase correct count

increase control variable

prepare output

43 }
44
45 long endTime = System.currentTimeMillis();
46 long testTime = endTime - startTime;
47
48 System.out.println("Correct count is " + correctCount +
49 "\nTest time is " + testTime / 1000 + " seconds\n" + output);
50 }
51 }

end loop

get end time
test time

display result

What is 9 – 2? 7
You are correct!

What is 3 – 0? 3
You are correct!

What is 3 – 2? 1
You are correct!

What is 7 – 4? 4
Your answer is wrong.
7 – 4 should be 3

What is 7 – 5? 4
Your answer is wrong.
7 – 5 should be 2

Correct count is 3
Test time is 1021 seconds

9–2=7 correct
3–0=3 correct
3–2=1 correct
7–4=4 wrong
7–5=4 wrong

The program uses the control variable count to control the execution of the loop. count
is initially 0 (line 7) and is increased by 1 in each iteration (line 39). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts
in line 8 and the time after the test ends in line 45, and computes the test time in line 46. The
test time is in milliseconds and is converted to seconds in line 49.

5.2.4 Controlling a Loop with a Sentinel Value
Another common technique for controlling a loop is to designate a special value when read-
ing and processing a set of values. This special input value, known as a sentinel value, signi-
fies the end of the input. A loop that uses a sentinel value to control its execution is called a
sentinel-controlled loop.

Listing 5.5 writes a program that reads and calculates the sum of an unspecified number
of integers. The input 0 signifies the end of the input. Do you need to declare a new variable
for each input value? No. Just use one variable named data (line 12) to store the input value
and use a variable named sum (line 15) to store the total. Whenever a value is read, assign it
to data and, if it is not zero, add it to sum (line 17).

sentinel value

sentinel-controlled loop

5.2 The while Loop 165

166 Chapter 5 Loops

LISTING 5.5 SentinelValue.java
 1 import java.util.Scanner;
 2
 3 public class SentinelValue {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Read an initial data
10 System.out.print(
11 "Enter an integer (the input ends if it is 0): ");
12 int data = input.nextInt();
13
14 // Keep reading data until the input is 0
15 int sum = 0;
16 while (data != 0) {
17 sum += data;
18
19 // Read the next data
20 System.out.print(
21 "Enter an integer (the input ends if it is 0): ");
22 data = input.nextInt();
23 }
24
25 System.out.println("The sum is " + sum);
26 }
27 }

input

loop

end of loop

display result

line# Data sum output

12 2

15 0

iteration 1
17 2

22 3

iteration 2
17 5

22 4

iteration 3
17 9

22 0

25 The sum is 9

Enter an integer (the input ends if it is 0): 2

Enter an integer (the input ends if it is 0): 3

Enter an integer (the input ends if it is 0): 4

Enter an integer (the input ends if it is 0): 0

The sum is 9

If data is not 0, it is added to sum (line 17) and the next item of input data is read (lines
20–22). If data is 0, the loop body is no longer executed and the while loop terminates. The
input value 0 is the sentinel value for this loop. Note that if the first input read is 0, the loop
body never executes, and the resulting sum is 0.

Caution
Don’t use floating-point values for equality checking in a loop control. Because floating-

point values are approximations for some values, using them could result in imprecise

counter values and inaccurate results.

Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0
 sum += item;
 item -= 0.1;
}
System.out.println(sum);

Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed.

The loop should terminate when item becomes 0. However, there is no guarantee that

item will be exactly 0, because the floating-point arithmetic is approximated. This loop

seems okay on the surface, but it is actually an infinite loop.

5.2.5 Input and Output Redirections
In the preceding example, if you have a large number of data to enter, it would be cumbersome
to type from the keyboard. You can store the data separated by whitespaces in a text file, say
input.txt, and run the program using the following command:

java SentinelValue < input.txt

This command is called input redirection. The program takes the input from the file input
.txt rather than having the user type the data from the keyboard at runtime. Suppose the con-
tents of the file are

2 3 4 5 6 7 8 9 12 23 32
23 45 67 89 92 12 34 35 3 1 2 4 0

The program should get sum to be 518.
Similarly, there is output redirection, which sends the output to a file rather than displaying

it on the console. The command for output redirection is:

java ClassName > output.txt

Input and output redirection can be used in the same command. For example, the following
command gets input from input.txt and sends output to output.txt:

java SentinelValue output.txt

Try running the program to see what contents are in output.txt.

5.1 Analyze the following code. Is count < 100 always true, always false, or some-
times true or sometimes false at Point A, Point B, and Point C?

int count = 0;
while (count < 100) {

// Point A
 System.out.println("Welcome to Java!");
 count++;

// Point B
}
// Point C

numeric error

input redirection

output redirection

✓Point✓Check

5.2 The while Loop 167

168 Chapter 5 Loops

5.2 What is wrong if guess is initialized to 0 in line 11 in Listing 5.3?

5.3 How many times are the following loop bodies repeated? What is the output of each
loop?

int i = 1;
while (i < 10)

if (i % 2 == 0)
 System.out.println(i);

(a)

int i = 1;
while (i < 10)

if (i % 2 == 0)
 System.out.println(i++);

(b)

int i = 1;
while (i < 10)

if ((i++) % 2 == 0)
 System.out.println(i);

(c)

5.4 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

int number, max;
 number = input.nextInt();
 max = number;

while (number != 0) {
 number = input.nextInt();

if (number > max)
 max = number;
 }

 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

5.5 What is the output of the following code? Explain the reason.

int x = 80000000;

while (x > 0)
 x++;

System.out.println("x is " + x);

5.3 The do-while Loop
A do-while loop is the same as a while loop except that it executes the loop body
first and then checks the loop continuation condition.

The do-while loop is a variation of the while loop. Its syntax is:

do {
// Loop body;

 Statement(s);
} while (loop-continuation-condition);

Its execution flowchart is shown in Figure 5.2.
The loop body is executed first, and then the loop-continuation-condition is evalu-

ated. If the evaluation is true, the loop body is executed again; if it is false, the do-while

Key
Point

do-while loop

loop terminates. The difference between a while loop and a do-while loop is the order in
which the loop-continuation-condition is evaluated and the loop body executed. You
can write a loop using either the while loop or the do-while loop. Sometimes one is a more
convenient choice than the other. For example, you can rewrite the while loop in Listing 5.5
using a do-while loop, as shown in Listing 5.6.

LISTING 5.6 TestDoWhile.java
 1 import java.util.Scanner;
 2
 3 public class TestDoWhile {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 int data;
 7 int sum = 0;
 8
 9 // Create a Scanner
10 Scanner input = new Scanner(System.in);
11
12 // Keep reading data until the input is 0
13 do {
14 // Read the next data
15 System.out.print(
16 "Enter an integer (the input ends if it is 0): ");
17 data = input.nextInt();
18
19 sum += data;
20 } while (data != 0);
21
22 System.out.println("The sum is " + sum);
23 }
24 }

loop

end loop

FIGURE 5.2 The do-while loop executes the loop body first, then checks the loop-
continuation-condition to determine whether to continue or terminate the loop.

true

false

loop-
continuation-

condition?

Statement(s)
(loop body)

Enter an integer (the input ends if it is 0): 3

Enter an integer (the input ends if it is 0): 5

Enter an integer (the input ends if it is 0): 6

Enter an integer (the input ends if it is 0): 0

The sum is 14

5.3 The do-while Loop 169

170 Chapter 5 Loops

Tip
Use a do-while loop if you have statements inside the loop that must be executed

at least once, as in the case of the do-while loop in the preceding TestDoWhile

program. These statements must appear before the loop as well as inside it if you use

a while loop.

5.6 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

int number, max;
 number = input.nextInt();
 max = number;

do {
 number = input.nextInt();

if (number > max)
 max = number;
 } while (number != 0);

 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

5.7 What are the differences between a while loop and a do-while loop? Convert the
following while loop into a do-while loop.

Scanner input = new Scanner(System.in);
int sum = 0;
System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
int number = input.nextInt();
while (number != 0) {
 sum += number;
 System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
 number = input.nextInt();
}

5.4 The for Loop
A for loop has a concise syntax for writing loops.

Often you write a loop in the following common form:

i = initialValue; // Initialize loop control variable
while (i < endValue)

// Loop body
 ...
 i++; // Adjust loop control variable
}

✓Point✓Check

Key
Point

A for loop can be used to simplify the preceding loop as:

for (i = initialValue; i < endValue; i++)
// Loop body

 ...
}

In general, the syntax of a for loop is:

for (initial-action; loop-continuation-condition;
 action-after-each-iteration) {

// Loop body;
 Statement(s);
}

The flowchart of the for loop is shown in Figure 5.3a.

for loop

FIGURE 5.3 A for loop performs an initial action once, then repeatedly executes
the statements in the loop body, and performs an action after an iteration when the
loop-continuation-condition evaluates to true.

Statement(s)
(loop body)

(a)

initial-action

action-after-each-iteration

true

false
loop-

continuation-
condition?

System.out.println(
 "Welcome to Java");

(b)

i = 0

i++

true

false
(i < 100)?

The for loop statement starts with the keyword for, followed by a pair of parenthe-
ses enclosing the control structure of the loop. This structure consists of initial-action,
loop-continuation-condition, and action-after-each-iteration. The control
structure is followed by the loop body enclosed inside braces. The initial-action, loop-
continuation-condition, and action-after-each-iteration are separated by
semicolons.

A for loop generally uses a variable to control how many times the loop body is executed
and when the loop terminates. This variable is referred to as a control variable. The initial-
action often initializes a control variable, the action-after-each-iteration usually
increments or decrements the control variable, and the loop-continuation-condition

control variable

5.4 The for Loop 171

172 Chapter 5 Loops

tests whether the control variable has reached a termination value. For example, the following
for loop prints Welcome to Java! a hundred times:

int i;
for (i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

The flowchart of the statement is shown in Figure 5.3b. The for loop initializes i to 0, then
repeatedly executes the println statement and evaluates i++ while i is less than 100.

The initial-action, i = 0, initializes the control variable, i. The loop-
continuation-condition, i < 100, is a Boolean expression. The expression is evaluated
right after the initialization and at the beginning of each iteration. If this condition is true,
the loop body is executed. If it is false, the loop terminates and the program control turns to
the line following the loop.

Theaction-after-each-iteration,i++, is a statement that adjusts the control variable.
This statement is executed after each iteration and increments the control variable. Eventually,
the value of the control variable should force the loop-continuation-condition to
become false; otherwise, the loop is infinite.

The loop control variable can be declared and initialized in the for loop. Here is an example:

for (int i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

If there is only one statement in the loop body, as in this example, the braces can be omitted.

Tip
The control variable must be declared inside the control structure of the loop or before

the loop. If the loop control variable is used only in the loop, and not elsewhere, it is a

good programming practice to declare it in the initial-action of the for loop. If

the variable is declared inside the loop control structure, it cannot be referenced outside

the loop. In the preceding code, for example, you cannot reference i outside the for

loop, because it is declared inside the for loop.

Note
The initial-action in a for loop can be a list of zero or more comma-separated

variable declaration statements or assignment expressions. For example:

for (int i = 0, j = 0; i + j < 10; i++, j++) {
// Do something

}

The action-after-each-iteration in a for loop can be a list of zero or more

comma-separated statements. For example:

for (int i = 1; i < 100; System.out.println(i), i++);

This example is correct, but it is a bad example, because it makes the code difficult to

read. Normally, you declare and initialize a control variable as an initial action and incre-

ment or decrement the control variable as an action after each iteration.

Note
If the loop-continuation-condition in a for loop is omitted, it is implicitly

true. Thus the statement given below in (a), which is an infinite loop, is the same as

in (b). To avoid confusion, though, it is better to use the equivalent loop in (c).

initial-action

action-after-each-iteration

omitting braces

declare control variable

for loop variations

5.8 Do the following two loops result in the same value in sum?

✓Point✓Check

Equivalent Equivalentfor (; ;) {
 // Do something
}

(a)

for (; true;) {
 // Do something
}

(b)

while (true) {
 // Do something
}

(c)
This is better

for (int i = 0; i < 10; ++i) {
 sum += i;
}

(a)

for (int i = 0; i < 10; i++) {
 sum += i;
}

(b)

5.9 What are the three parts of a for loop control? Write a for loop that prints the num-
bers from 1 to 100.

5.10 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

int number, sum = 0, count;

for (count = 0; count < 5; count++) {
 number = input.nextInt();
 sum += number;
 }

 System.out.println("sum is " + sum);
 System.out.println("count is " + count);
 }
}

5.11 What does the following statement do?

for (; ;) {
// Do something

}

5.12 If a variable is declared in a for loop control, can it be used after the loop exits?

5.13 Convert the following for loop statement to a while loop and to a do-while loop:

long sum = 0;
for (int i = 0; i <= 1000; i++)
 sum = sum + i;

5.14 Count the number of iterations in the following loops.

5.4 The for Loop 173

int count = 0;
while (count < n) {
 count++;
}

(a)

for (int count = 0;
 count <= n; count++) {
}

(b)

174 Chapter 5 Loops

5.5 Which Loop to Use?
You can use a for loop, a while loop, or a do-while loop, whichever is convenient.

The while loop and for loop are called pretest loops because the continuation condition
is checked before the loop body is executed. The do-while loop is called a posttest loop
because the condition is checked after the loop body is executed. The three forms of loop
statements—while, do-while, and for—are expressively equivalent; that is, you can write
a loop in any of these three forms. For example, a while loop in (a) in the following figure
can always be converted into the for loop in (b).

Key
Pointpretest loop

posttest loop

int count = 5;
while (count < n) {
 count++;
}

(c)

int count = 5;
while (count < n) {
 count = count + 3;
}

(d)

while (loop-continuation-condition) {
// Loop body

}

(a)

for (; loop-continuation-condition;) {
// Loop body

}

(b)

Equivalent

A for loop in (a) in the next figure can generally be converted into the while loop in
(b) except in certain special cases (see Checkpoint Question 5.25 for such a case).

Equivalent

for (initial-action;
 loop-continuation-condition;
 action-after-each-iteration) {

// Loop body;
}

(a)

initial-action;
while (loop-continuation-condition) {

// Loop body;
 action-after-each-iteration;
}

(b)

Use the loop statement that is most intuitive and comfortable for you. In general, a for
loop may be used if the number of repetitions is known in advance, as, for example, when
you need to display a message a hundred times. A while loop may be used if the number of
repetitions is not fixed, as in the case of reading the numbers until the input is 0. A do-while
loop can be used to replace a while loop if the loop body has to be executed before the con-
tinuation condition is tested.

Caution
Adding a semicolon at the end of the for clause before the loop body is a common

mistake, as shown below in (a). In (a), the semicolon signifies the end of the loop pre-

maturely. The loop body is actually empty, as shown in (b). (a) and (b) are equivalent.

Both are incorrect.

for (int i = 0; i < 10; i++);
{
 System.out.println("i is " + i);
}

(a)

Error

for (int i = 0; i < 10; i++) { };
{
 System.out.println("i is " + i);
}

(b)

Empty body

5.5 Which Loop to Use? 175

Similarly, the loop in (c) is also wrong. (c) is equivalent to (d). Both are incorrect.

int i = 0;
while (i < 10);
{
 System.out.println("i is " + i);
 i++;
}

(c)

Error

int i = 0;
while (i < 10) { };
{
 System.out.println("i is " + i);
 i++;
}

(d)

Empty body

These errors often occur when you use the next-line block style. Using the end-of-line

block style can avoid errors of this type.

In the case of the do-while loop, the semicolon is needed to end the loop.

int i = 0;
do {
 System.out.println("i is " + i);
 i++;
} while (i < 10);

Correct

5.15 Can you convert a for loop to a while loop? List the advantages of using for loops.

5.16 Can you always convert a while loop into a for loop? Convert the following while
loop into a for loop.

int i = 1;
int sum = 0;
while (sum < 10000) {
 sum = sum + i;
 i++;
}

5.17 Identify and fix the errors in the following code:

 1 public class Test {
 2 public void main(String[] args) {
 3 for (int i = 0; i < 10; i++);
 4 sum += i;
 5
 6 if (i < j);
 7 System.out.println(i)
 8 else

 9 System.out.println(j);
10
11 while (j < 10);
12 {
13 j++;
14 }
15
16 do {
17 j++;
18 } while (j < 10)
19 }
20 }

✓Point✓Check

176 Chapter 5 Loops

5.18 What is wrong with the following programs?

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 int i = 0;
 4 do {
 5 System.out.println(i + 4);
 6 i++;
 7 }
 8 while (i < 10)
 9 }
10 }

(a)

1 public class ShowErrors {
2 public static void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 System.out.println(i + 4);
5 }
6 }

(b)

5.6 Nested Loops
A loop can be nested inside another loop.

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is
repeated, the inner loops are reentered, and started anew.

Listing 5.7 presents a program that uses nested for loops to display a multiplication table.

LISTING 5.7 MultiplicationTable.java
 1 public class MultiplicationTable {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Display the table heading
 5 System.out.println(" Multiplication Table");
 6
 7 // Display the number title
 8 System.out.print(" ");
 9 for (int j = 1; j <= 9; j++)
10 System.out.print(" " + j);
11
12 System.out.println("\n———————————————————————————————————————");
13
14 // Display table body
15 for (int i = 1; i <= 9; i++) {
16 System.out.print(i + " | ");
17 for (int j = 1; j <= 9; j++) {
18 // Display the product and align properly
19 System.out.printf("%4d", i * j);
20 }
21 System.out.println();
22 }
23 }
24 }

Key
Pointnested loop

table title

outer loop

inner loop

 Multiplication Table
 1 2 3 4 5 6 7 8 9
———————————————————————————————————————-
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

5.6 Nested Loops 177

The program displays a title (line 5) on the first line in the output. The first for loop (lines
9–10) displays the numbers 1 through 9 on the second line. A dashed (-) line is displayed on
the third line (line 12).

The next loop (lines 15–22) is a nested for loop with the control variable i in the outer
loop and j in the inner loop. For each i, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, . . ., 9.

Note
Be aware that a nested loop may take a long time to run. Consider the following loop

nested in three levels:

for (int i = 0; i < 10000; i++)
 for (int j = 0; j < 10000; j++)
 for (int k = 0; k < 10000; k++)
 Perform an action

The action is performed one trillion times. If it takes 1 microsecond to perform the action,

the total time to run the loop would be more than 277 hours. Note that 1 microsecond

is one millionth (10– 6) of a second.

5.19 How many times is the println statement executed?

for (int i = 0; i < 10; i++)
for (int j = 0; j < i; j++)

 System.out.println(i * j)

5.20 Show the output of the following programs. (Hint: Draw a table and list the variables
in the columns to trace these programs.)

✓Point✓Check

public class Test {
public static void main(String[] args) {

for (int i = 1; i < 5; i++) {
int j = 0;
while (j < i) {

 System.out.print(j + " ");
 j++;
 }
 }
 }
}

(a)

public class Test {
public static void main(String[] args) {

int i = 0;
while (i < 5) {

for (int j = i; j > 1; j--)
 System.out.print(j + " ");
 System.out.println("****");
 i++;
 }
 }
}

(b)

public class Test {
public static void main(String[] args) {

int i = 5;
while (i >= 1) {

int num = 1;
for (int j = 1; j <= i; j++) {

 System.out.print(num + "xxx");
 num *= 2;
 }

 System.out.println();
 i--;
 }
 }
}

(c)

public class Test {
public static void main(String[] args) {

int i = 1;
do {

int num = 1;
for (int j = 1; j <= i; j++) {

 System.out.print(num + "G");
 num += 2;
 }

 System.out.println();
 i++;
 } while (i <= 5);
 }
}

(d)

178 Chapter 5 Loops

5.7 Minimizing Numeric Errors
Using floating-point numbers in the loop continuation condition may cause numeric errors.

Numeric errors involving floating-point numbers are inevitable, because floating-point num-
bers are represented in approximation in computers by nature. This section discusses how to
minimize such errors through an example.

Listing 5.8 presents an example summing a series that starts with 0.01 and ends with 1.0.
The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03, and so on.

LISTING 5.8 TestSum.java
 1 public class TestSum {
 2 public static void main(String[] args) {
 3 // Initialize sum
 4 float sum = 0;
 5
 6 // Add 0.01, 0.02, ..., 0.99, 1 to sum
 7 for (float i = 0.01f; i <= 1.0f; i = i + 0.01f)
 8 sum += i;
 9
10 // Display result
11 System.out.println("The sum is " + sum);
12 }
13 }

Key
Point

VideoNote

Minimize numeric errors

loop

The sum is 50.499985

The for loop (lines 7–8) repeatedly adds the control variable i to sum. This variable, which
begins with 0.01, is incremented by 0.01 after each iteration. The loop terminates when i
exceeds 1.0.

The for loop initial action can be any statement, but it is often used to initialize a control
variable. From this example, you can see that a control variable can be a float type. In fact,
it can be any data type.

The exact sum should be 50.50, but the answer is 50.499985. The result is imprecise
because computers use a fixed number of bits to represent floating-point numbers, and thus
they cannot represent some floating-point numbers exactly. If you change float in the pro-
gram to double, as follows, you should see a slight improvement in precision, because a
double variable holds 64 bits, whereas a float variable holds 32 bits.

// Initialize sum
double sum = 0;

// Add 0.01, 0.02, ..., 0.99, 1 to sum
for (double i = 0.01; i <= 1.0; i = i + 0.01)
 sum += i;

However, you will be stunned to see that the result is actually 49.50000000000003. What
went wrong? If you display i for each iteration in the loop, you will see that the last i is
slightly larger than 1 (not exactly 1). This causes the last i not to be added into sum. The
fundamental problem is that the floating-point numbers are represented by approximation. To
fix the problem, use an integer count to ensure that all the numbers are added to sum. Here is
the new loop:

double currentValue = 0.01;

for (int count = 0; count < 100; count++) {

double precision

numeric error

5.8 Case Studies 179

 sum += currentValue;
 currentValue += 0.01;
}

After this loop, sum is 50.50000000000003. This loop adds the numbers from smallest to
biggest. What happens if you add numbers from biggest to smallest (i.e., 1.0, 0.99, 0.98,
. . . , 0.02, 0.01 in this order) as follows:

double currentValue = 1.0;

for (int count = 0; count < 100; count++) {
 sum += currentValue;
 currentValue -= 0.01;
}

After this loop, sum is 50.49999999999995. Adding from biggest to smallest is less accurate
than adding from smallest to biggest. This phenomenon is an artifact of the finite-precision arith-
metic. Adding a very small number to a very big number can have no effect if the result requires
more precision than the variable can store. For example, the inaccurate result of 100000000.0
+ 0.000000001 is 100000000.0. To obtain more accurate results, carefully select the order
of computation. Adding smaller numbers before bigger numbers is one way to minimize errors.

5.8 Case Studies
Loops are fundamental in programming. The ability to write loops is essential in
learning Java programming.

If you can write programs using loops, you know how to program! For this reason, this section
presents four additional examples of solving problems using loops.

5.8.1 Case Study: Finding the Greatest Common Divisor
The greatest common divisor (gcd) of the two integers 4 and 2 is 2. The greatest common
divisor of the two integers 16 and 24 is 8. How would you write this program to find the great-
est common divisor? Would you immediately begin to write the code? No. It is important to
think before you code. Thinking enables you to generate a logical solution for the problem
without concern about how to write the code.

Let the two input integers be n1 and n2. You know that number 1 is a common divisor, but
it may not be the greatest common divisor. So, you can check whether k (for k = 2, 3, 4, and
so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. Store the common
divisor in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found,
it becomes the new gcd. When you have checked all the possible common divisors from 2 up
to n1 or n2, the value in variable gcd is the greatest common divisor. Once you have a logical
solution, type the code to translate the solution into a Java program as follows:

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= n1 && k <= n2) {
if (n1 % k == 0 && n2 % k == 0)

 gcd = k; // Update gcd
 k++; // Next possible gcd
}

// After the loop, gcd is the greatest common divisor for n1 and n2

Listing 5.9 presents the program that prompts the user to enter two positive integers and
finds their greatest common divisor.

avoiding numeric error

Key
Point

think before you code

gcd

logical solution

180 Chapter 5 Loops

LISTING 5.9 GreatestCommonDivisor.java
 1 import java.util.Scanner;
 2
 3 public class GreatestCommonDivisor {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11 int n1 = input.nextInt();
12 System.out.print("Enter second integer: ");
13 int n2 = input.nextInt();
14
15 int gcd = 1; // Initial gcd is 1
16 int k = 2; // Possible gcd
17 while (k <= n1 && k <= n2) {
18 if (n1 % k == 0 && n2 % k == 0)
19 gcd = k; // Update gcd
20 k++;
21 }
22
23 System.out.println("The greatest common divisor for " + n1 +
24 " and " + n2 + " is " + gcd);
25 }
26 }

input

input

gcd

check divisor

output

Enter first integer: 125

Enter second integer: 2525

The greatest common divisor for 125 and 2525 is 25

Translating a logical solution to Java code is not unique. For example, you could use a for
loop to rewrite the code as follows:

for (int k = 2; k <= n1 && k <= n2; k++) {
if (n1 % k == 0 && n2 % k == 0)

 gcd = k;
}

A problem often has multiple solutions, and the gcd problem can be solved in many ways.
Programming Exercise 5.14 suggests another solution. A more efficient solution is to use the
classic Euclidean algorithm (see Section 22.6).

You might think that a divisor for a number n1 cannot be greater than n1 / 2 and would
attempt to improve the program using the following loop:

for (int k = 2; k <= n1 / 2 && k <= n2 / 2; k++) {
if (n1 % k == 0 && n2 % k == 0)

 gcd = k;
}

multiple solutions

erroneous solutions

5.8 Case Studies 181

This revision is wrong. Can you find the reason? See Checkpoint Question 5.21 for the
answer.

5.8.2 Case Study: Predicting the Future Tuition
Suppose that the tuition for a university is $10,000 this year and tuition increases 7% every
year. In how many years will the tuition be doubled?

Before you can write a program to solve this problem, first consider how to solve it by
hand. The tuition for the second year is the tuition for the first year * 1.07. The tuition for a
future year is the tuition of its preceding year * 1.07. Thus, the tuition for each year can be
computed as follows:

double tuition = 10000; int year = 0; // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
...

Keep computing the tuition for a new year until it is at least 20000. By then you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

double tuition = 10000; // Year 0
int year = 0;
while (tuition < 20000) {
 tuition = tuition * 1.07;
 year++;
}

The complete program is shown in Listing 5.10.

LISTING 5.10 FutureTuition.java
 1 public class FutureTuition {
 2 public static void main(String[] args) {
 3 double tuition = 10000; // Year 0
 4 int year = 0;
 5 while (tuition < 20000) {
 6 tuition = tuition * 1.07;
 7 year++;
 8 }
 9
10 System.out.println("Tuition will be doubled in "
11 + year + " years");
12 System.out.printf("Tuition will be $%.2f in %1d years",
13 tuition, year);
14 }
15 }

think before you code

loop
next year’s tuition

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The while loop (lines 5–8) is used to repeatedly compute the tuition for a new year. The
loop terminates when the tuition is greater than or equal to 20000.

182 Chapter 5 Loops

5.8.3 Case Study: Converting Decimals to Hexadecimals
Hexadecimals are often used in computer systems programming (see Appendix F for an
introduction to number systems). How do you convert a decimal number to a hexadecimal
number? To convert a decimal number d to a hexadecimal number is to find the hexadecimal
digits hn, hn - 1, hn - 2, c , h2, h1, and h0 such that

d = hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + g

+ h2 * 162 + h1 * 161 + h0 * 160

These hexadecimal digits can be found by successively dividing d by 16 until the quotient is
0. The remainders are h0, h1, h2, c , hn - 2, hn - 1, and hn. The hexadecimal digits include the
decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus A, which is the decimal value 10; B, which
is the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and F, which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7.
Continue divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore 7B is the
hexadecimal number for 123.

Remainder

h0

Quotient

16 123

112
11

7

h1

16 7

0
7

0

Listing 5.11 gives a program that prompts the user to enter a decimal number and converts
it into a hex number as a string.

LISTING 5.11 Dec2Hex.java
 1 import java.util.Scanner;
 2
 3 public class Dec2Hex {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a decimal integer
10 System.out.print("Enter a decimal number: ");
11 int decimal = input.nextInt();
12
13 // Convert decimal to hex
14 String hex = "";
15
16 while (decimal != 0) {
17 int hexValue = decimal % 16;
18
19 // Convert a decimal value to a hex digit
20 char hexDigit = (hexValue <= 9 && hexValue >= 0) ?
21 (char)(hexValue + '0') : (char)(hexValue - 10 + 'A');
22
23 hex = hexDigit + hex;

input decimal

decimal to hex

5.8 Case Studies 183

24 decimal = decimal / 16;
25 }
26
27 System.out.println("The hex number is " + hex);
28 }
29 }

get a hex char

get a letter

Enter a decimal number: 1234
The hex number is 4D2

line# decimal hex hexValue hexDigit

14 1234 ""

17 2

iteration 1 23 "2" 2

24 77

17 13

iteration 2 23 "D2" D

24 4

17 4

iteration 3 23 "4D2" 4

24 0

The program prompts the user to enter a decimal integer (line 11), converts it to a hex num-
ber as a string (lines 14–25), and displays the result (line 27). To convert a decimal to a hex
number, the program uses a loop to successively divide the decimal number by 16 and obtain
its remainder (line 17). The remainder is converted into a hex character (lines 20–21). The
character is then appended to the hex string (line 23). The hex string is initially empty (line
14). Divide the decimal number by 16 to remove a hex digit from the number (line 24). The
loop ends when the remaining decimal number becomes 0.

The program converts a hexValue between 0 and 15 into a hex character. If hexValue is
between 0 and 9, it is converted to (char)(hexValue + '0') (line 21). Recall that when
adding a character with an integer, the character’s Unicode is used in the evaluation. For
example, if hexValue is 5, (char)(hexValue + '0') returns 5. Similarly, if hexValue
is between 10 and 15, it is converted to (char)(hexValue - 10 + 'A') (line 21). For
instance, if hexValue is 11, (char)(hexValue - 10 + 'A') returns B.

5.21 Will the program work if n1 and n2 are replaced by n1 / 2 and n2 / 2 in line 17
in Listing 5.9?

5.22 In Listing 5.11, why is it wrong if you change the code (char)(hexValue + '0')
to hexValue + '0' in line 21?

5.23 In Listing 5.11, how many times the loop body is executed for a decimal number 245
and how many times the loop body is executed for a decimal number 3245?

✓Point✓Check

184 Chapter 5 Loops

5.9 Keywords break and continue
The break and continue keywords provide additional controls in a loop.

Pedagogical Note
Two keywords, break and continue, can be used in loop statements to provide addi-

tional controls. Using break and continue can simplify programming in some cases.

Overusing or improperly using them, however, can make programs difficult to read and

debug. (Note to instructors: You may skip this section without affecting students’ under-

standing of the rest of the book.)

You have used the keyword break in a switch statement. You can also use break in a loop
to immediately terminate the loop. Listing 5.12 presents a program to demonstrate the effect
of using break in a loop.

LISTING 5.12 TestBreak.java
 1 public class TestBreak {
 2 public static void main(String[] args) {
 3 int sum = 0;
 4 int number = 0;
 5
 6 while (number < 20) {
 7 number++;
 8 sum += number;
 9 if (sum >= 100)
10 break;
11 }
12
13 System.out.println("The number is " + number);
14 System.out.println("The sum is " + sum);
15 }
16 }

Key
Point

break statement

break

The number is 14
The sum is 105

The program in Listing 5.12 adds integers from 1 to 20 in this order to sum until sum is
greater than or equal to 100. Without the if statement (line 9), the program calculates the
sum of the numbers from 1 to 20. But with the if statement, the loop terminates when sum
becomes greater than or equal to 100. Without the if statement, the output would be:

The number is 20
The sum is 210

You can also use the continue keyword in a loop. When it is encountered, it ends the cur-
rent iteration and program control goes to the end of the loop body. In other words, continue
breaks out of an iteration while the break keyword breaks out of a loop. Listing 5.13 presents
a program to demonstrate the effect of using continue in a loop.

LISTING 5.13 TestContinue.java
 1 public class TestContinue {
 2 public static void main(String[] args) {
 3 int sum = 0;

continue statement

 4 int number = 0;
 5
 6 while (number < 20) {
 7 number++;
 8 if (number ==10 || number == 11)
 9 continue;
10 sum += number;
11 }
12
13 System.out.println("The sum is " + sum);
14 }
15 }

continue

5.9 Keywords break and continue 185

The sum is 189

The program in Listing 5.13 adds integers from 1 to 20 except 10 and 11 to sum. With
the if statement in the program (line 8), the continue statement is executed when number
becomes 10 or 11. The continue statement ends the current iteration so that the rest of the
statement in the loop body is not executed; therefore, number is not added to sum when it is
10 or 11. Without the if statement in the program, the output would be as follows:

The sum is 210

In this case, all of the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210, which is 21 more than it was with the if statement.

Note
The continue statement is always inside a loop. In the while and do-while loops,

the loop-continuation-condition is evaluated immediately after the continue

statement. In the for loop, the action-after-each-iteration is performed,

then the loop-continuation-condition is evaluated, immediately after the

continue statement.

You can always write a program without using break or continue in a loop (see Check-
point Question 5.26). In general, though, using break and continue is appropriate if it
simplifies coding and makes programs easier to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

int factor = 2;
while (factor <= n) {

if (n % factor == 0)
break;

 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

You may rewrite the code without using break as follows:

boolean found = false;
int factor = 2;
while (factor <= n && !found) {

if (n % factor == 0)

186 Chapter 5 Loops

found = true;
else

 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

Obviously, the break statement makes this program simpler and easier to read in this case.
However, you should use break and continue with caution. Too many break and con-
tinue statements will produce a loop with many exit points and make the program difficult
to read.

Note
Some programming languages have a goto statement. The goto statement indiscrimi-

nately transfers control to any statement in the program and executes it. This makes

your program vulnerable to errors. The break and continue statements in Java are

different from goto statements. They operate only in a loop or a switch statement.

The break statement breaks out of the loop, and the continue statement breaks out

of the current iteration in the loop.

Note
Programming is a creative endeavor. There are many different ways to write code. In

fact, you can find a smallest factor using a rather simple code as follows:

int factor = 2;
 while (factor <= n && n % factor != 0)
 factor++;

5.24 What is the keyword break for? What is the keyword continue for? Will the fol-
lowing programs terminate? If so, give the output.

goto

✓Point✓Check
int balance = 10;
while (true) {

if (balance < 9)
break;

 balance = balance - 9;
}

System.out.println("Balance is "
 + balance);

(a)

int balance = 10;
while (true) {

if (balance < 9)
continue;

 balance = balance - 9;
}

System.out.println("Balance is "
 + balance);

(b)

5.25 The for loop on the left is converted into the while loop on the right. What is
wrong? Correct it.

int sum = 0;
for (int i = 0; i < 4; i++) {

if (i % 3 == 0) continue;
 sum += i;
}

Converted

Wrong conversion

int i = 0, sum = 0;
while (i < 4) {

if (i % 3 == 0) continue;
 sum += i;
 i++;
}

5.26 Rewrite the programs TestBreak and TestContinue in Listings 5.12 and 5.13
without using break and continue.

5.10 Case Study: Checking Palindromes 187

5.27 After the break statement in (a) is executed in the following loop, which statement
is executed? Show the output. After the continue statement in (b) is executed in the
following loop, which statement is executed? Show the output.

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {

if (i * j > 2)
break;

 System.out.println(i * j);
 }

 System.out.println(i);
}

(a)

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {

if (i * j > 2)
continue;

 System.out.println(i * j);
 }

 System.out.println(i);
}

(b)

5.10 Case Study: Checking Palindromes
This section presents a program that checks whether a string is a palindrome.

A string is a palindrome if it reads the same forward and backward. The words “mom,” “dad,”
and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports
whether the string is a palindrome. One solution is to check whether the first character in the
string is the same as the last character. If so, check whether the second character is the same
as the second-to-last character. This process continues until a mismatch is found or all the
characters in the string are checked, except for the middle character if the string has an odd
number of characters.

Listing 5.14 gives the program.

LISTING 5.14 Palindrome.java
 1 import java.util.Scanner;
 2
 3 public class Palindrome {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine();
12
13 // The index of the first character in the string
14 int low = 0;
15
16 // The index of the last character in the string
17 int high = s.length() - 1;
18
19 boolean isPalindrome = true;
20 while (low < high) {
21 if (s.charAt(low) != s.charAt(high)) {
22 isPalindrome = false;
23 break;
24 }
25

Key
Point

think before you code

input string

low index

high index

188 Chapter 5 Loops

26 low++;
27 high--;
28 }
29
30 if (isPalindrome)
31 System.out.println(s + " is a palindrome");
32 else

33 System.out.println(s + " is not a palindrome");
34 }
35 }

update indices

Enter a string: noon
noon is a palindrome

Enter a string: moon
moon is not a palindrome

The program uses two variables, low and high, to denote the position of the two charac-
ters at the beginning and the end in a string s (lines 14, 17). Initially, low is 0 and high is s.
length() – 1. If the two characters at these positions match, increment low by 1 and decre-
ment high by 1 (lines 26–27). This process continues until (low >= high) or a mismatch
is found (line 21).

The program uses a boolean variable isPalindrome to denote whether the string s is pal-
indrome. Initially, it is set to true (line 19). When a mismatch is discovered (line 21), isPal-
indrome is to false (line 22) and the loop is terminated with a break statement (line 23).

5.11 Case Study: Displaying Prime Numbers
This section presents a program that displays the first fifty prime numbers in five lines,
each containing ten numbers.

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

The problem is to display the first 50 prime numbers in five lines, each of which contains
ten numbers. The problem can be broken into the following tasks:

 ■ Determine whether a given number is prime.

 ■ For number = 2, 3, 4, 5, 6, . . ., test whether it is prime.

 ■ Count the prime numbers.

 ■ Display each prime number, and display ten numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime.
If the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50,
the loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be printed as
 a constant NUMBER_OF_PRIMES;
Use count to track the number of prime numbers and
 set an initial count to 0;
Set an initial number to 2;

Key
Point

5.11 Case Study: Displaying Prime Numbers 189

while (count < NUMBER_OF_PRIMES) {
 Test whether number is prime;

 if number is prime {
 Display the prime number and increase the count;
 }

 Increment number by 1;
}

To test whether a number is prime, check whether it is divisible by 2, 3, 4, and so on up to
number/2. If a divisor is found, the number is not a prime. The algorithm can be described
as follows:

Use a boolean variable isPrime to denote whether
 the number is prime; Set isPrime to true initially;

for (int divisor = 2; divisor <= number / 2; divisor++) {
 if (number % divisor == 0) {
 Set isPrime to false
 Exit the loop;
 }
}

The complete program is given in Listing 5.15.

LISTING 5.15 PrimeNumber.java
 1 public class PrimeNumber {
 2 public static void main(String[] args) {
 3 final int NUMBER_OF_PRIMES = 50; // Number of primes to display
 4 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
 5 int count = 0; // Count the number of prime numbers
 6 int number = 2; // A number to be tested for primeness
 7
 8 System.out.println("The first 50 prime numbers are \n");
 9
10 // Repeatedly find prime numbers
11 while (count < NUMBER_OF_PRIMES) {
12 // Assume the number is prime
13 boolean isPrime = true; // Is the current number prime?
14
15 // Test whether number is prime
16 for (int divisor = 2; divisor <= number / 2; divisor++) {
17 if (number % divisor == 0) { // If true, number is not prime
18 isPrime = false; // Set isPrime to false
19 break; // Exit the for loop
20 }
21 }
22
23 // Display the prime number and increase the count
24 if (isPrime) {
25 count++; // Increase the count
26
27 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
28 // Display the number and advance to the new line
29 System.out.println(number);
30 }
31 else

32 System.out.print(number + " ");

count prime numbers

check primeness

exit loop

display if prime

190 Chapter 5 Loops

33 }
34
35 // Check if the next number is prime
36 number++;
37 }
38 }
39 }

KEY TERMS

break statement 184
continue statement 184
do-while loop 168
for loop 171
infinite loop 160
input redirection 167
iteration 158
loop 158

loop body 158
nested loop 176
off-by-one error 160
output redirection 167
posttest loop 174
pretest loop 174
sentinel value 165
while loop 158

The first 50 prime numbers are
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This is a complex program for novice programmers. The key to developing a programmatic
solution for this problem, and for many other problems, is to break it into subproblems and
develop solutions for each of them in turn. Do not attempt to develop a complete solution
in the first trial. Instead, begin by writing the code to determine whether a given number is
prime, then expand the program to test whether other numbers are prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number between
2 and number/2 inclusive (lines 16–21). If so, it is not a prime number (line 18); otherwise, it
is a prime number. For a prime number, display it. If the count is divisible by 10 (lines 27–30),
advance to a new line. The program ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the num-
ber is found to be a nonprime. You can rewrite the loop (lines 16–21) without using the break
statement, as follows:

for (int divisor = 2; divisor <= number / 2 && isPrime;
 divisor++) {

// If true, the number is not prime
if (number % divisor == 0) {

// Set isPrime to false, if the number is not prime
 isPrime = false;
 }
}

However, using the break statement makes the program simpler and easier to read in this case.

subproblem

CHAPTER SUMMARY

1. There are three types of repetition statements: the while loop, the do-while loop, and
the for loop.

2. The part of the loop that contains the statements to be repeated is called the loop body.

3. A one-time execution of a loop body is referred to as an iteration of the loop.

4. An infinite loop is a loop statement that executes infinitely.

5. In designing loops, you need to consider both the loop control structure and the loop
body.

6. The while loop checks the loop-continuation-condition first. If the condition
is true, the loop body is executed; if it is false, the loop terminates.

7. The do-while loop is similar to the while loop, except that the do-while loop exe-
cutes the loop body first and then checks the loop-continuation-condition to
decide whether to continue or to terminate.

8. The while loop and the do-while loop often are used when the number of repetitions
is not predetermined.

9. A sentinel value is a special value that signifies the end of the loop.

10. The for loop generally is used to execute a loop body a fixed number of times.

11. The for loop control has three parts. The first part is an initial action that often ini-
tializes a control variable. The second part, the loop-continuation-condition,
determines whether the loop body is to be executed. The third part is executed after
each iteration and is often used to adjust the control variable. Usually, the loop control
variables are initialized and changed in the control structure.

12. The while loop and for loop are called pretest loops because the continuation condi-
tion is checked before the loop body is executed.

13. The do-while loop is called a posttest loop because the condition is checked after the
loop body is executed.

14. Two keywords, break and continue, can be used in a loop.

15. The break keyword immediately ends the innermost loop, which contains the break.

16. The continue keyword only ends the current iteration.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Pedagogical Note
Read each problem several times until you understand it. Think how to solve the prob-

lem before starting to write code. Translate your logic into a program.

A problem often can be solved in many different ways. Students are encouraged to

explore various solutions.

read and think before coding

explore solutions

Programming Exercises 191

www.cs.armstrong.edu/liang/intro10e/quiz.html

192 Chapter 5 Loops

Sections 5.2–5.7

*5.1 (Count positive and negative numbers and compute the average of numbers) Write
a program that reads an unspecified number of integers, determines how many
positive and negative values have been read, and computes the total and average of
the input values (not counting zeros). Your program ends with the input 0. Display
the average as a floating-point number. Here is a sample run:

Enter an integer, the input ends if it is 0: 1 2 -1 3 0
The number of positives is 3
The number of negatives is 1
The total is 5.0
The average is 1.25

Enter an integer, the input ends if it is 0: 0
No numbers are entered except 0

5.2 (Repeat additions) Listing 5.4, SubtractionQuizLoop.java, generates five random
subtraction questions. Revise the program to generate ten random addition ques-
tions for two integers between 1 and 15. Display the correct count and test time.

5.3 (Conversion from kilograms to pounds) Write a program that displays the follow-
ing table (note that 1 kilogram is 2.2 pounds):

Kilograms Pounds
1 2.2
3 6.6
...
197 433.4
199 437.8

5.4 (Conversion from miles to kilometers) Write a program that displays the follow-
ing table (note that 1 mile is 1.609 kilometers):

Miles Kilometers
1 1.609
2 3.218
...
9 14.481
10 16.090

5.5 (Conversion from kilograms to pounds and pounds to kilograms) Write a program
that displays the following two tables side by side:

Kilograms Pounds | Pounds Kilograms
1 2.2 | 20 9.09
3 6.6 | 25 11.36
...
197 433.4 | 510 231.82
199 437.8 | 515 234.09

5.6 (Conversion from miles to kilometers) Write a program that displays the follow-
ing two tables side by side:

Miles Kilometers | Kilometers Miles
1 1.609 | 20 12.430
2 3.218 | 25 15.538
...
9 14.481 | 60 37.290
10 16.090 | 65 40.398

**5.7 (Financial application: compute future tuition) Suppose that the tuition for a uni-
versity is $10,000 this year and increases 5% every year. In one year, the tuition
will be $10,500. Write a program that computes the tuition in ten years and the
total cost of four years’ worth of tuition after the tenth year.

5.8 (Find the highest score) Write a program that prompts the user to enter the num-
ber of students and each student’s name and score, and finally displays the name
of the student with the highest score.

*5.9 (Find the two highest scores) Write a program that prompts the user to enter the
number of students and each student’s name and score, and finally displays the
student with the highest score and the student with the second-highest score.

5.10 (Find numbers divisible by 5 and 6) Write a program that displays all the num-
bers from 100 to 1,000, ten per line, that are divisible by 5 and 6. Numbers are
separated by exactly one space.

5.11 (Find numbers divisible by 5 or 6, but not both) Write a program that displays
all the numbers from 100 to 200, ten per line, that are divisible by 5 or 6, but not
both. Numbers are separated by exactly one space.

5.12 (Find the smallest n such that n2 7 12,000) Use a while loop to find the smallest
integer n such that n2 is greater than 12,000.

5.13 (Find the largest n such that n3 6 12,000) Use a while loop to find the largest
integer n such that n3 is less than 12,000.

Sections 5.8–5.10

*5.14 (Compute the greatest common divisor) Another solution for Listing 5.9 to find
the greatest common divisor of two integers n1 and n2 is as follows: First find d
to be the minimum of n1 and n2, then check whether d, d-1, d-2, . . . , 2, or 1 is
a divisor for both n1 and n2 in this order. The first such common divisor is the
greatest common divisor for n1 and n2. Write a program that prompts the user to
enter two positive integers and displays the gcd.

*5.15 (Display the ASCII character table) Write a program that prints the characters in
the ASCII character table from ! to ~. Display ten characters per line. The ASCII
table is shown in Appendix B. Characters are separated by exactly one space.

*5.16 (Find the factors of an integer) Write a program that reads an integer and displays
all its smallest factors in increasing order. For example, if the input integer is
120, the output should be as follows: 2, 2, 2, 3, 5.

**5.17 (Display pyramid) Write a program that prompts the user to enter an integer from
1 to 15 and displays a pyramid, as shown in the following sample run:

Programming Exercises 193

Enter the number of lines: 7
 1
 2 1 2
 3 2 1 2 3
 4 3 2 1 2 3 4
 5 4 3 2 1 2 3 4 5
 6 5 4 3 2 1 2 3 4 5 6
 7 6 5 4 3 2 1 2 3 4 5 6 7

194 Chapter 5 Loops

*5.18 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:

Pattern A Pattern B Pattern C Pattern D

1 1 2 3 4 5 6 1 1 2 3 4 5 6

1 2 1 2 3 4 5 2 1 1 2 3 4 5

1 2 3 1 2 3 4 3 2 1 1 2 3 4

1 2 3 4 1 2 3 4 3 2 1 1 2 3

1 2 3 4 5 1 2 5 4 3 2 1 1 2

1 2 3 4 5 6 1 6 5 4 3 2 1 1

**5.19 (Display numbers in a pyramid pattern) Write a nested for loop that prints the
following output:

 1

 1 2 1

 1 2 4 2 1

 1 2 4 8 4 2 1

 1 2 4 8 16 8 4 2 1

 1 2 4 8 16 32 16 8 4 2 1

 1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

*5.20 (Display prime numbers between 2 and 1,000) Modify Listing 5.15 to display all
the prime numbers between 2 and 1,000, inclusive. Display eight prime numbers
per line. Numbers are separated by exactly one space.

Comprehensive

**5.21 (Financial application: compare loans with various interest rates) Write a pro-
gram that lets the user enter the loan amount and loan period in number of years
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8. Here is a sample run:

Loan Amount: 10000
Number of Years: 5
Interest Rate Monthly Payment Total Payment

5.000% 188.71 11322.74
5.125% 189.29 11357.13
5.250% 189.86 11391.59
...
7.875% 202.17 12129.97
8.000% 202.76 12165.84

For the formula to compute monthly payment, see Listing 2.9, ComputeLoan.java.

**5.22 (Financial application: loan amortization schedule) The monthly payment for a
given loan pays the principal and the interest. The monthly interest is computed
by multiplying the monthly interest rate and the balance (the remaining princi-
pal). The principal paid for the month is therefore the monthly payment minus
the monthly interest. Write a program that lets the user enter the loan amount,

VideoNote

Display loan schedule

number of years, and interest rate and displays the amortization schedule for the
loan. Here is a sample run:

Programming Exercises 195

Loan Amount: 10000
Number of Years: 1
Annual Interest Rate: 7

Monthly Payment: 865.26
Total Payment: 10383.21

Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
...
11 10.0 855.26 860.27
12 5.01 860.25 0.01

Note
The balance after the last payment may not be zero. If so, the last payment should be

the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the
same for each month, it should be computed before the loop. The balance
is initially the loan amount. For each iteration in the loop, compute the
interest and principal, and update the balance. The loop may look like this:

for (i = 1; i <= numberOfYears * 12; i++) {
 interest = monthlyInterestRate * balance;
 principal = monthlyPayment - interest;
 balance = balance - principal;
 System.out.println(i + "\t\t" + interest
 + "\t\t" + principal + "\t\t" + balance);
}

*5.23 (Demonstrate cancellation errors) A cancellation error occurs when you are
manipulating a very large number with a very small number. The large number
may cancel out the smaller number. For example, the result of 100000000.0 +
0.000000001 is equal to 100000000.0. To avoid cancellation errors and obtain
more accurate results, carefully select the order of computation. For example, in
computing the following series, you will obtain more accurate results by comput-
ing from right to left rather than from left to right:

1 +
1

2
+

1

3
+ c +

1
n

Write a program that compares the results of the summation of the preceding
series, computing from left to right and from right to left with n = 50000.

*5.24 (Sum a series) Write a program to sum the following series:

1

3
+

3

5
+

5

7
+

7

9
+

9

11
+

11

13
+ g +

95

97
+

97

99
VideoNote

Sum a series

196 Chapter 5 Loops

**5.25 (Compute p) You can approximate p by using the following series:

p = 4¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ g +

(-1)i + 1

2i - 1
≤

 Write a program that displays the p value for i = 10000, 20000, …, and
100000.

**5.26 (Compute e) You can approximate e using the following series:

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ g +

1

i!

 Write a program that displays the e value for i = 10000, 20000, …, and
100000. (Hint: Because i! = i * (i - 1) * c * 2 * 1, then

1

i!
is

1

i(i - 1)!

 Initialize e and item to be 1 and keep adding a new item to e. The new item is
the previous item divided by i for i = 2, 3, 4,)

**5.27 (Display leap years) Write a program that displays all the leap years, ten per line,
from 101 to 2100, separated by exactly one space. Also display the number of
leap years in this period.

**5.28 (Display the first days of each month) Write a program that prompts the user to
enter the year and first day of the year, and displays the first day of each month
in the year. For example, if the user entered the year 2013, and 2 for Tuesday,
January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday
...
December 1, 2013 is Sunday

**5.29 (Display calendars) Write a program that prompts the user to enter the year and
first day of the year and displays the calendar table for the year on the console. For
example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013,
your program should display the calendar for each month in the year, as follows:

January 2013

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

*5.30 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. So, the monthly interest
rate is 0.05 / 12 = 0.00417. After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

 Write a program that prompts the user to enter an amount (e.g., 100), the annual
interest rate (e.g., 5), and the number of months (e.g., 6) and displays the amount
in the savings account after the given month.

*5.31 (Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.92

After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06

After three months, the CD is worth

10096.06 + 10096.06 * 5.75 / 1200 = 10144.44

and so on.

 Write a program that prompts the user to enter an amount (e.g., 10000), the
annual percentage yield (e.g., 5.75), and the number of months (e.g., 18) and
displays a table as shown in the sample run.

Programming Exercises 197

December 2013

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

198 Chapter 5 Loops

**5.32 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a two-
digit number. The two digits in the number are distinct. (Hint: Generate the first
digit. Use a loop to continuously generate the second digit until it is different
from the first digit.)

**5.33 (Perfect number) A positive integer is called a perfect number if it is equal to
the sum of all of its positive divisors, excluding itself. For example, 6 is the first
perfect number because 6 = 3 + 2 + 1. The next is 28 = 14 + 7 + 4 + 2
+ 1. There are four perfect numbers less than 10,000. Write a program to find all
these four numbers.

***5.34 (Game: scissor, rock, paper) Programming Exercise 3.17 gives a program that
plays the scissor-rock-paper game. Revise the program to let the user continu-
ously play until either the user or the computer wins more than two times than its
opponent.

*5.35 (Summation) Write a program to compute the following summation.

1

1 + 22
+

122 + 23
+

123 + 24
+ c +

12624 + 2625

**5.36 (Business application: checking ISBN) Use loops to simplify Programming
Exercise 3.9.

**5.37 (Decimal to binary) Write a program that prompts the user to enter a decimal
integer and displays its corresponding binary value. Don’t use Java’s Integer
.toBinaryString(int) in this program.

**5.38 (Decimal to octal) Write a program that prompts the user to enter a decimal
integer and displays its corresponding octal value. Don’t use Java’s Integer
.toOctalString(int) in this program.

*5.39 (Financial application: find the sales amount) You have just started a sales job
in a department store. Your pay consists of a base salary and a commission. The
base salary is $5,000. The scheme shown below is used to determine the commis-
sion rate.

Enter the initial deposit amount: 10000

Enter annual percentage yield: 5.75

Enter maturity period (number of months): 18

Month CD Value
1 10047.92
2 10096.06
...
17 10846.57
18 10898.54

Sales Amount Commission Rate

$0.01–$5,000 8 percent

$5,000.01–$10,000 10 percent

$10,000.01 and above 12 percent

 Note that this is a graduated rate. The rate for the first $5,000 is at 8%, the next
$5000 is at 10%, and the rest is at 12%. If the sales amount is 25,000, the com-
mission is 5,000 * 8% + 5,000 * 10% + 15,000 * 12% = 2,700.

 Your goal is to earn $30,000 a year. Write a program that finds the minimum sales
you have to generate in order to make $30,000.

5.40 (Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

*5.41 (Occurrence of max numbers) Write a program that reads integers, finds the larg-
est of them, and counts its occurrences. Assume that the input ends with number
0. Suppose that you entered 3 5 2 5 5 5 0; the program finds that the largest
is 5 and the occurrence count for 5 is 4.

 (Hint: Maintain two variables, max and count. max stores the current max num-
ber, and count stores its occurrences. Initially, assign the first number to max
and 1 to count. Compare each subsequent number with max. If the number is
greater than max, assign it to max and reset count to 1. If the number is equal to
max, increment count by 1.)

Programming Exercises 199

Enter numbers: 3 5 2 5 5 5 0
The largest number is 5
The occurrence count of the largest number is 4

1 2
1 3
...
...

The total number of all combinations is 21

Enter an integer: 5
The bits are 0000000000000101

Enter an integer: -5
The bits are 1111111111111011

*5.42 (Financial application: find the sales amount) Rewrite Programming Exercise
5.39 as follows:

 ■ Use a for loop instead of a do-while loop.
 ■ Let the user enter COMMISSION_SOUGHT instead of fixing it as a constant.

*5.43 (Math: combinations) Write a program that displays all possible combinations
for picking two numbers from integers 1 to 7. Also display the total number of
all combinations.

*5.44 (Computer architecture: bit-level operations) A short value is stored in 16 bits.
Write a program that prompts the user to enter a short integer and displays the 16
bits for the integer. Here are sample runs:

 (Hint: You need to use the bitwise right shift operator (>>) and the bitwise AND
operator (&), which are covered in Appendix G, Bitwise Operations.)

**5.45 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells

200 Chapter 5 Loops

you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are the
ages? If all the students are the same age, the deviation is 0.

 Write a program that prompts the user to enter ten numbers, and displays the
mean and standard deviations of these numbers using the following formula:

mean =
a

n

i= 1
xi

n
=

x1 + x2 + g + xn

n
deviation = ca

n

i= 1
x2

i -
¢ an

i= 1
xi≤2

n

n - 1

 Here is a sample run:

Enter ten numbers: 1 2 3 4.5 5.6 6 7 8 9 10
The mean is 5.61
The standard deviation is 2.99794

Enter a string: ABCD
The reversed string is DCBA

Enter the first 12 digits of an ISBN-13 as a string: 978013213080
The ISBN-13 number is 9780132130806

Enter the first 12 digits of an ISBN-13 as a string: 978013213079
The ISBN-13 number is 9780132130790

Enter the first 12 digits of an ISBN-13 as a string: 97801320
97801320 is an invalid input

Enter a string: Beijing Chicago
BiigCiao

*5.46 (Reverse a string) Write a program that prompts the user to enter a string and
displays the string in reverse order.

*5.47 (Business: check ISBN-13) ISBN-13 is a new standard for indentifying books. It
uses 13 digits d1d2d3d4d5d6d7d8d9d10d11d12d13. The last digit d13 is a checksum,
which is calculated from the other digits using the following formula:

10 - (d1 + 3d2 + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12)%10

 If the checksum is 10, replace it with 0. Your program should read the input as a
string. Here are sample runs:

*5.48 (Process string) Write a program that prompts the user to enter a string and dis-
plays the characters at odd positions. Here is a sample run:

Programming Exercises 201

Enter a string: Programming is fun

The number of vowels is 5
The number of consonants is 11

Enter a string: Welcome to Java
The number of uppercase letters is 2

*5.49 (Count vowels and consonants) Assume letters A, E, I, O, and U as the vowels.
Write a program that prompts the user to enter a string and displays the number
of vowels and consonants in the string.

*5.50 (Count uppercase letters) Write a program that prompts the user to enter a string
and displays the number of the uppercase letters in the string.

*5.51 (Longest common prefix) Write a program that prompts the user to enter two
strings and displays the largest common prefix of the two strings. Here are some
sample runs:

Enter the first string: Welcome to C++

Enter the second string: Welcome to programming
The common prefix is Welcome to

Enter the first string: Atlanta

Enter the second string: Macon
Atlanta and Macon have no common prefix

This page intentionally left blank

METHODS

Objectives
■ To define methods with formal parameters (§6.2).

■ To invoke methods with actual parameters (i.e., arguments) (§6.2).

■ To define methods with a return value (§6.3).

■ To define methods without a return value (§6.4).

■ To pass arguments by value (§6.5).

■ To develop reusable code that is modular, easy to read, easy to debug,
and easy to maintain (§6.6).

■ To write a method that converts hexadecimals to decimals (§6.7).

■ To use method overloading and understand ambiguous overloading
(§6.8).

■ To determine the scope of variables (§6.9).

■ To apply the concept of method abstraction in software development
(§6.10).

■ To design and implement methods using stepwise refinement (§6.10).

CHAPTER

6

204 Chapter 6 Methods

6.1 Introduction
Methods can be used to define reusable code and organize and simplify coding.

Suppose that you need to find the sum of integers from 1 to 10, from 20 to 37, and from 35
to 49, respectively. You may write the code as follows:

int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 37; i++)
 sum += i;
System.out.println("Sum from 20 to 37 is " + sum);

sum = 0;
for (int i = 35; i <= 49; i++)
 sum += i;
System.out.println("Sum from 35 to 49 is " + sum);

You may have observed that computing these sums from 1 to 10, from 20 to 37, and from
35 to 49 are very similar except that the starting and ending integers are different. Wouldn’t
it be nice if we could write the common code once and reuse it? We can do so by defining a
method and invoking it.

The preceding code can be simplified as follows:

 1 public static int sum(int i1, int i2) {
 2 int result = 0;
 3 for (int i = i1; i <= i2; i++)
 4 result += i;
 5
 6 return result;
 7 }
 8
 9 public static void main(String[] args) {
10 System.out.println("Sum from 1 to 10 is " + sum(1, 10));
11 System.out.println("Sum from 20 to 37 is " + sum(20, 37));
12 System.out.println("Sum from 35 to 49 is " + sum(35, 49));
13 }

Lines 1–7 define the method named sum with two parameters i1 and i2. The statements in
the main method invoke sum(1, 10) to compute the sum from 1 to 10, sum(20, 37) to
compute the sum from 20 to 37, and sum(35, 49) to compute the sum from 35 to 49.

A method is a collection of statements grouped together to perform an operation. In earlier chap-
ters you have used predefined methods such as System.out.println, System.exit, Math
.pow, and Math.random. These methods are defined in the Java library. In this chapter, you will
learn how to define your own methods and apply method abstraction to solve complex problems.

6.2 Defining a Method
A method definition consists of its method name, parameters, return value type, and body.

The syntax for defining a method is as follows:

modifier returnValueType methodName(list of parameters) {
 // Method body;
}

Key
Point

problem

why methods?

define sum method

main method
invoke sum

method

Key
Point

6.2 Defining a Method 205

Let’s look at a method defined to find the larger between two integers. This method, named
max, has two int parameters, num1 and num2, the larger of which is returned by the method.
Figure 6.1 illustrates the components of this method.

FIGURE 6.1 A method definition consists of a method header and a method body.

Define a method Invoke a method

int z = max(x, y);

actual parameters
(arguments)

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
result = num1;

else

result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list method
signature

The method header specifies the modifiers, return value type, method name, and parameters
of the method. The static modifier is used for all the methods in this chapter. The reason for
using it will be discussed in Chapter 8, Objects and Classes.

A method may return a value. The returnValueType is the data type of the value the
method returns. Some methods perform desired operations without returning a value. In this
case, the returnValueType is the keyword void. For example, the returnValueType
is void in the main method, as well as in System.exit, and System.out.println. If
a method returns a value, it is called a value-returning method; otherwise it is called a void
method.

The variables defined in the method header are known as formal parameters or simply
parameters. A parameter is like a placeholder: when a method is invoked, you pass a value
to the parameter. This value is referred to as an actual parameter or argument. The param-
eter list refers to the method’s type, order, and number of the parameters. The method name
and the parameter list together constitute the method signature. Parameters are optional; that
is, a method may contain no parameters. For example, the Math.random() method has no
parameters.

The method body contains a collection of statements that implement the method. The
method body of the max method uses an if statement to determine which number is larger
and return the value of that number. In order for a value-returning method to return a result, a
return statement using the keyword return is required. The method terminates when a return
statement is executed.

Note
Some programming languages refer to methods as procedures and functions. In those

languages, a value-returning method is called a function and a void method is called a

procedure.

Caution
In the method header, you need to declare each parameter separately. For instance,

max(int num1, int num2) is correct, but max(int num1, num2) is wrong.

method header

modifier

value-returning method

void method
formal parameter

parameter

actual parameter
argument

parameter list

method signature

206 Chapter 6 Methods

Note
We say “define a method” and “declare a variable.” We are making a subtle distinction

here. A definition defines what the defined item is, but a declaration usually involves

allocating memory to store data for the declared item.

6.3 Calling a Method
Calling a method executes the code in the method.

In a method definition, you define what the method is to do. To execute the method, you have
to call or invoke it. There are two ways to call a method, depending on whether the method
returns a value or not.

If a method returns a value, a call to the method is usually treated as a value. For example,

int larger = max(3, 4);

calls max(3, 4) and assigns the result of the method to the variable larger. Another exam-
ple of a call that is treated as a value is

System.out.println(max(3, 4));

which prints the return value of the method call max(3, 4).
If a method returns void, a call to the method must be a statement. For example, the

method println returns void. The following call is a statement:

System.out.println("Welcome to Java!");

Note
A value-returning method can also be invoked as a statement in Java. In this case, the

caller simply ignores the return value. This is not often done, but it is permissible if the

caller is not interested in the return value.

When a program calls a method, program control is transferred to the called method. A called
method returns control to the caller when its return statement is executed or when its method-
ending closing brace is reached.

Listing 6.1 shows a complete program that is used to test the max method.

LISTING 6.1 TestMax.java
 1 public class TestMax {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 int i = 5;
 5 int j = 2;
 6 int k = max(i, j);
 7 System.out.println("The maximum of " + i +
 8 " and " + j + " is " + k);
 9 }
10
11 /** Return the max of two numbers */
12 public static int max(int num1, int num2) {
13 int result;
14
15 if (num1 > num2)
16 result = num1;
17 else

18 result = num2;
19
20 return result;
21 }
22 }

define vs. declare

Key
Point

Define/invoke max method

VideoNote

main method

invoke max

define method

6.3 Calling a Method 207

This program contains the main method and the max method. The main method is just like
any other method except that it is invoked by the JVM to start the program.

The main method’s header is always the same. Like the one in this example, it includes the
modifiers public and static, return value type void, method name main, and a parameter
of the String[] type. String[] indicates that the parameter is an array of String, a sub-
ject addressed in Chapter 7.

The statements in main may invoke other methods that are defined in the class that contains
the main method or in other classes. In this example, the main method invokes max(i, j),
which is defined in the same class with the main method.

When the max method is invoked (line 6), variable i’s value 5 is passed to num1, and vari-
able j’s value 2 is passed to num2 in the max method. The flow of control transfers to the max
method, and the max method is executed. When the return statement in the max method is
executed, the max method returns the control to its caller (in this case the caller is the main
method). This process is illustrated in Figure 6.2.

main method

max method

The maximum of 5 and 2 is 5

FIGURE 6.2 When the max method is invoked, the flow of control transfers to it. Once the max method is finished, it
returns control back to the caller.

public static void main(String[] args) {
int i = 5;
int j = 2;
int k = max(i, j);

 System.out.println(
"The maximum of " + i +
" and " + j + " is " + k);

}

pass the value j

pass the value i

public static int max(int num1, int num2) {
int result;

if (num1 > num2)
 result = num1;

else
 result = num2;

return result;
}

line# i j k num1 num2 result

4 5

5 2

Invoking max

12 5 2

13 undefined

16 5

6 5

Caution
A return statement is required for a value-returning method. The method shown

below in (a) is logically correct, but it has a compile error because the Java compiler

thinks that this method might not return a value.

208 Chapter 6 Methods

To fix this problem, delete if (n < 0) in (a), so the compiler will see a return

statement to be reached regardless of how the if statement is evaluated.

Note
Methods enable code sharing and reuse. The max method can be invoked from any

class, not just TestMax. If you create a new class, you can invoke the max method

using ClassName.methodName (i.e., TestMax.max).

Each time a method is invoked, the system creates an activation record (also called an acti-
vation frame) that stores parameters and variables for the method and places the activation
record in an area of memory known as a call stack. A call stack is also known as an execution
stack, runtime stack, or machine stack, and it is often shortened to just “the stack.” When a
method calls another method, the caller’s activation record is kept intact, and a new activation
record is created for the new method called. When a method finishes its work and returns to
its caller, its activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion: The activation record
for the method that is invoked last is removed first from the stack. For example, suppose
method m1 calls method m2, and m2 calls method m3. The runtime system pushes m1’s activa-
tion record into the stack, then m2’s, and then m3’s. After m3 is finished, its activation record is
removed from the stack. After m2 is finished, its activation record is removed from the stack.
After m1 is finished, its activation record is removed from the stack.

Understanding call stacks helps you to comprehend how methods are invoked. The vari-
ables defined in the main method in Listing 6.1 are i, j, and k. The variables defined in
the max method are num1, num2, and result. The variables num1 and num2 are defined
in the method signature and are parameters of the max method. Their values are passed
through method invocation. Figure 6.3 illustrates the activation records for method calls in
the stack.

reusing method

activation record

call stack

FIGURE 6.3 When the max method is invoked, the flow of control transfers to the max method. Once the max method is
finished, it returns control back to the caller.

Activation record for
the main method

Activation record for
the max method

k:
j: 2
i: 5

(a) The main
method is invoked.

Activation record
for the main method

k:
j: 2
i: 5

(d) The max method is
finished and the return
value is sent to k.

Activation record
for the main method

k: 5
j: 2
i: 5

Stack is empty

(b) The max
method is invoked.

(e) The main
method is finished.

Activation record for
the main method

Activation record for
the max method

k:
j: 2
i: 5

result: 5
num2: 2
num1: 5

(c) The max method
is being executed.

result:
num2: 2
num1: 5

public static int sign(int n) {
if (n > 0)

return 1;
else if (n == 0)

return 0;
else if (n < 0)

return –1;
}

(a)

public static int sign(int n) {
if (n > 0)

return 1;
else if (n == 0)

return 0;
else

return –1;
}

(b)

Should be

6.4 void Method Example
A void method does not return a value.

The preceding section gives an example of a value-returning method. This section shows how
to define and invoke a void method. Listing 6.2 gives a program that defines a method named
printGrade and invokes it to print the grade for a given score.

LISTING 6.2 TestVoidMethod.java
 1 public class TestVoidMethod {
 2 public static void main(String[] args) {
 3 System.out.print("The grade is ");
 4 printGrade(78.5);
 5
 6 System.out.print("The grade is ");
 7 printGrade(59.5);
 8 }
 9
10 public static void printGrade(double score) {
11 if (score >= 90.0) {
12 System.out.println('A');
13 }
14 else if (score >= 80.0) {
15 System.out.println('B');
16 }
17 else if (score >= 70.0) {
18 System.out.println('C');
19 }
20 else if (score >= 60.0) {
21 System.out.println('D');
22 }
23 else {
24 System.out.println('F');
25 }
26 }
27 }

Key
Point

Use void method

VideoNote

main method

invoke printGrade

printGrade method

The grade is C
The grade is F

The printGrade method is a void method because it does not return any value. A call to a
void method must be a statement. Therefore, it is invoked as a statement in line 4 in the main
method. Like any Java statement, it is terminated with a semicolon.

To see the differences between a void and value-returning method, let’s redesign the
printGrade method to return a value. The new method, which we call getGrade, returns
the grade as shown in Listing 6.3.

LISTING 6.3 TestReturnGradeMethod.java
 1 public class TestReturnGradeMethod {
 2 public static void main(String[] args) {
 3 System.out.print("The grade is " + getGrade(78.5));
 4 System.out.print("\nThe grade is " + getGrade(59.5));
 5 }
 6

invoke void method

void vs. value-returned

main method

invoke getGrade

6.4 void Method Example 209

210 Chapter 6 Methods

 7 public static char getGrade(double score) {
 8 if (score >= 90.0)
 9 return 'A';
10 else if (score >= 80.0)
11 return 'B';
12 else if (score >= 70.0)
13 return 'C';
14 else if (score >= 60.0)
15 return 'D';
16 else

17 return 'F';
18 }
19 }

getGrade method

The grade is C
The grade is F

The getGrade method defined in lines 7–18 returns a character grade based on the numeric
score value. The caller invokes this method in lines 3–4.

The getGrade method can be invoked by a caller wherever a character may appear. The
printGrade method does not return any value, so it must be invoked as a statement.

Note
A return statement is not needed for a void method, but it can be used for terminat-

ing the method and returning to the method’s caller. The syntax is simply

return;

This is not often done, but sometimes it is useful for circumventing the normal flow of

control in a void method. For example, the following code has a return statement to

terminate the method when the score is invalid.

public static void printGrade(double score) {
if (score < 0 || score > 100) {

 System.out.println("Invalid score");
return;

 }

if (score >= 90.0) {
 System.out.println('A');
 }

else if (score >= 80.0) {
 System.out.println('B');
 }

else if (score >= 70.0) {
 System.out.println('C');
 }

else if (score >= 60.0) {
 System.out.println('D');
 }

else {
 System.out.println('F');
 }
}

return in void method

6.1 What are the benefits of using a method?

6.2 How do you define a method? How do you invoke a method?

6.3 How do you simplify the max method in Listing 6.1 using the conditional operator?

6.4 True or false? A call to a method with a void return type is always a statement itself,
but a call to a value-returning method cannot be a statement by itself.

6.5 What is the return type of a main method?

6.6 What would be wrong with not writing a return statement in a value-returning
method? Can you have a return statement in a void method? Does the return
statement in the following method cause syntax errors?

public static void xMethod(double x, double y) {
 System.out.println(x + y);

return x + y;
}

6.7 Define the terms parameter, argument, and method signature.

6.8 Write method headers (not the bodies) for the following methods:

a. Return a sales commission, given the sales amount and the commission rate.

b. Display the calendar for a month, given the month and year.

c. Return a square root of a number.

d. Test whether a number is even, and returning true if it is.

e. Display a message a specified number of times.

f. Return the monthly payment, given the loan amount, number of years, and annual
interest rate.

g. Return the corresponding uppercase letter, given a lowercase letter.

6.9 Identify and correct the errors in the following program:

 1 public class Test {
 2 public static method1(int n, m) {
 3 n += m;
 4 method2(3.4);
 5 }
 6
 7 public static int method2(int n) {
 8 if (n > 0) return 1;
 9 else if (n == 0) return 0;
10 else if (n < 0) return –1;
11 }
12 }

6.10 Reformat the following program according to the programming style and documen-
tation guidelines proposed in Section 1.9, Programming Style and Documentation.
Use the next-line brace style.

public class Test {
public static double method(double i, double j)

 {
while (i < j) {

 j--;
 }

return j;
 }
}

✓Point✓Check
6.4 void Method Example 211

212 Chapter 6 Methods

6.5 Passing Arguments by Values
The arguments are passed by value to parameters when invoking a method.

The power of a method is its ability to work with parameters. You can use println to print
any string and max to find the maximum of any two int values. When calling a method, you
need to provide arguments, which must be given in the same order as their respective param-
eters in the method signature. This is known as parameter order association. For example, the
following method prints a message n times:

public static void nPrintln(String message, int n) {
for (int i = 0; i < n; i++)

 System.out.println(message);
}

You can use nPrintln("Hello", 3) to print Hello three times. The nPrintln("Hello",
3) statement passes the actual string parameter Hello to the parameter message, passes 3 to
n, and prints Hello three times. However, the statement nPrintln(3, "Hello") would be
wrong. The data type of 3 does not match the data type for the first parameter, message, nor
does the second argument, Hello, match the second parameter, n.

Caution
The arguments must match the parameters in order, number, and compatible type, as

defined in the method signature. Compatible type means that you can pass an argument

to a parameter without explicit casting, such as passing an int value argument to a

double value parameter.

When you invoke a method with an argument, the value of the argument is passed to the
parameter. This is referred to as pass-by-value. If the argument is a variable rather than a
literal value, the value of the variable is passed to the parameter. The variable is not affected,
regardless of the changes made to the parameter inside the method. As shown in Listing 6.4,
the value of x (1) is passed to the parameter n to invoke the increment method (line 5). The
parameter n is incremented by 1 in the method (line 10), but x is not changed no matter what
the method does.

LISTING 6.4 Increment.java
 1 public class Increment {
 2 public static void main(String[] args) {
 3 int x = 1;
 4 System.out.println("Before the call, x is " + x);
 5 increment(x);
 6 System.out.println("After the call, x is " + x);
 7 }
 8
 9 public static void increment(int n) {
10 n++;
11 System.out.println("n inside the method is " + n);
12 }
13 }

Key
Point

parameter order association

pass-by-value

invoke increment

increment n

Before the call, x is 1
n inside the method is 2
After the call, x is 1

6.5 Passing Arguments by Values 213

Listing 6.5 gives another program that demonstrates the effect of passing by value. The pro-
gram creates a method for swapping two variables. The swap method is invoked by passing
two arguments. Interestingly, the values of the arguments are not changed after the method
is invoked.

LISTING 6.5 TestPassByValue.java
 1 public class TestPassByValue {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare and initialize variables
 5 int num1 = 1;
 6 int num2 = 2;
 7
 8 System.out.println("Before invoking the swap method, num1 is " +
 9 num1 + " and num2 is " + num2);
10
11 // Invoke the swap method to attempt to swap two variables
12 swap(num1, num2);
13
14 System.out.println("After invoking the swap method, num1 is " +
15 num1 + " and num2 is " + num2);
16 }
17
18 /** Swap two variables */
19 public static void swap(int n1, int n2) {
20 System.out.println("\tInside the swap method");
21 System.out.println("\t\tBefore swapping, n1 is " + n1
22 + " and n2 is " + n2);
23
24 // Swap n1 with n2
25 int temp = n1;
26 n1 = n2;
27 n2 = temp;
28
29 System.out.println("\t\tAfter swapping, n1 is " + n1
30 + " and n2 is " + n2);
31 }
32 }

false swap

Before invoking the swap method, num1 is 1 and num2 is 2
 Inside the swap method
 Before swapping, n1 is 1 and n2 is 2
 After swapping, n1 is 2 and n2 is 1
After invoking the swap method, num1 is 1 and num2 is 2

Before the swap method is invoked (line 12), num1 is 1 and num2 is 2. After the swap method
is invoked, num1 is still 1 and num2 is still 2. Their values have not been swapped. As shown
in Figure 6.4, the values of the arguments num1 and num2 are passed to n1 and n2, but n1 and
n2 have their own memory locations independent of num1 and num2. Therefore, changes in
n1 and n2 do not affect the contents of num1 and num2.

Another twist is to change the parameter name n1 in swap to num1. What effect does this
have? No change occurs, because it makes no difference whether the parameter and the argu-
ment have the same name. The parameter is a variable in the method with its own memory
space. The variable is allocated when the method is invoked, and it disappears when the
method is returned to its caller.

214 Chapter 6 Methods

Note
For simplicity, Java programmers often say passing x to y, which actually means passing

the value of argument x to parameter y.

6.11 How is an argument passed to a method? Can the argument have the same name as
its parameter?

6.12 Identify and correct the errors in the following program:

 1 public class Test {
 2 public static void main(String[] args) {
 3 nPrintln(5, "Welcome to Java!");
 4 }
 5
 6 public static void nPrintln(String message, int n) {
 7 int n = 1;
 8 for (int i = 0; i < n; i++)
 9 System.out.println(message);
10 }
11 }

6.13 What is pass-by-value? Show the result of the following programs.

✓Point✓Check

FIGURE 6.4 The values of the variables are passed to the method’s parameters.

Activation record for
the main method

Activation record for
the swap method

The main method
is invoked.

Activation record for
the main method

Activation record for
the main method

num2: 2
num1: 1

num2: 2
num1: 1

Activation record for
the swap method

num2: 2
num1: 1

The swap method
is invoked.

The swap method
is executed.

Activation record for
the main method

num2: 2
num1: 1

The swap method
is finished.

Stack is empty

The main method
is finished.

The values of num1 and num2 are
passed to n1 and n2.

The values for n1 and n2 are
swapped, but it does not affect
num1 and num2.

n2: 2
n1: 1

temp:
n2: 1
n1: 2

temp: 1

public class Test {
public static void main(String[] args) {

int max = 0;
 max(1, 2, max);
 System.out.println(max);
 }

public static void max(
int value1, int value2, int max) {

if (value1 > value2)
 max = value1;

else

 max = value2;
 }
}

(a)

public class Test {
public static void main(String[] args) {

int i = 1;
while (i <= 6) {

 method1(i, 2);
 i++;
 }
 }

public static void method1(
int i, int num) {

for (int j = 1; j <= i; j++) {
 System.out.print(num + " ");
 num *= 2;
 }

 System.out.println();
 }
}

(b)

6.6 Modularizing Code 215

6.14 For (a) in the preceding question, show the contents of the activation records in the
call stack just before the method max is invoked, just as max is entered, just before
max is returned, and right after max is returned.

6.6 Modularizing Code
Modularizing makes the code easy to maintain and debug and enables the code to be
reused.

Methods can be used to reduce redundant code and enable code reuse. Methods can also be
used to modularize code and improve the quality of the program.

Listing 5.9 gives a program that prompts the user to enter two integers and displays
their greatest common divisor. You can rewrite the program using a method, as shown in
Listing 6.6.

LISTING 6.6 GreatestCommonDivisorMethod.java
 1 import java.util.Scanner;
 2
 3 public class GreatestCommonDivisorMethod {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11 int n1 = input.nextInt();
12 System.out.print("Enter second integer: ");
13 int n2 = input.nextInt();
14

Key
Point

Modularize code

VideoNote

public class Test {
public static void main(String[] args) {

// Initialize times
int times = 3;

 System.out.println("Before the call,"
 + " variable times is " + times);

// Invoke nPrintln and display times
 nPrintln("Welcome to Java!", times);
 System.out.println("After the call,"
 + " variable times is " + times);
 }

// Print the message n times
public static void nPrintln(

 String message, int n) {
while (n > 0) {

 System.out.println("n = " + n);
 System.out.println(message);
 n--;
 }
 }
}

(c)

public class Test {
public static void main(String[] args) {

int i = 0;
while (i <= 4) {

 method1(i);
 i++;
 }

 System.out.println("i is " + i);
 }

public static void method1(int i) {
do {

if (i % 3 != 0)
 System.out.print(i + " ");
 i--;
 }

while (i >= 1);

 System.out.println();
 }
}

(d)

216 Chapter 6 Methods

15 System.out.println("The greatest common divisor for " + n1 +
16 " and " + n2 + " is " + gcd(n1, n2));
17 }
18
19 /** Return the gcd of two integers */
20 public static int gcd(int n1, int n2) {
21 int gcd = 1; // Initial gcd is 1
22 int k = 2; // Possible gcd
23
24 while (k <= n1 && k <= n2) {
25 if (n1 % k == 0 && n2 % k == 0)
26 gcd = k; // Update gcd
27 k++;
28 }
29
30 return gcd; // Return gcd
31 }
32 }

invoke gcd

compute gcd

return gcd

Enter first integer: 45

Enter second integer: 75

The greatest common divisor for 45 and 75 is 15

By encapsulating the code for obtaining the gcd in a method, this program has several
advantages:

1. It isolates the problem for computing the gcd from the rest of the code in the main
method. Thus, the logic becomes clear and the program is easier to read.

2. The errors on computing the gcd are confined in the gcd method, which narrows the
scope of debugging.

3. The gcd method now can be reused by other programs.

Listing 6.7 applies the concept of code modularization to improve Listing 5.15,
PrimeNumber.java.

LISTING 6.7 PrimeNumberMethod.java
 1 public class PrimeNumberMethod {
 2 public static void main(String[] args) {
 3 System.out.println("The first 50 prime numbers are \n");
 4 printPrimeNumbers(50);
 5 }
 6
 7 public static void printPrimeNumbers(int numberOfPrimes) {
 8 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
 9 int count = 0; // Count the number of prime numbers
10 int number = 2; // A number to be tested for primeness
11
12 // Repeatedly find prime numbers
13 while (count < numberOfPrimes) {
14 // Print the prime number and increase the count
15 if (isPrime(number)) {
16 count++; // Increase the count
17

invoke printPrimeNumbers

printPrimeNumbers
method

invoke isPrime

6.7 Case Study: Converting Hexadecimals to Decimals 217

18 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
19 // Print the number and advance to the new line
20 System.out.printf("%-5s\n", number);
21 }
22 else

23 System.out.printf("%-5s", number);
24 }
25
26 // Check whether the next number is prime
27 number++;
28 }
29 }
30
31 /** Check whether number is prime */
32 public static boolean isPrime(int number) {
33 for (int divisor = 2; divisor <= number / 2; divisor++) {
34 if (number % divisor == 0) { // If true, number is not prime
35 return false; // Number is not a prime
36 }
37 }
38
39 return true; // Number is prime
40 }
41 }

isPrime method

The first 50 prime numbers are

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

We divided a large problem into two subproblems: determining whether a number is a prime
and printing the prime numbers. As a result, the new program is easier to read and easier to
debug. Moreover, the methods printPrimeNumbers and isPrime can be reused by other
programs.

6.7 Case Study: Converting Hexadecimals to Decimals
This section presents a program that converts a hexadecimal number into a decimal
number.

Listing 5.11, Dec2Hex.java, gives a program that converts a decimal to a hexadecimal. How
would you convert a hex number into a decimal?

Given a hexadecimal number hnhn - 1hn - 2 c h2h1h0, the equivalent decimal value is

hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + c

+ h2 * 162 + h1 * 161 + h0 * 160

For example, the hex number AB8C is

10 * 163 + 11 * 162 + 8 * 161 + 12 * 160 = 43916

Our program will prompt the user to enter a hex number as a string and convert it into a deci-
mal using the following method:

public static int hexToDecimal(String hex)

Key
Point

218 Chapter 6 Methods

A brute-force approach is to convert each hex character into a decimal number, multiply it by
16i for a hex digit at the i’s position, and then add all the items together to obtain the equiva-
lent decimal value for the hex number.

Note that

hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + c + h1 * 161 + h0 * 160

= (c ((hn * 16 + hn - 1) * 16 + hn - 2) * 16 + c + h1) * 16 + h0

This observation, known as the Horner’s algorithm, leads to the following efficient code for
converting a hex string to a decimal number:

int decimalValue = 0;
for (int i = 0; i < hex.length(); i++) {

char hexChar = hex.charAt(i);
 decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);
}

Here is a trace of the algorithm for hex number AB8C:

i hexChar

hexCharToDecimal

(hexChar) decimalValue

before the loop 0

after the 1st iteration 0 A 10 10

after the 2nd iteration 1 B 11 10 * 16 + 11

after the 3rd iteration 2 8 8 (10 * 16 + 11) * 16 + 8

after the 4th iteration 3 C 12 ((10 * 16 + 11)

* 16 + 8) * 16 + 12

Listing 6.8 gives the complete program.

LISTING 6.8 Hex2Dec.java
 1 import java.util.Scanner;
 2
 3 public class Hex2Dec {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
10 System.out.print("Enter a hex number: ");
11 String hex = input.nextLine();
12
13 System.out.println("The decimal value for hex number "
14 + hex + " is " + hexToDecimal(hex.toUpperCase()));
15 }
16
17 public static int hexToDecimal(String hex) {
18 int decimalValue = 0;
19 for (int i = 0; i < hex.length(); i++) {
20 char hexChar = hex.charAt(i);
21 decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);

input string

hex to decimal

6.8 Overloading Methods 219

22 }
23
24 return decimalValue;
25 }
26
27 public static int hexCharToDecimal(char ch) {
28 if (ch >= 'A' && ch <= 'F')
29 return 10 + ch - 'A';
30 else // ch is '0', '1', ..., or '9'
31 return ch - '0';
32 }
33 }

hex char to decimal
check uppercase

Enter a hex number: AB8C
The decimal value for hex number AB8C is 43916

Enter a hex number: af71
The decimal value for hex number af71 is 44913

The program reads a string from the console (line 11), and invokes the hexToDecimal method
to convert a hex string to decimal number (line 14). The characters can be in either lowercase
or uppercase. They are converted to uppercase before invoking the hexToDecimal method.

The hexToDecimal method is defined in lines 17–25 to return an integer. The length of
the string is determined by invoking hex.length() in line 19.

The hexCharToDecimal method is defined in lines 27–32 to return a decimal value for
a hex character. The character can be in either lowercase or uppercase. Recall that to subtract
two characters is to subtract their Unicodes. For example, '5' – '0' is 5.

6.8 Overloading Methods
Overloading methods enables you to define the methods with the same name as long
as their signatures are different.

The max method that was used earlier works only with the int data type. But what if you
need to determine which of two floating-point numbers has the maximum value? The solu-
tion is to create another method with the same name but different parameters, as shown in the
following code:

public static double max(double num1, double num2) {
if (num1 > num2)

return num1;
else

return num2;
}

If you call max with int parameters, the max method that expects int parameters will be
invoked; if you call max with double parameters, the max method that expects double
parameters will be invoked. This is referred to as method overloading; that is, two methods
have the same name but different parameter lists within one class. The Java compiler deter-
mines which method to use based on the method signature.

Key
Point

method overloading

220 Chapter 6 Methods

Listing 6.9 is a program that creates three methods. The first finds the maximum integer,
the second finds the maximum double, and the third finds the maximum among three double
values. All three methods are named max.

LISTING 6.9 TestMethodOverloading.java
 1 public class TestMethodOverloading {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Invoke the max method with int parameters
 5 System.out.println("The maximum of 3 and 4 is "
 6 + max(3, 4));
 7
 8 // Invoke the max method with the double parameters
 9 System.out.println("The maximum of 3.0 and 5.4 is "
10 + max(3.0, 5.4));
11
12 // Invoke the max method with three double parameters
13 System.out.println("The maximum of 3.0, 5.4, and 10.14 is "
14 + max(3.0, 5.4, 10.14));
15 }
16
17 /** Return the max of two int values */
18 public static int max(int num1, int num2) {
19 if (num1 > num2)
20 return num1;
21 else

22 return num2;
23 }
24
25 /** Find the max of two double values */
26 public static double max(double num1, double num2) {
27 if (num1 > num2)
28 return num1;
29 else

30 return num2;
31 }
32
33 /** Return the max of three double values */
34 public static double max(double num1, double num2, double num3) {
35 return max(max(num1, num2), num3);
36 }
37 }

overloaded max

overloaded max

overloaded max

The maximum of 3 and 4 is 4
The maximum of 3.0 and 5.4 is 5.4
The maximum of 3.0, 5.4, and 10.14 is 10.14

When calling max(3, 4) (line 6), the max method for finding the maximum of two integers is
invoked. When calling max(3.0, 5.4) (line 10), the max method for finding the maximum
of two doubles is invoked. When calling max(3.0, 5.4, 10.14) (line 14), the max method
for finding the maximum of three double values is invoked.

Can you invoke the max method with an int value and a double value, such as max(2,
2.5)? If so, which of the max methods is invoked? The answer to the first question is yes.
The answer to the second question is that the max method for finding the maximum of two
double values is invoked. The argument value 2 is automatically converted into a double
value and passed to this method.

6.8 Overloading Methods 221

You may be wondering why the method max(double, double) is not invoked for the
call max(3, 4). Both max(double, double) and max(int, int) are possible matches
for max(3, 4). The Java compiler finds the method that best matches a method invocation.
Since the method max(int, int) is a better matches for max(3, 4) than max(double,
double), max(int, int) is used to invoke max(3, 4).

Tip
Overloading methods can make programs clearer and more readable. Methods that per-

form the same function with different types of parameters should be given the same

name.

Note
Overloaded methods must have different parameter lists. You cannot overload methods

based on different modifiers or return types.

Note
Sometimes there are two or more possible matches for the invocation of a method, but

the compiler cannot determine the best match. This is referred to as ambiguous invo-

cation. Ambiguous invocation causes a compile error. Consider the following code:

public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

public static double max(int num1, double num2) {
if (num1 > num2)

return num1;
else

return num2;
 }

 public static double max(double num1, int num2) {
if (num1 > num2)

return num1;
else

return num2;
 }
}

Both max(int, double) and max(double, int) are possible candidates to match

max(1, 2). Because neither is better than the other, the invocation is ambiguous,

resulting in a compile error.

6.15 What is method overloading? Is it permissible to define two methods that have the
same name but different parameter types? Is it permissible to define two methods in a
class that have identical method names and parameter lists but different return value
types or different modifiers?

6.16 What is wrong in the following program?

public class Test {
public static void method(int x) {

 }

public static int method(int y) {

ambiguous invocation

✓Point✓Check

222 Chapter 6 Methods

return y;
 }
}

6.17 Given two method definitions,

public static double m(double x, double y)

public static double m(int x, double y)

tell which of the two methods is invoked for:

a. double z = m(4, 5);

b. double z = m(4, 5.4);

c. double z = m(4.5, 5.4);

6.9 The Scope of Variables
The scope of a variable is the part of the program where the variable can be
referenced.

Section 2.5 introduced the scope of a variable. This section discusses the scope of vari-
ables in detail. A variable defined inside a method is referred to as a local variable. The
scope of a local variable starts from its declaration and continues to the end of the block
that contains the variable. A local variable must be declared and assigned a value before
it can be used.

A parameter is actually a local variable. The scope of a method parameter covers the
entire method. A variable declared in the initial-action part of a for-loop header has its
scope in the entire loop. However, a variable declared inside a for-loop body has its scope
limited in the loop body from its declaration to the end of the block that contains the variable,
as shown in Figure 6.5.

Key
Point

scope of variables

local variable

FIGURE 6.5 A variable declared in the initial action part of a for-loop header has its scope
in the entire loop.

The scope of j

The scope of i

public static void method1() {

.

.

.

.

.

.

.

for (int i = 1; i < 10; i++) {

int j;

}
}

You can declare a local variable with the same name in different blocks in a method, but
you cannot declare a local variable twice in the same block or in nested blocks, as shown in
Figure 6.6.

6.10 Case Study: Generating Random Characters 223

Caution
Do not declare a variable inside a block and then attempt to use it outside the block.

Here is an example of a common mistake:

for (int i = 0; i < 10; i++) {
}

System.out.println(i);

The last statement would cause a syntax error, because variable i is not defined outside

of the for loop.

6.18 What is a local variable?

6.19 What is the scope of a local variable?

6.10 Case Study: Generating Random Characters
A character is coded using an integer. Generating a random character is to generate
an integer.

Computer programs process numerical data and characters. You have seen many examples
that involve numerical data. It is also important to understand characters and how to process
them. This section presents an example of generating random characters.

As introduced in Section 4.3, every character has a unique Unicode between 0 and FFFF in
hexadecimal (65535 in decimal). To generate a random character is to generate a random integer
between 0 and 65535 using the following expression (note that since 0 <= Math.random() <
1.0, you have to add 1 to 65535):

(int)(Math.random() * (65535 + 1))

Now let’s consider how to generate a random lowercase letter. The Unicodes for lowercase
letters are consecutive integers starting from the Unicode for a, then that for b, c, . . . , and z.
The Unicode for a is

(int)'a'

Thus, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1))

✓Point✓Check

Key
Point

FIGURE 6.6 A variable can be declared multiple times in nonnested blocks, but only once in nested blocks.

It is fine to declare i in two
nonnested blocks.

It is wrong to declare i in two
nested blocks.

public static void method1() {
int x = 1;
int y = 1;

for (int i = 1; i < 10; i++) {
x += i;

}

for (int i = 1; i < 10; i++) {
y += i;

}
}

public static void method2() {

int i = 1;
int sum = 0;

for (int i = 1; i < 10; i++)
sum += i;

}

}

224 Chapter 6 Methods

As discussed in Section 4.3.3, all numeric operators can be applied to the char operands. The
char operand is cast into a number if the other operand is a number or a character. Therefore,
the preceding expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

and a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

Hence, a random character between any two characters ch1 and ch2 with ch1 < ch2 can be
generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

This is a simple but useful discovery. Listing 6.10 defines a class named RandomCharacter
with five overloaded methods to get a certain type of character randomly. You can use these
methods in your future projects.

LISTING 6.10 RandomCharacter.java
 1 public class RandomCharacter {
 2 /** Generate a random character between ch1 and ch2 */
 3 public static char getRandomCharacter(char ch1, char ch2) {
 4 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
 5 }
 6
 7 /** Generate a random lowercase letter */
 8 public static char getRandomLowerCaseLetter() {
 9 return getRandomCharacter('a', 'z');
10 }
11
12 /** Generate a random uppercase letter */
13 public static char getRandomUpperCaseLetter() {
14 return getRandomCharacter('A', 'Z');
15 }
16
17 /** Generate a random digit character */
18 public static char getRandomDigitCharacter() {
19 return getRandomCharacter('0', '9');
20 }
21
22 /** Generate a random character */
23 public static char getRandomCharacter() {
24 return getRandomCharacter('\u0000', '\uFFFF');
25 }
26 }

Listing 6.11 gives a test program that displays 175 random lowercase letters.

LISTING 6.11 TestRandomCharacter.java
 1 public class TestRandomCharacter {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 final int NUMBER_OF_CHARS = 175;
 5 final int CHARS_PER_LINE = 25;
 6
 7 // Print random characters between 'a' and 'z', 25 chars per line
 8 for (int i = 0; i < NUMBER_OF_CHARS; i++) {

getRandomCharacter

getRandomLower
CaseLetter()

getRandomUpper
CaseLetter()

getRandomDigit
Character()

getRandomCharacter()

constants

6.11 Method Abstraction and Stepwise Refinement 225

 9 char ch = RandomCharacter.getRandomLowerCaseLetter();
10 if ((i + 1) % CHARS_PER_LINE == 0)
11 System.out.println(ch);
12 else

13 System.out.print(ch);
14 }
15 }
16 }

lower-case letter

gmjsohezfkgtazqgmswfclrao
pnrunulnwmaztlfjedmpchcif
lalqdgivxkxpbzulrmqmbhikr
lbnrjlsopfxahssqhwuuljvbe
xbhdotzhpehbqmuwsfktwsoli
cbuwkzgxpmtzihgatdslvbwbz
bfesoklwbhnooygiigzdxuqni

FIGURE 6.7 The method body can be thought of as a black box that contains the detailed
implementation for the method.

Method Header

Black box

Optional arguments
for input

Optional return
value

Method Body

Line 9 invokes getRandomLowerCaseLetter() defined in the RandomCharacter class.
Note that getRandomLowerCaseLetter() does not have any parameters, but you still have
to use the parentheses when defining and invoking the method.

6.11 Method Abstraction and Stepwise Refinement
The key to developing software is to apply the concept of abstraction.

You will learn many levels of abstraction from this book. Method abstraction is achieved by
separating the use of a method from its implementation. The client can use a method without
knowing how it is implemented. The details of the implementation are encapsulated in the
method and hidden from the client who invokes the method. This is also known as information
hiding or encapsulation. If you decide to change the implementation, the client program will
not be affected, provided that you do not change the method signature. The implementation of
the method is hidden from the client in a “black box,” as shown in Figure 6.7.

parentheses required

Key
Point

Stepwise refinement

VideoNote

method abstraction

information hiding

You have already used the System.out.print method to display a string and the max method
to find the maximum number. You know how to write the code to invoke these methods in your
program, but as a user of these methods, you are not required to know how they are implemented.

The concept of method abstraction can be applied to the process of developing programs.
When writing a large program, you can use the divide-and-conquer strategy, also known
as stepwise refinement, to decompose it into subproblems. The subproblems can be further
decomposed into smaller, more manageable problems.

Suppose you write a program that displays the calendar for a given month of the year. The
program prompts the user to enter the year and the month, then displays the entire calendar for
the month, as shown in the following sample run.

divide and conquer

stepwise refinement

226 Chapter 6 Methods

Let us use this example to demonstrate the divide-and-conquer approach.

6.11.1 Top-Down Design
How would you get started on such a program? Would you immediately start coding? Begin-
ning programmers often start by trying to work out the solution to every detail. Although
details are important in the final program, concern for detail in the early stages may block
the problem-solving process. To make problem solving flow as smoothly as possible, this
example begins by using method abstraction to isolate details from design and only later
implements the details.

For this example, the problem is first broken into two subproblems: get input from the
user and print the calendar for the month. At this stage, you should be concerned with
what the subproblems will achieve, not with how to get input and print the calendar for the
month. You can draw a structure chart to help visualize the decomposition of the problem
(see Figure 6.8a).

Enter full year (e.g., 2012): 2012

Enter month as number between 1 and 12: 3

 March 2012

 Sun Mon Tue Wed Thu Fri Sat
 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30

FIGURE 6.8 The structure chart shows that the printCalendar problem is divided into two subproblems, readInput
and printMonth in (a), and that printMonth is divided into two smaller subproblems, printMonthTitle and
printMonthBody in (b).

printCalendar
(main)

(a) (b)

printMonthBodyprintMonthTitlereadInput printMonth

printMonth

You can use Scanner to read input for the year and the month. The problem of printing the
calendar for a given month can be broken into two subproblems: print the month title and print
the month body, as shown in Figure 6.8b. The month title consists of three lines: month and
year, a dashed line, and the names of the seven days of the week. You need to get the month
name (e.g., January) from the numeric month (e.g., 1). This is accomplished in getMonth-
Name (see Figure 6.9a).

In order to print the month body, you need to know which day of the week is the first day of
the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth),

6.11 Method Abstraction and Stepwise Refinement 227

as shown in Figure 6.9b. For example, December 2013 has 31 days, and December 1, 2013,
is a Sunday.

How would you get the start day for the first date in a month? There are several ways to do
so. For now, we’ll use an alternative approach. Assume you know that the start day for January
1, 1800, was a Wednesday (START_DAY_FOR_JAN_1_1800 = 3). You could compute the
total number of days (totalNumberOfDays) between January 1, 1800, and the first date of the
calendar month. The start day for the calendar month is (totalNumberOfDays + START_
DAY_FOR_JAN_1_1800) % 7, since every week has seven days. Thus, the getStartDay
problem can be further refined as getTotalNumberOfDays, as shown in Figure 6.10a.

FIGURE 6.9 (a) To printMonthTitle, you need getMonthName. (b) The printMonthBody
problem is refined into several smaller problems.

(b)(a)

getNumberOfDaysInMonthgetStartDaygetMonthName

printMonthTitle

printMonthBody

FIGURE 6.10 (a) To getStartDay, you need getTotalNumberOfDays. (b) The
getTotalNumberOfDays problem is refined into two smaller problems.

getTotalNumberOfDays

getStartDay

isLeapYear

(a) (b)

getNumberOfDaysInMonth

getTotalNumberOfDays

To get the total number of days, you need to know whether the year is a leap year and the
number of days in each month. Thus, getTotalNumberOfDays can be further refined into
two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in Figure 6.10b.
The complete structure chart is shown in Figure 6.11.

6.11.2 Top-Down and/or Bottom-Up Implementation
Now we turn our attention to implementation. In general, a subproblem corresponds to a
method in the implementation, although some are so simple that this is unnecessary. You
would need to decide which modules to implement as methods and which to combine with
other methods. Decisions of this kind should be based on whether the overall program will be
easier to read as a result of your choice. In this example, the subproblem readInput can be
simply implemented in the main method.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach
implements one method in the structure chart at a time from the top to the bottom. Stubs—
a simple but incomplete version of a method—can be used for the methods waiting to be
implemented. The use of stubs enables you to quickly build the framework of the program.
Implement the main method first, and then use a stub for the printMonth method. For example,

top-down approach
stub

228 Chapter 6 Methods

let printMonth display the year and the month in the stub. Thus, your program may begin
like this:

public class PrintCalendar {
 /** Main method */

public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 // Prompt the user to enter year
 System.out.print("Enter full year (e.g., 2012): ");

int year = input.nextInt();

 // Prompt the user to enter month
 System.out.print("Enter month as a number between 1 and 12: ");

int month = input.nextInt();

 // Print calendar for the month of the year
printMonth(year, month);

 }

 /** A stub for printMonth may look like this */
public static void printMonth(int year, int month){

 System.out.print(month + " " + year);
 }

 /** A stub for printMonthTitle may look like this */
public static void printMonthTitle(int year, int month){

 }

 /** A stub for getMonthBody may look like this */
public static void printMonthBody(int year, int month){

 }

FIGURE 6.11 The structure chart shows the hierarchical relationship of the subproblems in
the program.

printCalendar
(main)

getTotalNumberOfDays

getNumberOfDaysInMonth

isLeapYear

printMonthreadInput

printMonthTitle

getMonthName

printMonthBody

getStartDay

6.11 Method Abstraction and Stepwise Refinement 229

 /** A stub for getMonthName may look like this */
public static String getMonthName(int month) {

return "January"; // A dummy value
 }

 /** A stub for getStartDay may look like this */
public static int getStartDay(int year, int month) {

return 1; // A dummy value
 }

 /** A stub for getTotalNumberOfDays may look like this */
public static int getTotalNumberOfDays(int year, int month) {

return 10000; // A dummy value
 }

 /** A stub for getNumberOfDaysInMonth may look like this */
public static int getNumberOfDaysInMonth(int year, int month) {

return 31; // A dummy value
 }

 /** A stub for isLeapYear may look like this */
public static Boolean isLeapYear(int year) {

return true; // A dummy value
 }
}

Compile and test the program, and fix any errors. You can now implement the printMonth
method. For methods invoked from the printMonth method, you can again use stubs.

The bottom-up approach implements one method in the structure chart at a time from the
bottom to the top. For each method implemented, write a test program, known as the driver,
to test it. The top-down and bottom-up approaches are equally good: Both approaches imple-
ment methods incrementally, help to isolate programming errors, and make debugging easy.
They can be used together.

6.11.3 Implementation Details
The isLeapYear(int year) method can be implemented using the following code from
Section 3.11:

return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

Use the following facts to implement getTotalNumberOfDaysInMonth(int year, int
month):

 ■ January, March, May, July, August, October, and December have 31 days.

 ■ April, June, September, and November have 30 days.

 ■ February has 28 days during a regular year and 29 days during a leap year. A regular
year, therefore, has 365 days, a leap year 366 days.

To implement getTotalNumberOfDays(int year, int month), you need to compute
the total number of days (totalNumberOfDays) between January 1, 1800, and the first day
of the calendar month. You could find the total number of days between the year 1800 and the
calendar year and then figure out the total number of days prior to the calendar month in the
calendar year. The sum of these two totals is totalNumberOfDays.

To print a body, first pad some space before the start day and then print the lines for every
week.

The complete program is given in Listing 6.12.

bottom-up approach

driver

230 Chapter 6 Methods

LISTING 6.12 PrintCalendar.java
 1 import java.util.Scanner;
 2
 3 public class PrintCalendar {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter year
 9 System.out.print("Enter full year (e.g., 2012): ");
 10 int year = input.nextInt();
 11
 12 // Prompt the user to enter month
 13 System.out.print("Enter month as a number between 1 and 12: ");
 14 int month = input.nextInt();
 15
 16 // Print calendar for the month of the year
 17 printMonth(year, month);
 18 }
 19
 20 /** Print the calendar for a month in a year */
 21 public static void printMonth(int year, int month) {
 22 // Print the headings of the calendar
 23 printMonthTitle(year, month);
 24
 25 // Print the body of the calendar
 26 printMonthBody(year, month);
 27 }
 28
 29 /** Print the month title, e.g., March 2012 */
 30 public static void printMonthTitle(int year, int month) {
 31 System.out.println(" " + getMonthName(month)
 32 + " " + year);
 33 System.out.println("-----------------------------");
 34 System.out.println(" Sun Mon Tue Wed Thu Fri Sat");
 35 }
 36
 37 /** Get the English name for the month */
 38 public static String getMonthName(int month) {
 39 String monthName = "";
 40 switch (month) {
 41 case 1: monthName = "January"; break;
 42 case 2: monthName = "February"; break;
 43 case 3: monthName = "March"; break;
 44 case 4: monthName = "April"; break;
 45 case 5: monthName = "May"; break;
 46 case 6: monthName = "June"; break;
 47 case 7: monthName = "July"; break;
 48 case 8: monthName = "August"; break;
 49 case 9: monthName = "September"; break;
 50 case 10: monthName = "October"; break;
 51 case 11: monthName = "November"; break;
 52 case 12: monthName = "December";
 53 }
 54
 55 return monthName;
 56 }
 57
 58 /** Print month body */

printMonth

printMonthTitle

getMonthName

6.11 Method Abstraction and Stepwise Refinement 231

 59 public static void printMonthBody(int year, int month) {
 60 // Get start day of the week for the first date in the month
 61 int startDay = getStartDay(year, month)
 62
 63 // Get number of days in the month
 64 int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);
 65
 66 // Pad space before the first day of the month
 67 int i = 0;
 68 for (i = 0; i < startDay; i++)
 69 System.out.print(" ");
 70
 71 for (i = 1; i <= numberOfDaysInMonth; i++) {
 72 System.out.printf("%4d", i);
 73
 74 if ((i + startDay) % 7 == 0)
 75 System.out.println();
 76 }
 77
 78 System.out.println();
 79 }
 80
 81 /** Get the start day of month/1/year */
 82 public static int getStartDay(int year, int month) {
 83 final int START_DAY_FOR_JAN_1_1800 = 3;
 84 // Get total number of days from 1/1/1800 to month/1/year
 85 int totalNumberOfDays = getTotalNumberOfDays(year, month);
 86
 87 // Return the start day for month/1/year
 88 return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;
 89 }
 90
 91 /** Get the total number of days since January 1, 1800 */
 92 public static int getTotalNumberOfDays(int year, int month) {
 93 int total = 0;
 94
 95 // Get the total days from 1800 to 1/1/year
 96 for (int i = 1800; i < year; i++)
 97 if (isLeapYear(i))
 98 total = total + 366;
 99 else

100 total = total + 365;
101
102 // Add days from Jan to the month prior to the calendar month
103 for (int i = 1; i < month; i++)
104 total = total + getNumberOfDaysInMonth(year, i);
105
106 return total;
107 }
108
109 /** Get the number of days in a month */
110 public static int getNumberOfDaysInMonth(int year, int month) {
111 if (month == 1 || month == 3 || month == 5 || month == 7 ||
112 month == 8 || month == 10 || month == 12)
113 return 31;
114
115 if (month == 4 || month == 6 || month == 9 || month == 11)
116 return 30;
117
118 if (month == 2) return isLeapYear(year) ? 29 : 28;

printMonthBody

getStartDay

getTotalNumberOfDays

getNumberOfDaysInMonth

232 Chapter 6 Methods

119
120 return 0; // If month is incorrect
121 }
122
123 /** Determine if it is a leap year */
124 public static boolean isLeapYear(int year) {
125 return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
126 }
127 }

The program does not validate user input. For instance, if the user enters either a month not in
the range between 1 and 12 or a year before 1800, the program displays an erroneous calen-
dar. To avoid this error, add an if statement to check the input before printing the calendar.

This program prints calendars for a month but could easily be modified to print calendars
for a whole year. Although it can print months only after January 1800, it could be modified
to print months before 1800.

6.11.4 Benefits of Stepwise Refinement
Stepwise refinement breaks a large problem into smaller manageable subproblems. Each sub-
problem can be implemented using a method. This approach makes the program easier to
write, reuse, debug, test, modify, and maintain.

Simpler Program
The print calendar program is long. Rather than writing a long sequence of statements in one
method, stepwise refinement breaks it into smaller methods. This simplifies the program and
makes the whole program easier to read and understand.

Reusing Methods
Stepwise refinement promotes code reuse within a program. The isLeapYear method is
defined once and invoked from the getTotalNumberOfDays and getNumberOfDayInMonth
methods. This reduces redundant code.

Easier Developing, Debugging, and Testing
Since each subproblem is solved in a method, a method can be developed, debugged, and tested
individually. This isolates the errors and makes developing, debugging, and testing easier.

When implementing a large program, use the top-down and/or bottom-up approach. Do
not write the entire program at once. Using these approaches seems to take more development
time (because you repeatedly compile and run the program), but it actually saves time and
makes debugging easier.

Better Facilitating Teamwork
When a large problem is divided into subprograms, subproblems can be assigned to different
programmers. This makes it easier for programmers to work in teams.

isLeapYear

incremental development and
testing

KEY TERMS

actual parameter 205
ambiguous invocation 221
argument 205
divide and conquer 225
formal parameter (i.e., parameter) 205
information hiding 225
method 204
method abstraction 225

method overloading 219
method signature 205
modifier 205
parameter 205
pass-by-value 212
scope of a variable 222
stepwise refinement 225
stub 227

Chapter Summary 233

CHAPTER SUMMARY

1. Making programs modular and reusable is one of the central goals in software engineer-
ing. Java provides many powerful constructs that help to achieve this goal. Methods are
one such construct.

2. The method header specifies the modifiers, return value type, method name, and param-
eters of the method. The static modifier is used for all the methods in this chapter.

3. A method may return a value. The returnValueType is the data type of the value the
method returns. If the method does not return a value, the returnValueType is the
keyword void.

4. The parameter list refers to the type, order, and number of a method’s parameters. The
method name and the parameter list together constitute the method signature. Param-
eters are optional; that is, a method doesn’t need to contain any parameters.

5. A return statement can also be used in a void method for terminating the method and
returning to the method’s caller. This is useful occasionally for circumventing the nor-
mal flow of control in a method.

6. The arguments that are passed to a method should have the same number, type, and
order as the parameters in the method signature.

7. When a program calls a method, program control is transferred to the called method. A
called method returns control to the caller when its return statement is executed or when
its method-ending closing brace is reached.

8. A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value.

9. A method can be overloaded. This means that two methods can have the same name, as
long as their method parameter lists differ.

10. A variable declared in a method is called a local variable. The scope of a local variable
starts from its declaration and continues to the end of the block that contains the vari-
able. A local variable must be declared and initialized before it is used.

11. Method abstraction is achieved by separating the use of a method from its implementa-
tion. The client can use a method without knowing how it is implemented. The details
of the implementation are encapsulated in the method and hidden from the client who
invokes the method. This is known as information hiding or encapsulation.

12. Method abstraction modularizes programs in a neat, hierarchical manner. Programs
written as collections of concise methods are easier to write, debug, maintain, and
modify than would otherwise be the case. This writing style also promotes method
reusability.

13. When implementing a large program, use the top-down and/or bottom-up coding
approach. Do not write the entire program at once. This approach may seem to take
more time for coding (because you are repeatedly compiling and running the program),
but it actually saves time and makes debugging easier.

234 Chapter 6 Methods

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Note
A common error for the exercises in this chapter is that students don’t implement

the methods to meet the requirements even though the output from the main pro-

gram is correct. For an example of this type of error see www.cs.armstrong.edu/liang/

CommonMethodErrorJava.pdf.

Sections 6.2–6.9

6.1 (Math: pentagonal numbers) A pentagonal number is defined as n(3n–1)/2 for
n = 1, 2, . . ., and so on. Therefore, the first few numbers are 1, 5, 12, 22,
Write a method with the following header that returns a pentagonal number:

public static int getPentagonalNumber(int n)

Write a test program that uses this method to display the first 100 pentagonal
numbers with 10 numbers on each line.

*6.2 (Sum the digits in an integer) Write a method that computes the sum of the digits
in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 9 (2 + 3 + 4). (Hint: Use the % opera-
tor to extract digits, and the / operator to remove the extracted digit. For instance,
to extract 4 from 234, use 234 % 10 (= 4). To remove 4 from 234, use 234 / 10
(= 23). Use a loop to repeatedly extract and remove the digit until all the digits
are extracted. Write a test program that prompts the user to enter an integer and
displays the sum of all its digits.

**6.3 (Palindrome integer) Write the methods with the following headers

// Return the reversal of an integer, i.e., reverse(456) returns 654
public static int reverse(int number)

// Return true if number is a palindrome
public static boolean isPalindrome(int number)

Use the reverse method to implement isPalindrome. A number is a palin-
drome if its reversal is the same as itself. Write a test program that prompts the
user to enter an integer and reports whether the integer is a palindrome.

*6.4 (Display an integer reversed) Write a method with the following header to display
an integer in reverse order:

public static void reverse(int number)

For example, reverse(3456) displays 6543. Write a test program that prompts
the user to enter an integer and displays its reversal.

*6.5 (Sort three numbers) Write a method with the following header to display three
numbers in increasing order:

public static void displaySortedNumbers(
double num1, double num2, double num3)

VideoNote

Reverse an integer

www.cs.armstrong.edu/liang/intro10e/quiz.html
www.cs.armstrong.edu/liang/CommonMethodErrorJava.pdf
www.cs.armstrong.edu/liang/CommonMethodErrorJava.pdf

Programming Exercises 235

Write a test program that prompts the user to enter three numbers and invokes the
method to display them in increasing order.

*6.6 (Display patterns) Write a method to display a pattern as follows:

 1
 2 1
 3 2 1
...
n n-1 ... 3 2 1

The method header is

public static void displayPattern(int n)

*6.7 (Financial application: compute the future investment value) Write a method that
computes future investment value at a given interest rate for a specified number
of years. The future investment is determined using the formula in Programming
Exercise 2.21.

Use the following method header:

public static double futureInvestmentValue(
double investmentAmount, double monthlyInterestRate, int years)

For example, futureInvestmentValue(10000, 0.05/12, 5) returns
12833.59.

Write a test program that prompts the user to enter the investment amount (e.g.,
1000) and the interest rate (e.g., 9%) and prints a table that displays future value
for the years from 1 to 30, as shown below:

The amount invested: 1000
Annual interest rate: 9
Years Future Value
1 1093.80
2 1196.41
...
29 13467.25
30 14730.57

6.8 (Conversions between Celsius and Fahrenheit) Write a class that contains the fol-
lowing two methods:

/** Convert from Celsius to Fahrenheit */
public static double celsiusToFahrenheit(double celsius)

/** Convert from Fahrenheit to Celsius */
public static double fahrenheitToCelsius(double fahrenheit)

The formula for the conversion is:

fahrenheit = (9.0 / 5) * celsius + 32
celsius = (5.0 / 9) * (fahrenheit – 32)

236 Chapter 6 Methods

Write a test program that invokes these methods to display the following tables:

Celsius Fahrenheit | Fahrenheit Celsius

40.0 104.0 | 120.0 48.89

39.0 102.2 | 110.0 43.33

...

32.0 89.6 | 40.0 4.44

31.0 87.8 | 30.0 -1.11

Feet Meters | Meters Feet

 1.0 0.305 | 20.0 65.574

 2.0 0.610 | 25.0 81.967

 ...

 9.0 2.745 | 60.0 196.721

10.0 3.050 | 65.0 213.115

6.9 (Conversions between feet and meters) Write a class that contains the following
two methods:

/** Convert from feet to meters */
public static double footToMeter(double foot)

/** Convert from meters to feet */
public static double meterToFoot(double meter)

The formula for the conversion is:

meter = 0.305 * foot
foot = 3.279 * meter

Write a test program that invokes these methods to display the following tables:

6.10 (Use the isPrime Method) Listing 6.7, PrimeNumberMethod.java, provides the
isPrime(int number) method for testing whether a number is prime. Use this
method to find the number of prime numbers less than 10000.

6.11 (Financial application: compute commissions) Write a method that computes the
commission, using the scheme in Programming Exercise 5.39. The header of the
method is as follows:

public static double computeCommission(double salesAmount)

Write a test program that displays the following table:

Sales Amount Commission

10000 900.0

15000 1500.0

...

95000 11100.0

100000 11700.0

Programming Exercises 237

6.12 (Display characters) Write a method that prints characters using the following
header:

public static void printChars(char ch1, char ch2, int
 numberPerLine)

This method prints the characters between ch1 and ch2 with the specified num-
bers per line. Write a test program that prints ten characters per line from 1 to Z.
Characters are separated by exactly one space.

*6.13 (Sum series) Write a method to compute the following series:

m(i) =
1

2
+

2

3
+ c +

i

i + 1

Write a test program that displays the following table:

i m(i)

1 0.5000

2 1.1667

...

19 16.4023

20 17.3546

*6.14 (Estimate p) p can be computed using the following series:

m(i) = 4¢1 -
1

3
+

1

5
-

1

7
+

1

9
-

1

11
+ g +

(-1)i + 1

2i - 1
≤

Write a method that returns m(i) for a given i and write a test program that dis-
plays the following table:

VideoNote

Estimate p

i m(i)

1 4.0000

101 3.1515

201 3.1466

301 3.1449

401 3.1441

501 3.1436

601 3.1433

701 3.1430

801 3.1428

901 3.1427

*6.15 (Financial application: print a tax table) Listing 3.5 gives a program to compute
tax. Write a method for computing tax using the following header:

public static double computeTax(int status, double taxableIncome)

238 Chapter 6 Methods

Use this method to write a program that prints a tax table for taxable income from
$50,000 to $60,000 with intervals of $50 for all the following statuses:

Taxable

Income

Single Married Joint

or Qualifying

Widow(er)

Married

Separate

Head of

a House

50000 8688 6665 8688 7353

50050 8700 6673 8700 7365

...

59950 11175 8158 11175 9840

60000 11188 8165 11188 9853

Enter n: 3
0 1 0
0 0 0
1 1 1

Hint: round the tax into integers using Math.round (i.e., Math

.round(computeTax(status, taxableIncome)).

*6.16 (Number of days in a year) Write a method that returns the number of days in a
year using the following header:

public static int numberOfDaysInAYear(int year)

Write a test program that displays the number of days in year from 2000 to 2020.

Sections 6.10–6.11

*6.17 (Display matrix of 0s and 1s) Write a method that displays an n-by-n matrix using
the following header:

public static void printMatrix(int n)

Each element is 0 or 1, which is generated randomly. Write a test program that
prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

**6.18 (Check password) Some websites impose certain rules for passwords. Write a
method that checks whether a string is a valid password. Suppose the password
rules are as follows:

 ■ A password must have at least eight characters.
 ■ A password consists of only letters and digits.
 ■ A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays Valid
Password if the rules are followed or Invalid Password otherwise.

*6.19 (The MyTriangle class) Create a class named MyTriangle that contains the
following two methods:

/** Return true if the sum of any two sides is
 * greater than the third side. */
public static boolean isValid(

double side1, double side2, double side3)

Programming Exercises 239

/** Return the area of the triangle. */
public static double area(

double side1, double side2, double side3)

Write a test program that reads three sides for a triangle and computes the area if
the input is valid. Otherwise, it displays that the input is invalid. The formula for
computing the area of a triangle is given in Programming Exercise 2.19.

*6.20 (Count the letters in a string) Write a method that counts the number of letters in
a string using the following header:

public static int countLetters(String s)

Write a test program that prompts the user to enter a string and displays the num-
ber of letters in the string.

*6.21 (Phone keypads) The international standard letter/number mapping for telephones
is shown in Programming Exercise 4.15. Write a method that returns a number,
given an uppercase letter, as follows:

int getNumber(char uppercaseLetter)

Write a test program that prompts the user to enter a phone number as a string.
The input number may contain letters. The program translates a letter (uppercase
or lowercase) to a digit and leaves all other characters intact. Here is a sample run
of the program:

Enter a string: 1-800-Flowers
1-800-3569377

Enter a string: 1800flowers
18003569377

**6.22 (Math: approximate the square root) There are several techniques for implement-
ing the sqrt method in the Math class. One such technique is known as the
Babylonian method. It approximates the square root of a number, n, by repeatedly
performing a calculation using the following formula:

nextGuess = (lastGuess + n / lastGuess) / 2

When nextGuess and lastGuess are almost identical, nextGuess is the
approximated square root. The initial guess can be any positive value (e.g., 1).
This value will be the starting value for lastGuess. If the difference between
nextGuess and lastGuess is less than a very small number, such as 0.0001,
you can claim that nextGuess is the approximated square root of n. If not, next-
Guess becomes lastGuess and the approximation process continues. Imple-
ment the following method that returns the square root of n.

public static double sqrt(long n)

*6.23 (Occurrences of a specified character) Write a method that finds the number of
occurrences of a specified character in a string using the following header:

public static int count(String str, char a)

240 Chapter 6 Methods

For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string followed by a character and displays the number
of occurrences of the character in the string.

Sections 6.10–6.12

**6.24 (Display current date and time) Listing 2.7, ShowCurrentTime.java, displays the
current time. Improve this example to display the current date and time. The cal-
endar example in Listing 6.12, PrintCalendar.java, should give you some ideas on
how to find the year, month, and day.

**6.25 (Convert milliseconds to hours, minutes, and seconds) Write a method that con-
verts milliseconds to hours, minutes, and seconds using the following header:

public static String convertMillis(long millis)

The method returns a string as hours:minutes:seconds. For example,
convertMillis(5500) returns a string 0:0:5, convertMillis(100000) returns
a string 0:1:40, and convertMillis(555550000) returns a string 154:19:10.

Comprehensive

**6.26 (Palindromic prime) A palindromic prime is a prime number and also palindro-
mic. For example, 131 is a prime and also a palindromic prime, as are 313 and
757. Write a program that displays the first 100 palindromic prime numbers. Dis-
play 10 numbers per line, separated by exactly one space, as follows:

2 3 5 7 11 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929
...

**6.27 (Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number
whose reversal is also a prime. For example, 17 is a prime and 71 is a prime, so 17
and 71 are emirps. Write a program that displays the first 100 emirps. Display 10
numbers per line, separated by exactly one space, as follows:

13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389
...

**6.28 (Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form 2p - 1 for some positive integer p. Write a program that finds all
Mersenne primes with p … 31 and displays the output as follows:

p 2^p –1

2 3

3 7

5 31

...

**6.29 (Twin primes) Twin primes are a pair of prime numbers that differ by 2. For exam-
ple, 3 and 5 are twin primes, 5 and 7 are twin primes, and 11 and 13 are twin primes.
Write a program to find all twin primes less than 1,000. Display the output as follows:

(3, 5)
(5, 7)
...

Programming Exercises 241

**6.30 (Game: craps) Craps is a popular dice game played in casinos. Write a program
to play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, …, and 6, respec-
tively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you
lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value
(i.e., 4, 5, 6, 8, 9, or 10), a point is established. Continue to roll the dice until either
a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

You rolled 5 + 6 = 11
You win

You rolled 1 + 2 = 3
You lose

You rolled 4 + 4 = 8
point is 8
You rolled 6 + 2 = 8
You win

You rolled 3 + 2 = 5
point is 5
You rolled 2 + 5 = 7
You lose

**6.31 (Financial: credit card number validation) Credit card numbers follow certain pat-
terns. A credit card number must have between 13 and 16 digits. It must start with:

 ■ 4 for Visa cards
 ■ 5 for Master cards
 ■ 37 for American Express cards
 ■ 6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card
numbers. The algorithm is useful to determine whether a card number is entered
correctly or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the
Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.

4388576018402626

2 * 2 = 4
2 * 2 = 4
4 * 2 = 8
1 * 2 = 2
6 * 2 = 12 (1 + 2 = 3)
5 * 2 = 10 (1 + 0 = 1)
8 * 2 = 16 (1 + 6 = 7)
4 * 2 = 8

242 Chapter 6 Methods

2. Now add all single-digit numbers from Step 1.

4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37

3. Add all digits in the odd places from right to left in the card number.

6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38

4. Sum the results from Step 2 and Step 3.

37 + 38 = 75

5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise,
it is invalid. For example, the number 4388576018402626 is invalid, but the
number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a long
integer. Display whether the number is valid or invalid. Design your program to
use the following methods:

 /** Return true if the card number is valid */
public static boolean isValid(long number)

 /** Get the result from Step 2 */
public static int sumOfDoubleEvenPlace(long number)

 /** Return this number if it is a single digit, otherwise,
 * return the sum of the two digits */

public static int getDigit(int number)

 /** Return sum of odd-place digits in number */
public static int sumOfOddPlace(long number)

 /** Return true if the digit d is a prefix for number */
public static boolean prefixMatched(long number, int d)

 /** Return the number of digits in d */
public static int getSize(long d)

 /** Return the first k number of digits from number. If the
 * number of digits in number is less than k, return number. */

public static long getPrefix(long number, int k)

Here are sample runs of the program: (You may also implement this program by
reading the input as a string and processing the string to validate the credit card.)

Enter a credit card number as a long integer:
4388576018410707

4388576018410707 is valid

Enter a credit card number as a long integer:
4388576018402626

4388576018402626 is invalid

**6.32 (Game: chance of winning at craps) Revise Exercise 6.30 to run it 10,000 times
and display the number of winning games.

**6.33 (Current date and time) Invoking System.currentTimeMillis() returns the
elapsed time in milliseconds since midnight of January 1, 1970. Write a program
that displays the date and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23

Programming Exercises 243

**6.34 (Print calendar) Programming Exercise 3.21 uses Zeller’s congruence to calcu-
late the day of the week. Simplify Listing 6.12, PrintCalendar.java, using Zeller’s
algorithm to get the start day of the month.

6.35 (Geometry: area of a pentagon) The area of a pentagon can be computed using the
following formula:

Area =
5 * s2

4 * tan¢p
5
≤

Write a method that returns the area of a pentagon using the following header:

public static double area(double side)

Write a main method that prompts the user to enter the side of a pentagon and
displays its area. Here is a sample run:

Enter the side: 5.5
The area of the pentagon is 52.04444136781625

*6.36 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon
in which all sides are of the same length and all angles have the same degree (i.e.,
the polygon is both equilateral and equiangular). The formula for computing the
area of a regular polygon is

Area =
n * s2

4 * tan¢p
n
≤

Write a method that returns the area of a regular polygon using the following header:

public static double area(int n, double side)

Write a main method that prompts the user to enter the number of sides and the
side of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5
Enter the side: 6.5
The area of the polygon is 72.69017017488385

6.37 (Format an integer) Write a method with the following header to format the inte-
ger with the specified width.

public static String format(int number, int width)

The method returns a string for the number with one or more prefix 0s. The size
of the string is the width. For example, format(34, 4) returns 0034 and for-
mat(34, 5) returns 00034. If the number is longer than the width, the method

244 Chapter 6 Methods

returns the string representation for the number. For example, format(34, 1)
returns 34.

Write a test program that prompts the user to enter a number and its width and
displays a string returned by invoking format(number, width).

*6.38 (Generate random characters) Use the methods in RandomCharacter in Listing
6.10 to print 100 uppercase letters and then 100 single digits, printing ten per line.

6.39 (Geometry: point position) Programming Exercise 3.32 shows how to test whether
a point is on the left side of a directed line, on the right, or on the same line. Write
the methods with the following headers:

/** Return true if point (x2, y2) is on the left side of the
 * directed line from (x0, y0) to (x1, y1) */
public static boolean leftOfTheLine(double x0, double y0,

double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the same
 * line from (x0, y0) to (x1, y1) */
public static boolean onTheSameLine(double x0, double y0,

double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the
 * line segment from (x0, y0) to (x1, y1) */
public static boolean onTheLineSegment(double x0, double y0,

double x1, double y1, double x2, double y2)

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, right, the same
line, or on the line segment. Here are some sample runs:

Enter three points for p0, p1, and p2: 1 1 2 2 1.5 1.5
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 3 3
(3.0, 3.0) is on the same line from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 1 1.5
(1.0, 1.5) is on the left side of the line
 from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 1 -1
(1.0, -1.0) is on the right side of the line
 from (1.0, 1.0) to (2.0, 2.0)

SINGLE-DIMENSIONAL
ARRAYS

Objectives
■ To describe why arrays are necessary in programming (§7.1).

■ To declare array reference variables and create arrays (§§7.2.1–7.2.2).

■ To obtain array size using arrayRefVar.length and know default
values in an array (§7.2.3).

■ To access array elements using indexes (§7.2.4).

■ To declare, create, and initialize an array using an array initializer (§7.2.5).

■ To program common array operations (displaying arrays, summing
all elements, finding the minimum and maximum elements, random
shuffling, and shifting elements) (§7.2.6).

■ To simplify programming using the for each loops (§7.2.7).

■ To apply arrays in application development (AnalyzeNumbers,
DeckOfCards) (§§7.3–7.4).

■ To copy contents from one array to another (§7.5).

■ To develop and invoke methods with array arguments and return values
(§§7.6–7.8).

■ To define a method with a variable-length argument list (§7.9).

■ To search elements using the linear (§7.10.1) or binary (§7.10.2)
search algorithm.

■ To sort an array using the selection sort approach (§7.11).

■ To use the methods in the java.util.Arrays class (§7.12).

■ To pass arguments to the main method from the command line (§7.13).

CHAPTER

7

246 Chapter 7 Single-Dimensional Arrays

7.1 Introduction
A single array variable can reference a large collection of data.

Often you will have to store a large number of values during the execution of a program.
Suppose, for instance, that you need to read 100 numbers, compute their average, and find
out how many numbers are above the average. Your program first reads the numbers and
computes their average, then compares each number with the average to determine whether
it is above the average. In order to accomplish this task, the numbers must all be stored in
variables. You have to declare 100 variables and repeatedly write almost identical code
100 times. Writing a program this way would be impractical. So, how do you solve this
problem?

An efficient, organized approach is needed. Java and most other high-level languages pro-
vide a data structure, the array, which stores a fixed-size sequential collection of elements of
the same type. In the present case, you can store all 100 numbers into an array and access them
through a single array variable.

This chapter introduces single-dimensional arrays. The next chapter will introduce two-
dimensional and multidimensional arrays.

7.2 Array Basics
Once an array is created, its size is fixed. An array reference variable is used to
access the elements in an array using an index.

An array is used to store a collection of data, but often we find it more useful to think of an
array as a collection of variables of the same type. Instead of declaring individual variables,
such as number0, number1, . . . , and number99, you declare one array variable such as
numbers and use numbers[0], numbers[1], . . . , and numbers[99] to represent indi-
vidual variables. This section introduces how to declare array variables, create arrays, and
process arrays using indexes.

7.2.1 Declaring Array Variables
To use an array in a program, you must declare a variable to reference the array and specify
the array’s element type. Here is the syntax for declaring an array variable:

elementType[] arrayRefVar;

The elementType can be any data type, and all elements in the array will have the same
data type. For example, the following code declares a variable myList that references an
array of double elements.

double[] myList;

Note
You can also use elementType arrayRefVar[] to declare an array variable. This

style comes from the C/C++ language and was adopted in Java to accommodate C/C++

programmers. The style elementType[] arrayRefVar is preferred.

7.2.2 Creating Arrays
Unlike declarations for primitive data type variables, the declaration of an array variable does
not allocate any space in memory for the array. It creates only a storage location for the refer-
ence to an array. If a variable does not contain a reference to an array, the value of the variable
is null. You cannot assign elements to an array unless it has already been created. After an

Key
Point

problem

why array?

Key
Point

index

element type

preferred syntax

null

7.2 Array Basics 247

array variable is declared, you can create an array by using the new operator and assign its
reference to the variable with the following syntax:

arrayRefVar = new elementType[arraySize];

This statement does two things: (1) it creates an array using new elementType[arraySize];
(2) it assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to
the variable can be combined in one statement as:

elementType[] arrayRefVar = new elementType[arraySize];

or

elementType arrayRefVar[] = new elementType[arraySize];

Here is an example of such a statement:

double[] myList = new double[10];

This statement declares an array variable, myList, creates an array of ten elements of
double type, and assigns its reference to myList. To assign values to the elements, use
the syntax:

arrayRefVar[index] = value;

For example, the following code initializes the array.

myList[0] = 5.6;
myList[1] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;
myList[4] = 4.0;
myList[5] = 34.33;
myList[6] = 34.0;
myList[7] = 45.45;
myList[8] = 99.993;
myList[9] = 11123;

This array is illustrated in Figure 7.1.

new operator

FIGURE 7.1 The array myList has ten elements of double type and int indices from 0 to 9.

double[] myList = new double[10];

myList reference
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[6]

myList[5]

myList[7]

myList[8]

myList[9]

Array reference
variable

Array element at
index 5

5.6

4.5

3.3

13.2

4.0

34.33

34.0

45.45

99.993

11123

Element value

248 Chapter 7 Single-Dimensional Arrays

Note
An array variable that appears to hold an array actually contains a reference to that array.

Strictly speaking, an array variable and an array are different, but most of the time the

distinction can be ignored. Thus it is all right to say, for simplicity, that myList is an

array, instead of stating, at greater length, that myList is a variable that contains a

reference to an array of ten double elements.

7.2.3 Array Size and Default Values
When space for an array is allocated, the array size must be given, specifying the number of ele-
ments that can be stored in it. The size of an array cannot be changed after the array is created.
Size can be obtained using arrayRefVar.length. For example, myList.length is 10.

When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

7.2.4 Accessing Array Elements
The array elements are accessed through the index. Array indices are 0 based; that is, they
range from 0 to arrayRefVar.length-1. In the example in Figure 7.1, myList holds ten
double values, and the indices are from 0 to 9.

Each element in the array is represented using the following syntax, known as an indexed
variable:

arrayRefVar[index];

For example, myList[9] represents the last element in the array myList.

Caution
Some programming languages use parentheses to reference an array element, as in

myList(9), but Java uses brackets, as in myList[9].

An indexed variable can be used in the same way as a regular variable. For example, the
following code adds the values in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

The following loop assigns 0 to myList[0], 1 to myList[1], . . . , and 9 to myList[9]:

for (int i = 0; i < myList.length; i++) {
 myList[i] = i;
}

7.2.5 Array Initializers
Java has a shorthand notation, known as the array initializer, which combines the declaration,
creation, and initialization of an array in one statement using the following syntax:

elementType[] arrayRefVar = {value0, value1, ..., valuek};

For example, the statement

double[] myList = {1.9, 2.9, 3.4, 3.5};

declares, creates, and initializes the array myList with four elements, which is equivalent to
the following statements:

double[] myList = new double[4];
myList[0] = 1.9;
myList[1] = 2.9;

array vs. array variable

array length

default values

0 based

indexed variable

array initializer

7.2 Array Basics 249

myList[2] = 3.4;
myList[3] = 3.5;

Caution
The new operator is not used in the array-initializer syntax. Using an array initializer, you

have to declare, create, and initialize the array all in one statement. Splitting it would

cause a syntax error. Thus, the next statement is wrong:

double[] myList;
myList = {1.9, 2.9, 3.4, 3.5};

7.2.6 Processing Arrays
When processing array elements, you will often use a for loop—for two reasons:

 ■ All of the elements in an array are of the same type. They are evenly processed in the
same fashion repeatedly using a loop.

 ■ Since the size of the array is known, it is natural to use a for loop.

Assume the array is created as follows:

double[] myList = new double[10];

The following are some examples of processing arrays.

1. Initializing arrays with input values: The following loop initializes the array myList
with user input values.

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
 myList[i] = input.nextDouble();

2. Initializing arrays with random values: The following loop initializes the array myList
with random values between 0.0 and 100.0, but less than 100.0.

for (int i = 0; i < myList.length; i++) {
 myList[i] = Math.random() * 100;
}

3. Displaying arrays: To print an array, you have to print each element in the array using a
loop like the following:

for (int i = 0; i < myList.length; i++) {
 System.out.print(myList[i] + " ");
}

Tip
For an array of the char[] type, it can be printed using one print statement. For exam-

ple, the following code displays Dallas:

char[] city = {'D', 'a', 'l', 'l', 'a', 's'};
System.out.println(city);

4. Summing all elements: Use a variable named total to store the sum. Initially total
is 0. Add each element in the array to total using a loop like this:

double total = 0;
for (int i = 0; i < myList.length; i++) {
 total += myList[i];
}

print character array

250 Chapter 7 Single-Dimensional Arrays

5. Finding the largest element: Use a variable named max to store the largest element.
Initially max is myList[0]. To find the largest element in the array myList, compare
each element with max, and update max if the element is greater than max.

double max = myList[0];
for (int i = 1; i < myList.length; i++) {

if (myList[i] > max) max = myList[i];
}

6. Finding the smallest index of the largest element: Often you need to locate the largest
element in an array. If an array has multiple elements with the same largest value, find the
smallest index of such an element. Suppose the array myList is {1, 5, 3, 4, 5, 5}. The
largest element is 5 and the smallest index for 5 is 1. Use a variable named max to store
the largest element and a variable named indexOfMax to denote the index of the largest
element. Initially max is myList[0], and indexOfMax is 0. Compare each element in
myList with max, and update max and indexOfMax if the element is greater than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {

if (myList[i] > max) {
 max = myList[i];
 indexOfMax = i;
 }
}

7. Random shuffling: In many applications, you need to randomly reorder the elements
in an array. This is called shuffling. To accomplish this, for each element myList[i],
randomly generate an index j and swap myList[i] with myList[j], as follows:

Random shuffling

VideoNote

Random shuffling

swap

myList

i
[1]

[i]

for (int i = myList.length – 1; i > 0; i––) {
// Generate an index j randomly with 0 <= j <= i
int j = (int)(Math.random()

 * (i + 1));

// Swap myList[i] with myList[j]
double temp = myList[i];

 myList[i] = myList[j];
 myList[j] = temp;
}

.

.[0]

A random index [j]

double temp = myList[0]; // Retain the first element

// Shift elements left
for (int i = 1; i < myList.length; i++) {
 myList[i - 1] = myList[i];
}

// Move the first element to fill in the last position
myList[myList.length - 1] = temp;

myList

8. Shifting elements: Sometimes you need to shift the elements left or right. Here is an
example of shifting the elements one position to the left and filling the last element with
the first element:

9. Simplifying coding: Arrays can be used to greatly simplify coding for certain tasks. For
example, suppose you wish to obtain the English name of a given month by its number.
If the month names are stored in an array, the month name for a given month can be

7.2 Array Basics 251

accessed simply via the index. The following code prompts the user to enter a month
number and displays its month name:

String[] months = {"January", "February", ..., "December"};
System.out.print("Enter a month number (1 to 12): ");
int monthNumber = input.nextInt();
System.out.println("The month is " + months[monthNumber - 1]);

 If you didn’t use the months array, you would have to determine the month name using
a lengthy multi-way if-else statement as follows:

if (monthNumber == 1)
 System.out.println("The month is January");
else if (monthNumber == 2)
 System.out.println("The month is February");
...
else

 System.out.println("The month is December");

7.2.7 Foreach Loops
Java supports a convenient for loop, known as a foreach loop, which enables you to traverse
the array sequentially without using an index variable. For example, the following code dis-
plays all the elements in the array myList:

for (double e: myList) {
 System.out.println(e);
}

You can read the code as “for each element e in myList, do the following.” Note that the
variable, e, must be declared as the same type as the elements in myList.

In general, the syntax for a foreach loop is

for (elementType element: arrayRefVar) {
// Process the element

}

You still have to use an index variable if you wish to traverse the array in a different order or
change the elements in the array.

Caution
Accessing an array out of bounds is a common programming error that throws a runtime

ArrayIndexOutOfBoundsException. To avoid it, make sure that you do not use

an index beyond arrayRefVar.length – 1.

Programmers often mistakenly reference the first element in an array with index 1, but

it should be 0. This is called the off-by-one error. Another common off-by-one error in

a loop is using <= where < should be used. For example, the following loop is wrong.

for (int i = 0; i <= list.length; i++)
 System.out.print(list[i] + " ");

The <= should be replaced by <.

7.1 How do you declare an array reference variable and how do you create an array?

7.2 When is the memory allocated for an array?

ArrayIndexOutOfBounds-
Exception

off-by-one error

✓Point✓Check

252 Chapter 7 Single-Dimensional Arrays

7.3 What is the output of the following code?

int x = 30;
int[] numbers = new int[x];
x = 60;
System.out.println("x is " + x);
System.out.println("The size of numbers is " + numbers.length);

7.4 Indicate true or false for the following statements:

■ Every element in an array has the same type.

■ The array size is fixed after an array reference variable is declared.

■ The array size is fixed after it is created.

■ The elements in an array must be a primitive data type.

7.5 Which of the following statements are valid?

int i = new int(30);
double d[] = new double[30];
char[] r = new char(1..30);
int i[] = (3, 4, 3, 2);
float f[] = {2.3, 4.5, 6.6};
char[] c = new char();

7.6 How do you access elements in an array?

7.7 What is the array index type? What is the lowest index? What is the representation of
the third element in an array named a?

7.8 Write statements to do the following:

a. Create an array to hold 10 double values.

b. Assign the value 5.5 to the last element in the array.

c. Display the sum of the first two elements.

d. Write a loop that computes the sum of all elements in the array.

e. Write a loop that finds the minimum element in the array.

f. Randomly generate an index and display the element of this index in the array.

g. Use an array initializer to create another array with the initial values 3.5, 5.5,
4.52, and 5.6.

7.9 What happens when your program attempts to access an array element with an inva-
lid index?

7.10 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 double[100] r;
4
5 for (int i = 0; i < r.length(); i++);
6 r(i) = Math.random * 100;
7 }
8 }

7.11 What is the output of the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 int list[] = {1, 2, 3, 4, 5, 6};

7.3 Case Study: Analyzing Numbers 253

 4 for (int i = 1; i < list.length; i++)
 5 list[i] = list[i - 1];
 6
 7 for (int i = 0; i < list.length; i++)
 8 System.out.print(list[i] + " ");
 9 }
10 }

7.3 Case Study: Analyzing Numbers
The problem is to write a program that finds the number of items above the average of
all items.

Now you can write a program using arrays to solve the problem proposed at the beginning of
this chapter. The problem is to read 100 numbers, get the average of these numbers, and find the
number of the items greater than the average. To be flexible for handling any number of input, we
will let the user enter the number of input, rather than fixing it to 100. Listing 7.1 gives a solution.

Key
Point

Enter the number of items: 10

Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5
Average is 5.75
Number of elements above the average is 6

LISTING 7.1 AnalyzeNumbers.java
 1 public class AnalyzeNumbers {
 2 public static void main(String[] args) { numbers[0]
3 java.util.Scanner input = new java.util.Scanner(System.in); numbers[1]:
 4 System.out.print("Enter the number of items: "); numbers[2]:
 5 int n = input.nextInt();
 6 double [] numbers = new double[n]; .
 7 double sum = 0; .
 8 numbers[i]: .
 9 System.out.print("Enter the numbers: ");
10 for (int i = 0; i < n; i++) { numbers[n - 3]:
11 numbers[i] = input.nextDouble(); numbers[n - 2]:
12 sum += numbers[i]; numbers[n - 1]:
13 }
14
15 double average = sum / n;
16
17 int count = 0; // The number of elements above average
18 for (int i = 0; i < n; i++)
19 if (numbers[i] > average)
20 count++;
21
22 System.out.println("Average is " + average);
23 System.out.println("Number of elements above the average is "
24 + count);
25 }
26 }

create array

store number in array

get average

above average?

The program prompts the user to enter the array size (line 5) and creates an array with the
specified size (line 6). The program reads the input, stores numbers into the array (line 11),
adds each number to sum in line 11, and obtains the average (line 15). It then compares

254 Chapter 7 Single-Dimensional Arrays

each number in the array with the average to count the number of values above the average
(lines 17–20).

7.4 Case Study: Deck of Cards
The problem is to create a program that will randomly select four cards from a deck
of cards.

Say you want to write a program that will pick four cards at random from a deck of 52 cards.
All the cards can be represented using an array named deck, filled with initial values 0 to 51,
as follows:

int[] deck = new int[52];

// Initialize cards
for (int i = 0; i < deck.length; i++)
 deck[i] = i;

Card numbers 0 to 12, 13 to 25, 26 to 38, and 39 to 51 represent 13 Spades, 13 Hearts,
13 Diamonds, and 13 Clubs, respectively, as shown in Figure 7.2. cardNumber / 13 deter-
mines the suit of the card and cardNumber % 13 determines the rank of the card, as shown
in Figure 7.3. After shuffling the array deck, pick the first four cards from deck. The program
displays the cards from these four card numbers.

Key
Point

VideoNote

Deck of cards

FIGURE 7.2 52 cards are stored in an array named deck.

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

13 Diamonds ()

13 Clubs ()

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

deck
[0]
.
.
.

[12]
[13]

.

.

.
[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Random shuffle

6
48
11
24
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

deck
[0]
[1]
[2]
[3]
[4]
[5]
.
.
.

[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Card number 6 is the
7 (6 % 13 = 6) of
Spades (7 / 13 is 0)

Card number 48 is the
10 (48 % 13 = 9) of
Clubs (48 / 13 is 3)

Card number 11 is the
Queen (11 % 13 = 11) of
Spades (11 / 13 is 0)

Card number 24 is the
Queen (24 % 13 = 11) of
Hearts (24 / 13 is 1)

13 Hearts ()

13 Spades ()

FIGURE 7.3 CardNumber identifies a card’s suit and rank number.

cardNumber / 13 =

0

3

2

1

Spades

Hearts

Diamonds

Clubs

cardNumber % 13 =

0

11

10

.

Ace

1 2

.

12

Jack

Queen

King

7.4 Case Study: Deck of Cards 255

Listing 7.2 gives the solution to the problem.

LISTING 7.2 DeckOfCards.java
 1 public class DeckOfCards {
 2 public static void main(String[] args) {
 3 int[] deck = new int[52];
 4 String[] suits = {"Spades", "Hearts", "Diamonds", "Clubs"};
 5 String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9",
 6 "10", "Jack", "Queen", "King"};
 7
 8 // Initialize the cards
 9 for (int i = 0; i < deck.length; i++)
10 deck[i] = i;
11
12 // Shuffle the cards
13 for (int i = 0; i < deck.length; i++) {
14 // Generate an index randomly
15 int index = (int)(Math.random() * deck.length);
16 int temp = deck[i];
17 deck[i] = deck[index];
18 deck[index] = temp;
19 }
20
21 // Display the first four cards
22 for (int i = 0; i < 4; i++) {
23 String suit = suits[deck[i] / 13];
24 String rank = ranks[deck[i] % 13];
25 System.out.println("Card number " + deck[i] + ": "
26 + rank + " of " + suit);
27 }
28 }
29 }

create array deck
array of strings
array of strings

initialize deck

shuffle deck

suit of a card
rank of a card

Card number 6: 7 of Spades
Card number 48: 10 of Clubs
Card number 11: Queen of Spades
Card number 24: Queen of Hearts

The program creates an array suits for four suits (line 4) and an array ranks for 13 cards in
a suit (lines 5–6). Each element in these arrays is a string.

The program initializes deck with values 0 to 51 in lines 9–10. The deck value 0 repre-
sents the card Ace of Spades, 1 represents the card 2 of Spades, 13 represents the card Ace of
Hearts, and 14 represents the card 2 of Hearts.

Lines 13–19 randomly shuffle the deck. After a deck is shuffled, deck[i] contains an
arbitrary value. deck[i] / 13 is 0, 1, 2, or 3, which determines the suit (line 23). deck[i]
% 13 is a value between 0 and 12, which determines the rank (line 24). If the suits array is
not defined, you would have to determine the suit using a lengthy multi-way if-else state-
ment as follows:

if (deck[i] / 13 == 0)
 System.out.print("suit is Spades");
else if (deck[i] / 13 == 1)
 System.out.print("suit is Hearts");
else if (deck[i] / 13 == 2)
 System.out.print("suit is Diamonds");
else

 System.out.print("suit is Clubs");

256 Chapter 7 Single-Dimensional Arrays

With suits = {"Spades", "Hearts", "Diamonds", "Clubs"} created in an array,
suits[deck / 13] gives the suit for the deck. Using arrays greatly simplifies the solution
for this program.

7.12 Will the program pick four random cards if you replace lines 22–27 in Listing 7.2
DeckOfCards.java with the following code?

for (int i = 0; i < 4; i++) {
int cardNumber = (int)(Math.random() * deck.length);

 String suit = suits[cardNumber / 13];
 String rank = ranks[cardNumber % 13];
 System.out.println("Card number " + cardNumber + ": "
 + rank + " of " + suit);
 }

7.5 Copying Arrays
To copy the contents of one array into another, you have to copy the array’s individual
elements into the other array.

Often, in a program, you need to duplicate an array or a part of an array. In such cases you
could attempt to use the assignment statement (=), as follows:

list2 = list1;

However, this statement does not copy the contents of the array referenced by list1 to
list2, but instead merely copies the reference value from list1 to list2. After this state-
ment, list1 and list2 reference the same array, as shown in Figure 7.4. The array previously
referenced by list2 is no longer referenced; it becomes garbage, which will be automatically
collected by the Java Virtual Machine (this process is called garbage collection).

✓Point✓Check

Key
Point

copy reference

garbage collection

FIGURE 7.4 Before the assignment statement, list1 and list2 point to separate memory
locations. After the assignment, the reference of the list1 array is passed to list2.

Contents
of list1

Contents
of list1

Contents
of list2

Contents
of list2

list1

list2

Before the assignment
list2 = list1;

list1

list2

After the assignment
list2 = list1;

In Java, you can use assignment statements to copy primitive data type variables, but not
arrays. Assigning one array variable to another array variable actually copies one reference to
another and makes both variables point to the same memory location.

There are three ways to copy arrays:

 ■ Use a loop to copy individual elements one by one.

 ■ Use the static arraycopy method in the System class.

 ■ Use the clone method to copy arrays; this will be introduced in Chapter 13, Abstract
Classes and Interfaces.

7.6 Passing Arrays to Methods 257

You can write a loop to copy every element from the source array to the corresponding element
in the target array. The following code, for instance, copies sourceArray to targetArray
using a for loop.

int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];
for (int i = 0; i < sourceArray.length; i++) {
 targetArray[i] = sourceArray[i];
}

Another approach is to use the arraycopy method in the java.lang.System class to copy
arrays instead of using a loop. The syntax for arraycopy is:

arraycopy(sourceArray, srcPos, targetArray, tarPos, length);

The parameters srcPos and tarPos indicate the starting positions in sourceArray and
targetArray, respectively. The number of elements copied from sourceArray to targ-
etArray is indicated by length. For example, you can rewrite the loop using the following
statement:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

The arraycopy method does not allocate memory space for the target array. The target array
must have already been created with its memory space allocated. After the copying takes place,
targetArray and sourceArray have the same content but independent memory locations.

Note
The arraycopy method violates the Java naming convention. By convention, this

method should be named arrayCopy (i.e., with an uppercase C).

7.13 Use the arraycopy method to copy the following array to a target array t:

int[] source = {3, 4, 5};

7.14 Once an array is created, its size cannot be changed. Does the following code resize
the array?

int[] myList;
myList = new int[10];
// Sometime later you want to assign a new array to myList
myList = new int[20];

7.6 Passing Arrays to Methods
When passing an array to a method, the reference of the array is passed to the method.

Just as you can pass primitive type values to methods, you can also pass arrays to methods.
For example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {

 System.out.print(array[i] + " ");
 }
}

You can invoke it by passing an array. For example, the following statement invokes the
printArray method to display 3, 1, 2, 6, 4, and 2.

printArray(new int[]{3, 1, 2, 6, 4, 2});

arraycopy method

✓Point✓Check

Key
Point

258 Chapter 7 Single-Dimensional Arrays

Note
The preceding statement creates an array using the following syntax:

new elementType[]{value0, value1, ..., valuek};

There is no explicit reference variable for the array. Such array is called an anonymous

array.

Java uses pass-by-value to pass arguments to a method. There are important differences
between passing the values of variables of primitive data types and passing arrays.

 ■ For an argument of a primitive type, the argument’s value is passed.

 ■ For an argument of an array type, the value of the argument is a reference to an array;
this reference value is passed to the method. Semantically, it can be best described as
pass-by-sharing, that is, the array in the method is the same as the array being passed.
Thus, if you change the array in the method, you will see the change outside the method.

Take the following code, for example:

public class Test {
public static void main(String[] args) {

int x = 1; // x represents an int value
int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);
 System.out.println("y[0] is " + y[0]);
 }

public static void m(int number, int[] numbers) {
 number = 1001; // Assign a new value to number
 numbers[0] = 5555; // Assign a new value to numbers[0]
 }
}

anonymous array

pass-by-value

pass-by-sharing

x is 1
y[0] is 5555

FIGURE 7.5 The primitive type value in x is passed to number, and the reference value in y
is passed to numbers.

reference

Activation record for the
main method

int[] y:
int x: 1

Stack

Activation record for
method m
int[] numbers:
int number: 1 An array of

ten int
values is
stored here

Arrays are
stored in a
heap.

Heap

reference

You may wonder why after m is invoked, x remains 1, but y[0] become 5555. This is
because y and numbers, although they are independent variables, reference the same array, as
illustrated in Figure 7.5. When m(x, y) is invoked, the values of x and y are passed to num-
ber and numbers. Since y contains the reference value to the array, numbers now contains
the same reference value to the same array.

7.6 Passing Arrays to Methods 259

Note
Arrays are objects in Java (objects are introduced in Chapter 9). The JVM stores the

objects in an area of memory called the heap, which is used for dynamic memory

allocation.

Listing 7.3 gives another program that shows the difference between passing a primitive data
type value and an array reference variable to a method.

The program contains two methods for swapping elements in an array. The first method,
named swap, fails to swap two int arguments. The second method, named swapFirst-
TwoInArray, successfully swaps the first two elements in the array argument.

LISTING 7.3 TestPassArray.java
 1 public class TestPassArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 int[] a = {1, 2};
 5
 6 // Swap elements using the swap method
 7 System.out.println("Before invoking swap");
 8 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
 9 swap(a[0], a[1]);
10 System.out.println("After invoking swap");
11 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
12
13 // Swap elements using the swapFirstTwoInArray method
14 System.out.println("Before invoking swapFirstTwoInArray");
15 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
16 swapFirstTwoInArray(a);
17 System.out.println("After invoking swapFirstTwoInArray");
18 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
19 }
20
21 /** Swap two variables */
22 public static void swap(int n1, int n2) {
23 int temp = n1;
24 n1 = n2;
25 n2 = temp;
26 }
27
28 /** Swap the first two elements in the array */
29 public static void swapFirstTwoInArray(int[] array) {
30 int temp = array[0];
31 array[0] = array[1];
32 array[1] = temp;
33 }
34 }

heap

false swap

swap array elements

Before invoking swap
array is {1, 2}
After invoking swap
array is {1, 2}
Before invoking swapFirstTwoInArray
array is {1, 2}
After invoking swapFirstTwoInArray
array is {2, 1}

260 Chapter 7 Single-Dimensional Arrays

As shown in Figure 7.6, the two elements are not swapped using the swap method. However,
they are swapped using the swapFirstTwoInArray method. Since the parameters in the
swap method are primitive type, the values of a[0] and a[1] are passed to n1 and n2 inside
the method when invoking swap(a[0], a[1]). The memory locations for n1 and n2 are
independent of the ones for a[0] and a[1]. The contents of the array are not affected by
this call.

FIGURE 7.6 When passing an array to a method, the reference of the array is passed
to the method.

Invoke swap(int n1, int n2).
The primitive type values in
a[0] and a[1] are passed to the
swap method.

Invoke swapFirstTwoInArray(int[]
array). The reference value in a is passed
to the swapFirstTwoInArray method.

The arrays are
stored in a
heap.

Stack Heap

Activation record for
the swap method

Activation record for
the main method

n2: 2
n1: 1

int[] a reference reference

reference

Stack

Activation record for the
swapFirstTwoInArray
method

Activation record for the
main method

int[] a

int[] array

a[0]: 1
a[1]: 2

 l public static int[] reverse(int[] list) {
 2 int[] result = new int[list.length];
3
 4 for (int i = 0, j = result.length - 1;
 5 i < list.length; i++, j--) {
 6 result[j] = list[i];
 7 }
8
 9 return result;
10 }

list

result

The parameter in the swapFirstTwoInArray method is an array. As shown in Figure 7.6,
the reference of the array is passed to the method. Thus the variables a (outside the method)
and array (inside the method) both refer to the same array in the same memory location.
Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray
is the same as swapping a[0] with a[1] outside of the method.

7.7 Returning an Array from a Method
When a method returns an array, the reference of the array is returned.

You can pass arrays when invoking a method. A method may also return an array. For exam-
ple, the following method returns an array that is the reversal of another array.

Key
Point

create array

return array

Line 2 creates a new array result. Lines 4–7 copy elements from array list to array
result. Line 9 returns the array. For example, the following statement returns a new array
list2 with elements 6, 5, 4, 3, 2, 1.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

7.8 Case Study: Counting the Occurrences of Each Letter 261

7.15 Suppose the following code is written to reverse the contents in an array, explain
why it is wrong. How do you fix it?

int[] list = {1, 2, 3, 5, 4};

for (int i = 0, j = list.length - 1; i < list.length; i++, j--) {
 // Swap list[i] with list[j]

int temp = list[i];
 list[i] = list[j];
 list[j] = temp;
}

7.8 Case Study: Counting the Occurrences
of Each Letter

This section presents a program to count the occurrences of each letter in an array of
characters.

The program given in Listing 7.4 does the following:

1. Generates 100 lowercase letters randomly and assigns them to an array of characters, as
shown in Figure 7.7a. You can obtain a random letter by using the getRandomLower-
CaseLetter() method in the RandomCharacter class in Listing 6.10.

2. Count the occurrences of each letter in the array. To do so, create an array, say counts,
of 26 int values, each of which counts the occurrences of a letter, as shown in
Figure 7.7b. That is, counts[0] counts the number of a’s, counts[1] counts the
number of b’s, and so on.

✓Point✓Check

Key
Point

FIGURE 7.7 The chars array stores 100 characters, and the counts array stores 26 counts,
each of which counts the occurrences of a letter.

…

…

chars[0]

chars[1]

…

…

chars[98]

chars[99]

…

…

counts[0]

counts[1]

…

…

counts[24]

counts[25]

(a) (b)

LISTING 7.4 CountLettersInArray.java
 1 public class CountLettersInArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare and create an array
 5 char[] chars = createArray();
 6
 7 // Display the array
 8 System.out.println("The lowercase letters are:");
 9 displayArray(chars);
10

create array

pass array

262 Chapter 7 Single-Dimensional Arrays

11 // Count the occurrences of each letter
12 int[] counts = countLetters(chars);
13
14 // Display counts
15 System.out.println();
16 System.out.println("The occurrences of each letter are:");
17 displayCounts(counts);
18 }
19
20 /** Create an array of characters */
21 public static char[] createArray() {
22 // Declare an array of characters and create it
23 char[] chars = new char[100];
24
25 // Create lowercase letters randomly and assign
26 // them to the array
27 for (int i = 0; i < chars.length; i++)
28 chars[i] = RandomCharacter.getRandomLowerCaseLetter();
29
30 // Return the array
31 return chars;
32 }
33
34 /** Display the array of characters */
35 public static void displayArray(char[] chars) {
36 // Display the characters in the array 20 on each line
37 for (int i = 0; i < chars.length; i++) {
38 if ((i + 1) % 20 == 0)
39 System.out.println(chars[i]);
40 else

41 System.out.print(chars[i] + " ");
42 }
43 }
44
45 /** Count the occurrences of each letter */
46 public static int[] countLetters(char[] chars) {
47 // Declare and create an array of 26 int
48 int[] counts = new int[26];
49
50 // For each lowercase letter in the array, count it
51 for (int i = 0; i < chars.length; i++)
52 counts[chars[i] - 'a']++;
53
54 return counts;
55 }
56
57 /** Display counts */
58 public static void displayCounts(int[] counts) {
59 for (int i = 0; i < counts.length; i++) {
60 if ((i + 1) % 10 == 0)
61 System.out.println(counts[i] + " " + (char)(i + 'a'));
62 else

63 System.out.print(counts[i] + " " + (char)(i + 'a') + " ");
64 }
65 }
66 }

return array

pass array

increase count

7.8 Case Study: Counting the Occurrences of Each Letter 263

The createArray method (lines 21–32) generates an array of 100 random lowercase let-
ters. Line 5 invokes the method and assigns the array to chars. What would be wrong if you
rewrote the code as follows?

char[] chars = new char[100];
chars = createArray();

You would be creating two arrays. The first line would create an array by using new char[100].
The second line would create an array by invoking createArray() and assign the reference
of the array to chars. The array created in the first line would be garbage because it is no longer
referenced, and as mentioned earlier Java automatically collects garbage behind the scenes.
Your program would compile and run correctly, but it would create an array unnecessarily.

Invoking getRandomLowerCaseLetter() (line 28) returns a random lowercase letter.
This method is defined in the RandomCharacter class in Listing 6.10.

The countLetters method (lines 46–55) returns an array of 26 int values, each of
which stores the number of occurrences of a letter. The method processes each letter in the
array and increases its count by one. A brute-force approach to count the occurrences of each
letter might be as follows:

for (int i = 0; i < chars.length; i++)
if (chars[i] == 'a')

 counts[0]++;
else if (chars[i] == 'b')

 counts[1]++;
 ...

But a better solution is given in lines 51–52.

for (int i = 0; i < chars.length; i++)
 counts[chars[i] - 'a']++;

If the letter (chars[i]) is a, the corresponding count is counts['a' - 'a'] (i.e.,
counts[0]). If the letter is b, the corresponding count is counts['b' - 'a'] (i.e.,
counts[1]), since the Unicode of b is one more than that of a. If the letter is z, the cor-
responding count is counts['z' - 'a'] (i.e., counts[25]), since the Unicode of z is 25
more than that of a.

Figure 7.8 shows the call stack and heap during and after executing createArray. See
Checkpoint Question 7.18 to show the call stack and heap for other methods in the program.

The lowercase letters are:
e y l s r i b k j v j h a b z n w b t v
s c c k r d w a m p w v u n q a m p l o
a z g d e g f i n d x m z o u l o z j v
h w i w n t g x w c d o t x h y v z y z
q e a m f w p g u q t r e n n w f c r f

The occurrences of each letter are:
5 a 3 b 4 c 4 d 4 e 4 f 4 g 3 h 3 i 3 j
2 k 3 l 4 m 6 n 4 o 3 p 3 q 4 r 2 s 4 t
3 u 5 v 8 w 3 x 3 y 6 z

264 Chapter 7 Single-Dimensional Arrays

7.16 True or false? When an array is passed to a method, a new array is created and passed
to the method.

7.17 Show the output of the following two programs:
✓Point✓Check

FIGURE 7.8 (a) An array of 100 characters is created when executing createArray.
(b) This array is returned and assigned to the variable chars in the main method.

Array of 100
characters

Stack

(a) Executing
createArray in line 5

(b) After exiting
createArray in line 5

Heap

Activation record for the
createArray method

Activation record for the
main method

Array of 100
characters

Stack Heap

Activation record for the
main method

char[] chars: refchar[] chars: ref

char[] chars: ref

public class Test {
public static void main(String[] args) {

int number = 0;
int[] numbers = new int[1];

 m(number, numbers);

 System.out.println("number is " + number
 + " and numbers[0] is " + numbers[0]);
 }

public static void m(int x, int[] y) {
 x = 3;
 y[0] = 3;
 }
}

(a)

public class Test {
public static void main(String[] args) {

int[] list = {1, 2, 3, 4, 5};
 reverse(list);

for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }

public static void reverse(int[] list) {
int[] newList = new int[list.length];

for (int i = 0; i < list.length; i++)
 newList[i] = list[list.length - 1 - i];

 list = newList;
 }
}

(b)

7.18 Where are the arrays stored during execution? Show the contents of the stack and
heap during and after executing displayArray, countLetters, displayCounts
in Listing 7.4.

7.9 Variable-Length Argument Lists
A variable number of arguments of the same type can be passed to a method and
treated as an array.

You can pass a variable number of arguments of the same type to a method. The parameter in
the method is declared as follows:

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one
variable-length parameter may be specified in a method, and this parameter must be the last
parameter. Any regular parameters must precede it.

Key
Point

7.10 Searching Arrays 265

Java treats a variable-length parameter as an array. You can pass an array or a variable
number of arguments to a variable-length parameter. When invoking a method with a vari-
able number of arguments, Java creates an array and passes the arguments to it. Listing 7.5
contains a method that prints the maximum value in a list of an unspecified number of values.

LISTING 7.5 VarArgsDemo.java
 1 public class VarArgsDemo {
 2 public static void main(String[] args) {
 3 printMax(34, 3, 3, 2, 56.5);
 4 printMax(new double[]{1, 2, 3});
 5 }
 6
 7 public static void printMax(double... numbers) {
 8 if (numbers.length == 0) {
 9 System.out.println("No argument passed");
10 return;
11 }
12
13 double result = numbers[0];
14
15 for (int i = 1; i < numbers.length; i++)
16 if (numbers[i] > result)
17 result = numbers[i];
18
19 System.out.println("The max value is " + result);
20 }
21 }

Line 3 invokes the printMax method with a variable-length argument list passed to the array
numbers. If no arguments are passed, the length of the array is 0 (line 8).

Line 4 invokes the printMax method with an array.

7.19 What is wrong in the following method header?

public static void print(String... strings, double... numbers)
public static void print(double... numbers, String name)
public static double... print(double d1, double d2)

7.20 Can you invoke the printMax method in Listing 7.5 using the following statements?

printMax(1, 2, 2, 1, 4);
printMax(new double[]{1, 2, 3});
printMax(new int[]{1, 2, 3});

7.10 Searching Arrays
If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

Searching is the process of looking for a specific element in an array—for example, discov-
ering whether a certain score is included in a list of scores. Searching is a common task in
computer programming. Many algorithms and data structures are devoted to searching. This
section discusses two commonly used approaches, linear search and binary search.

7.10.1 The Linear Search Approach
The linear search approach compares the key element key sequentially with each element in
the array. It continues to do so until the key matches an element in the array or the array is
exhausted without a match being found. If a match is made, the linear search returns the index

pass variable-length arg list
pass an array arg

a variable-length arg
parameter

✓Point✓Check

Key
Point

linear search
binary search

266 Chapter 7 Single-Dimensional Arrays

of the element in the array that matches the key. If no match is found, the search returns -1.
The linearSearch method in Listing 7.6 gives the solution.

LISTING 7.6 LinearSearch.java
linear search animation on

Companion Website

list

key Compare key with list[i] for i = 0, 1, …

[0] [1] [2] …

1 public class LinearSearch {
2 /** The method for finding a key in the list */
3 public static int linearSearch(int[] list, int key) {
4 for (int i = 0; i < list.length; i++) {
5 if (key == list[i])
6 return i;
7 }
8 return -1;
9 }
10 }

To better understand this method, trace it with the following statements:

1 int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
2 int i = linearSearch(list, 4); // Returns 1
3 int j = linearSearch(list, -4); // Returns -1
4 int k = linearSearch(list, -3); // Returns 5

The linear search method compares the key with each element in the array. The elements can
be in any order. On average, the algorithm will have to examine half of the elements in an
array before finding the key, if it exists. Since the execution time of a linear search increases
linearly as the number of array elements increases, linear search is inefficient for a large array.

7.10.2 The Binary Search Approach
Binary search is the other common search approach for a list of values. For binary search to
work, the elements in the array must already be ordered. Assume that the array is in ascending
order. The binary search first compares the key with the element in the middle of the array.
Consider the following three cases:

 ■ If the key is less than the middle element, you need to continue to search for the key
only in the first half of the array.

 ■ If the key is equal to the middle element, the search ends with a match.

 ■ If the key is greater than the middle element, you need to continue to search for the
key only in the second half of the array.

Clearly, the binary search method eliminates at least half of the array after each comparison.
Sometimes you eliminate half of the elements, and sometimes you eliminate half plus one.
Suppose that the array has n elements. For convenience, let n be a power of 2. After the first
comparison, n/2 elements are left for further search; after the second comparison, (n/2)/2
elements are left. After the kth comparison, n/2k elements are left for further search. When
k = log2n, only one element is left in the array, and you need only one more comparison.
Therefore, in the worst case when using the binary search approach, you need log2n+1 com-
parisons to find an element in the sorted array. In the worst case for a list of 1024 (210) ele-
ments, binary search requires only 11 comparisons, whereas a linear search requires 1023
comparisons in the worst case.

The portion of the array being searched shrinks by half after each comparison. Let low and
high denote, respectively, the first index and last index of the array that is currently being
searched. Initially, low is 0 and high is list.length–1. Let mid denote the index of the
middle element, so mid is (low + high)/2. Figure 7.9 shows how to find key 11 in the list
{2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79} using binary search.

binary search animation on

Companion Website

7.10 Searching Arrays 267

You now know how the binary search works. The next task is to implement it in Java.
Don’t rush to give a complete implementation. Implement it incrementally, one step at a time.
You may start with the first iteration of the search, as shown in Figure 7.10a. It compares the
key with the middle element in the list whose low index is 0 and high index is list.length
- 1. If key < list[mid], set the high index to mid - 1; if key == list[mid], a match
is found and return mid; if key > list[mid], set the low index to mid + 1.

Next consider implementing the method to perform the search repeatedly by adding a loop,
as shown in Figure 7.10b. The search ends if the key is found, or if the key is not found when
low > high.

When the key is not found, low is the insertion point where a key would be inserted to
maintain the order of the list. It is more useful to return the insertion point than -1. The
method must return a negative value to indicate that the key is not in the list. Can it simply
return –low? No. If the key is less than list[0], low would be 0. -0 is 0. This would indi-
cate that the key matches list[0]. A good choice is to let the method return –low – 1 if the
key is not in the list. Returning –low – 1 indicates not only that the key is not in the list, but
also where the key would be inserted.

why not -1?

FIGURE 7.9 Binary search eliminates half of the list from further consideration after each
comparison.

key is 11 low

key � 50

key � 7

[0] [1] [2] [3] [4] [5] [7] [8] [9] [10] [11]

2list 4 7 10 11 45 50 59 60 66 69 70 79

mid

[6]

high

[12]

low

[0] [1] [2] [3] [4] [5]

2list 4 7 10 11 45

mid high

key �� 11

[3] [4] [5]

list 10 11 45

low mid high

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length - 1;

int mid = (low + high) / 2;
if (key < list[mid])

 high = mid - 1;
else if (key == list[mid])

return mid;
else

 low = mid + 1;

}

(a) Version 1

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length - 1;

while (high >= low) {
int mid = (low + high) / 2;
if (key < list[mid])

 high = mid - 1;
else if (key == list[mid])

return mid;
else

 low = mid + 1;
}

return -1; // Not found
}

(b) Version 2

FIGURE 7.10 Binary search is implemented incrementally.

268 Chapter 7 Single-Dimensional Arrays

The complete program is given in Listing 7.7.

LISTING 7.7 BinarySearch.java
 1 public class BinarySearch {
 2 /** Use binary search to find the key in the list */
 3 public static int binarySearch(int[] list, int key) {
 4 int low = 0;
 5 int high = list.length - 1;
 6
 7 while (high >= low) {
 8 int mid = (low + high) / 2;
 9 if (key < list[mid])
10 high = mid - 1;
11 else if (key == list[mid])
12 return mid;
13 else

14 low = mid + 1;
15 }
16
17 return –low - 1; // Now high < low, key not found
18 }
19 }

The binary search returns the index of the search key if it is contained in the list (line 12).
Otherwise, it returns –low – 1 (line 17).

What would happen if we replaced (high >= low) in line 7 with (high > low)? The
search would miss a possible matching element. Consider a list with just one element. The
search would miss the element.

Does the method still work if there are duplicate elements in the list? Yes, as long as the
elements are sorted in increasing order. The method returns the index of one of the matching
elements if the element is in the list.

To better understand this method, trace it with the following statements and identify low
and high when the method returns.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
int i = BinarySearch.binarySearch(list, 2); // Returns 0
int j = BinarySearch.binarySearch(list, 11); // Returns 4
int k = BinarySearch.binarySearch(list, 12); // Returns –6
int l = BinarySearch.binarySearch(list, 1); // Returns –1
int m = BinarySearch.binarySearch(list, 3); // Returns –2

Here is the table that lists the low and high values when the method exits and the value
returned from invoking the method.

first half

second half

Method Low High Value Returned

binarySearch(list, 2) 0 1 0

binarySearch(list, 11) 3 5 4

binarySearch(list, 12) 5 4 -6

binarySearch(list, 1) 0 -1 -1

binarySearch(list, 3) 1 0 -2

Note
Linear search is useful for finding an element in a small array or an unsorted array, but

it is inefficient for large arrays. Binary search is more efficient, but it requires that the

array be presorted.

binary search benefits

7.11 Sorting Arrays 269

7.21 If high is a very large integer such as the maximum int value 2147483647, (low
+ high) / 2 may cause overflow. How do you fix it to avoid overflow?

7.22 Use Figure 7.9 as an example to show how to apply the binary search approach to a
search for key 10 and key 12 in list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}.

7.23 If the binary search method returns -4, is the key in the list? Where should the key
be inserted if you wish to insert the key into the list?

7.11 Sorting Arrays
Sorting, like searching, is a common task in computer programming. Many different
algorithms have been developed for sorting. This section introduces an intuitive sort-
ing algorithm: selection sort.

Suppose that you want to sort a list in ascending order. Selection sort finds the smallest
number in the list and swaps it with the first element. It then finds the smallest number
remaining and swaps it with the second element, and so on, until only a single number
remains. Figure 7.11 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

✓Point✓Check

Key
Point

selection sort

selection sort animation on

Companion Website

FIGURE 7.11 Selection sort repeatedly selects the smallest number and swaps it with the first number in the list.

Select 1 (the smallest) and swap it
with 2 (the first) in the list.

The number 1 is now in the
correct position and thus no
longer needs to be considered.

The number 2 is now in the
correct position and thus no
longer needs to be considered.

The number 4 is now in the
correct position and thus no
longer needs to be considered.

The number 5 is now in the
correct position and thus no
longer needs to be considered.

The number 6 is now in the
correct position and thus no
longer needs to be considered.

2

1

1

1

1

1

1

9

9

2

2

2

2

2

5

swap

5

5

4

4

4

4

4

4

4

5

5

5

5

8

8

8

8

8

6

6

1

2

9

9

9

9

8

6

6

6

6

6

8

9
The number 8 is now in the
correct position and thus no
longer needs to be considered.

Select 2 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Select 4 (the smallest) and swap it
with 5 (the first) in the remaining
list.

5 is the smallest and in the right
position. No swap is necessary.

Select 6 (the smallest) and swap it
with 8 (the first) in the remaining
list.

Select 8 (the smallest) and swap it
with 9 (the first) in the remaining
list.

Since there is only one element
remaining in the list, the sort is
completed.

swap

swap

swap

swap

You know how the selection-sort approach works. The task now is to implement it in Java.
Beginners find it difficult to develop a complete solution on the first attempt. Start by writing
the code for the first iteration to find the smallest element in the list and swap it with the first
element, and then observe what would be different for the second iteration, the third, and so
on. The insight this gives will enable you to write a loop that generalizes all the iterations.

VideoNote

Selection sort

270 Chapter 7 Single-Dimensional Arrays

The solution can be described as follows:

for (int i = 0; i < list.length - 1; i++) {
 select the smallest element in list[i..list.length-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration applies on list[i+1..list.length-1]
}

Listing 7.8 implements the solution.

LISTING 7.8 SelectionSort.java
 1 public class SelectionSort {
 2 /** The method for sorting the numbers */
 3 public static void selectionSort(double[] list) {
 4 for (int i = 0; i < list.length - 1; i++) {
 5 // Find the minimum in the list[i..list.length-1]
 6 double currentMin = list[i];
 7 int currentMinIndex = i;
 8
 9 for (int j = i + 1; j < list.length; j++) {
10 if (currentMin > list[j]) {
11 currentMin = list[j];
12 currentMinIndex = j;
13 }
14 }
15
16 // Swap list[i] with list[currentMinIndex] if necessary
17 if (currentMinIndex != i) {
18 list[currentMinIndex] = list[i];
19 list[i] = currentMin;
20 }
21 }
22 }
23 }

The selectionSort(double[] list) method sorts any array of double elements. The
method is implemented with a nested for loop. The outer loop (with the loop control vari-
able i) (line 4) is iterated in order to find the smallest element in the list, which ranges from
list[i] to list[list.length-1], and exchange it with list[i].

The variable i is initially 0. After each iteration of the outer loop, list[i] is in the right
place. Eventually, all the elements are put in the right place; therefore, the whole list is sorted.

To understand this method better, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, -4.5};
SelectionSort.selectionSort(list);

7.24 Use Figure 7.11 as an example to show how to apply the selection-sort approach to
sort {3.4, 5, 3, 3.5, 2.2, 1.9, 2}.

7.25 How do you modify the selectionSort method in Listing 7.8 to sort numbers in
decreasing order?

7.12 The Arrays Class
The java.util.Arrays class contains useful methods for common array operations
such as sorting and searching.

select

swap

✓Point✓Check

Key
Point

7.12 The Arrays Class 271

The java.util.Arrays class contains various static methods for sorting and searching
arrays, comparing arrays, filling array elements, and returning a string representation of the
array. These methods are overloaded for all primitive types.

You can use the sort or parallelSort method to sort a whole array or a partial array.
For example, the following code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers); // Sort the whole array
java.util.Arrays.parallelSort(numbers); // Sort the whole array

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars, 1, 3); // Sort part of the array
java.util.Arrays.parallelSort(chars, 1, 3); // Sort part of the array

Invoking sort(numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3)
sorts a partial array from chars[1] to chars[3-1]. parallelSort is more efficient if
your computer has multiple processors.

You can use the binarySearch method to search for a key in an array. The array must be pre-
sorted in increasing order. If the key is not in the array, the method returns –(insertionIndex
+ 1). For example, the following code searches the keys in an array of integers and an array
of characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("1. Index is " +

java.util.Arrays.binarySearch(list, 11));
System.out.println("2. Index is " +
 java.util.Arrays.binarySearch(list, 12));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("3. Index is " +
 java.util.Arrays.binarySearch(chars, 'a'));
System.out.println("4. Index is " +
 java.util.Arrays.binarySearch(chars, 't'));

The output of the preceding code is

1. Index is 4

2. Index is -6

3. Index is 0

4. Index is -4

You can use the equals method to check whether two arrays are strictly equal. Two arrays
are strictly equal if their corresponding elements are the same. In the following code, list1
and list2 are equal, but list2 and list3 are not.

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 10};
int[] list3 = {4, 2, 7, 10};
System.out.println(java.util.Arrays.equals(list1, list2)); // true
System.out.println(java.util.Arrays.equals(list2, list3)); // false

You can use the fill method to fill in all or part of the array. For example, the following code
fills list1 with 5 and fills 8 into elements list2[1] through list2[5-1].

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 7, 7, 10};
java.util.Arrays.fill(list1, 5); // Fill 5 to the whole array
java.util.Arrays.fill(list2, 1, 5, 8); // Fill 8 to a partial array

sort

parallelSort

binarySearch

equals

fill

272 Chapter 7 Single-Dimensional Arrays

You can also use the toString method to return a string that represents all elements in the array.
This is a quick and simple way to display all elements in the array. For example, the following code

int[] list = {2, 4, 7, 10};
System.out.println(Arrays.toString(list));

displays [2, 4, 7, 10].

7.26 What types of array can be sorted using the java.util.Arrays.sort method?
Does this sort method create a new array?

7.27 To apply java.util.Arrays.binarySearch(array, key), should the array
be sorted in increasing order, in decreasing order, or neither?

7.28 Show the output of the following code:

int[] list1 = {2, 4, 7, 10};
java.util.Arrays.fill(list1, 7);
System.out.println(java.util.Arrays.toString(list1));

int[] list2 = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list2));
System.out.print(java.util.Arrays.equals(list1, list2));

7.13 Command-Line Arguments
The main method can receive string arguments from the command line.

Perhaps you have already noticed the unusual header for the main method, which has the
parameter args of String[] type. It is clear that args is an array of strings. The main
method is just like a regular method with a parameter. You can call a regular method by pass-
ing actual parameters. Can you pass arguments to main? Yes, of course you can. In the fol-
lowing examples, the main method in class TestMain is invoked by a method in A.

toString

✓Point✓Check

Key
Point

VideoNote

Command-line arguments

A main method is just a regular method. Furthermore, you can pass arguments from the
command line.

7.13.1 Passing Strings to the main Method
You can pass strings to a main method from the command line when you run the program.
The following command line, for example, starts the program TestMain with three strings:
arg0, arg1, and arg2:

java TestMain arg0 arg1 arg2

arg0, arg1, and arg2 are strings, but they don’t have to appear in double quotes on the
command line. The strings are separated by a space. A string that contains a space must be
enclosed in double quotes. Consider the following command line:

java TestMain "First num" alpha 53

public class A {
public static void main(String[] args) {

 String[] strings = {"New York",
"Boston", "Atlanta"};

TestMain.main(strings);
 }
}

public class TestMain {
public static void main(String[] args) {

for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }

}

7.13 Command-Line Arguments 273

It starts the program with three strings: First num, alpha, and 53. Since First num is a
string, it is enclosed in double quotes. Note that 53 is actually treated as a string. You can use
"53" instead of 53 in the command line.

When the main method is invoked, the Java interpreter creates an array to hold the com-
mand-line arguments and pass the array reference to args. For example, if you invoke a
program with n arguments, the Java interpreter creates an array like this one:

args = new String[n];

The Java interpreter then passes args to invoke the main method.

Note
If you run the program with no strings passed, the array is created with new String[0].

In this case, the array is empty with length 0. args references to this empty array.

Therefore, args is not null, but args.length is 0.

7.13.2 Case Study: Calculator
Suppose you are to develop a program that performs arithmetic operations on integers. The
program receives an expression in one string argument. The expression consists of an inte-
ger followed by an operator and another integer. For example, to add two integers, use this
command:

java Calculator 2 + 3

The program will display the following output:

2 + 3 = 5

Figure 7.12 shows sample runs of the program.
The strings passed to the main program are stored in args, which is an array of strings. The

first string is stored in args[0], and args.length is the number of strings passed.
Here are the steps in the program:

1. Use args.length to determine whether the expression has been provided as three
arguments in the command line. If not, terminate the program using System.exit(1).

2. Perform a binary arithmetic operation on the operands args[0] and args[2] using the
operator in args[1].

VideoNote

Command-line argument

FIGURE 7.12 The program takes three arguments (operand1 operator operand2) from
the command line and displays the expression and the result of the arithmetic operation.

Add

Subtract

Multiply

Divide

274 Chapter 7 Single-Dimensional Arrays

The program is shown in Listing 7.9.

LISTING 7.9 Calculator.java
 1 public class Calculator {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Check number of strings passed
 5 if (args.length != 3) {
 6 System.out.println(
 7 "Usage: java Calculator operand1 operator operand2");
 8 System.exit(0);
 9 }
10
11 // The result of the operation
12 int result = 0;
13
14 // Determine the operator
15 switch (args[1].charAt(0)) {
16 case '+': result = Integer.parseInt(args[0]) +
17 Integer.parseInt(args[2]);
18 break;
19 case '-': result = Integer.parseInt(args[0]) -
20 Integer.parseInt(args[2]);
21 break;
22 case '.': result = Integer.parseInt(args[0]) *
23 Integer.parseInt(args[2]);
24 break;
25 case '/': result = Integer.parseInt(args[0]) /
26 Integer.parseInt(args[2]);
27 }
28
29 // Display result
30 System.out.println(args[0] + ' ' + args[1] + ' ' + args[2]
31 + " = " + result);
32 }
33 }

Integer.parseInt(args[0]) (line 16) converts a digital string into an integer. The string
must consist of digits. If not, the program will terminate abnormally.

We used the . symbol for multiplication, not the common * symbol. The reason for this is
that the * symbol refers to all the files in the current directory when it is used on a command
line. The following program displays all the files in the current directory when issuing the
command java Test *:

public class Test {
public static void main(String[] args) {

for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

To circumvent this problem, we will have to use a different symbol for the multiplication operator.

7.29 This book declares the main method as

public static void main(String[] args)

Can it be replaced by one of the following lines?

public static void main(String args[])
public static void main(String[] x)

check argument

check operator

✓Point✓Check

Chapter Summary 275

public static void main(String x[])
static void main(String x[])

7.30 Show the output of the following program when invoked using

1. java Test I have a dream

2. java Test “1 2 3”

3. java Test

public class Test {
public static void main(String[] args) {

 System.out.println("Number of strings is " + args.length);
for (int i = 0; i < args.length; i++)

 System.out.println(args[i]);
 }
}

KEY TERMS

anonymous array 258
array 246
array initializer 248
binary search 265
garbage collection 256

index 246
indexed variable 248
linear search 265
off-by-one error 251
selection sort 269

CHAPTER SUMMARY

1. A variable is declared as an array type using the syntax elementType[] arrayRefVar
or elementType arrayRefVar[]. The style elementType[] arrayRefVar is
preferred, although elementType arrayRefVar[] is legal.

2. Unlike declarations for primitive data type variables, the declaration of an array variable
does not allocate any space in memory for the array. An array variable is not a primitive
data type variable. An array variable contains a reference to an array.

3. You cannot assign elements to an array unless it has already been created. You
can create an array by using the new operator with the following syntax: new
elementType[arraySize].

4. Each element in the array is represented using the syntax arrayRefVar[index]. An
index must be an integer or an integer expression.

5. After an array is created, its size becomes permanent and can be obtained using
arrayRefVar.length. Since the index of an array always begins with 0, the last
index is always arrayRefVar.length - 1. An out-of-bounds error will occur if you
attempt to reference elements beyond the bounds of an array.

6. Programmers often mistakenly reference the first element in an array with index 1, but
it should be 0. This is called the index off-by-one error.

276 Chapter 7 Single-Dimensional Arrays

7. When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

8. Java has a shorthand notation, known as the array initializer, which combines declaring
an array, creating an array, and initializing an array in one statement, using the syntax
elementType[] arrayRefVar = {value0, value1, ..., valuek}.

9. When you pass an array argument to a method, you are actually passing the reference
of the array; that is, the called method can modify the elements in the caller’s original
array.

10. If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

11. Selection sort finds the smallest number in the list and swaps it with the first element.
It then finds the smallest number remaining and swaps it with the first element in the
remaining list, and so on, until only a single number remains.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 7.2–7.5

*7.1 (Assign grades) Write a program that reads student scores, gets the best score,
and then assigns grades based on the following scheme:

Grade is A if score is Ú best - 10

Grade is B if score is Ú best - 20;

Grade is C if score is Ú best - 30;

Grade is D if score is Ú best - 40;

Grade is F otherwise.

The program prompts the user to enter the total number of students, then prompts
the user to enter all of the scores, and concludes by displaying the grades. Here
is a sample run:

Enter the number of students: 4

Enter 4 scores: 40 55 70 58
Student 0 score is 40 and grade is C
Student 1 score is 55 and grade is B
Student 2 score is 70 and grade is A
Student 3 score is 58 and grade is B

7.2 (Reverse the numbers entered) Write a program that reads ten integers and dis-
plays them in the reverse of the order in which they were read.

www.cs.armstrong.edu/liang/intro10e/quiz.html

**7.3 (Count occurrence of numbers) Write a program that reads the integers between 1
and 100 and counts the occurrences of each. Assume the input ends with 0. Here
is a sample run of the program:

Programming Exercises 277

Enter the integers between 1 and 100: 2 5 6 5 4 3 23 43 2 0
2 occurs 2 times
3 occurs 1 time
4 occurs 1 time
5 occurs 2 times
6 occurs 1 time
23 occurs 1 time
43 occurs 1 time

Note that if a number occurs more than one time, the plural word “times” is used
in the output.

7.4 (Analyze scores) Write a program that reads an unspecified number of scores and
determines how many scores are above or equal to the average and how many
scores are below the average. Enter a negative number to signify the end of the
input. Assume that the maximum number of scores is 100.

**7.5 (Print distinct numbers) Write a program that reads in ten numbers and displays
the number of distinct numbers and the distinct numbers separated by exactly one
space (i.e., if a number appears multiple times, it is displayed only once). (Hint:
Read a number and store it to an array if it is new. If the number is already in the
array, ignore it.) After the input, the array contains the distinct numbers. Here is
the sample run of the program:

Enter ten numbers: 1 2 3 2 1 6 3 4 5 2
The number of distinct number is 6
The distinct numbers are: 1 2 3 6 4 5

*7.6 (Revise Listing 5.15, PrimeNumber.java) Listing 5.15 determines whether a num-
ber n is prime by checking whether 2, 3, 4, 5, 6, . . . , n/2 is a divisor. If a divisor
is found, n is not prime. A more efficient approach is to check whether any of the
prime numbers less than or equal to 2n can divide n evenly. If not, n is prime.
Rewrite Listing 5.15 to display the first 50 prime numbers using this approach.
You need to use an array to store the prime numbers and later use them to check
whether they are possible divisors for n.

*7.7 (Count single digits) Write a program that generates 100 random integers between
0 and 9 and displays the count for each number. (Hint: Use an array of ten integers,
say counts, to store the counts for the number of 0s, 1s, . . . , 9s.)

Sections 7.6–7.8

7.8 (Average an array) Write two overloaded methods that return the average of an
array with the following headers:

public static int average(int[] array)
public static double average(double[] array)

Write a test program that prompts the user to enter ten double values, invokes this
method, and displays the average value.

278 Chapter 7 Single-Dimensional Arrays

7.9 (Find the smallest element) Write a method that finds the smallest element in an
array of double values using the following header:

public static double min(double[] array)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the minimum value, and displays the minimum value. Here is a
sample run of the program:

Enter ten numbers: 1.9 2.5 3.7 2 1.5 6 3 4 5 2
The minimum number is: 1.5

Enter ten numbers: 1.9 2.5 3.7 2 1 6 3 4 5 2
The mean is 3.11
The standard deviation is 1.55738

7.10 (Find the index of the smallest element) Write a method that returns the index of
the smallest element in an array of integers. If the number of such elements is
greater than 1, return the smallest index. Use the following header:

public static int indexOfSmallestElement(double[] array)

Write a test program that prompts the user to enter ten numbers, invokes this
method to return the index of the smallest element, and displays the index.

*7.11 (Statistics: compute deviation) Programming Exercise 5.45 computes the stand-
ard deviation of numbers. This exercise uses a different but equivalent formula to
compute the standard deviation of n numbers.

mean =
a

n

i= 1
xi

n
=

x1 + x2 + g + xn

n
deviation = Ha

n

i= 1
(xi - mean)2

n - 1

To compute the standard deviation with this formula, you have to store the indi-
vidual numbers using an array, so that they can be used after the mean is obtained.

Your program should contain the following methods:

/** Compute the deviation of double values */
public static double deviation(double[] x)

/** Compute the mean of an array of double values */
public static double mean(double[] x)

Write a test program that prompts the user to enter ten numbers and displays the
mean and standard deviation, as shown in the following sample run:

*7.12 (Reverse an array) The reverse method in Section 7.7 reverses an array by
copying it to a new array. Rewrite the method that reverses the array passed in
the argument and returns this array. Write a test program that prompts the user to

enter ten numbers, invokes the method to reverse the numbers, and displays the
numbers.

Section 7.9

*7.13 (Random number chooser) Write a method that returns a random number between
1 and 54, excluding the numbers passed in the argument. The method header is
specified as follows:

public static int getRandom(int... numbers)

7.14 (Computing gcd) Write a method that returns the gcd of an unspecified number
of integers. The method header is specified as follows:

public static int gcd(int... numbers)

Write a test program that prompts the user to enter five numbers, invokes the
method to find the gcd of these numbers, and displays the gcd.

Sections 7.10–7.12

7.15 (Eliminate duplicates) Write a method that returns a new array by eliminating the
duplicate values in the array using the following method header:

public static int[] eliminateDuplicates(int[] list)

Write a test program that reads in ten integers, invokes the method, and displays
the result. Here is the sample run of the program:

Programming Exercises 279

Enter ten numbers: 1 2 3 2 1 6 3 4 5 2
The distinct numbers are: 1 2 3 6 4 5

7.16 (Execution time) Write a program that randomly generates an array of 100,000
integers and a key. Estimate the execution time of invoking the linearSearch
method in Listing 7.6. Sort the array and estimate the execution time of invok-
ing the binarySearch method in Listing 7.7. You can use the following code
template to obtain the execution time:

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

**7.17 (Sort students) Write a program that prompts the user to enter the number of stu-
dents, the students’ names, and their scores, and prints student names in decreas-
ing order of their scores.

**7.18 (Bubble sort) Write a sort method that uses the bubble-sort algorithm. The bubble-
sort algorithm makes several passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is not in order, its values are swapped;
otherwise, the values remain unchanged. The technique is called a bubble sort or
sinking sort because the smaller values gradually “bubble” their way to the top
and the larger values “sink” to the bottom. Write a test program that reads in ten
double numbers, invokes the method, and displays the sorted numbers.

280 Chapter 7 Single-Dimensional Arrays

**7.19 (Sorted?) Write the following method that returns true if the list is already sorted
in increasing order.

public static boolean isSorted(int[] list)

Write a test program that prompts the user to enter a list and displays whether
the list is sorted or not. Here is a sample run. Note that the first number in the
input indicates the number of the elements in the list. This number is not part
of the list.

Enter list: 8 10 1 5 16 61 9 11 1
The list is not sorted

Enter list: 10 1 1 3 4 4 5 7 9 11 21
The list is already sorted

FIGURE 7.13 Each ball takes a random path and falls into a slot.

(a) (b) (c)

*7.20 (Revise selection sort) In Section 7.11, you used selection sort to sort an array.
The selection-sort method repeatedly finds the smallest number in the current
array and swaps it with the first. Rewrite this program by finding the largest num-
ber and swapping it with the last. Write a test program that reads in ten double
numbers, invokes the method, and displays the sorted numbers.

***7.21 (Game: bean machine) The bean machine, also known as a quincunx or the Gal-
ton box, is a device for statistics experiments named after English scientist Sir
Francis Galton. It consists of an upright board with evenly spaced nails (or pegs)
in a triangular form, as shown in Figure 7.13.

Balls are dropped from the opening of the board. Every time a ball hits a nail, it
has a 50% chance of falling to the left or to the right. The piles of balls are accu-
mulated in the slots at the bottom of the board.

Write a program that simulates the bean machine. Your program should prompt
the user to enter the number of the balls and the number of the slots in the machine.
Simulate the falling of each ball by printing its path. For example, the path for
the ball in Figure 7.13b is LLRRLLR and the path for the ball in Figure 7.13c is

(Hint: Create an array named slots. Each element in slots stores the num-
ber of balls in a slot. Each ball falls into a slot via a path. The number of Rs in
a path is the position of the slot where the ball falls. For example, for the path
LRLRLRR, the ball falls into slots[4], and for the path is RRLLLLL, the ball
falls into slots[2].)

***7.22 (Game: Eight Queens) The classic Eight Queens puzzle is to place eight queens
on a chessboard such that no two queens can attack each other (i.e., no two queens
are on the same row, same column, or same diagonal). There are many possible
solutions. Write a program that displays one such solution. A sample output is
shown below:

Q							
				Q			
							Q
					Q		
		Q					
						Q	
	Q						
			Q				

**7.23 (Game: locker puzzle) A school has 100 lockers and 100 students. All lockers are
closed on the first day of school. As the students enter, the first student, denoted
S1, opens every locker. Then the second student, S2, begins with the second
locker, denoted L2, and closes every other locker. Student S3 begins with the
third locker and changes every third locker (closes it if it was open, and opens it if
it was closed). Student S4 begins with locker L4 and changes every fourth locker.
Student S5 starts with L5 and changes every fifth locker, and so on, until student
S100 changes L100.

After all the students have passed through the building and changed the lockers,
which lockers are open? Write a program to find your answer and display all
open locker numbers separated by exactly one space.

(Hint: Use an array of 100 Boolean elements, each of which indicates whether a
locker is open (true) or closed (false). Initially, all lockers are closed.)

**7.24 (Simulation: coupon collector’s problem) Coupon collector is a classic statistics
problem with many practical applications. The problem is to pick objects from
a set of objects repeatedly and find out how many picks are needed for all the

Enter the number of balls to drop: 5
Enter the number of slots in the bean machine: 8

LRLRLRR
RRLLLRR
LLRLLRR
RRLLLLL
LRLRRLR

 O
 O
 OOO

RLRRLRR. Display the final buildup of the balls in the slots in a histogram. Here
is a sample run of the program:

VideoNote

Coupon collector’s problem

Programming Exercises 281

282 Chapter 7 Single-Dimensional Arrays

objects to be picked at least once. A variation of the problem is to pick cards from
a shuffled deck of 52 cards repeatedly and find out how many picks are needed
before you see one of each suit. Assume a picked card is placed back in the deck
before picking another. Write a program to simulate the number of picks needed
to get four cards from each suit and display the four cards picked (it is possible a
card may be picked twice). Here is a sample run of the program:

Queen of Spades
5 of Clubs
Queen of Hearts
4 of Diamonds
Number of picks: 12

Enter list1: 5 2 5 6 1 6

Enter list2: 5 2 5 6 1 6
Two lists are strictly identical

Enter list1: 5 2 5 6 6 1

Enter list2: 5 2 5 6 1 6
Two lists are not strictly identical

7.25 (Algebra: solve quadratic equations) Write a method for solving a quadratic
equation using the following header:

public static int solveQuadratic(double[] eqn, double[] roots)

The coefficients of a quadratic equation ax2 + bx + c = 0 are passed to the
array eqn and the real roots are stored in roots. The method returns the num-
ber of real roots. See Programming Exercise 3.1 on how to solve a quadratic
equation.

Write a program that prompts the user to enter values for a, b, and c and displays
the number of real roots and all real roots.

7.26 (Strictly identical arrays) The arrays list1 and list2 are strictly identical
if their corresponding elements are equal. Write a method that returns true if
list1 and list2 are strictly identical, using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are strictly identical. Here are the sample runs. Note that
the first number in the input indicates the number of the elements in the list. This
number is not part of the list.

7.27 (Identical arrays) The arrays list1 and list2 are identical if they have the
same contents. Write a method that returns true if list1 and list2 are identi-
cal, using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are identical. Here are the sample runs. Note that the first
number in the input indicates the number of the elements in the list. This number
is not part of the list.

Enter list1: 5 2 5 6 6 1

Enter list2: 5 5 2 6 1 6
Two lists are identical

Enter list1: 5 5 5 6 6 1

Enter list2: 5 2 5 6 1 6
Two lists are not identical

*7.28 (Math: combinations) Write a program that prompts the user to enter 10 integers
and displays all combinations of picking two numbers from the 10.

*7.29 (Game: pick four cards) Write a program that picks four cards from a deck of 52
cards and computes their sum. An Ace, King, Queen, and Jack represent 1, 13,
12, and 11, respectively. Your program should display the number of picks that
yields the sum of 24.

*7.30 (Pattern recognition: consecutive four equal numbers) Write the following
method that tests whether the array has four consecutive numbers with the same
value.

public static boolean isConsecutiveFour(int[] values)

Write a test program that prompts the user to enter a series of integers and dis-
plays if the series contains four consecutive numbers with the same value. Your
program should first prompt the user to enter the input size—i.e., the number of
values in the series. Here are sample runs:

VideoNote

Consecutive four

Enter the number of values: 8

Enter the values: 3 4 5 5 5 5 4 5
The list has consecutive fours

Enter the number of values: 9

Enter the values: 3 4 5 5 6 5 5 4 5
The list has no consecutive fours

**7.31 (Merge two sorted lists) Write the following method that merges two sorted lists
into a new sorted list.

public static int[] merge(int[] list1, int[] list2)

Programming Exercises 283

284 Chapter 7 Single-Dimensional Arrays

Implement the method in a way that takes at most list1.length + list2.
length comparisons. Write a test program that prompts the user to enter two
sorted lists and displays the merged list. Here is a sample run. Note that the first
number in the input indicates the number of the elements in the list. This number
is not part of the list.

Enter list1: 5 1 5 16 61 111

Enter list2: 4 2 4 5 6
The merged list is 1 2 4 5 5 6 16 61 111

Enter list: 8 10 1 5 16 61 9 11 1
After the partition, the list is 9 1 5 1 10 61 11 16

**7.32 (Partition of a list) Write the following method that partitions the list using the
first element, called a pivot.

public static int partition(int[] list)

After the partition, the elements in the list are rearranged so that all the elements
before the pivot are less than or equal to the pivot and the elements after the pivot
are greater than the pivot. The method returns the index where the pivot is located
in the new list. For example, suppose the list is {5, 2, 9, 3, 6, 8}. After the parti-
tion, the list becomes {3, 2, 5, 9, 6, 8}. Implement the method in a way that takes
at most list.length comparisons. Write a test program that prompts the user
to enter a list and displays the list after the partition. Here is a sample run. Note
that the first number in the input indicates the number of the elements in the list.
This number is not part of the list.

*7.33 (Culture: Chinese Zodiac) Simplify Listing 3.9 using an array of strings to store
the animal names.

**7.34 (Sort characters in a string) Write a method that returns a sorted string using the
following header:

public static String sort(String s)

For example, sort("acb") returns abc.

Write a test program that prompts the user to enter a string and displays the sorted
string.

***7.35 (Game: hangman) Write a hangman game that randomly generates a word and
prompts the user to guess one letter at a time, as shown in the sample run. Each
letter in the word is displayed as an asterisk. When the user makes a correct
guess, the actual letter is then displayed. When the user finishes a word, display

the number of misses and ask the user whether to continue to play with another
word. Declare an array to store words, as follows:

// Add any words you wish in this array
String[] words = {"write", "that", ...};

(Guess) Enter a letter in word ******* > p

(Guess) Enter a letter in word p****** > r

(Guess) Enter a letter in word pr**r** > p
 p is already in the word
(Guess) Enter a letter in word pr**r** > o

(Guess) Enter a letter in word pro*r** > g

(Guess) Enter a letter in word progr** > n
 n is not in the word
(Guess) Enter a letter in word progr** > m

(Guess) Enter a letter in word progr*m > a
The word is program. You missed 1 time
Do you want to guess another word? Enter y or n>

Programming Exercises 285

This page intentionally left blank

MULTIDIMENSIONAL
ARRAYS

Objectives
■ To give examples of representing data using two-dimensional arrays

(§8.1).

■ To declare variables for two-dimensional arrays, create arrays, and
access array elements in a two-dimensional array using row and col-
umn indexes (§8.2).

■ To program common operations for two-dimensional arrays (display-
ing arrays, summing all elements, finding the minimum and maximum
elements, and random shuffling) (§8.3).

■ To pass two-dimensional arrays to methods (§8.4).

■ To write a program for grading multiple-choice questions using two-
dimensional arrays (§8.5).

■ To solve the closest-pair problem using two-dimensional arrays (§8.6).

■ To check a Sudoku solution using two-dimensional arrays (§8.7).

■ To use multidimensional arrays (§8.8).

CHAPTER

8

288 Chapter 8 Multidimensional Arrays

8.1 Introduction
Data in a table or a matrix can be represented using a two-dimensional array.

The preceding chapter introduced how to use one-dimensional arrays to store linear collec-
tions of elements. You can use a two-dimensional array to store a matrix or a table. For
example, the following table that lists the distances between cities can be stored using a two-
dimensional array named distances.

Key
Point

problem

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

Chicago 0 983 787 714 1375 967 1087

Boston 983 0 214 1102 1763 1723 1842

New York 787 214 0 888 1549 1548 1627

Atlanta 714 1102 888 0 661 781 810

Miami 1375 1763 1549 661 0 1426 1187

Dallas 967 1723 1548 781 1426 0 239

Houston 1087 1842 1627 810 1187 239 0

double[][] distances = {
 {0, 983, 787, 714, 1375, 967, 1087},
 {983, 0, 214, 1102, 1763, 1723, 1842},
 {787, 214, 0, 888, 1549, 1548, 1627},
 {714, 1102, 888, 0, 661, 781, 810},
 {1375, 1763, 1549, 661, 0, 1426, 1187},
 {967, 1723, 1548, 781, 1426, 0, 239},
 {1087, 1842, 1627, 810, 1187, 239, 0},
 };

8.2 Two-Dimensional Array Basics
An element in a two-dimensional array is accessed through a row and column index.

How do you declare a variable for two-dimensional arrays? How do you create a two-
dimensional array? How do you access elements in a two-dimensional array? This section
addresses these issues.

8.2.1 Declaring Variables of Two-Dimensional Arrays and Creating
Two-Dimensional Arrays

The syntax for declaring a two-dimensional array is:

elementType[][] arrayRefVar;

or

elementType arrayRefVar[][]; // Allowed, but not preferred

As an example, here is how you would declare a two-dimensional array variable matrix
of int values:

int[][] matrix;

Key
Point

8.2 Two-Dimensional Array Basics 289

or

int matrix[][]; // This style is allowed, but not preferred

You can create a two-dimensional array of 5-by-5 int values and assign it to matrix
using this syntax:

matrix = new int[5][5];

Two subscripts are used in a two-dimensional array, one for the row and the other for the
column. As in a one-dimensional array, the index for each subscript is of the int type and
starts from 0, as shown in Figure 8.1a.

FIGURE 8.1 The index of each subscript of a two-dimensional array is an int value,
starting from 0.

[4][3][2][1][0]

[4]

[3]

[2]

[1]

[0]

[4][3][2][1][0]

[4]

[3]

[2]

[1]

[0]

[2][1][0]

[3]

[2]

[1]

[0] 1

matrix = new int[5][5]; matrix[2][1] = 7;

2 3

4 5 6

7 8 9

10 11 12

7

0000 0

0000 0

0000 0

0000 0

0000 0

0000 0

0000 0

000 0

0000 0

0000 0 int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

(a) (b) (c)

To assign the value 7 to a specific element at row 2 and column 1, as shown in Figure 8.1b,
you can use the following syntax:

matrix[2][1] = 7;

Caution
It is a common mistake to use matrix[2, 1] to access the element at row 2 and

column 1. In Java, each subscript must be enclosed in a pair of square brackets.

You can also use an array initializer to declare, create, and initialize a two-dimensional
array. For example, the following code in (a) creates an array with the specified initial values,
as shown in Figure 8.1c. This is equivalent to the code in (b).

8.2.2 Obtaining the Lengths of Two-Dimensional Arrays
A two-dimensional array is actually an array in which each element is a one-dimensional
array. The length of an array x is the number of elements in the array, which can be obtained
using x.length. x[0], x[1], . . . , and x[x.length-1] are arrays. Their lengths can be
obtained using x[0].length, x[1].length, . . . , and x[x.length-1].length.

int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};

int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

Equivalent

(a) (b)

290 Chapter 8 Multidimensional Arrays

For example, suppose x = new int[3][4], x[0], x[1], and x[2] are one-dimensional
arrays and each contains four elements, as shown in Figure 8.2. x.length is 3, and
x[0].length, x[1].length, and x[2].length are 4.

FIGURE 8.2 A two-dimensional array is a one-dimensional array in which each element is
another one-dimensional array.

x

x[0]

x[1]

x[2]

x[0][0] x[0][1] x[0][3]

x[1][0] x[1][1] x[1][2] x[1][3]

x[2][0] x[2][1] x[2][2] x[2][3]
x.length is 3

x[0].length is 4

x[1].length is 4

x[2].length is 4

x[0][2]

int[][] triangleArray = {
{1, 2, 3, 4, 5},
{2, 3, 4, 5},
{3, 4, 5},
{4, 5},
{5}

};

1 2 3 4 5

2 3 4 5

5

4 5

3 4 5

8.2.3 Ragged Arrays
Each row in a two-dimensional array is itself an array. Thus, the rows can have different
lengths. An array of this kind is known as a ragged array. Here is an example of creating a
ragged array:

ragged array

As you can see, triangleArray[0].length is 5, triangleArray[1].length is 4,
triangleArray[2].length is 3, triangleArray[3].length is 2, and triangle-
Array[4].length is 1.

If you don’t know the values in a ragged array in advance, but do know the sizes—say, the
same as before—you can create a ragged array using the following syntax:

int[][] triangleArray = new int[5][];
triangleArray[0] = new int[5];
triangleArray[1] = new int[4];
triangleArray[2] = new int[3];
triangleArray[3] = new int[2];
triangleArray[4] = new int[1];

You can now assign values to the array. For example,

triangleArray[0][3] = 50;
triangleArray[4][0] = 45;

Note
The syntax new int[5][] for creating an array requires the first index to be specified.

The syntax new int[][] would be wrong.

8.3 Processing Two-Dimensional Arrays 291

8.1 Declare an array reference variable for a two-dimensional array of int values, create
a 4-by-5 int matrix, and assign it to the variable.

8.2 Can the rows in a two-dimensional array have different lengths?

8.3 What is the output of the following code?

int[][] array = new int[5][6];
int[] x = {1, 2};
array[0] = x;
System.out.println("array[0][1] is " + array[0][1]);

8.4 Which of the following statements are valid?

int[][] r = new int[2];
int[] x = new int[];
int[][] y = new int[3][];
int[][] z = {{1, 2}};
int[][] m = {{1, 2}, {2, 3}};
int[][] n = {{1, 2}, {2, 3}, };

8.3 Processing Two-Dimensional Arrays
Nested for loops are often used to process a two-dimensional array.

Suppose an array matrix is created as follows:

int[][] matrix = new int[10][10];

The following are some examples of processing two-dimensional arrays.

1. Initializing arrays with input values. The following loop initializes the array with user
input values:

java.util.Scanner input = new Scanner(System.in);
System.out.println("Enter " + matrix.length + " rows and " +
 matrix[0].length + " columns: ");
for (int row = 0; row < matrix.length; row++) {

for (int column = 0; column < matrix[row].length; column++) {
 matrix[row][column] = input.nextInt();
 }
}

2. Initializing arrays with random values. The following loop initializes the array with
random values between 0 and 99:

for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {

 matrix[row][column] = (int)(Math.random() * 100);
 }
}

3. Printing arrays. To print a two-dimensional array, you have to print each element in the
array using a loop like the following:

for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length; column++) {

 System.out.print(matrix[row][column] + " ");
 }

 System.out.println();
}

✓Point✓Check

Key
Point

292 Chapter 8 Multidimensional Arrays

4. Summing all elements. Use a variable named total to store the sum. Initially total is
0. Add each element in the array to total using a loop like this:

int total = 0;
for (int row = 0; row < matrix.length; row++) {

for (int column = 0; column < matrix[row].length; column++) {
 total += matrix[row][column];
 }
}

5. Summing elements by column. For each column, use a variable named total to store
its sum. Add each element in the column to total using a loop like this:

for (int column = 0; column < matrix[0].length; column++) {
int total = 0;
for (int row = 0; row < matrix.length; row++)

 total += matrix[row][column];
 System.out.println("Sum for column " + column + " is "
 + total);
}

6. Which row has the largest sum? Use variables maxRow and indexOfMaxRow to track
the largest sum and index of the row. For each row, compute its sum and update maxRow
and indexOfMaxRow if the new sum is greater.

int maxRow = 0;
int indexOfMaxRow = 0;

// Get sum of the first row in maxRow
for (int column = 0; column < matrix[0].length; column++) {
 maxRow += matrix[0][column];
}

for (int row = 1; row < matrix.length; row++) {
int totalOfThisRow = 0;
for (int column = 0; column < matrix[row].length; column++)

 totalOfThisRow += matrix[row][column];

if (totalOfThisRow > maxRow) {
 maxRow = totalOfThisRow;
 indexOfMaxRow = row;
 }
}

System.out.println("Row " + indexOfMaxRow
 + " has the maximum sum of " + maxRow);

7. Random shuffling. Shuffling the elements in a one-dimensional array was introduced
in Section 7.2.6. How do you shuffle all the elements in a two-dimensional array? To
accomplish this, for each element matrix[i][j], randomly generate indices i1 and
j1 and swap matrix[i][j] with matrix[i1][j1], as follows:

for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {

int i1 = (int)(Math.random() * matrix.length);
int j1 = (int)(Math.random() * matrix[i].length);

// Swap matrix[i][j] with matrix[i1][j1]

VideoNote

Find the row with the largest

sum

8.4 Passing Two-Dimensional Arrays to Methods 293

 int temp = matrix[i][j];
 matrix[i][j] = matrix[i1][j1];
 matrix[i1][j1] = temp;
 }
}

8.5 Show the output of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
for (int i = array.length - 1; i >= 0; i——) {

for (int j = array[i].length - 1; j >= 0; j——)
 System.out.print(array[i][j] + " ");
 System.out.println();
}

8.6 Show the output of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
int sum = 0;
for (int i = 0; i < array.length; i++)
 sum += array[i][0];
System.out.println(sum);

8.4 Passing Two-Dimensional Arrays to Methods
When passing a two-dimensional array to a method, the reference of the array is
passed to the method.

You can pass a two-dimensional array to a method just as you pass a one-dimensional array.
You can also return an array from a method. Listing 8.1 gives an example with two methods.
The first method, getArray(), returns a two-dimensional array, and the second method,
sum(int[][] m), returns the sum of all the elements in a matrix.

LISTING 8.1 PassTwoDimensionalArray.java
 1 import java.util.Scanner;
 2
 3 public class PassTwoDimensionalArray {
 4 public static void main(String[] args) {
 5 int[][] m = getArray(); // Get an array
 6
 7 // Display sum of elements
 8 System.out.println("\nSum of all elements is " + sum(m));
 9 }
10
11 public static int[][] getArray() {
12 // Create a Scanner
13 Scanner input = new Scanner(System.in);
14
15 // Enter array values
16 int[][] m = new int[3][4];
17 System.out.println("Enter " + m.length + " rows and "
18 + m[0].length + " columns: ");
19 for (int i = 0; i < m.length; i++)
20 for (int j = 0; j < m[i].length; j++)
21 m[i][j] = input.nextInt();
22

✓Point✓Check

Key
Point

get array

pass array

getArray method

294 Chapter 8 Multidimensional Arrays

23 return m;
24 }
25
26 public static int sum(int[][] m) {
27 int total = 0;
28 for (int row = 0; row < m.length; row++) {
29 for (int column = 0; column < m[row].length; column++) {
30 total += m[row][column];
31 }
32 }
33
34 return total;
35 }
36 }

return array

sum method

VideoNote

Grade multiple-choice test

Enter 3 rows and 4 columns:
1 2 3 4

5 6 7 8

9 10 11 12

Sum of all elements is 78

The method getArray prompts the user to enter values for the array (lines 11–24) and
returns the array (line 23).

The method sum (lines 26–35) has a two-dimensional array argument. You can obtain the
number of rows using m.length (line 28) and the number of columns in a specified row using
m[row].length (line 29).

8.7 Show the output of the following code:

public class Test {
public static void main(String[] args) {

 int[][] array = {{1, 2, 3, 4}, {5, 6, 7, 8}};
 System.out.println(m1(array)[0]);
 System.out.println(m1(array)[1]);
 }

 public static int[] m1(int[][] m) {
int[] result = new int[2];

 result[0] = m.length;
 result[1] = m[0].length;

return result;
 }
}

8.5 Case Study: Grading a Multiple-Choice Test
The problem is to write a program that will grade multiple-choice tests.

Suppose you need to write a program that grades multiple-choice tests. Assume there are eight
students and ten questions, and the answers are stored in a two-dimensional array. Each row
records a student’s answers to the questions, as shown in the following array.

✓Point✓Check

Key
Point

8.5 Case Study: Grading a Multiple-Choice Test 295

The key is stored in a one-dimensional array:

 Students’ Answers to the Questions:

 0 1 2 3 4 5 6 7 8 9

Student 0 A B A C C D E E A D
Student 1 D B A B C A E E A D
Student 2 E D D A C B E E A D
Student 3 C B A E D C E E A D
Student 4 A B D C C D E E A D
Student 5 B B E C C D E E A D
Student 6 B B A C C D E E A D
Student 7 E B E C C D E E A D

 Key to the Questions:

 0 1 2 3 4 5 6 7 8 9

Key D B D C C D A E A D

Your program grades the test and displays the result. It compares each student’s answers
with the key, counts the number of correct answers, and displays it. Listing 8.2 gives the
program.

LISTING 8.2 GradeExam.java
 1 public class GradeExam {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Students' answers to the questions
 5 char[][] answers = {
 6 {'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
 7 {'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'},
 8 {'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'},
 9 {'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'},
10 {'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
11 {'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
12 {'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
13 {'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}};
14
15 // Key to the questions
16 char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D'};
17
18 // Grade all answers
19 for (int i = 0; i < answers.length; i++) {
20 // Grade one student
21 int correctCount = 0;
22 for (int j = 0; j < answers[i].length; j++) {
23 if (answers[i][j] == keys[j])
24 correctCount++;
25 }
26
27 System.out.println("Student " + i + "'s correct count is " +
28 correctCount);
29 }
30 }
31 }

2-D array

1-D array

compare with key

296 Chapter 8 Multidimensional Arrays

The statement in lines 5–13 declares, creates, and initializes a two-dimensional array of
characters and assigns the reference to answers of the char[][] type.

The statement in line 16 declares, creates, and initializes an array of char values and
assigns the reference to keys of the char[] type.

Each row in the array answers stores a student’s answer, which is graded by comparing
it with the key in the array keys. The result is displayed immediately after a student’s answer
is graded.

8.6 Case Study: Finding the Closest Pair
This section presents a geometric problem for finding the closest pair of points.

Given a set of points, the closest-pair problem is to find the two points that are nearest to
each other. In Figure 8.3, for example, points (1, 1) and (2, 0.5) are closest to each
other. There are several ways to solve this problem. An intuitive approach is to compute the
distances between all pairs of points and find the one with the minimum distance, as imple-
mented in Listing 8.3.

Key
Point

FIGURE 8.3 Points can be represented in a two-dimensional array.

(1, 1)

(–1, –1)

(–1, 3)

(2, 0.5)

(3, 3)

–1 3

x y

–1 –1
1 1
2 0.5
2 –1
3 3
4 2
4

0
1
2
3
4
5
6
7 –0.5

(4, 2)

(2, –1)
(4, –0.5)

Student 0's correct count is 7
Student 1's correct count is 6
Student 2's correct count is 5
Student 3's correct count is 4
Student 4's correct count is 8
Student 5's correct count is 7
Student 6's correct count is 7
Student 7's correct count is 7

LISTING 8.3 FindNearestPoints.java
 1 import java.util.Scanner;
 2
 3 public class FindNearestPoints {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter the number of points: ");
 7 int numberOfPoints = input.nextInt();
 8
 9 // Create an array to store points

number of points

closest-pair animation on the

Companion Website

8.6 Case Study: Finding the Closest Pair 297

10 double[][] points = new double[numberOfPoints][2];
11 System.out.print("Enter " + numberOfPoints + " points: ");
12 for (int i = 0; i < points.length; i++) {
13 points[i][0] = input.nextDouble();
14 points[i][1] = input.nextDouble();
15 }
16
17 // p1 and p2 are the indices in the points' array
18 int p1 = 0, p2 = 1; // Initial two points
19 double shortestDistance = distance(points[p1][0], points[p1][1],
20 points[p2][0], points[p2][1]); // Initialize shortestDistance
21
22 // Compute distance for every two points
23 for (int i = 0; i < points.length; i++) {
24 for (int j = i + 1; j < points.length; j++) {
25 double distance = distance(points[i][0], points[i][1],
26 points[j][0], points[j][1]); // Find distance
27
28 if (shortestDistance > distance) {
29 p1 = i; // Update p1
30 p2 = j; // Update p2
31 shortestDistance = distance; // Update shortestDistance
32 }
33 }
34 }
35
36 // Display result
37 System.out.println("The closest two points are " +
38 "(" + points[p1][0] + ", " + points[p1][1] + ") and (" +
39 points[p2][0] + ", " + points[p2][1] + ")");
40 }
41
42 /** Compute the distance between two points (x1, y1) and (x2, y2)*/
43 public static double distance(
44 double x1, double y1, double x2, double y2) {
45 return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
46 }
47 }

2-D array

read points

track two points
track shortestDistance

for each point i
for each point j
distance between i and j
distance between two points

update shortestDistance

Enter the number of points: 8
Enter 8 points: -1 3 -1 -1 1 1 2 0.5 2 -1 3 3 4 2 4 -0.5
The closest two points are (1, 1) and (2, 0.5)

The program prompts the user to enter the number of points (lines 6–7). The points are
read from the console and stored in a two-dimensional array named points (lines 12–15).
The program uses the variable shortestDistance (line 19) to store the distance between
the two nearest points, and the indices of these two points in the points array are stored in
p1 and p2 (line 18).

For each point at index i, the program computes the distance between points[i] and
points[j] for all j > i (lines 23–34). Whenever a shorter distance is found, the variable
shortestDistance and p1 and p2 are updated (lines 28–32).

The distance between two points (x1, y1) and (x2, y2) can be computed using the
formula 2(x2 - x1)

2 + (y2 - y1)
2 (lines 43–46).

The program assumes that the plane has at least two points. You can easily modify the
program to handle the case if the plane has zero or one point.

298 Chapter 8 Multidimensional Arrays

Note that there might be more than one closest pair of points with the same minimum dis-
tance. The program finds one such pair. You may modify the program to find all closest pairs
in Programming Exercise 8.8.

Tip
It is cumbersome to enter all points from the keyboard. You may store the input in a file, say

FindNearestPoints.txt, and compile and run the program using the following command:

java FindNearestPoints < FindNearestPoints.txt

8.7 Case Study: Sudoku
The problem is to check whether a given Sudoku solution is correct.

This section presents an interesting problem of a sort that appears in the newspaper every
day. It is a number-placement puzzle, commonly known as Sudoku. This is a very challeng-
ing problem. To make it accessible to the novice, this section presents a simplified version of
the Sudoku problem, which is to verify whether a Sudoku solution is correct. The complete
program for finding a Sudoku solution is presented in Supplement VI.A.

Sudoku is a 9 * 9 grid divided into smaller 3 * 3 boxes (also called regions or blocks), as
shown in Figure 8.4a. Some cells, called fixed cells, are populated with numbers from 1 to 9. The
objective is to fill the empty cells, also called free cells, with the numbers 1 to 9 so that every
row, every column, and every 3 * 3 box contains the numbers 1 to 9, as shown in Figure 8.4b.

multiple closest pairs

input file

Key
Point

fixed cells

free cells

FIGURE 8.4 The Sudoku puzzle in (a) is solved in (b).

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6

4 1 9 5

8 7 9

(a) Puzzle

Solution

(b) Solution

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

FIGURE 8.5 A grid can be represented using a two-dimensional array.

5 3 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

00

0

00 0

0 0

0 0

0

0 00

0 080 00

0 00

0 06

7

6 0 0

0 0

0 0

0 0 0

1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

4 1 9 5

7 9

(a) (b)

int[][] grid =
{{5, 3, 0, 0, 7, 0, 0, 0, 0},
{6, 0, 0, 1, 9, 5, 0, 0, 0},
{0, 9, 8, 0, 0, 0, 0, 6, 0},
{8, 0, 0, 0, 6, 0, 0, 0, 3},
{4, 0, 0, 8, 0, 3, 0, 0, 1},
{7, 0, 0, 0, 2, 0, 0, 0, 6},
{0, 6, 0, 0, 0, 0, 2, 8, 0},
{0, 0, 0, 4, 1, 9, 0, 0, 5},
{0, 0, 0, 0, 8, 0, 0, 7, 9}
};

VideoNote

Sudoku

For convenience, we use value 0 to indicate a free cell, as shown in Figure 8.5a. The grid
can be naturally represented using a two-dimensional array, as shown in Figure 8.5b.representing a grid

8.7 Case Study: Sudoku 299

To find a solution for the puzzle, we must replace each 0 in the grid with an appropriate
number from 1 to 9. For the solution to the puzzle in Figure 8.5, the grid should be as shown
in Figure 8.6.

Once a solution to a Sudoku puzzle is found, how do you verify that it is correct? Here are
two approaches:

 ■ Check if every row has numbers from 1 to 9, every column has numbers from 1 to 9,
and every small box has numbers from 1 to 9.

 ■ Check each cell. Each cell must be a number from 1 to 9 and the cell must be unique
on every row, every column, and every small box.

FIGURE 8.6 A solution is stored in grid.

A solution grid is
{{5, 3, 4, 6, 7, 8, 9, 1, 2},
{6, 7, 2, 1, 9, 5, 3, 4, 8},
{1, 9, 8, 3, 4, 2, 5, 6, 7},
{8, 5, 9, 7, 6, 1, 4, 2, 3},
{4, 2, 6, 8, 5, 3, 7, 9, 1},
{7, 1, 3, 9, 2, 4, 8, 5, 6},
{9, 6, 1, 5, 3, 7, 2, 8, 4},
{2, 8, 7, 4, 1, 9, 6, 3, 5},
{3, 4, 5, 2, 8, 6, 1, 7, 9}
};

The program in Listing 8.4 prompts the user to enter a solution and reports whether it is
valid. We use the second approach in the program to check whether the solution is correct.

LISTING 8.4 CheckSudokuSolution.java
 1 import java.util.Scanner;
 2
 3 public class CheckSudokuSolution {
 4 public static void main(String[] args) {
 5 // Read a Sudoku solution
 6 int[][] grid = readASolution();
 7
 8 System.out.println(isValid(grid) ? "Valid solution" :
 9 "Invalid solution");
10 }
11
12 /** Read a Sudoku solution from the console */
13 public static int[][] readASolution() {
14 // Create a Scanner
15 Scanner input = new Scanner(System.in);
16
17 System.out.println("Enter a Sudoku puzzle solution:");
18 int[][] grid = new int[9][9];
19 for (int i = 0; i < 9; i++)
20 for (int j = 0; j < 9; j++)
21 grid[i][j] = input.nextInt();
22
23 return grid;
24 }
25
26 /** Check whether a solution is valid */
27 public static boolean isValid(int[][] grid) {

read input

solution valid?

read solution

check solution

300 Chapter 8 Multidimensional Arrays

28 for (int i = 0; i < 9; i++)
29 for (int j = 0; j < 9; j++)
30 if (grid[i][j] < 1 || grid[i][j] > 9
31 || !isValid(i, j, grid))
32 return false;
33 return true; // The solution is valid
34 }
35
36 /** Check whether grid[i][j] is valid in the grid */
37 public static boolean isValid(int i, int j, int[][] grid) {
38 // Check whether grid[i][j] is unique in i's row
39 for (int column = 0; column < 9; column++)
40 if (column != j && grid[i][column] == grid[i][j])
41 return false;
42
43 // Check whether grid[i][j] is unique in j's column
44 for (int row = 0; row < 9; row++)
45 if (row != i && grid[row][j] == grid[i][j])
46 return false;
47
48 // Check whether grid[i][j] is unique in the 3-by-3 box
49 for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)
50 for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)
51 if (row != i && col != j && grid[row][col] == grid[i][j])
52 return false;
53
54 return true; // The current value at grid[i][j] is valid
55 }
56 }

check rows

check columns

check small boxes

Enter a Sudoku puzzle solution:
9 6 3 1 7 4 2 5 8

1 7 8 3 2 5 6 4 9

2 5 4 6 8 9 7 3 1

8 2 1 4 3 7 5 9 6

4 9 6 8 5 2 3 1 7

7 3 5 9 6 1 8 2 4

5 8 9 7 1 3 4 6 2

3 1 7 2 4 6 9 8 5

6 4 2 5 9 8 1 7 3
Valid solution

The program invokes the readASolution() method (line 6) to read a Sudoku solution
and return a two-dimensional array representing a Sudoku grid.

The isValid(grid) method checks whether the values in the grid are valid by verifying
that each value is between 1 and 9 and that each value is valid in the grid (lines 27–34).

The isValid(i, j, grid) method checks whether the value at grid[i][j] is valid.
It checks whether grid[i][j] appears more than once in row i (lines 39–41), in column j
(lines 44–46), and in the 3 * 3 box (lines 49–52).

How do you locate all the cells in the same box? For any grid[i][j], the starting cell
of the 3 * 3 box that contains it is grid[(i / 3) * 3][(j / 3) * 3], as illustrated in
Figure 8.7.

isValid method

overloaded isValid method

8.8 Multidimensional Arrays 301

With this observation, you can easily identify all the cells in the box. For instance, if
grid[r][c] is the starting cell of a 3 * 3 box, the cells in the box can be traversed in a
nested loop as follows:

// Get all cells in a 3-by-3 box starting at grid[r][c]
for (int row = r; row < r + 3; row++)

for (int col = c; col < c + 3; col++)
// grid[row][col] is in the box

It is cumbersome to enter 81 numbers from the console. When you test the program, you
may store the input in a file, say CheckSudokuSolution.txt (see www.cs.armstrong.edu/liang/
data/CheckSudokuSolution.txt), and run the program using the following command:

java CheckSudokuSolution < CheckSudokuSolution.txt

8.8 Multidimensional Arrays
A two-dimensional array consists of an array of one-dimensional arrays and a three-
dimensional array consists of an array of two-dimensional arrays.

In the preceding section, you used a two-dimensional array to represent a matrix or a table.
Occasionally, you will need to represent n-dimensional data structures. In Java, you can create
n-dimensional arrays for any integer n.

The way to declare two-dimensional array variables and create two-dimensional arrays can
be generalized to declare n-dimensional array variables and create n-dimensional arrays for
n 7= 3. For example, you may use a three-dimensional array to store exam scores for a class
of six students with five exams, and each exam has two parts (multiple-choice and essay). The
following syntax declares a three-dimensional array variable scores, creates an array, and
assigns its reference to scores.

double[][][] scores = new double[6][5][2];

You can also use the short-hand notation to create and initialize the array as follows:

double[][][] scores = {
 {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
 {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
 {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
 {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
 {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
 {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

input file

Key
Point

FIGURE 8.7 The location of the first cell in a 3 * 3 box determines the locations of other cells in the box.

grid[0][6]

grid[6][3]

For any grid[i][j] in this 3 by 3 box, its
starting cell is grid[3*(i/3)][3*(j/3)]
(i.e., grid[6][3]). For example, for
grid[8][5], i=8 and j=5, 3*(i/3)=6 and
3*(j/3)=3.

For any grid[i][j] in this 3 by 3 box, its starting cell
is grid[3*(i/3)][3*(j/3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(i/3)=0 and
3*(j/3)=6.

grid[0][0]

www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt
www.cs.armstrong.edu/liang/data/CheckSudokuSolution.txt

302 Chapter 8 Multidimensional Arrays

scores[0][1][0] refers to the multiple-choice score for the first student’s second exam,
which is 9.0. scores[0][1][1] refers to the essay score for the first student’s second
exam, which is 22.5. This is depicted in the following figure:

Which student Which exam Multiple-choice or essay

scores [i] [j] [k]

1 1 76.4 0.92
1 2 77.7 0.93
. . .
10 23 97.7 0.71
10 24 98.7 0.74

10 24 98.7 0.74
1 2 77.7 0.93
. . .
10 23 97.7 0.71
1 1 76.4 0.92

(a) (b)

Day Temperature
Hour Humidity

Day Temperature
Hour Humidity

Which day Which hour Temperature or humidity

data [i] [j] [k]

A multidimensional array is actually an array in which each element is another array. A three-
dimensional array consists of an array of two-dimensional arrays. A two-dimensional array
consists of an array of one-dimensional arrays. For example, suppose x = new int[2]
[2][5], and x[0] and x[1] are two-dimensional arrays. X[0][0], x[0][1], x[1][0],
and x[1][1] are one-dimensional arrays and each contains five elements. x.length
is 2, x[0].length and x[1].length are 2, and X[0][0].length, x[0][1].length,
x[1][0].length, and x[1][1].length are 5.

8.8.1 Case Study: Daily Temperature and Humidity
Suppose a meteorology station records the temperature and humidity every hour of every
day and stores the data for the past ten days in a text file named Weather.txt (see www
.cs.armstrong.edu/liang/data/Weather.txt). Each line of the file consists of four numbers that
indicate the day, hour, temperature, and humidity. The contents of the file may look like
the one in (a).

Note that the lines in the file are not necessarily in increasing order of day and hour. For exam-
ple, the file may appear as shown in (b).

Your task is to write a program that calculates the average daily temperature and humid-
ity for the 10 days. You can use the input redirection to read the file and store the data in
a three-dimensional array named data. The first index of data ranges from 0 to 9 and
represents 10 days, the second index ranges from 0 to 23 and represents 24 hours, and the
third index ranges from 0 to 1 and represents temperature and humidity, as depicted in the
following figure:

www.cs.armstrong.edu/liang/data/Weather.txt
www.cs.armstrong.edu/liang/data/Weather.txt

8.8 Multidimensional Arrays 303

Note that the days are numbered from 1 to 10 and the hours from 1 to 24 in the file.
Because the array index starts from 0, data[0][0][0] stores the temperature in day 1 at
hour 1 and data[9][23][1] stores the humidity in day 10 at hour 24.

The program is given in Listing 8.5.

LISTING 8.5 Weather.java
 1 import java.util.Scanner;
 2
 3 public class Weather {
 4 public static void main(String[] args) {
 5 final int NUMBER_OF_DAYS = 10;
 6 final int NUMBER_OF_HOURS = 24;
 7 double[][][] data
 8 = new double[NUMBER_OF_DAYS][NUMBER_OF_HOURS][2];
 9
10 Scanner input = new Scanner(System.in);
11 // Read input using input redirection from a file
12 for (int k = 0; k < NUMBER_OF_DAYS * NUMBER_OF_HOURS; k++) {
13 int day = input.nextInt();
14 int hour = input.nextInt();
15 double temperature = input.nextDouble();
16 double humidity = input.nextDouble();
17 data[day - 1][hour - 1][0] = temperature;
18 data[day - 1][hour - 1][1] = humidity;
19 }
20
21 // Find the average daily temperature and humidity
22 for (int i = 0; i < NUMBER_OF_DAYS; i++) {
23 double dailyTemperatureTotal = 0, dailyHumidityTotal = 0;
24 for (int j = 0; j < NUMBER_OF_HOURS; j++) {
25 dailyTemperatureTotal += data[i][j][0];
26 dailyHumidityTotal += data[i][j][1];
27 }
28
29 // Display result
30 System.out.println("Day " + i + "'s average temperature is "
31 + dailyTemperatureTotal / NUMBER_OF_HOURS);
32 System.out.println("Day " + i + "'s average humidity is "
33 + dailyHumidityTotal / NUMBER_OF_HOURS);
34 }
35 }
36 }

three-dimensional array

Day 0's average temperature is 77.7708
Day 0's average humidity is 0.929583
Day 1's average temperature is 77.3125
Day 1's average humidity is 0.929583
. . .
Day 9's average temperature is 79.3542
Day 9's average humidity is 0.9125

You can use the following command to run the program:

java Weather < Weather.txt

A three-dimensional array for storing temperature and humidity is created in line 8. The
loop in lines 12–19 reads the input to the array. You can enter the input from the keyboard, but

304 Chapter 8 Multidimensional Arrays

doing so will be awkward. For convenience, we store the data in a file and use input redirec-
tion to read the data from the file. The loop in lines 24–27 adds all temperatures for each hour
in a day to dailyTemperatureTotal and all humidity for each hour to dailyHumidity-
Total. The average daily temperature and humidity are displayed in lines 30–33.

8.8.2 Case Study: Guessing Birthdays
Listing 3.3, GuessBirthday.java, gives a program that guesses a birthday. The program can be
simplified by storing the numbers in five sets in a three-dimensional array, and it prompts the
user for the answers using a loop, as shown in Listing 8.6. The sample run of the program can
be the same as shown in Listing 4.3.

LISTING 8.6 GuessBirthdayUsingArray.java
 1 import java.util.Scanner;
 2
 3 public class GuessBirthdayUsingArray {
 4 public static void main(String[] args) {
 5 int day = 0; // Day to be determined
 6 int answer;
 7
 8 int[][][] dates = {
 9 {{ 1, 3, 5, 7},
10 { 9, 11, 13, 15},
11 {17, 19, 21, 23},
12 {25, 27, 29, 31}},
13 {{ 2, 3, 6, 7},
14 {10, 11, 14, 15},
15 {18, 19, 22, 23},
16 {26, 27, 30, 31}},
17 {{ 4, 5, 6, 7},
18 {12, 13, 14, 15},
19 {20, 21, 22, 23},
20 {28, 29, 30, 31}},
21 {{ 8, 9, 10, 11},
22 {12, 13, 14, 15},
23 {24, 25, 26, 27},
24 {28, 29, 30, 31}},
25 {{16, 17, 18, 19},
26 {20, 21, 22, 23},
27 {24, 25, 26, 27},
28 {28, 29, 30, 31}}};
29
30 // Create a Scanner
31 Scanner input = new Scanner(System.in);
32
33 for (int i = 0; i < 5; i++) {
34 System.out.println("Is your birthday in Set" + (i + 1) + "?");
35 for (int j = 0; j < 4; j++) {
36 for (int k = 0; k < 4; k++)
37 System.out.printf("%4d", dates[i][j][k]);
38 System.out.println();
39 }
40
41 System.out.print("\nEnter 0 for No and 1 for Yes: ");
42 answer = input.nextInt();
43
44 if (answer == 1)
45 day += dates[i][0][0];

three-dimensional array

Set i

add to day

Programming Exercises 305

46 }
47
48 System.out.println("Your birthday is " + day);
49 }
50 }

A three-dimensional array dates is created in Lines 8–28. This array stores five sets of
numbers. Each set is a 4-by-4 two-dimensional array.

The loop starting from line 33 displays the numbers in each set and prompts the user to
answer whether the birthday is in the set (lines 41–42). If the day is in the set, the first number
(dates[i][0][0]) in the set is added to variable day (line 45).

8.8 Declare an array variable for a three-dimensional array, create a 4 * 6 * 5 int

array, and assign its reference to the variable.

8.9 Assume int[][][] x = new char[12][5][2], how many elements are in the
array? What are x.length, x[2].length, and x[0][0].length?

8.10 Show the output of the following code:

 int[][][] array = {{{1, 2}, {3, 4}}, {{5, 6},{7, 8}}};
 System.out.println(array[0][0][0]);
 System.out.println(array[1][1][1]);

CHAPTER SUMMARY

1. A two-dimensional array can be used to store a table.

2. A variable for two-dimensional arrays can be declared using the syntax:
elementType[][] arrayVar.

3. A two-dimensional array can be created using the syntax: new elementType

[ROW_SIZE][COLUMN_SIZE].

4. Each element in a two-dimensional array is represented using the syntax:
arrayVar[rowIndex][columnIndex].

5. You can create and initialize a two-dimensional array using an array initializer with the
syntax:elementType[][] arrayVar = {{row values}, . . . , {row values}}.

6. You can use arrays of arrays to form multidimensional arrays. For example, a variable
for three-dimensional arrays can be declared as elementType[][][] arrayVar, and
a three-dimensional array can be created using new elementType[size1][size2]
[size3].

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

*8.1 (Sum elements column by column) Write a method that returns the sum of all the
elements in a specified column in a matrix using the following header:

public static double sumColumn(double[][] m, int columnIndex)

✓Point✓Check

www.cs.armstrong.edu/liang/intro10e/quiz.html

306 Chapter 8 Multidimensional Arrays

 Write a test program that reads a 3-by-4 matrix and displays the sum of each
column. Here is a sample run:

Enter a 3-by-4 matrix row by row:
1.5 2 3 4

5.5 6 7 8

9.5 1 3 1
Sum of the elements at column 0 is 16.5
Sum of the elements at column 1 is 9.0
Sum of the elements at column 2 is 13.0
Sum of the elements at column 3 is 13.0

Enter a 4-by-4 matrix row by row:
1 2 3 4.0

5 6.5 7 8

9 10 11 12

13 14 15 16
Sum of the elements in the major diagonal is 34.5

*8.2 (Sum the major diagonal in a matrix) Write a method that sums all the numbers
in the major diagonal in an n * n matrix of double values using the following
header:

public static double sumMajorDiagonal(double[][] m)

 Write a test program that reads a 4-by-4 matrix and displays the sum of all its
elements on the major diagonal. Here is a sample run:

*8.3 (Sort students on grades) Rewrite Listing 8.2, GradeExam.java, to display the
students in increasing order of the number of correct answers.

**8.4 (Compute the weekly hours for each employee) Suppose the weekly hours for all
employees are stored in a two-dimensional array. Each row records an employ-
ee’s seven-day work hours with seven columns. For example, the following
array stores the work hours for eight employees. Write a program that displays
employees and their total hours in decreasing order of the total hours.

Su M T W Th F Sa

Employee 0 2 4 3 4 5 8 8

Employee 1 7 3 4 3 3 4 4

Employee 2 3 3 4 3 3 2 2

Employee 3 9 3 4 7 3 4 1

Employee 4 3 5 4 3 6 3 8

Employee 5 3 4 4 6 3 4 4

Employee 6 3 7 4 8 3 8 4

Employee 7 6 3 5 9 2 7 9

8.5 (Algebra: add two matrices) Write a method to add two matrices. The header of
the method is as follows:

public static double[][] addMatrix(double[][] a, double[][] b)

Programming Exercises 307

 In order to be added, the two matrices must have the same dimensions and the
same or compatible types of elements. Let c be the resulting matrix. Each ele-
ment cij is aij + bij. For example, for two 3 * 3 matrices a and b, c is£a11 a12 a13

a21 a22 a23

a31 a32 a33

≥ + £b11 b12 b13

b21 b22 b23

b31 b32 b33

≥ = £a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33

≥
 Write a test program that prompts the user to enter two 3 * 3 matrices and

displays their sum. Here is a sample run:

VideoNote

Multiply two matrices

Enter matrix1: 1 2 3 4 5 6 7 8 9
Enter matrix2: 0 2 4 1 4.5 2.2 1.1 4.3 5.2
The matrices are added as follows
 1.0 2.0 3.0 0.0 2.0 4.0 1.0 4.0 7.0
 4.0 5.0 6.0 + 1.0 4.5 2.2 = 5.0 9.5 8.2
 7.0 8.0 9.0 1.1 4.3 5.2 8.1 12.3 14.2

Enter matrix1: 1 2 3 4 5 6 7 8 9

Enter matrix2: 0 2 4 1 4.5 2.2 1.1 4.3 5.2
The multiplication of the matrices is
 1 2 3 0 2.0 4.0 5.3 23.9 24
 4 5 6 * 1 4.5 2.2 = 11.6 56.3 58.2
 7 8 9 1.1 4.3 5.2 17.9 88.7 92.4

**8.6 (Algebra: multiply two matrices) Write a method to multiply two matrices. The
header of the method is:

public static double[][]
 multiplyMatrix(double[][] a, double[][] b)

 To multiply matrix a by matrix b, the number of columns in a must be the same as
the number of rows in b, and the two matrices must have elements of the same or
compatible types. Let c be the result of the multiplication. Assume the column size
of matrix a is n. Each element cij is ai1 * b1j + ai2 * b2j + c + ain * bnj.
For example, for two 3 * 3 matrices a and b, c is£a11 a12 a13

a21 a22 a23

a31 a32 a33

≥ * £b11 b12 b13

b21 b22 b23

b31 b32 b33

≥ = £c11 c12 c13

c21 c22 c23

c31 c32 c33

≥
where cij = ai1 * b1j + ai2 * b2j + ai3 * b3j.

 Write a test program that prompts the user to enter two 3 * 3 matrices and dis-
plays their product. Here is a sample run:

*8.7 (Points nearest to each other) Listing 8.3 gives a program that finds two points in a
two-dimensional space nearest to each other. Revise the program so that it finds two
points in a three-dimensional space nearest to each other. Use a two-dimensional
array to represent the points. Test the program using the following points:

double[][] points = {{-1, 0, 3}, {-1, -1, -1}, {4, 1, 1},
 {2, 0.5, 9}, {3.5, 2, -1}, {3, 1.5, 3}, {-1.5, 4, 2},
 {5.5, 4, -0.5}};

308 Chapter 8 Multidimensional Arrays

 The formula for computing the distance between two points (x1, y1, z1) and
(x2, y2, z2) is 2(x2 - x1)

2 + (y2 - y1)
2 + (z2 - z1)

2.

**8.8 (All closest pairs of points) Revise Listing 8.3, FindNearestPoints.java, to
display all closest pairs of points with the same minimum distance. Here is
a sample run:

——————-——————
| | | |
——————-——————
| | | |
——————-——————
| | | |
——————-——————
Enter a row (0, 1, or 2) for player X: 1

Enter a column (0, 1, or 2) for player X: 1

——————-——————
| | | |
——————-——————
| | X | |
——————-——————
| | | |
——————-——————
Enter a row (0, 1, or 2) for player O: 1

Enter a column (0, 1, or 2) for player O: 2

——————-——————
| | | |
——————-——————
| | X | O |
——————-——————
| | | |
——————-——————

Enter the number of points: 8

Enter 8 points: 0 0 1 1 -1 -1 2 2 -2 -2 -3 -3 -4 -4 5 5
The closest two points are (0.0, 0.0) and (1.0, 1.0)
The closest two points are (0.0, 0.0) and (-1.0, -1.0)
The closest two points are (1.0, 1.0) and (2.0, 2.0)
The closest two points are (-1.0, -1.0) and (-2.0, -2.0)
The closest two points are (-2.0, -2.0) and (-3.0, -3.0)
The closest two points are (-3.0, -3.0) and (-4.0, -4.0)
Their distance is 1.4142135623730951

***8.9 (Game: play a tic-tac-toe game) In a game of tic-tac-toe, two players take turns
marking an available cell in a 3 * 3 grid with their respective tokens (either
X or O). When one player has placed three tokens in a horizontal, vertical, or
diagonal row on the grid, the game is over and that player has won. A draw (no
winner) occurs when all the cells on the grid have been filled with tokens and
neither player has achieved a win. Create a program for playing tic-tac-toe.

 The program prompts two players to enter an X token and O token alter-
nately. Whenever a token is entered, the program redisplays the board on the
console and determines the status of the game (win, draw, or continue). Here
is a sample run:

Programming Exercises 309

*8.10 (Largest row and column) Write a program that randomly fills in 0s and 1s into
a 4-by-4 matrix, prints the matrix, and finds the first row and column with the
most 1s. Here is a sample run of the program:

0011
0011
1101
1010
The largest row index: 2
The largest column index: 2

**8.11 (Game: nine heads and tails) Nine coins are placed in a 3-by-3 matrix with some
face up and some face down. You can represent the state of the coins using a
3-by-3 matrix with values 0 (heads) and 1 (tails). Here are some examples:

0 0 0 1 0 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 0 1 1 0

 Each state can also be represented using a binary number. For example, the pre-
ceding matrices correspond to the numbers

000010000 101001100 110100001 101110100 100111110

 There are a total of 512 possibilities, so you can use decimal numbers 0, 1, 2, 3,
. . . , and 511 to represent all states of the matrix. Write a program that prompts
the user to enter a number between 0 and 511 and displays the corresponding
matrix with the characters H and T. Here is a sample run:

Enter a row (0, 1, or 2) for player X:

 . . .

——————-——————
| X | | |
——————-——————
| O | X | O |
——————-——————
| | | X |
——————-——————
X player won

Enter a number between 0 and 511: 7
H H H
H H H
T T T

 The user entered 7, which corresponds to 000000111. Since 0 stands for H and
1 for T, the output is correct.

**8.12 (Financial application: compute tax) Rewrite Listing 3.5, ComputeTax.java,
using arrays. For each filing status, there are six tax rates. Each rate is applied
to a certain amount of taxable income. For example, from the taxable income of
$400,000 for a single filer, $8,350 is taxed at 10%, (33,950 - 8,350) at 15%,

310 Chapter 8 Multidimensional Arrays

(82,250 - 33,950) at 25%, (171,550 - 82,550) at 28%, (372,550 - 82,250) at
33%, and (400,000 - 372,950) at 36%. The six rates are the same for all filing
statuses, which can be represented in the following array:

double[] rates = {0.10, 0.15, 0.25, 0.28, 0.33, 0.35};

 The brackets for each rate for all the filing statuses can be represented in a two-
dimensional array as follows:

Enter the number of rows and columns of the array: 3 4
Enter the array:
23.5 35 2 10

4.5 3 45 3.5

35 44 5.5 9.6
The location of the largest element is at (1, 2)

**8.14 (Explore matrix) Write a program that prompts the user to enter the length of a
square matrix, randomly fills in 0s and 1s into the matrix, prints the matrix, and
finds the rows, columns, and diagonals with all 0s or 1s. Here is a sample run of
the program:

int[][] brackets = {
 {8350, 33950, 82250, 171550, 372950}, // Single filer
 {16700, 67900, 137050, 20885, 372950}, // Married jointly

// -or qualifying widow(er)
 {8350, 33950, 68525, 104425, 186475}, // Married separately
 {11950, 45500, 117450, 190200, 372950} // Head of household
};

 Suppose the taxable income is $400,000 for single filers. The tax can be com-
puted as follows:

tax = brackets[0][0] * rates[0] +
 (brackets[0][1] – brackets[0][0]) * rates[1] +
 (brackets[0][2] – brackets[0][1]) * rates[2] +
 (brackets[0][3] – brackets[0][2]) * rates[3] +
 (brackets[0][4] – brackets[0][3]) * rates[4] +
 (400000 – brackets[0][4]) * rates[5]

*8.13 (Locate the largest element) Write the following method that returns the location
of the largest element in a two-dimensional array.

public static int[] locateLargest(double[][] a)

 The return value is a one-dimensional array that contains two elements. These
two elements indicate the row and column indices of the largest element in the
two-dimensional array. Write a test program that prompts the user to enter a two-
dimensional array and displays the location of the largest element in the array.
Here is a sample run:

Programming Exercises 311

*8.15 (Geometry: same line?) Programming Exercise 6.39 gives a method for testing
whether three points are on the same line.

 Write the following method to test whether all the points in the array points are
on the same line.

public static boolean sameLine(double[][] points)

 Write a program that prompts the user to enter five points and displays whether
they are on the same line. Here are sample runs:

Enter the size for the matrix: 4
0111
0000
0100
1111
All 0s on row 1
All 1s on row 3
No same numbers on a column
No same numbers on the major diagonal
No same numbers on the sub-diagonal

Enter five points: 3.4 2 6.5 9.5 2.3 2.3 5.5 5 -5 4
The five points are not on the same line

Enter five points: 1 1 2 2 3 3 4 4 5 5
The five points are on the same line

*8.16 (Sort two-dimensional array) Write a method to sort a two-dimensional array
using the following header:

public static void sort(int m[][])

 The method performs a primary sort on rows and a secondary sort on columns.
For example, the following array

{{4, 2},{1, 7},{4, 5},{1, 2},{1, 1},{4, 1}}

will be sorted to

{{1, 1},{1, 2},{1, 7},{4, 1},{4, 2},{4, 5}}.

***8.17 (Financial tsunami) Banks lend money to each other. In tough economic times,
if a bank goes bankrupt, it may not be able to pay back the loan. A bank’s
total assets are its current balance plus its loans to other banks. The diagram in
Figure 8.8 shows five banks. The banks’ current balances are 25, 125, 175, 75,
and 181 million dollars, respectively. The directed edge from node 1 to node 2
indicates that bank 1 lends 40 million dollars to bank 2.

312 Chapter 8 Multidimensional Arrays

 If a bank’s total assets are under a certain limit, the bank is unsafe. The money it
borrowed cannot be returned to the lender, and the lender cannot count the loan in
its total assets. Consequently, the lender may also be unsafe, if its total assets are
under the limit. Write a program to find all the unsafe banks. Your program reads
the input as follows. It first reads two integers n and limit, where n indicates the
number of banks and limit is the minimum total assets for keeping a bank safe. It
then reads n lines that describe the information for n banks with IDs from 0 to n-1.

 The first number in the line is the bank’s balance, the second number indicates
the number of banks that borrowed money from the bank, and the rest are pairs
of two numbers. Each pair describes a borrower. The first number in the pair
is the borrower’s ID and the second is the amount borrowed. For example, the
input for the five banks in Figure 8.8 is as follows (note that the limit is 201):

5 201
25 2 1 100.5 4 320.5
125 2 2 40 3 85
175 2 0 125 3 75
75 1 0 125
181 1 2 125

 The total assets of bank 3 are (75 + 125), which is under 201, so bank 3 is
unsafe. After bank 3 becomes unsafe, the total assets of bank 1 fall below
(125 + 40). Thus, bank 1 is also unsafe. The output of the program should be

Unsafe banks are 3 1

(Hint: Use a two-dimensional array borrowers to represent loans.
borrowers[i][j] indicates the loan that bank i loans to bank j. Once bank j
becomes unsafe, borrowers[i][j] should be set to 0.)

*8.18 (Shuffle rows) Write a method that shuffles the rows in a two-dimensional int
array using the following header:

public static void shuffle(int[][] m)

 Write a test program that shuffles the following matrix:

int[][] m = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};

**8.19 (Pattern recognition: four consecutive equal numbers) Write the following
method that tests whether a two-dimensional array has four consecutive num-
bers of the same value, either horizontally, vertically, or diagonally.

public static boolean isConsecutiveFour(int[][] values)

FIGURE 8.8 Banks lend money to each other.

1

2

3

4

0

100.5

125

85

40
75

175125

125

125

320.5

181

25
75

Programming Exercises 313

 Write a test program that prompts the user to enter the number of rows and col-
umns of a two-dimensional array and then the values in the array and displays
true if the array contains four consecutive numbers with the same value. Other-
wise, display false. Here are some examples of the true cases:

0 1 0 3 1 6 1

0 1 6 8 6 0 1

9 6 2 1 8 2 9

6 9 6 1 1 9 1

1 3 9 1 4 0 7

3 3 3 9 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 6 2 1 8 2 9

6 5 6 1 1 9 1

1 3 6 1 4 0 7

3 3 3 3 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 5 2 1 8 2 9

6 5 6 1 1 9 1

1 5 6 1 4 0 7

3 5 3 3 4 0 7

0 1 0 3 1 6 1

0 1 6 8 6 0 1

5 6 2 1 6 2 9

6 5 6 6 1 9 1

1 3 6 1 4 0 7

3 6 3 3 4 0 7

———————————————
Drop a red disk at column (0–6): 0

R						
———————————————

***8.20 (Game: connect four) Connect four is a two-player board game in which the
players alternately drop colored disks into a seven-column, six-row vertically
suspended grid, as shown below.

 The objective of the game is to connect four same-colored disks in a row, a col-
umn, or a diagonal before your opponent can do likewise. The program prompts
two players to drop a red or yellow disk alternately. In the preceding figure, the
red disk is shown in a dark color and the yellow in a light color. Whenever a disk
is dropped, the program redisplays the board on the console and determines the
status of the game (win, draw, or continue). Here is a sample run:

314 Chapter 8 Multidimensional Arrays

*8.21 (Central city) Given a set of cities, the central city is the city that has the shortest
total distance to all other cities. Write a program that prompts the user to enter
the number of the cities and the locations of the cities (coordinates), and finds
the central city and its total distance to all other cities.

Drop a yellow disk at column (0–6): 3

R			Y			

. . .

. . .

. . .

Drop a yellow disk at column (0–6): 6

			R			
			Y	R	Y	
		R	Y	Y	Y	Y
R	Y	R	Y	R	R	R
———————————————
The yellow player won

VideoNote

Even number of 1s

Enter the number of cities: 5
Enter the coordinates of the cities:

2.5 5 5.1 3 1 9 5.4 54 5.5 2.1
The central city is at (2.5, 5.0)
The total distance to all other cities is 60.81

*8.22 (Even number of 1s) Write a program that generates a 6-by-6 two-dimensional
matrix filled with 0s and 1s, displays the matrix, and checks if every row and
every column have an even number of 1s.

*8.23 (Game: find the flipped cell) Suppose you are given a 6-by-6 matrix filled with
0s and 1s. All rows and all columns have an even number of 1s. Let the user flip
one cell (i.e., flip from 1 to 0 or from 0 to 1) and write a program to find which
cell was flipped. Your program should prompt the user to enter a 6-by-6 array
with 0s and 1s and find the first row r and first column c where the even number
of the 1s property is violated (i.e., the number of 1s is not even). The flipped cell
is at (r, c). Here is a sample run:

Enter a 6-by-6 matrix row by row:
1 1 1 0 1 1

1 1 1 1 0 0

0 1 0 1 1 1

1 1 1 1 1 1

0 1 1 1 1 0

1 0 0 0 0 1
The flipped cell is at (0, 1)

Programming Exercises 315

*8.24 (Check Sudoku solution) Listing 8.4 checks whether a solution is valid by check-
ing whether every number is valid in the board. Rewrite the program by checking
whether every row, every column, and every small box has the numbers 1 to 9.

*8.25 (Markov matrix) An n * n matrix is called a positive Markov matrix if each
element is positive and the sum of the elements in each column is 1. Write the
following method to check whether a matrix is a Markov matrix.

public static boolean isMarkovMatrix(double[][] m)

 Write a test program that prompts the user to enter a 3 * 3 matrix of double
values and tests whether it is a Markov matrix. Here are sample runs:

Enter a 3-by-3 matrix row by row:
0.15 0.875 0.375

0.55 0.005 0.225

0.30 0.12 0.4
It is a Markov matrix

Enter a 3-by-3 matrix row by row:
0.95 -0.875 0.375

0.65 0.005 0.225

0.30 0.22 -0.4
It is not a Markov matrix

Enter a 3-by-3 matrix row by row:
0.15 0.875 0.375

0.55 0.005 0.225

0.30 0.12 0.4

The row-sorted array is
0.15 0.375 0.875
0.005 0.225 0.55
0.12 0.30 0.4

*8.26 (Row sorting) Implement the following method to sort the rows in a two-
dimensional array. A new array is returned and the original array is intact.

public static double[][] sortRows(double[][] m)

 Write a test program that prompts the user to enter a 3 * 3 matrix of double
values and displays a new row-sorted matrix. Here is a sample run:

*8.27 (Column sorting) Implement the following method to sort the columns in a two-
dimensional array. A new array is returned and the original array is intact.

public static double[][] sortColumns(double[][] m)

316 Chapter 8 Multidimensional Arrays

8.28 (Strictly identical arrays) The two-dimensional arrays m1 and m2 are strictly
identical if their corresponding elements are equal. Write a method that returns
true if m1 and m2 are strictly identical, using the following header:

public static boolean equals(int[][] m1, int[][] m2)

 Write a test program that prompts the user to enter two 3 * 3 arrays of
integers and displays whether the two are strictly identical. Here are the
sample runs.

Enter a 3-by-3 matrix row by row:
0.15 0.875 0.375

0.55 0.005 0.225

0.30 0.12 0.4

The column-sorted array is
0.15 0.0050 0.225
0.3 0.12 0.375
0.55 0.875 0.4

 Write a test program that prompts the user to enter a 3 * 3 matrix of double
values and displays a new column-sorted matrix. Here is a sample run:

Enter list1: 51 22 25 6 1 4 24 54 6

Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are strictly identical

8.29 (Identical arrays) The two-dimensional arrays m1 and m2 are identical if they
have the same contents. Write a method that returns true if m1 and m2 are iden-
tical, using the following header:

public static boolean equals(int[][] m1, int[][] m2)

 Write a test program that prompts the user to enter two 3 * 3 arrays of integers
and displays whether the two are identical. Here are the sample runs.

Enter list1: 51 25 22 6 1 4 24 54 6

Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are not strictly identical

Enter list1: 51 5 22 6 1 4 24 54 6

Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are not identical

Enter list1: 51 25 22 6 1 4 24 54 6
Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are identical

Programming Exercises 317

*8.30 (Algebra: solve linear equations) Write a method that solves the following
2 * 2 system of linear equations:

a00x + a01y = b0

a10x + a11y = b1
x =

b0a11 - b1a01

a00a11 - a01a10
y =

b1a00 - b0a10

a00a11 - a01a10

 The method header is

public static double[] linearEquation(double[][] a, double[] b)

 The method returns null if a00a11 - a01a10 is 0. Write a test program that
prompts the user to enter a00, a01, a10, a11, b0, and b1, and displays the result. If
a00a11 - a01a10 is 0, report that “The equation has no solution.” A sample run is
similar to Programming Exercise 3.3.

*8.31 (Geometry: intersecting point) Write a method that returns the intersecting point of
two lines. The intersecting point of the two lines can be found by using the formula
shown in Programming Exercise 3.25. Assume that (x1, y1) and (x2, y2) are the
two points on line 1 and (x3, y3) and (x4, y4) are on line 2. The method header is

public static double[] getIntersectingPoint(double[][] points)

 The points are stored in a 4-by-2 two-dimensional array points with
(points[0][0], points[0][1]) for (x1, y1). The method returns the inter-
secting point or null if the two lines are parallel. Write a program that prompts
the user to enter four points and displays the intersecting point. See Program-
ming Exercise 3.25 for a sample run.

*8.32 (Geometry: area of a triangle) Write a method that returns the area of a triangle
using the following header:

public static double getTriangleArea(double[][] points)

 The points are stored in a 3-by-2 two-dimensional array points with points[0]
[0] and points[0][1] for (x1, y1). The triangle area can be computed using the
formula in Programming Exercise 2.19. The method returns 0 if the three points
are on the same line. Write a program that prompts the user to enter three points of
a triangle and displays the triangle's area. Here is a sample run of the program:

Enter x1, y1, x2, y2, x3, y3: 2.5 2 5 -1.0 4.0 2.0
The area of the triangle is 2.25

Enter x1, y1, x2, y2, x3, y3: 2 2 4.5 4.5 6 6
The three points are on the same line

Enter x1, y1, x2, y2, x3, y3, x4, y4:
-2.5 2 4 4 3 -2 -2 -3.5

The areas are 6.17 7.96 8.08 10.42

*8.33 (Geometry: polygon subareas) A convex 4-vertex polygon is divided into four
triangles, as shown in Figure 8.9.

 Write a program that prompts the user to enter the coordinates of four vertices and
displays the areas of the four triangles in increasing order. Here is a sample run:

318 Chapter 8 Multidimensional Arrays

*8.34 (Geometry: rightmost lowest point) In computational geometry, often you need
to find the rightmost lowest point in a set of points. Write the following method
that returns the rightmost lowest point in a set of points.

public static double[]
 getRightmostLowestPoint(double[][] points)

 Write a test program that prompts the user to enter the coordinates of six points
and displays the rightmost lowest point. Here is a sample run:

FIGURE 8.9 A 4-vertex polygon is defined by four vertices.

v2 (x2, y2)

v3 (x3, y3)

v4 (x4, y4)

v1 (x1, y1)

Enter 6 points: 1.5 2.5 -3 4.5 5.6 -7 6.5 -7 8 1 10 2.5
The rightmost lowest point is (6.5, -7.0)

Enter the number of rows in the matrix: 5
Enter the matrix row by row:
1 0 1 0 1

1 1 1 0 1

1 0 1 1 1

1 0 1 1 1

1 0 1 1 1

The maximum square submatrix is at (2, 2) with size 3

**8.35 (Largest block) Given a square matrix with the elements 0 or 1, write a program
to find a maximum square submatrix whose elements are all 1s. Your program
should prompt the user to enter the number of rows in the matrix. The program
then displays the location of the first element in the maximum square submatrix
and the number of the rows in the submatrix. Here is a sample run:

 Your program should implement and use the following method to find the maxi-
mum square submatrix:

public static int[] findLargestBlock(int[][] m)

 The return value is an array that consists of three values. The first two values are
the row and column indices for the first element in the submatrix, and the third
value is the number of the rows in the submatrix.

**8.36 (Latin square) A Latin square is an n-by-n array filled with n different Latin let-
ters, each occurring exactly once in each row and once in each column. Write a

Programming Exercises 319

program that prompts the user to enter the number n and the array of characters,
as shown in the sample output, and checks if the input array is a Latin square.
The characters are the first n characters starting from A.

Enter number n: 3
Enter 3 rows of letters separated by spaces:
A F D
Wrong input: the letters must be from A to C

What is the capital of Alabama? Montogomery
The correct answer should be Montgomery
What is the capital of Alaska? Juneau
Your answer is correct
What is the capital of Arizona? ...
...
The correct count is 35

Enter number n: 4
Enter 4 rows of letters separated by spaces:
A B C D

B A D C

C D B A

D C A B
The input array is a Latin square

**8.37 (Guess the capitals) Write a program that repeatedly prompts the user to enter
a capital for a state. Upon receiving the user input, the program reports whether
the answer is correct. Assume that 50 states and their capitals are stored in a two-
dimensional array, as shown in Figure 8.10. The program prompts the user to
answer all states’ capitals and displays the total correct count. The user’s answer
is not case-sensitive.

 Here is a sample run:

Alabama
Alaska
Arizona
...
...

Montgomery
Juneau
Phoenix
...
...

FIGURE 8.10 A two-dimensional array stores states and their capitals.

This page intentionally left blank

OBJECTS AND CLASSES

Objectives
■ To describe objects and classes, and use classes to model objects (§9.2).

■ To use UML graphical notation to describe classes and objects (§9.2).

■ To demonstrate how to define classes and create objects (§9.3).

■ To create objects using constructors (§9.4).

■ To access objects via object reference variables (§9.5).

■ To define a reference variable using a reference type (§9.5.1).

■ To access an object’s data and methods using the object member access
operator (.) (§9.5.2).

■ To define data fields of reference types and assign default values for an
object’s data fields (§9.5.3).

■ To distinguish between object reference variables and primitive data
type variables (§9.5.4).

■ To use the Java library classes Date, Random, and Point2D (§9.6).

■ To distinguish between instance and static variables and methods (§9.7).

■ To define private data fields with appropriate getter and setter methods
(§9.8).

■ To encapsulate data fields to make classes easy to maintain (§9.9).

■ To develop methods with object arguments and differentiate between
primitive-type arguments and object-type arguments (§9.10).

■ To store and process objects in arrays (§9.11).

■ To create immutable objects from immutable classes to protect the
contents of objects (§9.12).

■ To determine the scope of variables in the context of a class (§9.13).

■ To use the keyword this to refer to the calling object itself (§9.14).

CHAPTER

9

322 Chapter 9 Objects and Classes

9.1 Introduction
Object-oriented programming enables you to develop large-scale software and GUIs
effectively.

Having learned the material in the preceding chapters, you are able to solve many program-
ming problems using selections, loops, methods, and arrays. However, these Java features
are not sufficient for developing graphical user interfaces and large-scale software systems.
Suppose you want to develop a graphical user interface (GUI, pronounced goo-ee) as shown
in Figure 9.1. How would you program it?

Key
Point

why OOP?

FIGURE 9.1 The GUI objects are created from classes.

Button Text Field Radio Button Combo BoxLabel Check Box

This chapter introduces object-oriented programming, which you can use to develop GUI
and large-scale software systems.

9.2 Defining Classes for Objects
A class defines the properties and behaviors for objects.

Object-oriented programming (OOP) involves programming using objects. An object rep-
resents an entity in the real world that can be distinctly identified. For example, a student, a
desk, a circle, a button, and even a loan can all be viewed as objects. An object has a unique
identity, state, and behavior.

 ■ The state of an object (also known as its properties or attributes) is represented by
data fields with their current values. A circle object, for example, has a data field
radius, which is the property that characterizes a circle. A rectangle object has the
data fields width and height, which are the properties that characterize a rectangle.

 ■ The behavior of an object (also known as its actions) is defined by methods. To
invoke a method on an object is to ask the object to perform an action. For exam-
ple, you may define methods named getArea() and getPerimeter() for circle
objects. A circle object may invoke getArea() to return its area and getPerim-
eter() to return its perimeter. You may also define the setRadius(radius)
method. A circle object can invoke this method to change its radius.

Objects of the same type are defined using a common class. A class is a template, blue-
print, or contract that defines what an object’s data fields and methods will be. An object is an
instance of a class. You can create many instances of a class. Creating an instance is referred
to as instantiation. The terms object and instance are often interchangeable. The relationship
between classes and objects is analogous to that between an apple-pie recipe and apple pies:
You can make as many apple pies as you want from a single recipe. Figure 9.2 shows a class
named Circle and its three objects.

A Java class uses variables to define data fields and methods to define actions. Addition-
ally, a class provides methods of a special type, known as constructors, which are invoked to
create a new object. A constructor can perform any action, but constructors are designed to
perform initializing actions, such as initializing the data fields of objects. Figure 9.3 shows an
example of defining the class for circle objects.

Key
Point

object

state of an object

properties

attributes

data fields
behavior

actions

class
contract

instantiation
instance

data field

method
constructors

Define classes and objects

VideoNote

9.2 Defining Classes for Objects 323

The Circle class is different from all of the other classes you have seen thus far. It does
not have a main method and therefore cannot be run; it is merely a definition for circle objects.
The class that contains the main method will be referred to in this book, for convenience, as
the main class.

The illustration of class templates and objects in Figure 9.2 can be standardized using Unified
Modeling Language (UML) notation. This notation, as shown in Figure 9.4, is called a UML
class diagram, or simply a class diagram. In the class diagram, the data field is denoted as

dataFieldName: dataFieldType

The constructor is denoted as

ClassName(parameterName: parameterType)

main class

Unified Modeling Language
(UML)

class diagram

FIGURE 9.2 A class is a template for creating objects.

Class Name: Circle

Data Fields:
 radius is _____

Methods:
 getArea
 getPerimeter
 setRadius

Circle Object 1

Data Fields:
 radius is 1

Circle Object 2

Data Fields:
 radius is 25

Circle Object 3

Data Fields:
 radius is 125

A class template

Three objects of
the Circle class

FIGURE 9.3 A class is a construct that defines objects of the same type.

Data field

Constructors

Method

class Circle {
/** The radius of this circle */
double radius = 1;

/** Construct a circle object */
 Circle() {

}

/** Construct a circle object */
 Circle(double newRadius) {
 radius = newRadius;

}

/** Return the area of this circle */
double getArea() {

return radius * radius * Math.PI;
}

/** Return the perimeter of this circle */
double getPerimeter() {

return 2 * radius * Math.PI;
}

/** Set new radius for this circle */
double setRadius(double newRadius) {

 radius = newRadius;
}

}

324 Chapter 9 Objects and Classes

The method is denoted as

methodName(parameterName: parameterType): returnType

9.3 Example: Defining Classes and Creating Objects
Classes are definitions for objects and objects are created from classes.

This section gives two examples of defining classes and uses the classes to create objects.
Listing 9.1 is a program that defines the Circle class and uses it to create objects. The pro-
gram constructs three circle objects with radius 1, 25, and 125 and displays the radius and
area of each of the three circles. It then changes the radius of the second object to 100 and
displays its new radius and area.

Note
To avoid a naming conflict with several enhanced versions of the Circle class intro-

duced later in the chapter, the Circle class in this example is named SimpleCircle.

For simplicity, we will still refer to the class in the text as Circle.

LISTING 9.1 TestSimpleCircle.java
 1 public class TestSimpleCircle {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
 5 SimpleCircle circle1 = new SimpleCircle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
10 SimpleCircle circle2 = new SimpleCircle(25);
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + " is " + circle2.getArea());
13
14 // Create a circle with radius 125
15 SimpleCircle circle3 = new SimpleCircle(125);
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 circle2.radius = 100; // or circle2.setRadius(100)
21 System.out.println("The area of the circle of radius "
22 + circle2.radius + " is " + circle2.getArea());

Key
Point

avoid naming conflicts

main class

main method

create object

create object

create object

FIGURE 9.4 Classes and objects can be represented using UML notation.

Class nameCircle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius: double): void

Data fields

Constructors and
methods

UML Class Diagram

UML notation
for objects

circle2: Circle

radius = 25

circle3: Circle

radius = 125

circle1: Circle

radius = 1

9.3 Example: Defining Classes and Creating Objects 325

23 }
24 }
25
26 // Define the circle class with two constructors
27 class SimpleCircle {
28 double radius;
29
30 /** Construct a circle with radius 1 */
31 SimpleCircle() {
32 radius = 1;
33 }
34
35 /** Construct a circle with a specified radius */
36 SimpleCircle(double newRadius) {
37 radius = newRadius;
38 }
39
40 /** Return the area of this circle */
41 double getArea() {
42 return radius * radius * Math.PI;
43 }
44
45 /** Return the perimeter of this circle */
46 double getPerimeter() {
47 return 2 * radius * Math.PI;
48 }
49
50 /** Set a new radius for this circle */
51 void setRadius(double newRadius) {
52 radius = newRadius;
53 }
54 }

class SimpleCircle
data field

no-arg constructor

second constructor

getArea

getPerimeter

setRadius

The area of the circle of radius 1.0 is 3.141592653589793
The area of the circle of radius 25.0 is 1963.4954084936207
The area of the circle of radius 125.0 is 49087.385212340516
The area of the circle of radius 100.0 is 31415.926535897932

FIGURE 9.5 Each class in the source code file is compiled into a .class file.

Java
Compilercompiled

by

generates

generates

// File TestSimpleCircle.java

public class TestSimpleCircle {
…

}

class SimpleCircle {
…

}

TestSimpleCircle.class

SimpleCircle.class

The program contains two classes. The first of these, TestSimpleCircle, is the main class.
Its sole purpose is to test the second class, SimpleCircle. Such a program that uses the class
is often referred to as a client of the class. When you run the program, the Java runtime system
invokes the main method in the main class.

You can put the two classes into one file, but only one class in the file can be a public class.
Furthermore, the public class must have the same name as the file name. Therefore, the file
name is TestSimpleCircle.java, since TestSimpleCircle is public. Each class in the source
code is compiled into a .class file. When you compile TestSimpleCircle.java, two class files
TestSimpleCircle.class and SimpleCircle.class are generated, as shown in Figure 9.5.

client

public class

326 Chapter 9 Objects and Classes

The main class contains the main method (line 3) that creates three objects. As in creating an
array, the new operator is used to create an object from the constructor: new SimpleCircle()
creates an object with radius 1 (line 5), new SimpleCircle(25) creates an object with radius
25 (line 10), and new SimpleCircle(125) creates an object with radius 125 (line 15).

These three objects (referenced by circle1, circle2, and circle3) have different
data but the same methods. Therefore, you can compute their respective areas by using
the getArea() method. The data fields can be accessed via the reference of the object
using circle1.radius, circle2.radius, and circle3.radius, respectively. The
object can invoke its method via the reference of the object using circle1.getArea(),
circle2.getArea(), and circle3.getArea(), respectively.

These three objects are independent. The radius of circle2 is changed to 100 in line 20.
The object’s new radius and area are displayed in lines 21–22.

There are many ways to write Java programs. For instance, you can combine the two
classes in the example into one, as shown in Listing 9.2.

LISTING 9.2 SimpleCircle.java
 1 public class SimpleCircle {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
 5 SimpleCircle circle1 = new SimpleCircle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
10 SimpleCircle circle2 = new SimpleCircle(25);
11 System.out.println("The area of the circle of radius "
12 + circle2.radius + " is " + circle2.getArea());
13
14 // Create a circle with radius 125
15 SimpleCircle circle3 = new SimpleCircle(125);
16 System.out.println("The area of the circle of radius "
17 + circle3.radius + " is " + circle3.getArea());
18
19 // Modify circle radius
20 circle2.radius = 100;
21 System.out.println("The area of the circle of radius "
22 + circle2.radius + " is " + circle2.getArea());
23 }
24
25 double radius;
26
27 /** Construct a circle with radius 1 */
28 SimpleCircle() {
29 radius = 1;
30 }
31
32 /** Construct a circle with a specified radius */
33 SimpleCircle(double newRadius) {
34 radius = newRadius;
35 }
36
37 /** Return the area of this circle */
38 double getArea() {
39 return radius * radius * Math.PI;
40 }
41

main method

data field

no-arg constructor

second constructor

method

9.3 Example: Defining Classes and Creating Objects 327

42 /** Return the perimeter of this circle */
43 double getPerimeter() {
44 return 2 * radius * Math.PI;
45 }
46
47 /** Set a new radius for this circle */
48 void setRadius(double newRadius) {
49 radius = newRadius;
50 }
51 }

Since the combined class has a main method, it can be executed by the Java interpreter. The
main method is the same as that in Listing 9.1. This demonstrates that you can test a class by
simply adding a main method in the same class.

As another example, consider television sets. Each TV is an object with states (current
channel, current volume level, power on or off) and behaviors (change channels, adjust vol-
ume, turn on/off). You can use a class to model TV sets. The UML diagram for the class is
shown in Figure 9.6.

FIGURE 9.6 The TV class models TV sets.

TV

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOff(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates
public modifier

Listing 9.3 gives a program that defines the TV class.

LISTING 9.3 TV.java
 1 public class TV {
 2 int channel = 1; // Default channel is 1
 3 int volumeLevel = 1; // Default volume level is 1
 4 boolean on = false; // TV is off
 5
 6 public TV() {
 7 }
 8
 9 public void turnOn() {
10 on = true;
11 }
12
13 public void turnOff() {

data fields

constructor

turn on TV

turn off TV

328 Chapter 9 Objects and Classes

14 on = false;
15 }
16
17 public void setChannel(int newChannel) {
18 if (on && newChannel >= 1 && newChannel <= 120)
19 channel = newChannel;
20 }
21
22 public void setVolume(int newVolumeLevel) {
23 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
24 volumeLevel = newVolumeLevel;
25 }
26
27 public void channelUp() {
28 if (on && channel < 120)
29 channel++;
30 }
31
32 public void channelDown() {
33 if (on && channel > 1)
34 channel—–;
35 }
36
37 public void volumeUp() {
38 if (on && volumeLevel < 7)
39 volumeLevel++;
40 }
41
42 public void volumeDown() {
43 if (on && volumeLevel > 1)
44 volumeLevel—–;
45 }
46 }

The constructor and methods in the TV class are defined public so they can be accessed from
other classes. Note that the channel and volume level are not changed if the TV is not on. Before
either of these is changed, its current value is checked to ensure that it is within the correct range.

Listing 9.4 gives a program that uses the TV class to create two objects.

LISTING 9.4 TestTV.java
 1 public class TestTV {
 2 public static void main(String[] args) {
 3 TV tv1 = new TV();
 4 tv1.turnOn();
 5 tv1.setChannel(30);
 6 tv1.setVolume(3);
 7
 8 TV tv2 = new TV();
 9 tv2.turnOn();
10 tv2.channelUp();
11 tv2.channelUp();
12 tv2.volumeUp();
13
14 System.out.println("tv1's channel is " + tv1.channel
15 + " and volume level is " + tv1.volumeLevel);
16 System.out.println("tv2's channel is " + tv2.channel
17 + " and volume level is " + tv2.volumeLevel);
18 }
19 }

set a new channel

set a new volume

increase channel

decrease channel

increase volume

decrease volume

main method
create a TV
turn on
set a new channel
set a new volume

create a TV
turn on
increase channel

increase volume

display state

9.4 Constructing Objects Using Constructors 329

The program creates two objects in lines 3 and 8 and invokes the methods on the objects to
perform actions for setting channels and volume levels and for increasing channels and vol-
umes. The program displays the state of the objects in lines 14–17. The methods are invoked
using syntax such as tv1.turnOn() (line 4). The data fields are accessed using syntax such
as tv1.channel (line 14).

These examples have given you a glimpse of classes and objects. You may have many
questions regarding constructors, objects, reference variables, accessing data fields, and
invoking object’s methods. The sections that follow discuss these issues in detail.

9.1 Describe the relationship between an object and its defining class.

9.2 How do you define a class?

9.3 How do you declare an object’s reference variable?

9.4 How do you create an object?

9.4 Constructing Objects Using Constructors
A constructor is invoked to create an object using the new operator.

Constructors are a special kind of method. They have three peculiarities:

 ■ A constructor must have the same name as the class itself.

 ■ Constructors do not have a return type—not even void.

 ■ Constructors are invoked using the new operator when an object is created.
Constructors play the role of initializing objects.

The constructor has exactly the same name as its defining class. Like regular methods,
constructors can be overloaded (i.e., multiple constructors can have the same name but differ-
ent signatures), making it easy to construct objects with different initial data values.

It is a common mistake to put the void keyword in front of a constructor. For example,

public void Circle() {
}

In this case, Circle() is a method, not a constructor.
Constructors are used to construct objects. To construct an object from a class, invoke a

constructor of the class using the new operator, as follows:

new ClassName(arguments);

For example, new Circle() creates an object of the Circle class using the first construc-
tor defined in the Circle class, and new Circle(25) creates an object using the second
constructor defined in the Circle class.

A class normally provides a constructor without arguments (e.g., Circle()). Such a con-
structor is referred to as a no-arg or no-argument constructor.

A class may be defined without constructors. In this case, a public no-arg constructor with
an empty body is implicitly defined in the class. This constructor, called a default constructor,
is provided automatically only if no constructors are explicitly defined in the class.

9.5 What are the differences between constructors and methods?

9.6 When will a class have a default constructor?

✓Point✓Check

Key
Point

constructor’s name

no return type

new operator

overloaded constructors

no void

constructing objects

no-arg constructor

default constructor

✓Point✓Check

tv1's channel is 30 and volume level is 3
tv2's channel is 3 and volume level is 2

330 Chapter 9 Objects and Classes

9.5 Accessing Objects via Reference Variables
An object’s data and methods can be accessed through the dot (.) operator via the
object’s reference variable.

Newly created objects are allocated in the memory. They can be accessed via reference
variables.

9.5.1 Reference Variables and Reference Types
Objects are accessed via the object’s reference variables, which contain references to the
objects. Such variables are declared using the following syntax:

ClassName objectRefVar;

A class is essentially a programmer-defined type. A class is a reference type, which means
that a variable of the class type can reference an instance of the class. The following statement
declares the variable myCircle to be of the Circle type:

Circle myCircle;

The variable myCircle can reference a Circle object. The next statement creates an object
and assigns its reference to myCircle:

myCircle = new Circle();

You can write a single statement that combines the declaration of an object reference variable,
the creation of an object, and the assigning of an object reference to the variable with the fol-
lowing syntax:

ClassName objectRefVar = new ClassName();

Here is an example:

Circle myCircle = new Circle();

The variable myCircle holds a reference to a Circle object.

Note
An object reference variable that appears to hold an object actually contains a reference

to that object. Strictly speaking, an object reference variable and an object are different,

but most of the time the distinction can be ignored. Therefore, it is fine, for simplicity, to

say that myCircle is a Circle object rather than use the longer-winded description

that myCircle is a variable that contains a reference to a Circle object.

Note
Arrays are treated as objects in Java. Arrays are created using the new operator. An array

variable is actually a variable that contains a reference to an array.

9.5.2 Accessing an Object’s Data and Methods
In OOP terminology, an object’s member refers to its data fields and methods. After an object
is created, its data can be accessed and its methods can be invoked using the dot operator (.),
also known as the object member access operator:

 ■ objectRefVar.dataField references a data field in the object.

 ■ objectRefVar.method(arguments) invokes a method on the object.

Key
Point

reference variable

reference type

object vs. object reference
variable

array object

dot operator (.)

9.5 Accessing Objects via Reference Variables 331

For example, myCircle.radius references the radius in myCircle, and myCircle
.getArea() invokes the getArea method on myCircle. Methods are invoked as operations
on objects.

The data field radius is referred to as an instance variable, because it is dependent on
a specific instance. For the same reason, the method getArea is referred to as an instance
method, because you can invoke it only on a specific instance. The object on which an instance
method is invoked is called a calling object.

Caution
Recall that you use Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can you invoke getArea() using

Circle.getArea()? The answer is no. All the methods in the Math class are static

methods, which are defined using the static keyword. However, getArea() is

an instance method, and thus nonstatic. It must be invoked from an object using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

Further explanation is given in Section 9.7, Static Variables, Constants, and Methods.

Note
Usually you create an object and assign it to a variable, and then later you can use the

variable to reference the object. Occasionally an object does not need to be referenced

later. In this case, you can create an object without explicitly assigning it to a variable

using the syntax:

new Circle();

or

System.out.println("Area is " + new Circle(5).getArea());

The former statement creates a Circle object. The latter creates a Circle object and

invokes its getArea method to return its area. An object created in this way is known

as an anonymous object.

9.5.3 Reference Data Fields and the null Value
The data fields can be of reference types. For example, the following Student class contains
a data field name of the String type. String is a predefined Java class.

class Student {
 String name; // name has the default value null

int age; // age has the default value 0
boolean isScienceMajor; // isScienceMajor has default value false
char gender; // gender has default value '\u0000'

}

If a data field of a reference type does not reference any object, the data field holds a special
Java value, null. null is a literal just like true and false. While true and false are
Boolean literals, null is a literal for a reference type.

The default value of a data field is null for a reference type, 0 for a numeric type, false
for a boolean type, and \u0000 for a char type. However, Java assigns no default value to
a local variable inside a method. The following code displays the default values of the data
fields name, age, isScienceMajor, and gender for a Student object:

class Test {
public static void main(String[] args) {

Student student = new Student();
 System.out.println("name? " + student.name);

instance variable

instance method

calling object

invoking methods

anonymous object

reference data fields

null value

default field values

332 Chapter 9 Objects and Classes

 System.out.println("age? " + student.age);
 System.out.println("isScienceMajor? " + student.isScienceMajor);
 System.out.println("gender? " + student.gender);
 }
}

The following code has a compile error, because the local variables x and y are not initialized:

class Test {
public static void main(String[] args) {

int x; // x has no default value
String y; // y has no default value

 System.out.println("x is " + x);
 System.out.println("y is " + y);
 }
}

Caution
NullPointerException is a common runtime error. It occurs when you invoke

a method on a reference variable with a null value. Make sure you assign an object

reference to the variable before invoking the method through the reference variable (See

Checkpoint Question 9.11c).

9.5.4 Differences between Variables of Primitive Types
and Reference Types

Every variable represents a memory location that holds a value. When you declare a variable,
you are telling the compiler what type of value the variable can hold. For a variable of a primi-
tive type, the value is of the primitive type. For a variable of a reference type, the value is a
reference to where an object is located. For example, as shown in Figure 9.7, the value of int
variable i is int value 1, and the value of Circle object c holds a reference to where the
contents of the Circle object are stored in memory.

When you assign one variable to another, the other variable is set to the same value. For
a variable of a primitive type, the real value of one variable is assigned to the other variable.
For a variable of a reference type, the reference of one variable is assigned to the other vari-
able. As shown in Figure 9.8, the assignment statement i = j copies the contents of j into i

NullPointerException

FIGURE 9.7 A variable of a primitive type holds a value of the primitive type, and a variable
of a reference type holds a reference to where an object is stored in memory.

Primitive type

Object type

int i = 1

Circle c

i

c reference

1

Created using new Circle()

radius = 1

c: Circle

FIGURE 9.8 Primitive variable j is copied to variable i.

Primitive type assignment i = j

Before: After:

2

2

i

j

1

2

i

j

9.5 Accessing Objects via Reference Variables 333

for primitive variables. As shown in Figure 9.9, the assignment statement c1 = c2 copies
the reference of c2 into c1 for reference variables. After the assignment, variables c1 and c2
refer to the same object.

FIGURE 9.9 Reference variable c2 is copied to variable c1.

Object type assignment c1 = c2

c1

After:

c2

Before:

c1

c2

radius = 9

c2: Circle

radius = 5

c1: Circle

radius = 5

c1: Circle

radius = 9

c2: Circle

Note
As illustrated in Figure 9.9, after the assignment statement c1 = c2, c1 points to the

same object referenced by c2. The object previously referenced by c1 is no longer useful

and therefore is now known as garbage. Garbage occupies memory space, so the Java

runtime system detects garbage and automatically reclaims the space it occupies. This

process is called garbage collection.

Tip
If you know that an object is no longer needed, you can explicitly assign null to a refer-

ence variable for the object. The JVM will automatically collect the space if the object is

not referenced by any reference variable.

9.7 Which operator is used to access a data field or invoke a method from an object?

9.8 What is an anonymous object?

9.9 What is NullPointerException?

9.10 Is an array an object or a primitive type value? Can an array contain elements of an
object type? Describe the default value for the elements of an array.

9.11 What is wrong with each of the following programs?

garbage

garbage collection

✓Point✓Check

 1 public class ShowErrors {
2 public static void main(String[] args) {

 3 ShowErrors t = new ShowErrors(5);
 4 }
 5 }

(a)

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 ShowErrors t = new ShowErrors();
 4 t.x();
 5 }
 6 }

(b)

 1 public class ShowErrors {
 2 public void method1() {
 3 Circle c;
 4 System.out.println("What is radius "
 5 + c.getRadius());
 6 c = new Circle();
 7 }
 8 }

(c)

 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 C c = new C(5.0);
 4 System.out.println(c.value);
 5 }
 6 }
 7
 8 class C {
 9 int value = 2;
10 }

(d)

334 Chapter 9 Objects and Classes

9.12 What is wrong in the following code?

 1 class Test {
 2 public static void main(String[] args) {
 3 A a = new A();
 4 a.print();
 5 }
 6 }
 7
 8 class A {
 9 String s;
10
11 A(String newS) {
12 s = newS;
13 }
14
15 public void print() {
16 System.out.print(s);
17 }
18 }

9.13 What is the output of the following code?

public class A {
boolean x;

public static void main(String[] args) {
 A a = new A();
 System.out.println(a.x);
 }
}

9.6 Using Classes from the Java Library
The Java API contains a rich set of classes for developing Java programs.

Listing 9.1 defined the SimpleCircle class and created objects from the class. You will
frequently use the classes in the Java library to develop programs. This section gives some
examples of the classes in the Java library.

9.6.1 The Date Class
In Listing 2.7, ShowCurrentTime.java, you learned how to obtain the current time using
System.currentTimeMillis(). You used the division and remainder operators to extract
the current second, minute, and hour. Java provides a system-independent encapsulation of
date and time in the java.util.Date class, as shown in Figure 9.10.

Key
Point

VideoNote

Use classes

java.util.Date class

FIGURE 9.10 A Date object represents a specific date and time.

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,

Sets a new elapse time in the object.

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

1970, GMT.

9.6 Using Classes from the Java Library 335

You can use the no-arg constructor in the Date class to create an instance for the cur-
rent date and time, the getTime() method to return the elapsed time since January 1, 1970,
GMT, and the toString() method to return the date and time as a string. For example, the
following code

java.util.Date date = new java.util.Date();
System.out.println("The elapsed time since Jan 1, 1970 is " +
date.getTime() + " milliseconds");

System.out.println(date.toString());

displays the output like this:

The elapsed time since Jan 1, 1970 is 1324903419651 milliseconds
Mon Dec 26 07:43:39 EST 2011

The Date class has another constructor, Date(long elapseTime), which can be used to
construct a Date object for a given time in milliseconds elapsed since January 1, 1970, GMT.

9.6.2 The Random Class
You have used Math.random() to obtain a random double value between 0.0 and 1.0
(excluding 1.0). Another way to generate random numbers is to use the java.util.Random
class, as shown in Figure 9.11, which can generate a random int, long, double, float, and
boolean value.

create object

get elapsed time
invoke toString

FIGURE 9.11 A Random object can be used to generate random values.

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (excluding n).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (excluding 1.0).

Returns a random float value between 0.0F and 1.0F (excluding 1.0F).

Returns a random boolean value.

java.util.Random

When you create a Random object, you have to specify a seed or use the default seed. A
seed is a number used to initialize a random number generator. The no-arg constructor cre-
ates a Random object using the current elapsed time as its seed. If two Random objects have
the same seed, they will generate identical sequences of numbers. For example, the following
code creates two Random objects with the same seed, 3.

Random random1 = new Random(3);
System.out.print("From random1: ");
for (int i = 0; i < 10; i++)
 System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);
System.out.print("\nFrom random2: ");
for (int i = 0; i < 10; i++)
 System.out.print(random2.nextInt(1000) + " ");

336 Chapter 9 Objects and Classes

The code generates the same sequence of random int values:

From random1: 734 660 210 581 128 202 549 564 459 961
From random2: 734 660 210 581 128 202 549 564 459 961

Note
The ability to generate the same sequence of random values is useful in software testing

and many other applications. In software testing, often you need to reproduce the test

cases from a fixed sequence of random numbers.

9.6.3 The Point2D Class
Java API has a conveninent Point2D class in the javafx.geometry package for represent-
ing a point in a two-dimensional plane. The UML diagram for the class is shown in Figure 9.12.

same sequence

FIGURE 9.12 A Point2D object represents a point with x- and y-coordinates.

Constructs a Point2D object with the specified x- and y-coordinates.

Returns the distance between this point and the specified point (x, y).

Returns the distance between this point and the specified point p.

Returns the x-coordinate from this point.

Returns the y-coordinate from this point.

Returns a string representation for the point.

+Point2D(x: double, y: double)

+distance(x: double, y: double): double

+distance(p: Point2D): double

+getX(): double

+getY(): double

+toString(): String

javafx.geometry.Point2D

You can create a Point2D object for a point with the specified x- and y-coordinates, use
the distance method to compute the distance from this point to another point, and use the
toString() method to return a string representation of the point. Lisitng 9.5 gives an exam-
ple of using this class.

LISTING 9.5 TestPoint2D.java
 1 import java.util.Scanner;
 2 import javafx.geometry.Point2D;
 3
 4 public class TestPoint2D {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7
 8 System.out.print("Enter point1's x-, y-coordinates: ");
 9 double x1 = input.nextDouble();
10 double y1 = input.nextDouble();
11 System.out.print("Enter point2's x-, y-coordinates: ");
12 double x2 = input.nextDouble();
13 double y2 = input.nextDouble();
14
15 Point2D p1 = new Point2D(x1, y1);
16 Point2D p2 = new Point2D(x2, y2);
17 System.out.println("p1 is " + p1.toString());
18 System.out.println("p2 is " + p2.toString());
19 System.out.println("The distance between p1 and p2 is " +
20 p1.distance(p2));
21 }
22 }

create an object

invoke toString()

get distance

9.7 Static Variables, Constants, and Methods 337

This program creates two objects of the Point2D class (lines 15–16). The toString()
method returns a string that describes the object (lines 17–18). Invoking p1.distance(p2)
returns the distance between the two points (line 20).

9.14 How do you create a Date for the current time? How do you display the current time?

9.15 How do you create a Point2D? Suppose p1 and p2 are two instances of Point2D?
How do you obtain the distance between the two points?

9.16 Which packages contain the classes Date, Random, Point2D, System, and Math?

9.7 Static Variables, Constants, and Methods
A static variable is shared by all objects of the class. A static method cannot access
instance members of the class.

The data field radius in the circle class is known as an instance variable. An instance vari-
able is tied to a specific instance of the class; it is not shared among objects of the same class.
For example, suppose that you create the following objects:

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

The radius in circle1 is independent of the radius in circle2 and is stored in a differ-
ent memory location. Changes made to circle1’s radius do not affect circle2’s radius,
and vice versa.

If you want all the instances of a class to share data, use static variables, also known as
class variables. Static variables store values for the variables in a common memory location.
Because of this common location, if one object changes the value of a static variable, all
objects of the same class are affected. Java supports static methods as well as static variables.
Static methods can be called without creating an instance of the class.

Let’s modify the Circle class by adding a static variable numberOfObjects to count the
number of circle objects created. When the first object of this class is created, numberOfOb-
jects is 1. When the second object is created, numberOfObjects becomes 2. The UML
of the new circle class is shown in Figure 9.13. The Circle class defines the instance vari-
able radius and the static variable numberOfObjects, the instance methods getRadius,
setRadius, and getArea, and the static method getNumberOfObjects. (Note that static
variables and methods are underlined in the UML class diagram.)

To declare a static variable or define a static method, put the modifier static in the
variable or method declaration. The static variable numberOfObjects and the static method
getNumberOfObjects() can be declared as follows:

static int numberOfObjects;

static int getNumberObjects() {
return numberOfObjects;

}

✓Point✓Check

Key
Point

VideoNote

Static vs. instance

Static vs. instance
instance variable

static variable

static method

declare static variable

define static method

Enter point1's x-, y-coordinates: 1.5 5.5

Enter point2's x-, y-coordinates: -5.3 -4.4
p1 is Point2D [x = 1.5, y = 5.5]
p2 is Point2D [x = -5.3, y = -4.4]
The distance between p1 and p2 is 12.010412149464313

338 Chapter 9 Objects and Classes

Constants in a class are shared by all objects of the class. Thus, constants should be declared
as final static. For example, the constant PI in the Math class is defined as:

final static double PI = 3.14159265358979323846;

The new circle class, named CircleWithStaticMembers, is defined in Listing 9.6:

LISTING 9.6 CircleWithStaticMembers.java
 1 public class CircleWithStaticMembers {
 2 /** The radius of the circle */
 3 double radius;
 4
 5 /** The number of objects created */
 6 static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 CircleWithStaticMembers() {
10 radius = 1;
11 numberOfObjects++;
12 }
13
14 /** Construct a circle with a specified radius */
15 CircleWithStaticMembers(double newRadius) {
16 radius = newRadius;
17 numberOfObjects++;
18 }
19
20 /** Return numberOfObjects */
21 static int getNumberOfObjects() {
22 return numberOfObjects;
23 }
24
25 /** Return the area of this circle */
26 double getArea() {
27 return radius * radius * Math.PI;
28 }
29 }

Method getNumberOfObjects() in CircleWithStaticMembers is a static method. All
the methods in the Math class are static. The main method is static, too.

declare constant

static variable

increase by 1

increase by 1

static method

FIGURE 9.13 Instance variables belong to the instances and have memory storage independent of one another. Static
variables are shared by all the instances of the same class.

radius

numberOfObjects

radius

Memory
instantiate

instantiate

Circle

circle2: Circle

radius: double
numberOfObjects: int

getNumberOfObjects(): int
getArea(): double

radius = 1
numberOfObjects = 2

radius = 5
numberOfObjects = 2

circle1: Circle

UML Notation:
underline: static variables or methods

1

2

5

After two Circle
Objects were created,
numberOfObjects
is 2.

9.7 Static Variables, Constants, and Methods 339

Instance methods (e.g., getArea()) and instance data (e.g., radius) belong to instances
and can be used only after the instances are created. They are accessed via a reference variable.
Static methods (e.g., getNumberOfObjects()) and static data (e.g., numberOfObjects)
can be accessed from a reference variable or from their class name.

The program in Listing 9.7 demonstrates how to use instance and static variables and meth-
ods and illustrates the effects of using them.

LISTING 9.7 TestCircleWithStaticMembers.java
 1 public class TestCircleWithStaticMembers {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 System.out.println("Before creating objects");
 5 System.out.println("The number of Circle objects is " +
 6 CircleWithStaticMembers.numberOfObjects);
 7
 8 // Create c1
 9 CircleWithStaticMembers c1 = new CircleWithStaticMembers();
10
11 // Display c1 BEFORE c2 is created
12 System.out.println("\nAfter creating c1");
13 System.out.println("c1: radius (" + c1.radius +
14 ") and number of Circle objects (" +
15 c1.numberOfObjects + ")");
16
17 // Create c2
18 CircleWithStaticMembers c2 = new CircleWithStaticMembers(5);
19
20 // Modify c1
21 c1.radius = 9;
22
23 // Display c1 and c2 AFTER c2 was created
24 System.out.println("\nAfter creating c2 and modifying c1");
25 System.out.println("c1: radius (" + c1.radius +
26 ") and number of Circle objects (" +
27 c1.numberOfObjects + ")");
28 System.out.println("c2: radius (" + c2.radius +
29 ") and number of Circle objects (" +
30 c2.numberOfObjects + ")");
31 }
32 }

static variable

instance variable

static variable

instance variable

static variable

static variable

Before creating objects
The number of Circle objects is 0
After creating c1
c1: radius (1.0) and number of Circle objects (1)
After creating c2 and modifying c1
c1: radius (9.0) and number of Circle objects (2)
c2: radius (5.0) and number of Circle objects (2)

When you compile TestCircleWithStaticMembers.java, the Java compiler automati-
cally compiles CircleWithStaticMembers.java if it has not been compiled since the last
change.

Static variables and methods can be accessed without creating objects. Line 6 displays the
number of objects, which is 0, since no objects have been created.

340 Chapter 9 Objects and Classes

The main method creates two circles, c1 and c2 (lines 9, 18). The instance variable
radius in c1 is modified to become 9 (line 21). This change does not affect the instance
variable radius in c2, since these two instance variables are independent. The static vari-
able numberOfObjects becomes 1 after c1 is created (line 9), and it becomes 2 after c2 is
created (line 18).

Note that PI is a constant defined in Math, and Math.PI references the con-
stant. c1.numberOfObjects (line 27) and c2.numberOfObjects (line 30) are better
replaced by CircleWithStaticMembers.numberOfObjects. This improves readability,
because other programmers can easily recognize the static variable. You can also replace
CircleWithStaticMembers.numberOfObjects with CircleWithStaticMembers.
getNumberOfObjects().

Tip
Use ClassName.methodName(arguments) to invoke a static method and

ClassName.staticVariable to access a static variable. This improves readability,

because this makes the static method and data easy to spot.

An instance method can invoke an instance or static method and access an instance or static
data field. A static method can invoke a static method and access a static data field. However,
a static method cannot invoke an instance method or access an instance data field, since static
methods and static data fields don’t belong to a particular object. The relationship between
static and instance members is summarized in the following diagram:

use class name

An instance method

invoke

access

invoke

access

An instance method

An instance data field

A static method

A static data field

A static method

invoke

access

invoke

access

An instance method

An instance data field

A static method

A static data field

For example, the following code is wrong.

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 int j = i; // Wrong because i is an instance variable
 7 m1(); // Wrong because m1() is an instance method
 8 }
 9
10 public void m1() {
11 // Correct since instance and static variables and methods
12 // can be used in an instance method
13 i = i + k + m2(i, k);
14 }
15
16 public static int m2(int i, int j) {
17 return (int)(Math.pow(i, j));
18 }
19 }

9.7 Static Variables, Constants, and Methods 341

Note that if you replace the preceding code with the following new code, the program would
be fine, because the instance data field i and method m1 are now accessed from an object a
(lines 7–8):

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 A a = new A();
 7 int j = a.i; // OK, a.i accesses the object's instance variable
 8 a.m1(); // OK. a.m1() invokes the object's instance method
 9 }
10
11 public void m1() {
12 i = i + k + m2(i, k);
13 }
14
15 public static int m2(int i, int j) {
16 return (int)(Math.pow(i, j));
17 }
18 }

Design Guide
How do you decide whether a variable or a method should be an instance one or a

static one? A variable or a method that is dependent on a specific instance of the class

should be an instance variable or method. A variable or a method that is not dependent

on a specific instance of the class should be a static variable or method. For example,

every circle has its own radius, so the radius is dependent on a specific circle. Therefore,

radius is an instance variable of the Circle class. Since the getArea method is

dependent on a specific circle, it is an instance method. None of the methods in the

Math class, such as random, pow, sin, and cos, is dependent on a specific instance.

Therefore, these methods are static methods. The main method is static and can be

invoked directly from a class.

Caution
It is a common design error to define an instance method that should have been defined

as static. For example, the method factorial(int n) should be defined as static,

as shown next, because it is independent of any specific instance.

instance or static?

common design error

public class Test {
public int factorial(int n) {

int result = 1;
for (int i = 1; i <= n; i ++)

 result *= i;

return result;
 }
}

(a) Wrong design

public class Test {
public static int factorial(int n) {

int result = 1;
for (int i = 1; i <= n; i++)

 result *= i;

return result;
 }
}

(b) Correct design

9.17 Suppose that the class F is defined in (a). Let f be an instance of F. Which of the
statements in (b) are correct? ✓Point✓Check

342 Chapter 9 Objects and Classes

9.18 Add the static keyword in the place of ? if appropriate.

public class Test {
int count;

public ? void main(String[] args) {
 ...
 }

public ? int getCount() {
return count;

 }

public ? int factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++)

 result *= i;

return result;
 }
}

9.19 Can you invoke an instance method or reference an instance variable from a static
method? Can you invoke a static method or reference a static variable from an
instance method? What is wrong in the following code?

 1 public class C {
 2 public static void main(String[] args) {
 3 method1();
 4 }
 5
 6 public void method1() {
 7 method2();
 8 }
 9
10 public static void method2() {
11 System.out.println("What is radius " + c.getRadius());
12 }
13
14 Circle c = new Circle();
15 }

9.8 Visibility Modifiers
Visibility modifiers can be used to specify the visibility of a class and its members.

You can use the public visibility modifier for classes, methods, and data fields to denote that
they can be accessed from any other classes. If no visibility modifier is used, then by default
the classes, methods, and data fields are accessible by any class in the same package. This is
known as package-private or package-access.

Key
Point

package-private (or
package-access)

public class F {
int i;
static String s;

void imethod() {
}

static void smethod() {
}

}

(a)

System.out.println(f.i);
System.out.println(f.s);
f.imethod();
f.smethod();
System.out.println(F.i);
System.out.println(F.s);
F.imethod();
F.smethod();

(b)

9.8 Visibility Modifiers 343

Note
Packages can be used to organize classes. To do so, you need to add the following line

as the first noncomment and nonblank statement in the program:

package packageName;

If a class is defined without the package statement, it is said to be placed in the default

package.

Java recommends that you place classes into packages rather than using a default pack-

age. For simplicity, however, this book uses default packages. For more information on

packages, see Supplement III.E, Packages.

In addition to the public and default visibility modifiers, Java provides the private and
protected modifiers for class members. This section introduces the private modifier.
The protected modifier will be introduced in Section 11.14, The protected Data and
Methods.

The private modifier makes methods and data fields accessible only from within its own
class. Figure 9.14 illustrates how a public, default, and private data field or method in class
C1 can be accessed from a class C2 in the same package and from a class C3 in a different
package.

using packages

package p1;

public class C1 {
public int x;
int y;
private int z;

public void m1() {
 }

void m2() {
 }

private void m3() {
 }
}

package p1;

public class C2 {
void aMethod() {

C1 o = new C1();
 can access o.x;
 can access o.y;
 cannot access o.z;

 can invoke o.m1();
 can invoke o.m2();
 cannot invoke o.m3();
 }
}

package p2;

public class C3 {
void aMethod() {

C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;

 can invoke o.m1();
 cannot invoke o.m2();
 cannot invoke o.m3();
 }
}

FIGURE 9.14 The private modifier restricts access to its defining class, the default modifier restricts access to a package,
and the public modifier enables unrestricted access.

If a class is not defined as public, it can be accessed only within the same package. As
shown in Figure 9.15, C1 can be accessed from C2 but not from C3.

package p1;

class C1 {
 ...
}

package p1;

public class C2 {
 can access C1
}

package p2;

public class C3 {
 cannot access C1;
 can access C2;
}

FIGURE 9.15 A nonpublic class has package-access.

A visibility modifier specifies how data fields and methods in a class can be accessed from
outside the class. There is no restriction on accessing data fields and methods from inside the
class. As shown in Figure 9.16b, an object c of class C cannot access its private members,
because c is in the Test class. As shown in Figure 9.16a, an object c of class C can access its
private members, because c is defined inside its own class.

inside access

344 Chapter 9 Objects and Classes

Caution
The private modifier applies only to the members of a class. The public modifier

can apply to a class or members of a class. Using the modifiers public and private

on local variables would cause a compile error.

Note
In most cases, the constructor should be public. However, if you want to prohibit the

user from creating an instance of a class, use a private constructor. For example, there

is no reason to create an instance from the Math class, because all of its data fields and

methods are static. To prevent the user from creating objects from the Math class, the

constructor in java.lang.Math is defined as follows:

private Math() {
}

9.9 Data Field Encapsulation
Making data fields private protects data and makes the class easy to maintain.

The data fields radius and numberOfObjects in the CircleWithStaticMembers class in
Listing 9.6 can be modified directly (e.g., c1.radius = 5 or CircleWithStaticMembers
.numberOfObjects = 10). This is not a good practice—for two reasons:

 ■ First, data may be tampered with. For example, numberOfObjects is to count the
number of objects created, but it may be mistakenly set to an arbitrary value (e.g.,
CircleWithStaticMembers.numberOfObjects = 10).

 ■ Second, the class becomes difficult to maintain and vulnerable to bugs. Sup-
pose you want to modify the CircleWithStaticMembers class to ensure that
the radius is nonnegative after other programs have already used the class. You
have to change not only the CircleWithStaticMembers class but also the
programs that use it, because the clients may have modified the radius directly
(e.g., c1.radius = -5).

To prevent direct modifications of data fields, you should declare the data fields private,
using the private modifier. This is known as data field encapsulation.

private constructor

Key
Point

VideoNote

Data field encapsulation

Data field encapsulation

data field encapsulation

public class C {
private boolean x;

public static void main(String[] args) {
 C c = new C();
 System.out.println(c.x);
 System.out.println(c.convert());
 }

private int convert() {
return x ? 1 : -1;

 }
}

(a) This is okay because object c is used inside the class C.

public class Test {
public static void main(String[] args) {

 C c = new C();
 System.out.println(c.x);
 System.out.println(c.convert());
 }
}

(b) This is wrong because x and convert are private in class C.

FIGURE 9.16 An object can access its private members if it is defined in its own class.

9.9 Data Field Encapsulation 345

A private data field cannot be accessed by an object from outside the class that defines
the private field. However, a client often needs to retrieve and modify a data field. To make
a private data field accessible, provide a getter method to return its value. To enable a private
data field to be updated, provide a setter method to set a new value. A getter method is also
referred to as an accessor and a setter to a mutator.

A getter method has the following signature:

public returnType getPropertyName()

If the returnType is boolean, the getter method should be defined as follows by convention:

public boolean isPropertyName()

A setter method has the following signature:

public void setPropertyName(dataType propertyValue)

Let’s create a new circle class with a private data-field radius and its associated accessor and
mutator methods. The class diagram is shown in Figure 9.17. The new circle class, named
CircleWithPrivateDataFields, is defined in Listing 9.8:

getter (or accessor)

setter (or mutator)

boolean accessor

FIGURE 9.17 The Circle class encapsulates circle properties and provides getter/setter and other methods.

The - sign indicates
a private modifier

Circle

-radius: double

-numberOfObjects: int

+Circle()

+getArea(): double

+getNumberOfObjects(): int

+setRadius(radius: double): void

+getRadius(): double

+Circle(radius: double)

The radius of this circle (default: 1.0).

Constructs a default circle object.

The number of circle objects created.

Returns the area of this circle.

Returns the number of circle objects created.

Sets a new radius for this circle.
Returns the radius of this circle.

Constructs a circle object with the specified radius.

LISTING 9.8 CircleWithPrivateDataFields.java
 1 public class CircleWithPrivateDataFields {
 2 /** The radius of the circle */
 3 private double radius = 1;
 4
 5 /** The number of objects created */
 6 private static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 public CircleWithPrivateDataFields() {
10 numberOfObjects++;
11 }
12
13 /** Construct a circle with a specified radius */
14 public CircleWithPrivateDataFields(double newRadius) {
15 radius = newRadius;
16 numberOfObjects++;

encapsulate radius

encapsulate
numberOfObjects

346 Chapter 9 Objects and Classes

17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double newRadius) {
26 radius = (newRadius >= 0) ? newRadius : 0;
27 }
28
29 /** Return numberOfObjects */
30 public static int getNumberOfObjects() {
31 return numberOfObjects;
32 }
33
34 /** Return the area of this circle */
35 public double getArea() {
36 return radius * radius * Math.PI;
37 }
38 }

ThegetRadius() method (lines 20–22) returns the radius, and the setRadius(newRadius)
method (line 25–27) sets a new radius for the object. If the new radius is negative, 0 is set as
the radius for the object. Since these methods are the only ways to read and modify the radius,
you have total control over how the radius property is accessed. If you have to change the
implementation of these methods, you don’t need to change the client programs. This makes
the class easy to maintain.

Listing 9.9 gives a client program that uses the Circle class to create a Circle object and
modifies the radius using the setRadius method.

LISTING 9.9 TestCircleWithPrivateDataFields.java
 1 public class TestCircleWithPrivateDataFields {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 5.0
 5 CircleWithPrivateDataFields myCircle =
 6 new CircleWithPrivateDataFields(5.0);
 7 System.out.println("The area of the circle of radius "
 8 + myCircle.getRadius() + " is " + myCircle.getArea());
 9
10 // Increase myCircle's radius by 10%
11 myCircle.setRadius(myCircle.getRadius() * 1.1);
12 System.out.println("The area of the circle of radius "
13 + myCircle.getRadius() + " is " + myCircle.getArea());
14
15 System.out.println("The number of objects created is "
16 + CircleWithPrivateDataFields.getNumberOfObjects());
17 }
18 }

The data field radius is declared private. Private data can be accessed only within their
defining class, so you cannot use myCircle.radius in the client program. A compile error
would occur if you attempted to access private data from a client.

Since numberOfObjects is private, it cannot be modified. This prevents tampering. For
example, the user cannot set numberOfObjects to 100. The only way to make it 100 is to
create 100 objects of the Circle class.

accessor method

mutator method

accessor method

invoke public method

invoke public method

invoke public method

9.10 Passing Objects to Methods 347

Suppose you combined TestCircleWithPrivateDataFields and Circle into one
class by moving the main method in TestCircleWithPrivateDataFields into Circle.
Could you use myCircle.radius in the main method? See Checkpoint Question 9.22 for
the answer.

Design Guide
To prevent data from being tampered with and to make the class easy to maintain,

declare data fields private.

9.20 What is an accessor method? What is a mutator method? What are the naming con-
ventions for accessor methods and mutator methods?

9.21 What are the benefits of data field encapsulation?

9.22 In the following code, radius is private in the Circle class, and myCircle is an
object of the Circle class. Does the highlighted code cause any problems? If so,
explain why.

public class Circle {
private double radius = 1;

 /** Find the area of this circle */
public double getArea() {

return radius * radius * Math.PI;
 }

public static void main(String[] args) {
 Circle myCircle = new Circle();
 System.out.println("Radius is " + myCircle.radius);
 }
}

9.10 Passing Objects to Methods
Passing an object to a method is to pass the reference of the object.

You can pass objects to methods. Like passing an array, passing an object is actually passing
the reference of the object. The following code passes the myCircle object as an argument
to the printCircle method:

 1 public class Test {
 2 public static void main(String[] args) {
 3 // CircleWithPrivateDataFields is defined in Listing 9.8
 4 CircleWithPrivateDataFields myCircle = new
 5 CircleWithPrivateDataFields(5.0);
 6 printCircle(myCircle);
 7 }
 8
 9 public static void printCircle(CircleWithPrivateDataFields c) {
10 System.out.println("The area of the circle of radius "
11 + c.getRadius() + " is " + c.getArea());
12 }
13 }

Java uses exactly one mode of passing arguments: pass-by-value. In the preceding code,
the value of myCircle is passed to the printCircle method. This value is a reference to a
Circle object.

The program in Listing 9.10 demonstrates the difference between passing a primitive type
value and passing a reference value.

✓Point✓Check

Key
Point

pass an object

pass-by-value

348 Chapter 9 Objects and Classes

LISTING 9.10 TestPassObject.java
 1 public class TestPassObject {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a Circle object with radius 1
 5 CircleWithPrivateDataFields myCircle =
 6 new CircleWithPrivateDataFields(1);
 7
 8 // Print areas for radius 1, 2, 3, 4, and 5.
 9 int n = 5;
10 printAreas(myCircle, n);
11
12 // See myCircle.radius and times
13 System.out.println("\n" + "Radius is " + myCircle.getRadius());
14 System.out.println("n is " + n);
15 }
16
17 /** Print a table of areas for radius */
18 public static void printAreas(
19 CircleWithPrivateDataFields c, int times) {
20 System.out.println("Radius \t\tArea");
21 while (times >= 1) {
22 System.out.println(c.getRadius() + "\t\t" + c.getArea());
23 c.setRadius(c.getRadius() + 1);
24 times——;
25 }
26 }
27 }

pass object

object parameter

Radius Area
1.0 3.141592653589793
2.0 12.566370614359172
3.0 29.274333882308138
4.0 50.26548245743669
5.0 79.53981633974483
Radius is 6.0
n is 5

The CircleWithPrivateDataFields class is defined in Listing 9.8. The program passes a
CircleWithPrivateDataFields object myCircle and an integer value from n to invoke
printAreas(myCircle, n) (line 10), which prints a table of areas for radii 1, 2, 3, 4, 5,
as shown in the sample output.

Figure 9.18 shows the call stack for executing the methods in the program. Note that the
objects are stored in a heap (see Section 7.6).

When passing an argument of a primitive data type, the value of the argument is passed. In
this case, the value of n (5) is passed to times. Inside the printAreas method, the content
of times is changed; this does not affect the content of n.

When passing an argument of a reference type, the reference of the object is passed. In this
case, c contains a reference for the object that is also referenced via myCircle. Therefore,
changing the properties of the object through c inside the printAreas method has the same
effect as doing so outside the method through the variable myCircle. Pass-by-value on refer-
ences can be best described semantically as pass-by-sharing; that is, the object referenced in
the method is the same as the object being passed.

pass-by-sharing

9.10 Passing Objects to Methods 349

9.23 Describe the difference between passing a parameter of a primitive type and passing
a parameter of a reference type. Show the output of the following programs: ✓Point✓Check

FIGURE 9.18 The value of n is passed to times, and the reference to myCircle is passed
to c in the printAreas method.

Activation record for the
main method
int n: 5
myCircle:

Stack

Activation record for the
printArea method
 int times: 5
 Circle c:

A Circle
object

Heap

reference

reference

Pass-by-value
(here the value is
the reference for
the object)

Pass-by-value (here
the value is 5)

public class Test {
public static void main(String[] args) {

 Count myCount = new Count();
int times = 0;

for (int i = 0; i < 100; i++)
 increment(myCount, times);

 System.out.println("count is " + myCount.count);
 System.out.println("times is " + times);
 }

public static void increment(Count c, int times) {
 c.count++;
 times++;
 }
}

public class Count {
public int count;

public Count(int c) {
 count = c;
 }

public Count() {
 count = 1;
 }
}

9.24 Show the output of the following program:

public class Test {
public static void main(String[] args) {

 Circle circle1 = new Circle(1);
 Circle circle2 = new Circle(2);

 swap1(circle1, circle2);
 System.out.println("After swap1: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);

 swap2(circle1, circle2);
 System.out.println("After swap2: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);
 }

public static void swap1(Circle x, Circle y) {
 Circle temp = x;
 x = y;
 y = temp;
 }

350 Chapter 9 Objects and Classes

public static void swap2(Circle x, Circle y) {
double temp = x.radius;

 x.radius = y.radius;
 y.radius = temp;
 }
}

class Circle {
double radius;

 Circle(double newRadius) {
 radius = newRadius;
 }
}

9.25 Show the output of the following code:

public class Test {
public static void main(String[] args) {

int[] a = {1, 2};
 swap(a[0], a[1]);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }

public static void swap(int n1, int n2) {
int temp = n1;

 n1 = n2;
 n2 = temp;
 }
}

(a)

public class Test {
public static void main(String[] args) {

int[] a = {1, 2};
 swap(a);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }

public static void swap(int[] a) {
int temp = a[0];

 a[0] = a[1];
 a[1] = temp;
 }
}

(b)

public class Test {
public static void main(String[] args) {

 T t = new T();
 swap(t);
 System.out.println("e1 = " + t.e1
 + " e2 = " + t.e2);
 }

public static void swap(T t) {
 int temp = t.e1;
 t.e1 = t.e2;
 t.e2 = temp;
 }
}

class T {
int e1 = 1;
int e2 = 2;

}

(c)

public class Test {
public static void main(String[] args) {

 T t1 = new T();
 T t2 = new T();
 System.out.println("t1's i = " +
 t1.i + " and j = " + t1.j);
 System.out.println("t2's i = " +
 t2.i + " and j = " + t2.j);
 }
}

class T {
static int i = 0;
int j = 0;

 T() {
 i++;
 j = 1;
 }
}

(d)

9.11 Array of Objects 351

9.26 What is the output of the following programs?

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = null;
 m1(date);
 System.out.println(date);
 }

public static void m1(Date date) {
 date = new Date();
 }
}

(a)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date = new Date(7654321);
 }
}

(b)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date.setTime(7654321);
 }
}

(c)

import java.util.Date;

public class Test {
public static void main(String[] args) {

 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }

public static void m1(Date date) {
 date = null;
 }
}

(d)

9.11 Array of Objects
An array can hold objects as well as primitive type values.

Chapter 7, Single-Dimensional Arrays, described how to create arrays of primitive type ele-
ments. You can also create arrays of objects. For example, the following statement declares
and creates an array of ten Circle objects:

Circle[] circleArray = new Circle[10];

To initialize circleArray, you can use a for loop like this one:

for (int i = 0; i < circleArray.length; i++) {
 circleArray[i] = new Circle();
}

An array of objects is actually an array of reference variables. So, invoking circleArray[1].
getArea() involves two levels of referencing, as shown in Figure 9.19. circleArray
references the entire array; circleArray[1] references a Circle object.

Note
When an array of objects is created using the new operator, each element in the array is

a reference variable with a default value of null.

Key
Point

352 Chapter 9 Objects and Classes

Listing 9.11 gives an example that demonstrates how to use an array of objects. The pro-
gram summarizes the areas of an array of circles. The program creates circleArray, an
array composed of five Circle objects; it then initializes circle radii with random values and
displays the total area of the circles in the array.

LISTING 9.11 TotalArea.java
 1 public class TotalArea {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare circleArray
 5 CircleWithPrivateDataFields[] circleArray;
 6
 7 // Create circleArray
 8 circleArray = createCircleArray();
 9
10 // Print circleArray and total areas of the circles
11 printCircleArray(circleArray);
12 }
13
14 /** Create an array of Circle objects */
15 public static CircleWithPrivateDataFields[] createCircleArray() {
16 CircleWithPrivateDataFields[] circleArray =
17 new CircleWithPrivateDataFields[5];
18
19 for (int i = 0; i < circleArray.length; i++) {
20 circleArray[i] =
21 new CircleWithPrivateDataFields(Math.random() * 100);
22 }
23
24 // Return Circle array
25 return circleArray;
26 }
27
28 /** Print an array of circles and their total area */
29 public static void printCircleArray(
30 CircleWithPrivateDataFields[] circleArray) {
31 System.out.printf("%-30s%-15s\n", "Radius", "Area");
32 for (int i = 0; i < circleArray.length; i++) {
33 System.out.printf("%-30f%-15f\n", circleArray[i].getRadius(),
34 circleArray[i].getArea());
35 }
36
37 System.out.println("———-");
38
39 // Compute and display the result
40 System.out.printf("%-30s%-15f\n", "The total area of circles is",
41 sum(circleArray));
42 }

array of objects

return array of objects

pass array of objects

FIGURE 9.19 In an array of objects, an element of the array contains a reference to an
object.

…

circleArray[9]

circleArray[1]

circleArray[0]reference Circle object 0

Circle object 1

Circle object 9

circleArray

9.12 Immutable Objects and Classes 353

43
44 /** Add circle areas */
45 public static double sum(CircleWithPrivateDataFields[] circleArray) {
46 // Initialize sum
47 double sum = 0;
48
49 // Add areas to sum
50 for (int i = 0; i < circleArray.length; i++)
51 sum += circleArray[i].getArea();
52
53 return sum;
54 }
55 }

pass array of objects

Radius Area
70.577708 15649.941866
44.152266 6124.291736
24.867853 1942.792644
 5.680718 101.380949
36.734246 4239.280350
———-
The total area of circles is 28056.687544

The program invokes createCircleArray() (line 8) to create an array of five circle
objects. Several circle classes were introduced in this chapter. This example uses the Cir-
cleWithPrivateDataFields class introduced in Section 9.9, Data Field Encapsulation.

The circle radii are randomly generated using the Math.random() method (line 21).
The createCircleArray method returns an array of CircleWithPrivateDataFields
objects (line 25). The array is passed to the printCircleArray method, which displays the
radius and area of each circle and the total area of the circles.

The sum of the circle areas is computed by invoking the sum method (line 41), which takes
the array of CircleWithPrivateDataFields objects as the argument and returns a dou-
ble value for the total area.

9.27 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 java.util.Date[] dates = new java.util.Date[10];
4 System.out.println(dates[0]);
5 System.out.println(dates[0].toString());
6 }
7 }

9.12 Immutable Objects and Classes
You can define immutable classes to create immutable objects. The contents of
immutable objects cannot be changed.

Normally, you create an object and allow its contents to be changed later. However, occa-
sionally it is desirable to create an object whose contents cannot be changed once the object
has been created. We call such an object as immutable object and its class as immutable
class. The String class, for example, is immutable. If you deleted the setter method in the
CircleWithPrivateDataFields class in Listing 9.9, the class would be immutable,
because radius is private and cannot be changed without a setter method.

✓Point✓Check

Key
Point

immutable object
immutable class

354 Chapter 9 Objects and Classes

If a class is immutable, then all its data fields must be private and it cannot contain public
setter methods for any data fields. A class with all private data fields and no mutators is not
necessarily immutable. For example, the following Student class has all private data fields
and no setter methods, but it is not an immutable class.

 1 public class Student {
 2 private int id;
 3 private String name;
 4 private java.util.Date dateCreated;
 5
 6 public Student(int ssn, String newName) {
 7 id = ssn;
 8 name = newName;
 9 dateCreated = new java.util.Date();
10 }
11
12 public int getId() {
13 return id;
14 }
15
16 public String getName() {
17 return name;
18 }
19
20 public java.util.Date getDateCreated() {
21 return dateCreated;
22 }
23 }

As shown in the following code, the data field dateCreated is returned using the
getDateCreated() method. This is a reference to a Date object. Through this reference,
the content for dateCreated can be changed.

public class Test {
public static void main(String[] args) {

 Student student = new Student(111223333, "John");
java.util.Date dateCreated = student.getDateCreated();

 dateCreated.setTime(200000); // Now dateCreated field is changed!
 }
}

For a class to be immutable, it must meet the following requirements:

 ■ All data fields must be private.

 ■ There can’t be any mutator methods for data fields.

 ■ No accessor methods can return a reference to a data field that is mutable.

Interested readers may refer to Supplement III.U for an extended discussion on immutable objects.

9.28 If a class contains only private data fields and no setter methods, is the class immutable?

9.29 If all the data fields in a class are private and of primitive types, and the class doesn’t
contain any setter methods, is the class immutable?

9.30 Is the following class immutable?

public class A {
private int[] values;

public int[] getValues() {

Student class

✓Point✓Check

9.13 The Scope of Variables 355

return values;
 }
}

9.13 The Scope of Variables
The scope of instance and static variables is the entire class, regardless of where the
variables are declared.

Section 6.9 discussed local variables and their scope rules. Local variables are declared and
used inside a method locally. This section discusses the scope rules of all the variables in the
context of a class.

Instance and static variables in a class are referred to as the class’s variables or data fields.
A variable defined inside a method is referred to as a local variable. The scope of a class’s
variables is the entire class, regardless of where the variables are declared. A class’s variables
and methods can appear in any order in the class, as shown in Figure 9.20a. The exception is
when a data field is initialized based on a reference to another data field. In such cases, the
other data field must be declared first, as shown in Figure 9.20b. For consistency, this book
declares data fields at the beginning of the class.

Key
Point

class’s variables

FIGURE 9.20 Members of a class can be declared in any order, with one exception.

public class Circle {
public double findArea() {

return radius * radius * Math.PI;
 }

private double radius = 1;
}

(a) The variable radius and method findArea() can
be declared in any order.

public class F {
private int i ;
private int j = i + 1;

}

(b) i has to be declared before j because j’s initial
value is dependent on i.

You can declare a class’s variable only once, but you can declare the same variable name
in a method many times in different nonnesting blocks.

If a local variable has the same name as a class’s variable, the local variable takes precedence
and the class’s variable with the same name is hidden. For example, in the following program,
x is defined both as an instance variable and as a local variable in the method.

public class F {
private int x = 0; // Instance variable
private int y = 0;

public F() {
 }

public void p() {
int x = 1; // Local variable

 System.out.println("x = " + x);
 System.out.println("y = " + y);
 }
}

What is the output for f.p(), where f is an instance of F? The output for f.p() is 1 for x
and 0 for y. Here is why:

 ■ x is declared as a data field with the initial value of 0 in the class, but it is also
declared in the method p() with an initial value of 1. The latter x is referenced in the
System.out.println statement.

 ■ y is declared outside the method p(), but y is accessible inside the method.

hidden variables

356 Chapter 9 Objects and Classes

Tip
To avoid confusion and mistakes, do not use the names of instance or static variables as

local variable names, except for method parameters.

9.31 What is the output of the following program?

public class Test {
private static int i = 0;
private static int j = 0;

public static void main(String[] args) {
int i = 2;
int k = 3;

 {
int j = 3;

 System.out.println("i + j is " + i + j);
 }

 k = i + j;
 System.out.println("k is " + k);
 System.out.println("j is " + j);
 }
}

9.14 The this Reference
The keyword this refers to the object itself. It can also be used inside a constructor to
invoke another constructor of the same class.

The this keyword is the name of a reference that an object can use to refer to itself. You can
use the this keyword to reference the object’s instance members. For example, the following
code in (a) uses this to reference the object’s radius and invokes its getArea() method
explicitly. The this reference is normally omitted, as shown in (b). However, the this
reference is needed to reference hidden data fields or invoke an overloaded constructor.

✓Point✓Check

Key
Point

this keyword

public class Circle {
private double radius;

 ...

public double getArea() {
return this.radius * this.radius * Math.PI;

 }

public String toString() {
return "radius: " + this.radius

+ "area: " + this.getArea() ;
 }
}

(a)

public class Circle {
private double radius;

 ...

public double getArea() {
return radius * radius * Math.PI;

 }

public String toString() {
return "radius: " + radius

+ "area: " + getArea() ;
 }
}

(b)

Equivalent

9.14.1 Using this to Reference Hidden Data Fields
The this keyword can be used to reference a class’s hidden data fields. For example, a data-
field name is often used as the parameter name in a setter method for the data field. In this
case, the data field is hidden in the setter method. You need to reference the hidden data-field
name in the method in order to set a new value to it. A hidden static variable can be accessed

hidden data fields

The this keyword gives us a way to reference the object that invokes an instance method.
To invoke f1.setI(10), this.i = i is executed, which assigns the value of parameter i to
the data field i of this calling object f1. The keyword this refers to the object that invokes the
instance method setI, as shown in Figure 9.21b. The line F.k = k means that the value in param-
eter k is assigned to the static data field k of the class, which is shared by all the objects of the class.

9.14.2 Using this to Invoke a Constructor
The this keyword can be used to invoke another constructor of the same class. For example,
you can rewrite the Circle class as follows:

9.14 The this Reference 357

FIGURE 9.21 The keyword this refers to the calling object that invokes the method.

public class F {
private int i = 5;
private static double k = 0;

public void setI(int i) {
this.i = i;

 }

public static void setK(double k) {
F.k = k;

 }

// Other methods omitted
}

(a)

Suppose that f1 and f2 are two objects of F.

Invoking f1.setI(10) is to execute
this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute
this.i = 45, where this refers f2

Invoking F.setK(33) is to execute
 F.k = 33. setK is a static method

(b)

public class Circle {
private double radius;

public Circle(double radius) {
this.radius = radius;

 } The this keyword is used to reference the hidden
data field radius of the object being constructed.

public Circle() {
this(1.0);

 } The this keyword is used to invoke another
constructor.

 ...

}

The line this(1.0) in the second constructor invokes the first constructor with a double
value argument.

Note
Java requires that the this(arg-list) statement appear first in the constructor

before any other executable statements.

Tip
If a class has multiple constructors, it is better to implement them using this(arg-list)

as much as possible. In general, a constructor with no or fewer arguments can invoke a

constructor with more arguments using this(arg-list). This syntax often simpli-

fies coding and makes the class easier to read and to maintain.

simply by using the ClassName.staticVariable reference. A hidden instance variable
can be accessed by using the keyword this, as shown in Figure 9.21a.

358 Chapter 9 Objects and Classes

9.32 Describe the role of the this keyword.

9.33 What is wrong in the following code?

 1 public class C {
 2 private int p;
 3
 4 public C() {
 5 System.out.println("C's no-arg constructor invoked");
 6 this(0);
 7 }
 8
 9 public C(int p) {
10 p = p;
11 }
12
13 public void setP(int p) {
14 p = p;
15 }
16 }

9.34 What is wrong in the following code?

public class Test {
private int id;

public void m1() {
this.id = 45;

 }

public void m2() {
 Test.id = 45;
 }
}

✓Point✓Check

KEY TERMS

action 322
anonymous object 331
attribute 322
behavior 322
class 322
class’s variable 355
client 325
constructor 322
data field 322
data field encapsulation 344
default constructor 329
dot operator (.) 330
getter (or accessor) 345
instance 322
instance method 331
instance variable 331
instantiation 322
immutable class 353

immutable object 353
no-arg constructor 329
null value 331
object 322
object-oriented programming (OOP) 322
package-private (or package-access) 342
private constructor 344
property 322
public class 325
reference type 330
reference variable 330
setter (or mutator) 345
state 322
static method 337
static variable 337
this keyword 356
Unified Modeling Language (UML) 323

CHAPTER SUMMARY

1. A class is a template for objects. It defines the properties of objects and provides
constructors for creating objects and methods for manipulating them.

2. A class is also a data type. You can use it to declare object reference variables. An
object reference variable that appears to hold an object actually contains a reference to
that object. Strictly speaking, an object reference variable and an object are different,
but most of the time the distinction can be ignored.

3. An object is an instance of a class. You use the new operator to create an object, and the
dot operator (.) to access members of that object through its reference variable.

4. An instance variable or method belongs to an instance of a class. Its use is associated
with individual instances. A static variable is a variable shared by all instances of the
same class. A static method is a method that can be invoked without using instances.

5. Every instance of a class can access the class’s static variables and methods. For clarity,
however, it is better to invoke static variables and methods using ClassName.variable
and ClassName.method.

6. Visibility modifiers specify how the class, method, and data are accessed. A public
class, method, or data is accessible to all clients. A private method or data is acces-
sible only inside the class.

7. You can provide a getter (accessor) method or a setter (mutator) method to enable
clients to see or modify the data.

8. A getter method has the signature public returnType getPropertyName().
If the returnType is boolean, the get method should be defined as public
boolean isPropertyName(). A setter method has the signature public void

setPropertyName(dataType propertyValue).

9. All parameters are passed to methods using pass-by-value. For a parameter of a primi-
tive type, the actual value is passed; for a parameter of a reference type, the reference
for the object is passed.

10. A Java array is an object that can contain primitive type values or object type values.
When an array of objects is created, its elements are assigned the default value of null.

11. Once it is created, an immutable object cannot be modified. To prevent users from
modifying an object, you can define immutable classes.

12. The scope of instance and static variables is the entire class, regardless of where the
variables are declared. Instance and static variables can be declared anywhere in the
class. For consistency, they are declared at the beginning of the class in this book.

13. The keyword this can be used to refer to the calling object. It can also be used inside
a constructor to invoke another constructor of the same class.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

Quiz 359

www.cs.armstrong.edu/liang/intro10e/quiz.html

360 Chapter 9 Objects and Classes

PROGRAMMING EXERCISES

Pedagogical Note
The exercises in Chapters 9–13 help you achieve three objectives:

■ Design classes and draw UML class diagrams.

■ Implement classes from the UML.

■ Use classes to develop applications.

Students can download solutions for the UML diagrams for the even-numbered exer-

cises from the Companion Website, and instructors can download all solutions from

the same site.

Sections 9.2–9.5

9.1 (The Rectangle class) Following the example of the Circle class in Section 9.2,
design a class named Rectangle to represent a rectangle. The class contains:

 ■ Two double data fields named width and height that specify the width and
height of the rectangle. The default values are 1 for both width and height.

 ■ A no-arg constructor that creates a default rectangle.
 ■ A constructor that creates a rectangle with the specified width and height.
 ■ A method named getArea() that returns the area of this rectangle.
 ■ A method named getPerimeter() that returns the perimeter.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two Rectangle objects—one with width 4 and height 40
and the other with width 3.5 and height 35.9. Display the width, height, area,
and perimeter of each rectangle in this order.

9.2 (The Stock class) Following the example of the Circle class in Section 9.2,
design a class named Stock that contains:

 ■ A string data field named symbol for the stock’s symbol.
 ■ A string data field named name for the stock’s name.
 ■ A double data field named previousClosingPrice that stores the stock

price for the previous day.
 ■ A double data field named currentPrice that stores the stock price for the

current time.
 ■ A constructor that creates a stock with the specified symbol and name.
 ■ A method named getChangePercent() that returns the percentage changed

from previousClosingPrice to currentPrice.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a Stock object with the stock symbol ORCL, the name
Oracle Corporation, and the previous closing price of 34.5. Set a new current
price to 34.35 and display the price-change percentage.

Section 9.6

*9.3 (Use the Date class) Write a program that creates a Date object, sets its elapsed
time to 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
10000000000, and 100000000000, and displays the date and time using the
toString() method, respectively.

*9.4 (Use the Random class) Write a program that creates a Random object with seed
1000 and displays the first 50 random integers between 0 and 100 using the
nextInt(100) method.

three objectives

*9.5 (Use the GregorianCalendar class) Java API has the GregorianCalendar class
in the java.util package, which you can use to obtain the year, month, and day of a
date. The no-arg constructor constructs an instance for the current date, and the meth-
ods get(GregorianCalendar.YEAR), get(GregorianCalendar.MONTH),
and get(GregorianCalendar.DAY_OF_MONTH) return the year, month, and day.
Write a program to perform two tasks:

 ■ Display the current year, month, and day.
 ■ The GregorianCalendar class has the setTimeInMillis(long), which

can be used to set a specified elapsed time since January 1, 1970. Set the value
to 1234567898765L and display the year, month, and day.

Sections 9.7–9.9

*9.6 (Stopwatch) Design a class named StopWatch. The class contains:

 ■ Private data fields startTime and endTime with getter methods.
 ■ A no-arg constructor that initializes startTime with the current time.
 ■ A method named start() that resets the startTime to the current time.
 ■ A method named stop() that sets the endTime to the current time.
 ■ A method named getElapsedTime() that returns the elapsed time for the

stopwatch in milliseconds.

 Draw the UML diagram for the class and then implement the class. Write a test
program that measures the execution time of sorting 100,000 numbers using
selection sort.

9.7 (The Account class) Design a class named Account that contains:

 ■ A private int data field named id for the account (default 0).
 ■ A private double data field named balance for the account (default 0).
 ■ A private double data field named annualInterestRate that stores the cur-

rent interest rate (default 0). Assume all accounts have the same interest rate.
 ■ A private Date data field named dateCreated that stores the date when the

account was created.
 ■ A no-arg constructor that creates a default account.
 ■ A constructor that creates an account with the specified id and initial balance.
 ■ The accessor and mutator methods for id,balance, and annualInterestRate.
 ■ The accessor method for dateCreated.
 ■ A method named getMonthlyInterestRate() that returns the monthly

interest rate.
 ■ A method named getMonthlyInterest() that returns the monthly interest.
 ■ A method named withdraw that withdraws a specified amount from the

account.
 ■ A method named deposit that deposits a specified amount to the account.

Draw the UML diagram for the class and then implement the class. (Hint: The
method getMonthlyInterest() is to return monthly interest, not the interest rate.
Monthly interest is balance * monthlyInterestRate. monthlyInterestRate
is annualInterestRate / 12. Note that annualInterestRate is a percentage,
e.g., like 4.5%. You need to divide it by 100.)

Write a test program that creates an Account object with an account ID of 1122,
a balance of $20,000, and an annual interest rate of 4.5%. Use the withdraw
method to withdraw $2,500, use the deposit method to deposit $3,000, and print
the balance, the monthly interest, and the date when this account was created.

Programming Exercises 361

362 Chapter 9 Objects and Classes

9.8 (The Fan class) Design a class named Fan to represent a fan. The class contains:

 ■ Three constants named SLOW, MEDIUM, and FAST with the values 1, 2, and 3 to
denote the fan speed.

 ■ A private int data field named speed that specifies the speed of the fan (the
default is SLOW).

 ■ A private boolean data field named on that specifies whether the fan is on (the
default is false).

 ■ A private double data field named radius that specifies the radius of the fan
(the default is 5).

 ■ A string data field named color that specifies the color of the fan (the default
is blue).

 ■ The accessor and mutator methods for all four data fields.
 ■ A no-arg constructor that creates a default fan.
 ■ A method named toString() that returns a string description for the fan. If

the fan is on, the method returns the fan speed, color, and radius in one com-
bined string. If the fan is not on, the method returns the fan color and radius
along with the string “fan is off” in one combined string.

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two Fan objects. Assign maximum speed, radius 10, color
yellow, and turn it on to the first object. Assign medium speed, radius 5, color
blue, and turn it off to the second object. Display the objects by invoking their
toString method.

**9.9 (Geometry: n-sided regular polygon) In an n-sided regular polygon, all sides
have the same length and all angles have the same degree (i.e., the polygon is
both equilateral and equiangular). Design a class named RegularPolygon that
contains:

 ■ A private int data field named n that defines the number of sides in the poly-
gon with default value 3.

 ■ A private double data field named side that stores the length of the side with
default value 1.

 ■ A private double data field named x that defines the x-coordinate of the poly-
gon’s center with default value 0.

 ■ A private double data field named y that defines the y-coordinate of the poly-
gon’s center with default value 0.

 ■ A no-arg constructor that creates a regular polygon with default values.
 ■ A constructor that creates a regular polygon with the specified number of sides

and length of side, centered at (0, 0).
 ■ A constructor that creates a regular polygon with the specified number of sides,

length of side, and x- and y-coordinates.
 ■ The accessor and mutator methods for all data fields.
 ■ The method getPerimeter() that returns the perimeter of the polygon.
 ■ The method getArea() that returns the area of the polygon. The formula for

computing the area of a regular polygon is Area =
n * s2

4 * tan¢p
n
≤ .

Draw the UML diagram for the class and then implement the class. Write a test
program that creates three RegularPolygon objects, created using the no-arg
constructor, using RegularPolygon(6, 4), and using RegularPolygon(10,
4, 5.6, 7.8). For each object, display its perimeter and area.

VideoNote

The Fan class

*9.10 (Algebra: quadratic equations) Design a class named QuadraticEquation for
a quadratic equation ax2 + bx + x = 0. The class contains:

 ■ Private data fields a, b, and c that represent three coefficients.
 ■ A constructor for the arguments for a, b, and c.
 ■ Three getter methods for a, b, and c.
 ■ A method named getDiscriminant() that returns the discriminant, which is

b2 - 4ac.
 ■ The methods named getRoot1() and getRoot2() for returning two roots of

the equation

r1 =
-b + 2b2 - 4ac

2a
and r2 =

-b - 2b2 - 4ac

2a

These methods are useful only if the discriminant is nonnegative. Let these meth-
ods return 0 if the discriminant is negative.

Draw the UML diagram for the class and then implement the class. Write a test
program that prompts the user to enter values for a, b, and c and displays the result
based on the discriminant. If the discriminant is positive, display the two roots. If
the discriminant is 0, display the one root. Otherwise, display “The equation has
no roots.” See Programming Exercise 3.1 for sample runs.

*9.11 (Algebra: 2 * 2 linear equations) Design a class named LinearEquation for a
2 * 2 system of linear equations:

ax + by = e

cx + dy = f
x =

ed - bf

ad - bc
y =

af - ec

ad - bc

The class contains:

 ■ Private data fields a, b, c, d, e, and f.
 ■ A constructor with the arguments for a, b, c, d, e, and f.
 ■ Six getter methods for a, b, c, d, e, and f.
 ■ A method named isSolvable() that returns true if ad - bc is not 0.
 ■ Methods getX() and getY() that return the solution for the equation.

Draw the UML diagram for the class and then implement the class. Write a test
program that prompts the user to enter a, b, c, d, e, and f and displays the result.
If ad - bc is 0, report that “The equation has no solution.” See Programming
Exercise 3.3 for sample runs.

**9.12 (Geometry: intersecting point) Suppose two line segments intersect. The two end-
points for the first line segment are (x1, y1) and (x2, y2) and for the second line
segment are (x3, y3) and (x4, y4). Write a program that prompts the user to enter
these four endpoints and displays the intersecting point. As discussed in Program-
ming Exercise 3.25, the intersecting point can be found by solving a linear equa-
tion. Use the LinearEquation class in Programming Exercise 9.11 to solve this
equation. See Programming Exercise 3.25 for sample runs.

**9.13 (The Location class) Design a class named Location for locating a maximal
value and its location in a two-dimensional array. The class contains public data
fields row, column, and maxValue that store the maximal value and its indices
in a two-dimensional array with row and column as int types and maxValue as
a double type.

Write the following method that returns the location of the largest element in a
two-dimensional array:

public static Location locateLargest(double[][] a)

Programming Exercises 363

364 Chapter 9 Objects and Classes

Enter the number of rows and columns in the array: 3 4
Enter the array:

23.5 35 2 10

4.5 3 45 3.5

35 44 5.5 9.6
The location of the largest element is 45 at (1, 2)

The return value is an instance of Location. Write a test program that prompts
the user to enter a two-dimensional array and displays the location of the largest
element in the array. Here is a sample run:

OBJECT-ORIENTED
THINKING

Objectives
■ To apply class abstraction to develop software (§10.2).

■ To explore the differences between the procedural paradigm and
object-oriented paradigm (§10.3).

■ To discover the relationships between classes (§10.4).

■ To design programs using the object-oriented paradigm (§§10.5–10.6).

■ To create objects for primitive values using the wrapper classes (Byte,
Short, Integer, Long, Float, Double, Character, and Boolean)
(§10.7).

■ To simplify programming using automatic conversion between
primitive types and wrapper class types (§10.8).

■ To use the BigInteger and BigDecimal classes for computing very
large numbers with arbitrary precisions (§10.9).

■ To use the String class to process immutable strings (§10.10).

■ To use the StringBuilder and StringBuffer classes to process
mutable strings (§10.11).

CHAPTER

10

366 Chapter 10 Object-Oriented Thinking

10.1 Introduction
The focus of this chapter is on class design and explores the differences between
procedural programming and object-oriented programming.

The preceding chapter introduced objects and classes. You learned how to define classes,
create objects, and use objects from several classes in the Java API (e.g., Circle, Date,
Random, and Point2D). This book’s approach is to teach problem solving and fundamental
programming techniques before object-oriented programming. This chapter shows how pro-
cedural and object-oriented programming differ. You will see the benefits of object-oriented
programming and learn to use it effectively.

Our focus here is on class design. We will use several examples to illustrate the advantages
of the object-oriented approach. The examples involve designing new classes and using them
in applications and introducing new classes in the Java API.

10.2 Class Abstraction and Encapsulation
Class abstraction is the separation of class implementation from the use of a class.
The details of implementation are encapsulated and hidden from the user. This is
known as class encapsulation.

In Chapter 6, you learned about method abstraction and used it in stepwise refinement. Java
provides many levels of abstraction, and class abstraction separates class implementation
from how the class is used. The creator of a class describes the functions of the class and lets
the user know how the class can be used. The collection of methods and fields that are accessi-
ble from outside the class, together with the description of how these members are expected to
behave, serves as the class’s contract. As shown in Figure 10.1, the user of the class does not
need to know how the class is implemented. The details of implementation are encapsulated
and hidden from the user. This is called class encapsulation. For example, you can create a
Circle object and find the area of the circle without knowing how the area is computed. For
this reason, a class is also known as an abstract data type (ADT).

Key
Point

Key
Point

class abstraction

class’s contract

class encapsulation

abstract data type

FIGURE 10.1 Class abstraction separates class implementation from the use of the class.

Class Contract
(signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the
class through the

contract of the class

Class abstraction and encapsulation are two sides of the same coin. Many real-life exam-
ples illustrate the concept of class abstraction. Consider, for instance, building a computer
system. Your personal computer has many components—a CPU, memory, disk, motherboard,
fan, and so on. Each component can be viewed as an object that has properties and methods.
To get the components to work together, you need know only how each component is used
and how it interacts with the others. You don’t need to know how the components work
internally. The internal implementation is encapsulated and hidden from you. You can build a
computer without knowing how a component is implemented.

The computer-system analogy precisely mirrors the object-oriented approach. Each com-
ponent can be viewed as an object of the class for the component. For example, you might
have a class that models all kinds of fans for use in a computer, with properties such as fan
size and speed and methods such as start and stop. A specific fan is an instance of this class
with specific property values.

As another example, consider getting a loan. A specific loan can be viewed as an object
of a Loan class. The interest rate, loan amount, and loan period are its data properties, and

10.2 Class Abstraction and Encapsulation 367

computing the monthly payment and total payment are its methods. When you buy a car, a
loan object is created by instantiating the class with your loan interest rate, loan amount, and
loan period. You can then use the methods to find the monthly payment and total payment
of your loan. As a user of the Loan class, you don’t need to know how these methods are
implemented.

Listing 2.9, ComputeLoan.java, presented a program for computing loan payments. That
program cannot be reused in other programs because the code for computing the payments is
in the main method. One way to fix this problem is to define static methods for computing
the monthly payment and total payment. However, this solution has limitations. Suppose you
wish to associate a date with the loan. There is no good way to tie a date with a loan without
using objects. The traditional procedural programming paradigm is action-driven, and data are
separated from actions. The object-oriented programming paradigm focuses on objects, and
actions are defined along with the data in objects. To tie a date with a loan, you can define a
loan class with a date along with the loan’s other properties as data fields. A loan object now
contains data and actions for manipulating and processing data, and the loan data and actions
are integrated in one object. Figure 10.2 shows the UML class diagram for the Loan class.

The Loan class

VideoNote

FIGURE 10.2 The Loan class models the properties and behaviors of loans.

Loan

The annual interest rate of the loan (default: 2.5).

Returns the annual interest rate of this loan.

Sets a new annual interest rate for this loan.

Sets a new number of years for this loan.

Sets a new amount for this loan.

Returns the monthly payment for this loan.

The number of years for the loan (default: 1).

The loan amount (default: 1000).

The date this loan was created.

Constructs a loan with specified interest rate, years,
 and loan amount.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Returns the total payment for this loan.

+Loan(annualInterestRate: double,
numberOfYears: int,loanAmount:

 double)

+getAnnualInterestRate(): double

+setNumberOfYears(
numberOfYears: int): void

+setLoanAmount(
loanAmount: double): void

+getMonthlyPayment(): double

+setAnnualInterestRate(
annualInterestRate: double): void

+Loan()

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): java.util.Date

+getTotalPayment(): double

Constructs a default Loan object.

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: java.util.Date

The UML diagram in Figure 10.2 serves as the contract for the Loan class. Throughout this
book, you will play the roles of both class user and class developer. Remember that a class
user can use the class without knowing how the class is implemented.

Assume that the Loan class is available. The program in Listing 10.1 uses that class.

LISTING 10.1 TestLoanClass.java
 1 import java.util.Scanner;
 2
 3 public class TestLoanClass {
 4 /** Main method */
 5 public static void main(String[] args) {

368 Chapter 10 Object-Oriented Thinking

 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Enter annual interest rate
10 System.out.print(
11 "Enter annual interest rate, for example, 8.25: ");
12 double annualInterestRate = input.nextDouble();
13
14 // Enter number of years
15 System.out.print("Enter number of years as an integer: ");
16 int numberOfYears = input.nextInt();
17
18 // Enter loan amount
19 System.out.print("Enter loan amount, for example, 120000.95: ");
20 double loanAmount = input.nextDouble();
21
22 // Create a Loan object
23 Loan loan =
24 new Loan(annualInterestRate, numberOfYears, loanAmount);
25
26 // Display loan date, monthly payment, and total payment
27 System.out.printf("The loan was created on %s\n" +
28 "The monthly payment is %.2f\nThe total payment is %.2f\n",
29 loan.getLoanDate().toString(), loan.getMonthlyPayment(),
30 loan.getTotalPayment());
31 }
32 }

create Loan object

invoke instance method
invoke instance method

Enter annual interest rate, for example, 8.25: 2.5
Enter number of years as an integer: 5
Enter loan amount, for example, 120000.95: 1000
The loan was created on Sat Jun 16 21:12:50 EDT 2012
The monthly payment is 17.75
The total payment is 1064.84

The main method reads the interest rate, the payment period (in years), and the loan amount;
creates a Loan object; and then obtains the monthly payment (line 29) and the total payment
(line 30) using the instance methods in the Loan class.

The Loan class can be implemented as in Listing 10.2.

LISTING 10.2 Loan.java
 1 public class Loan {
 2 private double annualInterestRate;
 3 private int numberOfYears;
 4 private double loanAmount;
 5 private java.util.Date loanDate;
 6
 7 /** Default constructor */
 8 public Loan() {
 9 this(2.5, 1, 1000);
10 }
11
12 /** Construct a loan with specified annual interest rate,

no-arg constructor

10.2 Class Abstraction and Encapsulation 369

13 number of years, and loan amount
14 */
15 public Loan(double annualInterestRate, int numberOfYears,
16 double loanAmount) {
17 this.annualInterestRate = annualInterestRate;
18 this.numberOfYears = numberOfYears;
19 this.loanAmount = loanAmount;
20 loanDate = new java.util.Date();
21 }
22
23 /** Return annualInterestRate */
24 public double getAnnualInterestRate() {
25 return annualInterestRate;
26 }
27
28 /** Set a new annualInterestRate */
29 public void setAnnualInterestRate(double annualInterestRate) {
30 this.annualInterestRate = annualInterestRate;
31 }
32
33 /** Return numberOfYears */
34 public int getNumberOfYears() {
35 return numberOfYears;
36 }
37
38 /** Set a new numberOfYears */
39 public void setNumberOfYears(int numberOfYears) {
40 this.numberOfYears = numberOfYears;
41 }
42
43 /** Return loanAmount */
44 public double getLoanAmount() {
45 return loanAmount;
46 }
47
48 /** Set a new loanAmount */
49 public void setLoanAmount(double loanAmount) {
50 this.loanAmount = loanAmount;
51 }
52
53 /** Find monthly payment */
54 public double getMonthlyPayment() {
55 double monthlyInterestRate = annualInterestRate / 1200;
56 double monthlyPayment = loanAmount * monthlyInterestRate / (1 -
57 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
58 return monthlyPayment;
59 }
60
61 /** Find total payment */
62 public double getTotalPayment() {
63 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
64 return totalPayment;
65 }
66
67 /** Return loan date */
68 public java.util.Date getLoanDate() {
69 return loanDate;
70 }
71 }

constructor

370 Chapter 10 Object-Oriented Thinking

From a class developer’s perspective, a class is designed for use by many different customers.
In order to be useful in a wide range of applications, a class should provide a variety of ways
for customization through constructors, properties, and methods.

The Loan class contains two constructors, four getter methods, three setter methods,
and the methods for finding the monthly payment and the total payment. You can con-
struct a Loan object by using the no-arg constructor or the constructor with three param-
eters: annual interest rate, number of years, and loan amount. When a loan object is created,
its date is stored in the loanDate field. The getLoanDate method returns the date. The
methods—getAnnualInterest, getNumberOfYears, and getLoanAmount—return the
annual interest rate, payment years, and loan amount, respectively. All the data properties
and methods in this class are tied to a specific instance of the Loan class. Therefore, they are
instance variables and methods.

Important Pedagogical Tip
Use the UML diagram for the Loan class shown in Figure 10.2 to write a test program

that uses the Loan class even though you don’t know how the Loan class is imple-

mented. This has three benefits:

 ■ It demonstrates that developing a class and using a class are two separate tasks.

 ■ It enables you to skip the complex implementation of certain classes without inter-

rupting the sequence of this book.

 ■ It is easier to learn how to implement a class if you are familiar with it by using the class.

For all the class examples from now on, create an object from the class and try using its

methods before turning your attention to its implementation.

10.1 If you redefine the Loan class in Listing 10.2 without setter methods, is the class
immutable?

10.3 Thinking in Objects
The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the
object-oriented paradigm focuses on objects and operations on objects.

Chapters 1–8 introduced fundamental programming techniques for problem solving using
loops, methods, and arrays. Knowing these techniques lays a solid foundation for object-
oriented programming. Classes provide more flexibility and modularity for building reusable
software. This section improves the solution for a problem introduced in Chapter 3 using the
object-oriented approach. From these improvements, you will gain insight into the differences
between procedural and object-oriented programming and see the benefits of developing reus-
able code using objects and classes.

Listing 3.4, ComputeAndInterpretBMI.java, presented a program for computing body
mass index. The code cannot be reused in other programs, because the code is in the main
method. To make it reusable, define a static method to compute body mass index as follows:

public static double getBMI(double weight, double height)

This method is useful for computing body mass index for a specified weight and height. How-
ever, it has limitations. Suppose you need to associate the weight and height with a person’s
name and birth date. You could declare separate variables to store these values, but these
values would not be tightly coupled. The ideal way to couple them is to create an object that
contains them all. Since these values are tied to individual objects, they should be stored in
instance data fields. You can define a class named BMI as shown in Figure 10.3.

✓Point✓Check

Key
Point

The BMI class

VideoNote

10.3 Thinking in Objects 371

Assume that the BMI class is available. Listing 10.3 gives a test program that uses this class.

LISTING 10.3 UseBMIClass.java
 1 public class UseBMIClass {
 2 public static void main(String[] args) {
 3 BMI bmi1 = new BMI("Kim Yang", 18, 145, 70);
 4 System.out.println("The BMI for " + bmi1.getName() + " is "
 5 + bmi1.getBMI() + " " + bmi1.getStatus());
 6
 7 BMI bmi2 = new BMI("Susan King", 215, 70);
 8 System.out.println("The BMI for " + bmi2.getName() + " is "
 9 + bmi2.getBMI() + " " + bmi2.getStatus());
10 }
11 }

create an object

invoke instance method
create an object

invoke instance method

FIGURE 10.3 The BMI class encapsulates BMI information.

BMI

-name: String

-age: int
-weight: double

-height: double

+BMI(name: String, age: int, weight:
double, height: double)

+BMI(name: String, weight: double,
height: double)

+getBMI(): double

+getStatus(): String

The name of the person.

The age of the person.
The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified
 name, age, weight, and height.

Creates a BMI object with the specified
name, weight, height, and a default age 20.

Returns the BMI.

Returns the BMI status (e.g., normal,
 overweight, etc.).

The getter methods for these data fields
are provided in the class, but omitted in the
UML diagram for brevity.

The BMI for Kim Yang is 20.81 Normal
The BMI for Susan King is 30.85 Obese

Line 3 creates the object bmi1 for Kim Yang and line 7 creates the object bmi2 for Susan
King. You can use the instance methods getName(), getBMI(), and getStatus() to
return the BMI information in a BMI object.

The BMI class can be implemented as in Listing 10.4.

LISTING 10.4 BMI.java
 1 public class BMI {
 2 private String name;
 3 private int age;
 4 private double weight; // in pounds
 5 private double height; // in inches
 6 public static final double KILOGRAMS_PER_POUND = 0.45359237;
 7 public static final double METERS_PER_INCH = 0.0254;
 8
 9 public BMI(String name, int age, double weight, double height) {
10 this.name = name;

constructor

372 Chapter 10 Object-Oriented Thinking

11 this.age = age;
12 this.weight = weight;
13 this.height = height;
14 }
15
16 public BMI(String name, double weight, double height) {
17 this(name, 20, weight, height);
18 }
19
20 public double getBMI() {
21 double bmi = weight * KILOGRAMS_PER_POUND /
22 ((height * METERS_PER_INCH) * (height * METERS_PER_INCH));
23 return Math.round(bmi * 100) / 100.0;
24 }
25
26 public String getStatus() {
27 double bmi = getBMI();
28 if (bmi < 18.5)
29 return "Underweight";
30 else if (bmi < 25)
31 return "Normal";
32 else if (bmi < 30)
33 return "Overweight";
34 else

35 return "Obese";
36 }
37
38 public String getName() {
39 return name;
40 }
41
42 public int getAge() {
43 return age;
44 }
45
46 public double getWeight() {
47 return weight;
48 }
49
50 public double getHeight() {
51 return height;
52 }
53 }

The mathematical formula for computing the BMI using weight and height is given in
Section 3.8. The instance method getBMI() returns the BMI. Since the weight and height are
instance data fields in the object, the getBMI() method can use these properties to compute
the BMI for the object.

The instance method getStatus() returns a string that interprets the BMI. The interpre-
tation is also given in Section 3.8.

This example demonstrates the advantages of the object-oriented paradigm over the proce-
dural paradigm. The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the object-
oriented paradigm focuses on objects and operations on objects. The object-oriented approach
combines the power of the procedural paradigm with an added dimension that integrates data
with operations into objects.

In procedural programming, data and operations on the data are separate, and this meth-
odology requires passing data to methods. Object-oriented programming places data and

constructor

getBMI

getStatus

procedural vs. object-oriented
paradigms

10.4 Class Relationships 373

the operations that pertain to them in an object. This approach solves many of the problems
inherent in procedural programming. The object-oriented programming approach organizes
programs in a way that mirrors the real world, in which all objects are associated with both
attributes and activities. Using objects improves software reusability and makes programs
easier to develop and easier to maintain. Programming in Java involves thinking in terms of
objects; a Java program can be viewed as a collection of cooperating objects.

10.2 Is the BMI class defined in Listing 10.4 immutable?

10.4 Class Relationships
To design classes, you need to explore the relationships among classes. The common
relationships among classes are association, aggregation, composition, and
inheritance.

This section explores association, aggregation, and composition. The inheritance relationship
will be introduced in the next chapter.

10.4.1 Association
Association is a general binary relationship that describes an activity between two classes.
For example, a student taking a course is an association between the Student class and the
Course class, and a faculty member teaching a course is an association between the Faculty
class and the Course class. These associations can be represented in UML graphical notation,
as shown in Figure 10.4.

✓Point✓Check

Key
Point

association

FIGURE 10.4 This UML diagram shows that a student may take any number of courses, a
faculty member may teach at most three courses, a course may have from five to sixty stu-
dents, and a course is taught by only one faculty member.

Teach

Teacher

Take

FacultyStudent
5..60 0..3 1

Course

An association is illustrated by a solid line between two classes with an optional label that
describes the relationship. In Figure 10.4, the labels are Take and Teach. Each relationship
may have an optional small black triangle that indicates the direction of the relationship. In
this figure, the direction indicates that a student takes a course (as opposed to a course taking
a student).

Each class involved in the relationship may have a role name that describes the role it plays
in the relationship. In Figure 10.4, teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity, which is placed at the
side of the class to specify how many of the class’s objects are involved in the relationship
in UML. A multiplicity could be a number or an interval that specifies how many of the
class’s objects are involved in the relationship. The character * means an unlimited number
of objects, and the interval m..n indicates that the number of objects is between m and n,
inclusively. In Figure 10.4, each student may take any number of courses, and each course
must have at least five and at most sixty students. Each course is taught by only one faculty
member, and a faculty member may teach from zero to three courses per semester.

In Java code, you can implement associations by using data fields and methods. For exam-
ple, the relationships in Figure 10.4 may be implemented using the classes in Figure 10.5. The

multiplicity

374 Chapter 10 Object-Oriented Thinking

relation “a student takes a course” is implemented using the addCourse method in the Stu-
dent class and the addStuent method in the Course class. The relation “a faculty teaches
a course” is implemented using the addCourse method in the Faculty class and the set-
Faculty method in the Course class. The Student class may use a list to store the courses
that the student is taking, the Faculty class may use a list to store the courses that the faculty
is teaching, and the Course class may use a list to store students enrolled in the course and a
data field to store the instructor who teaches the course.

FIGURE 10.6 Each student has a name and an address.

Aggregation

AddressName

Composition

1 1 1..3 1
Student

public class Student {
private Course[]

courseList;

public void addCourse(
 Course s) { ... }
}

public class Course {
private Student[]

classList;
private Faculty faculty;

public void addStudent(
 Student s) { ... }

public void setFaculty(
 Faculty faculty) { ... }
}

public class Faculty {
private Course[]

courseList;

public void addCourse(
 Course c) { ... }
}

FIGURE 10.5 The association relations are implemented using data fields and methods in classes.

Note
There are many possible ways to implement relationships. For example, the student

and faculty information in the Course class can be omitted, since they are already in

the Student and Faculty class. Likewise, if you don’t need to know the courses a

student takes or a faculty member teaches, the data field courseList and the add-

Course method in Student or Faculty can be omitted.

10.4.2 Aggregation and Composition
Aggregation is a special form of association that represents an ownership relationship between
two objects. Aggregation models has-a relationships. The owner object is called an aggregating
object, and its class is called an aggregating class. The subject object is called an aggregated
object, and its class is called an aggregated class.

An object can be owned by several other aggregating objects. If an object is exclusively
owned by an aggregating object, the relationship between the object and its aggregating object
is referred to as a composition. For example, “a student has a name” is a composition relation-
ship between the Student class and the Name class, whereas “a student has an address” is an
aggregation relationship between the Student class and the Address class, since an address
can be shared by several students. In UML, a filled diamond is attached to an aggregating
class (in this case, Student) to denote the composition relationship with an aggregated class
(Name), and an empty diamond is attached to an aggregating class (Student) to denote the
aggregation relationship with an aggregated class (Address), as shown in Figure 10.6.

many possible
implementations

aggregation

aggregating object

aggregating class

aggregated object

aggregated class

composition

In Figure 10.6, each student has only one multiplicity—address—and each address can
be shared by up to 3 students. Each student has one name, and a name is unique for each
student.

10.4 Class Relationships 375

An aggregation relationship is usually represented as a data field in the aggregating class.
For example, the relationships in Figure 10.6 may be implemented using the classes in
Figure 10.7. The relation “a student has a name” and “a student has an address” are imple-
mented in the data field name and address in the Student class.

FIGURE 10.8 A person may have a supervisor.

1

1 Supervisor

Person

FIGURE 10.9 A person can have several supervisors.

Person

Supervisor

1

(a) (b)

m

public class Person {
 ...

private Person[] supervisors;
}

Aggregation may exist between objects of the same class. For example, a person may have a
supervisor. This is illustrated in Figure 10.8.

public class Name {
 ...
}

Aggregated class

public class Student {
private Name name;
private Address address;

 ...
}

Aggregating class

public class Address {
 ...
}

Aggregated class

FIGURE 10.7 The composition relations are implemented using data fields in classes.

In the relationship “a person has a supervisor,” a supervisor can be represented as a data
field in the Person class, as follows:

public class Person {
// The type for the data is the class itself
private Person supervisor;

 ...
}

If a person can have several supervisors, as shown in Figure 10.9a, you may use an array to
store supervisors, as shown in Figure 10.9b.

Note
Since aggregation and composition relationships are represented using classes in the

same way, we will not differentiate them and call both compositions for simplicity.

10.3 What are common relationships among classes?

10.4 What is association? What is aggregation? What is composition?

10.5 What is UML notation of aggregation and composition?

10.6 Why both aggregation and composition are together referred to as composition?

aggregation or composition

✓Point✓Check

376 Chapter 10 Object-Oriented Thinking

10.5 Case Study: Designing the Course Class
This section designs a class for modeling courses.

This book’s philosophy is teaching by example and learning by doing. The book provides a
wide variety of examples to demonstrate object-oriented programming. This section and the
next offer additional examples on designing classes.

Suppose you need to process course information. Each course has a name and has students
enrolled. You should be able to add/drop a student to/from the course. You can use a class to
model the courses, as shown in Figure 10.10.

Key
Point

FIGURE 10.10 The Course class models the courses.

Course

-courseName: String
-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]
+getNumberOfStudents(): int

The name of the course.
An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.
Returns the students for the course.
Returns the number of students for the course.

A Course object can be created using the constructor Course(String name) by passing
a course name. You can add students to the course using the addStudent(String student)
method, drop a student from the course using the dropStudent(String student) method,
and return all the students in the course using the getStudents() method. Suppose the Course
class is available; Listing 10.5 gives a test class that creates two courses and adds students to them.

LISTING 10.5 TestCourse.java
 1 public class TestCourse {
 2 public static void main(String[] args) {
 3 Course course1 = new Course("Data Structures");
 4 Course course2 = new Course("Database Systems");
 5
 6 course1.addStudent("Peter Jones");
 7 course1.addStudent("Kim Smith");
 8 course1.addStudent("Anne Kennedy");
 9
10 course2.addStudent("Peter Jones");
11 course2.addStudent("Steve Smith");
12
13 System.out.println("Number of students in course1: "
14 + course1.getNumberOfStudents());
15 String[] students = course1.getStudents();
16 for (int i = 0; i < course1.getNumberOfStudents(); i++)
17 System.out.print(students[i] + ", ");
18
19 System.out.println();
20 System.out.print("Number of students in course2: "
21 + course2.getNumberOfStudents());
22 }
23 }

create a course

add a student

number of students
return students

10.5 Case Study: Designing the Course Class 377

The Course class is implemented in Listing 10.6. It uses an array to store the students in the
course. For simplicity, assume that the maximum course enrollment is 100. The array is cre-
ated using new String[100] in line 3. The addStudent method (line 10) adds a student to
the array. Whenever a new student is added to the course, numberOfStudents is increased
(line 12). The getStudents method returns the array. The dropStudent method (line 27)
is left as an exercise.

LISTING 10.6 Course.java
 1 public class Course {
 2 private String courseName;
 3 private String[] students = new String[100];
 4 private int numberOfStudents;
 5
 6 public Course(String courseName) {
 7 this.courseName = courseName;
 8 }
 9
10 public void addStudent(String student) {
11 students[numberOfStudents] = student;
12 numberOfStudents++;
13 }
14
15 public String[] getStudents() {
16 return students;
17 }
18
19 public int getNumberOfStudents() {
20 return numberOfStudents;
21 }
22
23 public String getCourseName() {
24 return courseName;
25 }
26
27 public void dropStudent(String student) {
28 // Left as an exercise in Programming Exercise 10.9
29 }
30 }

The array size is fixed to be 100 (line 3), so you cannot have more than 100 students in the
course. You can improve the class by automatically increasing the array size in Programming
Exercise 10.9.

When you create a Course object, an array object is created. A Course object contains a
reference to the array. For simplicity, you can say that the Course object contains the array.

The user can create a Course object and manipulate it through the public methods
addStudent, dropStudent, getNumberOfStudents, and getStudents. However, the
user doesn’t need to know how these methods are implemented. The Course class encapsu-
lates the internal implementation. This example uses an array to store students, but you could
use a different data structure to store students. The program that uses Course does not need
to change as long as the contract of the public methods remains unchanged.

create students

add a course

return students

number of students

Number of students in course1: 3
Peter Jones, Kim Smith, Anne Kennedy,
Number of students in course2: 2

378 Chapter 10 Object-Oriented Thinking

10.6 Case Study: Designing a Class for Stacks
This section designs a class for modeling stacks.

Recall that a stack is a data structure that holds data in a last-in, first-out fashion, as shown in
Figure 10.11.

Key
Pointstack

FIGURE 10.12 The StackOfIntegers class encapsulates the stack storage and provides
the operations for manipulating the stack.

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()
+StackOfIntegers(capacity: int)
+empty(): boolean
+peek(): int

+push(value: int): void

+pop(): int

+getSize(): int

An array to store integers in the stack.
The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.
Returns true if the stack is empty.
Returns the integer at the top of the stack without
 removing it from the stack.
Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

FIGURE 10.11 A stack holds data in a last-in, first-out fashion.

Data1

Data2
Data1

Data3

Data3
Data2
Data1

Data1

Data1

Data2

Data1

Data2

Data2
Data1

Data3

Stacks have many applications. For example, the compiler uses a stack to process method
invocations. When a method is invoked, its parameters and local variables are pushed into a
stack. When a method calls another method, the new method’s parameters and local variables
are pushed into the stack. When a method finishes its work and returns to its caller, its associ-
ated space is released from the stack.

You can define a class to model stacks. For simplicity, assume the stack holds the int
values. So name the stack class StackOfIntegers. The UML diagram for the class is shown
in Figure 10.12.

The StackOfIntegers class

VideoNote

Suppose that the class is available. The test program in Listing 10.7 uses the class to cre-
ate a stack (line 3), store ten integers 0, 1, 2, . . . , and 9 (line 6), and displays them in reverse
order (line 9).

LISTING 10.7 TestStackOfIntegers.java
 1 public class TestStackOfIntegers {
 2 public static void main(String[] args) {
3 StackOfIntegers stack = new StackOfIntegers();create a stack

10.6 Case Study: Designing a Class for Stacks 379

 4
 5 for (int i = 0; i < 10; i++)
 6 stack.push(i);
 7
 8 while (!stack.empty())
 9 System.out.print(stack.pop() + " ");
10 }
11 }

push to stack

pop from stack

9 8 7 6 5 4 3 2 1 0

FIGURE 10.13 The StackOfIntegers class encapsulates the stack storage and provides
the operations for manipulating the stack.

.

.

.

.

.

.

elements[0]
elements[1]

elements[size � 1]
capacity

top

bottom

size

elements[capacity � 1]

How do you implement the StackOfIntegers class? The elements in the stack are stored
in an array named elements. When you create a stack, the array is also created. The no-arg
constructor creates an array with the default capacity of 16. The variable size counts the
number of elements in the stack, and size – 1 is the index of the element at the top of the
stack, as shown in Figure 10.13. For an empty stack, size is 0.

The StackOfIntegers class is implemented in Listing 10.8. The methods empty(),
peek(), pop(), and getSize() are easy to implement. To implement push(int value),
assign value to elements[size] if size < capacity (line 24). If the stack is full (i.e.,
size >= capacity), create a new array of twice the current capacity (line 19), copy the con-
tents of the current array to the new array (line 20), and assign the reference of the new array
to the current array in the stack (line 21). Now you can add the new value to the array (line 24).

LISTING 10.8 StackOfIntegers.java
 1 public class StackOfIntegers {
 2 private int[] elements;
 3 private int size;
 4 public static final int DEFAULT_CAPACITY = 16;
 5
 6 /** Construct a stack with the default capacity 16 */
 7 public StackOfIntegers() {
 8 this (DEFAULT_CAPACITY);
 9 }
10
11 /** Construct a stack with the specified maximum capacity */
12 public StackOfIntegers(int capacity) {
13 elements = new int[capacity];
14 }
15

max capacity 16

380 Chapter 10 Object-Oriented Thinking

16 /** Push a new integer to the top of the stack */
17 public void push(int value) {
18 if (size >= elements.length) {
19 int[] temp = new int[elements.length * 2];
20 System.arraycopy(elements, 0, temp, 0, elements.length);
21 elements = temp;
22 }
23
24 elements[size++] = value;
25 }
26
27 /** Return and remove the top element from the stack */
28 public int pop() {
29 return elements[——size];
30 }
31
32 /** Return the top element from the stack */
33 public int peek() {
34 return elements[size - 1];
35 }
36
37 /** Test whether the stack is empty */
38 public boolean empty() {
39 return size == 0;
40 }
41
42 /** Return the number of elements in the stack */
43 public int getSize() {
44 return size;
45 }
46 }

10.7 Processing Primitive Data Type Values as Objects
A primitive type value is not an object, but it can be wrapped in an object using a
wrapper class in the Java API.

Owing to performance considerations, primitive data type values are not objects in Java.
Because of the overhead of processing objects, the language’s performance would be
adversely affected if primitive data type values were treated as objects. However, many Java
methods require the use of objects as arguments. Java offers a convenient way to incorporate,
or wrap, a primitive data type into an object (e.g., wrapping int into the Integer class,
wrapping double into the Double class, and wrapping char into the Character class,). By
using a wrapper class, you can process primitive data type values as objects. Java provides
Boolean, Character, Double, Float, Byte, Short, Integer, and Long wrapper classes
in the java.lang package for primitive data types. The Boolean class wraps a Boolean
value true or false. This section uses Integer and Double as examples to introduce the
numeric wrapper classes.

Note
Most wrapper class names for a primitive type are the same as the primitive data type

name with the first letter capitalized. The exceptions are Integer and Character.

Numeric wrapper classes are very similar to each other. Each contains the methods
doubleValue(), floatValue(), intValue(), longValue(), shortValue(), and
byteValue(). These methods “convert” objects into primitive type values. The key features
of Integer and Double are shown in Figure 10.14.

double the capacity

add to stack

Key
Point

why wrapper class?

naming convention

10.7 Processing Primitive Data Type Values as Objects 381

You can construct a wrapper object either from a primitive data type value or from a string
representing the numeric value—for example, new Double(5.0), new Double("5.0"),
new Integer(5), and new Integer("5").

The wrapper classes do not have no-arg constructors. The instances of all wrapper classes
are immutable; this means that, once the objects are created, their internal values cannot be
changed.

Each numeric wrapper class has the constants MAX_VALUE and MIN_VALUE. MAX_VALUE
represents the maximum value of the corresponding primitive data type. For Byte, Short,
Integer, and Long, MIN_VALUE represents the minimum byte, short, int, and long
values. For Float and Double, MIN_VALUE represents the minimum positive float and
double values. The following statements display the maximum integer (2,147,483,647),
the minimum positive float (1.4E–45), and the maximum double floating-point number
(1.79769313486231570e + 308d).

System.out.println("The maximum integer is " + Integer.MAX_VALUE);
System.out.println("The minimum positive float is " +
 Float.MIN_VALUE);
System.out.println(

"The maximum double-precision floating-point number is " +
 Double.MAX_VALUE);

Each numeric wrapper class contains the methods doubleValue(), floatValue(),
intValue(), longValue(), and shortValue() for returning a double, float, int,
long, or short value for the wrapper object. For example,

new Double(12.4).intValue() returns 12;
new Integer(12).doubleValue() returns 12.0;

Recall that the String class contains the compareTo method for comparing two strings.
The numeric wrapper classes contain the compareTo method for comparing two numbers

constructors

no no-arg constructor

immutable

constants

conversion methods

compareTo method

FIGURE 10.14 The wrapper classes provide constructors, constants, and conversion methods for manipulating various
data types.

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longValue(): long

+floatValue(): float

+doubleValue(): double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Integer java.lang.Double

-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longValue(): long

+floatValue(): float

+doubleValue(): double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

382 Chapter 10 Object-Oriented Thinking

and returns 1, 0, or -1, if this number is greater than, equal to, or less than the other number.
For example,

new Double(12.4).compareTo(new Double(12.3)) returns 1;
new Double(12.3).compareTo(new Double(12.3)) returns 0;
new Double(12.3).compareTo(new Double(12.51)) returns -1;

The numeric wrapper classes have a useful static method, valueOf (String s). This
method creates a new object initialized to the value represented by the specified string. For
example,

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12");

You have used the parseInt method in the Integer class to parse a numeric string into
an int value and the parseDouble method in the Double class to parse a numeric string into
a double value. Each numeric wrapper class has two overloaded parsing methods to parse a
numeric string into an appropriate numeric value based on 10 (decimal) or any specified radix
(e.g., 2 for binary, 8 for octal, and 16 for hexadecimal).

// These two methods are in the Byte class
public static byte parseByte(String s)
public static byte parseByte(String s, int radix)

// These two methods are in the Short class
public static short parseShort(String s)
public static short parseShort(String s, int radix)

// These two methods are in the Integer class
public static int parseInt(String s)
public static int parseInt(String s, int radix)

// These two methods are in the Long class
public static long parseLong(String s)
public static long parseLong(String s, int radix)

// These two methods are in the Float class
public static float parseFloat(String s)
public static float parseFloat(String s, int radix)

// These two methods are in the Double class
public static double parseDouble(String s)
public static double parseDouble(String s, int radix)

For example,

Integer.parseInt("11", 2) returns 3;
Integer.parseInt("12", 8) returns 10;
Integer.parseInt("13", 10) returns 13;
Integer.parseInt("1A", 16) returns 26;

Integer.parseInt("12", 2) would raise a runtime exception because 12 is not a
binary number.

Note that you can convert a decimal number into a hex number using the format method.
For example,

String.format("%x", 26) returns 1A;

static valueOf methods

static parsing methods

converting decimal to hex

10.8 Automatic Conversion between Primitive Types and Wrapper Class Types 383

10.7 Describe primitive-type wrapper classes.

10.8 Can each of the following statements be compiled?

a. Integer i = new Integer("23");

b. Integer i = new Integer(23);

c. Integer i = Integer.valueOf("23");

d. Integer i = Integer.parseInt("23", 8);

e. Double d = new Double();

f. Double d = Double.valueOf("23.45");

g. int i = (Integer.valueOf("23")).intValue();

h. double d = (Double.valueOf("23.4")).doubleValue();

i. int i = (Double.valueOf("23.4")).intValue();

j. String s = (Double.valueOf("23.4")).toString();

10.9 How do you convert an integer into a string? How do you convert a numeric string
into an integer? How do you convert a double number into a string? How do you
convert a numeric string into a double value?

10.10 Show the output of the following code.

public class Test {
public static void main(String[] args) {

 Integer x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println(x.compareTo(new Integer(4)));
 }
}

10.11 What is the output of the following code?

public class Test {
public static void main(String[] args) {

 System.out.println(Integer.parseInt("10"));
 System.out.println(Integer.parseInt("10", 10));
 System.out.println(Integer.parseInt("10", 16));
 System.out.println(Integer.parseInt("11"));
 System.out.println(Integer.parseInt("11", 10));
 System.out.println(Integer.parseInt("11", 16));
 }
}

10.8 Automatic Conversion between Primitive Types
and Wrapper Class Types

A primitive type value can be automatically converted to an object using a wrapper
class, and vice versa, depending on the context.

Converting a primitive value to a wrapper object is called boxing. The reverse conversion is
called unboxing. Java allows primitive types and wrapper classes to be converted automati-
cally. The compiler will automatically box a primitive value that appears in a context requir-
ing an object, and will unbox an object that appears in a context requiring a primitive value.
This is called autoboxing and autounboxing.

✓Point✓Check

Key
Point

boxing
unboxing

autoboxing
autounboxing

384 Chapter 10 Object-Oriented Thinking

For instance, the following statement in (a) can be simplified as in (b) due to autoboxing.

Integer intObject = new Integer (2); Integer intObject = 2;

(a)

Equivalent

autoboxing
(b)

Consider the following example:

1 Integer[] intArray = {1, 2, 3};
2 System.out.println(intArray[0] + intArray[1] + intArray[2]);

In line 1, the primitive values 1,2, and 3 are automatically boxed into objects new Integer(1),
new Integer(2), and new Integer(3). In line 2, the objects intArray[0], intArray[1],
and intArray[2] are automatically unboxed into int values that are added together.

10.12 What are autoboxing and autounboxing? Are the following statements correct?

a. Integer x = 3 + new Integer(5);

b. Integer x = 3;

c. Double x = 3;

d. Double x = 3.0;

e. int x = new Integer(3);

f. int x = new Integer(3) + new Integer(4);

10.13 Show the output of the following code?

public class Test {
public static void main(String[] args) {

 Double x = 3.5;
 System.out.println(x.intValue());
 System.out.println(x.compareTo(4.5));
 }
}

10.9 The BigInteger and BigDecimal Classes
The BigInteger and BigDecimal classes can be used to represent integers or
decimal numbers of any size and precision.

If you need to compute with very large integers or high-precision floating-point val-
ues, you can use the BigInteger and BigDecimal classes in the java.math pack-
age. Both are immutable. The largest integer of the long type is Long.MAX_VALUE (i.e.,
9223372036854775807). An instance of BigInteger can represent an integer of any size.
You can use new BigInteger(String) and new BigDecimal(String) to create an
instance of BigInteger and BigDecimal, use the add, subtract, multiply, divide,
and remainder methods to perform arithmetic operations, and use the compareTo method
to compare two big numbers. For example, the following code creates two BigInteger
objects and multiplies them.

BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.println(c);

✓Point✓Check

Key
Point

Process large numbers

VideoNote

immutable

10.9 The BigInteger and BigDecimal Classes 385

The output is 18446744073709551614.
There is no limit to the precision of a BigDecimal object. The divide method may throw

an ArithmeticException if the result cannot be terminated. However, you can use the
overloaded divide(BigDecimal d, int scale, int roundingMode) method to spec-
ify a scale and a rounding mode to avoid this exception, where scale is the maximum number
of digits after the decimal point. For example, the following code creates two BigDecimal
objects and performs division with scale 20 and rounding mode BigDecimal.ROUND_UP.

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

The output is 0.33333333333333333334.
Note that the factorial of an integer can be very large. Listing 10.9 gives a method that can

return the factorial of any integer.

LISTING 10.9 LargeFactorial.java
 1 import java.math.*;
 2
 3 public class LargeFactorial {
 4 public static void main(String[] args) {
 5 System.out.println("50! is \n" + factorial(50));
 6 }
 7
 8 public static BigInteger factorial(long n) {
 9 BigInteger result = BigInteger.ONE;
10 for (int i = 1; i <= n; i++)
11 result = result.multiply(new BigInteger(i + ""));
12
13 return result;
14 }
15 }

constant

multiply

50! is
30414093201713378043612608166064768844377641568960512000000000000

BigInteger.ONE (line 9) is a constant defined in the BigInteger class. BigInteger.ONE
is the same as new BigInteger("1").

A new result is obtained by invoking the multiply method (line 11).

10.14 What is the output of the following code?

public class Test {
public static void main(String[] args) {

 java.math.BigInteger x = new java.math.BigInteger("3");
 java.math.BigInteger y = new java.math.BigInteger("7");
 java.math.BigInteger z = x.add(y);
 System.out.println("x is " + x);
 System.out.println("y is " + y);
 System.out.println("z is " + z);
 }
}

✓Point✓Check

386 Chapter 10 Object-Oriented Thinking

10.10 The String Class
A String object is immutable: Its content cannot be changed once the string is
created.

Strings were introduced in Section 4.4. You know strings are objects. You can invoke the
charAt(index) method to obtain a character at the specified index from a string, the
length() method to return the size of a string, the substring method to return a substring
in a string, and the indexOf and lastIndexOf methods to return the first or last index of a
matching character or a substring. We will take a closer look at strings in this section.

The String class has 13 constructors and more than 40 methods for manipulating strings.
Not only is it very useful in programming, but it is also a good example for learning classes
and objects.

10.10.1 Constructing a String
You can create a string object from a string literal or from an array of characters. To create a
string from a string literal, use the syntax:

String newString = new String(stringLiteral);

The argument stringLiteral is a sequence of characters enclosed inside double quotes.
The following statement creates a String object message for the string literal "Welcome
to Java":

String message = new String("Welcome to Java");

Java treats a string literal as a String object. Thus, the following statement is valid:

String message = "Welcome to Java";

You can also create a string from an array of characters. For example, the following state-
ments create the string "Good Day":

char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};
String message = new String(charArray);

Note
A String variable holds a reference to a String object that stores a string value.

Strictly speaking, the terms String variable, String object, and string value are

different, but most of the time the distinctions between them can be ignored. For sim-

plicity, the term string will often be used to refer to String variable, String object,

and string value.

10.10.2 Immutable Strings and Interned Strings
A String object is immutable; its contents cannot be changed. Does the following code
change the contents of the string?

String s = "Java";
s = "HTML";

The answer is no. The first statement creates a String object with the content "Java" and
assigns its reference to s. The second statement creates a new String object with the content
"HTML" and assigns its reference to s. The first String object still exists after the assign-
ment, but it can no longer be accessed, because variable s now points to the new object, as
shown in Figure 10.15.

Key
Point

The String class

VideoNote

string literal object

String variable, String
object, string value

immutable

10.10 The String Class 387

Because strings are immutable and are ubiquitous in programming, the JVM uses a unique
instance for string literals with the same character sequence in order to improve efficiency
and save memory. Such an instance is called an interned string. For example, the following
statements:

interned string

FIGURE 10.15 Strings are immutable; once created, their contents cannot be changed.

After executing String s = "Java"; After executing s = "HTML";

Contents cannot be changed

String object for "Java"

String object for "HTML"

This string object is
now unreferenced

s

String object for "Java"

s : String : String

: String

String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));
System.out.println("s1 == s3 is " + (s1 == s3));

s1

s2

s3
Interned string object for
"Welcome to Java"

: String

A string object for
"Welcome to Java"

: String

display

s1 == s2 is false
s1 == s3 is true

In the preceding statements, s1 and s3 refer to the same interned string—"Welcome to

Java"—so s1 == s3 is true. However, s1 == s2 is false, because s1 and s2 are two
different string objects, even though they have the same contents.

10.10.3 Replacing and Splitting Strings
The String class provides the methods for replacing and splitting strings, as shown in
Figure 10.16.

FIGURE 10.16 The String class contains the methods for replacing and splitting strings.

java.lang.String

+replace(oldChar: char,
newChar: char): String

+replaceFirst(oldString: String,
newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):
String[]

Returns a new string that replaces all matching characters in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replaces all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the
delimiter.

388 Chapter 10 Object-Oriented Thinking

Once a string is created, its contents cannot be changed. The methods replace,
replaceFirst, and replaceAll return a new string derived from the original string
(without changing the original string!). Several versions of the replace methods are pro-
vided to replace a character or a substring in the string with a new character or a new
substring.

For example,

"Welcome".replace('e', 'A') returns a new string, WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string, WABlcome.
"Welcome".replace("e", "AB") returns a new string, WABlcomAB.
"Welcome".replace("el", "AB") returns a new string, WABcome.

The split method can be used to extract tokens from a string with the specified delimiters.
For example, the following code

String[] tokens = "Java#HTML#Perl".split("#");
for (int i = 0; i < tokens.length; i++)
 System.out.print(tokens[i] + " ");

displays

Java HTML Perl

10.10.4 Matching, Replacing and Splitting by Patterns
Often you will need to write code that validates user input, such as to check whether the input
is a number, a string with all lowercase letters, or a Social Security number. How do you write
this type of code? A simple and effective way to accomplish this task is to use the regular
expression.

A regular expression (abbreviated regex) is a string that describes a pattern for matching
a set of strings. You can match, replace, or split a string by specifying a pattern. This is an
extremely useful and powerful feature.

Let us begin with the matches method in the String class. At first glance, the matches
method is very similar to the equals method. For example, the following two statements both
evaluate to true.

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but
also a set of strings that follow a pattern. For example, the following statements all evaluate
to true:

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

Java.* in the preceding statements is a regular expression. It describes a string pattern that
begins with Java followed by any zero or more characters. Here, the substring matches any
zero or more characters.

The following statement evaluates to true.

"440-02-4534".matches("\\d{3}-\\d{2}-\\d{4}")

Here \\d represents a single digit, and \\d{3} represents three digits.

replace

replaceFirst
replace
replace

split

why regular expression?

regular expression
regex

matches(regex)

The replaceAll, replaceFirst, and split methods can be used with a regular
expression. For example, the following statement returns a new string that replaces $, +, or #
in a+b$#c with the string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");
System.out.println(s);

Here the regular expression [$+#] specifies a pattern that matches $, +, or #. So, the output
is aNNNbNNNNNNc.

The following statement splits the string into an array of strings delimited by punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)
 System.out.println(tokens[i]);

In this example, the regular expression [.,:;?] specifies a pattern that matches ., ,, :, ;, or
?. Each of these characters is a delimiter for splitting the string. Thus, the string is split into
Java, C, C#, and C++, which are stored in array tokens.

Regular expression patterns are complex for beginning students to understand. For this
reason, simple patterns are introduced in this section. Please refer to Appendix H, Regular
Expressions, to learn more about these patterns.

10.10.5 Conversion between Strings and Arrays
Strings are not arrays, but a string can be converted into an array, and vice versa. To convert a
string into an array of characters, use the toCharArray method. For example, the following
statement converts the string Java to an array.

char[] chars = "Java".toCharArray();

Thus, chars[0] is J, chars[1] is a, chars[2] is v, and chars[3] is a.
You can also use the getChars(int srcBegin, int srcEnd, char[] dst,

int dstBegin) method to copy a substring of the string from index srcBegin to index
srcEnd-1 into a character array dst starting from index dstBegin. For example, the fol-
lowing code copies a substring "3720" in "CS3720" from index 2 to index 6-1 into the
character array dst starting from index 4.

char[] dst = {'J', 'A', 'V', 'A', '1', '3', '0', '1'};
"CS3720".getChars(2, 6, dst, 4);

Thus, dst becomes {'J', 'A', 'V', 'A', '3', '7', '2', '0'}.
To convert an array of characters into a string, use the String(char[]) constructor or

the valueOf(char[]) method. For example, the following statement constructs a string
from an array using the String constructor.

String str = new String(new char[]{'J', 'a', 'v', 'a'});

The next statement constructs a string from an array using the valueOf method.

String str = String.valueOf(new char[]{'J', 'a', 'v', 'a'});

10.10.6 Converting Characters and Numeric Values to Strings
Recall that you can use Double.parseDouble(str) or Integer.parseInt(str) to
convert a string to a double value or an int value and you can convert a character or a
number into a string by using the string concatenating operator. Another way of converting a

replaceAll(regex)

split(regex)

further studies

toCharArray

getChars

valueOf

10.10 The String Class 389

390 Chapter 10 Object-Oriented Thinking

number into a string is to use the overloaded static valueOf method. This method can also be
used to convert a character or an array of characters into a string, as shown in Figure 10.17.

overloaded valueOf

FIGURE 10.17 The String class contains the static methods for creating strings from prim-
itive type values.

java.lang.String

+valueOf(c: char): String

+valueOf(data: char[]): String

+valueOf(d: double): String

+valueOf(f: float): String

+valueOf(i: int): String

+valueOf(l: long): String

Returns a string consisting of the character c.

Returns a string consisting of the characters in the array.

Returns a string representing the double value.

Returns a string representing the float value.

Returns a string representing the int value.

Returns a string representing the long value.

+valueOf(b: boolean): String Returns a string representing the boolean value.

For example, to convert a double value 5.44 to a string, use String.valueOf(5.44).
The return value is a string consisting of the characters '5', '.', '4', and '4'.

10.10.7 Formatting Strings
The String class contains the static format method to return a formatted string. The syntax
to invoke this method is:

String.format(format, item1, item2, ..., itemk)

This method is similar to the printf method except that the format method returns a for-
matted string, whereas the printf method displays a formatted string. For example,

String s = String.format("%7.2f%6d%-4s", 45.556, 14, "AB");
System.out.println(s);

displays

45.56 14AB

Note that

System.out.printf(format, item1, item2, ..., itemk);

is equivalent to

System.out.print(
 String.format(format, item1, item2, ..., itemk));

where the square box () denotes a blank space.

10.15 Suppose that s1, s2, s3, and s4 are four strings, given as follows:

String s1 = "Welcome to Java";
String s2 = s1;
String s3 = new String("Welcome to Java");
String s4 = "Welcome to Java";

 What are the results of the following expressions?

a. s1 == s2

b. s1 == s3

✓Point✓Check

c. s1 == s4

d. s1.equals(s3)

e. s1.equals(s4)

f. "Welcome to Java".replace("Java", "HTML")

g. s1.replace('o', 'T')

h. s1.replaceAll("o", "T")

i. s1.replaceFirst("o", "T")

j. s1.toCharArray()

10.16 To create the string Welcome to Java, you may use a statement like this:

String s = "Welcome to Java";

or:

String s = new String("Welcome to Java");

 Which one is better? Why?

10.17 What is the output of the following code?

String s1 = "Welcome to Java";
String s2 = s1.replace("o", "abc");
System.out.println(s1);
System.out.println(s2);

10.18 Let s1 be "Welcome" and s2 be "welcome". Write the code for the following
statements:

a. Replace all occurrences of the character e with E in s1 and assign the new string
to s2.

b. Split Welcome to Java and HTML into an array tokens delimited by a space
and assign the first two tokens into s1 and s2.

10.19 Does any method in the String class change the contents of the string?

10.20 Suppose string s is created using new String(); what is s.length()?

10.21 How do you convert a char, an array of characters, or a number to a string?

10.22 Why does the following code cause a NullPointerException?

 1 public class Test {
 2 private String text;
 3
 4 public Test(String s) {
 5 String text = s;
 6 }
 7
 8 public static void main(String[] args) {
 9 Test test = new Test("ABC");
10 System.out.println(test.text.toLowerCase());
11 }
12 }

10.23 What is wrong in the following program?

 1 public class Test {
 2 String text;
 3

10.10 The String Class 391

392 Chapter 10 Object-Oriented Thinking

 4 public void Test(String s) {
 5 text = s;
 6 }
 7
 8 public static void main(String[] args) {
 9 Test test = new Test("ABC");
10 System.out.println(test);
11 }
12 }

10.24 Show the output of the following code.

public class Test {
public static void main(String[] args) {

 System.out.println("Hi, ABC, good".matches("ABC "));
 System.out.println("Hi, ABC, good".matches(".*ABC.*"));
 System.out.println("A,B;C".replaceAll(",;", "#"));
 System.out.println("A,B;C".replaceAll("[,;]", "#"));

 String[] tokens = "A,B;C".split("[,;]");
for (int i = 0; i < tokens.length; i++)

 System.out.print(tokens[i] + " ");
 }
 }

10.25 Show the output of the following code.

public class Test {
public static void main(String[] args) {

 String s = "Hi, Good Morning";
 System.out.println(m(s));
 }

public static int m(String s) {
int count = 0;
for (int i = 0; i < s.length(); i++)

if (Character.isUpperCase(s.charAt(i)))
 count++;

return count;
 }
 }

10.11 The StringBuilder and StringBufferClasses
The StringBuilder and StringBuffer classes are similar to the String class
except that the String class is immutable.

In general, the StringBuilder and StringBuffer classes can be used wherever a string
is used. StringBuilder and StringBuffer are more flexible than String. You can add,
insert, or append new contents into StringBuilder and StringBuffer objects, whereas
the value of a String object is fixed once the string is created.

The StringBuilder class is similar to StringBuffer except that the methods for mod-
ifying the buffer in StringBuffer are synchronized, which means that only one task is
allowed to execute the methods. Use StringBuffer if the class might be accessed by multi-
ple tasks concurrently, because synchronization is needed in this case to prevent corruptions to

Key
Point

StringBuilder

10.11 The StringBuilder and StringBuffer Classes 393

StringBuffer. Concurrent programming will be introduced in Chapter 30. Using String-
Builder is more efficient if it is accessed by just a single task, because no synchronization is
needed in this case. The constructors and methods in StringBuffer and StringBuilder
are almost the same. This section covers StringBuilder. You can replace StringBuilder
in all occurrences in this section by StringBuffer. The program can compile and run with-
out any other changes.

The StringBuilder class has three constructors and more than 30 methods for managing
the builder and modifying strings in the builder. You can create an empty string builder or a
string builder from a string using the constructors, as shown in Figure 10.18.

StringBuilder constructors

FIGURE 10.18 The StringBuilder class contains the constructors for creating instances
of StringBuilder.

java.lang.StringBuilder

+StringBuilder()

+StringBuilder(capacity: int)

+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.

Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

FIGURE 10.19 The StringBuilder class contains the methods for modifying string builders.

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):
StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):
StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,
len: int): StringBuilder

+insert(offset: int, data: char[]):
StringBuilder

+insert(offset: int, b: aPrimitiveType):
StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:
String): StringBuilder

+reverse(): StringBuilder

+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.
Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this
builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex-1.

Deletes a character at the specified index.

Inserts a subarray of the data in the array into the builder
at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex-1 with the specified string.

Reverses the characters in the builder.

Sets a new character at the specified index in this
builder.

10.11.1 Modifying Strings in the StringBuilder
You can append new contents at the end of a string builder, insert new contents at a speci-
fied position in a string builder, and delete or replace characters in a string builder, using the
methods listed in Figure 10.19.

394 Chapter 10 Object-Oriented Thinking

The StringBuilder class provides several overloaded methods to append boolean,
char, char[], double, float, int, long, and String into a string builder. For example,
the following code appends strings and characters into stringBuilder to form a new string,
Welcome to Java.

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("Welcome");
stringBuilder.append(' ');
stringBuilder.append("to");
stringBuilder.append(' ');
stringBuilder.append("Java");

The StringBuilder class also contains overloaded methods to insert boolean, char, char
array, double, float, int, long, and String into a string builder. Consider the following
code:

stringBuilder.insert(11, "HTML and ");

Suppose stringBuilder contains Welcome to Java before the insert method is applied.
This code inserts "HTML and " at position 11 in stringBuilder (just before the J). The
new stringBuilder is Welcome to HTML and Java.

You can also delete characters from a string in the builder using the two delete methods,
reverse the string using the reverse method, replace characters using the replace method,
or set a new character in a string using the setCharAt method.

For example, suppose stringBuilder contains Welcome to Java before each of the
following methods is applied:

stringBuilder.delete(8, 11) changes the builder to Welcome Java.
stringBuilder.deleteCharAt(8) changes the builder to Welcome o Java.

stringBuilder.reverse() changes the builder to avaJ ot emocleW.
stringBuilder.replace(11, 15, "HTML") changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to welcome to Java.

All these modification methods except setCharAt do two things:

■ Change the contents of the string builder

■ Return the reference of the string builder

For example, the following statement

StringBuilder stringBuilder1 = stringBuilder.reverse();

reverses the string in the builder and assigns the builder’s reference to stringBuilder1.
Thus, stringBuilder and stringBuilder1 both point to the same StringBuilder
object. Recall that a value-returning method can be invoked as a statement, if you are not
interested in the return value of the method. In this case, the return value is simply ignored.
For example, in the following statement

stringBuilder.reverse();

the return value is ignored.

Tip
If a string does not require any change, use String rather than StringBuilder. Java

can perform some optimizations for String, such as sharing interned strings.

append

insert

delete
deleteCharAt
reverse
replace
setCharAt

ignore return value

String or StringBuilder?

10.11.2 The toString, capacity, length, setLength,
and charAt Methods

The StringBuilder class provides the additional methods for manipulating a string builder
and obtaining its properties, as shown in Figure 10.20.

FIGURE 10.20 The StringBuilder class contains the methods for modifying string builders.

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setLength(newLength: int): void

+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):
String

+trimToSize(): void

Returns a string object from the string builder.

Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

The capacity() method returns the current capacity of the string builder. The capacity is
the number of characters the string builder is able to store without having to increase its size.

The length() method returns the number of characters actually stored in the string
builder. The setLength(newLength) method sets the length of the string builder. If the
newLength argument is less than the current length of the string builder, the string builder is
truncated to contain exactly the number of characters given by the newLength argument. If
the newLength argument is greater than or equal to the current length, sufficient null char-
acters (\u0000) are appended to the string builder so that length becomes the newLength
argument. The newLength argument must be greater than or equal to 0.

The charAt(index) method returns the character at a specific index in the string
builder. The index is 0 based. The first character of a string builder is at index 0, the next at
index 1, and so on. The index argument must be greater than or equal to 0, and less than the
length of the string builder.

Note
The length of the string is always less than or equal to the capacity of the builder. The

length is the actual size of the string stored in the builder, and the capacity is the current

size of the builder. The builder’s capacity is automatically increased if more characters

are added to exceed its capacity. Internally, a string builder is an array of characters, so

the builder’s capacity is the size of the array. If the builder’s capacity is exceeded, the

array is replaced by a new array. The new array size is 2 * (the previous array

size + 1).

Tip
You can use new StringBuilder(initialCapacity) to create a String-

Builder with a specified initial capacity. By carefully choosing the initial capacity, you

can make your program more efficient. If the capacity is always larger than the actual

length of the builder, the JVM will never need to reallocate memory for the builder. On

the other hand, if the capacity is too large, you will waste memory space. You can use

the trimToSize() method to reduce the capacity to the actual size.

capacity()

length()

setLength(int)

charAt(int)

length and capacity

initial capacity

trimToSize()

10.11 The StringBuilder and StringBuffer Classes 395

396 Chapter 10 Object-Oriented Thinking

10.11.3 Case Study: Ignoring Nonalphanumeric Characters When
Checking Palindromes

Listing 5.14, Palindrome.java, considered all the characters in a string to check whether it
is a palindrome. Write a new program that ignores nonalphanumeric characters in checking
whether a string is a palindrome.

Here are the steps to solve the problem:

1. Filter the string by removing the nonalphanumeric characters. This can be done by
creating an empty string builder, adding each alphanumeric character in the string
to a string builder, and returning the string from the string builder. You can use the
isLetterOrDigit(ch) method in the Character class to check whether character
ch is a letter or a digit.

2. Obtain a new string that is the reversal of the filtered string. Compare the reversed string
with the filtered string using the equals method.

The complete program is shown in Listing 10.10.

LISTING 10.10 PalindromeIgnoreNonAlphanumeric.java
 1 import java.util.Scanner;
 2
 3 public class PalindromeIgnoreNonAlphanumeric {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine();
12
13 // Display result
14 System.out.println("Ignoring nonalphanumeric characters, \nis "
15 + s + " a palindrome? " + isPalindrome(s));
16 }
17
18 /** Return true if a string is a palindrome */
19 public static boolean isPalindrome(String s) {
20 // Create a new string by eliminating nonalphanumeric chars
21 String s1 = filter(s);
22
23 // Create a new string that is the reversal of s1
24 String s2 = reverse(s1);
25
26 // Check if the reversal is the same as the original string
27 return s2.equals(s1);
28 }
29
30 /** Create a new string by eliminating nonalphanumeric chars */
31 public static String filter(String s) {
32 // Create a string builder
33 StringBuilder stringBuilder = new StringBuilder();
34
35 // Examine each char in the string to skip alphanumeric char
36 for (int i = 0; i < s.length(); i++) {
37 if (Character.isLetterOrDigit(s.charAt(i))) {
38 stringBuilder.append(s.charAt(i));
39 }

check palindrome

add letter or digit

40 }
41
42 // Return a new filtered string
43 return stringBuilder.toString();
44 }
45
46 /** Create a new string by reversing a specified string */
47 public static String reverse(String s) {
48 StringBuilder stringBuilder = new StringBuilder(s);
49 stringBuilder.reverse(); // Invoke reverse in StringBuilder
50 return stringBuilder.toString();
51 }
52 }

Enter a string: ab<c>cb?a
Ignoring nonalphanumeric characters,
is ab<c>cb?a a palindrome? true

Enter a string: abcc><?cab
Ignoring nonalphanumeric characters,
is abcc><?cab a palindrome? false

The filter(String s) method (lines 31–44) examines each character in string s and cop-
ies it to a string builder if the character is a letter or a numeric character. The filter method
returns the string in the builder. The reverse(String s) method (lines 47–51) creates a
new string that reverses the specified string s. The filter and reverse methods both return
a new string. The original string is not changed.

The program in Listing 5.14 checks whether a string is a palindrome by comparing pairs
of characters from both ends of the string. Listing 10.10 uses the reverse method in the
StringBuilder class to reverse the string, then compares whether the two strings are equal
to determine whether the original string is a palindrome.

10.26 What is the difference between StringBuilder and StringBuffer?

10.27 How do you create a string builder from a string? How do you return a string from a
string builder?

10.28 Write three statements to reverse a string s using the reverse method in the
StringBuilder class.

10.29 Write three statements to delete a substring from a string s of 20 characters, start-
ing at index 4 and ending with index 10. Use the delete method in the String-
Builder class.

10.30 What is the internal storage for characters in a string and a string builder?

10.31 Suppose that s1 and s2 are given as follows:

StringBuilder s1 = new StringBuilder("Java");
StringBuilder s2 = new StringBuilder("HTML");

 Show the value of s1 after each of the following statements. Assume that the state-
ments are independent.

a. s1.append(" is fun");

b. s1.append(s2);

✓Point✓Check

10.11 The StringBuilder and StringBuffer Classes 397

398 Chapter 10 Object-Oriented Thinking

c. s1.insert(2, "is fun");

d. s1.insert(1, s2);

e. s1.charAt(2);

f. s1.length();

g. s1.deleteCharAt(3);

h. s1.delete(1, 3);

i. s1.reverse();

j. s1.replace(1, 3, "Computer");

k. s1.substring(1, 3);

l. s1.substring(2);

10.32 Show the output of the following program:

public class Test {
public static void main(String[] args) {

 String s = "Java";
 StringBuilder builder = new StringBuilder(s);
 change(s, builder);

 System.out.println(s);
 System.out.println(builder);
 }

private static void change(String s, StringBuilder builder) {
 s = s + " and HTML";
 builder.append(" and HTML");
 }
}

KEY TERMS

abstract data type (ADT) 366
aggregation 374
boxing 383
class abstraction 366
class encapsulation 366
class’s contract 366

composition 374
has-a relationship 374
multiplicity 373
stack 378
unboxing 383

CHAPTER SUMMARY

1. The procedural paradigm focuses on designing methods. The object-oriented paradigm
couples data and methods together into objects. Software design using the object-
oriented paradigm focuses on objects and operations on objects. The object-oriented
approach combines the power of the procedural paradigm with an added dimension that
integrates data with operations into objects.

2. Many Java methods require the use of objects as arguments. Java offers a convenient
way to incorporate, or wrap, a primitive data type into an object (e.g., wrapping int into
the Integer class, and wrapping double into the Double class).

Programming Exercises 399

3. Java can automatically convert a primitive type value to its corresponding wrapper
object in the context and vice versa.

4. The BigInteger class is useful for computing and processing integers of any size. The
BigDecimal class can be used to compute and process floating-point numbers with any
arbitrary precision.

5. A String object is immutable; its contents cannot be changed. To improve efficiency
and save memory, the JVM stores two literal strings that have the same character
sequence in a unique object. This unique object is called an interned string object.

6. A regular expression (abbreviated regex) is a string that describes a pattern for match-
ing a set of strings. You can match, replace, or split a string by specifying a pattern.

7. The StringBuilder and StringBuffer classes can be used to replace the String
class. The String object is immutable, but you can add, insert, or append new contents
into StringBuilder and StringBuffer objects. Use String if the string contents
do not require any change, and use StringBuilder or StringBuffer if they might
change.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 10.2–10.3

*10.1 (The Time class) Design a class named Time. The class contains:

 ■ The data fields hour, minute, and second that represent a time.
 ■ A no-arg constructor that creates a Time object for the current time. (The

values of the data fields will represent the current time.)
 ■ A constructor that constructs a Time object with a specified elapsed time

since midnight, January 1, 1970, in milliseconds. (The values of the data
fields will represent this time.)

■ A constructor that constructs a Time object with the specified hour, minute,
and second.

 ■ Three getter methods for the data fields hour, minute, and second,
respectively.

 ■ A method named setTime(long elapseTime) that sets a new time
for the object using the elapsed time. For example, if the elapsed time is
555550000 milliseconds, the hour is 10, the minute is 19, and the second is
10.

Draw the UML diagram for the class and then implement the class. Write
a test program that creates two Time objects (using new Time() and new
Time(555550000)) and displays their hour, minute, and second in the format
hour:minute:second.

(Hint: The first two constructors will extract the hour, minute, and second
from the elapsed time. For the no-arg constructor, the current time can be
obtained using System.currentTimeMillis(), as shown in Listing 2.7,
ShowCurrentTime.java.)

www.cs.armstrong.edu/liang/intro10e/quiz.html

400 Chapter 10 Object-Oriented Thinking

10.2 (The BMI class) Add the following new constructor in the BMI class:

/** Construct a BMI with the specified name, age, weight,
 * feet, and inches
 */
public BMI(String name, int age, double weight, double feet,

double inches)

10.3 (The MyInteger class) Design a class named MyInteger. The class contains:

 ■ An int data field named value that stores the int value represented by this
object.

 ■ A constructor that creates a MyInteger object for the specified int value.
 ■ A getter method that returns the int value.
 ■ The methods isEven(), isOdd(), and isPrime() that return true if the

value in this object is even, odd, or prime, respectively.
 ■ The static methods isEven(int), isOdd(int), and isPrime(int) that

return true if the specified value is even, odd, or prime, respectively.
 ■ The static methods isEven(MyInteger), isOdd(MyInteger), and

isPrime(MyInteger) that return true if the specified value is even, odd,
or prime, respectively.

 ■ The methods equals(int) and equals(MyInteger) that return true if
the value in this object is equal to the specified value.

 ■ A static method parseInt(char[]) that converts an array of numeric
characters to an int value.

 ■ A static method parseInt(String) that converts a string into an int
value.

Draw the UML diagram for the class and then implement the class. Write a cli-
ent program that tests all methods in the class.

10.4 (The MyPoint class) Design a class named MyPoint to represent a point with
x- and y-coordinates. The class contains:

 ■ The data fields x and y that represent the coordinates with getter
methods.

 ■ A no-arg constructor that creates a point (0, 0).
 ■ A constructor that constructs a point with specified coordinates.
 ■ A method named distance that returns the distance from this point to a

specified point of the MyPoint type.
 ■ A method named distance that returns the distance from this point to

another point with specified x- and y-coordinates.

Draw the UML diagram for the class and then implement the class. Write a
test program that creates the two points (0, 0) and (10, 30.5) and displays the
distance between them.

Sections 10.4–10.8

*10.5 (Displaying the prime factors) Write a program that prompts the user to enter
a positive integer and displays all its smallest factors in decreasing order. For
example, if the integer is 120, the smallest factors are displayed as 5, 3, 2, 2,
2. Use the StackOfIntegers class to store the factors (e.g., 2, 2, 2, 3, 5) and
retrieve and display them in reverse order.

*10.6 (Displaying the prime numbers) Write a program that displays all the prime
numbers less than 120 in decreasing order. Use the StackOfIntegers class
to store the prime numbers (e.g., 2, 3, 5, ...) and retrieve and display them in
reverse order.

The MyPoint class

VideoNote

Programming Exercises 401

**10.7 (Game: ATM machine) Use the Account class created in Programming Exer-
cise 9.7 to simulate an ATM machine. Create ten accounts in an array with id
0, 1, . . . , 9, and initial balance $100. The system prompts the user to enter an
id. If the id is entered incorrectly, ask the user to enter a correct id. Once an id
is accepted, the main menu is displayed as shown in the sample run. You can
enter a choice 1 for viewing the current balance, 2 for withdrawing money, 3 for
depositing money, and 4 for exiting the main menu. Once you exit, the system
will prompt for an id again. Thus, once the system starts, it will not stop.

Enter an id: 4

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 100.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 2
Enter an amount to withdraw: 3

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 97.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 3
Enter an amount to deposit: 10

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 107.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 4

Enter an id:

402 Chapter 10 Object-Oriented Thinking

***10.8 (Financial: the Tax class) Programming Exercise 8.12 writes a program for
computing taxes using arrays. Design a class named Tax to contain the follow-
ing instance data fields:

 ■ int filingStatus: One of the four tax-filing statuses: 0—single filer, 1—
married filing jointly or qualifying widow(er), 2—married filing separately,
and 3—head of household. Use the public static constants SINGLE_FILER
(0), MARRIED_JOINTLY_OR_QUALIFYING_WIDOW(ER) (1), MARRIED_

SEPARATELY (2), HEAD_OF_HOUSEHOLD (3) to represent the statuses.
 ■ int[][] brackets: Stores the tax brackets for each filing status.
 ■ double[] rates: Stores the tax rates for each bracket.
 ■ double taxableIncome: Stores the taxable income.

Provide the getter and setter methods for each data field and the getTax()
method that returns the tax. Also provide a no-arg constructor and the construc-
tor Tax(filingStatus, brackets, rates, taxableIncome).

Draw the UML diagram for the class and then implement the class. Write a test
program that uses the Tax class to print the 2001 and 2009 tax tables for taxable
income from $50,000 to $60,000 with intervals of $1,000 for all four statuses.
The tax rates for the year 2009 were given in Table 3.2. The tax rates for 2001
are shown in Table 10.1.

Tax rate Single filers
Married filing jointly
or qualifying widow(er)

Married filing
separately Head of household

15% Up to $27,050 Up to $45,200 Up to $22,600 Up to $36,250

27.5% $27,051–$65,550 $45,201–$109,250 $22,601–$54,625 $36,251–$93,650

30.5% $65,551–$136,750 $109,251–$166,500 $54,626–$83,250 $93,651–$151,650

35.5% $136,751–$297,350 $166,501–$297,350 $83,251–$148,675 $151,651–$297,350

39.1% $297,351 or more $297,351 or more $ 148,676 or more $297,351 or more

TABLE 10.1 2001 United States Federal Personal Tax Rates

**10.9 (The Course class) Revise the Course class as follows:

 ■ The array size is fixed in Listing 10.6. Improve it to automatically increase
the array size by creating a new larger array and copying the contents of the
current array to it.

 ■ Implement the dropStudent method.
 ■ Add a new method named clear() that removes all students from the

course.

Write a test program that creates a course, adds three students, removes one,
and displays the students in the course.

*10.10 (The Queue class) Section 10.6 gives a class for Stack. Design a class named
Queue for storing integers. Like a stack, a queue holds elements. In a stack, the
elements are retrieved in a last-in first-out fashion. In a queue, the elements are
retrieved in a first-in first-out fashion. The class contains:

 ■ An int[] data field named elements that stores the int values in the
queue.

 ■ A data field named size that stores the number of elements in the queue.
 ■ A constructor that creates a Queue object with default capacity 8.
 ■ The method enqueue(int v) that adds v into the queue.

Programming Exercises 403

 ■ The method dequeue() that removes and returns the element from the
queue.

 ■ The method empty() that returns true if the queue is empty.
 ■ The method getSize() that returns the size of the queue.

Draw an UML diagram for the class. Implement the class with the initial array
size set to 8. The array size will be doubled once the number of the elements
exceeds the size. After an element is removed from the beginning of the array,
you need to shift all elements in the array one position the left. Write a test
program that adds 20 numbers from 1 to 20 into the queue and removes these
numbers and displays them.

*10.11 (Geometry: the Circle2D class) Define the Circle2D class that contains:

 ■ Two double data fields named x and y that specify the center of the circle
with getter methods.

 ■ A data field radius with a getter method.
 ■ A no-arg constructor that creates a default circle with (0, 0) for (x, y) and 1

for radius.
 ■ A constructor that creates a circle with the specified x, y, and radius.
 ■ A method getArea() that returns the area of the circle.
 ■ A method getPerimeter() that returns the perimeter of the circle.
 ■ A method contains(double x, double y) that returns true if the

specified point (x, y) is inside this circle (see Figure 10.21a).
 ■ A method contains(Circle2D circle) that returns true if the speci-

fied circle is inside this circle (see Figure 10.21b).
 ■ A method overlaps(Circle2D circle) that returns true if the speci-

fied circle overlaps with this circle (see Figure 10.21c).

FIGURE 10.21 (a) A point is inside the circle. (b) A circle is inside another circle. (c) A circle
overlaps another circle.

(a) (b) (c)

p

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a Circle2D object c1 (new Circle2D(2, 2, 5.5)),
displays its area and perimeter, and displays the result of c1.contains(3,
3), c1.contains(new Circle2D(4, 5, 10.5)), and c1.overlaps(new
Circle2D(3, 5, 2.3)).

***10.12 (Geometry: the Triangle2D class) Define the Triangle2D class that contains:

 ■ Three points named p1, p2, and p3 of the type MyPoint with getter and
setter methods. MyPoint is defined in Programming Exercise 10.4.

 ■ A no-arg constructor that creates a default triangle with the points (0, 0), (1,
1), and (2, 5).

 ■ A constructor that creates a triangle with the specified points.
 ■ A method getArea() that returns the area of the triangle.
 ■ A method getPerimeter() that returns the perimeter of the triangle.
 ■ A method contains(MyPoint p) that returns true if the specified point

p is inside this triangle (see Figure 10.22a).

404 Chapter 10 Object-Oriented Thinking

 ■ A method contains(Triangle2D t) that returns true if the specified
triangle is inside this triangle (see Figure 10.22b).

 ■ A method overlaps(Triangle2D t) that returns true if the specified
triangle overlaps with this triangle (see Figure 10.22c).

FIGURE 10.22 (a) A point is inside the triangle. (b) A triangle is inside another triangle.
(c) A triangle overlaps another triangle.

(a) (b) (c)

p

FIGURE 10.23 (a) A point is inside the triangle. (b) A point is outside the triangle.

(a) (b)

p
p

Draw the UML diagram for the class and then implement the class. Write
a test program that creates a Triangle2D objects t1 using the constructor
new Triangle2D(new MyPoint(2.5, 2), new MyPoint(4.2, 3),

new MyPoint(5, 3.5)), displays its area and perimeter, and displays the
result of t1.contains(3, 3), r1.contains(new Triangle2D(new

MyPoint(2.9, 2), new MyPoint(4, 1), MyPoint(1, 3.4))), and t1.
overlaps(new Triangle2D(new MyPoint(2, 5.5), new MyPoint(4,

-3), MyPoint(2, 6.5))).

(Hint: For the formula to compute the area of a triangle, see Programming Exer-
cise 2.19. To detect whether a point is inside a triangle, draw three dashed lines,
as shown in Figure 10.23. If the point is inside a triangle, each dashed line
should intersect a side only once. If a dashed line intersects a side twice, then
the point must be outside the triangle. For the algorithm of finding the intersect-
ing point of two lines, see Programming Exercise 3.25.)

*10.13 (Geometry: the MyRectangle2D class) Define the MyRectangle2D class that
contains:

 ■ Two double data fields named x and y that specify the center of the rec-
tangle with getter and setter methods. (Assume that the rectangle sides are
parallel to x- or y- axes.)

 ■ The data fields width and height with getter and setter methods.
 ■ A no-arg constructor that creates a default rectangle with (0, 0) for (x, y) and

1 for both width and height.
 ■ A constructor that creates a rectangle with the specified x, y, width, and

height.

Programming Exercises 405

 ■ A method getArea() that returns the area of the rectangle.
 ■ A method getPerimeter() that returns the perimeter of the rectangle.
 ■ A method contains(double x, double y) that returns true if the

specified point (x, y) is inside this rectangle (see Figure 10.24a).
 ■ A method contains(MyRectangle2D r) that returns true if the speci-

fied rectangle is inside this rectangle (see Figure 10.24b).
 ■ A method overlaps(MyRectangle2D r) that returns true if the speci-

fied rectangle overlaps with this rectangle (see Figure 10.24c).

FIGURE 10.24 A point is inside the rectangle. (b) A rectangle is inside another rectangle.
(c) A rectangle overlaps another rectangle. (d) Points are enclosed inside a rectangle.

(a) (b) (c) (d)

p

Draw the UML diagram for the class and then implement the class. Write a test
program that creates a MyRectangle2D object r1 (new MyRectangle2D(2,
2, 5.5, 4.9)), displays its area and perimeter, and displays the result of
r1.contains(3, 3), r1.contains(new MyRectangle2D(4, 5, 10.5,
3.2)), and r1.overlaps(new MyRectangle2D(3, 5, 2.3, 5.4)).

*10.14 (The MyDate class) Design a class named MyDate. The class contains:

 ■ The data fields year, month, and day that represent a date. month is
0-based, i.e., 0 is for January.

 ■ A no-arg constructor that creates a MyDate object for the current date.
 ■ A constructor that constructs a MyDate object with a specified elapsed time

since midnight, January 1, 1970, in milliseconds.
 ■ A constructor that constructs a MyDate object with the specified year,

month, and day.
 ■ Three getter methods for the data fields year, month, and day, respectively.
 ■ A method named setDate(long elapsedTime) that sets a new date for

the object using the elapsed time.

Draw the UML diagram for the class and then implement the class. Write a
test program that creates two MyDate objects (using new MyDate() and new
MyDate(34355555133101L)) and displays their year, month, and day.

(Hint: The first two constructors will extract the year, month, and day from
the elapsed time. For example, if the elapsed time is 561555550000 milli-
seconds, the year is 1987, the month is 9, and the day is 18. You may use the
GregorianCalendar class discussed in Programming Exercise 9.5 to sim-
plify coding.)

*10.15 (Geometry: the bounding rectangle) A bounding rectangle is the minimum rec-
tangle that encloses a set of points in a two-dimensional plane, as shown in
Figure 10.24d. Write a method that returns a bounding rectangle for a set of
points in a two-dimensional plane, as follows:

public static MyRectangle2D getRectangle(double[][] points)

406 Chapter 10 Object-Oriented Thinking

The Rectangle2D class is defined in Programming Exercise 10.13. Write a
test program that prompts the user to enter five points and displays the bounding
rectangle’s center, width, and height. Here is a sample run:

Enter five points: 1.0 2.5 3 4 5 6 7 8 9 10
The bounding rectangle's center (5.0, 6.25), width 8.0, height 7.5

Section 10.9

*10.16 (Divisible by 2 or 3) Find the first ten numbers with 50 decimal digits that are
divisible by 2 or 3.

*10.17 (Square numbers) Find the first ten square numbers that are greater than
Long.MAX_VALUE. A square number is a number in the form of n2. For exam-
ple, 4, 9, and 16 are square numbers. Find an efficient approach to run your
program fast.

*10.18 (Large prime numbers) Write a program that finds five prime numbers larger
than Long.MAX_VALUE.

*10.19 (Mersenne prime) A prime number is called a Mersenne prime if it can be writ-
ten in the form 2p - 1 for some positive integer p. Write a program that finds
all Mersenne primes with p … 100 and displays the output as shown below.
(Hint: You have to use BigInteger to store the number, because it is too big to
be stored in long. Your program may take several hours to run.)

 p 2^p – 1

 2 3
 3 7
 5 31
...

*10.20 (Approximate e) Programming Exercise 5.26 approximates e using the following
series:

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ c +

1

i!

In order to get better precision, use BigDecimal with 25 digits of precision in
the computation. Write a program that displays the e value for i = 100, 200, . . . ,
and 1000.

10.21 (Divisible by 5 or 6) Find the first ten numbers greater than Long.MAX_VALUE
that are divisible by 5 or 6.

Sections 10.10–10.11

**10.22 (Implement the String class) The String class is provided in the Java library.
Provide your own implementation for the following methods (name the new
class MyString1):

public MyString1(char[] chars);
public char charAt(int index);
public int length();
public MyString1 substring(int begin, int end);
public MyString1 toLowerCase();
public boolean equals(MyString1 s);
public static MyString1 valueOf(int i);

Programming Exercises 407

**10.23 (Implement the String class) The String class is provided in the Java library.
Provide your own implementation for the following methods (name the new
class MyString2):

public MyString2(String s);
public int compare(String s);
public MyString2 substring(int begin);
public MyString2 toUpperCase();
public char[] toChars();
public static MyString2 valueOf(boolean b);

10.24 (Implement the Character class) The Character class is provided in the Java
library. Provide your own implementation for this class. Name the new class
MyCharacter.

**10.25 (New string split method) The split method in the String class returns an
array of strings consisting of the substrings split by the delimiters. However, the
delimiters are not returned. Implement the following new method that returns
an array of strings consisting of the substrings split by the matching delimiters,
including the matching delimiters.

public static String[] split(String s, String regex)

For example, split("ab#12#453", "#") returns ab, #, 12, #, 453 in an
array of String, and split("a?b?gf#e", "[?#]") returns a, b, ?, b, gf,
#, and e in an array of String.

*10.26 (Calculator) Revise Listing 7.9, Calculator.java, to accept an expression as
a string in which the operands and operator are separated by zero or more
spaces. For example, 3+4 and 3 + 4 are acceptable expressions. Here is a
sample run:

**10.27 (Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder1):

public MyStringBuilder1(String s);
public MyStringBuilder1 append(MyStringBuilder1 s);
public MyStringBuilder1 append(int i);
public int length();
public char charAt(int index);
public MyStringBuilder1 toLowerCase();
public MyStringBuilder1 substring(int begin, int end);
public String toString();

408 Chapter 10 Object-Oriented Thinking

**10.28 (Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder2):

public MyStringBuilder2();
public MyStringBuilder2(char[] chars);
public MyStringBuilder2(String s);
public MyStringBuilder2 insert(int offset, MyStringBuilder2 s);
public MyStringBuilder2 reverse();
public MyStringBuilder2 substring(int begin);
public MyStringBuilder2 toUpperCase();

INHERITANCE
AND POLYMORPHISM

Objectives
■ To define a subclass from a superclass through inheritance (§11.2).

■ To invoke the superclass’s constructors and methods using the super
keyword (§11.3).

■ To override instance methods in the subclass (§11.4).

■ To distinguish differences between overriding and overloading
(§11.5).

■ To explore the toString() method in the Object class (§11.6).

■ To discover polymorphism and dynamic binding (§§11.7–11.8).

■ To describe casting and explain why explicit downcasting is necessary
(§11.9).

■ To explore the equals method in the Object class (§11.10).

■ To store, retrieve, and manipulate objects in an ArrayList (§11.11).

■ To construct an array list from an array, to sort and shuffle a list, and
to obtain max and min element from a list (§11.12).

■ To implement a Stack class using ArrayList (§11.13).

■ To enable data and methods in a superclass accessible from subclasses
using the protected visibility modifier (§11.14).

■ To prevent class extending and method overriding using the final
modifier (§11.15).

CHAPTER

11

410 Chapter 11 Inheritance and Polymorphism

11.1 Introduction
Object-oriented programming allows you to define new classes from existing classes.
This is called inheritance.

As discussed earlier in the book, the procedural paradigm focuses on designing methods and
the object-oriented paradigm couples data and methods together into objects. Software design
using the object-oriented paradigm focuses on objects and operations on objects. The object-
oriented approach combines the power of the procedural paradigm with an added dimension
that integrates data with operations into objects.

Inheritance is an important and powerful feature for reusing software. Suppose you need
to define classes to model circles, rectangles, and triangles. These classes have many common
features. What is the best way to design these classes so as to avoid redundancy and make the
system easy to comprehend and easy to maintain? The answer is to use inheritance.

11.2 Superclasses and Subclasses
Inheritance enables you to define a general class (i.e., a superclass) and later extend it
to more specialized classes (i.e., subclasses).

You use a class to model objects of the same type. Different classes may have some com-
mon properties and behaviors, which can be generalized in a class that can be shared by other
classes. You can define a specialized class that extends the generalized class. The specialized
classes inherit the properties and methods from the general class.

Consider geometric objects. Suppose you want to design the classes to model geometric
objects such as circles and rectangles. Geometric objects have many common properties and
behaviors. They can be drawn in a certain color and be filled or unfilled. Thus a general class
GeometricObject can be used to model all geometric objects. This class contains the proper-
ties color and filled and their appropriate getter and setter methods. Assume that this class
also contains the dateCreated property and the getDateCreated() and toString()
methods. The toString() method returns a string representation of the object. Since a circle
is a special type of geometric object, it shares common properties and methods with other
geometric objects. Thus it makes sense to define the Circle class that extends the Geomet-
ricObject class. Likewise, Rectangle can also be defined as a subclass of GeometricOb-
ject. Figure 11.1 shows the relationship among these classes. A triangular arrow pointing to
the superclass is used to denote the inheritance relationship between the two classes involved.

In Java terminology, a class C1 extended from another class C2 is called a subclass, and C2
is called a superclass. A superclass is also referred to as a parent class or a base class, and a
subclass as a child class, an extended class, or a derived class. A subclass inherits accessible
data fields and methods from its superclass and may also add new data fields and methods.

TheCircle class inherits all accessible data fields and methods from the GeometricObject
class. In addition, it has a new data field, radius, and its associated getter and setter methods.
The Circle class also contains the getArea(), getPerimeter(), and getDiameter()
methods for returning the area, perimeter, and diameter of the circle.

The Rectangle class inherits all accessible data fields and methods from the Geomet-
ricObject class. In addition, it has the data fields width and height and their associated
getter and setter methods. It also contains the getArea() and getPerimeter() methods for
returning the area and perimeter of the rectangle.

The GeometricObject, Circle, and Rectangle classes are shown in Listings 11.1,
11.2, and 11.3.

Note
To avoid a naming conflict with the improved GeometricObject, Circle,

and Rectangle classes introduced in Chapter 13, we’ll name these classes

Key
Point

inheritance

why inheritance?

Key
Point

Geometric class hierarchy

VideoNote

subclass
superclass

avoid naming conflicts

11.2 Superclasses and Subclasses 411

SimpleGeometricObject, CircleFromSimpleGeometricObject, and Rec-

tangleFromSimpleGeometricObject in this chapter. For simplicity, we will still

refer to them in the text as GeometricObject, Circle, and Rectangle classes.

The best way to avoid naming conflicts is to place these classes in different packages.

However, for simplicity and consistency, all classes in this book are placed in the default

package.

LISTING 11.1 SimpleGeometricObject.java
 1 public class SimpleGeometricObject {
 2 private String color = "white";
 3 private boolean filled;
 4 private java.util.Date dateCreated;
 5
 6 /** Construct a default geometric object */
 7 public SimpleGeometricObject() {
8 dateCreated = new java.util.Date();
 9 }

data fields

constructor
date constructed

FIGURE 11.1 The GeometricObject class is the superclass for Circle and Rectangle.

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

Creates a GeometricObject with the specified color and filled
 values.

+GeometricObject(color: String,
 filled: boolean)
+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
 filled: boolean)

+getRadius(): double

+getArea(): double

+setRadius(radius: double): void

+printCircle(): void

+getPerimeter(): double

+getDiameter(): double

Rectangle

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
 color: String, filled: boolean)

+getWidth(): double

+getHeight(): double

+setHeight(height: double): void

+setWidth(width: double): void

+getArea(): double

+getPerimeter(): double

-width: double

412 Chapter 11 Inheritance and Polymorphism

10
11 /** Construct a geometric object with the specified color
12 * and filled value */
13 public SimpleGeometricObject(String color, boolean filled) {
14 dateCreated = new java.util.Date();
15 this.color = color;
16 this.filled = filled;
17 }
18
19 /** Return color */
20 public String getColor() {
21 return color;
22 }
23
24 /** Set a new color */
25 public void setColor(String color) {
26 this.color = color;
27 }
28
29 /** Return filled. Since filled is boolean,
30 its getter method is named isFilled */
31 public boolean isFilled() {
32 return filled;
33 }
34
35 /** Set a new filled */
36 public void setFilled(boolean filled) {
37 this.filled = filled;
38 }
39
40 /** Get dateCreated */
41 public java.util.Date getDateCreated() {
42 return dateCreated;
43 }
44
45 /** Return a string representation of this object */
46 public String toString() {
47 return "created on " + dateCreated + "\ncolor: " + color +
48 " and filled: " + filled;
49 }
50 }

LISTING 11.2 CircleFromSimpleGeometricObject.java
 1 public class CircleFromSimpleGeometricObject
 2 extends SimpleGeometricObject
 3 private double radius;
 4
 5 public CircleFromSimpleGeometricObject() {
 6 }
 7
 8 public CircleFromSimpleGeometricObject(double radius) {
 9 this.radius = radius;
10 }
11
12 public CircleFromSimpleGeometricObject(double radius,
13 String color, boolean filled) {
14 this.radius = radius;
15 setColor(color);
16 setFilled(filled);

extends superclass
data fields

constructor

11.2 Superclasses and Subclasses 413

17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double radius) {
26 this.radius = radius;
27 }
28
29 /** Return area */
30 public double getArea() {
31 return radius * radius * Math.PI;
32 }
33
34 /** Return diameter */
35 public double getDiameter() {
36 return 2 * radius;
37 }
38
39 /** Return perimeter */
40 public double getPerimeter() {
41 return 2 * radius * Math.PI;
42 }
43
44 /** Print the circle info */
45 public void printCircle() {
46 System.out.println("The circle is created " + getDateCreated() +
47 " and the radius is " + radius);
48 }
49 }

The Circle class (Listing 11.2) extends the GeometricObject class (Listing 11.1) using
the following syntax:

methods

The keyword extends (lines 1–2) tells the compiler that the Circle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

The overloaded constructor Circle(double radius, String color, boolean

filled) is implemented by invoking the setColor and setFilled methods to set the color
and filled properties (lines 12–17). These two public methods are defined in the superclass
GeometricObject and are inherited in Circle, so they can be used in the Circle class.

You might attempt to use the data fields color and filled directly in the constructor as
follows:

public CircleFromSimpleGeometricObject(
double radius, String color, boolean filled) {

this.radius = radius;
this.color = color; // Illegal
this.filled = filled; // Illegal

}

private member in superclass

Subclass Superclass

public class Circle extends GeometricObject

414 Chapter 11 Inheritance and Polymorphism

This is wrong, because the private data fields color and filled in the GeometricObject
class cannot be accessed in any class other than in the GeometricObject class itself. The
only way to read and modify color and filled is through their getter and setter methods.

The Rectangle class (Listing 11.3) extends the GeometricObject class (Listing 11.1)
using the following syntax:

Subclass Superclass

public class Rectangle extends GeometricObject

The keyword extends (lines 1–2) tells the compiler that the Rectangle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

LISTING 11.3 RectangleFromSimpleGeometricObject.java
 1 public class RectangleFromSimpleGeometricObject
 2 extends SimpleGeometricObject {
 3 private double width;
 4 private double height;
 5
 6 public RectangleFromSimpleGeometricObject() {
 7 }
 8
 9 public RectangleFromSimpleGeometricObject(
10 double width, double height) {
11 this.width = width;
12 this.height = height;
13 }
14
15 public RectangleFromSimpleGeometricObject(
16 double width, double height, String color, boolean filled) {
17 this.width = width;
18 this.height = height;
19 setColor(color);
20 setFilled(filled);
21 }
22
23 /** Return width */
24 public double getWidth() {
25 return width;
26 }
27
28 /** Set a new width */
29 public void setWidth(double width) {
30 this.width = width;
31 }
32
33 /** Return height */
34 public double getHeight() {
35 return height;
36 }
37
38 /** Set a new height */
39 public void setHeight(double height) {
40 this.height = height;
41 }

extends superclass
data fields

constructor

methods

11.2 Superclasses and Subclasses 415

42
43 /** Return area */
44 public double getArea() {
45 return width * height;
46 }
47
48 /** Return perimeter */
49 public double getPerimeter() {
50 return 2 * (width + height);
51 }
52 }

The code in Listing 11.4 creates objects of Circle and Rectangle and invokes the methods
on these objects. The toString() method is inherited from the GeometricObject class
and is invoked from a Circle object (line 5) and a Rectangle object (line 13).

LISTING 11.4 TestCircleRectangle.java
 1 public class TestCircleRectangle {
 2 public static void main(String[] args) {
 3 CircleFromSimpleGeometricObject circle =
 4 new CircleFromSimpleGeometricObject(1);
 5 System.out.println("A circle " + circle.toString());
 6 System.out.println("The color is " + circle.getColor());
 7 System.out.println("The radius is " + circle.getRadius());
 8 System.out.println("The area is " + circle.getArea());
 9 System.out.println("The diameter is " + circle.getDiameter());
10
11 RectangleFromSimpleGeometricObject rectangle =
12 new RectangleFromSimpleGeometricObject(2, 4);
13 System.out.println("\nA rectangle " + rectangle.toString());
14 System.out.println("The area is " + rectangle.getArea());
15 System.out.println("The perimeter is " +
16 rectangle.getPerimeter());
17 }
18 }

Circle object
invoke toString
invoke getColor

Rectangle object
invoke toString

A circle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The color is white
The radius is 1.0
The area is 3.141592653589793
The diameter is 2.0
A rectangle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The area is 8.0
The perimeter is 12.0

Note the following points regarding inheritance:

 ■ Contrary to the conventional interpretation, a subclass is not a subset of its superclass.
In fact, a subclass usually contains more information and methods than its superclass.

 ■ Private data fields in a superclass are not accessible outside the class. Therefore,
they cannot be used directly in a subclass. They can, however, be accessed/mutated
through public accessors/mutators if defined in the superclass.

more in subclass

private data fields

416 Chapter 11 Inheritance and Polymorphism

 ■ Not all is-a relationships should be modeled using inheritance. For example, a square
is a rectangle, but you should not extend a Square class from a Rectangle class,
because the width and height properties are not appropriate for a square. Instead,
you should define a Square class to extend the GeometricObject class and define
the side property for the side of a square.

 ■ Inheritance is used to model the is-a relationship. Do not blindly extend a class just
for the sake of reusing methods. For example, it makes no sense for a Tree class to
extend a Person class, even though they share common properties such as height
and weight. A subclass and its superclass must have the is-a relationship.

 ■ Some programming languages allow you to derive a subclass from several classes.
This capability is known as multiple inheritance. Java, however, does not allow mul-
tiple inheritance. A Java class may inherit directly from only one superclass. This
restriction is known as single inheritance. If you use the extends keyword to define
a subclass, it allows only one parent class. Nevertheless, multiple inheritance can be
achieved through interfaces, which will be introduced in Section 13.4.

11.1 True or false? A subclass is a subset of a superclass.

11.2 What keyword do you use to define a subclass?

11.3 What is single inheritance? What is multiple inheritance? Does Java support multiple
inheritance?

11.3 Using the super Keyword
The keyword super refers to the superclass and can be used to invoke the super-
class’s methods and constructors.

A subclass inherits accessible data fields and methods from its superclass. Does it inherit
constructors? Can the superclass’s constructors be invoked from a subclass? This section
addresses these questions and their ramifications.

Section 9.14, The this Reference, introduced the use of the keyword this to reference
the calling object. The keyword super refers to the superclass of the class in which super
appears. It can be used in two ways:

 ■ To call a superclass constructor.

 ■ To call a superclass method.

11.3.1 Calling Superclass Constructors
A constructor is used to construct an instance of a class. Unlike properties and methods, the
constructors of a superclass are not inherited by a subclass. They can only be invoked from
the constructors of the subclasses using the keyword super.

The syntax to call a superclass’s constructor is:

super(), or super(parameters);

The statement super() invokes the no-arg constructor of its superclass, and the statement
super(arguments) invokes the superclass constructor that matches the arguments. The
statement super() or super(arguments) must be the first statement of the subclass’s con-
structor; this is the only way to explicitly invoke a superclass constructor. For example, the
constructor in lines 12–17 in Listing 11.2 can be replaced by the following code:

public CircleFromSimpleGeometricObject(
double radius, String color, boolean filled) {

nonextensible is-a

no blind extension

multiple inheritance

single inheritance

✓Point✓Check

Key
Point

11.3 Using the super Keyword 417

super(color, filled);
this.radius = radius;

}

Caution
You must use the keyword super to call the superclass constructor, and the call must

be the first statement in the constructor. Invoking a superclass constructor’s name in a

subclass causes a syntax error.

11.3.2 Constructor Chaining
A constructor may invoke an overloaded constructor or its superclass constructor. If neither
is invoked explicitly, the compiler automatically puts super() as the first statement in the
constructor. For example:

public ClassName() {
 // some statements
}

public ClassName() {
super();

 // some statements
}

public ClassName(double d) {
 // some statements
}

public ClassName(double d) {
super();

 // some statements
}

Equivalent

Equivalent

In any case, constructing an instance of a class invokes the constructors of all the superclasses
along the inheritance chain. When constructing an object of a subclass, the subclass construc-
tor first invokes its superclass constructor before performing its own tasks. If the superclass
is derived from another class, the superclass constructor invokes its parent-class constructor
before performing its own tasks. This process continues until the last constructor along the
inheritance hierarchy is called. This is called constructor chaining.

Consider the following code:

 1 public class Faculty extends Employee {
 2 public static void main(String[] args) {
 3 new Faculty();
 4 }
 5
 6 public Faculty() {
 7 System.out.println("(4) Performs Faculty's tasks");
 8 }
 9 }
10
11 class Employee extends Person {
12 public Employee() {
13 this("(2) Invoke Employee's overloaded constructor");
14 System.out.println("(3) Performs Employee's tasks ");
15 }
16
17 public Employee(String s) {
18 System.out.println(s);
19 }
20 }
21
22 class Person {

constructor chaining

invoke overloaded
constructor

418 Chapter 11 Inheritance and Polymorphism

23 public Person() {
24 System.out.println("(1) Performs Person's tasks");
25 }
26 }

(1) Performs Person's tasks
(2) Invoke Employee's overloaded constructor
(3) Performs Employee's tasks
(4) Performs Faculty's tasks

The program produces the preceding output. Why? Let us discuss the reason. In line 3,
new Faculty() invokes Faculty’s no-arg constructor. Since Faculty is a subclass of
Employee, Employee’s no-arg constructor is invoked before any statements in Faculty’s
constructor are executed. Employee’s no-arg constructor invokes Employee’s second con-
structor (line 13). Since Employee is a subclass of Person, Person’s no-arg constructor is
invoked before any statements in Employee’s second constructor are executed. This process
is illustrated in the following figure.

Faculty() {

 Performs Faculty's
 tasks;

}

Employee() {
this("(2) ...");

 Performs Employee's
 tasks;

}

Employee(String s) {

 Performs Employee's
 tasks;

}

Person() {

 Performs Person's
 tasks;

}

Caution
If a class is designed to be extended, it is better to provide a no-arg constructor to avoid

programming errors. Consider the following code:

1 public class Apple extends Fruit {
2 }
3
4 class Fruit {
5 public Fruit(String name) {
6 System.out.println("Fruit's constructor is invoked");
7 }
8 }

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor

is defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor

automatically invokes Fruit’s no-arg constructor. However, Fruit does not have a

no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the

program cannot be compiled.

Design Guide
If possible, you should provide a no-arg constructor for every class to make the class

easy to extend and to avoid errors.

11.3.3 Calling Superclass Methods
The keyword super can also be used to reference a method other than the constructor in the
superclass. The syntax is:

super.method(parameters);

no-arg constructor

no-arg constructor

11.4 Overriding Methods 419

You could rewrite the printCircle() method in the Circle class as follows:

public void printCircle() {
 System.out.println("The circle is created " +

super.getDateCreated() + " and the radius is " + radius);
}

It is not necessary to put super before getDateCreated() in this case, however, because
getDateCreated is a method in the GeometricObject class and is inherited by the Circle
class. Nevertheless, in some cases, as shown in the next section, the keyword super is needed.

11.4 What is the output of running the class C in (a)? What problem arises in compiling the
program in (b)? ✓Point✓Check

class A {
public A() {

 System.out.println(
"A's no-arg constructor is invoked");

 }
}

class B extends A {
}

public class C {
public static void main(String[] args) {

 B b = new B();
 }
}

(a)

class A {
public A(int x) {

 }
}

class B extends A {
public B() {

 }
}

public class C {
public static void main(String[] args) {

 B b = new B();
 }
}

(b)

11.5 How does a subclass invoke its superclass’s constructor?

11.6 True or false? When invoking a constructor from a subclass, its superclass’s no-arg
constructor is always invoked.

11.4 Overriding Methods
To override a method, the method must be defined in the subclass using the same sig-
nature and the same return type as in its superclass.

A subclass inherits methods from a superclass. Sometimes it is necessary for the subclass to modify
the implementation of a method defined in the superclass. This is referred to as method overriding.

The toString method in the GeometricObject class (lines 46–49 in Listing 11.1)
returns the string representation of a geometric object. This method can be overridden to
return the string representation of a circle. To override it, add the following new method in the
Circle class in Listing 11.2.

1 public class CircleFromSimpleGeometricObject
2 extends SimpleGeometricObject {
3 // Other methods are omitted
4
5 // Override the toString method defined in the superclass
6 public String toString() {
7 return super.toString() + "\nradius is " + radius;
8 }
9 }

Key
Point

method overriding

toString in superclass

420 Chapter 11 Inheritance and Polymorphism

ThetoString() method is defined in the GeometricObject class and modified in the Circle
class. Both methods can be used in the Circle class. To invoke the toString method defined in
the GeometricObject class from the Circle class, use super.toString() (line 7).

Can a subclass of Circle access the toString method defined in the GeometricOb-
ject class using syntax such as super.super.toString()? No. This is a syntax error.

Several points are worth noting:

 ■ An instance method can be overridden only if it is accessible. Thus a private method can-
not be overridden, because it is not accessible outside its own class. If a method defined
in a subclass is private in its superclass, the two methods are completely unrelated.

 ■ Like an instance method, a static method can be inherited. However, a static method
cannot be overridden. If a static method defined in the superclass is redefined in a
subclass, the method defined in the superclass is hidden. The hidden static methods
can be invoked using the syntax SuperClassName.staticMethodName.

11.7 True or false? You can override a private method defined in a superclass.

11.8 True or false? You can override a static method defined in a superclass.

11.9 How do you explicitly invoke a superclass’s constructor from a subclass?

11.10 How do you invoke an overridden superclass method from a subclass?

11.5 Overriding vs. Overloading
Overloading means to define multiple methods with the same name but different signa-
tures. Overriding means to provide a new implementation for a method in the subclass.

You learned about overloading methods in Section 6.8. To override a method, the method
must be defined in the subclass using the same signature and the same return type.

Let us use an example to show the differences between overriding and overloading. In (a)
below, the method p(double i) in class A overrides the same method defined in class B. In
(b), however, the class A has two overloaded methods: p(double i) and p(int i). The
method p(double i) is inherited from B.

no super.super.methodName()

override accessible instance
method

cannot override static method

✓Point✓Check

Key
Point

public class Test {
public static void main(String[] args) {

 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
public void p(double i) {

 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overrides the method in B

public void p(double i) {
 System.out.println(i);
 }
}

(a)

public class Test {
public static void main(String[] args) {

 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
public void p(double i) {

 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overloads the method in B

public void p(int i) {
 System.out.println(i);
 }
}

(b)

11.5 Overriding vs. Overloading 421

When you run the Test class in (a), both a.p(10) and a.p(10.0) invoke the p(double
i) method defined in class A to display 10.0. When you run the Test class in (b), a.p(10)
invokes the p(int i) method defined in class A to display 10, and a.p(10.0) invokes the
p(double i) method defined in class B to display 20.0.

Note the following:

 ■ Overridden methods are in different classes related by inheritance; overloaded meth-
ods can be either in the same class or different classes related by inheritance.

 ■ Overridden methods have the same signature and return type; overloaded methods
have the same name but a different parameter list.

To avoid mistakes, you can use a special Java syntax, called override annotation, to place
@Override before the method in the subclass. For example:

1 public class CircleFromSimpleGeometricObject
2 extends SimpleGeometricObject {
3 // Other methods are omitted
4
5 @Override
6 public String toString() {
7 return super.toString() + "\nradius is " + radius;
8 }
9 }

This annotation denotes that the annotated method is required to override a method in the
superclass. If a method with this annotation does not override its superclass’s method, the
compiler will report an error. For example, if toString is mistyped as tostring, a compile
error is reported. If the override annotation isn’t used, the compile won’t report an error. Using
annotation avoids mistakes.

11.11 Identify the problems in the following code:

 1 public class Circle {
 2 private double radius;
 3
 4 public Circle(double radius) {
 5 radius = radius;
 6 }
 7
 8 public double getRadius() {
 9 return radius;
10 }
11
12 public double getArea() {
13 return radius * radius * Math.PI;
14 }
15 }
16
17 class B extends Circle {
18 private double length;
19
20 B(double radius, double length) {
21 Circle(radius);
22 length = length;
23 }
24
25 @Override

override annotation

toString in superclass

✓Point✓Check

422 Chapter 11 Inheritance and Polymorphism

26 public double getArea() {
27 return getArea() * length;
28 }
29 }

11.12 Explain the difference between method overloading and method overriding.

11.13 If a method in a subclass has the same signature as a method in its superclass with the
same return type, is the method overridden or overloaded?

11.14 If a method in a subclass has the same signature as a method in its superclass with a
different return type, will this be a problem?

11.15 If a method in a subclass has the same name as a method in its superclass with differ-
ent parameter types, is the method overridden or overloaded?

11.16 What is the benefit of using the @Override annotation?

11.6 The Object Class and Its toString() Method
Every class in Java is descended from the java.lang.Object class.

If no inheritance is specified when a class is defined, the superclass of the class is Object by
default. For example, the following two class definitions are the same:

Key
Point

 public class ClassName {
 ...
 }

Equivalent
 public class ClassName extends Object {
 ...
 }

Classes such as String, StringBuilder, Loan, and GeometricObject are implic-
itly subclasses of Object (as are all the main classes you have seen in this book so far).
It is important to be familiar with the methods provided by the Object class so that
you can use them in your classes. This section introduces the toString method in the
Object class.

The signature of the toString() method is:

public String toString()

Invoking toString() on an object returns a string that describes the object. By default, it
returns a string consisting of a class name of which the object is an instance, an at sign (@),
and the object’s memory address in hexadecimal. For example, consider the following code
for the Loan class defined in Listing 10.2:

Loan loan = new Loan();
System.out.println(loan.toString());

The output for this code displays something like Loan@15037e5. This message is not very
helpful or informative. Usually you should override the toString method so that it returns
a descriptive string representation of the object. For example, the toString method in the
Object class was overridden in the GeometricObject class in lines 46–49 in Listing 11.1
as follows:

public String toString() {
return "created on " + dateCreated + "\ncolor: " + color +

" and filled: " + filled;
 }

toString()

string representation

11.7 Polymorphism 423

Note
You can also pass an object to invoke System.out.println(object) or

System.out.print(object). This is equivalent to invoking System.out

.println(object.toString()) or System.out.print(object.

toString()). Thus, you could replace System.out.println(loan

.toString()) with System.out.println(loan).

11.7 Polymorphism
Polymorphism means that a variable of a supertype can refer to a subtype object.

The three pillars of object-oriented programming are encapsulation, inheritance, and poly-
morphism. You have already learned the first two. This section introduces polymorphism.

First, let us define two useful terms: subtype and supertype. A class defines a type. A
type defined by a subclass is called a subtype, and a type defined by its superclass is called
a supertype. Therefore, you can say that Circle is a subtype of GeometricObject and
GeometricObject is a supertype for Circle.

The inheritance relationship enables a subclass to inherit features from its superclass with
additional new features. A subclass is a specialization of its superclass; every instance of a
subclass is also an instance of its superclass, but not vice versa. For example, every circle
is a geometric object, but not every geometric object is a circle. Therefore, you can always
pass an instance of a subclass to a parameter of its superclass type. Consider the code in
Listing 11.5.

LISTING 11.5 PolymorphismDemo.java
 1 public class PolymorphismDemo {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Display circle and rectangle properties
 5 displayObject(new CircleFromSimpleGeometricObject
 6 (1, "red", false));
 7 displayObject(new RectangleFromSimpleGeometricObject
 8 (1, 1, "black", true));
 9 }
10
11 /** Display geometric object properties */
12 public static void displayObject(SimpleGeometricObject object) {
13 System.out.println("Created on " + object.getDateCreated() +
14 ". Color is " + object.getColor());
15 }
16 }

print object

Key
Point

subtype

supertype

polymorphic call

polymorphic call

Created on Mon Mar 09 19:25:20 EDT 2011. Color is red
Created on Mon Mar 09 19:25:20 EDT 2011. Color is black

The method displayObject (line 12) takes a parameter of the GeometricObject type.
You can invoke displayObject by passing any instance of GeometricObject (e.g., new
CircleFromSimpleGeometricObject(1, "red", false) and new Rectangle-

FromSimpleGeometricObject(1, 1, "black", false) in lines 5–8). An object of
a subclass can be used wherever its superclass object is used. This is commonly known as
polymorphism (from a Greek word meaning “many forms”). In simple terms, polymorphism
means that a variable of a supertype can refer to a subtype object.

what is polymorphism?

424 Chapter 11 Inheritance and Polymorphism

11.8 Dynamic Binding
A method can be implemented in several classes along the inheritance chain. The JVM
decides which method is invoked at runtime.

A method can be defined in a superclass and overridden in its subclass. For example, the
toString() method is defined in the Object class and overridden in GeometricObject.
Consider the following code:

Object o = new GeometricObject();
System.out.println(o.toString());

Which toString() method is invoked by o? To answer this question, we first introduce
two terms: declared type and actual type. A variable must be declared a type. The type that
declares a variable is called the variable’s declared type. Here o’s declared type is Object. A
variable of a reference type can hold a null value or a reference to an instance of the declared
type. The instance may be created using the constructor of the declared type or its subtype.
The actual type of the variable is the actual class for the object referenced by the variable.
Here o’s actual type is GeometricObject, because o references an object created using new
GeometricObject(). Which toString() method is invoked by o is determined by o’s
actual type. This is known as dynamic binding.

Dynamic binding works as follows: Suppose an object o is an instance of classes C1, C2, . . . ,
Cn-1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, . . . , and Cn-1 is a subclass of Cn,
as shown in Figure 11.2. That is, Cn is the most general class, and C1 is the most specific class. In
Java, Cn is the Object class. If o invokes a method p, the JVM searches for the implementation
of the method p in C1, C2, . . . , Cn-1, and Cn, in this order, until it is found. Once an implementa-
tion is found, the search stops and the first-found implementation is invoked.

Key
Point

declared type

actual type

dynamic binding

FIGURE 11.2 The method to be invoked is dynamically bound at runtime.

.

java.lang.Object
If o is an instance of C1, o is also an
instance of C2, C3, …, Cn-1, and Cn

Cn Cn-1 C2 C1

Listing 11.6 gives an example to demonstrate dynamic binding.

LISTING 11.6 DynamicBindingDemo.java
 1 public class DynamicBindingDemo {
 2 public static void main(String[] args) {
 3 m(new GraduateStudent());
 4 m(new Student());
 5 m(new Person());
 6 m(new Object());
 7 }
 8
 9 public static void m(Object x) {
10 System.out.println(x.toString());
11 }
12 }
13
14 class GraduateStudent extends Student {
15 }
16
17 class Student extends Person {
18 @Override
19 public String toString() {

Polymorphism and dynamic

binding demo

VideoNote

polymorphic call

dynamic binding

override toString()

11.8 Dynamic Binding 425

20 return "Student" ;
21 }
22 }
23
24 class Person extends Object {
25 @Override
26 public String toString() {
27 return "Person" ;
28 }
29 }

override toString()

Student
Student
Person
java.lang.Object@130c19b

Method m (line 9) takes a parameter of the Object type. You can invoke m with any object
(e.g., new GraduateStudent(), new Student(), new Person(), and new Object())
in lines 3–6).

When the method m(Object x) is executed, the argument x’s toString method is
invoked. x may be an instance of GraduateStudent, Student, Person, or Object. The
classes GraduateStudent, Student, Person, and Object have their own implementations
of the toString method. Which implementation is used will be determined by x’s actual type
at runtime. Invoking m(new GraduateStudent()) (line 3) causes the toString method
defined in the Student class to be invoked.

Invoking m(new Student()) (line 4) causes the toString method defined in the Stu-
dent class to be invoked; invoking m(new Person()) (line 5) causes the toString method
defined in the Person class to be invoked; and invoking m(new Object()) (line 6) causes
the toString method defined in the Object class to be invoked.

Matching a method signature and binding a method implementation are two separate
issues. The declared type of the reference variable decides which method to match at com-
pile time. The compiler finds a matching method according to the parameter type, number of
parameters, and order of the parameters at compile time. A method may be implemented in
several classes along the inheritance chain. The JVM dynamically binds the implementation
of the method at runtime, decided by the actual type of the variable.

11.17 What is polymorphism? What is dynamic binding?

11.18 Describe the difference between method matching and method binding.

11.19 Can you assign new int[50], new Integer[50], new String[50], or new
Object[50], into a variable of Object[] type?

11.20 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Integer[] list1 = {12, 24, 55, 1};
 4 Double[] list2 = {12.4, 24.0, 55.2, 1.0};
 5 int[] list3 = {1, 2, 3};
 6 printArray(list1);
 7 printArray(list2);
 8 printArray(list3);
 9 }
10
11 public static void printArray(Object[] list) {
12 for (Object o: list)

matching vs. binding

✓Point✓Check

426 Chapter 11 Inheritance and Polymorphism

13 System.out.print(o + " ");
14 System.out.println();
15 }
16 }

11.21 Show the output of the following code:

public class Test {
public static void main(String[] args) {

new Person().printPerson();
new Student().printPerson();

 }
}

class Student extends Person {
 @Override

public String getInfo() {
return "Student";

 }
}

class Person {
public String getInfo() {

return "Person";
 }

public void printPerson() {
 System.out.println(getInfo());
 }
}

(a)

public class Test {
public static void main(String[] args) {

new Person().printPerson();
new Student().printPerson();

 }
}

class Student extends Person {
private String getInfo() {

return "Student";
 }
}

class Person {
private String getInfo() {

return "Person";
 }

public void printPerson() {
 System.out.println(getInfo());
 }
}

(b)

11.22 Show the output of following program:

 1 public class Test {
 2 public static void main(String[] args) {
 3 A a = new A(3);
 4 }
 5 }
 6
 7 class A extends B {
 8 public A(int t) {
 9 System.out.println("A's constructor is invoked");
10 }
11 }
12
13 class B {
14 public B() {
15 System.out.println("B's constructor is invoked");
16 }
17 }

 Is the no-arg constructor of Object invoked when new A(3) is invoked?

11.23 Show the output of following program:

public class Test {
public static void main(String[] args) {

new A();
new B();

 }
}

class A {
int i = 7;

public A() {
 setI(20);
 System.out.println("i from A is " + i);
 }

public void setI(int i) {
this.i = 2 * i;

 }
}

class B extends A {
public B() {

 System.out.println("i from B is " + i);
 }

public void setI(int i) {
this.i = 3 * i;

 }
}

11.9 Casting Objects and the instanceof Operator
One object reference can be typecast into another object reference. This is called cast-
ing object.

In the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type. This statement is
equivalent to

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as implicit casting, is legal because an
instance of Student is an instance of Object.

Suppose you want to assign the object reference o to a variable of the Student type using
the following statement:

Student b = o;

In this case a compile error would occur. Why does the statement Object o = new Stu-
dent() work but Student b = o doesn’t? The reason is that a Student object is always an
instance of Object, but an Object is not necessarily an instance of Student. Even though
you can see that o is really a Student object, the compiler is not clever enough to know it. To
tell the compiler that o is a Student object, use explicit casting. The syntax is similar to the
one used for casting among primitive data types. Enclose the target object type in parentheses
and place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

It is always possible to cast an instance of a subclass to a variable of a superclass (known as
upcasting), because an instance of a subclass is always an instance of its superclass. When
casting an instance of a superclass to a variable of its subclass (known as downcasting), explicit

Key
Point

casting object

implicit casting

explicit casting

upcasting
downcasting

11.9 Casting Objects and the instanceof Operator 427

428 Chapter 11 Inheritance and Polymorphism

casting must be used to confirm your intention to the compiler with the (SubclassName)
cast notation. For the casting to be successful, you must make sure that the object to be cast is
an instance of the subclass. If the superclass object is not an instance of the subclass, a runtime
ClassCastException occurs. For example, if an object is not an instance of Student, it
cannot be cast into a variable of Student. It is a good practice, therefore, to ensure that the
object is an instance of another object before attempting a casting. This can be accomplished
by using the instanceof operator. Consider the following code:

Object myObject = new Circle();
... // Some lines of code
/** Perform casting if myObject is an instance of Circle */
if (myObject instanceof Circle) {
 System.out.println("The circle diameter is " +
 ((Circle)myObject).getDiameter());
 ...
}

You may be wondering why casting is necessary. The variable myObject is declared
Object. The declared type decides which method to match at compile time. Using
myObject.getDiameter() would cause a compile error, because the Object

class does not have the getDiameter method. The compiler cannot find a match for
myObject.getDiameter(). Therefore, it is necessary to cast myObject into the Circle
type to tell the compiler that myObject is also an instance of Circle.

Why not define myObject as a Circle type in the first place? To enable generic program-
ming, it is a good practice to define a variable with a supertype, which can accept an object
of any subtype.

Note
instanceof is a Java keyword. Every letter in a Java keyword is in lowercase.

Tip
To help understand casting, you may also consider the analogy of fruit, apple, and

orange, with the Fruit class as the superclass for Apple and Orange. An apple is

a fruit, so you can always safely assign an instance of Apple to a variable for Fruit.

However, a fruit is not necessarily an apple, so you have to use explicit casting to assign

an instance of Fruit to a variable of Apple.

Listing 11.7 demonstrates polymorphism and casting. The program creates two objects
(lines 5–6), a circle and a rectangle, and invokes the displayObject method to display them
(lines 9–10). The displayObject method displays the area and diameter if the object is a
circle (line 15), and the area if the object is a rectangle (lines 21–22).

LISTING 11.7 CastingDemo.java
 1 public class CastingDemo {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create and initialize two objects
 5 Object object1 = new CircleFromSimpleGeometricObject(1);
 6 Object object2 = new RectangleFromSimpleGeometricObject(1, 1);
 7
 8 // Display circle and rectangle
 9 displayObject(object1);
10 displayObject(object2);
11 }
12

ClassCastException

instanceof

lowercase keywords

casting analogy

13 /** A method for displaying an object */
14 public static void displayObject(Object object) {
15 if (object instanceof CircleFromSimpleGeometricObject) {
16 System.out.println("The circle area is " +
17 ((CircleFromSimpleGeometricObject)object).getArea());
18 System.out.println("The circle diameter is " +
19 ((CircleFromSimpleGeometricObject)object).getDiameter());
20 }
21 else if (object instanceof

22 RectangleFromSimpleGeometricObject) {
23 System.out.println("The rectangle area is " +
24 ((RectangleFromSimpleGeometricObject)object).getArea());
25 }
26 }
27 }

polymorphic call

polymorphic call

11.9 Casting Objects and the instanceof Operator 429

The circle area is 3.141592653589793
The circle diameter is 2.0
The rectangle area is 1.0

The displayObject(Object object) method is an example of generic programming. It
can be invoked by passing any instance of Object.

The program uses implicit casting to assign a Circle object to object1 and a Rectangle
object to object2 (lines 5–6), then invokes the displayObject method to display the infor-
mation on these objects (lines 9–10).

In the displayObject method (lines 14–26), explicit casting is used to cast the object to
Circle if the object is an instance of Circle, and the methods getArea and getDiameter
are used to display the area and diameter of the circle.

Casting can be done only when the source object is an instance of the target class. The
program uses the instanceof operator to ensure that the source object is an instance of the
target class before performing a casting (line 15).

Explicit casting to Circle (lines 17, 19) and to Rectangle (line 24) is necessary because
the getArea and getDiameter methods are not available in the Object class.

Caution
The object member access operator (.) precedes the casting operator. Use parentheses

to ensure that casting is done before the . operator, as in

 ((Circle)object).getArea();

Casting a primitive type value is different from casting an object reference. Casting a primi-
tive type value returns a new value. For example:

int age = 45;
byte newAge = (byte)age; // A new value is assigned to newAge

However, casting an object reference does not create a new object. For example:

Object o = new Circle();
Circle c = (Circle)o; // No new object is created

Now reference variables o and c point to the same object.

precedes casting

430 Chapter 11 Inheritance and Polymorphism

11.24 Indicate true or false for the following statements:

■ You can always successfully cast an instance of a subclass to a superclass.

■ You can always successfully cast an instance of a superclass to a subclass.

11.25 For the GeometricObject and Circle classes in Listings 11.1 and 11.2, answer the
following questions:

a. Assume are circle and object created as follows:
Circle circle = new Circle(1);
GeometricObject object = new GeometricObject();

 Are the following Boolean expressions true or false?
(circle instanceof GeometricObject)
(object instanceof GeometricObject)
(circle instanceof Circle)
(object instanceof Circle)

b. Can the following statements be compiled?
Circle circle = new Circle(5);
GeometricObject object = circle;

c. Can the following statements be compiled?
GeometricObject object = new GeometricObject();
Circle circle = (Circle)object;

11.26 Suppose that Fruit, Apple, Orange, GoldenDelicious, and McIntosh are
defined in the following inheritance hierarchy:

✓Point✓Check

Fruit

Apple

McIntosh

Orange

GoldenDelicious

 Assume that the following code is given:

Fruit fruit = new GoldenDelicious();
Orange orange = new Orange();

 Answer the following questions:

a. Is fruit instanceof Fruit?

b. Is fruit instanceof Orange?

c. Is fruit instanceof Apple?

d. Is fruit instanceof GoldenDelicious?

e. Is fruit instanceof McIntosh?

f. Is orange instanceof Orange?

g. Is orange instanceof Fruit?

h. Is orange instanceof Apple?

i. Suppose the method makeAppleCider is defined in the Apple class. Can fruit
invoke this method? Can orange invoke this method?

j. Suppose the method makeOrangeJuice is defined in the Orange class. Can
orange invoke this method? Can fruit invoke this method?

k. Is the statement Orange p = new Apple() legal?

l. Is the statement McIntosh p = new Apple() legal?

m. Is the statement Apple p = new McIntosh() legal?

11.27 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Object fruit = new Fruit();
 4 Object apple = (Apple)fruit;
 5 }
 6 }
 7
 8 class Apple extends Fruit {
 9 }
10
11 class Fruit {
12 }

11.10 The Object’s equals Method
Like the toString() method, the equals(Object) method is another useful
method defined in the Object class.

Another method defined in the Object class that is often used is the equals method. Its
signature is

public boolean equals(Object o)

This method tests whether two objects are equal. The syntax for invoking it is:

object1.equals(object2);

The default implementation of the equals method in the Object class is:

public boolean equals(Object obj) {
return (this == obj);

}

This implementation checks whether two reference variables point to the same object using
the == operator. You should override this method in your custom class to test whether two
distinct objects have the same content.

The equals method is overridden in many classes in the Java API, such as java.lang
.String and java.util.Date, to compare whether the contents of two objects are equal.
You have already used the equals method to compare two strings in Section 4.4.7, The
String Class. The equals method in the String class is inherited from the Object class
and is overridden in the String class to test whether two strings are identical in content.

Key
Point

11.10 The Object’s equals Method 431

432 Chapter 11 Inheritance and Polymorphism

You can override the equals method in the Circle class to compare whether two circles
are equal based on their radius as follows:

public boolean equals(Object o) {
if (o instanceof Circle)

return radius == ((Circle)o).radius;
else

return this == o;
}

Note
The == comparison operator is used for comparing two primitive data type values or

for determining whether two objects have the same references. The equals method is

intended to test whether two objects have the same contents, provided that the method

is overridden in the defining class of the objects. The == operator is stronger than the

equals method, in that the == operator checks whether the two reference variables

refer to the same object.

Caution
Using the signature equals(SomeClassName obj) (e.g., equals(Circle c))

to override the equals method in a subclass is a common mistake. You should use

equals(Object obj). See CheckPoint Question 11.29.

11.28 Does every object have a toString method and an equals method? Where do they
come from? How are they used? Is it appropriate to override these methods?

11.29 When overriding the equals method, a common mistake is mistyping its signature
in the subclass. For example, the equals method is incorrectly written as
equals(Circle circle), as shown in (a) in following the code; instead, it should
be equals(Object circle), as shown in (b). Show the output of running class
Test with the Circle class in (a) and in (b), respectively.

== vs. equals

equals(Object)

✓Point✓Check

public class Test {
public static void main(String[] args) {

 Object circle1 = new Circle();
 Object circle2 = new Circle();
 System.out.println(circle1.equals(circle2));
 }
}

class Circle {
double radius;

public boolean equals(Circle circle) {
return this.radius == circle.radius;

 }
}

(a)

class Circle {
double radius;

public boolean equals(Object circle) {
return this.radius ==

 ((Circle)circle).radius;
 }
}

(b)

11.11 The ArrayList Class
An ArrayList object can be used to store a list of objects.

Now we are ready to introduce a very useful class for storing objects. You can create an array
to store objects. But, once the array is created, its size is fixed. Java provides the ArrayList

Key
Point

The ArrayList class

VideoNote

If Object is replaced by Circle in the Test class, what would be the output to
run Test using the Circle class in (a) and (b), respectively?

class, which can be used to store an unlimited number of objects. Figure 11.3 shows some
methods in ArrayList.

11.11 The ArrayList Class 433

FIGURE 11.3 An ArrayList stores an unlimited number of objects.

java.util.ArrayList<E>

+ArrayList()

+add(o: E): void

+add(index: int, o: E): void

+clear(): void

+contains(o: Object): boolean

+get(index: int): E

+indexOf(o: Object): int

+isEmpty(): boolean

+lastIndexOf(o: Object): int

+remove(o: Object): boolean

+size(): int

+remove(index: int): boolean

+set(index: int, o: E): E

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the first element o from this list. Returns true

 if an element is removed.

Returns the number of elements in this list.

Removes the element at the specified index. Returns true

 if an element is removed.

Sets the element at the specified index.

Creates an empty list.

ArrayList is known as a generic class with a generic type E. You can specify a concrete
type to replace E when creating an ArrayList. For example, the following statement creates
an ArrayList and assigns its reference to variable cities. This ArrayList object can be
used to store strings.

ArrayList<String> cities = new ArrayList<String>();

The following statement creates an ArrayList and assigns its reference to variable
dates. This ArrayList object can be used to store dates.

ArrayList<java.util.Date> dates = new ArrayList<java.util.Date> ();

Note
Since JDK 7, the statement

ArrayList<AConcreteType> list = new ArrayList<AConcreteType>();

can be simplified by

ArrayList<AConcreteType> list = new ArrayList<>();

The concrete type is no longer required in the constructor thanks to a feature called

type inference. The compiler is able to infer the type from the variable declaration. More

discussions on generics including how to define custom generic classes and methods

will be introduced in Chapter 19, Generics.

Listing 11.8 gives an example of using ArrayList to store objects.

LISTING 11.8 TestArrayList.java
 1 import java.util.ArrayList;
 2

type inference

import ArrayList

434 Chapter 11 Inheritance and Polymorphism

 3 public class TestArrayList {
 4 public static void main(String[] args) {
 5 // Create a list to store cities
 6 ArrayList<String> cityList = new ArrayList<>();
 7
 8 // Add some cities in the list
 9 cityList.add("London");
10 // cityList now contains [London]
11 cityList.add("Denver");
12 // cityList now contains [London, Denver]
13 cityList.add("Paris");
14 // cityList now contains [London, Denver, Paris]
15 cityList.add("Miami");
16 // cityList now contains [London, Denver, Paris, Miami]
17 cityList.add("Seoul");
18 // Contains [London, Denver, Paris, Miami, Seoul]
19 cityList.add("Tokyo");
20 // Contains [London, Denver, Paris, Miami, Seoul, Tokyo]
21
22 System.out.println("List size? " + cityList.size());
23 System.out.println("Is Miami in the list? " +
24 cityList.contains("Miami"));
25 System.out.println("The location of Denver in the list? "
26 + cityList.indexOf("Denver"));
27 System.out.println("Is the list empty? " +
28 cityList.isEmpty()); // Print false
29
30 // Insert a new city at index 2
31 cityList.add(2, "Xian");
32 // Contains [London, Denver, Xian, Paris, Miami, Seoul, Tokyo]
33
34 // Remove a city from the list
35 cityList.remove("Miami");
36 // Contains [London, Denver, Xian, Paris, Seoul, Tokyo]
37
38 // Remove a city at index 1
39 cityList.remove(1);
40 // Contains [London, Xian, Paris, Seoul, Tokyo]
41
42 // Display the contents in the list
43 System.out.println(cityList.toString());
44
45 // Display the contents in the list in reverse order
46 for (int i = cityList.size() - 1; i >= 0; i––)
47 System.out.print(cityList.get(i) + " ");
48 System.out.println();
49
50 // Create a list to store two circles
51 ArrayList<CircleFromSimpleGeometricObject> list
52 = new ArrayList<>();
53
54 // Add two circles
55 list.add(new CircleFromSimpleGeometricObject(2));
56 list.add(new CircleFromSimpleGeometricObject(3));
57
58 // Display the area of the first circle in the list
59 System.out.println("The area of the circle? " +
60 list.get(0).getArea());
61 }
62 }

create ArrayList

add element

list size

contains element?

element index

is empty?

remove element

remove element

toString()

get element

create ArrayList

Since the ArrayList is in the java.util package, it is imported in line 1. The program
creates an ArrayList of strings using its no-arg constructor and assigns the reference to
cityList (line 6). The add method (lines 9–19) adds strings to the end of list. So, after
cityList.add("London") (line 9), the list contains

[London]

After cityList.add("Denver") (line 11), the list contains

[London, Denver]

After adding Paris, Miami, Seoul, and Tokyo (lines 13–19), the list contains

[London, Denver, Paris, Miami, Seoul, Tokyo]

Invoking size() (line 22) returns the size of the list, which is currently 6. Invoking
contains("Miami") (line 24) checks whether the object is in the list. In this case, it returns
true, since Miami is in the list. Invoking indexOf("Denver") (line 26) returns the index of
Denver in the list, which is 1. If Denver were not in the list, it would return -1. The isEmpty()
method (line 28) checks whether the list is empty. It returns false, since the list is not empty.

The statement cityList.add(2, "Xian") (line 31) inserts an object into the list at the
specified index. After this statement, the list becomes

[London, Denver, Xian, Paris, Miami, Seoul, Tokyo]

The statement cityList.remove("Miami") (line 35) removes the object from the list.
After this statement, the list becomes

[London, Denver, Xian, Paris, Seoul, Tokyo]

The statement cityList.remove(1) (line 39) removes the object at the specified index
from the list. After this statement, the list becomes

[London, Xian, Paris, Seoul, Tokyo]

The statement in line 43 is same as

System.out.println(cityList);

The toString() method returns a string representation of the list in the form of
[e0.toString(), e1.toString(), ..., ek.toString()], where e0, e1, . . . , and
ek are the elements in the list.

The get(index) method (line 47) returns the object at the specified index.
ArrayList objects can be used like arrays, but there are many differences. Table 11.1 lists

their similarities and differences.
Once an array is created, its size is fixed. You can access an array element using the

square-bracket notation (e.g., a[index]). When an ArrayList is created, its size is 0.

add(Object)

size()

add(index, Object)

remove(Object)

remove(index)

toString()

get(index)

array vs. ArrayList

List size? 6
Is Miami in the list? True
The location of Denver in the list? 1
Is the list empty? false
[London, Xian, Paris, Seoul, Tokyo]
Tokyo Seoul Paris Xian London
The area of the circle? 12.566370614359172

11.11 The ArrayList Class 435

436 Chapter 11 Inheritance and Polymorphism

You cannot use the get(index) and set(index, element) methods if the element is not
in the list. It is easy to add, insert, and remove elements in a list, but it is rather complex to
add, insert, and remove elements in an array. You have to write code to manipulate the array
in order to perform these operations. Note that you can sort an array using the java.util.
Arrays.sort(array) method. To sort an array list, use the java.util.Collections.
sort(arraylist) method.

Suppose you want to create an ArrayList for storing integers. Can you use the following
code to create a list?

ArrayList<int> list = new ArrayList<>();

No. This will not work because the elements stored in an ArrayList must be of an object
type. You cannot use a primitive data type such as int to replace a generic type. However,
you can create an ArrayList for storing Integer objects as follows:

ArrayList<Integer> list = new ArrayList<>();

Listing 11.9 gives a program that prompts the user to enter a sequence of numbers and
displays the distinct numbers in the sequence. Assume that the input ends with 0 and 0 is not
counted as a number in the sequence.

LISTING 11.9 DistinctNumbers.java
 1 import java.util.ArrayList;
 2 import java.util.Scanner;
 3
 4 public class DistinctNumbers {
 5 public static void main(String[] args) {
 6 ArrayList<Integer> list = new ArrayList<>();
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.print("Enter integers (input ends with 0): ");
10 int value;
11
12 do {
13 value = input.nextInt(); // Read a value from the input
14
15 if (!list.contains(value) && value != 0)
16 list.add(value); // Add the value if it is not in the list
17 } while (value != 0);

create an array list

contained in list?
add to list

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

TABLE 11.1 Differences and Similarities between Arrays and ArrayList

18
19 // Display the distinct numbers
20 for (int i = 0; i < list.size(); i++)
21 System.out.print(list.get(i) + " ");
22 }
23 }

Enter numbers (input ends with 0): 1 2 3 2 1 6 3 4 5 4 5 1 2 3 0
The distinct numbers are: 1 2 3 6 4 5

11.11 The ArrayList Class 437

The program creates an ArrayList for Integer objects (line 6) and repeatedly reads a value in
the loop (lines 12–17). For each value, if it is not in the list (line 15), add it to the list (line 16). You
can rewrite this program using an array to store the elements rather than using an ArrayList.
However, it is simpler to implement this program using an ArrayList for two reasons.

 ■ First, the size of an ArrayList is flexible so you don’t have to specify its size in
advance. When creating an array, its size must be specified.

 ■ Second, ArrayList contains many useful methods. For example, you can test
whether an element is in the list using the contains method. If you use an array,
you have to write additional code to implement this method.

You can traverse the elements in an array using a foreach loop. The elements in an array list
can also be traversed using a foreach loop using the following syntax:

for (elementType element: arrayList) {
// Process the element

}

For example, you can replace the code in lines 20-21 using the following code:

for (int number: list)
 System.out.print(number + “ “);

11.30 How do you do the following?

a. Create an ArrayList for storing double values?

b. Append an object to a list?

c. Insert an object at the beginning of a list?

d. Find the number of objects in a list?

e. Remove a given object from a list?

f. Remove the last object from the list?

g. Check whether a given object is in a list?

h. Retrieve an object at a specified index from a list?

11.31 Identify the errors in the following code.

ArrayList<String> list = new ArrayList<>();
list.add("Denver");
list.add("Austin");
list.add(new java.util.Date());
String city = list.get(0);
list.set(3, "Dallas");
System.out.println(list.get(3));

✓Point✓Check

438 Chapter 11 Inheritance and Polymorphism

11.32 Suppose the ArrayList list contains {"Dallas", "Dallas", "Houston",
"Dallas"}. What is the list after invoking list.remove("Dallas") one time?
Does the following code correctly remove all elements with value "Dallas" from
the list? If not, correct the code.

for (int i = 0; i < list.size(); i++)
 list.remove("Dallas");

11.33 Explain why the following code displays [1, 3] rather than [2, 3].

ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.remove(1);
System.out.println(list);

11.34 Explain why the following code is wrong.

ArrayList<Double> list = new ArrayList<>();
list.add(1);

11.12 Useful Methods for Lists
Java provides the methods for creating a list from an array, for sorting a list, and
finding maximum and minimum element in a list, and for shuffling a list.

Often you need to create an array list from an array of objects or vice versa. You can write the
code using a loop to accomplish this, but an easy way is to use the methods in the Java API.
Here is an example to create an array list from an array:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

The static method asList in the Arrays class returns a list that is passed to the ArrayList
constructor for creating an ArrayList. Conversely, you can use the following code to create
an array of objects from an array list.

String[] array1 = new String[list.size()];
list.toArray(array1);

Invoking list.toArray(array1) copies the contents from list to array1.
If the elements in a list are comparable such as integers, double, or strings, you can use the
static sort method in the java.util.Collections class to sort the elements. Here are
examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.sort(list);
System.out.println(list);

You can use the static max and min in the java.util.Collections class to return the
maximum and minimal element in a list. Here are examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
System.out.println(java.util.Collections.max(list));
System.out.println(java.util.Collections.min(list));

Key
Point

array to array list

array list to array

sort a list

max and min methods

11.13 Case Study: A Custom Stack Class 439

You can use the static shuffle method in the java.util.Collections class to perform
a random shuffle for the elements in a list. Here are examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.shuffle(list);
System.out.println(list);

11.35 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));

11.36 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
System.out.println(java.util.Collections.max(array));

11.13 Case Study: A Custom Stack Class
This section designs a stack class for holding objects.

Section 10.6 presented a stack class for storing int values. This section introduces a stack class
to store objects. You can use an ArrayList to implement Stack, as shown in Listing 11.10.
The UML diagram for the class is shown in Figure 11.4.

shuffle method

✓Point✓Check

Key
Point

The MyStack class

VideoNote

FIGURE 11.4 The MyStack class encapsulates the stack storage and provides the operations
for manipulating the stack.

Returns true if this stack is empty.

Returns the number of elements in this stack.

Returns the top element in this stack without removing it.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

A list to store elements.

MyStack

+isEmpty(): boolean

+getSize(): int

+peek(): Object

+pop(): Object

+push(o: Object): void

-list: ArrayList<Object>

LISTING 11.10 MyStack.java
 1 import java.util.ArrayList;
 2
 3 public class MyStack {
4 private ArrayList<Object> list = new ArrayList<>();

 5
 6 public boolean isEmpty() {
 7 return list.isEmpty();
 8 }
 9
10 public int getSize() {
11 return list.size();
12 }
13
14 public Object peek() {
15 return list.get(getSize() - 1);
16 }

array list

stack empty?

get stack size

peek stack

440 Chapter 11 Inheritance and Polymorphism

17
18 public Object pop() {
19 Object o = list.get(getSize() - 1);
20 list.remove(getSize() - 1);
21 return o;
22 }
23
24 public void push(Object o) {
25 list.add(o);
26 }
27
28 @Override
29 public String toString() {
30 return "stack: " + list.toString();
31 }
32 }

An array list is created to store the elements in the stack (line 4). The isEmpty() method (lines
6–8) returns list.isEmpty(). The getSize() method (lines 10–12) returns list.size().
The peek() method (lines 14–16) retrieves the element at the top of the stack without remov-
ing it. The end of the list is the top of the stack. The pop() method (lines 18–22) removes the
top element from the stack and returns it. The push(Object element) method (lines 24–26)
adds the specified element to the stack. The toString() method (lines 28–31) defined in the
Object class is overridden to display the contents of the stack by invoking list.toString().
The toString() method implemented in ArrayList returns a string representation of all the
elements in an array list.

Design Guide
In Listing 11.10, MyStack contains ArrayList. The relationship between MyStack

and ArrayList is composition. While inheritance models an is-a relationship, compo-

sition models a has-a relationship. You could also implement MyStack as a subclass of

ArrayList (see Programming Exercise 11.10). Using composition is better, however,

because it enables you to define a completely new stack class without inheriting the

unnecessary and inappropriate methods from ArrayList.

11.14 The protected Data and Methods
A protected member of a class can be accessed from a subclass.

So far you have used the private and public keywords to specify whether data fields and
methods can be accessed from outside of the class. Private members can be accessed only
from inside of the class, and public members can be accessed from any other classes.

Often it is desirable to allow subclasses to access data fields or methods defined in the
superclass, but not to allow nonsubclasses to access these data fields and methods. To accom-
plish this, you can use the protected keyword. This way you can access protected data
fields or methods in a superclass from its subclasses.

The modifiers private, protected, and public are known as visibility or accessibility
modifiers because they specify how classes and class members are accessed. The visibility of
these modifiers increases in this order:

remove

push

composition
is-a
has-a

Key
Point

why protected?

Visibility increases

private, default (no modifier), protected, public

Table 11.2 summarizes the accessibility of the members in a class. Figure 11.5 illustrates how
a public, protected, default, and private datum or method in class C1 can be accessed from a
class C2 in the same package, from a subclass C3 in the same package, from a subclass C4 in
a different package, and from a class C5 in a different package.

Your class can be used in two ways: (1) for creating instances of the class and (2) for defin-
ing subclasses by extending the class. Make the members private if they are not intended
for use from outside the class. Make the members public if they are intended for the users of
the class. Make the fields or methods protected if they are intended for the extenders of the
class but not for the users of the class.

The private and protected modifiers can be used only for members of the class.
The public modifier and the default modifier (i.e., no modifier) can be used on members of
the class as well as on the class. A class with no modifier (i.e., not a public class) is not acces-
sible by classes from other packages.

FIGURE 11.5 Visibility modifiers are used to control how data and methods are accessed.

public class C1 {
public int x;
protected int y;
int z;
private int u;

protected void m() {
}

}

package p1;

package p2;

public class C2 {
C1 o = new C1();
can access o.x;
can access o.y;
can access o.z;
cannot access o.u;

can invoke o.m();
}

public class C3
extends C1 {

can access x;
can access y;
can access z;
cannot access u;

can invoke m();
}

public class C4
extends C1 {

can access x;
can access y;
cannot access z;
cannot access u;

can invoke m();
}

public class C5 {
C1 o = new C1();
can access o.x;
cannot access o.y;
cannot access o.z;
cannot access o.u;

cannot invoke o.m();
}

Modifier
on members

in a class

Accessed
from the

same class

Accessed
from the

same package

Accessed from
a subclass in a

different package

Accessed
from a different

package

public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓ –

default (no modifier) ✓ ✓ – –

private ✓ – – –

TABLE 11.2 Data and Methods Visibility

11.14 The protected Data and Methods 441

Use the private modifier to hide the members of the class completely so that they cannot
be accessed directly from outside the class. Use no modifiers (the default) in order to allow
the members of the class to be accessed directly from any class within the same package but
not from other packages. Use the protected modifier to enable the members of the class to
be accessed by the subclasses in any package or classes in the same package. Use the public
modifier to enable the members of the class to be accessed by any class.

442 Chapter 11 Inheritance and Polymorphism

Note
A subclass may override a protected method defined in its superclass and change its

visibility to public. However, a subclass cannot weaken the accessibility of a method

defined in the superclass. For example, if a method is defined as public in the superclass,

it must be defined as public in the subclass.

11.37 What modifier should you use on a class so that a class in the same package can
access it, but a class in a different package cannot access it?

11.38 What modifier should you use so that a class in a different package cannot access the
class, but its subclasses in any package can access it?

11.39 In the following code, the classes A and B are in the same package. If the question
marks in (a) are replaced by blanks, can class B be compiled? If the question marks
are replaced by private, can class B be compiled? If the question marks are replaced
by protected, can class B be compiled?

change visibility

✓Point✓Check

11.40 In the following code, the classes A and B are in different packages. If the question
marks in (a) are replaced by blanks, can class B be compiled? If the question marks
are replaced by private, can class B be compiled? If the question marks are replaced
by protected, can class B be compiled?

11.15 Preventing Extending and Overriding
Neither a final class nor a final method can be extended. A final data field is a
constant.

You may occasionally want to prevent classes from being extended. In such cases, use the
final modifier to indicate that a class is final and cannot be a parent class. The Math class
is a final class. The String, StringBuilder, and StringBuffer classes are also final
classes. For example, the following class A is final and cannot be extended:

public final class A {
// Data fields, constructors, and methods omitted

}

Key
Point

package p1;

public class A {
 ? int i;

 ? void m() {
 ...
 }
}

(a)

package p1;

public class B extends A {
public void m1(String[] args) {

 System.out.println(i);
 m();
 }
}

(b)

package p1;

public class A {
 ? int i;

 ? void m() {
 ...
 }
}

(a)

package p2;

public class B extends A {
public void m1(String[] args) {

 System.out.println(i);
 m();
 }
}

(b)

You also can define a method to be final; a final method cannot be overridden by its
subclasses.

For example, the following method m is final and cannot be overridden:

public class Test {
// Data fields, constructors, and methods omitted

public final void m() {
// Do something

 }
}

Note
The modifiers public, protected, private, static, abstract, and final are

used on classes and class members (data and methods), except that the final modifier

can also be used on local variables in a method. A final local variable is a constant

inside a method.

11.41 How do you prevent a class from being extended? How do you prevent a method from
being overridden?

11.42 Indicate true or false for the following statements:

a. A protected datum or method can be accessed by any class in the same package.

b. A protected datum or method can be accessed by any class in different packages.

c. A protected datum or method can be accessed by its subclasses in any package.

d. A final class can have instances.

e. A final class can be extended.

f. A final method can be overridden.

✓Point✓Check

KEY TERMS

actual type 424
casting objects 427
constructor chaining 417
declared type 424
dynamic binding 424
inheritance 410
instanceof 428
is-a relationship 440
method overriding 419
multiple inheritance 416

override 000
polymorphism 423
protected 440
single inheritance 416
subclass 410
subtype 423
superclass 410
supertype 423
type inference 433

CHAPTER SUMMARY

1. You can define a new class from an existing class. This is known as class inheritance.
The new class is called a subclass, child class, or extended class. The existing class is
called a superclass, parent class, or base class.

2. A constructor is used to construct an instance of a class. Unlike properties and methods,
the constructors of a superclass are not inherited in the subclass. They can be invoked
only from the constructors of the subclasses, using the keyword super.

Chapter Summary 443

444 Chapter 11 Inheritance and Polymorphism

3. A constructor may invoke an overloaded constructor or its superclass’s constructor. The
call must be the first statement in the constructor. If none of them is invoked explicitly,
the compiler puts super() as the first statement in the constructor, which invokes the
superclass’s no-arg constructor.

4. To override a method, the method must be defined in the subclass using the same sig-
nature and the same return type as in its superclass.

5. An instance method can be overridden only if it is accessible. Thus, a private method
cannot be overridden because it is not accessible outside its own class. If a method
defined in a subclass is private in its superclass, the two methods are completely
unrelated.

6. Like an instance method, a static method can be inherited. However, a static method
cannot be overridden. If a static method defined in the superclass is redefined in a sub-
class, the method defined in the superclass is hidden.

7. Every class in Java is descended from the java.lang.Object class. If no superclass
is specified when a class is defined, its superclass is Object.

8. If a method’s parameter type is a superclass (e.g., Object), you may pass an object
to this method of any of the parameter’s subclasses (e.g., Circle or String). This is
known as polymorphism.

9. It is always possible to cast an instance of a subclass to a variable of a superclass,
because an instance of a subclass is always an instance of its superclass. When cast-
ing an instance of a superclass to a variable of its subclass, explicit casting must
be used to confirm your intention to the compiler with the (SubclassName) cast
notation.

10. A class defines a type. A type defined by a subclass is called a subtype and a type
defined by its superclass is called a supertype.

11. When invoking an instance method from a reference variable, the actual type of the
variable decides which implementation of the method is used at runtime. This is known
as dynamic binding.

12. You can use obj instanceof AClass to test whether an object is an instance of a
class.

13. You can use the ArrayList class to create an object to store a list of objects.

14. You can use the protected modifier to prevent the data and methods from being
accessed by nonsubclasses from a different package.

15. You can use the final modifier to indicate that a class is final and cannot be extended
and to indicate that a method is final and cannot be overridden.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 445

PROGRAMMING EXERCISES

Sections 11.2–11.4

11.1 (The Triangle class) Design a class named Triangle that extends
GeometricObject. The class contains:

 ■ Three double data fields named side1, side2, and side3 with default
values 1.0 to denote three sides of the triangle.

 ■ A no-arg constructor that creates a default triangle.
 ■ A constructor that creates a triangle with the specified side1, side2, and

side3.
 ■ The accessor methods for all three data fields.
 ■ A method named getArea() that returns the area of this triangle.
 ■ A method named getPerimeter() that returns the perimeter of this triangle.
 ■ A method named toString() that returns a string description for the triangle.

For the formula to compute the area of a triangle, see Programming Exercise 2.19.
The toString() method is implemented as follows:

return "Triangle: side1 = " + side1 + " side2 = " + side2 +
" side3 = " + side3;

Draw the UML diagrams for the classes Triangle and GeometricObject and
implement the classes. Write a test program that prompts the user to enter three
sides of the triangle, a color, and a Boolean value to indicate whether the triangle
is filled. The program should create a Triangle object with these sides and set
the color and filled properties using the input. The program should display
the area, perimeter, color, and true or false to indicate whether it is filled or not.

Sections 11.5–11.14

11.2 (The Person, Student, Employee, Faculty, and Staff classes) Design a
class named Person and its two subclasses named Student and Employee.
Make Faculty and Staff subclasses of Employee. A person has a name,
address, phone number, and email address. A student has a class status (freshman,
sophomore, junior, or senior). Define the status as a constant. An employee has
an office, salary, and date hired. Use the MyDate class defined in Programming
Exercise 10.14 to create an object for date hired. A faculty member has office
hours and a rank. A staff member has a title. Override the toString method in
each class to display the class name and the person’s name.

Draw the UML diagram for the classes and implement them. Write a test pro-
gram that creates a Person, Student, Employee, Faculty, and Staff, and
invokes their toString() methods.

11.3 (Subclasses of Account) In Programming Exercise 9.7, the Account class was
defined to model a bank account. An account has the properties account number,
balance, annual interest rate, and date created, and methods to deposit and with-
draw funds. Create two subclasses for checking and saving accounts. A checking
account has an overdraft limit, but a savings account cannot be overdrawn.

Draw the UML diagram for the classes and then implement them. Write
a test program that creates objects of Account, SavingsAccount, and
CheckingAccount and invokes their toString() methods.

11.4 (Maximum element in ArrayList) Write the following method that returns the
maximum value in an ArrayList of integers. The method returns null if the
list is null or the list size is 0.

public static Integer max(ArrayList<Integer> list)

446 Chapter 11 Inheritance and Polymorphism

Write a test program that prompts the user to enter a sequence of numbers ending
with 0, and invokes this method to return the largest number in the input.

11.5 (TheCourse class) Rewrite the Course class in Listing 10.6. Use an ArrayList
to replace an array to store students. Draw the new UML diagram for the class.
You should not change the original contract of the Course class (i.e., the defi-
nition of the constructors and methods should not be changed, but the private
members may be changed.)

11.6 (Use ArrayList) Write a program that creates an ArrayList and adds a Loan
object, a Date object, a string, and a Circle object to the list, and use a loop
to display all the elements in the list by invoking the object’s toString()
method.

11.7 (Shuffle ArrayList) Write the following method that shuffles the elements in
an ArrayList of integers.

public static void shuffle(ArrayList<Integer> list)

**11.8 (New Account class) An Account class was specified in Programming
Exercise 9.7. Design a new Account class as follows:

 ■ Add a new data field name of the String type to store the name of the
customer.

 ■ Add a new constructor that constructs an account with the specified name, id,
and balance.

 ■ Add a new data field named transactions whose type is ArrayList
that stores the transaction for the accounts. Each transaction is an instance
of the Transaction class. The Transaction class is defined as shown in
Figure 11.6.

New Account class

VideoNote

FIGURE 11.6 The Transaction class describes a transaction for a bank account.

Transaction

The getter and setter methods for these data
fields are provided in the class, but omitted in the UML
diagram for brevity.

The date of this transaction.

The type of the transaction, such as 'W' for withdrawal, 'D'
 for deposit.

The amount of the transaction.

The new balance after this transaction.

Construct a Transaction with the specified date, type,
 balance, and description.

The description of this transaction.

+Transaction(type: char,
amount: double, balance:
double, description: String)

-date: java.util.Date

-type: char

-amount: double

-balance: double

-description: String

 ■ Modify the withdraw and deposit methods to add a transaction to the
transactions array list.

 ■ All other properties and methods are the same as in Programming Exercise 9.7.

Write a test program that creates an Account with annual interest rate 1.5%,
balance 1000, id 1122, and name George. Deposit $30, $40, and $50 to the
account and withdraw $5, $4, and $2 from the account. Print an account sum-
mary that shows account holder name, interest rate, balance, and all transactions.

Programming Exercises 447

*11.9 (Largest rows and columns) Write a program that randomly fills in 0s and 1s
into an n-by-n matrix, prints the matrix, and finds the rows and columns with the
most 1s. (Hint: Use two ArrayLists to store the row and column indices with
the most 1s.) Here is a sample run of the program:

Enter ten integers: 34 5 3 5 6 4 33 2 2 4
The distinct integers are 34 5 3 6 4 33 2

Enter the array size n: 4
The random array is
0011
0011
1101
1010
The largest row index: 2
The largest column index: 2, 3

11.10 (Implement MyStack using inheritance) In Listing 11.10, MyStack is imple-
mented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes and then implement MyStack. Write
a test program that prompts the user to enter five strings and displays them in
reverse order.

11.11 (Sort ArrayList) Write the following method that sorts an ArrayList of
numbers:

public static void sort(ArrayList<Integer> list)

Write a test program that prompts the user to enter 5 numbers, stores them in an
array list, and displays them in increasing order.

11.12 (Sum ArrayList) Write the following method that returns the sum of all num-
bers in an ArrayList:

public static double sum(ArrayList<Double> list)

Write a test program that prompts the user to enter 5 numbers, stores them in an
array list, and displays their sum.

*11.13 (Remove duplicates) Write a method that removes the duplicate elements from
an array list of integers using the following header:

public static void removeDuplicate(ArrayList<Integer> list)

Write a test program that prompts the user to enter 10 integers to a list and dis-
plays the distinct integers separated by exactly one space. Here is a sample run:

11.14 (Combine two lists) Write a method that returns the union of two array lists of
integers using the following header:

public static ArrayList<Integer> union(
 ArrayList<Integer> list1, ArrayList<Integer> list2)

448 Chapter 11 Inheritance and Polymorphism

For example, the union of two array lists {2, 3, 1, 5} and {3, 4, 6} is
{2, 3, 1, 5, 3, 4, 6}. Write a test program that prompts the user to enter two lists,
each with five integers, and displays their union. The numbers are separated by
exactly one space in the output. Here is a sample run:

Enter five integers for list1: 3 5 45 4 3

Enter five integers for list2: 33 51 5 4 13
The combined list is 3 5 45 4 3 33 51 5 4 13

Enter the number of the points: 7
Enter the coordinates of the points:

-12 0 -8.5 10 0 11.4 5.5 7.8 6 -5.5 0 -7 -3.5 -3.5
The total area is 250.075

What is 5 + 9? 12
Wrong answer. Try again. What is 5 + 9? 34

Wrong answer. Try again. What is 5 + 9? 12
You already entered 12
Wrong answer. Try again. What is 5 + 9? 14
You got it!

Enter an integer m: 1500
The smallest number n for m * n to be a perfect square is 15
m * n is 22500

Enter an integer m: 63
The smalle
st number n for m * n to be a perfect square is 7
m * n is 441

*11.15 (Area of a convex polygon) A polygon is convex if it contains any line segments
that connects two points of the polygon. Write a program that prompts the user to
enter the number of points in a convex polygon, then enter the points clockwise,
and display the area of the polygon. Here is a sample run of the program:

**11.16 (Addition quiz) Rewrite Listing 5.1 RepeatAdditionQuiz.java to alert the user
if an answer is entered again. Hint: use an array list to store answers. Here is a
sample run:

**11.17 (Algebra: perfect square) Write a program that prompts the user to enter an inte-
ger m and find the smallest integer n such that m * n is a perfect square. (Hint:
Store all smallest factors of m into an array list. n is the product of the factors that
appear an odd number of times in the array list. For example, consider m = 90,
store the factors 2, 3, 3, 5 in an array list. 2 and 5 appear an odd number of times
in the array list. So, n is 10.) Here are sample runs:

EXCEPTION HANDLING
AND TEXT I/O

Objectives
■ To get an overview of exceptions and exception handling (§12.2).

■ To explore the advantages of using exception handling (§12.2).

■ To distinguish exception types: Error (fatal) vs. Exception (nonfatal)
and checked vs. unchecked (§12.3).

■ To declare exceptions in a method header (§12.4.1).

■ To throw exceptions in a method (§12.4.2).

■ To write a try-catch block to handle exceptions (§12.4.3).

■ To explain how an exception is propagated (§12.4.3).

■ To obtain information from an exception object (§12.4.4).

■ To develop applications with exception handling (§12.4.5).

■ To use the finally clause in a try-catch block (§12.5).

■ To use exceptions only for unexpected errors (§12.6).

■ To rethrow exceptions in a catch block (§12.7).

■ To create chained exceptions (§12.8).

■ To define custom exception classes (§12.9).

■ To discover file/directory properties, to delete and rename files/
directories, and to create directories using the File class (§12.10).

■ To write data to a file using the PrintWriter class (§12.11.1).

■ To use try-with-resources to ensure that the resources are closed
automatically (§12.11.2).

■ To read data from a file using the Scanner class (§12.11.3).

■ To understand how data is read using a Scanner (§12.11.4).

■ To develop a program that replaces text in a file (§12.11.5).

■ To read data from the Web (§12.12).

■ To develop a Web crawler (§12.13).

CHAPTER

12

450 Chapter 12 Exception Handling and Text I/O

12.1 Introduction
Exception handling enables a program to deal with exceptional situations and
continue its normal execution.

Runtime errors occur while a program is running if the JVM detects an operation that is
impossible to carry out. For example, if you access an array using an index that is out of
bounds, you will get a runtime error with an ArrayIndexOutOfBoundsException. If you
enter a double value when your program expects an integer, you will get a runtime error with
an InputMismatchException.

In Java, runtime errors are thrown as exceptions. An exception is an object that represents
an error or a condition that prevents execution from proceeding normally. If the exception is
not handled, the program will terminate abnormally. How can you handle the exception so
that the program can continue to run or else terminate gracefully? This chapter introduces this
subject and text input and output.

12.2 Exception-Handling Overview
Exceptions are thrown from a method. The caller of the method can catch and handle
the exception.

To demonstrate exception handling, including how an exception object is created and thrown,
let’s begin with the example in Listing 12.1, which reads in two integers and displays their
quotient.

LISTING 12.1 Quotient.java
 1 import java.util.Scanner;
 2
 3 public class Quotient {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two integers
 8 System.out.print("Enter two integers: ");
 9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 System.out.println(number1 + " / " + number2 + " is " +
13 (number1 / number2));
14 }
15 }

Key
Point

exception

Key
Point

Exception-handling

advantages

VideoNote

read two integers

integer division

Enter two integers: 5 2
5 / 2 is 2

Enter two integers: 3 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
at Quotient.main(Quotient.java:11)

If you entered 0 for the second number, a runtime error would occur, because you cannot
divide an integer by 0. (Note that a floating-point number divided by 0 does not raise an
exception.) A simple way to fix this error is to add an if statement to test the second number,
as shown in Listing 12.2.

12.2 Exception-Handling Overview 451

LISTING 12.2 QuotientWithIf.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithIf {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two integers
 8 System.out.print("Enter two integers: ");
 9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 if (number2 != 0)
13 System.out.println(number1 + " / " + number2
14 + " is " + (number1 / number2));
15 else

16 System.out.println("Divisor cannot be zero ");
17 }
18 }

read two integers

test number2

Enter two integers: 5 0
Divisor cannot be zero

Before introducing exception handling, let us rewrite Listing 12.2 to compute a quotient using
a method, as shown in Listing 12.3.

LISTING 12.3 QuotientWithMethod.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithMethod {
 4 public static int quotient(int number1, int number2) {
 5 if (number2 == 0) {
 6 System.out.println("Divisor cannot be zero");
 7 System.exit(1);
 8 }
 9
10 return number1 / number2;
11 }
12
13 public static void main(String[] args) {
14 Scanner input = new Scanner(System.in);
15
16 // Prompt the user to enter two integers
17 System.out.print("Enter two integers: ");
18 int number1 = input.nextInt();
19 int number2 = input.nextInt();
20
21 int result = quotient(number1, number2);
22 System.out.println(number1 + " / " + number2 + " is "
23 + result);
24 }
25 }

quotient method

terminate the program

read two integers

invoke method

452 Chapter 12 Exception Handling and Text I/O

The method quotient (lines 4–11) returns the quotient of two integers. If number2 is 0, it
cannot return a value, so the program is terminated in line 7. This is clearly a problem. You
should not let the method terminate the program—the caller should decide whether to termi-
nate the program.

How can a method notify its caller an exception has occurred? Java enables a method to
throw an exception that can be caught and handled by the caller. Listing 12.3 can be rewritten,
as shown in Listing 12.4.

LISTING 12.4 QuotientWithException.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithException {
 4 public static int quotient(int number1, int number2) {
 5 if (number2 == 0)
 6 throw new ArithmeticException("Divisor cannot be zero");
 7
 8 return number1 / number2;
 9 }
10
11 public static void main(String[] args) {
12 Scanner input = new Scanner(System.in);
13
14 // Prompt the user to enter two integers
15 System.out.print("Enter two integers: ");
16 int number1 = input.nextInt();
17 int number2 = input.nextInt();
18
19 try {
20 int result = quotient(number1, number2);
21 System.out.println(number1 + " / " + number2 + " is "
22 + result);
23 }
24 catch (ArithmeticException ex) {
25 System.out.println("Exception: an integer " +
26 "cannot be divided by zero ");
27 }
28
29 System.out.println("Execution continues ...");
30 }
31 }

quotient method

throw exception

read two integers

try block
invoke method

catch block

Enter two integers: 5 3
5 / 3 is 1
Execution continues ...

Enter two integers: 5 3
5 / 3 is 1

Enter two integers: 5 0
Divisor cannot be zero

If an
Arithmetic
Exception
occurs

12.2 Exception-Handling Overview 453

If number2 is 0, the method throws an exception (line 6) by executing

throw new ArithmeticException("Divisor cannot be zero");

The value thrown, in this case new ArithmeticException("Divisor cannot be zero"),
is called an exception. The execution of a throw statement is called throwing an exception.
The exception is an object created from an exception class. In this case, the exception class is
java.lang.ArithmeticException. The constructor ArithmeticException(str) is
invoked to construct an exception object, where str is a message that describes the exception.

When an exception is thrown, the normal execution flow is interrupted. As the name sug-
gests, to “throw an exception” is to pass the exception from one place to another. The state-
ment for invoking the method is contained in a try block and a catch block. The try block
(lines 19–23) contains the code that is executed in normal circumstances. The exception is
caught by the catch block. The code in the catch block is executed to handle the exception.
Afterward, the statement (line 29) after the catch block is executed.

The throw statement is analogous to a method call, but instead of calling a method, it calls
a catch block. In this sense, a catch block is like a method definition with a parameter that
matches the type of the value being thrown. Unlike a method, however, after the catch block
is executed, the program control does not return to the throw statement; instead, it executes
the next statement after the catch block.

The identifier ex in the catch–block header

catch (ArithmeticException ex)

acts very much like a parameter in a method. Thus, this parameter is referred to as a
catch–block parameter. The type (e.g., ArithmeticException) preceding ex specifies
what kind of exception the catch block can catch. Once the exception is caught, you can
access the thrown value from this parameter in the body of a catch block.

In summary, a template for a try-throw-catch block may look like this:

try {
 Code to run;
 A statement or a method that may throw an exception;
 More code to run;
}
catch (type ex) {
 Code to process the exception;
}

An exception may be thrown directly by using a throw statement in a try block, or by invok-
ing a method that may throw an exception.

The main method invokes quotient (line 20). If the quotient method executes normally,
it returns a value to the caller. If the quotient method encounters an exception, it throws the
exception back to its caller. The caller’s catch block handles the exception.

Now you can see the advantage of using exception handling: It enables a method to throw
an exception to its caller, enabling the caller to handle the exception. Without this capability,
the called method itself must handle the exception or terminate the program. Often the called
method does not know what to do in case of error. This is typically the case for the library
methods. The library method can detect the error, but only the caller knows what needs to be

throw statement

exception

throw exception

handle exception

catch–block parameter

advantage

Enter two integers: 5 0
Exception: an integer cannot be divided by zero
Execution continues ...

454 Chapter 12 Exception Handling and Text I/O

done when an error occurs. The key benefit of exception handling is separating the detection
of an error (done in a called method) from the handling of an error (done in the calling
method).

Many library methods throw exceptions. Listing 12.5 gives an example that handles an
InputMismatchException when reading an input.

LISTING 12.5 InputMismatchExceptionDemo.java
 1 import java.util.*;
 2
 3 public class InputMismatchExceptionDemo {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 boolean continueInput = true;
 7
 8 do {
 9 try {
10 System.out.print("Enter an integer: ");
11 int number = input.nextInt();
12
13 // Display the result
14 System.out.println(
15 "The number entered is " + number);
16
17 continueInput = false;
18 }
19 catch (InputMismatchException ex) {
20 System.out.println("Try again. (" +
21 "Incorrect input: an integer is required)");
22 input.nextLine(); // Discard input
23 }
24 } while (continueInput);
25 }
26 }

create a Scanner

try block

catch block

Enter an integer: 3.5
Try again. (Incorrect input: an integer is required)
Enter an integer: 4
The number entered is 4

If an
InputMismatch
Exception
occurs

When executing input.nextInt() (line 11), an InputMismatchException occurs if
the input entered is not an integer. Suppose 3.5 is entered. An InputMismatchException
occurs and the control is transferred to the catch block. The statements in the catch block
are now executed. The statement input.nextLine() in line 22 discards the current input
line so that the user can enter a new line of input. The variable continueInput controls the
loop. Its initial value is true (line 6), and it is changed to false (line 17) when a valid input
is received. Once a valid input is received, there is no need to continue the input.

12.1 What is the advantage of using exception handling?

12.2 Which of the following statements will throw an exception?

System.out.println(1 / 0);
System.out.println(1.0 / 0);

✓Point✓Check

12.3 Exception Types 455

12.3 Point out the problem in the following code. Does the code throw any exceptions?

long value = Long.MAX_VALUE + 1;
System.out.println(value);

12.4 What does the JVM do when an exception occurs? How do you catch an exception?

12.5 What is the output of the following code?

public class Test {
public static void main(String[] args) {

try {
int value = 30;
if (value < 40)

throw new Exception("value is too small");
 }

catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
 System.out.println("Continue after the catch block");
 }
}

What would be the output if the line

int value = 30;

were changed to

int value = 50;

12.6 Show the output of the following code.

public class Test {
public static void main(String[] args) {

for (int i = 0; i < 2; i++) {
 System.out.print(i + " ");

try {
 System.out.println(1 / 0);
 }

catch (Exception ex) {
 }
 }
 }
}

(a)

public class Test {
public static void main(String[] args) {

try {
for (int i = 0; i < 2; i++) {

 System.out.print(i + " ");
 System.out.println(1 / 0);
 }
 }

catch (Exception ex) {
 }
 }
}

(b)

12.3 Exception Types
Exceptions are objects, and objects are defined using classes. The root class for
exceptions is java.lang.Throwable.

The preceding section used the classes ArithmeticException and InputMismatch-
Exception. Are there any other types of exceptions you can use? Can you define your
own exception classes? Yes. There are many predefined exception classes in the Java API.
Figure 12.1 shows some of them, and in Section 12.9 you will learn how to define your own
exception classes.

Key
Point

456 Chapter 12 Exception Handling and Text I/O

Note
The class names Error, Exception, and RuntimeException are somewhat con-

fusing. All three of these classes are exceptions, and all of the errors occur at runtime.

The Throwable class is the root of exception classes. All Java exception classes inherit
directly or indirectly from Throwable. You can create your own exception classes by extend-
ing Exception or a subclass of Exception.

The exception classes can be classified into three major types: system errors, exceptions,
and runtime exceptions.

 ■ System errors are thrown by the JVM and are represented in the Error class. The
Error class describes internal system errors, though such errors rarely occur. If one
does, there is little you can do beyond notifying the user and trying to terminate the
program gracefully. Examples of subclasses of Error are listed in Table 12.1.

system error

exception

FIGURE 12.1 Exceptions thrown are instances of the classes shown in this diagram, or of subclasses of one of these classes.

Error

ClassNotFoundException

Many more classes

Many more classes

IOException

RuntimeException

LinkageError

VirtualMachineError

Object Throwable

Exception

Many more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

IllegalArgumentException

Class Reasons for Exception

LinkageError A class has some dependency on another class, but the latter class has
 changed incompatibly after the compilation of the former class.

VirtualMachineError The JVM is broken or has run out of the resources it needs in order to
continue operating.

TABLE 12.1 Examples of Subclasses of Error

Class Reasons for Exception

ClassNotFoundException Attempt to use a class that does not exist. This exception would occur, for example, if you tried to
 run a nonexistent class using the java command, or if your program were composed of, say,
 three class files, only two of which could be found.

IOException Related to input/output operations, such as invalid input, reading past the end of a file, and opening
 a nonexistent file. Examples of subclasses of IOException are InterruptedIOException,
EOFException (EOF is short for End of File), and FileNotFoundException.

TABLE 12.2 Examples of Subclasses of Exception

 ■ Exceptions are represented in the Exception class, which describes errors caused by
your program and by external circumstances. These errors can be caught and handled
by your program. Examples of subclasses of Exception are listed in Table 12.2.

12.3 Exception Types 457

 ■ Runtime exceptions are represented in the RuntimeException class, which
describes programming errors, such as bad casting, accessing an out-of-bounds
array, and numeric errors. Runtime exceptions are generally thrown by the JVM.
Examples of subclasses are listed in Table 12.3.

runtime exception

Class Reasons for Exception

ArithmeticException Dividing an integer by zero. Note that floating-point arithmetic
 does not throw exceptions (see Appendix E, Special Floating-

Point Values).

NullPointerException Attempt to access an object through a null reference variable.

IndexOutOfBoundsException Index to an array is out of range.

IllegalArgumentException A method is passed an argument that is illegal or inappropriate.

TABLE 12.3 Examples of Subclasses of RuntimeException

RuntimeException, Error, and their subclasses are known as unchecked exceptions. All
other exceptions are known as checked exceptions, meaning that the compiler forces the
programmer to check and deal with them in a try-catch block or declare it in the method
header. Declaring an exception in the method header will be covered in Section 12.4.

In most cases, unchecked exceptions reflect programming logic errors that are unrecover-
able. For example, a NullPointerException is thrown if you access an object through a
reference variable before an object is assigned to it; an IndexOutOfBoundsException is
thrown if you access an element in an array outside the bounds of the array. These are logic
errors that should be corrected in the program. Unchecked exceptions can occur anywhere in
a program. To avoid cumbersome overuse of try-catch blocks, Java does not mandate that
you write code to catch or declare unchecked exceptions.

12.7 Describe the Java Throwable class, its subclasses, and the types of exceptions.

12.8 What RuntimeException will the following programs throw, if any?

unchecked exception

checked exception

✓Point✓Check

public class Test {
public static void main(String[] args) {

 System.out.println(1 / 0);
 }
}

(a)

public class Test {
public static void main(String[] args) {

int[] list = new int[5];
 System.out.println(list[5]);
 }
}

(b)

public class Test {
public static void main(String[] args) {

 String s = "abc";
 System.out.println(s.charAt(3));
 }
}

(c)

public class Test {
public static void main(String[] args) {

 Object o = new Object();
 String d = (String)o;
 }
}

(d)

public class Test {
public static void main(String[] args) {

 Object o = null;
 System.out.println(o.toString());
 }
}

(e)

public class Test {
public static void main(String[] args) {

 System.out.println(1.0 / 0);
 }
}

(f)

458 Chapter 12 Exception Handling and Text I/O

12.4 More on Exception Handling
A handler for an exception is found by propagating the exception backward through a
chain of method calls, starting from the current method.

The preceding sections gave you an overview of exception handling and introduced sev-
eral predefined exception types. This section provides an in-depth discussion of exception
handling.

Java’s exception-handling model is based on three operations: declaring an exception,
throwing an exception, and catching an exception, as shown in Figure 12.2.

Key
Point

FIGURE 12.2 Exception handling in Java consists of declaring exceptions, throwing exceptions, and catching and
processing exceptions.

Catch exception

Declare exception

Throw exception

method1() {

try {
invoke method2;

}
catch (Exception ex) {

Process exception;
}

}

method2() throws Exception {

if (an error occurs) {

throw new Exception();
}

}

12.4.1 Declaring Exceptions
In Java, the statement currently being executed belongs to a method. The Java interpreter
invokes the main method to start executing a program. Every method must state the types of
checked exceptions it might throw. This is known as declaring exceptions. Because system
errors and runtime errors can happen to any code, Java does not require that you declare
Error and RuntimeException (unchecked exceptions) explicitly in the method. However,
all other exceptions thrown by the method must be explicitly declared in the method header so
that the caller of the method is informed of the exception.

To declare an exception in a method, use the throws keyword in the method header, as in
this example:

public void myMethod() throws IOException

The throws keyword indicates that myMethod might throw an IOException. If the method
might throw multiple exceptions, add a list of the exceptions, separated by commas, after
throws:

public void myMethod()
 throws Exception1, Exception2, ..., ExceptionN

Note
If a method does not declare exceptions in the superclass, you cannot override it to

declare exceptions in the subclass.

12.4.2 Throwing Exceptions
A program that detects an error can create an instance of an appropriate exception type and
throw it. This is known as throwing an exception. Here is an example: Suppose the program
detects that an argument passed to the method violates the method contract (e.g., the argument

declare exception

throw exception

12.4 More on Exception Handling 459

must be nonnegative, but a negative argument is passed); the program can create an instance
of IllegalArgumentException and throw it, as follows:

IllegalArgumentException ex =
new IllegalArgumentException("Wrong Argument");

throw ex;

Or, if you prefer, you can use the following:

throw new IllegalArgumentException("Wrong Argument");

Note
IllegalArgumentException is an exception class in the Java API. In general,

each exception class in the Java API has at least two constructors: a no-arg con-

structor, and a constructor with a String argument that describes the exception.

This argument is called the exception message, which can be obtained using

getMessage().

Tip
The keyword to declare an exception is throws, and the keyword to throw an exception

is throw.

12.4.3 Catching Exceptions
You now know how to declare an exception and how to throw an exception. When an excep-
tion is thrown, it can be caught and handled in a try-catch block, as follows:

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVarN) {
 handler for exceptionN;
}

If no exceptions arise during the execution of the try block, the catch blocks are skipped.
If one of the statements inside the try block throws an exception, Java skips the remain-

ing statements in the try block and starts the process of finding the code to handle the
exception. The code that handles the exception is called the exception handler; it is found
by propagating the exception backward through a chain of method calls, starting from the
current method. Each catch block is examined in turn, from first to last, to see whether
the type of the exception object is an instance of the exception class in the catch block.
If so, the exception object is assigned to the variable declared, and the code in the catch
block is executed. If no handler is found, Java exits this method, passes the exception to
the method that invoked the method, and continues the same process to find a handler. If
no handler is found in the chain of methods being invoked, the program terminates and
prints an error message on the console. The process of finding a handler is called catching
an exception.

exception message

throws vs. throw

catch exception

exception handler

exception propagation

460 Chapter 12 Exception Handling and Text I/O

Suppose the main method invokes method1, method1 invokes method2, method2
invokes method3, and method3 throws an exception, as shown in Figure 12.3. Consider the
following scenario:

 ■ If the exception type is Exception3, it is caught by the catch block for han-
dling exception ex3 in method2. statement5 is skipped, and statement6 is
executed.

 ■ If the exception type is Exception2, method2 is aborted, the control is returned to
method1, and the exception is caught by the catch block for handling exception
ex2 in method1. statement3 is skipped, and statement4 is executed.

 ■ If the exception type is Exception1, method1 is aborted, the control is returned
to the main method, and the exception is caught by the catch block for handling
exception ex1 in the main method. statement1 is skipped, and statement2 is
executed.

 ■ If the exception type is not caught in method2, method1, or main, the program
terminates, and statement1 and statement2 are not executed.

FIGURE 12.3 If an exception is not caught in the current method, it is passed to its caller. The process is repeated until
the exception is caught or passed to the main method.

main method {
...
try {

 ...
invoke method1;
statement1;

}
catch (Exception1 ex1) {
Process ex1;

}
statement2;

}

method1 {
...
try {

 ...
invoke method2;
statement3;

}
catch (Exception2 ex2) {
Process ex2;

}
statement4;

}

method2 {
...
try {

 ...
invoke method3;
statement5;

}
catch (Exception3 ex3) {
Process ex3;

}
statement6;

}

An exception
is thrown in
method3

Call stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Note
Various exception classes can be derived from a common superclass. If a catch block

catches exception objects of a superclass, it can catch all the exception objects of the

subclasses of that superclass.

Note
The order in which exceptions are specified in catch blocks is important. A compile

error will result if a catch block for a superclass type appears before a catch block for a

subclass type. For example, the ordering in (a) on the next page is erroneous, because

RuntimeException is a subclass of Exception. The correct ordering should be as

shown in (b).

catch block

order of exception handlers

12.4 More on Exception Handling 461

Note
Java forces you to deal with checked exceptions. If a method declares a checked exception

(i.e., an exception other than Error or RuntimeException), you must invoke it in a

try-catch block or declare to throw the exception in the calling method. For example,

suppose that method p1 invokes method p2, and p2 may throw a checked exception

(e.g., IOException); you have to write the code as shown in (a) or (b) below.

catch or declare checked
exceptions

FIGURE 12.4 Throwable is the root class for all exception objects.

java.lang.Throwable

+getMessage(): String

+toString(): String

+printStackTrace(): void

+getStackTrace():
StackTraceElement[]

Returns the message that describes this exception object.

Returns the concatenation of three strings: (1) the full name of the exception
class; (2) ":" (a colon and a space); (3) the getMessage() method.

Prints the Throwable object and its call stack trace information on the
console.

Returns an array of stack trace elements representing the stack trace
pertaining to this exception object.

try {
 ...
}
catch (Exception ex) {
 ...
}
catch (RuntimeException ex) {
 ...
}

(a) Wrong order

try {
 ...
}
catch (RuntimeException ex) {
 ...
}
catch (Exception ex) {
 ...
}

(b) Correct order

void p1() {
try {

 p2();
}

catch (IOException ex) {
 ...

}

}

(a) Catch exception

void p1() throws IOException {

 p2();

}

(b) Throw exception

Note
You can use the new JDK 7 multi-catch feature to simplify coding for the exceptions

with the same handling code. The syntax is:

catch (Exception1 | Exception2 | ... | Exceptionk ex) {
// Same code for handling these exceptions

}

Each exception type is separated from the next with a vertical bar (|). If one of the

exceptions is caught, the handling code is executed.

12.4.4 Getting Information from Exceptions
An exception object contains valuable information about the exception. You may use the fol-
lowing instance methods in the java.lang.Throwable class to get information regarding
the exception, as shown in Figure 12.4. The printStackTrace() method prints stack trace

JDK 7 multi-catch

methods in Throwable

462 Chapter 12 Exception Handling and Text I/O

information on the console. The getStackTrace() method provides programmatic access
to the stack trace information printed by printStackTrace().

Listing 12.6 gives an example that uses the methods in Throwable to display exception
information. Line 4 invokes the sum method to return the sum of all the elements in the array.
There is an error in line 23 that causes the ArrayIndexOutOfBoundsException, a sub-
class of IndexOutOfBoundsException. This exception is caught in the try-catch block.
Lines 7, 8, and 9 display the stack trace, exception message, and exception object and mes-
sage using the printStackTrace(), getMessage(), and toString() methods, as shown
in Figure 12.5. Line 12 brings stack trace elements into an array. Each element represents a
method call. You can obtain the method (line 14), class name (line 15), and exception line
number (line 16) for each element.

FIGURE 12.5 You can use the printStackTrace(), getMessage(), toString(), and
getStackTrace() methods to obtain information from exception objects.

printStackTrace()

getMessage()

toString()

Using
getStackTrace()

LISTING 12.6 TestException.java
 1 public class TestException {
 2 public static void main(String[] args) {
 3 try {
 4 System.out.println(sum(new int[] {1, 2, 3, 4, 5}));
 5 }
 6 catch (Exception ex) {
 7 ex.printStackTrace();
 8 System.out.println("\n" + ex.getMessage());
 9 System.out.println("\n" + ex.toString());
10
11 System.out.println("\nTrace Info Obtained from getStackTrace");
12 StackTraceElement[] traceElements = ex.getStackTrace();
13 for (int i = 0; i < traceElements.length; i++) {
14 System.out.print("method " + traceElements[i].getMethodName());
15 System.out.print("(" + traceElements[i].getClassName() + ":");
16 System.out.println(traceElements[i].getLineNumber() + ")");
17 }
18 }
19 }
20
21 private static int sum(int[] list) {
22 int result = 0;
23 for (int i = 0; i <= list.length; i++)

getStackTrace()

invoke sum

printStackTrace()
getMessage()
toString()

cause an exception

12.4 More on Exception Handling 463

24 result += list[i];
25 return result;
26 }
27 }

12.4.5 Example: Declaring, Throwing, and Catching Exceptions
This example demonstrates declaring, throwing, and catching exceptions by modifying the
setRadius method in the Circle class in Listing 9.8, CircleWithPrivateDataFields.java.
The new setRadius method throws an exception if the radius is negative.

Listing 12.7 defines a new circle class named CircleWithException, which is the same
as CircleWithPrivateDataFields except that the setRadius(double newRadius)
method throws an IllegalArgumentException if the argument newRadius is negative.

LISTING 12.7 CircleWithException.java
 1 public class CircleWithException {
 2 /** The radius of the circle */
 3 private double radius;
 4
 5 /** The number of the objects created */
 6 private static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 public CircleWithException() {
10 this(1.0);
11 }
12
13 /** Construct a circle with a specified radius */
14 public CircleWithException(double newRadius) {
15 setRadius(newRadius);
16 numberOfObjects++;
17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double newRadius)
26 throws IllegalArgumentException {
27 if (newRadius >= 0)
28 radius = newRadius;
29 else

30 throw new IllegalArgumentException(
31 "Radius cannot be negative");
32 }
33
34 /** Return numberOfObjects */
35 public static int getNumberOfObjects() {
36 return numberOfObjects;
37 }
38
39 /** Return the area of this circle */
40 public double findArea() {
41 return radius * radius * 3.14159;
42 }
43 }

declare exception

throw exception

464 Chapter 12 Exception Handling and Text I/O

A test program that uses the new Circle class is given in Listing 12.8.

LISTING 12.8 TestCircleWithException.java
 1 public class TestCircleWithException {
 2 public static void main(String[] args) {
 3 try {
 4 CircleWithException c1 = new CircleWithException(5);
 5 CircleWithException c2 = new CircleWithException(-5);
 6 CircleWithException c3 = new CircleWithException(0);
 7 }
 8 catch (IllegalArgumentException ex) {
 9 System.out.println(ex);
10 }
11
12 System.out.println("Number of objects created: " +
13 CircleWithException.getNumberOfObjects());
14 }
15 }

try

catch

java.lang.IllegalArgumentException: Radius cannot be negative
Number of objects created: 1

The original Circle class remains intact except that the class name is changed to
CircleWithException, a new constructor CircleWithException(newRadius) is
added, and the setRadius method now declares an exception and throws it if the radius is
negative.

The setRadius method declares to throw IllegalArgumentException in the method
header (lines 25–32 in CircleWithException.java). The CircleWithException class would
still compile if the throws IllegalArgumentException clause (line 26) were removed from
the method declaration, since it is a subclass of RuntimeException and every method can
throw RuntimeException (an unchecked exception) regardless of whether it is declared in the
method header.

The test program creates three CircleWithException objects—c1, c2, and c3—to test
how to handle exceptions. Invoking new CircleWithException(-5) (line 5 in Listing 12.8)
causes the setRadius method to be invoked, which throws an IllegalArgumentException,
because the radius is negative. In the catch block, the type of the object ex is
IllegalArgumentException, which matches the exception object thrown by the setRadius
method, so this exception is caught by the catch block.

The exception handler prints a short message, ex.toString() (line 9 in Listing 12.8),
about the exception, using System.out.println(ex).

Note that the execution continues in the event of the exception. If the handlers had not
caught the exception, the program would have abruptly terminated.

The test program would still compile if the try statement were not used, because the method
throws an instance of IllegalArgumentException, a subclass of RuntimeException (an
unchecked exception). If a method throws an exception other than RuntimeException or
Error, the method must be invoked within a try-catch block.

12.9 What is the purpose of declaring exceptions? How do you declare an exception, and
where? Can you declare multiple exceptions in a method header?

12.10 What is a checked exception, and what is an unchecked exception?

12.11 How do you throw an exception? Can you throw multiple exceptions in one throw
statement?

12.12 What is the keyword throw used for? What is the keyword throws used for?

✓Point✓Check

12.4 More on Exception Handling 465

12.13 Suppose that statement2 causes an exception in the following try-catch block:

try {
 statement1;

statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
}

statement4;

Answer the following questions:

■ Will statement3 be executed?

■ If the exception is not caught, will statement4 be executed?

■ If the exception is caught in the catch block, will statement4 be executed?

12.14 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {

try {
int[] list = new int[10];

 System.out.println("list[10] is " + list[10]);
 }

catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }

catch (Exception ex) {
 System.out.println("Exception");
 }
 }
}

12.15 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {

try {
 method();
 System.out.println("After the method call");
 }

catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }

catch (Exception e) {
 System.out.println("Exception");
 }
 }

static void method() throws Exception {

466 Chapter 12 Exception Handling and Text I/O

 System.out.println(1 / 0);
 }
}

12.16 What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {

try {
 method();
 System.out.println("After the method call");
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }

catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }

static void method() throws Exception {
try {

 String s = "abc";
 System.out.println(s.charAt(3));
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }

catch (Exception ex) {
 System.out.println("Exception in method()");
 }
 }
}

12.17 What does the method getMessage() do?

12.18 What does the method printStackTrace() do?

12.19 Does the presence of a try-catch block impose overhead when no exception occurs?

12.20 Correct a compile error in the following code:

public void m(int value) {
if (value < 40)

throw new Exception("value is too small");
}

12.5 The finally Clause
The finally clause is always executed regardless whether an exception occurred or not.

Occasionally, you may want some code to be executed regardless of whether an exception
occurs or is caught. Java has a finally clause that can be used to accomplish this objective.
The syntax for the finally clause might look like this:

try {
 statements;
}
catch (TheException ex) {
 handling ex;
}

Key
Point

12.6 When to Use Exceptions 467

finally {
 finalStatements;
}

The code in the finally block is executed under all circumstances, regardless of whether an
exception occurs in the try block or is caught. Consider three possible cases:

 ■ If no exception arises in the try block, finalStatements is executed, and the next
statement after the try statement is executed.

 ■ If a statement causes an exception in the try block that is caught in a catch block, the
rest of the statements in the try block are skipped, the catch block is executed, and the
finally clause is executed. The next statement after the try statement is executed.

 ■ If one of the statements causes an exception that is not caught in any catch block,
the other statements in the try block are skipped, the finally clause is executed,
and the exception is passed to the caller of this method.

The finally block executes even if there is a return statement prior to reaching the
finally block.

Note
The catch block may be omitted when the finally clause is used.

12.21 Suppose that statement2 causes an exception in the following statement:

try {
 statement1;

statement2;
 statement3;
}
catch (Exception1 ex1) {
}
finally {
 statement4;
}
statement5;

Answer the following questions:

■ If no exception occurs, will statement4 be executed, and will statement5 be
executed?

■ If the exception is of type Exception1, will statement4 be executed, and will
statement5 be executed?

■ If the exception is not of type Exception1, will statement4 be executed, and
will statement5 be executed?

12.6 When to Use Exceptions
A method should throw an exception if the error needs to be handled by its caller.

The try block contains the code that is executed in normal circumstances. The catch block
contains the code that is executed in exceptional circumstances. Exception handling separates
error-handling code from normal programming tasks, thus making programs easier to read
and to modify. Be aware, however, that exception handling usually requires more time and
resources, because it requires instantiating a new exception object, rolling back the call stack,
and propagating the exception through the chain of methods invoked to search for the handler.

omit catch block

✓Point✓Check

Key
Point

468 Chapter 12 Exception Handling and Text I/O

An exception occurs in a method. If you want the exception to be processed by its caller,
you should create an exception object and throw it. If you can handle the exception in the
method where it occurs, there is no need to throw or use exceptions.

In general, common exceptions that may occur in multiple classes in a project are candi-
dates for exception classes. Simple errors that may occur in individual methods are best han-
dled without throwing exceptions. This can be done by using if statements to check for errors.

When should you use a try-catch block in the code? Use it when you have to deal with
unexpected error conditions. Do not use a try-catch block to deal with simple, expected
situations. For example, the following code

try {
 System.out.println(refVar.toString());
}
catch (NullPointerException ex) {
 System.out.println("refVar is null");
}

is better replaced by

if (refVar != null)
 System.out.println(refVar.toString());
else

 System.out.println("refVar is null");

Which situations are exceptional and which are expected is sometimes difficult to decide. The
point is not to abuse exception handling as a way to deal with a simple logic test.

12.22 The following method checks whether a string is a numeric string:

public static boolean isNumeric(String token) {
try {

 Double.parseDouble(token);
return true;

 }
catch (java.lang.NumberFormatException ex) {

return false;
 }
}

 Is it correct? Rewrite it without using exceptions.

12.7 Rethrowing Exceptions
Java allows an exception handler to rethrow the exception if the handler cannot
process the exception or simply wants to let its caller be notified of the exception.

The syntax for rethrowing an exception may look like this:

try {
 statements;
}
catch (TheException ex) {
 perform operations before exits;

throw ex;
}

The statement throw ex rethrows the exception to the caller so that other handlers in the
caller get a chance to process the exception ex.

✓Point✓Check

Key
Point

12.8 Chained Exceptions 469

12.23 Suppose that statement2 causes an exception in the following statement:

try {
 statement1;

statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {

throw ex2;
}
finally {
 statement4;
}
statement5;

 Answer the following questions:

■ If no exception occurs, will statement4 be executed, and will statement5 be
executed?

■ If the exception is of type Exception1, will statement4 be executed, and will
statement5 be executed?

■ If the exception is of type Exception2, will statement4 be executed, and will
statement5 be executed?

■ If the exception is not Exception1 nor Exception2, will statement4 be exe-
cuted, and will statement5 be executed?

12.8 Chained Exceptions
Throwing an exception along with another exception forms a chained exception.

In the preceding section, the catch block rethrows the original exception. Sometimes, you
may need to throw a new exception (with additional information) along with the original
exception. This is called chained exceptions. Listing 12.9 illustrates how to create and throw
chained exceptions.

LISTING 12.9 ChainedExceptionDemo.java
 1 public class ChainedExceptionDemo {
 2 public static void main(String[] args) {
 3 try {
 4 method1();
 5 }
 6 catch (Exception ex) {
 7 ex.printStackTrace();
 8 }
 9 }
10
11 public static void method1() throws Exception {
12 try {
13 method2();
14 }
15 catch (Exception ex) {
16 throw new Exception("New info from method1", ex);
17 }
18 }

✓Point✓Check

Key
Point

chained exception

stack trace

chained exception

470 Chapter 12 Exception Handling and Text I/O

19
20 public static void method2() throws Exception {
21 throw new Exception("New info from method2");
22 }
23 }

throw exception

java.lang.Exception: New info from method1
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:16)
 at ChainedExceptionDemo.main(ChainedExceptionDemo.java:4)
Caused by: java.lang.Exception: New info from method2
 at ChainedExceptionDemo.method2(ChainedExceptionDemo.java:21)
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:13)
 ... 1 more

The main method invokes method1 (line 4), method1 invokes method2 (line 13), and
method2 throws an exception (line 21). This exception is caught in the catch block in
method1 and is wrapped in a new exception in line 16. The new exception is thrown and
caught in the catch block in the main method in line 6. The sample output shows the output
from the printStackTrace() method in line 7. The new exception thrown from method1
is displayed first, followed by the original exception thrown from method2.

12.24 What would be the output if line 16 is replaced by the following line?

throw new Exception(“New info from method1”);

12.9 Defining Custom Exception Classes
You can define a custom exception class by extending the java.lang.Exception
class.

Java provides quite a few exception classes. Use them whenever possible instead of defining
your own exception classes. However, if you run into a problem that cannot be adequately
described by the predefined exception classes, you can create your own exception class,
derived from Exception or from a subclass of Exception, such as IOException.

In Listing 12.7, CircleWithException.java, the setRadius method throws an exception if
the radius is negative. Suppose you wish to pass the radius to the handler. In that case, you can
define a custom exception class, as shown in Listing 12.10.

LISTING 12.10 InvalidRadiusException.java
 1 public class InvalidRadiusException extends Exception {
 2 private double radius;
 3
 4 /** Construct an exception */
 5 public InvalidRadiusException(double radius) {
 6 super("Invalid radius " + radius);
 7 this.radius = radius;
 8 }
 9
10 /** Return the radius */
11 public double getRadius() {
12 return radius;
13 }
14 }

This custom exception class extends java.lang.Exception (line 1). The Exception class
extends java.lang.Throwable. All the methods (e.g., getMessage(), toString(), and

✓Point✓Check

Key
Point

Create custom exception

classes

VideoNote

extends Exception

12.9 Defining Custom Exception Classes 471

printStackTrace()) in Exception are inherited from Throwable. The Exception
class contains four constructors. Among them, the following two constructors are often used:

java.lang.Exception

+Exception()

+Exception(message: String)

Constructs an exception with no message.

Constructs an exception with the specified message.

Line 6 invokes the superclass’s constructor with a message. This message will be set in the
exception object and can be obtained by invoking getMessage() on the object.

Tip
Most exception classes in the Java API contain two constructors: a no-arg constructor

and a constructor with a message parameter.

To create an InvalidRadiusException, you have to pass a radius. There-

fore, the setRadius method in Listing 12.7 can be modified as shown in Listing 12.11.

LISTING 12.11 TestCircleWithCustomException.java
 1 public class TestCircleWithCustomException {
 2 public static void main(String[] args) {
 3 try {
 4 new CircleWithCustomException(5);
 5 new CircleWithCustomException(-5);
 6 new CircleWithCustomException(0);
 7 }
 8 catch (InvalidRadiusException ex) {
 9 System.out.println(ex);
10 }
11
12 System.out.println("Number of objects created: " +
13 CircleWithCustomException.getNumberOfObjects());
14 }
15 }
16
17 class CircleWithCustomException {
18 /** The radius of the circle */
19 private double radius;
20
21 /** The number of objects created */
22 private static int numberOfObjects = 0;
23
24 /** Construct a circle with radius 1 */
25 public CircleWithCustomException() throws InvalidRadiusException {
26 this(1.0);
27 }
28
29 /** Construct a circle with a specified radius */
30 public CircleWithCustomException(double newRadius)
31 throws InvalidRadiusException {
32 setRadius(newRadius);
33 numberOfObjects++;
34 }
35
36 /** Return radius */
37 public double getRadius() {

declare exception

472 Chapter 12 Exception Handling and Text I/O

38 return radius;
39 }
40
41 /** Set a new radius */
42 public void setRadius(double newRadius)
43 throws InvalidRadiusException {
44 if (newRadius >= 0)
45 radius = newRadius;
46 else

47 throw new InvalidRadiusException(newRadius);
48 }
49
50 /** Return numberOfObjects */
51 public static int getNumberOfObjects() {
52 return numberOfObjects;
53 }
54
55 /** Return the area of this circle */
56 public double findArea() {
57 return radius * radius * 3.14159;
58 }
59 }

throw exception

InvalidRadiusException: Invalid radius -5.0
Number of objects created: 1

The setRadius method in CircleWithCustomException throws an InvalidRadius-
Exception when radius is negative (line 47). Since InvalidRadiusException is a
checked exception, the setRadius method must declare it in the method header (line 43).
Since the constructors for CircleWithCustomException invoke the setRadius method
to a set a new radius and it may throw an InvalidRadiusException, the constructors are
declared to throw InvalidRadiusException (lines 25, 31).

Invoking new CircleWithCustomException(-5) (line 5) throws an InvalidRadius-
Exception, which is caught by the handler. The handler displays the radius in the exception
object ex.

Tip
Can you define a custom exception class by extending RuntimeException? Yes, but

it is not a good way to go, because it makes your custom exception unchecked. It is bet-

ter to make a custom exception checked, so that the compiler can force these exceptions

to be caught in your program.

12.25 How do you define a custom exception class?

12.26 Suppose the setRadius method throws the InValidRadiusException defined in
Listing 12.10. What is displayed when the following program is run?

public class Test {
public static void main(String[] args) {

try {
 method();
 System.out.println("After the method call");
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }

checked custom exception

✓Point✓Check

12.10 The File Class 473

catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }

static void method() throws Exception {
try {

 Circle c1 = new Circle(1);
 c1.setRadius(-1);
 System.out.println(c1.getRadius());
 }

catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }

catch (Exception ex) {
 System.out.println("Exception in method()");

throw ex;
 }
 }
}

12.10 The File Class
The File class contains the methods for obtaining the properties of a file/directory
and for renaming and deleting a file/directory.

Having learned exception handling, you are ready to step into file processing. Data stored in
the program are temporary; they are lost when the program terminates. To permanently store
the data created in a program, you need to save them in a file on a disk or other permanent
storage device. The file can then be transported and read later by other programs. Since data
are stored in files, this section introduces how to use the File class to obtain file/directory
properties, to delete and rename files/directories, and to create directories. The next section
introduces how to read/write data from/to text files.

Every file is placed in a directory in the file system. An absolute file name (or full
name) contains a file name with its complete path and drive letter. For example, c:\book\
Welcome.java is the absolute file name for the file Welcome.java on the Windows
operating system. Here c:\book is referred to as the directory path for the file. Absolute
file names are machine dependent. On the UNIX platform, the absolute file name may
be /home/liang/book/Welcome.java, where /home/liang/book is the directory path for
the file Welcome.java.

A relative file name is in relation to the current working directory. The complete
directory path for a relative file name is omitted. For example, Welcome.java is a rela-
tive file name. If the current working directory is c:\book, the absolute file name would
be c:\book\Welcome.java.

The File class is intended to provide an abstraction that deals with most of the machine-
dependent complexities of files and path names in a machine-independent fashion. The File
class contains the methods for obtaining file and directory properties and for renaming and
deleting files and directories, as shown in Figure 12.6. However, the File class does not
contain the methods for reading and writing file contents.

The file name is a string. The File class is a wrapper class for the file name and its direc-
tory path. For example, new File("c:\\book") creates a File object for the directory
c:\book, and new File("c:\\book\\test.dat") creates a File object for the
file c:\book\test.dat, both on Windows. You can use the File class’s isDirectory()
method to check whether the object represents a directory, and the isFile() method to
check whether the object represents a file.

Key
Point

why file?

absolute file name

directory path

relative file name

474 Chapter 12 Exception Handling and Text I/O

Caution
The directory separator for Windows is a backslash (\). The backslash is a special char-

acter in Java and should be written as \\ in a string literal (see Table 4.5).

Note
Constructing a File instance does not create a file on the machine. You can create a

File instance for any file name regardless whether it exists or not. You can invoke the

exists() method on a File instance to check whether the file exists.

Do not use absolute file names in your program. If you use a file name such as c:\\book\\
Welcome.java, it will work on Windows but not on other platforms. You should use a file
name relative to the current directory. For example, you may create a File object using new
File("Welcome.java") for the file Welcome.java in the current directory. You may cre-
ate a File object using new File("image/us.gif") for the file us.gif under the image
directory in the current directory. The forward slash (/) is the Java directory separator, which

\ in file names

relative file name

Java directory separator (/)

FIGURE 12.6 The File class can be used to obtain file and directory properties, to delete and rename files and directories,
and to create directories.

java.io.File

+File(pathname: String)

+File(parent: String, child: String)

+File(parent: File, child: String)

+exists(): boolean

+canRead(): boolean

+canWrite(): boolean

+isDirectory(): boolean

+isFile(): boolean

+isAbsolute(): boolean

+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String

+getParent(): String

+lastModified(): long

+length(): long

+listFile(): File[]

+delete(): boolean

+renameTo(dest: File): boolean

+mkdir(): boolean

+mkdirs(): boolean

Creates a File object for the specified path name. The path name may be a
directory or a file.

Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory.

Creates a File object for the child under the directory parent. The parent is a
File object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.

Returns true if the file represented by the File object exists and can be read.

Returns true if the file represented by the File object exists and can be written.

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

Returns the complete absolute file or directory name represented by the File
object.

Returns the same as getAbsolutePath() except that it removes redundant
names, such as "." and "..", from the path name, resolves symbolic links (on
Unix), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by
the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.

Returns the complete directory and file name represented by the File object.
 For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file
represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.

Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object.The method returns
 true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name
 represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
 created successfully.

Same as mkdir() except that it creates directory along with its parent directories if
 the parent directories do not exist.

is the same as on UNIX. The statement new File("image/us.gif") works on Windows,
UNIX, and any other platform.

Listing 12.12 demonstrates how to create a File object and use the methods in the File
class to obtain its properties. The program creates a File object for the file us.gif. This file is
stored under the image directory in the current directory.

LISTING 12.12 TestFileClass.java
 1 public class TestFileClass {
 2 public static void main(String[] args) {
 3 java.io.File file = new java.io.File("image/us.gif");
 4 System.out.println("Does it exist? " + file.exists());
 5 System.out.println("The file has " + file.length() + " bytes");
 6 System.out.println("Can it be read? " + file.canRead());
 7 System.out.println("Can it be written? " + file.canWrite());
 8 System.out.println("Is it a directory? " + file.isDirectory());
 9 System.out.println("Is it a file? " + file.isFile());
10 System.out.println("Is it absolute? " + file.isAbsolute());
11 System.out.println("Is it hidden? " + file.isHidden());
12 System.out.println("Absolute path is " +
13 file.getAbsolutePath());
14 System.out.println("Last modified on " +
15 new java.util.Date(file.lastModified()));
16 }
17 }

The lastModified() method returns the date and time when the file was last modified,
measured in milliseconds since the beginning of UNIX time (00:00:00 GMT, January 1,
1970). The Date class is used to display it in a readable format in lines 14–15.

Figure 12.7a shows a sample run of the program on Windows, and Figure 12.7b, a sample
run on UNIX. As shown in the figures, the path-naming conventions on Windows are differ-
ent from those on UNIX.

create a File
exists()
length()
canRead()
canWrite()
isDirectory()
isFile()
isAbsolute()
isHidden()

getAbsolutePath()

lastModified()

FIGURE 12.7 The program creates a File object and displays file properties.

(a) On Windows (b) On UNIX

12.27 What is wrong about creating a File object using the following statement?

new File("c:\book\test.dat");

12.28 How do you check whether a file already exists? How do you delete a file? How do
you rename a file? Can you find the file size (the number of bytes) using the File
class? How do you create a directory?

12.29 Can you use the File class for I/O? Does creating a File object create a file on the disk?

✓Point✓Check

12.10 The File Class 475

476 Chapter 12 Exception Handling and Text I/O

12.11 File Input and Output
Use the Scanner class for reading text data from a file and the PrintWriter class
for writing text data to a file.

A File object encapsulates the properties of a file or a path, but it does not contain the meth-
ods for creating a file or for writing/reading data to/from a file (referred to as data input and
output, or I/O for short). In order to perform I/O, you need to create objects using appropri-
ate Java I/O classes. The objects contain the methods for reading/writing data from/to a file.
There are two types of files: text and binary. Text files are essentially characters on disk. This
section introduces how to read/write strings and numeric values from/to a text file using the
Scanner and PrintWriter classes. Binary files will be introduced in Chapter 17.

12.11.1 Writing Data Using PrintWriter
The java.io.PrintWriter class can be used to create a file and write data to a text file.
First, you have to create a PrintWriter object for a text file as follows:

PrintWriter output = new PrintWriter(filename);

Then, you can invoke the print, println, and printf methods on the PrintWriter object
to write data to a file. Figure 12.8 summarizes frequently used methods in PrintWriter.

Key
Point

Write and read data

VideoNote

FIGURE 12.8 The PrintWriter class contains the methods for writing data to a text file.

java.io.PrintWriter

Creates a PrintWriter object for the specified file-name string.
Writes a string to the file.

Creates a PrintWriter object for the specified file object.

Writes a character to the file.
Writes an array of characters to the file.
Writes an int value to the file.
Writes a long value to the file.
Writes a float value to the file.
Writes a double value to the file.
Writes a boolean value to the file.

A println method acts like a print method; additionally, it
 prints a line separator. The line-separator string is defined
 by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting
 Console Output.”

+PrintWriter(filename: String)
+print(s: String): void

+PrintWriter(file: File)

+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
 println methods.

Also contains the overloaded
 printf methods.

Listing 12.13 gives an example that creates an instance of PrintWriter and writes two
lines to the file scores.txt. Each line consists of a first name (a string), a middle-name initial
(a character), a last name (a string), and a score (an integer).

LISTING 12.13 WriteData.java

throws an exception
create File object
file exist?

 1 public class WriteData {
 2 public static void main(String[] args) throws IOException {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {
 5 System.out.println("File already exists");
 6 System.exit(1);
 7 }
8

12.11 File Input and Output 477

Lines 4–7 check whether the file scores.txt exists. If so, exit the program (line 6).
Invoking the constructor of PrintWriter will create a new file if the file does not exist. If the

file already exists, the current content in the file will be discarded without verifying with the user.
Invoking the constructor of PrintWriter may throw an I/O exception. Java forces you to write

the code to deal with this type of exception. For simplicity, we declare throws IOException in
the main method header (line 2).

You have used the System.out.print, System.out.println, and System.out.
printf methods to write text to the console. System.out is a standard Java object for the
console output. You can create PrintWriter objects for writing text to any file using print,
println, and printf (lines 13–16).

The close() method must be used to close the file (line 19). If this method is not invoked,
the data may not be saved properly in the file.

12.11.2 Closing Resources Automatically Using try-with-resources
Programmers often forget to close the file. JDK 7 provides the followings new try-with-
resources syntax that automatically closes the files.

try (declare and create resources) {
 Use the resource to process the file;
}

Using the try-with-resources syntax, we rewrite the code in Listing 12.13 in Listing 12.14.

LISTING 12.14 WriteDataWithAutoClose.java
 1 public class WriteDataWithAutoClose {
 2 public static void main(String[] args) throws Exception {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {
 5 System.out.println("File already exists");
 6 System.exit(0);
 7 }
 8
 9 try (
10 // Create a file
11 java.io.PrintWriter output = new java.io.PrintWriter(file);
12) {
13 // Write formatted output to the file
14 output.print("John T Smith ");
15 output.println(90);
16 output.print("Eric K Jones ");
17 output.println(85);
18 }
19 }
20 }

create PrintWriter

print data

close file

create a file

throws IOException

print method

close file

declare/create resource

use the resouce

John T Smith 90
Eric K Jones 85

scores.txt

 9 // Create a file
10 java.io.PrintWriter output = new java.io.PrintWriter(file);
11
12 // Write formatted output to the file
13 output.print("John T Smith ");
14 output.println(90);
15 output.print("Eric K Jones ");
16 output.println(85);
17
18 // Close the file
19 output.close();
20 }
21 }

478 Chapter 12 Exception Handling and Text I/O

A resource is declared and created followed by the keyword try. Note that the resources are
enclosed in the parentheses (lines 9–12). The resources must be a subtype of AutoCloseable
such as a PrinterWriter that has the close() method. A resource must be declared and
created in the same statement and multiple resources can be declared and created inside the
parentheses. The statements in the block (lines 12–18) immediately following the resource
declaration use the resource. After the block is finished, the resource’s close() method
is automatically invoked to close the resource. Using try-with-resources can not only avoid
errors but also make the code simpler.

12.11.3 Reading Data Using Scanner
The java.util.Scanner class was used to read strings and primitive values from the con-
sole in Section 2.3, Reading Input from the Console. A Scanner breaks its input into tokens
delimited by whitespace characters. To read from the keyboard, you create a Scanner for
System.in, as follows:

Scanner input = new Scanner(System.in);

To read from a file, create a Scanner for a file, as follows:

Scanner input = new Scanner(new File(filename));

Figure 12.9 summarizes frequently used methods in Scanner.

FIGURE 12.9 The Scanner class contains the methods for scanning data.

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextLine(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):
Scanner

Creates a Scanner that scans tokens from the specified file.

Creates a Scanner that scans tokens from the specified string.

Closes this scanner.

Returns true if this scanner has more data to be read.

Returns next token as a string from this scanner.

Returns a line ending with the line separator from this scanner.

Returns next token as a byte from this scanner.

Returns next token as a short from this scanner.

Returns next token as an int from this scanner.

Returns next token as a long from this scanner.

Returns next token as a float from this scanner.

Returns next token as a double from this scanner.

Sets this scanner’s delimiting pattern and returns this scanner.

Listing 12.15 gives an example that creates an instance of Scanner and reads data from
the file scores.txt.

LISTING 12.15 ReadData.java

create a File

create a Scanner

 1 import java.util.Scanner;
2
 3 public class ReadData {
 4 public static void main(String[] args) throws Exception {
 5 // Create a File instance
 6 java.io.File file = new java.io.File("scores.txt");
7
 8 // Create a Scanner for the file
 9 Scanner input = new Scanner(file);

12.11 File Input and Output 479

Note that new Scanner(String) creates a Scanner for a given string. To create a Scanner
to read data from a file, you have to use the java.io.File class to create an instance of the
File using the constructor new File(filename) (line 6), and use new Scanner(File)
to create a Scanner for the file (line 9).

Invoking the constructor new Scanner(File) may throw an I/O exception, so the main
method declares throws Exception in line 4.

Each iteration in the while loop reads the first name, middle initial, last name, and score
from the text file (lines 12–19). The file is closed in line 22.

It is not necessary to close the input file (line 22), but it is a good practice to do so to release
the resources occupied by the file. You can rewrite this program using the try-with-resources
syntax. See www.cs.armstrong.edu/liang/intro10e/html/ReadDataWithAutoClose.html.

12.11.4 How Does Scanner Work?
The nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(), next-

Double(), and next() methods are known as token-reading methods, because they read
tokens separated by delimiters. By default, the delimiters are whitespace characters. You
can use the useDelimiter(String regex) method to set a new pattern for delimiters.

How does an input method work? A token-reading method first skips any delimiters (whites-
pace characters by default), then reads a token ending at a delimiter. The token is then auto-
matically converted into a value of the byte, short, int, long, float, or double type for
nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(), and nextDou-
ble(), respectively. For the next() method, no conversion is performed. If the token does
not match the expected type, a runtime exception java.util.InputMismatchException
will be thrown.

Both methods next() and nextLine() read a string. The next() method reads a string
delimited by delimiters, and nextLine() reads a line ending with a line separator.

Note
The line-separator string is defined by the system. It is \r\n on Windows and \n on

UNIX. To get the line separator on a particular platform, use

String lineSeparator = System.getProperty("line.separator");

If you enter input from a keyboard, a line ends with the Enter key, which corresponds

to the \n character.

The token-reading method does not read the delimiter after the token. If the nextLine()
method is invoked after a token-reading method, this method reads characters that start from
this delimiter and end with the line separator. The line separator is read, but it is not part of the
string returned by nextLine().

has next?
read items

close file

File class

throws Exception

close file

token-reading method

change delimiter

InputMismatchException

next() vs. nextLine()

line separator

behavior of nextLine()

10
11 // Read data from a file
12 while (input.hasNext()) {
13 String firstName = input.next();
14 String mi = input.next();
15 String lastName = input.next();
16 int score = input.nextInt();
17 System.out.println(
18 firstName + " " + mi + " " + lastName + " " + score);
19 }
20
21 // Close the file
22 input.close();
23 }
24 }

John T Smith 90
Eric K Jones 85

scores.txt

www.cs.armstrong.edu/liang/intro10e/html/ReadDataWithAutoClose.html

480 Chapter 12 Exception Handling and Text I/O

Suppose a text file named test.txt contains a line

34 567

After the following code is executed,

Scanner input = new Scanner(new File("test.txt"));
int intValue = input.nextInt();
String line = input.nextLine();

intValue contains 34 and line contains the characters ' ', 5, 6, and 7.
What happens if the input is entered from the keyboard? Suppose you enter 34, press the

Enter key, then enter 567 and press the Enter key for the following code:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
String line = input.nextLine();

You will get 34 in intValue and an empty string in line. Why? Here is the reason. The
token-reading method nextInt() reads in 34 and stops at the delimiter, which in this case is
a line separator (the Enter key). The nextLine() method ends after reading the line separa-
tor and returns the string read before the line separator. Since there are no characters before
the line separator, line is empty.

You can read data from a file or from the keyboard using the Scanner class. You can also
scan data from a string using the Scanner class. For example, the following code

Scanner input = new Scanner("13 14");
int sum = input.nextInt() + input.nextInt();
System.out.println("Sum is " + sum);

displays

The sum is 27

12.11.5 Case Study: Replacing Text
Suppose you are to write a program named ReplaceText that replaces all occurrences of a
string in a text file with a new string. The file name and strings are passed as command-line
arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in the file FormatString
.java and saves the new file in t.txt.

Listing 12.16 gives the program. The program checks the number of arguments passed to
the main method (lines 7–11), checks whether the source and target files exist (lines 14–25),
creates a Scanner for the source file (line 29), creates a PrintWriter for the target file
(line 30), and repeatedly reads a line from the source file (line 33), replaces the text (line 34),
and writes a new line to the target file (line 35).

LISTING 12.16 ReplaceText.java
 1 import java.io.*;
 2 import java.util.*;
 3

input from file

input from keyboard

scan a string

12.11 File Input and Output 481

 4 public class ReplaceText {
 5 public static void main(String[] args) throws Exception {
 6 // Check command line parameter usage
 7 if (args.length != 4) {
 8 System.out.println(
 9 "Usage: java ReplaceText sourceFile targetFile oldStr newStr");
10 System.exit(1);
11 }
12
13 // Check if source file exists
14 File sourceFile = new File(args[0]);
15 if (!sourceFile.exists()) {
16 System.out.println("Source file " + args[0] + " does not exist");
17 System.exit(2);
18 }
19
20 // Check if target file exists
21 File targetFile = new File(args[1]);
22 if (targetFile.exists()) {
23 System.out.println("Target file " + args[1] + " already exists");
24 System.exit(3);
25 }
26
27 try (
28 // Create input and output files
29 Scanner input = new Scanner(sourceFile);
30 PrintWriter output = new PrintWriter(targetFile);
31) {
32 while (input.hasNext()) {
33 String s1 = input.nextLine();
34 String s2 = s1.replaceAll(args[2], args[3]);
35 output.println(s2);
36 }
37 }
38 }
39 }

In a normal situation, the program is terminated after a file is copied. The program is
terminated abnormally if the command-line arguments are not used properly (lines 7–11),
if the source file does not exist (lines 14–18), or if the target file already exists (lines
22–25). The exit status code 1, 2, and 3 are used to indicate these abnormal terminations
(lines 10, 17, 24).

12.30 How do you create a PrintWriter to write data to a file? What is the reason to
declare throws Exception in the main method in Listing 12.13, WriteData.java?
What would happen if the close() method were not invoked in Listing 12.13?

12.31 Show the contents of the file temp.txt after the following program is executed.

public class Test {
public static void main(String[] args) throws Exception {

 java.io.PrintWriter output = new
 java.io.PrintWriter("temp.txt");
 output.printf("amount is %f %e\r\n", 32.32, 32.32);
 output.printf("amount is %5.4f %5.4e\r\n", 32.32, 32.32);
 output.printf("%6b\r\n", (1 > 2));
 output.printf("%6s\r\n", "Java");
 output.close();
 }
}

check command usage

source file exists?

target file exists?

try-with-resources

create a Scanner
create a PrintWriter

has next?
read a line

✓Point✓Check

482 Chapter 12 Exception Handling and Text I/O

12.32 Rewrite the code in the preceding question using a try-with-resources syntax.

12.33 How do you create a Scanner to read data from a file? What is the reason to define
throws Exception in the main method in Listing 12.15, ReadData.java? What
would happen if the close() method were not invoked in Listing 12.15?

12.34 What will happen if you attempt to create a Scanner for a nonexistent file? What
will happen if you attempt to create a PrintWriter for an existing file?

12.35 Is the line separator the same on all platforms? What is the line separator on Windows?

12.36 Suppose you enter 45 57.8 789, then press the Enter key. Show the contents of the
variables after the following code is executed.

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

12.37 Suppose you enter 45, press the Enter key, 57.8, press the Enter key, 789, and press
the Enter key. Show the contents of the variables after the following code is executed.

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

12.12 Reading Data from the Web
Just like you can read data from a file on your computer, you can read data from a file
on the Web.

In addition to reading data from a local file on a computer or file server, you can also access
data from a file that is on the Web if you know the file’s URL (Uniform Resource Locator—
the unique address for a file on the Web). For example, www.google.com/index.html is the URL
for the file index.html located on the Google Web server. When you enter the URL in a Web
browser, the Web server sends the data to your browser, which renders the data graphically.
Figure 12.10 illustrates how this process works.

Key
Point

FIGURE 12.10 The client retrieves files from a Web server.

Internet

Client Server

Web
Server

Local files

Web
Browser

Application
Program

For an application program to read data from a URL, you first need to create a URL object
using the java.net.URL class with this constructor:

public URL(String spec) throws MalformedURLException

For example, the following statement creates a URL object for http://www.google.com/index.html.

 1 try {
 2 URL url = new URL("http://www.google.com/index.html");
 3 }

www.google.com/index.html
http://www.google.com/index.html

12.12 Reading Data from the Web 483

 4 catch (MalformedURLException ex) {
 5 ex.printStackTrace();
 6 }

A MalformedURLException is thrown if the URL string has a syntax error. For example,
the URL string “http:www.google.com/index.html” would cause a MalformedURLException
runtime error because two slashes (//) are required after the colon (:). Note that the http://
prefix is required for the URL class to recognize a valid URL. It would be wrong if you replace
line 2 with the following code:

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the openStream() method defined in the URL class
to open an input stream and use this stream to create a Scanner object as follows:

Scanner input = new Scanner(url.openStream());

Now you can read the data from the input stream just like from a local file. The example in
Listing 12.17 prompts the user to enter a URL and displays the size of the file.

LISTING 12.17 ReadFileFromURL.java
 1 import java.util.Scanner;
 2
 3 public class ReadFileFromURL {
 4 public static void main(String[] args) {
 5 System.out.print("Enter a URL: ");
 6 String URLString = new Scanner(System.in).next();
 7
 8 try {
 9 java.net.URL url = new java.net.URL(URLString);
10 int count = 0;
11 Scanner input = new Scanner(url.openStream());
12 while (input.hasNext()) {
13 String line = input.nextLine();
14 count += line.length();
15 }
16
17 System.out.println("The file size is " + count + " characters");
18 }
19 catch (java.net.MalformedURLException ex) {
20 System.out.println("Invalid URL");
21 }
22 catch (java.io.IOException ex) {
23 System.out.println("I/O Errors: no such file");
24 }
25 }
26 }

enter a URL

create a URL object

create a Scanner object
more to read?
read a line

MalformedURLException

IOException

Enter a URL: http://cs.armstrong.edu/liang/data/Lincoln.txt
The file size is 1469 characters

Enter a URL: http://www.yahoo.com
The file size is 190006 characters

http:www.google.com/index.html�

484 Chapter 12 Exception Handling and Text I/O

The program prompts the user to enter a URL string (line 6) and creates a URL object (line 9).
The constructor will throw a java.net.MalformedURLException (line 19) if the URL
isn’t formed correctly.

The program creates a Scanner object from the input stream for the URL (line 11). If the
URL is formed correctly but does not exist, an IOException will be thrown (line 22). For
example, http://google.com/index1.html uses the appropriate form, but the URL itself does not
exist. An IOException would be thrown if this URL was used for this program.

12.38 How do you create a Scanner object for reading text from a URL?

12.13 Case Study: Web Crawler
This case study develops a program that travels the Web by following hyperlinks.

The World Wide Web, abbreviated as WWW, W3, or Web, is a system of interlinked hyper-
text documents on the Internet. With a Web browser, you can view a document and follow
the hyperlinks to view other documents. In this case study, we will develop a program that
automatically traverses the documents on the Web by following the hyperlinks. This type of
program is commonly known as a Web crawler. For simplicity, our program follows for the
hyperlink that starts with http://. Figure 12.11 shows an example of traversing the Web.
We start from a Web page that contains three URLs named URL1, URL2, and URL3. Following
URL1 leads to the page that contains three URLs named URL11, URL12, and URL13. Follow-
ing URL2 leads to the page that contains two URLs named URL21 and URL22. Following URL3
leads to the page that contains four URLs named URL31, URL32, and URL33, and URL34.
Continue to traverse the Web following the new hyperlinks. As you see, this process may
continue forever, but we will exit the program once we have traversed 100 pages.

MalformedURLException

✓Point✓Check

Key
Point

Web crawler

FIGURE 12.11 The client retrieves files from a Web server.

URL1

URL2

URL3

Starting URL

URL11

URL12

URL13

URL1

URL31

URL32

URL33 URL4

URL3

URL21

URL22

URL2

… … … … … … … … …

The program follows the URLs to traverse the Web. To ensure that each URL is traversed
only once, the program maintains two lists of URLs. One list stores the URLs pending for
traversing and the other stores the URLs that have already been traversed. The algorithm for
this program can be described as follows:

Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty and size of listOfTraversedURLs
<= 100 {

http://google.com/index1.html

12.13 Case Study: Web Crawler 485

 Remove a URL from listOfPendingURLs;
 if this URL is not in listOfTraversedURLs {
 Add it to listOfTraversedURLs;
 Display this URL;
 Read the page from this URL and for each URL contained in the page {
 Add it to listOfPendingURLs if it is not in listOfTraversedURLs;
 }
 }
}

Listing 12.18 gives the program that implements this algorithm.

LISTING 12.18 WebCrawler.java
 1 import java.util.Scanner;
 2 import java.util.ArrayList;
 3
 4 public class WebCrawler {
 5 public static void main(String[] args) {
 6 java.util.Scanner input = new java.util.Scanner(System.in);
 7 System.out.print("Enter a URL: ");
 8 String url = input.nextLine();
 9 crawler(url); // Traverse the Web from the a starting url
10 }
11
12 public static void crawler(String startingURL) {
13 ArrayList<String> listOfPendingURLs = new ArrayList<>();
14 ArrayList<String> listOfTraversedURLs = new ArrayList<>();
15
16 listOfPendingURLs.add(startingURL);
17 while (!listOfPendingURLs.isEmpty() &&
18 listOfTraversedURLs.size() <= 100) {
19 String urlString = listOfPendingURLs.remove(0);
20 if (!listOfTraversedURLs.contains(urlString)) {
21 listOfTraversedURLs.add(urlString);
22 System.out.println("Craw " + urlString);
23
24 for (String s: getSubURLs(urlString)) {
25 if (!listOfTraversedURLs.contains(s))
26 listOfPendingURLs.add(s);
27 }
28 }
29 }
30 }
31
32 public static ArrayList<String> getSubURLs(String urlString) {
33 ArrayList<String> list = new ArrayList<>();
34
35 try {
36 java.net.URL url = new java.net.URL(urlString);
37 Scanner input = new Scanner(url.openStream());
38 int current = 0;
39 while (input.hasNext()) {
40 String line = input.nextLine();
41 current = line.indexOf("http:", current);
42 while (current > 0) {
43 int endIndex = line.indexOf("\"", current);
44 if (endIndex > 0) { // Ensure that a correct URL is found
45 list.add(line.substring(current, endIndex));
46 current = line.indexOf("http:", endIndex);
47 }

enter a URL
craw from this URL

list of pending URLs
list of traversed URLs

add starting URL

get the first URL

URL traversed

add a new URL

read a line
search for a URL
end of a URL

extract a URL
search for next URL

URL ends with "

486 Chapter 12 Exception Handling and Text I/O

48 else

49 current = -1;
50 }
51 }
52 }
53 catch (Exception ex) {
54 System.out.println("Error: " + ex.getMessage());
55 }
56
57 return list;
58 }
59 }

return URLs

KEY TERMS

absolute file name 473
chained exception 469
checked exception 457
declare exception 458
directory path 473

exception 450
exception propagation 459
relative file name 473
throw exception 452
unchecked exception 457

Enter a URL: http://cs.armstrong.edu/liang
Enter a URL: http://www.cs.armstrong.edu/liang
Craw http://www.cs.armstrong.edu/liang
Craw http://www.cs.armstrong.edu
Craw http://www.armstrong.edu
Craw http://www.pearsonhighered.com/liang
...

The program prompts the user to enter a starting URL (lines 7–8) and invokes the
crawler(url) method to traverse the web (line 9).

The crawler(url) method adds the starting url to listOfPendingURLs (line 16) and
repeatedly processes each URL in listOfPendingURLs in a while loop (lines 17–29). It
removes the first URL in the list (line 19) and processes the URL if it has not been processed
(lines 20–28). To process each URL, the program first adds the URL to listOfTraversed-
URLs (line 21). This list stores all the URLs that have been processed. The getSubURLs(url)
method returns a list of URLs in the Web page for the specified URL (line 24). The program
uses a foreach loop to add each URL in the page into listOfPendingURLs if it is not in
listOfTraversedURLs (lines 24–26).

The getSubURLs(url) method reads each line from the Web page (line 40) and searches
for the URLs in the line (line 41). Note that a correct URL cannot contain line break charac-
ters. So it is sufficient to limit the search for a URL in one line of the text in a Web page. For
simplicity, we assume that a URL ends with a quotation mark " (line 43). The method obtains
a URL and adds it to a list (line 45). A line may contain multiple URLs. The method continues
to search for the next URL (line 46). If no URL is found in the line, current is set to -1 (line
49). The URLs contained in the page are returned in the form of a list (line 57).

The program terminates when the number of traversed URLs reaches to 100 (line 18).
This is a simple program to traverse the Web. Later you will learn the techniques to make

the program more efficient and robust.

12.39 Before a URL is added to listOfPendingURLs, line 25 checks whether it has been
traversed. Is it possible that listOfPendingURLs contains duplicate URLs? If so,
give an example.

✓Point✓Check

Chapter Summary 487

CHAPTER SUMMARY

1. Exception handling enables a method to throw an exception to its caller.

2. A Java exception is an instance of a class derived from java.lang.Throwable.
Java provides a number of predefined exception classes, such as Error, Exception,
RuntimeException, ClassNotFoundException, NullPointerException, and
ArithmeticException. You can also define your own exception class by extending
Exception.

3. Exceptions occur during the execution of a method. RuntimeException and Error
are unchecked exceptions; all other exceptions are checked.

4. When declaring a method, you have to declare a checked exception if the method might
throw it, thus telling the compiler what can go wrong.

5. The keyword for declaring an exception is throws, and the keyword for throwing an
exception is throw.

6. To invoke the method that declares checked exceptions, enclose it in a try statement.
When an exception occurs during the execution of the method, the catch block catches
and handles the exception.

7. If an exception is not caught in the current method, it is passed to its caller. The process
is repeated until the exception is caught or passed to the main method.

8. Various exception classes can be derived from a common superclass. If a catch block
catches the exception objects of a superclass, it can also catch all the exception objects
of the subclasses of that superclass.

9. The order in which exceptions are specified in a catch block is important. A compile
error will result if you specify an exception object of a class after an exception object of
the superclass of that class.

10. When an exception occurs in a method, the method exits immediately if it does not
catch the exception. If the method is required to perform some task before exiting, you
can catch the exception in the method and then rethrow it to its caller.

11. The code in the finally block is executed under all circumstances, regardless of whether
an exception occurs in the try block or whether an exception is caught if it occurs.

12. Exception handling separates error-handling code from normal programming tasks,
thus making programs easier to read and to modify.

13. Exception handling should not be used to replace simple tests. You should perform
simple test using if statements whenever possible, and reserve exception handling for
dealing with situations that cannot be handled with if statements.

14. The File class is used to obtain file properties and manipulate files. It does not contain
the methods for creating a file or for reading/writing data from/to a file.

15. You can use Scanner to read string and primitive data values from a text file and use
PrintWriter to create a file and write data to a text file.

16. You can read from a file on the Web using the URL class.

488 Chapter 12 Exception Handling and Text I/O

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 12.2–12.9

*12.1 (NumberFormatException) Listing 7.9, Calculator.java, is a simple command-
line calculator. Note that the program terminates if any operand is nonnumeric.
Write a program with an exception handler that deals with nonnumeric operands;
then write another program without using an exception handler to achieve the
same objective. Your program should display a message that informs the user of
the wrong operand type before exiting (see Figure 12.12).

FIGURE 12.12 The program performs arithmetic operations and detects input errors.

*12.2 (InputMismatchException) Write a program that prompts the user to read
two integers and displays their sum. Your program should prompt the user to
read the number again if the input is incorrect.

*12.3 (ArrayIndexOutOfBoundsException) Write a program that meets the fol-
lowing requirements:

■ Creates an array with 100 randomly chosen integers.
■ Prompts the user to enter the index of the array, then displays the corre-

sponding element value. If the specified index is out of bounds, display the
message Out of Bounds.

*12.4 (IllegalArgumentException) Modify the Loan class in Listing 10.2 to
throw IllegalArgumentException if the loan amount, interest rate, or
number of years is less than or equal to zero.

*12.5 (IllegalTriangleException) Programming Exercise 11.1 defined the
Triangle class with three sides. In a triangle, the sum of any two sides is
greater than the other side. The Triangle class must adhere to this rule.
Create the IllegalTriangleException class, and modify the constructor
of the Triangle class to throw an IllegalTriangleException object if a
triangle is created with sides that violate the rule, as follows:

/** Construct a triangle with the specified sides */
public Triangle(double side1, double side2, double side3)

throws IllegalTriangleException {
// Implement it

 }

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 489

*12.6 (NumberFormatException) Listing 6.8 implements the hex2Dec(String
hexString) method, which converts a hex string into a decimal number.
Implement the hex2Dec method to throw a NumberFormatException if the
string is not a hex string.

*12.7 (NumberFormatException) Write the bin2Dec(String binaryString)
method to convert a binary string into a decimal number. Implement the
bin2Dec method to throw a NumberFormatException if the string is not a
binary string.

*12.8 (HexFormatException) Exercise 12.6 implements the hex2Dec method to
throw a NumberFormatException if the string is not a hex string. Define
a custom exception called HexFormatException. Implement the hex2Dec
method to throw a HexFormatException if the string is not a hex string.

*12.9 (BinaryFormatException) Exercise 12.7 implements the bin2Dec method
to throw a BinaryFormatException if the string is not a binary string.
Define a custom exception called BinaryFormatException. Implement the
bin2Dec method to throw a BinaryFormatException if the string is not a
binary string.

*12.10 (OutOfMemoryError) Write a program that causes the JVM to throw an
OutOfMemoryError and catches and handles this error.

Sections 12.10–12.12

**12.11 (Remove text) Write a program that removes all the occurrences of a specified
string from a text file. For example, invoking

java Exercise12_11 John filename

 removes the string John from the specified file. Your program should get the
arguments from the command line.

**12.12 (Reformat Java source code) Write a program that converts the Java source
code from the next-line brace style to the end-of-line brace style. For example,
the following Java source in (a) uses the next-line brace style. Your program
converts it to the end-of-line brace style in (b).

HexFormatException

VideoNote

public class Test
{

public static void main(String[] args)
 {

// Some statements
 }
}

(a) Next-line brace style

public class Test {
public static void main(String[] args) {

// Some statements
 }
}

(b) End-of-line brace style

 Your program can be invoked from the command line with the Java source-
code file as the argument. It converts the Java source code to a new format. For
example, the following command converts the Java source-code file Test.java
to the end-of-line brace style.

java Exercise12_12 Test.java

*12.13 (Count characters, words, and lines in a file) Write a program that will count
the number of characters, words, and lines in a file. Words are separated by
whitespace characters. The file name should be passed as a command-line
argument, as shown in Figure 12.13.

490 Chapter 12 Exception Handling and Text I/O

*12.14 (Process scores in a text file) Suppose that a text file contains an unspecified
number of scores separated by blanks. Write a program that prompts the user
to enter the file, reads the scores from the file, and displays their total and
average.

*12.15 (Write/read data) Write a program to create a file named Exercise12_15.txt if
it does not exist. Write 100 integers created randomly into the file using text
I/O. Integers are separated by spaces in the file. Read the data back from the
file and display the data in increasing order.

**12.16 (Replace text) Listing 12.16, ReplaceText.java, gives a program that replaces
text in a source file and saves the change into a new file. Revise the program to
save the change into the original file. For example, invoking

java Exercise12_16 file oldString newString

 replaces oldString in the source file with newString.

***12.17 (Game: hangman) Rewrite Programming Exercise 7.35. The program reads the
words stored in a text file named hangman.txt. Words are delimited by spaces.

**12.18 (Add package statement) Suppose you have Java source files under the direc-
tories chapter1, chapter2, . . . , chapter34. Write a program to insert the
statement package chapteri; as the first line for each Java source file under
the directory chapteri. Suppose chapter1, chapter2, . . . , chapter34
are under the root directory srcRootDirectory. The root directory and
chapteri directory may contain other folders and files. Use the following
command to run the program:

java Exercise12_18 srcRootDirectory

*12.19 (Count words) Write a program that counts the number of words in President
Abraham Lincoln’s Gettysburg address from http://cs.armstrong.edu/liang/data/
Lincoln.txt.

**12.20 (Remove package statement) Suppose you have Java source files under the
directories chapter1, chapter2, . . . , chapter34. Write a program to
remove the statement package chapteri; in the first line for each Java
source file under the directory chapteri. Suppose chapter1, chapter2,
. . . , chapter34 are under the root directory srcRootDirectory. The root
directory and chapteri directory may contain other folders and files. Use
the following command to run the program:

java Exercise12_20 srcRootDirectory

*12.21 (Data sorted?) Write a program that reads the strings from file SortedStrings.
txt and reports whether the strings in the files are stored in increasing order.

FIGURE 12.13 The program displays the number of characters, words, and lines in the given
file.

http://cs.armstrong.edu/liang/data/Lincoln.txt
http://cs.armstrong.edu/liang/data/Lincoln.txt

Programming Exercises 491

If the strings are not sorted in the file, displays the first two strings that are out
of the order.

**12.22 (Replace text) Revise Programming Exercise 12.16 to replace a string in a file
with a new string for all files in the specified directory using the command:

java Exercise12_22 dir oldString newString

**12.23 (Process scores in a text file on the Web) Suppose that the text file on the
Web http://cs.armstrong.edu/liang/data/Scores.txt contains an unspecified number
of scores. Write a program that reads the scores from the file and displays their
total and average. Scores are separated by blanks.

*12.24 (Create large dataset) Create a data file with 1,000 lines. Each line in the file
consists of a faculty member’s first name, last name, rank, and salary. The
faculty member’s first name and last name for the ith line are FirstNamei and
LastNamei. The rank is randomly generated as assistant, associate, and full.
The salary is randomly generated as a number with two digits after the decimal
point. The salary for an assistant professor should be in the range from 50,000
to 80,000, for associate professor from 60,000 to 110,000, and for full professor
from 75,000 to 130,000. Save the file in Salary.txt. Here are some sample data:

FirstName1 LastName1 assistant 60055.95

FirstName2 LastName2 associate 81112.45

. . .

FirstName1000 LastName1000 full 92255.21

*12.25 (Process large dataset) A university posts its employees’ salaries at http://
cs.armstrong.edu/liang/data/Salary.txt. Each line in the file consists of a faculty
member’s first name, last name, rank, and salary (see Programming Exercise
12.24). Write a program to display the total salary for assistant professors,
associate professors, full professors, and all faculty, respectively, and display
the average salary for assistant professors, associate professors, full professors,
and all faculty, respectively.

**12.26 (Create a directory) Write a program that prompts the user to enter a directory
name and creates a directory using the File’s mkdirs method. The program
displays the message “Directory created successfully” if a directory is created
or “Directory already exists” if the directory already exists.

**12.27 (Replace words) Suppose you have a lot of files in a directory that contain
words Exercisei_j, where i and j are digits. Write a program that pads a 0
before i if i is a single digit and 0 before j if j is a single digit. For example,
the word Exercise2_1 in a file will be replaced by Exercise02_01. In Java,
when you pass the symbol * from the command line, it refers to all files in
the directory (see Supplement III.V). Use the following command to run your
program.

java Exercise12_27 *

**12.28 (Rename files) Suppose you have a lot of files in a directory named Exercisei_j,
where i and j are digits. Write a program that pads a 0 before i if i is a single
digit. For example, a file named Exercise2_1 in a directory will be renamed to
Exercise02_1. In Java, when you pass the symbol * from the command line,
it refers to all files in the directory (see Supplement III.V). Use the following
command to run your program.

java Exercise12_28 *

http://cs.armstrong.edu/liang/data/Scores.txt
http://cs.armstrong.edu/liang/data/Salary.txt
http://cs.armstrong.edu/liang/data/Salary.txt

492 Chapter 12 Exception Handling and Text I/O

**12.29 (Rename files) Suppose you have a lot of files in a directory named Exercisei_j,
where i and j are digits. Write a program that pads a 0 before j if j is a single
digit. For example, a file named Exercise2_1 in a directory will be renamed to
Exercise2_01. In Java, when you pass the symbol * from the command line,
it refers to all files in the directory (see Supplement III.V). Use the following
command to run your program.

java Exercise12_29 *

**12.30 (Occurrences of each letter) Write a program that prompts the user to enter
a file name and displays the occurrences of each letter in the file. Letters are
case-insensitive. Here is a sample run:

Enter a filename: Lincoln.txt
Number of A's: 56
Number of B's: 134
...
Number of Z's: 9

1 Jacob 21,875 Isabella 22,731

2 Ethan 17,866 Sophia 20,477

Enter the year: 2010

Enter the gender: M

Enter the name: Javier
Javier is ranked #190 in year 2010

Enter the year: 2010

Enter the gender: F

Enter the name: ABC
The name ABC is not ranked in year 2010

*12.31 (Baby name popularity ranking) The popularity ranking of baby names from
years 2001 to 2010 is downloaded from www.ssa.gov/oact/babynames and stored
in files named babynameranking2001.txt, babynameranking2002.txt, . . . ,
babynameranking2010.txt. Each file contains one thousand lines. Each line
contains a ranking, a boy’s name, number for the boy’s name, a girl’s name,
and number for the girl’s name. For example, the first two lines in the file
babynameranking2010.txt are as follows:

 So, the boy’s name Jacob and girl’s name Isabella are ranked #1 and the boy’s
name Ethan and girl’s name Sophia are ranked #2. 21,875 boys are named
Jacob and 22,731 girls are named Isabella. Write a program that prompts the
user to enter the year, gender, and followed by a name, and displays the ranking
of the name for the year. Here is a sample run:

www.ssa.gov/oact/babynames

Programming Exercises 493

*12.32 (Ranking summary) Write a program that uses the files described in Program-
ming Exercise 12.31 and displays a ranking summary table for the first five
girl’s and boy’s names as follows:

Year Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

2010 Isabella Sophia Emma Olivia Ava Jacob Ethan Michael Jayden William

2009 Isabella Emma Olivia Sophia Ava Jacob Ethan Michael Alexander William

...

2001 Emily Madison Hannah Ashley Alexis Jacob Michael Matthew Joshua Christopher

**12.33 (Search Web) Modify Listing 12.18 WebCrawler.java to search for the word
Computer Programming starting from the URL http://cs.armstrong.edu/liang.
Your program terminates once the word is found. Display the URL for the page
that contains the word.

http://cs.armstrong.edu/liang

This page intentionally left blank

ABSTRACT CLASSES
AND INTERFACES

Objectives
■ To design and use abstract classes (§13.2).

■ To generalize numeric wrapper classes, BigInteger, and BigDecimal
using the abstract Number class (§13.3).

■ To process a calendar using the Calendar and GregorianCalendar
classes (§13.4).

■ To specify common behavior for objects using interfaces (§13.5).

■ To define interfaces and define classes that implement interfaces (§13.5).

■ To define a natural order using the Comparable interface (§13.6).

■ To make objects cloneable using the Cloneable interface (§13.7).

■ To explore the similarities and differences among concrete classes,
abstract classes, and interfaces (§13.8).

■ To design the Rational class for processing rational numbers (§13.9).

■ To design classes that follow the class-design guidelines (§13.10).

CHAPTER

13

496 Chapter 13 Abstract Classes and Interfaces

13.1 Introduction
A superclass defines common behavior for related subclasses. An interface can be
used to define common behavior for classes (including unrelated classes).

You can use the java.util.Arrays.sort method to sort an array of numbers or strings.
Can you apply the same sort method to sort an array of geometric objects? In order to write
such code, you have to know about interfaces. An interface is for defining common behavior
for classes (including unrelated classes). Before discussing interfaces, we introduce a closely
related subject: abstract classes.

13.2 Abstract Classes
An abstract class cannot be used to create objects. An abstract class can contain
abstract methods, which are implemented in concrete subclasses.

In the inheritance hierarchy, classes become more specific and concrete with each new sub-
class. If you move from a subclass back up to a superclass, the classes become more general
and less specific. Class design should ensure that a superclass contains common features of its
subclasses. Sometimes a superclass is so abstract that it cannot be used to create any specific
instances. Such a class is referred to as an abstract class.

In Chapter 11, GeometricObject was defined as the superclass for Circle and
Rectangle. GeometricObject models common features of geometric objects. Both
Circle and Rectangle contain the getArea() and getPerimeter() methods for comput-
ing the area and perimeter of a circle and a rectangle. Since you can compute areas and perim-
eters for all geometric objects, it is better to define the getArea() and getPerimeter()
methods in the GeometricObject class. However, these methods cannot be implemented in
the GeometricObject class, because their implementation depends on the specific type of
geometric object. Such methods are referred to as abstract methods and are denoted using the
abstract modifier in the method header. After you define the methods in GeometricObject,
it becomes an abstract class. Abstract classes are denoted using the abstract modifier in the
class header. In UML graphic notation, the names of abstract classes and their abstract meth-
ods are italicized, as shown in Figure 13.1. Listing 13.1 gives the source code for the new
GeometricObject class.

LISTING 13.1 GeometricObject.java
1 public abstract class GeometricObject {
 2 private String color = "white";
 3 private boolean filled;
 4 private java.util.Date dateCreated;
 5
 6 /** Construct a default geometric object */
 7 protected GeometricObject() {
 8 dateCreated = new java.util.Date();
 9 }
10
11 /** Construct a geometric object with color and filled value */
12 protected GeometricObject(String color, boolean filled) {
13 dateCreated = new java.util.Date();
14 this.color = color;
15 this.filled = filled;
16 }
17
18 /** Return color */
19 public String getColor() {
20 return color;

Key
Point

problem
interface

Key
Point

Abstract GeometricObject

class

VideoNote

abstract class

abstract method

abstract modifier

abstract class

13.2 Abstract Classes 497

21 }
22
23 /** Set a new color */
24 public void setColor(String color) {
25 this.color = color;
26 }
27
28 /** Return filled. Since filled is boolean,
29 * the get method is named isFilled */
30 public boolean isFilled() {
31 return filled;
32 }
33
34 /** Set a new filled */
35 public void setFilled(boolean filled) {
36 this.filled = filled;
37 }
38
39 /** Get dateCreated */
40 public java.util.Date getDateCreated() {
41 return dateCreated;
42 }

FIGURE 13.1 The new GeometricObject class contains abstract methods.

-color: String

-filled: boolean

-dateCreated: java.util.Date

#GeometricObject()
#GeometricObject(color: string,
 filled: boolean)
+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The # sign indicates
protected modifier

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

-radius: double

Circle

-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
 color: string, filled: boolean)
+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

Rectangle

Abstract class name is italicized

Abstract methods
are italicized Methods getArea and getPerimeter are

overridden in Circle and Rectangle.
Superclass methods are generally omitted
in the UML diagram for subclasses.

GeometricObject

+getArea(): double

+getPerimeter(): double

+Circle(radius: double, color: string,
filled: boolean)

498 Chapter 13 Abstract Classes and Interfaces

43
44 @Override
45 public String toString() {
46 return "created on " + dateCreated + "\ncolor: " + color +
47 " and filled: " + filled;
48 }
49
50 /** Abstract method getArea */
51 public abstract double getArea();
52
53 /** Abstract method getPerimeter */
54 public abstract double getPerimeter();
55 }

Abstract classes are like regular classes, but you cannot create instances of abstract classes
using the new operator. An abstract method is defined without implementation. Its implemen-
tation is provided by the subclasses. A class that contains abstract methods must be defined
as abstract.

The constructor in the abstract class is defined as protected, because it is used only by
subclasses. When you create an instance of a concrete subclass, its superclass’s constructor is
invoked to initialize data fields defined in the superclass.

The GeometricObject abstract class defines the common features (data and methods)
for geometric objects and provides appropriate constructors. Because you don’t know how to
compute areas and perimeters of geometric objects, getArea() and getPerimeter() are
defined as abstract methods. These methods are implemented in the subclasses. The imple-
mentation of Circle and Rectangle is the same as in Listings 13.2 and 13.3, except that
they extend the GeometricObject class defined in this chapter. You can see the complete
code for these two programs from www.cs.armstrong.edu/liang/intro10e/html/Circle.html
and www.cs.armstrong.edu/liang/intro10e/html/Rectangle.html, respectively.

LISTING 13.2 Circle.java
1 public class Circle extends GeometricObject {
2 // Same as lines 3-48 in Listing 11.2, so omitted
3 }

LISTING 13.3 Rectangle.java
1 public class Rectangle extends GeometricObject {
2 // Same as lines 3-51 in Listing 11.3, so omitted
3 }

13.2.1 Why Abstract Methods?
You may be wondering what advantage is gained by defining the methods getArea() and
getPerimeter() as abstract in the GeometricObject class. The example in Listing 13.4
shows the benefits of defining them in the GeometricObject class. The program creates two
geometric objects, a circle and a rectangle, invokes the equalArea method to check whether
they have equal areas, and invokes the displayGeometricObject method to display them.

LISTING 13.4 TestGeometricObject.java
 1 public class TestGeometricObject {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create two geometric objects
 5 GeometricObject geoObject1 = new Circle(5);
 6 GeometricObject geoObject2 = new Rectangle(5, 3);

abstract method

abstract method

why protected constructor?

implement Circle

implement Rectangle

extends abstract
GeometricObject

extends abstract
GeometricObject

create a circle
create a rectangle

www.cs.armstrong.edu/liang/intro10e/html/Circle.html
www.cs.armstrong.edu/liang/intro10e/html/Rectangle.html

13.2 Abstract Classes 499

 7
 8 System.out.println("The two objects have the same area? " +
 9 equalArea(geoObject1, geoObject2));
10
11 // Display circle
12 displayGeometricObject(geoObject1);
13
14 // Display rectangle
15 displayGeometricObject(geoObject2);
16 }
17
18 /** A method for comparing the areas of two geometric objects */
19 public static boolean equalArea(GeometricObject object1,
20 GeometricObject object2) {
21 return object1.getArea() == object2.getArea();
22 }
23
24 /** A method for displaying a geometric object */
25 public static void displayGeometricObject(GeometricObject object) {
26 System.out.println();
27 System.out.println("The area is " + object.getArea());
28 System.out.println("The perimeter is " + object.getPerimeter());
29 }
30 }

equalArea

displayGeometricObject

The two objects have the same area? false

The area is 78.53981633974483
The perimeter is 31.41592653589793

The area is 13.0
The perimeter is 16.0

The methods getArea() and getPerimeter() defined in the GeometricObject class are
overridden in the Circle class and the Rectangle class. The statements (lines 5–6)

GeometricObject geoObject1 = new Circle(5);
GeometricObject geoObject2 = new Rectangle(5, 3);

create a new circle and rectangle and assign them to the variables geoObject1 and
geoObject2. These two variables are of the GeometricObject type.

When invoking equalArea(geoObject1, geoObject2) (line 9), the getArea()
method defined in the Circle class is used for object1.getArea(), since geoObject1
is a circle, and the getArea() method defined in the Rectangle class is used for
object2.getArea(), since geoObject2 is a rectangle.

Similarly, when invoking displayGeometricObject(geoObject1) (line 12), the
methods getArea() and getPerimeter() defined in the Circle class are used, and when
invoking displayGeometricObject(geoObject2) (line 15), the methods getArea and
getPerimeter defined in the Rectangle class are used. The JVM dynamically determines
which of these methods to invoke at runtime, depending on the actual object that invokes the
method.

Note that you could not define the equalArea method for comparing whether two geomet-
ric objects have the same area if the getArea method were not defined in GeometricObject.
Now you have seen the benefits of defining the abstract methods in GeometricObject. why abstract methods?

500 Chapter 13 Abstract Classes and Interfaces

13.2.2 Interesting Points about Abstract Classes
The following points about abstract classes are worth noting:

 ■ An abstract method cannot be contained in a nonabstract class. If a subclass of an
abstract superclass does not implement all the abstract methods, the subclass must
be defined as abstract. In other words, in a nonabstract subclass extended from an
abstract class, all the abstract methods must be implemented. Also note that abstract
methods are nonstatic.

 ■ An abstract class cannot be instantiated using the new operator, but you can still
define its constructors, which are invoked in the constructors of its subclasses. For
instance, the constructors of GeometricObject are invoked in the Circle class
and the Rectangle class.

 ■ A class that contains abstract methods must be abstract. However, it is possible to
define an abstract class that doesn’t contain any abstract methods. In this case, you
cannot create instances of the class using the new operator. This class is used as a
base class for defining subclasses.

 ■ A subclass can override a method from its superclass to define it as abstract. This is
very unusual, but it is useful when the implementation of the method in the super-
class becomes invalid in the subclass. In this case, the subclass must be defined as
abstract.

 ■ A subclass can be abstract even if its superclass is concrete. For example, the Object
class is concrete, but its subclasses, such as GeometricObject, may be abstract.

 ■ You cannot create an instance from an abstract class using the new operator, but an
abstract class can be used as a data type. Therefore, the following statement, which
creates an array whose elements are of the GeometricObject type, is correct.

GeometricObject[] objects = new GeometricObject[10];

 You can then create an instance of GeometricObject and assign its reference to
the array like this:

objects[0] = new Circle();

13.1 Which of the following classes defines a legal abstract class?

abstract method in abstract
class

object cannot be created from
abstract class

abstract class without abstract
method

concrete method overridden
to be abstract

superclass of abstract class
may be concrete

abstract class as type

✓Point✓Check
class A {

abstract void unfinished() {
 }
}

(a)

public class abstract A {
abstract void unfinished();

}

(b)

class A {
abstract void unfinished();

}

(c)

abstract class A {
protected void unfinished();

}

(d)

abstract class A {
abstract void unfinished();

}

(e)

abstract class A {
abstract int unfinished();

}

(f)

13.3 Case Study: the Abstract Number Class 501

13.2 The getArea() and getPerimeter() methods may be removed from the
GeometricObject class. What are the benefits of defining getArea() and
getPerimeter() as abstract methods in the GeometricObject class?

13.3 True or false?

a. An abstract class can be used just like a nonabstract class except that you cannot
use the new operator to create an instance from the abstract class.

b. An abstract class can be extended.

c. A subclass of a nonabstract superclass cannot be abstract.

d. A subclass cannot override a concrete method in a superclass to define it as abstract.

e. An abstract method must be nonstatic.

13.3 Case Study: the Abstract Number Class
Number is an abstract superclass for numeric wrapper classes, BigInteger, and
BigDecimal.

Section 10.7 introduced numeric wrapper classes and Section 10.9 introduced the
BigInteger and BigDecimal classes. These classes have common methods byteValue(),
shortValue(), intValue(), longValue(), floatValue(), and doubleValue() for
returning a byte, short, int, long, float, and double value from an object of these classes.
These common methods are actually defined in the Number class, which is a superclass for the
numeric wrapper classes, BigInteger, and BigDecimal, as shown in Figure 13.2.

Key
Point

FIGURE 13.2 The Number class is an abstract superclass for Double, Float, Long, Integer, Short, Byte,
BigInteger and BigDecimal.

Double Float Long Integer Short Byte BigInteger BigDecimal

java.lang.Number

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue(): double

Since the intValue(), longValue(), floatValue(), and doubleValue() methods can-
not be implemented in the Number class, they are defined as abstract methods in the Number
class. The Number class is therefore an abstract class. The byteValue() and shortValue()
method are implemented from the intValue() method as follows:

public byte byteValue() {
return (byte)intValue();

 }

public short shortValue() {
return (short)intValue();

 }

502 Chapter 13 Abstract Classes and Interfaces

With Number defined as the superclass for the numeric classes, we can define methods to
perform common operations for numbers. Listing 13.5 gives a program that finds the largest
number in a list of Number objects.

LISTING 13.5 LargestNumbers.java
 1 import java.util.ArrayList;
 2 import java.math.*;
 3
 4 public class LargestNumbers {
 5 public static void main(String[] args) {
 6 ArrayList<Number> list = new ArrayList<>();
 7 list.add(45); // Add an integer
 8 list.add(3445.53); // Add a double
 9 // Add a BigInteger
10 list.add(new BigInteger("3432323234344343101"));
11 // Add a BigDecimal
12 list.add(new BigDecimal("2.0909090989091343433344343"));
13
14 System.out.println("The largest number is " +
15 getLargestNumber(list));
16 }
17
18 public static Number getLargestNumber(ArrayList<Number> list) {
19 if (list == null || list.size() == 0)
20 return null;
21
22 Number number = list.get(0);
23 for (int i = 1; i < list.size(); i++)
24 if (number.doubleValue() < list.get(i).doubleValue())
25 number = list.get(i);
26
27 return number;
28 }
29 }

create an array list
add number to list

invoke getLargestNumber

doubleValue

The largest number is 3432323234344343101

The program creates an ArrayList of Number objects (line 6). It adds an Integer object,
a Double object, a BigInteger object, and a BigDecimal object to the list (lines 7–12).
Note that 45 is automatically converted into an Integer object and added to the list in line
7 and that 3445.53 is automatically converted into a Double object and added to the list in
line 8 using autoboxing.

Invoking the getLargestNumber method returns the largest number in the list (line 15).
The getLargestNumber method returns null if the list is null or the list size is 0 (lines
19–20). To find the largest number in the list, the numbers are compared by invoking their
doubleValue() method (line 24). The doubleValue() method is defined in the Number
class and implemented in the concrete subclass of Number. If a number is an Integer
object, the Integer’s doubleValue() is invoked. If a number is a BigDecimal object, the
BigDecimal’s doubleValue() is invoked.

If the doubleValue() method were not defined in the Number class, you will not be able
to find the largest number among different types of numbers using the Number class.

13.4 Why do the following two lines of code compile but cause a runtime error?

 Number numberRef = new Integer(0);
 Double doubleRef = (Double)numberRef;

✓Point✓Check

13.4 Case Study: Calendar and GregorianCalendar 503

13.5 Why do the following two lines of code compile but cause a runtime error?

 Number[] numberArray = new Integer[2];
 numberArray[0] = new Double(1.5);

13.6 Show the output of the following code.

public class Test {
public static void main(String[] args) {

 Number x = 3;
 System.out.println(x.intValue());
 System.out.println(x.doubleValue());
 }
}

13.7 What is wrong in the following code? (Note that the compareTo method for the
Integer and Double classes was introduced in Section 10.7.)

public class Test {
public static void main(String[] args) {

 Number x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println(x.compareTo(new Integer(4)));
 }
}

13.8 What is wrong in the following code?

public class Test {
public static void main(String[] args) {

 Number x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println((Integer)x.compareTo(new Integer(4)));
 }
}

13.4 Case Study: Calendar and GregorianCalendar
GregorianCalendar is a concrete subclass of the abstract class Calendar.

An instance of java.util.Date represents a specific instant in time with millisecond
precision. java.util.Calendar is an abstract base class for extracting detailed calen-
dar information, such as the year, month, date, hour, minute, and second. Subclasses of
Calendar can implement specific calendar systems, such as the Gregorian calendar, the
lunar calendar, and the Jewish calendar. Currently, java.util.GregorianCalendar for
the Gregorian calendar is supported in Java, as shown in Figure 13.3. The add method is
abstract in the Calendar class, because its implementation is dependent on a concrete cal-
endar system.

You can use new GregorianCalendar() to construct a default GregorianCalendar
with the current time and new GregorianCalendar(year, month, date) to construct
a GregorianCalendar with the specified year, month, and date. The month parameter
is 0 based—that is, 0 is for January.

The get(int field) method defined in the Calendar class is useful for extracting the
date and time information from a Calendar object. The fields are defined as constants, as
shown in Table 13.1.

Listing 13.6 gives an example that displays the date and time information for the current
time.

Key
Point

Calendar and

GregorianCalendar classes

VideoNote

abstract add method

construct calendar

get(field)

504 Chapter 13 Abstract Classes and Interfaces

FIGURE 13.3 The abstract Calendar class defines common features of various calendars.

+GregorianCalendar()

+GregorianCalendar(year: int,
month: int, dayOfMonth: int)

+GregorianCalendar(year: int,
month: int, dayOfMonth: int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,
hour, minute, and second. The month parameter is 0-based, that
is, 0 is for January.

#Calendar()

+get(field: int): int

+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int

+add(field: int, amount: int): void

+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.

Returns the value of the given calendar field.

Sets the given calendar to the specified value.

Sets the calendar with the specified year, month, and date. The month
parameter is 0-based; that is, 0 is for January.

Returns the maximum value that the specified calendar field could have.

Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

java.util.Calendar

java.util.GregorianCalendar

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with 0 for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).

HOUR_OF_DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY_OF_WEEK The day number within the week, with 1 for Sunday.

DAY_OF_MONTH Same as DATE.

DAY_OF_YEAR The day number in the year, with 1 for the first day of the year.

WEEK_OF_MONTH The week number within the month, with 1 for the first week.

WEEK_OF_YEAR The week number within the year, with 1 for the first week.

AM_PM Indicator for AM or PM (0 for AM and 1 for PM).

TABLE 13.1 Field Constants in the Calendar Class

LISTING 13.6 TestCalendar.java
 1 import java.util.*;
 2
 3 public class TestCalendar {
 4 public static void main(String[] args) {
 5 // Construct a Gregorian calendar for the current date and time
 6 Calendar calendar = new GregorianCalendar();
 7 System.out.println("Current time is " + new Date());
 8 System.out.println("YEAR: " + calendar.get(Calendar.YEAR));

calendar for current time

extract fields in calendar

 9 System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
10 System.out.println("DATE: " + calendar.get(Calendar.DATE));
11 System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
12 System.out.println("HOUR_OF_DAY: " +
13 calendar.get(Calendar.HOUR_OF_DAY));
14 System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
15 System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
16 System.out.println("DAY_OF_WEEK: " +
17 calendar.get(Calendar.DAY_OF_WEEK));
18 System.out.println("DAY_OF_MONTH: " +
19 calendar.get(Calendar.DAY_OF_MONTH));
20 System.out.println("DAY_OF_YEAR: " +
21 calendar.get(Calendar.DAY_OF_YEAR));
22 System.out.println("WEEK_OF_MONTH: " +
23 calendar.get(Calendar.WEEK_OF_MONTH));
24 System.out.println("WEEK_OF_YEAR: " +
25 calendar.get(Calendar.WEEK_OF_YEAR));
26 System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
27
28 // Construct a calendar for September 11, 2001
29 Calendar calendar1 = new GregorianCalendar(2001, 8, 11);
30 String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",
31 "Thursday", "Friday", "Saturday"};
32 System.out.println("September 11, 2001 is a " +
33 dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) - 1]);
34 }
35 }

create a calendar

Current time is Sun Nov 27 17:48:15 EST 2011
YEAR: 2011
MONTH: 10
DATE: 27
HOUR: 5
HOUR_OF_DAY: 17
MINUTE: 48
SECOND: 15
DAY_OF_WEEK: 1
DAY_OF_MONTH: 27
DAY_OF_YEAR: 331
WEEK_OF_MONTH: 5
WEEK_OF_YEAR: 49
AM_PM: 1
September 11, 2001 is a Tuesday

The set(int field, value) method defined in the Calendar class can be used to set a
field. For example, you can use calendar.set(Calendar.DAY_OF_MONTH, 1) to set the
calendar to the first day of the month.

The add(field, value) method adds the specified amount to a given field. For exam-
ple, add(Calendar.DAY_OF_MONTH, 5) adds five days to the current time of the calen-
dar. add(Calendar.DAY_OF_MONTH, -5) subtracts five days from the current time of the
calendar.

To obtain the number of days in a month, use calendar.getActualMaximum(Calendar
.DAY_OF_MONTH). For example, if the calendar were for March, this method would
return 31.

set(field, value)

add(field, amount)

getActualMaximum(field)

13.4 Case Study: Calendar and GregorianCalendar 505

506 Chapter 13 Abstract Classes and Interfaces

You can set a time represented in a Date object for the calendar by invoking
calendar.setTime(date) and retrieve the time by invoking calendar.getTime().

13.9 Can you create a Calendar object using the Calendar class?

13.10 Which method in the Calendar class is abstract?

13.11 How do you create a Calendar object for the current time?

13.12 For a Calendar object c, how do you get its year, month, date, hour, minute, and
second?

13.5 Interfaces
An interface is a class-like construct that contains only constants and abstract methods.

In many ways an interface is similar to an abstract class, but its intent is to specify common
behavior for objects of related classes or unrelated classes. For example, using appropriate
interfaces, you can specify that the objects are comparable, edible, and/or cloneable.

To distinguish an interface from a class, Java uses the following syntax to define an interface:

modifier interface InterfaceName {
/** Constant declarations */
/** Abstract method signatures */

}

Here is an example of an interface:

public interface Edible {
/** Describe how to eat */
public abstract String howToEat();

}

An interface is treated like a special class in Java. Each interface is compiled into a separate
bytecode file, just like a regular class. You can use an interface more or less the same way
you use an abstract class. For example, you can use an interface as a data type for a reference
variable, as the result of casting, and so on. As with an abstract class, you cannot create an
instance from an interface using the new operator.

You can use the Edible interface to specify whether an object is edible. This is accom-
plished by letting the class for the object implement this interface using the implements
keyword. For example, the classes Chicken and Fruit in Listing 13.7 (lines 20, 39) imple-
ment the Edible interface. The relationship between the class and the interface is known
as interface inheritance. Since interface inheritance and class inheritance are essentially the
same, we will simply refer to both as inheritance.

LISTING 13.7 TestEdible.java
 1 public class TestEdible {
 2 public static void main(String[] args) {
 3 Object[] objects = {new Tiger(), new Chicken(), new Apple()};
 4 for (int i = 0; i < objects.length; i++) {
 5 if (objects[i] instanceof Edible)
 6 System.out.println(((Edible)objects[i]).howToEat());
 7
 8 if (objects[i] instanceof Animal) {
 9 System.out.println(((Animal)objects[i]).sound());
10 }
11 }
12 }
13 }

setTime(date)

getTime()

✓Point✓Check

Key
Point

The concept of interface

VideoNote

interface inheritance

13.5 Interfaces 507

14
15 abstract class Animal {
16 /** Return animal sound */
17 public abstract String sound();
18 }
19
20 class Chicken extends Animal implements Edible {
21 @Override
22 public String howToEat() {
23 return "Chicken: Fry it";
24 }
25
26 @Override
27 public String sound() {
28 return "Chicken: cock-a-doodle-doo";
29 }
30 }
31
32 class Tiger extends Animal {
33 @Override
34 public String sound() {
35 return "Tiger: RROOAARR";
36 }
37 }
38
39 abstract class Fruit implements Edible {
40 // Data fields, constructors, and methods omitted here
41 }
42
43 class Apple extends Fruit {
44 @Override
45 public String howToEat() {
46 return "Apple: Make apple cider";
47 }
48 }
49
50 class Orange extends Fruit {
51 @Override
52 public String howToEat() {
53 return "Orange: Make orange juice";
54 }
55 }

Animal class

implements Edible

howToEat()

Tiger class

implements Edible

Apple class

Orange class

Tiger: RROOAARR
Chicken: Fry it
Chicken: cock-a-doodle-doo
Apple: Make apple cider

This example uses several classes and interfaces. Their inheritance relationship is shown
in Figure 13.4.

The Animal class defines the sound method (line 17). It is an abstract method and will be
implemented by a concrete animal class.

The Chicken class implements Edible to specify that chickens are edible. When a class
implements an interface, it implements all the methods defined in the interface with the exact
signature and return type. The Chicken class implements the howToEat method (lines
22–24). Chicken also extends Animal to implement the sound method (lines 27–29).

508 Chapter 13 Abstract Classes and Interfaces

The Fruit class implements Edible. Since it does not implement the howToEat method,
Fruit must be denoted as abstract (line 39). The concrete subclasses of Fruit must
implement the howToEat method. The Apple and Orange classes implement the howToEat
method (lines 45, 52).

The main method creates an array with three objects for Tiger, Chicken, and Apple
(line 3), and invokes the howToEat method if the element is edible (line 6) and the sound
method if the element is an animal (line 9).

In essence, the Edible interface defines common behavior for edible objects. All edible
objects have the howToEat method.

Note
Since all data fields are public static final and all methods are public abstract

in an interface, Java allows these modifiers to be omitted. Therefore the following inter-

face definitions are equivalent:

common behavior

omit modifiers

FIGURE 13.4 Edible is a supertype for Chicken and Fruit. Animal is a supertype for
Chicken and Tiger. Fruit is a supertype for Orange and Apple.

«interface»
Edible

+howToEat(): String

Tiger

Animal

+sound(): String

Fruit Chicken

Orange Apple

Notation:
The interface name and the
method names are italicized.
The dashed lines and hollow
triangles are used to point to
the interface.

public interface T {
public static final int K = 1;

public abstract void p();
}

Equivalent

public interface T {
int K = 1;

void p();
}

13.13 Suppose A is an interface. Can you create an instance using new A()?

13.14 Suppose A is an interface. Can you declare a reference variable x with type A like this?

A x;

13.15 Which of the following is a correct interface?

✓Point✓Check

interface A {
void print() { };

}

(a)

abstract interface A extends I1, I2 {
abstract void print() { };

}

(b)

abstract interface A {
 print();
}

(c)

interface A {
void print();

}

(d)

13.6 The Comparable Interface 509

13.16 Show the error in the following code:

interface A {
void m1();

}

class B implements A {
void m1() {

 System.out.println("m1");
 }
}

13.6 The Comparable Interface
The Comparable interface defines the compareTo method for comparing objects.

Suppose you want to design a generic method to find the larger of two objects of the same
type, such as two students, two dates, two circles, two rectangles, or two squares. In order to
accomplish this, the two objects must be comparable, so the common behavior for the objects
must be comparable. Java provides the Comparable interface for this purpose. The interface
is defined as follows:

// Interface for comparing objects, defined in java.lang
package java.lang;

public interface Comparable<E> {
public int compareTo(E o);

}

The compareTo method determines the order of this object with the specified object o and
returns a negative integer, zero, or a positive integer if this object is less than, equal to, or
greater than o.

The Comparable interface is a generic interface. The generic type E is replaced by a
concrete type when implementing this interface. Many classes in the Java library implement
Comparable to define a natural order for objects. The classes Byte, Short, Integer, Long,
Float, Double, Character, BigInteger, BigDecimal, Calendar, String, and Date
all implement the Comparable interface. For example, the Integer, BigInteger, String,
and Date classes are defined as follows in the Java API:

Key
Point

java.lang.Comparable

public class Integer extends Number
implements Comparable<Integer> {

// class body omitted

 @Override
public int compareTo(Integer o) {

// Implementation omitted
 }
}

public class BigInteger extends Number
implements Comparable<BigInteger> {

// class body omitted

 @Override
public int compareTo(BigInteger o) {

// Implementation omitted
 }
}

public class String extends Object
implements Comparable<String> {

// class body omitted

 @Override
public int compareTo(String o) {

// Implementation omitted
 }
}

public class Date extends Object
implements Comparable<Date> {

// class body omitted

 @Override
public int compareTo(Date o) {

// Implementation omitted
 }
}

510 Chapter 13 Abstract Classes and Interfaces

Thus, numbers are comparable, strings are comparable, and so are dates. You can use the
compareTo method to compare two numbers, two strings, and two dates. For example, the
following code

 1 System.out.println(new Integer(3).compareTo(new Integer(5)));
 2 System.out.println("ABC".compareTo("ABE"));
 3 java.util.Date date1 = new java.util.Date(2013, 1, 1);
 4 java.util.Date date2 = new java.util.Date(2012, 1, 1);
 5 System.out.println(date1.compareTo(date2));

displays

 -1
 -2
 1

Line 1 displays a negative value since 3 is less than 5. Line 2 displays a negative value
since ABC is less than ABE. Line 5 displays a positive value since date1 is greater than
date2.

Let n be an Integer object, s be a String object, and d be a Date object. All the follow-
ing expressions are true.

n instanceof Integer s instanceof String d instanceof java.util.Date
n instanceof Object s instanceof Object d instanceof Object
n instanceof Comparable s instanceof Comparable d instanceof Comparable

Since all Comparable objects have the compareTo method, the java.util.Arrays
.sort(Object[]) method in the Java API uses the compareTo method to compare and
sorts the objects in an array, provided that the objects are instances of the Comparable inter-
face. Listing 13.8 gives an example of sorting an array of strings and an array of BigInteger
objects.

LISTING 13.8 SortComparableObjects.java
 1 import java.math.*;
 2
 3 public class SortComparableObjects {
 4 public static void main(String[] args) {
 5 String[] cities = {"Savannah", "Boston", "Atlanta", "Tampa"};
 6 java.util.Arrays.sort(cities);
 7 for (String city: cities)
 8 System.out.print(city + " ");
 9 System.out.println();
10
11 BigInteger[] hugeNumbers = {new BigInteger("2323231092923992"),
12 new BigInteger("432232323239292"),
13 new BigInteger("54623239292")};
14 java.util.Arrays.sort(hugeNumbers);
15 for (BigInteger number: hugeNumbers)
16 System.out.print(number + " ");
17 }
18 }

create an array
sort the array

create an array

sort the array

Atlanta Boston Savannah Tampa
54623239292 432232323239292 2323231092923992

The program creates an array of strings (line 5) and invokes the sort method to sort
the strings (line 6). The program creates an array of BigInteger objects (lines 11–13) and
invokes the sort method to sort the BigInteger objects (line 14).

You cannot use the sort method to sort an array of Rectangle objects, because
Rectangle does not implement Comparable. However, you can define a new rectangle
class that implements Comparable. The instances of this new class are comparable. Let this
new class be named ComparableRectangle, as shown in Listing 13.9.

LISTING 13.9 ComparableRectangle.java
 1 public class ComparableRectangle extends Rectangle
 2 implements Comparable<ComparableRectangle> {
 3 /** Construct a ComparableRectangle with specified properties */
 4 public ComparableRectangle(double width, double height) {
 5 super(width, height);
 6 }
 7
 8 @Override // Implement the compareTo method defined in Comparable
 9 public int compareTo(ComparableRectangle o) {
10 if (getArea() > o.getArea())
11 return 1;
12 else if (getArea() < o.getArea())
13 return -1;
14 else

15 return 0;
16 }
17
18 @Override // Implement the toString method in GeometricObject
19 public String toString() {
20 return super.toString() + " Area: " + getArea();
21 }
22 }

ComparableRectangle extends Rectangle and implements Comparable, as shown
in Figure 13.5. The keyword implements indicates that ComparableRectangle inher-
its all the constants from the Comparable interface and implements the methods in the
interface. The compareTo method compares the areas of two rectangles. An instance of
ComparableRectangle is also an instance of Rectangle, GeometricObject, Object,
and Comparable.

implements Comparable

implement compareTo

implement toString

FIGURE 13.5 ComparableRectangle extends Rectangle and implements Comparable.

ComparableRectangle

Rectangle

GeometricObject

+compareTo(o: ComparableRectangle): int

java.lang.Comparable<ComparableRectangle>
«interface»

13.6 The Comparable Interface 511

512 Chapter 13 Abstract Classes and Interfaces

You can now use the sort method to sort an array of ComparableRectangle objects,
as in Listing 13.10.

LISTING 13.10 SortRectangles.java
 1 public class SortRectangles {
 2 public static void main(String[] args) {
 3 ComparableRectangle[] rectangles = {
 4 new ComparableRectangle(3.4, 5.4),
 5 new ComparableRectangle(13.24, 55.4),
 6 new ComparableRectangle(7.4, 35.4),
 7 new ComparableRectangle(1.4, 25.4)};
 8 java.util.Arrays.sort(rectangles);
 9 for (Rectangle rectangle: rectangles) {
10 System.out.print(rectangle + " ");
11 System.out.println();
12 }
13 }
14 }

An interface provides another form of generic programming. It would be difficult to use a
generic sort method to sort the objects without using an interface in this example, because

create an array

sort the array

Width: 3.4 Height: 5.4 Area: 18.36
Width: 1.4 Height: 25.4 Area: 35.559999999999995
Width: 7.4 Height: 35.4 Area: 261.96
Width: 13.24 Height: 55.4 Area: 733.496

multiple inheritance would be necessary to inherit Comparable and another class, such as
Rectangle, at the same time.

The Object class contains the equals method, which is intended for the subclasses of the
Object class to override in order to compare whether the contents of the objects are the same.
Suppose that the Object class contains the compareTo method, as defined in the Comparable
interface; the sort method can be used to compare a list of any objects. Whether a compareTo
method should be included in the Object class is debatable. Since the compareTo method is
not defined in the Object class, the Comparable interface is defined in Java to enable objects
to be compared if they are instances of the Comparable interface. It is strongly recommended
(though not required) that compareTo should be consistent with equals. That is, for two
objects o1 and o2, o1.compareTo(o2) == 0 if and only if o1.equals(o2) is true.

13.17 True or false? If a class implements Comparable, the object of the class can invoke
the compareTo method.

13.18 Which of the following is the correct method header for the compareTo method in
the String class?

public int compareTo(String o)
public int compareTo(Object o)

13.19 Can the following code be compiled? Why?

Integer n1 = new Integer(3);
Object n2 = new Integer(4);
System.out.println(n1.compareTo(n2));

benefits of interface

✓Point✓Check

13.7 The Cloneable Interface 513

13.20 You can define the compareTo method in a class without implementing the
Comparable interface. What are the benefits of implementing the Comparable
interface?

13.21 What is wrong in the following code?

public class Test {
public static void main(String[] args) {

 Person[] persons = {new Person(3), new Person(4), new Person(1)};
 java.util.Arrays.sort(persons);
 }
}

class Person {
private int id;

 Person(int id) {
this.id = id;

 }
}

13.7 The Cloneable Interface
The Cloneable interface specifies that an object can be cloned.

Often it is desirable to create a copy of an object. To do this, you need to use the clone
method and understand the Cloneable interface.

An interface contains constants and abstract methods, but the Cloneable interface is a
special case. The Cloneable interface in the java.lang package is defined as follows:

package java.lang;

public interface Cloneable {
}

This interface is empty. An interface with an empty body is referred to as a marker interface.
A marker interface does not contain constants or methods. It is used to denote that a class
possesses certain desirable properties. A class that implements the Cloneable interface is
marked cloneable, and its objects can be cloned using the clone() method defined in the
Object class.

Many classes in the Java library (e.g., Date, Calendar, and ArrayList) implement
Cloneable. Thus, the instances of these classes can be cloned. For example, the following code

1 Calendar calendar = new GregorianCalendar(2013, 2, 1);
2 Calendar calendar1 = calendar;
3 Calendar calendar2 = (Calendar)calendar.clone();
4 System.out.println("calendar == calendar1 is " +
5 (calendar == calendar1));
6 System.out.println("calendar == calendar2 is " +
7 (calendar == calendar2));
8 System.out.println("calendar.equals(calendar2) is " +
9 calendar.equals(calendar2));

displays

calendar == calendar1 is true
calendar == calendar2 is false
calendar.equals(calendar2) is true

Key
Point

java.lang.Cloneable

marker interface

514 Chapter 13 Abstract Classes and Interfaces

In the preceding code, line 2 copies the reference of calendar to calendar1, so calendar
and calendar1 point to the same Calendar object. Line 3 creates a new object that is the
clone of calendar and assigns the new object’s reference to calendar2. calendar2 and
calendar are different objects with the same contents.

The following code

 1 ArrayList<Double> list1 = new ArrayList<>();
 2 list1.add(1.5);
 3 list1.add(2.5);
 4 list1.add(3.5);
 5 ArrayList<Double> list2 = (ArrayList<Double>)list1.clone();
 6 ArrayList<Double> list3 = list1;
 7 list2.add(4.5);
 8 list3.remove(1.5);
 9 System.out.println("list1 is " + list1);
10 System.out.println("list2 is " + list2);
11 System.out.println("list3 is " + list3);

displays

list1 is [2.5, 3.5]
list2 is [1.5, 2.5, 3.5, 4.5]
list3 is [2.5, 3.5]

In the preceding code, line 5 creates a new object that is the clone of list1 and assigns the
new object’s reference to list2. list2 and list1 are different objects with the same con-
tents. Line 6 copies the reference of list1 to list3, so list1 and list3 point to the same
ArrayList object. Line 7 adds 4.5 into list2. Line 8 removes 1.5 from list3. Since
list1 and list3 point to the same ArrayList, line 9 and 11 display the same content.

You can clone an array using the clone method. For example, the following code

1 int[] list1 = {1, 2};
2 int[] list2 = list1.clone();
3 list1[0] = 7;
4 list2[1] = 8;
5 System.out.println("list1 is " + list1[0] + ", " + list1[1]);
6 System.out.println("list2 is " + list2[0] + ", " + list2[1]);

displays

list1 is 7, 2

list2 is 1, 8

To define a custom class that implements the Cloneable interface, the class must override
the clone() method in the Object class. Listing 13.11 defines a class named House that
implements Cloneable and Comparable.

LISTING 13.11 House.java
 1 public class House implements Cloneable, Comparable<House> {
 2 private int id;
 3 private double area;
 4 private java.util.Date whenBuilt;
 5
 6 public House(int id, double area) {
 7 this.id = id;
 8 this.area = area;
 9 whenBuilt = new java.util.Date();
10 }

clone arrays

how to implement Cloneable

11
12 public int getId() {
13 return id;
14 }
15
16 public double getArea() {
17 return area;
18 }
19
20 public java.util.Date getWhenBuilt() {
21 return whenBuilt;
22 }
23
24 @Override /** Override the protected clone method defined in
25 the Object class, and strengthen its accessibility */
26 public Object clone() throws CloneNotSupportedException {
27 return super.clone();
28 }
29
30 @Override // Implement the compareTo method defined in Comparable
31 public int compareTo(House o) {
32 if (area > o.area)
33 return 1;
34 else if (area < o.area)
35 return -1;
36 else

37 return 0;
38 }
39 }

The House class implements the clone method (lines 26–28) defined in the Object class.
The header is:

protected native Object clone() throws CloneNotSupportedException;

The keyword native indicates that this method is not written in Java but is implemented
in the JVM for the native platform. The keyword protected restricts the method to be
accessed in the same package or in a subclass. For this reason, the House class must over-
ride the method and change the visibility modifier to public so that the method can be
used in any package. Since the clone method implemented for the native platform in the
Object class performs the task of cloning objects, the clone method in the House class
simply invokes super.clone(). The clone method defined in the Object class may throw
CloneNotSupportedException.

The House class implements the compareTo method (lines 31–38) defined in the
Comparable interface. The method compares the areas of two houses.

You can now create an object of the House class and create an identical copy from it, as
follows:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1 and house2 are two different objects with identical contents. The clone method in
the Object class copies each field from the original object to the target object. If the field is of
a primitive type, its value is copied. For example, the value of area (double type) is copied
from house1 to house2. If the field is of an object, the reference of the field is copied. For
example, the field whenBuilt is of the Date class, so its reference is copied into house2,
as shown in Figure 13.6. Therefore, house1.whenBuilt == house2.whenBuilt is true,
although house1 == house2 is false. This is referred to as a shallow copy rather than a

This exception is thrown if
House does not implement
Cloneable

CloneNotSupportedException

shallow copy

13.7 The Cloneable Interface 515

516 Chapter 13 Abstract Classes and Interfaces

deep copy, meaning that if the field is of an object type, the object’s reference is copied rather
than its contents.

deep copy

FIGURE 13.6 (a) The default clone method performs a shallow copy. (b) The custom clone method performs a deep
copy.

(a) (b)

house2: House

id = 1

area = 1750.50

whenBuilt

Memory

house2 =
house1.clone()

reference

date object
contents

whenBuilt: Date

Memory

1

1750.50

1

1750.50

house1: House

id = 1

area = 1750.50

whenBuilt

reference

house2: House

id = 1

area = 1750.50

whenBuilt

Memory

house2 =
house1.clone()

reference

date object
contents

whenBuilt: Date

date object
contents

whenBuilt: Date

Memory

1

1750.50

1

1750.50

house1: House

id = 1

area = 1750.50

whenBuilt

reference

To perform a deep copy for a House object, replace the clone() method in lines 26–28
with the following code:

public Object clone() throws CloneNotSupportedException {
// Perform a shallow copy

 House houseClone = (House)super.clone();
// Deep copy on whenBuilt

 houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
return houseClone;

 }

or

public Object clone() {
try {

// Perform a shallow copy
 House houseClone = (House)super.clone();

// Deep copy on whenBuilt
 houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());

return houseClone;
}

catch (CloneNotSupportedException ex) {
return null;

 }
 }

Now if you clone a House object in the following code:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1.whenBuilt == house2.whenBuilt will be false. house1 and house2 contain
two different Date objects, as shown in Figure 13.6b.

deep copy

13.8 Interfaces vs. Abstract Classes 517

13.22 Can you invoke the clone() method to clone an object if the class for the object
does not implement the java.lang.Cloneable? Does the Date class implement
Cloneable?

13.23 What would happen if the House class (defined in Listing 13.11) did not override the
clone() method or if House did not implement java.lang.Cloneable?

13.24 Show the output of the following code:

java.util.Date date = new java.util.Date();
java.util.Date date1 = date;
java.util.Date date2 = (java.util.Date)(date.clone());
System.out.println(date == date1);
System.out.println(date == date2);
System.out.println(date.equals(date2));

13.25 Show the output of the following code:

ArrayList<String> list = new ArrayList<>();
list.add("New York");
ArrayList<String> list1 = list;
ArrayList<String> list2 = (ArrayList<String>)(list.clone());
list.add("Atlanta");
System.out.println(list == list1);
System.out.println(list == list2);
System.out.println("list is " + list);
System.out.println("list1 is " + list1);
System.out.println("list2.get(0) is " + list2.get(0));
System.out.println("list2.size() is " + list2.size());

13.26 What is wrong in the following code?

public class Test {
public static void main(String[] args) {

 GeometricObject x = new Circle(3);
 GeometricObject y = x.clone();
 System.out.println(x == y);
 }
}

13.8 Interfaces vs. Abstract Classes
A class can implement multiple interfaces, but it can only extend one superclass.

An interface can be used more or less the same way as an abstract class, but defining
an interface is different from defining an abstract class. Table 13.2 summarizes the
differences.

✓Point✓Check

Key
Point

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through
constructor chaining. An abstract class cannot be
instantiated using the new operator.

No restrictions.

Interface All variables must be
public static final.

No constructors. An interface cannot be instantiated
using the new operator.

All methods must be public
abstract instance methods

TABLE 13.2 Interfaces vs. Abstract Classes

518 Chapter 13 Abstract Classes and Interfaces

Java allows only single inheritance for class extension but allows multiple extensions for
interfaces. For example,

public class NewClass extends BaseClass
implements Interface1, ..., InterfaceN {

 ...
}

An interface can inherit other interfaces using the extends keyword. Such an interface is
called a subinterface. For example, NewInterface in the following code is a subinterface of
Interface1, . . . , and InterfaceN.

public interface NewInterface extends Interface1, ... , InterfaceN {
// constants and abstract methods

}

A class implementing NewInterface must implement the abstract methods defined in
NewInterface, Interface1, . . . , and InterfaceN. An interface can extend other inter-
faces but not classes. A class can extend its superclass and implement multiple interfaces.

All classes share a single root, the Object class, but there is no single root for interfaces.
Like a class, an interface also defines a type. A variable of an interface type can reference
any instance of the class that implements the interface. If a class implements an interface, the
interface is like a superclass for the class. You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa. For example, suppose that c is an
instance of Class2 in Figure 13.7. c is also an instance of Object, Class1, Interface1,
Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

single inheritance
multiple inheritance

subinterface

FIGURE 13.7 Class1 implements Interface1; Interface1 extends Interface1_1
and Interface1_2. Class2 extends Class1 and implements Interface2_1 and
Interface2_2.

Interface2_1Interface1Interface1_1

Interface1_2

Class1Object Class2

Interface2_2

Note
Class names are nouns. Interface names may be adjectives or nouns.

Design Guide
Abstract classes and interfaces can both be used to specify common behavior of objects.

How do you decide whether to use an interface or a class? In general, a strong is-a

relationship that clearly describes a parent-child relationship should be modeled using

classes. For example, Gregorian calendar is a calendar, so the relationship between the

class java.util.GregorianCalendar and java.util.Calendar is modeled

using class inheritance. A weak is-a relationship, also known as an is-kind-of relation-

ship, indicates that an object possesses a certain property. A weak is-a relationship can

be modeled using interfaces. For example, all strings are comparable, so the String

class implements the Comparable interface.

naming convention

is-a relationship
is-kind-of relationship

13.8 Interfaces vs. Abstract Classes 519

In general, interfaces are preferred over abstract classes because an interface can define a
common supertype for unrelated classes. Interfaces are more flexible than classes. Consider
the Animal class. Suppose the howToEat method is defined in the Animal class, as follows:

abstract class Animal {
public abstract String howToEat();

}

Two subclasses of Animal are defined as follows:

class Chicken extends Animal {
 @Override

public String howToEat() {
return "Fry it";

 }
}

class Duck extends Animal {
 @Override

public String howToEat() {
return "Roast it";

 }
}

Given this inheritance hierarchy, polymorphism enables you to hold a reference to a Chicken
object or a Duck object in a variable of type Animal, as in the following code:

public static void main(String[] args) {
Animal animal = new Chicken();

 eat(animal);

animal = new Duck();
 eat(animal);
}

public static void eat(Animal animal) {
animal.howToEat();

}

The JVM dynamically decides which howToEat method to invoke based on the actual object
that invokes the method.

You can define a subclass of Animal. However, there is a restriction: The subclass must
be for another animal (e.g., Turkey).

Interfaces don’t have this restriction. Interfaces give you more flexibility than classes,
because you don’t have to make everything fit into one type of class. You may define the
howToEat() method in an interface and let it serve as a common supertype for other classes.
For example,

public static void main(String[] args) {
Edible stuff = new Chicken();

 eat(stuff);

stuff = new Duck();
 eat(stuff);

stuff = new Broccoli();
 eat(stuff);
}

interface preferred

Animal class

Chicken class

Duck class

520 Chapter 13 Abstract Classes and Interfaces

public static void eat(Edible stuff) {
stuff.howToEat();

}

interface Edible {
public String howToEat();

}

class Chicken implements Edible {
 @Override

public String howToEat() {
return "Fry it";

 }
}

class Duck implements Edible {
 @Override

public String howToEat() {
return "Roast it";

 }
}

class Broccoli implements Edible {
 @Override

public String howToEat() {
return "Stir-fry it";

 }
}

To define a class that represents edible objects, simply let the class implement the Edible
interface. The class is now a subtype of the Edible type, and any Edible object can be
passed to invoke the howToEat method.

13.27 Give an example to show why interfaces are preferred over abstract classes.

13.28 Define the terms abstract classes and interfaces. What are the similarities and differ-
ences between abstract classes and interfaces?

13.29 True or false?

a. An interface is compiled into a separate bytecode file.

b. An interface can have static methods.

c. An interface can extend one or more interfaces.

d. An interface can extend an abstract class.

e. An abstract class can extend an interface.

13.9 Case Study: The Rational Class
This section shows how to design the Rational class for representing and processing
rational numbers.

A rational number has a numerator and a denominator in the form a/b, where a is the numera-
tor and b the denominator. For example, 1/3, 3/4, and 10/4 are rational numbers.

A rational number cannot have a denominator of 0, but a numerator of 0 is fine. Every inte-
ger i is equivalent to a rational number i/1. Rational numbers are used in exact computations
involving fractions—for example, 1/3 = 0.33333. . . . This number cannot be precisely
represented in floating-point format using either the data type double or float. To obtain
the exact result, we must use rational numbers.

Edible interface

Chicken class

Duck class

Broccoli class

✓Point✓Check

Key
Point

Java provides data types for integers and floating-point numbers, but not for rational num-
bers. This section shows how to design a class to represent rational numbers.

Since rational numbers share many common features with integers and floating-point num-
bers, and Number is the root class for numeric wrapper classes, it is appropriate to define
Rational as a subclass of Number. Since rational numbers are comparable, the Rational
class should also implement the Comparable interface. Figure 13.8 illustrates the Rational
class and its relationship to the Number class and the Comparable interface.

13.9 Case Study: The Rational Class 521

FIGURE 13.8 The properties, constructors, and methods of the Rational class are illustrated in UML.

1

Add, Subtract, Multiply, Divide

java.lang.Number

java.lang.Comparable<Rational>

Rational

Rational

1

-numerator: long
-denominator: long

+Rational()

+getDenominator(): long
+add(secondRational: Rational):
 Rational

+subtract(secondRational:
 Rational): Rational

+multiply(secondRational:
 Rational): Rational

+divide(secondRational:
 Rational): Rational
+toString(): String

-gcd(n: long, d: long): long

+getNumerator(): long

+Rational(numerator: long,
 denominator: long)

The numerator of this rational number.

Creates a rational number with numerator 0 and denominator 1.

Creates a rational number with a specified numerator and
 denominator.

Returns the numerator of this rational number.
Returns the denominator of this rational number.
Returns the addition of this rational number with another.

Returns the subtraction of this rational number with another.

Returns the multiplication of this rational number with another.

Returns the division of this rational number with another.

Returns a string in the form “numerator/denominator.” Returns
the numerator if denominator is 1.
Returns the greatest common divisor of n and d.

The denominator of this rational number.

A rational number consists of a numerator and a denominator. There are many equivalent
rational numbers—for example, 1/3 = 2/6 = 3/9 = 4/12. The numerator and the denomi-
nator of 1/3 have no common divisor except 1, so 1/3 is said to be in lowest terms.

To reduce a rational number to its lowest terms, you need to find the greatest common
divisor (GCD) of the absolute values of its numerator and denominator, then divide both the
numerator and denominator by this value. You can use the method for computing the GCD of
two integers n and d, as suggested in Listing 5.9, GreatestCommonDivisor.java. The numera-
tor and denominator in a Rational object are reduced to their lowest terms.

As usual, let us first write a test program to create two Rational objects and test its meth-
ods. Listing 13.12 is a test program.

LISTING 13.12 TestRationalClass.java
 1 public class TestRationalClass {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create and initialize two rational numbers r1 and r2
 5 Rational r1 = new Rational(4, 2);
 6 Rational r2 = new Rational(2, 3);
7

 8 // Display results

create a Rational
create a Rational

522 Chapter 13 Abstract Classes and Interfaces

9 System.out.println(r1 + " + " + r2 + " = " + r1.add(r2));
10 System.out.println(r1 + " - " + r2 + " = " + r1.subtract(r2));
11 System.out.println(r1 + " * " + r2 + " = " + r1.multiply(r2));
12 System.out.println(r1 + " / " + r2 + " = " + r1.divide(r2));
13 System.out.println(r2 + " is " + r2.doubleValue());
14 }
15 }

add

2 + 2/3 = 8/3
2 - 2/3 = 4/3
2 * 2/3 = 4/3
2 / 2/3 = 3
2/3 is 0.6666666666666666

The main method creates two rational numbers, r1 and r2 (lines 5–6), and displays the results
of r1 + r2, r1 - r2, r1 x r2, and r1 / r2 (lines 9–12). To perform r1 + r2, invoke
r1.add(r2) to return a new Rational object. Similarly, invoke r1.subtract(r2) for r1
- r2, r1.multiply(r2) for r1 x r2 , and r1.divide(r2) for r1 / r2.

The doubleValue() method displays the double value of r2 (line 13). The double-
Value() method is defined in java.lang.Number and overridden in Rational.

Note that when a string is concatenated with an object using the plus sign (+), the object’s
string representation from the toString() method is used to concatenate with the string. So
r1 + " + " + r2 + " = " + r1.add(r2) is equivalent to r1.toString() + " + "
+ r2.toString() + " = " + r1.add(r2).toString().

The Rational class is implemented in Listing 13.13.

LISTING 13.13 Rational.java
 1 public class Rational extends Number implements Comparable<Rational> {
 2 // Data fields for numerator and denominator
 3 private long numerator = 0;
 4 private long denominator = 1;
 5
 6 /** Construct a rational with default properties */
 7 public Rational() {
 8 this(0, 1);
 9 }
 10
 11 /** Construct a rational with specified numerator and denominator */
 12 public Rational(long numerator, long denominator) {
 13 long gcd = gcd(numerator, denominator);
 14 this.numerator = ((denominator > 0) ? 1 : -1) * numerator / gcd;
 15 this.denominator = Math.abs(denominator) / gcd;
 16 }
 17
 18 /** Find GCD of two numbers */
 19 private static long gcd(long n, long d) {
 20 long n1 = Math.abs(n);
 21 long n2 = Math.abs(d);
 22 int gcd = 1;
 23
 24 for (int k = 1; k <= n1 && k <= n2; k++) {
 25 if (n1 % k == 0 && n2 % k == 0)
 26 gcd = k;
 27 }
 28
 29 return gcd;

 30 }
 31
 32 /** Return numerator */
 33 public long getNumerator() {
 34 return numerator;
 35 }
 36
 37 /** Return denominator */
 38 public long getDenominator() {
 39 return denominator;
 40 }
 41
 42 /** Add a rational number to this rational */
 43 public Rational add(Rational secondRational) {
 44 long n = numerator * secondRational.getDenominator() +
 45 denominator * secondRational.getNumerator();
 46 long d = denominator * secondRational.getDenominator();
 47 return new Rational(n, d);
 48 }
 49
 50 /** Subtract a rational number from this rational */
 51 public Rational subtract(Rational secondRational) {
 52 long n = numerator * secondRational.getDenominator()
 53 - denominator * secondRational.getNumerator();
 54 long d = denominator * secondRational.getDenominator();
 55 return new Rational(n, d);
 56 }
 57
 58 /** Multiply a rational number by this rational */
 59 public Rational multiply(Rational secondRational) {
 60 long n = numerator * secondRational.getNumerator();
 61 long d = denominator * secondRational.getDenominator();
 62 return new Rational(n, d);
 63 }
 64
 65 /** Divide a rational number by this rational */
 66 public Rational divide(Rational secondRational) {
 67 long n = numerator * secondRational.getDenominator();
 68 long d = denominator * secondRational.numerator;
69 return new Rational(n, d);

 70 }
 71
 72 @Override
 73 public String toString() {
 74 if (denominator == 1)
 75 return numerator + "";
 76 else

 77 return numerator + "/" + denominator;
 78 }
 79
 80 @Override // Override the equals method in the Object class
 81 public boolean equals(Object other) {
 82 if ((this.subtract((Rational)(other))).getNumerator() == 0)
 83 return true;
 84 else

 85 return false;
 86 }
 87
 88 @Override // Implement the abstract intValue method in Number
 89 public int intValue() {

a
b + c

d = ad + bc
bd

a
b - c

d = ad - bc
bd

a
b * c

d = ac
bd

a
b , c

d = ad
bc

13.9 Case Study: The Rational Class 523

524 Chapter 13 Abstract Classes and Interfaces

 90 return (int)doubleValue();
 91 }
 92
 93 @Override // Implement the abstract floatValue method in Number
 94 public float floatValue() {
 95 return (float)doubleValue();
 96 }
 97
 98 @Override // Implement the doubleValue method in Number
 99 public double doubleValue() {
100 return numerator * 1.0 / denominator;
101 }
102
103 @Override // Implement the abstract longValue method in Number
104 public long longValue() {
105 return (long)doubleValue();
106 }
107
108 @Override // Implement the compareTo method in Comparable
109 public int compareTo(Rational o) {
110 if (this.subtract(o).getNumerator() > 0)
111 return 1;
112 else if (this.subtract(o).getNumerator() < 0)
113 return -1;
114 else

115 return 0;
116 }
117 }

The rational number is encapsulated in a Rational object. Internally, a rational number is
represented in its lowest terms (line 13), and the numerator determines its sign (line 14). The
denominator is always positive (line 15).

The gcd method (lines 19–30 in the Rational class) is private; it is not intended for use
by clients. The gcd method is only for internal use by the Rational class. The gcd method
is also static, since it is not dependent on any particular Rational object.

The abs(x) method (lines 20–21 in the Rational class) is defined in the Math class and
returns the absolute value of x.

Two Rational objects can interact with each other to perform add, subtract, multiply, and
divide operations. These methods return a new Rational object (lines 43–70).

The methods toString and equals in the Object class are overridden in the Rational
class (lines 72–86). The toString() method returns a string representation of a Rational
object in the form numerator/denominator, or simply numerator if denominator is
1. The equals(Object other) method returns true if this rational number is equal to the
other rational number.

The abstract methods intValue, longValue, floatValue, and doubleValue in the
Number class are implemented in the Rational class (lines 88–106). These methods return
the int, long, float, and double value for this rational number.

The compareTo(Rational other) method in the Comparable interface is imple-
mented in the Rational class (lines 108–116) to compare this rational number to the other
rational number.

Tip
The getter methods for the properties numerator and denominator are provided

in the Rational class, but the setter methods are not provided, so, once a

Rational object is created, its contents cannot be changed. The Rational class

is immutable. The String class and the wrapper classes for primitive type values

are also immutable.

immutable

13.10 Class Design Guidelines 525

Tip
The numerator and denominator are represented using two variables. It is possible to use

an array of two integers to represent the numerator and denominator (see Programming

Exercise 13.14). The signatures of the public methods in the Rational class are not

changed, although the internal representation of a rational number is changed. This is a

good example to illustrate the idea that the data fields of a class should be kept private

so as to encapsulate the implementation of the class from the use of the class.

The Rational class has serious limitations and can easily overflow. For example, the fol-
lowing code will display an incorrect result, because the denominator is too large.

public class Test {
public static void main(String[] args) {

 Rational r1 = new Rational(1, 123456789);
 Rational r2 = new Rational(1, 123456789);
 Rational r3 = new Rational(1, 123456789);
 System.out.println("r1 * r2 * r3 is " +
 r1.multiply(r2.multiply(r3)));
 }
}

encapsulation

overflow

r1 * r2 * r3 is -1/2204193661661244627

To fix it, you can implement the Rational class using the BigInteger for numerator and
denominator (see Programming Exercise 13.15).

13.30 Show the output of the following code?

 Rational r1 = new Rational(-2, 6);
 System.out.println(r1.getNumerator());
 System.out.println(r1.getDenominator());
 System.out.println(r1.intValue());
 System.out.println(r1.doubleValue());

13.31 Why is the following code wrong?

 Rational r1 = new Rational(-2, 6);
 Object r2 = new Rational(1, 45);
 System.out.println(r2.compareTo(r1));

13.32 Why is the following code wrong?

 Object r1 = new Rational(-2, 6);
 Rational r2 = new Rational(1, 45);
 System.out.println(r2.compareTo(r1));

13.33 How do you simplify the code in lines 82–85 in Listing 13.13 Rational.java using one
line of code without using the if statement?

13.34 Trace the program carefully and show the output of the following code.

 Rational r1 = new Rational(1, 2);
 Rational r2 = new Rational(1, -2);
 System.out.println(r1.add(r2));

13.10 Class Design Guidelines
Class design guidelines are helpful for designing sound classes.

You have learned how to design classes from the preceding two examples and from many
other examples in the preceding chapters. This section summarizes some of the guidelines.

✓Point✓Check

Key
Point

526 Chapter 13 Abstract Classes and Interfaces

13.10.1 Cohesion
A class should describe a single entity, and all the class operations should logically fit together
to support a coherent purpose. You can use a class for students, for example, but you should not
combine students and staff in the same class, because students and staff are different entities.

A single entity with many responsibilities can be broken into several classes to separate
the responsibilities. The classes String, StringBuilder, and StringBuffer all deal with
strings, for example, but have different responsibilities. The String class deals with immuta-
ble strings, the StringBuilder class is for creating mutable strings, and the StringBuffer
class is similar to StringBuilder except that StringBuffer contains synchronized meth-
ods for updating strings.

13.10.2 Consistency
Follow standard Java programming style and naming conventions. Choose informative names
for classes, data fields, and methods. A popular style is to place the data declaration before the
constructor and place constructors before methods.

Make the names consistent. It is not a good practice to choose different names for
similar operations. For example, the length() method returns the size of a String, a
StringBuilder, and a StringBuffer. It would be inconsistent if different names were
used for this method in these classes.

In general, you should consistently provide a public no-arg constructor for constructing a
default instance. If a class does not support a no-arg constructor, document the reason. If no con-
structors are defined explicitly, a public default no-arg constructor with an empty body is assumed.

If you want to prevent users from creating an object for a class, you can declare a private
constructor in the class, as is the case for the Math class.

13.10.3 Encapsulation
A class should use the private modifier to hide its data from direct access by clients. This
makes the class easy to maintain.

Provide a getter method only if you want the data field to be readable, and provide a setter
method only if you want the data field to be updateable. For example, the Rational class
provides a getter method for numerator and denominator, but no setter method, because a
Rational object is immutable.

13.10.4 Clarity
Cohesion, consistency, and encapsulation are good guidelines for achieving design clarity.
Additionally, a class should have a clear contract that is easy to explain and easy to understand.

Users can incorporate classes in many different combinations, orders, and environments.
Therefore, you should design a class that imposes no restrictions on how or when the user can
use it, design the properties in a way that lets the user set them in any order and with any com-
bination of values, and design methods that function independently of their order of occurrence.
For example, the Loan class contains the properties loanAmount, numberOfYears, and
annualInterestRate. The values of these properties can be set in any order.

Methods should be defined intuitively without causing confusion. For example, the
substring(int beginIndex, int endIndex) method in the String class is somewhat
confusing. The method returns a substring from beginIndex to endIndex – 1, rather than to
endIndex. It would be more intuitive to return a substring from beginIndex to endIndex.

You should not declare a data field that can be derived from other data fields. For exam-
ple, the following Person class has two data fields: birthDate and age. Since age can be
derived from birthDate, age should not be declared as a data field.

public class Person {
private java.util.Date birthDate;

coherent purpose

separate responsibilities

naming conventions

naming consistency

no-arg constructor

encapsulate data fields

easy to explain

independent methods

intuitive meaning

independent properties

13.10 Class Design Guidelines 527

private int age;

 ...
}

13.10.5 Completeness
Classes are designed for use by many different customers. In order to be useful in a wide range
of applications, a class should provide a variety of ways for customization through properties
and methods. For example, the String class contains more than 40 methods that are useful
for a variety of applications.

13.10.6 Instance vs. Static
A variable or method that is dependent on a specific instance of the class must be an instance
variable or method. A variable that is shared by all the instances of a class should be declared
static. For example, the variable numberOfObjects in CircleWithPrivateDataFields
in Listing 9.8 is shared by all the objects of the CircleWithPrivateDataFields class
and therefore is declared static. A method that is not dependent on a specific instance
should be defined as a static method. For instance, the getNumberOfObjects() method
in CircleWithPrivateDataFields is not tied to any specific instance and therefore is
defined as a static method.

Always reference static variables and methods from a class name (rather than a reference
variable) to improve readability and avoid errors.

Do not pass a parameter from a constructor to initialize a static data field. It is better to
use a setter method to change the static data field. Thus, the following class in (a) is better
replaced by (b).

public class SomeThing {
private int tl;
private static int t2;

public SomeThing(int tl, int t2) {
 ...
 }
}

(a)

public class SomeThing {
private int tl;
private static int t2;

public SomeThing(int tl) {
 ...
 }

public static void setT2(int t2) {
 SomeThing.t2 = t2;
 }
}

(b)

Instance and static are integral parts of object-oriented programming. A data field or
method is either instance or static. Do not mistakenly overlook static data fields or methods.
It is a common design error to define an instance method that should have been static. For
example, the factorial(int n) method for computing the factorial of n should be defined
static, because it is independent of any specific instance.

A constructor is always instance, because it is used to create a specific instance. A static
variable or method can be invoked from an instance method, but an instance variable or
method cannot be invoked from a static method.

13.10.7 Inheritance vs. Aggregation
The difference between inheritance and aggregation is the difference between an is-a and a
has-a relationship. For example, an apple is a fruit; thus, you would use inheritance to model
the relationship between the classes Apple and Fruit. A person has a name; thus, you would
use aggregation to model the relationship between the classes Person and Name.

common design error

528 Chapter 13 Abstract Classes and Interfaces

13.10.8 Interfaces vs. Abstract Classes
Both interfaces and abstract classes can be used to specify common behavior for objects. How
do you decide whether to use an interface or a class? In general, a strong is-a relationship
that clearly describes a parent–child relationship should be modeled using classes. For exam-
ple, since an orange is a fruit, their relationship should be modeled using class inheritance.
A weak is-a relationship, also known as an is-kind-of relationship, indicates that an object
possesses a certain property. A weak is-a relationship can be modeled using interfaces. For
example, all strings are comparable, so the String class implements the Comparable inter-
face. A circle or a rectangle is a geometric object, so Circle can be designed as a subclass
of GeometricObject. Circles are different and comparable based on their radii, so Circle
can implement the Comparable interface.

Interfaces are more flexible than abstract classes, because a subclass can extend only one
superclass but can implement any number of interfaces. However, interfaces cannot contain
concrete methods. The virtues of interfaces and abstract classes can be combined by creat-
ing an interface with an abstract class that implements it. Then you can use the interface or
the abstract class, whichever is convenient. We will give examples of this type of design in
Chapter 20, Lists, Stacks, Queues, and Priority Queues.

13.35 Describe class design guidelines.✓Point✓Check

KEY TERMS

abstract class 496
abstract method 496
deep copy 516
interface 496

marker interface 513
shallow copy 515
subinterface 518

CHAPTER SUMMARY

1. Abstract classes are like regular classes with data and methods, but you cannot create
instances of abstract classes using the new operator.

2. An abstract method cannot be contained in a nonabstract class. If a subclass of an
abstract superclass does not implement all the inherited abstract methods of the super-
class, the subclass must be defined as abstract.

3. A class that contains abstract methods must be abstract. However, it is possible to define
an abstract class that doesn’t contain any abstract methods.

4. A subclass can be abstract even if its superclass is concrete.

5. An interface is a class-like construct that contains only constants and abstract methods.
In many ways, an interface is similar to an abstract class, but an abstract class can con-
tain constants and abstract methods as well as variables and concrete methods.

6. An interface is treated like a special class in Java. Each interface is compiled into a
separate bytecode file, just like a regular class.

7. The java.lang.Comparable interface defines the compareTo method. Many classes
in the Java library implement Comparable.

Programming Exercises 529

8. The java.lang.Cloneable interface is a marker interface. An object of the class that
implements the Cloneable interface is cloneable.

9. A class can extend only one superclass but can implement one or more interfaces.

10. An interface can extend one or more interfaces.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 13.2–13.3

**13.1 (Triangle class) Design a new Triangle class that extends the abstract
GeometricObject class. Draw the UML diagram for the classes Triangle
and GeometricObject and then implement the Triangle class. Write a test
program that prompts the user to enter three sides of the triangle, a color, and a
Boolean value to indicate whether the triangle is filled. The program should create
a Triangle object with these sides and set the color and filled properties using
the input. The program should display the area, perimeter, color, and true or false
to indicate whether it is filled or not.

*13.2 (Shuffle ArrayList) Write the following method that shuffles an ArrayList of
numbers:

public static void shuffle(ArrayList<Number> list)

*13.3 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers.

public static void sort(ArrayList<Number> list)

**13.4 (Display calendars) Rewrite the PrintCalendar class in Listing 6.12 to display
a calendar for a specified month using the Calendar and GregorianCalendar
classes. Your program receives the month and year from the command line. For
example:

java Exercise13_04 5 2016

 This displays the calendar shown in Figure 13.9.

FIGURE 13.9 The program displays a calendar for May 2016.

www.cs.armstrong.edu/liang/intro10e/quiz.html

530 Chapter 13 Abstract Classes and Interfaces

 You also can run the program without the year. In this case, the year is the current
year. If you run the program without specifying a month and a year, the month is
the current month.

Sections 13.4–13.8

*13.5 (Enable GeometricObject comparable) Modify the GeometricObject class
to implement the Comparable interface, and define a static max method in the
GeometricObject class for finding the larger of two GeometricObject objects.
Draw the UML diagram and implement the new GeometricObject class. Write
a test program that uses the max method to find the larger of two circles and the
larger of two rectangles.

*13.6 (The ComparableCircle class) Define a class named ComparableCircle
that extends Circle and implements Comparable. Draw the UML diagram and
implement the compareTo method to compare the circles on the basis of area.
Write a test class to find the larger of two instances of ComparableCircle objects.

*13.7 (The Colorable interface) Design an interface named Colorable with a void
method named howToColor(). Every class of a colorable object must imple-
ment the Colorable interface. Design a class named Square that extends
GeometricObject and implements Colorable. Implement howToColor to
display the message Color all four sides.

 Draw a UML diagram that involves Colorable, Square, and GeometricObject.
Write a test program that creates an array of five GeometricObjects. For each
object in the array, display its area and invoke its howToColor method if it is
colorable.

*13.8 (Revise the MyStack class) Rewrite the MyStack class in Listing 11.10 to perform
a deep copy of the list field.

*13.9 (Enable Circle comparable) Rewrite the Circle class in Listing 13.2 to extend
GeometricObject and implement the Comparable interface. Override the
equals method in the Object class. Two Circle objects are equal if their radii
are the same. Draw the UML diagram that involves Circle, GeometricObject,
and Comparable.

*13.10 (Enable Rectangle comparable) Rewrite the Rectangle class in Listing 13.3 to
extend GeometricObject and implement the Comparable interface. Override
the equals method in the Object class. Two Rectangle objects are equal
if their areas are the same. Draw the UML diagram that involves Rectangle,
GeometricObject, and Comparable.

*13.11 (The Octagon class) Write a class named Octagon that extends
GeometricObject and implements the Comparable and Cloneable inter-
faces. Assume that all eight sides of the octagon are of equal length. The area can
be computed using the following formula:

area = (2 + 4/22)* side * side

 Draw the UML diagram that involves Octagon, GeometricObject,
Comparable, and Cloneable. Write a test program that creates an Octagon
object with side value 5 and displays its area and perimeter. Create a new object
using the clone method and compare the two objects using the compareTo
method.

*13.12 (Sum the areas of geometric objects) Write a method that sums the areas of all the
geometric objects in an array. The method signature is:

public static double sumArea(GeometricObject[] a)

Redesign the Rectangle

class

VideoNote

Programming Exercises 531

 Write a test program that creates an array of four objects (two circles and two
rectangles) and computes their total area using the sumArea method.

*13.13 (Enable the Course class cloneable) Rewrite the Course class in Listing 10.6
to add a clone method to perform a deep copy on the students field.

Section 13.9

*13.14 (Demonstrate the benefits of encapsulation) Rewrite the Rational class in
Listing 13.13 using a new internal representation for the numerator and denomina-
tor. Create an array of two integers as follows:

private long[] r = new long[2];

 Use r[0] to represent the numerator and r[1] to represent the denominator.
The signatures of the methods in the Rational class are not changed, so a client
application that uses the previous Rational class can continue to use this new
Rational class without being recompiled.

*13.15 (Use BigInteger for the Rational class) Redesign and implement the
Rational class in Listing 13.13 using BigInteger for the numerator and
denominator.

*13.16 (Create a rational-number calculator) Write a program similar to Listing 7.9,
Calculator.java. Instead of using integers, use rationals, as shown in Figure 13.10a.
You will need to use the split method in the String class, introduced in
Section 10.10.3, Replacing and Splitting Strings, to retrieve the numerator string and
denominator string, and convert strings into integers using the Integer.parseInt
method.

FIGURE 13.10 (a) The program takes three arguments (operand1, operator, and operand2)
from the command line and displays the expression and the result of the arithmetic
operation. (b) A complex number can be interpreted as a point in a plane.

x-axis

y-axis

2 + 3i

3 - 2i

(a) (b)

*13.17 (Math: The Complex class) A complex number is a number in the form a + bi,
where a and b are real numbers and i is 2-1. The numbers a and b are known
as the real part and imaginary part of the complex number, respectively. You can
perform addition, subtraction, multiplication, and division for complex numbers
using the following formulas:

a + bi + c + di = (a + c) + (b + d)i

a + bi - (c + di) = (a - c) + (b - d)i

(a + bi)*(c + di) = (ac - bd) + (bc + ad)i

(a + bi)/(c + di) = (ac + bd)/(c2 + d2) + (bc - ad)i/(c2 + d2)

532 Chapter 13 Abstract Classes and Interfaces

 You can also obtain the absolute value for a complex number using the following
formula:

� a + bi � = 2a2 + b2

 (A complex number can be interpreted as a point on a plane by identifying the (a,b)
values as the coordinates of the point. The absolute value of the complex number
corresponds to the distance of the point to the origin, as shown in Figure 13.10b.)

Design a class named Complex for representing complex numbers and the
methods add, subtract, multiply, divide, and abs for performing complex-
number operations, and override toString method for returning a string repre-
sentation for a complex number. The toString method returns (a + bi) as a
string. If b is 0, it simply returns a. Your Complex class should also implement the
Cloneable interface.

Provide three constructors Complex(a, b), Complex(a), and Complex().
Complex() creates a Complex object for number 0 and Complex(a) cre-
ates a Complex object with 0 for b. Also provide the getRealPart() and
getImaginaryPart() methods for returning the real and imaginary part of the
complex number, respectively.

Write a test program that prompts the user to enter two complex numbers and
displays the result of their addition, subtraction, multiplication, division, and abso-
lute value. Here is a sample run:

Enter the first complex number: 3.5 5.5
Enter the second complex number: -3.5 1
(3.5 + 5.5i) + (-3.5 + 1.0i) = 0.0 + 6.5i
(3.5 + 5.5i) - (-3.5 + 1.0i) = 7.0 + 4.5i
(3.5 + 5.5i) * (-3.5 + 1.0i) = -17.75 + -13.75i
(3.5 + 5.5i) / (-3.5 + 1.0i) = -0.5094 + -1.7i
|(3.5 + 5.5i)| = 6.519202405202649

13.18 (Use the Rational class) Write a program that computes the following summa-
tion series using the Rational class:

1

2
+

2

3
+

3

4
+ c +

98

99
+

99

100

 You will discover that the output is incorrect because of integer overflow (too
large). To fix this problem, see Programming Exercise 13.15.

13.19 (Convert decimals to fractions) Write a program that prompts the user to enter
a decimal number and displays the number in a fraction. Hint: read the decimal
number as a string, extract the integer part and fractional part from the string,
and use the BigInteger implementation of the Rational class in Programming
Exercise 13.15 to obtain a rational number for the decimal number. Here are some
sample runs:

Enter a decimal number: 3.25
The fraction number is 13/4

Programming Exercises 533

13.20 (Algebra: solve quadratic equations) Rewrite Programming Exercise 3.1 to obtain
imaginary roots if the determinant is less than 0 using the Complex class in
Programming Exercise 13.17. Here are some sample runs.

Enter a decimal number: -0.45452
The fraction number is -11363/25000

13.21 (Algebra: vertex form equations) The equation of a parabola can be expressed
in either standard form (y = ax2 + bx + c) or vertex form (y = a(x - h)2 + k).
Write a program that prompts the user to enter a, b, and c as integers in standard
form and displays h and k in the vertex form. Here are some sample runs.

Enter a, b, c: 1 3 1
The roots are -0.381966 and -2.61803

Enter a, b, c: 1 2 1
The root is -1

Enter a, b, c: 1 2 3
The roots are -1.0 + 1.4142i and -1.0 + -1.4142i

Enter a, b, c: 1 3 1
h is -3/2 k is -5/4

Enter a, b, c: 2 3 4
h is -3/4 k is 23/8

This page intentionally left blank

JAVAFX BASICS

Objectives
■ To distinguish between JavaFX, Swing, and AWT (§14.2).

■ To write a simple JavaFX program and understand the relationship
among stages, scenes, and nodes (§14.3).

■ To create user interfaces using panes, UI controls, and shapes (§14.4).

■ To update property values automatically through property binding
(§14.5).

■ To use the common properties style and rotate for nodes (§14.6).

■ To create colors using the Color class (§14.7).

■ To create fonts using the Font class (§14.8).

■ To create images using the Image class and to create image views
using the ImageView class (§14.9).

■ To layout nodes using Pane, StackPane, FlowPane, GridPane,
BorderPane, HBox, and VBox (§14.10).

■ To display text using the Text class and create shapes using Line,
Circle, Rectangle, Ellipse, Arc, Polygon, and Polyline
(§14.11).

■ To develop the reusable GUI component ClockPane for displaying
an analog clock (§14.12).

CHAPTER

14

536 Chapter 14 JavaFX Basics

14.1 Introduction
JavaFX is an excellent pedagogical tool for learning object-oriented programming.

JavaFX is a new framework for developing Java GUI programs. The JavaFX API is an
excellent example of how the object-oriented principles are applied. This chapter serves two
purposes. First, it presents the basics of JavaFX programming. Second, it uses JavaFX to
demonstrate object-oriented design and programming. Specifically, this chapter introduces
the framework of JavaFX and discusses JavaFX GUI components and their relationships. You
will learn how to develop simple GUI programs using layout panes, buttons, labels, text fields,
colors, fonts, images, image views, and shapes.

14.2 JavaFX vs Swing and AWT
Swing and AWT are replaced by the JavaFX platform for developing rich Internet
applications.

When Java was introduced, the GUI classes were bundled in a library known as the Abstract
Windows Toolkit (AWT). AWT is fine for developing simple graphical user interfaces, but not
for developing comprehensive GUI projects. In addition, AWT is prone to platform-specific
bugs. The AWT user-interface components were replaced by a more robust, versatile, and flex-
ible library known as Swing components. Swing components are painted directly on canvases
using Java code. Swing components depend less on the target platform and use less of the
native GUI resources. Swing is designed for developing desktop GUI applications. It is now
replaced by a completely new GUI platform known as JavaFX. JavaFX incorporates modern
GUI technologies to enable you to develop rich Internet applications. A rich Internet applica-
tion (RIA) is a Web application designed to deliver the same features and functions normally
associated with deskop applications. A JavaFX application can run seemlessly on a desktop
and from a Web browser. Additionally, JavaFX provides a multi-touch support for touch-
enabled devices such as tablets and smart phones. JavaFX has a built-in 2D, 3D, animation
support, video and audio playback, and runs as a stand-alone application or from a browser.

This book teaches Java GUI programming using JavaFX for two reasons. First, JavaFX is
much simpler to learn and use for new Java programmers. Second, Swing is essentially dead,
because it will not receive any further enhancement. JavaFX is the new GUI tool for develop-
ing cross-platform-rich Internet applications on desktop computers, on hand-held devices, and
on the Web.

14.1 Explain the evolution of Java GUI technologies.

14.2 Explain why this book teaches Java GUI using JavaFX.

14.3 The Basic Structure of a JavaFX Program
The abstract javafx.application.Application class defines the essential
framework for writing JavaFX programs.

We begin by writing a simple JavaFX program that illustrates the basic structure of a JavaFX
program. Every JavaFX program is defined in a class that extends javafx.application
.Application, as shown in Listing 14.1:

LISTING 14.1 MyJavaFX.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;

Key
Point

Key
Point

AWT

Swing

JavaFX

why teaching JavaFX?

✓Point✓Check

Key
Point

14.3 The Basic Structure of a JavaFX Program 537

 5
 6 public class MyJavaFX extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
10 Button btOK = new Button("OK");
11 Scene scene = new Scene(btOK, 200, 250);
12 primaryStage.setTitle("MyJavaFX"); // Set the stage title
13 primaryStage.setScene(scene); // Place the scene in the stage
14 primaryStage.show(); // Display the stage
15 }
16
17 /**
18 * The main method is only needed for the IDE with limited
19 * JavaFX support. Not needed for running from the command line.
20 */
21 public static void main(String[] args) {
22 Application.launch(args);
23 }
24 }

You can test and run your program from a command window or from an IDE such as
NetBeans or Eclipse. A sample run of the program is shown in Figure 14.1. Supplements
II.F–H give the tips for running JavaFX programs from a command window, NetBeans, and
Eclipse. A JavaFX program can run stand-alone or from a Web browser. For running a JavaFX
program from a Web browser, see Supplement II.I.

extend Application

override start

create a button
create a scene
set stage title
set a scene
display stage

main method
launch application

JavaFX on NetBenas and
Eclipse

FIGURE 14.1 A simple JavaFX displays a button in the window.

The launch method (line 22) is a static method defined in the Application class for
launching a stand-alone JavaFX application. The main method (lines 21–23) is not needed if
you run the program from the command line. It may be needed to launch a JavaFX program
from an IDE with a limited JavaFX support. When you run a JavaFX application without a
main method, JVM automatically invokes the launch method to run the application.

The main class overrides the start method defined in javafx.application.Application
(line 8). After a JavaFX application is launched, the JVM constructs an instance of the class
using its no-arg constructor and invokes its start method. The start method normally
places UI controls in a scene and displays the scene in a stage, as shown in Figure 14.2a.

Line 10 creates a Button object and places it in a Scene object (line 11). A Scene object
can be created using the constructor Scene(node, width, height). This constructor
specifies the width and height of the scene and places the node in the scene.

A Stage object is a window. A Stage object called primary stage is automatically cre-
ated by the JVM when the application is launched. Line 13 sets the scene to the primary stage
and line 14 displays the primary stage. JavaFX names the Stage and Scene classes using the
analogy from the theater. You may think stage as the platform to support scenes and nodes as
actors to perform in the scenes.

You can create additional stages if needed. The JavaFX program in Listing 14.2 displays
two stages, as shown in Figure 14.2b.

launch

construct application

start application

scene

primary stage

538 Chapter 14 JavaFX Basics

LISTING 14.2 MultipleStageDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5
 6 public class MultipleStageDemo extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
10 Scene scene = new Scene(new Button("OK"), 200, 250);
11 primaryStage.setTitle("MyJavaFX"); // Set the stage title
12 primaryStage.setScene(scene); // Place the scene in the stage
13 primaryStage.show(); // Display the stage
14
15 Stage stage = new Stage(); // Create a new stage
16 stage.setTitle("Second Stage"); // Set the stage title
17 // Set a scene with a button in the stage
18 stage.setScene(new Scene(new Button("New Stage"), 100, 100));
19 stage.show(); // Display the stage
20 }
21 }

Note that the main method is omitted in the listing since it is identical for every JavaFX
application. From now on, we will not list the main method in our JavaFX source code for
brevity.

By default, the user can resize the stage. To prevent the user from resizing the stage, invoke
stage.setResizable(false).

14.3 How do you define a JavaFX main class? What is the signature of the start method?
What is a stage? What is a primary stage? Is a primary stage automatically created?
How do you display a stage? Can you prevent the user from resizing the stage? Can you
replace Application.launch(args) by launch(args) in line 22 in Listing 14.1?

14.4 Show the output of the following JavaFX program.

import javafx.application.Application;
import javafx.stage.Stage;

public class Test extends Application {
public Test() {

 System.out.println("Test constructor is invoked");
 }

primary stage in start

display primary stage

create second stage

display second stage

main method omitted

main method omitted

prevent stage resizing

✓Point✓Check

FIGURE 14.2 (a) Stage is a window for displaying a scene that contains nodes. (b) Multiple
stages can be displayed in a JavaFX program.

Stage

Scene

Button

(a) (b)

14.4 Panes, UI Controls, and Shapes 539

 @Override // Override the start method in the Application class
public void start(Stage primaryStage) {

 System.out.println("start method is invoked");
 }

public static void main(String[] args) {
 System.out.println("launch application");
 Application.launch(args);
 }
}

14.4 Panes, UI Controls, and Shapes
Panes, UI controls, and shapes are subtypes of Node.

When you run MyJavaFX in Listing 14.1, the window is displayed as shown in Figure 14.1.
The button is always centered in the scene and occupies the entire window no matter how
you resize it. You can fix the problem by setting the position and size properties of a button.
However, a better approach is to use container classes, called panes, for automatically laying
out the nodes in a desired location and size. You place nodes inside a pane and then place the
pane into a scene. A node is a visual component such as a shape, an image view, a UI control,
or a pane. A shape refers to a text, line, circle, ellipse, rectangle, arc, polygon, polyline, etc.
A UI control refers to a label, button, check box, radio button, text field, text area, etc. A scene
can be displayed in a stage, as shown in Figure 14.3a. The relationship among Stage, Scene,
Node, Control, and Pane is illustrated in the UML diagram, as shown in Figure 14.3b.
Note that a Scene can contain a Control or a Pane, but not a Shape or an ImageView.
A Pane can contain any subtype of Node. You can create a Scene using the constructor
Scene(Parent, width, height) or Scene(Parent). The dimension of the scene is
automatically decided in the latter constructor. Every subclass of Node has a no-arg construc-
tor for creating a default node.

Listing 14.3 gives a program that places a button in a pane, as shown in Figure 14.4

Key
Point

pane

node

shape
UI control

FIGURE 14.3 (a) Panes are used to hold nodes. (b) Nodes can be shapes, image views, UI controls, and panes.

Stage

Scene

Parent
(Pane, Control)

Nodes

UI controls such as Label,
TextField, Button, CheckBox,
RadioButton, and TextArea are
subclasses of Control.

1

Stage

Node

Control

*

FlowPane

BorderPane

GridPane

HBox

VBox

StackPane

1

Pane

Parent

Shape

ImageView For displaying an image.

(a) (b)

Scene

Shapes such as Line, Circle,
Ellipse, Rectangle, Path,
Polygon, Polyline, and Text are
subclasses of Shape.

540 Chapter 14 JavaFX Basics

LISTING 14.3 ButtonInPane.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class ButtonInPane extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a scene and place a button in the scene
11 StackPane pane = new StackPane();
12 pane.getChildren().add(new Button("OK"));
13 Scene scene = new Scene(pane, 200, 50);
14 primaryStage.setTitle("Button in a pane"); // Set the stage title
15 primaryStage.setScene(scene); // Place the scene in the stage
16 primaryStage.show(); // Display the stage
17 }
18 }

create a pane
add a button
add pane to scene

display stage

main method omitted

FIGURE 14.4 A button is placed in the center of the pane.

The program creates a StackPane (line 11) and adds a button as a child of the pane (line 12).
The getChildren() method returns an instance of javafx.collections.ObservableList.
ObservableList behaves very much like an ArrayList for storing a collection of elements.
Invoking add(e) adds an element to the list. The StackPane places the nodes in the center
of the pane on top of each other. Here, there is only one node in the pane. The StackPane
respects a node’s preferred size. So you see the button displayed in its preferred size.

Listing 14.4 gives an example that displays a circle in the center of the pane, as shown in
Figure 14.5a.

LISTING 14.4 ShowCircle.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircle extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a circle and set its properties
12 Circle circle = new Circle();
13 circle.setCenterX(100);
14 circle.setCenterY(100);
15 circle.setRadius(50);
16 circle.setStroke(Color.BLACK);
17 circle.setFill(Color.WHITE);
18
19 // Create a pane to hold the circle
20 Pane pane = new Pane();

ObservableList

create a circle
set circle properties

create a pane

14.4 Panes, UI Controls, and Shapes 541

21 pane.getChildren().add(circle);
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 200, 200);
25 primaryStage.setTitle("ShowCircle"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

add circle to pane

add pane to scene

display stage

main method omitted

FIGURE 14.5 (a) A circle is displayed in the center of the scene. (b) The circle is not
centered after the window is resized.

(a) (b)

(0, 0)(0, 0)

(100, 100)(100, 100)

The program creates a Circle (line 12) and sets its center at (100, 100) (lines 13–14),
which is also the center for the scene, since the scene is created with the width and height of
200 (line 24). The radius of the circle is set to 50 (line 15). Note that the measurement units
for graphics in Java are all in pixels.

The stroke color (i.e., the color to draw the circle) is set to black (line 16). The fill color
(i.e., the color to fill the circle) is set to white (line 17). You may set the color to null to
specify that no color is set.

The program creates a Pane (line 20) and places the circle in the pane (line 21). Note that
the coordinates of the upper left corner of the pane is (0, 0) in the Java coordinate system, as
shown in Figure 14.6a, as opposed to the conventional coordinate system where (0, 0) is at the
center of the window, as shown in Figure 14.6b. The x-coordinate increases from left to right
and the y-coordinate increases downward in the Java coordinate system.

The pane is placed in the scene (line 24) and the scene is set in the stage (line 26). The circle
is displayed in the center of the stage, as shown in Figure 14.5a. However, if you resize the
window, the circle is not centered, as shown in Figure 14.5b. In order to display the circle cen-
tered as the window resizes, the x- and y-coordinates of the circle center need to be reset to the
center of the pane. This can be done by using property binding, introduced in the next section.

pixels

set color

FIGURE 14.6 The Java coordinate system is measured in pixels, with (0, 0) at its
upper-left corner.

(0, 0) X axis

Y axis

(x, y)

x

y

Java Coordinate
System

X axis
Conventional
Coordinate
System

(0, 0)

Y axis

(a) (b)

542 Chapter 14 JavaFX Basics

14.5 How do you create a Scene object? How do you set a scene in a stage? How do you
place a circle into a scene?

14.6 What is a pane? What is a node? How do you place a node in a pane? Can you directly
place a Shape or an ImageView into a Scene? Can you directly place a Control or
a Pane into a Scene?

14.7 How do you create a Circle? How do you set its center location and radius? How
do you set its stroke color and fill color?

14.5 Property Binding
You can bind a target object to a source object. A change in the source object will be
automatically reflected in the target object.

JavaFX introduces a new concept called property binding that enables a target object to be
bound to a source object. If the value in the source object changes, the target object is also
changed automatically. The target object is called a binding object or a binding property and
the source object is called a bindable object or observable object. As discussed in the preced-
ing listing, the circle is not centered after the window is resized. In order to display the circle
centered as the window resizes, the x- and y-coordinates of the circle center need to be reset
to the center of the pane. This can be done by binding the centerX with pane’s width/2 and
centerY with pane’s height/2, as shown in Listing 14.5.

LISTING 14.5 ShowCircleCentered.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircleCentered extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a pane to hold the circle
12 Pane pane = new Pane();
13
14 // Create a circle and set its properties
15 Circle circle = new Circle();
16 circle.centerXProperty().bind(pane.widthProperty().divide(2));
17 circle.centerYProperty().bind(pane.heightProperty().divide(2));
18 circle.setRadius(50);
19 circle.setStroke(Color.BLACK);
20 circle.setFill(Color.WHITE);
21 pane.getChildren().add(circle); // Add circle to the pane
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 200, 200);
25 primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

The Circle class has the centerX property for representing the x-coordinate of the circle
center. This property like many properties in JavaFX classes can be used both as target and
source in a property binding. A target listens to the changes in the source and automatically

✓Point✓Check

Key
Point

VideoNote

Understand property binding

target object

source object

binding object

binding property
bindable object

observable object

create a pane

create a circle
bind properties

add circle to pane

add pane to scene

display stage

14.5 Property Binding 543

updates itself once a change is made in the source. A target binds with a source using the bind
method as follows:

target.bind(source);

The bind method is defined in the javafx.beans.property.Property interface. A
binding property is an instance of javafx.beans.property.Property. A source object is an
instance of the javafx.beans.value.ObservableValue interface. An ObservableValue
is an entity that wraps a value and allows to observe the value for changes.

JavaFX defines binding properties for primitive types and strings. For a double/float/
long/int/boolean value, its binding property type is DoubleProperty/FloatProperty/
LongProperty/IntegerProperty/BooleanProperty. For a string, its binding property
type is StringProperty. These properties are also subtypes of ObservableValue. So they
can also be used as source objects for binding properties.

By convention, each binding property (e.g., centerX) in a JavaFX class (e.g., Circle) has a
getter (e.g., getCenterX()) and setter (e.g., setCenterX(double)) method for returning and
setting the property’s value. It also has a getter method for returning the property itself. The naming
convention for this method is the property name followed by the word Property. For example,
the property getter method for centerX is centerXProperty(). We call the getCenterX()
method as the value getter method, the setCenterX(double) method as the value setter method,
and centerXProperty() as the property getter method. Note that getCenterX() returns
a double value and centerXProperty() returns an object of the DoubleProperty type.
Figure 14.7a shows the convention for defining a binding property in a class and Figure 14.7b
shows a concrete example in which centerX is a binding property of the type DoubleProperty.

the Property interface

the ObservableValue
interface

common binding properties

common ObservableValue
objects

value getter method

value setter method

property getter method

The program in Listing 14.5 is the same as in Listing 14.4 except that it binds circle’s
centerX and centerY properties to half of pane’s width and height (lines 16–17). Note that
circle.centerXProperty() returns centerX and pane.widthProperty() returns
width. Both centerX and width are binding properties of the DoubleProperty type. The
numeric binding property classes such as DoubleProperty and IntegerProperty con-
tain the add, subtract, multiply, and divide methods for adding, subtracting, multiply-
ing, and dividing a value in a binding property and returning a new observable property. So,
pane.widthProperty().divide(2) returns a new observable property that represents
half of the pane’s width. The statement

circle.centerXProperty().bind(pane.widthProperty().divide(2));

is same as

centerX.bind(width.divide(2));

public class SomeClassName {

private PropertyType x;

/** Value getter method */
public propertyValueType getX() { ... }

/** Value setter method */
public void setX(propertyValueType value) { ... }

/** Property getter method */
public PropertyType

 xProperty() { ... }
}

(a) x is a binding property

public class Circle {

private DoubleProperty centerX;

/** Value getter method */
public double getCenterX() { ... }

/** Value setter method */
public void setCenterX(double value) { ... }

/** Property getter method */
public DoubleProperty centerXProperty() { ... }

}

(b) centerX is binding property

FIGURE 14.7 A binding property has a value getter method, setter method, and property getter method.

544 Chapter 14 JavaFX Basics

Since centerX is bound to width.divide(2), when pane’s width is changed, centerX
automatically updates itself to match pane’s width / 2.

Listing 14.6 gives another example that demonstrates bindings.

LISTING 14.6 BindingDemo.java
 1 import javafx.beans.property.DoubleProperty;
 2 import javafx.beans.property.SimpleDoubleProperty;
 3
 4 public class BindingDemo {
 5 public static void main(String[] args) {
 6 DoubleProperty d1 = new SimpleDoubleProperty(1);
 7 DoubleProperty d2 = new SimpleDoubleProperty(2);
 8 d1.bind(d2);
 9 System.out.println("d1 is " + d1.getValue()
10 + " and d2 is " + d2.getValue());
11 d2.setValue(70.2);
12 System.out.println("d1 is " + d1.getValue()
13 + " and d2 is " + d2.getValue());
14 }
15 }

create a DoubleProperty
create a DoubleProperty
bind property

set a new source value

d1 is 2.0 and d2 is 2.0
d1 is 70.2 and d2 is 70.2

The program creates an instance of DoubleProperty using
SimpleDoubleProperty(1) (line 6). Note that DoubleProperty, FloatProperty,
LongProperty, IntegerProperty, and BooleanProperty are abstract classes. Their
concrete subclasses SimpleDoubleProperty, SimpleFloatProperty, SimpleLong-

Property, SimpleIntegerProperty, and SimpleBooleanProperty are used to cre-
ate instances of these properties. These classes are very much like wrapper classes Double,
Float, Long, Integer, and Boolean with additional features for binding to a source object.

The program binds d1 with d2 (line 8). Now the values in d1 and d2 are the same. After
setting d2 to 70.2 (line 11), d1 also becomes 70.2 (line 13).

The binding demonstrated in this example is known as unidirectional binding. Occasion-
ally, it is useful to synchronize two properties so that a change in one property is reflected in
another object, and vice versa. This is called a bidirectional binding. If the target and source
are both binding properties and observable properties, they can be bound bidirectionally using
the bindBidirectional method.

14.8 What is a binding property? What interface defines a binding property? What inter-
face defines a source object? What are the binding object types for int, long,
float, double, and boolean? Are Integer and Double binding properties? Can
Integer and Double be used as source objects in a binding?

14.9 Following the JavaFX binding property naming convention, for a binding property
named age of the IntegerProperty type, what is its value getter method, value
setter method, and property getter method?

14.10 Can you create an object of IntegerProperty using new IntegerProperty(3)?
If not, what is the correct way to create it? What will the output if line 8 is replaced
by d1.bind(d2.multiply(2)) in Listing 14.6? What will the output if line 8 is
replaced by d1.bind(d2.add(2)) in Listing 14.6?

14.11 What is a unidirectional binding and what is bidirectional binding? Are all binding
properties capable of bidirectional binding? Write a statement to bind property d1
with property d2 bidirectionally.

unidirectional binding

bidirectional binding

✓Point✓Check

14.6 Common Properties and Methods for Nodes 545

14.6 Common Properties and Methods for Nodes
The abstract Node class defines many properties and methods that are common to all nodes.

Nodes share many common properties. This section introduces two such properties style
and rotate.

JavaFX style properties are similar to cascading style sheets (CSS) used to specify the styles
for HTML elements in a Web page. So, the style properties in JavaFX are called JavaFX CSS.
In JavaFX, a style property is defined with a prefix –fx-. Each node has its own style proper-
ties. You can find these properties from http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/
cssref.html. For information on HTML and CSS, see Supplements V.A and V.B. If you are not
familiar with HTML and CSS, you can still use JavaFX CSS.

The syntax for setting a style is styleName:value. Multiple style properties for a node
can be set together separated by semicolon (;). For example, the following statement

circle.setStyle("-fx-stroke: black; -fx-fill: red;");

sets two JavaFX CSS properties for a circle. This statement is equivalent to the following two
statements.

circle.setStroke(Color.BLACK);
circle.setFill(Color.RED);

If an incorrect JavaFX CSS is used, your program will still compile and run, but the style
is ignored.

The rotate property enables you to specify an angle in degrees for rotating the node
from its center. If the degree is positive, the rotation is performed clockwise; otherwise, it is
performed counterclockwise. For example, the following code rotates a button 80 degrees.

button.setRotate(80);

Listing 14.7 gives an example that creates a button, sets its style, and adds it to a pane. It
then rotates the pane 45 degrees and set its style with border color red and background color
light gray, as shown in Figure 14.8.

LISTING 14.7 NodeStyleRotateDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class NodeStyleRotateDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a scene and place a button in the scene
11 StackPane pane = new StackPane();
12 Button btOK = new Button("OK");
13 btOK.setStyle("-fx-border-color: blue;");
14 pane.getChildren().add(btOK);
15
16 pane.setRotate(45);
17 pane.setStyle(
18 "-fx-border-color: red; -fx-background-color: lightgray;");
19
20 Scene scene = new Scene(pane, 200, 250);
21 primaryStage.setTitle("NodeStyleRotateDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage

Key
Point

JavaFX CSS

setStyle

rotate the pane
set style for pane

http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

546 Chapter 14 JavaFX Basics

23 primaryStage.show(); // Display the stage
24 }
25 }

FIGURE 14.8 A pane’s style is set and it is rotated 45 degrees.

As seen in Figure 14.8, the rotate on a pane causes all its containing nodes rotated too.
The Node class contains many useful methods that can be applied to all nodes. For example,

you can use the contains(double x, double y) method to test where a point (x, y) is
inside the boundary of a node.

14.12 How do you set a style of a node with border color red? Modify the code to set the
text color for the button to red.

14.13 Can you rotate a pane, a text, or a button? Modify the code to rotate the button 15
degrees counterclockwise?

14.7 The Color Class
The Color class can be used to create colors.

JavaFX defines the abstract Paint class for painting a node. The javafx.scene.paint.Color
is a concrete subclass of Paint, which is used to encapsulate colors, as shown in Figure 14.9.

contains method

✓Point✓Check

Key
Point

FIGURE 14.9 Color encapsulates information about colors.

javafx.scene.paint.Color

-red: double

-green: double

-blue: double

-opacity: double

+Color(r: double, g: double, b:
 double, opacity: double)

+brighter(): Color

+darker(): Color

+color(r: double, g: double, b:
 double): Color

+color(r: double, g: double, b:
 double, opacity: double): Color

+rgb(r: int, g: int, b: int):
 Color

+rgb(r: int, g: int, b: int,
 opacity: double): Color

The red value of this Color (between 0.0 and 1.0).

The green value of this Color (between 0.0 and 1.0).

The blue value of this Color (between 0.0 and 1.0).

The opacity of this Color (between 0.0 and 1.0).

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color that is a brighter version of this Color.

Creates a Color that is a darker version of this Color.

Creates an opaque Color with the specified red, green, and blue values.

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color with the specified red, green, and blue values in the
 range from 0 to 255.

Creates a Color with the specified red, green, and blue values in the
 range from 0 to 255 and a given opacity.

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

A color instance can be constructed using the following constructor:

public Color(double r, double g, double b, double opacity);

in which r, g, and b specify a color by its red, green, and blue components with values in the
range from 0.0 (darkest shade) to 1.0 (lightest shade). The opacity value defines the trans-
parency of a color within the range from 0.0 (completely transparent) to 1.0 (completely
opaque). This is known as the RGBA model, where RGBA stands for red, green, blue, and
alpha. The alpha value indicates the opacity. For example,

Color color = new Color(0.25, 0.14, 0.333, 0.51);

The Color class is immutable. Once a Color object is created, its properties cannot be
changed. The brighter() method returns a new Color with a larger red, green, and blue
values and the darker() method returns a new Color with a smaller red, green, and blue
values. The opacity value is the same as in the original Color object.

You can also create a Color object using the static methods color(r, g, b), color(r,
g, b, opacity), rgb(r, g, b), and rgb(r, g, b, opacity).

Alternatively, you can use one of the many standard colors such as BEIGE, BLACK, BLUE,
BROWN, CYAN, DARKGRAY, GOLD, GRAY, GREEN, LIGHTGRAY, MAGENTA, NAVY, ORANGE, PINK,
RED, SILVER, WHITE, and YELLOW defined as constants in the Color class. The following
code, for instance, sets the fill color of a circle to red:

circle.setFill(Color.RED);

14.14 How do you create a color? What is wrong about creating a Color using new
Color(1.2, 2.3, 3.5, 4)? Which of two colors is darker, new Color(0, 0,
0, 1) or new Color(1, 1, 1, 1)? Does invoking c.darker() change the color
value in c?

14.15 How do you create a Color object with a random color?

14.16 How do you set a circle object c with blue fill color using the setFill method and
using the setStyle method?

14.8 The Font Class
A Font describes font name, weight, and size.

You can set fonts for rendering the text. The javafx.scene.text.Font class is used to
create fonts, as shown in Figure 14.10.

A Font instance can be constructed using its constructors or using its static methods. A
Font is defined by its name, weight, posture, and size. Times, Courier, and Arial are the
examples of the font names.You can obtain a list of available font family names by invoking
the static getFamilies() method. List is an interface that defines common methods for a
list. ArrayList is a concrete implmentation of List. The font postures are two constants:
FontPosture.ITALIC and FontPosture.REGULAR. For example, the following state-
ments create two fonts.

Font font1 = new Font("SansSerif", 16);
Font font2 = Font.font("Times New Roman", FontWeight.BOLD,
 FontPosture.ITALIC, 12);

Listing 14.8 gives a program that displays a label using the font (Times New Roman, bold,
italic, and size 20), as shown in Figure 14.11.

RBGA model

✓Point✓Check

Key
Point

14.8 The Font Class 547

548 Chapter 14 JavaFX Basics

LISTING 14.8 FontDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.*;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.text.*;
 7 import javafx.scene.control.*;
 8 import javafx.stage.Stage;
 9
10 public class FontDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane to hold the circle
14 Pane pane = new StackPane();
15
16 // Create a circle and set its properties
17 Circle circle = new Circle();
18 circle.setRadius(50);
19 circle.setStroke(Color.BLACK);
20 circle.setFill(new Color(0.5, 0.5, 0.5, 0.1));
21 pane.getChildren().add(circle); // Add circle to the pane
22
23 // Create a label and set its properties
24 Label label = new Label("JavaFX");
25 label.setFont(Font.font("Times New Roman",
26 FontWeight.BOLD, FontPosture.ITALIC, 20));
27 pane.getChildren().add(label);
28
29 // Create a scene and place it in the stage
30 Scene scene = new Scene(pane);
31 primaryStage.setTitle("FontDemo"); // Set the stage title
32 primaryStage.setScene(scene); // Place the scene in the stage

create a StackPane

create a Circle

create a Color
add circle to the pane

create a label
create a font

add label to the pane

FIGURE 14.10 Font encapsulates information about fonts.

javafx.scene.text.Font

-size: double

-name: String

-family: String

+Font(size: double)

+Font(name: String, size:
 double)

+font(name: String, size:
 double)

+font(name: String, w:
 FontWeight, size: double)

+font(name: String, w: FontWeight,
 p: FontPosture, size: double)

+getFamilies(): List<String>

+getFontNames(): List<String>

The size of this font.

The name of this font.

The family of this font.

Creates a Font with the specified size.

Creates a Font with the specified full font name and size.

Creates a Font with the specified name and size.

Creates a Font with the specified name, weight, and size.

Creates a Font with the specified name, weight, posture, and size.

Returns a list of font family names.

Returns a list of full font names including family and weight.

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

The program creates a StackPane (line 14) and adds a circle and a label to it (lines 21, 27).
These two statements can be combined using the following one statement:

pane.getChildren().addAll(circle, label);

A StackPane places the nodes in the center and nodes are placed on top of each other. A
custom color is created and set as a fill color for the circle (line 20). The program creates a
label and sets a font (line 25) so the text in the label is displayed in Times New Roman, bold,
italic, and 20 pixels.

As you resize the window, the circle and label are displayed in the center of the window,
because the circle and label are placed in the stack pane. Stack pane automatically places
nodes in the center of the pane.

A Font object is immutable. Once a Font object is created, its properties cannot be changed.

14.17 How do you create a Font object with font name Courier, size 20, and weight
bold?

14.18 How do you find all available fonts on your system?

14.9 The Image and ImageView Classes
The Image class represents a graphical image and the ImageView class can be used
to display an image.

The javafx.scene.image.Image class represents a graphical image and is used for loading
an image from a specified filename or a URL. For example, new Image("image/us.gif")
creates an Image object for the image file us.gif under the directory image in the Java class
directory and new Image("http://www.cs.armstrong.edu/liang/image/us.gif")
creates an Image object for the image file in the URL on the Web.

The javafx.scene.image.ImageView is a node for displaying an image. An
ImageView can be created from an Image object. For example, the following code creates an
ImageView from an image file:

Image image = new Image("image/us.gif");
ImageView imageView = new ImageView(image);

Alternatively, you can create an ImageView directly from a file or a URL as follows:

ImageView imageView = new ImageView("image/us.gif");

The UML diagrams for the Image and ImageView classes are illustrated in Figures 14.12
and 14.13.

✓Point✓Check

Key
Point

VideoNote

Use Image and ImageView

FIGURE 14.11 A label is on top of a circle displayed in the center of the scene.

14.9 The Image and ImageView Classes 549

33 primaryStage.show(); // Display the stage
34 }
35 }

550 Chapter 14 JavaFX Basics

Listing 14.9 displays an image in three image views, as shown in Figure 14.14.

LISTING 14.9 ShowImage.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.HBox;
 4 import javafx.scene.layout.Pane;
 5 import javafx.geometry.Insets;
 6 import javafx.stage.Stage;
 7 import javafx.scene.image.Image;
 8 import javafx.scene.image.ImageView;
 9
10 public class ShowImage extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane to hold the image views
14 Pane pane = new HBox(10);
15 pane.setPadding(new Insets(5, 5, 5, 5));
16 Image image = new Image("image/us.gif");
17 pane.getChildren().add(new ImageView(image));
18
19 ImageView imageView2 = new ImageView(image);
20 imageView2.setFitHeight(100);
21 imageView2.setFitWidth(100);

create an HBox

create an image
add an image view to pane

create an image view
set image view properties

FIGURE 14.12 Image encapsulates information about images.

-error: ReadOnlyBooleanProperty

-height: ReadOnlyBooleanProperty

-width: ReadOnlyBooleanProperty

-progress: ReadOnlyBooleanProperty

javafx.scene.image.Image

Indicates whether the image is loaded correctly?

The height of the image.

The width of the image.

The approximate percentage of image’s loading that is completed.

+Image(filenameOrURL: String)

The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

Creates an Image with contents loaded from a file or a URL.

FIGURE 14.13 ImageView is a node for displaying an image.

-fitHeight: DoubleProperty

-fitWidth: DoubleProperty

-x: DoubleProperty

-y: DoubleProperty

-image: ObjectProperty<Image>

javafx.scene.image.ImageView

The height of the bounding box within which the image is resized to fit.

The width of the bounding box within which the image is resized to fit.

The x-coordinate of the ImageView origin.

The y-coordinate of the ImageView origin.

The image to be displayed in the image view.

+ImageView()

+ImageView(image: Image)

+ImageView(filenameOrURL: String)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an ImageView.

Creates an ImageView with the specified image.

Creates an ImageView with image loaded from the specified file or URL.

22 pane.getChildren().add(imageView2);
23
24 ImageView imageView3 = new ImageView(image);
25 imageView3.setRotate(90);
26 pane.getChildren().add(imageView3);
27
28 // Create a scene and place it in the stage
29 Scene scene = new Scene(pane);
30 primaryStage.setTitle("ShowImage"); // Set the stage title
31 primaryStage.setScene(scene); // Place the scene in the stage
32 primaryStage.show(); // Display the stage
33 }
34 }

add an image to pane

create an image view
rotate an image view
add an image to pane

FIGURE 14.14 An image is displayed in three image views placed in a pane.

Directory

ShowImage.class

image

us.gif

The program creates an HBox (line 14). An HBox is a pane that places all nodes horizon-
tallly in one row. The program creates an Image, and then an ImageView for displaying the
iamge, and places the ImageView in the HBox (line 17).

The program creates the second ImageView (line 19), sets its fitHeight and fitWidth
properties (lines 20–21) and places the ImageView into the HBox (line 22). The program cre-
ates the third ImageView (line 24), rotates it 90 degrees (line 25), and places it into the HBox
(line 26). The setRotate method is defined in the Node class and can be used for any node.
Note that an Image object can be shared by multiple nodes. In this case, it is shared by three
ImageView. However, a node such as ImageView cannot be shared. You cannot place an
ImageView multiple times into a pane or scene.

Note that you must place the image file in the same directory as the class file, as shown in
the following figure.

If you use the URL to locate the image file, the URL protocal http:// must be present. So
the following code is wrong.

new Image("www.cs.armstrong.edu/liang/image/us.gif");

It must be replaced by

new Image("http://www.cs.armstrong.edu/liang/image/us.gif");

14.9 The Image and ImageView Classes 551

552 Chapter 14 JavaFX Basics

14.19 How do you create an Image from a URL or a filename?

14.20 How do you create an ImageView from an Image, or directly from a file or a URL?

14.21 Can you set an Image to multiple ImageView? Can you display the same ImageView
multiple times?

14.10 Layout Panes
JavaFX provides many types of panes for automatically laying out nodes in a desired
location and size.

JavaFX provides many types of panes for organizing nodes in a container, as shown in
Table 14.1. You have used the layout panes Pane, StackPane, and HBox in the preceding
sections for containing nodes. This section introduces the panes in more details.

✓Point✓Check

Key
Point

VideoNote

Use layout panes

Class Description

Pane Base class for layout panes. It contains the getChildren() method for
returning a list of nodes in the pane.

StackPane Places the nodes on top of each other in the center of the pane.

FlowPane Places the nodes row-by-row horizontally or column-by-column vertically.

GridPane Places the nodes in the cells in a two-dimensional grid.

BorderPane Places the nodes in the top, right, bottom, left, and center regions.

HBox Places the nodes in a single row.

VBox Places the nodes in a single column.

TABLE 14.1 Panes for Containing and Organizing Nodes

You have used the Pane in Listing 14.4, ShowCircle.java. A Pane is usually used as a
canvas for displaying shapes. Pane is the base class for all specialized panes. You have used
a specialized pane StackPane in Listing 14.3, ButtonInPane.java. Nodes are placed in the
center of a StackPane. Each pane contains a list for holding nodes in the pane. This list is an
instance of ObservableList, which can be obtained using pane’s getChildren() method.
You can use the add(node) method to add an element to the list, use addAll(node1,
node2, ...) to add a variable number of nodes to the pane.

14.10.1 FlowPane
FlowPane arranges the nodes in the pane horizontally from left to right or vertically
from top to bottom in the order in which they were added. When one row or one column
is filled, a new row or column is started. You can specify the way the nodes are placed
horizontally or vertically using one of two constants: Orientation.HORIZONTAL or
Orientation.VERTICAL. You can also specify the gap between the nodes in pixels. The
class diagram for FlowPane is shown in Figure 14.15.

Data fields alignment, orientation, hgap, and vgap are binding properties. Each
binding property in JavaFX has a getter method (e.g., getHgap()) that returns its value, a
setter method (e.g., sethGap(double)) for setting a value, and a getter method that returns
the property itself (e.g., hGapProperty()). For a data field of ObjectProperty<T> type,
the value getter method returns a value of type T and the property getter method returns a
property value of type ObjectProperty<T>.

ObservableList

getChildren()

14.10 Layout Panes 553

Listing 14.10 gives a program that demonstrates FlowPane. The program adds labels and
text fields to a FlowPane, as shown in Figure 14.16.

LISTING 14.10 ShowFlowPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.FlowPane;
 7 import javafx.stage.Stage;
 8
 9 public class ShowFlowPane extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a pane and set its properties
13 FlowPane pane = new FlowPane();
14 pane.setPadding(new Insets(11, 12, 13, 14));
15 pane.setHgap(5);
16 pane.setVgap(5);
17
18 // Place nodes in the pane
19 pane.getChildren().addAll(new Label("First Name:"),
20 new TextField(), new Label("MI:"));
21 TextField tfMi = new TextField();
22 tfMi.setPrefColumnCount(1);
23 pane.getChildren().addAll(tfMi, new Label("Last Name:"),
24 new TextField());
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(pane, 200, 250);
28 primaryStage.setTitle("ShowFlowPane"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

extend Application

create FlowPane

add UI controls to pane

add pane to scene

place scene to stage
display stage

FIGURE 14.15 FlowPane lays out nodes row by row horizontally or column by column vertically.

-alignment: ObjectProperty<Pos>

-orientation:
 ObjectProperty<Orientation>

-hgap: DoubleProperty

-vgap: DoubleProperty

javafx.scene.layout.FlowPane

The overall alignment of the content in this pane (default: Pos.LEFT).

The orientation in this pane (default: Orientation.HORIZONTAL).

The horizontal gap between the nodes (default: 0).

The vertical gap between the nodes (default: 0).

+FlowPane()

+FlowPane(hgap: double, vgap:
 double)

+FlowPane(orientation:
 ObjectProperty<Orientation>)

+FlowPane(orientation:
 ObjectProperty<Orientation>,
 hgap: double, vgap: double

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates a default FlowPane.

Creates a FlowPane with a specified horizontal and vertical gap.

Creates a FlowPane with a specified orientation.

Creates a FlowPane with a specified orientation, horizontal gap and
 vertical gap.

554 Chapter 14 JavaFX Basics

The program creates a FlowPane (line 13) and sets its padding property with an Insets
object (line 14). An Insets object specifies the size of the border of a pane. The constructor
Insets(11, 12, 13, 14) creates an Insets with the border sizes for top (11), right (12),
bottom (13), and left (14) in pixels, as shown in Figure 14.17. You can also use the constructor
Insets(value) to create an Insets with the same value for all four sides. The hGap and
vGap properties are in lines 15–16 to specify the horizontal gap and vertical gap between two
nodes in the pane, as shown in Figure 14.17.

FIGURE 14.16 The nodes fill in the rows in the FlowPane one after another.

(a) (b)

FIGURE 14.17 You can specify hGap and vGap between the nodes in a FlowLPane.

Pane

Right side

Bottom side

Top side

Left side

vGap

hGap

Each FlowPane contains an object of ObservableList for holding the nodes. This list
can be obtained using the getChildren() method (line 19). To add a node into a FlowPane
is to add it to this list using the add(node) or addAll(node1, node2, ...) method.
You can also remove a node from the list using the remove(node) method or use the
removeAll() method to remove all nodes from the pane. The program adds the labels and
text fields into the pane (lines 19–24). Invoking tfMi.setPrefColumnCount(1) sets the
preferred column count to 1 for the MI text field (line 22). The program declares an explicit
reference tfMi for a TextField object for MI. The explicit reference is necessary, because
we need to reference the object directly to set its prefColumnCount property.

 The program adds the pane to the scene (line 27), sets the scene in the stage (line 29),
and displays the stage (line 30). Note that if you resize the window, the nodes are auto-
matically rearranged to fit in the pane. In Figure 14.16a, the first row has three nodes, but in
Figure 14.16b, the first row has four nodes, because the width has been increased.

Suppose you wish to add the object tfMi to a pane ten times; will ten text fields appear in
the pane? No, a node such as a text field can be added to only one pane and once. Adding a
node to a pane multiple times or to different panes will cause a runtime error.

Note
A node can be placed only in one pane. Therefore, the relationship between a

pane and a node is the composition denoted by a filled diamond, as shown in

Figure 14.3b.

14.10 Layout Panes 555

14.10.2 GridPane
A GridPane arranges nodes in a grid (matrix) formation. The nodes are placed in the speci-
fied column and row indices. The class diagram for GridPane is shown in Figure 14.18.

FIGURE 14.18 GridPane lays out nodes in the specified cell in a grid.

-alignment: ObjectProperty<Pos>

-gridLinesVisible:
 BooleanProperty

-hgap: DoubleProperty

-vgap: DoubleProperty

javafx.scene.layout.GridPane

The overall alignment of the content in this pane (default: Pos.LEFT).

Is the grid line visible? (default: false)

The horizontal gap between the nodes (default: 0).

The vertical gap between the nodes (default: 0).

Creates a GridPane.

Adds a node to the specified column and row.

Adds multiple nodes to the specified column.

Adds multiple nodes to the specified row.

Returns the column index for the specified node.

Sets a node to a new column. This method repositions the node.

Returns the row index for the specified node.

Sets a node to a new row. This method repositions the node.

Sets the horizontal alignment for the child in the cell.

Sets the vertical alignment for the child in the cell.

+GridPane()

+add(child: Node, columnIndex:
 int, rowIndex: int): void

+addColumn(columnIndex: int,
 children: Node...): void

+addRow(rowIndex: int,
 children: Node...): void

+getColumnIndex(child: Node):
 int

+setColumnIndex(child: Node,
 columnIndex: int): void

+getRowIndex(child:Node): int

+setRowIndex(child: Node,
 rowIndex: int): void

+setHalighnment(child: Node,
 value: HPos): void

+setValighnment(child: Node,
 value: VPos): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

Listing 14.11 gives a program that demonstrates GridPane. The program is similar to the
one in Listing 14.10, except that it adds three labels and three text fields, and a button to the
specified location in a grid, as shown in Figure 14.19.

FIGURE 14.19 The GridPane places the nodes in a grid with a specified column and row
indices.

LISTING 14.11 ShowGridPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.HPos;
 3 import javafx.geometry.Insets;

556 Chapter 14 JavaFX Basics

 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.TextField;
 9 import javafx.scene.layout.GridPane;
10 import javafx.stage.Stage;
11
12 public class ShowGridPane extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane and set its properties
16 GridPane pane = new GridPane();
17 pane.setAlignment(Pos.CENTER);
18 pane.setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
19 pane.setHgap(5.5);
20 pane.setVgap(5.5);
21
22 // Place nodes in the pane
23 pane.add(new Label("First Name:"), 0, 0);
24 pane.add(new TextField(), 1, 0);
25 pane.add(new Label("MI:"), 0, 1);
26 pane.add(new TextField(), 1, 1);
27 pane.add(new Label("Last Name:"), 0, 2);
28 pane.add(new TextField(), 1, 2);
29 Button btAdd = new Button("Add Name");
30 pane.add(btAdd, 1, 3);
31 GridPane.setHalignment(btAdd, HPos.RIGHT);
32
33 // Create a scene and place it in the stage
34 Scene scene = new Scene(pane);
35 primaryStage.setTitle("ShowGridPane"); // Set the stage title
36 primaryStage.setScene(scene); // Place the scene in the stage
37 primaryStage.show(); // Display the stage
38 }
39 }

The program creates a GridPane (line 16) and sets its properties (line 17–20). The align-
ment is set to the center position (line 17), which causes the nodes to be placed in the center
of the grid pane. If you resize the window, you will see the nodes remains in the center of the
grid pane.

The program adds the label in column 0 and row 0 (line 23). The column and row index
starts from 0. The add method places a node in the specified column and row. Not every cell
in the grid needs to be filled. A button is placed in column 1 and row 3 (line 30), but there
are no nodes placed in column 0 and row 3. To remove a node from a GridPane, use pane.
getChildren().remove(node). To remove all nodes, use pane.getChildren().
removeAll().

The program invokes the static setHalignment method to align the button right in the
cell (line 31).

Note that the scene size is not set (line 34). In this case, the scene size is automatically
computed according to the sizes of the nodes placed inside the scene.

14.10.3 BorderPane
A BorderPane can place nodes in five regions: top, bottom, left, right, and center, using
the setTop(node), setBottom(node), setLeft(node), setRight(node), and
setCenter(node) methods. The class diagram for GridPane is shown in Figure 14.20.

create a grid pane
set properties

add label
add text field

add button
align button right

create a scene

display stage

remove nodes

14.10 Layout Panes 557

FIGURE 14.20 BorderPane places the nodes in top, bottom, left, right, and center regions.

-top: ObjectProperty<Node>

-right: ObjectProperty<Node>

-bottom: ObjectProperty<Node>

-left: ObjectProperty<Node>

-center: ObjectProperty<Node>

javafx.scene.layout.BorderPane

The node placed in the top region (default: null).

The node placed in the right region (default: null).

The node placed in the bottom region (default: null).

The node placed in the left region (default: null).

The node placed in the center region (default: null).

Creates a BorderPane.

Sets the alignment of the node in the BorderPane.

+BorderPane()

+setAlignment(child: Node, pos:
 Pos)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

Listing 14.12 gives a program that demonstrates BorderPane. The program places five
buttons in the five regions of the pane, as shown in Figure 14.21.

LISTING 14.12 ShowBorderPane.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.StackPane;
 7 import javafx.stage.Stage;
 8
 9 public class ShowBorderPane extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a border pane
13 BorderPane pane = new BorderPane();
14
15 // Place nodes in the pane
16 pane.setTop(new CustomPane("Top"));
17 pane.setRight(new CustomPane("Right"));
18 pane.setBottom(new CustomPane("Bottom"));
19 pane.setLeft(new CustomPane("Left"));
20 pane.setCenter(new CustomPane("Center"));
21
22 // Create a scene and place it in the stage
23 Scene scene = new Scene(pane);
24 primaryStage.setTitle("ShowBorderPane"); // Set the stage title
25 primaryStage.setScene(scene); // Place the scene in the stage
26 primaryStage.show(); // Display the stage
27 }
28 }
29
30 // Define a custom pane to hold a label in the center of the pane
31 class CustomPane extends StackPane {
32 public CustomPane(String title) {
33 getChildren().add(new Label(title));
34 setStyle("-fx-border-color: red");
35 setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
36 }
37 }

create a border pane

add to top
add to right
add to bottom
add to left
add to center

define a custom pane

add a label to pane
set style
set padding

558 Chapter 14 JavaFX Basics

The program defines CustomPane that extends StackPane (line 31). The constructor of
CustomPane adds a label with the specified title (line 33), sets a style for the border color,
and sets a padding using insets (line 35).

The program creates a BorderPane (line 13) and places five instances of CustomPane
into five regions of the border pane (lines 16–20). Note that a pane is a node. So a pane can be
added into another pane. To remove a node from the top region, invoke setTop(null). If a
region is not occupied, no space will be allocated for this region.

14.10.4 HBox and VBox
An HBox lays out its children in a single horizontal row. A VBox lays out its children in a
single vertical column. Recall that a FlowPane can lay out its children in multiple rows or
multiple columns, but an HBox or a VBox can lay out children only in one row or one column.
The class diagrams for HBox and VBox are shown in Figures 14.22 and 14.23.

FIGURE 14.22 HBox places the nodes in one row.

-alignment: ObjectProperty<Pos>

-fillHeight: BooleanProperty

-spacing: DoubleProperty

javafx.scene.layout.HBox

The overall alignment of the children in the box (default: Pos.TOP_LEFT).

Is resizable children fill the full height of the box (default: true).

The horizontal gap between two nodes (default: 0).

Creates a default HBox.

Creates an HBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

+HBox()

+HBox(spacing: double)

+setMargin(node: Node, value:
 Insets): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.23 VBox places the nodes in one column.

-alignment: ObjectProperty<Pos>

-fillWidth: BooleanProperty

-spacing: DoubleProperty

javafx.scene.layout.VBox

The overall alignment of the children in the box (default: Pos.TOP_LEFT).

Is resizable children fill the full width of the box (default: true).

The vertical gap between two nodes (default: 0).

Creates a default VBox.

Creates a VBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

+VBox()

+VBox(spacing: double)

+setMargin(node: Node, value:
 Insets): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.21 The BorderPane places the nodes in five regions of the pane.

14.10 Layout Panes 559

Listing 14.12 gives a program that demonstrates HBox and VBox. The program places two
buttons in an HBox and five labels in a VBox, as shown in Figure 14.24.

LISTING 14.13 ShowHBoxVBox.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.VBox;
 9 import javafx.stage.Stage;
10 import javafx.scene.image.Image;
11 import javafx.scene.image.ImageView;
12
13 public class ShowHBoxVBox extends Application {
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 // Create a border pane
17 BorderPane pane = new BorderPane();
18
19 // Place nodes in the pane
20 pane.setTop(getHBox());
21 pane.setLeft(getVBox());
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane);
25 primaryStage.setTitle("ShowHBoxVBox"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29
30 private HBox getHBox() {
31 HBox hBox = new HBox(15);
32 hBox.setPadding(new Insets(15, 15, 15, 15));
33 hBox.setStyle("-fx-background-color: gold");
34 hBox.getChildren().add(new Button("Computer Science"));
35 hBox.getChildren().add(new Button("Chemistry"));
36 ImageView imageView = new ImageView(new Image("image/us.gif"));
37 hBox.getChildren().add(imageView);
38 return hBox;
39 }
40
41 private VBox getVBox() {
42 VBox vBox = new VBox(15);
43 vBox.setPadding(new Insets(15, 5, 5, 5));
44 vBox.getChildren().add(new Label("Courses"));
45
46 Label[] courses = {new Label("CSCI 1301"), new Label("CSCI 1302"),
47 new Label("CSCI 2410"), new Label("CSCI 3720")};
48
49 for (Label course: courses) {
50 VBox.setMargin(course, new Insets(0, 0, 0, 15));
51 vBox.getChildren().add(course);
52 }
53
54 return vBox;
55 }
56 }

create a border pane

add an HBox to top
add a VBox to left

create a scene

display stage

getHBox

add buttons to HBox

return an HBox

getVBox

add a label

set margin
add a label

return vBox

560 Chapter 14 JavaFX Basics

The program defines the getHBox() method. This method returns an HBox that contains
two buttons and an image view (lines 30–39). The background color of the HBox is set to gold
using Java CSS (line 33). The program defines the getVBox() method. This method returns
a VBox that contains five labels (lines 41–55). The first label is added to the VBox in line 44
and the other four are added in line 51. The setMargin method is used to set a node’s margin
when placed inside the VBox (line 50).

14.22 How do you add a node to a Pane,StackPane,FlowPane,GridPane,BorderPane,
HBox, and VBox? How do you remove a node from these panes?

14.23 How do you set the alignment to right for nodes in a FlowPane, GridPane, HBox,
and VBox?

14.24 How do you set the horizontal gap and vertical hap between nodes in 8 pixels in a
FlowPane and GridPane and set spacing in 8 pixels in an HBox and VBox?

14.25 How do you get the column and row index of a node in a GridPane? How do you
reposition a node in a GridPane?

14.26 What are the differences between a FlowPane and an HBox or a VBox?

14.11 Shapes
JavaFX provides many shape classes for drawing texts, lines, circles, rectangles,
ellipses, arcs, polygons, and polylines.

The Shape class is the abstract base class that defines the common properties for all shapes.
Among them are the fill, stroke, and strokeWidth properties. The fill property speci-
fies a color that fills the interior of a shape. The stroke property specifies a color that is used
to draw the outline of a shape. The strokeWidth property specifies the width of the outline
of a shape. This section introduces the classes Text, Line, Rectangle, Circle, Ellipse,
Arc, Polygon, and Polyline for drawing texts and simple shapes. All these are subclasses
of Shape, as shown in Figure 14.25.

14.11.1 Text
The Text class defines a node that displays a string at a starting point (x, y), as shown in
Figure 14.27a. A Text object is usually placed in a pane. The pane’s upper-left corner point
is (0, 0) and the bottom-right point is (pane.getWidth(), pane.getHeight()). A string
may be displayed in multiple lines separated by \n. The UML diagram for the Text class is
shown in Figure 14.26. Listing 14.13 gives an example that demonstrates text, as shown in
Figure 14.27b.

✓Point✓Check

Key
Point

VideoNote

Use shapes

FIGURE 14.24 The HBox places the nodes in one row and the VBox places the nodes in one
column.

14.11 Shapes 561

LISTING 14.14 ShowText.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.geometry.Insets;

FIGURE 14.25 A shape is a node. The Shape class is the root of all shape classes.

ShapeNode Text

Rectangle

Line

Circle

Ellipse

Arc

Polygon

Polyline

FIGURE 14.26 Text defines a node for displaying a text.

-text: StringProperty

-x: DoubleProperty

-y: DoubleProperty

-underline: BooleanProperty

-strikethrough: BooleanProperty

-font: ObjectProperty

javafx.scene.text.Text

Defines the text to be displayed.

Defines the x-coordinate of text (default 0).

Defines the y-coordinate of text (default 0).

Defines if each line has an underline below it (default false).

Defines if each line has a line through it (default false).

Defines the font for the text.

Creates an empty Text.

Creates a Text with the specified text.

Creates a Text with the specified x-, y-coordinates and text.

+Text()

+Text(text: String)

+Text(x: double, y: double,
 text: String)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.27 A Text object is created to display a text.

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(x, y)
text is displayed

(a) Text(x, y, text) (b) Three Text objects are displayed

562 Chapter 14 JavaFX Basics

 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8 import javafx.scene.text.Font;
 9 import javafx.scene.text.FontWeight;
10 import javafx.scene.text.FontPosture;
11
12 public class ShowText extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane to hold the texts
16 Pane pane = new Pane();
17 pane.setPadding(new Insets(5, 5, 5, 5));
18 Text text1 = new Text(20, 20, "Programming is fun");
19 text1.setFont(Font.font("Courier", FontWeight.BOLD,
20 FontPosture.ITALIC, 15));
21 pane.getChildren().add(text1);
22
23 Text text2 = new Text(60, 60, "Programming is fun\nDisplay text");
24 pane.getChildren().add(text2);
25
26 Text text3 = new Text(10, 100, "Programming is fun\nDisplay text");
27 text3.setFill(Color.RED);
28 text3.setUnderline(true);
29 text3.setStrikethrough(true);
30 pane.getChildren().add(text3);
31
32 // Create a scene and place it in the stage
33 Scene scene = new Scene(pane);
34 primaryStage.setTitle("ShowText"); // Set the stage title
35 primaryStage.setScene(scene); // Place the scene in the stage
36 primaryStage.show(); // Display the stage
37 }
38 }

The program creates a Text (line 18), sets its font (line 19), and places it to the pane
(line 21). The program creates another Text with multiple lines (line 23) and places it to the
pane (line 24). The program creates the third Text (line 26), sets its color (line 27), sets an
underline and a strike through line (lines 28–29), and places it to the pane (line 30).

14.11.2 Line
A line connects two points with four parameters startX, startY, endX, and endY, as shown
in Figure 14.29a. The Line class defines a line. The UML diagram for the Line class is
shown in Figure 14.28. Listing 14.15 gives an example that demonstrates text, as shown in
Figure 14.29b.

LISTING 14.15 ShowLine.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Line;
 7
 8 public class ShowLine extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a scene and place it in the stage

create a pane

create a text
set text font

add text to pane

create a two-line text
add text to pane

create a text
set text color
set underline
set strike line
add text to pane

14.11 Shapes 563

12 Scene scene = new Scene(new LinePane(), 200, 200);
13 primaryStage.setTitle("ShowLine"); // Set the stage title
14 primaryStage.setScene(scene); // Place the scene in the stage
15 primaryStage.show(); // Display the stage
16 }
17 }
18
19 class LinePane extends Pane {
20 public LinePane() {
21 Line line1 = new Line(10, 10, 10, 10);
22 line1.endXProperty().bind(widthProperty().subtract(10));
23 line1.endYProperty().bind(heightProperty().subtract(10));
24 line1.setStrokeWidth(5);
25 line1.setStroke(Color.GREEN);
26 getChildren().add(line1);
27
28 Line line2 = new Line(10, 10, 10, 10);
29 line2.startXProperty().bind(widthProperty().subtract(10));
30 line2.endYProperty().bind(heightProperty().subtract(10));
31 line2.setStrokeWidth(5);
32 line2.setStroke(Color.GREEN);
33 getChildren().add(line2);
34 }
35 }

create a pane in scene

define a custom pane

create a line

set stroke width
set stroke
add line to pane

create a line

add line to pane

FIGURE 14.28 The Line class defines a line.

-startX: DoubleProperty

-startY: DoubleProperty

-endX: DoubleProperty

-endY: DoubleProperty

javafx.scene.shape.Line

The x-coordinate of the start point.

The y-coordinate of the start point.

The x-coordinate of the end point.

The y-coordinate of the end point.

Creates an empty Line.

Creates a Line with the specified starting and ending points.

+Line()

+Line(startX: double, startY:
 double, endX: double, endY:
 double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.29 A Line object is created to display a line.

(0, 0) (getWidth(), 0)

(getWidth(), getHeight())(0, getHeight())

(startX, startY)

(endX, endY)

(a) Line(startX, startY, endX, endY) (b) Two lines are displayed
 across the pane.

The program defines a custom pane class named LinePane (line 19). The custom pane
class creates two lines and binds the starting and ending points of the line with the width and
height of the pane (lines 22–23, 29–30) so that the two points of the lines are changed as the
pane is resized.

564 Chapter 14 JavaFX Basics

14.11.3 Rectangle
A rectangle is defined by the parameters x, y, width, height, arcWidth, and arcHeight,
as shown in Figure 14.31a. The rectangle’s upper-left corner point is at (x, y) and parameter
aw (arcWidth) is the horizontal diameter of the arcs at the corner, and ah (arcHeight) is
the vertical diameter of the arcs at the corner.

The Rectangle class defines a rectangle. The UML diagram for the Rectangle class is
shown in Figure 14.30. Listing 14.15 gives an example that demonstrates rectangles, as shown
in Figure 14.31b.

FIGURE 14.30 The Rectangle class defines a rectangle.

-x: DoubleProperty

-y:DoubleProperty

-width: DoubleProperty

-height: DoubleProperty

-arcWidth: DoubleProperty

-arcHeight: DoubleProperty

javafx.scene.shape.Rectangle

The x-coordinate of the upper-left corner of the rectangle (default 0).

The y-coordinate of the upper-left corner of the rectangle (default 0).

The width of the rectangle (default: 0).

The height of the rectangle (default: 0).

The arcWidth of the rectangle (default: 0). arcWidth is the horizontal
 diameter of the arcs at the corner (see Figure 14.31a).

The arcHeight of the rectangle (default: 0). arcHeight is the vertical
 diameter of the arcs at the corner (see Figure 14.31a).

Creates an empty Rectangle.

Creates a Rectangle with the specified upper-left corner point, width, and
 height.

+Rectangle()

+Rectanlge(x: double, y:
 double, width: double,
 height: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.31 A Rectangle object is created to display a rectangle.

width

h
e
i
g
h
t

(a) Rectangle(x, y, w, h) (b) Multiple rectangles are displayed (c) Transparent rectangles are displayed

(x, y)
aw/2

ah/2

LISTING 14.16 ShowRectangle.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.text.Text;
 7 import javafx.scene.shape.Rectangle;
 8
 9 public class ShowRectangle extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a pane

14.11 Shapes 565

13 Pane pane = new Pane();
14
15 // Create rectangles and add to pane
16 Rectangle r1 = new Rectangle(25, 10, 60, 30);
17 r1.setStroke(Color.BLACK);
18 r1.setFill(Color.WHITE);
19 pane.getChildren().add(new Text(10, 27, "r1"));
20 pane.getChildren().add(r1);
21
22 Rectangle r2 = new Rectangle(25, 50, 60, 30);
23 pane.getChildren().add(new Text(10, 67, "r2"));
24 pane.getChildren().add(r2);
25
26 Rectangle r3 = new Rectangle(25, 90, 60, 30);
27 r3.setArcWidth(15);
28 r3.setArcHeight(25);
29 pane.getChildren().add(new Text(10, 107, "r3"));
30 pane.getChildren().add(r3);
31
32 for (int i = 0; i < 4; i++) {
33 Rectangle r = new Rectangle(100, 50, 100, 30);
34 r.setRotate(i * 360 / 8);
35 r.setStroke(Color.color(Math.random(), Math.random(),
36 Math.random()));
37 r.setFill(Color.WHITE);
38 pane.getChildren().add(r);
39 }
40
41 // Create a scene and place it in the stage
42 Scene scene = new Scene(pane, 250, 150);
43 primaryStage.setTitle("ShowRectangle"); // Set the stage title
44 primaryStage.setScene(scene); // Place the scene in the stage
45 primaryStage.show(); // Display the stage
46 }
47 }

The program creates multiple rectangles. By default, the fill color is black. So a rectangle
is filled with black color. The stroke color is white by default. Line 17 sets stroke color of
rectangle r1 to black. The program creates rectangle r3 (line 26) and sets its arc width and arc
height (lines 27–28). So r3 is displayed as a rounded rectangle.

The program repeatedly creates a rectangle (line 33), rotates it (line 34), sets a random
stroke color (lines 35–36), its fill color to white (line 37), and adds the rectangle to the pane
(line 38).

If line 37 is replaced by the following line

r.setFill(null);

the rectangle is not filled with a color. So they are displayed as shown in Figure 14.31c.

14.11.4 Circle and Ellipse
You have used circles in several examples early in this chapter. A circle is defined by its
parameters centerX, centerY, and radius. The Circle class defines a circle. The UML
diagram for the Circle class is shown in Figure 14.32.

An ellipse is defined by its parameters centerX, centerY, radiusX, and radiusY, as
shown in Figure 14.34a. The Ellipse class defines an ellipse. The UML diagram for the
Ellipse class is shown in Figure 14.33. Listing 14.17 gives an example that demonstrates
ellipses, as shown in Figure 14.34b.

create a pane

create a rectangle r1
set r1’s properties

add r1 to pane

create rectangle r2

add r2 to pane

create rectangle r3
set r3’s arc width
set r3’s arc height

create a rectangle
rotate a rectangle

add rectangle to pane

566 Chapter 14 JavaFX Basics

LISTING 14.17 ShowEllipse.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Ellipse;
 7
 8 public class ShowEllipse extends Application {
 9 @Override // Override the start method in the Application class

FIGURE 14.32 The Circle class defines circles.

-centerX: DoubleProperty

-centerY: DoubleProperty

-radius: DoubleProperty

javafx.scene.shape.Circle

The x-coordinate of the center of the circle (default 0).

The y-coordinate of the center of the circle (default 0).

The radius of the circle (default: 0).

Creates an empty Circle.

Creates a Circle with the specified center.

Creates a Circle with the specified center and radius.

+Circle()

+Circle(x: double, y: double)

+Circle(x: double, y: double,
 radius: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.33 The Ellipse class defines ellipses.

-centerX: DoubleProperty

-centerY: DoubleProperty

-radiusX: DoubleProperty

-radiusY: DoubleProperty

javafx.scene.shape.Ellipse

The x-coordinate of the center of the ellipse (default 0).

The y-coordinate of the center of the ellipse (default 0).

The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

Creates an empty Ellipse.

Creates an Ellipse with the specified center.

Creates an Ellipse with the specified center and radiuses.

+Ellipse()

+Ellipse(x: double, y: double)

+Ellipse(x: double, y: double,
 radiusX: double, radiusY:
 double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.34 An Ellipse object is created to display an ellipse.

(centerX, centerY)radiusYradiusX

(a) Ellipse(centerX, centerY,

 radiusX, radiusY)

(b) Multiple ellipses are displayed.

14.11 Shapes 567

10 public void start(Stage primaryStage) {
11 // Create a pane
12 Pane pane = new Pane();
13
14 for (int i = 0; i < 16; i++) {
15 // Create an ellipse and add it to pane
16 Ellipse e1 = new Ellipse(150, 100, 100, 50);
17 e1.setStroke(Color.color(Math.random(), Math.random(),
18 Math.random()));
19 e1.setFill(Color.WHITE);
20 e1.setRotate(i * 180 / 16);
21 pane.getChildren().add(e1);
22 }
23
24 // Create a scene and place it in the stage
25 Scene scene = new Scene(pane, 300, 200);
26 primaryStage.setTitle("ShowEllipse"); // Set the stage title
27 primaryStage.setScene(scene); // Place the scene in the stage
28 primaryStage.show(); // Display the stage
29 }
30 }

The program repeatedly creates an ellipse (line 16), sets a random stroke color (lines
17–18), sets its fill color to white (line 19), rotates it (line 20), and adds the rectangle to the
pane (line 21).

14.11.5 Arc
An arc is conceived as part of an ellipse, defined by the parameters centerX, centerY,
radiusX, radiusY, startAngle, length, and an arc type (ArcType.OPEN, ArcType
.CHORD, or ArcType.ROUND). The parameter startAngle is the starting angle; and length
is the spanning angle (i.e., the angle covered by the arc). Angles are measured in degrees and
follow the usual mathematical conventions (i.e., 0 degrees is in the easterly direction, and
positive angles indicate counterclockwise rotation from the easterly direction), as shown in
Figure 14.36a.

The Arc class defines an arc. The UML diagram for the Arc class is shown in Figure 14.35.
Listing 14.18 gives an example that demonstrates ellipses, as shown in Figure 14.36b.

create a pane

create an ellipse
set random color for stroke

set fill color
rotate ellipse
add ellipse to pane

FIGURE 14.35 The Arc class defines an arc.

-centerX: DoubleProperty

-centerY: DoubleProperty

-radiusX: DoubleProperty

-radiusY: DoubleProperty

-startAngle: DoubleProperty

-length: DoubleProperty

-type: ObjectProperty<ArcType>

javafx.scene.shape.Arc

The x-coordinate of the center of the ellipse (default 0).

The y-coordinate of the center of the ellipse (default 0).

The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

The start angle of the arc in degrees.

The angular extent of the arc in degrees.

The closure type of the arc (ArcType.OPEN, ArcType.CHORD,
 ArcType.ROUND).

Creates an empty Arc.

Creates an Arc with the specified arguments.

+Arc()

+Arc(x: double, y: double,
 radiusX: double, radiusY:
 double, startAngle: double,
 length: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

568 Chapter 14 JavaFX Basics

LISTING 14.18 ShowArc.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Arc;
 7 import javafx.scene.shape.ArcType;
 8 import javafx.scene.text.Text;
 9
10 public class ShowArc extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane
14 Pane pane = new Pane();
15
16 Arc arc1 = new Arc(150, 100, 80, 80, 30, 35); // Create an arc
17 arc1.setFill(Color.RED); // Set fill color
18 arc1.setType(ArcType.ROUND); // Set arc type
19 pane.getChildren().add(new Text(210, 40, "arc1: round"));
20 pane.getChildren().add(arc1); // Add arc to pane
21
22 Arc arc2 = new Arc(150, 100, 80, 80, 30 + 90, 35);
23 arc2.setFill(Color.WHITE);
24 arc2.setType(ArcType.OPEN);
25 arc2.setStroke(Color.BLACK);
26 pane.getChildren().add(new Text(20, 40, "arc2: open"));
27 pane.getChildren().add(arc2);
28
29 Arc arc3 = new Arc(150, 100, 80, 80, 30 + 180, 35);
30 arc3.setFill(Color.WHITE);
31 arc3.setType(ArcType.CHORD);
32 arc3.setStroke(Color.BLACK);
33 pane.getChildren().add(new Text(20, 170, "arc3: chord"));
34 pane.getChildren().add(arc3);
35
36 Arc arc4 = new Arc(150, 100, 80, 80, 30 + 270, 35);
37 arc4.setFill(Color.GREEN);
38 arc4.setType(ArcType.CHORD);

create a pane

create arc1
set fill color for arc1
set arc1 as round arc

add arc1 to pane

create arc2
set fill color for arc2
set arc2 as round arc

add arc2 to pane

create arc3
set fill color for arc3
set arc3 as chord arc

add arc3 to pane

create arc4

FIGURE 14.36 An Arc object is created to display an arc.

length

startAngle

0 degree

(centerX, centerY)

radiusYradiusX

(a) Arc(centerX, centerY, radiusX,

radiusY, startAngle, length)

(b) Multiple ellipses are displayed

14.11 Shapes 569

39 arc4.setStroke(Color.BLACK);
40 pane.getChildren().add(new Text(210, 170, "arc4: chord"));
41 pane.getChildren().add(arc4);
42
43 // Create a scene and place it in the stage
44 Scene scene = new Scene(pane, 300, 200);
45 primaryStage.setTitle("ShowArc"); // Set the stage title
46 primaryStage.setScene(scene); // Place the scene in the stage
47 primaryStage.show(); // Display the stage
48 }
49 }

The program creates an arc arc1 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30 with length 35 (line 15). arc1’s arc type is set to ArcType.ROUND
(line 18). Since arc1’s fill color is red, arc1 is displayed filled with red round.

The program creates an arc arc3 centered at (150, 100) with radiusX 80 and radiusY 80.
The starting angle is 30+180 with length 35 (line 29). Arc3’s arc type is set to ArcType.
CHORD (line 31). Since arc3’s fill color is white and stroke color is black, arc3 is displayed
with black outline as a chord.

Angles may be negative. A negative starting angle sweeps clockwise from the easterly
direction, as shown in Figure 14.37. A negative spanning angle sweeps clockwise from the
starting angle. The following two statements define the same arc:

new Arc(x, y, radiusX, radiusY, -30, -20);
new Arc(x, y, radiusX, radiusY, -50, 20);

The first statement uses negative starting angle -30 and negative spanning angle -20, as
shown in Figure 14.37a. The second statement uses negative starting angle -50 and positive
spanning angle 20, as shown in Figure 14.37b.

add arc4 to pane

negative degrees

FIGURE 14.37 Angles may be negative.

(a) Negative starting angle –30� and
negative spanning angle –20�

–30�

–20�

(b) Negative starting angle –50�
 and positive spanning angle 20�

–50�

20�

Note that the trigonometric methods in the Math class use the angles in radians, but the
angles in the Arc class are in degrees.

14.11.6 Polygon and Polyline
The Polygon class defines a polygon that connects a sequence of points, as shown in
Figure 14.38a. The Polyline class is similar to the Polygon class except that the Polyline
class is not automatically closed, as shown in Figure 14.38b.

570 Chapter 14 JavaFX Basics

The UML diagram for the Polygon class is shown in Figure 14.39. Listing 14.19 gives an
example that creates a hexagon, as shown in Figure 14.40.

FIGURE 14.39 Polygon defines a polygon.

+Polygon()

+Polygon(double... points)

+getPoints():
 ObservableList<Double>

javafx.scene.shape.Arc

Creates an empty Polygon.

Creates a Polygon with the given points.

Returns a list of double values as x-and y-coordinates of the points.

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.40 (a) A Polygon is displayed. (b) A Polyline is displayed.

(a) (b)

radius

(x, y)
x is centerX � radius � cos(2	/6)
y is centerY � radius � sin(2	/6)

(centerX, centerY)

2	

6

FIGURE 14.38 Polygon is closed and Polyline is not closed.

(40, 20)

(70, 40)

(45, 45)

(20, 60)

(60, 80)

(a) Polygon (b) Polyline

(40, 20)

(70, 40)

(45, 45)

(20, 60)

(60, 80)

LISTING 14.19 ShowPolygon.java
 1 import javafx.application.Application;
 2 import javafx.collections.ObservableList;
 3 import javafx.scene.Scene;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.shape.Polygon;

14.11 Shapes 571

 8
 9 public class ShowPolygon extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a pane, a polygon, and place polygon to pane
13 Pane pane = new Pane();
14 Polygon polygon = new Polygon();
15 pane.getChildren().add(polygon);
16 polygon.setFill(Color.WHITE);
17 polygon.setStroke(Color.BLACK);
18 ObservableList<Double> list = polygon.getPoints();
19
20 final double WIDTH = 200, HEIGHT = 200;
21 double centerX = WIDTH / 2, centerY = HEIGHT / 2;
22 double radius = Math.min(WIDTH, HEIGHT) * 0.4;
23
24 // Add points to the polygon list
25 for (int i = 0; i < 6; i++) {
26 list.add(centerX + radius * Math.cos(2 * i * Math.PI / 6));
27 list.add(centerY - radius * Math.sin(2 * i * Math.PI / 6));
28 }
29
30 // Create a scene and place it in the stage
31 Scene scene = new Scene(pane, WIDTH, HEIGHT);
32 primaryStage.setTitle("ShowPolygon"); // Set the stage title
33 primaryStage.setScene(scene); // Place the scene in the stage
34 primaryStage.show(); // Display the stage
35 }
36 }

The program creates a polygon (line 14) and adds it to a pane (line 15). The polygon
.getPoints() method returns an ObservableList<Double> (line 18), which contains
the add method for adding an element to the list (lines 26–27). Note that the value
passed to add(value) must be a double value. If an int value is passed, the int value
would be automatically boxed into an Integer. This would cause an error because the
ObservableList<Double> consists of Double elements.

The loop adds six points to the polygon (lines 25–28). Each point is represented by its
x- and y-coordinates. For each point, its x-coordinate is added to the polygon’s list (line 26)
and then its y-coordinate is added to the list (line 27). The formula for computing the x- and
y-coordinates for a point in the hexagon is illustrated in Figure 14.40a.

If you replace Polygon by Polyline, the program displays a polyline as shown in
Figure 14.40b. The Polyline class is used in the same way as Polygon except that the start-
ing and ending point are not connected in Polyline.

14.27 How do you display a text, line, rectangle, circle, ellipse, arc, polygon, and polyline?

14.28 Write code fragments to display a string rotated 45 degrees in the center of the pane.

14.29 Write code fragments to display a thick line of 10 pixels from (10, 10) to (70, 30).

14.30 Write code fragments to fill red color in a rectangle of width 100 and height 50 with
the upper-left corner at (10, 10).

14.31 Write code fragments to display a round-cornered rectangle with width 100, height
200 with the upper-left corner at (10, 10), corner horizontal diameter 40, and corner
vertical diameter 20.

14.32 Write code fragments to display an ellipse with horizontal radius 50 and vertical
radius 100.

14.33 Write code fragments to display the outline of the upper half of a circle with radius 50.

create a pane
create a polygon
add polygon to pane

get a list of points

add x-coordinate of a point
add y-coordinate of a point

add pane to scene

✓Point✓Check

572 Chapter 14 JavaFX Basics

14.34 Write code fragments to display the lower half of a circle with radius 50 filled with
the red color.

14.35 Write code fragments to display a polygon connecting the following points: (20, 40),
(30, 50), (40, 90), (90, 10), (10, 30), and fill the polygon with green color.

14.36 Write code fragments to display a polyline connecting the following points: (20, 40),
(30, 50), (40, 90), (90, 10), (10, 30).

14.12 Case Study: The ClockPane Class
This case study develops a class that displays a clock on a pane.

The contract of the ClockPane class is shown in Figure 14.41.
Key
Point

FIGURE 14.41 ClockPane displays an analog clock.

javafx.scene.layout.Pane

ClockPane

-hour: int

-minute: int

-second: int

-w: double

-h: double

+ClockPane()

+ClockPane(hour: int, minute:
 int, second: int)

+setCurrentTime(): void

The hour in the clock.

The minute in the clock.

The second in the clock.

The width of the pane that contains the clock.

The height of the pane that contains the clock.

Constructs a default clock for the current time.

Constructs a clock with the specified time.

Sets hour, minute, and second to current time.

The getter and setter methods for
these data fields are provided in the class,
but omitted in the UML diagram for brevity.

FIGURE 14.42 (a) The DisplayClock program displays a clock that shows the current
time. (b) The endpoint of a clock hand can be determined, given the spanning angle, the
hand length, and the center point.

(a)

handLength

(centerX, centerY)

(xEnd, yEnd)

12

6

9 3

(0, 0)

(b)

Assume ClockPane is available; we write a test program in Listing 14.20 to display
an analog clock and use a label to display the hour, minute, and second, as shown in
Figure 14.42.

14.12 Case Study: The ClockPane Class 573

LISTING 14.20 DisplayClock.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7
 8 public class DisplayClock extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a clock and a label
12 ClockPane clock = new ClockPane();
13 String timeString = clock.getHour() + ":" + clock.getMinute()
14 + ":" + clock.getSecond();
15 Label lblCurrentTime = new Label(timeString);
16
17 // Place clock and label in border pane
18 BorderPane pane = new BorderPane();
19 pane.setCenter(clock);
20 pane.setBottom(lblCurrentTime);
21 BorderPane.setAlignment(lblCurrentTime, Pos.TOP_CENTER);
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 250, 250);
25 primaryStage.setTitle("DisplayClock"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28 }
29 }

The rest of this section explains how to implement the ClockPane class. Since you can use
the class without knowing how it is implemented, you may skip the implementation if you
wish.

To draw a clock, you need to draw a circle and three hands for the second, minute, and hour.
To draw a hand, you need to specify the two ends of the line. As shown in Figure 14.42b, one
end is the center of the clock at (centerX, centerY); the other end, at (endX, endY), is
determined by the following formula:

endX = centerX + handLength × sin(θ)
endY = centerY - handLength × cos(θ)

Since there are 60 seconds in one minute, the angle for the second hand is

second × (2π/60)

The position of the minute hand is determined by the minute and second. The exact minute
value combined with seconds is minute + second/60. For example, if the time is 3 minutes
and 30 seconds, the total minutes are 3.5. Since there are 60 minutes in one hour, the angle
for the minute hand is

(minute + second/60) × (2π/60)

Since one circle is divided into 12 hours, the angle for the hour hand is

(hour + minute/60 + second/(60 × 60)) × (2π/12)

create a clock

create a label

add a clock
add a label

skip implementation?

implementation

574 Chapter 14 JavaFX Basics

For simplicity in computing the angles of the minute hand and hour hand, you can omit the
seconds, because they are negligibly small. Therefore, the endpoints for the second hand,
minute hand, and hour hand can be computed as:

secondX = centerX + secondHandLength × sin(second × (2π/60))
secondY = centerY - secondHandLength × cos(second × (2π/60))
minuteX = centerX + minuteHandLength × sin(minute × (2π/60))
minuteY = centerY - minuteHandLength × cos(minute × (2π/60))
hourX = centerX + hourHandLength × sin((hour + minute/60) × (2π/12))
hourY = centerY - hourHandLength × cos((hour + minute/60) × (2π/12))

The ClockPane class is implemented in Listing 14.21.

LISTING 14.21 ClockPane.java
 1 import java.util.Calendar;
 2 import java.util.GregorianCalendar;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.shape.Line;
 7 import javafx.scene.text.Text;
 8
 9 public class ClockPane extends Pane {
 10 private int hour;
 11 private int minute;
 12 private int second;
 13
 14 // Clock pane's width and height
 15 private double w = 250, h = 250;
 16
 17 /** Construct a default clock with the current time*/
 18 public ClockPane() {
 19 setCurrentTime();
 20 }
 21
 22 /** Construct a clock with specified hour, minute, and second */
 23 public ClockPane(int hour, int minute, int second) {
 24 this.hour = hour;
 25 this.minute = minute;
 26 this.second = second;
 27 paintClock();
 28 }
 29
 30 /** Return hour */
 31 public int getHour() {
 32 return hour;
 33 }
 34
 35 /** Set a new hour */
 36 public void setHour(int hour) {
 37 this.hour = hour;
 38 paintClock();
 39 }
40

 41 /** Return minute */
 42 public int getMinute() {
 43 return minute;
 44 }
 45

clock properties

no-arg constructor

constructor

set a new hour

paint clock

 46 /** Set a new minute */
 47 public void setMinute(int minute) {
 48 this.minute = minute;
 49 paintClock();
 50 }
 51
 52 /** Return second */
 53 public int getSecond() {
 54 return second;
 55 }
 56
 57 /** Set a new second */
 58 public void setSecond(int second) {
 59 this.second = second;
 60 paintClock();
 61 }
 62
 63 /** Return clock pane's width */
 64 public double getW() {
 65 return w;
 66 }
 67
 68 /** Set clock pane's width */
 69 public void setW(double w) {
 70 this.w = w;
 71 paintClock();
 72 }
 73
 74 /** Return clock pane's height */
 75 public double getH() {
 76 return h;
 77 }
 78
 79 /** Set clock pane's height */
 80 public void setH(double h) {
 81 this.h = h;
 82 paintClock();
 83 }
 84
 85 /* Set the current time for the clock */
 86 public void setCurrentTime() {
 87 // Construct a calendar for the current date and time
 88 Calendar calendar = new GregorianCalendar();
 89
 90 // Set current hour, minute and second
 91 this.hour = calendar.get(Calendar.HOUR_OF_DAY);
 92 this.minute = calendar.get(Calendar.MINUTE);
 93 this.second = calendar.get(Calendar.SECOND);
 94
 95 paintClock(); // Repaint the clock
 96 }
 97
 98 /** Paint the clock */
 99 protected void paintClock() {
100 // Initialize clock parameters
101 double clockRadius = Math.min(w, h) * 0.8 * 0.5;
102 double centerX = w / 2;
103 double centerY = h / 2;
104
105 // Draw circle

set a new minute

paint clock

set a new second

paint clock

set a new width

paint clock

set a new height

paint clock

set current time

paint clock

paint clock

get radius
set center

14.12 Case Study: The ClockPane Class 575

576 Chapter 14 JavaFX Basics

106 Circle circle = new Circle(centerX, centerY, clockRadius);
107 circle.setFill(Color.WHITE);
108 circle.setStroke(Color.BLACK);
109 Text t1 = new Text(centerX - 5, centerY - clockRadius + 12, "12");
110 Text t2 = new Text(centerX - clockRadius + 3, centerY + 5, "9");
111 Text t3 = new Text(centerX + clockRadius - 10, centerY + 3, "3");
112 Text t4 = new Text(centerX - 3, centerY + clockRadius - 3, "6");
113
114 // Draw second hand
115 double sLength = clockRadius * 0.8;
116 double secondX = centerX + sLength *
117 Math.sin(second * (2 * Math.PI / 60));
118 double secondY = centerY - sLength *
119 Math.cos(second * (2 * Math.PI / 60));
120 Line sLine = new Line(centerX, centerY, secondX, secondY);
121 sLine.setStroke(Color.RED);
122
123 // Draw minute hand
124 double mLength = clockRadius * 0.65;
125 double xMinute = centerX + mLength *
126 Math.sin(minute * (2 * Math.PI / 60));
127 double minuteY = centerY - mLength *
128 Math.cos(minute * (2 * Math.PI / 60));
129 Line mLine = new Line(centerX, centerY, xMinute, minuteY);
130 mLine.setStroke(Color.BLUE);
131
132 // Draw hour hand
133 double hLength = clockRadius * 0.5;
134 double hourX = centerX + hLength *
135 Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
136 double hourY = centerY - hLength *
137 Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
138 Line hLine = new Line(centerX, centerY, hourX, hourY);
139 hLine.setStroke(Color.GREEN);
140
141 getChildren().clear();
142 getChildren().addAll(circle, t1, t2, t3, t4, sLine, mLine, hLine);
143 }
144 }

The program displays a clock for the current time using the no-arg constructor (lines
18–20) and displays a clock for the specified hour, minute, and second using the other
constructor (lines 23–28). The current hour, minute, and second is obtained by using
the GregorianCalendar class (lines 86–96). The GregorianCalendar class in the
Java API enables you to create a Calendar instance for the current time using its no-
arg constructor. You can then use its methods get(Calendar.HOUR), get(Calendar
.MINUTE), and get(Calendar.SECOND) to return the hour, minute, and second from a
Calendar object.

The class defines the properties hour, minute, and second to store the time represented
in the clock (lines 10–12) and uses the w and h properties to represent the width and height of
the clock pane (line 15). The initial values of w and h are set to 250. The w and h values can be
reset using the setW and setH methods (lines 69, 80). These values are used to draw a clock
in the pane in the paintClock() method.

The paintClock() method paints the clock (lines 99–143). The clock radius is propor-
tional to the width and height of the pane (line 101). A circle for the clock is created at the center
of the pane (line 106). The text for showing the hours 12, 3, 6, 9 are created in lines 109–112.

create a circle

create texts

create second hand

create minute hand

create hour hand

clear pane
add to pane

Chapter Summary 577

The second hand, minute hand, and hour hand are the lines created in lines 114–139. The
paintClock() method places all these shapes in the pane using the addAll method in a list
(line 142). Because the paintClock() method is invoked whenever a new property (hour,
minute, second, w, and h) is set (lines 27, 38, 49, 60, 71, 82, 95), before adding new contents
into the pane, the old contents are cleared from the pane (line 141).

KEY TERMS

AWT 536
bidirectional binding 544
bindable object 542
binding object 542
binding property 542
JavaFX 536
node 539
observable object 542
pane 539

property getter method 543
primary stage 537
shape 539
Swing 536
value getter method 543
value setter method 543
UI control 539
unidirectional binding 544

CHAPTER SUMMARY

1. JavaFX is the new framework for developing rich Internet applications. JavaFX com-
pletely replaces Swing and AWT.

2. A main JavaFX class must extend javafx.application.Application and imple-
ment the start method. The primary stage is automatically created by the JVM and
passed to the start method.

3. A stage is a window for displaying a scene. You can add nodes to a scene. Panes, con-
trols, and shapes are nodes. Panes can be used as the containers for nodes.

4. A binding property can be bound to an observable source object. A change in the source
object will be automatically reflected in the binding property. A binding property has a
value getter method, value setter method, and property getter method.

5. The Node class defines many properties that are common to all nodes. You can apply
these properties to panes, controls, and shapes.

6. You can create a Color object with the specified red, green, blue components, and
opacity value.

7. You can create a Font object and set its name, size, weight, and posture.

8. The javafx.scene.image.Image class can be used to load an image and this image
can be displayed in an ImageView object.

9. JavaFX provides many types of panes for automatically laying out nodes in a desired loca-
tion and size. The Pane is the base class for all panes. It contains the getChildren()
method to return an ObservableList. You can use ObservableList’s add(node)
and addAll(node1, node2, ...) methods for adding nodes into a pane.

578 Chapter 14 JavaFX Basics

10. A FlowPane arranges the nodes in the pane horizontally from left to right or vertically
from top to bottom in the order in which they were added. A GridPane arranges nodes
in a grid (matrix) formation. The nodes are placed in the specified column and row indi-
ces. A BorderPane can place nodes in five regions: top, bottom, left, right, and center.
An HBox lays out its children in a single horizontal row. A VBox lays out its children in
a single vertical column.

11. JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ellip-
ses, arcs, polygons, and polylines.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Note
The image files used in the exercises can be obtained from www.cs.armstrong.edu/

liang/intro10e/book.zip under the image folder.

Sections 14.2–14.9

14.1 (Display images) Write a program that displays four images in a grid pane, as
shown in Figure 14.43a.

download image files

FIGURE 14.43 (a) Exercise 14.1 displays four images. (b) Exercise 14.2 displays a tic-tac-toe board with images.
(c) Three cards are randomly selected.

(a) (b) (c)

*14.2 (Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as shown
in Figure 14.43b. A cell may be X, O, or empty. What to display at each cell is
randomly decided. The X and O are images in the files x.gif and o.gif.

*14.3 (Display three cards) Write a program that displays three cards randomly
selected from a deck of 52, as shown in Figure 14.43c. The card image files
are named 1.png, 2.png, …, 52.png and stored in the image/card directory.
All three cards are distinct and selected randomly. Hint: You can select random
cards by storing the numbers 1–52 to an array list, perform a random shuffle
introduced in Section 11.12, and use the first three numbers in the array list as
the file names for the image.

14.4 (Color and font) Write a program that displays five texts vertically, as shown in
Figure 14.44a. Set a random color and opacity for each text and set the font of
each text to Times Roman, bold, italic, and 22 pixels.

VideoNote

Display a tictactoe board

www.cs.armstrong.edu/liang/intro10e/quiz.html
www.cs.armstrong.edu/liang/intro10e/book.zip
www.cs.armstrong.edu/liang/intro10e/book.zip

Programming Exercises 579

14.5 (Characters around circle) Write a program that displays a string Welcome to
Java around the circle, as shown in Figure 14.44b. Hint: You need to display each
character in the right location with appropriate rotation using a loop.

*14.6 (Game: display a checkerboard) Write a program that displays a checkerboard
in which each white and black cell is a Rectangle with a fill color black or
white, as shown in Figure 14.44c.

Sections 14.10–14.11

*14.7 (Display random 0 or 1) Write a program that displays a 10-by-10 square matrix,
as shown in Figure 14.45a. Each element in the matrix is 0 or 1, randomly gener-
ated. Display each number centered in a text field. Use TextField’s setText
method to set value 0 or 1 as a string.

Display a random matrix

FIGURE 14.44 (a) Five texts are displayed with a random color and a specified font. (b) A string is displayed around the
circle. (c) A checkerboard is displayed using rectangles.

(a) (b) (c)

FIGURE 14.45 (a) The program randomly generates 0s and 1s. (b) Exercise 14.9 draws four
fans. (c) Exercise 14.10 draws a cylinder.

(a) (b) (c)

14.8 (Display 54 cards) Expand Exercise 14.3 to display all 54 cards (including two
jokers), nine per row. The image files are jokers and are named 53.jpg and 54.jpg.

*14.9 (Create four fans) Write a program that places four fans in a GridPane with two
rows and two columns, as shown in Figure 14.45b.

*14.10 (Display a cylinder) Write a program that draws a cylinder, as shown in
Figure 14.45b. You can use the following method to set the dashed stroke for an arc:

 arc.getStrokeDashArray().addAll(6.0, 21.0);

580 Chapter 14 JavaFX Basics

*14.11 (Paint a smiley face) Write a program that paints a smiley face, as shown in
Figure 14.46a.

FIGURE 14.46 (a) Exercise 14.11 paints a smiley face. (b) Exercise 14.12 paints a bar chart. (c) Exercise 14.13 paints a
pie chart.

(a) (b) (c)

FIGURE 14.47 (a) Exercise 14.14 paints a rectanguloid. (b) Exercise 14.15 paints a STOP
sign. (c) Exercise 14.13 paints a grid.

(a) (b) (c)

**14.12 (Display a bar chart) Write a program that uses a bar chart to display the percent-
ages of the overall grade represented by projects, quizzes, midterm exams, and the
final exam, as shown in Figure 14.46b. Suppose that projects take 20 percent and
are displayed in red, quizzes take 10 percent and are displayed in blue, midterm
exams take 30 percent and are displayed in green, and the final exam takes 40
percent and is displayed in orange. Use the Rectangle class to display the bars.
Interested readers may explore the JavaFX BarChart class for further study.

**14.13 (Display a pie chart) Write a program that uses a pie chart to display the percent-
ages of the overall grade represented by projects, quizzes, midterm exams, and
the final exam, as shown in Figure 14.46c. Suppose that projects take 20 percent
and are displayed in red, quizzes take 10 percent and are displayed in blue,
midterm exams take 30 percent and are displayed in green, and the final exam
takes 40 percent and is displayed in orange. Use the Arc class to display the pies.
Interested readers may explore the JavaFX PieChart class for further study.

14.14 (Display a rectanguloid) Write a program that displays a rectanguloid, as shown
in Figure 14.47a. The cube should grow and shrink as the window grows or
shrinks.

VideoNote

Display a bar chart

*14.15 (Display a STOP sign) Write a program that displays a STOP sign, as shown
in Figure 14.47b. The octagon is in red and the sign is in white. (Hint: Place an
octagon and a text in a stack pane.)

Programming Exercises 581

*14.16 (Display a 3 * 3 grid) Write a program that displays a 3 * 3 grid, as shown in
Figure 14.47c. Use red color for vertical lines and blue for horizontals. The lines
are automatically resized when the window is resized.

14.17 (Game: hangman) Write a program that displays a drawing for the popular hang-
man game, as shown in Figure 14.48a.

FIGURE 14.48 (a) Exercise 14.17 draws a sketch for the hangman game. (c) Exercise 14.18 plots the quadratic function.
(c) Exercise 14.19 plots the sine/cosine functions.

(a) (b) (c)

*14.18 (Plot the square function) Write a program that draws a diagram for the function
f(x) = x2 (see Figure 14.48b).

Hint: Add points to a polyline using the following code:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();

double scaleFactor = 0.0125;
for (int x = -100; x <= 100; x++) {

 list.add(x + 200.0);
 list.add(scaleFactor * x * x);
 }

**14.19 (Plot the sine and cosine functions) Write a program that plots the sine function
in red and cosine in blue, as shown in Figure 14.48c.

Hint: The Unicode for p is \u03c0. To display -2p, use Text(x, y, "-2\u03c0").
For a trigonometric function like sin(x), x is in radians. Use the following loop
to add the points to a polyline:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();

double scaleFactor = 50;
for (int x = -170; x <= 170; x++) {

 list.add(x + 200.0);
 list.add(100 – 50 * Math.sin((x / 100.0) * 2 * Math.PI));
 }

**14.20 (Draw an arrow line) Write a static method that draws an arrow line from a start-
ing point to an ending point in a pane using the following method header:

public static void drawArrowLine(double startX, double startY,
double endX, double endY, Pane pane)

 Write a test program that randomly draws an arrow line, as shown in Figure 14.49a.

582 Chapter 14 JavaFX Basics

*14.21 (Two circles and their distance) Write a program that draws two filled circles
with radius 15 pixels, centered at random locations, with a line connecting the
two circles. The distance between the two centers is displayed on the line, as
shown in Figure 14.49b.

*14.22 (Connect two circles) Write a program that draws two circles with radius
15 pixels, centered at random locations, with a line connecting the two circles.
The line should not cross inside the circles, as shown in Figure 14.49c.

*14.23 (Geometry: two rectangles) Write a program that prompts the user to enter the
center coordinates, width, and height of two rectangles from the command line.
The program displays the rectangles and a text indicating whether the two are
overlapping, whether one is contained in the other, or whether they don’t over-
lap, as shown in Figure 14.50. See Programming Exercise 10.13 for checking the
relationship between two rectangles.

FIGURE 14.49 (a) The program displays an arrow line. (b) Exercise14.21 connects the centers of two filled circles.
(c) Exercise14.22 connects two circles from their perimeter.

(a) (b) (c)

FIGURE 14.50 Two rectangles are displayed.

(c)(b)(a)

*14.24 (Geometry: Inside a polygon?) Write a program that prompts the user to enter
the coordinates of five points from the command line. The first four points form a
polygon, and the program displays the polygon and a text that indicates whether
the fifth point is inside the polygon, as shown in Figure 14.51a. Hint: Use the
Node’s contains method to test whether a point is inside a node.

Programming Exercises 583

*14.25 (Random points on a circle) Modify Programming Exercise 4.6 to create five
random points on a circle, form a polygon by connecting the points clockwise,
and display the circle and the polygon, as shown in Figure 14.51b.

Section 14.12

14.26 (Use the ClockPane class) Write a program that displays two clocks. The hour,
minute, and second values are 4, 20, 45 for the first clock and 22, 46, 15 for the
second clock, as shown in Figure 14.51c.

*14.27 (Draw a detailed clock) Modify the ClockPane class in Section 14.12 to draw
the clock with more details on the hours and minutes, as shown in Figure 14.52a.

FIGURE 14.51 (a) The polygon and a point are displayed. (b) Exercise14.25 connects five random points on a circle.
(c) Exercise 14.26 displays two clocks.

(a) (b) (c)

FIGURE 14.52 (a) Exercise 14.27 displays a detailed clock. (b) Exercise 14.28 displays a
clock with random hour and minute values. (c) Exercise 14.29 displays a bean machine.

(a) (b) (c)

*14.28 (Random time) Modify the ClockPane class with three new Boolean properties—
hourHandVisible, minuteHandVisible, and secondHandVisible—and
their associated accessor and mutator methods. You can use the set methods to
make a hand visible or invisible. Write a test program that displays only the hour
and minute hands. The hour and minute values are randomly generated. The hour
is between 0 and 11, and the minute is either 0 or 30, as shown in Figure 14.52b.

**14.29 (Game: bean machine) Write a program that displays a bean machine introduced
in Programming Exercise 7.21, as shown in Figure 14.52c.

This page intentionally left blank

EVENT-DRIVEN
PROGRAMMING
AND ANIMATIONS

Objectives
■ To get a taste of event-driven programming (§15.1).

■ To describe events, event sources, and event classes (§15.2).

■ To define handler classes, register handler objects with the source
object, and write the code to handle events (§15.3).

■ To define handler classes using inner classes (§15.4).

■ To define handler classes using anonymous inner classes (§15.5).

■ To simplify event handling using lambda expressions (§15.6).

■ To develop a GUI application for a loan calculator (§15.7).

■ To write programs to deal with MouseEvents (§15.8).

■ To write programs to deal with KeyEvents (§15.9).

■ To create listeners for processing a value change in an observable
object (§15.10).

■ To use the Animation, PathTransition, FadeTransition, and
Timeline classes to develop animations (§15.11).

■ To develop an animation for simulating a bouncing ball (§15.12).

CHAPTER

15

586 Chapter 15 Event-Driven Programming and Animations

15.1 Introduction
You can write code to process events such as a button click, mouse movement, and
keystrokes.

Suppose you wish to write a GUI program that lets the user enter a loan amount, annual interest
rate, and number of years and click the Calculate button to obtain the monthly payment and
total payment, as shown in Figure 15.1. How do you accomplish the task? You have to use
event-driven programming to write the code to respond to the button-clicking event.

Key
Point

problem

FIGURE 15.1 The program computes loan payments.

FIGURE 15.2 (a) The program displays two buttons. (b) A message is displayed in the
console when a button is clicked.

(a) (b)

FIGURE 15.3 An event handler processes the event fired from the source object.

handlereventbutton

Clicking a button
fires an action event

An event is
an object

(Event source object) (Event object)

The event handler
processes the event

(Event handler object)

Before delving into event-driven programming, it is helpful to get a taste using a simple
example. The example displays two buttons in a pane, as shown in Figure 15.2.

problem

To respond to a button click, you need to write the code to process the button-clicking
action. The button is an event source object—where the action originates. You need to cre-
ate an object capable of handling the action event on a button. This object is called an event
handler, as shown in Figure 15.3.

Not all objects can be handlers for an action event. To be a handler of an action event, two
requirements must be met:

1. The object must be an instance of the EventHandler<T extends Event> interface.
This interface defines the common behavior for all handlers. <T extends Event>
denotes that T is a generic type that is a subtype of Event.

2. The EventHandler object handler must be registered with the event source object
using the method source.setOnAction(handler).

EventHandler interface

setOnAction(handler)

15.1 Introduction 587

The EventHandler<ActionEvent> interface contains the handle(ActionEvent)

method for processing the action event. Your handler class must override this method to
respond to the event. Listing 15.1 gives the code that processes the ActionEvent on the two
buttons. When you click the OK button, the message “OK button clicked” is displayed. When
you click the Cancel button, the message “Cancel button clicked” is displayed, as shown in
Figure 15.2.

LISTING 15.1 HandleEvent.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.layout.HBox;
 6 import javafx.stage.Stage;
 7 import javafx.event.ActionEvent;
 8 import javafx.event.EventHandler;
 9
10 public class HandleEvent extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane and set its properties
14 HBox pane = new HBox(10);
15 pane.setAlignment(Pos.CENTER);
16 Button btOK = new Button("OK");
17 Button btCancel = new Button("Cancel");
18 OKHandlerClass handler1 = new OKHandlerClass();
19 btOK.setOnAction(handler1);
20 CancelHandlerClass handler2 = new CancelHandlerClass();
21 btCancel.setOnAction(handler2);
22 pane.getChildren().addAll(btOK, btCancel);
23
24 // Create a scene and place it in the stage
25 Scene scene = new Scene(pane);
26 primaryStage.setTitle("HandleEvent"); // Set the stage title
27 primaryStage.setScene(scene); // Place the scene in the stage
28 primaryStage.show(); // Display the stage
29 }
30 }
31
32 class OKHandlerClass implements EventHandler<ActionEvent> {
33 @Override
34 public void handle(ActionEvent e) {
35 System.out.println("OK button clicked");
36 }
37 }
38
39 class CancelHandlerClass implements EventHandler<ActionEvent> {
40 @Override
41 public void handle(ActionEvent e) {
42 System.out.println("Cancel button clicked");
43 }
44 }

Two handler classes are defined in lines 32–44. Each handler class implements
EventHandler<ActionEvent> to process ActionEvent. The object handler1 is an
instance of OKHandlerClass (line 18), which is registered with the button btOK (line
19). When the OK button is clicked, the handle(ActionEvent) method (line 34) in

create handler
register handler
create handler
register handler

handler class

handle event

handler class

handle event

588 Chapter 15 Event-Driven Programming and Animations

OKHandlerClass is invoked to process the event. The object handler2 is an instance
of CancelHandlerClass (line 20), which is registered with the button btCancel in line
21. When the Cancel button is clicked, the handle(ActionEvent) method (line 41) in
CancelHandlerClass is invoked to process the event.

You now have seen a glimpse of event-driven programming in JavaFX. You prob-
ably have many questions, such as why a handler class is defined to implement the
EventHandler<ActionEvent>. The following sections will give you all the answers.

15.2 Events and Event Sources
An event is an object created from an event source. Firing an event means to create an
event and delegate the handler to handle the event.

When you run a Java GUI program, the program interacts with the user, and the events drive
its execution. This is called event-driven programming. An event can be defined as a signal
to the program that something has happened. Events are triggered by external user actions,
such as mouse movements, mouse clicks, and keystrokes. The program can choose to respond
to or ignore an event. The example in the preceding section gave you a taste of event-driven
programming.

The component that creates an event and fires it is called the event source object, or simply
source object or source component. For example, a button is the source object for a button-
clicking action event. An event is an instance of an event class. The root class of the Java
event classes is java.util.EventObject. The root class of the JavaFX event classes is
javafx.event.Event. The hierarchical relationships of some event classes are shown in
Figure 15.4.

Key
Point

event-driven programming
event

fire event

event source object

source object

FIGURE 15.4 An event in JavaFX is an object of the javafx.event.Event class.

Event

ActionEvent

EventObject InputEvent

WindowEvent

MouseEvent

KeyEvent

JavaFX event classes are in
the javafx.event package

An event object contains whatever properties are pertinent to the event. You can identify
the source object of an event using the getSource() instance method in the EventObject
class. The subclasses of EventObject deal with specific types of events, such as action
events, window events, mouse events, and key events. The first three columns in Table 15.1
list some external user actions, source objects, and event types fired. For example, when click-
ing a button, the button creates and fires an ActionEvent, as indicated in the first line of this
table. Here, the button is an event source object, and an ActionEvent is the event object fired
by the source object, as shown in Figure 15.3.

Note
If a component can fire an event, any subclass of the component can fire the same type of

event. For example, every JavaFX shape, layout pane, and control can fire MouseEvent

and KeyEvent since Node is the superclass for shapes, layout panes, and controls.

event object

getSource()

15.3 Registering Handlers and Handling Events 589

15.1 What is an event source object? What is an event object? Describe the relationship
between an event source object and an event object.

15.2 Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button fire
an ActionEvent?

15.3 Registering Handlers and Handling Events
A handler is an object that must be registered with an event source object, and it must
be an instance of an appropriate event-handling interface.

Java uses a delegation-based model for event handling: a source object fires an event, and an
object interested in the event handles it. The latter object is called an event handler or an event
listener. For an object to be a handler for an event on a source object, two things are needed,
as shown in Figure 15.5.

1. The handler object must be an instance of the corresponding event-handler interface to
ensure that the handler has the correct method for processing the event. JavaFX defines
a unified handler interface EventHandler<T extends Event> for an event T. The
handler interface contains the handle(T e) method for processing the event. For
example, the handler interface for ActionEvent is EventHandler<ActionEvent>;
each handler for ActionEvent should implement the handle(ActionEvent e)

method for processing an ActionEvent.

2. The handler object must be registered by the source object. Registration methods
depend on the event type. For ActionEvent, the method is setOnAction. For a
mouse pressed event, the method is setOnMousePressed. For a key pressed event, the
method is setOnKeyPressed.

Let’s revisit Listing 15.1, HandleEvent.java. Since a Button object fires ActionEvent, a
handler object for ActionEvent must be an instance of EventHandler<ActionEvent>, so

✓Point✓Check

Key
Point

event delegation

event handler

event-handler interface

EventHandler<T extends
Event>

event handler

register handler

User Action Source Object Event Type Fired Event Registration Method

Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)

Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)

Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)

Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)

Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)

Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHandler<MouseEvent>)

Mouse released setOnMouseReleased(EventHandler<MouseEvent>)

Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)

Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)

Mouse exited setOnMouseExited(EventHandler<MouseEvent>)

Mouse moved setOnMouseMoved(EventHandler<MouseEvent>)

Mouse dragged setOnMouseDragged(EventHandler<MouseEvent>)

Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)

Key released setOnKeyReleased(EventHandler<KeyEvent>)

Key typed setOnKeyTyped(EventHandler<KeyEvent>)

TABLE 15.1 User Action, Source Object, Event Type, Handler Interface, and Handler

590 Chapter 15 Event-Driven Programming and Animations

the handler class implements EventHandler<ActionEvent> in line 34. The source object
invokes setOnAction(handler) to register a handler, as follows:

Button btOK = new Button("OK"); // Line 16 in Listing 15.1
OKHandlerClass handler1 = new OKHandlerClass(); // Line 18 in Listing 15.1
btOK.setOnAction(handler1); // Line 19 in Listing 15.1

When you click the button, the Button object fires an ActionEvent and passes it to invoke
the handler’s handle(ActionEvent) method to handle the event. The event object contains
information pertinent to the event, which can be obtained using the methods. For example,
you can use e.getSource() to obtain the source object that fired the event.

We now write a program that uses two buttons to control the size of a circle, as shown
in Figure 15.6. We will develop this program incrementally. First, we write the program in
Listing 15.2 that displays the user interface with a circle in the center (lines 15-19) and two
buttons on the bottom (lines 21-27).

create source object
create handler object
register handler

first version

FIGURE 15.6 The user clicks the Enlarge and Shrink buttons to enlarge and shrink the size
of the circle.

FIGURE 15.5 A listener must be an instance of a listener interface and must be registered with a source object.

Trigger an event

(2) Register by invoking
source.setOnXEventType(listener):

(a) A generic source object with a generic event T

(1) A listener object is an
 instance of a listener interface

(b) A Button source object with an ActionEvent

(1) An action event listener is an instance of
 EventHandler<ActionEvent>

User
Action

source: SourceClass

+setOnXEventType(listener) +handle(event: T)

(2) Register by invoking
source.setOnAction(listener);

source: javafx.scene.control.Button

+setOnAction(listener) +handle(event: ActionEvent)

listener: CustomListenerClass

listener: ListenerClass

«interface»
EventHandler<T extends Event>

«interface»
EventHandler<ActionEvent>

LISTING 15.2 ControlCircleWithoutEventHandling.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;

15.3 Registering Handlers and Handling Events 591

 5 import javafx.scene.layout.StackPane;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Circle;
10 import javafx.stage.Stage;
11
12 public class ControlCircleWithoutEventHandling extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 StackPane pane = new StackPane();
16 Circle circle = new Circle(50);
17 circle.setStroke(Color.BLACK);
18 circle.setFill(Color.WHITE);
19 pane.getChildren().add(circle);
20
21 HBox hBox = new HBox();
22 hBox.setSpacing(10);
23 hBox.setAlignment(Pos.CENTER);
24 Button btEnlarge = new Button("Enlarge");
25 Button btShrink = new Button("Shrink");
26 hBox.getChildren().add(btEnlarge);
27 hBox.getChildren().add(btShrink);
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(pane);
31 borderPane.setBottom(hBox);
32 BorderPane.setAlignment(hBox, Pos.CENTER);
33
34 // Create a scene and place it in the stage
35 Scene scene = new Scene(borderPane, 200, 150);
36 primaryStage.setTitle("ControlCircle"); // Set the stage title
37 primaryStage.setScene(scene); // Place the scene in the stage
38 primaryStage.show(); // Display the stage
39 }
49 }

How do you use the buttons to enlarge or shrink the circle? When the Enlarge button is clicked,
you want the circle to be repainted with a larger radius. How can you accomplish this? You can
expand and modify the program in Listing 15.2 into Listing 15.3 with the following features:

1. Define a new class named CirclePane for displaying the circle in a pane (lines 51–68).
This new class displays a circle and provides the enlarge and shrink methods for
increasing and decreasing the radius of the circle (lines 60–62, 64–67). It is a good
strategy to design a class to model a circle pane with supporting methods so that these
related methods along with the circle are coupled in one object.

2. Create a CirclePane object and declare circlePane as a data field to reference this
object (line 15) in the ControlCircle class. The methods in the ControlCircle
class can now access the CirclePane object through this data field.

3. Define a handler class named EnlargeHandler that implements
EventHandler<ActionEvent> (lines 43–48). To make the reference variable
circlePane accessible from the handle method, define EnlargeHandler as an
inner class of the ControlCircle class. (Inner classes are defined inside another
class. We use an inner class here and will introduce it fully in the next section.)

4. Register the handler for the Enlarge button (line 29) and implement the handle method
in EnlargeHandler to invoke circlePane.enlarge() (line 46).

circle

buttons

second version

inner class

592 Chapter 15 Event-Driven Programming and Animations

LISTING 15.3 ControlCircle.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.StackPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.BorderPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Circle;
12 import javafx.stage.Stage;
13
14 public class ControlCircle extends Application {
15 private CirclePane circlePane = new CirclePane();
16
17 @Override // Override the start method in the Application class
18 public void start(Stage primaryStage) {
19 // Hold two buttons in an HBox
20 HBox hBox = new HBox();
21 hBox.setSpacing(10);
22 hBox.setAlignment(Pos.CENTER);
23 Button btEnlarge = new Button("Enlarge");
24 Button btShrink = new Button("Shrink");
25 hBox.getChildren().add(btEnlarge);
26 hBox.getChildren().add(btShrink);
27
28 // Create and register the handler
29 btEnlarge.setOnAction(new EnlargeHandler());
30
31 BorderPane borderPane = new BorderPane();
32 borderPane.setCenter(circlePane);
33 borderPane.setBottom(hBox);
34 BorderPane.setAlignment(hBox, Pos.CENTER);
35
36 // Create a scene and place it in the stage
37 Scene scene = new Scene(borderPane, 200, 150);
38 primaryStage.setTitle("ControlCircle"); // Set the stage title
39 primaryStage.setScene(scene); // Place the scene in the stage
40 primaryStage.show(); // Display the stage
41 }
42
43 class EnlargeHandler implements EventHandler<ActionEvent> {
44 @Override // Override the handle method
45 public void handle(ActionEvent e) {
46 circlePane.enlarge();
47 }
48 }
49 }
50
51 class CirclePane extends StackPane {
52 private Circle circle = new Circle(50);
53
54 public CirclePane() {
55 getChildren().add(circle);
56 circle.setStroke(Color.BLACK);
57 circle.setFill(Color.WHITE);
58 }

create/register handler

handler class

CirclePane class

Handler and its registration

VideoNote

15.4 Inner Classes 593

59
60 public void enlarge() {
61 circle.setRadius(circle.getRadius() + 2);
62 }
63
64 public void shrink() {
65 circle.setRadius(circle.getRadius() > 2 ?
66 circle.getRadius() - 2 : circle.getRadius());
67 }
68 }

As an exercise, add the code for handling the Shrink button to display a smaller circle when
the Shrink button is clicked.

15.3 Why must a handler be an instance of an appropriate handler interface?

15.4 Explain how to register a handler object and how to implement a handler interface.

15.5 What is the handler method for the EventHandler<ActionEvent> interface?

15.6 What is the registration method for a button to register an ActionEvent handler?

15.4 Inner Classes
An inner class, or nested class, is a class defined within the scope of another class.
Inner classes are useful for defining handler classes.

Inner classes are used in the preceding section. This section introduces inner classes in detail.
First, let us see the code in Figure 15.7. The code in Figure 15.7a defines two separate classes,
Test and A. The code in Figure 15.7b defines A as an inner class in Test.

enlarge method

the Shrink button

✓Point✓Check

Key
Point

public class Test {
 ...
}

public class A {
 ...
}

(a)

public class Test {
 ...

// Inner class
public class A {

...
}

}

(b)

// OuterClass.java: inner class demo
public class OuterClass {

private int data;

/** A method in the outer class */
public void m() {

// Do something
 }

// An inner class
class InnerClass {

/** A method in the inner class */
public void mi() {

// Directly reference data and method
// defined in its outer class
data++;
m();

 }
 }
}

(c)

FIGURE 15.7 Inner classes combine dependent classes into the primary class.

The class InnerClass defined inside OuterClass in Figure 15.7c is another example
of an inner class. An inner class may be used just like a regular class. Normally, you define

594 Chapter 15 Event-Driven Programming and Animations

a class as an inner class if it is used only by its outer class. An inner class has the following
features:

 ■ An inner class is compiled into a class named OuterClassName$InnerClassName.
class. For example, the inner class A in Test is compiled into Test$A.class in
Figure 15.7b.

 ■ An inner class can reference the data and the methods defined in the outer class in
which it nests, so you need not pass the reference of an object of the outer class to
the constructor of the inner class. For this reason, inner classes can make programs
simple and concise. For example, circlePane is defined in ControlCircle in
Listing 15.3 (line 15). It can be referenced in the inner class EnlargeHandler in
line 46.

 ■ An inner class can be defined with a visibility modifier subject to the same visibility
rules applied to a member of the class.

 ■ An inner class can be defined as static. A static inner class can be accessed
using the outer class name. A static inner class cannot access nonstatic members
of the outer class.

 ■ Objects of an inner class are often created in the outer class. But you can also create
an object of an inner class from another class. If the inner class is nonstatic, you must
first create an instance of the outer class, then use the following syntax to create an
object for the inner class:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

 ■ If the inner class is static, use the following syntax to create an object for it:

OuterClass.InnerClass innerObject = new OuterClass.InnerClass();

A simple use of inner classes is to combine dependent classes into a primary class. This
reduces the number of source files. It also makes class files easy to organize since they are all
named with the primary class as the prefix. For example, rather than creating the two source
files Test.java and A.java as shown in Figure 15.7a, you can merge class A into class Test
and create just one source file, Test.java as shown in Figure 15.7b. The resulting class files
are Test.class and Test$A.class.

Another practical use of inner classes is to avoid class-naming conflicts. Two versions of
CirclePane are defined in Listings 15.2 and 15.3. You can define them as inner classes to
avoid a conflict.

A handler class is designed specifically to create a handler object for a GUI component
(e.g., a button). The handler class will not be shared by other applications and therefore is
appropriate to be defined inside the main class as an inner class.

15.7 Can an inner class be used in a class other than the class in which it nests?

15.8 Can the modifiers public, protected, private, and static be used for inner
classes?

15.5 Anonymous Inner Class Handlers
An anonymous inner class is an inner class without a name. It combines defining an
inner class and creating an instance of the class into one step.

Inner-class handlers can be shortened using anonymous inner classes. The inner class in
Listing 15.3 can be replaced by an anonymous inner class as shown below.

✓Point✓Check

Key
Point

anonymous inner class

15.5 Anonymous Inner Class Handlers 595

The syntax for an anonymous inner class is shown below

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface

// Other methods if necessary
}

Since an anonymous inner class is a special kind of inner class, it is treated like an inner class
with the following features:

 ■ An anonymous inner class must always extend a superclass or implement an inter-
face, but it cannot have an explicit extends or implements clause.

 ■ An anonymous inner class must implement all the abstract methods in the superclass
or in the interface.

 ■ An anonymous inner class always uses the no-arg constructor from its superclass to
create an instance. If an anonymous inner class implements an interface, the con-
structor is Object().

 ■ An anonymous inner class is compiled into a class named OuterClassName$n.
class. For example, if the outer class Test has two anonymous inner classes, they
are compiled into Test$1.class and Test$2.class.

Listing 15.4 gives an example that handles the events from four buttons, as shown in
Figure 15.8.

FIGURE 15.8 The program handles the events from four buttons.

public void start(Stage primaryStage) {
// Omitted

 btEnlarge.setOnAction(
new EnlargeHandler());

}

class EnlargeHandler
implements EventHandler<ActionEvent> {

public void handle(ActionEvent e) {
 circlePane.enlarge();
 }
}

(a) Inner class EnlargeListener

public void start(Stage primaryStage) {
// Omitted

 btEnlarge.setOnAction(
new class EnlargeHandlner
implements EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {

 circlePane.enlarge();
 }
 });
}

(b) Anonymous inner class

LISTING 15.4 AnonymousHandlerDemo.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;

Anonymous handler

VideoNote

596 Chapter 15 Event-Driven Programming and Animations

 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.HBox;
 8 import javafx.stage.Stage;
 9
10 public class AnonymousHandlerDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Hold two buttons in an HBox
14 HBox hBox = new HBox();
15 hBox.setSpacing(10);
16 hBox.setAlignment(Pos.CENTER);
17 Button btNew = new Button("New");
18 Button btOpen = new Button("Open");
19 Button btSave = new Button("Save");
20 Button btPrint = new Button("Print");
21 hBox.getChildren().addAll(btNew, btOpen, btSave, btPrint);
22
23 // Create and register the handler
24 btNew.setOnAction(new EventHandler<ActionEvent>() {
25 @Override // Override the handle method
26 public void handle(ActionEvent e) {
27 System.out.println("Process New");
28 }
29 });
30
31 btOpen.setOnAction(new EventHandler<ActionEvent>() {
32 @Override // Override the handle method
33 public void handle(ActionEvent e) {
34 System.out.println("Process Open");
35 }
36 });
37
38 btSave.setOnAction(new EventHandler<ActionEvent>() {
39 @Override // Override the handle method
40 public void handle(ActionEvent e) {
41 System.out.println("Process Save");
42 }
43 });
44
45 btPrint.setOnAction(new EventHandler<ActionEvent>() {
46 @Override // Override the handle method
47 public void handle(ActionEvent e) {
48 System.out.println("Process Print");
49 }
50 });
51
52 // Create a scene and place it in the stage
53 Scene scene = new Scene(hBox, 300, 50);
54 primaryStage.setTitle("AnonymousHandlerDemo"); // Set title
55 primaryStage.setScene(scene); // Place the scene in the stage
56 primaryStage.show(); // Display the stage
57 }
58 }

The program creates four handlers using anonymous inner classes (lines 24–50). Without
using anonymous inner classes, you would have to create four separate classes. An anony-
mous handler works the same way as that of an inner class handler. The program is condensed
using an anonymous inner class.

anonymous handler

handle event

15.6 Simplifying Event Handling Using Lambda Expressions 597

The anonymous inner classes in this example are compiled into
AnonymousHandlerDemo$1.class, AnonymousHandlerDemo$2.class,
AnonymousHandlerDemo$3.class, and AnonymousHandlerDemo$4.class.

15.9 If class A is an inner class in class B, what is the .class file for A? If class B contains
two anonymous inner classes, what are the .class file names for these two classes?

15.10 What is wrong in the following code?
✓Point✓Check

public class Test extends Application {
public void start(Stage stage) {

 Button btOK = new Button("OK");
 }

private class Handler implements
 EventHandler<ActionEvent> {

public void handle(Action e) {
 System.out.println(e.getSource());
 }
 }
}

(a)

public class Test extends Application {
public void start(Stage stage) {

 Button btOK = new Button("OK");

 btOK.setOnAction(
new EventHandler<ActionEvent> {

public void handle
 (ActionEvent e) {
 System.out.println
 (e.getSource());
 }
 } // Something missing here
 }
}

(b)

15.6 Simplifying Event Handling Using Lambda
Expressions

Lambda expressions can be used to greatly simplify coding for event handling.

Lambda expression is a new feature in Java 8. Lambda expressions can be viewed as an
anonymous class with a concise syntax. For example, the following code in (a) can be greatly
simplified using a lambda expression in (b) in three lines.

Key
Point

lambda expression

The basic syntax for a lambda expression is either

(type1 param1, type2 param2, ...) -> expression

or

 (type1 param1, type2 param2, ...) -> { statements; }

btEnlarge.setOnAction(
new EventHandler<ActionEvent>() {

 @Override
public void handle(ActionEvent e) {

// Code for processing event e
 }
 }
});

(a) Anonymous inner class event handler

btEnlarge.setOnAction(e -> {
// Code for processing event e

});

(b) Lambda expression event handler

598 Chapter 15 Event-Driven Programming and Animations

The data type for a parameter may be explicitly declared or implicitly inferred by the com-
piler. The parentheses can be omitted if there is only one parameter without an explicit data
type. In the preceding example, the lambda expression is as follows

e -> {
// Code for processing event e

}

The compiler treats a lambda expression as if it is an object created from an anonymous
inner class. In this case, the compiler understands that the object must be an instance of
EventHandler<ActionEvent>. Since the EventHandler interface defines the handle
method with a parameter of the ActionEvent type, the compiler automatically recognizes
that e is a parameter of the ActionEvent type, and the statements are for the body of the
handle method. The EventHandler interface contains just one method. The statements
in the lambda expression are all for that method. If it contains multiple methods, the com-
piler will not be able to compile the lambda expression. So, for the compiler to understand
lambda expressions, the interface must contain exactly one abstract method. Such an interface
is known as a functional interface or a Single Abstract Method (SAM) interface.

Listing 15.4 can be simplified using lambda expressions as shown in Listing 15.5.

LISTING 15.5 LambdaHandlerDemo.java
 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.layout.HBox;
 7 import javafx.stage.Stage;
 8
 9 public class LambdaHandlerDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Hold two buttons in an HBox
13 HBox hBox = new HBox();
14 hBox.setSpacing(10);
15 hBox.setAlignment(Pos.CENTER);
16 Button btNew = new Button("New");
17 Button btOpen = new Button("Open");
18 Button btSave = new Button("Save");
19 Button btPrint = new Button("Print");
20 hBox.getChildren().addAll(btNew, btOpen, btSave, btPrint);
21
22 // Create and register the handler
23 btNew.setOnAction((ActionEvent e) -> {
24 System.out.println("Process New");
25 });
26
27 btOpen.setOnAction((e) -> {
28 System.out.println("Process Open");
29 });
30
31 btSave.setOnAction(e -> {
32 System.out.println("Process Save");
33 });
34
35 btPrint.setOnAction(e -> System.out.println("Process Print"));

functional interface

SAM interface

lambda handler

lambda handler

lambda handler

lambda handler

15.6 Simplifying Event Handling Using Lambda Expressions 599

36
37 // Create a scene and place it in the stage
38 Scene scene = new Scene(hBox, 300, 50);
39 primaryStage.setTitle("LambdaHandlerDemo"); // Set title
40 primaryStage.setScene(scene); // Place the scene in the stage
41 primaryStage.show(); // Display the stage
42 }
43 }

The program creates four handlers using lambda expressions (lines 23–35). Using lambda
expressions, the code is shorter and cleaner. As seen in this example, lambda expressions may
have many variations. Line 23 uses a declared type. Line 27 uses an inferred type since the
type can be determined by the compiler. Line 31 omits the parentheses for a single inferred
type. Line 35 omits the braces for a single statement in the body.

You can handle events by defining handler classes using inner classes, anonymous inner
classes, or lambda expressions. We recommend that you use lambda expressions because it
produces a shorter, clearer, and cleaner code.

15.11 What is a lambda expression? What is the benefit of using lambda expressions for
event handling? What is the syntax of a lambda expression?

15.12 What is a functional interface? Why is a functional interface required for a lambda
expression?

15.13 Show the output of the following code:

public class Test {
public static void main(String[] args) {

 Test test = new Test();
 test.setAction1(() -> System.out.print("Action 1! "));
 test.setAction2(e -> System.out.print(e + " "));
 System.out.println(test.setAction3(e -> e * 2));
 }

public void setAction1(T1 t) {
 t.m();
 }

public void setAction2(T2 t) {
 t.m(4.5);
 }

public double setAction3(T3 t) {
return t.m(5.5);

 }
}

interface T1 {
public void m();

}

interface T2 {
public void m(Double d);

}

interface T3 {
public double m(Double d);

}

inner class, anonymous class,
or Lambda?

✓Point✓Check

600 Chapter 15 Event-Driven Programming and Animations

15.7 Case Study: Loan Calculator
This case study develops a loan calculator using event-driven programming with GUI
controls.

Now, we will write the program for the loan-calculator problem presented at the beginning of
this chapter. Here are the major steps in the program:

1. Create the user interface, as shown in Figure 15.9.

 a. Create a GridPane. Add labels, text fields, and button to the pane.

 b. Set the alignment of the button to the right.

2. Process the event.

Create and register the handler for processing the button-clicking action event. The
handler obtains the user input on the loan amount, interest rate, and number of years,
computes the monthly and total payments, and displays the values in the text fields.

Key
Point

FIGURE 15.9 The program computes loan payments.

GridPane

Button is right aligned

Text field is right aligned

The complete program is given in Listing 15.6.

LISTING 15.6 LoanCalculator.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.geometry.HPos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.GridPane;
 9 import javafx.stage.Stage;
10
11 public class LoanCalculator extends Application {
12 private TextField tfAnnualInterestRate = new TextField();
13 private TextField tfNumberOfYears = new TextField();
14 private TextField tfLoanAmount = new TextField();
15 private TextField tfMonthlyPayment = new TextField();
16 private TextField tfTotalPayment = new TextField();
17 private Button btCalculate = new Button("Calculate");
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 // Create UI
22 GridPane gridPane = new GridPane();

text fields

button

create a grid pane

15.7 Case Study: Loan Calculator 601

23 gridPane.setHgap(5);
24 gridPane.setVgap(5);
25 gridPane.add(new Label("Annual Interest Rate:"), 0, 0);
26 gridPane.add(tfAnnualInterestRate, 1, 0);
27 gridPane.add(new Label("Number of Years:"), 0, 1);
28 gridPane.add(tfNumberOfYears, 1, 1);
29 gridPane.add(new Label("Loan Amount:"), 0, 2);
30 gridPane.add(tfLoanAmount, 1, 2);
31 gridPane.add(new Label("Monthly Payment:"), 0, 3);
32 gridPane.add(tfMonthlyPayment, 1, 3);
33 gridPane.add(new Label("Total Payment:"), 0, 4);
34 gridPane.add(tfTotalPayment, 1, 4);
35 gridPane.add(btCalculate, 1, 5);
36
37 // Set properties for UI
38 gridPane.setAlignment(Pos.CENTER);
39 tfAnnualInterestRate.setAlignment(Pos.BOTTOM_RIGHT);
40 tfNumberOfYears.setAlignment(Pos.BOTTOM_RIGHT);
41 tfLoanAmount.setAlignment(Pos.BOTTOM_RIGHT);
42 tfMonthlyPayment.setAlignment(Pos.BOTTOM_RIGHT);
43 tfTotalPayment.setAlignment(Pos.BOTTOM_RIGHT);
44 tfMonthlyPayment.setEditable(false);
45 tfTotalPayment.setEditable(false);
46 GridPane.setHalignment(btCalculate, HPos.RIGHT);
47
48 // Process events
49 btCalculate.setOnAction(e -> calculateLoanPayment());
50
51 // Create a scene and place it in the stage
52 Scene scene = new Scene(gridPane, 400, 250);
53 primaryStage.setTitle("LoanCalculator"); // Set title
54 primaryStage.setScene(scene); // Place the scene in the stage
55 primaryStage.show(); // Display the stage
56 }
57
58 private void calculateLoanPayment() {
59 // Get values from text fields
60 double interest =
61 Double.parseDouble(tfAnnualInterestRate.getText());
62 int year = Integer.parseInt(tfNumberOfYears.getText());
63 double loanAmount =
64 Double.parseDouble(tfLoanAmount.getText());
65
66 // Create a loan object. Loan defined in Listing 10.2
67 Loan loan = new Loan(interest, year, loanAmount);
68
69 // Display monthly payment and total payment
70 tfMonthlyPayment.setText(String.format("$%.2f",
71 loan.getMonthlyPayment()));
72 tfTotalPayment.setText(String.format("$%.2f",
73 loan.getTotalPayment()));
74 }
75 }

The user interface is created in the start method (lines 22–46). The button is the source of
the event. A handler is created and registered with the button (line 49). The button handler
invokes the calculateLoanPayment() method to get the interest rate (line 60), number of
years (line 62), and loan amount (line 64). Invoking tfAnnualInterestRate.getText()
returns the string text in the tfAnnualInterestRate text field. The Loan class is used for

add to grid pane

register handler

get input

create loan

set result

602 Chapter 15 Event-Driven Programming and Animations

computing the loan payments. This class was introduced in Listing 10.2, Loan.java. Invok-
ing loan.getMonthlyPayment() returns the monthly payment for the loan (line 71). The
String.format method, introduced in Section 10.10.7, is used to format a number into a
desirable format and returns it as a string (lines 70, 72). Invoking the setText method on a
text field sets a string value in the text field.

15.8 Mouse Events
A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene.

The MouseEvent object captures the event, such as the number of clicks associated with it,
the location (the x- and y-coordinates) of the mouse, or which mouse button was pressed, as
shown in Figure 15.10.

Key
Point

FIGURE 15.10 The MouseEvent class encapsulates information for mouse events.

javafx.scene.input.MouseEvent

+getButton(): MouseButton

+getClickCount(): int

+getX(): double

+getY(): double

+getSceneX(): double

+getSceneY(): double

+getScreenX(): double

+getScreenY(): double

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

+isShiftDown(): boolean

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.

Returns the x-coordinate of the mouse point in the event source node.

Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.

Returns the y-coordinate of the mouse point in the scene.

Returns the x-coordinate of the mouse point in the screen.

Returns the y-coordinate of the mouse point in the screen.

Returns true if the Alt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

FIGURE 15.11 You can move the message by dragging the mouse.

Four constants—PRIMARY, SECONDARY, MIDDLE, and NONE—are defined in MouseButton
to indicate the left, right, middle, and none mouse buttons. You can use the getButton() method
to detect which button is pressed. For example, getButton() == MouseButton.SECONDARY
indicates that the right button was pressed.

The mouse events are listed in Table 15.1. To demonstrate using mouse events, we give
an example that displays a message in a pane and enables the message to be moved using a
mouse. The message moves as the mouse is dragged, and it is always displayed at the mouse
point. Listing 15.7 gives the program. A sample run of the program is shown in Figure 15.11.

detect mouse buttons

LISTING 15.7 MouseEventDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;

Move message using the

mouse

VideoNote

15.9 Key Events 603

 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class MouseEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a pane and set its properties
11 Pane pane = new Pane();
12 Text text = new Text(20, 20, "Programming is fun");
13 pane.getChildren().addAll(text);
14 text.setOnMouseDragged(e -> {
15 text.setX(e.getX());
16 text.setY(e.getY());
17 });
18
19 // Create a scene and place it in the stage
20 Scene scene = new Scene(pane, 300, 100);
21 primaryStage.setTitle("MouseEventDemo"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

Each node or scene can fire mouse events. The program creates a Text (line 12) and registers
a handler to handle move dragged event (line 14). Whenever a mouse is dragged, the text’s
x- and y-coordinates are set to the mouse position (lines 15 and 16).

15.14 What method do you use to get the mouse-point position for a mouse event?

15.15 What methods do you use to register a handler for a mouse pressed, released, clicked,
entered, exited, moved and dragged event?

15.9 Key Events
A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene.

Key events enable the use of the keys to control and perform actions or get input from the
keyboard. The KeyEvent object describes the nature of the event (namely, that a key has been
pressed, released, or typed) and the value of the key, as shown in Figure 15.12.

create a pane
create a text
add text to a pane
lambda handler
reset text position

✓Point✓Check

Key
Point

FIGURE 15.12 The KeyEvent class encapsulates information about key events.

javafx.scene.input.KeyEvent

+getCharacter(): String

+getCode(): KeyCode

+getText(): String

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

+isShiftDown(): boolean

Returns the character associated with the key in this event.

Returns the key code associated with the key in this event.

Returns a string describing the key code.

Returns true if the Alt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

Every key event has an associated code that is returned by the getCode() method in
KeyEvent. The key codes are constants defined in KeyCode. Table 15.2 lists some constants.
KeyCode is an enum type. For use of enum types, see Appendix I. For the key-pressed and

604 Chapter 15 Event-Driven Programming and Animations

key-released events, getCode() returns the value as defined in the table, getText() returns
a string that describes the key code, and getCharacter() returns an empty string. For the
key-typed event, getCode() returns UNDEFINED and getCharacter() returns the Unicode
character or a sequence of characters associated with the key-typed event.

key code

TABLE 15.2 KeyCode Constants

Constant Description

HOME The Home key

END The End key

PAGE_UP The Page Up key

PAGE_DOWN The Page Down key

UP The up-arrow key

DOWN The down-arrow key

LEFT The left-arrow key

RIGHT The right-arrow key

ESCAPE The Esc key

TAB The Tab key

Constant Description

CONTROL The Control key

SHIFT The Shift key

BACK_SPACE The Backspace key

CAPS The Caps Lock key

NUM_LOCK The Num Lock key

ENTER The Enter key

UNDEFINED The keyCode unknown

F1 to F12 The function keys from F1 to F12

0 to 9 The number keys from 0 to 9

A to Z The letter keys from A to Z

The program in Listing 15.8 displays a user-input character. The user can move the char-
acter up, down, left, and right, using the up, down, left, and right arrow keys. Figure 15.13
contains a sample run of the program.

FIGURE 15.13 The program responds to key events by displaying a character and moving it
up, down, left, or right.

LISTING 15.8 KeyEventDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class KeyEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 // Create a pane and set its properties
11 Pane pane = new Pane();
12 Text text = new Text(20, 20, "A");
13
14 pane.getChildren().add(text);
15 text.setOnKeyPressed(e -> {
16 switch (e.getCode()) {
17 case DOWN: text.setY(text.getY() + 10); break;
18 case UP: text.setY(text.getY() - 10); break;
19 case LEFT: text.setX(text.getX() - 10); break;
20 case RIGHT: text.setX(text.getX() + 10); break;

create a pane

register handler
get the key pressed
move a character

15.9 Key Events 605

21 default:
22 if (Character.isLetterOrDigit(e.getText().charAt(0)))
23 text.setText(e.getText());
24 }
25 });
26
27 // Create a scene and place it in the stage
28 Scene scene = new Scene(pane);
29 primaryStage.setTitle("KeyEventDemo"); // Set the stage title
30 primaryStage.setScene(scene); // Place the scene in the stage
31 primaryStage.show(); // Display the stage
32
33 text.requestFocus(); // text is focused to receive key input
34 }
35 }

The program creates a pane (line 11), creates a text (line 12), and places the text into the pane
(line 14). The text registers the handler for the key-pressed event in lines 15–25. When a key is
pressed, the handler is invoked. The program uses e.getCode() (line 16) to obtain the key code
and e.getText() (line 23) to get the character for the key. When a nonarrow key is pressed, the
character is displayed (lines 22 and 23). When an arrow key is pressed, the character moves in the
direction indicated by the arrow key (lines 17–20). Note that in a switch statement for an enum
type value, the cases are for the enum constants (lines 16–24). The constants are unqualified. For
example, using KeyCode.DOWN in the case clause would be wrong (see Appendix I).

Only a focused node can receive KeyEvent. Invoking requestFocus() on text enables
text to receive key input (line 33). This method must be invoked after the stage is displayed.

We can now add more control for our ControlCircle example in Listing 15.3 to increase/
decrease the circle radius by clicking the left/right mouse button or by pressing the U and D
keys. The new program is given in Listing 15.9.

LISTING 15.9 ControlCircleWithMouseAndKey.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.input.KeyCode;
 6 import javafx.scene.input.MouseButton;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.stage.Stage;
10
11 public class ControlCircleWithMouseAndKey extends Application {
12 private CirclePane circlePane = new CirclePane();
13
14 @Override // Override the start method in the Application class
15 public void start(Stage primaryStage) {
16 // Hold two buttons in an HBox
17 HBox hBox = new HBox();
18 hBox.setSpacing(10);
19 hBox.setAlignment(Pos.CENTER);
20 Button btEnlarge = new Button("Enlarge");
21 Button btShrink = new Button("Shrink");
22 hBox.getChildren().add(btEnlarge);
23 hBox.getChildren().add(btShrink);
24
25 // Create and register the handler
26 btEnlarge.setOnAction(e -> circlePane.enlarge());
27 btShrink.setOnAction(e -> circlePane.shrink());

set a new character

request focus on text

requestFocus()

button handler

606 Chapter 15 Event-Driven Programming and Animations

28
29 circlePane.setOnMouseClicked(e -> {
30 if (e.getButton() == MouseButton.PRIMARY) {
31 circlePane.enlarge();
32 }
33 else if (e.getButton() == MouseButton.SECONDARY) {
34 circlePane.shrink();
35 }
36 });
37
38 circlePane.setOnKeyPressed(e -> {
39 if (e.getCode() == KeyCode.U) {
40 circlePane.enlarge();
41 }
42 else if (e.getCode() == KeyCode.D) {
43 circlePane.shrink();
44 }
45 });
46
47 BorderPane borderPane = new BorderPane();
48 borderPane.setCenter(circlePane);
49 borderPane.setBottom(hBox);
50 BorderPane.setAlignment(hBox, Pos.CENTER);
51
52 // Create a scene and place it in the stage
53 Scene scene = new Scene(borderPane, 200, 150);
54 primaryStage.setTitle("ControlCircle"); // Set the stage title
55 primaryStage.setScene(scene); // Place the scene in the stage
56 primaryStage.show(); // Display the stage
57
58 circlePane.requestFocus(); // Request focus on circlePane
59 }
60 }

TheCirclePane class (line 12) is already defined in Listing 15.3 and can be reused in this program.
A handler for mouse clicked events is created in lines 29–36. If the left mouse button is

clicked, the circle is enlarged (lines 30–32); if the right mouse button is clicked, the circle is
shrunk (lines 33–35).

A handler for key pressed events is created in lines 38–45. If the U key is pressed, the circle
is enlarged (lines 39–41); if the D key is pressed, the circle is shrunk (lines 42–44).

Invoking requestFocus() on circlePane (line 58) makes circlePane to receive key
events. Note that after you click a button, circlePane is no longer focused. To fix the prob-
lem, invoke reuquestFocus() on circlePane again after each button is clicked.

15.16 What methods do you use to register handlers for key pressed, key released, and key
typed events? In which classes are these methods defined? (See Table 15.1)

15.17 What method do you use to get the key character for a key-typed event? What method
do you use to get the key code for a key-pressed or key-released event?

15.18 How do you set focus on a node so it can listen for key events?

15.10 Listeners for Observable Objects
You can add a listener to process a value change in an observable object.

An instance of Observable is known as an observable object, which contains the
addListener(InvalidationListener listener) method for adding a listener.
The listener class must implement the InvalidationListener interface to override
the invalidated(Observable o) method for handling the value change. Once

mouse-click handler

key-pressed handler
U key pressed

D key pressed

request focus

mouse clicked event

key pressed event

requestFocus()

✓Point✓Check

Key
Point

15.10 Listeners for Observable Objects 607

the value is changed in the Observable object, the listener is notified by invoking its
invalidated(Observable o) method. Every binding property is an instance of
Observable. Listing 15.10 gives an example of observing and handling a change in a
DoubleProperty object balance.

LISTING 15.10 ObservablePropertyDemo.java
 1 import javafx.beans.InvalidationListener;
 2 import javafx.beans.Observable;
 3 import javafx.beans.property.DoubleProperty;
 4 import javafx.beans.property.SimpleDoubleProperty;
 5
 6 public class ObservablePropertyDemo {
 7 public static void main(String[] args) {
 8 DoubleProperty balance = new SimpleDoubleProperty();
 9 balance.addListener(new InvalidationListener() {
10 public void invalidated(Observable ov) {
11 System.out.println("The new value is " +
12 balance.doubleValue());
13 }
14 });
15
16 balance.set(4.5);
17 }
18 }

observable object

observable property
add listener
handle change

The new value is 4.5

When line 16 is executed, it causes a change in balance, which notifies the listener by
invoking the listener’s invalidated method.

Note that the anonymous inner class in lines 9–14 can be simplified using a lambda expres-
sion as follows:

 balance.addListener(ov -> {
 System.out.println("The new value is " +
 balance.doubleValue());
 });

Recall that in Listing 14.20 DisplayClock.java, the clock pane size is not changed when
you resize the window. The problem can be fixed by adding a listener to change the clock
pane size and register the listener to the window’s width and height properties, as shown in
Listing 15.11.

LISTING 15.11 DisplayResizableClock.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7
 8 public class DisplayResizableClock extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 // Create a clock and a label
12 ClockPane clock = new ClockPane();
13 String timeString = clock.getHour() + ":" + clock.getMinute()
14 + ":" + clock.getSecond();

608 Chapter 15 Event-Driven Programming and Animations

15 Label lblCurrentTime = new Label(timeString);
16
17 // Place clock and label in border pane
18 BorderPane pane = new BorderPane();
19 pane.setCenter(clock);
20 pane.setBottom(lblCurrentTime);
21 BorderPane.setAlignment(lblCurrentTime, Pos.TOP_CENTER);
22
23 // Create a scene and place it in the stage
24 Scene scene = new Scene(pane, 250, 250);
25 primaryStage.setTitle("DisplayClock"); // Set the stage title
26 primaryStage.setScene(scene); // Place the scene in the stage
27 primaryStage.show(); // Display the stage
28
29 pane.widthProperty().addListener(ov ->
30 clock.setW(pane.getWidth())
31);
32
33 pane.heightProperty().addListener(ov ->
34 clock.setH(pane.getHeight())
35);
36 }
37 }

The program is identical to Listing 14.19 except that you added the code in lines 29–35 to
register listeners for resizing the clock pane upon a change of the width or height of the scene.
The code ensures that the clock pane size is synchronized with the scene size.

15.19 What would happen if you replace pane with scene or primaryStage in lines 29
and 33?

15.11 Animation
JavaFX provides the Animation class with the core functionality for all animations.

Suppose you want to write a program that animates a rising flag, as shown in Figure 15.14.
How do you accomplish the task? There are several ways to program this. An effective
one is to use the subclasses of the JavaFX Animation class, which is the subject of this
section.

create a listener
set a new width for clock

create a listener
set a new height for clock

✓Point✓Check

Key
Point

VideoNote

Animate a rising flag

FIGURE 15.14 The animation simulates a flag rising.

The abstract Animation class provides the core functionalities for animations in JavaFX,
as shown in Figure 15.15. Many concrete subclasses of Animation are provided in JavaFX.
This section introduces PathTransition, FadeTransition and Timeline.

15.11 Animation 609

The autoReverse is a Boolean property that indicates whether an animation will reverse
its direction on the next cycle. The cycleCount indicates the number of the cycles for the
animation. You can use the constant Timeline.INDEFINTE to indicate an indefinite num-
ber of cycles. The rate defines the speed of the animation. A negative rate value indicates
the opposite direction for the animation. The status is a read-only property that indicates
the status of the animation (Animation.Status.PAUSED, Animation.Status.RUNNING,
and Animation.Status.STOPPED). The methods pause(), play(), and stop() pauses,
plays, and stops an animation.

15.11.1 PathTransition

The PathTransition class animates the the moves of a node along a path from one end to
the other over a given time. PathTransition is a subtype of Animation. The UML class
diagram for the class is shown in Figure 15.16.

FIGURE 15.16 The PathTransition class defines an animation for a node along a path.

-duration: ObjectProperty<Duration>

-node: ObjectProperty<Node>

-orientation: ObjectProperty
 <PathTransition.OrientationType>

-path: ObjectType<Shape>

javafx.animation.PathTransition

The duration of this transition.

The target node of this transition.

The orientation of the node along the path.

The shape whose outline is used as a path to animate the node move.

+PathTransition()

+PathTransition(duration: Duration,
 path: Shape)

+PathTransition(duration: Duration,
 path: Shape, node: Node)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty PathTransition.

Creates a PathTransition with the specified duration and path.

Creates a PathTransition with the specified duration, path, and node.

FIGURE 15.15 The abstract Animation class is the root class for JavaFX animations.

-autoReverse: BooleanProperty

-cycleCount: IntegerProperty

-rate: DoubleProperty

-status: ReadOnlyObjectProperty
 <Animation.Status>

javafx.animation.Animation

Defines whether the animation reverses direction on alternating cycles.

Defines the number of cycles in this animation.

Defines the speed and direction for this animation.

Read-only property to indicate the status of the animation.

+pause(): void

+play(): void

+stop(): void

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Pauses the animation.

Plays the animation from the current position.

Stops the animation and resets the animation.

The Duration class defines a duration of time. It is an immutable class. The class defines
constants INDEFINTE, ONE, UNKNOWN, and ZERO to represent an indefinte duration, 1 milli-
seconds, unknow, and 0 duration. You can use new Duration(double millis) to create

610 Chapter 15 Event-Driven Programming and Animations

an instance of Duration, the add, subtract, multiply, and divide methods to perform
arithmetic operations, and the toHours(), toMinutes(), toSeconds(), and toMillis()
to return the number of hours, minutes, seconds, and milliseconds in this duration. You can
also use compareTo to compare two durations.

The constants NONE and ORTHOGONAL_TO_TANGENT are defined in PathTransition
.OrientationType. The latter specifies that the node is kept perpendicular to the path’s
tangent along the geometric path.

Listing 15.12 gives an example that moves a rectangle along the outline of a circle, as
shown in Figure 15.17a.

LISTING 15.12 PathTransitionDemo.java
 1 import javafx.animation.PathTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Rectangle;
 8 import javafx.scene.shape.Circle;
 9 import javafx.stage.Stage;
10 import javafx.util.Duration;
11
12 public class PathTransitionDemo extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 // Create a pane
16 Pane pane = new Pane();
17
18 // Create a rectangle
19 Rectangle rectangle = new Rectangle (0, 0, 25, 50);
20 rectangle.setFill(Color.ORANGE);
21
22 // Create a circle
23 Circle circle = new Circle(125, 100, 50);
24 circle.setFill(Color.WHITE);
25 circle.setStroke(Color.BLACK);
26
27 // Add circle and rectangle to the pane
28 pane.getChildren().add(circle);
29 pane.getChildren().add(rectangle);
30
31 // Create a path transition
32 PathTransition pt = new PathTransition();
33 pt.setDuration(Duration.millis(4000));
34 pt.setPath(circle);
35 pt.setNode(rectangle);
36 pt.setOrientation(
37 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
38 pt.setCycleCount(Timeline.INDEFINITE);
39 pt.setAutoReverse(true);
40 pt.play(); // Start animation
41
42 circle.setOnMousePressed(e -> pt.pause());
43 circle.setOnMouseReleased(e -> pt.play());
44
45 // Create a scene and place it in the stage
46 Scene scene = new Scene(pane, 250, 200);
47 primaryStage.setTitle("PathTransitionDemo"); // Set the stage title

create a pane

create a rectangle

create a circle

add circle to pane
add rectangle to pane

create a PathTransition
set transition duration
set path in transition
set node in transition
set orientation

set cycle count indefinite
set auto reverse true
play animation

pause animation
resume animation

15.11 Animation 611

48 primaryStage.setScene(scene); // Place the scene in the stage
49 primaryStage.show(); // Display the stage
50 }
51 }

FIGURE 15.17 The PathTransition animates a rectangle moving along the circle.

(a) (b)

The program creates a pane (line 16), a rectangle (line 19), and a circle (line 23). The circle
and rectangle are placed in the pane (lines 28 and 29). If the circle was not placed in the pane,
you will see the screen shot as shown in Figure 15.17b.

The program creates a path transition (line 32), sets its duration to 4 seconds for one cycle
of animation (line 33), sets circle as the path (line 34), sets rectangle as the node (line 35), and
sets the orientation to orthogonal to tangent (line 36).

The cycle count is set to indefinite (line 38) so the animation continues forever. The auto
reverse is set to true (line 39) so that the direction of the move is reversed in the alternating
cycle. The program starts animation by invoking the play() method (line 40).

If the pause() method is replaced by the stop() method in line 42, the animation will
start over from the beginning when it restarts.

Listing 15.13 gives the program that animates a flag rising, as shown in Figure 15.14.

LISTING 15.13 FlagRisingAnimation.java
 1 import javafx.animation.PathTransition;
 2 import javafx.application.Application;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.shape.Line;
 7 import javafx.stage.Stage;
 8 import javafx.util.Duration;
 9
10 public class FlagRisingAnimation extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a pane
14 Pane pane = new Pane();
15
16 // Add an image view and add it to pane
17 ImageView imageView = new ImageView("image/us.gif");
18 pane.getChildren().add(imageView);
19
20 // Create a path transition
21 PathTransition pt = new PathTransition(Duration.millis(10000),

create a pane

create an image view
add image view to pane

create a path transition

612 Chapter 15 Event-Driven Programming and Animations

22 new Line(100, 200, 100, 0), imageView);
23 pt.setCycleCount(5);
24 pt.play(); // Start animation
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(pane, 250, 200);
28 primaryStage.setTitle("FlagRisingAnimation"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

The program creates a pane (line 14), an image view from an image file (line 17), and places
the image view to the page (line 18). A path transition is created with duration of 10 seconds
using a line as a path and the image view as the node (lines 21 and 22). The image view will
move along the line. Since the line is not placed in the scene, you will not see the line in the
window.

The cycle count is set to 5 (line 23) so that the animation is repeated five times.

15.11.2 FadeTransition

The FadeTransition class animates the change of the opacity in a node over a given time.
FadeTransition is a subtype of Animation. The UML class diagram for the class is shown
in Figure 15.18.

set cycle count
play animation

FIGURE 15.18 The FadeTransition class defines an animation for the change of opacity in a node.

-duration: ObjectProperty<Duration>

-node: ObjectProperty<Node>

-fromValue: DoubleProperty

-toValue: DoubleProperty

-byValue: DoubleProperty

javafx.animation.FadeTransition

The duration of this transition.

The target node of this transition.

The start opacity for this animation.

The stop opacity for this animation.

The incremental value on the opacity for this animation.

+FadeTransition()

+FadeTransition(duration: Duration)

+FadeTransition(duration: Duration,
 node: Node)

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty FadeTransition.

Creates a FadeTransition with the specified duration.

Creates a FadeTransition with the specified duration and node.

Listing 15.14 gives an example that applies a fade transition to the filled color in an ellipse,
as shown in Figure 15.19.

LISTING 15.14 FadeTransitionDemo.java
 1 import javafx.animation.FadeTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Ellipse;
 8 import javafx.stage.Stage;

15.11 Animation 613

 9 import javafx.util.Duration;
10
11 public class FadeTransitionDemo extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 // Place an ellipse to the pane
15 Pane pane = new Pane();
16 Ellipse ellipse = new Ellipse(10, 10, 100, 50);
17 ellipse.setFill(Color.RED);
18 ellipse.setStroke(Color.BLACK);
19 ellipse.centerXProperty().bind(pane.widthProperty().divide(2));
20 ellipse.centerYProperty().bind(pane.heightProperty().divide(2));
21 ellipse.radiusXProperty().bind(
22 pane.widthProperty().multiply(0.4));
23 ellipse.radiusYProperty().bind(
24 pane.heightProperty().multiply(0.4));
25 pane.getChildren().add(ellipse);
26
27 // Apply a fade transition to ellipse
28 FadeTransition ft =
29 new FadeTransition(Duration.millis(3000), ellipse);
30 ft.setFromValue(1.0);
31 ft.setToValue(0.1);
32 ft.setCycleCount(Timeline.INDEFINITE);
33 ft.setAutoReverse(true);
34 ft.play(); // Start animation
35
36 // Control animation
37 ellipse.setOnMousePressed(e -> ft.pause());
38 ellipse.setOnMouseReleased(e -> ft.play());
39
40 // Create a scene and place it in the stage
41 Scene scene = new Scene(pane, 200, 150);
42 primaryStage.setTitle("FadeTransitionDemo"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46 }

create a pane
create an ellipse
set ellipse fill color
set ellipse stroke color
bind ellipse properties

add ellipse to pane

create a FadeTransition

set start opaque value
set end opaque value
set cycle count
set auto reverse true
play animation

pause animation
resume animation

FIGURE 15.19 The FadeTransition animates the change of opacity in the ellipse.

The program creates a pane (line 15) and an ellipse (line 16) and places the ellipse into the
pane (line 25). The ellipse’s centerX, centerY, radiusX, and radiusY properties are
bound to the pane’s size (lines 19–24).

A fade transition is created with a duration of 3 seconds for the ellipse (line 29). It sets the
start opaque to 1.0 (line 30) and the stop opaque 0.1 (line 31). The cycle count is set to infinite
so the animation is repeated indefinitely (line 32). When the mouse is pressed, the animation
is paused (line 37). When the mouse is released, the animation resumes from where it was
paused (line 38).

614 Chapter 15 Event-Driven Programming and Animations

15.11.3 Timeline

PathTransition and FadeTransition define specialized animations. The Timeline
class can be used to program any animation using one or more KeyFrames. Each KeyFrame
is executed sequentially at a specified time interval. Timeline inherits from Animation.
You can construct a Timeline using the constructor new Timeline(KeyFrame...

keyframes). A KeyFrame can be constructed using

new KeyFrame(Duration duration, EventHandler<ActionEvent> onFinished)

The handler onFinished is called when the duration for the key frame is elapsed.
Listing 15.15 gives an example that displays a flashing text, as shown in Figure 15.20. The

text is on and off alternating to animate flashing.

LISTING 15.15 TimelineDemo.java
 1 import javafx.animation.Animation;
 2 import javafx.application.Application;
 3 import javafx.stage.Stage;
 4 import javafx.animation.KeyFrame;
 5 import javafx.animation.Timeline;
 6 import javafx.event.ActionEvent;
 7 import javafx.event.EventHandler;
 8 import javafx.scene.Scene;
 9 import javafx.scene.layout.StackPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.text.Text;
12 import javafx.util.Duration;
13
14 public class TimelineDemo extends Application {
15 @Override // Override the start method in the Application class
16 public void start(Stage primaryStage) {
17 StackPane pane = new StackPane();
18 Text text = new Text(20, 50, "Programming is fun");
19 text.setFill(Color.RED);
20 pane.getChildren().add(text); // Place text into the stack pane
21
22 // Create a handler for changing text
23 EventHandler<ActionEvent> eventHandler = e -> {
24 if (text.getText().length() != 0) {
25 text.setText("");
26 }
27 else {
28 text.setText("Programming is fun");
29 }
30 };
31
32 // Create an animation for alternating text
33 Timeline animation = new Timeline(
34 new KeyFrame(Duration.millis(500), eventHandler));
35 animation.setCycleCount(Timeline.INDEFINITE);
36 animation.play(); // Start animation
37
38 // Pause and resume animation
39 text.setOnMouseClicked(e -> {
40 if (animation.getStatus() == Animation.Status.PAUSED) {
41 animation.play();
42 }
43 else {
44 animation.pause();

VideoNote

Flashing text

create a stack pane
create a text

add text to pane

handler for changing text

set text empty

set text

create a Timeline
create a KeyFrame for handler
set cycle count indefinite
play animation

resume animation

pause animation

15.11 Animation 615

45 }
46 });
47
48 // Create a scene and place it in the stage
49 Scene scene = new Scene(pane, 250, 250);
50 primaryStage.setTitle("TimelineDemo"); // Set the stage title
51 primaryStage.setScene(scene); // Place the scene in the stage
52 primaryStage.show(); // Display the stage
53 }
54 }

FIGURE 15.20 The handler is called to set the text to Programming is fun or empty in turn.

The program creates a stack pane (line 17) and a text (line 18) and places the text into the pane
(line 20). A handler is created to change the text to empty (lines 24–26) if it is not empty or
to Progrmming is fun if it is empty (lines 27–29). A KeyFrame is created to run an action
event in every half second (line 34). A Timeline animation is created to contain a key frame
(lines 33 and 34). The animation is set to run indefinitely (line 35).

The mouse clicked event is set for the text (lines 39–46). A mouse click on the text resumes
the animation if the animation is paused (lines 40–42), and a mouse click on the text pauses
the animation if the animation is running (lines 43–45).

In Section 14.12, Case Study: The ClockPane Class, you drew a clock to show the current
time. The clock does not tick after it is displayed. What can you do to make the clock display a
new current time every second? The key to making the clock tick is to repaint it every second
with a new current time. You can use a Timeline to control the repainting of the clock with
the code in Listing 15.16. The sample run of the program is shown in Figure 15.21.

LISTING 15.16 ClockAnimation.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.animation.KeyFrame;
 4 import javafx.animation.Timeline;
 5 import javafx.event.ActionEvent;
 6 import javafx.event.EventHandler;
 7 import javafx.scene.Scene;
 8 import javafx.util.Duration;
 9
10 public class ClockAnimation extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 ClockPane clock = new ClockPane(); // Create a clock
14
15 // Create a handler for animation
16 EventHandler<ActionEvent> eventHandler = e -> {
17 clock.setCurrentTime(); // Set a new clock time
18 };
19
20 // Create an animation for a running clock
21 Timeline animation = new Timeline(

create a clock

create a handler

create a time line

616 Chapter 15 Event-Driven Programming and Animations

22 new KeyFrame(Duration.millis(1000), eventHandler));
23 animation.setCycleCount(Timeline.INDEFINITE);
24 animation.play(); // Start animation
25
26 // Create a scene and place it in the stage
27 Scene scene = new Scene(clock, 250, 50);
28 primaryStage.setTitle("ClockAnimation"); // Set the stage title
29 primaryStage.setScene(scene); // Place the scene in the stage
30 primaryStage.show(); // Display the stage
31 }
32 }

create a key frame
set cycle count indefinite
play animation

FIGURE 15.22 A ball is bouncing in a pane.

FIGURE 15.21 A live clock is displayed in the window.

The program creates an instance clock of ClockPane for displaying a clock (line 13).
The ClockPane class is defined in Listing 14.21. The clock is placed in the scene in line 27.
An event handler is created for setting the current time in the clock (lines 16–18). This handler
is called every second in the key frame in the time line animation (lines 21–24). So the clock
time is updated every second in the animation.

15.20 How do you set the cycle count of an animation to infinite? How do you auto reverse
an animation? How do you start, pause, and stop an animation?

15.21 Are PathTransition, FadeTransition, and Timeline a subtype of Animation?

15.22 How do you create a PathTransition? How do you create a FadeTransition?
How do you create a Timeline?

15.23 How do you create a KeyFrame?

15.12 Case Study: Bouncing Ball
This section presents an animation that displays a ball bouncing in a pane.

The program uses Timeline to animation ball bouncing, as shown in Figure 15.22.

✓Point✓Check

Key
Point

15.12 Case Study: Bouncing Ball 617

FIGURE 15.23 BounceBallControl contains BallPane.

1 1
BallPane

-x: double

-y: double

-dx: double

-dy: double

-radius: double

-circle: Circle

-animation: Timeline

+BallPane()

+play(): void

+pause(): void

+increaseSpeed(): void

+decreaseSpeed(): void

+rateProperty(): DoubleProperty

+moveBall(): void

javafx.scene.layout.Pane javafx.application.Application

BounceBallControl

Here are the major steps to write this program:

1. Define a subclass of Pane named BallPane to display a ball bouncing, as shown in
Listing 15.17.

2. Define a subclass of Application named BounceBallControl to control the bounc-
ing ball with mouse actions, as shown in Listing 15.18. The animation pauses when the
mouse is pressed and resumes when the mouse is released. Pressing the UP and DOWN
arrow keys increases/decreases animation speed.

The relationship among these classes is shown in Figure 15.23.

LISTING 15.17 BallPane.java
 1 import javafx.animation.KeyFrame;
 2 import javafx.animation.Timeline;
 3 import javafx.beans.property.DoubleProperty;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.scene.shape.Circle;
 7 import javafx.util.Duration;
 8
 9 public class BallPane extends Pane {
10 public final double radius = 20;
11 private double x = radius, y = radius;
12 private double dx = 1, dy = 1;
13 private Circle circle = new Circle(x, y, radius);
14 private Timeline animation;
15
16 public BallPane() {
17 circle.setFill(Color.GREEN); // Set ball color
18 getChildren().add(circle); // Place a ball into this pane

618 Chapter 15 Event-Driven Programming and Animations

19
20 // Create an animation for moving the ball
21 animation = new Timeline(
22 new KeyFrame(Duration.millis(50), e -> moveBall()));
23 animation.setCycleCount(Timeline.INDEFINITE);
24 animation.play(); // Start animation
25 }
26
27 public void play() {
28 animation.play();
29 }
30
31 public void pause() {
32 animation.pause();
33 }
34
35 public void increaseSpeed() {
36 animation.setRate(animation.getRate() + 0.1);
37 }
38
39 public void decreaseSpeed() {
40 animation.setRate(
41 animation.getRate() > 0 ? animation.getRate() - 0.1 : 0);
42 }
43
44 public DoubleProperty rateProperty() {
45 return animation.rateProperty();
46 }
47
48 protected void moveBall() {
49 // Check boundaries
50 if (x < radius || x > getWidth() - radius) {
51 dx *= -1; // Change ball move direction
52 }
53 if (y < radius || y > getHeight() - radius) {
54 dy *= -1; // Change ball move direction
55 }
56
57 // Adjust ball position
58 x += dx;
59 y += dy;
60 circle.setCenterX(x);
61 circle.setCenterY(y);
62 }
63 }

BallPane extends Pane to display a moving ball (line 9). An instance of Timeline is
created to control animation (lines 21 and 22). This instance contains a KeyFrame object that
invokes the moveBall() method at a fixed rate. The moveBall() method moves the ball to
simulate animation. The center of the ball is at (x, y), which changes to (x + dx, y + dy) on
the next move (lines 58–61). When the ball is out of the horizontal boundary, the sign of dx is
changed (from positive to negative or vice versa) (lines 50–52). This causes the ball to change
its horizontal movement direction. When the ball is out of the vertical boundary, the sign of dy
is changed (from positive to negative or vice versa) (lines 53–55). This causes the ball to change
its vertical movement direction. The pause and play methods (lines 27–33) can be used to
pause and resume the animation. The increaseSpeed() and decreaseSpeed() methods
(lines 35–42) can be used to increase and decrease animation speed. The rateProperty()

create animation

keep animation running
start animation

play animation

pause animation

increase animation rate

decrease animation rate

change horizontal direction

change verticaal direction

set new ball position

15.12 Case Study: Bouncing Ball 619

method (lines 44–46) returns a binding property value for rate. This binding property is useful
for binding the rate in future applications in the next chapter.

LISTING 15.18 BounceBallControl.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.input.KeyCode;
 5
 6 public class BounceBallControl extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 BallPane ballPane = new BallPane(); // Create a ball pane
10
11 // Pause and resume animation
12 ballPane.setOnMousePressed(e -> ballPane.pause());
13 ballPane.setOnMouseReleased(e -> ballPane.play());
14
15 // Increase and decrease animation
16 ballPane.setOnKeyPressed(e -> {
17 if (e.getCode() == KeyCode.UP) {
18 ballPane.increaseSpeed();
19 }
20 else if (e.getCode() == KeyCode.DOWN) {
21 ballPane.decreaseSpeed();
22 }
23 });
24
25 // Create a scene and place it in the stage
26 Scene scene = new Scene(ballPane, 250, 150);
27 primaryStage.setTitle("BounceBallControl"); // Set the stage title
28 primaryStage.setScene(scene); // Place the scene in the stage
29 primaryStage.show(); // Display the stage
30
31 // Must request focus after the primary stage is displayed
32 ballPane.requestFocus();
33 }
34 }

The BounceBallControl class is the main JavaFX class that extends Applicaiton to
display the ball pane with control functions. The mouse-pressed and mouse-released handlers
are implemented for the ball pane to pause the animation and resume the animation (lines 12
and 13). When the UP arrow key is pressed, the ball pane’s increaseSpeed() method is
invoked to increase the ball’s movement (line 18). When the DOWN arror key is pressed, the
ball pane’s decreaseSpeed() method is invoked to reduce the ball’s movement (line 21).

Invoking ballPane.requestFocus() in line 32 sets the input focus to ballPane.

15.24 How does the program make the ball moving?

15.25 How does the code in Listing 15.17 BallPane.java change the direction of the ball
movement?

15.26 What does the program do when the mouse is pressed on the ball pane? What does
the program do when the mouse is released on the ball pane?

15.27 If line 32 in Listing 15.18 BounceBallControl.java is not in the program, what would
happen when you press the UP or the DOWN arrow key?

15.28 If line 23 is not in Listing 15.17, what would happen?

create a ball pane

pause animation
resume animation

increase speed

decrease speed

request focus on pane

✓Point✓Check

620 Chapter 15 Event-Driven Programming and Animations

CHAPTER SUMMARY

1. The root class of the JavaFX event classes is javafx.event.Event, which is a sub-
class of java.util.EventObject. The subclasses of Event deal with special types
of events, such as action events, window events, mouse events, and key events. If a node
can fire an event, any subclass of the node can fire the same type of event.

2. The handler object’s class must implement the corresponding event-handler interface.
JavaFX provides a handler interface EventHandler<T extends Event> for every
event class T. The handler interface contains the handle(T e) method for handling
event e.

3. The handler object must be registered by the source object. Registration methods
depend on the event type. For an action event, the method is setOnAction. For a
mouse-pressed event, the method is setOnMousePressed. For a key-pressed event,
the method is setOnKeyPressed.

4. An inner class, or nested class, is defined within the scope of another class. An inner
class can reference the data and methods defined in the outer class in which it nests, so
you need not pass the reference of the outer class to the constructor of the inner class.

5. An anonymous inner class can be used to shorten the code for event handling. Further-
more, a lambda expression can be used to greatly simplify the event-handling code for
functional interface handlers.

6. A functional interface is an interface with exactly one abstract method. This is also
known as a single abstract method (SAM) interface.

7. A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved,
or dragged on a node or a scene. The getButton() method can be used to detect which
mouse button is pressed for the event.

8. A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene.
The getCode() method can be used to return the code value for the key.

9. An instance of Observable is known as an observable object, which contains the
addListener(InvalidationListener listener) method for adding a listener.
Once the value is changed in the property, a listener is notified. The listener class should
implement the InvalidationListener interface, which uses the invalidated
method to handle the property value change.

10. The abstract Animation class provides the core functionalities for animations in
JavaFX. PathTransition, FadeTransition, and Timeline are specialized classes
for implementing animations.

KEY TERMS

anonymous inner class 594
event 588
event-driven programming 588
event handler 589
event-handler interface 589
event object 588
event source object 588

functional interface 598
lambda expression 597
inner class 591
key code 604
observable object 607
single abstract method interface 598

Programming Exercises 621

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 15.2–15.7

*15.1 (Pick four cards) Write a program that lets the user click the Refresh button to
display four cards from a deck of 52 cards, as shown in Figure 15.24a. (See the
hint in Programming Exercise 14.3 on how to obtain four random cards.)

FIGURE 15.24 (a) Exercise 15.1 displays four cards randomly. (b) Exercise 15.2 rotates the rectangle. (c) Exercise 15.3
uses the buttons to move the ball.

(a) (b) (c)

FIGURE 15.25 (a) Exercise 15.4 performs addition, subtraction, multiplication, and division
on double numbers. (b) The user enters the investment amount, years, and interest rate to
compute future value.

(a) (b)

15.2 (Rotate a rectangle) Write a program that rotates a rectangle 15 degrees right
when the Rotate button is clicked, as shown in Figure 15.24b.

*15.3 (Move the ball) Write a program that moves the ball in a pane. You should
define a pane class for displaying the ball and provide the methods for moving
the ball left, right, up, and down, as shown in Figure 15.24c. Check the bound-
ary to prevent the ball from moving out of sight completely.

*15.4 (Create a simple calculator) Write a program to perform addition, subtraction,
multiplication, and division, as shown in Figure 15.25a.

*15.5 (Create an investment-value calculator) Write a program that calculates the
future value of an investment at a given interest rate for a specified number of
years. The formula for the calculation is:

futureValue = investmentAmount * (1 + monthlyInterestRate)years*12

VideoNote

Simple calculator

www.cs.armstrong.edu/liang/intro10e/quiz.html

622 Chapter 15 Event-Driven Programming and Animations

 Use text fields for the investment amount, number of years, and annual interest
rate. Display the future amount in a text field when the user clicks the Calculate
button, as shown in Figure 15.25b.

Sections 15.8 and 15.9

**15.6 (Alternate two messages) Write a program to display the text Java is fun
and Java is powerful alternately with a mouse click.

*15.7 (Change color using a mouse) Write a program that displays the color of a
circle as black when the mouse button is pressed and as white when the mouse
button is released.

*15.8 (Display the mouse position) Write two programs, such that one displays the
mouse position when the mouse button is clicked (see Figure 15.26a) and the
other displays the mouse position when the mouse button is pressed and ceases
to display it when the mouse button is released.

FIGURE 15.26 (a) Exercise 15.8 displays the mouse position. (b) Exercise 15.9 uses the
arrow keys to draw the lines.

(a) (b)

FIGURE 15.27 Detect whether a point is inside a circle, a rectangle, or a polygon.

(a) (b) (c)

*15.9 (Draw lines using the arrow keys) Write a program that draws line segments
using the arrow keys. The line starts from the center of the pane and draws
toward east, north, west, or south when the right-arrow key, up-arrow key, left-
arrow key, or down-arrow key is pressed, as shown in Figure 15.26b.

**15.10 (Enter and display a string) Write a program that receives a string from the
keyboard and displays it on a pane. The Enter key signals the end of a string.
Whenever a new string is entered, it is displayed on the pane.

*15.11 (Move a circle using keys) Write a program that moves a circle up, down, left,
or right using the arrow keys.

**15.12 (Geometry: inside a circle?) Write a program that draws a fixed circle centered
at (100, 60) with radius 50. Whenever the mouse is moved, display a message
indicating whether the mouse point is inside the circle at the mouse point or
outside of it, as shown in Figure 15.27a. Check mouse point location

VideoNote

Programming Exercises 623

**15.13 (Geometry: inside a rectangle?) Write a program that draws a fixed rectangle
centered at (100, 60) with width 100 and height 40. Whenever the mouse is
moved, display a message indicating whether the mouse point is inside the rec-
tangle at the mouse point or outside of it, as shown in Figure 15.27b. To detect
whether a point is inside a polygon, use the contains method defined in the
Node class.

**15.14 (Geometry: inside a polygon?) Write a program that draws a fixed polygon
with points at (40, 20), (70, 40), (60, 80), (45, 45), and (20, 60). When-
ever the mouse is moved, display a message indicating whether the mouse
point is inside the polygon at the mouse point or outside of it, as shown in
Figure 15.27c. To detect whether a point is inside a polygon, use the contains
method defined in the Node class.

**15.15 (Geometry: add and remove points) Write a program that lets the user click on
a pane to dynamically create and remove points (see Figure 15.28a). When the
user left-clicks the mouse (primary button), a point is created and displayed
at the mouse point. The user can remove a point by pointing to it and right-
clicking the mouse (secondary button).

FIGURE 15.28 (a) Exercise 15.15 allows the user to create/remove points dynamically.
(b) Exercise 15.16 displays two vertices and a connecting edge.

FIGURE 15.29 (a) Exercise 15.17 enables the user to add/remove points dynamically and displays the bounding
rectangle. (b) When you click a circle, a new circle is displayed at a random location. (c) After 20 circles are clicked, the
time spent is displayed in the pane.

(a) (b) (c)

*15.16 (Two movable vertices and their distances) Write a program that displays two
circles with radius 10 at location (40, 40) and (120, 150) with a line connect-
ing the two circles, as shown in Figure 15.28b. The distance between the circles
is displayed along the line. The user can drag a circle. When that happens, the
circle and its line are moved and the distance between the circles is updated.

**15.17 (Geometry: find the bounding rectangle) Write a program that enables the user
to add and remove points in a two-dimensional plane dynamically, as shown
in Figure 15.29a. A minimum bounding rectangle is updated as the points are
added and removed. Assume that the radius of each point is 10 pixels.

624 Chapter 15 Event-Driven Programming and Animations

**15.18 (Move a rectangle using mouse) Write a program that displays a rectangle.
You can point the mouse inside the rectangle and drag (i.e., move with mouse
pressed) the rectangle wherever the mouse goes. The mouse point becomes the
center of the rectangle.

**15.19 (Game: eye-hand coordination) Write a program that displays a circle of radius
10 pixels filled with a random color at a random location on a pane, as shown
in Figure 15.29b. When you click the circle, it disappears and a new random-
color circle is displayed at another random location. After twenty circles are
clicked, display the time spent in the pane, as shown in Figure 15.29c.

**15.20 (Geometry: display angles) Write a program that enables the user to drag the verti-
ces of a triangle and displays the angles dynamically as the triangle shape changes,
as shown in Figure 15.30a. The formula to compute angles is given in Listing 4.1.

FIGURE 15.30 (a) Exercise 15.20 enables the user to drag vertices and display the angles
dynamically. (b) Exercise 15.21 enables the user to drag vertices along the circle and display
the angles in the triangle dynamically.

(a) (b)

FIGURE 15.31 The program animates a palindrome swing.

*15.21 (Drag points) Draw a circle with three random points on the circle. Connect
the points to form a triangle. Display the angles in the triangle. Use the mouse
to drag a point along the perimeter of the circle. As you drag it, the triangle and
angles are redisplayed dynamically, as shown in Figure 15.30b. For computing
angles in a triangle, see Listing 4.1.

Section 15.10

*15.22 (Auto resize cylinder) Rewrite Programming Exercise 14.10 so that the cylin-
der’s width and height are automatically resized when the window is resized.

*15.23 (Auto resize stop sign) Rewrite Programming Exercise 14.15 so that the stop
sign’s width and height are automatically resized when the window is resized.

Section 15.11

**15.24 (Animation: palindrome) Write a program that animates a palindrome swing as
shown in Figure 15.31. Press/release the mouse to pause/resume the animation.

Programming Exercises 625

**15.25 (Animation: ball on curve) Write a program that animates a ball moving along
a sine curve, as shown in Figure 15.32. When the ball gets to the right border,
it starts over from the left. Enable the user to resume/pause the animation with
a click on the left/right mouse button.

FIGURE 15.32 The program animates a ball traveling along a sine curve.

*15.26 (Change opacity) Rewrite Programming Exercise 15.24 so that the ball’s
opacity is changed as it swings.

*15.27 (Control a moving text) Write a program that displays a moving text, as shown
in Figure 15.33a and b. The text moves from left to right circularly. When it
disappears in the right, it reappears from the left. The text freezes when the
mouse is pressed and moves again when the button is released.

FIGURE 15.33 (a and b) A text is moving from left to right circularly. (c) The program simulates a fan running.

(a) (b) (c)

**15.28 (Display a running fan) Write a program that displays a running fan, as shown
in Figure 15.33c. Use the Pause, Resume, Reverse buttons to pause, resume,
and reverse fan running.

**15.29 (Racing car) Write a program that simulates car racing, as shown in
Figure 15.34a. The car moves from left to right. When it hits the right end, it
restarts from the left and continues the same process. You can use a timer to
control animation. Redraw the car with a new base coordinates (x, y), as shown
in Figure 15.34b. Also let the user pause/resume the animation with a but-
ton press/release and increase/decrease the car speed by pressing the UP and
DOWN arrow keys.

**15.30 (Slide show) Twenty-five slides are stored as image files (slide0.jpg, slide1
.jpg, . . . , slide24.jpg) in the image directory downloadable along with the
source code in the book. The size of each image is 800 * 600. Write a pro-
gram that automatically displays the slides repeatedly. Each slide is shown for

Display a running fan

VideoNote

626 Chapter 15 Event-Driven Programming and Animations

two seconds. The slides are displayed in order. When the last slide finishes, the
first slide is redisplayed, and so on. Click to pause if the animation is currently
playing. Click to resume if the animation is currently paused.

**15.31 (Geometry: pendulum) Write a program that animates a pendulum swinging,
as shown in Figure 15.35. Press the UP arrow key to increase the speed and the
DOWN key to decrease it. Press the S key to stop animation and the R key to
resume it.

FIGURE 15.34 (a) The program displays a moving car. (b) You can redraw a car with a new base point.

(a) (b)

x x � 20 x � 40

y

y�20

y�10

y�30

(x, y)

FIGURE 15.35 Exercise 15.31 animates a pendulum swinging.

FIGURE 15.36 (a) Exercise 15.32 allows the user to start and stop a clock. (b and c) The
balls are dropped into the bean machine.

(a) (b) (c)

*15.32 (Control a clock) Modify Listing 14.21, ClockPane.java, to add the animation
into this class and add two methods start() and stop() to start and stop the
clock. Write a program that lets the user control the clock with the Start and
Stop buttons, as shown in Figure 15.36a.

Programming Exercises 627

***15.33 (Game: bean-machine animation) Write a program that animates the bean
machine introduced in Programming Exercise 7.21. The animation terminates
after ten balls are dropped, as shown in Figure 15.36b and c.

***15.34 (Simulation: self-avoiding random walk) A self-avoiding walk in a lattice is a
path from one point to another that does not visit the same point twice. Self-
avoiding walks have applications in physics, chemistry, and mathematics. They
can be used to model chain-like entities such as solvents and polymers. Write
a program that displays a random path that starts from the center and ends at a
point on the boundary, as shown in Figure 15.37a or ends at a dead-end point
(i.e., surrounded by four points that have already been visited), as shown in
Figure 15.37b. Assume the size of the lattice is 16 by 16.

FIGURE 15.37 (a) A path ends at a boundary point. (b) A path ends at dead-end point. (c and d) Animation shows the
progress of a path step by step.

(a) (b) (c) (d)

For a lattice of size 10, the probability of dead-end paths is 10.6%
For a lattice of size 11, the probability of dead-end paths is 14.0%
...
For a lattice of size 80, the probability of dead-end paths is 99.5%

***15.35 (Animation: self-avoiding random walk) Revise the preceding exercise to dis-
play the walk step by step in an animation, as shown in Figure 15.37c and d.

**15.36 (Simulation: self-avoiding random walk) Write a simulation program to show
that the chance of getting dead-end paths increases as the grid size increases.
Your program simulates lattices with size from 10 to 80. For each lattice size,
simulate a self-avoiding random walk 10,000 times and display the probability
of the dead-end paths, as shown in the following sample output:

This page intentionally left blank

JAVAFX UI CONTROLS
AND MULTIMEDIA

Objectives
■ To create graphical user interfaces with various user-interface controls

(§§16.2–16.11).

■ To create a label with text and graphic using the Label class and
explore properties in the abstract Labeled class (§16.2).

■ To create a button with text and graphic using the Button class
and set a handler using the setOnAction method in the abstract
ButtonBase class (§16.3).

■ To create a check box using the CheckBox class (§16.4).

■ To create a radio button using the RadioButton class and group radio
buttons using a ToggleGroup (§16.5).

■ To enter data using the TextField class and password using the
PasswordField class (§16.6).

■ To enter data in multiple lines using the TextArea class (§16.7).

■ To select a single item using ComboBox (§16.8).

■ To select a single or multiple items using ListView (§16.9).

■ To select a range of values using ScrollBar (§16.10).

■ To select a range of values using Slider and explore differences
between ScrollBar and Slider (§16.11).

■ To develop a tic-tac-toe game (§16.12).

■ To view and play video and audio using the Media, MediaPlayer,
and MediaView (§16.13).

■ To develop a case study for showing the national flag and playing
anthem (§16.14).

CHAPTER

16

630 Chapter 16 JavaFX UI Controls and Multimedia

16.1 Introduction
JavaFX provides many UI controls for developing a comprehensive user interface.

A graphical user interface (GUI) makes a system user-friendly and easy to use. Creating a
GUI requires creativity and knowledge of how UI controls work. Since the UI controls in
JavaFX are very flexible and versatile, you can create a wide assortment of useful user inter-
faces for rich Internet applications.

Oracle provides tools for visually designing and developing GUIs. This enables the program-
mer to rapidly assemble the elements of a GUI with minimum coding. Tools, however, cannot
do everything. You have to modify the programs they produce. Consequently, before you begin
to use the visual tools, you must understand the basic concepts of JavaFX GUI programming.

Previous chapters used UI controls such as Button, Label, and TextField. This chapter
introduces the frequently used UI controls in detail (see Figure 16.1).

Key
Point

GUI

FIGURE 16.1 These UI controls are frequently used to create user interfaces.

Parent

TextInputControl

Node Control

ListView

ComboBoxBase ComboBox

Labeled

ScrollBar

Slider

ButtonBase

Label

RadioButton

Button

PasswordField

CheckBox

ToggleButton

TextArea

TextField

MediaView

ImageView Covered in
Chapter 14

Note
Throughout this book, the prefixes lbl, bt, chk, rb, tf, pf, ta, cbo, lv, scb,

sld, and mp are used to name reference variables for Label, Button, CheckBox,

RadioButton,TextField,PasswordField,TextArea,ComboBox,ListView,

ScrollBar, Slider, and MediaPlayer.

16.2 Labeled and Label
A label is a display area for a short text, a node, or both. It is often used to label other controls
(usually text fields). Labels and buttons share many common properties. These common prop-
erties are defined in the Labeled class, as shown in Figure 16.2.

A Label can be constructed using one of the three constructors as shown in Figure 16.3.
The graphic property can be any node such as a shape, an image, or a control. Listing 16.1

gives an example that displays several labels with text and images in the label, as shown in
Figure 16.4.

LISTING 16.1 LabelWithGraphic.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.ContentDisplay;
 5 import javafx.scene.control.Label;

naming convention
for controls

16.2 Labeled and Label 631

 6 import javafx.scene.image.Image;
 7 import javafx.scene.image.ImageView;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.StackPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Circle;
12 import javafx.scene.shape.Rectangle;
13 import javafx.scene.shape.Ellipse;
14
15 public class LabelWithGraphic extends Application {
16 @Override // Override the start method in the Application class
17 public void start(Stage primaryStage) {
18 ImageView us = new ImageView(new Image("image/us.gif"));
19 Label lb1 = new Label("US\n50 States", us);
20 lb1.setStyle("-fx-border-color: green; -fx-border-width: 2");
21 lb1.setContentDisplay(ContentDisplay.BOTTOM);
22 lb1.setTextFill(Color.RED);
23
24 Label lb2 = new Label("Circle", new Circle(50, 50, 25));
25 lb2.setContentDisplay(ContentDisplay.TOP);
26 lb2.setTextFill(Color.ORANGE);
27
28 Label lb3 = new Label("Retangle", new Rectangle(10, 10, 50, 25));
29 lb3.setContentDisplay(ContentDisplay.RIGHT);
30
31 Label lb4 = new Label("Ellipse", new Ellipse(50, 50, 50, 25));
32 lb4.setContentDisplay(ContentDisplay.LEFT);
33

create a label

set node position

create a label

set node position

create a label

create a label

FIGURE 16.2 Labeled defines common properties for Label, Button, CheckBox, and RadioButton.

-alignment: ObjectProperty<Pos>

-contentDisplay:
 ObjectProperty<ContentDisplay>

-graphic: ObjectProperty<Node>

-graphicTextGap: DoubleProperty

-textFill: ObjectProperty<Paint>

-text: StringProperty

-underline: BooleanProperty

-wrapText: BooleanProperty

javafx.scene.control.Labeled

Specifies the alignment of the text and node in the labeled.

Specifies the position of the node relative to the text using the constants
TOP,BOTTOM,LEFT, and RIGHT defined in ContentDisplay.

A graphic for the labeled.

The gap between the graphic and the text.

The paint used to fill the text.

A text for the labeled.

Whether text should be underlined.

Whether text should be wrapped if the text exceeds the width.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 16.3 Label is created to display a text or a node, or both.

javafx.scene.control.Label

+Label()

+Label(text: String)

+Label(text: String, graphic: Node)

javafx.scene.control.Labeled

Creates an empty label.

Creates a label with the specified text.

Creates a label with the specified text and graphic.

632 Chapter 16 JavaFX UI Controls and Multimedia

34 Ellipse ellipse = new Ellipse(50, 50, 50, 25);
35 ellipse.setStroke(Color.GREEN);
36 ellipse.setFill(Color.WHITE);
37 StackPane stackPane = new StackPane();
38 stackPane.getChildren().addAll(ellipse, new Label("JavaFX"));
39 Label lb5 = new Label("A pane inside a label", stackPane);
40 lb5.setContentDisplay(ContentDisplay.BOTTOM);
41
42 HBox pane = new HBox(20);
43 pane.getChildren().addAll(lb1, lb2, lb3, lb4, lb5);
44
45 // Create a scene and place it in the stage
46 Scene scene = new Scene(pane, 450, 150);
47 primaryStage.setTitle("LabelWithGraphic"); // Set the stage title
48 primaryStage.setScene(scene); // Place the scene in the stage
49 primaryStage.show(); // Display the stage
50 }
60 }

create a label

add labels to pane

FIGURE 16.4 The program displays labels with texts and nodes.

The program creates a label with a text and an image (line 19). The text is US\n50 States
so it is displayed in two lines. Line 21 specifies that the image is placed at the bottom of the
text.

The program creates a label with a text and a circle (line 24). The circle is placed on top of
the text (line 25). The program creates a label with a text and a rectangle (line 28). The rectan-
gle is placed on the right of the text (line 29). The program creates a label with a text and an
ellipse (line 31). The ellipse is placed on the left of the text (line 32).

The program creates an ellipse (line 34), places it along with a label to a stack pane
(line 38), and creates a label with a text and the stack pane as the node (line 39). As seen from
this example, you can place any node in a label.

The program creates an HBox (line 42) and places all five labels into the HBox (line 43).

16.1 How do you create a label with a node without a text?

16.2 How do you place a text on the right of the node in a label?

16.3 Can you display multiple lines of text in a label?

16.4 Can the text in a label be underlined?

16.3 Button
A button is a control that triggers an action event when clicked. JavaFX provides regular
buttons, toggle buttons, check box buttons, and radio buttons. The common features of these
buttons are defined in ButtonBase and Labeled classes as shown in Figure 16.5.

The Labeled class defines the common properties for labels and buttons. A button is just
like a label except that the button has the onAction property defined in the ButtonBase
class, which sets a handler for handling a button’s action.

✓Point✓Check

16.3 Button 633

Listing 16.2 gives a program that uses the buttons to control the movement of a text, as
shown in Figure 16.6.

LISTING 16.2 ButtonDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.image.ImageView;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.text.Text;
11
12 public class ButtonDemo extends Application {
13 protected Text text = new Text(50, 50, "JavaFX Programming");
14
15 protected BorderPane getPane() {
16 HBox paneForButtons = new HBox(20);
17 Button btLeft = new Button("Left",
18 new ImageView("image/left.gif"));
19 Button btRight = new Button("Right",
20 new ImageView("image/right.gif"));
21 paneForButtons.getChildren().addAll(btLeft, btRight);
22 paneForButtons.setAlignment(Pos.CENTER);
23 paneForButtons.setStyle("-fx-border-color: green");
24
25 BorderPane pane = new BorderPane();
26 pane.setBottom(paneForButtons);
27
28 Pane paneForText = new Pane();
29 paneForText.getChildren().add(text);
30 pane.setCenter(paneForText);
31
32 btLeft.setOnAction(e -> text.setX(text.getX() - 10));
33 btRight.setOnAction(e -> text.setX(text.getX() + 10));
34
35 return pane;

create a button

add buttons to pane

create a border pane
add buttons to the bottom

add an action handler

return a pane

FIGURE 16.5 ButtonBase extends Labeled and defines common features for all buttons.

javafx.scene.control.ButtonBase

-onAction: ObjectProperty<EventHandler
 <ActionEvent>>

javafx.scene.control.Labeled

javafx.scene.control.Button

+Button()

+Button(text: String)

+Button(text: String, graphic: Node)

Defines a handler for handling a button’s action.

Creates an empty button.

Creates a button with the specified text.

Creates a button with the specified text and graphic.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

634 Chapter 16 JavaFX UI Controls and Multimedia

36 }
37
38 @Override // Override the start method in the Application class
39 public void start(Stage primaryStage) {
40 // Create a scene and place it in the stage
41 Scene scene = new Scene(getPane(), 450, 200);
42 primaryStage.setTitle("ButtonDemo"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46 }

set pane to scene

FIGURE 16.6 The program demonstrates using buttons.

The program creates two buttons btLeft and btRight with each button containing a
text and an image (lines 17–20). The buttons are placed in an HBox (line 21) and the HBox is
placed in the bottom of a border pane (line 26). A text is created in line 13 and is placed in the
center of the border pane (line 30). The action handler for btLeft moves the text to the left
(line 32). The action handler for btRight moves the text to the right (line 33).

The program purposely defines a protected getPane() method to return a pane
(line 15). This method will be overridden by subclasses in the upcoming examples to add
more nodes in the pane. The text is declared protected so that it can be accessed by sub-
classes (line 13).

16.5 How do you create a button with a text and a node? Can you apply all the methods for
Labeled to Button?

16.6 Why is the getPane() method protected in Listing 16.2? Why is the data field text
protected?

16.7 How do you set a handler for processing a button-clicked action?

16.4 CheckBox
A CheckBox is used for the user to make a selection. Like Button, CheckBox inherits all the
properties such as onAction, text, graphic, alignment, graphicTextGap, textFill,
contentDisplay from ButtonBase and Labeled, as shown in Figure 16.7. Additionally,
it provides the selection property to indicate whether a check box is selected.

Here is an example of a check box with text US, a graphic image, green text color, and
black border, and initially selected.

getPane() protected

✓Point✓Check

CheckBox chkUS = new CheckBox("US");
chkUS.setGraphic(new ImageView("image/usIcon.gif"));
chkUS.setTextFill(Color.GREEN);
chkUS.setContentDisplay(ContentDisplay.LEFT);
chkUS.setStyle("-fx-border-color: black");
chkUS.setSelected(true);
chkUS.setPadding(new Insets(5, 5, 5, 5));

When a check box is clicked (checked or unchecked), it fires an ActionEvent. To see if
a check box is selected, use the isSelected() method.

We now write a program that adds two check boxes named Bold and Italic to the pre-
ceding example to let the user specify whether the message is in bold or italic, as shown in
Figure 16.8.

FIGURE 16.7 CheckBox contains the properties inherited from ButtonBase and Labeled.

javafx.scene.control.ButtonBase

-onAction: ObjectProperty<EventHandler
 <ActionEvent>>

javafx.scene.control.Labeled

javafx.scene.control.CheckBox

-selected: BooleanProperty

Defines a handler for handling a button’s action.

Indicates whether this check box is checked.

Creates an empty check box.

Creates a check box with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+CheckBox()

+CheckBox(text: String)

FIGURE 16.8 The program demonstrates check boxes.

VBox
containing
two check
boxes

16.4 CheckBox 635

There are at least two approaches to writing this program. The first is to revise the preced-
ing ButtonDemo class to insert the code for adding the check boxes and processing their
events. The second is to define a subclass that extends ButtonDemo. Please implement the
first approach as an exercise. Listing 16.3 gives the code to implement the second approach.

LISTING 16.3 CheckBoxDemo.java
 1 import javafx.event.ActionEvent;
 2 import javafx.event.EventHandler;
 3 import javafx.geometry.Insets;
 4 import javafx.scene.control.CheckBox;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.VBox;
 7 import javafx.scene.text.Font;
 8 import javafx.scene.text.FontPosture;
 9 import javafx.scene.text.FontWeight;
10
11 public class CheckBoxDemo extends ButtonDemo {
12 @Override // Override the getPane() method in the super class
13 protected BorderPane getPane() {
14 BorderPane pane = super.getPane();

override getPane()
invoke super.getPane()

Application

ButtonDemo

CheckBoxDemo

636 Chapter 16 JavaFX UI Controls and Multimedia

15
16 Font fontBoldItalic = Font.font("Times New Roman",
17 FontWeight.BOLD, FontPosture.ITALIC, 20);
18 Font fontBold = Font.font("Times New Roman",
19 FontWeight.BOLD, FontPosture.REGULAR, 20);
20 Font fontItalic = Font.font("Times New Roman",
21 FontWeight.NORMAL, FontPosture.ITALIC, 20);
22 Font fontNormal = Font.font("Times New Roman",
23 FontWeight.NORMAL, FontPosture.REGULAR, 20);
24
25 text.setFont(fontNormal);
26
27 VBox paneForCheckBoxes = new VBox(20);
28 paneForCheckBoxes.setPadding(new Insets(5, 5, 5, 5));
29 paneForCheckBoxes.setStyle("-fx-border-color: green");
30 CheckBox chkBold = new CheckBox("Bold");
31 CheckBox chkItalic = new CheckBox("Italic");
32 paneForCheckBoxes.getChildren().addAll(chkBold, chkItalic);
33 pane.setRight(paneForCheckBoxes);
34
35 EventHandler<ActionEvent> handler = e -> {
36 if (chkBold.isSelected() && chkItalic.isSelected()) {
37 text.setFont(fontBoldItalic); // Both check boxes checked
38 }
39 else if (chkBold.isSelected()) {
40 text.setFont(fontBold); // The Bold check box checked
41 }
42 else if (chkItalic.isSelected()) {
43 text.setFont(fontItalic); // The Italic check box checked
44 }
45 else {
46 text.setFont(fontNormal); // Both check boxes unchecked
47 }
48 };
49
50 chkBold.setOnAction(handler);
51 chkItalic.setOnAction(handler);
52
53 return pane; // Return a new pane
54 }
55 }

CheckBoxDemo extends ButtonDemo and overrides the getPane() method (line 13).
The new getPane() method invokes the super.getPane() method from the ButtonDemo
class to obtain a border pane that contains the buttons and a text (line 14). The check boxes are
created and added to paneForCheckBoxes (lines 30–32). paneForCheckBoxes is added to
the border pane (lines 33).

The handler for processing the action event on check boxes is created in lines 35–48. It sets
the appropriate font based on the status of the check boxes.

The start method for this JavaFX program is defined in ButtonDemo and inherited
in CheckBoxDemo. So when you run CheckBoxDemo, the start method in ButtonDemo
is invoked. Since the getPane() method is overridden in CheckBoxDemo, the method in
CheckBoxDemo is invoked from line 41 in Listing 16.2, ButtonDemo.java.

16.8 How do you test if a check box is selected?

16.9 Can you apply all the methods for Labeled to CheckBox?

16.10 Can you set a node for the graphic property in a check box?

create fonts

pane for check boxes

create check boxes

create a handler

set handler for action

return a pane

main method omitted

✓Point✓Check

16.5 RadioButton
Radio buttons, also known as option buttons, enable the user to choose a single item from a
group of choices. In appearance radio buttons resemble check boxes, but check boxes display
a square that is either checked or blank, whereas radio buttons display a circle that is either
filled (if selected) or blank (if not selected).

RadioButton is a subclass of ToggleButton. The difference between a radio button
and a toggle button is that a radio button displays a circle, but a toggle button is rendered
similar to a button. The UML diagrams for ToggleButton and RadioButton are shown in
Figure 16.9.

option buttons

16.5 RadioButton 637

FIGURE 16.9 ToggleButton and RadioButton are specialized buttons for making selections.

javafx.scene.control.ToggleButton

-selected: BooleanProperty

-toggleGroup:
 ObjectProperty<ToggleGroup>

+ToggleButton()

+ToggleButton(text: String)

+ToggleButton(text: String, graphic: Node)

javafx.scene.control.RadioButton

+RadioButton()

+RadioButton(text: String)

Indicates whether the button is selected.

Specifies the button group to which the button belongs.

Creates an empty toggle button.

Creates a toggle button with the specified text.

Creates a toggle button with the specified text and graphic.

Creates an empty radio button.

Creates a radio button with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Here is an example of a radio button with text US, a graphic image, green text color, and
black border, and initially selected.

To group radio buttons, you need to create an instance of ToggleGroup and set a radio
button’s toggleGroup property to join the group, as follows:

 ToggleGroup group = new ToggleGroup();
 rbRed.setToggleGroup(group);
 rbGreen.setToggleGroup(group);
 rbBlue.setToggleGroup(group);

This code creates a button group for radio buttons rbRed, rbGreen, and rbBlue so that
buttons rbRed, rbGreen, and rbBlue are selected mutually exclusively. Without grouping,
these buttons would be independent.

When a radio button is changed (selected or deselected), it fires an ActionEvent. To see
if a radio button is selected, use the isSelected() method.

RadioButton rbUS = new RadioButton("US");
rbUS.setGraphic(new ImageView("image/usIcon.gif"));
rbUS.setTextFill(Color.GREEN);
rbUS.setContentDisplay(ContentDisplay.LEFT);
rbUS.setStyle("-fx-border-color: black");
rbUS.setSelected(true);
rbUS.setPadding(new Insets(5, 5, 5,));

638 Chapter 16 JavaFX UI Controls and Multimedia

We now give a program that adds three radio buttons named Red, Green, and Blue to the
preceding example to let the user choose the color of the message, as shown in Figure 16.10.

FIGURE 16.10 The program demonstrates using radio buttons.

VBox
containing

three radio
buttons

Again there are at least two approaches to writing this program. The first is to revise the
preceding CheckBoxDemo class to insert the code for adding the radio buttons and process-
ing their events. The second is to define a subclass that extends CheckBoxDemo. Listing 16.4
gives the code to implement the second approach.

LISTING 16.4 RadioButtonDemo.java
 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.RadioButton;
 3 import javafx.scene.control.ToggleGroup;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.layout.VBox;
 6 import javafx.scene.paint.Color;
 7
 8 public class RadioButtonDemo extends CheckBoxDemo {
 9 @Override // Override the getPane() method in the super class
10 protected BorderPane getPane() {
11 BorderPane pane = super.getPane();
12
13 VBox paneForRadioButtons = new VBox(20);
14 paneForRadioButtons.setPadding(new Insets(5, 5, 5, 5));
15 paneForRadioButtons.setStyle("-fx-border-color: green");
16 paneForRadioButtons.setStyle
17 ("-fx-border-width: 2px; -fx-border-color: green");
18 RadioButton rbRed = new RadioButton("Red");
19 RadioButton rbGreen = new RadioButton("Green");
20 RadioButton rbBlue = new RadioButton("Blue");
21 paneForRadioButtons.getChildren().addAll(rbRed, rbGreen, rbBlue);
22 pane.setLeft(paneForRadioButtons);
23
24 ToggleGroup group = new ToggleGroup();
25 rbRed.setToggleGroup(group);
26 rbGreen.setToggleGroup(group);
27 rbBlue.setToggleGroup(group);
28
29 rbRed.setOnAction(e -> {
30 if (rbRed.isSelected()) {
31 text.setFill(Color.RED);
32 }
33 });
34
35 rbGreen.setOnAction(e -> {
36 if (rbGreen.isSelected()) {
37 text.setFill(Color.GREEN);

override getPane()
invoke super.getPane()

pane for radio buttons

create radio buttons

add to border pane

group radio buttons

handle radio button

Application

ButtonDemo

CheckBoxDemo

RadioButtonDemo

38 }
39 });
40
41 rbBlue.setOnAction(e -> {
42 if (rbBlue.isSelected()) {
43 text.setFill(Color.BLUE);
44 }
45 });
46
47 return pane;
48 }
49 }

RadioButtonDemo extends CheckBoxDemo and overrides the getPane() method (line
10). The new getPane() method invokes the getPane() method from the CheckBoxDemo
class to create a border pane that contains the check boxes, buttons, and a text (line 11). This
border pane is returned from invoking super.getPane(). The radio buttons are created and
added to paneForRadioButtons (lines 18–21). paneForRadioButtons is added to the
border pane (lines 22).

The radio buttons are grouped together in lines 24–27. The handlers for processing the
action event on radio buttons are created in lines 29–45. It sets the appropriate color based on
the status of the radio buttons.

The start method for this JavaFX program is defined in ButtonDemo and inherited in
CheckBoxDemo and then in RadioButtonDemo. So when you run RadioButtonDemo,
the start method in ButtonDemo is invoked. Since the getPane() method is overrid-
den in RadioButtonDemo, the method in RadioButtonDemo is invoked from line 41 in
Listing 16.2, ButtonDemo.java.

16.11 How do you test if a radio button is selected?

16.12 Can you apply all the methods for Labeled to RadioButton?

16.13 Can you set any node in the graphic property in a radio button?

16.14 How do you group radio buttons?

16.6 TextField
A text field can be used to enter or display a string. TextField is a subclass of
TextInputControl. Figure 16.11 lists the properties and constructors in TextField.

Here is an example of creating a noneditable text field with red text color, a specified font,
and right horizontal alignment:

return border pane

main method omitted

✓Point✓Check

16.6 TextField 639

TextField tfMessage = new TextField("T-Strom");
tfMessage.setEditable(false);
tfMessage.setStyle("-fx-text-fill: red");
tfMessage.setFont(Font.font("Times", 20));
tfMessage.setAlignment(Pos.BASELINE_RIGHT);

When you move the cursor in the text field and press the Enter key, it fires an ActionEvent.
Listing 16.5 gives a program that adds a text field to the preceding example to let the user

set a new message, as shown in Figure 16.12.

LISTING 16.5 TextFieldDemo.java
 1 import javafx.geometry.Insets;
 2 import javafx.geometry.Pos;

640 Chapter 16 JavaFX UI Controls and Multimedia

 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.TextField;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class TextFieldDemo extends RadioButtonDemo {
 8 @Override // Override the getPane() method in the super class
 9 protected BorderPane getPane() {
10 BorderPane pane = super.getPane();
11
12 BorderPane paneForTextField = new BorderPane();
13 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
14 paneForTextField.setStyle("-fx-border-color: green");
15 paneForTextField.setLeft(new Label("Enter a new message: "));
16
17 TextField tf = new TextField();
18 tf.setAlignment(Pos.BOTTOM_RIGHT);
19 paneForTextField.setCenter(tf);
20 pane.setTop(paneForTextField);
21
22 tf.setOnAction(e -> text.setText(tf.getText()));
23
24 return pane;
25 }
26 }

override getPane()
invoke super.getPane()

pane for label and text field

create text field

add to border pane

handle text field action

return border pane

main method omitted

FIGURE 16.12 The program demonstrates using text fields.

FIGURE 16.11 TextField enables the user to enter or display a string.

javafx.scene.control.TextInputControl

-text: StringProperty

-editable: BooleanProperty

javafx.scene.control.TextField

-alignment: ObjectProperty<Pos>

-prefColumnCount: IntegerProperty

-onAction:
 ObjectProperty<EventHandler<ActionEvent>>

The text content of this control.

Indicates whether the text can be edited by the user.

Specifies how the text should be aligned in the text field.

Specifies the preferred number of columns in the text field.

Specifies the handler for processing the action event on the
 text field.

Creates an empty text field.

Creates a text field with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+TextField()

+TextField(text: String)

Application

ButtonDemo

CheckBoxDemo

RadioButtonDemo

TextFieldDemo

TextFieldDemo extends RadioButtonDemo (line 7) and adds a label and a text field to
let the user enter a new text (lines 12–19). After you set a new text in the text field and press
the Enter key, a new message is displayed (line 22). Pressing the Enter key on the text field
triggers an action event.

Note
If a text field is used for entering a password, use PasswordField to replace

TextField. PasswordField extends TextField and hides the input text with

echo characters ******.

16.15 Can you disable editing of a text field?

16.16 Can you apply all the methods for TextInputControl to TextField?

16.17 Can you set a node as the graphic property in a text field?

16.18 How do you align the text in a text field to the right?

16.7 TextArea
A TextArea enables the user to enter multiple lines of text.

If you want to let the user enter multiple lines of text, you may create several instances of
TextField. A better alternative, however, is to use TextArea, which enables the user to
enter multiple lines of text. Figure 16.13 lists the properties and constructors in TextArea.

PasswordField

✓Point✓Check

Key
Point

16.6 TextArea 641

FIGURE 16.13 TextArea enables the user to enter or display multiple lines of characters.

javafx.scene.control.TextInputControl

-text: StringProperty

-editable: BooleanProperty

javafx.scene.control.TextArea

-prefColumnCount: IntegerProperty

-prefRowCount: IntegerProperty

-wrapText: BooleanProperty

The text content of this control.

Indicates whether the text can be edited by the user.

Specifies the preferred number of text columns.

Specifies the preferred number of text rows.

Specifies whether the text is wrapped to the next line.

Creates an empty text area.

Creates a text area with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+TextArea()

+TextArea(text: String)

Here is an example of creating a text area with 5 rows and 20 columns, wrapped to the next
line, red text color, and Courier font 20 pixels.

TextArea taNote = new TextArea("This is a text area");
taNote.setPrefColumnCount(20);
taNote.setPrefRowCount(5);
taNote.setWrapText(true);
taNote.setStyle("-fx-text-fill: red");
taNote.setFont(Font.font("Times", 20));

642 Chapter 16 JavaFX UI Controls and Multimedia

TextArea provides scrolling, but often it is useful to create a ScrollPane object to hold an
instance of TextArea and let ScrollPane handle scrolling for TextArea, as follows:

// Create a scroll pane to hold text area
ScrollPane scrollPane = new ScrollPane(taNote);

Tip
You can place any node in a ScrollPane. ScrollPane provides vertical and

horizontal scrolling automatically if the control is too large to fit in the viewing area.

We now give a program that displays an image and a short text in a label, and a long text
in a text area, as shown in Figure 16.14.

ScrollPane

FIGURE 16.14 The program displays an image in a label, a title in a label, and text in the text area.

DescriptionPane

A text area
inside a
scroll pane

A label
showing an

image and a
text

FIGURE 16.15 TextAreaDemo uses DescriptionPane to display an image, title, and text
description of a national flag.

1 1
TextAreaDemo

javafx.application.Application

DescriptionPane

-lblImageTitle: Label

-taDescription: TextArea

+setImageView(im: ImageView)

+setDescription(text: String)

javafx.scene.layout.BorderPane

Here are the major steps in the program:

1. Define a class named DescriptionPane that extends BorderPane, as shown
in Listing 16.6. This class contains a text area inside a scroll pane, and a label for
displaying an image icon and a title. The class DescriptionPane will be reused in
later examples.

2. Define a class named TextAreaDemo that extends Application, as shown in
Listing 16.7. Create an instance of DescriptionPane and add it to the scene. The rela-
tionship between DescriptionPane and TextAreaDemo is shown in Figure 16.15.

LISTING 16.6 DescriptionPane.java
 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.Label;
 3 import javafx.scene.control.ContentDisplay;

 4 import javafx.scene.control.ScrollPane;
 5 import javafx.scene.control.TextArea;
 6 import javafx.scene.image.ImageView;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.text.Font;
 9
10 public class DescriptionPane extends BorderPane {
11 /** Label for displaying an image and a title */
12 private Label lblImageTitle = new Label();
13
14 /** Text area for displaying text */
15 private TextArea taDescription = new TextArea();
16
17 public DescriptionPane() {
18 // Center the icon and text and place the text under the icon
19 lblImageTitle.setContentDisplay(ContentDisplay.TOP);
20 lblImageTitle.setPrefSize(200, 100);
21
22 // Set the font in the label and the text field
23 lblImageTitle.setFont(new Font("SansSerif", 16));
24 taDescription.setFont(new Font("Serif", 14));
25
26 taDescription.setWrapText(true);
27 taDescription.setEditable(false);
28
29 // Create a scroll pane to hold the text area
30 ScrollPane scrollPane = new ScrollPane(taDescription);
31
32 // Place label and scroll pane in the border pane
33 setLeft(lblImageTitle);
34 setCenter(scrollPane);
35 setPadding(new Insets(5, 5, 5, 5));
36 }
37
38 /** Set the title */
39 public void setTitle(String title) {
40 lblImageTitle.setText(title);
41 }
42
43 /** Set the image view */
44 public void setImageView(ImageView icon) {
45 lblImageTitle.setGraphic(icon);
46 }
47
48 /** Set the text description */
49 public void setDescription(String text) {
50 taDescription.setText(text);
51 }
52 }

The text area is inside a ScrollPane (line 30), which provides scrolling functions for the
text area.

The wrapText property is set to true (line 26) so that the line is automatically wrapped
when the text cannot fit in one line. The text area is set as noneditable (line 27), so you cannot
edit the description in the text area.

It is not necessary to define a separate class for DescriptionPane in this example. How-
ever, this class was defined for reuse in the next section, where you will use it to display a
description pane for various images.

label

text area

label properties

wrap text
read only

scroll pane

16.6 TextArea 643

644 Chapter 16 JavaFX UI Controls and Multimedia

LISTING 16.7 TextAreaDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5
 6 public class TextAreaDemo extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Declare and create a description pane
10 DescriptionPane descriptionPane = new DescriptionPane();
11
12 // Set title, text, and image in the description pane
13 descriptionPane.setTitle("Canada");
14 String description = "The Canadian national flag ...";
15 descriptionPane.setImageView(new ImageView("image/ca.gif"));
16 descriptionPane.setDescription(description);
17
18 // Create a scene and place it in the stage
19 Scene scene = new Scene(descriptionPane, 450, 200);
20 primaryStage.setTitle("TextAreaDemo"); // Set the stage title
21 primaryStage.setScene(scene); // Place the scene in the stage
22 primaryStage.show(); // Display the stage
23 }
24 }

The program creates an instance of DescriptionPane (line 10), and sets the title (line 13),
image (line 15), and text in the description pane (line 16). DescriptionPane is a subclass of
Pane. DescriptionPane contains a label for displaying an image and a title, and a text area
for displaying a description of the image.

16.19 How do you create a text area with 10 rows and 20 columns?

16.20 How do you obtain the text from a text area?

16.21 Can you disable editing of a text area?

16.22 What method do you use to wrap text to the next line in a text area?

16.8 ComboBox
A combo box, also known as a choice list or drop-down list, contains a list of items
from which the user can choose.

A combo box is useful for limiting a user’s range of choices and avoids the cumbersome vali-
dation of data input. Figure 16.16 lists several frequently used properties and constructors in
ComboBox. ComboBox is defined as a generic class. The generic type T specifies the element
type for the elements stored in a combo box.

The following statements create a combo box with four items, red color, and value set to
the first item.

create descriptionPane

set title

set image

add descriptionPane
to scene

✓Point✓Check

Key
Point

ComboBox<String> cbo = new ComboBox<>();
cbo.getItems().addAll("Item 1", "Item 2",

"Item 3", "Item 4");
cbo.setStyle("-fx-color: red");
cbo.setValue("Item 1");

16.8 ComboBox 645

ComboBox inherits from ComboBoxBase. ComboBox can fire an ActionEvent.
Whenever an item is selected, an ActionEvent is fired. ObservableList is a
subinterface of java.util.List. So you can apply all the methods defined in List
for an ObservableList. For convenience, JavaFX provides the static method
FXCollections.observableArrayList(arrayOfElements) for creating an
ObservableList from an array of elements.

Listing 16.8 gives a program that lets the user view an image and a description of a coun-
try’s flag by selecting the country from a combo box, as shown in Figure 16.17.

FIGURE 16.16 ComboBox enables the user to select an item from a list of items.

javafx.scene.control.ComboBoxBase<T>

-value: ObjectProperty<T>

-editable: BooleanProperty

-onAction:
 ObjectProperty<EventHandler<ActionEvent>>

javafx.scene.control.ComboBox<T>

-items: ObjectProperty<ObservableList<T>>

-visibleRowCount: IntegerProperty

The value selected in the combo box.

Specifies whether the combo box allows user input.

Specifies the handler for processing the action event.

The items in the combo box popup.

The maximum number of visible rows of the items in the
 combo box popup.

Creates an empty combo box.

Creates a combo box with the specified items.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+ComboBox()

+ComboBox(items: ObservableList<T>)

FIGURE 16.17 Information about a country, including an image and a description of its flag,
is displayed when the country is selected in the combo box.

DescriptionPane

ComboBox

Here are the major steps in the program:

1. Create the user interface.
 Create a combo box with country names as its selection values. Create a DescriptionPane

object (the DescriptionPane class was introduced in the preceding section). Place
the combo box at the top of the border pane and the description pane in the center of the
border pane.

2. Process the event.
 Create a handler for handling action event from the combo box to set the flag title,

image, and text in the description pane for the selected country name.

646 Chapter 16 JavaFX UI Controls and Multimedia

LISTING 16.8 ComboBoxDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.collections.ObservableList;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.ComboBox;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
10
11 public class ComboBoxDemo extends Application {
12 // Declare an array of Strings for flag titles
13 private String[] flagTitles = {"Canada", "China", "Denmark",
14 "France", "Germany", "India", "Norway", "United Kingdom",
15 "United States of America"};
16
17 // Declare an ImageView array for the national flags of 9 countries
18 private ImageView[] flagImage = {new ImageView("image/ca.gif"),
19 new ImageView("image/china.gif"),
20 new ImageView("image/denmark.gif"),
21 new ImageView("image/fr.gif"),
22 new ImageView("image/germany.gif"),
23 new ImageView("image/india.gif"),
24 new ImageView("image/norway.gif"),
25 new ImageView("image/uk.gif"), new ImageView("image/us.gif")};
26
27 // Declare an array of strings for flag descriptions
28 private String[] flagDescription = new String[9];
29
30 // Declare and create a description pane
31 private DescriptionPane descriptionPane = new DescriptionPane();
32
33 // Create a combo box for selecting countries
34 private ComboBox<String> cbo = new ComboBox<>(); // flagTitles;
35
36 @Override // Override the start method in the Application class
37 public void start(Stage primaryStage) {
38 // Set text description
39 flagDescription[0] = "The Canadian national flag ...";
40 flagDescription[1] = "Description for China ... ";
41 flagDescription[2] = "Description for Denmark ... ";
42 flagDescription[3] = "Description for France ... ";
43 flagDescription[4] = "Description for Germany ... ";
44 flagDescription[5] = "Description for India ... ";
45 flagDescription[6] = "Description for Norway ... ";
46 flagDescription[7] = "Description for UK ... ";
47 flagDescription[8] = "Description for US ... ";
48
49 // Set the first country (Canada) for display
50 setDisplay(0);
51
52 // Add combo box and description pane to the border pane
53 BorderPane pane = new BorderPane();
54
55 BorderPane paneForComboBox = new BorderPane();
56 paneForComboBox.setLeft(new Label("Select a country: "));
57 paneForComboBox.setCenter(cbo);
58 pane.setTop(paneForComboBox);

countries

image views

description

combo box

16.9 ListView 647

59 cbo.setPrefWidth(400);
60 cbo.setValue("Canada");
61
62 ObservableList<String> items =
63 FXCollections.observableArrayList(flagTitles);
64 cbo.getItems().addAll(items);
65 pane.setCenter(descriptionPane);
66
67 // Display the selected country
68 cbo.setOnAction(e -> setDisplay(items.indexOf(cbo.getValue())));
69
70 // Create a scene and place it in the stage
71 Scene scene = new Scene(pane, 450, 170);
72 primaryStage.setTitle("ComboBoxDemo"); // Set the stage title
73 primaryStage.setScene(scene); // Place the scene in the stage
74 primaryStage.show(); // Display the stage
75 }
76
77 /** Set display information on the description pane */
78 public void setDisplay(int index) {
79 descriptionPane.setTitle(flagTitles[index]);
80 descriptionPane.setImageView(flagImage[index]);
81 descriptionPane.setDescription(flagDescription[index]);
82 }
83 }

The program stores the flag information in three arrays: flagTitles, flagImage, and
flagDescription (lines 13–28). The array flagTitles contains the names of nine coun-
tries, the array flagImage contains image views of the nine countries’ flags, and the array
flagDescription contains descriptions of the flags.

The program creates an instance of DescriptionPane (line 31), which was presented
in Listing 16.6, DescriptionPane.java. The program creates a combo box with values from
flagTitles (lines 62–63). The getItems() method returns a list from the combo box (line
64) and the addAll method adds multiple items into the list.

When the user selects an item in the combo box, the action event triggers the execution of
the handler. The handler finds the selected index (line 68) and invokes the setDisplay(int
index) method to set its corresponding flag title, flag image, and flag description on the pane
(lines 78–82).

16.23 How do you create a combo box and add three items to it?

16.24 How do you retrieve an item from a combo box? How do you retrieve a selected item
from a combo box?

16.25 How do you get the number of items in a combo box? How do you retrieve an item at
a specified index in a combo box?

16.26 What events would a ComboBox fire upon selecting a new item?

16.9 ListView
A list view is a control that basically performs the same function as a combo box, but
it enables the user to choose a single value or multiple values.

Figure 16.18 lists several frequently used properties and constructors in ListView. ListView
is defined as a generic class. The generic type T specifies the element type for the elements
stored in a list view.

set combo box value

observable list

add to combo box

✓Point✓Check

Key
Point

VideoNote

Use ListView

648 Chapter 16 JavaFX UI Controls and Multimedia

The getSelectionModel() method returns an instance of SelectionModel, which
contains the methods for setting a selection mode and obtaining selected indices and items.
The selection mode is defined in one of the two constants SelectionMode.MULTIPLE and
SelectionMode.SINGLE, which indicates whether a single item or multiple items can be
selected. The default value is SelectionMode.SINGLE. Figure 16.19a shows a single selec-
tion and Figure 16.19b–c show multiple selections.

FIGURE 16.18 ListView enables the user to select one or multiple items from a list of items.

javafx.scene.control.ListView<T>

-items: ObjectProperty<ObservableList<T>>

-orientation: BooleanProperty

-selectionModel:
 ObjectProperty<MultipleSelectionModel<T>>

+ListView()

+ListView(items: ObservableList<T>)

The items in the list view.

Indicates whether the items are displayed horizontally or vertically
 in the list view.

Specifies how items are selected. The SelectionModel is also used
 to obtain the selected items.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty list view.

Creates a list view with the specified items.

FIGURE 16.19 SelecitonMode has two selection modes: single selection and multiple-
interval selection.

(c) Multiple selection(a) Single selection (b) Multiple selection

The following statements create a list view of six items with multiple selections allowed.

 ObservableList<String> items =
 FXCollections.observableArrayList("Item 1", "Item 2",

"Item 3", "Item 4", "Item 5", "Item 6");
 ListView<String> lv = new ListView<>(items);
 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

The selection model in a list view has the selectedItemProperty property, which is an
instance of Observable. As discussed in Section 15.10, you can add a listener to this prop-
erty for handling the property change as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(
new InvalidationListener() {

 public void invalidated(Observable ov) {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());

16.9 ListView 649

 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 }
 });

This anonymous inner class can be simplified using a lambda expression as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(ov -> {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());
 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 });

Listing 16.9 gives a program that lets users select the countries in a list view and displays
the flags of the selected countries in the image views. Figure 16.20 shows a sample run of the
program.

FIGURE 16.20 When the countries in the list view are selected, corresponding images
of their flags are displayed in the image views.

FlowPane

An ImageView
is displayed

ListView
inside a

scroll pane

Here are the major steps in the program:

1. Create the user interface.
 Create a list view with nine country names as selection values, and place the list view

inside a scroll pane. Place the scroll pane on the left of a border pane. Create nine image
views to be used to display the countries’ flag images. Create a flow pane to hold the
image views and place the pane in the center of the border pane.

2. Process the event.
 Create a listener to implement the invalidated method in the

InvalidationListener interface to place the selected countries’ flag image views
in the pane.

LISTING 16.9 ListViewDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ListView;
 6 import javafx.scene.control.ScrollPane;
 7 import javafx.scene.control.SelectionMode;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
10 import javafx.scene.layout.FlowPane;
11
12 public class ListViewDemo extends Application {

650 Chapter 16 JavaFX UI Controls and Multimedia

13 // Declare an array of Strings for flag titles
14 private String[] flagTitles = {"Canada", "China", "Denmark",
15 "France", "Germany", "India", "Norway", "United Kingdom",
16 "United States of America"};
17
18 // Declare an ImageView array for the national flags of 9 countries
19 private ImageView[] ImageViews = {
20 new ImageView("image/ca.gif"),
21 new ImageView("image/china.gif"),
22 new ImageView("image/denmark.gif"),
23 new ImageView("image/fr.gif"),
24 new ImageView("image/germany.gif"),
25 new ImageView("image/india.gif"),
26 new ImageView("image/norway.gif"),
27 new ImageView("image/uk.gif"),
28 new ImageView("image/us.gif")
29 };
30
31 @Override // Override the start method in the Application class
32 public void start(Stage primaryStage) {
33 ListView<String> lv = new ListView<>
34 (FXCollections.observableArrayList(flagTitles));
35 lv.setPrefSize(400, 400);
36 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
37
38 // Create a pane to hold image views
39 FlowPane imagePane = new FlowPane(10, 10);
40 BorderPane pane = new BorderPane();
41 pane.setLeft(new ScrollPane(lv));
42 pane.setCenter(imagePane);
43
44 lv.getSelectionModel().selectedItemProperty().addListener(
45 ov -> {
46 imagePane.getChildren().clear();
47 for (Integer i: lv.getSelectionModel().getSelectedIndices()) {
48 imagePane.getChildren().add(ImageViews[i]);
49 }
50 });
51
52 // Create a scene and place it in the stage
53 Scene scene = new Scene(pane, 450, 170);
54 primaryStage.setTitle("ListViewDemo"); // Set the stage title
55 primaryStage.setScene(scene); // Place the scene in the stage
56 primaryStage.show(); // Display the stage
57 }
58 }

The program creates an array of strings for countries (lines 14–16) and an array of nine
image views for displaying flag images for nine countries (lines 19–29) in the same order
as in the array of countries. The items in the list view are from the array of countries
(line 34). Thus, the index 0 of the image view array corresponds to the first country in
the list view.

The list view is placed in a scroll pane (line 41) so that it can be scrolled when the number
of items in the list extends beyond the viewing area.

By default, the selection mode of the list view is single. The selection mode for the list
view is set to multiple (line 36), which allows the user to select multiple items in the list
view. When the user selects countries in the list view, the listener’s handler (lines 44–50) is
executed, which gets the indices of the selected items and adds their corresponding image
views to the flow pane.

create a list view

set list view properties

place list view in pane

listen to item selected

add image views of selected
items

16.10 ScrollBar 651

16.27 How do you create an observable list with an array of strings?

16.28 How do you set the orientation in a list view?

16.29 What selection modes are available for a list view? What is the default selection
mode? How do you set a selection mode?

16.30 How do you obtain the selected items and selected indices?

16.10 ScrollBar
ScrollBar is a control that enables the user to select from a range of values.

Figure 16.21 shows a scroll bar. Normally, the user changes the value of a scroll bar by mak-
ing a gesture with the mouse. For example, the user can drag the scroll bar’s thumb, click on
the scroll bar track, or the scroll bar’s left or right buttons.

✓Point✓Check

Key
Point

FIGURE 16.21 A scroll bar represents a range of values graphically.

Minimal value

Track

Thumb

Maximal value

Left button Right button

ScrollBar has the following properties, as shown in Figure 16.22.

FIGURE 16.22 ScrollBar enables the user to select from a range of values.

javafx.scene.control.ScrollBar

-blockIncrement: DoubleProperty

-max: DoubleProperty

-min: DoubleProperty

-unitIncrement: DoubleProperty

-value: DoubleProperty

-visibleAmount: DoubleProperty

-orientation: ObjectProperty<Orientation>

The amount to adjust the scroll bar if the track of the bar is clicked (default: 10).

The maximum value represented by this scroll bar (default: 100).

The minimum value represented by this scroll bar (default: 0).

The amount to adjust the scroll bar when the increment() and decrement()
 methods are called (default: 1).

Current value of the scroll bar (default: 0).

The width of the scroll bar (default: 15).

Specifies the orientation of the scroll bar (default: HORIZONTAL).

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates a default horizontal scroll bar.

Increments the value of the scroll bar by unitIncrement.

Decrements the value of the scroll bar by unitIncrement.

+ScrollBar()

+increment()

+decrement()

Note
The width of the scroll bar’s track corresponds to max + visibleAmount. When a

scroll bar is set to its maximum value, the left side of the bubble is at max, and the right

side is at max + visibleAmount.

652 Chapter 16 JavaFX UI Controls and Multimedia

When the user changes the value of the scroll bar, it notifies the listener of the change. You
can register a listener on the scroll bar’s valueProperty for responding to this change as
follows:

 ScrollBar sb = new ScrollBar();
 sb.valueProperty().addListener(ov -> {
 System.out.println("old value: " + oldVal);
 System.out.println("new value: " + newVal);
 });

Listing 16.10 gives a program that uses horizontal and vertical scroll bars to move a text
displayed on a pane. The horizontal scroll bar is used to move the text to the left and the right,
and the vertical scroll bar to move it up and down. A sample run of the program is shown in
Figure 16.23.

FIGURE 16.23 The scroll bars move the message on a pane horizontally and vertically.

Vertical scroll
bar

Horizontal scroll
bar

Text

Here are the major steps in the program:

1. Create the user interface.
 Create a Text object and place it in the center of the border pane. Create a vertical scroll

bar and place it on the right of the border pane. Create a horizontal scroll bar and place
it at the bottom of the border pane.

2. Process the event.
 Create listeners to move the text according to the bar movement in the scroll bars upon

the change of the value property.

LISTING 16.10 ScrollBarDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ScrollBar;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
10 public class ScrollBarDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Text text = new Text(20, 20, "JavaFX Programming");
14
15 ScrollBar sbHorizontal = new ScrollBar();
16 ScrollBar sbVertical = new ScrollBar();
17 sbVertical.setOrientation(Orientation.VERTICAL);
18
19 // Create a text in a pane

horizontal scroll bar
vertical scroll bar

16.10 ScrollBar 653

20 Pane paneForText = new Pane();
21 paneForText.getChildren().add(text);
22
23 // Create a border pane to hold text and scroll bars
24 BorderPane pane = new BorderPane();
25 pane.setCenter(paneForText);
26 pane.setBottom(sbHorizontal);
27 pane.setRight(sbVertical);
28
29 // Listener for horizontal scroll bar value change
30 sbHorizontal.valueProperty().addListener(ov ->
31 text.setX(sbHorizontal.getValue() * paneForText.getWidth() /
32 sbHorizontal.getMax()));
33
34 // Listener for vertical scroll bar value change
35 sbVertical.valueProperty().addListener(ov ->
36 text.setY(sbVertical.getValue() * paneForText.getHeight() /
37 sbVertical.getMax()));
38
39 // Create a scene and place it in the stage
40 Scene scene = new Scene(pane, 450, 170);
41 primaryStage.setTitle("ScrollBarDemo"); // Set the stage title
42 primaryStage.setScene(scene); // Place the scene in the stage
43 primaryStage.show(); // Display the stage
44 }
45 }

The program creates a text (line 13) and two scroll bars (sbHorizontal and sbVertical)
(lines 15–16). The text is placed in a pane (line 21) that is then placed in the center of the border
pane (line 25). If the text were directly placed in the center of the border pane, the position of the
text cannot be changed by resetting its x and y properties. The sbHorizontal and sbVertical
are placed on the right and at the bottom of the border pane (lines 26–27), respectively.

You can specify the properties of the scroll bar. By default, the property value is 100 for
max, 0 for min, 10 for blockIncrement, and 15 for visibleAmount.

A listener is registered to listen for the sbHorizontal value property change (lines
30–32). When the value of the scroll bar changes, the listener is notified by invoking the han-
dler to set a new x value for the text that corresponds to the current value of sbHorizontal

(lines 31–32).
A listener is registered to listen for the sbVertical value property change (lines 35–37).

When the value of the scroll bar changes, the listener is notified by invoking the handler to set
a new y value for the text that corresponds to the current value of sbVertical (lines 36–37).

Alternatively, the code in lines 30–37 can be replaced by using binding properties as
follows:

 text.xProperty().bind(sbHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(sbHorizontal.maxProperty()));

 text.yProperty().bind(sbVertical.valueProperty().multiply(
 paneForText.heightProperty().divide(
 sbVertical.maxProperty())));

16.31 How do you create a horizontal scroll bar? How do you create a vertical scroll bar?

16.32 How do you write the code to respond to the value property change of a scroll bar?

16.33 How do you get the value from a scroll bar? How do you get the maximum value
from a scroll bar?

add text to a pane

border pane

set new location for text

set new location for text

✓Point✓Check

654 Chapter 16 JavaFX UI Controls and Multimedia

16.11 Slider
Slider is similar to ScrollBar, but Slider has more properties and can appear in
many forms.

Figure 16.24 shows two sliders. Slider lets the user graphically select a value by sliding
a knob within a bounded interval. The slider can show both major tick marks and minor
tick marks between them. The number of pixels between the tick marks is specified by the
majorTickUnit and minorTickUnit properties. Sliders can be displayed horizontally or
vertically, with or without ticks, and with or without labels.

Key
Point

VideoNote

Use Slider

FIGURE 16.24 The sliders move the message on a pane horizontally and vertically.

Vertical slider

Horizontal slider

Text

The frequently used constructors and properties in Slider are shown in Figure 16.25.

FIGURE 16.25 Slider enables the user to select from a range of values.

javafx.scene.control.Slider

-blockIncrement: DoubleProperty

-max: DoubleProperty

-min: DoubleProperty

-value: DoubleProperty

-orientation: ObjectProperty<Orientation>

-majorTickUnit: DoubleProperty

-minorTickCount: IntegerProperty

-showTickLabels: BooleanProperty

-showTickMarks: BooleanProperty

The amount to adjust the slider if the track of the bar is clicked (default: 10).

The maximum value represented by this slider (default: 100).

The minimum value represented by this slider (default: 0).

Current value of the slider (default: 0).

Specifies the orientation of the slider (default: HORIZONTAL).

The unit distance between major tick marks.

The number of minor ticks to place between two major ticks.

Specifies whether the labels for tick marks are shown.

Specifies whether the tick marks are shown.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+Slider()

+Slider(min: double, max: double,
 value: double)

Creates a default horizontal slider.

Creates a slider with the specified min, max, and value.

Note
The values of a vertical scroll bar increase from top to bottom, but the values of a vertical

slider decrease from top to bottom.

You can add a listener to listen for the value property change in a slider in the same way
as in a scroll bar. We now rewrite the program in the preceding section using the sliders to
move a text displayed on a pane in Listing 16.11. A sample run of the program is shown in
Figure 16.24.

16.11 Slider 655

LISTING 16.11 SliderDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Slider;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
10 public class SliderDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Text text = new Text(20, 20, "JavaFX Programming");
14
15 Slider slHorizontal = new Slider();
16 slHorizontal.setShowTickLabels(true);
17 slHorizontal.setShowTickMarks(true);
18
19 Slider slVertical = new Slider();
20 slVertical.setOrientation(Orientation.VERTICAL);
21 slVertical.setShowTickLabels(true);
22 slVertical.setShowTickMarks(true);
23 slVertical.setValue(100);
24
25 // Create a text in a pane
26 Pane paneForText = new Pane();
27 paneForText.getChildren().add(text);
28
29 // Create a border pane to hold text and scroll bars
30 BorderPane pane = new BorderPane();
31 pane.setCenter(paneForText);
32 pane.setBottom(slHorizontal);
33 pane.setRight(slVertical);
34
35 slHorizontal.valueProperty().addListener(ov ->
36 text.setX(slHorizontal.getValue() * paneForText.getWidth() /
37 slHorizontal.getMax()));
38
39 slVertical.valueProperty().addListener(ov ->
40 text.setY((slVertical.getMax() - slVertical.getValue())
41 * paneForText.getHeight() / slVertical.getMax()));
42
43 // Create a scene and place it in the stage
44 Scene scene = new Scene(pane, 450, 170);
45 primaryStage.setTitle("SliderDemo"); // Set the stage title
46 primaryStage.setScene(scene); // Place the scene in the stage
47 primaryStage.show(); // Display the stage
48 }
49 }

Slider is similar to ScrollBar but has more features. As shown in this example, you can
specify labels, major ticks, and minor ticks on a Slider (lines 16–17).

A listener is registered to listen for the slHorizontal value property change (lines
35–37) and another one is for the sbVertical value property change (lines 39–41). When
the value of the slider changes, the listener is notified by invoking the handler to set a new posi-
tion for the text (lines 36–37, 40–41). Note that since the value of a vertical slider decreases
from top to bottom, the corresponding y value for the text is adjusted accordingly.

horizontal slider
set slider properties

vertical slider
set slider properties

add text to a pane

border pane

set new location for text

set new location for text

656 Chapter 16 JavaFX UI Controls and Multimedia

The code in lines 35–41 can be replaced by using binding properties as follows:

 text.xProperty().bind(slHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(slHorizontal.maxProperty()));

 text.yProperty().bind((slVertical.maxProperty().subtract(
 slVertical.valueProperty()).multiply(
 paneForText.heightProperty().divide(
 slVertical.maxProperty()))));

Listing 15.17 gives a program that displays a bouncing ball. You can add a slider to control
the speed of the ball movement as shown in Figure 16.26. The new program is given in
Listing 16.12.

FIGURE 16.26 You can increase or decrease the speed of the ball using a slider.

LISTING 16.12 BounceBallSlider.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Slider;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class BounceBallSlider extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 BallPane ballPane = new BallPane();
11 Slider slSpeed = new Slider();
12 slSpeed.setMax(20);
13 ballPane.rateProperty().bind(slSpeed.valueProperty());
14
15 BorderPane pane = new BorderPane();
16 pane.setCenter(ballPane);
17 pane.setBottom(slSpeed);
18
19 // Create a scene and place it in the stage
20 Scene scene = new Scene(pane, 250, 250);
21 primaryStage.setTitle("BounceBallSlider"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

The BallPane class defined in Listing 15.17 animates a ball bouncing in a pane.
The rateProperty() method in BallPane returns a property value for animation rate.

create a ball pane
create a slider
set max value for slider
bind rate with slider value

create a border pane
add ball pane to center
add slider to the bottom

16.12 Case Study: Developing a Tic-Tac-Toe Game 657

The animation stops if the rate is 0. If the rate is greater than 20, the animation will be too fast.
So, we purposely set the rate to a value between 0 and 20. This value is bound to the slider
value (line 13). So the slider max value is set to 20 (line 12).

16.34 How do you create a horizontal slider? How do you create a vertical slider?

16.35 How do you add a listener to handle the property value change of a slider?

16.36 How do you get the value from a slider? How do you get the maximum value from a
slider?

16.12 Case Study: Developing a Tic-Tac-Toe Game
This section develops a program for playing tic-tac-toe.

From the many examples in this and earlier chapters you have learned about objects, classes,
arrays, class inheritance, GUI, and event-driven programming. Now it is time to put what you
have learned to work in developing comprehensive projects. In this section, we will develop
a JavaFX program with which to play the popular game of tic-tac-toe.

Two players take turns marking an available cell in a 3 * 3 grid with their respective
tokens (either X or O). When one player has placed three tokens in a horizontal, vertical, or
diagonal row on the grid, the game is over and that player has won. A draw (no winner) occurs
when all the cells on the grid have been filled with tokens and neither player has achieved a
win. Figure 16.27 shows the representative sample runs of the game.

✓Point✓Check

Key
Point

TicTacToe

VideoNote

FIGURE 16.27 Two players play a tic-tac-toe game.

(a) The X player won the game (b) Draw — no winners (c) The O player won the game

All the examples you have seen so far show simple behaviors that are easy to model with
classes. The behavior of the tic-tac-toe game is somewhat more complex. To define classes
that model the behavior, you need to study and understand the game.

Assume that all the cells are initially empty, and that the first player takes the X token and
the second player the O token. To mark a cell, the player points the mouse to the cell and
clicks it. If the cell is empty, the token (X or O) is displayed. If the cell is already filled, the
player’s action is ignored.

From the preceding description, it is obvious that a cell is a GUI object that handles
the mouse-click event and displays tokens. There are many choices for this object. We
will use a pane to model a cell and to display a token (X or O). How do you know the
state of the cell (empty, X, or O)? You use a property named token of the char type in
the Cell class. The Cell class is responsible for drawing the token when an empty cell
is clicked, so you need to write the code for listening to the mouse-clicked action and
for painting the shapes for tokens X and O. The Cell class can be defined as shown in
Figure 16.28.

658 Chapter 16 JavaFX UI Controls and Multimedia

The tic-tac-toe board consists of nine cells, created using new Cell[3][3]. To determine
which player’s turn it is, you can introduce a variable named whoseTurn of the char type.
whoseTurn is initially 'X', then changes to 'O', and subsequently changes between 'X' and
'O' whenever a new cell is occupied. When the game is over, set whoseTurn to ' '.

How do you know whether the game is over, whether there is a winner, and who the
winner, if any? You can define a method named isWon(char token) to check whether a
specified token has won and a method named isFull() to check whether all the cells are
occupied.

Clearly, two classes emerge from the foregoing analysis. One is the Cell class, which
handles operations for a single cell; the other is the TicTacToe class, which plays the whole
game and deals with all the cells. The relationship between these two classes is shown in
Figure 16.29.

FIGURE 16.28 The Cell class displays the token in a cell.

Cell

-token: char

+getToken(): char

+setToken(token: char): void

-handleMouseClick(): void

javafx.scene.layout.Pane

Token used in the cell (default: ' ').

Returns the token in the cell.

Sets a new token in the cell.

Handles a mouse click event.

FIGURE 16.29 The TicTacToe class contains nine cells.

TicTacToe

-whoseTurn: char

-cell: Cell[][]

-lblStatus: Label

+TicTacToe()

+isFull(): boolean

+isWon(token: char): boolean

javafx.application.ApplicationCell

Indicates which player has the turn, initially X.

A 3 � 3, two-dimensional array for cells.

A label to display game status.

Constructs the TicTacToe user interface.

Returns true if all cells are filled.

Returns true if a player with the specified token has won.

9

1

Since the Cell class is only to support the TicTacToe class, it can be defined as an inner
class in TicTacToe. The complete program is given in Listing 16.13.

LISTING 16.13 TicTacToe.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;

16.12 Case Study: Developing a Tic-Tac-Toe Game 659

 6 import javafx.scene.layout.GridPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Line;
 10 import javafx.scene.shape.Ellipse;
 11
 12 public class TicTacToe extends Application {
 13 // Indicate which player has a turn, initially it is the X player
 14 private char whoseTurn = 'X';
 15
 16 // Create and initialize cell
 17 private Cell[][] cell = new Cell[3][3];
 18
 19 // Create and initialize a status label
 20 private Label lblStatus = new Label("X's turn to play");
 21
 22 @Override // Override the start method in the Application class
 23 public void start(Stage primaryStage) {
 24 // Pane to hold cell
 25 GridPane pane = new GridPane();
 26 for (int i = 0; i < 3; i++)
 27 for (int j = 0; j < 3; j++)
 28 pane.add(cell[i][j] = new Cell(), j, i);
 29
 30 BorderPane borderPane = new BorderPane();
 31 borderPane.setCenter(pane);
 32 borderPane.setBottom(lblStatus);
 33
 34 // Create a scene and place it in the stage
 35 Scene scene = new Scene(borderPane, 450, 170);
 36 primaryStage.setTitle("TicTacToe"); // Set the stage title
 37 primaryStage.setScene(scene); // Place the scene in the stage
 38 primaryStage.show(); // Display the stage
 39 }
 40
 41 /** Determine if the cell are all occupied */
 42 public boolean isFull() {
 43 for (int i = 0; i < 3; i++)
 44 for (int j = 0; j < 3; j++)
 45 if (cell[i][j].getToken() == ' ')
 46 return false;
 47
 48 return true;
 49 }
 50
 51 /** Determine if the player with the specified token wins */
 52 public boolean isWon(char token) {
 53 for (int i = 0; i < 3; i++)
 54 if (cell[i][0].getToken() == token
 55 && cell[i][1].getToken() == token
 56 && cell[i][2].getToken() == token) {
 57 return true;
 58 }
 59
 60 for (int j = 0; j < 3; j++)
 61 if (cell[0][j].getToken() == token
 62 && cell[1][j].getToken() == token
 63 && cell[2][j].getToken() == token) {
 64 return true;
 65 }

main class TicTacToe

hold nine cells

create a cell

tic-tac-toe cells in center
label at bottom

check isFull

check rows

check columns

660 Chapter 16 JavaFX UI Controls and Multimedia

 66
 67 if (cell[0][0].getToken() == token
 68 && cell[1][1].getToken() == token
 69 && cell[2][2].getToken() == token) {
 70 return true;
 71 }
 72
 73 if (cell[0][2].getToken() == token
 74 && cell[1][1].getToken() == token
 75 && cell[2][0].getToken() == token) {
 76 return true;
 77 }
 78
 79 return false;
 80 }
 81
 82 // An inner class for a cell
 83 public class Cell extends Pane {
 84 // Token used for this cell
 85 private char token = ' ';
 86
 87 public Cell() {
 88 setStyle("-fx-border-color: black");
 89 this.setPrefSize(2000, 2000);
 90 this.setOnMouseClicked(e -> handleMouseClick());
 91 }
 92
 93 /** Return token */
 94 public char getToken() {
 95 return token;
 96 }
 97
 98 /** Set a new token */
 99 public void setToken(char c) {
100 token = c;
101
102 if (token == 'X') {
103 Line line1 = new Line(10, 10,
104 this.getWidth() - 10, this.getHeight() - 10);
105 line1.endXProperty().bind(this.widthProperty().subtract(10));
106 line1.endYProperty().bind(this.heightProperty().subtract(10));
107 Line line2 = new Line(10, this.getHeight() - 10,
108 this.getWidth() - 10, 10);
109 line2.startYProperty().bind(
110 this.heightProperty().subtract(10));
111 line2.endXProperty().bind(this.widthProperty().subtract(10));
112
113 // Add the lines to the pane
114 this.getChildren().addAll(line1, line2);
115 }
116 else if (token == 'O') {
117 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
118 this.getHeight() / 2, this.getWidth() / 2 - 10,
119 this.getHeight() / 2 - 10);
120 ellipse.centerXProperty().bind(
121 this.widthProperty().divide(2));
122 ellipse.centerYProperty().bind(
123 this.heightProperty().divide(2));
124 ellipse.radiusXProperty().bind(
125 this.widthProperty().divide(2).subtract(10));

check major diagonal

check subdiagonal

inner class Cell

register listener

display X

display O

16.12 Case Study: Developing a Tic-Tac-Toe Game 661

126 ellipse.radiusYProperty().bind(
127 this.heightProperty().divide(2).subtract(10));
128 ellipse.setStroke(Color.BLACK);
129 ellipse.setFill(Color.WHITE);
130
131 getChildren().add(ellipse); // Add the ellipse to the pane
132 }
133 }
134
135 /* Handle a mouse click event */
136 private void handleMouseClick() {
137 // If cell is empty and game is not over
138 if (token == ' ' && whoseTurn != ' ') {
139 setToken(whoseTurn); // Set token in the cell
140
141 // Check game status
142 if (isWon(whoseTurn)) {
143 lblStatus.setText(whoseTurn + " won! The game is over");
144 whoseTurn = ' '; // Game is over
145 }
146 else if (isFull()) {
147 lblStatus.setText("Draw! The game is over");
148 whoseTurn = ' '; // Game is over
149 }
150 else {
151 // Change the turn
152 whoseTurn = (whoseTurn == 'X') ? 'O' : 'X';
153 // Display whose turn
154 lblStatus.setText(whoseTurn + "'s turn");
155 }
156 }
157 }
158 }
159 }

The TicTacToe class initializes the user interface with nine cells placed in a grid pane (lines
25–28). A label named lblStatus is used to show the status of the game (line 20). The varia-
ble whoseTurn (line 14) is used to track the next type of token to be placed in a cell. The meth-
ods isFull (lines 42–49) and isWon (lines 52–80) are for checking the status of the game.

Since Cell is an inner class in TicTacToe, the variable (whoseTurn) and methods
(isFull and isWon) defined in TicTacToe can be referenced from the Cell class. The
inner class makes programs simple and concise. If Cell were not defined as an inner class of
TicTacToe, you would have to pass an object of TicTacToe to Cell in order for the vari-
ables and methods in TicTacToe to be used in Cell.

The listener for the mouse-click action is registered for the cell (line 90). If an empty cell is
clicked and the game is not over, a token is set in the cell (line 138). If the game is over, whoseTurn
is set to ' ' (lines 144, 148). Otherwise, whoseTurn is alternated to a new turn (line 152).

Tip
Use an incremental approach in developing and testing a Java project of this kind. For

example, this program can be divided into five steps:

1. Lay out the user interface and display a fixed token X on a cell.

2. Enable the cell to display a fixed token X upon a mouse click.

3. Coordinate between the two players so as to display tokens X and O alternately.

4. Check whether a player wins, or whether all the cells are occupied without a winner.

5. Implement displaying a message on the label upon each move by a player.

handle mouse click

incremental development and
testing

662 Chapter 16 JavaFX UI Controls and Multimedia

16.37 When the game starts, what value is in whoseTurn? When the game is over, what
value is in whoseTurn?

16.38 What happens when the user clicks on an empty cell if the game is not over? What
happens when the user clicks on an empty cell if the game is over?

16.39 How does the program check whether a player wins? How does the program check
whether all cells are filled?

16.13 Video and Audio
You can use the Media class to obtain the source of the media, the MediaPlayer
class to play and control the media, and the MediaView class to display the video.

Media (video and audio) is essential in developing rich Internet applications. JavaFX provides
the Media, MediaPlayer, and MediaView classes for working with media. Currently, JavaFX
supports MP3, AIFF, WAV, and MPEG-4 audio formats and FLV and MPEG-4 video formats.

The Media class represents a media source with properties duration, width, and height,
as shown in Figure 16.30. You can construct a Media object from an Internet URL string.

✓Point✓Check

Key
Point

VideoNote

Use Media, MediaPlayer,

and MediaView

FIGURE 16.30 Media represents a media source such as a video or an audio.

javafx.scene.media.Media

-duration: ReadOnlyObjectProperty
 <Duration>

-width: ReadOnlyIntegerProperty

-height: ReadOnlyIntegerProperty

+Media(source: String)

The durations in seconds of the source media.

The width in pixels of the source video.

The height in pixels of the source video.

Creates a Media from a URL source.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

The MediaPlayer class plays and controls the media with properties such as autoPlay,
currentCount, cycleCount,mute,volume, and totalDuration, as shown in Figure 16.31.
You can construct a MediaPlayer object from a media and use the pause() and play()
method to pause and resume playing.

FIGURE 16.31 MediaPlayer plays and controls a media.

javafx.scene.media.MediaPlayer

-autoPlay: BooleanProperty

-currentCount: ReadOnlyIntegerProperty

-cycleCount: IntegerProperty

-mute: BooleanProperty

-volume: DoubleProperty

-totalDuration:
 ReadOnlyObjectProperty<Duration>

+MediaPlayer(media: Media)

+play(): void

+pause(): void

+seek(): void

Specifies whether the playing should start automatically.

The number of completed playback cycles.

Specifies the number of time the media will be played.

Specifies whether the audio is muted.

The volume for the audio.

The amount of time to play the media from start to finish.

Creates a player for a specified media.

Plays the media.

Pauses the media.

Seeks the player to a new playback time.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

16.13 Video and Audio 663

The MediaView class is a subclass of Node that provides a view of the Media being played
by a MediaPlayer. The MediaView class provides the properties for viewing the media, as
shown in Figure 16.32.

FIGURE 16.32 MediaView provides the properties for viewing the media.

javafx.scene.media.MediaView

-x: DoubleProperty

-y: DoubleProperty

-mediaPlayer:
 ObjectProperty<MediaPlayer>

-fitWidth: DoubleProperty

-fitHeight: DoubleProperty

+MediaView()

+MediaView(mediaPlayer: MediaPlayer)

Specifies the current x-coordinate of the media view.

Specifies the current y-coordinate of the media view.

Specifies a media player for the media view.

Specifies the width of the view for the media to fit.

Specifies the height of the view for the media to fit.

Creates an empty media view.

Creates a media view with the specified media player.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Listing 16.14 gives an example that displays a video in a view, as shown in Figure 16.33. You
can use the play/pause button to play or pause the video and use the rewind button to restart
the video, and use the slider to control the volume of the audio.

FIGURE 16.33 The program controls and plays a video.

LISTING 16.14 MediaDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.Slider;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
10 import javafx.scene.layout.Region;
11 import javafx.scene.media.Media;

664 Chapter 16 JavaFX UI Controls and Multimedia

12 import javafx.scene.media.MediaPlayer;
13 import javafx.scene.media.MediaView;
14 import javafx.util.Duration;
15
16 public class MediaDemo extends Application {
17 private static final String MEDIA_URL =
18 "http://cs.armstrong.edu/liang/common/sample.mp4";
19
20 @Override // Override the start method in the Application class
21 public void start(Stage primaryStage) {
22 Media media = new Media(MEDIA_URL);
23 MediaPlayer mediaPlayer = new MediaPlayer(media);
24 MediaView mediaView = new MediaView(mediaPlayer);
25
26 Button playButton = new Button(">");
27 playButton.setOnAction(e -> {
28 if (playButton.getText().equals(">")) {
29 mediaPlayer.play();
30 playButton.setText("||");
31 } else {
32 mediaPlayer.pause();
33 playButton.setText(">");
34 }
35 });
36
37 Button rewindButton = new Button("<<");
38 rewindButton.setOnAction(e -> mediaPlayer.seek(Duration.ZERO));
39
40 Slider slVolume = new Slider();
41 slVolume.setPrefWidth(150);
42 slVolume.setMaxWidth(Region.USE_PREF_SIZE);
43 slVolume.setMinWidth(30);
44 slVolume.setValue(50);
45 mediaPlayer.volumeProperty().bind(
46 slVolume.valueProperty().divide(100));
47
48 HBox hBox = new HBox(10);
49 hBox.setAlignment(Pos.CENTER);
50 hBox.getChildren().addAll(playButton, rewindButton,
51 new Label("Volume"), slVolume);
52
53 BorderPane pane = new BorderPane();
54 pane.setCenter(mediaView);
55 pane.setBottom(hBox);
56
57 // Create a scene and place it in the stage
58 Scene scene = new Scene(pane, 650, 500);
59 primaryStage.setTitle("MediaDemo"); // Set the stage title
60 primaryStage.setScene(scene); // Place the scene in the stage
61 primaryStage.show(); // Display the stage
62 }
63 }

The source of the media is a URL string defined in lines 17 and 18. The program creates a
Media object from this URL (line 22), a MediaPlayer from the Media object (line 23), and
a MediaView from the MediaPlayer object (line 24). The relationship among these three
objects is shown in Figure 16.34.

create a media
create a media player
create a media view

create a play/pause button
add handler for button action

play media

pause media

create a rewind button
create a handler for rewinding

create a slider for volume

set current volume
bind volume with slider

add buttons, slider to hBox

place media view in a pane

16.14 Case Study: National Flags and Anthems 665

A Media object supports live streaming. You can now download a large media file and play it
in the same time. A Media object can be shared by multiple media players and different views
can use the same MediaPlayer object.

A play button is created (line 26) to play/pause the media (line 29). The button’s text is
changed to || (line 30) if the button’s current text is > (line 28). If the button’s current text is
||, it is changed to > (line 33) and the player is paused (line 32).

A rewind button is created (line 37) to reset the playback time to the beginning of the media
stream by invoking seek(Duration.ZERO) (line 38).

A slider is created (line 40) to set the volume. The media player’s volume property is bound
to the slider (lines 45 and 46).

The buttons and slider are placed in an HBox (lines 48–51) and the media view is placed in the
center of the border pane (line 54) and the HBox is placed at the bottom of the border pane (line 55).

16.40 How do you create a Media from a URL? How do you create a MediaPlayer?
How do you create a MediaView?

16.41 If the URL is typed as cs.armstrong.edu/liang/common/sample.mp4 without http:// in
front of it, will it work?

16.42 Can you place a Media in multiple MediaPlayers? Can you place a MediaPlayer
in multiple MediaViews? Can you place a MediaView in multiple Panes?

16.14 Case Study: National Flags and Anthems
This case study presents a program that displays a nation’s flag and plays its anthem.

The images for seven national flags, named flag0.gif, flag1.gif, . . . , flag6.gif for Denmark,
Germany, China, India, Norway, United Kingdom, and United States are stored under
www.cs.armstrong.edu/liang/common/image. The audio consists of national anthems for these
seven nations, named anthem0.mp3, anthem1.mp3, . . . , and anthem6.mp3. They are stored
under www.cs.armstrong.edu/liang/common/audio.

The program enables the user to select a nation from a combo box and then displays its flag
and plays its anthem. The user can suspend the audio by clicking the || button and resume it
by clicking the < button, as shown in Figure 16.35.

✓Point✓Check

Key
Point

FIGURE 16.34 The media represents the source, the media player controls the playing, and the media view displays the video.

mediaPlayer: MediaPlayer mediaView: MediaViewmedia: Media

FIGURE 16.35 The program displays a national flag and plays its anthem.

www.cs.armstrong.edu/liang/common/image
www.cs.armstrong.edu/liang/common/audio

666 Chapter 16 JavaFX UI Controls and Multimedia

The program is given in Listing 16.15.

LISTING 16.15 FlagAnthem.java
 1 import javafx.application.Application;
 2 import javafx.collections.FXCollections;
 3 import javafx.collections.ObservableList;
 4 import javafx.stage.Stage;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Button;
 8 import javafx.scene.control.ComboBox;
 9 import javafx.scene.control.Label;
10 import javafx.scene.image.Image;
11 import javafx.scene.image.ImageView;
12 import javafx.scene.layout.BorderPane;
13 import javafx.scene.layout.HBox;
14 import javafx.scene.media.Media;
15 import javafx.scene.media.MediaPlayer;
16
17 public class FlagAnthem extends Application {
18 private final static int NUMBER_OF_NATIONS = 7;
19 private final static String URLBase =
20 "http://cs.armstrong.edu/liang/common";
21 private int currentIndex = 0;
22
23 @Override // Override the start method in the Application class
24 public void start(Stage primaryStage) {
25 Image[] images = new Image[NUMBER_OF_NATIONS];
26 MediaPlayer[] mp = new MediaPlayer[NUMBER_OF_NATIONS];
27
28 // Load images and audio
29 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
30 images[i] = new Image(URLBase + "/image/flag" + i + ".gif");
31 mp[i] = new MediaPlayer(new Media(
32 URLBase + "/audio/anthem/anthem" + i + ".mp3"));
33 }
34
35 Button btPlayPause = new Button(">");
36 btPlayPause.setOnAction(e -> {
37 if (btPlayPause.getText().equals(">")) {
38 btPlayPause.setText("||");
39 mp[currentIndex].pause();
40 } else {
41 btPlayPause.setText(">");
42 mp[currentIndex].play();
43 }
44 });
45
46 ImageView imageView = new ImageView(images[currentIndex]);
47 ComboBox<String> cboNation = new ComboBox<>();
48 ObservableList<String> items = FXCollections.observableArrayList
49 ("Denmark", "Germany", "China", "India", "Norway", "UK", "US");
50 cboNation.getItems().addAll(items);
51 cboNation.setValue(items.get(0));
52 cboNation.setOnAction(e -> {
53 mp[currentIndex].stop();
54 currentIndex = items.indexOf(cboNation.getValue());
55 imageView.setImage(images[currentIndex]);
56 mp[currentIndex].play();
57 });

Audio and image

VideoNote

URLBase for image and audio
track current image/audio

image array
media player array

load image
load audio

create play button
handle button action

pause audio

play audio

create image view
create combo box
create observable list

process combo selection

choose a new nation

play audio

Chapter Summary 667

58
59 HBox hBox = new HBox(10);
60 hBox.getChildren().addAll(btPlayPause,
61 new Label("Select a nation: "), cboNation);
62 hBox.setAlignment(Pos.CENTER);
63
64 // Create a pane to hold nodes
65 BorderPane pane = new BorderPane();
66 pane.setCenter(imageView);
67 pane.setBottom(hBox);
68
69 // Create a scene and place it in the stage
70 Scene scene = new Scene(pane, 350, 270);
71 primaryStage.setTitle("FlagAnthem"); // Set the stage title
72 primaryStage.setScene(scene); // Place the scene in the stage
73 primaryStage.show(); // Display the stage
74 }
75 }

The program loads the image and audio from the Internet (lines 29–33). A play/pause button is
created to control the playing of the audio (line 35). When the button is clicked, if the button’s
current text is > (line 37), its text is changed to || (line 38) and the player is paused (line 39);
If the button’s current text is ||, it is changed to > (line 41) and the player is paused (line 42).

An image view is created to display a flag image (line 46). A combo box is created for
selecting a nation (line 47–49). When a new country name in the combo box is selected, the
current audio is stopped (line 53) and the newly selected nation’s image is displayed (line 55)
and the new anthem is played (line 56).

JavaFX also provides the AudioClip class for creating auto clips. An AudioClip
object can be created using new AudioClip(URL). An audio clip stores the audio in
memory. AudioClip is more efficient for playing a small audio clip in the program than
using MediaPlayer. AudioClip has the similar methods as in the MediaPlayer class.

16.43 In Listing 16.15, which code sets the initial image icon and which code plays the
audio?

16.44 In Listing 16.15, what does the program do when a new nation is selected in the
combo box?

CHAPTER SUMMARY

1. The abstract Labeled class is the base class for Label, Button, CheckBox, and
RadioButton. It defines properties alignment, contentDisplay, text, graphic,
graphicTextGap, textFill, underline, and wrapText.

2. The abstract ButtonBase class is the base class for Button, CheckBox, and
RadioButton. It defines the onAction property for specifying a handler for action events.

3. The abstract TextInputContorl class is the base class for TextField and TextArea.
It defines the properties text and editable.

4. A TextField fires an action event when clicking the Enter key with the text field
focused. A TextArea is often used for editing a multiline text.

5. ComboBox<T> and ListView<T> are generic classes for storing elements of type T.
The elements in a combo box or a list view are stored in an observable list.

✓Point✓Check

668 Chapter 16 JavaFX UI Controls and Multimedia

6. A ComboBox fires an action event when a new item is selected.

7. You can set a single item or multiple item selection for a ListView and add a listener
for processing selected items.

8. You can use a ScrollBar or Slider to select a range of values and add a listener to
the value property to respond to the change of the value.

9. JavaFX provides the Media class for loading a media, the MediaPlayer class for con-
trolling a media, and the MediaView for displaying a media.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 16.2–16.5

*16.1 (Use radio buttons) Write a GUI program as shown in Figure 16.36a. You can
use buttons to move the message to the left and right and use the radio buttons to
change the color for the message displayed.

FIGURE 16.36 (a) The 6= and = 7 buttons move the message, and the radio buttons change the color for the message.
(b) The program displays a circle, rectangle, and ellipse when you select a shape type.

StackPane

HBox

(b)(a)

*16.2 (Select geometric figures) Write a program that draws various figures, as shown
in Figure 16.36b. The user selects a figure from a radio button and uses a check
box to specify whether it is filled.

**16.3 (Traffic lights) Write a program that simulates a traffic light. The program lets
the user select one of three lights: red, yellow, or green. When a radio but-
ton is selected, the light is turned on. Only one light can be on at a time (see
Figure 16.37a). No light is on when the program starts.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 669

*16.4 (Create a miles/kilometers converter) Write a program that converts miles and
kilometers, as shown in Figure 16.37b. If you enter a value in the Mile text field
and press the Enter key, the corresponding kilometer measurement is displayed
in the Kilometer text field. Likewise, if you enter a value in the Kilometer text
field and press the Enter key, the corresponding miles is displayed in the Mile
text field.

*16.5 (Convert numbers) Write a program that converts between decimal, hex, and binary
numbers, as shown in Figure 16.37c. When you enter a decimal value in the decimal-
value text field and press the Enter key, its corresponding hex and binary numbers are
displayed in the other two text fields. Likewise, you can enter values in the other fields
and convert them accordingly. (Hint: Use the Integer.parseInt(s, radix)
method to parse a string to a decimal and use Integer.toHexString(decimal)
and Integer.toBinaryString(decimal) to obtain a hex number or a binary
number from a decimal.)

*16.6 (Demonstrate TextField properties) Write a program that sets the horizontal-
alignment and column-size properties of a text field dynamically, as shown in
Figure 16.38a. VideoNote

Use radio buttons

and text fields

FIGURE 16.37 (a) The radio buttons are grouped to let you turn only one light on at a time. (b) The program converts
miles to kilometers, and vice versa. (c) The program converts between decimal, hex, and binary numbers.

(a) (b) (c)

FIGURE 16.38 (a) You can set a text field’s properties for the horizontal alignment and col-
umn size dynamically. (b) The program displays the time specified in the text fields.

(a) (b)

670 Chapter 16 JavaFX UI Controls and Multimedia

*16.7 (Set clock time) Write a program that displays a clock and sets the time with the
input from three text fields, as shown in Figure 16.38b. Use the ClockPane in
Listing 14.21. Resize the clock to the center of the pane.

**16.8 (Geometry: two circles intersect?) Write a program that enables the user to
specify the location and size of the circles and displays whether the two circles
intersect, as shown in Figure 16.39a. Enable the user to point the mouse inside a
circle and drag it. As the circle is being dragged, the circle’s center coordinates
in the text fields are updated.

FIGURE 16.39 Check whether two circles and two rectangles are overlapping.

(a) (b)

**16.9 (Geometry: two rectangles intersect?) Write a program that enables the user to
specify the location and size of the rectangles and displays whether the two rec-
tangles intersect, as shown in Figure 16.39b. Enable the user to point the mouse
inside a rectangle and drag it. As the rectangle is being dragged, the rectangle’s
center coordinates in the text fields are updated.

Sections 16.6–16.8

**16.10 (Text viewer) Write a program that displays a text file in a text area, as shown
in Figure 16.40a. The user enters a file name in a text field and clicks the View
button; the file is then displayed in a text area.

FIGURE 16.40 (a) The program displays the text from a file in a text area. (b) The program
displays a histogram that shows the occurrences of each letter in the file.

(a) (b)

Programming Exercises 671

**16.11 (Create a histogram for occurrences of letters) Write a program that reads a
file and displays a histogram to show the occurrences of each letter in the file,
as shown in Figure 16.40b. The file name is entered from a text field. Pressing
the Enter key on the text field causes the program to start to read and process
the file and displays the histogram. The histogram is displayed in the center of the
window. Define a class named Histogram that extends Pane. The class con-
tains the property counts that is an array of 26 elements. counts[0] stores the
number of A, counts[1] the number of B, and so on. The class also contains a
setter method for setting a new counts and displaying the histogram for the new
counts.

*16.12 (Demonstrate TextArea properties) Write a program that demonstrates the
properties of a text area. The program uses a check box to indicate whether the
text is wrapped onto next line, as shown in Figure 16.41a.

FIGURE 16.41 (a) You can set the options to enable text editing and text wrapping. (b) The program displays a table for
monthly payments and total payments on a given loan based on various interest rates.

(a) (b)

*16.13 (Compare loans with various interest rates) Rewrite Programming Exercise
5.21 to create a GUI, as shown in Figure 16.41b. Your program should let the
user enter the loan amount and loan period in the number of years from text
fields, and it should display the monthly and total payments for each interest
rate starting from 5 percent to 8 percent, with increments of one-eighth, in a
text area.

**16.14 (Select a font) Write a program that can dynamically change the font of a text
in a label displayed on a stack pane. The text can be displayed in bold and
italic at the same time. You can select the font name or font size from combo
boxes, as shown in Figure 16.42a. The available font names can be obtained
using Font.getFamilies(). The combo box for the font size is initialized
with numbers from 1 to 100.

VideoNote

Set fonts

FIGURE 16.42 You can dynamically set the font for the message. (b) You can set the alignment and text-position properties
of a label dynamically.

(a) (b)

672 Chapter 16 JavaFX UI Controls and Multimedia

**16.15 (Demonstrate Label properties) Write a program to let the user dynamically
set the properties contentDisplay and graphicTextGap, as shown in
Figure 16.42b.

*16.16 (Use ComboBox and ListView) Write a program that demonstrates selecting
items in a list. The program uses a combo box to specify a selection mode, as
shown in Figure 16.43a. When you select items, they are displayed in a label
below the list.

FIGURE 16.43 (a) You can choose single or multiple selection mode in a list. (b) The color changes in the text as you
adjust the scroll bars. (c) The program simulates a running fan.

(a) (b) (c)

Sections 16.6–16.8

**16.17 (Use ScrollBar and Slider) Write a program that uses scroll bars or slid-
ers to select the color for a text, as shown in Figure 16.43b. Four horizontal
scroll bars are used for selecting the colors: red, green, blue, and opacity
percentages.

**16.18 (Simulation: a running fan) Rewrite Programming Exercise 15.28 to add a slider
to control the speed of the fan, as shown in Figure 16.43c.

**16.19 (Control a group of fans) Write a program that displays three fans in a group,
with control buttons to start and stop all of them, as shown in Figure 16.44.

FIGURE 16.44 The program runs and controls a group of fans.

*16.20 (Count-up stopwatch) Write a program that simulates a stopwatch, as shown
in Figure 16.45a. When the user clicks the Start button, the button’s label is
changed to Pause, as shown in Figure 16.45b. When the user clicks the Pause

Programming Exercises 673

*16.21 (Count-down stopwatch) Write a program that allows the user to enter time in
seconds in the text field and press the Enter key to count down the seconds,
as shown in Figure 16.45d. The remaining seconds are redisplayed every
one second. When the seconds are expired, the program starts to play music
continuously.

16.22 (Play, loop, and stop a sound clip) Write a program that meets the following
requirements:

 ■ Get an audio file from the class directory using AudioClip.
 ■ Place three buttons labeled Play, Loop, and Stop, as shown in Figure 16.46a.
 ■ If you click the Play button, the audio file is played once. If you click the

Loop button, the audio file keeps playing repeatedly. If you click the Stop
button, the playing stops.

FIGURE 16.45 (a–c) The program counts up the time. (d) The program counts down the time.

(a) (b) (c) (d)

FIGURE 16.46 (a) Click Play to play an audio clip once, click Loop to play an audio repeatedly, and click Stop to termi-
nate playing. (b) The program lets the user specify image files, an audio file, and the animation speed.

(a) (b)

button, the button’s label is changed to Resume, as shown in Figure 16.45c. The
Clear button resets the count to 0 and resets the button’s label to Start.

674 Chapter 16 JavaFX UI Controls and Multimedia

**16.23 (Create an image animator with audio) Create animation in Figure 16.46b to
meet the following requirements:

 ■ Allow the user to specify the animation speed in a text field.
 ■ Get the number of iamges and image’s file-name prefix from the user. For

example, if the user enters n for the number of images and L for the image
prefix, then the files are L1.gif, L2.gif, and so on, to Ln.gif. Assume that the
images are stored in the image directory, a subdirectory of the program’s
class directory. The animation displays the images one after the other.

 ■ Allow the user to specify an audio file URL. The audio is played while the
animation runs.

**16.24 (Revise Listing 16.14 MediaDemo.java) Add a slider to enable the user to set the
current time for the video and a label to display the current time and the total
time for the video. As shown in Figure 16.47a, the total time is 5 minutes and 3
seconds and the current time is 3 minutes and 58 seconds. As the video plays, the
slider value and current time are continuously updated.

FIGURE 16.47 (a) A slider for current video time and a label to show the current time and total time are added. (b) You
can set the speed for each car.

(a) (b)

**16.25 (Racing cars) Write a program that simulates four cars racing, as shown in
Figure 16.47b. You can set the speed for each car, with maximum 100.

**16.26 (Simulation: raise flag and play anthem) Write a program that displays a flag
rising up, as shown in Figure 15.14. As the national flag rises, play the national
anthem. (You may use a flag image and anthem audio file from Listing 16.15.)

Comprehensive

**16.27 (Display country flag and flag description) Listing 16.4, ComboBoxDemo.java,
gives a program that lets the user view a country’s flag image and description
by selecting the country from a combo box. The description is a string coded
in the program. Rewrite the program to read the text description from a file.
Suppose that the descriptions are stored in the files description0.txt, . . . , and

Programming Exercises 675

description8.txt under the text directory for the nine countries Canada, China,
Denmark, France, Germany, India, Norway, United Kingdom, and United States,
in this order.

**16.28 (Slide show) Programming Exercise 15.30 developed a slide show using images.
Rewrite that program to develop a slide show using text files. Suppose ten text
files named slide0.txt, slide1.txt, . . . , and slide9.txt are stored in the text direc-
tory. Each slide displays the text from one file. Each slide is shown for one sec-
ond, and the slides are displayed in order. When the last slide finishes, the first
slide is redisplayed, and so on. Use a text area to display the slide.

***16.29 (Display a calendar) Write a program that displays the calendar for the cur-
rent month. You can use the Prior and Next buttons to show the calendar of the
previous or next month. Display the dates in the current month in black and
display the dates in the previous month and next month in gray, as shown in
Figure 16.48.

FIGURE 16.48 The program displays the calendar for the current month.

**16.30 (Pattern recognition: consecutive four equal numbers) Write a GUI program for
Programming Exercise 8.19, as shown in Figure 16.49a–b. Let the user enter the
numbers in the text fields in a grid of 6 rows and 7 columns. The user can click
the Solve button to highlight a sequence of four equal numbers, if it exists. Ini-
tially, the values in the text fields are filled with numbers from 0 to 9 randomly.

FIGURE 16.49 (a–b) Clicking the Solve button highlights the four consecutive numbers in a row, a column, or a diagonal.
(c) The program enables two players to play the connect-four game.

(a) (b) (c)

676 Chapter 16 JavaFX UI Controls and Multimedia

***16.31 (Game: connect four) Programming Exercise 8.20 enables two players to play
the connect-four game on the console. Rewrite a GUI version for the program,
as shown in Figure 16.49c. The program enables two players to place red and
yellow discs in turn. To place a disk, the player needs to click an available cell.
An available cell is unoccupied and its downward neighbor is occupied. The
program flashes the four winning cells if a player wins and reports no winners if
all cells are occupied with no winners.

BINARY I/O

Objectives
■ To discover how I/O is processed in Java (§17.2).

■ To distinguish between text I/O and binary I/O (§17.3).

■ To read and write bytes using FileInputStream and
FileOutputStream (§17.4.1).

■ To filter data using the base classes FilterInputStream and
FilterOutputStream (§17.4.2).

■ To read and write primitive values and strings using
DataInputStream and DataOutputStream (§17.4.3).

■ To improve I/O performance by using BufferedInputStream and
BufferedOutputStream (§17.4.4).

■ To write a program that copies a file (§17.5).

■ To store and restore objects using ObjectOutputStream and
ObjectInputStream (§17.6).

■ To implement the Serializable interface to make objects
serializable (§17.6.1).

■ To serialize arrays (§17.6.2).

■ To read and write files using the RandomAccessFile class (§17.7).

CHAPTER

17

678 Chapter 17 Binary I/O

17.1 Introduction
Java provides many classes for performing text I/O and binary I/O.

Files can be classified as either text or binary. A file that can be processed (read, created, or
modified) using a text editor such as Notepad on Windows or vi on UNIX is called a text file.
All the other files are called binary files. You cannot read binary files using a text editor—they
are designed to be read by programs. For example, Java source programs are text files and can
be read by a text editor, but Java class files are binary files and are read by the JVM.

Although it is not technically precise and correct, you can envision a text file as consisting
of a sequence of characters and a binary file as consisting of a sequence of bits. Characters
in a text file are encoded using a character encoding scheme such as ASCII or Unicode. For
example, the decimal integer 199 is stored as a sequence of three characters 1, 9, 9 in a text
file, and the same integer is stored as a byte-type value C7 in a binary file, because decimal
199 equals hex C7 (199 = 12 * 161 + 7). The advantage of binary files is that they are
more efficient to process than text files.

Java offers many classes for performing file input and output. These can be categorized as
text I/O classes and binary I/O classes. In Section 12.11, File Input and Output, you learned
how to read and write strings and numeric values from/to a text file using Scanner and
PrintWriter. This chapter introduces the classes for performing binary I/O.

17.2 How Is Text I/O Handled in Java?
Text data are read using the Scanner class and written using the PrintWriter class.

Recall that a File object encapsulates the properties of a file or a path but does not contain
the methods for reading/writing data from/to a file. In order to perform I/O, you need to
create objects using appropriate Java I/O classes. The objects contain the methods for reading/
writing data from/to a file. For example, to write text to a file named temp.txt, you can create
an object using the PrintWriter class as follows:

PrintWriter output = new PrintWriter("temp.txt");

You can now invoke the print method on the object to write a string to the file. For example,
the following statement writes Java 101 to the file.

output.print("Java 101");

The next statement closes the file.

output.close();

There are many I/O classes for various purposes. In general, these can be classified as input
classes and output classes. An input class contains the methods to read data, and an output
class contains the methods to write data. PrintWriter is an example of an output class, and
Scanner is an example of an input class. The following code creates an input object for the
file temp.txt and reads data from the file.

Scanner input = new Scanner(new File("temp.txt"));
System.out.println(input.nextLine());

If temp.txt contains the text Java 101, input.nextLine() returns the string "Java 101".
Figure 17.1 illustrates Java I/O programming. An input object reads a stream of data from

a file, and an output object writes a stream of data to a file. An input object is also called an
input stream and an output object an output stream.

Key
Point

text file

binary file

why binary I/O?

text I/O
binary I/O

Key
Point

stream

input stream

output stream

17.3 Text I/O vs. Binary I/O 679

17.1 What is a text file and what is a binary file? Can you view a text file or a binary file
using a text editor?

17.2 How do you read or write text data in Java? What is a stream?

17.3 Text I/O vs. Binary I/O
Binary I/O does not involve encoding or decoding and thus is more efficient than text I/O.

Computers do not differentiate between binary files and text files. All files are stored in binary
format, and thus all files are essentially binary files. Text I/O is built upon binary I/O to pro-
vide a level of abstraction for character encoding and decoding, as shown in Figure 17.2a.
Encoding and decoding are automatically performed for text I/O. The JVM converts Unicode
to a file-specific encoding when writing a character, and it converts a file-specific encoding
to Unicode when reading a character. For example, suppose you write the string "199" using
text I/O to a file, each character is written to the file. Since the Unicode for character 1 is
0x0031, the Unicode 0x0031 is converted to a code that depends on the encoding scheme
for the file. (Note that the prefix 0x denotes a hex number.) In the United States, the default
encoding for text files on Windows is ASCII. The ASCII code for character 1 is 49 (0x31 in

✓Point✓Check

Key
Point

FIGURE 17.1 The program receives data through an input object and sends data through an
output object.

Program

Input object
created from an

input class

Output object
created from an

 output class

Input stream

01011...1001

11001...1011

Output stream

File

File

FIGURE 17.2 Text I/O requires encoding and decoding, whereas binary I/O does not.

The same byte in the file

The encoding of the character
is stored in the file

Binary I/O program

Text I/O program

The Unicode of
the character

Encoding/
Decoding

A byte is read/written

e.g., "199"

e.g., 199

00110001 00111001 00111001

0x31

0xC7

0x39 0x39

11000111

(a)

(b)

680 Chapter 17 Binary I/O

hex) and for character 9 is 57 (0x39 in hex). Thus, to write the characters 199, three bytes—
0x31, 0x39, and 0x39—are sent to the output, as shown in Figure 17.2a.

Binary I/O does not require conversions. If you write a numeric value to a file using binary
I/O, the exact value in the memory is copied into the file. For example, a byte-type value 199
is represented as 0xC7 (199 = 12 * 161 + 7) in the memory and appears exactly as 0xC7
in the file, as shown in Figure 17.2b. When you read a byte using binary I/O, one byte value
is read from the input.

In general, you should use text input to read a file created by a text editor or a text output
program, and use binary input to read a file created by a Java binary output program.

Binary I/O is more efficient than text I/O, because binary I/O does not require encoding
and decoding. Binary files are independent of the encoding scheme on the host machine and
thus are portable. Java programs on any machine can read a binary file created by a Java pro-
gram. This is why Java class files are binary files. Java class files can run on a JVM on any
machine.

Note
For consistency, this book uses the extension .txt to name text files and .dat to name

binary files.

17.3 What are the differences between text I/O and binary I/O?

17.4 How is a Java character represented in the memory, and how is a character repre-
sented in a text file?

17.5 If you write the string "ABC" to an ASCII text file, what values are stored in the file?

17.6 If you write the string "100" to an ASCII text file, what values are stored in the file?
If you write a numeric byte-type value 100 using binary I/O, what values are stored
in the file?

17.7 What is the encoding scheme for representing a character in a Java program? By
default, what is the encoding scheme for a text file on Windows?

17.4 Binary I/O Classes
The abstract InputStream is the root class for reading binary data, and the abstract
OutputStream is the root class for writing binary data.

The design of the Java I/O classes is a good example of applying inheritance, where common
operations are generalized in superclasses, and subclasses provide specialized operations.
Figure 17.3 lists some of the classes for performing binary I/O. InputStream is the root for

.txt and .dat

✓Point✓Check

Key
Point

FIGURE 17.3 InputStream, OutputStream, and their subclasses are for performing
binary I/O.

FileOutputStream

FilterOutputStream

ObjectOutputStream

FileInputStream

OutputStream

InputStream FilterInputStream

ObjectInputStream

Object

DataInputStream

BufferedInputStream

DataOutputStream

BufferedOutputStream

17.4 Binary I/O Classes 681

17.4.1 FileInputStream/FileOutputStream
FileInputStream/FileOutputStream is for reading/writing bytes from/to files.
All the methods in these classes are inherited from InputStream and OutputStream.
FileInputStream/FileOutputStream does not introduce new methods. To construct a
FileInputStream, use the constructors shown in Figure 17.6.

A java.io.FileNotFoundException will occur if you attempt to create a
FileInputStream with a nonexistent file.

To construct a FileOutputStream, use the constructors shown in Figure 17.7.
If the file does not exist, a new file will be created. If the file already exists, the first two

constructors will delete the current content of the file. To retain the current content and append
new data into the file, use the last two constructors and pass true to the append parameter.

FileNotFoundException

FIGURE 17.4 The abstract InputStream class defines the methods for the input stream of bytes.

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
 len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void
+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as
an int value in the range 0 to 255. If no byte is available because the end of
the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the
actual number of bytes read. Returns –1 at the end of the stream.

Reads bytes from the input stream and stores them in b[off], b[off+1], . . .,
b[off+len-1]. The actual number of bytes read is returned. Returns –1
at the end of the stream.

Returns an estimate of the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources occupied by it.

Skips over and discards n bytes of data from this input stream. The actual
number of bytes skipped is returned.

Tests whether this input stream supports the mark and reset methods.

Marks the current position in this input stream.
Repositions this stream to the position at the time the mark method was last

called on this input stream.

FIGURE 17.5 The abstract OutputStream class defines the methods for the output stream of bytes.

java.io.OutputStream

+write(int b): void

+write(b: byte[], off: int,
len: int): void

+write(b: byte[]): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

Writes b[off], b[off+1],. . ., b[off+len-1] into the output stream.

Writes all the bytes in array b to the output stream.

Closes this output stream and releases any system resources occupied by it.

Flushes this output stream and forces any buffered output bytes to be written out.

binary input classes, and OutputStream is the root for binary output classes. Figures 17.4
and 17.5 list all the methods in the classes InputStream and OutputStream.

Note
All the methods in the binary I/O classes are declared to throw java.io.IOException

or a subclass of java.io.IOException. throws IOException

682 Chapter 17 Binary I/O

Almost all the methods in the I/O classes throw java.io.IOException. Therefore, you
have to declare to throw java.io.IOException in the method or place the code in a try-
catch block, as shown below:

IOException

FIGURE 17.7 FileOutputStream outputs a stream of bytes to a file.

Creates a FileOutputStream from a File object.
Creates a FileOutputStream from a file name.
If append is true, data are appended to the existing file.
If append is true, data are appended to the existing file.

java.io.OutputStream

+FileOutputStream(file: File)
+FileOutputStream(filename: String)
+FileOutputStream(file: File, append: boolean)
+FileOutputStream(filename: String, append: boolean)

java.io.FileOutputStream

FIGURE 17.6 FileInputStream inputs a stream of bytes from a file.

java.io.InputStream

+FileInputStream(file: File)

+FileInputStream(filename: String)

javo.io.FileInputStream

Creates a FileInputStream from a File object.

Creates a FileInputStream from a file name.

Listing 17.1 uses binary I/O to write ten byte values from 1 to 10 to a file named temp.dat
and reads them back from the file.

LISTING 17.1 TestFileStream.java
 1 import java.io.*;
 2
 3 public class TestFileStream {
 4 public static void main(String[] args) throws IOException {
 5 try (
 6 // Create an output stream to the file
 7 FileOutputStream output = new FileOutputStream("temp.dat");
 8) {
 9 // Output values to the file
10 for (int i = 1; i <= 10; i++)
11 output.write(i);
12 }
13
14 try (

import

output stream

output

Declaring exception in the method

public static void main(String[] args)
throws IOException {

// Perform I/O operations
}

Using try-catch block

public static void main(String[] args) {
try {

// Perform I/O operations
 }

catch (IOException ex) {
 ex.printStackTrace();
 }
}

17.4 Binary I/O Classes 683

15 // Create an input stream for the file
16 FileInputStream input = new FileInputStream("temp.dat");
17) {
18 // Read values from the file
19 int value;
20 while ((value = input.read()) != -1)
21 System.out.print(value + " ");
22 }
23 }
24 }

input stream

input

FIGURE 17.8 A binary file cannot be displayed in text mode.

Binary data

1 2 3 4 5 6 7 8 9 10

The program uses the try-with-resources to declare and create input and output streams
so that they will be automatically closed after they are used. The java.io.InputStream
and java.io.OutputStream classes implement the AutoClosable interface. The
AutoClosable interface defines the close() method that closes a resource. Any object of
the AutoClosable type can be used with the try-with-resources syntax for automatic closing.

A FileOutputStream is created for the file temp.dat in line 7. The for loop writes
ten byte values into the file (lines 10–11). Invoking write(i) is the same as invoking
write((byte)i). Line 16 creates a FileInputStream for the file temp.dat. Values are
read from the file and displayed on the console in lines 19–21. The expression ((value =
input.read()) != -1) (line 20) reads a byte from input.read(), assigns it to value,
and checks whether it is –1. The input value of –1 signifies the end of a file.

The file temp.dat created in this example is a binary file. It can be read from a Java pro-
gram but not from a text editor, as shown in Figure 17.8.

AutoClosable

end of a file

Tip
When a stream is no longer needed, always close it using the close() method or

automatically close it using a try-with-resource statement. Not closing streams may cause

data corruption in the output file, or other programming errors.

Note
The root directory for the file is the classpath directory. For the example in this book,

the root directory is c:\book, so the file temp.dat is located at c:\book. If you wish to

place temp.dat in a specific directory, replace line 6 with

FileOutputStream output =
 new FileOutputStream ("directory/temp.dat");

Note
An instance of FileInputStream can be used as an argument to construct a Scanner,

and an instance of FileOutputStream can be used as an argument to construct a

PrintWriter. You can create a PrintWriter to append text into a file using

close stream

where is the file?

appending to text file

684 Chapter 17 Binary I/O

new PrintWriter(new FileOutputStream("temp.txt", true));

If temp.txt does not exist, it is created. If temp.txt already exists, new data are

appended to the file.

17.4.2 FilterInputStream/FilterOutputStream
Filter streams are streams that filter bytes for some purpose. The basic byte input stream
provides a read method that can be used only for reading bytes. If you want to read
integers, doubles, or strings, you need a filter class to wrap the byte input stream. Using a
filter class enables you to read integers, doubles, and strings instead of bytes and characters.
FilterInputStream and FilterOutputStream are the base classes for filtering
data. When you need to process primitive numeric types, use DataInputStream and
DataOutputStream to filter bytes.

17.4.3 DataInputStream/DataOutputStream
DataInputStream reads bytes from the stream and converts them into appropriate
primitive-type values or strings. DataOutputStream converts primitive-type values or
strings into bytes and outputs the bytes to the stream.

DataInputStream extends FilterInputStream and implements the DataInput
interface, as shown in Figure 17.9. DataOutputStream extends FilterOutputStream
and implements the DataOutput interface, as shown in Figure 17.10.

FIGURE 17.9 DataInputStream filters an input stream of bytes into primitive data-type values and strings.

+readBoolean(): boolean

+readByte(): byte

+readChar(): char

+readFloat(): float

+readDouble(): double

+readInt(): int

+readLong(): long

+readShort(): short

+readLine(): String

+readUTF(): String

Reads a Boolean from the input stream.

Reads a byte from the input stream.

Reads a character from the input stream.

Reads a float from the input stream.

Reads a double from the input stream.

Reads an int from the input stream.

Reads a long from the input stream.

Reads a short from the input stream.

Reads a line of characters from input.

Reads a string in UTF format.

InputStream

FilterInputStream

DataInputStream

+DataInputStream(
in: InputStream)

«interface»
java.io.DataInput

DataInputStream implements the methods defined in the DataInput interface to read
primitive data-type values and strings. DataOutputStream implements the methods defined
in the DataOutput interface to write primitive data-type values and strings. Primitive values
are copied from memory to the output without any conversions. Characters in a string may be
written in several ways, as discussed in the next section.

Characters and Strings in Binary I/O
A Unicode character consists of two bytes. The writeChar(char c) method writes the
Unicode of character c to the output. The writeChars(String s) method writes the Uni-
code for each character in the string s to the output. The writeBytes(String s) method
writes the lower byte of the Unicode for each character in the string s to the output. The high
byte of the Unicode is discarded. The writeBytes method is suitable for strings that consist

17.4 Binary I/O Classes 685

of ASCII characters, since an ASCII code is stored only in the lower byte of a Unicode. If a
string consists of non-ASCII characters, you have to use the writeChars method to write
the string.

The writeUTF(String s) method writes two bytes of length information to the
output stream, followed by the modified UTF-8 representation of every character in the
string s. UTF-8 is a coding scheme that allows systems to operate with both ASCII and
Unicode. Most operating systems use ASCII. Java uses Unicode. The ASCII character set
is a subset of the Unicode character set. Since most applications need only the ASCII char-
acter set, it is a waste to represent an 8-bit ASCII character as a 16-bit Unicode character.
The modified UTF-8 scheme stores a character using one, two, or three bytes. Characters
are coded in one byte if their code is less than or equal to 0x7F, in two bytes if their code is
greater than 0x7F and less than or equal to 0x7FF, or in three bytes if their code is greater
than 0x7FF.

The initial bits of a UTF-8 character indicate whether a character is stored in one byte, two
bytes, or three bytes. If the first bit is 0, it is a one-byte character. If the first bits are 110, it
is the first byte of a two-byte sequence. If the first bits are 1110, it is the first byte of a three-
byte sequence. The information that indicates the number of characters in a string is stored
in the first two bytes preceding the UTF-8 characters. For example, writeUTF("ABCDEF")
actually writes eight bytes (i.e., 00 06 41 42 43 44 45 46) to the file, because the first
two bytes store the number of characters in the string.

The writeUTF(String s) method converts a string into a series of bytes in the UTF-8
format and writes them into an output stream. The readUTF() method reads a string that has
been written using the writeUTF method.

The UTF-8 format has the advantage of saving a byte for each ASCII character, because a
Unicode character takes up two bytes and an ASCII character in UTF-8 only one byte. If most
of the characters in a long string are regular ASCII characters, using UTF-8 is more efficient.

Creating DataInputStream/DataOutputStream
DataInputStream/DataOutputStream are created using the following constructors
(see Figures 17.9 and 17.10):

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

UTF-8 scheme

FIGURE 17.10 DataOutputStream enables you to write primitive data-type values and strings into an output stream.

+writeChar(c: char): void

+writeChars(s: String): void

+writeBoolean(b: boolean): void
+writeByte(v: int): void

+writeBytes(s: String): void

+writeFloat(v: float): void

+writeDouble(v: double): void

+writeInt(v: int): void

+writeLong(v: long): void

+writeShort(v: short): void

+writeUTF(s: String): void

Writes a Boolean to the output stream.
Writes the eight low-order bits of the argument v to

the output stream.

Writes the lower byte of the characters in a string to
the output stream.

Writes a character (composed of 2 bytes) to the
output stream.

Writes every character in the string s to the output
stream, in order, 2 bytes per character.

Writes a float value to the output stream.

Writes a double value to the output stream.

Writes an int value to the output stream.

Writes a long value to the output stream.

Writes a short value to the output stream.

Writes s string in UTF format.

OutputStream

FilterOutputStream

DataOutputStream

+DataOutputStream
(out: OutputStream)

«interface»
java.io.DataOutput

686 Chapter 17 Binary I/O

The following statements create data streams. The first statement creates an input stream for
the file in.dat; the second statement creates an output stream for the file out.dat.

DataInputStream input =
new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream output =
new DataOutputStream(new FileOutputStream("out.dat"));

Listing 17.2 writes student names and scores to a file named temp.dat and reads the data back
from the file.

LISTING 17.2 TestDataStream.java
 1 import java.io.*;
 2
 3 public class TestDataStream {
 4 public static void main(String[] args) throws IOException {
 5 try (// Create an output stream for file temp.dat
 6 DataOutputStream output =
 7 new DataOutputStream(new FileOutputStream("temp.dat"));
 8) {
 9 // Write student test scores to the file
10 output.writeUTF("John");
11 output.writeDouble(85.5);
12 output.writeUTF("Jim");
13 output.writeDouble(185.5);
14 output.writeUTF("George");
15 output.writeDouble(105.25);
16 }
17
18 try (// Create an input stream for file temp.dat
19 DataInputStream input =
20 new DataInputStream(new FileInputStream("temp.dat"));
21) {
22 // Read student test scores from the file
23 System.out.println(input.readUTF() + " " + input.readDouble());
24 System.out.println(input.readUTF() + " " + input.readDouble());
25 System.out.println(input.readUTF() + " " + input.readDouble());
26 }
27 }
28 }

output stream

output

input stream

input

John 85.5
Susan 185.5
Kim 105.25

A DataOutputStream is created for file temp.dat in lines 6 and 7. Student names and scores
are written to the file in lines 10–15. A DataInputStream is created for the same file in lines
19–20. Student names and scores are read back from the file and displayed on the console in
lines 23–25.

DataInputStream and DataOutputStream read and write Java primitive-type values
and strings in a machine-independent fashion, thereby enabling you to write a data file on one
machine and read it on another machine that has a different operating system or file structure.
An application uses a data output stream to write data that can later be read by a program using
a data input stream.

DataInputStream filters data from an input stream into appropriate primitive-type val-
ues or strings. DataOutputStream converts primitive-type values or strings into bytes and

17.4 Binary I/O Classes 687

outputs the bytes to an output stream. You can view DataInputStream/FileInputStream
and DataOutputStream/FileOutputStream working in a pipe line as shown in
Figure 17.11.

FIGURE 17.11 DataInputStream filters an input stream of byte to data and
DataOutputStream converts data into a stream of bytes.

DataInputStream FileInputStream External File

01000110011 …int, double, string …

DataOutputStream FileOutputStream External File

01000110011 …int, double, string …

Caution
You have to read data in the same order and format in which they are stored. For exam-

ple, since names are written in UTF-8 using writeUTF, you must read names using

readUTF.

Detecting the End of a File
If you keep reading data at the end of an InputStream, an EOFException will occur. This
exception can be used to detect the end of a file, as shown in Listing 17.3.

LISTING 17.3 DetectEndOfFile.java
 1 import java.io.*;
 2
 3 public class DetectEndOfFile {
 4 public static void main(String[] args) {
 5 try {
 6 try (DataOutputStream output =
 7 new DataOutputStream(new FileOutputStream("test.dat"))) {
 8 output.writeDouble(4.5);
 9 output.writeDouble(43.25);
10 output.writeDouble(3.2);
11 }
12
13 try (DataInputStream input =
14 new DataInputStream(new FileInputStream("test.dat"))) {
15 while (true)
16 System.out.println(input.readDouble());
17 }
18 }
19 catch (EOFException ex) {
20 System.out.println("All data were read");
21 }
22 catch (IOException ex) {
23 ex.printStackTrace();
24 }
25 }
26 }

EOFException

output stream

output

input stream

input

EOFException

688 Chapter 17 Binary I/O

The program writes three double values to the file using DataOutputStream (lines 6–11)
and reads the data using DataInputStream (lines 13–17). When reading past the end of the
file, an EOFException is thrown. The exception is caught in line 19.

17.4.4 BufferedInputStream/BufferedOutputStream
BufferedInputStream/BufferedOutputStream can be used to speed up input and
output by reducing the number of disk reads and writes. Using BufferedInputStream,
the whole block of data on the disk is read into the buffer in the memory once. The indi-
vidual data are then delivered to your program from the buffer, as shown in Figure 17.12a.
Using BufferedOutputStream, the individual data are first written to the buffer in the
memory. When the buffer is full, all data in the buffer are written to the disk once, as shown
in Figure 17.12b.

FIGURE 17.12 Buffer I/O places data in a buffer for fast processing.

A block
of data

BufferedOutputStream

Buffer Write
individual
data

Program

Read
individual
data

A block
of data

(a) (b)

BufferedInputStream

Buffer

Program

FIGURE 17.13 BufferedInputStream buffers an input stream.

Creates a BufferedInputStream from an
InputStream object.

Creates a BufferedInputStream from an
InputStream object with specified buffer size.

+BufferedInputStream(in: InputStream)

+BufferedInputStream(in: InputStream, bufferSize: int)

java.io.InputStream

java.io.FilterInputStream

java.io.BufferedInputStream

4.5
43.25
3.2
All data were read

BufferedInputStream/BufferedOutputStream does not contain new methods. All
the methods in BufferedInputStream/BufferedOutputStream are inherited from the
InputStream/OutputStream classes. BufferedInputStream/BufferedOutputStream
manages a buffer behind the scene and automatically reads/writes data from/to disk on
demand.

You can wrap a BufferedInputStream/BufferedOutputStream on any
InputStream/OutputStream using the constructors shown in Figures 17.13 and 17.14.

17.4 Binary I/O Classes 689

If no buffer size is specified, the default size is 512 bytes. You can improve the perfor-
mance of the TestDataStream program in Listing 17.2 by adding buffers in the stream in
lines 6–7 and lines 19–20, as follows:

DataOutputStream output = new DataOutputStream(
new BufferedOutputStream(new FileOutputStream("temp.dat")));

DataInputStream input = new DataInputStream(
new BufferedInputStream(new FileInputStream("temp.dat")));

Tip
You should always use buffered I/O to speed up input and output. For small files, you

may not notice performance improvements. However, for large files—over 100 MB—

you will see substantial improvements using buffered I/O.

17.8 Why do you have to declare to throw IOException in the method or use a try-catch
block to handle IOException for Java I/O programs?

17.9 Why should you always close streams? How do you close streams?

17.10 The read() method in InputStream reads a byte. Why does it return an int
instead of a byte? Find the abstract methods in InputStream and OutputStream.

17.11 Does FileInputStream/FileOutputStream introduce any new methods beyond
the methods inherited from InputStream/OutputStream? How do you create a
FileInputStream/FileOutputStream?

17.12 What will happen if you attempt to create an input stream on a nonexistent file? What
will happen if you attempt to create an output stream on an existing file? Can you
append data to an existing file?

17.13 How do you append data to an existing text file using java.io.PrintWriter?

17.14 Suppose a file contains an unspecified number of double values that were written to
the file using the writeDouble method using a DataOutputStream, how do you
write a program to read all these values? How do you detect the end of a file?

17.15 What is written to a file using writeByte(91) on a FileOutputStream?

17.16 How do you check the end of a file in an input stream (FileInputStream,
DataInputStream)?

17.17 What is wrong in the following code?

import java.io.*;

public class Test {

✓Point✓Check

FIGURE 17.14 BufferedOutputStream buffers an output stream.

Creates a BufferedOutputStream from an
OutputStream object.

Creates a BufferedOutputStream from an
OutputStream object with specified size.

+BufferedOutputStream(out: OutputStream)

+BufferedOutputStream(out: OutputStream, bufferSize: int)

java.io.OutputStream

java.io.FilterOutputStream

java.io.BufferedOutputStream

690 Chapter 17 Binary I/O

public static void main(String[] args) {
try (

 FileInputStream fis = new FileInputStream("test.dat");) {
 }

catch (IOException ex) {
 ex.printStackTrace();
 }

catch (FileNotFoundException ex) {
 ex.printStackTrace();
 }
 }
}

17.18 Suppose you run the following program on Windows using the default ASCII encod-
ing after the program is finished, how many bytes are there in the file t.txt? Show the
contents of each byte.

public class Test {
public static void main(String[] args)

throws java.io.IOException {
try (java.io.PrintWriter output =

new java.io.PrintWriter("t.txt");) {
 output.printf("%s", "1234");
 output.printf("%s", "5678");
 output.close();
 }
 }
}

17.19 After the following program is finished, how many bytes are there in the file t.dat?
Show the contents of each byte.

import java.io.*;

public class Test {
public static void main(String[] args) throws IOException {

try (DataOutputStream output = new DataOutputStream(
new FileOutputStream("t.dat"));) {

 output.writeInt(1234);
 output.writeInt(5678);
 output.close();
 }
 }
}

17.20 For each of the following statements on a DataOutputStream output, how many
bytes are sent to the output?

output.writeChar('A');
output.writeChars("BC");
output.writeUTF("DEF");

17.21 What are the advantages of using buffered streams? Are the following statements correct?

BufferedInputStream input1 =
new BufferedInputStream(new FileInputStream("t.dat"));

DataInputStream input2 = new DataInputStream(
new BufferedInputStream(new FileInputStream("t.dat")));

DataOutputStream output = new DataOutputStream(
new BufferedOutputStream(new FileOutputStream("t.dat")));

17.5 Case Study: Copying Files 691

17.5 Case Study: Copying Files
This section develops a useful utility for copying files.

In this section, you will learn how to write a program that lets users copy files. The user needs
to provide a source file and a target file as command-line arguments using the command:

java Copy source target

The program copies the source file to the target file and displays the number of bytes in the
file. The program should alert the user if the source file does not exist or if the target file
already exists. A sample run of the program is shown in Figure 17.15.

Key
Point

Copy file

VideoNote

FIGURE 17.15 The program copies a file.

File exists

Delete file

Copy

Source
does not
exist

To copy the contents from a source file to a target file, it is appropriate to use an input
stream to read bytes from the source file and an output stream to send bytes to the target file,
regardless of the file’s contents. The source file and the target file are specified from the com-
mand line. Create an InputFileStream for the source file and an OutputFileStream for
the target file. Use the read() method to read a byte from the input stream, and then use the
write(b) method to write the byte to the output stream. Use BufferedInputStream and
BufferedOutputStream to improve the performance. Listing 17.4 gives the solution to the
problem.

LISTING 17.4 Copy.java
 1 import java.io.*;
 2
 3 public class Copy {
 4 /** Main method
5 @param args[0] for sourcefile
6 @param args[1] for target file
7 */

 8 public static void main(String[] args) throws IOException {
 9 // Check command-line parameter usage
10 if (args.length != 2) {
11 System.out.println(
12 "Usage: java Copy sourceFile targetfile");
13 System.exit(1);
14 }
15
16 // Check if source file exists
17 File sourceFile = new File(args[0]);
18 if (!sourceFile.exists()) {
19 System.out.println("Source file " + args[0]
20 + " does not exist");

check usage

source file

692 Chapter 17 Binary I/O

21 System.exit(2);
22 }
23
24 // Check if target file exists
25 File targetFile = new File(args[1]);
26 if (targetFile.exists()) {
27 System.out.println("Target file " + args[1]
28 + " already exists");
29 System.exit(3);
30 }
31
32 try (
33 // Create an input stream
34 BufferedInputStream input =
35 new BufferedInputStream(new FileInputStream(sourceFile));
36
37 // Create an output stream
38 BufferedOutputStream output =
39 new BufferedOutputStream(new FileOutputStream(targetFile));
40) {
41 // Continuously read a byte from input and write it to output
42 int r, numberOfBytesCopied = 0;
43 while ((r = input.read()) != -1) {
44 output.write((byte)r);
45 numberOfBytesCopied++;
46 }
47
48 // Display the file size
49 System.out.println(numberOfBytesCopied + " bytes copied");
50 }
51 }
52 }

The program first checks whether the user has passed the two required arguments from the
command line in lines 10–14.

The program uses the File class to check whether the source file and target file exist. If
the source file does not exist (lines 18–22) or if the target file already exists (lines 25–30), the
program ends.

An input stream is created using BufferedInputStream wrapped on FileInputStream
in lines 34 and 35, and an output stream is created using BufferedOutputStream wrapped
on FileOutputStream in lines 38 and 39.

The expression ((r = input.read()) != -1) (line 43) reads a byte from
input.read(), assigns it to r, and checks whether it is -1. The input value of -1 signifies
the end of a file. The program continuously reads bytes from the input stream and sends them
to the output stream until all of the bytes have been read.

17.22 How does the program check if a file already exists?

17.23 How does the program detect the end of the file while reading data?

17.24 How does the program count the number of bytes read from the file?

17.6 Object I/O
ObjectInputStream/ObjectOutputStream classes can be used to read/write
serializable objects.

DataInputStream/DataOutputStream enables you to perform I/O for primitive-type val-
ues and strings. ObjectInputStream/ObjectOutputStream enables you to perform I/O

target file

input stream

output stream

read
write

✓Point✓Check

Key
Point

17.6 Object I/O 693

for objects in addition to primitive-type values and strings. Since ObjectInputStream/
ObjectOutputStream contains all the functions of DataInputStream/
DataOutputStream, you can replace DataInputStream/DataOutputStream completely
with ObjectInputStream/ObjectOutputStream.

ObjectInputStream extends InputStream and implements ObjectInput and
ObjectStreamConstants, as shown in Figure 17.16. ObjectInput is a subinterface of
DataInput (DataInput is shown in Figure 17.9). ObjectStreamConstants contains the
constants to support ObjectInputStream/ObjectOutputStream.

Object I/O

VideoNote

FIGURE 17.16 ObjectInputStream can read objects, primitive-type values, and strings.

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream) +readObject(): Object

«interface»
java.io.DataInput

«interface»
java.io.ObjectInput

«interface»
ObjectStreamConstants

FIGURE 17.17 ObjectOutputStream can write objects, primitive-type values, and strings.

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream) +writeObject(o: Object): void

«interface»
java.io.DataOutput

«interface»
java.io.ObjectOutput

«interface»
ObjectStreamConstants

ObjectOutputStream extends OutputStream and implements ObjectOutput and
ObjectStreamConstants, as shown in Figure 17.17. ObjectOutput is a subinterface of
DataOutput (DataOutput is shown in Figure 17.10).

You can wrap an ObjectInputStream/ObjectOutputStream on any InputStream/
OutputStream using the following constructors:

// Create an ObjectInputStream
public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream
public ObjectOutputStream(OutputStream out)

Listing 17.5 writes student names, scores, and the current date to a file named object.dat.

LISTING 17.5 TestObjectOutputStream.java
 1 import java.io.*;
 2
 3 public class TestObjectOutputStream {

694 Chapter 17 Binary I/O

 4 public static void main(String[] args) throws IOException {
 5 try (// Create an output stream for file object.dat
 6 ObjectOutputStream output =
 7 new ObjectOutputStream(new FileOutputStream("object.dat"));
 8) {
 9 // Write a string, double value, and object to the file
10 output.writeUTF("John");
11 output.writeDouble(85.5);
12 output.writeObject(new java.util.Date());
13 }
14 }
15 }

An ObjectOutputStream is created to write data into the file object.dat in lines 6 and 7.
A string, a double value, and an object are written to the file in lines 10–12. To improve
performance, you may add a buffer in the stream using the following statement to replace
lines 6 and 7:

ObjectOutputStream output = new ObjectOutputStream(
new BufferedOutputStream(new FileOutputStream("object.dat")));

Multiple objects or primitives can be written to the stream. The objects must be read back
from the corresponding ObjectInputStream with the same types and in the same order as
they were written. Java’s safe casting should be used to get the desired type. Listing 17.6 reads
data from object.dat.

LISTING 17.6 TestObjectInputStream.java
 1 import java.io.*;
 2
 3 public class TestObjectInputStream {
 4 public static void main(String[] args)
 5 throws ClassNotFoundException, IOException {
 6 try (// Create an input stream for file object.dat
 7 ObjectInputStream input =
 8 new ObjectInputStream(new FileInputStream("object.dat"));
 9) {
10 // Read a string, double value, and object from the file
11 String name = input.readUTF();
12 double score = input.readDouble();
13 java.util.Date date = (java.util.Date)(input.readObject());
14 System.out.println(name + " " + score + " " + date);
15 }
16 }
17 }

output stream

output string

output object

input stream

input string

input object

John 85.5 Sun Dec 04 10:35:31 EST 2011

The readObject() method may throw java.lang.ClassNotFoundException, because
when the JVM restores an object, it first loads the class for the object if the class has not
been loaded. Since ClassNotFoundException is a checked exception, the main method
declares to throw it in line 5. An ObjectInputStream is created to read input from
object.dat in lines 7 and 8. You have to read the data from the file in the same order and
format as they were written to the file. A string, a double value, and an object are read in
lines 11–13. Since readObject() returns an Object, it is cast into Date and assigned to a
Date variable in line 13.

ClassNotFoundException

17.6 Object I/O 695

17.6.1 The Serializable Interface
Not every object can be written to an output stream. Objects that can be so written are said
to be serializable. A serializable object is an instance of the java.io.Serializable inter-
face, so the object’s class must implement Serializable.

The Serializable interface is a marker interface. Since it has no methods, you don’t
need to add additional code in your class that implements Serializable. Implementing this
interface enables the Java serialization mechanism to automate the process of storing objects
and arrays.

To appreciate this automation feature, consider what you otherwise need to do in order to
store an object. Suppose you wish to store an ArrayList object. To do this you need to store
all the elements in the list. Each element is an object that may contain other objects. As you
can see, this would be a very tedious process. Fortunately, you don’t have to go through it
manually. Java provides a built-in mechanism to automate the process of writing objects. This
process is referred as object serialization, which is implemented in ObjectOutputStream.
In contrast, the process of reading objects is referred as object deserialization, which is imple-
mented in ObjectInputStream.

Many classes in the Java API implement Serializable. All the wrapper classes for primi-
tive type values, java.math.BigInteger,java.math.BigDecimal,java.lang.String,
java.lang.StringBuilder, java.lang.StringBuffer, java.util.Date, and
java.util.ArrayList implement java.io.Serializable. Attempting to
store an object that does not support the Serializable interface would cause a
NotSerializableException.

When a serializable object is stored, the class of the object is encoded; this includes the
class name and the signature of the class, the values of the object’s instance variables, and the
closure of any other objects referenced by the object. The values of the object’s static vari-
ables are not stored.

Note
Nonserializable fields
If an object is an instance of Serializable but contains nonserializable instance

data fields, can it be serialized? The answer is no. To enable the object to be serialized,

mark these data fields with the transient keyword to tell the JVM to ignore them

when writing the object to an object stream. Consider the following class:

public class C implements java.io.Serializable {
private int v1;
private static double v2;
private transient A v3 = new A();

}

class A { } // A is not serializable

When an object of the C class is serialized, only variable v1 is serialized. Variable

v2 is not serialized because it is a static variable, and variable v3 is not serialized

because it is marked transient. If v3 were not marked transient, a

java.io.NotSerializableException would occur.

Note
Duplicate objects
If an object is written to an object stream more than once, will it be stored in multiple

copies? No, it will not. When an object is written for the first time, a serial number is

created for it. The JVM writes the complete contents of the object along with the serial

number into the object stream. After the first time, only the serial number is stored if the

serializable

serialization

deserialization

NotSerializableException

transient

696 Chapter 17 Binary I/O

same object is written again. When the objects are read back, their references are the

same since only one object is actually created in the memory.

17.6.2 Serializing Arrays
An array is serializable if all its elements are serializable. An entire array can be saved into a
file using writeObject and later can be restored using readObject. Listing 17.7 stores an
array of five int values and an array of three strings and reads them back to display on the
console.

LISTING 17.7 TestObjectStreamForArray.java
 1 import java.io.*;
 2
 3 public class TestObjectStreamForArray {
 4 public static void main(String[] args)
 5 throws ClassNotFoundException, IOException {
 6 int[] numbers = {1, 2, 3, 4, 5};
 7 String[] strings = {"John", "Susan", "Kim"};
 8
 9 try (// Create an output stream for file array.dat
10 ObjectOutputStream output = new ObjectOutputStream(new
11 FileOutputStream("array.dat", true));
12) {
13 // Write arrays to the object output stream
14 output.writeObject(numbers);
15 output.writeObject(strings);
16 }
17
18 try (// Create an input stream for file array.dat
19 ObjectInputStream input =
20 new ObjectInputStream(new FileInputStream("array.dat"));
21) {
22 int[] newNumbers = (int[])(input.readObject());
23 String[] newStrings = (String[])(input.readObject());
24
25 // Display arrays
26 for (int i = 0; i < newNumbers.length; i++)
27 System.out.print(newNumbers[i] + " ");
28 System.out.println();
29
30 for (int i = 0; i < newStrings.length; i++)
31 System.out.print(newStrings[i] + " ");
32 }
33 }
34 }

output stream

store array

input stream

restore array

1 2 3 4 5
John Susan Kim

Lines 14 and 15 write two arrays into file array.dat. Lines 22 and 23 read two arrays back in
the same order they were written. Since readObject() returns Object, casting is used to
cast the objects into int[] and String[].

17.25 What types of objects can be stored using the ObjectOutputStream? What is the
method for writing an object? What is the method for reading an object? What is the
return type of the method that reads an object from ObjectInputStream?

✓Point✓Check

17.7 Random-Access Files 697

17.26 If you serialize two objects of the same type, will they take the same amount of
space? If not, give an example.

17.27 Is it true that any instance of java.io.Serializable can be successfully serial-
ized? Are the static variables in an object serialized? How do you mark an instance
variable not to be serialized?

17.28 Can you write an array to an ObjectOutputStream?

17.29 Is it true that DataInputStream/DataOutputStream can always be replaced by
ObjectInputStream/ObjectOutputStream?

17.30 What will happen when you attempt to run the following code?

import java.io.*;

public class Test {
public static void main(String[] args) throws IOException {

try (ObjectOutputStream output =
new ObjectOutputStream(new FileOutputStream("object.dat"));) {

 output.writeObject(new A());
 }
 }
}

class A implements Serializable {
 B b = new B();
}

class B {
}

17.7 Random-Access Files
Java provides the RandomAccessFile class to allow data to be read from and
written to at any locations in the file.

All of the streams you have used so far are known as read-only or write-only streams. These
streams are called sequential streams. A file that is opened using a sequential stream is called
a sequential-access file. The contents of a sequential-access file cannot be updated. However,
it is often necessary to modify files. Java provides the RandomAccessFile class to allow
data to be read from and written to at any locations in a file. A file that is opened using the
RandomAccessFile class is known as a random-access file.

The RandomAccessFile class implements the DataInput and DataOutput interfaces,
as shown in Figure 17.18. The DataInput interface (see Figure 17.9) defines the methods
for reading primitive-type values and strings (e.g., readInt, readDouble, readChar,
readBoolean, readUTF) and the DataOutput interface (see Figure 17.10) defines the
methods for writing primitive-type values and strings (e.g., writeInt, writeDouble,
writeChar, writeBoolean, writeUTF).

When creating a RandomAccessFile, you can specify one of two modes: r or rw. Mode
r means that the stream is read-only, and mode rw indicates that the stream allows both read
and write. For example, the following statement creates a new stream, raf, that allows the
program to read from and write to the file test.dat:

RandomAccessFile raf = new RandomAccessFile("test.dat", "rw");

If test.dat already exists, raf is created to access it; if test.dat does not exist, a new file named
test.dat is created, and raf is created to access the new file. The method raf.length()
returns the number of bytes in test.dat at any given time. If you append new data into the file,
raf.length() increases.

Key
Point

read-only
write-only

sequential-access file

random-access file

698 Chapter 17 Binary I/O

Tip
If the file is not intended to be modified, open it with the r mode. This prevents unin-

tentional modification of the file.

A random-access file consists of a sequence of bytes. A special marker called a file pointer
is positioned at one of these bytes. A read or write operation takes place at the location of the
file pointer. When a file is opened, the file pointer is set at the beginning of the file. When you
read or write data to the file, the file pointer moves forward to the next data item. For example,
if you read an int value using readInt(), the JVM reads 4 bytes from the file pointer, and
now the file pointer is 4 bytes ahead of the previous location, as shown in Figure 17.19.

For a RandomAccessFile raf, you can use the raf.seek(position) method to move
the file pointer to a specified position. raf.seek(0) moves it to the beginning of the file,
and raf.seek(raf.length()) moves it to the end of the file. Listing 17.8 demonstrates

file pointer

FIGURE 17.18 RandomAccessFile implements the DataInput and DataOutput interfaces with additional methods
to support random access.

Creates a RandomAccessFile stream with the specified File object
 and mode.

Creates a RandomAccessFile stream with the specified file name
string and mode.

Closes the stream and releases the resource associated with it.

Returns the offset, in bytes, from the beginning of the file to where the
next read or write occurs.

Returns the number of bytes in this file.

Reads a byte of data from this file and returns –1 at the end of stream.

Reads up to b.length bytes of data from this file into an array of bytes.

Reads up to len bytes of data from this file into an array of bytes.

Sets the offset (in bytes specified in pos) from the beginning of the
 stream to where the next read or write occurs.

Sets a new length for this file.

Skips over n bytes of input.

Writes b.length bytes from the specified byte array to this file,
 starting at the current file pointer.

Writes len bytes from the specified byte array, starting at offset off,
 to this file.

java.io.RandomAccessFile

+RandomAccessFile(file: File, mode:
String)

+RandomAccessFile(name: String,
mode: String)

+close(): void

+getFilePointer(): long

+length(): long

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int, len: int): int

+seek(pos: long): void

+setLength(newLength: long): void

+skipBytes(int n): int

+write(b: byte[]): void

+write(b: byte[], off: int, len: int):
void

«interface»
java.io.DataOutput

«interface»
java.io.DataInput

FIGURE 17.19 After an int value is read, the file pointer is moved 4 bytes ahead.

(b) After readInt()

File pointer

File

File

… byte byte byte byte byte byte byte byte byte byte… (a) Before readInt()byte byte

byte byte byte byte byte bytebyte byte byte byte byte… …byte

File pointer

17.7 Random-Access Files 699

RandomAccessFile. A large case study of using RandomAccessFile to organize an
address book is given in Supplement VI.D.

LISTING 17.8 TestRandomAccessFile.jav
 1 import java.io.*;
 2
 3 public class TestRandomAccessFile {
 4 public static void main(String[] args) throws IOException {
 5 try (// Create a random access file
 6 RandomAccessFile inout = new RandomAccessFile("inout.dat", "rw");
 7) {
 8 // Clear the file to destroy the old contents if exists
 9 inout.setLength(0);
10
11 // Write new integers to the file
12 for (int i = 0; i < 200; i++)
13 inout.writeInt(i);
14
15 // Display the current length of the file
16 System.out.println("Current file length is " + inout.length());
17
18 // Retrieve the first number
19 inout.seek(0); // Move the file pointer to the beginning
20 System.out.println("The first number is " + inout.readInt());
21
22 // Retrieve the second number
23 inout.seek(1 * 4); // Move the file pointer to the second number
24 System.out.println("The second number is " + inout.readInt());
25
26 // Retrieve the tenth number
27 inout.seek(9 * 4); // Move the file pointer to the tenth number
28 System.out.println("The tenth number is " + inout.readInt());
29
30 // Modify the eleventh number
31 inout.writeInt(555);
32
33 // Append a new number
34 inout.seek(inout.length()); // Move the file pointer to the end
35 inout.writeInt(999);
36
37 // Display the new length
38 System.out.println("The new length is " + inout.length());
39
40 // Retrieve the new eleventh number
41 inout.seek(10 * 4); // Move the file pointer to the eleventh number
42 System.out.println("The eleventh number is " + inout.readInt());
43 }
44 }
45 }

RandomAccessFile

empty file

write

move pointer
read

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

700 Chapter 17 Binary I/O

A RandomAccessFile is created for the file named inout.dat with mode rw to allow both
read and write operations in line 6.

inout.setLength(0) sets the length to 0 in line 9. This, in effect, destroys the old con-
tents of the file.

The for loop writes 200 int values from 0 to 199 into the file in lines 12 and 13. Since
each int value takes 4 bytes, the total length of the file returned from inout.length() is
now 800 (line 16), as shown in the sample output.

Invoking inout.seek(0) in line 19 sets the file pointer to the beginning of the file.
inout.readInt() reads the first value in line 20 and moves the file pointer to the next
number. The second number is read in line 24.

inout.seek(9 * 4) (line 27) moves the file pointer to the tenth number.
inout.readInt() reads the tenth number and moves the file pointer to the eleventh num-
ber in line 28. inout.write(555) writes a new eleventh number at the current position
(line 31). The previous eleventh number is destroyed.

inout.seek(inout.length()) moves the file pointer to the end of the file (line 34).
inout.writeInt(999) writes a 999 to the file (line 35). Now the length of the file is
increased by 4, so inout.length() returns 804 (line 38).

inout.seek(10 * 4) moves the file pointer to the eleventh number in line 41. The new
eleventh number, 555, is displayed in line 42.

17.31 Can RandomAccessFile streams read and write a data file created by
DataOutputStream? Can RandomAccessFile streams read and write objects?

17.32 Create a RandomAccessFile stream for the file address.dat to allow the updating
of student information in the file. Create a DataOutputStream for the file
address.dat. Explain the differences between these two statements.

17.33 What happens if the file test.dat does not exist when you attempt to compile and run
the following code?

import java.io.*;

public class Test {
public static void main(String[] args) {

try (RandomAccessFile raf =
new RandomAccessFile("test.dat", "r");) {

int i = raf.readInt();
 }

catch (IOException ex) {
 System.out.println("IO exception");
 }
 }
}

✓Point✓Check

KEY TERMS

binary I/O 678
deserialization 695
file pointer 698
random-access file 697

sequential-access file 697
serialization 695
stream 678
text I/O 678

Programming Exercises 701

CHAPTER SUMMARY

1. I/O can be classified into text I/O and binary I/O. Text I/O interprets data in sequences
of characters. Binary I/O interprets data as raw binary values. How text is stored in a file
depends on the encoding scheme for the file. Java automatically performs encoding and
decoding for text I/O.

2. The InputStream and OutputStream classes are the roots of all binary I/O
classes. FileInputStream/FileOutputStream associates a file for input/output.
BufferedInputStream/BufferedOutputStream can be used to wrap any binary
I/O stream to improve performance. DataInputStream/DataOutputStream can be
used to read/write primitive values and strings.

3. ObjectInputStream/ObjectOutputStream can be used to read/write objects in
addition to primitive values and strings. To enable object serialization, the object’s
defining class must implement the java.io.Serializable marker interface.

4. The RandomAccessFile class enables you to read and write data to a file. You can
open a file with the r mode to indicate that it is read-only or with the rw mode to indi-
cate that it is updateable. Since the RandomAccessFile class implements DataInput
and DataOutput interfaces, many methods in RandomAccessFile are the same as
those in DataInputStream and DataOutputStream.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Section 17.3

*17.1 (Create a text file) Write a program to create a file named Exercise17_01.txt if
it does not exist. Append new data to it if it already exists. Write 100 integers
created randomly into the file using text I/O. Integers are separated by a space.

Section 17.4

*17.2 (Create a binary data file) Write a program to create a file named
Exercise17_02.dat if it does not exist. Append new data to it if it already exists.
Write 100 integers created randomly into the file using binary I/O.

*17.3 (Sum all the integers in a binary data file) Suppose a binary data file named
Exercise17_03.dat has been created and its data are created using
writeInt(int) in DataOutputStream. The file contains an unspecified
number of integers. Write a program to find the sum of the integers.

*17.4 (Convert a text file into UTF) Write a program that reads lines of characters from
a text file and writes each line as a UTF-8 string into a binary file. Display the
sizes of the text file and the binary file. Use the following command to run the
program:

java Exercise17_04 Welcome.java Welcome.utf

www.cs.armstrong.edu/liang/intro10e/quiz.html

702 Chapter 17 Binary I/O

Section 17.6

*17.5 (Store objects and arrays in a file) Write a program that stores an array of the five
int values 1, 2, 3, 4, and 5, a Date object for the current time, and the double
value 5.5 into the file named Exercise17_05.dat.

*17.6 (Store Loan objects) The Loan class in Listing 10.2 does not implement
Serializable. Rewrite the Loan class to implement Serializable. Write
a program that creates five Loan objects and stores them in a file named
Exercise17_06.dat.

*17.7 (Restore objects from a file) Suppose a file named Exercise17_07.dat has been
created using the ObjectOutputStream. The file contains Loan objects. The
Loan class in Listing 10.2 does not implement Serializable. Rewrite the
Loan class to implement Serializable. Write a program that reads the Loan
objects from the file and displays the total loan amount. Suppose you don’t
know how many Loan objects are there in the file, use EOFException to end
the loop.

Section 17.7

*17.8 (Update count) Suppose you wish to track how many times a program has been
executed. You can store an int to count the file. Increase the count by 1 each
time this program is executed. Let the program be Exercise17_08 and store the
count in Exercise17_08.dat.

***17.9 (Address book) Write a program that stores, retrieves, adds, and updates addresses
as shown in Figure 17.20. Use a fixed-length string for storing each attribute in the
address. Use random access file for reading and writing an address. Assume that
the size of name, street, city, state, and zip is 32, 32, 20, 2, 5 bytes, respectively.

FIGURE 17.20 The application can store, retrieve, and update addresses from a file.

Comprehensive

*17.10 (Split files) Suppose you want to back up a huge file (e.g., a 10-GB AVI file) to a
CD-R. You can achieve it by splitting the file into smaller pieces and backing up
these pieces separately. Write a utility program that splits a large file into smaller
ones using the following command:

java Exercise17_10 SourceFile numberOfPieces

The command creates the files SourceFile.1, SourceFile.2, . . . , SourceFile.n,
where n is numberOfPieces and the output files are about the same size.

**17.11 (Split files GUI) Rewrite Exercise 17.10 with a GUI, as shown in Figure 17.21a.

*17.12 (Combine files) Write a utility program that combines the files together into a
new file using the following command:

java Exercise17_12 SourceFile1 . . . SourceFilen TargetFile

The command combines SourceFile1, . . . , and SourceFilen into TargetFile.

Split a large file

VideoNote

Programming Exercises 703

*17.13 (Combine files GUI) Rewrite Exercise 17.12 with a GUI, as shown in
Figure 17.21b.

17.14 (Encrypt files) Encode the file by adding 5 to every byte in the file. Write a pro-
gram that prompts the user to enter an input file name and an output file name and
saves the encrypted version of the input file to the output file.

17.15 (Decrypt files) Suppose a file is encrypted using the scheme in Programming
Exercise 17.14. Write a program to decode an encrypted file. Your program
should prompt the user to enter an input file name for the encrypted file and an
output file name for the unencrypted version of the input file.

17.16 (Frequency of characters) Write a program that prompts the user to enter the
name of an ASCII text file and displays the frequency of the characters in the file.

**17.17 (BitOutputStream) Implement a class named BitOutputStream, as shown
in Figure 17.22, for writing bits to an output stream. The writeBit(char bit)
method stores the bit in a byte variable. When you create a BitOutputStream,
the byte is empty. After invoking writeBit('1'), the byte becomes 00000001.
After invoking writeBit("0101"), the byte becomes 00010101. The first
three bits are not filled yet. When a byte is full, it is sent to the output stream. Now
the byte is reset to empty. You must close the stream by invoking the close()
method. If the byte is neither empty nor full, the close() method first fills the
zeros to make a full 8 bits in the byte, and then outputs the byte and closes the
stream. For a hint, see Programming Exercise 5.44. Write a test program that
sends the bits 010000100100001001101 to the file named Exercise17_17.dat.

FIGURE 17.21 (a) The program splits a file. (b) The program combines files into a new file.

(a) (b)

FIGURE 17.22 BitOutputStream outputs a stream of bits to a file.

BitOutputStream

+BitOutputStream(file: File)

+writeBit(char bit): void

+writeBit(String bit): void

+close(): void

Creates a BitOutputStream to writes bits to the file.

Writes a bit '0' or '1' to the output stream.

Writes a string of bits to the output stream.

This method must be invoked to close the stream.

*17.18 (View bits) Write the following method that displays the bit representation for the
last byte in an integer:

public static String getBits(int value)

For a hint, see Programming Exercise 5.44. Write a program that prompts the
user to enter a file name, reads bytes from the file, and displays each byte’s binary
representation.

704 Chapter 17 Binary I/O

*17.19 (View hex) Write a program that prompts the user to enter a file name, reads bytes
from the file, and displays each byte’s hex representation. (Hint: You can first
convert the byte value into an 8-bit string, then convert the bit string into a two-
digit hex string.)

**17.20 (Binary editor) Write a GUI application that lets the user enter a file name in the
text field and press the Enter key to display its binary representation in a text area.
The user can also modify the binary code and save it back to the file, as shown in
Figure 17.23a.

FIGURE 17.23 The programs enable the user to manipulate the contents of the file in (a) binary and (b) hex.

(a) (b)

**17.21 (Hex editor) Write a GUI application that lets the user enter a file name in the
text field and press the Enter key to display its hex representation in a text area.
The user can also modify the hex code and save it back to the file, as shown in
Figure 17.23b.

RECURSION

Objectives
■ To describe what a recursive method is and the benefits of using

recursion (§18.1).

■ To develop recursive methods for recursive mathematical functions
(§§18.2–18.3).

■ To explain how recursive method calls are handled in a call stack
(§§18.2–18.3).

■ To solve problems using recursion (§18.4).

■ To use an overloaded helper method to design a recursive method
(§18.5).

■ To implement a selection sort using recursion (§18.5.1).

■ To implement a binary search using recursion (§18.5.2).

■ To get the directory size using recursion (§18.6).

■ To solve the Tower of Hanoi problem using recursion (§18.7).

■ To draw fractals using recursion (§18.8).

■ To discover the relationship and difference between recursion and
iteration (§18.9).

■ To know tail-recursive methods and why they are desirable (§18.10).

CHAPTER

18

706 Chapter 18 Recursion

18.1 Introduction
Recursion is a technique that leads to elegant solutions to problems that are difficult
to program using simple loops.

Suppose you want to find all the files under a directory that contain a particular word. How do
you solve this problem? There are several ways to do so. An intuitive and effective solution is
to use recursion by searching the files in the subdirectories recursively.

H-trees, depicted in Figure 18.1, are used in a very large-scale integration (VLSI) design as a
clock distribution network for routing timing signals to all parts of a chip with equal propagation
delays. How do you write a program to display H-trees? A good approach is to use recursion.

Key
Point

search word problem

H-tree problem

FIGURE 18.1 An H-tree can be displayed using recursion.

(a) (b) (c) (d)

To use recursion is to program using recursive methods—that is, to use methods that
invoke themselves. Recursion is a useful programming technique. In some cases, it enables
you to develop a natural, straightforward, simple solution to an otherwise difficult problem.
This chapter introduces the concepts and techniques of recursive programming and illustrates
with examples of how to “think recursively.”

18.2 Case Study: Computing Factorials
A recursive method is one that invokes itself.

Many mathematical functions are defined using recursion. Let’s begin with a simple example.
The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n - 1)!; n > 0

How do you find n! for a given n? To find 1! is easy, because you know that 0! is 1, and 1!
is 1 × 0!. Assuming that you know (n - 1)!, you can obtain n! immediately by using n ×
(n - 1)!. Thus, the problem of computing n! is reduced to computing (n - 1)!. When
computing (n - 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0,
it immediately returns the result. The method knows how to solve the simplest case, which is
referred to as the base case or the stopping condition. If you call the method with n > 0, it
reduces the problem into a subproblem for computing the factorial of n - 1. The subproblem
is essentially the same as the original problem, but it is simpler or smaller. Because the sub-
problem has the same property as the original problem, you can call the method with a differ-
ent argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
return 1;

recursive method

Key
Point

base case or stopping
condition

recursive call

18.2 Case Study: Computing Factorials 707

else

return n * factorial(n - 1);

A recursive call can result in many more recursive calls, because the method keeps on dividing
a subproblem into new subproblems. For a recursive method to terminate, the problem must
eventually be reduced to a stopping case, at which point the method returns a result to its
caller. The caller then performs a computation and returns the result to its own caller. This
process continues until the result is passed back to the original caller. The original problem
can now be solved by multiplying n by the result of factorial(n - 1).

Listing 18.1 gives a complete program that prompts the user to enter a nonnegative integer
and displays the factorial for the number.

LISTING 18.1 ComputeFactorial.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFactorial {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter a nonnegative integer: ");
 9 int n = input.nextInt();
10
11 // Display factorial
12 System.out.println("Factorial of " + n + " is " + factorial(n));
13 }
14
15 /** Return the factorial for the specified number */
16 public static long factorial(int n) {
17 if (n == 0) // Base case
18 return 1;
19 else

20 return n * factorial(n - 1); // Recursive call
21 }
22 }

base case

recursion

Enter a nonnegative integer: 4
Factorial of 4 is 24

Enter a nonnegative integer: 10
Factorial of 10 is 3628800

The factorial method (lines 16–21) is essentially a direct translation of the recursive
mathematical definition for the factorial into Java code. The call to factorial is recursive
because it calls itself. The parameter passed to factorial is decremented until it reaches the
base case of 0.

You see how to write a recursive method. How does recursion work behind the scenes?
Figure 18.2 illustrates the execution of the recursive calls, starting with n = 4. The use of
stack space for recursive calls is shown in Figure 18.3.

how does it work?

708 Chapter 18 Recursion

FIGURE 18.2 Invoking factorial(4) spawns recursive calls to factorial.

return 1

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

factorial(4)

return 3 * factorial(2)

return 4 * factorial(3)

FIGURE 18.3 When factorial(4) is being executed, the factorial method is called recursively, causing stack
space to dynamically change.

Activation record
for factorial(4)

n: 4

1 Activation record
for factorial(4)

n: 4

2 Activation record
for factorial(3)

n: 3

Activation record
for factorial(4)

n: 4

3

Activation record
for factorial(3)

n: 3

Activation record
for factorial(2)

n: 2

Activation record
for factorial(4)

n: 4

4

Activation record
for factorial(3)

n: 3

Activation record
for factorial(2)

n: 2

Activation record
for factorial(1)

n: 1

Activation record
for factorial(4)

n: 4

5

Activation record
for factorial(3)

n: 3

Activation record
for factorial(2)

n: 2

Activation record
for factorial(1)

n: 1

Activation record
for factorial(0)

n: 0

Activation record
for factorial(4)

n: 4

6

Activation record
for factorial(3)

n: 3

Activation record
for factorial(2)

n: 2

Activation record
for factorial(1)

n: 1

Activation record
for factorial(4)

n: 4

7

Activation record
for factorial(3)

n: 3

Activation record
for factorial(2)

n: 2

Activation record
for factorial(4)

n: 4

8 Activation record
for factorial(3)

n: 3

Activation record
for factorial(4)

n: 4

9

18.3 Case Study: Computing Fibonacci Numbers 709

Pedagogical Note
It is simpler and more efficient to implement the factorial method using a loop.

However, we use the recursive factorial method here to demonstrate the concept

of recursion. Later in this chapter, we will present some problems that are inherently

recursive and are difficult to solve without using recursion.

If recursion does not reduce the problem in a manner that allows it to eventually

converge into the base case or a base case is not specified, infinite recursion can occur.

For example, suppose you mistakenly write the factorial method as follows:

public static long factorial(int n) {
return n * factorial(n - 1);

 }

The method runs infinitely and causes a StackOverflowError.

The example discussed in this section shows a recursive method that invokes itself. This is
known as direct recursion. It is also possible to create indirect recursion. This occurs when
method A invokes method B, which in turn invokes method A. There can even be several more
methods involved in the recursion. For example, method A invokes method B, which invokes
method C, which invokes method A.

18.1 What is a recursive method? What is an infinite recursion?

18.2 How many times is the factorial method in Listing 18.1 invoked for factorial(6)?

18.3 Show the output of the following programs and identify base cases and recursive calls.

infinite recursion

direct recursion
indirect recursion

✓Point✓Check

18.4 Write a recursive mathematical definition for computing 2n for a positive integer n.

18.5 Write a recursive mathematical definition for computing xn for a positive integer n
and a real number x.

18.6 Write a recursive mathematical definition for computing 1 + 2 + 3 + c + n for
a positive integer n.

18.3 Case Study: Computing Fibonacci Numbers
In some cases, recursion enables you to create an intuitive, straightforward, simple
solution to a problem.

The factorial method in the preceding section could easily be rewritten without using
recursion. In this section, we show an example for creating an intuitive solution to a problem
using recursion. Consider the well-known Fibonacci-series problem:

Key
Point

public class Test {
public static void main(String[] args) {

 System.out.println(
"Sum is " + xMethod(5));

 }

public static int xMethod(int n) {
if (n == 1)

return 1;
else

return n + xMethod(n - 1);
 }
}

public class Test {
public static void main(String[] args) {

 xMethod(1234567);
 }

public static void xMethod(int n) {
if (n > 0) {

 System.out.print(n % 10);
 xMethod(n / 10);
 }
 }
}

710 Chapter 18 Recursion

The series: 0 1 1 2 3 5 8 13 21 34 55 89 …
 indexes: 0 1 2 3 4 5 6 7 8 9 10 11

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the pre-
ceding two. The series can be recursively defined as:

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index - 2) + fib(index - 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who
originated it to model the growth of the rabbit population. It can be applied in numeric opti-
mization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2), because you
know fib(0) and fib(1). Assuming that you know fib(index - 2) and fib(index - 1),
you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is
reduced to computing fib(index - 2) and fib(index - 1). When doing so, you apply
the idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or
index = 1, it immediately returns the result. If you call the method with index >= 2, it divides
the problem into two subproblems for computing fib(index - 1) and fib(index - 2)
using recursive calls. The recursive algorithm for computing fib(index) can be simply
described as follows:

if (index == 0)
return 0;

else if (index == 1)
return 1;

else

return fib(index - 1) + fib(index - 2);

Listing 18.2 gives a complete program that prompts the user to enter an index and computes
the Fibonacci number for that index.

LISTING 18.2 ComputeFibonacci.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFibonacci {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for a Fibonacci number: ");
 9 int index = input.nextInt();
10
11 // Find and display the Fibonacci number
12 System.out.println("The Fibonacci number at index "
13 + index + " is " + fib(index));
14 }
15
16 /** The method for finding the Fibonacci number */
17 public static long fib(long index) {
18 if (index == 0) // Base case
19 return 0;

base case

18.3 Case Study: Computing Fibonacci Numbers 711

20 else if (index == 1) // Base case
21 return 1;
22 else // Reduction and recursive calls
23 return fib(index - 1) + fib(index - 2);
24 }
25 }

base case

recursion

Enter an index for a Fibonacci number: 1
The Fibonacci number at index 1 is 1

Enter an index for a Fibonacci number: 6
The Fibonacci number at index 6 is 8

Enter an index for a Fibonacci number: 7
The Fibonacci number at index 7 is 13

FIGURE 18.4 Invoking fib(4) spawns recursive calls to fib.

return fib(3) + fib(2)
10: return fib(3)

fib(4)
0: call fib(4)17: return fib(4)

return fib(2) + fib(1) return fib(1) + fib(0)

1: call fib(3)

11: call fib(2)

16: return fib(2)

return 1 return 0

12: call fib(1)
13: return fib(1) 14: return fib(0)

15: return fib(0)
return fib(1) + fib(0) return 1

2: call fib(2)

7: return fib(2)
8: call fib(1)

9: return fib(1)

return 1 return 0

3: call fib(1)

4: return fib(1) 5: call fib(0)

6: return fib(0)

The program does not show the considerable amount of work done behind the scenes by the
computer. Figure 18.4, however, shows the successive recursive calls for evaluating fib(4).
The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then
returns fib(3) + fib(2). But in what order are these methods called? In Java, operands are
evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated. The
labels in Figure 18.4 show the order in which the methods are called.

As shown in Figure 18.4, there are many duplicated recursive calls. For instance, fib(2)
is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index)
requires roughly twice as many recursive calls as does computing fib(index - 1). As you
try larger index values, the number of calls substantially increases, as shown in Table 18.1.

index 2 3 4 10 20 30 40 50

of calls 3 5 9 177 21891 2,692,537 331,160,281 2,075,316,483

TABLE 18.1 Number of Recursive Calls in fib(index)

712 Chapter 18 Recursion

Pedagogical Note
The recursive implementation of the fib method is very simple and straightforward,

but it isn’t efficient, since it requires more time and memory to run recursive methods.

See Programming Exercise 18.2 for an efficient solution using loops. Though it is not

practical, the recursive fib method is a good example of how to write recursive methods.

18.7 Show the output of the following two programs: ✓Point✓Check
public class Test {

public static void main(String[] args) {
 xMethod(5);
 }

public static void xMethod(int n) {
if (n > 0) {

 System.out.print(n + " ");
xMethod(n - 1);

 }
 }
}

public class Test {
public static void main(String[] args) {

 xMethod(5);
 }

public static void xMethod(int n) {
if (n > 0) {

xMethod(n - 1);
 System.out.print(n + " ");
 }
 }
}

public class Test {
public static void main(String[] args) {

 xMethod(1234567);
 }

public static void xMethod(double n) {
if (n != 0) {

 System.out.print(n);
 xMethod(n / 10);
 }
 }
}

public class Test {
public static void main(String[] args) {

 Test test = new Test();
 System.out.println(test.toString());
 }

public Test() {
 Test test = new Test();
 }
}

18.8 What is wrong in the following method?

18.9 How many times is the fib method in Listing 18.2 invoked for fib(6)?

18.4 Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have
the following characteristics:

 ■ The method is implemented using an if-else or a switch statement that leads to
different cases.

 ■ One or more base cases (the simplest case) are used to stop recursion.

 ■ Every recursive call reduces the original problem, bringing it increasingly closer to a
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each sub-
problem is the same as the original problem but smaller in size. You can apply the same
approach to each subproblem to solve it recursively.

Key
Point

recursion characteristics

if-else

base cases

reduction

18.4 Problem Solving Using Recursion 713

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may
describe the procedure recursively as follows:

public static void drinkCoffee(Cup cup) {
if (!cup.isEmpty()) {

 cup.takeOneSip(); // Take one sip
 drinkCoffee(cup);
 }
}

Assume cup is an object for a cup of coffee with the instance methods isEmpty() and
takeOneSip(). You can break the problem into two subproblems: one is to drink one sip
of coffee and the other is to drink the rest of the coffee in the cup. The second problem is the
same as the original problem but smaller in size. The base case for the problem is when the
cup is empty.

Consider the problem of printing a message n times. You can break the problem into two
subproblems: one is to print the message one time and the other is to print it n - 1 times. The
second problem is the same as the original problem but it is smaller in size. The base case for
the problem is n == 0. You can solve this problem using recursion as follows:

public static void nPrintln(String message, int times) {
if (times >= 1) {

 System.out.println(message);
 nPrintln(message, times - 1);
 } // The base case is times == 0
}

Note that the fib method in the preceding section returns a value to its caller, but the
drinkCoffee and nPrintln methods are void and they do not return a value.

If you think recursively, you can use recursion to solve many of the problems presented
in earlier chapters of this book. Consider the palindrome problem in Listing 5.14. Recall that
a string is a palindrome if it reads the same from the left and from the right. For example,
“mom” and “dad” are palindromes, but “uncle” and “aunt” are not. The problem of checking
whether a string is a palindrome can be divided into two subproblems:

 ■ Check whether the first character and the last character of the string are equal.

 ■ Ignore the two end characters and check whether the rest of the substring is a
palindrome.

The second subproblem is the same as the original problem but smaller in size. There are two
base cases: (1) the two end characters are not the same, and (2) the string size is 0 or 1. In case
1, the string is not a palindrome; in case 2, the string is a palindrome. The recursive method
for this problem can be implemented as shown in Listing 18.3.

LISTING 18.3 RecursivePalindromeUsingSubstring.java
 1 public class RecursivePalindromeUsingSubstring {
 2 public static boolean isPalindrome(String s) {
 3 if (s.length() <= 1) // Base case
 4 return true;
 5 else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
 6 return false;

 7 else

 8 return isPalindrome(s.substring(1, s.length() - 1));
 9 }
10
11 public static void main(String[] args) {
12 System.out.println("Is moon a palindrome? "

think recursively

recursive call

think recursively

method header
base case

base case

recursive call

714 Chapter 18 Recursion

13 + isPalindrome("moon"));
14 System.out.println("Is noon a palindrome? "
15 + isPalindrome("noon"));
16 System.out.println("Is a a palindrome? " + isPalindrome("a"));
17 System.out.println("Is aba a palindrome? " +
18 isPalindrome("aba"));
19 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
20 }
21 }

Is moon a palindrome? false
Is noon a palindrome? true
Is a a palindrome? true
Is aba a palindrome? true
Is ab a palindrome? false

The substring method in line 8 creates a new string that is the same as the original string
except without the first and last characters. Checking whether a string is a palindrome is
equivalent to checking whether the substring is a palindrome if the two end characters in the
original string are the same.

18.10 Describe the characteristics of recursive methods.

18.11 For the isPalindrome method in Listing 18.3, what are the base cases? How many
times is this method called when invoking isPalindrome("abdxcxdba")?

18.12 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 18.3.

18.5 Recursive Helper Methods
Sometimes you can find a solution to the original problem by defining a recursive
function to a problem similar to the original problem. This new method is called a
recursive helper method. The original problem can be solved by invoking the recursive
helper method.

The recursive isPalindrome method in Listing 18.3 is not efficient, because it creates a new
string for every recursive call. To avoid creating new strings, you can use the low and high
indices to indicate the range of the substring. These two indices must be passed to the recur-
sive method. Since the original method is isPalindrome(String s), you have to create
the new method isPalindrome(String s, int low, int high) to accept additional
information on the string, as shown in Listing 18.4.

LISTING 18.4 RecursivePalindrome.java
 1 public class RecursivePalindrome {
 2 public static boolean isPalindrome(String s) {
 3 return isPalindrome(s, 0, s.length() - 1);
 4 }
 5
 6 private static boolean isPalindrome(String s, int low, int high) {
 7 if (high <= low) // Base case
 8 return true;

 9 else if (s.charAt(low) != s.charAt(high)) // Base case
10 return false;

11 else

12 return isPalindrome(s, low + 1, high - 1);
13 }

✓Point✓Check

Key
Point

helper method
base case

base case

18.5 Recursive Helper Methods 715

14
15 public static void main(String[] args) {
16 System.out.println("Is moon a palindrome? "
17 + isPalindrome("moon"));
18 System.out.println("Is noon a palindrome? "
19 + isPalindrome("noon"));
20 System.out.println("Is a a palindrome? " + isPalindrome("a"));
21 System.out.println("Is aba a palindrome? " + isPalindrome("aba"));
22 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
23 }
24 }

Two overloaded isPalindrome methods are defined. The first, isPalindrome(String s),
checks whether a string is a palindrome, and the second, isPalindrome(String s, int low,
int high), checks whether a substring s(low..high) is a palindrome. The first method
passes the string s with low = 0 and high = s.length() – 1 to the second method. The
second method can be invoked recursively to check a palindrome in an ever-shrinking substring.
It is a common design technique in recursive programming to define a second method that
receives additional parameters. Such a method is known as a recursive helper method.

Helper methods are very useful in designing recursive solutions for problems involving
strings and arrays. The sections that follow give two more examples.

18.5.1 Recursive Selection Sort
Selection sort was introduced in Section 7.11. Recall that it finds the smallest element in the
list and swaps it with the first element. It then finds the smallest element remaining and swaps
it with the first element in the remaining list, and so on until the remaining list contains only
a single element. The problem can be divided into two subproblems:

 ■ Find the smallest element in the list and swap it with the first element.

 ■ Ignore the first element and sort the remaining smaller list recursively.

The base case is that the list contains only one element. Listing 18.5 gives the recursive sort
method.

LISTING 18.5 RecursiveSelectionSort.java
 1 public class RecursiveSelectionSort {
 2 public static void sort(double[] list) {
 3 sort(list, 0, list.length - 1); // Sort the entire list
 4 }
 5
 6 private static void sort(double[] list, int low, int high) {
 7 if (low < high) {
 8 // Find the smallest number and its index in list[low .. high]
 9 int indexOfMin = low;
10 double min = list[low];
11 for (int i = low + 1; i <= high; i++) {
12 if (list[i] < min) {
13 min = list[i];
14 indexOfMin = i;
15 }
16 }
17
18 // Swap the smallest in list[low .. high] with list[low]
19 list[indexOfMin] = list[low];
20 list[low] = min;
21

recursive helper method

helper method
base case

716 Chapter 18 Recursion

22 // Sort the remaining list[low+1 .. high]
23 sort(list, low + 1, high);
24 }
25 }
26 }

Two overloaded sort methods are defined. The first method, sort(double[] list), sorts
an array in list[0..list.length - 1] and the second method, sort(double[] list,
int low, int high), sorts an array in list[low..high]. The second method can be
invoked recursively to sort an ever-shrinking subarray.

18.5.2 Recursive Binary Search
Binary search was introduced in Section 7.10.2. For binary search to work, the elements in the
array must be in increasing order. The binary search first compares the key with the element
in the middle of the array. Consider the following three cases:

 ■ Case 1: If the key is less than the middle element, recursively search for the key in
the first half of the array.

 ■ Case 2: If the key is equal to the middle element, the search ends with a match.

 ■ Case 3: If the key is greater than the middle element, recursively search for the key
in the second half of the array.

Case 1 and Case 3 reduce the search to a smaller list. Case 2 is a base case when there is a
match. Another base case is that the search is exhausted without a match. Listing 18.6 gives a
clear, simple solution for the binary search problem using recursion.

LISTING 18.6 Recursive Binary Search Method
 1 public class RecursiveBinarySearch {
 2 public static int recursiveBinarySearch(int[] list, int key) {
 3 int low = 0;
 4 int high = list.length - 1;
 5 return recursiveBinarySearch(list, key, low, high);
 6 }
 7
 8 private static int recursiveBinarySearch(int[] list, int key,
 9 int low, int high) {
10 if (low > high) // The list has been exhausted without a match
11 return -low - 1;
12
13 int mid = (low + high) / 2;
14 if (key < list[mid])
15 return recursiveBinarySearch(list, key, low, mid - 1);
16 else if (key == list[mid])
17 return mid;
18 else

19 return recursiveBinarySearch(list, key, mid + 1, high);
20 }
21 }

The first method finds a key in the whole list. The second method finds a key in the list with
index from low to high.

The first binarySearch method passes the initial array with low = 0 and high =
list.length - 1 to the second binarySearch method. The second method is invoked
recursively to find the key in an ever-shrinking subarray.

recursive call

Binary search

VideoNote

helper method

base case

recursive call

base case

recursive call

18.6 Case Study: Finding the Directory Size 717

18.13 Show the call stack for isPalindrome("abcba") using the method defined in
Listing 18.4.

18.14 Show the call stack for selectionSort(new double[]{2, 3, 5, 1}) using the
method defined in Listing 18.5.

18.15 What is a recursive helper method?

18.6 Case Study: Finding the Directory Size
Recursive methods are efficient for solving problems with recursive structures.

The preceding examples can easily be solved without using recursion. This section presents a
problem that is difficult to solve without using recursion. The problem is to find the size of a
directory. The size of a directory is the sum of the sizes of all files in the directory. A directory
d may contain subdirectories. Suppose a directory contains files f1, f2, c , fm and subdirec-
tories d1, d2, c , dn, as shown in Figure 18.5.

✓Point✓Check

Key
Point

Directory size

VideoNote

FIGURE 18.5 A directory contains files and subdirectories.

directory

. . . d2d1
f1 f2 . . .fm dn

The size of the directory can be defined recursively as follows:

size(d) = size(f1) + size(f2) + c + size(fm) + size(d1) + size(d2) + c + size(dn)

The File class, introduced in Section 12.10, can be used to represent a file or a directory and
obtain the properties for files and directories. Two methods in the File class are useful for
this problem:

 ■ The length() method returns the size of a file.

 ■ The listFiles() method returns an array of File objects under a directory.

Listing 18.7 gives a program that prompts the user to enter a directory or a file and displays
its size.

LISTING 18.7 DirectorySize.java
 1 import java.io.File;
 2 import java.util.Scanner;
 3
 4 public class DirectorySize {
 5 public static void main(String[] args) {
 6 // Prompt the user to enter a directory or a file
 7 System.out.print("Enter a directory or a file: ");
 8 Scanner input = new Scanner(System.in);
 9 String directory = input.nextLine();
10
11 // Display the size
12 System.out.println(getSize(new File(directory)) + " bytes");
13 }

invoke method

718 Chapter 18 Recursion

14
15 public static long getSize(File file) {
16 long size = 0; // Store the total size of all files
17
18 if (file.isDirectory()) {
19 File[] files = file.listFiles(); // All files and subdirectories
20 for (int i = 0; files != null && i < files.length; i++) {
21 size += getSize(files[i]); // Recursive call
22 }
23 }
24 else { // Base case
25 size += file.length();
26 }
27
28 return size;
29 }
30 }

getSize method

is directory?

all subitems

recursive call

base case

Enter a directory or a file: c:\book
48619631 bytes

Enter a directory or a file: c:\book\Welcome.java
172 bytes

Enter a directory or a file: c:\book\NonExistentFile
0 bytes

If the file object represents a directory (line 18), each subitem (file or subdirectory) in the
directory is recursively invoked to obtain its size (line 21). If the file object represents a file
(line 24), the file size is obtained and added to the total size (line 25).

What happens if an incorrect or a nonexistent directory is entered? The program will detect
that it is not a directory and invoke file.length() (line 25), which returns 0. Thus, in this
case, the getSize method will return 0.

Tip
To avoid mistakes, it is a good practice to test all cases. For example, you should test

the program for an input of file, an empty directory, a nonexistent directory, and a

nonexistent file.

18.16 What is the base case for the getSize method?

18.17 How does the program get all files and directories under a given directory?

18.18 How many times will the getSize method be invoked for a directory if the directory
has three subdirectories and each subdirectory has four files?

18.19 Will the program work if the directory is empty (i.e., it does not contain any files)?

18.20 Will the program work if line 20 is replaced by the following code?

for (int i = 0; i < files.length; i++)

testing all cases

✓Point✓Check

18.7 Case Study: Tower of Hanoi 719

18.21 Will the program work if lines 20–21 is replaced by the following code?

for (File file: files)
 size += getSize(file); // Recursive call

18.7 Case Study: Tower of Hanoi
The Tower of Hanoi problem is a classic problem that can be solved easily using
recursion, but it is difficult to solve otherwise.

The problem involves moving a specified number of disks of distinct sizes from one tower to
another while observing the following rules:

 ■ There are n disks labeled 1, 2, 3, . . . , n and three towers labeled A, B, and C.

 ■ No disk can be on top of a smaller disk at any time.

 ■ All the disks are initially placed on tower A.

 ■ Only one disk can be moved at a time, and it must be the smallest disk on a tower.

The objective of the problem is to move all the disks from A to B with the assistance of C. For
example, if you have three disks, the steps to move all of the disks from A to B are shown in
Figure 18.6.

Key
Point

FIGURE 18.6 The goal of the Tower of Hanoi problem is to move disks from tower A to
tower B without breaking the rules.

A B C

A B C

A B C

A B C

A B CA C

B

Original position

Step 1: Move disk 1 from A to B

Step 2: Move disk 2 from A to C

Step 3: Move disk 1 from B to C

Step 4: Move disk 3 from A to B

Step 5: Move disk 1 from C to A

Step 7: Move disk 1 from A to B

Step 6: Move disk 2 from C to B

A A B C

B

C

0 4

1 5

2 6

3 7

1
2
3

2
3

3 1 2

23
1

3
2

31

1 3 2

2

1

1

1
23

720 Chapter 18 Recursion

Note
The Tower of Hanoi is a classic computer-science problem, to which many websites are

devoted. One of them worth looking at is www.cut-the-knot.com/recurrence/hanoi.shtml.

In the case of three disks, you can find the solution manually. For a larger number of
disks, however—even for four—the problem is quite complex. Fortunately, the problem has
an inherently recursive nature, which leads to a straightforward recursive solution.

The base case for the problem is n = 1. If n == 1, you could simply move the disk from A
to B. When n > 1, you could split the original problem into the following three subproblems
and solve them sequentially.

1. Move the first n - 1 disks from A to C recursively with the assistance of tower B, as
shown in Step 1 in Figure 18.7.

2. Move disk n from A to B, as shown in Step 2 in Figure 18.7.

3. Move n - 1 disks from C to B recursively with the assistance of tower A, as shown in
Step 3 in Figure 18.7.

FIGURE 18.7 The Tower of Hanoi problem can be decomposed into three subproblems.

A B
Original position

C

A B
Step 1: Move the first n – 1 disks from

A to C recursively

C

A B
Step 2: Move disk n from A to B

C

A B

Step 3: Move n – 1 disks from
C to B recursively

C

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

.

.

.

n – 1 disks

20

31

The following method moves n disks from the fromTower to the toTower with the assis-
tance of the auxTower:

void moveDisks(int n, char fromTower, char toTower, char auxTower)

The algorithm for the method can be described as:

if (n == 1) // Stopping condition
 Move disk 1 from the fromTower to the toTower;
else {
 moveDisks(n - 1, fromTower, auxTower, toTower);
 Move disk n from the fromTower to the toTower;
 moveDisks(n - 1, auxTower, toTower, fromTower);
}

www.cut-the-knot.com/recurrence/hanoi.shtml

18.7 Case Study: Tower of Hanoi 721

Listing 18.8 gives a program that prompts the user to enter the number of disks and invokes
the recursive method moveDisks to display the solution for moving the disks.

LISTING 18.8 TowerOfHanoi.java
 1 import java.util.Scanner;
 2
 3 public class TowerOfHanoi {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter number of disks: ");
 9 int n = input.nextInt();
10
11 // Find the solution recursively
12 System.out.println("The moves are:");
13 moveDisks(n, 'A', 'B', 'C');
14 }
15
16 /** The method for finding the solution to move n disks
17 from fromTower to toTower with auxTower */
18 public static void moveDisks(int n, char fromTower,
19 char toTower, char auxTower) {
20 if (n == 1) // Stopping condition
21 System.out.println("Move disk " + n + " from " +
22 fromTower + " to " + toTower);
23 else {
24 moveDisks(n - 1, fromTower, auxTower, toTower);
25 System.out.println("Move disk " + n + " from " +
26 fromTower + " to " + toTower);
27 moveDisks(n - 1, auxTower, toTower, fromTower);
28 }
29 }
30 }

base case

recursion

recursion

Enter number of disks: 4
The moves are:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Move disk 4 from A to B
Move disk 1 from C to B
Move disk 2 from C to A
Move disk 1 from B to A
Move disk 3 from C to B
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B

722 Chapter 18 Recursion

This problem is inherently recursive. Using recursion makes it possible to find a natural, sim-
ple solution. It would be difficult to solve the problem without using recursion.

Consider tracing the program for n = 3. The successive recursive calls are shown in
Figure 18.8. As you can see, writing the program is easier than tracing the recursive calls. The
system uses stacks to manage the calls behind the scenes. To some extent, recursion provides
a level of abstraction that hides iterations and other details from the user.

FIGURE 18.8 Invoking moveDisks(3, 'A', 'B', 'C') spawns calls to moveDisks recursively.

moveDisks(2,'A','C','B')
move disk 3 from A to B
moveDisks(2,'C','B','A')

moveDisks(3,'A','B','C')

moveDisks(1,'A','B','C')
move disk 2 from A to C
moveDisks(1,'B','C','A')

moveDisks(2,'A','C','B')

moveDisks(1,'C','A','B')
move disk 2 from C to B
moveDisks(1,'A','B','C')

moveDisks(2,'C','B','A')

moveDisks(1,'A','B','C')

move disk 1 from A to B

moveDisks(1,'B','C','A')

move disk 1 from B to C

moveDisks(1,'C','A','B')

move disk 1 from C to A

moveDisks(1,'A','B','C')

move disk 1 from A to B

18.22 How many times is the moveDisks method in Listing 18.8 invoked for
moveDisks(5, 'A', 'B', 'C')?

18.8 Case Study: Fractals
Using recursion is ideal for displaying fractals, because fractals are inherently
recursive.

A fractal is a geometrical figure, but unlike triangles, circles, and rectangles, fractals can be
divided into parts, each of which is a reduced-size copy of the whole. There are many inter-
esting examples of fractals. This section introduces a simple fractal, the Sierpinski triangle,
named after a famous Polish mathematician.

A Sierpinski triangle is created as follows:

1. Begin with an equilateral triangle, which is considered to be a Sierpinski fractal of order
(or level) 0, as shown in Figure 18.9a.

2. Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski trian-
gle of order 1 (Figure 18.9b).

3. Leave the center triangle intact. Connect the midpoints of the sides of the three other
triangles to create a Sierpinski triangle of order 2 (Figure 18.9c).

4. You can repeat the same process recursively to create a Sierpinski triangle of order 3, 4,
. . . , and so on (Figure 18.9d).

The problem is inherently recursive. How do you develop a recursive solution for it? Con-
sider the base case when the order is 0. It is easy to draw a Sierpinski triangle of order 0.
How do you draw a Sierpinski triangle of order 1? The problem can be reduced to drawing
three Sierpinski triangles of order 0. How do you draw a Sierpinski triangle of order 2? The
problem can be reduced to drawing three Sierpinski triangles of order 1, so the problem of

✓Point✓Check

Key
Point

Fractal (Sierpinski triangle)

VideoNote

18.8 Case Study: Fractals 723

drawing a Sierpinski triangle of order n can be reduced to drawing three Sierpinski triangles
of order n - 1.

Listing 18.9 gives a program that displays a Sierpinski triangle of any order, as shown in
Figure 18.9. You can enter an order in a text field to display a Sierpinski triangle of the speci-
fied order.

LISTING 18.9 SierpinskiTriangle.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Point2D;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.control.TextField;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Polygon;
12 import javafx.stage.Stage;
13
14 public class SierpinskiTriangle extends Application {
15 @Override // Override the start method in the Application class
16 public void start(Stage primaryStage) {
17 SierpinskiTrianglePane trianglePane = new SierpinskiTrianglePane();
18 TextField tfOrder = new TextField();
19 tfOrder.setOnAction(

recursive triangle pane

FIGURE 18.9 A Sierpinski triangle is a pattern of recursive triangles.

(a) Order 0 (b) Order 1

(c) Order 2 (d) Order 3

724 Chapter 18 Recursion

20 e -> trianglePane.setOrder(Integer.parseInt(tfOrder.getText())));
21 tfOrder.setPrefColumnCount(4);
22 tfOrder.setAlignment(Pos.BOTTOM_RIGHT);
23
24 // Pane to hold label, text field, and a button
25 HBox hBox = new HBox(10);
26 hBox.getChildren().addAll(new Label("Enter an order: "), tfOrder);
27 hBox.setAlignment(Pos.CENTER);
28
29 BorderPane borderPane = new BorderPane();
30 borderPane.setCenter(trianglePane);
31 borderPane.setBottom(hBox);
32
33 // Create a scene and place it in the stage
34 Scene scene = new Scene(borderPane, 200, 210);
35 primaryStage.setTitle("SierpinskiTriangle"); // Set the stage title
36 primaryStage.setScene(scene); // Place the scene in the stage
37 primaryStage.show(); // Display the stage
38
39 scene.widthProperty().addListener(ov -> trianglePane.paint());
40 scene.heightProperty().addListener(ov -> trianglePane.paint());
41 }
42
43 /** Pane for displaying triangles */
44 static class SierpinskiTrianglePane extends Pane {
45 private int order = 0;
46
47 /** Set a new order */
48 public void setOrder(int order) {
49 this.order = order;
50 paint();
51 }
52
53 SierpinskiTrianglePane() {
54 }
55
56 protected void paint() {
57 // Select three points in proportion to the pane size
58 Point2D p1 = new Point2D(getWidth() / 2, 10);
59 Point2D p2 = new Point2D(10, getHeight() - 10);
60 Point2D p3 = new Point2D(getWidth() - 10, getHeight() - 10);
61
62 this.getChildren().clear(); // Clear the pane before redisplay
63
64 displayTriangles(order, p1, p2, p3);
65 }
66
67 private void displayTriangles(int order, Point2D p1,
68 Point2D p2, Point2D p3) {
69 if (order == 0) {
70 // Draw a triangle to connect three points
71 Polygon triangle = new Polygon();
72 triangle.getPoints().addAll(p1.getX(), p1.getY(), p2.getX(),
73 p2.getY(), p3.getX(), p3.getY());
74 triangle.setStroke(Color.BLACK);
75 triangle.setFill(Color.WHITE);
76
77 this.getChildren().add(triangle);
78 }
79 else {

listener for text field

hold label and text field

listener for resizing

three initial points

clear the pane

draw a triangle

create a triangle

18.8 Case Study: Fractals 725

80 // Get the midpoint on each edge in the triangle
81 Point2D p12 = p1.midpoint(p2);
82 Point2D p23 = p2.midpoint(p3);
83 Point2D p31 = p3.midpoint(p1);
84
85 // Recursively display three triangles
86 displayTriangles(order - 1, p1, p12, p31);
87 displayTriangles(order - 1, p12, p2, p23);
88 displayTriangles(order - 1, p31, p23, p3);
89 }
90 }
91 }
92 }

The initial triangle has three points set in proportion to the pane size (lines 58–60). If order
== 0, the displayTriangles(order, p1, p2, p3) method displays a triangle that con-
nects the three points p1, p2, and p3 in lines 71–77, as shown in Figure 18.10a. Otherwise, it
performs the following tasks:

1. Obtain the midpoint between p1 and p2 (line 81), the midpoint between p2 and p3 (line
82), and the midpoint between p3 and p1 (line 83), as shown in Figure 18.10b.

2. Recursively invoke displayTriangles with a reduced order to display three smaller
Sierpinski triangles (lines 86–88). Note that each small Sierpinski triangle is structurally
identical to the original big Sierpinski triangle except that the order of a small triangle
is one less, as shown in Figure 18.10b.

top subtriangle
left subtriangle
right subtriangle

displayTriangle method

FIGURE 18.10 Drawing a Sierpinski triangle spawns calls to draw three small Sierpinski triangles recursively.

p1

p3p2

Draw the Sierpinski triangle
displayTriangles(order, p1, p2, p3)

p1

(a)

p3p2

p12 p31

p23

Recursively draw the small Sierpinski triangle
displayTriangles(
order - 1, p1, p12, p31)

Recursively draw the
small Sierpinski triangle
displayTriangles(
order - 1, p31, p23, p3)

Recursively draw the small
Sierpinski triangle
displayTriangles(
order - 1, p12, p2, p23)

(b)

A Sierpinski triangle is displayed in a SierpinskiTrianglePane. The order property in
the inner class SierpinskiTrianglePane specifies the order for the Sierpinski triangle.
The Point2D class, introduced in Section 9.8, The Point2D Class, represents a point with

726 Chapter 18 Recursion

x- and y-coordinates. Invoking p1.midpoint(p2) returns a new Point2D object that is the
midpoint between p1 and p2 (lines 81–83).

18.23 How do you obtain the midpoint between two points?

18.24 What is the base case for the displayTriangles method?

18.25 How many times is the displayTriangles method invoked for a Sierpinski trian-
gle of order 0, order 1, order 2, and order n?

18.26 What happens if you enter a negative order? How do you fix this problem in the code?

18.27 Instead of drawing a triangle using a polygon, rewrite the code to draw a triangle by
drawing three lines to connect the points in lines 71–77.

18.9 Recursion vs. Iteration
Recursion is an alternative form of program control. It is essentially repetition without
a loop.

When you use loops, you specify a loop body. The repetition of the loop body is controlled
by the loop control structure. In recursion, the method itself is called repeatedly. A selection
statement must be used to control whether to call the method recursively or not.

Recursion bears substantial overhead. Each time the program calls a method, the system
must allocate memory for all of the method’s local variables and parameters. This can con-
sume considerable memory and requires extra time to manage the memory.

Any problem that can be solved recursively can be solved nonrecursively with iterations.
Recursion has some negative aspects: it uses up too much time and too much memory. Why,
then, should you use it? In some cases, using recursion enables you to specify a clear, sim-
ple solution for an inherently recursive problem that would otherwise be difficult to obtain.
Examples are the directory-size problem, the Tower of Hanoi problem, and the fractal prob-
lem, which are rather difficult to solve without using recursion.

The decision whether to use recursion or iteration should be based on the nature of, and
your understanding of, the problem you are trying to solve. The rule of thumb is to use which-
ever approach can best develop an intuitive solution that naturally mirrors the problem. If an
iterative solution is obvious, use it. It will generally be more efficient than the recursive option.

Note
Recursive programs can run out of memory, causing a StackOverflowError.

Tip
If you are concerned about your program’s performance, avoid using recursion, because

it takes more time and consumes more memory than iteration. In general, recursion

can be used to solve the inherent recursive problems such as Tower of Hanoi, recursive

directories, and Sierpinski triangles.

18.28 Which of the following statements are true?

a. Any recursive method can be converted into a nonrecursive method.

b. Recursive methods take more time and memory to execute than nonrecursive methods.

c. Recursive methods are always simpler than nonrecursive methods.

d. There is always a selection statement in a recursive method to check whether a
base case is reached.

18.29 What is a cause for a stack-overflow exception?

✓Point✓Check

Key
Point

recursion overhead

recursion advantages

recursion or iteration?

StackOverflowError

performance concern

✓Point✓Check

18.10 Tail Recursion 727

18.10 Tail Recursion
A tail recursive method is efficient for reducing stack size.

A recursive method is said to be tail recursive if there are no pending operations to be per-
formed on return from a recursive call, as illustrated in Figure 18.11a. However, method B in
Figure 18.11b is not tail recursive because there are pending operations after a method call is
returned.

Key
Point

tail recursion

Recursive method A
 . . .
 . . .

 . . .
 Invoke method A recursively

(a) Tail recursion

Recursive method B
 . . .
 . . .
 Invoke method B recursively
 . . .
 . . .

(b) Nontail recursion

FIGURE 18.11 A tail-recursive method has no pending operations after a recursive call.

For example, the recursive isPalindrome method (lines 6–13) in Listing 18.4 is tail
recursive because there are no pending operations after recursively invoking isPalindrome
in line 12. However, the recursive factorial method (lines 16–21) in Listing 18.1 is not tail
recursive, because there is a pending operation, namely multiplication, to be performed on
return from each recursive call.

Tail recursion is desirable: because the method ends when the last recursive call ends, there
is no need to store the intermediate calls in the stack. Compilers can optimize tail recursion
to reduce stack size.

A nontail-recursive method can often be converted to a tail-recursive method by using
auxiliary parameters. These parameters are used to contain the result. The idea is to incorpo-
rate the pending operations into the auxiliary parameters in such a way that the recursive call
no longer has a pending operation. You can define a new auxiliary recursive method with the
auxiliary parameters. This method may overload the original method with the same name but
a different signature. For example, the factorial method in Listing 18.1 is written in a tail-
recursive way in Listing 18.10.

LISTING 18.10 ComputeFactorialTailRecursion.java
 1 public class ComputeFactorialTailRecursion {
 2 /** Return the factorial for a specified number */
 3 public static long factorial(int n) {
 4 return factorial(n, 1); // Call auxiliary method
 5 }
 6
 7 /** Auxiliary tail-recursive method for factorial */
 8 private static long factorial(int n, int result) {
 9 if (n == 0)
10 return result;
11 else

12 return factorial(n - 1, n * result); // Recursive call
13 }
14 }

The first factorial method (line 3) simply invokes the second auxiliary method (line 4).
The second method contains an auxiliary parameter result that stores the result for the fac-
torial of n. This method is invoked recursively in line 12. There is no pending operation after

original method
invoke auxiliary method

auxiliary method

recursive call

728 Chapter 18 Recursion

a call is returned. The final result is returned in line 10, which is also the return value from
invoking factorial(n, 1) in line 4.

18.30 Identify tail-recursive methods in this chapter.

18.31 Rewrite the fib method in Listing 18.2 using tail recursion.✓Point✓Check

KEY TERMS

base case 706
direct recursion 709
indirect recursion 709
infinite recursion 709

recursive helper method 715
recursive method 706
stopping condition 706
tail recursion 727

CHAPTER SUMMARY

1. A recursive method is one that directly or indirectly invokes itself. For a recursive
method to terminate, there must be one or more base cases.

2. Recursion is an alternative form of program control. It is essentially repetition without
a loop control. It can be used to write simple, clear solutions for inherently recursive
problems that would otherwise be difficult to solve.

3. Sometimes the original method needs to be modified to receive additional parameters
in order to be invoked recursively. A recursive helper method can be defined for this
purpose.

4. Recursion bears substantial overhead. Each time the program calls a method, the system
must allocate memory for all of the method’s local variables and parameters. This can
consume considerable memory and requires extra time to manage the memory.

5. A recursive method is said to be tail recursive if there are no pending operations to be
performed on return from a recursive call. Some compilers can optimize tail recursion
to reduce stack size.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 18.2–18.3

*18.1 (Factorial) Using the BigInteger class introduced in Section 10.9, you can
find the factorial for a large number (e.g., 100!). Implement the factorial
method using recursion. Write a program that prompts the user to enter an inte-
ger and displays its factorial.

*18.2 (Fibonacci numbers) Rewrite the fib method in Listing 18.2 using iterations.

Hint: To compute fib(n) without recursion, you need to obtain fib(n - 2)
and fib(n - 1) first. Let f0 and f1 denote the two previous Fibonacci

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 729

numbers. The current Fibonacci number would then be f0 + f1. The algorithm
can be described as follows:

f0 = 0; // For fib(0)
f1 = 1; // For fib(1)

for (int i = 1; i <= n; i++) {
 currentFib = f0 + f1;
 f0 = f1;
 f1 = currentFib;
}
// After the loop, currentFib is fib(n)

 Write a test program that prompts the user to enter an index and displays its
Fibonacci number.

*18.3 (Compute greatest common divisor using recursion) The gcd(m, n) can also
be defined recursively as follows:

 ■ If m % n is 0, gcd(m, n) is n.
 ■ Otherwise, gcd(m, n) is gcd(n, m % n).

 Write a recursive method to find the GCD. Write a test program that prompts the
user to enter two integers and displays their GCD.

18.4 (Sum series) Write a recursive method to compute the following series:

m(i) = 1 +
1

2
+

1

3
+ c +

1

i

 Write a test program that displays m(i) for i = 1, 2, . . ., 10.

18.5 (Sum series) Write a recursive method to compute the following series:

m(i) =
1

3
+

2

5
+

3

7
+

4

9
+

5

11
+

6

13
+ c +

i

2i + 1

 Write a test program that displays m(i) for i = 1, 2, . . ., 10.

*18.6 (Sum series) Write a recursive method to compute the following series:

m(i) =
1

2
+

2

3
+ c +

i

i + 1

 Write a test program that displays m(i) for i = 1, 2, . . ., 10.

*18.7 (Fibonacci series) Modify Listing 18.2, ComputeFibonacci.java, so that the pro-
gram finds the number of times the fib method is called. (Hint: Use a static
variable and increment it every time the method is called.)

Section 18.4

*18.8 (Print the digits in an integer reversely) Write a recursive method that displays
an int value reversely on the console using the following header:

public static void reverseDisplay(int value)

 For example, reverseDisplay(12345) displays 54321. Write a test program
that prompts the user to enter an integer and displays its reversal.

*18.9 (Print the characters in a string reversely) Write a recursive method that dis-
plays a string reversely on the console using the following header:

public static void reverseDisplay(String value)

730 Chapter 18 Recursion

 For example, reverseDisplay("abcd") displays dcba. Write a test program
that prompts the user to enter a string and displays its reversal.

*18.10 (Occurrences of a specified character in a string) Write a recursive method that
finds the number of occurrences of a specified letter in a string using the follow-
ing method header:

public static int count(String str, char a)

 For example, count("Welcome", 'e') returns 2. Write a test program that
prompts the user to enter a string and a character, and displays the number of
occurrences for the character in the string.

*18.11 (Sum the digits in an integer using recursion) Write a recursive method that
computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

 For example, sumDigits(234) returns 2 + 3 + 4 = 9. Write a test program
that prompts the user to enter an integer and displays its sum.

Section 18.5

**18.12 (Print the characters in a string reversely) Rewrite Programming Exercise 18.9
using a helper method to pass the substring high index to the method. The
helper method header is:

public static void reverseDisplay(String value, int high)

*18.13 (Find the largest number in an array) Write a recursive method that returns the
largest integer in an array. Write a test program that prompts the user to enter a
list of eight integers and displays the largest element.

*18.14 (Find the number of uppercase letters in a string) Write a recursive method
to return the number of uppercase letters in a string. Write a test program that
prompts the user to enter a string and displays the number of uppercase letters in
the string.

*18.15 (Occurrences of a specified character in a string) Rewrite Programming Exer-
cise 18.10 using a helper method to pass the substring high index to the method.
The helper method header is:

public static int count(String str, char a, int high)

*18.16 (Find the number of uppercase letters in an array) Write a recursive method
to return the number of uppercase letters in an array of characters. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars)
public static int count(char[] chars, int high)

 Write a test program that prompts the user to enter a list of characters in one line
and displays the number of uppercase letters in the list.

*18.17 (Occurrences of a specified character in an array) Write a recursive method that
finds the number of occurrences of a specified character in an array. You need to
define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars, char ch)
public static int count(char[] chars, char ch, int high)

Programming Exercises 731

 Write a test program that prompts the user to enter a list of characters in one line,
and a character, and displays the number of occurrences of the character in the list.

Sections 18.6–18.10

*18.18 (Tower of Hanoi) Modify Listing 18.8, TowerOfHanoi.java, so that the program
finds the number of moves needed to move n disks from tower A to tower B.
(Hint: Use a static variable and increment it every time the method is called.)

*18.19 (Sierpinski triangle) Revise Listing 18.9 to develop a program that lets the user
use the + and – buttons to increase or decrease the current order by 1, as shown
in Figure 18.12a. The initial order is 0. If the current order is 0, the Decrease
button is ignored.

FIGURE 18.12 (a) Programming Exercise 18.19 uses the + and – buttons to increase or
decrease the current order by 1. (b) Programming Exercise 18.20 draws ovals using a recur-
sive method.

(a) (b)

*18.20 (Display circles) Write a Java program that displays ovals, as shown in Fig-
ure 18.12b. The circles are centered in the pane. The gap between two adjacent
circles is 10 pixels, and the gap between the border of the pane and the largest
circle is also 10.

*18.21 (Decimal to binary) Write a recursive method that converts a decimal number
into a binary number as a string. The method header is:

public static String dec2Bin(int value)

 Write a test program that prompts the user to enter a decimal number and dis-
plays its binary equivalent.

*18.22 (Decimal to hex) Write a recursive method that converts a decimal number into
a hex number as a string. The method header is:

public static String dec2Hex(int value)

 Write a test program that prompts the user to enter a decimal number and dis-
plays its hex equivalent.

*18.23 (Binary to decimal) Write a recursive method that parses a binary number as a
string into a decimal integer. The method header is:

public static int bin2Dec(String binaryString)

 Write a test program that prompts the user to enter a binary string and displays
its decimal equivalent.

732 Chapter 18 Recursion

*18.24 (Hex to decimal) Write a recursive method that parses a hex number as a string
into a decimal integer. The method header is:

public static int hex2Dec(String hexString)

 Write a test program that prompts the user to enter a hex string and displays its
decimal equivalent.

**18.25 (String permutation) Write a recursive method to print all the permutations of a
string. For example, for the string abc, the permuation is

abc

acb

bac

bca

cab

cba

 (Hint: Define the following two methods. The second is a helper method.)

public static void displayPermutation(String s)
public static void displayPermutation(String s1, String s2)

 The first method simply invokes displayPermutation(" ", s). The second
method uses a loop to move a character from s2 to s1 and recursively invokes
it with a new s1 and s2. The base case is that s2 is empty and prints s1 to the
console.

 Write a test program that prompts the user to enter a string and displays all its
permutations.

**18.26 (Create a maze) Write a program that will find a path in a maze, as shown in
Figure 18.13a. The maze is represented by an 8 * 8 board. The path must meet
the following conditions:

 ■ The path is between the upper-left corner cell and the lower-right corner cell
in the maze.

FIGURE 18.13 The program finds a path from the upper-left corner to the bottom-right corner.

 (a) Correct path (b) Illegal path

Programming Exercises 733

 ■ The program enables the user to place or remove a mark on a cell. A path
consists of adjacent unmarked cells. Two cells are said to be adjacent if they
are horizontal or vertical neighbors, but not if they are diagonal neighbors.

 ■ The path does not contain cells that form a square. The path in Figure 18.13b,
for example, does not meet this condition. (The condition makes a path easy
to identify on the board.)

**18.27 (Koch snowflake fractal) The text presented the Sierpinski triangle fractal. In
this exercise, you will write a program to display another fractal, called the Koch
snowflake, named after a famous Swedish mathematician. A Koch snowflake is
created as follows:

1. Begin with an equilateral triangle, which is considered to be the Koch fractal
of order (or level) 0, as shown in Figure 18.14a.

2. Divide each line in the shape into three equal line segments and draw an out-
ward equilateral triangle with the middle line segment as the base to create a
Koch fractal of order 1, as shown in Figure 18.14b.

3. Repeat Step 2 to create a Koch fractal of order 2, 3, . . . , and so on, as shown
in Figure 18.14c–d.

FIGURE 18.14 A Koch snowflake is a fractal starting with a triangle.

(a) (b) (c) (d)

**18.28 (Nonrecursive directory size) Rewrite Listing 18.7, DirectorySize.java, without
using recursion.

*18.29 (Number of files in a directory) Write a program that prompts the user to enter a
directory and displays the number of the files in the directory.

**18.30 (Find words) Write a program that finds all occurrences of a word in all the files
under a directory, recursively. Pass the parameters from the command line as
follows:

java Exercise18_30 dirName word

**18.31 (Replace words) Write a program that replaces all occurrences of a word with a
new word in all the files under a directory, recursively. Pass the parameters from
the command line as follows:

java Exercise18_31 dirName oldWord newWord

***18.32 (Game: Knight’s Tour) The Knight’s Tour is an ancient puzzle. The objective is
to move a knight, starting from any square on a chessboard, to every other square
once, as shown in Figure 18.15a. Note that the knight makes only L-shaped
moves (two spaces in one direction and one space in a perpendicular direc-
tion). As shown in Figure 18.15b, the knight can move to eight squares. Write

Search a string in a directory

VideoNote

734 Chapter 18 Recursion

a program that displays the moves for the knight, as shown in Figure 18.15c.
When you click a cell, the knight is placed at the cell. This cell will be starting
point for the knight. Clicking the Solve button to display the path for a solution.

FIGURE 18.15 (a) A knight traverses all squares once. (b) A knight makes an L-shaped
move. (c) A program displays a Knight’s Tour path.

(a) (b) (c)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

FIGURE 18.16 A knight traverses along the path.

 (Hint: A brute-force approach for this problem is to move the knight from one
square to another available square arbitrarily. Using such an approach, your
program will take a long time to finish. A better approach is to employ some
heuristics. A knight has two, three, four, six, or eight possible moves, depending
on its location. Intuitively, you should attempt to move the knight to the least
accessible squares first and leave those more accessible squares open, so there
will be a better chance of success at the end of the search.)

***18.33 (Game: Knight’s Tour animation) Write a program for the Knight’s Tour prob-
lem. Your program should let the user move a knight to any starting square and
click the Solve button to animate a knight moving along the path, as shown in
Figure 18.16.

**18.34 (Game: Eight Queens) The Eight Queens problem is to find a solution to place
a queen in each row on a chessboard such that no two queens can attack each
other. Write a program to solve the Eight Queens problem using recursion and
display the result as shown in Figure 18.17.

Programming Exercises 735

**18.35 (H-tree fractal) An H-tree (introduced at the beginning of this chapter in
Figure 18.1) is a fractal defined as follows:

1. Begin with a letter H. The three lines of the H are of the same length, as
shown in Figure 18.1a.

2. The letter H (in its sans-serif form, H) has four endpoints. Draw an H cen-
tered at each of the four endpoints to an H-tree of order 1, as shown in
Figure 18.1b. These Hs are half the size of the H that contains the four
endpoints.

3. Repeat Step 2 to create an H-tree of order 2, 3, . . . , and so on, as shown in
Figure 18.1c–d.

 Write a program that draws an H-tree, as shown in Figure 18.1.

18.36 (Sierpinski triangle) Write a program that lets the user to enter the order and
display the filled Sierpinski triangles as shown in Figure 18.18.

FIGURE 18.17 The program displays a solution to the Eight Queens problem.

FIGURE 18.18 A filled Sierpinski triangle is displayed.

**18.37 (Hilbert curve) The Hilbert curve, first described by German mathematician
David Hilbert in 1891, is a space-filling curve that visits every point in a square
grid with a size of 2 * 2, 4 * 4, 8 * 8, 16 * 16, or any other power of 2.
Write a program that displays a Hilbert curve for the specified order, as shown
in Figure 18.19.

736 Chapter 18 Recursion

**18.38 (Recursive tree) Write a program to display a recursive tree as shown in
Figure 18.20.VideoNote

Recursive tree

FIGURE 18.19 A Hilbert curve with the specified order is drawn.

(a) (b) (c) (d)

FIGURE 18.20 A recursive tree with the specified depth is drawn.

(a) (b) (c) (d)

**18.39 (Dragging the tree) Revise Programming Exercise 18.38 to move the tree to
where the mouse is dragged.

GENERICS

Objectives
■ To descriibe the benefits of generics (§19.2).

■ To use generic classes and interfaces (§19.2).

■ To define generic classes and interfaces (§19.3).

■ To explain why generic types can improve reliability and readability
(§19.3).

■ To define and use generic methods and bounded generic types (§19.4).

■ To develop a generic sort method to sort an array of Comparable
objects (§19.5).

■ To use raw types for backward compatibility (§19.6).

■ To explain why wildcard generic types are necessary (§19.7).

■ To describe generic type erasure and list certain restrictions and
limitations on generic types caused by type erasure (§19.8).

■ To design and implement generic matrix classes (§19.9).

CHAPTER

19

738 Chapter 19 Generics

19.1 Introduction
Generics enable you to detect errors at compile time rather than at runtime.

You have used a generic class ArrayList in Chapter 11 and generic interface Comparable
in Chapter 13. Generics let you parameterize types. With this capability, you can define a
class or a method with generic types that the compiler can replace with concrete types. For
example, Java defines a generic ArrayList class for storing the elements of a generic type.
From this generic class, you can create an ArrayList object for holding strings and an
ArrayList object for holding numbers. Here, strings and numbers are concrete types that
replace the generic type.

The key benefit of generics is to enable errors to be detected at compile time rather than
at runtime. A generic class or method permits you to specify allowable types of objects that
the class or method can work with. If you attempt to use an incompatible object, the compiler
will detect that error.

This chapter explains how to define and use generic classes, interfaces, and methods and
demonstrates how generics can be used to improve software reliability and readability. It can
be intertwined with Chapter 13, Abstract Classes and Interfaces.

19.2 Motivations and Benefits
The motivation for using Java generics is to detect errors at compile time.

Java has allowed you to define generic classes, interfaces, and methods since JDK 1.5. Several
interfaces and classes in the Java API were modified using generics. For example, prior to
JDK 1.5 the java.lang.Comparable interface was defined as shown in Figure 19.1a, but
since JDK 1.5 it is modified as shown in Figure 19.1b.

Key
Point

what is generics?

why generics?

Key
Point

package java.lang;

public interface Comparable {
 public int compareTo(Object o)
}

(a) Prior to JDK 1.5

package java.lang;

public interface Comparable<T> {
 public int compareTo(T o)
}

(b) JDK 1.5

FIGURE 19.1 The java.lang.Comparable interface was modified in JDK 1.5 with a
generic type

Here, <T> represents a formal generic type, which can be replaced later with an actual
concrete type. Replacing a generic type is called a generic instantiation. By convention, a
single capital letter such as E or T is used to denote a formal generic type.

To see the benefits of using generics, let us examine the code in Figure 19.2. The statement
in Figure 19.2a declares that c is a reference variable whose type is Comparable and invokes
the compareTo method to compare a Date object with a string. The code compiles fine, but
it has a runtime error because a string cannot be compared with a date.

formal generic type

actual concrete type

generic instantiation

Comparable c = new Date();
System.out.println(c.compareTo("red"));

(a) Prior to JDK 1.5

Comparable<Date> c = new Date();
System.out.println(c.compareTo("red"));

(b) JDK 1.5

FIGURE 19.2 The new generic type detects possible errors at compile time.

The statement in Figure 19.2b declares that c is a reference variable whose type is
Comparable<Date> and invokes the compareTo method to compare a Date object with a
string. This code generates a compile error, because the argument passed to the compareTo

19.2 Motivations and Benefits 739

method must be of the Date type. Since the errors can be detected at compile time rather than
at runtime, the generic type makes the program more reliable.

ArrayList was introduced in Section 11.11, The ArrayList Class. This class has been a
generic class since JDK 1.5. Figure 19.3 shows the class diagram for ArrayList before and
since JDK 1.5, respectively.

reliable

FIGURE 19.3 ArrayList is a generic class since JDK 1.5.

(a) ArrayList before JDK 1.5

+ArrayList()
+add(o: Object): void
+add(index: int, o: Object): void
+clear(): void
+contains(o: Object): boolean

+get(index:int): Object
+indexOf(o: Object): int
+isEmpty(): boolean
+lastIndexOf(o: Object): int
+remove(o: Object): boolean
+size(): int
+remove(index: int): boolean
+set(index: int, o: Object): Object

java.util.ArrayList

(b) ArrayList since JDK 1.5

+ArrayList()

+clear(): void
+contains(o: Object): boolean

+indexOf(o: Object): int
+isEmpty(): boolean
+lastIndexOf(o: Object): int
+remove(o: Object): boolean
+size(): int
+remove(index: int): boolean

java.util.ArrayList<E>

+add(o: E): void
+add(index: int, o: E): void

+get(index:int): E

+set(index: int, o: E): E

For example, the following statement creates a list for strings:

ArrayList<String> list = new ArrayList<>();

You can now add only strings into the list. For instance,

list.add("Red");

If you attempt to add a nonstring, a compile error will occur. For example, the following state-
ment is now illegal, because list can contain only strings.

list.add(new Integer(1));

Generic types must be reference types. You cannot replace a generic type with a primitive
type such as int, double, or char. For example, the following statement is wrong:

ArrayList<int> intList = new ArrayList<>();

To create an ArrayList object for int values, you have to use:

ArrayList<Integer> intList = new ArrayList<>();

You can add an int value to intList. For example,

intList.add(5);

Java automatically wraps 5 into new Integer(5). This is called autoboxing, as intro-
duced in Section 10.8, Automatic Conversion between Primitive Types and Wrapper
Class Types.

only strings allowed

generic reference type

autoboxing

740 Chapter 19 Generics

Casting is not needed to retrieve a value from a list with a specified element type, because
the compiler already knows the element type. For example, the following statements create a
list that contains strings, add strings to the list, and retrieve strings from the list.

1 ArrayList<String> list = new ArrayList<>();
2 list.add("Red");
3 list.add("White");
4 String s = list.get(0); // No casting is needed

Prior to JDK 1.5, without using generics, you would have had to cast the return value to
String as:

String s = (String)(list.get(0)); // Casting needed prior to JDK 1.5

If the elements are of wrapper types, such as Integer, Double, and Character, you can
directly assign an element to a primitive type variable. This is called autounboxing, as intro-
duced in Section 10.8. For example, see the following code:

1 ArrayList<Double> list = new ArrayList<>();
2 list.add(5.5); // 5.5 is automatically converted to new Double(5.5)
3 list.add(3.0); // 3.0 is automatically converted to new Double(3.0)
4 Double doubleObject = list.get(0); // No casting is needed
5 double d = list.get(1); // Automatically converted to double

In lines 2 and 3, 5.5 and 3.0 are automatically converted into Double objects and added to
list. In line 4, the first element in list is assigned to a Double variable. No casting is nec-
essary, because list is declared for Double objects. In line 5, the second element in list is
assigned to a double variable. The object in list.get(1) is automatically converted into
a primitive type value.

19.1 Are there any compile errors in (a) and (b)?

no casting needed

autounboxing

✓Point✓Check
ArrayList dates = new ArrayList();
dates.add(new Date());
dates.add(new String());

(a) Prior to JDK 1.5

ArrayList<Date> dates =
new ArrayList<>();

dates.add(new Date());
dates.add(new String());

(b) Since JDK 1.5

19.2 What is wrong in (a)? Is the code in (b) correct?

ArrayList dates = new ArrayList();
dates.add(new Date());
Date date = dates.get(0);

(a) Prior to JDK 1.5

ArrayList<Date> dates =
new ArrayList<>();

dates.add(new Date());
Date date = dates.get(0);

 (b) Since JDK 1.5

19.3 What are the benefits of using generic types?

19.3 Defining Generic Classes and Interfaces
A generic type can be defined for a class or interface. A concrete type must be
specified when using the class to create an object or using the class or interface to
declare a reference variable.

Key
Point

19.3 Defining Generic Classes and Interfaces 741

Let us revise the stack class in Section 11.13, Case Study: A Custom Stack Class, to gener-
alize the element type with a generic type. The new stack class, named GenericStack, is
shown in Figure 19.4 and is implemented in Listing 19.1.

FIGURE 19.4 The GenericStack class encapsulates the stack storage and provides the
operations for manipulating the stack.

Creates an empty stack.

Returns the number of elements in this stack.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns true if the stack is empty.

An array list to store elements.

GenericStack<E>

-list: java.util.ArrayList<E>

+GenericStack()

+getSize(): int

+peek(): E

+pop(): E

+push(o: E): void

+isEmpty(): boolean

LISTING 19.1 GenericStack.java
 1 public class GenericStack<E> {
 2 private java.util.ArrayList<E> list = new java.util.ArrayList<>();
 3
 4 public int getSize() {
 5 return list.size();
 6 }
 7
 8 public E peek() {
 9 return list.get(getSize() - 1);
10 }
11
12 public void push(E o) {
13 list.add(o);
14 }
15
16 public E pop() {
17 E o = list.get(getSize() - 1);
18 list.remove(getSize() - 1);
19 return o;
20 }
21
22 public boolean isEmpty() {
23 return list.isEmpty();
24 }
25
26 @Override
27 public String toString() {
28 return "stack: " + list.toString();
29 }
30 }

The following example creates a stack to hold strings and adds three strings to the stack:

GenericStack<String> stack1 = new GenericStack<>();
stack1.push("London");
stack1.push("Paris");
stack1.push("Berlin");

generic type E declared
generic array list

getSize

peek

push

pop

isEmpty

742 Chapter 19 Generics

This example creates a stack to hold integers and adds three integers to the stack:

GenericStack<Integer> stack2 = new GenericStack<>();
stack2.push(1); // autoboxing 1 to new Integer(1)
stack2.push(2);
stack2.push(3);

Instead of using a generic type, you could simply make the type element Object, which can
accommodate any object type. However, using generic types can improve software reliability
and readability, because certain errors can be detected at compile time rather than at runtime.
For example, because stack1 is declared GenericStack<String>, only strings can be
added to the stack. It would be a compile error if you attempted to add an integer to stack1.

Caution
To create a stack of strings, you use new GenericStack<String>() or new
GenericStack<>(). This could mislead you into thinking that the constructor of

GenericStack should be defined as

public GenericStack<E>()

This is wrong. It should be defined as

public GenericStack()

Note
Occasionally, a generic class may have more than one parameter. In this case, place

the parameters together inside the brackets, separated by commas—for example,

<E1, E2, E3>.

Note
You can define a class or an interface as a subtype of a generic class or interface. For

example, the java.lang.String class is defined to implement the Comparable

interface in the Java API as follows:

public class String implements Comparable<String>

19.4 What is the generic definition for java.lang.Comparable in the Java API?

19.5 Since you create an instance of ArrayList of strings using new

ArrayList<String>(), should the constructor in the ArrayList class be
defined as

public ArrayList<E>()

19.6 Can a generic class have multiple generic parameters?

19.7 How do you declare a generic type in a class?

19.4 Generic Methods
A generic type can be defined for a static method.

You can define generic interfaces (e.g., the Comparable interface in Figure 19.1b) and
classes (e.g., the GenericStack class in Listing 19.1). You can also use generic types to
define generic methods. For example, Listing 19.2 defines a generic method print (lines
10–14) to print an array of objects. Line 6 passes an array of integer objects to invoke the
generic print method. Line 7 invokes print with an array of strings.

benefits of using generic types

generic class constructor

multiple generic parameters

inheritance with generics

✓Point✓Check

Key
Point

generic method

19.4 Generic Methods 743

LISTING 19.2 GenericMethodDemo.java
 1 public class GenericMethodDemo {
 2 public static void main(String[] args) {
 3 Integer[] integers = {1, 2, 3, 4, 5};
 4 String[] strings = {"London", "Paris", "New York", "Austin"};
 5
 6 GenericMethodDemo.<Integer>print(integers);
 7 GenericMethodDemo.<String>print(strings);
 8 }
 9
10 public static <E> void print(E[] list) {
11 for (int i = 0; i < list.length; i++)
12 System.out.print(list[i] + " ");
13 System.out.println();
14 }
15 }

To declare a generic method, you place the generic type <E> immediately after the keyword
static in the method header. For example,

public static <E> void print(E[] list)

To invoke a generic method, prefix the method name with the actual type in angle brackets.
For example,

GenericMethodDemo.<Integer>print(integers);
GenericMethodDemo.<String>print(strings);

or simply invoke it as follows:

print(integers);
print(strings);

In the latter case, the actual type is not explicitly specified. The compiler automatically dis-
covers the actual type.

A generic type can be specified as a subtype of another type. Such a generic type is
called bounded. For example, Listing 19.3 revises the equalArea method in Listing 13.4,
TestGeometricObject.java, to test whether two geometric objects have the same area. The
bounded generic type <E extends GeometricObject> (line 7) specifies that E is a generic
subtype of GeometricObject. You must invoke equalArea by passing two instances of
GeometricObject.

LISTING 19.3 BoundedTypeDemo.java
 1 public class BoundedTypeDemo {
 2 public static void main(String[] args) {
 3 Rectangle rectangle = new Rectangle(2, 2);
 4 Circle circle = new Circle(2);
 5
 6 System.out.println("Same area? " +
 7 equalArea(rectangle, circle));
 8 }
 9
10 public static <E extends GeometricObject> boolean equalArea(
11 E object1, E object2) {
12 return object1.getArea() == object2.getArea();
13 }
14 }

generic method

declare a generic method

invoke generic method

bounded generic type

Rectangle in Listing 13.3
Circle in Listing 13.2

bounded generic type

744 Chapter 19 Generics

Note
An unbounded generic type <E> is the same as <E extends Object>.

Note
To define a generic type for a class, place it after the class name, such as

GenericStack<E>. To define a generic type for a method, place the generic type

before the method return type, such as <E> void max(E o1, E o2).

19.8 How do you declare a generic method? How do you invoke a generic method?

19.9 What is a bounded generic type?

19.5 Case Study: Sorting an Array of Objects
You can develop a generic method for sorting an array of Comparable objects.

This section presents a generic method for sorting an array of Comparable objects. The
objects are instances of the Comparable interface, and they are compared using the
compareTo method. To test the method, the program sorts an array of integers, an array of
double numbers, an array of characters, and an array of strings. The program is shown in
Listing 19.4.

LISTING 19.4 GenericSort.java
 1 public class GenericSort {
 2 public static void main(String[] args) {
 3 // Create an Integer array
 4 Integer[] intArray = {new Integer(2), new Integer(4),
 5 new Integer(3)};
 6
 7 // Create a Double array
 8 Double[] doubleArray = {new Double(3.4), new Double(1.3),
 9 new Double(-22.1)};
10
11 // Create a Character array
12 Character[] charArray = {new Character('a'),
13 new Character('J'), new Character('r')};
14
15 // Create a String array
16 String[] stringArray = {"Tom", "Susan", "Kim"};
17
18 // Sort the arrays
19 sort(intArray);
20 sort(doubleArray);
21 sort(charArray);
22 sort(stringArray);
23
24 // Display the sorted arrays
25 System.out.print("Sorted Integer objects: ");
26 printList(intArray);
27 System.out.print("Sorted Double objects: ");
28 printList(doubleArray);
29 System.out.print("Sorted Character objects: ");
30 printList(charArray);
31 System.out.print("Sorted String objects: ");
32 printList(stringArray);
33 }
34

generic class parameter vs.
generic method parameter

✓Point✓Check

Key
Point

sort Integer objects
sort Double objects
sort Character objects
sort String objects

19.5 Case Study: Sorting an Array of Objects 745

35 /** Sort an array of comparable objects */
36 public static <E extends Comparable<E>> void sort(E[] list) {
37 E currentMin;
38 int currentMinIndex;
39
40 for (int i = 0; i < list.length - 1; i++) {
41 // Find the minimum in the list[i+1..list.length-2]
42 currentMin = list[i];
43 currentMinIndex = i;
44
45 for (int j = i + 1; j < list.length; j++) {
46 if (currentMin.compareTo(list[j]) > 0) {
47 currentMin = list[j];
48 currentMinIndex = j;
49 }
50 }
51
52 // Swap list[i] with list[currentMinIndex] if necessary;
53 if (currentMinIndex != i) {
54 list[currentMinIndex] = list[i];
55 list[i] = currentMin;
56 }
57 }
58 }
59
60 /** Print an array of objects */
61 public static void printList(Object[] list) {
62 for (int i = 0; i < list.length; i++)
63 System.out.print(list[i] + " ");
64 System.out.println();
65 }
66 }

generic sort method

compareTo

Sorted Integer objects: 2 3 4
Sorted Double objects: -22.1 1.3 3.4
Sorted Character objects: J a r
Sorted String objects: Kim Susan Tom

The algorithm for the sort method is the same as in Listing 7.8, SelectionSort.java. The
sort method in that program sorts an array of double values. The sort method in this
example can sort an array of any object type, provided that the objects are also instances of
the Comparable interface. The generic type is defined as <E extends Comparable<E>>
(line 36). This has two meanings. First, it specifies that E is a subtype of Comparable. Second,
it specifies that the elements to be compared are of the E type as well.

The sort method uses the compareTo method to determine the order of the objects in
the array (line 46). Integer, Double, Character, and String implement Comparable,
so the objects of these classes can be compared using the compareTo method. The program
creates arrays of Integer objects, Double objects, Character objects, and String objects
(lines 4–16) and invoke the sort method to sort these arrays (lines 19–22).

19.10 Given int[] list = {1, 2, -1}, can you invoke sort(list) using the sort
method in Listing 19.4?

19.11 Given int[] list = {new Integer(1), new Integer(2), new Inte-
ger(-1)}, can you invoke sort(list) using the sort method in Listing 19.4?

✓Point✓Check

746 Chapter 19 Generics

19.6 Raw Types and Backward Compatibility
A generic class or interface used without specifying a concrete type, called a raw type,
enables backward compatibility with earlier versions of Java.

You can use a generic class without specifying a concrete type like this:

GenericStack stack = new GenericStack(); // raw type

This is roughly equivalent to

GenericStack<Object> stack = new GenericStack<Object>();

A generic class such as GenericStack and ArrayList used without a type parameter is
called a raw type. Using raw types allows for backward compatibility with earlier versions of
Java. For example, a generic type has been used in java.lang.Comparable since JDK 1.5,
but a lot of code still uses the raw type Comparable, as shown in Listing 19.5:

LISTING 19.5 Max.java
1 public class Max {
2 /** Return the maximum of two objects */
3 public static Comparable max(Comparable o1, Comparable o2) {
4 if (o1.compareTo(o2) > 0)
5 return o1;
6 else

7 return o2;
8 }
9 }

Comparable o1 and Comparable o2 are raw type declarations. Be careful: raw types are
unsafe. For example, you might invoke the max method using

Max.max("Welcome", 23); // 23 is autoboxed into new Integer(23)

This would cause a runtime error, because you cannot compare a string with an inte-
ger object. The Java compiler displays a warning on line 3 when compiled with the option
–Xlint:unchecked, as shown in Figure 19.5.

Key
Point

raw type
backward compatibility

raw type

Xlint:unchecked

FIGURE 19.5 The unchecked warnings are displayed using the compiler option
–Xlint:unchecked.

A better way to write the max method is to use a generic type, as shown in Listing 19.6.

LISTING 19.6 MaxUsingGenericType.java
1 public class MaxUsingGenericType {
2 /** Return the maximum of two objects */
3 public static <E extends Comparable<E>> E max(E o1, E o2) {
4 if (o1.compareTo(o2) > 0)
5 return o1;
6 else

bounded type

19.7 Wildcard Generic Types 747

7 return o2;
8 }
9 }

If you invoke the max method using

// 23 is autoboxed into new Integer(23)
MaxUsingGenericType.max("Welcome", 23);

a compile error will be displayed, because the two arguments of the max method in
MaxUsingGenericType must have the same type (e.g., two strings or two integer objects).
Furthermore, the type E must be a subtype of Comparable<E>.

As another example, in the following code you can declare a raw type stack in line 1,
assign new GenericStack<String> to it in line 2, and push a string and an integer object
to the stack in lines 3 and 4.

1 GenericStack stack;
2 stack = new GenericStack<String>();
3 stack.push("Welcome to Java");
4 stack.push(new Integer(2));

However, line 4 is unsafe because the stack is intended to store strings, but an Integer object
is added into the stack. Line 3 should be okay, but the compiler will show warnings for both
line 3 and line 4, because it cannot follow the semantic meaning of the program. All the com-
piler knows is that stack is a raw type, and performing certain operations is unsafe. Therefore,
warnings are displayed to alert potential problems.

Tip
Since raw types are unsafe, this book will not use them from here on.

19.12 What is a raw type? Why is a raw type unsafe? Why is the raw type allowed in Java?

19.13 What is the syntax to declare an ArrayList reference variable using the raw type
and assign a raw type ArrayList object to it?

19.7 Wildcard Generic Types
You can use unbounded wildcards, bounded wildcards, or lower-bound wildcards to
specify a range for a generic type.

What are wildcard generic types and why are they needed? Listing 19.7 gives an example to
demonstrate the needs. The example defines a generic max method for finding the maximum
in a stack of numbers (lines 12–22). The main method creates a stack of integer objects, adds
three integers to the stack, and invokes the max method to find the maximum number in the
stack.

LISTING 19.7 WildCardNeedDemo.java
 1 public class WildCardNeedDemo {
 2 public static void main(String[] args) {
3 GenericStack<Integer> intStack = new GenericStack<>();
 4 intStack.push(1); // 1 is autoboxed into new Integer(1)
 5 intStack.push(2);
 6 intStack.push(-2);
 7
 8 System.out.print("The max number is " + max(intStack));
 9 }
10

✓Point✓Check

Key
Point

GenericStack<Integer>
type

748 Chapter 19 Generics

11 /** Find the maximum in a stack of numbers */
12 public static double max(GenericStack<Number> stack) {
13 double max = stack.pop().doubleValue(); // Initialize max
14
15 while (!stack.isEmpty()) {
16 double value = stack.pop().doubleValue();
17 if (value > max)
18 max = value;
19 }
20
21 return max;
22 }
23 }

The program in Listing 19.7 has a compile error in line 8 because intStack is not an instance
of GenericStack<Number>. Thus, you cannot invoke max(intStack).

The fact is that Integer is a subtype of Number, but GenericStack<Integer> is not
a subtype of GenericStack<Number>. To circumvent this problem, use wildcard generic
types. A wildcard generic type has three forms: ? and ? extends T, as well as ? super T,
where T is a generic type.

The first form, ?, called an unbounded wildcard, is the same as ? extends Object. The
second form, ? extends T, called a bounded wildcard, represents T or a subtype of T. The
third form, ? super T, called a lower-bound wildcard, denotes T or a supertype of T.

You can fix the error by replacing line 12 in Listing 19.7 as follows:

public static double max(GenericStack<? extends Number> stack) {

<? extends Number> is a wildcard type that represents Number or a subtype of Number,
so it is legal to invoke max(new GenericStack<Integer>()) or max(new
GenericStack<Double>()).

Listing 19.8 shows an example of using the ? wildcard in the print method that prints
objects in a stack and empties the stack. <?> is a wildcard that represents any object type. It
is equivalent to <? extends Object>. What happens if you replace GenericStack<?>
with GenericStack<Object>? It would be wrong to invoke print(intStack),
because intStack is not an instance of GenericStack<Object>. Please note that
GenericStack<Integer> is not a subtype of GenericStack<Object>, even though
Integer is a subtype of Object.

LISTING 19.8 AnyWildCardDemo.java
 1 public class AnyWildCardDemo {
 2 public static void main(String[] args) {
 3 GenericStack<Integer> intStack = new GenericStack<>();
 4 intStack.push(1); // 1 is autoboxed into new Integer(1)
 5 intStack.push(2);
 6 intStack.push(-2);
 7
 8 print(intStack);
 9 }
10
11 /** Prints objects and empties the stack */
12 public static void print(GenericStack<?> stack) {
13 while (!stack.isEmpty()) {
14 System.out.print(stack.pop() + " ");
15 }
16 }
17 }

GenericStack<Number>
type

unbounded wildcard

bounded wildcard

lower-bound wildcard

GenericStack<Integer>
type

wildcard type

19.7 Wildcard Generic Types 749

When is the wildcard <? super T> needed? Consider the example in Listing 19.9. The
example creates a stack of strings in stack1 (line 3) and a stack of objects in stack2 (line 4),
and invokes add(stack1, stack2) (line 8) to add the strings in stack1 into stack2.
GenericStack<? super T> is used to declare stack2 in line 13. If <? super T> is
replaced by <T>, a compile error will occur on add(stack1, stack2) in line 8, because
stack1’s type is GenericStack<String> and stack2’s type is GenericStack<Object>.
<? super T> represents type T or a supertype of T. Object is a supertype of String.

LISTING 19.9 SuperWildCardDemo.java
 1 public class SuperWildCardDemo {
 2 public static void main(String[] args) {
 3 GenericStack<String> stack1 = new GenericStack<>();
 4 GenericStack<Object> stack2 = new GenericStack<>();
 5 stack2.push("Java");
 6 stack2.push(2);
 7 stack1.push("Sun");
 8 add(stack1, stack2);
 9 AnyWildCardDemo.print(stack2);
10 }
11
12 public static <T> void add(GenericStack<T> stack1,
13 GenericStack<? super T> stack2) {
14 while (!stack1.isEmpty())
15 stack2.push(stack1.pop());
16 }
17 }

This program will also work if the method header in lines 12–13 is modified as follows:

public static <T> void add(GenericStack<? extends T> stack1,
 GenericStack<T> stack2)

The inheritance relationship involving generic types and wildcard types is summarized in
Figure 19.6. In this figure, A and B represent classes or interfaces, and E is a generic type
parameter.

why <? Super T>

GenericStack<String>
type

<? Super T> type

FIGURE 19.6 The relationship between generic types and wildcard types.

E

? super E

Object

E’s subclass ? extends E

A<? extends B> A<? super B>

A<?>

Object

AA<B’s subclass> A<B’s subclass>

? E’s superclass

19.14 Is GenericStack the same as GenericStack<Object>?

19.15 What are an unbounded wildcard, a bounded wildcard, and a lower-bound wildcard?

19.16 What happens if lines 12–13 in Listing 19.9 are changed to

public static <T> void add(GenericStack<T> stack1,
 GenericStack<T> stack2)

✓Point✓Check

750 Chapter 19 Generics

19.17 What happens if lines 12–13 in Listing 19.9 are changed to

public static <T> void add(GenericStack<? extends T> stack1,
 GenericStack<T> stack2)

19.8 Erasure and Restrictions on Generics
The information on generics is used by the compiler but is not available at runtime.
This is called type erasure.

Generics are implemented using an approach called type erasure: The compiler uses the
generic type information to compile the code, but erases it afterward. Thus, the generic infor-
mation is not available at runtime. This approach enables the generic code to be backward
compatible with the legacy code that uses raw types.

The generics are present at compile time. Once the compiler confirms that a generic type
is used safely, it converts the generic type to a raw type. For example, the compiler checks
whether the following code in (a) uses generics correctly and then translates it into the equiva-
lent code in (b) for runtime use. The code in (b) uses the raw type.

Key
Point

type erasure

erase generics

ArrayList<String> list = new ArrayList<>();
list.add("Oklahoma");
String state = list.get(0);

(a)

ArrayList list = new ArrayList();
list.add("Oklahoma");
String state = (String)(list.get(0));

(b)

When generic classes, interfaces, and methods are compiled, the compiler replaces the generic
type with the Object type. For example, the compiler would convert the following method
in (a) into (b).

replace generic type

public static <E> void print(E[] list) {
for (int i = 0; i < list.length; i++)

 System.out.print(list[i] + " ");
 System.out.println();
}

(a)

public static void print(Object[] list) {
for (int i = 0; i < list.length; i++)

 System.out.print(list[i] + " ");
 System.out.println();
}

(b)

If a generic type is bounded, the compiler replaces it with the bounded type. For example, the
compiler would convert the following method in (a) into (b).

replace bounded type

public static <E extends GeometricObject>
boolean equalArea(

E object1,
E object2) {

return object1.getArea() ==
 object2.getArea();
}

(a)

public static

boolean equalArea(
GeometricObject object1,
GeometricObject object2) {

return object1.getArea() ==
 object2.getArea();
}

(b)

It is important to note that a generic class is shared by all its instances regardless of its actual
concrete type. Suppose list1 and list2 are created as follows:

ArrayList<String> list1 = new ArrayList<>();
ArrayList<Integer> list2 = new ArrayList<>();

important fact

19.8 Erasure and Restrictions on Generics 751

Although ArrayList<String> and ArrayList<Integer> are two types at compile time,
only one ArrayList class is loaded into the JVM at runtime. list1 and list2 are both
instances of ArrayList, so the following statements display true:

System.out.println(list1 instanceof ArrayList);
System.out.println(list2 instanceof ArrayList);

However, the expression list1 instanceof ArrayList<String> is wrong. Since
ArrayList<String> is not stored as a separate class in the JVM, using it at runtime makes
no sense.

Because generic types are erased at runtime, there are certain restrictions on how generic
types can be used. Here are some of the restrictions:

Restriction 1: Cannot Use new E()

You cannot create an instance using a generic type parameter. For example, the following
statement is wrong:

E object = new E();

The reason is that new E() is executed at runtime, but the generic type E is not available
at runtime.

Restriction 2: Cannot Use new E[]

You cannot create an array using a generic type parameter. For example, the following
statement is wrong:

E[] elements = new E[capacity];

You can circumvent this limitation by creating an array of the Object type and then cast-
ing it to E[], as follows:

E[] elements = (E[])new Object[capacity];

However, casting to (E[]) causes an unchecked compile warning. The warning occurs
because the compiler is not certain that casting will succeed at runtime. For example, if
E is String and new Object[] is an array of Integer objects, (String[])(new
Object[]) will cause a ClassCastException. This type of compile warning is a limi-
tation of Java generics and is unavoidable.

Generic array creation using a generic class is not allowed, either. For example, the fol-
lowing code is wrong:

ArrayList<String>[] list = new ArrayList<String>[10];

You can use the following code to circumvent this restriction:

ArrayList<String>[] list = (ArrayList<String>[])new
ArrayList[10];

However, you will still get a compile warning.

Restriction 3: A Generic Type Parameter of a Class Is Not Allowed in a Static
Context

Since all instances of a generic class have the same runtime class, the static variables and
methods of a generic class are shared by all its instances. Therefore, it is illegal to refer to

no new E()

no new E[capacity]

unavoidable compile warning

752 Chapter 19 Generics

a generic type parameter for a class in a static method, field, or initializer. For example, the
following code is illegal:

public class Test<E> {
public static void m(E o1) { // Illegal

 }

public static E o1; // Illegal

static {
 E o2; // Illegal
 }
}

Restriction 4: Exception Classes Cannot Be Generic

A generic class may not extend java.lang.Throwable, so the following class declara-
tion would be illegal:

public class MyException<T> extends Exception {
}

Why? If it were allowed, you would have a catch clause for MyException<T> as follows:

try {
 ...
}
catch (MyException<T> ex) {
 ...
}

The JVM has to check the exception thrown from the try clause to see if it matches the
type specified in a catch clause. This is impossible, because the type information is not
present at runtime.

19.18 What is erasure? Why are Java generics implemented using erasure?

19.19 If your program uses ArrayList<String> and ArrayList<Date>, does the JVM
load both of them?

19.20 Can you create an instance using new E() for a generic type E? Why?

19.21 Can a method that uses a generic class parameter be static? Why?

19.22 Can you define a custom generic exception class? Why?

19.9 Case Study: Generic Matrix Class
This section presents a case study on designing classes for matrix operations using
generic types.

The addition and multiplication operations for all matrices are similar except that their ele-
ment types differ. Therefore, you can design a superclass that describes the common opera-
tions shared by matrices of all types regardless of their element types, and you can define
subclasses tailored to specific types of matrices. This case study gives implementations for
two types: int and Rational. For the int type, the wrapper class Integer should be used
to wrap an int value into an object, so that the object is passed in the methods for operations.

The class diagram is shown in Figure 19.7. The methods addMatrix and
multiplyMatrix add and multiply two matrices of a generic type E[][]. The static
method printResult displays the matrices, the operator, and their result. The methods
add, multiply, and zero are abstract, because their implementations depend on the
specific type of the array elements. For example, the zero() method returns 0 for the

✓Point✓Check

Key
Point

19.9 Case Study: Generic Matrix Class 753

Integer type and 0/1 for the Rational type. These methods will be implemented in the
subclasses in which the matrix element type is specified.

IntegerMatrix and RationalMatrix are concrete subclasses of GenericMatrix.
These two classes implement the add, multiply, and zero methods defined in the
GenericMatrix class.

Listing 19.10 implements the GenericMatrix class. <E extends Number> in line 1
specifies that the generic type is a subtype of Number. Three abstract methods—add, multiply,
and zero—are defined in lines 3, 6, and 9. These methods are abstract because we cannot imple-
ment them without knowing the exact type of the elements. The addMaxtrix (lines 12–30) and
multiplyMatrix (lines 33–57) methods implement the methods for adding and multiplying
two matrices. All these methods must be nonstatic, because they use generic type E for the class.
The printResult method (lines 60–84) is static because it is not tied to specific instances.

The matrix element type is a generic subtype of Number. This enables you to use an object
of any subclass of Number as long as you can implement the abstract add, multiply, and
zero methods in subclasses.

The addMatrix and multiplyMatrix methods (lines 12–57) are concrete methods.
They are ready to use as long as the add, multiply, and zero methods are implemented in
the subclasses.

The addMatrix and multiplyMatrix methods check the bounds of the matrices before
performing operations. If the two matrices have incompatible bounds, the program throws an
exception (lines 16, 36).

LISTING 19.10 GenericMatrix.java
 1 public abstract class GenericMatrix<E extends Number> {
 2 /** Abstract method for adding two elements of the matrices */
 3 protected abstract E add(E o1, E o2);
 4
 5 /** Abstract method for multiplying two elements of the matrices */
 6 protected abstract E multiply(E o1, E o2);
 7
 8 /** Abstract method for defining zero for the matrix element */
 9 protected abstract E zero();
10
11 /** Add two matrices */
12 public E[][] addMatrix(E[][] matrix1, E[][] matrix2) {
13 // Check bounds of the two matrices
14 if ((matrix1.length != matrix2.length) ||
15 (matrix1[0].length != matrix2[0].length)) {
16 throw new RuntimeException(
17 "The matrices do not have the same size");
18 }
19

bounded generic type

abstract method

abstract method

abstract method

add two matrices

FIGURE 19.7 The GenericMatrix class is an abstract superclass for IntegerMatrix and
RationalMatrix.

#add(element1: E, element2: E): E
#multiply(element1: E, element2: E): E
#zero(): E
+addMatrix(matrix1: E[][], matrix2: E[][]): E[][]
+multiplyMatrix(matrix1: E[][], matrix2: E[][]): E[][]
+printResult(m1: Number[][], m2: Number[][],

GenericMatrix<E extends Number> IntegerMatrix

RationalMatrixm3: Number[][], op: char): void

754 Chapter 19 Generics

20 E[][] result =
21 (E[][])new Number[matrix1.length][matrix1[0].length];
22
23 // Perform addition
24 for (int i = 0; i < result.length; i++)
25 for (int j = 0; j < result[i].length; j++) {
26 result[i][j] = add(matrix1[i][j], matrix2[i][j]);
27 }
28
29 return result;
30 }
31
32 /** Multiply two matrices */
33 public E[][] multiplyMatrix(E[][] matrix1, E[][] matrix2) {
34 // Check bounds
35 if (matrix1[0].length != matrix2.length) {
36 throw new RuntimeException(
37 "The matrices do not have compatible size");
38 }
39
40 // Create result matrix
41 E[][] result =
42 (E[][])new Number[matrix1.length][matrix2[0].length];
43
44 // Perform multiplication of two matrices
45 for (int i = 0; i < result.length; i++) {
46 for (int j = 0; j < result[0].length; j++) {
47 result[i][j] = zero();
48
49 for (int k = 0; k < matrix1[0].length; k++) {
50 result[i][j] = add(result[i][j],
51 multiply(matrix1[i][k], matrix2[k][j]));
52 }
53 }
54 }
55
56 return result;
57 }
58
59 /** Print matrices, the operator, and their operation result */
60 public static void printResult(
61 Number[][] m1, Number[][] m2, Number[][] m3, char op) {
62 for (int i = 0; i < m1.length; i++) {
63 for (int j = 0; j < m1[0].length; j++)
64 System.out.print(" " + m1[i][j]);
65
66 if (i == m1.length / 2)
67 System.out.print(" " + op + " ");
68 else

69 System.out.print(" ");
70
71 for (int j = 0; j < m2.length; j++)
72 System.out.print(" " + m2[i][j]);
73
74 if (i == m1.length / 2)
75 System.out.print(" = ");
76 else

77 System.out.print(" ");
78
79 for (int j = 0; j < m3.length; j++)

multiply two matrices

display result

19.9 Case Study: Generic Matrix Class 755

80 System.out.print(m3[i][j] + " ");
81
82 System.out.println();
83 }
84 }
85 }

Listing 19.11 implements the IntegerMatrix class. The class extends
GenericMatrix<Integer> in line 1. After the generic instantiation, the add method in
GenericMatrix<Integer> is now Integer add(Integer o1, Integer o2). The
add, multiply, and zero methods are implemented for Integer objects. These methods
are still protected, because they are invoked only by the addMatrix and multiplyMatrix
methods.

LISTING 19.11 IntegerMatrix.java
 1 public class IntegerMatrix extends GenericMatrix<Integer> {
 2 @Override /** Add two integers */
 3 protected Integer add(Integer o1, Integer o2) {
 4 return o1 + o2;
 5 }
 6
 7 @Override /** Multiply two integers */
 8 protected Integer multiply(Integer o1, Integer o2) {
 9 return o1 * o2;
10 }
11
12 @Override /** Specify zero for an integer */
13 protected Integer zero() {
14 return 0;
15 }
16 }

Listing 19.12 implements the RationalMatrix class. The Rational class was introduced
in Listing 13.13 Rational.java. Rational is a subtype of Number. The RationalMatrix
class extends GenericMatrix<Rational> in line 1. After the generic instantiation, the
add method in GenericMatrix<Rational> is now Rational add(Rational r1,

Rational r2). The add, multiply, and zero methods are implemented for Rational
objects. These methods are still protected, because they are invoked only by the addMatrix
and multiplyMatrix methods.

LISTING 19.12 RationalMatrix.java
 1 public class RationalMatrix extends GenericMatrix<Rational> {
 2 @Override /** Add two rational numbers */
 3 protected Rational add(Rational r1, Rational r2) {
 4 return r1.add(r2);
 5 }
 6
 7 @Override /** Multiply two rational numbers */
 8 protected Rational multiply(Rational r1, Rational r2) {
 9 return r1.multiply(r2);
10 }
11
12 @Override /** Specify zero for a Rational number */
13 protected Rational zero() {
14 return new Rational(0, 1);
15 }
16 }

extends generic type

implement add

implement multiply

implement zero

extends generic type

implement add

implement multiply

implement zero

756 Chapter 19 Generics

Listing 19.13 gives a program that creates two Integer matrices (lines 4–5) and an
IntegerMatrix object (line 8), and adds and multiplies two matrices in lines 12 and 16.

LISTING 19.13 TestIntegerMatrix.java
 1 public class TestIntegerMatrix {
 2 public static void main(String[] args) {
 3 // Create Integer arrays m1, m2
 4 Integer[][] m1 = new Integer[][]{{1, 2, 3}, {4, 5, 6}, {1, 1, 1}};
 5 Integer[][] m2 = new Integer[][]{{1, 1, 1}, {2, 2, 2}, {0, 0, 0}};
 6
 7 // Create an instance of IntegerMatrix
 8 IntegerMatrix integerMatrix = new IntegerMatrix();
 9
10 System.out.println("\nm1 + m2 is ");
11 GenericMatrix.printResult(
12 m1, m2, integerMatrix.addMatrix(m1, m2), '+');
13
14 System.out.println("\nm1 * m2 is ");
15 GenericMatrix.printResult(
16 m1, m2, integerMatrix.multiplyMatrix(m1, m2), '*');
17 }
18 }

create matrices

create IntegerMatrix

add two matrices

multiply two matrices

m1 + m2 is
 1 2 3 1 1 1 2 3 4
 4 5 6 + 2 2 2 = 6 7 8
 1 1 1 0 0 0 1 1 1

m1 * m2 is
 1 2 3 1 1 1 5 5 5
 4 5 6 * 2 2 2 = 14 14 14
 1 1 1 0 0 0 3 3 3

Listing 19.14 gives a program that creates two Rational matrices (lines 4–10) and a
RationalMatrix object (line 13) and adds and multiplies two matrices in lines 17 and 19.

LISTING 19.14 TestRationalMatrix.java
 1 public class TestRationalMatrix {
 2 public static void main(String[] args) {
 3 // Create two Rational arrays m1 and m2
 4 Rational[][] m1 = new Rational[3][3];
 5 Rational[][] m2 = new Rational[3][3];
 6 for (int i = 0; i < m1.length; i++)
 7 for (int j = 0; j < m1[0].length; j++) {
 8 m1[i][j] = new Rational(i + 1, j + 5);
 9 m2[i][j] = new Rational(i + 1, j + 6);
10 }
11
12 // Create an instance of RationalMatrix
13 RationalMatrix rationalMatrix = new RationalMatrix();
14
15 System.out.println("\nm1 + m2 is ");
16 GenericMatrix.printResult(
17 m1, m2, rationalMatrix.addMatrix(m1, m2), '+');
18
19 System.out.println("\nm1 * m2 is ");

create matrices

create RationalMatrix

add two matrices

Chapter Summary 757

20 GenericMatrix.printResult(
21 m1, m2, rationalMatrix.multiplyMatrix(m1, m2), '*');
22 }
23 }

multiply two matrices

KEY TERMS

actual concrete type 738
bounded generic type 743
bounded wildcard

(<? extends E>) 748
formal generic type 738

generic instantiation 738
lower-bound wildcard

(<? super E>) 748
raw type 746
unbounded wildcard (<?>) 748

m1 + m2 is
 1/5 1/6 1/7 1/6 1/7 1/8 11/30 13/42 15/56
 2/5 1/3 2/7 + 1/3 2/7 1/4 = 11/15 13/21 15/28
 3/5 1/2 3/7 1/2 3/7 3/8 11/10 13/14 45/56

m1 * m2 is
 1/5 1/6 1/7 1/6 1/7 1/8 101/630 101/735 101/840
 2/5 1/3 2/7 * 1/3 2/7 1/4 = 101/315 202/735 101/420
 3/5 1/2 3/7 1/2 3/7 3/8 101/210 101/245 101/280

19.23 Why are the add, multiple, and zero methods defined abstract in the
GenericMatrix class?

19.24 How are the add, multiple, and zero methods implemented in the
IntegerMatrix class?

19.25 How are the add, multiple, and zero methods implemented in the
RationalMatrix class?

19.26 What would be wrong if the printResult method defined as follows?

public static void printResult(
 E[][] m1, E[][] m2, E[][] m3, char op)

✓Point✓Check

CHAPTER SUMMARY

1. Generics give you the capability to parameterize types. You can define a class or a
method with generic types, which the compiler replaces with concrete types.

2. The key benefit of generics is to enable errors to be detected at compile time rather than
at runtime.

3. A generic class or method permits you to specify allowable types of objects that the
class or method can work with. If you attempt to use a class or method with an incom-
patible object, the compiler will detect the error.

4. A generic type defined in a class, interface, or a static method is called a formal generic
type, which can be replaced later with an actual concrete type. Replacing a generic type
is called a generic instantiation.

758 Chapter 19 Generics

5. A generic class such as ArrayList used without a type parameter is called a raw
type. Use of raw types is allowed for backward compatibility with the earlier ver-
sions of Java.

6. A wildcard generic type has three forms: ? and ? extends T, and ? super T, where
T is a generic type. The first form, ?, called an unbounded wildcard, is the same as
? extends Object. The second form, ? extends T, called a bounded wildcard,
represents T or a subtype of T. The third form, ? super T, called a lower-bound wild-
card, denotes T or a supertype of T.

7. Generics are implemented using an approach called type erasure. The compiler uses
the generic type information to compile the code but erases it afterward, so the generic
information is not available at runtime. This approach enables the generic code to be
backward compatible with the legacy code that uses raw types.

8. You cannot create an instance using a generic type parameter.

9. You cannot create an array using a generic type parameter.

10. You cannot use a generic type parameter of a class in a static context.

11. Generic type parameters cannot be used in exception classes.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

19.1 (Revising Listing 19.1) Revise the GenericStack class in Listing 19.1 to imple-
ment it using an array rather than an ArrayList. You should check the array size
before adding a new element to the stack. If the array is full, create a new array that
doubles the current array size and copy the elements from the current array to the
new array.

19.2 (Implement GenericStack using inheritance) In Listing 19.1, GenericStack is
implemented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes and then implement GenericStack.
Write a test program that prompts the user to enter five strings and displays them in
reverse order.

19.3 (Distinct elements in ArrayList) Write the following method that returns a new
ArrayList. The new list contains the non-duplicate elements from the original list.

public static <E> ArrayList<E> removeDuplicates(ArrayList<E> list)

19.4 (Generic linear search) Implement the following generic method for linear search.

public static <E extends Comparable<E>>
int linearSearch(E[] list, E key)

19.5 (Maximum element in an array) Implement the following method that returns the
maximum element in an array.

public static <E extends Comparable<E>> E max(E[] list)

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 759

19.6 (Maximum element in a two-dimensional array) Write a generic method that
returns the maximum element in a two-dimensional array.

public static <E extends Comparable<E>> E max(E[][] list)

19.7 (Generic binary search) Implement the following method using binary search.

public static <E extends Comparable<E>>
int binarySearch(E[] list, E key)

19.8 (Shuffle ArrayList) Write the following method that shuffles an ArrayList:

public static <E> void shuffle(ArrayList<E> list)

19.9 (Sort ArrayList) Write the following method that sorts an ArrayList:

public static <E extends Comparable<E>>
 void sort(ArrayList<E> list)

19.10 (Largest element in ArrayList) Write the following method that returns the largest
element in an ArrayList:

public static <E extends Comparable<E>> E max(ArrayList<E> list)

19.11 (ComplexMatrix) Use the Complex class introduced in Programming
Exercise 13.17 to develop the ComplexMatrix class for performing matrix opera-
tions involving complex numbers. The ComplexMatrix class should extend the
GenericMatrix class and implement the add, multiple, and zero methods.
You need to modify GenericMatrix and replace every occurrence of Number by
Object, because Complex is not a subtype of Number. Write a test program that
creates the following two matrices and displays the result of addition and multiplica-
tion of the matrices by invoking the printResult method.

This page intentionally left blank

LISTS, STACKS,
QUEUES, AND
PRIORITY QUEUES

Objectives
■ To explore the relationship between interfaces and classes in the Java

Collections Framework hierarchy (§20.2).

■ To use the common methods defined in the Collection interface for
operating collections (§20.2).

■ To use the Iterator interface to traverse the elements in a collection
(§20.3).

■ To use a foreach loop to traverse the elements in a collection (§20.3).

■ To explore how and when to use ArrayList or LinkedList to store
a list of elements (§20.4).

■ To compare elements using the Comparable interface and the
Comparator interface (§20.5).

■ To use the static utility methods in the Collections class for sorting,
searching, shuffling lists, and finding the largest and smallest element
in collections (§20.6).

■ To develop a multiple bouncing balls application using ArrayList
(§20.7).

■ To distinguish between Vector and ArrayList and to use the Stack
class for creating stacks (§20.8).

■ To explore the relationships among Collection, Queue,
LinkedList, and PriorityQueue and to create priority queues
using the PriorityQueue class (§20.9).

■ To use stacks to write a program to evaluate expressions (§20.10).

CHAPTER

20

762 Chapter 20 Lists, Stacks, Queues, and Priority Queues

20.1 Introduction
Choosing the best data structures and algorithms for a particular task is one of the
keys to developing high-performance software.

A data structure is a collection of data organized in some fashion. The structure not only
stores data but also supports operations for accessing and manipulating the data.

In object-oriented thinking, a data structure, also known as a container or container object,
is an object that stores other objects, referred to as data or elements. To define a data structure
is essentially to define a class. The class for a data structure should use data fields to store data
and provide methods to support such operations as search, insertion, and deletion. To create a
data structure is therefore to create an instance from the class. You can then apply the methods
on the instance to manipulate the data structure, such as inserting an element into or deleting
an element from the data structure.

Section 11.11 introduced the ArrayList class, which is a data structure to store elements
in a list. Java provides several more data structures that can be used to organize and manipu-
late data efficiently. These are commonly known as Java Collections Framework. We will
introduce the applications of lists, vectors, stacks, queues, and priority queues in this chapter
and sets and maps in the next chapter. The implementation of these data structures will be
discussed in Chapters 24–27.

20.2 Collections
The Collection interface defines the common operations for lists, vectors, stacks,
queues, priority queues, and sets.

The Java Collections Framework supports two types of containers:

 ■ One for storing a collection of elements is simply called a collection.

 ■ The other, for storing key/value pairs, is called a map.

Maps are efficient data structures for quickly searching an element using a key. We will intro-
duce maps in the next chapter. Now we turn our attention to the following collections.

 ■ Sets store a group of nonduplicate elements.

 ■ Lists store an ordered collection of elements.

 ■ Stacks store objects that are processed in a last-in, first-out fashion.

 ■ Queues store objects that are processed in a first-in, first-out fashion.

 ■ PriorityQueues store objects that are processed in the order of their priorities.

The common features of these collections are defined in the interfaces, and implementa-
tions are provided in concrete classes, as shown in Figure 20.1.

Note
All the interfaces and classes defined in the Java Collections Framework are grouped in

the java.util package.

Design Guide
The design of the Java Collections Framework is an excellent example of using interfaces,

abstract classes, and concrete classes. The interfaces define the framework. The abstract

classes provide partial implementation. The concrete classes implement the interfaces

with concrete data structures. Providing an abstract class that partially implements an

interface makes it convenient for the user to write the code. The user can simply define

Key
Point

data structure

container

Java Collections Framework

Key
Point

collection

map

Set

List

Stack

Queue

PriorityQueue

20.2 Collections 763

a concrete class that extends the abstract class rather implements all the methods in

the interface. The abstract classes such as AbstractCollection are provided for

convenience. For this reason, they are called convenience abstract classes.

The Collection interface is the root interface for manipulating a collection of objects. Its
public methods are listed in Figure 20.2. The AbstractCollection class provides partial
implementation for the Collection interface. It implements all the methods in Collection
except the add, size, and iterator methods. These are implemented in appropriate concrete
subclasses.

The Collection interface provides the basic operations for adding and removing elements
in a collection. The add method adds an element to the collection. The addAll method adds
all the elements in the specified collection to this collection. The remove method removes an
element from the collection. The removeAll method removes the elements from this collec-
tion that are present in the specified collection. The retainAll method retains the elements
in this collection that are also present in the specified collection. All these methods return
boolean. The return value is true if the collection is changed as a result of the method
execution. The clear() method simply removes all the elements from the collection.

Note
The methods addAll, removeAll, and retainAll are similar to the set union,

difference, and intersection operations.

The Collection interface provides various query operations. The size method returns
the number of elements in the collection. The contains method checks whether the collec-
tion contains the specified element. The containsAll method checks whether the collection
contains all the elements in the specified collection. The isEmpty method returns true if the
collection is empty.

The Collection interface provides the toArray() method, which returns an array rep-
resentation for the collection.

Design Guide
Some of the methods in the Collection interface cannot be implemented

in the concrete subclass. In this case, the method would throw java.lang

convenience abstract class

basic operations

set operations

query operations

FIGURE 20.1 A collection is a container that stores objects.

SortedSet

Collection

TreeSet

Vector

LinkedList

PriorityQueueAbstractQueue

AbstractCollection
Stack

LinkedHashSet

Interfaces Abstract Classes Concrete Classes

ArrayList

NavigableSet

Deque

HashSetSet

List

Queue

AbstractList

AbstractSet

AbstractSequentialList

764 Chapter 20 Lists, Stacks, Queues, and Priority Queues

.UnsupportedOperationException, a subclass of RuntimeException.

This is a good design that you can use in your project. If a method has no meaning in

the subclass, you can implement it as follows:

public void someMethod() {
throw new UnsupportedOperationException

 ("Method not supported");
}

Listing 20.1 gives an example to use the methods defined in the Collection interface.

LISTING 20.1 TestCollection.java
 1 import java.util.*;
 2
 3 public class TestCollection {
 4 public static void main(String[] args) {
 5 ArrayList<String> collection1 = new ArrayList<>();
 6 collection1.add("New York");
 7 collection1.add("Atlanta");
 8 collection1.add("Dallas");
 9 collection1.add("Madison");

unsupported operations

create an array list
add elements

FIGURE 20.2 The Collection interface contains the methods for manipulating the elements in a collection, and you
can obtain an iterator object for traversing elements in the collection.

+add(o: E): boolean

+addAll(c: Collection<? extends E>): boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c: Collection<?>): boolean

+equals(o: Object): boolean

+hashCode(): int

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>): boolean

+retainAll(c: Collection<?>): boolean

+size(): int

+toArray(): Object[]

Adds a new element o to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection is equal to another collection o.

Returns the hash code for this collection.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

java.util.Collection<E>
«interface»

+hasNext(): boolean

+next(): E

+remove(): void

java.util.Iterator<E>
«interface»

+iterator(): Iterator<E>

java.lang.Iterable<E>
«interface»

Returns an iterator for the elements in this collection.

20.2 Collections 765

10
11 System.out.println("A list of cities in collection1:");
12 System.out.println(collection1);
13
14 System.out.println("\nIs Dallas in collection1? "
15 + collection1.contains("Dallas"));
16
17 collection1.remove("Dallas");
18 System.out.println("\n" + collection1.size() +
19 " cities are in collection1 now");
20
21 Collection<String> collection2 = new ArrayList<>();
22 collection2.add("Seattle");
23 collection2.add("Portland");
24 collection2.add("Los Angeles");
25 collection2.add("Atlanta");
26
27 System.out.println("\nA list of cities in collection2:");
28 System.out.println(collection2);
29
30 ArrayList<String> c1 = (ArrayList<String>)(collection1.clone());
31 c1.addAll(collection2);
32 System.out.println("\nCities in collection1 or collection2: ");
33 System.out.println(c1);
34
35 c1 = (ArrayList<String>)(collection1.clone());
36 c1.retainAll(collection2);
37 System.out.print("\nCities in collection1 and collection2: ");
38 System.out.println(c1);
39
40 c1 = (ArrayList<String>)(collection1.clone());
41 c1.removeAll(collection2);
42 System.out.print("\nCities in collection1, but not in 2: ");
43 System.out.println(c1);
44 }
45 }

contains?

size?

clone
addAll

retainAll

removeAll

A list of cities in collection1:
[New York, Atlanta, Dallas, Madison]
Is Dallas in collection1? true
3 cities are in collection1 now
A list of cities in collection2:
[Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 or collection2:
[New York, Atlanta, Madison, Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 and collection2: [Atlanta]
Cities in collection1, but not in 2: [New York, Madison]

The program creates a concrete collection object using ArrayList (line 5), and invokes
the Collection interface’s contains method (line 15), remove method (line 17), size
method (line 18), addAll method (line 31), retainAll method (line 36), and removeAll
method (line 41).

For this example, we use ArrayList. You can use any concrete class of Collection
such as HashSet, LinkedList, Vector, and Stack to replace ArrayList to test these
methods defined in the Collection interface.

766 Chapter 20 Lists, Stacks, Queues, and Priority Queues

The program creates a copy of an array list (lines 30, 35, 40). The purpose of this is to keep
the original array list intact and use its copy to perform addAll, retainAll, and removeAll
operations.

Note
All the concrete classes in the Java Collections Framework implement the java.lang.

Cloneable and java.io.Serializable interfaces except that

java.util.PriorityQueue does not implement the Cloneable interface. Thus,

all instances of Cloneable except priority queues can be cloned and all instances of

Cloneable can be serialized.

20.1 What is a data structure?

20.2 Describe the Java Collections Framework. List the interfaces, convenience abstract
classes, and concrete classes under the Collection interface.

20.3 Can a collection object be cloned and serialized?

20.4 What method do you use to add all the elements from one collection to another
collection?

20.5 When should a method throw an UnsupportedOperationException?

20.3 Iterators
Each collection is Iterable. You can obtain its Iterator object to traverse all the
elements in the collection.

Iterator is a classic design pattern for walking through a data structure without having to
expose the details of how data is stored in the data structure.

The Collection interface extends the Iterable interface. The Iterable interface
defines the iterator method, which returns an iterator. The Iterator interface provides a
uniform way for traversing elements in various types of collections. The iterator() method
in the Iterable interface returns an instance of Iterator, as shown in Figure 20.2, which
provides sequential access to the elements in the collection using the next() method. You
can also use the hasNext() method to check whether there are more elements in the iterator,
and the remove() method to remove the last element returned by the iterator.

Listing 20.2 gives an example that uses the iterator to traverse all the elements in an array list.

LISTING 20.2 TestIterator.java
 1 import java.util.*;
 2
 3 public class TestIterator {
 4 public static void main(String[] args) {
 5 Collection<String> collection = new ArrayList<>();
 6 collection.add("New York");
 7 collection.add("Atlanta");
 8 collection.add("Dallas");
 9 collection.add("Madison");
10
11 Iterator<String> iterator = collection.iterator();
12 while (iterator.hasNext()) {
13 System.out.print(iterator.next().toUpperCase() + " ");
14 }
15 System.out.println();
16 }
17 }

Cloneable

Serializable

✓Point✓Check

Key
Point

create an array list
add elements

iterator
hasNext()
next()

20.4 Lists 767

The program creates a concrete collection object using ArrayList (line 5) and adds four
strings into the list (lines 6–9). The program then obtains an iterator for the collection (line 11)
and uses the iterator to traverse all the strings in the list and displays the strings in uppercase
(lines 12–14).

Tip
You can simplify the code in lines 11–14 using a foreach loop without using an iterator,

as follows:

for (String element: collection)
 System.out.print(element.toUpperCase() + " ");

This loop is read as “for each element in the collection, do the following.” The foreach

loop can be used for arrays (see Section 7.2.7) as well as any instance of Iterable.

20.6 How do you obtain an iterator from a collection object?

20.7 What method do you use to obtain an element in the collection from an iterator?

20.8 Can you use a foreach loop to traverse the elements in any instance of Collection?

20.9 When using a foreach loop to traverse all elements in a collection, do you need to use
the next() or hasNext() methods in an iterator?

20.4 Lists
The List interface extends the Collection interface and defines a collection for
storing elements in a sequential order. To create a list, use one of its two concrete
classes: ArrayList or LinkedList.

We used ArrayList to test the methods in the Collection interface in the preceding
sections. Now we will examine ArrayList in more depth. We will also introduce another
useful list, LinkedList, in this section.

20.4.1 The Common Methods in the List Interface
ArrayList and LinkedList are defined under the List interface. The List interface
extends Collection to define an ordered collection with duplicates allowed. The List
interface adds position-oriented operations, as well as a new list iterator that enables the user
to traverse the list bidirectionally. The methods introduced in the List interface are shown
in Figure 20.3.

The add(index, element) method is used to insert an element at a specified index, and
the addAll(index, collection) method to insert a collection of elements at a specified
index. The remove(index) method is used to remove an element at the specified index from
the list. A new element can be set at the specified index using the set(index, element)
method.

The indexOf(element) method is used to obtain the index of the specified element’s
first occurrence in the list, and the lastIndexOf(element) method to obtain the index of
its last occurrence. A sublist can be obtained by using the subList(fromIndex, toIndex)
method.

foreach loop

✓Point✓Check

Key
Point

NEW YORK ATLANTA DALLAS MADISON

768 Chapter 20 Lists, Stacks, Queues, and Priority Queues

The listIterator() or listIterator(startIndex) method returns an instance of
ListIterator. The ListIterator interface extends the Iterator interface to add bidi-
rectional traversal of the list. The methods in ListIterator are listed in Figure 20.4.

FIGURE 20.3 The List interface stores elements in sequence and permits duplicates.

«interface»
java.util.List<E>

+add(index: int, element: Object): boolean

+addAll(index: int, c: Collection<? extends E>)
 : boolean
+get(index: int): E

+indexOf(element: Object): int

+lastIndexOf(element: Object): int

+listIterator(): ListIterator<E>

+listIterator(startIndex: int): ListIterator<E>

+remove(index: int): E

+set(index: int, element: Object): Object

+subList(fromIndex: int, toIndex: int): List<E>

«interface»
java.util.Collection<E>

Adds a new element at the specified index.

Adds all the elements in c to this list at the specified
index.

Returns the element in this list at the specified index.

Returns the index of the first matching element.

Returns the index of the last matching element.

Returns the list iterator for the elements in this list.

Returns the iterator for the elements from startIndex.

Removes the element at the specified index.

Sets the element at the specified index.

Returns a sublist from fromIndex to toIndex-1.

FIGURE 20.4 ListIterator enables traversal of a list bidirectionally.

+add(element: E): void
+hasPrevious(): boolean

+nextIndex(): int
+previous(): E
+previousIndex(): int
+set(element: E): void

Adds the specified object to the list.
Returns true if this list iterator has more elements
 when traversing backward.
Returns the index of the next element.
Returns the previous element in this list iterator.
Returns the index of the previous element.
Replaces the last element returned by the previous or
 next method with the specified element.

«interface»
java.util.Iterator<E>

«interface»
java.util.ListIterator<E>

The add(element) method inserts the specified element into the list. The element is
inserted immediately before the next element that would be returned by the next() method
defined in the Iterator interface, if any, and after the element that would be returned by
the previous() method, if any. If the list doesn’t contain any elements, the new element
becomes the sole element in the list. The set(element) method can be used to replace
the last element returned by the next method or the previous method with the specified
element.

The hasNext() method defined in the Iterator interface is used to check whether the
iterator has more elements when traversed in the forward direction, and the hasPrevious()

20.4 Lists 769

method to check whether the iterator has more elements when traversed in the backward
direction.

The next() method defined in the Iterator interface returns the next element in
the iterator, and the previous() method returns the previous element in the iterator.
The nextIndex() method returns the index of the next element in the iterator, and the
previousIndex() returns the index of the previous element in the iterator.

The AbstractList class provides a partial implementation for the List interface.
The AbstractSequentialList class extends AbstractList to provide support for
linked lists.

20.4.2 The ArrayList and LinkedList Classes
The ArrayList class and the LinkedList class are two concrete implementations of the
List interface. ArrayList stores elements in an array. The array is dynamically created. If
the capacity of the array is exceeded, a larger new array is created and all the elements from
the current array are copied to the new array. LinkedList stores elements in a linked list.
Which of the two classes you use depends on your specific needs. If you need to support
random access through an index without inserting or removing elements at the beginning
of the list, ArrayList offers the most efficient collection. If, however, your application
requires the insertion or deletion of elements at the beginning of the list, you should choose
LinkedList. A list can grow or shrink dynamically. Once it is created, an array is fixed. If
your application does not require the insertion or deletion of elements, an array is the most
efficient data structure.

ArrayList is a resizable-array implementation of the List interface. It also provides
methods for manipulating the size of the array used internally to store the list, as shown
in Figure 20.5. Each ArrayList instance has a capacity, which is the size of the array used
to store the elements in the list. It is always at least as large as the list size. As elements
are added to an ArrayList, its capacity grows automatically. An ArrayList does not
automatically shrink. You can use the trimToSize() method to reduce the array capac-
ity to the size of the list. An ArrayList can be constructed using its no-arg constructor,
ArrayList(Collection), or ArrayList(initialCapacity).

ArrayList vs. LinkedList

linked list

trimToSize()

FIGURE 20.5 ArrayList implements List using an array.

java.util.ArrayList<E>

+ArrayList()
+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

java.util.AbstractList<E>

Creates an empty list with the default initial capacity.
Creates an array list from an existing collection.
Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be
 the list’s current size.

LinkedList is a linked list implementation of the List interface. In addition to imple-
menting the List interface, this class provides the methods for retrieving, inserting, and
removing elements from both ends of the list, as shown in Figure 20.6. A LinkedList can be
constructed using its no-arg constructor or LinkedList(Collection).

770 Chapter 20 Lists, Stacks, Queues, and Priority Queues

Listing 20.3 gives a program that creates an array list filled with numbers and inserts new
elements into specified locations in the list. The example also creates a linked list from the
array list and inserts and removes elements from the list. Finally, the example traverses the
list forward and backward.

LISTING 20.3 TestArrayAndLinkedList.java
 1 import java.util.*;
 2
 3 public class TestArrayAndLinkedList {
 4 public static void main(String[] args) {
 5 List<Integer> arrayList = new ArrayList<>();
 6 arrayList.add(1); // 1 is autoboxed to new Integer(1)
 7 arrayList.add(2);
 8 arrayList.add(3);
 9 arrayList.add(1);
10 arrayList.add(4);
11 arrayList.add(0, 10);
12 arrayList.add(3, 30);
13
14 System.out.println("A list of integers in the array list:");
15 System.out.println(arrayList);
16
17 LinkedList<Object> linkedList = new LinkedList<>(arrayList);
18 linkedList.add(1, "red");
19 linkedList.removeLast();
20 linkedList.addFirst("green");
21
22 System.out.println("Display the linked list forward:");
23 ListIterator<Object> listIterator = linkedList.listIterator();
24 while (listIterator.hasNext()) {
25 System.out.print(listIterator.next() + " ");
26 }
27 System.out.println();
28
29 System.out.println("Display the linked list backward:");
30 listIterator = linkedList.listIterator(linkedList.size());
31 while (listIterator.hasPrevious()) {
32 System.out.print(listIterator.previous() + " ");
33 }
34 }
35 }

array list

linked list

list iterator

list iterator

FIGURE 20.6 LinkedList provides methods for adding and inserting elements at both ends of the list.

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the element to the head of this list.

Adds the element to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(element: E): void

+addLast(element: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

java.util.LinkedList<E>

java.util.AbstractSequentialList<E>

20.4 Lists 771

A list can hold identical elements. Integer 1 is stored twice in the list (lines 6, 9). ArrayList
and LinkedList operate similarly. The critical difference between them pertains to internal
implementation, which affects their performance. ArrayList is efficient for retrieving ele-
ments and LinkedList is efficient for inserting and removing elements at the beginning of
the list. Both have the same performance for inserting and removing elements in the middle
or at the end of the list.

The get(i) method is available for a linked list, but it is a time-consuming operation. Do
not use it to traverse all the elements in a list as shown in (a). Instead you should use an iterator
as shown in (b). Note that a foreach loop uses an iterator implicitly. You will know the reason
when you learn how to implement a linked list in Chapter 24.

A list of integers in the array list:
[10, 1, 2, 30, 3, 1, 4]
Display the linked list forward:
green 10 red 1 2 30 3 1
Display the linked list backward:
1 3 30 2 1 red 10 green

Tip
Java provides the static asList method for creating a list from a variable-length list of

arguments. Thus you can use the following code to create a list of strings and a list of

integers:

List<String> list1 = Arrays.asList("red", "green", "blue");
List<Integer> list2 = Arrays.asList(10, 20, 30, 40, 50);

20.10 How do you add and remove elements from a list? How do you traverse a list in both
directions?

20.11 Suppose that list1 is a list that contains the strings red, yellow, and green, and
that list2 is another list that contains the strings red, yellow, and blue. Answer
the following questions:

a. What are list1 and list2 after executing list1.addAll(list2)?

b. What are list1 and list2 after executing list1.add(list2)?

c. What are list1 and list2 after executing list1.removeAll(list2)?

d. What are list1 and list2 after executing list1.remove(list2)?

e. What are list1 and list2 after executing list1.retainAll(list2)?

f. What is list1 after executing list1.clear()?

20.12 What are the differences between ArrayList and LinkedList? Which list should
you use to insert and delete elements at the beginning of a list?

20.13 Are all the methods in ArrayList also in LinkedList? What methods are in
LinkedList but not in ArrayList?

20.14 How do you create a list from an array of objects?

Arrays.asList(T... a)
method

✓Point✓Check

for (int i = 0; i < list.size(); i++) {
 process list.get(i);
}

(a) Very inefficient

for (listElementType s: list) {
 process s;
}

(b) Efficient

772 Chapter 20 Lists, Stacks, Queues, and Priority Queues

20.5 The Comparator Interface
Comparator can be used to compare the objects of a class that doesn’t implement
Comparable.

You have learned how to compare elements using the Comparable interface (introduced
in Section 13.6). Several classes in the Java API, such as String, Date, Calendar,
BigInteger, BigDecimal, and all the numeric wrapper classes for the primitive types,
implement the Comparable interface. The Comparable interface defines the compareTo
method, which is used to compare two elements of the same class that implement the
Comparable interface.

What if the elements’ classes do not implement the Comparable interface? Can these
elements be compared? You can define a comparator to compare the elements of different
classes. To do so, define a class that implements the java.util.Comparator<T> interface
and overrides its compare method.

 public int compare(T element1, T element2)
 Returns a negative value if element1 is less than element2, a positive value if

element1 is greater than element2, and zero if they are equal.

The GeometricObject class was introduced in Section 13.2, Abstract Classes. The
GeometricObject class does not implement the Comparable interface. To compare the
objects of the GeometricObject class, you can define a comparator class, as shown in
Listing 20.4.

LISTING 20.4 GeometricObjectComparator.java
 1 import java.util.Comparator;
 2
 3 public class GeometricObjectComparator
 4 implements Comparator<GeometricObject>, java.io.Serializable {
 5 public int compare(GeometricObject o1, GeometricObject o2) {
 6 double area1 = o1.getArea();
 7 double area2 = o2.getArea();
 8
 9 if (area1 < area2)
10 return -1;
11 else if (area1 == area2)
12 return 0;
13 else

14 return 1;
15 }
16 }

Line 4 implements Comparator<GeometricObject>. Line 5 overrides the compare
method to compare two geometric objects. The class also implements Serializable. It is
generally a good idea for comparators to implement Serializable, as they may be used
as ordering methods in serializable data structures. In order for the data structure to serialize
successfully, the comparator (if provided) must implement Serializable.

Listing 20.5 gives a method that returns a larger object between two geometric objects. The
objects are compared using the GeometricObjectComparator.

LISTING 20.5 TestComparator.java
 1 import java.util.Comparator;
 2
 3 public class TestComparator {
 4 public static void main(String[] args) {

Key
Point

comparator

implements Comparator
implements compare

20.6 Static Methods for Lists and Collections 773

 5 GeometricObject g1 = new Rectangle(5, 5);
 6 GeometricObject g2 = new Circle(5);
 7
 8 GeometricObject g =
 9 max(g1, g2, new GeometricObjectComparator());
10
11 System.out.println("The area of the larger object is " +
12 g.getArea());
13 }
14
15 public static GeometricObject max(GeometricObject g1,
16 GeometricObject g2, Comparator<GeometricObject> c) {
17 if (c.compare(g1, g2) > 0)
18 return g1;
19 else

20 return g2;
21 }
22 }

invoke max

the max method

invoke compare

The area of the larger object is 78.53981633974483

The program creates a Rectangle and a Circle object in lines 5–6 (the Rectangle and
Circle classes were defined in Section 13.2, Abstract Classes). They are all subclasses of
GeometricObject. The program invokes the max method to obtain the geometric object
with the larger area (lines 8–9).

The GeometricObjectComparator is created and passed to the max method (line 9) and
this comparator is used in the max method to compare the geometric objects in line 17.

Note
Comparable is used to compare the objects of the class that implement Comparable.

Comparator can be used to compare the objects of a class that doesn’t implement

Comparable.

Comparing elements using the Comparable interface is referred to as comparing using

natural order, and comparing elements using the Comparator interface is referred to

as comparing using comparator.

20.15 What are the differences between the Comparable interface and the Comparator
interface? In which package is Comparable, and in which package is Comparator?

20.16 How do you define a class A that implements the Comparable interface? Are two
instances of class A comparable? How do you define a class B that implements the
Comparator interface and override the compare method to compare to objects of
type B1? How do you invoke the sort method to sort a list of objects of the type B1?

20.6 Static Methods for Lists and Collections
The Collections class contains static methods to perform common operations in a
collection and a list.

Section 11.12 introduced several static methods in the Collections class for array lists.
The Collections class contains the sort, binarySearch, reverse, shuffle, copy, and
fill methods for lists, and max, min, disjoint, and frequency methods for collections,
as shown in Figure 20.7.

Comparable vs. Comparator

natural order
using comparator

✓Point✓Check

Key
Point

774 Chapter 20 Lists, Stacks, Queues, and Priority Queues

FIGURE 20.7 The Collections class contains static methods for manipulating lists and collections.

java.util.Collections

+sort(list: List): void

+sort(list: List, c: Comparator): void

+binarySearch(list: List, key: Object): int

+binarySearch(list: List, key: Object, c:
Comparator): int

+reverse(list: List): void

+reverseOrder(): Comparator

+shuffle(list: List): void

+shuffle(list: List, rmd: Random): void

+copy(des: List, src: List): void

+nCopies(n: int, o: Object): List

+fill(list: List, o: Object): void

+max(c: Collection): Object

+max(c: Collection, c: Comparator): Object

+min(c: Collection): Object

+min(c: Collection, c: Comparator): Object

+disjoint(c1: Collection, c2: Collection):
 boolean
+frequency(c: Collection, o: Object): int

Sorts the specified list.

Sorts the specified list with the comparator.

Searches the key in the sorted list using binary search.

Searches the key in the sorted list using binary search
with the comparator.

Reverses the specified list.

Returns a comparator with the reverse ordering.

Shuffles the specified list randomly.

Shuffles the specified list with a random object.

Copies from the source list to the destination list.

Returns a list consisting of n copies of the object.

Fills the list with the object.

Returns the max object in the collection.

Returns the max object using the comparator.

Returns the min object in the collection.

Returns the min object using the comparator.

Returns true if c1 and c2 have no elements in common.

Returns the number of occurrences of the specified
 element in the collection.

List

Collection

You can sort the comparable elements in a list in its natural order with the compareTo
method in the Comparable interface. You may also specify a comparator to sort elements.
For example, the following code sorts strings in a list.

List<String> list = Arrays.asList("red", "green", "blue");
Collections.sort(list);
System.out.println(list);

The output is [blue, green, red].
The preceding code sorts a list in ascending order. To sort it in descending order, you can

simply use the Collections.reverseOrder() method to return a Comparator object
that orders the elements in reverse of their natural order. For example, the following code sorts
a list of strings in descending order.

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.sort(list, Collections.reverseOrder());
System.out.println(list);

The output is [yellow, red, green, blue].
You can use the binarySearch method to search for a key in a list. To use this method,

the list must be sorted in increasing order. If the key is not in the list, the method returns
-(insertion point +1). Recall that the insertion point is where the item would fall in the list if
it were present. For example, the following code searches the keys in a list of integers and a
list of strings.

List<Integer> list1 =
 Arrays.asList(2, 4, 7, 10, 11, 45, 50, 59, 60, 66);
System.out.println("(1) Index: " + Collections.binarySearch(list1, 7));

sort list

ascending order

descending order

binarySearch

20.6 Static Methods for Lists and Collections 775

System.out.println("(2) Index: " + Collections.binarySearch(list1, 9));

List<String> list2 = Arrays.asList("blue", "green", "red");
System.out.println("(3) Index: " +
 Collections.binarySearch(list2, "red"));
System.out.println("(4) Index: " +
 Collections.binarySearch(list2, "cyan"));

The output of the preceding code is:

(1) Index: 2
(2) Index: -4
(3) Index: 2
(4) Index: -2

You can use the reverse method to reverse the elements in a list. For example, the following
code displays [blue, green, red, yellow].

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.reverse(list);
System.out.println(list);

You can use the shuffle(List) method to randomly reorder the elements in a list. For
example, the following code shuffles the elements in list.

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.shuffle(list);
System.out.println(list);

You can also use the shuffle(List, Random) method to randomly reorder the elements in
a list with a specified Random object. Using a specified Random object is useful to generate a
list with identical sequences of elements for the same original list. For example, the following
code shuffles the elements in list.

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("yellow", "red", "green", "blue");
Collections.shuffle(list1, new Random(20));
Collections.shuffle(list2, new Random(20));
System.out.println(list1);
System.out.println(list2);

You will see that list1 and list2 have the same sequence of elements before and after the
shuffling.

You can use the copy(det, src) method to copy all the elements from a source list to a
destination list on the same index. The destination list must be as long as the source list. If it is
longer, the remaining elements in the source list are not affected. For example, the following
code copies list2 to list1.

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("white", "black");
Collections.copy(list1, list2);
System.out.println(list1);

reverse

shuffle

copy

776 Chapter 20 Lists, Stacks, Queues, and Priority Queues

The output for list1 is [white, black, green, blue]. The copy method performs a
shallow copy: only the references of the elements from the source list are copied.

You can use the nCopies(int n, Object o) method to create an immutable list that
consists of n copies of the specified object. For example, the following code creates a list with
five Calendar objects.

List<GregorianCalendar> list1 = Collections.nCopies
(5, new GregorianCalendar(2005, 0, 1));

The list created from the nCopies method is immutable, so you cannot add, remove, or
update elements in the list. All the elements have the same references.

You can use the fill(List list, Object o) method to replace all the elements in the
list with the specified element. For example, the following code displays [black, black,
black].

List<String> list = Arrays.asList("red", "green", "blue");
Collections.fill(list, "black");
System.out.println(list);

You can use the max and min methods for finding the maximum and minimum elements
in a collection. The elements must be comparable using the Comparable interface or the
Comparator interface. For example, the following code displays the largest and smallest
strings in a collection.

Collection<String> collection = Arrays.asList("red", "green", "blue");
System.out.println(Collections.max(collection));
System.out.println(Collections.min(collection));

Thedisjoint(collection1, collection2) method returns true if the two collections
have no elements in common. For example, in the following code, disjoint(collection1,
collection2) returns false, but disjoint(collection1, collection3) returns true.

Collection<String> collection1 = Arrays.asList("red", "cyan");
Collection<String> collection2 = Arrays.asList("red", "blue");
Collection<String> collection3 = Arrays.asList("pink", "tan");
System.out.println(Collections.disjoint(collection1, collection2));
System.out.println(Collections.disjoint(collection1, collection3));

The frequency(collection, element) method finds the number of occurrences of the
element in the collection. For example, frequency(collection, "red") returns 2 in the
following code.

Collection<String> collection = Arrays.asList("red", "cyan", "red");
System.out.println(Collections.frequency(collection, "red"));

20.17 Are all the methods in the Collections class static?

20.18 Which of the following static methods in the Collections class are for lists, and
which are for collections?

sort, binarySearch, reverse, shuffle, max, min, disjoint, frequency

20.19 Show the output of the following code:

import java.util.*;

public class Test {
public static void main(String[] args) {

nCopies

fill

max and min methods

disjoint method

frequency method

✓Point✓Check

20.7 Case Study: Bouncing Balls 777

 List<String> list =
 Arrays.asList("yellow", "red", "green", "blue");
 Collections.reverse(list);
 System.out.println(list);

 List<String> list1 =
 Arrays.asList("yellow", "red", "green", "blue");
 List<String> list2 = Arrays.asList("white", "black");
 Collections.copy(list1, list2);
 System.out.println(list1);

 Collection<String> c1 = Arrays.asList("red", "cyan");
 Collection<String> c2 = Arrays.asList("red", "blue");
 Collection<String> c3 = Arrays.asList("pink", "tan");
 System.out.println(Collections.disjoint(c1, c2));
 System.out.println(Collections.disjoint(c1, c3));

 Collection<String> collection =
 Arrays.asList("red", "cyan", "red");
 System.out.println(Collections.frequency(collection, "red"));
 }
}

20.20 Which method can you use to sort the elements in an ArrayList or a LinkedList?
Which method can you use to sort an array of strings?

20.21 Which method can you use to perform binary search for elements in an ArrayList
or a LinkedList? Which method can you use to perform binary search for an array
of strings?

20.22 Write a statement to find the largest element in an array of comparable objects.

20.7 Case Study: Bouncing Balls
This section presents a program that displays bouncing balls and enables the user to
add and remove balls.

Section 15.12 presents a program that displays one bouncing ball. This section presents a pro-
gram that displays multiple bouncing balls. You can use two buttons to suspend and resume
the movement of the balls, a scroll bar to control the ball speed, and the + or - button add or
remove a ball, as shown in Figure 20.8.

Key
Point

FIGURE 20.8 Pressing the + or - button adds or removes a ball.

The example in Section 15.12 only had to store one ball. How do you store the multiple balls
in this example? The Pane’s getChildren() method returns an ObservableList<Node>, a
subtype of List<Node>, for storing the nodes in the pane. Initially, the list is empty. When a new
ball is created, add it to the end of the list. To remove a ball, simply remove the last one in the list.

778 Chapter 20 Lists, Stacks, Queues, and Priority Queues

Each ball has its state: the x-, y-coordinates, color, and direction to move. You can
define a class named Ball that extends javafx.scene.shape.Circle. The x-,
y-coordinates and the color are already defined in Circle. When a ball is created, it
starts from the upper-left corner and moves downward to the right. A random color is
assigned to a new ball.

The MultiplBallPane class is responsible for displaying the ball and the
MultipleBounceBall class places the control components and implements the control. The
relationship of these classes is shown in Figure 20.9. Listing 20.6 gives the program.

FIGURE 20.9 MultipleBounceBall contains MultipleBallPane, and MultipleBallPane contains Ball.

m 1 1 1
Ball

dx: double

dy: double

+Ball (x: double, y: double
 radius: double,
 color: color)

javafx.scene.shape.Circle javafx.scene.layout.Pane javafx.application.Application

MultipleBallPane

-animation: Timeline

+MultipleBallPane()

+play(): void

+pause(): void

+increaseSpeed(): void

+decreaseSpeed(): void

+rateProperty(): Double
 Property

+moveBall(): void

MultipleBounceBall

LISTING 20.6 MultipleBounceBall.java
 1 import javafx.animation.KeyFrame;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.beans.property.DoubleProperty;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Node;
 7 import javafx.stage.Stage;
 8 import javafx.scene.Scene;
 9 import javafx.scene.control.Button;
 10 import javafx.scene.control.ScrollBar;
 11 import javafx.scene.layout.BorderPane;
 12 import javafx.scene.layout.HBox;
 13 import javafx.scene.layout.Pane;
 14 import javafx.scene.paint.Color;
 15 import javafx.scene.shape.Circle;
 16 import javafx.util.Duration;
 17
 18 public class MultipleBounceBall extends Application {
 19 @Override // Override the start method in the Application class
 20 public void start(Stage primaryStage) {
 21 MultipleBallPane ballPane = new MultipleBallPane();
 22 ballPane.setStyle("-fx-border-color: yellow");
 23
 24 Button btAdd = new Button("+");

create a ball pane
set ball pane border

create buttons

20.7 Case Study: Bouncing Balls 779

 25 Button btSubtract = new Button("-");
 26 HBox hBox = new HBox(10);
 27 hBox.getChildren().addAll(btAdd, btSubtract);
 28 hBox.setAlignment(Pos.CENTER);
 29
 30 // Add or remove a ball
 31 btAdd.setOnAction(e -> ballPane.add());
 32 btSubtract.setOnAction(e -> ballPane.subtract());
 33
 34 // Pause and resume animation
 35 ballPane.setOnMousePressed(e -> ballPane.pause());
 36 ballPane.setOnMouseReleased(e -> ballPane.play());
 37
 38 // Use a scroll bar to control animation speed
 39 ScrollBar sbSpeed = new ScrollBar();
 40 sbSpeed.setMax(20);
 41 sbSpeed.setValue(10);
 42 ballPane.rateProperty().bind(sbSpeed.valueProperty());
 43
 44 BorderPane pane = new BorderPane();
 45 pane.setCenter(ballPane);
 46 pane.setTop(sbSpeed);
 47 pane.setBottom(hBox);
 48
 49 // Create a scene and place the pane in the stage
 50 Scene scene = new Scene(pane, 250, 150);
 51 primaryStage.setTitle("MultipleBounceBall"); // Set the stage title
 52 primaryStage.setScene(scene); // Place the scene in the stage
 53 primaryStage.show(); // Display the stage
 54 }
 55
 56 private class MultipleBallPane extends Pane {
 57 private Timeline animation;
 58
 59 public MultipleBallPane() {
 60 // Create an animation for moving the ball
 61 animation = new Timeline(
 62 new KeyFrame(Duration.millis(50), e -> moveBall()));
 63 animation.setCycleCount(Timeline.INDEFINITE);
 64 animation.play(); // Start animation
 65 }
 66
 67 public void add() {
 68 Color color = new Color(Math.random(),
 69 Math.random(), Math.random(), 0.5);
 70 getChildren().add(new Ball(30, 30, 20, color));
 71 }
 72
 73 public void subtract() {
 74 if (getChildren().size() > 0) {
 75 getChildren().remove(getChildren().size() - 1);
 76 }
 77 }
 78
 79 public void play() {
 80 animation.play();
 81 }
 82
 83 public void pause() {

add buttons to HBox

add a ball
remove a ball

pause animation
resume animation

create a scroll bar

bind animation rate

add a ball to pane

remove a ball

780 Chapter 20 Lists, Stacks, Queues, and Priority Queues

 84 animation.pause();
 85 }
 86
 87 public void increaseSpeed() {
 88 animation.setRate(animation.getRate() + 0.1);
 89 }
 90
 91 public void decreaseSpeed() {
 92 animation.setRate(
 93 animation.getRate() > 0 ? animation.getRate() - 0.1 : 0);
 94 }
 95
 96 public DoubleProperty rateProperty() {
 97 return animation.rateProperty();
 98 }
 99
100 protected void moveBall() {
101 for (Node node: this.getChildren()) {
102 Ball ball = (Ball)node;
103 // Check boundaries
104 if (ball.getCenterX() < ball.getRadius() ||
105 ball.getCenterX() > getWidth() - ball.getRadius()) {
106 ball.dx *= -1; // Change ball move direction
107 }
108 if (ball.getCenterY() < ball.getRadius() ||
109 ball.getCenterY() > getHeight() - ball.getRadius()) {
110 ball.dy *= -1; // Change ball move direction
111 }
112
113 // Adjust ball position
114 ball.setCenterX(ball.dx + ball.getCenterX());
115 ball.setCenterY(ball.dy + ball.getCenterY());
116 }
117 }
118 }
119
120 class Ball extends Circle {
121 private double dx = 1, dy = 1;
122
123 Ball(double x, double y, double radius, Color color) {
124 super(x, y, radius);
125 setFill(color); // Set ball color
126 }
127 }
128 }

The add() method creates a new ball with a random color and adds it to the pane (line
70). The pane stores all the balls in a list. The subtract() method removes the last ball in
the list (line 75).

When the user clicks the + button, a new ball is added to the pane (line 31). When the user
clicks the - button, the last ball in the array list is removed (line 32).

The moveBall() method in the MultipleBallPane class gets every ball in the pane’s
list and adjusts the balls’ positions (lines 114–115).

20.23 What is the return value from invoking pane.getChildre() for a pane?

move all balls

change x direction

change y direction

adjust ball positions

declare dx and dy

create a ball

✓Point✓Check

20.8 Vector and Stack Classes 781

20.24 How do you modify the code in the MutilpleBallApp program to remove the first
ball in the list when the button is clicked?

20.25 How do you modify the code in the MutilpleBallApp program so that each ball
will get a random radius between 10 and 20?

20.8 Vector and Stack Classes
Vector is a subclass of AbstractList, and Stack is a subclass of Vector in the
Java API.

The Java Collections Framework was introduced in Java 2. Several data structures were sup-
ported earlier, among them the Vector and Stack classes. These classes were redesigned
to fit into the Java Collections Framework, but all their old-style methods are retained for
compatibility.

Vector is the same as ArrayList, except that it contains synchronized methods for
accessing and modifying the vector. Synchronized methods can prevent data corruption
when a vector is accessed and modified by two or more threads concurrently. We will dis-
cuss synchronization in Chapter 30, Multithreading and Parallel Programming. For the many
applications that do not require synchronization, using ArrayList is more efficient than
using Vector.

The Vector class extends the AbstractList class. It also has the methods contained in
the original Vector class defined prior to Java 2, as shown in Figure 20.10.

Key
Point

FIGURE 20.10 Starting in Java 2, the Vector class extends AbstractList and also retains all the methods in the original
Vector class.

java.util.Vector <E>

+Vector()

+Vector(c: Collection<? extends E>)

+Vector(initialCapacity: int)

+Vector(initCapacity: int, capacityIncr: int)

+addElement(o: E): void

+capacity(): int

+copyInto(anArray: Object[]): void

+elementAt(index: int): E

+elements(): Enumeration<E>

+ensureCapacity(): void

+firstElement(): E

+insertElementAt(o: E, index: int): void

+lastElement(): E

+removeAllElements(): void

+removeElement(o: Object): boolean

+removeElementAt(index: int): void

+setElementAt(o: E, index: int): void

+setSize(newSize: int): void

+trimToSize(): void

Creates a default empty vector with initial capacity 10.

Creates a vector from an existing collection.

Creates a vector with the specified initial capacity.

Creates a vector with the specified initial capacity and increment.

Appends the element to the end of this vector.

Returns the current capacity of this vector.

Copies the elements in this vector to the array.

Returns the object at the specified index.

Returns an enumeration of this vector.

Increases the capacity of this vector.

Returns the first element in this vector.

Inserts o into this vector at the specified index.

Returns the last element in this vector.

Removes all the elements in this vector.

Removes the first matching element in this vector.

Removes the element at the specified index.

Sets a new element at the specified index.

Sets a new size in this vector.

Trims the capacity of this vector to its size.

java.util.AbstractList<E>

782 Chapter 20 Lists, Stacks, Queues, and Priority Queues

Most of the methods in the Vector class listed in the UML diagram in Figure 20.10 are
similar to the methods in the List interface. These methods were introduced before the
Java Collections Framework. For example, addElement(Object element) is the same
as the add(Object element) method, except that the addElement method is synchro-
nized. Use the ArrayList class if you don’t need synchronization. It works much faster
than Vector.

Note
The elements() method returns an Enumeration. The Enumeration interface

was introduced prior to Java 2 and was superseded by the Iterator interface.

Note
Vector is widely used in Java legacy code because it was the Java resizable array imple-

mentation before Java 2.

In the Java Collections Framework, Stack is implemented as an extension of Vector, as
illustrated in Figure 20.11.

FIGURE 20.11 The Stack class extends Vector to provide a last-in, first-out data
structure.

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E): E

+search(o: Object): int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

The Stack class was introduced prior to Java 2. The methods shown in Figure 20.11 were
used before Java 2. The empty() method is the same as isEmpty(). The peek() method
looks at the element at the top of the stack without removing it. The pop() method removes
the top element from the stack and returns it. The push(Object element) method adds the
specified element to the stack. The search(Object element) method checks whether the
specified element is in the stack.

20.26 How do you create an instance of Vector? How do you add or insert a new element
into a vector? How do you remove an element from a vector? How do you find the
size of a vector?

20.27 How do you create an instance of Stack? How do you add a new element to a
stack? How do you remove an element from a stack? How do you find the size of
a stack?

20.28 Does Listing 20.1, TestCollection.java, compile and run if all the occurrences of
ArrayList are replaced by LinkedList, Vector, or Stack?

✓Point✓Check

20.9 Queues and Priority Queues 783

20.9 Queues and Priority Queues
In a priority queue, the element with the highest priority is removed first.

A queue is a first-in, first-out data structure. Elements are appended to the end of the queue
and are removed from the beginning of the queue. In a priority queue, elements are assigned
priorities. When accessing elements, the element with the highest priority is removed first.
This section introduces queues and priority queues in the Java API.

20.9.1 The Queue Interface
The Queue interface extends java.util.Collection with additional insertion, extraction,
and inspection operations, as shown in Figure 20.12.

Key
Point

queue

priority queue

Queue interface

FIGURE 20.12 The Queue interface extends Collection to provide additional insertion,
extraction, and inspection operations.

«interface»
java.util.Queue<E>

+offer(element: E): boolean

+poll(): E

+remove(): E

+peek(): E

+element(): E

«interface»
java.util.Collection<E>

Inserts an element into the queue.

Retrieves and removes the head of this queue, or null
if this queue is empty.

Retrieves and removes the head of this queue and
throws an exception if this queue is empty.

Retrieves, but does not remove, the head of this queue,
returning null if this queue is empty.

Retrieves, but does not remove, the head of this queue,
throws an exception if this queue is empty.

The offer method is used to add an element to the queue. This method is similar to the
add method in the Collection interface, but the offer method is preferred for queues.
The poll and remove methods are similar, except that poll() returns null if the queue is
empty, whereas remove() throws an exception. The peek and element methods are simi-
lar, except that peek() returns null if the queue is empty, whereas element() throws an
exception.

20.9.2 Deque and LinkedList
The LinkedList class implements the Deque interface, which extends the Queue inter-
face, as shown in Figure 20.13. Therefore, you can use LinkedList to create a queue.
LinkedList is ideal for queue operations because it is efficient for inserting and removing
elements from both ends of a list.

Deque supports element insertion and removal at both ends. The name deque is short for
“double-ended queue” and is usually pronounced “deck.” The Deque interface extends Queue
with additional methods for inserting and removing elements from both ends of the queue. The
methods addFirst(e), removeFirst(), addLast(e), removeLast(), getFirst(),
and getLast() are defined in the Deque interface.

queue operations

784 Chapter 20 Lists, Stacks, Queues, and Priority Queues

Listing 20.7 shows an example of using a queue to store strings. Line 4 creates a queue
using LinkedList. Four strings are added to the queue in lines 5–8. The size() method
defined in the Collection interface returns the number of elements in the queue (line
10). The remove() method retrieves and removes the element at the head of the queue
(line 11).

LISTING 20.7 TestQueue.java
 1 public class TestQueue {
 2 public static void main(String[] args) {
 3 java.util.Queue<String> queue = new java.util.LinkedList<>();
 4 queue.offer("Oklahoma");
 5 queue.offer("Indiana");
 6 queue.offer("Georgia");
 7 queue.offer("Texas");
 8
 9 while (queue.size() > 0)
10 System.out.print(queue.remove() + " ");
11 }
12 }

creates a queue
inserts an element

queue size
remove element

FIGURE 20.13 LinkedList implements List and Deque.

«interface»
java.util.Deque<E>

java.util.LinkedList<E>

«interface»
java.util.Collection<E>

«interface»
java.util.Queue<E>

«interface»
java.util.List<E>

Oklahoma Indiana Georgia Texas

The PriorityQueue class implements a priority queue, as shown in Figure 20.14.
By default, the priority queue orders its elements according to their natural ordering using
Comparable. The element with the least value is assigned the highest priority and thus is
removed from the queue first. If there are several elements with the same highest priority, the
tie is broken arbitrarily. You can also specify an ordering using Comparator in the construc-
tor PriorityQueue(initialCapacity, comparator).

Listing 20.8 shows an example of using a priority queue to store strings. Line 5 creates a pri-
ority queue for strings using its no-arg constructor. This priority queue orders the strings using
their natural order, so the strings are removed from the queue in increasing order. Lines 16–17
create a priority queue using the comparator obtained from Collections.reverseOrder(),
which orders the elements in reverse order, so the strings are removed from the queue in decreas-
ing order.

PriorityQueue class

20.9 Queues and Priority Queues 785

LISTING 20.8 PriorityQueueDemo.java
 1 import java.util.*;
 2
 3 public class PriorityQueueDemo {
 4 public static void main(String[] args) {
 5 PriorityQueue<String> queue1 = new PriorityQueue<>();
 6 queue1.offer("Oklahoma");
 7 queue1.offer("Indiana");
 8 queue1.offer("Georgia");
 9 queue1.offer("Texas");
10
11 System.out.println("Priority queue using Comparable:");
12 while (queue1.size() > 0) {
13 System.out.print(queue1.remove() + " ");
14 }
15
16 PriorityQueue<String> queue2 = new PriorityQueue(
17 4, Collections.reverseOrder());
18 queue2.offer("Oklahoma");
19 queue2.offer("Indiana");
20 queue2.offer("Georgia");
21 queue2.offer("Texas");
22
23 System.out.println("\nPriority queue using Comparator:");
24 while (queue2.size() > 0) {
25 System.out.print(queue2.remove() + " ");
26 }
27 }
28 }

a default queue
inserts an element

a queue with comparator

FIGURE 20.14 The PriorityQueue class implements a priority queue.

java.util.PriorityQueue<E>

+PriorityQueue()

+PriorityQueue(initialCapacity: int)

+PriorityQueue(c: Collection<? extends
 E>)

+PriorityQueue(initialCapacity: int,
 comparator: Comparator<? super E>)

Creates a default priority queue with initial capacity 11.

Creates a default priority queue with the specified initial
 capacity.

Creates a priority queue with the specified collection.

Creates a priority queue with the specified initial
capacity and the comparator.

«interface»
java.util.Queue<E>

Priority queue using Comparable:
Georgia Indiana Oklahoma Texas
Priority queue using Comparator:
Texas Oklahoma Indiana Georgia

20.29 Is java.util.Queue a subinterface of java.util.Collection, java.util.Set,
or java.util.List? Does LinkedList implement Queue? ✓Point✓Check

786 Chapter 20 Lists, Stacks, Queues, and Priority Queues

20.30 How do you create a priority queue for integers? By default, how are elements
ordered in a priority queue? Is the element with the least value assigned the highest
priority in a priority queue?

20.31 How do you create a priority queue that reverses the natural order of the elements?

20.10 Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Stacks and queues have many applications. This section gives an application that uses stacks
to evaluate expressions. You can enter an arithmetic expression from Google to evaluate the
expression, as shown in Figure 20.15.

Key
Point

FIGURE 20.15 You can evaluate an arithmetic expression using a Google search engine.

How does Google evaluate an expression? This section presents a program that evaluates a
compound expression with multiple operators and parentheses (e.g., (15 + 2) * 34 – 2).
For simplicity, assume that the operands are integers and the operators are of four types: +,
-, *, and /.

The problem can be solved using two stacks, named operandStack and operatorStack,
for storing operands and operators, respectively. Operands and operators are pushed into
the stacks before they are processed. When an operator is processed, it is popped from
operatorStack and applied to the first two operands from operandStack (the two oper-
ands are popped from operandStack). The resultant value is pushed back to operandStack.

The algorithm proceeds in two phases:

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators, and the
parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the top of
operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the top of
operatorStack and push the extracted operator to operatorStack.

compound expression

process an operator

20.10 Case Study: Evaluating Expressions 787

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from the top
of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until operatorStack is
empty.

Table 20.1 shows how the algorithm is applied to evaluate the expression (1 + 2) *
4 - 3.

FIGURE 20.16 The program takes an expression as command-line arguments.

Expression Scan Action operandStack operatorStack

(1 + 2)*4 - 3
c

(Phase 1.4 (

(1 + 2)*4 - 3
c

1 Phase 1.1 1 (

(1 + 2)*4 - 3
c

+ Phase 1.2 1 +
(

(1 + 2)*4 - 3
c

2 Phase 1.1 2
1

(

(1 + 2)*4 - 3
c

) Phase 1.5 3

(1 + 2)*4 - 3
c

* Phase 1.3 3 *

(1 + 2)*4 - 3
c

4 Phase 1.1 4
3

*

(1 + 2)*4 - 3
c

- Phase 1.2 12 -

(1 + 2)*4 - 3
c

3 Phase 1.1 3
12

-

(1 + 2)*4 - 3
c

none Phase 2 9

TABLE 20.1 Evaluating an expression

Listing 20.9 gives the program, and Figure 20.16 shows some sample output.

788 Chapter 20 Lists, Stacks, Queues, and Priority Queues

LISTING 20.9 EvaluateExpression.java
 1 import java.util.Stack;
 2
 3 public class EvaluateExpression {
 4 public static void main(String[] args) {
 5 // Check number of arguments passed
 6 if (args.length != 1) {
 7 System.out.println(
 8 "Usage: java EvaluateExpression \"expression\"");
 9 System.exit(1);
 10 }
 11
 12 try {
 13 System.out.println(evaluateExpression(args[0]));
 14 }
 15 catch (Exception ex) {
 16 System.out.println("Wrong expression: " + args[0]);
 17 }
 18 }
 19
 20 /** Evaluate an expression */
 21 public static int evaluateExpression(String expression) {
 22 // Create operandStack to store operands
 23 Stack<Integer> operandStack = new Stack<>();
 24
 25 // Create operatorStack to store operators
 26 Stack<Character> operatorStack = new Stack<>();
 27
 28 // Insert blanks around (,), +, -, /, and *
 29 expression = insertBlanks(expression);
 30
 31 // Extract operands and operators
 32 String[] tokens = expression.split(" ");
 33
 34 // Phase 1: Scan tokens
 35 for (String token: tokens) {
 36 if (token.length() == 0) // Blank space
 37 continue; // Back to the while loop to extract the next token
 38 else if (token.charAt(0) == '+' || token.charAt(0) == '-') {
 39 // Process all +, -, *, / in the top of the operator stack
 40 while (!operatorStack.isEmpty() &&
 41 (operatorStack.peek() == '+' ||
 42 operatorStack.peek() == '-' ||
 43 operatorStack.peek() == '*' ||
 44 operatorStack.peek() == '/')) {
 45 processAnOperator(operandStack, operatorStack);
 46 }
 47
 48 // Push the + or - operator into the operator stack
 49 operatorStack.push(token.charAt(0));
 50 }
 51 else if (token.charAt(0) == '*' || token.charAt(0) == '/') {
 52 // Process all *, / in the top of the operator stack
 53 while (!operatorStack.isEmpty() &&
 54 (operatorStack.peek() == '*' ||
 55 operatorStack.peek() == '/')) {
 56 processAnOperator(operandStack, operatorStack);
 57 }
 58

check usage

evaluate expression

exception

operandStack

operatorStack

prepare for extraction

extract tokens

process tokens

+ or - scanned

* or / scanned

20.10 Case Study: Evaluating Expressions 789

 59 // Push the * or / operator into the operator stack
 60 operatorStack.push(token.charAt(0));
 61 }
 62 else if (token.trim().charAt(0) == '(') {
 63 operatorStack.push('('); // Push '(' to stack
 64 }
 65 else if (token.trim().charAt(0) == ')') {
 66 // Process all the operators in the stack until seeing '('
 67 while (operatorStack.peek() != '(') {
 68 processAnOperator(operandStack, operatorStack);
 69 }
 70
 71 operatorStack.pop(); // Pop the '(' symbol from the stack
 72 }
 73 else { // An operand scanned
 74 // Push an operand to the stack
 75 operandStack.push(new Integer(token));
 76 }
 77 }
 78
 79 // Phase 2: Process all the remaining operators in the stack
 80 while (!operatorStack.isEmpty()) {
 81 processAnOperator(operandStack, operatorStack);
 82 }
 83
 84 // Return the result
 85 return operandStack.pop();
 86 }
 87
 88 /** Process one operator: Take an operator from operatorStack and
 89 * apply it on the operands in the operandStack */
 90 public static void processAnOperator(
 91 Stack<Integer> operandStack, Stack<Character> operatorStack) {
 92 char op = operatorStack.pop();
 93 int op1 = operandStack.pop();
 94 int op2 = operandStack.pop();
 95 if (op == '+')
 96 operandStack.push(op2 + op1);
 97 else if (op == '-')
 98 operandStack.push(op2 - op1);
 99 else if (op == '*')
100 operandStack.push(op2 * op1);
101 else if (op == '/')
102 operandStack.push(op2 / op1);
103 }
104
105 public static String insertBlanks(String s) {
106 String result = "";
107
108 for (int i = 0; i < s.length(); i++) {
109 if (s.charAt(i) == '(' || s.charAt(i) == ')' ||
110 s.charAt(i) == '+' || s.charAt(i) == '-' ||
111 s.charAt(i) == '*' || s.charAt(i) == '/')
112 result += " " + s.charAt(i) + " ";
113 else

114 result += s.charAt(i);
115 }
116
117 return result;
118 }
119 }

(scanned

) scanned

an operand scanned

clear operatorStack

return result

process +

process -

process *

process /

insert blanks

790 Chapter 20 Lists, Stacks, Queues, and Priority Queues

You can use the GenericStack class provided by the book or the java.util.Stack
class defined in the Java API for creating stacks. This example uses the java.util.Stack
class. The program will work if it is replaced by GenericStack.

The program takes an expression as a command-line argument in one string.
The evaluateExpression method creates two stacks, operandStack and

operatorStack (lines 23, 26), and extracts operands, operators, and parentheses delimited
by space (lines 29–32). The insertBlanks method is used to ensure that operands, opera-
tors, and parentheses are separated by at least one blank (line 29).

The program scans each token in the for loop (lines 35–77). If a token is empty, skip it
(line 37). If a token is an operand, push it to operandStack (line 75). If a token is a + or
– operator (line 38), process all the operators from the top of operatorStack, if any (lines
40–46), and push the newly scanned operator into the stack (line 49). If a token is a * or /
operator (line 51), process all the * and / operators from the top of operatorStack, if any
(lines 53–57), and push the newly scanned operator to the stack (line 60). If a token is a (
symbol (line 62), push it into operatorStack. If a token is a) symbol (line 65), process all
the operators from the top of operatorStack until seeing the) symbol (lines 67–69) and
pop the) symbol from the stack.

After all tokens are considered, the program processes the remaining operators in
operatorStack (lines 80–82).

The processAnOperator method (lines 90–103) processes an operator. The method pops
the operator from operatorStack (line 92) and pops two operands from operandStack
(lines 93–94). Depending on the operator, the method performs an operation and pushes the
result of the operation back to operandStack (lines 96, 98, 100, 102).

20.32 Can the EvaluateExpression program evaluate the following expressions "1+2",
"1 + 2", "(1) + 2", "((1)) + 2", and "(1 + 2)"?

20.33 Show the change of the contents in the stacks when evaluating "3 + (4 + 5) *
(3 + 5) + 4 * 5" using the EvaluateExpression program.

20.34 If you enter an expression “4 + 5 5 5”, the program will display 10. How do you
fix this problem?

✓Point✓Check

KEY TERMS

collection 762
comparator 772
convenience abstract class 762
data structure 762

linked list 769
list 762
priority queue 783
queue 762

CHAPTER SUMMARY

1. The Java Collections Framework supports sets, lists, queues, and maps. They are defined
in the interfaces Set, List, Queue, and Map.

2. A list stores an ordered collection of elements.

3. All the concrete classes except PriorityQueue in the Java Collections Framework
implement the Cloneable and Serializable interfaces. Thus, their instances can be
cloned and serialized.

Programming Exercises 791

4. To allow duplicate elements to be stored in a collection, you need to use a list. A list
not only can store duplicate elements but also allows the user to specify where they are
stored. The user can access elements by an index.

5. Two types of lists are supported: ArrayList and LinkedList. ArrayList is a
resizable-array implementation of the List interface. All the methods in ArrayList
are defined in List. LinkedList is a linked-list implementation of the List interface.
In addition to implementing the List interface, this class provides the methods for
retrieving, inserting, and removing elements from both ends of the list.

6. Comparator can be used to compare the objects of a class that doesn’t implement
Comparable.

7. The Vector class extends the AbstractList class. Starting with Java 2, Vector has
been the same as ArrayList, except that the methods for accessing and modifying
the vector are synchronized. The Stack class extends the Vector class and provides
several methods for manipulating the stack.

8. The Queue interface represents a queue. The PriorityQueue class implements Queue
for a priority queue.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 20.2–20.7

*20.1 (Display words in ascending alphabetical order) Write a program that reads
words from a text file and displays all the words (duplicates allowed) in ascend-
ing alphabetical order. The words must start with a letter. The text file is passed
as a command-line argument.

*20.2 (Store numbers in a linked list) Write a program that lets the user enter num-
bers from a graphical user interface and displays them in a text area, as shown in
Figure 20.17a. Use a linked list to store the numbers. Do not store duplicate num-
bers. Add the buttons Sort, Shuffle, and Reverse to sort, shuffle, and reverse the list.

FIGURE 20.17 (a) The numbers are stored in a list and displayed in the text area. (b) The colliding balls are combined.

(a) (b)

www.cs.armstrong.edu/liang/intro10e/quiz.html

792 Chapter 20 Lists, Stacks, Queues, and Priority Queues

*20.3 (Guessing the capitals) Rewrite Programming Exercise 8.37 to store the pairs
of states and capitals so that the questions are displayed randomly.

*20.4 (Sort points in a plane) Write a program that meets the following requirements:

 ■ Define a class named Point with two data fields x and y to represent a
point’s x- and y-coordinates. Implement the Comparable interface for com-
paring the points on x-coordinates. If two points have the same x-coordinates,
compare their y-coordinates.

 ■ Define a class named CompareY that implements Comparator<Point>.
Implement the compare method to compare two points on their y-coordinates.
If two points have the same y-coordinates, compare their x-coordinates.

 ■ Randomly create 100 points and apply the Arrays.sort method to display
the points in increasing order of their x-coordinates and in increasing order
of their y-coordinates, respectively.

***20.5 (Combine colliding bouncing balls) The example in Section 20.7 displays mul-
tiple bouncing balls. Extend the example to detect collisions. Once two balls
collide, remove the later ball that was added to the pane and add its radius to
the other ball, as shown in Figure 20.17b. Use the Suspend button to suspend
the animation and the Resume button to resume the animation. Add a mouse
pressed handler that removes a ball when the mouse is pressed on the ball.

20.6 (Use iterators on linked lists) Write a test program that stores 5 million integers
in a linked list and test the time to traverse the list using an iterator vs. using
the get(index) method.

***20.7 (Game: hangman) Programming Exercise 7.35 presents a console version of the
popular hangman game. Write a GUI program that lets a user play the game. The
user guesses a word by entering one letter at a time, as shown in Figure 20.18.
If the user misses seven times, a hanging man swings. Once a word is finished,
the user can press the Enter key to continue to guess another word.

**20.8 (Game: lottery) Revise Programming Exercise 3.15 to add an additional $2,000
award if two digits from the user input are in the lottery number. (Hint: Sort
the three digits in the lottery number and three digits in the user input into two
lists, and use the Collection’s containsAll method to check whether the
two digits in the user input are in the lottery number.)

Sections 20.8–20.10

***20.9 (Remove the largest ball first) Modify Listing 20.6, MultipleBallApp.java to
assign a random radius between 2 and 20 when a ball is created. When the -
button is clicked, one of largest balls is removed.

20.10 (Perform set operations on priority queues) Create two priority queues,
{"George", "Jim", "John", "Blake", "Kevin", "Michael"} and
{"George", "Katie", "Kevin", "Michelle", "Ryan"}, and find their
union, difference, and intersection.

*20.11 (Match grouping symbols) A Java program contains various pairs of grouping
symbols, such as:

 ■ Parentheses: (and)
 ■ Braces: { and }
 ■ Brackets: [and]

Note that the grouping symbols cannot overlap. For example, (a{b)} is illegal.
Write a program to check whether a Java source-code file has correct pairs of
grouping symbols. Pass the source-code file name as a command-line argument.

Programming Exercises 793

FIGURE 20.18 The program displays a hangman game.

794 Chapter 20 Lists, Stacks, Queues, and Priority Queues

20.12 (Clone PriorityQueue) Define MyPriorityQueue class that extends
PriorityQueue to implement the Cloneable interface and implement the
clone() method to clone a priority queue.

**20.13 (Game: the 24-point card game) The 24-point game is to pick any 4 cards
from 52 cards, as shown in Figure 20.19. Note that the Jokers are excluded.
Each card represents a number. An Ace, King, Queen, and Jack represent 1,
13, 12, and 11, respectively. You can click the Shuffle button to get four new
cards. Enter an expression that uses the four numbers from the four selected
cards. Each number must be used once and only once. You can use the opera-
tors (addition, subtraction, multiplication, and division) and parentheses in the
expression. The expression must evaluate to 24. After entering the expression,
click the Verify button to check whether the numbers in the expression are cur-
rently selected and whether the result of the expression is correct. Display the
verification in a label before the Shuffle button. Assume that images are stored
in files named 1.png, 2.png, . . . , 52.png, in the order of spades, hearts, dia-
monds, and clubs. So, the first 13 images are for spades 1, 2, 3, . . . , and 13.

FIGURE 20.19 The user enters an expression consisting of the numbers in the cards and clicks the Verify button to
check the answer.

1 1 3

2

3

3

1 2 + 3 * 1 2 + 3 *

9

scanned scanned

1 2 + 3 *

scanned

1 2 + 3 *

scanned

1 2 + 3 *

scanned

**20.14 (Postfix notation) Postfix notation is a way of writing expressions without
using parentheses. For example, the expression (1 + 2) * 3 would be
written as 1 2 + 3 *. A postfix expression is evaluated using a stack. Scan a
postfix expression from left to right. A variable or constant is pushed into the
stack. When an operator is encountered, apply the operator with the top two
operands in the stack and replace the two operands with the result. The follow-
ing diagram shows how to evaluate 1 2 + 3 *.

Programming Exercises 795

 Write a program to evaluate postfix expressions. Pass the expression as a
command-line argument in one string.

***20.15 (Game: the 24-point card game) Improve Programming Exercise 20.13
to enable the computer to display the expression if one exists, as shown in
Figure 20.20. Otherwise, report that the expression does not exist. Place the
label for verification result at the bottom of UI. The expression must use all
four cards and evaluates to 24.

FIGURE 20.20 The program can automatically find a solution if one exists.

**20.16 (Convert infix to postfix) Write a method that converts an infix expression into
a postfix expression using the following header:

public static String infixToPostfix(String expression)

For example, the method should convert the infix expression (1 + 2) * 3 to
1 2 + 3 * and 2 * (1 + 3) to 2 1 3 + *.

***20.17 (Game: the 24-point card game) This exercise is a variation of the 24-point
card game described in Programming Exercise 20.13. Write a program to
check whether there is a 24-point solution for the four specified numbers. The
program lets the user enter four values, each between 1 and 13, as shown in
Figure 20.21. The user can then click the Solve button to display the solution or
display “No solution” if none exist.

*20.18 (Directory size) Listing 20.7, DirectorySize.java, gives a recursive method for
finding a directory size. Rewrite this method without using recursion. Your

FIGURE 20.21 The user enters four numbers and the program finds a solution.

796 Chapter 20 Lists, Stacks, Queues, and Priority Queues

program should use a queue to store the subdirectories under a directory. The
algorithm can be described as follows:

long getSize(File directory) {
long size = 0;

 add directory to the queue;

while (queue is not empty) {
 Remove an item from the queue into t;

if (t is a file)
 size += t.length();

else

 add all the files and subdirectories under t into the
 queue;
 }

return size;
}

***20.19 (Game: solution ratio for 24-point game) When you pick four cards from a
deck of 52 cards for the 24-point game introduced in Programming Exercise
20.13, the four cards may not have a 24-point solution. What is the number
of all possible picks of four cards from 52 cards? Among all possible picks,
how many of them have 24-point solutions? What is the success ratio—that is,
(number of picks with solutions)/ (number of all possible picks of four cards)?
Write a program to find these answers.

*20.20 (Directory size) Rewrite Programming Exercise 18.28 using a stack instead of
a queue.

*20.21 (Use Comparator) Write the following generic method using selection sort
and a comparator.

public static <E> void selectionSort(E[] list,
 Comparator<? super E> comparator)

Write a test program that creates an array of 10 GeometricObjects and
invokes this method using the GeometricObjectComparator introduced in
Listing 20.4 to sort the elements. Display the sorted elements. Use the follow-
ing statement to create the array.

GeometricObject[] list = {new Circle(5), new Rectangle(4, 5),
new Circle(5.5), new Rectangle(2.4, 5), new Circle(0.5),
new Rectangle(4, 65), new Circle(4.5), new Rectangle(4.4, 1),
new Circle(6.5), new Rectangle(4, 5)};

*20.22 (Nonrecursive Tower of Hanoi) Implement the moveDisks method in Listing
18.8 using a stack instead of using recursion.

**20.23 (Evaluate expression) Modify Listing 20.9 EvaluateExpression.java to add
operators ^ for exponent and % for modulus. For example, 3 ^ 2 is 9 and 3 % 2
is 1. The ^ operator has the highest precedence and the % operator has the same
precedence as the * and / operators. Your program should prompt the user to
enter an expression. Here is a sample run of the program:

Enter an expression: (5 * 2 ^ 3 + 2 * 3 % 2) * 4
(5 * 2 ^ 3 + 2 * 3 % 2) * 4 = 160

SETS AND MAPS

Objectives
■ To store unordered, nonduplicate elements using a set (§21.2).

■ To explore how and when to use HashSet (§21.2.1), LinkedHashSet
(§21.2.2), or TreeSet (§21.2.3) to store a set of elements.

■ To compare the performance of sets and lists (§21.3).

■ To use sets to develop a program that counts the keywords in a Java
source file (§21.4).

■ To tell the differences between Collection and Map and describe
when and how to use HashMap, LinkedHashMap, or TreeMap to
store values associated with keys (§21.5).

■ To use maps to develop a program that counts the occurrence of the
words in a text (§21.6).

■ To obtain singleton sets, lists, and maps, and unmodifiable sets, lists,
and maps, using the static methods in the Collections class (§21.7).

CHAPTER

21

798 Chapter 21 Sets and Maps

21.1 Introduction
A set is an efficient data structure for storing and processing nonduplicate elements.
A map is like a dictionary that provides a quick lookup to retrieve a value using a key.

The “No-Fly” list is a list, created and maintained by the U.S. government’s Terrorist Screen-
ing Center, of people who are not permitted to board a commercial aircraft for travel in or out
of the United States. Suppose we need to write a program that checks whether a person is on
the No-Fly list. You can use a list to store names in the No-Fly list. However, a more efficient
data structure for this application is a set.

Suppose your program also needs to store detailed information about terrorists in the
No-Fly list. The detailed information such as gender, height, weight, and nationality can be
retrieved using the name as the key. A map is an efficient data structure for such a task.

This chapter introduces sets and maps in the Java Collections Framework.

21.2 Sets
You can create a set using one of its three concrete classes: HashSet,
LinkedHashSet, or TreeSet.

The Set interface extends the Collection interface, as shown in Figure 20.1. It does not
introduce new methods or constants, but it stipulates that an instance of Set contains no
duplicate elements. The concrete classes that implement Set must ensure that no duplicate
elements can be added to the set. That is, no two elements e1 and e2 can be in the set such
that e1.equals(e2) is true.

The AbstractSet class extends AbstractCollection and partially implements Set.
The AbstractSet class provides concrete implementations for the equals method and
the hashCode method. The hash code of a set is the sum of the hash codes of all the ele-
ments in the set. Since the size method and iterator method are not implemented in the
AbstractSet class, AbstractSet is an abstract class.

Three concrete classes of Set are HashSet, LinkedHashSet, and TreeSet, as shown
in Figure 21.1.

21.2.1 HashSet

The HashSet class is a concrete class that implements Set. You can create an empty hash
set using its no-arg constructor or create a hash set from an existing collection. By default,
the initial capacity is 16 and the load factor is 0.75. If you know the size of your set, you can
specify the initial capacity and load factor in the constructor. Otherwise, use the default set-
ting. The load factor is a value between 0.0 and 1.0.

The load factor measures how full the set is allowed to be before its capacity is increased.
When the number of elements exceeds the product of the capacity and load factor, the capacity is
automatically doubled. For example, if the capacity is 16 and load factor is 0.75, the capacity will
be doubled to 32 when the size reaches 12 (16*0.75 = 12). A higher load factor decreases the
space costs but increases the search time. Generally, the default load factor 0.75 is a good trade-
off between time and space costs. We will discuss more on the load factor in Chapter 27, Hashing.

A HashSet can be used to store duplicate-free elements. For efficiency, objects added
to a hash set need to implement the hashCode method in a manner that properly disperses
the hash code. Recall that hashCode is defined in the Object class. The hash codes of two
objects must be the same if the two objects are equal. Two unequal objects may have the
same hash code, but you should implement the hashCode method to avoid too many such
cases. Most of the classes in the Java API implement the hashCode method. For example,
the hashCode in the Integer class returns its int value. The hashCode in the Character
class returns the Unicode of the character. The hashCode in the String class returns
s0 *31(n - 1) + s1 *31(n - 2) + c + sn - 1, where si is s.charAt(i).

Key
Point

why set?

why map?

Key
Point

set

no duplicates

AbstractSet

hash set

load factor

hashCode()

21.2 Sets 799

Listing 21.1 gives a program that creates a hash set to store strings and uses a foreach loop
to traverse the elements in the set.

LISTING 21.1 TestHashSet.java
 1 import java.util.*;
 2
 3 public class TestHashSet {
 4 public static void main(String[] args) {
 5 // Create a hash set
6 Set<String> set = new HashSet<>();
 7
 8 // Add strings to the set
 9 set.add("London");
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");

create a set

add element

FIGURE 21.1 The Java Collections Framework provides three concrete set classes.

java.util.AbstractSet<E>

+HashSet()

+HashSet(c: Collection<? extends E>)

+HashSet(initialCapacity: int)

+HashSet(initialCapacity: int, loadFactor: float)

java.util.TreeSet<E>

+TreeSet()

+TreeSet(c: Collection<? extends E>)

+TreeSet(comparator: Comparator<?

 super E>)

+TreeSet(s: SortedSet<E>)

+first(): E

+last(): E

+headSet(toElement: E): SortedSet<E>

+tailSet(fromElement: E): SortedSet<E>

«interface»
java.util.Set<E>

java.util.HashSet<E>

«interface»
java.util.SortedSet<E>

+pollFirst(): E
+pollLast(): E
+lower(e: E): E
+higher(e: E):E
+floor(e: E): E
+ceiling(e: E): E

«interface»
java.util.NavigableSet<E>

«interface»
java.util.Collection<E>

java.util.LinkedHashSet<E>

+LinkedHashSet()

+LinkedHashSet(c: Collection<? extends E>)

+LinkedHashSet(initialCapacity: int)

+LinkedHashSet(initialCapacity: int, loadFactor: float)

800 Chapter 21 Sets and Maps

14 set.add("New York");
15
16 System.out.println(set);
17
18 // Display the elements in the hash set
19 for (String s: set) {
20 System.out.print(s.toUpperCase() + " ");
21 }
22 }
23 }

traverse elements

[San Francisco, New York, Paris, Beijing, London]
SAN FRANCISCO NEW YORK PARIS BEIJING LONDON

The strings are added to the set (lines 9–14). New York is added to the set more than once, but
only one string is stored, because a set does not allow duplicates.

As shown in the output, the strings are not stored in the order in which they are inserted
into the set. There is no particular order for the elements in a hash set. To impose an order
on them, you need to use the LinkedHashSet class, which is introduced in the next section.

Recall that the Collection interface extends the Iterable interface, so the elements in
a set are iterable. A foreach loop is used to traverse all the elements in the set (lines 19–21).

Since a set is an instance of Collection, all methods defined in Collection can be used
for sets. Listing 21.2 gives an example that applies the methods in the Collection interface
on sets.

LISTING 21.2 TestMethodsInCollection.java
 1 public class TestMethodsInCollection {
 2 public static void main(String[] args) {
 3 // Create set1
 4 java.util.Set<String> set1 = new java.util.HashSet<>();
 5
 6 // Add strings to set1
 7 set1.add("London");
 8 set1.add("Paris");
 9 set1.add("New York");
10 set1.add("San Francisco");
11 set1.add("Beijing");
12
13 System.out.println("set1 is " + set1);
14 System.out.println(set1.size() + " elements in set1");
15
16 // Delete a string from set1
17 set1.remove("London");
18 System.out.println("\nset1 is " + set1);
19 System.out.println(set1.size() + " elements in set1");
20
21 // Create set2
22 java.util.Set<String> set2 = new java.util.HashSet<>();
23
24 // Add strings to set2
25 set2.add("London");
26 set2.add("Shanghai");
27 set2.add("Paris");
28 System.out.println("\nset2 is " + set2);
29 System.out.println(set2.size() + " elements in set2");

create a set

add element

get size

remove element

create a set

add element

21.2 Sets 801

30
31 System.out.println("\nIs Taipei in set2? "
32 + set2.contains("Taipei"));
33
34 set1.addAll(set2);
35 System.out.println("\nAfter adding set2 to set1, set1 is "
36 + set1);
37
38 set1.removeAll(set2);
39 System.out.println("After removing set2 from set1, set1 is "
40 + set1);
41
42 set1.retainAll(set2);
43 System.out.println("After removing common elements in set2 "
44 + "from set1, set1 is " + set1);
45 }
46 }

contains element?

addAll

removeAll

retainAll

set1 is [San Francisco, New York, Paris, Beijing, London]
5 elements in set1

set1 is [San Francisco, New York, Paris, Beijing]
4 elements in set1

set2 is [Shanghai, Paris, London]
3 elements in set2

Is Taipei in set2? false

After adding set2 to set1, set1 is
 [San Francisco, New York, Shanghai, Paris, Beijing, London]

After removing set2 from set1, set1 is
 [San Francisco, New York, Beijing]

After removing common elements in set2 from set1, set1 is []

The program creates two sets (lines 4, 22). The size() method returns the number of the
elements in a set (line 14). Line 17

set1.remove("London");

removes London from set1.
The contains method (line 32) checks whether an element is in the set.
Line 34

set1.addAll(set2);

adds set2 to set1. Therefore, set1 becomes [San Francisco, New York, Shanghai,
Paris, Beijing, London].

Line 38

set1.removeAll(set2);

removes set2 from set1. Thus, set1 becomes [San Francisco, New York, Beijing].
Line 42

set1.retainAll(set2);

802 Chapter 21 Sets and Maps

retains the common elements in set1. Since set1 and set2 have no common elements,
set1 becomes empty.

21.2.2 LinkedHashSet

LinkedHashSet extends HashSet with a linked-list implementation that supports an order-
ing of the elements in the set. The elements in a HashSet are not ordered, but the elements
in a LinkedHashSet can be retrieved in the order in which they were inserted into the set. A
LinkedHashSet can be created by using one of its four constructors, as shown in Figure 21.1.
These constructors are similar to the constructors for HashSet.

Listing 21.3 gives a test program for LinkedHashSet. The program simply replaces
HashSet by LinkedHashSet in Listing 21.1.

LISTING 21.3 TestLinkedHashSet.java
 1 import java.util.*;
 2
 3 public class TestLinkedHashSet {
 4 public static void main(String[] args) {
 5 // Create a hash set
 6 Set<String> set = new LinkedHashSet<>();
 7
 8 // Add strings to the set
 9 set.add("London");
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");
14 set.add("New York");
15
16 System.out.println(set);
17
18 // Display the elements in the hash set
19 for (Object element: set)
20 System.out.print(element.toLowerCase() + " ");
21 }
22 }

linked hash set

create linked hash set

add element

display elements

[London, Paris, New York, San Francisco, Beijing]
london paris new york san francisco beijing

A LinkedHashSet is created in line 6. As shown in the output, the strings are stored in the order
in which they are inserted. Since LinkedHashSet is a set, it does not store duplicate elements.

The LinkedHashSet maintains the order in which the elements are inserted. To impose a
different order (e.g., increasing or decreasing order), you can use the TreeSet class, which is
introduced in the next section.

Tip
If you don’t need to maintain the order in which the elements are inserted, use HashSet,

which is more efficient than LinkedHashSet.

21.2.3 TreeSet

SortedSet is a subinterface of Set, which guarantees that the elements in the set are sorted.
Additionally, it provides the methods first() and last() for returning the first and last
elements in the set, and headSet(toElement) and tailSet(fromElement) for returning

21.2 Sets 803

a portion of the set whose elements are less than toElement and greater than or equal to
fromElement, respectively.

NavigableSet extends SortedSet to provide navigation methods lower(e),
floor(e), ceiling(e), and higher(e) that return elements respectively less than, less
than or equal, greater than or equal, and greater than a given element and return null if there
is no such element. The pollFirst() and pollLast() methods remove and return the first
and last element in the tree set, respectively.

TreeSet implements the SortedSet interface. To create a TreeSet, use a constructor,
as shown in Figure 21.1. You can add objects into a tree set as long as they can be compared
with each other.

As discussed in Section 20.5, the elements can be compared in two ways: using the
Comparable interface or the Comparator interface.

Listing 21.4 gives an example of ordering elements using the Comparable interface. The
preceding example in Listing 21.3 displays all the strings in their insertion order. This example
rewrites the preceding example to display the strings in alphabetical order using the TreeSet class.

LISTING 21.4 TestTreeSet.java
 1 import java.util.*;
 2
 3 public class TestTreeSet {
 4 public static void main(String[] args) {
 5 // Create a hash set
 6 Set<String> set = new HashSet<>();
 7
 8 // Add strings to the set
 9 set.add("London");
10 set.add("Paris");
11 set.add("New York");
12 set.add("San Francisco");
13 set.add("Beijing");
14 set.add("New York");
15
16 TreeSet<String> treeSet = new TreeSet<>(set);
17 System.out.println("Sorted tree set: " + treeSet);
18
19 // Use the methods in SortedSet interface
20 System.out.println("first(): " + treeSet.first());
21 System.out.println("last(): " + treeSet.last());
22 System.out.println("headSet(\"New York\"): " +
23 treeSet.headSet("New York"));
24 System.out.println("tailSet(\"New York\"): " +
25 treeSet.tailSet("New York"));
26
27 // Use the methods in NavigableSet interface
28 System.out.println("lower(\"P\"): " + treeSet.lower("P"));
29 System.out.println("higher(\"P\"): " + treeSet.higher("P"));
30 System.out.println("floor(\"P\"): " + treeSet.floor("P"));
31 System.out.println("ceiling(\"P\"): " + treeSet.ceiling("P"));
32 System.out.println("pollFirst(): " + treeSet.pollFirst());
33 System.out.println("pollLast(): " + treeSet.pollLast());
34 System.out.println("New tree set: " + treeSet);
35 }
36 }

tree set

create hash set

create tree set

display elements

Sorted tree set: [Beijing, London, New York, Paris, San Francisco]
first(): Beijing
last(): San Francisco

804 Chapter 21 Sets and Maps

The example creates a hash set filled with strings, then creates a tree set for the same strings. The
strings are sorted in the tree set using the compareTo method in the Comparable interface.

The elements in the set are sorted once you create a TreeSet object from a HashSet
object using new TreeSet<String>(set) (line 16). You may rewrite the program to
create an instance of TreeSet using its no-arg constructor, and add the strings into the
TreeSet object.

treeSet.first() returns the first element in treeSet (line 20), and treeSet.last()
returns the last element in treeSet (line 21). treeSet.headSet("New York") returns the
elements in treeSet before New York (lines 22–23). treeSet.tailSet("New York")
returns the elements in treeSet after New York, including New York (lines 24–25).

treeSet.lower("P") returns the largest element less than P in treeSet (line 28).
treeSet.higher("P") returns the smallest element greater than P in treeSet (line 29).
treeSet.floor("P") returns the largest element less than or equal to P in treeSet
(line 30). treeSet.ceiling("P") returns the smallest element greater than or equal to P
in treeSet (line 31). treeSet.pollFirst() removes the first element in treeSet and
returns the removed element (line 32). treeSet.pollLast() removes the last element in
treeSet and returns the removed element (line 33).

Note
All the concrete classes in Java Collections Framework (see Figure 20.1) have at least

two constructors. One is the no-arg constructor that constructs an empty collection.

The other constructs instances from a collection. Thus the TreeSet class has the con-

structor TreeSet(Collection c) for constructing a TreeSet from a collection c.

In this example, new TreeSet<>(set) creates an instance of TreeSet from the

collection set.

Tip
If you don’t need to maintain a sorted set when updating a set, you should use a hash

set, because it takes less time to insert and remove elements in a hash set. When you

need a sorted set, you can create a tree set from the hash set.

If you create a TreeSet using its no-arg constructor, the compareTo method is used to com-
pare the elements in the set, assuming that the class of the elements implements the Comparable
interface. To use a comparator, you have to use the constructor TreeSet(Comparator
comparator) to create a sorted set that uses the compare method in the comparator to order
the elements in the set.

Listing 21.5 gives a program that demonstrates how to sort elements in a tree set using the
Comparator interface.

LISTING 21.5 TestTreeSetWithComparator.java
 1 import java.util.*;
 2

headSet("New York"): [Beijing, London]
tailSet("New York"): [New York, Paris, San Francisco]
lower("P"): New York
higher("P"): Paris
floor("P"): New York
ceiling("P"): Paris
pollFirst(): Beijing
pollLast(): San Francisco
New tree set: [London, New York, Paris]

21.2 Sets 805

 3 public class TestTreeSetWithComparator {
 4 public static void main(String[] args) {
 5 // Create a tree set for geometric objects using a comparator
 6 Set<GeometricObject> set =
 7 new TreeSet<>(new GeometricObjectComparator());
 8 set.add(new Rectangle(4, 5));
 9 set.add(new Circle(40));
10 set.add(new Circle(40));
11 set.add(new Rectangle(4, 1));
12
13 // Display geometric objects in the tree set
14 System.out.println("A sorted set of geometric objects");
15 for (GeometricObject element: set)
16 System.out.println("area = " + element.getArea());
17 }
18 }

tree set

display elements

A sorted set of geometric objects
area = 4.0
area = 20.0
area = 5021.548245743669

The GeometricObjectComparator class is defined in Listing 20.4. The program creates
a tree set of geometric objects using the GeometricObjectComparator for comparing the
elements in the set (lines 6–7).

The Circle and Rectangle classes were defined in Section 13.2, Abstract Classes. They
are all subclasses of GeometricObject. They are added to the set (lines 8–11).

Two circles of the same radius are added to the tree set (lines 9–10), but only one is stored,
because the two circles are equal and the set does not allow duplicates.

21.1 How do you create an instance of Set? How do you insert a new element in a set?
How do you remove an element from a set? How do you find the size of a set?

21.2 If two objects o1 and o2 are equal, what is o1.equals(o2) and o1.hashCode()
== o2.hashCode()?

21.3 What are the differences between HashSet, LinkedHashSet, and TreeSet?

21.4 How do you traverse the elements in a set?

21.5 How do you sort the elements in a set using the compareTo method in the
Comparable interface? How do you sort the elements in a set using the Comparator
interface? What would happen if you added an element that could not be compared
with the existing elements in a tree set?

21.6 Suppose that set1 is a set that contains the strings red, yellow, and green, and
that set2 is another set that contains the strings red, yellow, and blue. Answer the
following questions:

■ What are in set1 and set2 after executing set1.addAll(set2)?

■ What are in set1 and set2 after executing set1.add(set2)?

■ What are in set1 and set2 after executing set1.removeAll(set2)?

■ What are in set1 and set2 after executing set1.remove(set2)?

■ What are in set1 and set2 after executing set1.retainAll(set2)?

■ What is in set1 after executing set1.clear()?

✓Point✓Check

806 Chapter 21 Sets and Maps

21.7 Show the output of the following code:

import java.util.*;

public class Test {
public static void main(String[] args) {

 LinkedHashSet<String> set1 = new LinkedHashSet<>();
 set1.add("New York");
 LinkedHashSet<String> set2 = set1;
 LinkedHashSet<String> set3 =
 (LinkedHashSet<String>)(set1.clone());
 set1.add("Atlanta");
 System.out.println("set1 is " + set1);
 System.out.println("set2 is " + set2);
 System.out.println("set3 is " + set3);
 }
}

21.8 Show the output of the following code:

import java.util.*;
import java.io.*;

public class Test {
public static void main(String[] args) throws Exception {

 ObjectOutputStream output = new ObjectOutputStream(
new FileOutputStream("c:\\test.dat"));

 LinkedHashSet<String> set1 = new LinkedHashSet<>();
 set1.add("New York");
 LinkedHashSet<String> set2 =
 (LinkedHashSet<String>)set1.clone();
 set1.add("Atlanta");
 output.writeObject(set1);
 output.writeObject(set2);
 output.close();

 ObjectInputStream input = new ObjectInputStream(
new FileInputStream("c:\\test.dat"));

 set1 = (LinkedHashSet<String>)input.readObject();
 set2 = (LinkedHashSet<String>)input.readObject();
 System.out.println(set1);
 System.out.println(set2);
 output.close();
 }
}

21.9 What will the output be if lines 6–7 in Listing 21.5 is replaced by the following
code:

Set<GeometricObject> set = new HashSet<>();

21.3 Comparing the Performance of Sets and Lists
Sets are more efficient than lists for storing nonduplicate elements. Lists are useful for
accessing elements through the index.

The elements in a list can be accessed through the index. However, sets do not support index-
ing, because the elements in a set are unordered. To traverse all elements in a set, use a foreach
loop. We now conduct an interesting experiment to test the performance of sets and lists.
Listing 21.6 gives a program that shows the execution time of (1) testing whether an element

Key
Point

21.3 Comparing the Performance of Sets and Lists 807

is in a hash set, linked hash set, tree set, array list, and linked list, and (2) removing elements
from a hash set, linked hash set, tree set, array list, and linked list.

LISTING 21.6 SetListPerformanceTest.java
 1 import java.util.*;
 2
 3 public class SetListPerformanceTest {
 4 static final int N = 50000;
 5
 6 public static void main(String[] args) {
 7 // Add numbers 0, 1, 2, ..., N - 1 to the array list
 8 List<Integer> list = new ArrayList<>();
 9 for (int i = 0; i < N; i++)
10 list.add(i);
11 Collections.shuffle(list); // Shuffle the array list
12
13 // Create a hash set, and test its performance
14 Collection<Integer> set1 = new HashSet<>(list);
15 System.out.println("Member test time for hash set is " +
16 getTestTime(set1) + " milliseconds");
17 System.out.println("Remove element time for hash set is " +
18 getRemoveTime(set1) + " milliseconds");
19
20 // Create a linked hash set, and test its performance
21 Collection<Integer> set2 = new LinkedHashSet<>(list);
22 System.out.println("Member test time for linked hash set is " +
23 getTestTime(set2) + " milliseconds");
24 System.out.println("Remove element time for linked hash set is "
25 + getRemoveTime(set2) + " milliseconds");
26
27 // Create a tree set, and test its performance
28 Collection<Integer> set3 = new TreeSet<>(list);
29 System.out.println("Member test time for tree set is " +
30 getTestTime(set3) + " milliseconds");
31 System.out.println("Remove element time for tree set is " +
32 getRemoveTime(set3) + " milliseconds");
33
34 // Create an array list, and test its performance
35 Collection<Integer> list1 = new ArrayList<>(list);
36 System.out.println("Member test time for array list is " +
37 getTestTime(list1) + " milliseconds");
38 System.out.println("Remove element time for array list is " +
39 getRemoveTime(list1) + " milliseconds");
40
41 // Create a linked list, and test its performance
42 Collection<Integer> list2 = new LinkedList<>(list);
43 System.out.println("Member test time for linked list is " +
44 getTestTime(list2) + " milliseconds");
45 System.out.println("Remove element time for linked list is " +
46 getRemoveTime(list2) + " milliseconds");
47 }
48
49 public static long getTestTime(Collection<Integer> c) {
50 long startTime = System.currentTimeMillis();
51
52 // Test if a number is in the collection
53 for (int i = 0; i < N; i++)
54 c.contains((int)(Math.random() * 2 * N));
55
56 return System.currentTimeMillis() - startTime;

create test data

shuffle

a hash set

a linked hash set

a tree set

an array list

a linked list

start time

test membership

return execution time

808 Chapter 21 Sets and Maps

57 }
58
59 public static long getRemoveTime(Collection<Integer> c) {
60 long startTime = System.currentTimeMillis();
61
62 for (int i = 0; i < N; i++)
63 c.remove(i);
64
65 return System.currentTimeMillis() - startTime;
66 }
67 }

remove from container

return execution time

Member test time for hash set is 20 milliseconds
Remove element time for hash set is 27 milliseconds
Member test time for linked hash set is 27 milliseconds
Remove element time for linked hash set is 26 milliseconds
Member test time for tree set is 47 milliseconds
Remove element time for tree set is 34 milliseconds
Member test time for array list is 39802 milliseconds
Remove element time for array list is 16196 milliseconds
Member test time for linked list is 52197 milliseconds
Remove element time for linked list is 14870 milliseconds

The program creates a list for numbers from 0 to N-1 (for N = 50000) (lines 8–10) and shuf-
fles the list (line 11). From this list, the program creates a hash set (line 14), a linked hash set
(line 21), a tree set (line 28), an array list (line 35), and a linked list (line 42). The program
obtains the execution time for testing whether a number is in the hash set (line 16), linked hash
set (line 23), tree set (line 30), array list (line 37), and linked list (line 44), and obtains the
execution time for removing the elements from the hash set (line 18), linked hash set (line 25),
tree set (line 32), array list (line 39), and linked list (line 46).

The getTestTime method invokes the contains method to test whether a number is
in the container (line 54) and the getRemoveTime method invokes the remove method to
remove an element from the container (line 63).

As these runtimes illustrate, sets are much more efficient than lists for testing whether
an element is in a set or a list. Therefore, the No-Fly list should be implemented using a set
instead of a list, because it is much faster to test whether an element is in a set than in a list.

You may wonder why sets are more efficient than lists. The questions will be answered in
Chapters 24 and 27 when we introduce the implementations of lists and sets.

21.10 Suppose you need to write a program that stores unordered non-duplicate elements,
what data structure should you use?

21.11 Suppose you need to write a program that stores non-duplicate elements in the order
of insertion, what data structure should you use?

21.12 Suppose you need to write a program that stores non-duplicate elements in increasing
order of the element values, what data structure should you use?

21.13 Suppose you need to write a program that stores a fixed number of the elements (pos-
sibly duplicates), what data structure should you use?

21.14 Suppose you need to write a program that stores the elements in a list with frequent opera-
tions to add and insert elements at the end of the list, what data structure should you use?

21.15 Suppose you need to write a program that stores the elements in a list with frequent
operations to add and insert elements at the beginning of the list, what data structure
should you use?

sets are better

✓Point✓Check

21.4 Case Study: Counting Keywords 809

21.4 Case Study: Counting Keywords
This section presents an application that counts the number of the keywords in a Java
source file.

For each word in a Java source file, we need to determine whether the word is a keyword. To
handle this efficiently, store all the keywords in a HashSet and use the contains method to
test if a word is in the keyword set. Listing 21.7 gives this program.

LISTING 21.7 CountKeywords.java
 1 import java.util.*;
 2 import java.io.*;
 3
 4 public class CountKeywords {
 5 public static void main(String[] args) throws Exception {
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter a Java source file: ");
 8 String filename = input.nextLine();
 9
10 File file = new File(filename);
11 if (file.exists()) {
12 System.out.println("The number of keywords in " + filename
13 + " is " + countKeywords(file));
14 }
15 else {
16 System.out.println("File " + filename + " does not exist");
17 }
18 }
19
20 public static int countKeywords(File file) throws Exception {
21 // Array of all Java keywords + true, false and null
22 String[] keywordString = {"abstract", "assert", "boolean",
23 "break", "byte", "case", "catch", "char", "class", "const",
24 "continue", "default", "do", "double", "else", "enum",
25 "extends", "for", "final", "finally", "float", "goto",
26 "if", "implements", "import", "instanceof", "int",
27 "interface", "long", "native", "new", "package", "private",
28 "protected", "public", "return", "short", "static",
29 "strictfp", "super", "switch", "synchronized", "this",
30 "throw", "throws", "transient", "try", "void", "volatile",
31 "while", "true", "false", "null"};
32
33 Set<String> keywordSet =
34 new HashSet<>(Arrays.asList(keywordString));
35 int count = 0;
36
37 Scanner input = new Scanner(file);
38
39 while (input.hasNext()) {
40 String word = input.next();
41 if (keywordSet.contains(word))
42 count++;
43 }
44
45 return count;
46 }
47 }

Key
Point

enter a filename

file exists?

count keywords

keywords

keyword set

is a keyword?

810 Chapter 21 Sets and Maps

FIGURE 21.2 The entries consisting of key/value pairs are stored in a map.

Corresponding
element value

Entry

Search key

A map

Corresponding
value

Entry

Search key

(b)(a)

111-34-3434 John

132-56-6290 Peter

Enter a Java source file: c:\TTT.java
File c:\TTT.java does not exist

Enter a Java source file: c:\Welcome.java
The number of keywords in c:\Welcome.java is 5

The program prompts the user to enter a Java source filename (line 7) and reads the filename
(line 8). If the file exists, the countKeywords method is invoked to count the keywords in
the file (line 13).

The countKeywords method creates an array of strings for the keywords (lines 22–31)
and creates a hash set from this array (lines 33–34). It then reads each word from the file and
tests if the word is in the set (line 41). If so, the program increases the count by 1 (line 42).

You may rewrite the program to use a LinkedHashSet, TreeSet, ArrayList, or
LinkedList to store the keywords. However, using a HashSet is the most efficient for this
program.

21.16 Will the CountKeywords program work if lines 33–34 are changed to

Set<String> keywordSet =
new LinkedHashSet<>(Arrays.asList(keywordString));

21.17 Will the CountKeywords program work if lines 33–34 are changed to

List<String> keywordSet =
new ArrayList<>(Arrays.asList(keywordString));

21.5 Maps
You can create a map using one of its three concrete classes: HashMap,
LinkedHashMap, or TreeMap.

A map is a container object that stores a collection of key/value pairs. It enables fast retrieval,
deletion, and updating of the pair through the key. A map stores the values along with the keys.
The keys are like indexes. In List, the indexes are integers. In Map, the keys can be any objects.
A map cannot contain duplicate keys. Each key maps to one value. A key and its correspond-
ing value form an entry stored in a map, as shown in Figure 21.2a. Figure 21.2b shows a map
in which each entry consists of a Social Security number as the key and a name as the value.

✓Point✓Check

Key
Point

map

21.5 Maps 811

There are three types of maps: HashMap, LinkedHashMap, and TreeMap. The com-
mon features of these maps are defined in the Map interface. Their relationship is shown in
Figure 21.3.

FIGURE 21.3 A map stores key/value pairs.

SortedMap

HashMap LinkedHashMap

TreeMap

Interfaces Abstract Classes Concrete Classes

Map

NavigableMap

AbstractMap

FIGURE 21.4 The Map interface maps keys to values.

+clear(): void Removes all entries from this map.
+containsKey(key: Object): boolean

+containsValue(value: Object): boolean

+isEmpty(): boolean
+keySet(): Set<K>
+put(key: K, value: V): V
+putAll(m: Map<? extends K,? extends
 V>): void

+get(key: Object): V
+entrySet(): Set<Map.Entry<K,V>>

Returns true if this map contains an entry for the
 specified key.

Returns true if this map maps one or more keys to the
 specified value.
Returns a set consisting of the entries in this map.
Returns the value for the specified key in this map.
Returns true if this map contains no entries.
Returns a set consisting of the keys in this map.
Puts an entry into this map.

Removes the entries for the specified key.
Returns the number of entries in this map.
Returns a collection consisting of the values in this map.

Adds all the entries from m to this map.

+remove(key: Object): V
+size(): int
+values(): Collection<V>

«interface»
java.util.Map<K,V>

The Map interface provides the methods for querying, updating, and obtaining a collection
of values and a set of keys, as shown in Figure 21.4.

The update methods include clear, put, putAll, and remove. The clear() method
removes all entries from the map. The put(K key, V value) method adds an entry for the
specified key and value in the map. If the map formerly contained an entry for this key, the
old value is replaced by the new value and the old value associated with the key is returned.
The putAll(Map m) method adds all entries in m to this map. The remove(Object key)
method removes the entry for the specified key from the map.

The query methods include containsKey, containsValue, isEmpty, and size. The
containsKey(Object key) method checks whether the map contains an entry for the
specified key. The containsValue(Object value) method checks whether the map con-
tains an entry for this value. The isEmpty() method checks whether the map contains any
entries. The size() method returns the number of entries in the map.

update methods

query methods

812 Chapter 21 Sets and Maps

You can obtain a set of the keys in the map using the keySet() method, and a collection
of the values in the map using the values() method. The entrySet() method returns a set
of entries. The entries are instances of the Map.Entry<K, V> interface, where Entry is an
inner interface for the Map interface, as shown in Figure 21.5. Each entry in the set is a key/
value pair in the underlying map.

keySet()

values()

entrySet()

FIGURE 21.5 The Map.Entry interface operates on an entry in the map.

+getKey(): K

+getValue(): V

+setValue(value: V): void

Returns the key from this entry.

Returns the value from this entry.

Replaces the value in this entry with a new value.

«interface»
java.util.Map.Entry<K,V>

FIGURE 21.6 The Java Collections Framework provides three concrete map classes.

java.util.AbstractMap<K,V>

java.util.HashMap<K,V>

java.util.LinkedHashMap<K,V>

+LinkedHashMap()

+LinkedHashMap(m: Map<? extends K,? extends V>)

+LinkedHashMap(initialCapacity: int,
loadFactor: float, accessOrder: boolean)

java.util.TreeMap<K,V>

+TreeMap()
+TreeMap(m: Map<? extends K,? extends V>)
+TreeMap(c: Comparator<? super K>)

«interface»
java.util.SortedMap<K,V>

+firstKey(): K

+lastKey(): K

+comparator(): Comparator<? super K>)

+headMap(toKey: K): SortedMap<K,V>

+tailMap(fromKey: K): SortedMap<K,V>

«interface»
java.util.Map<K, V>

«interface»
java.util.NavigableMap<K, V>

+floorKey(key: K): K
+ceilingKey(key: K): K
+lowerKey(key: K): K
+higherKey(key: K): K
+pollFirstEntry(): Map.EntrySet<K, V>
+pollLastEntry(): Map.EntrySet<K, V>

+HashMap()

+HashMap(m: Map<? extends K, ? extends V>)

+HashMap(initialCapacity: int,loadFactor: float)

The AbstractMap class is a convenience abstract class that implements all the methods in
the Map interface except the entrySet() method.

The HashMap, LinkedHashMap, and TreeMap classes are three concrete implementations
of the Map interface, as shown in Figure 21.6.

AbstractMap

concrete implementations

21.5 Maps 813

The HashMap class is efficient for locating a value, inserting an entry, and deleting an entry.
LinkedHashMap extends HashMap with a linked-list implementation that supports an

ordering of the entries in the map. The entries in a HashMap are not ordered, but the entries
in a LinkedHashMap can be retrieved either in the order in which they were inserted into the
map (known as the insertion order) or in the order in which they were last accessed, from
least recently to most recently accessed (access order). The no-arg constructor constructs a
LinkedHashMap with the insertion order. To construct a LinkedHashMap with the access
order, use LinkedHashMap(initialCapacity, loadFactor, true).

The TreeMap class is efficient for traversing the keys in a sorted order. The keys can
be sorted using the Comparable interface or the Comparator interface. If you create a
TreeMap using its no-arg constructor, the compareTo method in the Comparable interface
is used to compare the keys in the map, assuming that the class for the keys implements the
Comparable interface. To use a comparator, you have to use the TreeMap(Comparator
comparator) constructor to create a sorted map that uses the compare method in the com-
parator to order the entries in the map based on the keys.

SortedMap is a subinterface of Map, which guarantees that the entries in the map are
sorted. Additionally, it provides the methods firstKey() and lastKey() for returning the
first and last keys in the map, and headMap(toKey) and tailMap(fromKey) for returning
a portion of the map whose keys are less than toKey and greater than or equal to fromKey,
respectively.

NavigableMap extends SortedMap to provide the navigation methods lowerKey(key),
floorKey(key), ceilingKey(key), and higherKey(key) that return keys respectively
less than, less than or equal, greater than or equal, and greater than a given key and return
null if there is no such key. The pollFirstEntry() and pollLastEntry() methods
remove and return the first and last entry in the tree map, respectively.

Note
Prior to Java 2, java.util.Hashtable was used for mapping keys with values.

Hashtable was redesigned to fit into the Java Collections Framework with all its methods

retained for compatibility. Hashtable implements the Map interface and is used in the

same way as HashMap, except that the update methods in Hashtable are synchronized.

Listing 21.8 gives an example that creates a hash map, a linked hash map, and a tree map for
mapping students to ages. The program first creates a hash map with the student’s name as
its key and the age as its value. The program then creates a tree map from the hash map and
displays the entries in ascending order of the keys. Finally, the program creates a linked hash
map, adds the same entries to the map, and displays the entries.

LISTING 21.8 TestMap.java
 1 import java.util.*;
 2
 3 public class TestMap {
 4 public static void main(String[] args) {
 5 // Create a HashMap
 6 Map<String, Integer> hashMap = new HashMap<>();
 7 hashMap.put("Smith", 30);
 8 hashMap.put("Anderson", 31);
 9 hashMap.put("Lewis", 29);
10 hashMap.put("Cook", 29);
11
12 System.out.println("Display entries in HashMap");
13 System.out.println(hashMap + "\n");
14
15 // Create a TreeMap from the preceding HashMap
16 Map<String, Integer> treeMap =

HashMap

LinkedHashMap

insertion order

access order

TreeMap

SortedMap

NavigableMap

Hashtable

hash map

linked hash map

tree map

create map
add entry

tree map

814 Chapter 21 Sets and Maps

17 new TreeMap<>(hashMap);
18 System.out.println("Display entries in ascending order of key");
19 System.out.println(treeMap);
20
21 // Create a LinkedHashMap
22 Map<String, Integer> linkedHashMap =
23 new LinkedHashMap<>(16, 0.75f, true);
24 linkedHashMap.put("Smith", 30);
25 linkedHashMap.put("Anderson", 31);
26 linkedHashMap.put("Lewis", 29);
27 linkedHashMap.put("Cook", 29);
28
29 // Display the age for Lewis
30 System.out.println("\nThe age for " + "Lewis is " +
31 linkedHashMap.get("Lewis"));
32
33 System.out.println("Display entries in LinkedHashMap");
34 System.out.println(linkedHashMap);
35 }
36 }

linked hash map

Display entries in HashMap
{Cook=29, Smith=30, Lewis=29, Anderson=31}

Display entries in ascending order of key
{Anderson=31, Cook=29, Lewis=29, Smith=30}

The age for Lewis is 29
Display entries in LinkedHashMap
{Smith=30, Anderson=31, Cook=29, Lewis=29}

As shown in the output, the entries in the HashMap are in random order. The entries in the
TreeMap are in increasing order of the keys. The entries in the LinkedHashMap are in the
order of their access, from least recently accessed to most recently.

All the concrete classes that implement the Map interface have at least two constructors.
One is the no-arg constructor that constructs an empty map, and the other constructs a map
from an instance of Map. Thus, new TreeMap<String, Integer>(hashMap) (lines 16–17)
constructs a tree map from a hash map.

You can create an insertion-ordered or access-ordered linked hash map. An access-ordered
linked hash map is created in lines 22–21. The most recently accessed entry is placed at the
end of the map. The entry with the key Lewis is last accessed in line 31, so it is displayed last
in line 34.

Tip
If you don’t need to maintain an order in a map when updating it, use a HashMap.

When you need to maintain the insertion order or access order in the map, use a

LinkedHashMap. When you need the map to be sorted on keys, use a TreeMap.

21.18 How do you create an instance of Map? How do you add an entry to a map consisting
of a key and a value? How do you remove an entry from a map? How do you find the
size of a map? How do you traverse entries in a map?

21.19 Describe and compare HashMap, LinkedHashMap, and TreeMap.

✓Point✓Check

21.6 Case Study: Occurrences of Words 815

21.20 Show the output of the following code:

public class Test {
public static void main(String[] args) {

 Map<String, String> map = new LinkedHashMap<>();
 map.put("123", "John Smith");
 map.put("111", "George Smith");
 map.put("123", "Steve Yao");
 map.put("222", "Steve Yao");
 System.out.println("(1) " + map);
 System.out.println("(2) " + new TreeMap<String, String>(map));
 }
}

21.6 Case Study: Occurrences of Words
This case study writes a program that counts the occurrences of words in a text and
displays the words and their occurrences in alphabetical order of the words.

The program uses a TreeMap to store an entry consisting of a word and its count. For
each word, check whether it is already a key in the map. If not, add an entry to the map
with the word as the key and value 1. Otherwise, increase the value for the word (key)
by 1 in the map. Assume the words are case insensitive; e.g., Good is treated the same
as good.

Listing 21.9 gives the solution to the problem.

LISTING 21.9 CountOccurrenceOfWords.java
 1 import java.util.*;
 2
 3 public class CountOccurrenceOfWords {
 4 public static void main(String[] args) {
 5 // Set text in a string
 6 String text = "Good morning. Have a good class. " +
 7 "Have a good visit. Have fun!";
 8
 9 // Create a TreeMap to hold words as key and count as value
10 Map<String, Integer> map = new TreeMap<>();
11
12 String[] words = text.split("[\n\t\r.,;:!?(){");
13 for (int i = 0; i < words.length; i++) {
14 String key = words[i].toLowerCase();
15
16 if (key.length() > 0) {
17 if (!map.containsKey(key)) {
18 map.put(key, 1);
19 }
20 else {
21 int value = map.get(key);
22 value++;
23 map.put(key, value);
24 }
25 }
26 }
27
28 // Get all entries into a set
29 Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
30

Key
Point

tree map

split string

add entry

update entry

entry set

816 Chapter 21 Sets and Maps

31 // Get key and value from each entry
32 for (Map.Entry<String, Integer> entry: entrySet)
33 System.out.println(entry.getValue() + "\t" + entry.getKey());
34 }
35 }

display entry

a 2
class 1
fun 1
good 3
have 3
morning 1
visit 1

The program creates a TreeMap (line 10) to store pairs of words and their occurrence counts.
The words serve as the keys. Since all values in the map must be stored as objects, the count
is wrapped in an Integer object.

The program extracts a word from a text using the split method (line 12) in the String
class (see Section 10.10.4). For each word extracted, the program checks whether it is already
stored as a key in the map (line 17). If not, a new pair consisting of the word and its initial
count (1) is stored in the map (line 18). Otherwise, the count for the word is incremented by
1 (lines 21–23).

The program obtains the entries of the map in a set (line 29), and traverses the set to display
the count and the key in each entry (lines 32–33).

Since the map is a tree map, the entries are displayed in increasing order of words. To
display them in ascending order of the occurrence counts, see Programming Exercise 21.8.

Now sit back and think how you would write this program without using map. Your new
program would be longer and more complex. You will find that map is a very efficient and
powerful data structure for solving problems such as this.

21.21 Will the CountOccurrenceOfWords program work if line 10 is changed to

Map<String, int> map = new TreeMap<>();

21.22 Will the CountOccurrenceOfWords program work if line 17 is changed to

if (map.get(key) == null) {

21.23 Will the CountOccurrenceOfWords program work if lines 32–33 are changed to

for (String key: map)
 System.out.println(key + "\t" + map.getValue(key));

21.7 Singleton and Unmodifiable Collections and Maps
You can create singleton sets, lists, and maps and unmodifiable sets, lists, and maps
using the static methods in the Collections class.

The Collections class contains the static methods for lists and collections. It also contains
the methods for creating immutable singleton sets, lists, and maps, and for creating read-only
sets, lists, and maps, as shown in Figure 21.7.

The Collections class defines three constants—EMPTY_SET, EMPTY_LIST, and
EMPTY_MAP—for an empty set, an empty list, and an empty map. These collections are immu-
table. The class also provides the singleton(Object o) method for creating an immutable
set containing only a single item, the singletonList(Object o) method for creating

✓Point✓Check

Key
Point

Chapter Summary 817

an immutable list containing only a single item, and the singletonMap(Object key,

Object value) method for creating an immutable map containing only a single entry.
The Collections class also provides six static methods for returning read-only views for

collections: unmodifiableCollection(Collection c), unmodifiableList(List
list), unmodifiableMap(Map m), unmodifiableSet(Set set),
unmodifiableSortedMap(SortedMap m), and unmodifiableSortedSet(Sorted
Set s). This type of view is like a reference to the actual collection. But you cannot modify
the collection through a read-only view. Attempting to modify a collection through a read-
only view will cause an UnsupportedOperationException.

21.24 What is wrong in the following code?

Set<String> set = Collections.singleton("Chicago");
set.add("Dallas");

21.25 What happens when you run the following code?

List list = Collections.unmodifiableList(Arrays.asList("Chicago",
"Boston"));

list.remove("Dallas");

read-only view

✓Point✓Check

FIGURE 21.7 The Collections class contains the static methods for creating singleton and read-only sets, lists, and maps.

java.util.Collections

+singleton(o: Object): Set

+singletonList(o: Object): List

+singletonMap(key: Object, value: Object): Map

+unmodifiableCollection(c: Collection): Collection

+unmodifiableList(list: List): List

+unmodifiableMap(m: Map): Map

+unmodifiableSet(s: Set): Set

+unmodifiableSortedMap(s: SortedMap): SortedMap

+unmodifiableSortedSet(s: SortedSet): SortedSet

Returns an immutable set containing the specified object.

Returns an immutable list containing the specified object.

Returns an immutable map with the key and value pair.

Returns a read-only view of the collection.

Returns a read-only view of the list.

Returns a read-only view of the map.

Returns a read-only view of the set.

Returns a read-only view of the sorted map.

Returns a read-only view of the sorted set.

KEY TERMS

hash map 813
hash set 798
linked hash map 813
linked hash set 802
map 810

set 798
read-only view 817
tree map 813
tree set 803

CHAPTER SUMMARY

1. A set stores nonduplicate elements. To allow duplicate elements to be stored in a collec-
tion, you need to use a list.

2. A map stores key/value pairs. It provides a quick lookup for a value using a key.

3. Three types of sets are supported: HashSet, LinkedHashSet, and TreeSet. HashSet
stores elements in an unpredictable order. LinkedHashSet stores elements in the order

818 Chapter 21 Sets and Maps

they were inserted. TreeSet stores elements sorted. All the methods in HashSet,
LinkedHashSet, and TreeSet are inherited from the Collection interface.

4. The Map interface maps keys to the elements. The keys are like indexes. In List,
the indexes are integers. In Map, the keys can be any objects. A map cannot contain
duplicate keys. Each key can map to at most one value. The Map interface provides
the methods for querying, updating, and obtaining a collection of values and a set
of keys.

5. Three types of maps are supported: HashMap, LinkedHashMap, and TreeMap.
HashMap is efficient for locating a value, inserting an entry, and deleting an entry.
LinkedHashMap supports ordering of the entries in the map. The entries in a Hash-
Map are not ordered, but the entries in a LinkedHashMap can be retrieved either in
the order in which they were inserted into the map (known as the insertion order)
or in the order in which they were last accessed, from least recently accessed to
most recently (access order). TreeMap is efficient for traversing the keys in a sorted
order. The keys can be sorted using the Comparable interface or the Comparator
interface.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 21.2–21.4

21.1 (Perform set operations on hash sets) Create two linked hash sets {"George",
"Jim", "John", "Blake", "Kevin", "Michael"} and {"George", "Katie",
"Kevin", "Michelle", "Ryan"} and find their union, difference, and intersec-
tion. (You can clone the sets to preserve the original sets from being changed by
these set methods.)

21.2 (Display nonduplicate words in ascending order) Write a program that reads
words from a text file and displays all the nonduplicate words in ascending order.
The text file is passed as a command-line argument.

**21.3 (Count the keywords in Java source code) Revise the program in Listing 21.7. If
a keyword is in a comment or in a string, don’t count it. Pass the Java file name
from the command line. Assume that the Java source code is correct and line
comments and paragraph comments do not overlap.

*21.4 (Count consonants and vowels) Write a program that prompts the user to enter a
text file name and displays the number of vowels and consonants in the file. Use
a set to store the vowels A, E, I, O, and U.

***21.5 (Syntax highlighting) Write a program that converts a Java file into an HTML
file. In the HTML file, the keywords, comments, and literals are displayed in
bold navy, green, and blue, respectively. Use the command line to pass a Java file
and an HTML file. For example, the following command

 java Exercise21_05 Welcome.java Welcome.html

 converts Welcome.java into Welcome.html. Figure 21.8a shows a Java file. The
corresponding HTML file is shown in Figure 21.8b.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 819

Sections 21.5–21.7

*21.6 (Count the occurrences of numbers entered) Write a program that reads an
unspecified number of integers and finds the one that has the most occurrences.
The input ends when the input is 0. For example, if you entered 2 3 40 3 5 4 –3
3 3 2 0, the number 3 occurred most often. If not one but several numbers have
the most occurrences, all of them should be reported. For example, since 9 and 3
appear twice in the list 9 30 3 9 3 2 4, both occurrences should be reported.

**21.7 (Revise Listing 21.9, CountOccurrenceOfWords.java) Rewrite Listing 21.9 to
display the words in ascending order of occurrence counts.

 (Hint: Create a class named WordOccurrence that implements the Comparable
interface. The class contains two fields, word and count. The compareTo
method compares the counts. For each pair in the hash set in Listing 21.9, create
an instance of WordOccurrence and store it in an array list. Sort the array list
using the Collections.sort method. What would be wrong if you stored the
instances of WordOccurrence in a tree set?)

**21.8 (Count the occurrences of words in a text file) Rewrite Listing 21.9 to read the
text from a text file. The text file is passed as a command-line argument. Words
are delimited by whitespace characters, punctuation marks (,;.:?), quotation
marks ('"), and parentheses. Count words in case-insensitive fashion (e.g., con-
sider Good and good to be the same word). The words must start with a letter.
Display the output in alphabetical order of words, with each word preceded by
its occurrence count.

**21.9 (Guess the capitals using maps) Rewrite Programming Exercise 8.37 to store
pairs of each state and its capital in a map. Your program should prompt the user
to enter a state and should display the capital for the state.

*21.10 (Count the occurrences of each keyword) Rewrite Listing 21.7 CountKeywords.
java to read in a Java source code file and count the occurrence of each keyword
in the file, but don’t count the keyword if it is in a comment or in a string literal.

**21.11 (Baby name popularity ranking) Use the data files from Programming
Exercise 12.31 to write a program that enables the user to select a year, gender,
and enter a name to display the ranking of the name for the selected year and
gender, as shown in Figure 21.9. To achieve the best efficiency, create two arrays
for boy’s names and girl’s names, respectively. Each array has 10 elements for
10 years. Each element is a map that stores a name and its ranking in a pair
with the name as the key. Assume the data files are stored at www.cs.armstrong
.edu/liang/data/babynamesranking2001.txt, . . . , and www.cs.armstrong.edu/liang/data/
babynamesranking2010.txt.

FIGURE 21.8 The Java code in plain text in (a) is displayed in HTML with syntax highlighted in (b).

(a) (b)

www.cs.armstrong.edu/liang/data/babynamesranking2001.txt
www.cs.armstrong.edu/liang/data/babynamesranking2001.txt
www.cs.armstrong.edu/liang/data/babynamesranking2010.txt
www.cs.armstrong.edu/liang/data/babynamesranking2010.txt

820 Chapter 21 Sets and Maps

**21.12 (Name for both genders) Write a program that prompts the user to enter one of
the filenames described in Programming Exercise 12.31 and displays the names
that are used for both genders in the file. Use sets to store names and find com-
mon names in two sets. Here is a sample run:

FIGURE 21.9 The user selects a year and gender, enters a year, and clicks the Find Ranking button to display the ranking.

Enter a file name for baby name ranking: babynamesranking2001.txt
69 names used for both genders
They are Tyler Ryan Christian ...

**21.13 (Baby name popularity ranking) Revise Programming Exercise 21.11 to prompt
the user to enter year, gender, and name and display the ranking for the name.
Prompt the user to enter another inquiry or exit the program. Here is a sample
run:

**21.14 (Web crawler) Rewrite Listing 12.18, WebCrawler.java, to improve the perfor-
mance by using appropriate new data structures for listOfPendingURLs and
listofTraversedURLs.

**21.15 (Addition quiz) Rewrite Programming Exercise 11.16 to store the answers in a
set rather than a list.

Enter the year: 2010
Enter the gender: M
Enter the name: Javier
Boy name Javier is ranked #190 in year 2010
Enter another inquiry? Y
Enter the year: 2001
Enter the gender: F
Enter the name: Emily
Girl name Emily is ranked #1 in year 2001
Enter another inquiry? N

DEVELOPING EFFICIENT
ALGORITHMS

Objectives
■ To estimate algorithm efficiency using the Big O notation (§22.2).

■ To explain growth rates and why constants and nondominating terms
can be ignored in the estimation (§22.2).

■ To determine the complexity of various types of algorithms (§22.3).

■ To analyze the binary search algorithm (§22.4.1).

■ To analyze the selection sort algorithm (§22.4.2).

■ To analyze the Tower of Hanoi algorithm (§22.4.3).

■ To describe common growth functions (constant, logarithmic, log-
linear, quadratic, cubic, exponential) (§22.4.4).

■ To design efficient algorithms for finding Fibonacci numbers using
dynamic programming (§22.5).

■ To find the GCD using Euclid’s algorithm (§22.6).

■ To find prime numbers using the sieve of Eratosthenes (§22.7).

■ To design efficient algorithms for finding the closest pair of points
using the divide-and-conquer approach (§22.8).

■ To solve the Eight Queens problem using the backtracking approach
(§22.9).

■ To design efficient algorithms for finding a convex hull for a set of
points (§22.10).

CHAPTER

22

822 Chapter 22 Developing Efficient Algorithms

22.1 Introduction
Algorithm design is to develop a mathematical process for solving a problem.
Algorithm analysis is to predict the performance of an algorithm.

The preceding two chapters introduced classic data structures (lists, stacks, queues, priority
queues, sets, and maps) and applied them to solve problems. This chapter will use a vari-
ety of examples to introduce common algorithmic techniques (dynamic programming,
divide-and-conquer, and backtracking) for developing efficient algorithms. Later in the book,
we will introduce efficient algorithms in Chapters 23–29. Before introducing developing
efficient algorithms, we need to address the question on how to measure algorithm efficiency.

22.2 Measuring Algorithm Efficiency Using
Big O Notation

The Big O notation obtains a function for measuring algorithm time complexity based
on the input size. You can ignore multiplicative constants and nondominating terms in
the function.

Suppose two algorithms perform the same task, such as search (linear search vs. binary
search). Which one is better? To answer this question, you might implement these algorithms
and run the programs to get execution time. But there are two problems with this approach:

 ■ First, many tasks run concurrently on a computer. The execution time of a particular
program depends on the system load.

 ■ Second, the execution time depends on specific input. Consider, for example, linear
search and binary search. If an element to be searched happens to be the first in the
list, linear search will find the element quicker than binary search.

It is very difficult to compare algorithms by measuring their execution time. To overcome
these problems, a theoretical approach was developed to analyze algorithms independent of
computers and specific input. This approach approximates the effect of a change on the size
of the input. In this way, you can see how fast an algorithm’s execution time increases as the
input size increases, so you can compare two algorithms by examining their growth rates.

Consider linear search. The linear search algorithm compares the key with the elements in
the array sequentially until the key is found or the array is exhausted. If the key is not in the
array, it requires n comparisons for an array of size n. If the key is in the array, it requires n/2
comparisons on average. The algorithm’s execution time is proportional to the size of the array.
If you double the size of the array, you will expect the number of comparisons to double. The
algorithm grows at a linear rate. The growth rate has an order of magnitude of n. Computer
scientists use the Big O notation to represent the “order of magnitude.” Using this notation,
the complexity of the linear search algorithm is O(n), pronounced as “order of n.” We call an
algorithm with a time complexity of O(n) a linear algorithm, and it exhibits a linear growth rate.

For the same input size, an algorithm’s execution time may vary, depending on the input.
An input that results in the shortest execution time is called the best-case input, and an input
that results in the longest execution time is the worst-case input. Best-case analysis and
worst-case analysis are to analyze the algorithms for their best-case input and worst-case
input. Best-case and worst-case analysis are not representative, but worst-case analysis is
very useful. You can be assured that the algorithm will never be slower than the worst case.
An average-case analysis attempts to determine the average amount of time among all pos-
sible inputs of the same size. Average-case analysis is ideal, but difficult to perform, because
for many problems it is hard to determine the relative probabilities and distributions of vari-
ous input instances. Worst-case analysis is easier to perform, so the analysis is generally
conducted for the worst case.

Key
Point

Key
Point

what is algorithm efficiency?

growth rates

Big O notation

best-case input

worst-case input

average-case analysis

22.2 Measuring Algorithm Efficiency Using Big O Notation 823

The linear search algorithm requires n comparisons in the worst case and n/2 comparisons
in the average case if you are nearly always looking for something known to be in the list.
Using the Big O notation, both cases require O(n) time. The multiplicative constant (1/2) can
be omitted. Algorithm analysis is focused on growth rate. The multiplicative constants have
no impact on growth rates. The growth rate for n/2 or 100n is the same as for n, as illustrated
in Table 22.1. Therefore, O(n) = O(n/2) = O(100n).

ignore multiplicative constants

f(n)
n

100

200

100

200

50

100

10000

20000

2 2 2 f(200) � f(100)

n n/2 100n

TABLE 22.1 Growth Rates

Consider the algorithm for finding the maximum number in an array of n elements. To find
the maximum number if n is 2, it takes one comparison; if n is 3, two comparisons. In general,
it takes n - 1 comparisons to find the maximum number in a list of n elements. Algorithm
analysis is for large input size. If the input size is small, there is no significance in estimating
an algorithm’s efficiency. As n grows larger, the n part in the expression n - 1 dominates the
complexity. The Big O notation allows you to ignore the nondominating part (e.g., -1 in the
expression n - 1) and highlight the important part (e.g., n in the expression n - 1). There-
fore, the complexity of this algorithm is O(n).

The Big O notation estimates the execution time of an algorithm in relation to the input
size. If the time is not related to the input size, the algorithm is said to take constant time with
the notation O(1). For example, a method that retrieves an element at a given index in an array
takes constant time, because the time does not grow as the size of the array increases.

The following mathematical summations are often useful in algorithm analysis:

1 + 2 + 3 + c + (n - 2) + (n - 1) =
n(n - 1)

2
= O(n2)

1 + 2 + 3 + c + (n - 1) + n =
n(n + 1)

2
= O(n2)

a0 + a1 + a2 + a3 + c + a(n - 1) + an =
an + 1 - 1

a - 1
= O(an)

20 + 21 + 22 + 23 + c + 2(n - 1) + 2n =
2n + 1 - 1

2 - 1
= 2n + 1 - 1 = O(2n)

Note
Time complexity is a measure of execution time using the Big-O notation. Similarly, you

can also measure space complexity using the Big-O notation. Space complexity meas-

ures the amount of memory space used by an algorithm. The space complexity for most

algorithms presented in the book is O(n). i.e., they exibit linear growth rate to the input

size. For example, the space complexity for linear search is O(n).

22.1 Why is a constant factor ignored in the Big O notation? Why is a nondominating term
ignored in the Big O notation?

22.2 What is the order of each of the following functions?

(n2 + 1)2

n
,

(n2 + log2n)2

n
, n3 + 100n2 + n, 2n + 100n2 + 45n, n2n + n22n

large input size

ignore nondominating terms

constant time

useful summations

time complexity
space complexity

✓Point✓Check

824 Chapter 22 Developing Efficient Algorithms

22.3 Examples: Determining Big O
This section gives several examples of determining Big O for repetition, sequence,
and selection statements.

Example 1
Consider the time complexity for the following loop:

for (int i = 1; i <= n; i++) {
 k = k + 5;
}

It is a constant time, c, for executing

k = k + 5;

Since the loop is executed n times, the time complexity for the loop is

T(n) = (a constant c)*n = O(n).

The theoretical analysis predicts the performance of the algorithm. To see how this
algorithm performs, we run the code in Listing 22.1 to obtain the execution time for
n = 1000000, 10000000, 100000000, and 100000000.

LISTING 22.1 PerformanceTest.java
 1 public class PerformanceTest {
 2 public static void main(String[] args) {
 3 getTime(1000000);
 4 getTime(10000000);
 5 getTime(100000000);
 6 getTime(1000000000);
 7 }
 8
 9 public static void getTime (long n) {
10 long startTime = System.currentTimeMillis();
11 long k = 0;
12 for (int i = 1; i <= n; i++) {
13 k = k + 5;
14 }
15 long endTime = System.currentTimeMillis();
16 System.out.println("Execution time for n = " + n
17 + " is " + (endTime - startTime) + " milliseconds");
18 }
19 }

Key
Point

input size 1000000
input size 10000000
input size 100000000
input size 1000000000

time before execution

time after execution

Execution time for n = 1000000 is 6 milliseconds
Execution time for n = 10000000 is 61 milliseconds
Execution time for n = 100000000 is 610 milliseconds
Execution time for n = 1000000000 is 6048 milliseconds

Our analysis predicts a linear time complexity for this loop. As shown in the sample output,
when the input size increases 10 times, the runtime increases roughly 10 times. The execution
confirms to the prediction.

Example 2
What is the time complexity for the following loop?

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {

22.3 Examples: Determining Big O 825

 k = k + i + j;
 }
}

It is a constant time, c, for executing

k = k + i + j;

The outer loop executes n times. For each iteration in the outer loop, the inner loop is
executed n times. Thus, the time complexity for the loop is

T(n) = (a constant c)*n*n = O(n2)

An algorithm with the O(n2) time complexity is called a quadratic algorithm and it
exhibits a quadratic growth rate. The quadratic algorithm grows quickly as the problem
size increases. If you double the input size, the time for the algorithm is quadrupled.
Algorithms with a nested loop are often quadratic.

Example 3
Consider the following loop:

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {

 k = k + i + j;
 }
}

The outer loop executes n times. For i = 1, 2, c , the inner loop is executed one time,
two times, and n times. Thus, the time complexity for the loop is

T(n) = c + 2c + 3c + 4c + . . . + nc

= cn(n + 1)/2

= (c/2) n2 + (c/2)n

= O(n2)

Example 4
Consider the following loop:

for (int i = 1; i <= n; i++) {
for (int j = 1; j <= 20; j++) {

 k = k + i + j;
 }
}

The inner loop executes 20 times, and the outer loop n times. Therefore, the time com-
plexity for the loop is

T(n) = 20*c*n = O(n)

Example 5
Consider the following sequences:

for (int j = 1; j <= 10; j++) {
 k = k + 4;
}

for (int i = 1; i <= n; i++) {

quadratic time

826 Chapter 22 Developing Efficient Algorithms

for (int j = 1; j <= 20; j++) {
 k = k + i + j;
 }
}

The first loop executes 10 times, and the second loop 20 * n times. Thus, the time com-
plexity for the loop is

T(n) = 10*c + 20*c*n = O(n)

Example 6
Consider the following selection statement:

if (list.contains(e)) {
 System.out.println(e);
}
else

for (Object t: list) {
 System.out.println(t);
 }

Suppose the list contains n elements. The execution time for list.contains(e) is
O(n). The loop in the else clause takes O(n) time. Hence, the time complexity for the
entire statement is

T(n) = if test time + worst@case time (if clause, else clause)

= O(n) + O(n) = O(n)

Example 7
Consider the computation of an for an integer n. A simple algorithm would multiply a n
times, as follows:

result = 1;
for (int i = 1; i <= n; i++)
 result *= a;

The algorithm takes O(n) time. Without loss of generality, assume n = 2k. You can
improve the algorithm using the following scheme:

result = a;
for (int i = 1; i <= k; i++)
 result = result * result;

The algorithm takes O(logn) time. For an arbitrary n, you can revise the algorithm and
prove that the complexity is still O(logn). (See Checkpoint Question 22.7.)

Note
For simplicity, since 0(logn) = 0(log2n) = 0(logan), the constant base is omitted.

22.3 Count the number of iterations in the following loops.

omit base

✓Point✓Check
int count = 1;
while (count < 30) {
 count = count * 2;
}

(a)

int count = 15;
while (count < 30) {
 count = count * 3;
}

(b)

22.3 Examples: Determining Big O 827

22.4 How many stars are displayed in the following code if n is 10? How many if n is 20?
Use the Big O notation to estimate the time complexity.

int count = 1;
while (count < n) {
 count = count * 2;
}

(c)

int count = 15;
while (count < n) {
 count = count * 3;
}

(d)

for (int i = 0; i < n; i++) {
 System.out.print('*');
}

(a)

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

 System.out.print('*');
 }
}

(b)

for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
 System.out.print('*');
 }
 }
}

 (c)

for (int k = 0; k < 10; k++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
 System.out.print('*');
 }
 }
}

(d)

22.5 Use the Big O notation to estimate the time complexity of the following methods:

public static void mA(int n) {
for (int i = 0; i < n; i++) {

 System.out.print(Math.random());
 }
}

(a)

public static void mB(int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++)
 System.out.print(Math.random());
 }
}

(b)

22.6 Design an O(n) time algorithm for computing the sum of numbers from n1 to n2 for
(n1 6 n2). Can you design an O(1) for performing the same task?

22.7 Example 7 in Section 22.3 assumes n = 2k. Revise the algorithm for an arbitrary n
and prove that the complexity is still O(logn).

public static void mD(int[] m) {
for (int i = 0; i < m.length; i++) {

for (int j = 0; j < i; j++)
 System.out.print(m[i] * m[j]);
 }
}

(d)

public static void mC(int[] m) {
for (int i = 0; i < m.length; i++) {

 System.out.print(m[i]);
 }

for (int i = m.length - 1; i >= 0;)
 {
 System.out.print(m[i]);
 i--;
 }
}

(c)

828 Chapter 22 Developing Efficient Algorithms

22.4 Analyzing Algorithm Time Complexity
This section analyzes the complexity of several well-known algorithms: binary search,
selection sort, and Tower of Hanoi.

22.4.1 Analyzing Binary Search
The binary search algorithm presented in Listing 7.7, BinarySearch.java, searches for a key in
a sorted array. Each iteration in the algorithm contains a fixed number of operations, denoted
by c. Let T(n) denote the time complexity for a binary search on a list of n elements. Without
loss of generality, assume n is a power of 2 and k = logn. Since a binary search eliminates
half of the input after two comparisons,

T(n) = T¢ n

2
≤ + c = T¢ n

22 ≤ + c + c = T¢ n

2k ≤ + kc

= T(1) + c logn = 1 + (logn)c

= O(logn)

Ignoring constants and nondominating terms, the complexity of the binary search algorithm
is O(logn). An algorithm with the O(logn) time complexity is called a logarithmic algorithm
and it exhibits a logarithmic growth rate. The base of the log is 2, but the base does not affect
a logarithmic growth rate, so it can be omitted. The logarithmic algorithm grows slowly as the
problem size increases. In the case of binary search, each time you double the array size, at most
one more comparison will be required. If you square the input size of any logarithmic time algo-
rithm, you only double the time of execution. So a logarithmic-time algorithm is very efficient.

22.4.2 Analyzing Selection Sort
The selection sort algorithm presented in Listing 7.8, SelectionSort.java, finds the smallest
element in the list and swaps it with the first element. It then finds the smallest element
remaining and swaps it with the first element in the remaning list, and so on until the remain-
ing list contains only one element left to be sorted. The number of comparisons is n - 1 for
the first iteration, n - 2 for the second iteration, and so on. Let T(n) denote the complexity
for selection sort and c denote the total number of other operations such as assignments and
additional comparisons in each iteration. Thus,

T(n) = (n - 1) + c + (n - 2) + c + c + 2 + c + 1 + c

=
(n - 1)(n - 1 + 1)

2
+ c(n - 1) =

n2

2
-

n

2
+ cn - c

= O(n2)

Therefore, the complexity of the selection sort algorithm is O(n2).

22.4.3 Analyzing the Tower of Hanoi Problem
The Tower of Hanoi problem presented in Listing18.8, TowerOfHanoi.java, recursively
moves n disks from tower A to tower B with the assistance of tower C as follows:

1. Move the first n - 1 disks from A to C with the assistance of tower B.

Key
Point

binary search animation on

the Companion Website

logarithmic time

selection sort animation on

the Companion Website

22.4 Analyzing Algorithm Time Complexity 829

2. Move disk n from A to B.

3. Move n - 1 disks from C to B with the assistance of tower A.

The complexity of this algorithm is measured by the number of moves. Let T(n) denote the
number of moves for the algorithm to move n disks from tower A to tower B with T(1) = 1.
Thus,

T(n) = T(n - 1) + 1 + T(n - 1)

= 2T(n - 1) + 1

= 2(2T(n - 2) + 1) + 1

= 2(2(2T(n - 3) + 1) + 1) + 1

= 2n - 1T(1) + 2n - 2 + c + 2 + 1

= 2n - 1 + 2n - 2 + c + 2 + 1 = (2n - 1) = O(2n)

An algorithm with O(2n) time complexity is called an exponential algorithm, and it exhibits
an exponential growth rate. As the input size increases, the time for the exponential algorithm
grows exponentially. Exponential algorithms are not practical for large input size. Suppose
the disk is moved at a rate of 1 per second. It would take 232/(365*24*60*60) = 136 years
to move 32 disks and 264/(365*24*60*60) = 585 billion years to move 64 disks.

22.4.4 Common Recurrence Relations
Recurrence relations are a useful tool for analyzing algorithm complexity. As shown in
the preceding examples, the complexity for binary search, selection sort, and the Tower

of Hanoi is T(n) = T¢ n

2
≤ + O(1), T(n) = T(n - 1) + O(n), and T(n) = 2T(n - 1) + O(1),

respectively. Table 22.2 summarizes the common recurrence relations.

O(2n)

exponential time

Recurrence Relation Result Example

T(n) = T(n/2) + O(1) T(n) = O(logn) Binary search, Euclid’s GCD

T(n) = T(n - 1) + O(1) T(n) = O(n) Linear search

T(n) = 2T(n/2) + O(1) T(n) = O(n) Checkpoint Question 22.20

T(n) = 2T(n/2) + O(n) T(n) = O(n logn) Merge sort (Chapter 23)

T(n) = T(n - 1) + O(n) T(n) = O(n2) Selection sort

T(n) = 2T(n - 1) + O(1) T(n) = O(2n) Tower of Hanoi

T(n) = T(n - 1) + T(n - 2) + O(1) T(n) = O(2n) Recursive Fibonacci algorithm

TABLE 22.2 Common Recurrence Functions

22.4.5 Comparing Common Growth Functions
The preceding sections analyzed the complexity of several algorithms. Table 22.3 lists some
common growth functions and shows how growth rates change as the input size doubles from
n = 25 to n = 50.

830 Chapter 22 Developing Efficient Algorithms

These functions are ordered as follows, as illustrated in Figure 22.1.

O(1) 6 O(logn) 6 O(n) 6 O(n logn) 6 O(n2) 6 O(n3) 6 O(2n)

FIGURE 22.1 As the size n increases, the function grows.

O(1)

O(logn)

O(n)

O(n logn)

O(2n) O(n3)
O(n2)

f(n)

n

Function Name n = 25 n = 50 f(50)/f(25)

O(1) Constant time 1 1 1

O(logn) Logarithmic time 4.64 5.64 1.21

O(n) Linear time 25 50 2

O(n logn) Log-linear time 116 282 2.43

O(n2) Quadratic time 625 2,500 4

O(n3) Cubic time 15,625 125,000 8

O(2n) Exponential time 3.36 * 107 1.27 * 1015 3.35 * 107

TABLE 22.3 Change of Growth Rates

22.8 Put the following growth functions in order:

5n3

4032
, 44 logn, 10n logn, 500, 2n2,

2n

45
, 3n

22.9 Estimate the time complexity for adding two n * m matrices, and for multiplying an
n * m matrix by an m * k matrix.

22.10 Describe an algorithm for finding the occurrence of the max element in an array.
Analyze the complexity of the algorithm.

22.11 Describe an algorithm for removing duplicates from an array. Analyze the complex-
ity of the algorithm.

22.12 Analyze the following sorting algorithm:

for (int i = 0; i < list.length - 1; i++) {
if (list[i] > list[i + 1]) {

 swap list[i] with list[i + 1];
 i = -1;
 }
}

22.13 Analyze the complexity for computing a polynomial f (x) of degree n for a given x
value using a brute-force approach and the Horner’s approach, respectively. A brute-
force approach is to compute each term in the polynomial and add them together. The
Horner’s approach was introduced in Section 6.7.

f(x) = anx
n + an - 1x

n - 1 + an - 2x
n - 2 + c + a1x

1 + a0

✓Point✓Check

22.5 Finding Fibonacci Numbers Using Dynamic Programming 831

22.5 Finding Fibonacci Numbers Using Dynamic
Programming

This section analyzes and designs an efficient algorithm for finding Fibonacci
numbers using dynamic programming.

Section 18.3, Case Study: Computing Fibonacci Numbers, gave a recursive method for find-
ing the Fibonacci number, as follows:

/** The method for finding the Fibonacci number */
public static long fib(long index) {

if (index == 0) // Base case
return 0;

else if (index == 1) // Base case
return 1;

else // Reduction and recursive calls
return fib(index - 1) + fib(index - 2);

}

We can now prove that the complexity of this algorithm is O(2n). For convenience, let the
index be n. Let T(n) denote the complexity for the algorithm that finds fib(n) and c denote the
constant time for comparing the index with 0 and 1; that is, T(1) and T(0) are c. Thus,

T(n) = T(n - 1) + T(n - 2) + c

… 2T(n - 1) + c

… 2(2T(n - 2) + c) + c

= 22T(n - 2) + 2c + c

Similar to the analysis of the Tower of Hanoi problem, we can show that T(n) is O(2n).
However, this algorithm is not efficient. Is there an efficient algorithm for finding a Fibo-

nacci number? The trouble with the recursive fib method is that the method is invoked redun-
dantly with the same arguments. For example, to compute fib(4), fib(3) and fib(2)
are invoked. To compute fib(3), fib(2) and fib(1) are invoked. Note that fib(2) is
redundantly invoked. We can improve it by avoiding repeatedly calling of the fib method
with the same argument. Note that a new Fibonacci number is obtained by adding the pre-
ceding two numbers in the sequence. If you use the two variables f0 and f1 to store the two
preceding numbers, the new number, f2, can be immediately obtained by adding f0 with f1.
Now you should update f0 and f1 by assigning f1 to f0 and assigning f2 to f1, as shown
in Figure 22.2.

Key
Point

f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...
 indices: 0 1 2 3 4 5 6 7 8 9 10 11

f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...
 indices: 0 1 2 3 4 5 6 7 8 9 10 11

 f0 f1 f2
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 ...
 indices: 0 1 2 3 4 5 6 7 8 9 10 11

FIGURE 22.2 Variables f0, f1, and f2 store three consecutive Fibonacci numbers in the
series.

832 Chapter 22 Developing Efficient Algorithms

The new method is implemented in Listing 22.2.

LISTING 22.2 ImprovedFibonacci.java
 1 import java.util.Scanner;
 2
 3 public class ImprovedFibonacci {
 4 /** Main method */
 5 public static void main(String args[]) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for the Fibonacci number: ");
 9 int index = input.nextInt();
10
11 // Find and display the Fibonacci number
12 System.out.println(
13 "Fibonacci number at index " + index + " is " + fib(index));
14 }
15
16 /** The method for finding the Fibonacci number */
17 public static long fib(long n) {
18 long f0 = 0; // For fib(0)
19 long f1 = 1; // For fib(1)
20 long f2 = 1; // For fib(2)
21
22 if (n == 0)
23 return f0;
24 else if (n == 1)
25 return f1;
26 else if (n == 2)
27 return f2;
28
29 for (int i = 3; i <= n; i++) {
30 f0 = f1;
31 f1 = f2;
32 f2 = f0 + f1;
33 }
34
35 return f2;
36 }
37 }

input

invoke fib

f0
f1
f2

update f0, f1, f2

Enter an index for the Fibonacci number: 6
Fibonacci number at index 6 is 8

Enter an index for the Fibonacci number: 7
Fibonacci number at index 7 is 13

Obviously, the complexity of this new algorithm is O(n). This is a tremendous improvement
over the recursive O(2n) algorithm.

The algorithm for computing Fibonacci numbers presented here uses an approach known
as dynamic programming. Dynamic programming is the process of solving subproblems,
then combining the solutions of the subproblems to obtain an overall solution. This naturally
leads to a recursive solution. However, it would be inefficient to use recursion, because the

O(n)

dynamic programming

22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 833

subproblems overlap. The key idea behind dynamic programming is to solve each subproblem
only once and store the results for subproblems for later use to avoid redundant computing of
the subproblems.

22.14 What is dynamic programming? Give an example of dynamic programming.

22.15 Why is the recursive Fibonacci algorithm inefficient, but the nonrecursive Fibonacci
algorithm efficient?

22.6 Finding Greatest Common Divisors Using
Euclid’s Algorithm

This section presents several algorithms in the search for an efficient algorithm for
finding the greatest common divisor of two integers.

The greatest common divisor (GCD) of two integers is the largest number that can evenly
divide both integers. Listing 5.9, GreatestCommonDivisor.java, presented a brute-force algo-
rithm for finding the greatest common divisor of two integers m and n. Brute force refers to an
algorithmic approach that solves a problem in the simplest or most direct or obvious way. As
a result, such an algorithm can end up doing far more work to solve a given problem than a
cleverer or more sophisticated algorithm might do. On the other hand, a brute-force algorithm
is often easier to implement than a more sophisticated one and, because of this simplicity,
sometimes it can be more efficient.

The brute-force algorithm checks whether k (for k = 2, 3, 4, and so on) is a common
divisor for n1 and n2, until k is greater than n1 or n2. The algorithm can be described as
follows:

public static int gcd(int m, int n) {
int gcd = 1;

for (int k = 2; k <= m && k <= n; k++) {
if (m % k == 0 && n % k == 0)

 gcd = k;
 }

return gcd;
}

Assuming m Ú n, the complexity of this algorithm is obviously O(n).
Is there a better algorithm for finding the GCD? Rather than searching a possible divisor

from 1 up, it is more efficient to search from n down. Once a divisor is found, the divisor is
the GCD. Therefore, you can improve the algorithm using the following loop:

for (int k = n; k >= 1; k--) {
if (m % k == 0 && n % k == 0) {

 gcd = k;
break;

 }
}

This algorithm is better than the preceding one, but its worst-case time complexity is still O(n).
A divisor for a number n cannot be greater than n / 2, so you can further improve the

algorithm using the following loop:

for (int k = m / 2; k >= 1; k--) {
if (m % k == 0 && n % k == 0) {

 gcd = k;

✓Point✓Check

Key
Point

GCD

brute force

assume m Ú n

O(n)

improved solutions

834 Chapter 22 Developing Efficient Algorithms

break;
 }
}

However, this algorithm is incorrect, because n can be a divisor for m. This case must be con-
sidered. The correct algorithm is shown in Listing 22.3.

LISTING 22.3 GCD.java
 1 import java.util.Scanner;
 2
 3 public class GCD {
 4 /** Find GCD for integers m and n */
 5 public static int gcd(int m, int n) {
 6 int gcd = 1;
 7
 8 if (m % n == 0) return n;
 9
10 for (int k = n / 2; k >= 1; k--) {
11 if (m % k == 0 && n % k == 0) {
12 gcd = k;
13 break;
14 }
15 }
16
17 return gcd;
18 }
19
20 /** Main method */
21 public static void main(String[] args) {
22 // Create a Scanner
23 Scanner input = new Scanner(System.in);
24
25 // Prompt the user to enter two integers
26 System.out.print("Enter first integer: ");
27 int m = input.nextInt();
28 System.out.print("Enter second integer: ");
29 int n = input.nextInt();
30
31 System.out.println("The greatest common divisor for " + m +
32 " and " + n + " is " + gcd(m, n));
33 }
34 }

check divisor

GCD found

input

input

Enter first integer: 2525

Enter second integer: 125
The greatest common divisor for 2525 and 125 is 25

Enter first integer: 3

Enter second integer: 3
The greatest common divisor for 3 and 3 is 3

Assuming m Ú n, the for loop is executed at most n/2 times, which cuts the time by half
from the previous algorithm. The time complexity of this algorithm is still O(n), but practi-
cally, it is much faster than the algorithm in Listing 5.9.

O(n)

22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm 835

Note
The Big O notation provides a good theoretical estimate of algorithm efficiency. How-

ever, two algorithms of the same time complexity are not necessarily equally efficient.

As shown in the preceding example, both algorithms in Listings 5.9 and 22.3 have the

same complexity, but in practice the one in Listing 22.3 is obviously better.

A more efficient algorithm for finding the GCD was discovered by Euclid around 300 b.c.
This is one of the oldest known algorithms. It can be defined recursively as follows:

Let gcd(m, n) denote the GCD for integers m and n:

 ■ If m % n is 0, gcd (m, n) is n.

 ■ Otherwise, gcd(m, n) is gcd(n, m % n).

It is not difficult to prove the correctness of this algorithm. Suppose m % n = r. Thus, m =
qn + r, where q is the quotient of m / n. Any number that is divisible by m and n must also
be divisible by r. Therefore, gcd(m, n) is the same as gcd(n, r), where r = m % n. The
algorithm can be implemented as in Listing 22.4.

LISTING 22.4 GCDEuclid.java
 1 import java.util.Scanner;
 2
 3 public class GCDEuclid {
 4 /** Find GCD for integers m and n */
 5 public static int gcd(int m, int n) {
 6 if (m % n == 0)
 7 return n;
 8 else

 9 return gcd(n, m % n);
10 }
11
12 /** Main method */
13 public static void main(String[] args) {
14 // Create a Scanner
15 Scanner input = new Scanner(System.in);
16
17 // Prompt the user to enter two integers
18 System.out.print("Enter first integer: ");
19 int m = input.nextInt();
20 System.out.print("Enter second integer: ");
21 int n = input.nextInt();
22
23 System.out.println("The greatest common divisor for " + m +
24 " and " + n + " is " + gcd(m, n));
25 }
26 }

practical consideration

Euclid’s algorithm

base case

reduction

input

input

Enter first integer: 2525

Enter second integer: 125
The greatest common divisor for 2525 and 125 is 25

Enter first integer: 3

Enter second integer: 3
The greatest common divisor for 3 and 3 is 3

836 Chapter 22 Developing Efficient Algorithms

In the best case when m % n is 0, the algorithm takes just one step to find the GCD. It is dif-
ficult to analyze the average case. However, we can prove that the worst-case time complexity
is O(log n).

Assuming m Ú n, we can show that m % n < m / 2, as follows:

 ■ If n <= m / 2, m % n < m / 2, since the remainder of m divided by n is always
less than n.

 ■ If n > m / 2, m % n = m – n < m / 2. Therefore, m % n < m / 2.

Euclid’s algorithm recursively invokes the gcd method. It first calls gcd(m, n), then calls
gcd(n, m % n), and gcd(m % n, n % (m % n)), and so on, as follows:

 gcd(m, n)
= gcd(n, m % n)
= gcd(m % n, n % (m % n))
= ...

Since m % n < m / 2 and n % (m % n) < n / 2, the argument passed to the gcd method
is reduced by half after every two iterations. After invoking gcd two times, the second
parameter is less than n/2. After invoking gcd four times, the second parameter is less than

n/4. After invoking gcd six times, the second parameter is less than
n

23. Let k be the number

of times the gcd method is invoked. After invoking gcd k times, the second parameter is less

than
n

2(k/2), which is greater than or equal to 1. That is,

n

2(k/2) Ú 1 = 7 n Ú 2(k/2) =7 logn Ú k/2 = 7 k … 2 logn

Therefore, k … 2 logn. So the time complexity of the gcd method is O(logn).
The worst case occurs when the two numbers result in the most divisions. It turns out that

two successive Fibonacci numbers will result in the most divisions. Recall that the Fibonacci
series begins with 0 and 1, and each subsequent number is the sum of the preceding two num-
bers in the series, such as:

0 1 1 2 3 5 8 13 21 34 55 89 . . .

The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index - 2) + fib(index - 1); index >= 2

For two successive Fibonacci numbers fib(index) and fib(index - 1),

gcd(fib(index), fib(index - 1))
= gcd(fib(index - 1), fib(index - 2))
= gcd(fib(index - 2), fib(index - 3))
= gcd(fib(index - 3), fib(index - 4))
= ...
= gcd(fib(2), fib(1))
= 1

For example,

gcd(21, 13)
= gcd(13, 8)
= gcd(8, 5)
= gcd(5, 3)

best case

average case

worst case

22.7 Efficient Algorithms for Finding Prime Numbers 837

= gcd(3, 2)
= gcd(2, 1)
= 1

Therefore, the number of times the gcd method is invoked is the same as the index. We
can prove that index … 1.44 logn, where n = fib(index - 1). This is a tighter bound than
index … 2 logn.

Table 22.4 summarizes the complexity of three algorithms for finding the GCD.

Algorithm Complexity Description

Listing 5.9 O(n) Brute-force, checking all possible divisors

Listing 22.3 O(n) Checking half of all possible divisors

Listing 22.4 O(log n) Euclid’s algorithm

TABLE 22.4 Comparisons of GCD Algorithms

22.16 Prove that the following algorithm for finding the GCD of the two integers m and n
is incorrect.

int gcd = 1;
for (int k = Math.min(Math.sqrt(n), Math.sqrt(m)); k >= 1; k--) {
if (m % k == 0 && n % k == 0) {

 gcd = k;
break;

 }
}

22.7 Efficient Algorithms for Finding Prime Numbers
This section presents several algorithms in the search for an efficient algorithm for
finding prime numbers.

A $150,000 award awaits the first individual or group who discovers a prime number with at
least 100,000,000 decimal digits (w2.eff.org/awards/coop-prime-rules.php).

Can you design a fast algorithm for finding prime numbers?
An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2,

3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.
How do you determine whether a number n is prime? Listing 5.15 presented a brute-force

algorithm for finding prime numbers. The algorithm checks whether 2, 3, 4, 5, . . . , or n - 1
is divisible by n. If not, n is prime. This algorithm takes O(n) time to check whether n is prime.
Note that you need to check only whether 2, 3, 4, 5, . . . , and n/2 is divisible by n. If not, n
is prime. This algorithm is slightly improved, but it is still of O(n).

In fact, we can prove that if n is not a prime, n must have a factor that is greater than
1 and less than or equal to 2n. Here is the proof. Since n is not a prime, there exist two
numbers p and q such that n = pq with 1 6 p … q. Note that n = 2n 2n. p must be
less than or equal to 2n. Hence, you need to check only whether 2, 3, 4, 5, . . . , or 2n
is divisible by n. If not, n is prime. This significantly reduces the time complexity of the
algorithm to O(2n).

Now consider the algorithm for finding all the prime numbers up to n. A straightforward
implementation is to check whether i is prime for i = 2, 3, 4, . . . , n. The program is given
in Listing 22.5.

✓Point✓Check

Key
Point

what is prime?

838 Chapter 22 Developing Efficient Algorithms

LISTING 22.5 PrimeNumbers.java
 1 import java.util.Scanner;
 2
 3 public class PrimeNumbers {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");
 7 int n = input.nextInt();
 8
 9 final int NUMBER_PER_LINE = 10; // Display 10 per line
10 int count = 0; // Count the number of prime numbers
11 int number = 2; // A number to be tested for primeness
12
13 System.out.println("The prime numbers are:");
14
15 // Repeatedly find prime numbers
16 while (number <= n) {
17 // Assume the number is prime
18 boolean isPrime = true; // Is the current number prime?
19
20 // Test if number is prime
21 for (int divisor = 2; divisor <= (int)(Math.sqrt(number));
22 divisor++) {
23 if (number % divisor == 0) { // If true, number is not prime
24 isPrime = false; // Set isPrime to false
25 break; // Exit the for loop
26 }
27 }
28
29 // Print the prime number and increase the count
30 if (isPrime) {
31 count++; // Increase the count
32
33 if (count % NUMBER_PER_LINE == 0) {
34 // Print the number and advance to the new line
35 System.out.printf("%7d\n", number);
36 }
37 else

38 System.out.printf("%7d", number);
39 }
40
41 // Check if the next number is prime
42 number++;
43 }
44
45 System.out.println("\n" + count +
46 " prime(s) less than or equal to " + n);
47 }
48 }

check prime

increase count

check next number

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
...
...
168 prime(s) less than or equal to 1000

22.7 Efficient Algorithms for Finding Prime Numbers 839

The program is not efficient if you have to compute Math.sqrt(number) for every iteration
of the for loop (line 21). A good compiler should evaluate Math.sqrt(number) only once
for the entire for loop. To ensure this happens, you can explicitly replace line 21 with the
following two lines:

int squareRoot = (int)(Math.sqrt(number));
for (int divisor = 2; divisor <= squareRoot; divisor++) {

In fact, there is no need to actually compute Math.sqrt(number) for every number. You
need look only for the perfect squares such as 4, 9, 16, 25, 36, 49, and so on. Note that for all
the numbers between 36 and 48, inclusively, their (int)(Math.sqrt(number)) is 6. With
this insight, you can replace the code in lines 16–26 with the following:

...
int squareRoot = 1;

// Repeatedly find prime numbers
while (number <= n) {

// Assume the number is prime
boolean isPrime = true; // Is the current number prime?

if (squareRoot * squareRoot < number) squareRoot++;

// Test if number is prime
for (int divisor = 2; divisor <= squareRoot; divisor++) {

if (number % divisor == 0) { // If true, number is not prime
 isPrime = false; // Set isPrime to false

break; // Exit the for loop
 }
 }
...

Now we turn our attention to analyzing the complexity of this program. Since it takes 2i
steps in the for loop (lines 21–27) to check whether number i is prime, the algorithm takes 22 + 23 + 24 + c + 2n steps to find all the prime numbers less than or equal to
n. Observe that 22 + 23 + 24 + c + 2n … n2n

Therefore, the time complexity for this algorithm is O(n2n).
To determine whether i is prime, the algorithm checks whether 2, 3, 4, 5, . . . , and 2i are

divisible by i. This algorithm can be further improved. In fact, you need to check only whether
the prime numbers from 2 to2i are possible divisors for i.

We can prove that if i is not prime, there must exist a prime number p such that i = pq and
p … q. Here is the proof. Assume that i is not prime; let p be the smallest factor of i. p must
be prime, otherwise, p has a factor k with 2 … k 6 p. k is also a factor of i, which contradicts
that p be the smallest factor of i. Therefore, if i is not prime, you can find a prime number from
2 to 2i that is divisible by i. This leads to a more efficient algorithm for finding all prime
numbers up to n, as shown in Listing 22.6.

LISTING 22.6 EfficientPrimeNumbers.java
 1 import java.util.Scanner;
 2
 3 public class EfficientPrimeNumbers {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");

840 Chapter 22 Developing Efficient Algorithms

 7 int n = input.nextInt();
 8
 9 // A list to hold prime numbers
10 java.util.List<Integer> list =
11 new java.util.ArrayList<>();
12
13 final int NUMBER_PER_LINE = 10; // Display 10 per line
14 int count = 0; // Count the number of prime numbers
15 int number = 2; // A number to be tested for primeness
16 int squareRoot = 1; // Check whether number <= squareRoot
17
18 System.out.println("The prime numbers are \n");
19
20 // Repeatedly find prime numbers
21 while (number <= n) {
22 // Assume the number is prime
23 boolean isPrime = true; // Is the current number prime?
24
25 if (squareRoot * squareRoot < number) squareRoot++;
26
27 // Test whether number is prime
28 for (int k = 0; k < list.size()
29 && list.get(k) <= squareRoot; k++) {
30 if (number % list.get(k) == 0) { // If true, not prime
31 isPrime = false; // Set isPrime to false
32 break; // Exit the for loop
33 }
34 }
35
36 // Print the prime number and increase the count
37 if (isPrime) {
38 count++; // Increase the count
39 list.add(number); // Add a new prime to the list
40 if (count % NUMBER_PER_LINE == 0) {
41 // Print the number and advance to the new line
42 System.out.println(number);
43 }
44 else

45 System.out.print(number + " ");
46 }
47
48 // Check whether the next number is prime
49 number++;
50 }
51
52 System.out.println("\n" + count +
53 " prime(s) less than or equal to " + n);
54 }
55 }

check prime

increase count

check next number

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
...
...
168 prime(s) less than or equal to 1000

22.7 Efficient Algorithms for Finding Prime Numbers 841

Let p (i) denote the number of prime numbers less than or equal to i. The primes under 20
are 2, 3, 5, 7, 11, 13, 17, and 19. Therefore, p (2) is 1, p (3) is 2, p (6) is 3, and p (20) is 8.

It has been proved that p (i) is approximately
i

logi
 (see primes.utm.edu/howmany.shtml).

For each number i, the algorithm checks whether a prime number less than or equal to 2i
is divisible by i. The number of the prime numbers less than or equal to 2i is2i

log2i
=

22i

logi

Thus, the complexity for finding all prime numbers up to n is

222

log 2
+

223

log 3
+

224

log 4
+

225

log 5
+

226

log 6
+

227

log 7
+

228

log 8
+ c +

22n

logn

Since
2i

logi
6
2n

logn
 for i 6 n and n Ú 16,

222

log 2
+

223

log 3
+

224

log 4
+

225

log 5
+

226

log 6
+

227

log 7
+

228

log 8
+ c +

22n

logn
6

2n2n

logn

Therefore, the complexity of this algorithm is O¢ n2n

logn
≤.

This algorithm is another example of dynamic programming. The algorithm stores the
results of the subproblems in the array list and uses them later to check whether a new number
is prime.

Is there any algorithm better than O¢ n2n

logn
≤? Let us examine the well-known Eratosthenes

algorithm for finding prime numbers. Eratosthenes (276–194 b.c.) was a Greek mathematician
who devised a clever algorithm, known as the Sieve of Eratosthenes, for finding all prime num-
bers … n. His algorithm is to use an array named primes of n Boolean values. Initially, all
elements in primes are set true. Since the multiples of 2 are not prime, set primes[2 * i]
to false for all 2 … i … n/2, as shown in Figure 22.3. Since we don’t care about primes[0]
and primes[1], these values are marked * in the figure.

dynamic programming

Sieve of Eratosthenes

FIGURE 22.3 The values in primes are changed with each prime number k.

� � Tinitial

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

k = 2

index

primes array

� � T T F T F T F T F T F T F T F T F T F T F T F T F T

k = 3 � � T T F T F T F F F T F T F F F T F T F F F T F T F F

k = 5 � � T T F T F T F F F T F T F F F T F T F F F T F F F F

Since the multiples of 3 are not prime, set primes[3 * i] to false for all 3 … i … n/3.
Because the multiples of 5 are not prime, set primes[5 * i] to false for all 5 … i … n/5.
Note that you don’t need to consider the multiples of 4, because the multiples of 4 are also the
multiples of 2, which have already been considered. Similarly, multiples of 6, 8, and 9 need
not be considered. You only need to consider the multiples of a prime number k = 2, 3, 5, 7,
11, . . . , and set the corresponding element in primes to false. Afterward, if primes[i] is

842 Chapter 22 Developing Efficient Algorithms

still true, then i is a prime number. As shown in Figure 22.3, 2, 3, 5, 7, 11, 13, 17, 19, and 23
are prime numbers. Listing 22.7 gives the program for finding the prime numbers using the
Sieve of Eratosthenes algorithm.

LISTING 22.7 SieveOfEratosthenes.java
 1 import java.util.Scanner;
 2
 3 public class SieveOfEratosthenes {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");
 7 int n = input.nextInt();
 8
 9 boolean[] primes = new boolean[n + 1]; // Prime number sieve
10
11 // Initialize primes[i] to true
12 for (int i = 0; i < primes.length; i++) {
13 primes[i] = true;
14 }
15
16 for (int k = 2; k <= n / k; k++) {
17 if (primes[k]) {
18 for (int i = k; i <= n / k; i++) {
19 primes[k * i] = false; // k * i is not prime
20 }
21 }
22 }
23
24 int count = 0; // Count the number of prime numbers found so far
25 // Print prime numbers
26 for (int i = 2; i < primes.length; i++) {
27 if (primes[i]) {
28 count++;
29 if (count % 10 == 0)
30 System.out.printf("%7d\n", i);
31 else

32 System.out.printf("%7d", i);
33 }
34 }
35
36 System.out.println("\n" + count +
37 " prime(s) less than or equal to " + n);
38 }
39 }

sieve

initialize sieve

nonprime

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
...
...
168 prime(s) less than or equal to 1000

Note that k <= n / k (line 16). Otherwise, k * i would be greater than n (line 19). What
is the time complexity of this algorithm?

22.8 Finding the Closest Pair of Points Using Divide-and-Conquer 843

For each prime number k (line 17), the algorithm sets primes[k * i] to false (line 19).
This is performed n / k – k + 1 times in the for loop (line 18). Thus, the complexity for
finding all prime numbers up to n is

n

2
- 2 + 1 +

n

3
- 3 + 1 +

n

5
- 5 + 1 +

n

7
- 7 + 1 +

n

11
- 11 + 1c

= O¢ n

2
+

n

3
+

n

5
+

n

7
+

n

11
+ c≤ 6 O(np(n))

= O¢n
2n

logn
≤

Algorithm Complexity Description

Listing 5.15 O(n2) Brute-force, checking all possible divisors

Listing 22.5 O(n2n) Checking divisors up to 2n

Listing 22.6 O¢n2n

logn
≤ Checking prime divisors up to 2n

Listing 22.7 O¢n2n

logn
≤ Sieve of Eratosthenes

TABLE 22.5 Comparisons of Prime-Number Algorithms

22.17 Prove that if n is not prime, there must exist a prime number p such that p 6 = 2n
and p is a factor of n.

22.18 Describe how the sieve of Eratosthenes is used to find the prime numbers.

22.8 Finding the Closest Pair of Points Using
Divide-and-Conquer

This section presents efficient algorithms for finding the closest pair of points using
divide-and-conquer.

Given a set of points, the closest-pair problem is to find the two points that are nearest to
each other. As shown in Figure 22.4, a line is drawn to connect the two nearest points in the
closest-pair animation.

Section 8.6, Case Study: Finding the Closest Pair, presented a brute-force algorithm for
finding the closest pair of points. The algorithm computes the distances between all pairs of
points and finds the one with the minimum distance. Clearly, the algorithm takes O(n2) time.
Can we design a more efficient algorithm?

✓Point✓Check

Key
Point

closest-pair animation on

Companion Website

The number of items in
the series is p(n).

This upper bound O¢ n2n

logn
≤ is very loose. The actual time complexity is much better than

O¢ n2n

logn
≤. The Sieve of Eratosthenes algorithm is good for a small n such that the array

primes can fit in the memory.
Table 22.5 summarizes the complexity of these three algorithms for finding all prime num-

bers up to n.

844 Chapter 22 Developing Efficient Algorithms

We will use an approach called divide-and-conquer to solve this problem. The approach
divides the problem into subproblems, solves the subproblems, then combines the solutions of
the subproblems to obtain the solution for the entire problem. Unlike the dynamic program-
ming approach, the subproblems in the divide-and-conquer approach don’t overlap. A sub-
problem is like the original problem with a smaller size, so you can apply recursion to solve
the problem. In fact, all the solutions for recursive problems follow the divide-and-conquer
approach.

Listing 22.8 describes how to solve the closest pair problem using the divide-and-conquer
approach.

LISTING 22.8 Algorithm for Finding the Closest Pair
Step 1: Sort the points in increasing order of x-coordinates. For the
points with the same x-coordinates, sort on y-coordinates. This results
in a sorted list S of points.

Step 2: Divide S into two subsets, S1 and S2, of equal size using the
midpoint in the sorted list. Let the midpoint be in S1. Recursively find
the closest pair in S1 and S2. Let d1 and d2 denote the distance of the
closest pairs in the two subsets, respectively.

Step 3: Find the closest pair between a point in S1 and a point in S2 and
denote their distance as d3. The closest pair is the one with the dis-
tance min(d1, d2, d3).

Selection sort takes O(n2) time. In Chapter 23 we will introduce merge sort and heap sort.
These sorting algorithms take O(n log n) time. Step 1 can be done in O(n log n) time.

Step 3 can be done in O(n) time. Let d = min(d1, d2). We already know that the closest-
pair distance cannot be larger than d. For a point in S1 and a point in S2 to form the closest
pair in S, the left point must be in stripL and the right point in stripR, as illustrated in
Figure 22.5a.

For a point p in stripL, you need only consider a right point within the d * 2d rectangle,
as shown in 22.5b. Any right point outside the rectangle cannot form the closest pair with
p. Since the closest-pair distance in S2 is greater than or equal to d, there can be at most six
points in the rectangle. Thus, for each point in stripL, at most six points in stripR need to
be considered.

For each point p in stripL, how do you locate the points in the corresponding d * 2d
rectangle area in stripR? This can be done efficiently if the points in stripL and stripR
are sorted in increasing order of their y-coordinates. Let pointsOrderedOnY be the list of
the points sorted in increasing order of y-coordinates. pointsOrderedOnY can be obtained
beforehand in the algorithm. stripL and stripR can be obtained from pointsOrderedOnY
in Step 3 as shown in Listing 22.9.

divide-and-conquer

FIGURE 22.4 The closet-pair animation draws a line to connect the closest pair of points
dynamically as points are added and removed interactively.

22.8 Finding the Closest Pair of Points Using Divide-and-Conquer 845

LISTING 22.9 Algorithm for Obtaining stripL and stripR
 1 for each point p in pointsOrderedOnY
 2 if (p is in S1 and mid.x – p.x <= d)
 3 append p to stripL;
 4 else if (p is in S2 and p.x - mid.x <= d)
 5 append p to stripR;

Let the points in stripL and stripR be {p0, p1, c , pk} and {q0, q1, c , qt}, as shown in
Figure 22.5c. The closest pair between a point in stripL and a point in stripR can be found
using the algorithm described in Listing 22.10.

LISTING 22.10 Algorithm for Finding the Closest Pair
in Step 3

 1 d = min(d1, d2);
 2 r = 0; // r is the index of a point in stripR
 3 for (each point p in stripL) {
 4 // Skip the points in stripR below p.y - d
 5 while (r < stripR.length && q[r].y <= p.y - d)
 6 r++;
 7
 8 let r1 = r;
 9 while (r1 < stripR.length && |q[r1].y – p.y| <= d) {
10 // Check if (p, q[r1]) is a possible closest pair
11 if (distance(p, q[r1]) < d) {
12 d = distance(p, q[r1]);
13 (p, q[r1]) is now the current closest pair;
14 }
15
16 r1 = r1 + 1;
17 }
18 }

The points in stripL are considered from p0, p1, c , pk in this order. For a point p in
stripL, skip the points in stripR that are below p.y – d (lines 5–6). Once a point is
skipped, it will no longer be considered. The while loop (lines 9–17) checks whether (p,
q[r1]) is a possible closest pair. There are at most six such q[r1] pairs, because the distance
between two points in stripR cannot be less than d. So the complexity for finding the closest
pair in Step 3 is O(n).

stripL

stripR

update closest pair

FIGURE 22.5 The midpoint divides the points into two sets of equal size.

mid

d2

d1

d

(a) (b) (c)

d

stripL stripR

S1 S2

d d

stripL stripR

p d p

q[r]

stripL stripR

846 Chapter 22 Developing Efficient Algorithms

Note that Step 1 in Listing 22.8 is performed only once to presort the points. Assume that
all the points are presorted. Let T(n) denote the time complexity for this algorithm. Thus,

Step 2 Step 3

T(n) = 2T(n/2) + O(n) = O(n logn)

Therefore, the closest pair of points can be found in O(n log n) time. The complete implemen-
tation of this algorithm is left as an exercise (see Programming Exercise 22.7).

22.19 What is the divide-and-conquer approach? Give an example.

22.20 What is the difference between divide-and-conquer and dynamic programming?

22.21 Can you design an algorithm for finding the minimum element in a list using divide-
and-conquer? What is the complexity of this algorithm?

22.9 Solving the Eight Queens Problem Using
Backtracking

This section solves the Eight Queens problem using the backtracking approach.

The Eight Queens problem is to find a solution to place a queen in each row on a chessboard
such that no two queens can attack each other. The problem can be solved using recursion (See
Programming Exercise 18.34). In this section, we will introduce a common algorithm design
technique called backtracking for solving this problem. The backtracking approach searches
for a candidate solution incrementally, abandoning that option as soon as it determines that the
candidate cannot possibly be a valid solution, and then looks for a new candidate.

You can use a two-dimensional array to represent a chessboard. However, since each row
can have only one queen, it is sufficient to use a one-dimensional array to denote the position
of the queen in the row. Thus, you can define the queens array as:

int[] queens = new int[8];

Assign j to queens[i] to denote that a queen is placed in row i and column j. Figure 22.6a
shows the contents of the queens array for the chessboard in Figure 22.6b.

✓Point✓Check

Key
Point

backtracking

FIGURE 22.6 queens[i] denotes the position of the queen in row i.

(a) (b)

0
4
7
5

2
6

1
3

queens[0]
queens[1]
queens[2]
queens[3]
queens[4]
queens[5]
queens[6]
queens[7]

The search starts from the first row with k = 0, where k is the index of the current row
being considered. The algorithm checks whether a queen can be possibly placed in the jth
column in the row for j = 0, 1, c , 7, in this order. The search is implemented as follows:

 ■ If successful, it continues to search for a placement for a queen in the next row. If the
current row is the last row, a solution is found.

 ■ If not successful, it backtracks to the previous row and continues to search for a new
placement in the next column in the previous row.

 ■ If the algorithm backtracks to the first row and cannot find a new placement for a
queen in this row, no solution can be found.

search algorithm

Eight Queens animation on

the Companion Website

22.9 Solving the Eight Queens Problem Using Backtracking 847

To see how the algorithm works, go to www.cs.armstrong.edu/liang/animation/
EightQueensAnimation.html.

Listing 22.11 gives the program that displays a solution for the Eight Queens problem.

LISTING 22.11 EightQueens.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.image.Image;
 7 import javafx.scene.image.ImageView;
 8 import javafx.scene.layout.GridPane;
 9
 10 public class EightQueens extends Application {
 11 public static final int SIZE = 8; // The size of the chess board
 12 // queens are placed at (i, queens[i])
 13 // -1 indicates that no queen is currently placed in the ith row
 14 // Initially, place a queen at (0, 0) in the 0th row
 15 private int[] queens = {-1, -1, -1, -1, -1, -1, -1, -1};
 16
 17 @Override // Override the start method in the Application class
 18 public void start(Stage primaryStage) {
 19 search(); // Search for a solution
 20
 21 // Display chess board
 22 GridPane chessBoard = new GridPane();
 23 chessBoard.setAlignment(Pos.CENTER);
 24 Label[][] labels = new Label[SIZE][SIZE];
 25 for (int i = 0; i < SIZE; i++)
 26 for (int j = 0; j < SIZE; j++) {
 27 chessBoard.add(labels[i][j] = new Label(), j, i);
 28 labels[i][j].setStyle("-fx-border-color: black");
 29 labels[i][j].setPrefSize(55, 55);
 30 }
 31
 32 // Display queens
 33 Image image = new Image("image/queen.jpg");
 34 for (int i = 0; i < SIZE; i++)
 35 labels[i][queens[i]].setGraphic(new ImageView(image));
 36
 37 // Create a scene and place it in the stage
 38 Scene scene = new Scene(chessBoard, 55 * SIZE, 55 * SIZE);
 39 primaryStage.setTitle("EightQueens"); // Set the stage title
 40 primaryStage.setScene(scene); // Place the scene in the stage
 41 primaryStage.show(); // Display the stage
 42 }
 43
 44 /** Search for a solution */
 45 private boolean search() {
 46 // k - 1 indicates the number of queens placed so far
 47 // We are looking for a position in the kth row to place a queen
 48 int k = 0;
 49 while (k >= 0 && k < SIZE) {
 50 // Find a position to place a queen in the kth row
 51 int j = findPosition(k);
 52 if (j < 0) {
 53 queens[k] = -1;
 54 k--; // back track to the previous row
 55 } else {

queen positions

search for solution

find a column

create cells

set queen image

backtrack

www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html
www.cs.armstrong.edu/liang/animation/EightQueensAnimation.html

848 Chapter 22 Developing Efficient Algorithms

 56 queens[k] = j;
 57 k++;
 58 }
 59 }
 60
 61 if (k == -1)
 62 return false; // No solution
 63 else

 64 return true; // A solution is found
 65 }
 66
 67 public int findPosition(int k) {
 68 int start = queens[k] + 1; // Search for a new placement
 69
 70 for (int j = start; j < SIZE; j++) {
 71 if (isValid(k, j))
 72 return j; // (k, j) is the place to put the queen now
 73 }
 74
 75 return -1;
 76 }
 77
 78 /** Return true if a queen can be placed at (row, column) */
 79 public boolean isValid(int row, int column) {
 80 for (int i = 1; i <= row; i++)
 81 if (queens[row - i] == column // Check column
 82 || queens[row - i] == column - i // Check upleft diagonal
 83 || queens[row - i] == column + i) // Check upright diagonal
 84 return false; // There is a conflict
 85 return true; // No conflict
 86 }
 87 }

The program invokes search() (line 19) to search for a solution. Initially, no queens are
placed in any rows (line 15). The search now starts from the first row with k = 0 (line 48) and
finds a place for the queen (line 51). If successful, place it in the row (line 56) and consider the
next row (line 57). If not successful, backtrack to the previous row (lines 53–54).

The findPosition(k) method searches for a possible position to place a queen in row
k starting from queen[k] + 1 (line 68). It checks whether a queen can be placed at start,
start + 1, . . . , and 7, in this order (lines 70–73). If possible, return the column index
(line 72); otherwise, return -1 (line 75).

The isValid(row, column) method is called to check whether placing a queen at the
specified position causes a conflict with the queens placed earlier (line 71). It ensures that no
queen is placed in the same column (line 81), in the upper-left diagonal (line 82), or in the
upper-right diagonal (line 83), as shown in Figure 22.7.

place a queen
search the next row

FIGURE 22.7 Invoking isValid(row, column) checks whether a queen can be placed at
(row, column).

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

upright diagonal

check
column

upleft
(row, column)

22.10 Computational Geometry: Finding a Convex Hull 849

22.22 What is backtracking? Give an example.

22.23 If you generalize the Eight Queens problem to the n-Queens problem in an n-by-n
chessboard, what will be the complexity of the algorithm?

22.10 Computational Geometry: Finding a Convex Hull
This section presents efficient geometric algorithms for finding a convex hull for a set
of points.

Computational geometry is to study the algorithms for geometrical problems. It has appli-
cations in computer graphics, games, pattern recognition, image processing, robotics, geo-
graphical information systems, and computer-aided design and manufacturing. Section 22.8
presented a geometrical algorithm for finding the closest pair of points. This section intro-
duces geometrical algorithms for finding a convex hull.

Given a set of points, a convex hull is the smallest convex polygon that encloses all these
points, as shown in Figure 22.8a. A polygon is convex if every line connecting two vertices is
inside the polygon. For example, the vertices v0, v1, v2, v3, v4, and v5 in Figure 22.8a form
a convex polygon, but not in Figure 22.8b, because the line that connects v3 and v1 is not
inside the polygon.

✓Point✓Check

Key
Point

convex hull

FIGURE 22.8 A convex hull is the smallest convex polygon that contains a set of points.

(a) A convex hull (b) A nonconvex polygon (c) Convex hull animation

v3

v2

v1

v4

v5
v0

v1

v3

v2

v0v5

v4

A convex hull has many applications in game programming, pattern recognition, and
image processing. Before we introduce the algorithms, it is helpful to get acquainted with the
concept using an interactive tool from www.cs.armstrong.edu/liang/animation/ConvexHull.html, as
shown in Figure 22.8c. This tool allows you to add and remove points and displays the convex
hull dynamically.

Many algorithms have been developed to find a convex hull. This section introduces two
popular algorithms: the gift-wrapping algorithm and Graham’s algorithm.

22.10.1 Gift-Wrapping Algorithm
An intuitive approach, called the gift-wrapping algorithm, works as shown in Listing 22.12:

LISTING 22.12 Finding a Convex Hull Using Gift-
Wrapping Algorithm

Step 1: Given a list of points S, let the points in S be labeled s0, s1,
..., sk. Select the rightmost lowest point S. As shown in Figure 22.9a,
h0 is such a point. Add h0 to list H. (H is initially empty. H will hold
all points in the convex hull after the algorithm is finished.) Let t0
be h0.

convex hull animation on the

Companion Website

www.cs.armstrong.edu/liang/animation/ConvexHull.html

850 Chapter 22 Developing Efficient Algorithms

Step 2: Let t1 be s0.
 For every point p in S,
 if p is on the right side of the direct line from t0 to t1, then
 let t1 be p.
(After Step 2, no points lie on the right side of the direct line from t0
to t1, as shown in Figure 22.9b.)

Step 3: If t1 is h0 (see Figure 22.9d), the points in H form a convex
hull for S. Otherwise, add t1 to H, let t0 be t1, and go back to Step 2
(see Figure 22.9c).

The convex hull is expanded incrementally. The correctness is supported by the fact that no
points lie on the right side of the direct line from t0 to t1 after Step 2. This ensures that every
line segment with two points in S falls inside the polygon.

Finding the rightmost lowest point in Step 1 can be done in O(n) time. Whether a point is
on the left side of a line, right side, or on the line can be determined in O(1) time (see Program-
ming Exercise 3.32). Thus, it takes O(n) time to find a new point t1 in Step 2. Step 2 is repeated
h times, where h is the size of the convex hull. Therefore, the algorithm takes O(hn) time. In
the worst-case, h is n.

The implementation of this algorithm is left as an exercise (see Programming Exercise 22.9).

22.10.2 Graham’s Algorithm
A more efficient algorithm was developed by Ronald Graham in 1972, as shown in Listing 22.13.

LISTING 22.13 Finding a Convex Hull Using Graham's
Algorithm

Step 1: Given a list of points S, select the rightmost lowest point and
name it p0. As shown in Figure 22.10a, p0 is such a point.

correctness of the algorithm

time complexity of the
algorithm

FIGURE 22.9 (a) h0 is the rightmost lowest point in S. (b) Step 2 finds point t1. (c) A convex hull is expanded repeatedly.
(d) A convex hull is found when t1 becomes h0.

(a) Step 1 (b) Step 2 (c) Repeat Step 2 (d) H is found

t1 = h0t0

t0

t1

t1
t0h0

FIGURE 22.10 (a) p0 is the rightmost lowest point in S. (b) Points are sorted by their angles. (c–d) A convex hull is
discovered incrementally.

(a) Step 1 (b) Step 2 (c) p3 into H (d) p2 off H

p0 p0 p0 p0

XX

p1 p1

p1
p2 p2 p2

p3
p3

x-axis x-axis x-axis

Step 2: Sort the points in S angularly along the x-axis with p0 as the
center, as shown in Figure 22.10b. If there is a tie and two points have
the same angle, discard the one that is closer to p0. The points in S are
now sorted as p0, p1, p2, ..., pn-1.

Step 3: Push p0, p1, and p2 into stack H. (After the algorithm finishes,
H contains all the points in the convex hull.)

Step 4:
 i = 3;
 while (i < n) {
 Let t1 and t2 be the top first and second element in stack H;
 if (pi is on the left side of the direct line from t2 to t1) {
 Push pi to H;
 i++; // Consider the next point in S.
 }
 else
 Pop the top element off stack H.
 }

Step 5: The points in H form a convex hull.

The convex hull is discovered incrementally. Initially, p0, p1,and p2 form a convex hull.
Consider p3. p3 is outside of the current convex hull since points are sorted in increasing order
of their angles. If p3 is strictly on the left side of the line from p1 to p2 (see Figure 22.10c),
push p3 into H. Now p0, p1, p2, and p3 form a convex hull. If p3 is on the right side of the line
from p1 to p2 (see Figure 22.10d), pop p2 out of H and push p3 into H. Now p0, p1, and p3

form a convex hull and p2 is inside of this convex hull. You can prove by induction that all the
points in H in Step 5 form a convex hull for all the points in the input list S.

Finding the rightmost lowest point in Step 1 can be done in O(n) time. The angles can be
computed using trigonometry functions. However, you can sort the points without actually
computing their angles. Observe that p2 would make a greater angle than p1 if and only if p2

lies on the left side of the line from p0 to p1. Whether a point is on the left side of a line can
be determined in O(1) time, as shown in Programming Exercise 3.32. Sorting in Step 2 can be
done in O(n log n) time using the merge-sort or heap-sort algorithms that will be introduced
in Chapter 23. Step 4 can be done in O(n) time. Therefore, the algorithm takes O(n logn) time.

The implementation of this algorithm is left as an exercise (see Programming Exercise 22.11).

22.24 What is a convex hull?

22.25 Describe the gift-wrapping algorithm for finding a convex hull. Should list H be
implemented using an ArrayList or a LinkedList?

22.26 Describe Graham’s algorithm for finding a convex hull. Why does the algorithm use
a stack to store the points in a convex hull?

correctness of the algorithm

time complexity of the
algorithm

✓Point✓Check

KEY TERMS

average-case analysis 822
backtracking approach 846
best-case input 822
Big O notation 822
brute force 833
constant time 823
convex hull 849
divide-and-conquer approach 844

dynamic programming approach 832
exponential time 829
growth rate 822
logarithmic time 828
quadratic time 825
space complexity 823
time complexity 823
worst-case input 822

CHAPTER SUMMARY

1. The Big O notation is a theoretical approach for analyzing the performance of an
algorithm. It estimates how fast an algorithm’s execution time increases as the input
size increases, which enables you to compare two algorithms by examining their
growth rates.

Chapter Summary 851

852 Chapter 22 Developing Efficient Algorithms

2. An input that results in the shortest execution time is called the best-case input and one
that results in the longest execution time is called the worst-case input. Best case and
worst case are not representative, but worst-case analysis is very useful. You can be
assured that the algorithm will never be slower than the worst case.

3. An average-case analysis attempts to determine the average amount of time among all
possible input of the same size. Average-case analysis is ideal, but difficult to perform,
because for many problems it is hard to determine the relative probabilities and distribu-
tions of various input instances.

4. If the time is not related to the input size, the algorithm is said to take constant time with
the notation O(1).

5. Linear search takes O(n) time. An algorithm with the O(n) time complexity is called a
linear algorithm and it exhibits a linear growth rate. Binary search takes O(logn) time.
An algorithm with the O(log n) time complexity is called a logarithmic algorithm, and
it exhibits a logarithmic growth rate.

6. The worst-time complexity for selection sort is O(n2). An algorithm with the O(n2) time
complexity is called a quadratic algorithm, and it exhibits a quadratic growth rate.

7. The time complexity for the Tower of Hanoi problem is O(2n). An algorithm with the
O(2n) time complexity is called an exponential algorithm, and it exhibits an exponential
growth rate.

8. A Fibonacci number at a given index can be found in O(n) time using dynamic
programming.

9. Dynamic programming is the process of solving subproblems, then combining the solu-
tions of the subproblems to obtain an overall solution. The key idea behind dynamic
programming is to solve each subproblem only once and store the results for subprob-
lems for later use to avoid redundant computing of the subproblems.

10. Euclid’s GCD algorithm takes O(log n) time.

11. All prime numbers less than or equal to n can be found in O¢ n2n

log n
≤ time.

12. The closest pair can be found in O(n log n) time using the divide-and-conquer approach.

13. The divide-and-conquer approach divides the problem into subproblems, solves the
subproblems, then combines the solutions of the subproblems to obtain the solution for
the entire problem. Unlike the dynamic programming approach, the subproblems in the
divide-and-conquer approach don’t overlap. A subproblem is like the original problem
with a smaller size, so you can apply recursion to solve the problem.

14. The Eight Queens problem can be solved using backtracking.

15. The backtracking approach searches for a candidate solution incrementally, abandoning
that option as soon as it determines that the candidate cannot possibly be a valid solu-
tion, and then looks for a new candidate.

16. A convex hull for a set of points can be found in O(n2) time using the gift-wrapping
algorithm and in O(n logn) time using the Graham’s algorithm.

Programming Exercises 853

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/test.html.

PROGRAMMING EXERCISES

*22.1 (Maximum consecutive increasingly ordered substring) Write a program that
prompts the user to enter a string and displays the maximum consecutive
increasingly ordered substring. Analyze the time complexity of your program.
Here is a sample run:

Enter a string:abcabcdgabxy
abcdg

Enter a string: abcabcdgabmnsxy
abmnsxy

Enter a string: Welcome
Welo

Enter a string s1: Welcome to Java
Enter a string s2: come
matched at index 3

Enter a string s1: Mississippi
Enter a string s2: sip
matched at index 6

**22.2 (Maximum increasingly ordered subsequence) Write a program that prompts
the user to enter a string and displays the maximum increasingly ordered sub-
sequence of characters. Analyze the time complexity of your program. Here is
a sample run:

*22.3 (Pattern matching) Write a program that prompts the user to enter two strings
and tests whether the second string is a substring of the first string. Suppose
the neighboring characters in the string are distinct. (Don’t use the indexOf
method in the String class.) Analyze the time complexity of your algorithm.
Your algorithm needs to be at least O(n) time. Here is a sample run of the
program:

*22.4 (Pattern matching) Write a program that prompts the user to enter two strings
and tests whether the second string is a substring of the first string. (Don’t use
the indexOf method in the String class.) Analyze the time complexity of
your algorithm. Here is a sample run of the program:

www.cs.armstrong.edu/liang/intro10e/test.html

854 Chapter 22 Developing Efficient Algorithms

*22.5 (Same-number subsequence) Write an O(n) program that prompts the user to
enter a sequence of integers ending with 0 and finds the longest subsequence
with the same number. Here is a sample run of the program:

Enter a series of numbers ending with 0:
2 4 4 8 8 8 8 2 4 4 0
The longest same number sequence starts at index 3 with 4 values of 8

40 41 42 43 44 45

Listing 22.3 GCD

Listing 22.4 GCDEuclid

*22.6 (Execution time for GCD) Write a program that obtains the execution time for
finding the GCD of every two consecutive Fibonacci numbers from the index
40 to index 45 using the algorithms in Listings 22.3 and 22.4. Your program
should print a table like this:

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

**22.7 (Closest pair of points) Section 22.8 introduced an algorithm for finding the
closest pair of points using a divide-and-conquer approach. Implement the
algorithm to meet the following requirements:

■ Define the classes Point and CompareY in the same way as in Programming
Exercise 20.4.

■ Define a class named Pair with the data fields p1 and p2 to represent two
points, and a method named getDistance() that returns the distance
between the two points.

■ Implement the following methods:

/** Return the distance of the closest pair of points */
public static Pair getClosestPair(double[][] points)

/** Return the distance of the closest pair of points */
public static Pair getClosestPair(Point[] points)

 /** Return the distance of the closest pair of points
 * in pointsOrderedOnX[low..high]. This is a recursive
 * method. pointsOrderedOnX and pointsOrderedOnY are
 * not changed in the subsequent recursive calls.
 */
public static Pair distance(Point[] pointsOrderedOnX,

int low, int high, Point[] pointsOrderedOnY)

Programming Exercises 855

/** Compute the distance between two points p1 and p2 */
public static double distance(Point p1, Point p2)

/** Compute the distance between points (x1, y1) and (x2, y2) */
public static double distance(double x1, double y1,

double x2, double y2)

**22.8 (All prime numbers up to 10,000,000,000) Write a program that finds
all prime numbers up to 10,000,000,000. There are approximately
455,052,511 such prime numbers. Your program should meet the following
requirements:

■ Your program should store the prime numbers in a binary data file, named
PrimeNumbers.dat. When a new prime number is found, the number is
appended to the file.

■ To find whether a new number is prime, your program should load the
prime numbers from the file to an array of the long type of size 10000.
If no number in the array is a divisor for the new number, continue to read
the next 10000 prime numbers from the data file, until a divisor is found
or all numbers in the file are read. If no divisor is found, the new number
is prime.

■ Since this program takes a long time to finish, you should run it as a batch
job from a UNIX machine. If the machine is shut down and rebooted, your
program should resume by using the prime numbers stored in the binary data
file rather than start over from scratch.

**22.9 (Geometry: gift-wrapping algorithm for finding a convex hull) Section 22.10.1
introduced the gift-wrapping algorithm for finding a convex hull for a set of
points. Assume that the Java’s coordinate system is used for the points. Imple-
ment the algorithm using the following method:

/** Return the points that form a convex hull */
public static ArrayList<Point2D> getConvexHull(double[][] s)

Point2D is defined in Section 9.6.
 Write a test program that prompts the user to enter the set size and the points

and displays the points that form a convex hull. Here is a sample run:

How many points are in the set? 6
Enter 6 points: 1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
The convex hull is
 (1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

22.10 (Number of prime numbers) Programming Exercise 22.8 stores the prime num-
bers in a file named PrimeNumbers.dat. Write a program that finds the num-
ber of prime numbers that are less than or equal to 10, 100, 1,000, 10,000,
100,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, and
10,000,000,000. Your program should read the data from PrimeNumbers.dat.

856 Chapter 22 Developing Efficient Algorithms

**22.11 (Geometry: Graham’s algorithm for finding a convex hull) Section 22.10.2
introduced Graham’s algorithm for finding a convex hull for a set of points.
Assume that the Java’s coordinate system is used for the points. Implement the
algorithm using the following method:

/** Return the points that form a convex hull */
public static ArrayList<MyPoint> getConvexHull(double[][] s)

MyPoint is a static inner class defined as follows:
private static class MyPoint implements Comparable<MyPoint> {

double x, y;

 MyPoint rightMostLowestPoint;

 MyPoint(double x, double y) {
this.x = x; this.y = y;

 }

public void setRightMostLowestPoint(MyPoint p) {
rightMostLowestPoint = p;

 }

 @Override
public int compareTo(MyPoint o) {

// Implement it to compare this point with point o
// angularly along the x-axis with rightMostLowestPoint
// as the center, as shown in Figure 22.10b. By implementing
// the Comparable interface, you can use the Array.sort
// method to sort the points to simplify coding.

 }
 }

 Write a test program that prompts the user to enter the set size and the points
and displays the points that form a convex hull. Here is a sample run:

How many points are in the set? 6
Enter 6 points: 1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
The convex hull is
 (1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

*22.12 (Last 100 prime numbers) Programming Exercise 22.8 stores the prime num-
bers in a file named PrimeNumbers.dat. Write an efficient program that reads
the last 100 numbers in the file. (Hint: Don’t read all numbers from the file.
Skip all numbers before the last 100 numbers in the file.)

**22.13 (Geometry: convex hull animation) Programming Exercise 22.11 finds a con-
vex hull for a set of points entered from the console. Write a program that ena-
bles the user to add/remove points by clicking the left/right mouse button, and
displays a convex hull, as shown in Figure 22.8c.

*22.14 (Execution time for prime numbers) Write a program that obtains the execu-
tion time for finding all the prime numbers less than 8,000,000, 10,000,000,

Programming Exercises 857

12,000,000, 14,000,000, 16,000,000, and 18,000,000 using the algorithms in
Listings 22.5–22.7. Your program should print a table like this:

8000000 10000000 12000000 14000000 16000000 18000000

Listing 22.5

Listing 22.6

Listing 22.7

FIGURE 22.11 (a) Programming Exercise22.15 displays a non-crossed polygon for a set of
points. (b) Two or more sides intersect in a crossed polygon.

(a) (b) Crossed polygon

**22.15 (Geometry: non-cross polygon) Write a program that enables the user to add/
remove points by clicking the left/right mouse button, and displays a non-
crossed polygon that links all the points, as shown in Figure 22.11a. A polygon
is crossed if two or more sides intersect, as shown in Figure 22.11b. Use the
following algorithm to construct a polygon from a set of points.

Step 1: Given a set of points S, select the rightmost lowest
point p0 in the set S.

Step 2: Sort the points in S angularly along the x-axis
with p0 as the center. If there is a tie and two points have
the same angle, the one that is closer to p0 is considered
greater. The points in S are now sorted as p0, p1, p2, ...,
pn-1.

Step 3: The sorted points form a non-cross polygon.

**22.16 (Linear search animation) Write a program that animates the linear search
algorithm. Create an array that consists of 20 distinct numbers from 1 to 20
in a random order. The array elements are displayed in a histogram, as shown
in Figure 22.12. You need to enter a search key in the text field. Clicking the
Step button causes the program to perform one comparison in the algorithm and
repaints the histogram with a bar indicating the search position. This button
also freezes the text field to prevent its value from being changed. When the
algorithm is finished, display the status in the label at the top of the border pane
to inform the user. Clicking the Reset button creates a new random array for a
new start. This button also makes the text field editable.

858 Chapter 22 Developing Efficient Algorithms

**22.17 (Closest-pair animation) Write a program that enables the user to add/remove
points by clicking the left/right mouse button, and displays a line that connects
the pair of nearest points, as shown in Figure 22.4.

**22.18 (Binary search animation) Write a program that animates the binary search algo-
rithm. Create an array with numbers from 1 to 20 in this order. The array ele-
ments are displayed in a histogram, as shown in Figure 22.13. You need to enter
a search key in the text field. Clicking the Step button causes the program to
perform one comparison in the algorithm. Use a light-gray color to paint the bars
for the numbers in the current search range and use a black color to paint the a bar
indicating the middle number in the search range. The Step button also freezes the
text field to prevent its value from being changed. When the algorithm is finished,
display the status in a label at the top of a border pane. Clicking the Reset button
enables a new search to start. This button also makes the text field editable.

FIGURE 22.13 The program animates a binary search.

*22.19 (Largest block) The problem for finding a largest block is described in Pro-
gramming Exercise 8.35. Design a dynamic programming algorithm for solv-
ing this problem in O(n2) time. Write a test program that displays a 10-by-10
square matrix, as shown in Figure 22.14a. Each element in the matrix is 0 or
1, randomly generated with a click of the Refresh button. Display each number
centered in a text field. Use a text field for each entry. Allow the user to change
the entry value. Click the Find Largest Block button to find a largest square
submatrix that consists of 1s. Highlight the numbers in the block, as shown in
Figure 22.14b. See www.cs.armstrong.edu/liang/animation/FindLargestBlock.html
for an interactive test.

FIGURE 22.12 The program animates a linear search.

www.cs.armstrong.edu/liang/animation/FindLargestBlock.html

Programming Exercises 859

***22.20 (Game: multiple Sudoku solutions) The complete solution for the Sudoku prob-
lem is given in Supplement VI.A. A Sudoku problem may have multiple solu-
tions. Modify Sudoku.java in Supplement VI.A to display the total number of
the solutions. Display two solutions if multiple solutions exist.

***22.21 (Game: Sudoku) The complete solution for the Sudoku problem is given in
Supplement VI.C. Write a program that lets the user enter the input from the
text fields, as shown in Figure 22.15a. Clicking the Solve button displays the
result, as shown in Figure 22.15b–c.

***22.22 (Game: recursive Sudoku) Write a recursive solution for the Sudoku problem.

***22.23 (Game: multiple Eight Queens solution) Write a program to display all possible
solutions for the Eight Queens puzzle in a scroll pane, as shown in Figure 22.16.
For each solution, put a label to denote the solution number. (Hint: Place all
solution panes into an HBox and place this one pane into a ScrollPane.)

**22.24 (Find the smallest number) Write a method that uses the divide-and-conquer
approach to find the smallest number in a list.

FIGURE 22.14 The program finds the largest block of 1s.

(a) (b)

FIGURE 22.15 The program solves the Sudoku problem.

(a) (b) (c)

860 Chapter 22 Developing Efficient Algorithms

***22.25 (Game: Sudoku) Revise Programming Exercise 22.21 to display all solutions
for the Sudoku game, as shown in Figure 22.17a. When you click the Solve
button, the program stores all solutions in an ArrayList. Each element in the
list is a two-dimensional 9-by-9 grid. If the program has multiple solutions, the
Next button appears as shown in Figure 22.17b. You can click the Next button
to display the next solution and also a label to show the solution count. When
the Clear button is clicked, the cells are cleared and the Next button is hidden
as shown in Figure 22.17c.

FIGURE 22.17 The program can display multiple Sudoku solutions.

(a) (b) (c)

FIGURE 22.16 All solutions are placed in a scroll pane.

SORTING

Objectives
■ To study and analyze time complexity of various sorting algorithms

(§§23.2–23.7).

■ To design, implement, and analyze insertion sort (§23.2).

■ To design, implement, and analyze bubble sort (§23.3).

■ To design, implement, and analyze merge sort (§23.4).

■ To design, implement, and analyze quick sort (§23.5).

■ To design and implement a binary heap (§23.6).

■ To design, implement, and analyze heap sort (§23.6).

■ To design, implement, and analyze bucket sort and radix sort (§23.7).

■ To design, implement, and analyze external sort for files that have a
large amount of data (§23.8).

CHAPTER

23

862 Chapter 23 Sorting

23.1 Introduction
Sorting algorithms are good examples for studying algorithm design and analysis.

When presidential candidate Barack Obama visited Google in 2007, Google CEO Eric
Schmidt asked Obama the most efficient way to sort a million 32-bit integers (www.youtube
.com/watch?v=k4RRi_ntQc8). Obama answered that the bubble sort would be the wrong way to
go. Was he right? We will examine different sorting algorithms in this chapter and see if he
was correct.

Sorting is a classic subject in computer science. There are three reasons to study sorting
algorithms.

 ■ First, sorting algorithms illustrate many creative approaches to problem solving, and
these approaches can be applied to solve other problems.

 ■ Second, sorting algorithms are good for practicing fundamental programming tech-
niques using selection statements, loops, methods, and arrays.

 ■ Third, sorting algorithms are excellent examples to demonstrate algorithm
performance.

The data to be sorted might be integers, doubles, characters, or objects. Section 7.11, Sorting
Arrays, presented selection sort. The selection sort algorithm was extended to sort an array of
objects in Section 19.5, Case Study: Sorting an Array of Objects. The Java API contains several
overloaded sort methods for sorting primitive type values and objects in the java.util.Arrays
and java.util.Collections classes. For simplicity, this chapter assumes:

1. data to be sorted are integers,

2. data are stored in an array, and

3. data are sorted in ascending order.

The programs can be easily modified to sort other types of data, to sort in descending order,
or to sort data in an ArrayList or a LinkedList.

There are many algorithms for sorting. You have already learned selection sort. This chap-
ter introduces insertion sort, bubble sort, merge sort, quick sort, bucket sort, radix sort, and
external sort.

23.2 Insertion Sort
The insertion-sort algorithm sorts a list of values by repeatedly inserting a new
element into a sorted sublist until the whole list is sorted.

Figure 23.1 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using insertion sort.
The algorithm can be described as follows:

for (int i = 1; i < list.length; i++) {
 insert list[i] into a sorted sublist list[0..i-1] so that
 list[0..i] is sorted.
}

To insert list[i] into list[0..i-1], save list[i] into a temporary variable, say
currentElement. Move list[i-1] to list[i] if list[i-1] > currentElement,
move list[i-2] to list[i-1] if list[i-2] > currentElement, and so on, until
list[i-k] <= currentElement or k > i (we pass the first element of the sorted list).
Assign currentElement to list[i-k+1]. For example, to insert 4 into {2, 5, 9} in Step
4 in Figure 23.2, move list[2] (9) to list[3] since 9 > 4, and move list[1] (5) to
list[2] since 5 > 4. Finally, move currentElement (4) to list[1].

Key
Point

why study sorting?

what data to sort?

Key
Point

insertion sort animation on

Companion Website

www.youtube.com/watch?v=k4RRi_ntQc8
www.youtube.com/watch?v=k4RRi_ntQc8

23.2 Insertion Sort 863

The algorithm can be expanded and implemented as in Listing 23.1.

LISTING 23.1 InsertionSort.java
 1 public class InsertionSort {
 2 /** The method for sorting the numbers */
 3 public static void insertionSort(int[] list) {
 4 for (int i = 1; i < list.length; i++) {
 5 /** Insert list[i] into a sorted sublist list[0..i-1] so that
 6 list[0..i] is sorted. */
 7 int currentElement = list[i];
 8 int k;
 9 for (k = i - 1; k >= 0 && list[k] > currentElement; k--) {
10 list[k + 1] = list[k];

shift

FIGURE 23.1 Insertion sort repeatedly inserts a new element into a sorted sublist.

Step 1: Initially, the sorted sublist contains the
first element in the list. Insert 9 into the sublist.

Step 2: The sorted sublist is {2, 9}. Insert 5 into
the sublist.

Step 3: The sorted sublist is {2, 5, 9}. Insert 4
into the sublist.

Step 4: The sorted sublist is {2, 4, 5, 9}. Insert 8
into the sublist.

Step 5: The sorted sublist is {2, 4, 5, 8, 9}.
Insert 1 into the sublist.

Step 6: The sorted sublist is {1, 2, 4, 5, 8, 9}.
Insert 6 into the sublist.

Step 7: The entire list is now sorted.

2

2

2

2

2

1

1

9

9

5

4

4

2

2

5

5

9

5

5

4

4

4

4

4

9

8

5

5

8

8

8

8

9

8

6

1

1

1

1

1

9

8

6

6

6

6

6

6

9

FIGURE 23.2 A new element is inserted into a sorted sublist.

[0][1][2][3][4][5]

2list 5 9 4

[6]

[0][1][2][3][4][5]

2list 4 5 9

[6]

[6][0][1][2][3][4][5]

[6][0][1][2][3][4][5]

2list 5 9

2 5 9list

Step 1: Save 4 to a temporary variable currentElement

currentElement: 4

Step 2: Move list[2] to list[3]

Step 3: Move list[1] to list[2]

Step 4: Assign currentElement to list[1]

864 Chapter 23 Sorting

11 }
12
13 // Insert the current element into list[k + 1]
14 list[k + 1] = currentElement;
15 }
16 }
17 }

The insertionSort(int[] list) method sorts any array of int elements. The method
is implemented with a nested for loop. The outer loop (with the loop control variable i) (line
4) is iterated in order to obtain a sorted sublist, which ranges from list[0] to list[i]. The
inner loop (with the loop control variable k) inserts list[i] into the sublist from list[0]
to list[i-1].

To better understand this method, trace it with the following statements:

int[] list = {1, 9, 4, 6, 5, -4};
InsertionSort.insertionSort(list);

The insertion sort algorithm presented here sorts a list of elements by repeatedly inserting a
new element into a sorted partial array until the whole array is sorted. At the kth iteration, to
insert an element into an array of size k, it may take k comparisons to find the insertion posi-
tion, and k moves to insert the element. Let T(n) denote the complexity for insertion sort and
c denote the total number of other operations such as assignments and additional comparisons
in each iteration. Thus,

T(n) = (2 + c) + (2 * 2 + c) + g + (2 * (n - 1) + c)

= 2(1 + 2 + g + n - 1) + c(n - 1)

= 2
(n - 1)n

2
+ cn - c = n2 - n + cn - c

= O(n2)

Therefore, the complexity of the insertion sort algorithm is O(n2). Hence, the selection sort
and insertion sort are of the same time complexity.

23.1 Describe how an insertion sort works. What is the time complexity for an insertion
sort?

23.2 Use Figure 23.1 as an example to show how to apply a bubble sort on {45, 11, 50, 59,
60, 2, 4, 7, 10}.

23.3 If a list is already sorted, how many comparisons will the insertionSort method
perform?

23.3 Bubble Sort
A bubble sort sorts the array in multiple phases. Each pass successively swaps the
neighboring elements if the elements are not in order.

The bubble sort algorithm makes several passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is in decreasing order, its values are swapped; oth-
erwise, the values remain unchanged. The technique is called a bubble sort or sinking sort,
because the smaller values gradually “bubble” their way to the top and the larger values sink
to the bottom. After the first pass, the last element becomes the largest in the array. After the
second pass, the second-to-last element becomes the second largest in the array. This process
is continued until all elements are sorted.

insert

insertion sort time complexity

✓Point✓Check

Key
Point

bubble sort

23.3 Bubble Sort 865

Figure 23.3a shows the first pass of a bubble sort on an array of six elements (2 9 5 4 8 1).
Compare the elements in the first pair (2 and 9), and no swap is needed because they are already
in order. Compare the elements in the second pair (9 and 5), and swap 9 with 5 because 9 is
greater than 5. Compare the elements in the third pair (9 and 4), and swap 9 with 4. Compare
the elements in the fourth pair (9 and 8), and swap 9 with 8. Compare the elements in the fifth
pair (9 and 1), and swap 9 with 1. The pairs being compared are highlighted and the numbers
already sorted are italicized in Figure 23.3.

bubble sort illustration

bubble sort on the

Companion Website

FIGURE 23.3 Each pass compares and orders the pairs of elements sequentially.

(a) 1st pass (b) 2nd pass (c) 3rd pass (d) 4th pass (e) 5th pass

2 5 9 4 8 1

2 4 8 15 9

2 4 9 15 8

2 4 1 95 8

2 5 8 19 4

2 5 8 94 1

2 5 8 94 1

2 1 8 94 5

2 4 8 91 5

2 1 8 94 5 1 4 8 92 52 4 1 95 8

2 4 5 8 1 9

2 4 5 8 1 9

2 4 5 1 8 9

The first pass places the largest number (9) as the last in the array. In the second pass, as
shown in Figure 23.3b, you compare and order pairs of elements sequentially. There is no
need to consider the last pair, because the last element in the array is already the largest. In the
third pass, as shown in Figure 23.3c, you compare and order pairs of elements sequentially
except the last two elements, because they are already in order. So in the kth pass, you don’t
need to consider the last k - 1 elements, because they are already ordered.

The algorithm for a bubble sort is described in Listing 23.2.

LISTING 23.2 Bubble Sort Algorithm
1 for (int k = 1; k < list.length; k++) {
2 // Perform the kth pass
3 for (int i = 0; i < list.length - k; i++) {
4 if (list[i] > list[i + 1])
5 swap list[i] with list[i + 1];
6 }
7 }

Note that if no swap takes place in a pass, there is no need to perform the next pass, because all
the elements are already sorted. You can use this property to improve the algorithm in Listing
23.2 as in Listing 23.3.

LISTING 23.3 Improved Bubble Sort Algorithm
 1 boolean needNextPass = true;
 2 for (int k = 1; k < list.length && needNextPass; k++) {
 3 // Array may be sorted and next pass not needed
 4 needNextPass = false;
 5 // Perform the kth pass
 6 for (int i = 0; i < list.length – k; i++) {
 7 if (list[i] > list[i + 1]) {
 8 swap list[i] with list[i + 1];
 9 needNextPass = true; // Next pass still needed
10 }
11 }
12 }

algorithm

866 Chapter 23 Sorting

The algorithm can be implemented in Listing 23.4.

LISTING 23.4 BubbleSort.java
 1 public class BubbleSort {
 2 /** Bubble sort method */
 3 public static void bubbleSort(int[] list) {
 4 boolean needNextPass = true;
 5
 6 for (int k = 1; k < list.length && needNextPass; k++) {
 7 // Array may be sorted and next pass not needed
 8 needNextPass = false;
 9 for (int i = 0; i < list.length - k; i++) {
10 if (list[i] > list[i + 1]) {
11 // Swap list[i] with list[i + 1]
12 int temp = list[i];
13 list[i] = list[i + 1];
14 list[i + 1] = temp;
15
16 needNextPass = true; // Next pass still needed
17 }
18 }
19 }
20 }
21
22 /** A test method */
23 public static void main(String[] args) {
24 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
25 bubbleSort(list);
26 for (int i = 0; i < list.length; i++)
27 System.out.print(list[i] + " ");
28 }
29 }

perform one pass

-2 1 2 2 3 3 5 6 12 14

In the best case, the bubble sort algorithm needs just the first pass to find that the array is
already sorted—no next pass is needed. Since the number of comparisons is n - 1 in the first
pass, the best-case time for a bubble sort is O(n).

In the worst case, the bubble sort algorithm requires n - 1 passes. The first pass makes
n - 1 comparisons; the second pass makes n - 2 comparisons; and so on; the last pass
makes 1 comparison. Thus, the total number of comparisons is:

(n - 1) + (n - 2) + g + 2 + 1

=
(n - 1)n

2
=

n2

2
-

n

2
= O(n2)

Therefore, the worst-case time for a bubble sort is O(n2).

23.4 Describe how a bubble sort works. What is the time complexity for a bubble sort?

23.5 Use Figure 23.3 as an example to show how to apply a bubble sort on {45, 11, 50, 59,
60, 2, 4, 7, 10}.

23.6 If a list is already sorted, how many comparisons will the bubbleSort method
perform?

bubble sort time complexity

✓Point✓Check

23.4 Merge Sort 867

23.4 Merge Sort
The merge sort algorithm can be described recursively as follows: The algorithm
divides the array into two halves and applies a merge sort on each half recursively.
After the two halves are sorted, merge them.

The algorithm for a merge sort is given in Listing 23.5.

LISTING 23.5 Merge Sort Algorithm
1 public static void mergeSort(int[] list) {
2 if (list.length > 1) {
3 mergeSort(list[0 ... list.length / 2]);
4 mergeSort(list[list.length / 2 + 1 ... list.length]);
5 merge list[0 ... list.length / 2] with
6 list[list.length / 2 + 1 ... list.length];
7 }
8 }

Figure 23.4 illustrates a merge sort of an array of eight elements (2 9 5 4 8 1 6 7). The original
array is split into (2 9 5 4) and (8 1 6 7). Apply a merge sort on these two subarrays recursively
to split (2 9 5 4) into (2 9) and (5 4) and (8 1 6 7) into (8 1) and (6 7). This process continues
until the subarray contains only one element. For example, array (2 9) is split into the subar-
rays (2) and (9). Since array (2) contains a single element, it cannot be further split. Now
merge (2) with (9) into a new sorted array (2 9); merge (5) with (4) into a new sorted array
(4 5). Merge (2 9) with (4 5) into a new sorted array (2 4 5 9), and finally merge (2 4 5 9) with
(1 6 7 8) into a new sorted array (1 2 4 5 6 7 8 9).

Key
Point

merge sort

base condition
sort first half
sort second half
merge two halves

merge sort illustration

FIGURE 23.4 Merge sort employs a divide-and-conquer approach to sort the array.

split

split

2

split

9 5 4 8 1 6 7

merge

81 6 7

1 7 8

1 4 6 7 8 9

merge

merge

divide

conquer

2 5 8 1 6 79 4

8 1 6 7

2 54 9

2 9

2 9

2 59 4

5 4

4 5

2 5

8 1 6 7

6

The recursive call continues dividing the array into subarrays until each subarray contains
only one element. The algorithm then merges these small subarrays into larger sorted subar-
rays until one sorted array results.

The merge sort algorithm is implemented in Listing 23.6.

LISTING 23.6 MergeSort.java
 1 public class MergeSort {
 2 /** The method for sorting the numbers */
 3 public static void mergeSort(int[] list) {
 4 if (list.length > 1) { base case

868 Chapter 23 Sorting

 5 // Merge sort the first half
 6 int[] firstHalf = new int[list.length / 2];
 7 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
 8 mergeSort(firstHalf);
 9
10 // Merge sort the second half
11 int secondHalfLength = list.length - list.length / 2;
12 int[] secondHalf = new int[secondHalfLength];
13 System.arraycopy(list, list.length / 2,
14 secondHalf, 0, secondHalfLength);
15 mergeSort(secondHalf);
16
17 // Merge firstHalf with secondHalf into list
18 merge(firstHalf, secondHalf, list);
19 }
20 }
21
22 /** Merge two sorted lists */
23 public static void merge(int[] list1, int[] list2, int[] temp) {
24 int current1 = 0; // Current index in list1
25 int current2 = 0; // Current index in list2
26 int current3 = 0; // Current index in temp
27
28 while (current1 < list1.length && current2 < list2.length) {
29 if (list1[current1] < list2[current2])
30 temp[current3++] = list1[current1++];
31 else

32 temp[current3++] = list2[current2++];
33 }
34
35 while (current1 < list1.length)
36 temp[current3++] = list1[current1++];
37
38 while (current2 < list2.length)
39 temp[current3++] = list2[current2++];
40 }
41
42 /** A test method */
43 public static void main(String[] args) {
44 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
45 mergeSort(list);
46 for (int i = 0; i < list.length; i++)
47 System.out.print(list[i] + " ");
48 }
49 }

The mergeSort method (lines 3–20) creates a new array firstHalf, which is a copy of
the first half of list (line 7). The algorithm invokes mergeSort recursively on firstHalf
(line 8). The length of the firstHalf is list.length / 2 and the length of the secondHalf
is list.length - list.length / 2. The new array secondHalf was created to contain
the second part of the original array list. The algorithm invokes mergeSort recursively on
secondHalf (line 15). After firstHalf and secondHalf are sorted, they are merged to
list (line 18). Thus, array list is now sorted.

The merge method (lines 23–40) merges two sorted arrays list1 and list2 into array
temp. current1 and current2 point to the current element to be considered in list1 and
list2 (lines 24–26). The method repeatedly compares the current elements from list1
and list2 and moves the smaller one to temp. current1 is increased by 1 (line 30) if
the smaller one is in list1 and current2 is increased by 1 (line 32) if the smaller one is

sort first half

sort second half

merge two halves

list1 to temp

list2 to temp

rest of list1 to temp

rest of list2 to temp

23.4 Merge Sort 869

in list2. Finally, all the elements in one of the lists are moved to temp. If there are still
unmoved elements in list1, copy them to temp (lines 35–36). If there are still unmoved ele-
ments in list2, copy them to temp (lines 38–39).

Figure 23.5 illustrates how to merge the two arrays list1 (2 4 5 9) and list2 (1 6 7 8).
Initially the current elements to be considered in the arrays are 2 and 1. Compare them and
move the smaller element 1 to temp, as shown in Figure 23.5a. current2 and current3
are increased by 1. Continue to compare the current elements in the two arrays and move the
smaller one to temp until one of the arrays is completely moved. As shown in Figure 23.5b,
all the elements in list2 are moved to temp and current1 points to element 9 in list1.
Copy 9 to temp, as shown in Figure 23.5c.

merge animation on

Companion Website

FIGURE 23.5 Two sorted arrays are merged into one sorted array.

(a) After moving 1 to temp

2 5 9

current1 current2

current3

4 1 7 86

1

current1 current2

current3

2 5

5

94

4

1 7

7

8

8

6

61 2

current1 current2

2 5 9

current3

4 1 7 86

54 7 8 961 2

 (b) After moving all the
elements in list2 to temp

 (c) After moving 9 to
temp

FIGURE 23.6 Temporary arrays are created to support a merge sort.

(a)

Divide Copy second halfCopy first half

Merge to list

Recursive sort

Merge

secondHalf
(temporary array)

firstHalf
(temporary array)

New sorted list

Original list

(b)

Divide

Copy this to the
original list

Recursively sort

Merge

Sort second half of
the original array

Sort first half of
the original array

New sorted temporary list

Original list

The mergeSort method creates two temporary arrays (lines 6, 12) during the divid-
ing process, copies the first half and the second half of the array into the temporary arrays
(lines 7, 13), sorts the temporary arrays (lines 8, 15), and then merges them into the original
array (line 18), as shown in Figure 23.6a. You can rewrite the code to recursively sort the first
half of the array and the second half of the array without creating new temporary arrays, and
then merge the two arrays into a temporary array and copy its contents to the original array, as
shown in Figure 23.6b. This is left for you to do in Programming Exercise 23.20.

Note
A merge sort can be implemented efficiently using parallel processing. See Section 30.16,

Parallel Programming, for a parallel implementation of a merge sort.

870 Chapter 23 Sorting

Let T(n) denote the time required for sorting an array of n elements using a merge sort. With-
out loss of generality, assume n is a power of 2. The merge sort algorithm splits the array into
two subarrays, sorts the subarrays using the same algorithm recursively, and then merges the
subarrays. Therefore,

T(n) = T¢ n

2
≤ + T¢ n

2
≤ + mergetime

The first T¢ n

2
≤ is the time for sorting the first half of the array, and the second T¢ n

2
≤ is the

time for sorting the second half. To merge two subarrays, it takes at most n - 1 comparisons
to compare the elements from the two subarrays and n moves to move elements to the tempo-
rary array. Thus, the total time is 2n - 1. Therefore,

T(n) = T¢ n

2
≤ + T¢ n

2
≤ + 2n - 1 = O(n logn)

The complexity of a merge sort is O(n logn). This algorithm is better than selection sort, insertion
sort, and bubble sort, because the time complexity of these algorithms is O(n2). The sort method
in the java.util.Arrays class is implemented using a variation of the merge sort algorithm.

23.7 Describe how a merge sort works. What is the time complexity for a merge sort?

23.8 Use Figure 23.4 as an example to show how to apply a merge sort on {45, 11, 50, 59,
60, 2, 4, 7, 10}.

23.9 What is wrong if lines 6–15 in Listing 23.6, MergeSort.java, are replaced by the fol-
lowing code?

// Merge sort the first half
int[] firstHalf = new int[list.length / 2 + 1];

 System.arraycopy(list, 0, firstHalf, 0, list.length / 2 + 1);
 mergeSort(firstHalf);

// Merge sort the second half
int secondHalfLength = list.length - list.length / 2 - 1;
int[] secondHalf = new int[secondHalfLength];

 System.arraycopy(list, list.length / 2 + 1,
 secondHalf, 0, secondHalfLength);
 mergeSort(secondHalf);

23.5 Quick Sort
A quick sort works as follows: The algorithm selects an element, called the pivot, in
the array. It divides the array into two parts, so that all the elements in the first part
are less than or equal to the pivot and all the elements in the second part are greater
than the pivot. The quick sort algorithm is then recursively applied to the first part and
then the second part.

The quick sort algorithm, developed by C.A.R. Hoare in 1962, is described in Listing 23.7.

LISTING 23.7 Quick Sort Algorithm
 1 public static void quickSort(int[] list) {
 2 if (list.length > 1) {
 3 select a pivot;
4 partition list into list1 and list2 such that

merge sort time complexity

O(n logn) merge sort

✓Point✓Check

Key
Point

quick sort

base condition
select the pivot
partition the list

23.5 Quick Sort 871

list2

pivot

list1

 5 all elements in list1 <= pivot and
 6 all elements in list2 > pivot;
 7 quickSort(list1);
 8 quickSort(list2);
 9 }
10 }

Each partition places the pivot in the right place. The selection of the pivot affects the perfor-
mance of the algorithm. Ideally, the algorithm should choose the pivot that divides the two
parts evenly. For simplicity, assume the first element in the array is chosen as the pivot. (Pro-
gramming Exercise 23.4 proposes an alternative strategy for selecting the pivot.)

Figure 23.7 illustrates how to sort an array (5 2 9 3 8 4 0 1 6 7) using quick sort. Choose the
first element, 5, as the pivot. The array is partitioned into two parts, as shown in Figure 23.7b.
The highlighted pivot is placed in the right place in the array. Apply quick sort on two partial
arrays (4 2 1 3 0) and then (8 9 6 7). The pivot 4 partitions (4 2 1 3 0) into just one partial array
(0 2 1 3), as shown in Figure 23.7c. Apply quick sort on (0 2 1 3). The pivot 0 partitions it into
just one partial array (2 1 3), as shown in Figure 23.7d. Apply quick sort on (2 1 3). The pivot
2 partitions it into (1) and (3), as shown in Figure 23.7e. Apply quick sort on (1). Since the
array contains just one element, no further partition is needed.

sort first part
sort second part

how to partition

quick sort illustration

FIGURE 23.7 The quick sort algorithm is recursively applied to partial arrays.

(a) The original array

pivot

5 761048392

(b) The original array is partitioned

pivotpivot

4 769850312

(d) The partial array (0 2 1 3) is
 partitioned

pivot

0 2 1 3

(e) The partial array (2 1 3) is
 partitioned1 2 3

(c) The partial array (4 2 1 3 0) is
 partitioned

pivot

0 2 1 3 4

The quick sort algorithm is implemented in Listing 23.8. There are two overloaded
quickSort methods in the class. The first method (line 2) is used to sort an array. The second
is a helper method (line 6) that sorts a partial array with a specified range.

LISTING 23.8 QuickSort.java
 1 public class QuickSort {
 2 public static void quickSort(int[] list) {
 3 quickSort(list, 0, list.length - 1);
 4 }
 5
 6 public static void quickSort(int[] list, int first, int last) {
 7 if (last > first) {
 8 int pivotIndex = partition(list, first, last);
 9 quickSort(list, first, pivotIndex - 1);
10 quickSort(list, pivotIndex + 1, last);
11 }

sort method

helper method

recursive call

872 Chapter 23 Sorting

12 }
13
14 /** Partition the array list[first..last] */
15 public static int partition(int[] list, int first, int last) {
16 int pivot = list[first]; // Choose the first element as the pivot
17 int low = first + 1; // Index for forward search
18 int high = last; // Index for backward search
19
20 while (high > low) {
21 // Search forward from left
22 while (low <= high && list[low] <= pivot)
23 low++;
24
25 // Search backward from right
26 while (low <= high && list[high] > pivot)
27 high--;
28
29 // Swap two elements in the list
30 if (high > low) {
31 int temp = list[high];
32 list[high] = list[low];
33 list[low] = temp;
34 }
35 }
36
37 while (high > first && list[high] >= pivot)
38 high--;
39
40 // Swap pivot with list[high]
41 if (pivot > list[high]) {
42 list[first] = list[high];
43 list[high] = pivot;
44 return high;
45 }
46 else {
47 return first;
48 }
49 }
50
51 /** A test method */
52 public static void main(String[] args) {
53 int[] list = {2, 3, 2, 5, 6, 1, -2, 3, 14, 12};
54 quickSort(list);
55 for (int i = 0; i < list.length; i++)
56 System.out.print(list[i] + " ");
57 }
58 }

forward

backward

swap

place pivot
pivot’s new index

pivot’s original index

-2 1 2 2 3 3 5 6 12 14

The partition method (lines 15–49) partitions the array list[first..last] using the
pivot. The first element in the partial array is chosen as the pivot (line 16). Initially low points
to the second element in the partial array (line 17) and high points to the last element in the
partial array (line 18).

Starting from the left, the method searches forward in the array for the first element that is
greater than the pivot (lines 22–23), then searches from the right backward for the first ele-
ment in the array that is less than or equal to the pivot (lines 26–27). It then swaps these two

23.5 Quick Sort 873

elements and repeats the same search and swap operations until all the elements are searched
in a while loop (lines 20–35).

The method returns the new index for the pivot that divides the partial array into two parts if
the pivot has been moved (line 44). Otherwise, it returns the original index for the pivot (line 47).

Figure 23.8 illustrates how to partition an array (5 2 9 3 8 4 0 1 6 7). Choose the first ele-
ment, 5, as the pivot. Initially low is the index that points to element 2 and high points to ele-
ment 7, as shown in Figure 23.8a. Advance index low forward to search for the first element
(9) that is greater than the pivot and move index high backward to search for the first element
(1) that is less than or equal to the pivot, as shown in Figure 23.8b. Swap 9 with 1, as shown
in Figure 23.8c. Continue the search and move low to point to element 8 and high to point
to element 0, as shown in Figure 23.8d. Swap element 8 with 0, as shown in Figure 23.8e.
Continue to move low until it passes high, as shown in Figure 23.8f. Now all the elements
are examined. Swap the pivot with element 4 at index high. The final partition is shown in
Figure 23.8g. The index of the pivot is returned when the method is finished.

partition illustration

partition animation on

Companion Website

FIGURE 23.8 The partition method returns the index of the pivot after it is put in the cor-
rect place.

5

pivot low high

(b) Search forward and backward

The index of the pivot is returned

2 9 3 8 4 0 1 6 7

5

pivot low high

(a) Initialize pivot, low, and high2 9 3 8 4 0 1 6 7

5

pivot low high

(c) 9 is swapped with 12 1 3 8 4 0 9 6 7

5

pivot low high

(d) Continue search2 1 3 8 4 0 9 6 7

5

pivot low high

(e) 8 is swapped with 02 1 3 0 4 8 9 6 7

5

pivot low high

(f) When high < low, search is over2 1 3 0 4 8 9 6 7

4

pivot

(g) Pivot is in the right place2 1 3 0 5 8 9 6 7

To partition an array of n elements, it takes n comparisons and n moves in the worst case.
Thus, the time required for partition is O(n).

In the worst case, the pivot divides the array each time into one big subarray with the other
array empty. The size of the big subarray is one less than the one before divided. The algo-
rithm requires (n - 1) + (n - 2) + g + 2 + 1 = O(n2) time.

O(n) partition time

O(n2) worst-case time

874 Chapter 23 Sorting

In the best case, the pivot divides the array each time into two parts of about the same size.
Let T(n) denote the time required for sorting an array of n elements using quick sort. Thus,

recursive quick sort on partition time

two subarrays

O(n logn) best-case time

FIGURE 23.9 A binary heap is a special complete binary tree.

(a) A heap (b) (c) (d)
22 29

32

39

14

42

22

32

42

14 3322 29

32

42

14 33

39 39

22 29

32

42

Similar to the merge sort analysis, T(n) = O(n logn).
On the average, the pivot will not divide the array into two parts of the same size or one

empty part each time. Statistically, the sizes of the two parts are very close. Therefore, the
average time is O(n logn). The exact average-case analysis is beyond the scope of this book.

Both merge sort and quick sort employ the divide-and-conquer approach. For merge sort,
the bulk of the work is to merge two sublists, which takes place after the sublists are sorted.
For quick sort, the bulk of the work is to partition the list into two sublists, which takes place
before the sublists are sorted. Merge sort is more efficient than quick sort in the worst case,
but the two are equally efficient in the average case. Merge sort requires a temporary array
for sorting two subarrays. Quick sort does not need additional array space. Thus, quick sort is
more space efficient than merge sort.

23.10 Describe how quick sort works. What is the time complexity for a quick sort?

23.11 Why is quick sort more space efficient than merge sort?

23.12 Use Figure 23.7 as an example to show how to apply a quick sort on
{45, 11, 50, 59, 60, 2, 4, 7, 10}.

23.6 Heap Sort
A heap sort uses a binary heap. It first adds all the elements to a heap and then
removes the largest elements successively to obtain a sorted list.

Heap sorts use a binary heap, which is a complete binary tree. A binary tree is a hierarchical
structure. It either is empty or it consists of an element, called the root, and two distinct binary
trees, called the left subtree and right subtree. The length of a path is the number of the edges
in the path. The depth of a node is the length of the path from the root to the node.

A binary heap is a binary tree with the following properties:

 ■ Shape property: It is a complete binary tree.

 ■ Heap property: Each node is greater than or equal to any of its children.

A binary tree is complete if each of its levels is full, except that the last level may not be full
and all the leaves on the last level are placed leftmost. For example, in Figure 23.9, the binary
trees in (a) and (b) are complete, but the binary trees in (c) and (d) are not complete. Further,
the binary tree in (a) is a heap, but the binary tree in (b) is not a heap, because the root (39) is
less than its right child (42).

O(n logn) average-case time

quick sort vs. merge sort

✓Point✓Check

Key
Point

heap sort

root

left subtree

right subtree

length
depth

complete binary tree

T(n) = T¢ n

2
≤ + T¢ n

2
≤ + n.

23.6 Heap Sort 875

Note
Heap is a term with many meanings in computer science. In this chapter, heap means

a binary heap.

Pedagogical Note
A heap can be implemented efficiently for inserting keys and for deleting the root. For an

interactive demo on how a heap works, go to www.cs.armstrong.edu/liang/animation/web/

Heap.html, as shown in Figure 23.10.

heap

heap animation on

Companion Website

FIGURE 23.10 The heap animation tool enables you to insert a key and delete the root visually.

FIGURE 23.11 A binary heap can be implemented using an array.

22 29

32

42

62

14 33

39

30 17

44

59

9

13

(a) A heap

62

[0]

42 59 32 39 44 13 22 29 14 33 30 17

[12]

9

[13][11][10][9][8][7][6][5][4][3][2][1]

(b) A heap stored in an array

parent left

right

23.6.1 Storing a Heap
A heap can be stored in an ArrayList or an array if the heap size is known in advance. The
heap in Figure 23.11a can be stored using the array in Figure 23.11b. The root is at position 0,
and its two children are at positions 1 and 2. For a node at position i, its left child is at position
2i + 1, its right child is at position 2i + 2, and its parent is (i - 1)/2. For example, the node
for element 39 is at position 4, so its left child (element 14) is at 9 (2 * 4 + 1), its right child
(element 33) is at 10 (2 * 4 + 2), and its parent (element 42) is at 1 ((4 - 1)/2).

23.6.2 Adding a New Node
To add a new node to the heap, first add it to the end of the heap and then rebuild the tree as follows:

Let the last node be the current node;
while (the current node is greater than its parent) {

www.cs.armstrong.edu/liang/animation/web/Heap.html
www.cs.armstrong.edu/liang/animation/web/Heap.html

876 Chapter 23 Sorting

 Swap the current node with its parent;
 Now the current node is one level up;
}

Suppose a heap is initially empty. That heap is shown in Figure 23.12, after adding numbers
3, 5, 1, 19, 11, and 22 in this order.

FIGURE 23.12 Elements 3, 5, 1, 19, 11, and 22 are inserted into the heap.

(a) After adding 3 (b) After adding 5 (c) After adding 1

(d) After adding 19 (e) After adding 11 (f) After adding 22
3

5

19

1

3 5

11

19

1

3 5

11

22

1

19

3

3

5

3

5

1

FIGURE 23.13 Rebuild the heap after adding a new node.

(a) Add 88 to a heap (b) After swapping 88 with 19 (c) After swapping 88 with 22

11

22

19

1 883 5 3 5

11

22

1 19

88

1 193 5

11

88

22

Now consider adding 88 into the heap. Place the new node 88 at the end of the tree, as shown
in Figure 23.13a. Swap 88 with 19, as shown in Figure 23.13b. Swap 88 with 22, as shown in
Figure 23.13c.

23.6.3 Removing the Root
Often you need to remove the maximum element, which is the root in a heap. After the root is
removed, the tree must be rebuilt to maintain the heap property. The algorithm for rebuilding
the tree can be described as follows:

Move the last node to replace the root;
Let the root be the current node;
while (the current node has children and the current node is
 smaller than one of its children) {
 Swap the current node with the larger of its children;
 Now the current node is one level down;
}

Figure 23.14 shows the process of rebuilding a heap after the root 62 is removed from
Figure 23.11a. Move the last node, 9, to the root, as shown in Figure 23.14a. Swap 9 with 59,
as shown in Figure 23.14b; swap 9 with 44, as shown in Figure 23.14c; and swap 9 with 30,
as shown in Figure 23.14d.

23.6 Heap Sort 877

Figure 23.15 shows the process of rebuilding a heap after the root, 59, is removed from
Figure 23.14d. Move the last node, 17, to the root, as shown in Figure 23.15a. Swap 17 with
44, as shown in Figure 23.15b, and then swap 17 with 30, as shown in Figure 23.15c.

FIGURE 23.14 Rebuild the heap after the root 62 is removed.

22 29 14 33 30 17

32 39 44 13

42 59

9

(a) After moving 9 to the root

22 29 14 33 30 17

32 39 44 13

42 9

59

(b) After swapping 9 with 59

22 29 14 33 30 17

32 39 9 13

42 44

59

(c) After swapping 9 with 44

22 29 14 33 179

32 39 30 13

42 44

59

(d) After swapping 9 with 30

FIGURE 23.15 Rebuild the heap after the root, 59, is removed.

(a) After moving 17 to the root (b) After swapping 17 with 44
22 29 14 33 9

32 39 30 13

42

44

17

22 29 14 33 9

32 39 13

3042

44

17

(c) After swapping 17 with 30

22 29 14 33 9

32 39 30 13

42 44

17

23.6.4 The Heap Class
Now you are ready to design and implement the Heap class. The class diagram is shown in
Figure 23.16. Its implementation is given in Listing 23.9.

878 Chapter 23 Sorting

LISTING 23.9 Heap.java
 1 public class Heap<E extends Comparable<E>> {
 2 private java.util.ArrayList<E> list = new java.util.ArrayList<>();
 3
 4 /** Create a default heap */
 5 public Heap() {
 6 }
 7
 8 /** Create a heap from an array of objects */
 9 public Heap(E[] objects) {
10 for (int i = 0; i < objects.length; i++)
11 add(objects[i]);
12 }
13
14 /** Add a new object into the heap */
15 public void add(E newObject) {
16 list.add(newObject); // Append to the heap
17 int currentIndex = list.size() - 1; // The index of the last node
18
19 while (currentIndex > 0) {
20 int parentIndex = (currentIndex - 1) / 2;
21 // Swap if the current object is greater than its parent
22 if (list.get(currentIndex).compareTo(
23 list.get(parentIndex)) > 0) {
24 E temp = list.get(currentIndex);
25 list.set(currentIndex, list.get(parentIndex));
26 list.set(parentIndex, temp);
27 }
28 else

29 break; // The tree is a heap now
30
31 currentIndex = parentIndex;
32 }
33 }
34
35 /** Remove the root from the heap */
36 public E remove() {
37 if (list.size() == 0) return null;
38
39 E removedObject = list.get(0);
40 list.set(0, list.get(list.size() - 1));
41 list.remove(list.size() - 1);
42
43 int currentIndex = 0;
44 while (currentIndex < list.size()) {

internal heap representation

no-arg constructor

constructor

add a new object
append the object

swap with parent

heap now

remove the root
empty heap

root
new root
remove the last

adjust the tree

FIGURE 23.16 The Heap class provides operations for manipulating a heap.

Heap<E extends Comparable<E>>

-list: java.util.ArrayList<E>

+Heap()
+Heap(objects: E[])

+remove(): E
+add(newObject: E): void

+getSize(): int

Creates a default empty heap.
Creates a heap with the specified objects.

Removes the root from the heap and returns it.
Adds a new object to the heap.

Returns the size of the heap.

23.6 Heap Sort 879

45 int leftChildIndex = 2 * currentIndex + 1;
46 int rightChildIndex = 2 * currentIndex + 2;
47
48 // Find the maximum between two children
49 if (leftChildIndex >= list.size()) break; // The tree is a heap
50 int maxIndex = leftChildIndex;
51 if (rightChildIndex < list.size()) {
52 if (list.get(maxIndex).compareTo(
53 list.get(rightChildIndex)) < 0) {
54 maxIndex = rightChildIndex;
55 }
56 }
57
58 // Swap if the current node is less than the maximum
59 if (list.get(currentIndex).compareTo(
60 list.get(maxIndex)) < 0) {
61 E temp = list.get(maxIndex);
62 list.set(maxIndex, list.get(currentIndex));
63 list.set(currentIndex, temp);
64 currentIndex = maxIndex;
65 }
66 else

67 break; // The tree is a heap
68 }
69
70 return removedObject;
71 }
72
73 /** Get the number of nodes in the tree */
74 public int getSize() {
75 return list.size();
76 }
77 }

A heap is represented using an array list internally (line 2). You can change the array list to
other data structures, but the Heap class contract will remain unchanged.

The add(E newObject) method (lines 15–33) appends the object to the tree and then
swaps the object with its parent if the object is greater than its parent. This process continues
until the new object becomes the root or is not greater than its parent.

The remove() method (lines 36–71) removes and returns the root. To maintain the heap
property, the method moves the last object to the root position and swaps it with its larger
child if it is less than the larger child. This process continues until the last object becomes a
leaf or is not less than its children.

23.6.5 Sorting Using the Heap Class
To sort an array using a heap, first create an object using the Heap class, add all the ele-
ments to the heap using the add method, and remove all the elements from the heap using
the remove method. The elements are removed in descending order. Listing 23.10 gives a
program for sorting an array using a heap.

LISTING 23.10 HeapSort.java
 1 public class HeapSort {
 2 /** Heap sort method */
 3 public static <E extends Comparable<E>> void heapSort(E[] list) {
 4 // Create a Heap of integers
 5 Heap<E> heap = new Heap<>();
 6

compare two children

swap with the larger child

create a Heap

880 Chapter 23 Sorting

 7 // Add elements to the heap
 8 for (int i = 0; i < list.length; i++)
 9 heap.add(list[i]);
10
11 // Remove elements from the heap
12 for (int i = list.length - 1; i >= 0; i--)
13 list[i] = heap.remove();
14 }
15
16 /** A test method */
17 public static void main(String[] args) {
18 Integer[] list = {-44, -5, -3, 3, 3, 1, -4, 0, 1, 2, 4, 5, 53};
19 heapSort(list);
20 for (int i = 0; i < list.length; i++)
21 System.out.print(list[i] + " ");
22 }
23 }

add element

remove element

invoke sort method

-44 -5 -4 -3 0 1 1 2 3 3 4 5 53

23.6.6 Heap Sort Time Complexity
Let us turn our attention to analyzing the time complexity for the heap sort. Let h denote the
height for a heap of n elements. The height of a heap is the number of nodes in the longest path
from the root to a leaf node. Since a heap is a complete binary tree, the first level has 1 node,
the second level has 2 nodes, the kth level has 2k - 1 nodes, the (h - 1) level has 2h - 2 nodes,
and the hth level has at least 1 and at most 2h - 1 nodes. Therefore,

1 + 2 + g + 2h - 2 6 n … 1 + 2 + g + 2h - 2 + 2h - 1

That is,

2h - 1 - 1 6 n … 2h - 1
2h - 1 6 n + 1 … 2h

h - 1 6 log(n + 1) … h

Thus, h 6 log(n + 1) + 1 and log(n + 1) … h. Therefore, log(n + 1) … h 6
log(n + 1) + 1. Hence, the height of the heap is O(logn).

Since the add method traces a path from a leaf to a root, it takes at most h steps to add a
new element to the heap. Thus, the total time for constructing an initial heap is O(n logn) for
an array of n elements. Since the remove method traces a path from a root to a leaf, it takes
at most h steps to rebuild a heap after removing the root from the heap. Since the remove
method is invoked n times, the total time for producing a sorted array from a heap is O(n logn).

Both merge sorts and heap sorts require O(n logn) time. A merge sort requires a temporary
array for merging two subarrays; a heap sort does not need additional array space. Therefore,
a heap sort is more space efficient than a merge sort.

23.13 What is a complete binary tree? What is a heap? Describe how to remove the root
from a heap and how to add a new object to a heap.

23.14 What is the return value from invoking the remove method if the heap is empty?

23.15 Add the elements 4, 5, 1, 2, 9, and 3 into a heap in this order. Draw the diagrams to
show the heap after each element is added.

23.16 Show the heap after the root in the heap in Figure 23.15c is removed.

23.17 What is the time complexity of inserting a new element into a heap and what is the
time complexity of deleting an element from a heap?

height of a heap

O(n logn) worst-case time

heap sort vs. merge sort

✓Point✓Check

23.7 Bucket Sort and Radix Sort 881

23.18 Show the steps of creating a heap using {45, 11, 50, 59, 60, 2, 4, 7, 10}.

23.19 Given the following heap, show the steps of removing all nodes from the heap.

22 29

32

42

62

14 33

39

17 30

44

59

9

13

23.20 Which of the following statements are wrong?

1 Heap<Object> heap1 = new Heap<>();
2 Heap<Number> heap2 = new Heap<>();
3 Heap<BigInteger> heap3 = new Heap<>();
4 Heap<Calendar> heap4 = new Heap<>();
5 Heap<String> heap5 = new Heap<>();

23.7 Bucket Sort and Radix Sort
Bucket sorts and radix sorts are efficient for sorting integers.

All sort algorithms discussed so far are general sorting algorithms that work for any types of
keys (e.g., integers, strings, and any comparable objects). These algorithms sort the elements
by comparing their keys. It has been proven that no sorting algorithms based on comparisons
can perform better than O(n logn). However, if the keys are integers, you can use a bucket sort
without having to compare the keys.

The bucket sort algorithm works as follows. Assume the keys are in the range from 0 to t.
We need t + 1 buckets labeled 0, 1, . . . , and t. If an element’s key is i, the element is put
into the bucket i. Each bucket holds the elements with the same key value.

Key
Point

bucket sort

You can use an ArrayList to implement a bucket. The bucket sort algorithm for sorting a list
of elements can be described as follows:

void bucketSort(E[] list) {
 E[] bucket = (E[])new java.util.ArrayList[t+1];

// Distribute the elements from list to buckets
for (int i = 0; i < list.length; i++) {

int key = list[i].getKey(); // Assume element has the getKey() method

if (bucket[key] == null)
 bucket[key] = new java.util.ArrayList<>();

 bucket[key].add(list[i]);
 }

Elements
with key 0

bucket[0]

Elements
with key 1

bucket[1]

Elements
with key 2

bucket[2]

Elements
with key t

bucket[t]

. . .

882 Chapter 23 Sorting

// Now move the elements from the buckets back to list
int k = 0; // k is an index for list
for (int i = 0; i < bucket.length; i++) {

if (bucket[i] != null) {
for (int j = 0; j < bucket[i].size(); j++)

 list[k++] = bucket[i].get(j);
 }
 }
}

Clearly, it takes O(n + t) time to sort the list and uses O(n + t) space, where n is the list size.
Note that if t is too large, using the bucket sort is not desirable. Instead, you can use a radix

sort. The radix sort is based on the bucket sort, but a radix sort uses only ten buckets.
It is worthwhile to note that a bucket sort is stable, meaning that if two elements in the

original list have the same key value, their order is not changed in the sorted list. That is, if
element e1 and element e2 have the same key and e1 precedes e2 in the original list, e1 still
precedes e2 in the sorted list.

Assume that the keys are positive integers. The idea for the radix sort is to divide the keys
into subgroups based on their radix positions. It applies a bucket sort repeatedly for the key
values on radix positions, starting from the least-significant position.

Consider sorting the elements with the following keys:

331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

Apply the bucket sort on the last radix position, and the elements are put into the buckets as follows:

stable

radix sort

radix sort on Companion

Website

queue

After being removed from the buckets, the elements are in the following order:

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 9

Apply the bucket sort on the second-to-last radix position, and the elements are put into the
buckets as follows:

queue

230

bucket[0]

331
231

bucket[1] bucket[2]

343
453

bucket[3]

454
34

bucket[4]

45
345

bucket[5] bucket[6] bucket[7] bucket[8]

59
9

bucket[9]

9

bucket[0] bucket[1] bucket[2]

230
331
231
34

bucket[3]

343
45

345

bucket[4]

453
454
59

bucket[5] bucket[6] bucket[7] bucket[8] bucket[9]

After being removed from the buckets, the elements are in the following order:

9, 230, 331, 231, 34, 343, 45, 345, 453, 454, 59

(Note that 9 is 009.)
Apply the bucket sort on the third-to-last radix position, and the elements are put into the

buckets as follows:
queue

9
34
45
59

bucket[0] bucket[1]

230
231

bucket[2]

331
343
345

bucket[3]

453
454

bucket[4] bucket[5] bucket[6] bucket[7] bucket[8] bucket[9]

23.8 External Sort 883

After being removed from the buckets, the elements are in the following order:

9, 34, 45, 59, 230, 231, 331, 343, 345, 453, 454

The elements are now sorted.
Radix sort takes O(dn) time to sort n elements with integer keys, where d is the maximum

number of the radix positions among all keys.

23.21 Can you sort a list of strings using a bucket sort?

23.22 Show how the radix sort works using the numbers 454, 34, 23, 43, 74, 86, and 76.

23.8 External Sort
You can sort a large amount data using an external sort.

All the sort algorithms discussed in the preceding sections assume that all the data to be sorted
are available at one time in internal memory, such as in an array. To sort data stored in an
external file, you must first bring the data to the memory and then sort it internally. However,
if the file is too large, all the data in the file cannot be brought to memory at one time. This
section discusses how to sort data in a large external file. This is called an external sort.

For simplicity, assume that two million int values are stored in a binary file named
largedata.dat. This file was created using the program in Listing 23.11.

LISTING 23.11 CreateLargeFile.java
 1 import java.io.*;
 2
 3 public class CreateLargeFile {
 4 public static void main(String[] args) throws Exception {
 5 DataOutputStream output = new DataOutputStream(
 6 new BufferedOutputStream(
 7 new FileOutputStream("largedata.dat")));
 8
 9 for (int i = 0; i < 800004; i++)
10 output.writeInt((int)(Math.random() * 1000000));
11
12 output.close();
13
14 // Display first 100 numbers
15 DataInputStream input = new DataInputStream(
16 new BufferedInputStream(new FileInputStream("largedata.dat")));
17 for (int i = 0; i < 100; i++)
18 System.out.print(input.readInt() + " ");
19
20 input.close();
21 }
22 }

✓Point✓Check

Key
Point

external sort

a binary output stream

output an int value

close output file

read an int value

close intput file

569193 131317 608695 776266 767910 624915 458599 5010 ... (omitted)

A variation of merge sort can be used to sort this file in two phases:

Phase I: Repeatedly bring data from the file to an array, sort the array using an internal
sorting algorithm, and output the data from the array to a temporary file. This process is
shown in Figure 23.17. Ideally, you want to create a large array, but its maximum size
depends on how much memory is allocated to the JVM by the operating system. Assume
that the maximum array size is 100,000 int values. In the temporary file, every 100,000

884 Chapter 23 Sorting

int values are sorted. They are denoted as S1, S2, c , and Sk, where the last segment,
Sk, may contain less than 100000 values.

FIGURE 23.18 Sorted segments are merged iteratively.

S1 S2 S3 S4 S5 S6 S7 S8

S1, S2 merged

S1, S2, S3, S4 merged S5, S6, S7, S8 merged

S3, S4 merged S5, S6 merged S7, S8 merged

Merge step

Merge step

Merge step

S1, S2, S3, S4, S5, S6, S7, S8 merged Final sorted
segment

FIGURE 23.17 The original file is sorted in segments.

Program

Array

……

Original file

Temporary file

S1 S2 Sk

Unsorted

Sorted
segment

Sorted
segment

Sorted
segment

Phase II: Merge a pair of sorted segments (e.g., S1with S2, S3 with S4, c , and so on)
into a larger sorted segment and save the new segment into a new temporary file. Continue
the same process until only one sorted segment results. Figure 23.18 shows how to merge
eight segments.

Note
It is not necessary to merge two successive segments. For example, you can merge S1

with S5, S2 with S6, S3 with S7 and S4 with S8, in the first merge step. This observation is

useful in implementing Phase II efficiently.

23.8.1 Implementing Phase I
Listing 23.12 gives the method that reads each segment of data from a file, sorts the segment,
and stores the sorted segments into a new file. The method returns the number of segments.

LISTING 23.12 Creating Initial Sorted Segments
 1 /** Sort original file into sorted segments */
 2 private static int initializeSegments
 3 (int segmentSize, String originalFile, String f1)
 4 throws Exception {
 5 int[] list = new int[segmentSize];
 6 DataInputStream input = new DataInputStream(

23.8 External Sort 885

 7 new BufferedInputStream(new FileInputStream(originalFile)));
 8 DataOutputStream output = new DataOutputStream(
 9 new BufferedOutputStream(new FileOutputStream(f1)));
10
11 int numberOfSegments = 0;
12 while (input.available() > 0) {
13 numberOfSegments++;
14 int i = 0;
15 for (; input.available() > 0 && i < segmentSize; i++) {
16 list[i] = input.readInt();
17 }
18
19 // Sort an array list[0..i-1]
20 java.util.Arrays.sort(list, 0, i);
21
22 // Write the array to f1.dat
23 for (int j = 0; j < i; j++) {
24 output.writeInt(list[j]);
25 }
26 }
27
28 input.close();
29 output.close();
30
31 return numberOfSegments;
32 }

The method creates an array with the maximum size in line 5, a data input stream for the
original file in line 6, and a data output stream for a temporary file in line 8. Buffered streams
are used to improve performance.

Lines 14–17 read a segment of data from the file into the array. Line 20 sorts the array.
Lines 23–25 write the data in the array to the temporary file.

The number of segments is returned in line 31. Note that every segment has
MAX_ARRAY_SIZE number of elements except the last segment, which may have fewer
elements.

23.8.2 Implementing Phase II
In each merge step, two sorted segments are merged to form a new segment. The size of the
new segment is doubled. The number of segments is reduced by half after each merge step. A
segment is too large to be brought to an array in memory. To implement a merge step, copy
half the number of segments from the file f1.dat to a temporary file f2.dat. Then merge the
first remaining segment in f1.dat with the first segment in f2.dat into a temporary file named
f3.dat, as shown in Figure 23.19.

original file

file with sorted segments

sort a segment

output to file

close file

return # of segments

FIGURE 23.19 Sorted segments are merged iteratively.

S1 S2 S3 S4 S5 S6 S7 S8 f1.dat

S1 S2 S3 S4 f2.dat

Copy to f2.dat

f3.datS1, S5 merged S2, S6 merged S3, S7 merged S4, S8 merged

886 Chapter 23 Sorting

Note
f1.dat may have one segment more than f2.dat. If so, move the last segment into

f3.dat after the merge.

Listing 23.13 gives a method that copies the first half of the segments in f1.dat to f2.dat.
Listing 23.14 gives a method that merges a pair of segments in f1.dat and f2.dat. Listing 23.15
gives a method that merges two segments.

LISTING 23.13 Copying First Half Segments
1 private static void copyHalfToF2(int numberOfSegments,
2 int segmentSize, DataInputStream f1, DataOutputStream f2)
3 throws Exception {
4 for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {
5 f2.writeInt(f1.readInt());
6 }
7 }

LISTING 23.14 Merging All Segments
 1 private static void mergeSegments(int numberOfSegments,
 2 int segmentSize, DataInputStream f1, DataInputStream f2,
 3 DataOutputStream f3) throws Exception {
 4 for (int i = 0; i < numberOfSegments; i++) {
 5 mergeTwoSegments(segmentSize, f1, f2, f3);
 6 }
 7
 8 // If f1 has one extra segment, copy it to f3
 9 while (f1.available() > 0) {
10 f3.writeInt(f1.readInt());
11 }
12 }

LISTING 23.15 Merging Two Segments
 1 private static void mergeTwoSegments(int segmentSize,
 2 DataInputStream f1, DataInputStream f2,
 3 DataOutputStream f3) throws Exception {
 4 int intFromF1 = f1.readInt();
 5 int intFromF2 = f2.readInt();
 6 int f1Count = 1;
 7 int f2Count = 1;
 8
 9 while (true) {
10 if (intFromF1 < intFromF2) {
11 f3.writeInt(intFromF1);
12 if (f1.available() == 0 || f1Count++ >= segmentSize) {
13 f3.writeInt(intFromF2);
14 break;
15 }
16 else {
17 intFromF1 = f1.readInt();
18 }
19 }
20 else {
21 f3.writeInt(intFromF2);
22 if (f2.available() == 0 || f2Count++ >= segmentSize) {
23 f3.writeInt(intFromF1);
24 break;
25 }

input stream f1
output stream f2

segments copied

input stream f1 and f2
output stream f3

merge two segments

extra segment in f1?

input stream f1 and f2
output stream f3
read from f1
read from f2

write to f3

segment in f1 finished

write to f3

segment in f2 finished

23.8 External Sort 887

26 else {
27 intFromF2 = f2.readInt();
28 }
29 }
30 }
31
32 while (f1.available() > 0 && f1Count++ < segmentSize) {
33 f3.writeInt(f1.readInt());
34 }
35
36 while (f2.available() > 0 && f2Count++ < segmentSize) {
37 f3.writeInt(f2.readInt());
38 }
39 }

23.8.3 Combining Two Phases
Listing 23.16 gives the complete program for sorting int values in largedata.dat and storing
the sorted data in sortedfile.dat.

LISTING 23.16 SortLargeFile.java
 1 import java.io.*;
 2
 3 public class SortLargeFile {
 4 public static final int MAX_ARRAY_SIZE = 100000;
 5 public static final int BUFFER_SIZE = 100000;
 6
 7 public static void main(String[] args) throws Exception {
 8 // Sort largedata.dat to sortedfile.dat
 9 sort("largedata.dat", "sortedfile.dat");
 10
 11 // Display the first 100 numbers in the sorted file
 12 displayFile("sortedfile.dat");
 13 }
 14
 15 /** Sort data in source file into target file */
 16 public static void sort(String sourcefile, String targetfile)
 17 throws Exception {
 18 // Implement Phase 1: Create initial segments
 19 int numberOfSegments =
 20 initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");
 21
 22 // Implement Phase 2: Merge segments recursively
 23 merge(numberOfSegments, MAX_ARRAY_SIZE,
 24 "f1.dat", "f2.dat", "f3.dat", targetfile);
 25 }
 26
 27 /** Sort original file into sorted segments */
 28 private static int initializeSegments
 29 (int segmentSize, String originalFile, String f1)
 30 throws Exception {
 31 // Same as Listing 23.12, so omitted
 32 }
 33
 34 private static void merge(int numberOfSegments, int segmentSize,
35 String f1, String f2, String f3, String targetfile)

 36 throws Exception {
 37 if (numberOfSegments > 1) {
 38 mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);

remaining f1 segment

remaining f2 segment

max array size
I/O stream buffer size

create initial segments

merge recursively

merge one step

888 Chapter 23 Sorting

 39 merge((numberOfSegments + 1) / 2, segmentSize * 2,
 40 f3, f1, f2, targetfile);
 41 }
 42 else { // Rename f1 as the final sorted file
 43 File sortedFile = new File(targetfile);
 44 if (sortedFile.exists()) sortedFile.delete();
 45 new File(f1).renameTo(sortedFile);
 46 }
 47 }
 48
 49 private static void mergeOneStep(int numberOfSegments,
 50 int segmentSize, String f1, String f2, String f3)
 51 throws Exception {
 52 DataInputStream f1Input = new DataInputStream(
 53 new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));
 54 DataOutputStream f2Output = new DataOutputStream(
 55 new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));
 56
 57 // Copy half number of segments from f1.dat to f2.dat
 58 copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);
 59 f2Output.close();
 60
 61 // Merge remaining segments in f1 with segments in f2 into f3
 62 DataInputStream f2Input = new DataInputStream(
 63 new BufferedInputStream(new FileInputStream(f2), BUFFER_SIZE));
 64 DataOutputStream f3Output = new DataOutputStream(
 65 new BufferedOutputStream(new FileOutputStream(f3), BUFFER_SIZE));
 66
 67 mergeSegments(numberOfSegments / 2,
 68 segmentSize, f1Input, f2Input, f3Output);
 69
 70 f1Input.close();
 71 f2Input.close();
 72 f3Output.close();
 73 }
 74
 75 /** Copy first half number of segments from f1.dat to f2.dat */
 76 private static void copyHalfToF2(int numberOfSegments,
 77 int segmentSize, DataInputStream f1, DataOutputStream f2)
 78 throws Exception {
 79 // Same as Listing 23.13, so omitted
 80 }
 81
 82 /** Merge all segments */
 83 private static void mergeSegments(int numberOfSegments,
 84 int segmentSize, DataInputStream f1, DataInputStream f2,
 85 DataOutputStream f3) throws Exception {
 86 // Same as Listing 23.14, so omitted
 87 }
 88
 89 /** Merges two segments */
 90 private static void mergeTwoSegments(int segmentSize,
 91 DataInputStream f1, DataInputStream f2,
 92 DataOutputStream f3) throws Exception {
 93 // Same as Listing 23.15, so omitted
 94 }
 95
 96 /** Display the first 100 numbers in the specified file */
 97 public static void displayFile(String filename) {
 98 try {

merge recursively

final sorted file

input stream f1Input

output stream f2Output

copy half segments to f2
close f2Output

input stream f2Input

output stream f3Output

merge two segments

close streams

display file

23.8 External Sort 889

 99 DataInputStream input =
100 new DataInputStream(new FileInputStream(filename));
101 for (int i = 0; i < 100; i++)
102 System.out.print(input.readInt() + " ");
103 input.close();
104 }
105 catch (IOException ex) {
106 ex.printStackTrace();
107 }
108 }
109 }

0 1 1 1 2 2 2 3 3 4 5 6 8 8 9 9 9 10 10 11 . . . (omitted)

Before you run this program, first run Listing 23.11, CreateLargeFile.java, to create the
file largedata.dat. Invoking sort("largedata.dat", "sortedfile.dat") (line 9)
reads data from largedata.dat and writes sorted data to sortedfile.dat. Invoking
displayFile("sortedfile.dat") (line 12) displays the first 100 numbers in the speci-
fied file. Note that the files are created using binary I/O. You cannot view them using a text
editor such as Notepad.

The sort method first creates initial segments from the original array and stores the
sorted segments in a new file, f1.dat (lines 19–20), then produces a sorted file in targetfile
(lines 23–24).

The merge method

merge(int numberOfSegments, int segmentSize,
 String f1, String f2, String f3, String targetfile)

merges the segments in f1 into f3 using f2 to assist the merge. The merge method is invoked
recursively with many merge steps. Each merge step reduces the numberOfSegments by
half and doubles the sorted segment size. After the completion of one merge step, the next
merge step merges the new segments in f3 to f2 using f1 to assist the merge. The statement
to invoke the new merge method is

merge((numberOfSegments + 1) / 2, segmentSize * 2,
 f3, f1, f2, targetfile);

The numberOfSegments for the next merge step is (numberOfSegments + 1) / 2. For
example, if numberOfSegments is 5, numberOfSegments is 3 for the next merge step,
because every two segments are merged but one is left unmerged.

The recursive merge method ends when numberOfSegments is 1. In this case, f1 con-
tains sorted data. File f1 is renamed to targetfile (line 45).

23.8.4 External Sort Complexity
In the external sort, the dominating cost is that of I/O. Assume n is the number of elements to
be sorted in the file. In Phase I, n number of elements are read from the original file and output
to a temporary file. Therefore, the I/O for Phase I is O(n).

In Phase II, before the first merge step, the number of sorted segments is
n
c

, where c is

MAX_ARRAY_SIZE. Each merge step reduces the number of segments by half. Thus, after the

first merge step, the number of segments is
n

2c
. After the second merge step, the number of

segments is
n

22c
, and after the third merge step the number of segments is

n

23c
. After log¢ n

c
≤

890 Chapter 23 Sorting

merge steps, the number of segments is reduced to 1. Therefore, the total number of merge

steps is log¢ n
c
≤.

In each merge step, half the number of segments are read from file f1 and then written into
a temporary file f2. The remaining segments in f1 are merged with the segments in f2. The

number of I/Os in each merge step is O(n). Since the total number of merge steps is log¢ n
c
≤,

the total number of I/Os is

O(n) * log¢ n
c
≤ = O(n log n)

Therefore, the complexity of the external sort is O(n logn).

23.23 Describe how external sort works. What is the complexity of the external sort algorithm?

23.24 Ten numbers {2, 3, 4, 0, 5, 6, 7, 9, 8, 1} are stored in the external file largedata.dat.
Trace the SortLargeFile program by hand with MAX_ARRAY_SIZE 2.

✓Point✓Check

KEY TERMS

bubble sort 864
bucket sort 881
complete binary tree 874
external sort 883
heap 875

heap sort 874
height of a heap 880
merge sort 867
quick sort 870
radix sort 882

CHAPTER SUMMARY

1. The worst-case complexity for a selection sort, insertion sort, bubble sort, and quick sort
is O(n2).

2. The average-case and worst-case complexity for a merge sort is O(n logn). The average
time for a quick sort is also O(n logn).

3. Heaps are a useful data structure for designing efficient algorithms such as sorting. You
learned how to define and implement a heap class, and how to insert and delete elements
to/from a heap.

4. The time complexity for a heap sort is O(n logn).

5. Bucket sorts and radix sorts are specialized sorting algorithms for integer keys. These
algorithms sort keys using buckets rather than by comparing keys. They are more
efficient than general sorting algorithms.

6. A variation of the merge sort—called an external sort—can be applied to sort large
amounts of data from external files.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/test.html.

www.cs.armstrong.edu/liang/intro10e/test.html

Programming Exercises 891

PROGRAMMING EXERCISES

Sections 23.3–23.5

23.1 (Generic bubble sort) Write the following two generic methods using bubble
sort. The first method sorts the elements using the Comparable interface and
the second uses the Comparator interface.

public static <E extends Comparable<E>>
void bubbleSort(E[] list)

public static <E> void bubbleSort(E[] list,
 Comparator<? super E> comparator)

23.2 (Generic merge sort) Write the following two generic methods using merge sort.
The first method sorts the elements using the Comparable interface and the
second uses the Comparator interface.

public static <E extends Comparable<E>>
void mergeSort(E[] list)

public static <E> void mergeSort(E[] list,
 Comparator<? super E> comparator)

23.3 (Generic quick sort) Write the following two generic methods using quick sort.
The first method sorts the elements using the Comparable interface and the
second uses the Comparator interface.

public static <E extends Comparable<E>>
void quickSort(E[] list)

public static <E> void quickSort(E[] list,
 Comparator<? super E> comparator)

23.4 (Improve quick sort) The quick sort algorithm presented in the book selects the
first element in the list as the pivot. Revise it by selecting the median among the
first, middle, and last elements in the list.

*23.5 (Generic heap sort) Write the following two generic methods using heap sort.
The first method sorts the elements using the Comparable interface and the
second uses the Comparator interface.

public static <E extends Comparable<E>>
void heapSort(E[] list)

public static <E> void heapSort(E[] list,
 Comparator<? super E> comparator)

23.6 (Check order) Write the following overloaded methods that check whether an
array is ordered in ascending order or descending order. By default, the method
checks ascending order. To check descending order, pass false to the ascend-
ing argument in the method.

public static boolean ordered(int[] list)
public static boolean ordered(int[] list, boolean ascending)
public static boolean ordered(double[] list)
public static boolean ordered
 (double[] list, boolean ascending)
public static <E extends Comparable<E>>

boolean ordered(E[] list)
public static <E extends Comparable<E>> boolean ordered
 (E[] list, boolean ascending)
public static <E> boolean ordered(E[] list,

892 Chapter 23 Sorting

 Comparator<? super E> comparator)
public static <E> boolean ordered(E[] list,
 Comparator<? super E> comparator, boolean ascending)

Section 23.6

23.7 (Min-heap) The heap presented in the text is also known as a max-heap, in which
each node is greater than or equal to any of its children. A min-heap is a heap
in which each node is less than or equal to any of its children. Min-heaps are
often used to implement priority queues. Revise the Heap class in Listing 23.9 to
implement a min-heap.

*23.8 (Sort using a heap) Implement the following sort method using a heap.

public static <E extends Comparable<E>> void sort(E[] list)

*23.9 (Generic Heap using Comparator) Revise Heap in Listing 23.9, using a generic
parameter and a Comparator for comparing objects. Define a new constructor
with a Comparator as its argument as follows:

Heap(Comparator<? super E> comparator)

**23.10 (Heap visualization) Write a program that displays a heap graphically, as shown
in Figure 23.10. The program lets you insert and delete an element from the heap.

23.11 (Heap clone and equals) Implement the clone and equals method in the
Heap class.

Section 23.7

*23.12 (Radix sort) Write a program that randomly generates 1,000,000 integers and
sorts them using radix sort.

*23.13 (Execution time for sorting) Write a program that obtains the execution time of
selection sort, bubble sort, merge sort, quick sort, heap sort, and radix sort for
input size 50,000, 100,000, 150,000, 200,000, 250,000, and 300,000. Your pro-
gram should create data randomly and print a table like this:

max-heap

min-heap

Array
size

Selection
Sort

Bubble
Sort

Merge
Sort

Quick
Sort

Heap
Sort

Radix
Sort

50,000

100,000

150,000

200,000

250,000

300,000

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime - startTime;

The text gives a recursive quick sort. Write a nonrecursive version in this exercise.

Programming Exercises 893

Section 23.8

*23.14 (Execution time for external sorting) Write a program that obtains the execution
time of external sorts for integers of size 5,000,000, 10,000,000, 15,000,000,
20,000,000, 25,000,000, and 30,000,000. Your program should print a table
like this:

File size 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000

Time

Comprehensive

*23.15 (Selection sort animation) Write a program that animates the selection sort
algorithm. Create an array that consists of 20 distinct numbers from 1 to 20 in
a random order. The array elements are displayed in a histogram, as shown in
Figure 23.20a. Clicking the Step button causes the program to perform an itera-
tion of the outer loop in the algorithm and repaints the histogram for the new
array. Color the last bar in the sorted subarray. When the algorithm is finished,
display a message to inform the user. Clicking the Reset button creates a new
random array for a new start. (You can easily modify the program to animate the
insertion algorithm.)

*23.16 (Bubble sort animation) Write a program that animates the bubble sort algo-
rithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a
random order. The array elements are displayed in a histogram, as shown in
Figure 23.20b. Clicking the Step button causes the program to perform one com-
parison in the algorithm and repaints the histogram for the new array. Color the
bar that represents the number being considered in the swap. When the algorithm
is finished, display a message to inform the user. Clicking the Reset button cre-
ates a new random array for a new start.

*23.17 (Radix sort animation) Write a program that animates the radix sort algorithm.
Create an array that consists of 20 random numbers from 0 to 1,000. The array
elements are displayed, as shown in Figure 23.21. Clicking the Step button
causes the program to place a number in a bucket. The number that has just
been placed is displayed in red. Once all the numbers are placed in the buckets,
clicking the Step button collects all the numbers from the buckets and moves

FIGURE 23.20 (a) The program animates selection sort. (b) The program animates bubble sort.

(b)(a)

894 Chapter 23 Sorting

them back to the array. When the algorithm is finished, clicking the Step button
displays a message to inform the user. Clicking the Reset button creates a new
random array for a new start.

FIGURE 23.21 The program animates radix sort.

*23.18 (Merge animation) Write a program that animates the merge of two sorted lists.
Create two arrays, list1 and list2, each of which consists of 8 random num-
bers from 1 to 999. The array elements are displayed, as shown in Figure 23.22a.
Clicking the Step button causes the program to move an element from list1 or
list2 to temp. Clicking the Reset button creates two new random arrays for
a new start. When the algorithm is finished, clicking the Step button displays a
message to inform the user.

*23.19 (Quick sort partition animation) Write a program that animates the partition for
a quick sort. The program creates a list that consists of 20 random numbers from
1 to 999. The list is displayed, as shown in Figure 23.22b. Clicking the Step but-
ton causes the program to move low to the right or high to the left, or swap the
elements at low and high. Clicking the Reset button creates a new list of random
numbers for a new start. When the algorithm is finished, clicking the Step button
displays a message to inform the user.

*23.20 (Modify merge sort) Rewrite the mergeSort method to recursively sort the first
half of the array and the second half of the array without creating new temporary
arrays, and then merge the two into a temporary array and copy its contents to the
original array, as shown in Figure 23.6b.

FIGURE 23.22 The program animates a merge of two sorted lists. (b) The program animates a partition for quick sort.

(b)(a)

IMPLEMENTING LISTS,
STACKS, QUEUES,
AND PRIORITY QUEUES

Objectives
■ To design common features of lists in an interface and provide skeleton

implementation in a convenience abstract class (§24.2).

■ To design and implement an array list using an array (§24.3).

■ To design and implement a linked list using a linked structure (§24.4).

■ To design and implement a stack class using an array list and a queue
class using a linked list (§24.5).

■ To design and implement a priority queue using a heap (§24.6).

CHAPTER

24

896 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.1 Introduction
This chapter focuses on implementing data structures.

Lists, stacks, queues, and priority queues are classic data structures typically covered in a
data structures course. They are supported in the Java API, and their uses were presented in
Chapter 20, Lists, Stacks, Queues, and Priority Queues. This chapter will examine how these
data structures are implemented under the hood. Implementation of sets and maps is covered
in Chapter 27. Through these examples, you will learn how to design and implement custom
data structures.

24.2 Common Features for Lists
Common features of lists are defined in the List interface.

A list is a popular data structure for storing data in sequential order—for example, a list of
students, a list of available rooms, a list of cities, a list of books. You can perform the follow-
ing operations on a list:

 ■ Retrieve an element from the list.

 ■ Insert a new element into the list.

 ■ Delete an element from the list.

 ■ Find out how many elements are in the list.

 ■ Determine whether an element is in the list.

 ■ Check whether the list is empty.

There are two ways to implement a list. One is to use an array to store the elements.
Array size is fixed. If the capacity of the array is exceeded, you need to create a new,
larger array and copy all the elements from the current array to the new array. The other
approach is to use a linked structure. A linked structure consists of nodes. Each node is
dynamically created to hold an element. All the nodes are linked together to form a list.
Thus you can define two classes for lists. For convenience, let’s name these two classes
MyArrayList and MyLinkedList. These two classes have common operations but dif-
ferent implementations.

Design Guide
The common operations can be generalized in an interface or an abstract class. A good

strategy is to combine the virtues of interfaces and abstract classes by providing both an

interface and a convenience abstract class in the design so that the user can use either

of them, whichever is convenient. The abstract class provides a skeletal implementation

of the interface, which minimizes the effort required to implement the interface.

Pedagogical Note
For an interactive demo on how array lists and linked lists work, go to www.cs.armstrong

.edu/liang/animation/web/ArrayList.html and www.cs.armstrong.edu/liang/animation/web/Linked

List.html, as shown in Figure 24.1.

Let us name the interface MyList and the convenience abstract class MyAbstractList.
Figure 24.2 shows the relationship of MyList, MyAbstractList, MyArrayList, and
MyLinkedList. The methods in MyList and the methods implemented in MyAbstractList
are shown in Figure 24.3. Listing 24.1 gives the source code for MyList.

Key
Point

Key
Point

convenience abstract class for
interface

list animation on Companion

Website

www.cs.armstrong.edu/liang/animation/web/ArrayList.html
www.cs.armstrong.edu/liang/animation/web/ArrayList.html
www.cs.armstrong.edu/liang/animation/web/LinkedList.html
www.cs.armstrong.edu/liang/animation/web/LinkedList.html

24.2 Common Features for Lists 897

LISTING 24.1 MyList.java
 1 public interface MyList<E> extends java.lang.Iterable<E> {
 2 /** Add a new element at the end of this list */
 3 public void add(E e);
 4
 5 /** Add a new element at the specified index in this list */
 6 public void add(int index, E e);
 7
 8 /** Clear the list */
 9 public void clear();
10
11 /** Return true if this list contains the element */
12 public boolean contains(E e);
13
14 /** Return the element from this list at the specified index */
15 public E get(int index);
16
17 /** Return the index of the first matching element in this list.
18 * Return -1 if no match. */
19 public int indexOf(E e);
20
21 /** Return true if this list doesn't contain any elements */
22 public boolean isEmpty();
23
24 /** Return the index of the last matching element in this list
25 * Return -1 if no match. */
26 public int lastIndexOf(E e);
27
28 /** Remove the first occurrence of the element e from this list.
29 * Shift any subsequent elements to the left.
30 * Return true if the element is removed. */

add(e)

add(index, e)

clear()

contains(e)

get(index)

indexOf(e)

isEmpty(e)

lastIndexOf(e)

FIGURE 24.2 MyList defines a common interface for MyAbstractList, MyArrayList,
and MyLinkedList.

MyList MyAbstractList

MyArrayList

MyLinkedList

java.lang.Iterable

FIGURE 24.1 The animation tool enables you to see how array lists and linked lists work.

(a) Array list animation (b) Linked list animation

898 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

31 public boolean remove(E e);
32
33 /** Remove the element at the specified position in this list.
34 * Shift any subsequent elements to the left.
35 * Return the element that was removed from the list. */
36 public E remove(int index);
37
38 /** Replace the element at the specified position in this list
39 * with the specified element and return the old element. */
40 public Object set(int index, E e);
41
42 /** Return the number of elements in this list */
43 public int size();
44 }

MyAbstractList declares variable size to indicate the number of elements in the list.
The methods isEmpty(), size(), add(E), and remove(E) can be implemented in the
class, as shown in Listing 24.2.

remove(e)

remove(index)

set(index, e)

size(e)

FIGURE 24.3 MyList defines the methods for manipulating a list. MyAbstractList provides a partial implementation
of the MyList interface.

+add(e: E): void

«interface»
MyList<E>

+set(index: int, e: E): E
+remove(index: int): E
+size(): int
+remove(e: E): boolean
+lastIndexOf(e: E): int
+isEmpty(): boolean
+indexOf(e: E): int
+get(index: int): E
+contains(e: E): boolean
+clear(): void
+add(index: int, e: E): void

MyAbstractList<E>

#size: int

+remove(e: E): boolean
+size(): int
+isEmpty(): boolean
+add(e: E): void
#MyAbstractList(objects: E[])

Appends a new element at the end of this list.

Sets the element at the specified index and returns the element being replaced.
Removes the element at the specified index and returns the removed element.
Returns the number of elements in this list.
Removes the element from this list.
Returns the index of the last matching element in this list.
Returns true if this list does not contain any elements.
Returns the index of the first matching element in this list.
Returns the element from this list at the specified index.
Returns true if this list contains the specified element.
Removes all the elements from this list.
Inserts a new element at the specified index in this list.

«interface»
java.lang.Iterable<E>

+iterator(): Iterator<E> Returns an iterator for the elements in this collection.

#MyAbstractList()

The size of the list.

Creates a default list.

Implements the remove method.
Implements the size method.
Implements the isEmpty method.
Implements the add method.
Creates a list from an array of objects.

24.2 Common Features for Lists 899

LISTING 24.2 MyAbstractList.java
 1 public abstract class MyAbstractList<E> implements MyList<E> {
 2 protected int size = 0; // The size of the list
 3
 4 /** Create a default list */
 5 protected MyAbstractList() {
 6 }
 7
 8 /** Create a list from an array of objects */
 9 protected MyAbstractList(E[] objects) {
10 for (int i = 0; i < objects.length; i++)
11 add(objects[i]);
12 }
13
14 @Override /** Add a new element at the end of this list */
15 public void add(E e) {
16 add(size, e);
17 }
18
19 @Override /** Return true if this list doesn't contain any elements */
20 public boolean isEmpty() {
21 return size == 0;
22 }
23
24 @Override /** Return the number of elements in this list */
25 public int size() {
26 return size;
27 }
28
29 @Override /** Remove the first occurrence of the element e
30 * from this list. Shift any subsequent elements to the left.
31 * Return true if the element is removed. */
32 public boolean remove(E e) {
33 if (indexOf(e) >= 0) {
34 remove(indexOf(e));
35 return true;
36 }
37 else

38 return false;
39 }
40 }

The following sections give the implementation for MyArrayList and MyLinkedList,
respectively.

Design Guide
Protected data fields are rarely used. However, making size a protected data field in

the MyAbstractList class is a good choice. The subclass of MyAbstractList can

access size, but nonsubclasses of MyAbstractList in different packages cannot

access it. As a general rule, you can declare protected data fields in abstract classes.

24.1 Suppose list is an instance of MyList, can you get an iterator for list using
list.iterator()?

24.2 Can you create a list using new MyAbstractList() ?

24.3 What methods in MyList are overridden in MyAbstractList?

24.4 What are the benefits of defining both the MyList interface and the MyAbstractList
class?

size

no-arg constructor

constructor

implement add(E e)

implement isEmpty()

implement size()

implement remove(E e)

protected data field

✓Point✓Check

900 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.3 Array Lists
An array list is implemented using an array.

An array is a fixed-size data structure. Once an array is created, its size cannot be changed.
Nevertheless, you can still use arrays to implement dynamic data structures. The trick is to
create a larger new array to replace the current array, if the current array cannot hold new
elements in the list.

Initially, an array, say data of E[] type, is created with a default size. When inserting a
new element into the array, first make sure that there is enough room in the array. If not, cre-
ate a new array twice as large as the current one. Copy the elements from the current array to
the new array. The new array now becomes the current array. Before inserting a new element
at a specified index, shift all the elements after the index to the right and increase the list size
by 1, as shown in Figure 24.4.

Key
Point

FIGURE 24.4 Inserting a new element into the array requires that all the elements after the
insertion point be shifted one position to the right, so that the new element can be inserted at
the insertion point.

0 1 … i i + 1 k – 1 k + 1Before inserting
e at insertion point i

…

data.length - 1
Insertion point

0 1 … i i + 1After inserting
e at insertion point i,
list size is
incremented by 1

…

…shift…

data.length - 1e inserted here

k

k + 1ki + 2

e0

e

e1 … ei ei+1
… ek–1 ekei–1

e0 e1 … e ei+1ei
… ek–1 ekei–1

FIGURE 24.5 Deleting an element from the array requires that all the elements after the
deletion point be shifted one position to the left.

Before deleting the
element at index i e0

 0 1 … i i + 1 k – 1

e1 … ei ei+1

…

… ek–1

data.length - 1Delete this element ...shift...

e0

 0 1 … iAfter deleting the
element, list size is
decremented by 1

e1 …

…

… ek

data.length - 1

ek

k

ei–1

ei–1

k – 1

ei+1

k – 2

ek–1

k

Note
The data array is of type E[]. Each cell in the array actually stores the reference of an object.

To remove an element at a specified index, shift all the elements after the index to the left
by one position and decrease the list size by 1, as shown in Figure 24.5.

MyArrayList uses an array to implement MyAbstractList, as shown in Figure 24.6. Its
implementation is given in Listing 24.3.

24.3 Array Lists 901

LISTING 24.3 MyArrayList.java
 1 public class MyArrayList<E> extends MyAbstractList<E> {
 2 public static final int INITIAL_CAPACITY = 16;
 3 private E[] data = (E[]) new Object[INITIAL_CAPACITY];
 4
 5 /** Create a default list */
 6 public MyArrayList() {
 7 }
 8
 9 /** Create a list from an array of objects */
 10 public MyArrayList(E[] objects) {
 11 for (int i = 0; i < objects.length; i++)
 12 add(objects[i]); // Warning: don't use super(objects)!
 13 }
 14
 15 @Override /** Add a new element at the specified index */
 16 public void add(int index, E e) {
 17 ensureCapacity();
 18
 19 // Move the elements to the right after the specified index
 20 for (int i = size - 1; i >= index; i--)
 21 data[i + 1] = data[i];
 22
 23 // Insert new element to data[index]
 24 data[index] = e;
 25
 26 // Increase size by 1
 27 size++;
 28 }
 29
 30 /** Create a new larger array, double the current size + 1 */
 31 private void ensureCapacity() {
 32 if (size >= data.length) {
 33 E[] newData = (E[])(new Object[size * 2 + 1]);
 34 System.arraycopy(data, 0, newData, 0, size);
 35 data = newData;
36 }

 37 }
 38

initial capacity
create an array

no-arg constructor

constructor

add

ensureCapacity

double capacity + 1

FIGURE 24.6 MyArrayList implements a list using an array.

-data: E[]

+MyArrayList()
+MyArrayList(objects: E[])
+trimToSize(): void

-ensureCapacity(): void
-checkIndex(index: int): void

MyAbstractList<E>

Creates a default array list.
Creates an array list from an array of objects.
Trims the capacity of this array list to the list’s
 current size.
Doubles the current array size if needed.
Throws an exception if the index is out of

bounds in the list.

MyArrayList<E>

902 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

 39 @Override /** Clear the list */
 40 public void clear() {
 41 data = (E[])new Object[INITIAL_CAPACITY];
 42 size = 0;
 43 }
 44
 45 @Override /** Return true if this list contains the element */
 46 public boolean contains(E e) {
 47 for (int i = 0; i < size; i++)
 48 if (e.equals(data[i])) return true;
 49
 50 return false;
 51 }
 52
 53 @Override /** Return the element at the specified index */
 54 public E get(int index) {
 55 checkIndex(index);
 56 return data[index];
 57 }
 58
 59 private void checkIndex(int index) {
 60 if (index < 0 || index >= size)
 61 throw new IndexOutOfBoundsException
 62 ("index " + index + " out of bounds");
 63 }
 64
 65 @Override /** Return the index of the first matching element
 66 * in this list. Return -1 if no match. */
 67 public int indexOf(E e) {
 68 for (int i = 0; i < size; i++)
 69 if (e.equals(data[i])) return i;
 70
 71 return -1;
 72 }
 73
 74 @Override /** Return the index of the last matching element
 75 * in this list. Return -1 if no match. */
 76 public int lastIndexOf(E e) {
 77 for (int i = size - 1; i >= 0; i--)
 78 if (e.equals(data[i])) return i;
 79
 80 return -1;
 81 }
 82
 83 @Override /** Remove the element at the specified position
84 * in this list. Shift any subsequent elements to the left.
85 * Return the element that was removed from the list. */

 86 public E remove(int index) {
 87 checkIndex(index);
 88
 89 E e = data[index];
 90
 91 // Shift data to the left
 92 for (int j = index; j < size - 1; j++)
 93 data[j] = data[j + 1];
 94
 95 data[size - 1] = null; // This element is now null
 96
 97 // Decrement size
 98 size--;

clear

contains

get

checkIndex

indexOf

lastIndexOf

remove

24.3 Array Lists 903

 99
100 return e;
101 }
102
103 @Override /** Replace the element at the specified position
104 * in this list with the specified element. */
105 public E set(int index, E e) {
106 checkIndex(index);
107 E old = data[index];
108 data[index] = e;
109 return old;
110 }
111
112 @Override
113 public String toString() {
114 StringBuilder result = new StringBuilder("[");
115
116 for (int i = 0; i < size; i++) {
117 result.append(data[i]);
118 if (i < size - 1) result.append(", ");
119 }
120
121 return result.toString() + "]";
122 }
123
124 /** Trims the capacity to current size */
125 public void trimToSize() {
126 if (size != data.length) {
127 E[] newData = (E[])(new Object[size]);
128 System.arraycopy(data, 0, newData, 0, size);
129 data = newData;
130 } // If size == capacity, no need to trim
131 }
132
133 @Override /** Override iterator() defined in Iterable */
134 public java.util.Iterator<E> iterator() {
135 return new ArrayListIterator();
136 }
137
138 private class ArrayListIterator
139 implements java.util.Iterator<E> {
140 private int current = 0; // Current index
141
142 @Override
143 public boolean hasNext() {
144 return (current < size);
145 }
146
147 @Override
148 public E next() {
149 return data[current++];
150 }
151
152 @Override
153 public void remove() {
154 MyArrayList.this.remove(current);
155 }
156 }
157 }

set

toString

trimToSize

iterator

904 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

The constant INITIAL_CAPACITY (line 2) is used to create an initial array data (line 3).
Owing to generics type erasure, you cannot create a generic array using the syntax new
e[INITIAL_CAPACITY]. To circumvent this limitation, an array of the Object type is cre-
ated in line 3 and cast into E[].

Note that the implementation of the second constructor in MyArrayList is the same as for
MyAbstractList. Can you replace lines 11–12 with super(objects)? See Checkpoint
Question 24.8 for answers.

The add(int index, E e) method (lines 16–28) inserts element e at the specified
index in the array. This method first invokes ensureCapacity() (line 17), which ensures
that there is a space in the array for the new element. It then shifts all the elements after the
index one position to the right before inserting the element (lines 20–21). After the element
is added, size is incremented by 1 (line 27). Note that the variable size is defined as
protected in MyAbstractList, so it can be accessed in MyArrayList.

The ensureCapacity() method (lines 31–37) checks whether the array is full. If so, the
program creates a new array that doubles the current array size + 1, copies the current array
to the new array using the System.arraycopy method, and sets the new array as the current
array.

The clear() method (lines 40–43) creates a new array using the size as
INITIAL_CAPACITY and resets the variable size to 0. The class will work if line 41 is
deleted. However, the class will have a memory leak, because the elements are still in the
array, although they are no longer needed. By creating a new array and assigning it to data,
the old array and the elements stored in the old array become garbage, which will be automati-
cally collected by the JVM.

The contains(E e) method (lines 46–51) checks whether element e is contained in the
array by comparing e with each element in the array using the equals method.

The get(int index) method (lines 54–57) checks if index is within the range and
returns data[index] if index is in the range.

The checkIndex(int index) method (lines 59–63) checks if index is within the range.
If not, the method throws an IndexOutOfBoundsException (line 61).

The indexOf(E e) method (lines 67–72) compares element e with the elements in the
array, starting from the first one. If a match is found, the index of the element is returned;
otherwise, –1 is returned.

The lastIndexOf(E e) method (lines 76–81) compares element e with the elements in
the array, starting from the last one. If a match is found, the index of the element is returned;
otherwise, –1 is returned.

The remove(int index) method (lines 86–101) shifts all the elements after the index
one position to the left (lines 92–93) and decrements size by 1 (line 98). The last element is
not used anymore and is set to null (line 95).

The set(int index, E e) method (lines 105–110) simply assigns e to data[index]
to replace the element at the specified index with element e.

The toString() method (lines 113–122) overrides the toString method in the Object
class to return a string representing all the elements in the list.

The trimToSize() method (lines 125–131) creates a new array whose size matches
the current array-list size (line 127), copies the current array to the new array using the
System.arraycopy method (line 128), and sets the new array as the current array (line 129).
Note that if size == capacity, there is no need to trim the size of the array.

The iterator() method defined in the java.lang.Iterable interface is
implemented to return an instance on java.util.Iterator (lines 134–136). The
ArrayListIterator class implements Iterator with concrete methods for hasNext,
next, and remove (lines 143–155). It uses current to denote the current position of the
element being traversed (line 140).

Listing 24.4 gives an example that creates a list using MyArrayList. It uses the
add method to add strings to the list and the remove method to remove strings. Since

add

ensureCapacity

clear

contains

checkIndex

indexOf

lastIndexOf

remove

set

toString

trimToSize

iterator

24.3 Array Lists 905

MyArrayList implements Iterable, the elements can be traversed using a for-each loop
(lines 35–36).

LISTING 24.4 TestMyArrayList.java
 1 public class TestMyArrayList {
 2 public static void main(String[] args) {
 3 // Create a list
 4 MyList<String> list = new MyArrayList<String>();
 5
 6 // Add elements to the list
 7 list.add("America"); // Add it to the list
 8 System.out.println("(1) " + list);
 9
10 list.add(0, "Canada"); // Add it to the beginning of the list
11 System.out.println("(2) " + list);
12
13 list.add("Russia"); // Add it to the end of the list
14 System.out.println("(3) " + list);
15
16 list.add("France"); // Add it to the end of the list
17 System.out.println("(4) " + list);
18
19 list.add(2, "Germany"); // Add it to the list at index 2
20 System.out.println("(5) " + list);
21
22 list.add(5, "Norway"); // Add it to the list at index 5
23 System.out.println("(6) " + list);
24
25 // Remove elements from the list
26 list.remove("Canada"); // Same as list.remove(0) in this case
27 System.out.println("(7) " + list);
28
29 list.remove(2); // Remove the element at index 2
30 System.out.println("(8) " + list);
31
32 list.remove(list.size() - 1); // Remove the last element
33 System.out.print("(9) " + list + "\n(10) ");
34
35 for (String s: list)
36 System.out.print(s.toUpperCase() + " ");
37 }
38 }

create a list

add to list

remove from list

using iterator

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [America, Germany, Russia, France, Norway]
(8) [America, Germany, France, Norway]
(9) [America, Germany, France]
(10) AMERICA GERMANY FRANCE

24.5 What are the limitations of the array data type?

24.6 MyArrayList is implemented using an array, and an array is a fixed-size data struc-
ture. Why is MyArrayList considered a dynamic data structure?

✓Point✓Check

906 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.7 Show the length of the array in MyArrayList after each of the following statements
is executed.

1 MyArrayList<Double> list = new MyArrayList<>();
2 list.add(1.5);
3 list.trimToSize();
4 list.add(3.4);
5 list.add(7.4);
6 list.add(17.4);

24.8 What is wrong if lines 11–12 in Listing 24.3, MyArrayList.java,

for (int i = 0; i < objects.length; i++)
 add(objects[i]);

are replaced by

super(objects);

or

data = objects;
size = objects.length;

24.9 If you change the code in line 33 in Listing 24.3, MyArrayList.java, from

E[] newData = (E[])(new Object[size * 2 + 1]);

to

E[] newData = (E[])(new Object[size * 2]);

the program is incorrect. Can you find the reason?

24.10 Will the MyArrayList class have memory leak if the following code in line 41 is
deleted?

data = (E[])new Object[INITIAL_CAPACITY];

24.11 The get(index) method invokes the checkIndex(index) method (lines 59–63
in Listing 24.3) to throw an IndexOutOfBoundsException if the index is out of
bounds. Suppose the add(index, e) is implemented as follows:

public void add(int index, E e) {
checkIndex(index);

// Same as lines 17-27 in Listing 24.3 MyArrayList.java
}

What will happen if you run the following code?

MyArrayList<String> list = new MyArrayList<>();
list.add("New York");

24.4 Linked Lists
A linked list is implemented using a linked structure.

Since MyArrayList is implemented using an array, the methods get(int index) and
set(int index, E e) for accessing and modifying an element through an index and the

Key
Point

24.4 Linked Lists 907

add(E e) method for adding an element at the end of the list are efficient. However, the
methods add(int index, E e) and remove(int index) are inefficient, because they
require shifting a potentially large number of elements. You can use a linked structure to
implement a list to improve efficiency for adding and removing an element at the beginning
of a list.

24.4.1 Nodes
In a linked list, each element is contained in an object, called the node. When a new element
is added to the list, a node is created to contain it. Each node is linked to its next neighbor, as
shown in Figure 24.7.

A node can be created from a class defined as follows:

class Node<E> {
 E element;
 Node<E> next;

public Node(E e) {
 element = e;
 }
}

FIGURE 24.7 A linked list consists of any number of nodes chained together.

element 1head
next

Node 1
element 2
next

Node 2
… element n

null

Node n
tail

FIGURE 24.8 Append the first node to the list. Both head and tail point to this node.

After the first node is inserted

head

head = new Node<>("Chicago");
tail = head;

tail
"Chicago"
next: null

We use the variable head to refer to the first node in the list, and the variable tail to the last
node. If the list is empty, both head and tail are null. Here is an example that creates a
linked list to hold three nodes. Each node stores a string element.

Step 1: Declare head and tail.

Node<String> head = null; The list is empty now
Node<String> tail = null;

head and tail are both null. The list is empty.

Step 2: Create the first node and append it to the list, as shown in Figure 24.8. After the
first node is inserted in the list, head and tail point to this node.

Step 3: Create the second node and append it into the list, as shown in Figure 24.9a. To
append the second node to the list, link the first node with the new node. The new node
is now the tail node, so you should move tail to point to this new node, as shown in
Figure 24.9b.

908 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

Step 4: Create the third node and append it to the list, as shown in Figure 24.10a. To
append the new node to the list, link the last node in the list with the new node. The
new node is now the tail node, so you should move tail to point to this new node, as
shown in Figure 24.10b.

FIGURE 24.9 Append the second node to the list. Tail now points to this new node.

head "Chicago"
next

"Denver"
next: null

tail

head "Chicago"
next

"Denver"
next: null

tail

tail.next = new Node<>("Denver");

tail = tail.next;

(a)

(b)

FIGURE 24.10 Append the third node to the list.

head "Chicago"
next

"Denver"
next

"Dallas"
next: null

tail

head "Chicago"
next

"Denver"
next

"Dallas"
next: null

tail

tail.next = new Node<>("Dallas");

tail = tail.next;

(a)

(b)

Each node contains the element and a data field named next that points to the next element. If
the node is the last in the list, its pointer data field next contains the value null. You can use
this property to detect the last node. For example, you can write the following loop to traverse
all the nodes in the list.

 1 Node current = head;
 2 while (current != null) {
 3 System.out.println(current.element);
 4 current = current.next;
 5 }

The variable current points initially to the first node in the list (line 1). In the loop, the
element of the current node is retrieved (line 3), and then current points to the next node
(line 4). The loop continues until the current node is null.

24.4.2 The MyLinkedList Class
The MyLinkedList class uses a linked structure to implement a dynamic list. It extends
MyAbstractList. In addition, it provides the methods addFirst, addLast, removeFirst,
removeLast, getFirst, and getLast, as shown in Figure 24.11.

current pointer
check last node

next node

24.4 Linked Lists 909

Assuming that the class has been implemented, Listing 24.5 gives a test program that uses
the class.

LISTING 24.5 TestMyLinkedList.java
 1 public class TestMyLinkedList {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a list for strings
 5 MyLinkedList<String> list = new MyLinkedList<>();
 6
 7 // Add elements to the list
 8 list.add("America"); // Add it to the list
 9 System.out.println("(1) " + list);
10
11 list.add(0, "Canada"); // Add it to the beginning of the list
12 System.out.println("(2) " + list);
13
14 list.add("Russia"); // Add it to the end of the list
15 System.out.println("(3) " + list);
16
17 list.addLast("France"); // Add it to the end of the list
18 System.out.println("(4) " + list);
19
20 list.add(2, "Germany"); // Add it to the list at index 2
21 System.out.println("(5) " + list);
22
23 list.add(5, "Norway"); // Add it to the list at index 5
24 System.out.println("(6) " + list);
25
26 list.add(0, "Poland"); // Same as list.addFirst("Poland")
27 System.out.println("(7) " + list);
28
29 // Remove elements from the list
30 list.remove(0);// Same as list.remove("Poland") in this case
31 System.out.println("(8) " + list);

create list

append element
print list

insert element

append element

append element

insert element

insert element

insert element

remove element

FIGURE 24.11 MyLinkedList implements a list using a linked list of nodes.

-head: Node<E>
-tail: Node<E>

+MyLinkedList()
+MyLinkedList(elements: E[])
+addFirst(e: E): void
+addLast(e: E): void
+getFirst(): E
+getLast(): E
+removeFirst(): E
+removeLast(): E

1

m

Link

1

MyAbstractList<E>

Creates a default linked list.
Creates a linked list from an array of elements.
Adds an element to the head of the list.
Adds an element to the tail of the list.
Returns the first element in the list.
Returns the last element in the list.
Removes the first element from the list.
Removes the last element from the list.

MyLinkedList<E>

element: E
next: Node<E>

Node<E>

910 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

32
33 list.remove(2); // Remove the element at index 2
34 System.out.println("(9) " + list);
35
36 list.remove(list.size() - 1); // Remove the last element
37 System.out.print("(10) " + list + "\n(11) ");
38
39 for (String s: list)
40 System.out.print(s.toUpperCase() + " ");
41 }
42 }

remove element

remove element

traverse using iterator

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [Poland, Canada, America, Germany, Russia, France, Norway]
(8) [Canada, America, Germany, Russia, France, Norway]
(9) [Canada, America, Russia, France, Norway]
(10) [Canada, America, Russia, France]
(11) CANADA AMERICA RUSSIA FRANCE

24.4.3 Implementing MyLinkedList

Now let us turn our attention to implementing the MyLinkedList class. We will discuss
how to implement the methods addFirst, addLast, add(index, e), removeFirst,
removeLast, and remove(index) and leave the other methods in the MyLinkedList class
as exercises.

24.4.3.1 Implementing addFirst(e)

The addFirst(e) method creates a new node for holding element e. The new node becomes
the first node in the list. It can be implemented as follows:

 1 public void addFirst(E e) {
 2 Node<E> newNode = new Node<>(e); // Create a new node
 3 newNode.next = head; // link the new node with the head
 4 head = newNode; // head points to the new node
 5 size++; // Increase list size
 6
 7 if (tail == null) // The new node is the only node in list
 8 tail = head;
 9 }

The addFirst(e) method creates a new node to store the element (line 2) and inserts the
node at the beginning of the list (line 3), as shown in Figure 24.12a. After the insertion, head
should point to this new element node (line 4), as shown in Figure 24.12b.

create a node
link with head
head to new node
increase size

was empty?

24.4 Linked Lists 911

If the list is empty (line 7), both head and tail will point to this new node (line 8). After
the node is created, size should be increased by 1 (line 5).

24.4.3.2 Implementing addLast(e)

The addLast(e) method creates a node to hold the element and appends the node at the end
of the list. It can be implemented as follows:

 1 public void addLast(E e) {
 2 Node<E> newNode = new Node<>(e); // Create a new node for e
 3
 4 if (tail == null) {
 5 head = tail = newNode; // The only node in list
 6 }
 7 else {
 8 tail.next = newNode; // Link the new node with the last node
 9 tail = tail.next; // tail now points to the last node
10 }
11
12 size++; // Increase size
13 }

The addLast(e) method creates a new node to store the element (line 2) and appends it to
the end of the list. Consider two cases:

1. If the list is empty (line 4), both head and tail will point to this new node (line 5);

2. Otherwise, link the node with the last node in the list (line 8). tail should now point to
this new node (line 9). Figure 24.13a and Figure 24.13b show the new node for element
e before and after the insertion.

In any case, after the node is created, the size should be increased by 1 (line 12).

create a node

increase size

FIGURE 24.12 A new element is added to the beginning of the list.

(a) Before a new node is inserted.

This is
the new
node

(b) After a new node is inserted.

head

head

…

A new node
to be inserted
here

tail

…e0

next

e
next

ei

next
ei+1

next
ek

null

… …e0

next

e
next

ei

next
ei+1

next
ek

null

tail

912 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.4.3.3 Implementing add(index, e)

The add(index, e) method inserts an element into the list at the specified index. It can be
implemented as follows:

 1 public void add(int index, E e) {
 2 if (index == 0) addFirst(e); // Insert first
 3 else if (index >= size) addLast(e); // Insert last
 4 else { // Insert in the middle
 5 Node<E> current = head;
 6 for (int i = 1; i < index; i++)
 7 current = current.next;
 8 Node<E> temp = current.next;
 9 current.next = new Node<E>(e);
10 (current.next).next = temp;
11 size++;
12 }
13 }

There are three cases when inserting an element into the list:

1. If index is 0, invoke addFirst(e) (line 2) to insert the element at the beginning of the list.

2. If index is greater than or equal to size, invoke addLast(e) (line 3) to insert the ele-
ment at the end of the list.

3. Otherwise, create a new node to store the new element and locate where to insert it. As
shown in Figure 24.14a, the new node is to be inserted between the nodes current and
temp. The method assigns the new node to current.next and assigns temp to the
new node’s next, as shown in Figure 24.14b. The size is now increased by 1 (line 11).

24.4.3.4 Implementing removeFirst()

The removeFirst() method removes the first element from the list. It can be implemented
as follows:

 1 public E removeFirst() {
 2 if (size == 0) return null; // Nothing to delete
 3 else {

insert first
insert last

create a node

increase size

nothing to remove

FIGURE 24.13 A new element is added at the end of the list.

(a) Before a new node is inserted.

A new node
is appended
in the list

(b) After a new node is inserted.

head

…
A new node
to be inserted
here

tail

…e0

next

e
null

ei

next
ei+1

next
ek

null

head

… tail…e0

next

e
null

ei

next
ei+1

next
ek

next

24.4 Linked Lists 913

 4 Node<E> temp = head; // Keep the first node temporarily
 5 head = head.next; // Move head to point to next node
 6 size--; // Reduce size by 1
 7 if (head == null) tail = null; // List becomes empty
 8 return temp.element; // Return the deleted element
 9 }
10 }

Consider two cases:

1. If the list is empty, there is nothing to delete, so return null (line 2).

2. Otherwise, remove the first node from the list by pointing head to the second node.
Figure 24.15a and Figure 24.15b show the linked list before and after the deletion. The
size is reduced by 1 after the deletion (line 6). If the list becomes empty, after removing
the element, tail should be set to null (line 7).

keep old head
new head
decrease size
destroy the node

FIGURE 24.14 A new element is inserted in the middle of the list.

(a) Before a new node is inserted.

(b) After a new node is inserted.

head

…

A new node
to be inserted
here

tail

…e0

next
ei

next
ei+1

next
ek

null

current temp

e
null

A new node
is inserted in
the list

current temphead

…

tail

…e0

next

e
next

ei

next
ei+1

next
ek

null

FIGURE 24.15 The first node is deleted from the list.

(a) Before the node is deleted.

(b) After the node is deleted.

…e1

next
ei

next

…ei+1

next
ek

null
e0

next

head

…

Delete this node

tail

e1

next
ei

next

…ei+1

next
ek

null
e0

next

head

This node is deleted

tail

914 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.4.3.5 Implementing removeLast()

The removeLast() method removes the last element from the list. It can be implemented
as follows:

 1 public E removeLast() {
 2 if (size == 0) return null; // Nothing to remove
 3 else if (size == 1) { // Only one element in the list
 4 Node<E> temp = head;
 5 head = tail = null; // list becomes empty
 6 size = 0;
 7 return temp.element;
 8 }
 9 else {
10 Node<E> current = head;
11
12 for (int i = 0; i < size - 2; i++)
13 current = current.next;
14
15 Node<E> temp = tail;
16 tail = current;
17 tail.next = null;
18 size--;
19 return temp.element;
20 }
21 }

Consider three cases:

1. If the list is empty, return null (line 2).

2. If the list contains only one node, this node is destroyed; head and tail both become
null (line 5). The size becomes 0 after the deletion (line 6) and the element value of the
deleted node is returned (line 7).

3. Otherwise, the last node is destroyed (line 17) and the tail is repositioned to point to
the second-to-last node. Figure 24.16a and Figure 24.16b show the last node before and
after it is deleted. The size is reduced by 1 after the deletion (line 18) and the element
value of the deleted node is returned (line 19).

empty?
size 1?

head and tail null
size is 0
return element

size 7 1

move tail

reduce size
return element

FIGURE 24.16 The last node is deleted from the list.

(a) Before the node is deleted.

(b) After the node is deleted.

head

…

Delete this node

tail

e1

next
ek–2

next
ek–1

next
ek

null
e0

next

current

head

…

This node is deleted

tail

e1

next
ek–2

next
ek–1

null
ek

null
e0

next

24.4 Linked Lists 915

24.4.3.6 Implementing remove(index)

The remove(index) method finds the node at the specified index and then removes it. It can
be implemented as follows:

 1 public E remove(int index) {
 2 if (index < 0 || index >= size) return null; // Out of range
 3 else if (index == 0) return removeFirst(); // Remove first
 4 else if (index == size - 1) return removeLast(); // Remove last
 5 else {
 6 Node<E> previous = head;
 7
 8 for (int i = 1; i < index; i++) {
 9 previous = previous.next;
10 }
11
12 Node<E> current = previous.next;
13 previous.next = current.next;
14 size--;
15 return current.element;
16 }
17 }

Consider four cases:

1. If index is beyond the range of the list (i.e., index < 0 || index >= size), return
null (line 2).

2. If index is 0, invoke removeFirst() to remove the first node (line 3).

3. If index is size - 1, invoke removeLast() to remove the last node (line 4).

4. Otherwise, locate the node at the specified index. Let current denote this node
and previous denote the node before this node, as shown in Figure 24.17a. Assign
current.next to previous.next to eliminate the current node, as shown in
Figure 24.17b.

out of range
remove first
remove last

locate previous

locate current
remove from list
reduce size
return element

FIGURE 24.17 A node is deleted from the list.

(a) Before the node is deleted.

(b) After the node is deleted.

head

…

Delete this node

e0

next
Ek–1

next
ek

next

previous current tail

…ek–1

next
ek

null

current.next

previous current.nexthead

…

tail

…e0

next
ek–1

next
ek–1

next
ek

null

Listing 24.6 gives the implementation of MyLinkedList. The implementation of get(index),
indexOf(e), lastIndexOf(e), contains(e), and set(index, e) is omitted and
left as an exercise. The iterator() method defined in the java.lang.Iterable inter-
face is implemented to return an instance on java.util.Iterator (lines 126–128). The
LinkedListIterator class implements Iterator with concrete methods for hasNext,

iterator

916 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

next, and remove (lines 134–149). This implementation uses current to point to the current
position of the element being traversed (line 132). Initially, current points to the head of
the list.

LISTING 24.6 MyLinkedList.java
 1 public class MyLinkedList<E> extends MyAbstractList<E> {
 2 private Node<E> head, tail;
 3
 4 /** Create a default list */
 5 public MyLinkedList() {
 6 }
 7
 8 /** Create a list from an array of objects */
 9 public MyLinkedList(E[] objects) {
 10 super(objects);
 11 }
 12
 13 /** Return the head element in the list */
 14 public E getFirst() {
 15 if (size == 0) {
 16 return null;
 17 }
 18 else {
 19 return head.element;
 20 }
 21 }
 22
 23 /** Return the last element in the list */
 24 public E getLast() {
 25 if (size == 0) {
 26 return null;
 27 }
 28 else {
 29 return tail.element;
 30 }
 31 }
 32
 33 /** Add an element to the beginning of the list */
 34 public void addFirst(E e) {
 35 // Implemented in Section 24.4.3.1, so omitted here
 36 }
 37
 38 /** Add an element to the end of the list */
 39 public void addLast(E e) {
 40 // Implemented in Section 24.4.3.2, so omitted here
 41 }
 42
 43 @Override /** Add a new element at the specified index
 44 * in this list. The index of the head element is 0 */
 45 public void add(int index, E e) {
 46 // Implemented in Section 24.4.3.3, so omitted here
 47 }
 48
 49 /** Remove the head node and
 50 * return the object that is contained in the removed node. */
 51 public E removeFirst() {
 52 // Implemented in Section 24.4.3.4, so omitted here
 53 }
 54

head, tail

no-arg constructor

constructor

getFirst

getLast

addFirst

addLast

add

removeFirst

24.4 Linked Lists 917

 55 /** Remove the last node and
 56 * return the object that is contained in the removed node. */
 57 public E removeLast() {
 58 // Implemented in Section 24.4.3.5, so omitted here
 59 }
 60
 61 @Override /** Remove the element at the specified position in this
 62 * list. Return the element that was removed from the list. */
 63 public E remove(int index) {
 64 // Implemented earlier in Section 24.4.3.6, so omitted here
 65 }
 66
 67 @Override
 68 public String toString() {
 69 StringBuilder result = new StringBuilder("[");
 70
 71 Node<E> current = head;
 72 for (int i = 0; i < size; i++) {
 73 result.append(current.element);
 74 current = current.next;
 75 if (current != null) {
 76 result.append(", "); // Separate two elements with a comma
 77 }
 78 else {
 79 result.append("]"); // Insert the closing] in the string
 80 }
 81 }
 82
 83 return result.toString();
 84 }
 85
 86 @Override /** Clear the list */
 87 public void clear() {
 88 size = 0;
 89 head = tail = null;
 90 }
 91
 92 @Override /** Return true if this list contains the element e */
 93 public boolean contains(E e) {
 94 System.out.println("Implementation left as an exercise");
 95 return true;
 96 }
 97
 98 @Override /** Return the element at the specified index */
 99 public E get(int index) {
100 System.out.println("Implementation left as an exercise");
101 return null;
102 }
103
104 @Override /** Return the index of the head matching element
105 * in this list. Return -1 if no match. */
106 public int indexOf(E e) {
107 System.out.println("Implementation left as an exercise");
108 return 0;
109 }
110
111 @Override /** Return the index of the last matching element
112 * in this list. Return -1 if no match. */
113 public int lastIndexOf(E e) {
114 System.out.println("Implementation left as an exercise");

removeLast

remove

toString

clear

contains

get

indexOf

lastIndexOf

918 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

115 return 0;
116 }
117
118 @Override /** Replace the element at the specified position
119 * in this list with the specified element. */
120 public E set(int index, E e) {
121 System.out.println("Implementation left as an exercise");
122 return null;
123 }
124
125 @Override /** Override iterator() defined in Iterable */
126 public java.util.Iterator<E> iterator() {
127 return new LinkedListIterator();
128 }
129
130 private class LinkedListIterator
131 implements java.util.Iterator<E> {
132 private Node<E> current = head; // Current index
133
134 @Override
135 public boolean hasNext() {
136 return (current != null);
137 }
138
139 @Override
140 public E next() {
141 E e = current.element;
142 current = current.next;
143 return e;
144 }
145
146 @Override
147 public void remove() {
148 System.out.println("Implementation left as an exercise");
149 }
150 }
151
152 // This class is only used in LinkedList, so it is private.
153 // This class does not need to access any
154 // instance members of LinkedList, so it is defined static.
155 private static class Node<E> {
156 E element;
157 Node<E> next;
158
159 public Node(E element) {
160 this.element = element;
161 }
162 }
163 }

24.4.4 MyArrayList vs. MyLinkedList
Both MyArrayList and MyLinkedList can be used to store a list. MyArrayList is imple-
mented using an array and MyLinkedList is implemented using a linked list. The overhead
of MyArrayList is smaller than that of MyLinkedList. However, MyLinkedList is more
efficient if you need to insert elements into and delete elements from the beginning of the list.
Table 24.1 summarizes the complexity of the methods in MyArrayList and MyLinkedList.
Note that MyArrayList is the same as java.util.ArrayList and MyLinkedList is the
same as java.util.LinkedList.

set

iterator

LinkedListIterator class

Node inner class

24.4 Linked Lists 919

24.4.5 Variations of Linked Lists
The linked list introduced in the preceding sections is known as a singly linked list. It contains
a pointer to the list’s first node, and each node contains a pointer to the next node sequentially.
Several variations of the linked list are useful in certain applications.

A circular, singly linked list is like a singly linked list, except that the pointer of the last
node points back to the first node, as shown in Figure 24.18a. Note that tail is not needed
for circular linked lists. head points to the current node in the list. Insertion and deletion take
place at the current node. A good application of a circular linked list is in the operating system
that serves multiple users in a timesharing fashion. The system picks a user from a circular list
and grants a small amount of CPU time, then moves on to the next user in the list.

Methods MyArrayList/ArrayList MyLinkedList/LinkedList

add(e: E) O(1) O(1)

add(index: int, e: E) O(n) O(n)

clear() O(1) O(1)

contains(e: E) O(n) O(n)

get(index: int) O(1) O(n)

indexOf(e: E) O(n) O(n)

isEmpty() O(1) O(1)

lastIndexOf(e: E) O(n) O(n)

remove(e: E) O(n) O(n)

size() O(1) O(1)

remove(index: int) O(n) O(n)

set(index: int, e: E) O(n) O(n)

addFirst(e: E) O(n) O(1)

removeFirst() O(n) O(1)

TABLE 24.1 Time Complexities for Methods in MyArrayList and MyLinkedList

FIGURE 24.18 Linked lists may appear in various forms.

(a) Circular linked list

...
Node 1 Node 2 Node n

element1
next

element2
next

elementn
next

head

(b) Doubly linked list

...

...

Node 1

element1
next
null

head tail
Node 2

element2
next

previous

Node n

elementn
null

previous

(c) Circular doubly linked list

Node 1

element1
next

previous

head
Node 2

element2
next

previous

Node n

elementn
next

previous

920 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

A doubly linked list contains nodes with two pointers. One points to the next node and the
other to the previous node, as shown in Figure 24.18b. These two pointers are conveniently
called a forward pointer and a backward pointer. Thus, a doubly linked list can be traversed for-
ward and backward. The java.util.LinkedList class is implemented using a doubly linked
list, and it supports traversing of the list forward and backward using the ListIterator.

A circular, doubly linked list is like a doubly linked list, except that the forward pointer of
the last node points to the first node and the backward pointer of the first pointer points to the
last node, as shown in Figure 24.18c.

The implementations of these linked lists are left as exercises.

24.12 Both MyArrayList and MyLinkedList are used to store a list of objects. Why do
we need both types of lists?

24.13 Draw a diagram to show the linked list after each of the following statements is executed.

MyLinkedList<Double> list = new MyLinkedList<>();
list.add(1.5);
list.add(6.2);
list.add(3.4);
list.add(7.4);
list.remove(1.5);
list.remove(2);

24.14 What is the time complexity of the addFirst(e) and removeFirst() methods in
MyLinkedList?

24.15 Suppose you need to store a list of elements. If the number of elements in the pro-
gram is fixed, what data structure should you use? If the number of elements in the
program changes, what data structure should you use?

24.16 If you have to add or delete the elements at the beginning of a list, should you use
MyArrayList or MyLinkedList? If most of the operations on a list involve retriev-
ing an element at a given index, should you use MyArrayList or MyLinkedList?

24.17 Simplify the code in lines 75-80 in Listing 24.6 using a conditional expression.

24.5 Stacks and Queues
Stacks can be implemented using array lists and queues can be implemented using
linked lists.

A stack can be viewed as a special type of list whose elements are accessed, inserted, and
deleted only from the end (top), as shown in Figure 10.11. A queue represents a waiting list.
It can be viewed as a special type of list whose elements are inserted into the end (tail) of the
queue, and are accessed and deleted from the beginning (head), as shown in Figure 24.19.

✓Point✓Check

Key
Point

FIGURE 24.19 A queue holds objects in a first-in, first-out fashion.

Data1
Data2

Data1 Data1
Data2
Data3

Data2 Data3

Data2
Data3

Data1 Data2

Data3

Data1

Data3

24.5 Stacks and Queues 921

Pedagogical Note
For an interactive demo on how stacks and queues work, go to www.cs.armstrong.edu/

liang/animation/web/Stack.html, and www.cs.armstrong.edu/liang/animation/web/Queue.html, as

shown in Figure 24.20.

stack and queue animation on

Companion Website

FIGURE 24.20 The animation tool enables you to see how stacks and queues work.

(a) Stack animation (b) Queue animation

FIGURE 24.21 GenericStack and GenericQueue may be implemented using inheritance
or composition.

(a) Using inheritance

(b) Using composition

ArrayList GenericStack LinkedList GenericQueue

GenericStack ArrayList GenericQueue LinkedList

Since the insertion and deletion operations on a stack are made only at the end of the stack,
it is more efficient to implement a stack with an array list than a linked list. Since deletions are
made at the beginning of the list, it is more efficient to implement a queue using a linked list
than an array list. This section implements a stack class using an array list and a queue class
using a linked list.

There are two ways to design the stack and queue classes:

 ■ Using inheritance: You can define a stack class by extending ArrayList, and a
queue class by extending LinkedList, as shown in Figure 24.21a.

 ■ Using composition: You can define an array list as a data field in the stack class, and
a linked list as a data field in the queue class, as shown in Figure 24.21b.

inheritance

composition

Both designs are fine, but using composition is better because it enables you to define a com-
pletely new stack class and queue class without inheriting the unnecessary and inappropriate
methods from the array list and linked list. The implementation of the stack class using the com-
position approach was given in Listing 19.1, GenericStack.java. Listing 24.7 implements the
GenericQueue class using the composition approach. Figure 24.22 shows the UML of the class.

www.cs.armstrong.edu/liang/animation/web/Stack.html
www.cs.armstrong.edu/liang/animation/web/Stack.html
www.cs.armstrong.edu/liang/animation/web/Queue.html

922 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

LISTING 24.7 GenericQueue.java
 1 public class GenericQueue<E> {
 2 private java.util.LinkedList<E> list
 3 = new java.util.LinkedList<>();
 4
 5 public void enqueue(E e) {
 6 list.addLast(e);
 7 }
 8
 9 public E dequeue() {
10 return list.removeFirst();
11 }
12
13 public int getSize() {
14 return list.size();
15 }
16
17 @Override
18 public String toString() {
19 return "Queue: " + list.toString();
20 }
21 }

A linked list is created to store the elements in a queue (lines 2–3). The enqueue(e)
method (lines 5–7) adds element e into the tail of the queue. The dequeue() method (lines
9–11) removes an element from the head of the queue and returns the removed element. The
getSize() method (lines 13–15) returns the number of elements in the queue.

Listing 24.8 gives an example that creates a stack using GenericStack and a queue using
GenericQueue. It uses the push (enqueue) method to add strings to the stack (queue) and
the pop (dequeue) method to remove strings from the stack (queue).

LISTING 24.8 TestStackQueue.java
 1 public class TestStackQueue {
 2 public static void main(String[] args) {
 3 // Create a stack
 4 GenericStack<String> stack =
 5 new GenericStack<>();
 6
 7 // Add elements to the stack
 8 stack.push("Tom"); // Push it to the stack
 9 System.out.println("(1) " + stack);
10
11 stack.push("Susan"); // Push it to the the stack
12 System.out.println("(2) " + stack);
13
14 stack.push("Kim"); // Push it to the stack
15 stack.push("Michael"); // Push it to the stack
16 System.out.println("(3) " + stack);
17

linked list

enqueue

dequeue

getSize

toString

FIGURE 24.22 GenericQueue uses a linked list to provide a first-in, first-out data structure.

GenericQueue<E>

-list: java.util.LinkedList<E>

+enqueue(e: E): void
+dequeue(): E
+getSize(): int

Adds an element to this queue.

Returns the number of elements in this queue.
Removes an element from this queue.

24.5 Stacks and Queues 923

18 // Remove elements from the stack
19 System.out.println("(4) " + stack.pop());
20 System.out.println("(5) " + stack.pop());
21 System.out.println("(6) " + stack);
22
23 // Create a queue
24 GenericQueue<String> queue = new GenericQueue<>();
25
26 // Add elements to the queue
27 queue.enqueue("Tom"); // Add it to the queue
28 System.out.println("(7) " + queue);
29
30 queue.enqueue("Susan"); // Add it to the queue
31 System.out.println("(8) " + queue);
32
33 queue.enqueue("Kim"); // Add it to the queue
34 queue.enqueue("Michael"); // Add it to the queue
35 System.out.println("(9) " + queue);
36
37 // Remove elements from the queue
38 System.out.println("(10) " + queue.dequeue());
39 System.out.println("(11) " + queue.dequeue());
40 System.out.println("(12) " + queue);
41 }
42 }

(1) stack: [Tom]
(2) stack: [Tom, Susan]
(3) stack: [Tom, Susan, Kim, Michael]
(4) Michael
(5) Kim
(6) stack: [Tom, Susan]
(7) Queue: [Tom]
(8) Queue: [Tom, Susan]
(9) Queue: [Tom, Susan, Kim, Michael]
(10) Tom
(11) Susan
(12) Queue: [Kim, Michael]

For a stack, the push(e) method adds an element to the top of the stack, and the pop()
method removes the top element from the stack and returns the removed element. It is easy to
see that the time complexity for the push and pop methods is O(1).

For a queue, the enqueue(e) method adds an element to the tail of the queue, and the
dequeue() method removes the element from the head of the queue. It is easy to see that the
time complexity for the enqueue and dequeue methods is O(1).

24.18 You can use inheritance or composition to design the data structures for stacks and
queues. Discuss the pros and cons of these two approaches.

24.19 If LinkedList is replaced by ArrayList in lines 2–3 in Listing 24.7 Generic-
Queue.java, what will be the time complexity for the enqueue and dequeue methods?

24.20 Which lines of the following code are wrong?

1 List<String> list = new ArrayList<>();
2 list.add("Tom");
3 list = new LinkedList<>();
4 list.add("Tom");
5 list = new GenericStack<>();
6 list.add("Tom");

stack time complexity

queue time complexity

✓Point✓Check

924 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

24.6 Priority Queues
Priority queues can be implemented using heaps.

An ordinary queue is a first-in, first-out data structure. Elements are appended to the end of
the queue and removed from the beginning. In a priority queue, elements are assigned with
priorities. When accessing elements, the element with the highest priority is removed first.
For example, the emergency room in a hospital assigns priority numbers to patients; the
patient with the highest priority is treated first.

A priority queue can be implemented using a heap, in which the root is the object with the
highest priority in the queue. Heaps were introduced in Section 23.6, Heap Sort. The class dia-
gram for the priority queue is shown in Figure 24.23. Its implementation is given in Listing 24.9.

Key
Point

FIGURE 24.23 MyPriorityQueue uses a heap to provide a largest-in, first-out data structure.

MyPriorityQueue
<E extends Comparable<E>>

-heap: Heap<E>

+enqueue(element: E): void
+dequeue(): E
+getSize(): int

Adds an element to this queue.
Removes an element from this queue.
Returns the number of elements in this queue.

LISTING 24.9 MyPriorityQueue.java
 1 public class MyPriorityQueue<E extends Comparable<E>> {
 2 private Heap<E> heap = new Heap<>();
 3
 4 public void enqueue(E newObject) {
 5 heap.add(newObject);
 6 }
 7
 8 public E dequeue() {
 9 return heap.remove();
10 }
11
12 public int getSize() {
13 return heap.getSize();
14 }
15 }

Listing 24.10 gives an example of using a priority queue for patients. The Patient class is
defined in lines 19–37. Four patients are created with associated priority values in lines 3–6.
Line 8 creates a priority queue. The patients are enqueued in lines 10–13. Line 16 dequeues a
patient from the queue.

LISTING 24.10 TestPriorityQueue.java
 1 public class TestPriorityQueue {
 2 public static void main(String[] args) {
 3 Patient patient1 = new Patient("John", 2);
 4 Patient patient2 = new Patient("Jim", 1);
 5 Patient patient3 = new Patient("Tim", 5);
 6 Patient patient4 = new Patient("Cindy", 7);
 7
 8 MyPriorityQueue<Patient> priorityQueue
 9 = new MyPriorityQueue<>();
10 priorityQueue.enqueue(patient1);
11 priorityQueue.enqueue(patient2);

heap for priority queue

enqueue

dequeue

getsize

create a patient

create a priority queue

add to queue

12 priorityQueue.enqueue(patient3);
13 priorityQueue.enqueue(patient4);
14
15 while (priorityQueue.getSize() > 0)
16 System.out.print(priorityQueue.dequeue() + " ");
17 }
18
19 static class Patient implements Comparable<Patient> {
20 private String name;
21 private int priority;
22
23 public Patient(String name, int priority) {
24 this.name = name;
25 this.priority = priority;
26 }
27
28 @Override
29 public String toString() {
30 return name + "(priority:" + priority + ")";
31 }
32
33 @Override
34 public int compareTo(Patient patient) {
35 return this.priority - patient.priority;
36 }
37 }
38 }

remove from queue

inner class Patient

compareTo

Cindy(priority:7) Tim(priority:5) John(priority:2) Jim(priority:1)

24.21 What is a priority queue?

24.22 What are the time complexity of the enqueue, dequeue , and getSize methods in
MyProrityQueue?

24.23 Which of the following statements are wrong?

1 MyPriorityQueue<Object> q1 = new MyPriorityQueue<>();
2 MyPriorityQueue<Number> q2 = new MyPriorityQueue<>();
3 MyPriorityQueue<Integer> q3 = new MyPriorityQueue<>();
4 MyPriorityQueue<Date> q4 = new MyPriorityQueue<>();
5 MyPriorityQueue<String> q5 = new MyPriorityQueue<>();

CHAPTER SUMMARY

1. You learned how to implement array lists, linked lists, stacks, and queues.

2. To define a data structure is essentially to define a class. The class for a data structure
should use data fields to store data and provide methods to support operations such as
insertion and deletion.

3. To create a data structure is to create an instance from the class. You can then apply the
methods on the instance to manipulate the data structure, such as inserting an element
into the data structure or deleting an element from the data structure.

4. You learned how to implement a priority queue using a heap.

✓Point✓Check

Chapter Summary 925

926 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/test.html.

PROGRAMMING EXERCISES

24.1 (Add set operations in MyList) Define the following methods in MyList and
implement them in MyAbstractList:

/** Adds the elements in otherList to this list.
* Returns true if this list changed as a result of the call */

public boolean addAll(MyList<E> otherList);

/** Removes all the elements in otherList from this list
* Returns true if this list changed as a result of the call */

public boolean removeAll(MyList<E> otherList);

/** Retains the elements in this list that are also in otherList
* Returns true if this list changed as a result of the call */

public boolean retainAll(MyList<E> otherList);

 Write a test program that creates two MyArrayLists, list1 and list2, with
the initial values {"Tom", "George", "Peter", "Jean", "Jane"} and
{"Tom", "George", "Michael", "Michelle", "Daniel"}, then per-
form the following operations:

 ■ Invokes list1.addAll(list2), and displays list1 and list2.
 ■ Recreates list1 and list2 with the same initial values, invokes

list1.removeAll(list2), and displays list1 and list2.
 ■ Recreates list1 and list2 with the same initial values, invokes

list1.retainAll(list2), and displays list1 and list2.

*24.2 (Implement MyLinkedList) The implementations of the methods
contains(E e), get(int index), indexOf(E e), lastIndexOf(E e),
and set(int index, E e) are omitted in the text. Implement these methods.

*24.3 (Implement a doubly linked list) The MyLinkedList class used in Listing 24.6
is a one-way directional linked list that enables one-way traversal of the list.
Modify the Node class to add the new data field name previous to refer to the
previous node in the list, as follows:

public class Node<E> {
 E element;
 Node<E> next;
 Node<E> previous;

public Node(E e) {
 element = e;
 }
}

 Implement a new class named TwoWayLinkedList that uses a doubly
linked list to store elements. The MyLinkedList class in the text
extends MyAbstractList. Define TwoWayLinkedList to extend the
java.util.AbstractSequentialList class. You need to implement all the
methods defined in MyLinkedList as well as the methods listIterator()

www.cs.armstrong.edu/liang/intro10e/test.html

Programming Exercises 927

and listIterator(int index). Both return an instance of java.util.
ListIterator<E>. The former sets the cursor to the head of the list and the
latter to the element at the specified index.

24.4 (Use the GenericStack class) Write a program that displays the first 50 prime
numbers in descending order. Use a stack to store the prime numbers.

24.5 (Implement GenericQueue using inheritance) In Section 24.5, Stacks and
Queues, GenericQueue is implemented using composition. Define a new queue
class that extends java.util.LinkedList.

*24.6 (Generic PriorityQueue using Comparator) Revise MyPriorityQueue
in Listing 24.9, using a generic parameter for comparing objects. Define a new
constructor with a Comparator as its argument as follows:

PriorityQueue(Comparator<? super E> comparator)

**24.7 (Animation: linked list) Write a program to animate search, insertion, and dele-
tion in a linked list, as shown in Figure 24.1b. The Search button searches the
specified value in the list. The Delete button deletes the specified value from the
list. The Insert button appends the value into the list if the index is not specified;
otherwise, it inserts the value into the specified index in the list.

*24.8 (Animation: array list) Write a program to animate search, insertion, and deletion
in an array list, as shown in Figure 24.1a. The Search button searches the specified
value in the list. The Delete button deletes the specified value from the list. The
Insert button appends the value into the list if the index is not specified; otherwise,
it inserts the value into the specified index in the list.

*24.9 (Animation: array list in slow motion) Improve the animation in the preceding
programming exercise by showing the insertion and deletion operations
in a slow motion, as shown at http://www.cs.armstrong.edu/liang/animation/
ArrayListAnimationInSlowMotion.html.

*24.10 (Animation: stack) Write a program to animate push and pop in a stack, as shown
in Figure 24.20a.

*24.11 (Animation: doubly linked list) Write a program to animate search, insertion,
and deletion in a doubly linked list, as shown in Figure 24.24. The Search button
searches the specified value in the list. The Delete button deletes the specified
value from the list. The Insert button appends the value into the list if the index
is not specified; otherwise, it inserts the value into the specified index in the
list. Also add two buttons named Forward Traversal and Backward Traversal
for displaying the elements in a forward and backward order, respectively, using
iterators.

FIGURE 24.24 The program animates the work of a doubly linked list.

http://www.cs.armstrong.edu/liang/animation/ArrayListAnimationInSlowMotion.html
http://www.cs.armstrong.edu/liang/animation/ArrayListAnimationInSlowMotion.html

928 Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues

*24.12 (Animation: queue) Write a program to animate the enqueue and dequeue
operations on a queue, as shown in Figure 24.20b.

*24.13 (Fibonacci number iterator) Define an iterator class named FibonacciIterator
for iterating Fibonacci numbers. The constructor takes an argument that
specifies the limit of the maximum Fibonacci number. For example, new
FibonacciIterator(23302) creates an iterator that iterates Fibonacci num-
bers less than or equal to 23302. Write a test program that uses this iterator to
display all Fibonacci numbers less than or equal to 100000.

*24.14 (Prime number iterator) Define an iterator class named PrimeIterator for iter-
ating prime numbers. The constructor takes an argument that specifies the limit
of the maximum prime number. For example, new PrimeIterator(23302)
creates an iterator that iterates prime numbers less than or equal to 23302. Write
a test program that uses this iterator to display all prime numbers less than or
equal to 100000.

**24.15 (Test MyArrayList) Design and write a complete test program to test if the
MyArrayList class in Listing 24.3 meets all requirements.

**24.16 (Test MyLinkedList) Design and write a complete test program to test if the
MyLinkedList class in Listing 24.6 meets all requirements.

BINARY SEARCH TREES

Objectives
■ To design and implement a binary search tree (§25.2).

■ To represent binary trees using linked data structures (§25.2.1).

■ To search an element in a binary search tree (§25.2.2).

■ To insert an element into a binary search tree (§25.2.3).

■ To traverse elements in a binary tree (§25.2.4).

■ To design and implement the Tree interface, AbstractTree class,
and the BST class (§25.2.5).

■ To delete elements from a binary search tree (§25.3).

■ To display a binary tree graphically (§25.4).

■ To create iterators for traversing a binary tree (§25.5).

■ To implement Huffman coding for compressing data using a binary
tree (§25.6).

CHAPTER

25

930 Chapter 25 Binary Search Trees

25.1 Introduction
A tree is a classic data structure with many important applications.

A tree provides a hierarchical organization in which data are stored in the nodes. This chapter
introduces binary search trees. You will learn how to construct a binary search tree, how to
search an element, insert an element, delete an element, and traverse elements in a binary
search tree. You will also learn how to define and implement a custom data structure for a
binary search tree.

25.2 Binary Search Trees
A binary search tree can be implemented using a linked structure.

Recall that lists, stacks, and queues are linear structures that consist of a sequence of
elements. A binary tree is a hierarchical structure. It either is empty or consists of an
element, called the root, and two distinct binary trees, called the left subtree and right
subtree, either or both of which may be empty. Examples of binary trees are shown in
Figure 25.1.

Key
Point

Key
Point

binary tree

root

left subtree

right subtree

FIGURE 25.1 Each node in a binary tree has zero, one, or two subtrees.

67 107

60

55

5745

R

M T

(a) (b)

100

G

F

A

The length of a path is the number of the edges in the path. The depth of a node is
the length of the path from the root to the node. The set of all nodes at a given depth
is sometimes called a level of the tree. Siblings are nodes that share the same parent
node. The root of a left (right) subtree of a node is called a left (right) child of the node.
A node without children is called a leaf. The height of a nonempty tree is the length
of the path from the root node to its furthest leaf. The height of a tree that contains a
single node is 0. Conventionally, the height of an empty tree is —1. Consider the tree in
Figure 25.1a. The length of the path from node 60 to 45 is 2. The depth of node 60 is
0, the depth of node 55 is 1, and the depth of node 45 is 2. The height of the tree is 2.
Nodes 45 and 57 are siblings. Nodes 45, 57, 67, and 107 are at the same level.

A special type of binary tree called a binary search tree (BST) is often useful. A BST (with
no duplicate elements) has the property that for every node in the tree, the value of any node in
its left subtree is less than the value of the node, and the value of any node in its right subtree
is greater than the value of the node. The binary trees in Figure 25.1 are all BSTs.

Pedagogical Note
For an interactive GUI demo to see how a BST works, go to www.cs.armstrong.edu/liang/

animation/web/BST.html, as shown in Figure 25.2.

length

depth

level

sibling

leaf
height

binary search tree

BST animation on Companion

Website

www.cs.armstrong.edu/liang/animation/web/BST.html
www.cs.armstrong.edu/liang/animation/web/BST.html

25.2 Binary Search Trees 931

25.2.1 Representing Binary Search Trees
A binary tree can be represented using a set of linked nodes. Each node contains a value and
two links named left and right that reference the left child and right child, respectively, as
shown in Figure 25.3.

FIGURE 25.2 The animation tool enables you to insert, delete, and search elements.

FIGURE 25.3 A binary tree can be represented using a set of linked nodes.

60

55

45 57

root

100

67 107

A node can be defined as a class, as follows:

class TreeNode<E> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;

public TreeNode(E e) {
 element = e;
 }
}

932 Chapter 25 Binary Search Trees

The variable root refers to the root node of the tree. If the tree is empty, root is null. The
following code creates the first three nodes of the tree in Figure 25.3.

// Create the root node
TreeNode<Integer> root = new TreeNode<>(60);

// Create the left child node
root.left = new TreeNode<>(55);

// Create the right child node
root.right = new TreeNode<>(100);

25.2.2 Searching for an Element
To search for an element in the BST, you start from the root and scan down from it until a
match is found or you arrive at an empty subtree. The algorithm is described in Listing 25.1.
Let current point to the root (line 2). Repeat the following steps until current is null (line
4) or the element matches current.element (line 12).

 ■ If element is less than current.element, assign current.left to current
(line 6).

 ■ If element is greater than current.element, assign current.right to
current (line 9).

 ■ If element is equal to current.element, return true (line 12).

If current is null, the subtree is empty and the element is not in the tree (line 14).

LISTING 25.1 Searching for an Element in a BST
 1 public boolean search(E element) {
 2 TreeNode<E> current = root; // Start from the root
 3
 4 while (current != null)
 5 if (element < current.element) {
 6 current = current.left; // Go left
 7 }
 8 else if (element > current.element) {
 9 current = current.right; // Go right
10 }
11 else // Element matches current.element
12 return true; // Element is found
13
14 return false; // Element is not in the tree
15 }

25.2.3 Inserting an Element into a BST
To insert an element into a BST, you need to locate where to insert it in the tree. The key idea
is to locate the parent for the new node. Listing 25.2 gives the algorithm.

LISTING 25.2 Inserting an Element into a BST
 1 boolean insert(E e) {
 2 if (tree is empty)
3 // Create the node for e as the root;
 4 else {
 5 // Locate the parent node
 6 parent = current = root;
7 while (current != null)

start from root

left subtree

right subtree

found

not found

create a new node

locate parent

25.2 Binary Search Trees 933

 8 if (e < the value in current.element) {
 9 parent = current; // Keep the parent
10 current = current.left; // Go left
11 }
12 else if (e > the value in current.element) {
13 parent = current; // Keep the parent
14 current = current.right; // Go right
15 }
16 else

17 return false; // Duplicate node not inserted
18
19 // Create a new node for e and attach it to parent
20
21 return true; // Element inserted
22 }
23 }

If the tree is empty, create a root node with the new element (lines 2–3). Otherwise, locate the
parent node for the new element node (lines 6–17). Create a new node for the element and link
this node to its parent node. If the new element is less than the parent element, the node for the
new element will be the left child of the parent. If the new element is greater than the parent
element, the node for the new element will be the right child of the parent.

For example, to insert 101 into the tree in Figure 25.3, after the while loop finishes in
the algorithm, parent points to the node for 107, as shown in Figure 25.4a. The new node
for 101 becomes the left child of the parent. To insert 59 into the tree, after the while loop
finishes in the algorithm, the parent points to the node for 57, as shown in Figure 25.4b. The
new node for 59 becomes the right child of the parent.

left child

right child

FIGURE 25.4 Two new elements are inserted into the tree.

(a) Inserting 101

parent

60

55

45 57

root

100

67 107

101

(b) Inserting 59

parent

60

55

45 57

root

100

67 107

10159

25.2.4 Tree Traversal
Tree traversal is the process of visiting each node in the tree exactly once. There are several
ways to traverse a tree. This section presents inorder, postorder, preorder, depth-first, and
breadth-first traversals.

With inorder traversal, the left subtree of the current node is visited first recursively, then
the current node, and finally the right subtree of the current node recursively. The inorder
traversal displays all the nodes in a BST in increasing order.

With postorder traversal, the left subtree of the current node is visited recursively first,
then recursively the right subtree of the current node, and finally the current node itself. An
application of postorder is to find the size of the directory in a file system. As shown in

tree traversal

inorder traversal

postorder traversal

934 Chapter 25 Binary Search Trees

Figure 25.5, each directory is an internal node and a file is a leaf node. You can apply postorder
to get the size of each file and subdirectory before finding the size of the root directory.

With preorder traversal, the current node is visited first, then recursively the left subtree
of the current node, and finally the right subtree of the current node recursively. Depth-first
traversal is the same as preorder traversal. An application of preorder is to print a structured
document. As shown in Figure 25.6, you can print a book’s table of contents using preorder
traversal.

preorder traversal

depth-first traversal

FIGURE 25.5 A directory contains files and subdirectories.

directory

d2d1
f1 f2 . . .fm dn

. . . d12d11
f11 f1m f21 fn1 fnk. . .

FIGURE 25.6 A tree can be used to represent a structured document such as a book and its
chapters and sections.

Chapter 1 . . .

book

Chapter n

Section 1 Section 2 . . .

Chapter 2

Note
You can reconstruct a binary search tree by inserting the elements in their preorder.

The reconstructed tree preserves the parent and child relationship for the nodes in the

original binary search tree.

With breadth-first traversal, the nodes are visited level by level. First the root is visited,
then all the children of the root from left to right, then the grandchildren of the root from left
to right, and so on.

For example, in the tree in Figure 25.4b, the inorder is

45 55 57 59 60 67 100 101 107

The postorder is

45 59 57 55 67 101 107 100 60

The preorder is

60 55 45 57 59 100 67 107 101

The breadth-first traversal is

60 55 100 45 57 67 107 59 101

breadth-first traversal

25.2 Binary Search Trees 935

You can use the following tree to help remember inorder, postorder, and preorder.

+

1 2

FIGURE 25.7 The Tree interface defines common operations for trees, and the AbstractTree class partially
implements Tree.

Returns true if the specified element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree successfully.

Prints the nodes in inorder traversal.

Prints the nodes in preorder traversal.

Prints the nodes in postorder traversal.

Returns the number of elements in the tree.

Returns true if the tree is empty.

Removes all elements from the tree.

AbstractTree<E>

+search(e: E): boolean

«interface»
Tree<E>

+clear(): void

+isEmpty(): boolean

+getSize(): int

+postorder(): void

+preorder(): void

+inorder(): void

+delete(e: E): boolean

+insert(e: E): boolean

Returns an iterator for traversing the elements in this collection+iterator(): Iterator<E>

«interface»
java.lang.Iterable<E>

The inorder is 1 + 2, the postorder is 1 2 +, and the preorder is + 1 2.

25.2.5 The BST Class
Following the design pattern of the Java Collections Framework API, we use an interface
named Tree to define all common operations for trees and provide an abstract class named
AbstractTree that partially implements Tree, as shown in Figure 25.7. A concrete BST
class can be defined to extend AbstractTree, as shown in Figure 25.8.

Listings 25.3, 25.4, and 25.5 give the implementations for Tree, AbstractTree, and BST.

LISTING 25.3 Tree.java
 1 public interface Tree<E> extends Iterable<E> {
 2 /** Return true if the element is in the tree */
 3 public boolean search(E e);
 4
 5 /** Insert element e into the binary search tree.
 6 * Return true if the element is inserted successfully. */
7 public boolean insert(E e);

 8

interface

search

insert

936 Chapter 25 Binary Search Trees

 9 /** Delete the specified element from the tree.
10 * Return true if the element is deleted successfully. */
11 public boolean delete(E e);
12
13 /** Inorder traversal from the root*/
14 public void inorder();
15
16 /** Postorder traversal from the root */
17 public void postorder();
18
19 /** Preorder traversal from the root */
20 public void preorder();
21
22 /** Get the number of nodes in the tree */
23 public int getSize();
24
25 /** Return true if the tree is empty */
26 public boolean isEmpty();
27 }

LISTING 25.4 AbstractTree.java
 1 public abstract class AbstractTree<E>
 2 implements Tree<E> {
 3 @Override /** Inorder traversal from the root*/
 4 public void inorder() {
 5 }
 6
 7 @Override /** Postorder traversal from the root */
 8 public void postorder() {
 9 }
10
11 @Override /** Preorder traversal from the root */
12 public void preorder() {
13 }
14
15 @Override /** Return true if the tree is empty */

delete

inorder

postorder

preorder

getSize

isEmpty

abstract class

default inorder
implementation

default postorder
implementation

default preorder
implementation

FIGURE 25.8 The BST class defines a concrete BST.

BST<E extends Comparable<E>>TreeNode<E>

#root: TreeNode<E>

#size: int

+BST()

+BST(objects: E[])

+path(e: E):
java.util.List<TreeNode<E>>

1

m

#element: E

#left: TreeNode<E>

#right: TreeNode<E>

Link

0

The root of the tree.

The number of nodes in the tree.

Creates a default BST.

Creates a BST from an array of elements.

Returns the path of nodes from the root leading to
the node for the specified element. The element
may not be in the tree.

AbstractTree<E>

25.2 Binary Search Trees 937

16 public boolean isEmpty() {
17 return getSize() == 0;
18 }
19 }

LISTING 25.5 BST.java
 1 public class BST<E extends Comparable<E>>
 2 extends AbstractTree<E> {
 3 protected TreeNode<E> root;
 4 protected int size = 0;
 5
 6 /** Create a default binary search tree */
 7 public BST() {
 8 }
 9
 10 /** Create a binary search tree from an array of objects */
 11 public BST(E[] objects) {
 12 for (int i = 0; i < objects.length; i++)
 13 insert(objects[i]);
 14 }
 15
 16 @Override /** Return true if the element is in the tree */
 17 public boolean search(E e) {
 18 TreeNode<E> current = root; // Start from the root
 19
 20 while (current != null) {
 21 if (e.compareTo(current.element) < 0) {
 22 current = current.left;
 23 }
 24 else if (e.compareTo(current.element) > 0) {
 25 current = current.right;
 26 }
 27 else // element matches current.element
 28 return true; // Element is found
 29 }
 30
 31 return false;
 32 }
 33
 34 @Override /** Insert element e into the binary search tree.
 35 * Return true if the element is inserted successfully. */
 36 public boolean insert(E e) {
 37 if (root == null)
 38 root = createNewNode(e); // Create a new root
 39 else {
 40 // Locate the parent node
 41 TreeNode<E> parent = null;
 42 TreeNode<E> current = root;
 43 while (current != null)
 44 if (e.compareTo(current.element) < 0) {
 45 parent = current;
 46 current = current.left;
 47 }
48 else if (e.compareTo(current.element) > 0) {

 49 parent = current;
 50 current = current.right;
 51 }
 52 else

 53 return false; // Duplicate node not inserted

isEmpty implementation

BST class

root
size

no-arg constructor

constructor

search

compare objects

insert

new root

compare objects

938 Chapter 25 Binary Search Trees

 54
 55 // Create the new node and attach it to the parent node
 56 if (e.compareTo(parent.element) < 0)
 57 parent.left = createNewNode(e);
 58 else

 59 parent.right = createNewNode(e);
 60 }
 61
 62 size++;
 63 return true; // Element inserted successfully
 64 }
 65
 66 protected TreeNode<E> createNewNode(E e) {
 67 return new TreeNode<>(e);
 68 }
 69
 70 @Override /** Inorder traversal from the root */
 71 public void inorder() {
 72 inorder(root);
 73 }
 74
 75 /** Inorder traversal from a subtree */
 76 protected void inorder(TreeNode<E> root) {
 77 if (root == null) return;
 78 inorder(root.left);
 79 System.out.print(root.element + " ");
 80 inorder(root.right);
 81 }
 82
 83 @Override /** Postorder traversal from the root */
 84 public void postorder() {
 85 postorder(root);
 86 }
 87
 88 /** Postorder traversal from a subtree */
 89 protected void preorder(TreeNode<E> root) {
 90 if (root == null) return;
 91 postorder(root.left);
 92 postorder(root.right);
 93 System.out.print(root.element + " ");
 94 }
 95
 96 @Override /** Preorder traversal from the root */
 97 public void preorder() {
 98 preorder(root);
 99 }
100
101 /** Preorder traversal from a subtree */
102 protected void postorder(TreeNode<E> root) {
103 if (root == null) return;
104 System.out.print(root.element + " ");
105 preorder(root.left);
106 preorder(root.right);
107 }
108
109 /** This inner class is static, because it does not access
110 any instance members defined in its outer class */
111 public static class TreeNode<E extends Comparable<E>> {
112 protected E element;
113 protected TreeNode<E> left;

link to parent

increase size

create new node

inorder

recursive helper method

postorder

recursive helper method

preorder

recursive helper method

inner class

25.2 Binary Search Trees 939

114 protected TreeNode<E> right;
115
116 public TreeNode(E e) {
117 element = e;
118 }
119 }
120
121 @Override /** Get the number of nodes in the tree */
122 public int getSize() {
123 return size;
124 }
125
126 /** Returns the root of the tree */
127 public TreeNode<E> getRoot() {
128 return root;
129 }
130
131 /** Returns a path from the root leading to the specified element */
132 public java.util.ArrayList<TreeNode<E>> path(E e) {
133 java.util.ArrayList<TreeNode<E>> list =
134 new java.util.ArrayList<>();
135 TreeNode<E> current = root; // Start from the root
136
137 while (current != null) {
138 list.add(current); // Add the node to the list
139 if (e.compareTo(current.element) < 0) {
140 current = current.left;
141 }
142 else if (e.compareTo(current.element) > 0) {
143 current = current.right;
144 }
145 else

146 break;
147 }
148
149 return list; // Return an array list of nodes
150 }
151
152 @Override /** Delete an element from the binary search tree.
153 * Return true if the element is deleted successfully.
154 * Return false if the element is not in the tree. */
155 public boolean delete(E e) {
156 // Locate the node to be deleted and also locate its parent node
157 TreeNode<E> parent = null;
158 TreeNode<E> current = root;
159 while (current != null) {
160 if (e.compareTo(current.element) < 0) {
161 parent = current;
162 current = current.left;
163 }
164 else if (e.compareTo(current.element) > 0) {
165 parent = current;
166 current = current.right;
167 }
168 else

169 break; // Element is in the tree pointed at by current
170 }
171
172 if (current == null)
173 return false; // Element is not in the tree

getSize

getRoot

path

delete

locate parent
locate current

current found

not found

940 Chapter 25 Binary Search Trees

174
175 // Case 1: current has no left child
176 if (current.left == null) {
177 // Connect the parent with the right child of the current node
178 if (parent == null) {
179 root = current.right;
180 }
181 else {
182 if (e.compareTo(parent.element) < 0)
183 parent.left = current.right;
184 else

185 parent.right = current.right;
186 }
187 }
188 else {
189 // Case 2: The current node has a left child.
190 // Locate the rightmost node in the left subtree of
191 // the current node and also its parent.
192 TreeNode<E> parentOfRightMost = current;
193 TreeNode<E> rightMost = current.left;
194
195 while (rightMost.right != null) {
196 parentOfRightMost = rightMost;
197 rightMost = rightMost.right; // Keep going to the right
198 }
199
200 // Replace the element in current by the element in rightMost
201 current.element = rightMost.element;
202
203 // Eliminate rightmost node
204 if (parentOfRightMost.right == rightMost)
205 parentOfRightMost.right = rightMost.left;
206 else

207 // Special case: parentOfRightMost == current
208 parentOfRightMost.left = rightMost.left;
209 }
210
211 size—–;
212 return true; // Element deleted successfully
213 }
214
215 @Override /** Obtain an iterator. Use inorder. */
216 public java.util.Iterator<E> iterator() {
217 return new InorderIterator();
218 }
219
220 // Inner class InorderIterator
221 private class InorderIterator implements java.util.Iterator<E> {
222 // Store the elements in a list
223 private java.util.ArrayList<E> list =
224 new java.util.ArrayList<>();
225 private int current = 0; // Point to the current element in list
226
227 public InorderIterator() {
228 inorder(); // Traverse binary tree and store elements in list
229 }
230
231 /** Inorder traversal from the root*/
232 private void inorder() {
233 inorder(root);

Case 1

reconnect parent

reconnect parent

Case 2

locate parentOfRightMost
locate rightMost

replace current

reconnect
parentOfRightMost

reduce size
successful deletion

iterator

iterator class

internal list

current position

obtain inorder list

25.2 Binary Search Trees 941

234 }
235
236 /** Inorder traversal from a subtree */
237 private void inorder(TreeNode<E> root) {
238 if (root == null) return;
239 inorder(root.left);
240 list.add(root.element);
241 inorder(root.right);
242 }
243
244 @Override /** More elements for traversing? */
245 public boolean hasNext() {
246 if (current < list.size())
247 return true;
248
249 return false;
250 }
251
252 @Override /** Get the current element and move to the next */
253 public E next() {
254 return list.get(current++);
255 }
256
257 @Override /** Remove the current element */
258 public void remove() {
259 delete(list.get(current)); // Delete the current element
260 list.clear(); // Clear the list
261 inorder(); // Rebuild the list
262 }
263 }
264
265 /** Remove all elements from the tree */
266 public void clear() {
267 root = null;
268 size = 0;
269 }
270 }

The insert(E e) method (lines 36–64) creates a node for element e and inserts it into the
tree. If the tree is empty, the node becomes the root. Otherwise, the method finds an appropri-
ate parent for the node to maintain the order of the tree. If the element is already in the tree,
the method returns false; otherwise it returns true.

The inorder() method (lines 71–81) invokes inorder(root) to traverse the entire
tree. The method inorder(TreeNode root) traverses the tree with the specified root. This
is a recursive method. It recursively traverses the left subtree, then the root, and finally the
right subtree. The traversal ends when the tree is empty.

The postorder() method (lines 84–94) and the preorder() method (lines 97–107) are
implemented similarly using recursion.

The path(E e) method (lines 132–150) returns a path of the nodes as an array list. The
path starts from the root leading to the element. The element may not be in the tree. For
example, in Figure 25.4a, path(45) contains the nodes for elements 60, 55, and 45, and
path(58) contains the nodes for elements 60, 55, and 57.

The implementation of delete() and iterator() (lines 155–269) will be discussed in
Sections 25.3 and 25.5.

Listing 25.6 gives an example that creates a binary search tree using BST (line 4). The
program adds strings into the tree (lines 5–11), traverses the tree in inorder, postorder, and
preorder (lines 14–20), searches for an element (line 24), and obtains a path from the node
containing Peter to the root (lines 28–31).

hasNext in iterator?

get next element

remove the current

refresh list

clear

942 Chapter 25 Binary Search Trees

LISTING 25.6 TestBST.java
 1 public class TestBST {
 2 public static void main(String[] args) {
 3 // Create a BST
 4 BST<String> tree = new BST<>();
 5 tree.insert("George");
 6 tree.insert("Michael");
 7 tree.insert("Tom");
 8 tree.insert("Adam");
 9 tree.insert("Jones");
10 tree.insert("Peter");
11 tree.insert("Daniel");
12
13 // Traverse tree
14 System.out.print("Inorder (sorted): ");
15 tree.inorder();
16 System.out.print("\nPostorder: ");
17 tree.postorder();
18 System.out.print("\nPreorder: ");
19 tree.preorder();
20 System.out.print("\nThe number of nodes is " + tree.getSize());
21
22 // Search for an element
23 System.out.print("\nIs Peter in the tree? " +
24 tree.search("Peter"));
25
26 // Get a path from the root to Peter
27 System.out.print("\nA path from the root to Peter is: ");
28 java.util.ArrayList<BST.TreeNode<String>> path
29 = tree.path("Peter");
30 for (int i = 0; path != null && i < path.size(); i++)
31 System.out.print(path.get(i).element + " ");
32
33 Integer[] numbers = {2, 4, 3, 1, 8, 5, 6, 7};
34 BST<Integer> intTree = new BST<>(numbers);
35 System.out.print("\nInorder (sorted): ");
36 intTree.inorder();
37 }
38 }

create tree
insert

inorder

postorder

preorder
getSize

search

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7
Is Peter in the tree? true
A path from the root to Peter is: George Michael Tom Peter
Inorder (sorted): 1 2 3 4 5 6 7 8

The program checks path != null in line 30 to ensure that the path is not null before
invoking path.get(i). This is an example of defensive programming to avoid potential
runtime errors.

The program creates another tree for storing int values (line 34). After all the elements are
inserted in the trees, the trees should appear as shown in Figure 25.9.

If the elements are inserted in a different order (e.g., Daniel, Adam, Jones, Peter, Tom,
Michael, George), the tree will look different. However, the inorder traversal prints elements
in the same order as long as the set of elements is the same. The inorder traversal displays a
sorted list.

25.3 Deleting Elements from a BST 943

25.1 Show the result of inserting 44 into Figure 25.4b.

25.2 Show the inorder, preorder, and postorder of traversing the elements in the binary
tree shown in Figure 25.1b.

25.3 If a set of elements is inserted into a BST in two different orders, will the two cor-
responding BSTs look the same? Will the inorder traversal be the same? Will the
postorder traversal be the same? Will the preorder traversal be the same?

25.4 What is the time complexity of inserting an element into a BST?

25.5 Implement the search(element) method using recursion.

25.3 Deleting Elements from a BST
To delete an element from a BST, first locate it in the tree and then consider two
cases—whether or not the node has a left child—before deleting the element and
reconnecting the tree.

The insert(element) method was presented in Section 25.2.3. Often you need to delete an
element from a binary search tree. Doing so is far more complex than adding an element into
a binary search tree.

To delete an element from a binary search tree, you need to first locate the node that
contains the element and also its parent node. Let current point to the node that contains the
element in the binary search tree and parent point to the parent of the current node. The
current node may be a left child or a right child of the parent node. There are two cases
to consider.

Case 1: The current node does not have a left child, as shown in Figure 25.10a. In
this case, simply connect the parent with the right child of the current node, as shown in
Figure 25.10b.

For example, to delete node 10 in Figure 25.11a, you would connect the parent of node 10
with the right child of node 10, as shown in Figure 25.11b.

✓Point✓Check

Key
Point

locating element

FIGURE 25.9 The BSTs in Listing 25.6 are pictured here after they are created.

George

MichaelAdam

Daniel Jones Tom

Peter

root

(b)(a)

2

1

root

4

3 8

5

6

7

944 Chapter 25 Binary Search Trees

Note
If the current node is a leaf, it falls into Case 1. For example, to delete element 16 in

Figure 25.11a, connect its right child (in this case, it is null) to the parent of node 16.

Case 2: The current node has a left child. Let rightMost point to the node that contains the
largest element in the left subtree of the current node and parentOfRightMost point to the
parent node of the rightMost node, as shown in Figure 25.12a. Note that the rightMost node
cannot have a right child but may have a left child. Replace the element value in the current
node with the one in the rightMost node, connect the parentOfRightMost node with the
left child of the rightMost node, and delete the rightMost node, as shown in Figure 25.12b.

For example, consider deleting node 20 in Figure 25.13a. The rightMost node has the
element value 16. Replace the element value 20 with 16 in the current node and make node
10 the parent for node 14, as shown in Figure 25.13b.

Note
If the left child of current does not have a right child, current.left points to the

large element in the left subtree of current. In this case, rightMost is current.

left and parentOfRightMost is current. You have to take care of this special

case to reconnect the right child of rightMost with parentOfRightMost.

delete a leaf

special case

FIGURE 25.10 Case 1: The current node has no left child.

parentparent

Subtree

(a) (b)

Subtree

current may be a left or
right child of parent

Subtree may be a left or
right subtree of parent

current points the node
to be deleted

current

No left child

FIGURE 25.11 Case 1: Deleting node 10 from (a) results in (b).

(a)

20

10

16

root

40

30 80

5027

(b)

20

16

root

40

30 80

5027

25.3 Deleting Elements from a BST 945

The algorithm for deleting an element from a binary search tree can be described in
Listing 25.7.

LISTING 25.7 Deleting an Element from a BST
 1 boolean delete(E e) {
 2 Locate element e in the tree;
 3 if element e is not found

delete method

not in the tree

FIGURE 25.12 Case 2: The current node has a left child.

.

.

.

parent

Right subtree

(a) (b)

current may be a left or
right child of parent

current points to the node
to be deleted

current

parentOfRightMost

rightMost

leftChildOfRightMost

.

.

.

parent

Right subtree

current

parentOfRightMost

Content copied to
current and the node
is deleted

leftChildOfRightMost

The content of the current
node is replaced by the content of
the rightMost node. The rightMost
node is deleted.

null

FIGURE 25.13 Case 2: Deleting node 20 from (a) results in (b).

(a) (b)

20

10

16

root

rightMost

40

30 80

502714

16

10

root

40

30 80

502714

946 Chapter 25 Binary Search Trees

 4 return true;
 5
 6 Let current be the node that contains e and parent be
 7 the parent of current;
 8
 9 if (current has no left child) // Case 1
10 Connect the right child of
11 current with parent; now current is not referenced, so
12 it is eliminated;
13 else // Case 2
14 Locate the rightmost node in the left subtree of current.
15 Copy the element value in the rightmost node to current.
16 Connect the parent of the rightmost node to the left child
17 of rightmost node;
18
19 return true; // Element deleted
20 }

The complete implementation of the delete method is given in lines 155–213 in Listing
25.5. The method locates the node (named current) to be deleted and also locates its parent
(named parent) in lines 157–170. If current is null, the element is not in the tree. There-
fore, the method returns false (line 173). Please note that if current is root, parent is
null. If the tree is empty, both current and parent are null.

Case 1 of the algorithm is covered in lines 176–187. In this case, the current node has
no left child (i.e., current.left == null). If parent is null, assign current.right
to root (lines 178–180). Otherwise, assign current.right to either parent.left or
parent.right, depending on whether current is a left or right child of parent (182–185).

Case 2 of the algorithm is covered in lines 188–209. In this case, current has a left child.
The algorithm locates the rightmost node (named rightMost) in the left subtree of the cur-
rent node and also its parent (named parentOfRightMost) (lines 195–198). Replace the
element in current by the element in rightMost (line 201); assign rightMost.left
to either parentOfRightMost.right or parentOfRightMost.left (lines 204–208),
depending on whether rightMost is a right or left child of parentOfRightMost.

Listing 25.8 gives a test program that deletes the elements from the binary search tree.

LISTING 25.8 TestBSTDelete.java
 1 public class TestBSTDelete {
 2 public static void main(String[] args) {
 3 BST<String> tree = new BST<>();
 4 tree.insert("George");
 5 tree.insert("Michael");
 6 tree.insert("Tom");
 7 tree.insert("Adam");
 8 tree.insert("Jones");
 9 tree.insert("Peter");
10 tree.insert("Daniel");
11 printTree(tree);
12
13 System.out.println("\nAfter delete George:");
14 tree.delete("George");
15 printTree(tree);
16
17 System.out.println("\nAfter delete Adam:");
18 tree.delete("Adam");
19 printTree(tree);
20
21 System.out.println("\nAfter delete Michael:");
22 tree.delete("Michael");

locate current
locate parent

Case 1

Case 2

delete an element

delete an element

delete an element

25.3 Deleting Elements from a BST 947

23 printTree(tree);
24 }
25
26 public static void printTree(BST tree) {
27 // Traverse tree
28 System.out.print("Inorder (sorted): ");
29 tree.inorder();
30 System.out.print("\nPostorder: ");
31 tree.postorder();
32 System.out.print("\nPreorder: ");
33 tree.preorder();
34 System.out.print("\nThe number of nodes is " + tree.getSize());
35 System.out.println();
36 }
37 }

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7

After delete George:
Inorder (sorted): Adam Daniel Jones Michael Peter Tom
Postorder: Adam Jones Peter Tom Michael Daniel
Preorder: Daniel Adam Michael Jones Tom Peter
The number of nodes is 6

After delete Adam:
Inorder (sorted): Daniel Jones Michael Peter Tom
Postorder: Jones Peter Tom Michael Daniel
Preorder: Daniel Michael Jones Tom Peter
The number of nodes is 5

After delete Michael:
Inorder (sorted): Daniel Jones Peter Tom
Postorder: Peter Tom Jones Daniel
Preorder: Daniel Jones Tom Peter
The number of nodes is 4

FIGURE 25.14 Deleting George falls into Case 2.

George

MichaelAdam

Daniel Jones Tom

Peter

Delete this
node

(a) Deleting George (b) After George is deleted

Daniel

MichaelAdam

Jones Tom

Peter

Figures 25.14–25.16 show how the tree evolves as the elements are deleted from it.

948 Chapter 25 Binary Search Trees

Note
It is obvious that the time complexity for the inorder, preorder, and postorder is O(n),

since each node is traversed only once. The time complexity for search, insertion, and

deletion is the height of the tree. In the worst case, the height of the tree is O(n). If a tree

is well-balanced, the height would be O(logn). We will introduce well-balanced binary

trees in Chapter 26 and bonus Chapters 40 and 41.

25.6 Show the result of deleting 55 from the tree in Figure 25.4b.

25.7 Show the result of deleting 60 from the tree in Figure 25.4b.

25.8 What is the time complexity of deleting an element from a BST?

25.9 Is the algorithm correct if lines 204–208 in Listing 25.5 in Case 2 of the delete()
method are replaced by the following code?

parentOfRightMost.right = rightMost.left;

BST time complexity

✓Point✓Check

FIGURE 25.15 Deleting Adam falls into Case 1.

Daniel

MichaelAdam

Jones Tom

Peter

(a) Deleting Adam (b) After Adam is deleted

Delete this
node

Daniel

Michael

Jones Tom

Peter

FIGURE 25.16 Deleting Michael falls into Case 2.

Daniel

Michael

Jones Tom

Peter

(a) Deleting Michael (b) After Michael is deleted

Daniel

Jones

Tom

Peter

Delete this
node

25.4 Tree Visualization and MVC 949

25.4 Tree Visualization and MVC
You can use recursion to display a binary tree.

Pedagogical Note
One challenge facing the data-structure course is to motivate students. Displaying a binary

tree graphically will not only help you understand the working of a binary tree but perhaps

also stimulate your interest in programming. This section introduces the techniques to

visualize binary trees. You can also apply visualization techniques to other projects.

How do you display a binary tree? It is a recursive structure, so you can display a binary tree
using recursion. You can simply display the root, then display the two subtrees recursively.
The techniques for displaying the Sierpinski triangle (Listing 18.9, SierpinskiTriangle.java)
can be applied to displaying a binary tree. For simplicity, we assume the keys are positive
integers less than 100. Listings 25.9 and 25.10 give the program, and Figure 25.17 shows
some sample runs of the program.

Key
Point

FIGURE 25.17 A binary tree is displayed graphically.

LISTING 25.9 BSTAnimation.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
10
11 public class BSTAnimation extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 BST<Integer> tree = new BST<>(); // Create a tree
15
16 BorderPane pane = new BorderPane();
17 BTView view = new BTView(tree); // Create a BTView
18 pane.setCenter(view);
19
20 TextField tfKey = new TextField();
21 tfKey.setPrefColumnCount(3);
22 tfKey.setAlignment(Pos.BASELINE_RIGHT);
23 Button btInsert = new Button("Insert");
24 Button btDelete = new Button("Delete");
25 HBox hBox = new HBox(5);
26 hBox.getChildren().addAll(new Label("Enter a key: "),

create a tree

view for tree
place tree view

950 Chapter 25 Binary Search Trees

27 tfKey, btInsert, btDelete);
28 hBox.setAlignment(Pos.CENTER);
29 pane.setBottom(hBox);
30
31 btInsert.setOnAction(e -> {
32 int key = Integer.parseInt(tfKey.getText());
33 if (tree.search(key)) { // key is in the tree already
34 view.displayTree();
35 view.setStatus(key + " is already in the tree");
36 } else {
37 tree.insert(key); // Insert a new key
38 view.displayTree();
39 view.setStatus(key + " is inserted in the tree");
40 }
41 });
42
43 btDelete.setOnAction(e -> {
44 int key = Integer.parseInt(tfKey.getText());
45 if (!tree.search(key)) { // key is not in the tree
46 view.displayTree();
47 view.setStatus(key + " is not in the tree");
48 } else {
49 tree.delete(key); // Delete a key
50 view.displayTree();
51 view.setStatus(key + " is deleted from the tree");
52 }
53 });
54
55 // Create a scene and place the pane in the stage
56 Scene scene = new Scene(pane, 450, 250);
57 primaryStage.setTitle("BSTAnimation"); // Set the stage title
58 primaryStage.setScene(scene); // Place the scene in the stage
59 primaryStage.show(); // Display the stage
60 }
61 }

LISTING 25.10 BTView.java
 1 import javafx.scene.layout.Pane;
 2 import javafx.scene.paint.Color;
 3 import javafx.scene.shape.Circle;
 4 import javafx.scene.shape.Line;
 5 import javafx.scene.text.Text;
 6
 7 public class BTView extends Pane {
 8 private BST<Integer> tree = new BST<>();
 9 private double radius = 15; // Tree node radius
10 private double vGap = 50; // Gap between two levels in a tree
11
12 BTView(BST<Integer> tree) {
13 this.tree = tree;
14 setStatus("Tree is empty");
15 }
16
17 public void setStatus(String msg) {
18 getChildren().add(new Text(20, 20, msg));
19 }
20

place hBox

handle insertion

insert key
display the tree

handle deletion

delete key
display the tree

tree to display

set a tree

25.4 Tree Visualization and MVC 951

21 public void displayTree() {
22 this.getChildren().clear(); // Clear the pane
23 if (tree.getRoot() != null) {
24 // Display tree recursively
25 displayTree(tree.getRoot(), getWidth() / 2, vGap,
26 getWidth() / 4);
27 }
28 }
29
30 /** Display a subtree rooted at position (x, y) */
31 private void displayTree(BST.TreeNode<Integer> root,
32 double x, double y, double hGap) {
33 if (root.left != null) {
34 // Draw a line to the left node
35 getChildren().add(new Line(x - hGap, y + vGap, x, y));
36 // Draw the left subtree recursively
37 displayTree(root.left, x - hGap, y + vGap, hGap / 2);
38 }
39
40 if (root.right != null) {
41 // Draw a line to the right node
42 getChildren().add(new Line(x + hGap, y + vGap, x, y));
43 // Draw the right subtree recursively
44 displayTree(root.right, x + hGap, y + vGap, hGap / 2);
45 }
46
47 // Display a node
48 Circle circle = new Circle(x, y, radius);
49 circle.setFill(Color.WHITE);
50 circle.setStroke(Color.BLACK);
51 getChildren().addAll(circle,
52 new Text(x - 4, y + 4, root.element + ""));
53 }
54 }

In Listing 25.9, BSTAnimation.java, a tree is created (line 14) and a tree view is placed in the
pane (line 18). After a new key is inserted into the tree (line 37), the tree is repainted (line 38)
to reflect the change. After a key is deleted (line 49), the tree is repainted (line 50) to reflect
the change.

In Listing 25.10, BTView.java, the node is displayed as a circle with radius 15 (line 48).
The distance between two levels in the tree is defined in vGap 50 (line 25). hGap (line 32)
defines the distance between two nodes horizontally. This value is reduced by half (hGap / 2)
in the next level when the displayTree method is called recursively (lines 44, 51). Note that
vGap is not changed in the tree.

The method displayTree is recursively invoked to display a left subtree (lines 33–38)
and a right subtree (lines 40–45) if a subtree is not empty. A line is added to the pane to con-
nect two nodes (lines 35, 42). Note that the method first adds the lines to the pane and then
adds the circle into the pane (line 52) so that the circles will be painted on top of the lines to
achieve desired visual effects.

The program assumes that the keys are integers. You can easily modify the program with
a generic type to display keys of characters or short strings.

Tree visualization is an example of the model-view-controller (MVC) software architec-
ture. This is an important architecture for software development. The model is for storing and
handling data. The view is for visually presenting the data. The controller handles the user
interaction with the model and controls the view, as shown in Figure 25.18.

clear the display

display tree recursively

connect two nodes

draw left subtree

connect two nodes

draw right subtree

display a node

952 Chapter 25 Binary Search Trees

The MVC architecture separates data storage and handling from the visual representation
of the data. It has two major benefits:

 ■ It makes multiple views possible so that data can be shared through the same model.
For example, you can create a new view that displays the tree with the root on the left
and tree grows horizontally to the right (see Programming Exercise 25.11).

 ■ It simplifies the task of writing complex applications and makes the components
scalable and easy to maintain. Changes can be made to the view without affecting the
model, and vice versa.

25.10 How many times will the displayTree method be invoked if the tree is empty? How
many times will the displayTree method be invoked if the tree has 100 nodes?

25.11 In what order are the nodes in the tree visited by the displayTree method: inorder,
preorder, or postorder?

25.12 What would happen if the code in lines 47–52 in BTView.java is moved to line 33?

25.13 What is MVC? What are the benefits of the MVC?

25.5 Iterators
BST is iterable because it is defined as a subtype of the java.lang.Iterable interface.

The methods inorder(),preorder(), and postorder() display the elements in inorder,
preorder, and postorder in a binary tree. These methods are limited to displaying the ele-
ments in a tree. If you wish to process the elements in a binary tree rather than display them,
these methods cannot be used. Recall that an iterator is provided for traversing the elements
in a set or list. You can apply the same approach in a binary tree to provide a uniform way of
traversing the elements in a binary tree.

The java.lang.Iterable interface defines the iterator method, which returns an
instance of the java.util.Iterator interface. The java.util.Iterator interface (see
Figure 25.19) defines the common features of iterators.

✓Point✓Check

Key
Point

iterator

FIGURE 25.18 The controller obtains data and stores it in a model. The view displays the
data stored in the model.

ModelView

BSTAnimation

Controller

BSTBTView

FIGURE 25.19 The Iterator interface defines a uniform way of traversing the elements in
a container.

«interface»
java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Returns true if the iterator has more elements.

Returns the next element in the iterator.

Removes from the underlying container the last element
returned by the iterator (optional operation).

25.5 Iterators 953

The Tree interface extends java.lang.Iterable. Since BST is a subclass of
AbstractTree and AbstractTree implements Tree, BST is a subtype of Iterable.
The Iterable interface contains the iterator() method that returns an instance of
java.util.Iterator.

You can traverse a binary tree in inorder, preorder, or postorder. Since inorder is used
frequently, we will use inorder for traversing the elements in a binary tree. We define an
iterator class named InorderIterator to implement the java.util.Iterator inter-
face in Listing 25.5 (lines 221–263). The iterator method simply returns an instance of
InorderIterator (line 217).

The InorderIterator constructor invokes the inorder method (line 228). The
inorder(root) method (lines 237–242) stores all the elements from the tree in list. The
elements are traversed in inorder.

Once an Iterator object is created, its current value is initialized to 0 (line 225), which
points to the first element in the list. Invoking the next() method returns the current element
and moves current to point to the next element in the list (line 253).

The hasNext() method checks whether current is still in the range of list (line 246).
The remove() method removes the current element from the tree (line 259). Afterward, a

new list is created (lines 260–261). Note that current does not need to be changed.
Listing 25.11 gives a test program that stores the strings in a BST and displays all strings

in uppercase.

LISTING 25.11 TestBSTWithIterator.java
 1 public class TestBSTWithIterator {
 2 public static void main(String[] args) {
 3 BST<String> tree = new BST<>();
 4 tree.insert("George");
 5 tree.insert("Michael");
 6 tree.insert("Tom");
 7 tree.insert("Adam");
 8 tree.insert("Jones");
 9 tree.insert("Peter");
10 tree.insert("Daniel");
11
12 for (String s: tree)
13 System.out.print(s.toUpperCase() + " ");
14 }
15 }

how to create an iterator

use an iterator
get uppercase letters

ADAM DANIEL GEORGE JONES MICHAEL PETER TOM

The foreach loop (lines 12–13) uses an iterator to traverse all elements in the tree.

Design Guide
Iterator is an important software design pattern. It provides a uniform way of traversing

the elements in a container, while hiding the container’s structural details. By imple-

menting the same interface java.util.Iterator, you can write a program that

traverses the elements of all containers in the same way.

Note
java.util.Iterator defines a forward iterator, which traverses the elements in

the iterator in a forward direction, and each element can be traversed only once. The

Java API also provides the java.util.ListIterator, which supports traversing in

both forward and backward directions. If your data structure warrants flexible traversing,

you may define iterator classes as a subtype of java.util.ListIterator.

iterator pattern
advantages of iterators

variations of iterators

954 Chapter 25 Binary Search Trees

The implementation of the iterator is not efficient. Every time you remove an element through
the iterator, the whole list is rebuilt (line 261 in Listing 25.5 BST.java). The client should
always use the delete method in the BinraryTree class to remove an element. To prevent
the user from using the remove method in the iterator, implement the iterator as follows:

public void remove() {
throw new UnsupportedOperationException

 ("Removing an element from the iterator is not supported");
}

After making the remove method unsupported by the iterator class, you can implement the iterator
more efficiently without having to maintain a list for the elements in the tree. You can use a stack
to store the nodes, and the node on the top of the stack contains the element that is to be returned
from the next() method. If the tree is well-balanced, the maximum stack size will be O(logn).

25.14 What is an iterator?

25.15 What method is defined in the java.lang.Iterable<E> interface?

25.16 Suppose you delete extends Iterable<E> from line 1 in Listing 25.3, Tree.java.
Will Listing 25.11 still compile?

25.17 What is the benefit of being a subtype of Iterable<E>?

25.6 Case Study: Data Compression
Huffman coding compresses data by using fewer bits to encode characters that occur
more frequently. The codes for the characters are constructed based on the occur-
rence of the characters in the text using a binary tree, called the Huffman coding tree.

Compressing data is a common task. There are many utilities available for compressing files.
This section introduces Huffman coding, invented by David Huffman in 1952.

In ASCII, every character is encoded in 8 bits. If a text consists of 100 characters, it will take
800 bits to represent the text. The idea of Huffman coding is to use a fewer bits to encode fre-
quently used characters in the text and more bits to encode less frequently used characters to reduce
the overall size of the file. In Huffman coding, the characters’ codes are constructed based on the
characters’ occurrence in the text using a binary tree, called the Huffman coding tree. Suppose
the text is Mississippi. Its Huffman tree can be shown as in Figure 25.20a. The left and right
edges of a node are assigned a value 0 and 1, respectively. Each character is a leaf in the tree. The
code for the character consists of the edge values in the path from the root to the leaf, as shown in
Figure 25.20b. Since i and s appear more than M and p in the text, they are assigned shorter codes.

Based on the coding scheme in Figure 25.20,

is encoded to is decoded to

Mississippi ======= 7 000101011010110010011 ======= 7 Mississippi

✓Point✓Check

Key
Point

Huffman coding

FIGURE 25.20 The codes for characters are constructed based on the occurrence of characters
in the text using a coding tree.

Character
M
p
s
i

Code
000
001
01
1

Frequency
1
2
4
4

M p

10 s

0 i

0

1

1

(a) Huffman coding tree (b) Character code table

25.6 Case Study: Data Compression 955

The coding tree is also used for decoding a sequence of bits into characters. To do so, start
with the first bit in the sequence and determine whether to go to the left or right branch of the
tree’s root based on the bit value. Consider the next bit and continue to go down to the left or
right branch based on the bit value. When you reach a leaf, you have found a character. The
next bit in the stream is the first bit of the next character. For example, the stream 011001 is
decoded to sip, with 01 matching s, 1 matching i, and 001 matching p.

To construct a Huffman coding tree, use an algorithm as follows:

1. Begin with a forest of trees. Each tree contains a node for a character. The weight of the
node is the frequency of the character in the text.

2. Repeat the following action to combine trees until there is only one tree: Choose two
trees with the smallest weight and create a new node as their parent. The weight of the
new tree is the sum of the weight of the subtrees.

3. For each interior node, assign its left edge a value 0 and right edge a value 1. All leaf
nodes represent characters in the text.

Here is an example of building a coding tree for the text Mississippi. The frequency
table for the characters is shown in Figure 25.20b. Initially the forest contains single-node
trees, as shown in Figure 25.21a. The trees are repeatedly combined to form large trees until
only one tree is left, as shown in Figure 25.21b–d.

decoding

construct coding tree

FIGURE 25.21 The coding tree is built by repeatedly combining the two smallest-weighted
trees.

(b)(a)

weight: 1
‘M’

weight: 4
‘s’

weight: 4
‘i’

weight: 2
‘p’

weight: 4
‘s’

weight: 4
‘i’

weight: 3

weight: 1
‘M’

weight: 2
‘p’

(c)

weight: 1
‘M’

weight: 2
‘p’

weight: 4
‘i’

weight: 7

weight: 3 weight: 4
‘s’

(d)

weight: 1
‘M’

weight: 2
‘p’

weight: 4
‘i’

weight: 7

0

0 1

0 1

1

weight: 11

weight: 3 weight: 4
‘s’

It is worth noting that no code is a prefix of another code. This property ensures that the
streams can be decoded unambiguously.

Pedagogical Note
For an interactive GUI demo to see how Huffman coding works, go to www.cs.armstrong

.edu/liang/animation/HuffmanCodingAnimation.html, as shown in Figure 25.22.

prefix property

Huffman coding animation on

Companion Website

www.cs.armstrong.edu/liang/animation/HuffmanCodingAnimation.html
www.cs.armstrong.edu/liang/animation/HuffmanCodingAnimation.html

956 Chapter 25 Binary Search Trees

The algorithm used here is an example of a greedy algorithm. A greedy algorithm is often
used in solving optimization problems. The algorithm makes the choice that is optimal locally
in the hope that this choice will lead to a globally optimal solution. In this case, the algorithm
always chooses two trees with the smallest weight and creates a new node as their parent.
This intuitive optimal local solution indeed leads to a final optimal solution for constructing a
Huffman tree. As another example, consider changing money into the fewest possible coins.
A greedy algorithm would take the largest possible coin first. For example, for 98¢, you
would use three quarters to make 75¢, additional two dimes to make 95¢, and additional three
pennies to make the 98¢. The greedy algorithm finds an optimal solution for this problem.
However, a greedy algorithm is not always going to find the optimal result; see the bin pack-
ing problem in Programming Exercise 25.22.

Listing 25.12 gives a program that prompts the user to enter a string, displays the frequency
table of the characters in the string, and displays the Huffman code for each character.

LISTING 25.12 HuffmanCode.java
 1 import java.util.Scanner;
 2
 3 public class HuffmanCode {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter text: ");
 7 String text = input.nextLine();
 8
 9 int[] counts = getCharacterFrequency(text); // Count frequency
 10
 11 System.out.printf("%-15s%-15s%-15s%-15s\n",
 12 "ASCII Code", "Character", "Frequency", "Code");
 13
 14 Tree tree = getHuffmanTree(counts); // Create a Huffman tree
 15 String[] codes = getCode(tree.root); // Get codes
 16
 17 for (int i = 0; i < codes.length; i++)
 18 if (counts[i] != 0) // (char)i is not in text if counts[i] is 0
 19 System.out.printf("%-15d%-15s%-15d%-15s\n",

greedy algorithm

count frequency

get Huffman tree
code for each character

FIGURE 25.22 The animation tool enables you to create and view a Huffman tree, and it performs encoding and decoding
using the tree.

25.6 Case Study: Data Compression 957

 20 i, (char)i + "", counts[i], codes[i]);
 21 }
 22
 23 /** Get Huffman codes for the characters
 24 * This method is called once after a Huffman tree is built
 25 */
 26 public static String[] getCode(Tree.Node root) {
 27 if (root == null) return null;
 28 String[] codes = new String[2 * 128];
 29 assignCode(root, codes);
 30 return codes;
 31 }
 32
 33 /* Recursively get codes to the leaf node */
 34 private static void assignCode(Tree.Node root, String[] codes) {
 35 if (root.left != null) {
 36 root.left.code = root.code + "0";
 37 assignCode(root.left, codes);
 38
 39 root.right.code = root.code + "1";
 40 assignCode(root.right, codes);
 41 }
 42 else {
 43 codes[(int)root.element] = root.code;
 44 }
 45 }
 46
 47 /** Get a Huffman tree from the codes */
 48 public static Tree getHuffmanTree(int[] counts) {
 49 // Create a heap to hold trees
 50 Heap<Tree> heap = new Heap<>(); // Defined in Listing 23.9
 51 for (int i = 0; i < counts.length; i++) {
 52 if (counts[i] > 0)
 53 heap.add(new Tree(counts[i], (char)i)); // A leaf node tree
 54 }
 55
 56 while (heap.getSize() > 1) {
 57 Tree t1 = heap.remove(); // Remove the smallest-weight tree
 58 Tree t2 = heap.remove(); // Remove the next smallest
 59 heap.add(new Tree(t1, t2)); // Combine two trees
 60 }
 61
 62 return heap.remove(); // The final tree
 63 }
 64
 65 /** Get the frequency of the characters */
 66 public static int[] getCharacterFrequency(String text) {
 67 int[] counts = new int[256]; // 256 ASCII characters
 68
 69 for (int i = 0; i < text.length(); i++)
 70 counts[(int)text.charAt(i)]++; // Count the characters in text
 71
 72 return counts;
 73 }
 74
 75 /** Define a Huffman coding tree */
 76 public static class Tree implements Comparable<Tree> {
 77 Node root; // The root of the tree
 78
 79 /** Create a tree with two subtrees */

getCode

assignCode

getHuffmanTree

getCharacterFrequency

Huffman tree

958 Chapter 25 Binary Search Trees

 80 public Tree(Tree t1, Tree t2) {
 81 root = new Node();
 82 root.left = t1.root;
 83 root.right = t2.root;
 84 root.weight = t1.root.weight + t2.root.weight;
 85 }
 86
 87 /** Create a tree containing a leaf node */
 88 public Tree(int weight, char element) {
 89 root = new Node(weight, element);
 90 }
 91
 92 @Override /** Compare trees based on their weights */
 93 public int compareTo(Tree t) {
 94 if (root.weight < t.root.weight) // Purposely reverse the order
 95 return 1;
 96 else if (root.weight == t.root.weight)
 97 return 0;
 98 else

 99 return -1;
100 }
101
102 public class Node {
103 char element; // Stores the character for a leaf node
104 int weight; // weight of the subtree rooted at this node
105 Node left; // Reference to the left subtree
106 Node right; // Reference to the right subtree
107 String code = ""; // The code of this node from the root
108
109 /** Create an empty node */
110 public Node() {
111 }
112
113 /** Create a node with the specified weight and character */
114 public Node(int weight, char element) {
115 this.weight = weight;
116 this.element = element;
117 }
118 }
119 }
120 }

tree node

Enter text: Welcome
ASCII Code Character Frequency Code
87 W 1 110
99 c 1 111
101 e 2 10
108 l 1 011
109 m 1 010
111 o 1 00

The program prompts the user to enter a text string (lines 5–7) and counts the frequency
of the characters in the text (line 9). The getCharacterFrequency method (lines
66–73) creates an array counts to count the occurrences of each of the 256 ASCII char-
acters in the text. If a character appears in the text, its corresponding count is increased
by 1 (line 70).

getCharacterFrequency

Quiz 959

The program obtains a Huffman coding tree based on counts (line 14). The tree con-
sists of linked nodes. The Node class is defined in lines 102–118. Each node consists of
properties element (storing character), weight (storing weight of the subtree under this
node), left (linking to the left subtree), right (linking to the right subtree), and code
(storing the Huffman code for the character). The Tree class (lines 76–119) contains the
root property. From the root, you can access all the nodes in the tree. The Tree class imple-
ments Comparable. The trees are comparable based on their weights. The compare order
is purposely reversed (lines 93–100) so that the smallest-weight tree is removed first from
the heap of trees.

The getHuffmanTree method returns a Huffman coding tree. Initially, the single-node
trees are created and added to the heap (lines 50–54). In each iteration of the while loop (lines
56–60), two smallest-weight trees are removed from the heap and are combined to form a big
tree, and then the new tree is added to the heap. This process continues until the heap contains
just one tree, which is our final Huffman tree for the text.

The assignCode method assigns the code for each node in the tree (lines 34–45). The
getCode method gets the code for each character in the leaf node (lines 26–31). The element
codes[i] contains the code for character (char)i, where i is from 0 to 255. Note that
codes[i] is null if (char)i is not in the text.

25.18 Every internal node in a Huffman tree has two children. Is it true?

25.19 What is a greedy algorithm? Give an example.

25.20 If the Heap class in line 50 in Listing 25.10 is replaced by
java.util.PriorityQueue, will the program still work?

Node class

Tree class

getHuffmanTree

assignCode

getCode

✓Point✓Check

KEY TERMS

binary search tree 930
binary tree 930
breadth-first traversal 934
depth-first traversal 934
greedy algorithm 956

Huffman coding 954
inorder traversal 933
postorder traversal 933
preorder traversal 934
tree traversal 933

CHAPTER SUMMARY

1. A binary search tree (BST) is a hierarchical data structure. You learned how to define
and implement a BST class, how to insert and delete elements into/from a BST, and
how to traverse a BST using inorder, postorder, preorder, depth-first, and breadth-first
searches.

2. An iterator is an object that provides a uniform way of traversing the elements in a con-
tainer, such as a set, a list, or a binary tree. You learned how to define and implement
iterator classes for traversing the elements in a binary tree.

3. Huffman coding is a scheme for compressing data by using fewer bits to encode char-
acters that occur more frequently. The codes for characters are constructed based on the
occurrence of characters in the text using a binary tree, called the Huffman coding tree.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

www.cs.armstrong.edu/liang/intro10e/quiz.html

960 Chapter 25 Binary Search Trees

PROGRAMMING EXERCISES

Sections 25.2–25.6

*25.1 (Add new methods in BST) Add the following new methods in BST.

/** Displays the nodes in a breadth-first traversal */
public void breadthFirstTraversal()

/** Returns the height of this binary tree */
public int height()

*25.2 (Test full binary tree) A full binary tree is a binary tree with the leaves on the
same level. Add a method in the BST class to return true if the tree is a full
binary tree. (Hint: The number of nodes in a full binary tree is 2depth - 1.)

/** Returns true if the tree is a full binary tree */
boolean isFullBST()

**25.3 (Implement inorder traversal without using recursion) Implement the inorder
method in BST using a stack instead of recursion. Write a test program that
prompts the user to enter 10 integers, stores them in a BST, and invokes the
inorder method to display the elements.

**25.4 (Implement preorder traversal without using recursion) Implement the
preorder method in BST using a stack instead of recursion. Write a test pro-
gram that prompts the user to enter 10 integers, stores them in a BST, and
invokes the preorder method to display the elements.

**25.5 (Implement postorder traversal without using recursion) Implement the
postorder method in BST using a stack instead of recursion. Write a test
program that prompts the user to enter 10 integers, stores them in a BST, and
invokes the postorder method to display the elements.

**25.6 (Find the leaves) Add a method in the BST class to return the number of the
leaves as follows:

/** Returns the number of leaf nodes */
public int getNumberOfLeaves()

**25.7 (Find the nonleaves) Add a method in the BST class to return the number of the
nonleaves as follows:

/** Returns the number of nonleaf nodes */
public int getNumberofNonLeaves()

***25.8 (Implement bidirectional iterator) The java.util.Iterator interface defines
a forward iterator. The Java API also provides the java.util.ListIterator
interface that defines a bidirectional iterator. Study ListIterator and define
a bidirectional iterator for the BST class.

**25.9 (Tree clone and equals) Implement the clone and equals methods in the
BST class. Two BST trees are equal if they contain the same elements. The
clone method returns an identical copy of a BST.

Programming Exercises 961

25.10 (Preorder iterator) Add the following method in the BST class that returns an
iterator for traversing the elements in a BST in preorder.

/** Returns an iterator for traversing the elements in preorder */
java.util.Iterator<E> preorderIterator()

25.11 (Display tree) Write a new view class that displays the tree horizontally with
the root on the left as shown in Figure 25.23.

FIGURE 25.23 A binary tree is displayed horizontally.

**25.12 (Test BST) Design and write a complete test program to test if the BST class in
Listing 25.5 meets all requirements.

**25.13 (Add new buttons in BSTAnimation) Modify Listing 25.9, BSTAnimation.java,
to add three new buttons—Show Inorder, Show Preorder, and Show Postorder—
to display the result in a label, as shown in Figure 25.24. You need also to
modify BST.java to implement the inorderList(), preorderList(), and
postorderList() methods so that each of these methods returns a List of
the node elements in inorder, preorder, and postorder, as follows:

public java.util.List<E> inorderList();
public java.util.List<E> preorderList();
public java.util.List<E> postorderList();

FIGURE 25.24 When you click the Show Inorder, Show Preorder, or Show Postorder button,
the elements are displayed in an inorder, preorder, or postorder in a label.

962 Chapter 25 Binary Search Trees

*25.14 (Generic BST using Comparator) Revise BST in Listing 25.5, using a generic
parameter and a Comparator for comparing objects. Define a new constructor
with a Comparator as its argument as follows:

BST(Comparator<? super E> comparator)

*25.15 (Parent reference for BST) Redefine TreeNode by adding a reference to a
node’s parent, as shown below:

Enter 10 integers: 45 54 67 56 50 45 23 59 23 67
[50, 54, 23]
[59, 56, 67, 54, 23]

BST.TreeNode<E>

#element: E

#left: TreeNode<E>

#right: TreeNode<E>

#parent: TreeNode<E>

 Reimplement the insert and delete methods in the BST class to update the
parent for each node in the tree. Add the following new method in BST:

/** Returns the node for the specified element.
* Returns null if the element is not in the tree. */

private TreeNode<E> getNode(E element)

/** Returns true if the node for the element is a leaf */
private boolean isLeaf(E element)

/** Returns the path of elements from the specified element
 * to the root in an array list. */
public ArrayList<E> getPath(E e)

 Write a test program that prompts the user to enter 10 integers, adds them to
the tree, deletes the first integer from the tree, and displays the paths for all leaf
nodes. Here is a sample run:

***25.16 (Data compression: Huffman coding) Write a program that prompts the user to
enter a file name, then displays the frequency table of the characters in the file
and displays the Huffman code for each character.

***25.17 (Data compression: Huffman coding animation) Write a program that
enables the user to enter text and displays the Huffman coding tree based
on the text, as shown in Figure 25.25a. Display the weight of the subtree
inside the subtree’s root circle. Display each leaf node’s character. Display
the encoded bits for the text in a label. When the user clicks the Decode Text
button, a bit string is decoded into text displayed in the label, as shown in
Figure 25.25b.

Programming Exercises 963

***25.18 (Compress a file) Write a program that compresses a source file into a target file
using the Huffman coding method. First use ObjectOutputStream to output
the Huffman codes into the target file, and then use BitOutputStream in
Programming Exercise 17.17 to output the encoded binary contents to the tar-
get file. Pass the files from the command line using the following command:

java Exercise25_18 sourcefile targetfile

***25.19 (Decompress a file) The preceding exercise compresses a file. The compressed
file contains the Huffman codes and the compressed contents. Write a program
that decompresses a source file into a target file using the following command:

java Exercise25_19 sourcefile targetfile

25.20 (Bin packing using first fit) Write a program that packs the objects of various
weights into containers. Each container can hold a maximum of 10 pounds. The
program uses a greedy algorithm that places an object into the first bin in which
it would fit. Your program should prompt the user to enter the total number of

FIGURE 25.25 (a) The animation shows the coding tree for a given text string and the
encoded bits for the text are displayed in the label; (b) You can enter a bit string to display
its text in the label.

(a)

(b)

964 Chapter 25 Binary Search Trees

objects and the weight of each object. The program displays the total number of
containers needed to pack the objects and the contents of each container. Here
is a sample run of the program:

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 2 3 5
Container 2 contains objects with weight 5
Container 3 contains objects with weight 7
Container 4 contains objects with weight 8

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 7 3
Container 2 contains objects with weight 5 5
Container 3 contains objects with weight 2 8
The optimal number of bins is 3

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 7 2
Container 2 contains objects with weight 5 3
Container 3 contains objects with weight 5
Container 4 contains objects with weight 8

 Does this program produce an optimal solution, that is, finding the minimum
number of containers to pack the objects?

25.21 (Bin packing with smallest object first) Rewrite the preceding program that uses
a new greedy algorithm that places an object with the smallest weight into the
first bin in which it would fit. Your program should prompt the user to enter the
total number of objects and the weight of each object. The program displays the
total number of containers needed to pack the objects and the contents of each
container. Here is a sample run of the program:

 Does this program produce an optimal solution, that is, finding the minimum
number of containers to pack the objects?

25.22 (Bin packing with largest object first) Rewrite the preceding program that places
an object with the largest weight into the first bin in which it would fit. Give an
example to show that this program does not produce an optimal solution.

25.23 (Optimal bin packing) Rewrite the preceding program so that it finds an optimal
solution that packs all objects using the smallest number of containers. Here is
a sample run of the program:

 What is the time complexity of your program?

AVL TREES

Objectives
■ To know what an AVL tree is (§26.1).

■ To understand how to rebalance a tree using the LL rotation,
LR rotation, RR rotation, and RL rotation (§26.2).

■ To design the AVLTree class by extending the BST class (§26.3).

■ To insert elements into an AVL tree (§26.4).

■ To implement tree rebalancing (§26.5).

■ To delete elements from an AVL tree (§26.6).

■ To implement the AVLTree class (§26.7).

■ To test the AVLTree class (§26.8).

■ To analyze the complexity of search, insertion, and deletion operations
in AVL trees (§26.9).

CHAPTER

26

966 Chapter 26 AVL Trees

26.1 Introduction
AVL Tree is a balanced binary search tree.

Chapter 25 introduced binary search trees. The search, insertion, and deletion times for a
binary tree depend on the height of the tree. In the worst case, the height is O(n). If a tree
is perfectly balanced–i.e., a complete binary tree—its height is log n. Can we maintain a
perfectly balanced tree? Yes, but doing so will be costly. The compromise is to maintain a
well-balanced tree—that is, the heights of every node’s two subtrees are about the same. This
chapter introduces AVL trees. Web Chapters 40 and 41 introduce 2–4 trees and red–black trees.

AVL trees are well balanced. AVL trees were invented in 1962 by two Russian computer
scientists, G. M. Adelson-Velsky and E. M. Landis (hence the name AVL). In an AVL tree,
the difference between the heights of every node’s two subtrees is 0 or 1. It can be shown that
the maximum height of an AVL tree is O(log n).

The process for inserting or deleting an element in an AVL tree is the same as in a regular
binary search tree, except that you may have to rebalance the tree after an insertion or dele-
tion operation. The balance factor of a node is the height of its right subtree minus the height
of its left subtree. A node is said to be balanced if its balance factor is -1, 0, or 1. A node is
considered left-heavy if its balance factor is -1, and right-heavy if its balance factor is +1.

Pedagogical Note
For an interactive GUI demo to see how an AVL tree works, go to www.cs.armstrong.edu/

liang/animation/web/AVLTree.html, as shown in Figure 26.1.

Key
Point

perfectly balanced tree

well-balanced tree

AVL tree

O(log n)

balance factor

balanced

left-heavy

right-heavy

AVL tree animation on

Companion Website

FIGURE 26.1 The animation tool enables you to insert, delete, and search elements.

26.2 Rebalancing Trees
After inserting or deleting an element from an AVL tree, if the tree becomes
unbalanced, perform a rotation operation to rebalance the tree.

If a node is not balanced after an insertion or deletion operation, you need to rebalance it. The
process of rebalancing a node is called rotation. There are four possible rotations: LL, RR,
LR, and RL.

Key
Point

rotation

www.cs.armstrong.edu/liang/animation/web/AVLTree.html
www.cs.armstrong.edu/liang/animation/web/AVLTree.html

26.2 Rebalancing Trees 967

LL rotation: An LL imbalance occurs at a node A, such that A has a balance factor of -2
and a left child B with a balance factor of -1 or 0, as shown in Figure 26.2a. This type of
imbalance can be fixed by performing a single right rotation at A, as shown in Figure 26.2b.

RR rotation: An RR imbalance occurs at a node A, such that A has a balance factor of
+2 and a right child B with a balance factor of +1 or 0, as shown in Figure 26.3a. This type
of imbalance can be fixed by performing a single left rotation at A, as shown in Figure 26.3b.

LL rotation
LL imbalance

RR rotation

RR imbalance

FIGURE 26.2 An LL rotation fixes an LL imbalance.

A �2

B�1 or 0

T2

T3

T1h � 1

h

h

T2’s height is h or
h � 1

T2’s height is h or
h � 1

h � 1

A 0 or �1

B0 or 1

T2 T3

T1

h h

(a) (b)

FIGURE 26.3 An RR rotation fixes an RR imbalance.

A �2

B �1 or 0

T2

T3

T1 h � 1

h

h

T2’s height is
h or h � 1

T2’s height is
h or h � 1

h � 1

A0 or �1

B 0 or �1

T2T3

T1

hh

(a) (b)

LR rotation: An LR imbalance occurs at a node A, such that A has a balance factor of -2
and a left child B with a balance factor of +1, as shown in Figure 26.4a. Assume B’s right child
is C. This type of imbalance can be fixed by performing a double rotation (first a single left
rotation at B and then a single right rotation at A), as shown in Figure 26.4b.

RL rotation: An RL imbalance occurs at a node A, such that A has a balance factor of +2
and a right child B with a balance factor of -1, as shown in Figure 26.5a. Assume B’s left child
is C. This type of imbalance can be fixed by performing a double rotation (first a single right
rotation at B and then a single left rotation at A), as shown in Figure 26.5b.

26.1 What is an AVL tree? Describe the following terms: balance factor, left-heavy, and
right-heavy.

26.2 Show the balance factor of each node in the trees shown in Figure 26.6.

26.3 Describe LL rotation, RR rotation, LR rotation, and RL rotation for an AVL tree.

LR rotation

LR imbalance

RL rotation

RL imbalance

✓Point✓Check

968 Chapter 26 AVL Trees

FIGURE 26.4 An LR rotation fixes an LR imbalance.

B0 or �1 0 or 1

C 0

T2T1 h h

A

T4T3 hh

(a) (b)

A �2

B�1

T1

T4

h

h

�1, 0 or 1C

T3T2 hh

T2 and T3 may have
different heights, but
at least one has
height of h.

FIGURE 26.5 An RL rotation fixes an RL imbalance.

A0 or �1 0 or 1

C 0

T2T1 h h

B

T4T3 hh

(a) (b)

A �2

B�1

T4

T1

h

h

0, �1, or 1 C

T3T2 hh
T2 and T3 may have
different heights, but
at least one
has height of h.

FIGURE 26.6 A balance factor determines whether a node is balanced.

(a) (b)

55

60

45

100

67 107

87

55

60

45

100

67 107

87 187105

26.3 Designing Classes for AVL Trees 969

26.3 Designing Classes for AVL Trees
Since an AVL tree is a binary search tree, AVLTree is designed as a subclass of BST.

An AVL tree is a binary tree, so you can define the AVLTree class to extend the BST class, as
shown in Figure 26.7. The BST and TreeNode classes were defined in Section 25.2.5.

Key
Point

FIGURE 26.7 The AVLTree class extends BST with new implementations for the insert and delete methods.

AVLTree<E extends Comparable<E>>

+AVLTree()

+AVLTree(objects: E[])

#createNewNode(): AVLTreeNode<E>

+insert(e: E): boolean

+delete(e: E): boolean

-updateHeight(node:
 AVLTreeNode<E>): void

Creates an empty AVL tree.

Creates an AVL tree from an array of objects.

Overrides this method to create an AVLTreeNode.

Returns true if the element is added successfully.

Balances the nodes in the path from the node for
 the element to the root if needed.

BST<E extends Comparable<E>>

1

m

Link

0

-balancePath(e: E): void

Returns the balance factor of the node.-balanceFactor(node:
 AVLTreeNode<E>): int

Performs LL balance.-balanceLL(A: TreeNode,
 parentOfA: TreeNode<E>): void

Performs LR balance.-balanceLR(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

Performs RR balance.-balanceRR(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

Performs RL balance.-balanceRL(A: TreeNode<E>,
 parentOfA: TreeNode<E>): void

AVLTreeNode<E>

#height: int

TreeNode<E>

Returns true if the element is removed from the
 tree successfully.

Resets the height of the specified node.

In order to balance the tree, you need to know each node’s height. For convenience, store
the height of each node in AVLTreeNode and define AVLTreeNode to be a subclass of
BST.TreeNode. Note that TreeNode is defined as a static inner class in BST. AVLTreeNode
will be defined as a static inner class in AVLTree. TreeNode contains the data fields element,
left, and right, which are inherited by AVLTreeNode. Thus, AVLTreeNode contains four
data fields, as shown in Figure 26.8.

AVLTreeNode

FIGURE 26.8 An AVLTreeNode contains the protected data fields element, height,
left, and right.

#element: E

#height: int

#left: TreeNode<E>

#right: TreeNode<E>

node: AVLTreeNode<E>

970 Chapter 26 AVL Trees

In the BST class, the createNewNode() method creates a TreeNode object. This method
is overridden in the AVLTree class to create an AVLTreeNode. Note that the return type
of the createNewNode() method in the BST class is TreeNode, but the return type of
the createNewNode() method in the AVLTree class is AVLTreeNode. This is fine, since
AVLTreeNode is a subclass of TreeNode.

Searching for an element in an AVLTree is the same as searching in a regular binary tree,
so the search method defined in the BST class also works for AVLTree.

The insert and delete methods are overridden to insert and delete an element and per-
form rebalancing operations if necessary to ensure that the tree is balanced.

26.4 What are the data fields in the AVLTreeNode class?

26.5 True or false: AVLTreeNode is a subclass of TreeNode?

26.6 True or false: AVLTree is a subclass of BST.

26.4 Overriding the insert Method
Inserting an element into an AVL tree is the same as inserting it to a BST, except that
the tree may need to be rebalanced.

A new element is always inserted as a leaf node. As a result of adding a new node, the heights
of the new leaf node’s ancestors may increase. After inserting a new node, check the nodes
along the path from the new leaf node up to the root. If an unbalanced node is found, perform
an appropriate rotation using the algorithm in Listing 26.1.

LISTING 26.1 Balancing Nodes on a Path
 1 balancePath(E e) {
 2 Get the path from the node that contains element e to the root,
 3 as illustrated in Figure 26.9;
 4 for each node A in the path leading to the root {
 5 Update the height of A;
 6 Let parentOfA denote the parent of A,
 7 which is the next node in the path, or null if A is the root;
 8
 9 switch (balanceFactor(A)) {
10 case -2: if balanceFactor(A.left) == -1 or 0
11 Perform LL rotation; // See Figure 26.2
12 else

13 Perform LR rotation; // See Figure 26.4
14 break;
15 case +2: if balanceFactor(A.right) == +1 or 0
16 Perform RR rotation; // See Figure 26.3
17 else

18 Perform RL rotation; // See Figure 26.5
19 } // End of switch
20 } // End of for
21 } // End of method

The algorithm considers each node in the path from the new leaf node to the root. Update
the height of the node on the path. If a node is balanced, no action is needed. If a node is not
balanced, perform an appropriate rotation.

26.7 For the AVL tree in Figure 26.6a, show the new AVL tree after adding element 40.
What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

createNewNode()

✓Point✓Check

Key
Point

get the path

update node height
get parent node

is balanced?

LL rotation

LR rotation

RR rotation

RL rotation

✓Point✓Check

26.5 Implementing Rotations 971

26.8 For the AVL tree in Figure 26.6a, show the new AVL tree after adding element
50. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

26.9 For the AVL tree in Figure 26.6a, show the new AVL tree after adding element
80. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

26.10 For the AVL tree in Figure 26.6a, show the new AVL tree after adding element
89. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

26.5 Implementing Rotations
An unbalanced tree becomes balanced by performing an appropriate rotation operation.

Section 26.2, Rebalancing Trees, illustrated how to perform rotations at a node. Listing 26.2
gives the algorithm for the LL rotation, as illustrated in Figure 26.2.

LISTING 26.2 LL Rotation Algorithm
 1 balanceLL(TreeNode A, TreeNode parentOfA) {
 2 Let B be the left child of A.
 3
 4 if (A is the root)
 5 Let B be the new root
 6 else {
 7 if (A is a left child of parentOfA)
 8 Let B be a left child of parentOfA;
 9 else

10 Let B be a right child of parentOfA;
11 }
12
13 Make T2 the left subtree of A by assigning B.right to A.left;
14 Make A the right child of B by assigning A to B.right;
15 Update the height of node A and node B;
16 } // End of method

Note that the height of nodes A and B can be changed, but the heights of other nodes in the
tree are not changed. You can implement the RR, LR, and RL rotations in a similar manner.

Key
Point

left child of A

reconnect B’s parent

move subtrees

adjust height

FIGURE 26.9 The nodes along the path from the new leaf node may become unbalanced.

New node contains element e

root

parentOfA

A

972 Chapter 26 AVL Trees

26.6 Implementing the delete Method
Deleting an element from an AVL tree is the same as deleing it from a BST, except that
the tree may need to be rebalanced.

As discussed in Section 25.3, Deleting Elements from a BST, to delete an element from a
binary tree, the algorithm first locates the node that contains the element. Let current point
to the node that contains the element in the binary tree and parent point to the parent of the
current node. The current node may be a left child or a right child of the parent node.
Two cases arise when deleting an element.

Case 1: The current node does not have a left child, as shown in Figure 25.10a. To delete
the current node, simply connect the parent node with the right child of the current
node, as shown in Figure 25.10b.

The height of the nodes along the path from the parent node up to the root may have
decreased. To ensure that the tree is balanced, invoke

balancePath(parent.element); // Defined in Listing 26.1

Case 2: The current node has a left child. Let rightMost point to the node that contains
the largest element in the left subtree of the current node and parentOfRightMost point
to the parent node of the rightMost node, as shown in Figure 25.12a. The rightMost node
cannot have a right child but it may have a left child. Replace the element value in the current
node with the one in the rightMost node, connect the parentOfRightMost node with the
left child of the rightMost node, and delete the rightMost node, as shown in Figure 25.12b.

The height of the nodes along the path from parentOfRightMost up to the root may have
decreased. To ensure that the tree is balanced, invoke

balancePath(parentOfRightMost); // Defined in Listing 26.1

26.11 For the AVL tree in Figure 26.6a, show the new AVL tree after deleting element
107. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

26.12 For the AVL tree in Figure 26.6a, show the new AVL tree after deleting element
60. What rotation do you perform in order to rebalance the tree? Which node was
unbalanced?

26.13 For the AVL tree in Figure 26.6a, show the new AVL tree after deleting element 55. What
rotation did you perform in order to rebalance the tree? Which node was unbalanced?

26.14 For the AVL tree in Figure 26.6b, show the new AVL tree after deleting elements 67
and 87. What rotation did you perform in order to rebalance the tree? Which node
was unbalanced?

26.7 The AVLTree Class
The AVLTree class extends the BST class to override the insert and delete
methods to rebalance the tree if necessary.

Listing 26.3 gives the complete source code for the AVLTree class.

LISTING 26.3 AVLTree.java
 1 public class AVLTree<E extends Comparable<E>> extends BST<E> {
 2 /** Create an empty AVL tree */
 3 public AVLTree() {

Key
Point

✓Point✓Check

Key
Point

no-arg constructor

26.7 The AVLTree Class 973

 4 }
 5
 6 /** Create an AVL tree from an array of objects */
 7 public AVLTree(E[] objects) {
 8 super(objects);
 9 }
 10
 11 @Override /** Override createNewNode to create an AVLTreeNode */
 12 protected AVLTreeNode<E> createNewNode(E e) {
 13 return new AVLTreeNode<E>(e);
 14 }
 15
 16 @Override /** Insert an element and rebalance if necessary */
 17 public boolean insert(E e) {
 18 boolean successful = super.insert(e);
 19 if (!successful)
 20 return false; // e is already in the tree
 21 else {
 22 balancePath(e); // Balance from e to the root if necessary
 23 }
 24
 25 return true; // e is inserted
 26 }
 27
 28 /** Update the height of a specified node */
 29 private void updateHeight(AVLTreeNode<E> node) {
 30 if (node.left == null && node.right == null) // node is a leaf
 31 node.height = 0;
 32 else if (node.left == null) // node has no left subtree
 33 node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
 34 else if (node.right == null) // node has no right subtree
 35 node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
 36 else

 37 node.height = 1 +
 38 Math.max(((AVLTreeNode<E>)(node.right)).height,
 39 ((AVLTreeNode<E>)(node.left)).height);
 40 }
 41
 42 /** Balance the nodes in the path from the specified
 43 * node to the root if necessary
 44 */
 45 private void balancePath(E e) {
 46 java.util.ArrayList<TreeNode<E>> path = path(e);
 47 for (int i = path.size() - 1; i >= 0; i—–) {
 48 AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
 49 updateHeight(A);
 50 AVLTreeNode<E> parentOfA = (A == root) ? null :
 51 (AVLTreeNode<E>)(path.get(i - 1));
 52
 53 switch (balanceFactor(A)) {
 54 case -2:
 55 if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
 56 balanceLL(A, parentOfA); // Perform LL rotation
 57 }
 58 else {
 59 balanceLR(A, parentOfA); // Perform LR rotation
 60 }
 61 break;
 62 case +2:

constructor

create AVL tree node

override insert

balance tree

update node height

balance nodes
get path

consider a node
update height
get height

left-heavy

LL rotation

LR rotation

right-heavy

974 Chapter 26 AVL Trees

 63 if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
 64 balanceRR(A, parentOfA); // Perform RR rotation
 65 }
 66 else {
 67 balanceRL(A, parentOfA); // Perform RL rotation
 68 }
 69 }
 70 }
 71 }
 72
 73 /** Return the balance factor of the node */
 74 private int balanceFactor(AVLTreeNode<E> node) {
 75 if (node.right == null) // node has no right subtree
 76 return -node.height;
 77 else if (node.left == null) // node has no left subtree
 78 return +node.height;
 79 else

 80 return ((AVLTreeNode<E>)node.right).height -
 81 ((AVLTreeNode<E>)node.left).height;
 82 }
 83
 84 /** Balance LL (see Figure 26.2) */
 85 private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
 86 TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
 87
 88 if (A == root) {
 89 root = B;
 90 }
 91 else {
 92 if (parentOfA.left == A) {
 93 parentOfA.left = B;
 94 }
 95 else {
 96 parentOfA.right = B;
 97 }
 98 }
 99
100 A.left = B.right; // Make T2 the left subtree of A
101 B.right = A; // Make A the left child of B
102 updateHeight((AVLTreeNode<E>)A);
103 updateHeight((AVLTreeNode<E>)B);
104 }
105
106 /** Balance LR (see Figure 26.4) */
107 private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
108 TreeNode<E> B = A.left; // A is left-heavy
109 TreeNode<E> C = B.right; // B is right-heavy
110
111 if (A == root) {
112 root = C;
113 }
114 else {
115 if (parentOfA.left == A) {
116 parentOfA.left = C;
117 }
118 else {
119 parentOfA.right = C;
120 }

RR rotation

RL rotation

get balance factor

LL rotation

update height

LR rotation

26.7 The AVLTree Class 975

121 }
122
123 A.left = C.right; // Make T3 the left subtree of A
124 B.right = C.left; // Make T2 the right subtree of B
125 C.left = B;
126 C.right = A;
127
128 // Adjust heights
129 updateHeight((AVLTreeNode<E>)A);
130 updateHeight((AVLTreeNode<E>)B);
131 updateHeight((AVLTreeNode<E>)C);
132 }
133
134 /** Balance RR (see Figure 26.3) */
135 private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
136 TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy
137
138 if (A == root) {
139 root = B;
140 }
141 else {
142 if (parentOfA.left == A) {
143 parentOfA.left = B;
144 }
145 else {
146 parentOfA.right = B;
147 }
148 }
149
150 A.right = B.left; // Make T2 the right subtree of A
151 B.left = A;
152 updateHeight((AVLTreeNode<E>)A);
153 updateHeight((AVLTreeNode<E>)B);
154 }
155
156 /** Balance RL (see Figure 26.5) */
157 private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
158 TreeNode<E> B = A.right; // A is right-heavy
159 TreeNode<E> C = B.left; // B is left-heavy
160
161 if (A == root) {
162 root = C;
163 }
164 else {
165 if (parentOfA.left == A) {
166 parentOfA.left = C;
167 }
168 else {
169 parentOfA.right = C;
170 }
171 }
172
173 A.right = C.left; // Make T2 the right subtree of A
174 B.left = C.right; // Make T3 the left subtree of B
175 C.left = A;
176 C.right = B;
177
178 // Adjust heights

update height

RR rotation

update height

RL rotation

976 Chapter 26 AVL Trees

179 updateHeight((AVLTreeNode<E>)A);
180 updateHeight((AVLTreeNode<E>)B);
181 updateHeight((AVLTreeNode<E>)C);
182 }
183
184 @Override /** Delete an element from the AVL tree.
185 * Return true if the element is deleted successfully
186 * Return false if the element is not in the tree */
187 public boolean delete(E element) {
188 if (root == null)
189 return false; // Element is not in the tree
190
191 // Locate the node to be deleted and also locate its parent node
192 TreeNode<E> parent = null;
193 TreeNode<E> current = root;
194 while (current != null) {
195 if (element.compareTo(current.element) < 0) {
196 parent = current;
197 current = current.left;
198 }
199 else if (element.compareTo(current.element) > 0) {
200 parent = current;
201 current = current.right;
202 }
203 else

204 break; // Element is in the tree pointed by current
205 }
206
207 if (current == null)
208 return false; // Element is not in the tree
209
210 // Case 1: current has no left children (See Figure 25.10)
211 if (current.left == null) {
212 // Connect the parent with the right child of the current node
213 if (parent == null) {
214 root = current.right;
215 }
216 else {
217 if (element.compareTo(parent.element) < 0)
218 parent.left = current.right;
219 else

220 parent.right = current.right;
221
222 // Balance the tree if necessary
223 balancePath(parent.element);
224 }
225 }
226 else {
227 // Case 2: The current node has a left child
228 // Locate the rightmost node in the left subtree of
229 // the current node and also its parent
230 TreeNode<E> parentOfRightMost = current;
231 TreeNode<E> rightMost = current.left;
232
233 while (rightMost.right != null) {
234 parentOfRightMost = rightMost;
235 rightMost = rightMost.right; // Keep going to the right
236 }
237

update height

override delete

balance nodes

26.7 The AVLTree Class 977

238 // Replace the element in current by the element in rightMost
239 current.element = rightMost.element;
240
241 // Eliminate rightmost node
242 if (parentOfRightMost.right == rightMost)
243 parentOfRightMost.right = rightMost.left;
244 else

245 // Special case: parentOfRightMost is current
246 parentOfRightMost.left = rightMost.left;
247
248 // Balance the tree if necessary
249 balancePath(parentOfRightMost.element);
250 }
251
252 size—–;
253 return true; // Element inserted
254 }
255
256 /** AVLTreeNode is TreeNode plus height */
257 protected static class AVLTreeNode<E extends Comparable<E>>
258 extends BST.TreeNode<E> {
259 protected int height = 0; // New data field
260
261 public AVLTreeNode(E e) {
262 super(e);
263 }
264 }
265 }

The AVLTree class extends BST. Like the BST class, the AVLTree class has a no-arg
constructor that constructs an empty AVLTree (lines 3–4) and a constructor that creates an
initial AVLTree from an array of elements (lines 7–9).

The createNewNode() method defined in the BST class creates a TreeNode. This
method is overridden to return an AVLTreeNode (lines 12–14).

The insert method in AVLTree is overridden in lines 17–26. The method first invokes
the insert method in BST, then invokes balancePath(e) (line 22) to ensure that the tree
is balanced.

The balancePath method first gets the nodes on the path from the node that contains
element e to the root (line 46). For each node in the path, update its height (line 49), check its
balance factor (line 53), and perform appropriate rotations if necessary (lines 53–69).

Four methods for performing rotations are defined in lines 85–182. Each method is invoked
with two TreeNode arguments—A and parentOfA—to perform an appropriate rotation at
node A. How each rotation is performed is illustrated in Figures 26.2–26.5. After the rotation,
the heights of nodes A, B, and C are updated (lines 102, 129, 152, 179).

The delete method in AVLTree is overridden in lines 187–264. The method is the same
as the one implemented in the BST class, except that you have to rebalance the nodes after
deletion in two cases (lines 224, 249).

26.15 Why is the createNewNode method defined protected?

26.16 When is the updateHeight method invoked? When is the balanceFactor method
invoked? When is the balancePath method invoked?

26.17 What are data fields in the AVLTree class?

26.18 In the insert and delete methods, once you have performed a rotation to balance
a node in the tree, is it possible that there are still unbalanced nodes?

balance nodes

inner AVLTreeNode class

node height

constructors

insert

balancePath

rotations

delete

✓Point✓Check

978 Chapter 26 AVL Trees

26.8 Testing the AVLTree Class
This section gives an example of using the AVLTree class.

Listing 26.4 gives a test program. The program creates an AVLTree initialized with an array
of the integers 25, 20, and 5 (lines 4–5), inserts elements in lines 9–18, and deletes elements
in lines 22–28. Since AVLTree is a subclass of BST and the elements in a BST are iterable, the
program uses a foreach loop to traverse all the elements in lines 33–35.

LISTING 26.4 TestAVLTree.java
 1 public class TestAVLTree {
 2 public static void main(String[] args) {
 3 // Create an AVL tree
 4 AVLTree<Integer> tree = new AVLTree<>(new Integer[]{25,
 5 20, 5});
 6 System.out.print("After inserting 25, 20, 5:");
 7 printTree(tree);
 8
 9 tree.insert(34);
10 tree.insert(50);
11 System.out.print("\nAfter inserting 34, 50:");
12 printTree(tree);
13
14 tree.insert(30);
15 System.out.print("\nAfter inserting 30");
16 printTree(tree);
17
18 tree.insert(10);
19 System.out.print("\nAfter inserting 10");
20 printTree(tree);
21
22 tree.delete(34);
23 tree.delete(30);
24 tree.delete(50);
25 System.out.print("\nAfter removing 34, 30, 50:");
26 printTree(tree);
27
28 tree.delete(5);
29 System.out.print("\nAfter removing 5:");
30 printTree(tree);
31
32 System.out.print("\nTraverse the elements in the tree: ");
33 for (int e: tree) {
34 System.out.print(e + " ");
35 }
36 }
37
38 public static void printTree(BST tree) {
39 // Traverse tree
40 System.out.print("\nInorder (sorted): ");
41 tree.inorder();
41 System.out.print("\nPostorder: ");
43 tree.postorder();
44 System.out.print("\nPreorder: ");
45 tree.preorder();
46 System.out.print("\nThe number of nodes is " + tree.getSize());

Key
Point

create an AVLTree

insert 34
insert 50

insert 30

insert 10

delete 34
delete 30
delete 50

delete 5

for-each loop

26.8 Testing the AVLTree Class 979

Figure 26.10 shows how the tree evolves as elements are added to the tree. After 25 and 20
are added, the tree is as shown in Figure 26.10a. 5 is inserted as a left child of 20, as shown in
Figure 26.10b. The tree is not balanced. It is left-heavy at node 25. Perform an LL rotation to
result in an AVL tree, as shown in Figure 26.10c.

After inserting 34, the tree is shown in Figure 26.10d. After inserting 50, the tree is as
shown in Figure 26.10e. The tree is not balanced. It is right-heavy at node 25. Perform an RR
rotation to result in an AVL tree, as shown in Figure 26.10f.

After inserting 30, the tree is as shown in Figure 26.10g. The tree is not balanced. Perform
an RL rotation to result in an AVL tree, as shown in Figure 26.10h.

After inserting 10, the tree is as shown in Figure 26.10i. The tree is not balanced. Perform
an LR rotation to result in an AVL tree, as shown in Figure 26.10j.

After inserting 25, 20, 5:
Inorder (sorted): 5 20 25
Postorder: 5 25 20
Preorder: 20 5 25
The number of nodes is 3

After inserting 34, 50:
Inorder (sorted): 5 20 25 34 50
Postorder: 5 25 50 34 20
Preorder: 20 5 34 25 50
The number of nodes is 5

After inserting 30
Inorder (sorted): 5 20 25 30 34 50
Postorder: 5 20 30 50 34 25
Preorder: 25 20 5 34 30 50
The number of nodes is 6

After inserting 10
Inorder (sorted): 5 10 20 25 30 34 50
Postorder: 5 20 10 30 50 34 25
Preorder: 25 10 5 20 34 30 50
The number of nodes is 7

After removing 34, 30, 50:
Inorder (sorted): 5 10 20 25
Postorder: 5 20 25 10
Preorder: 10 5 25 20
The number of nodes is 4

After removing 5:
Inorder (sorted): 10 20 25
Postorder: 10 25 20
Preorder: 20 10 25
The number of nodes is 3
Traverse the elements in the tree: 10 20 25

47 System.out.println();
48 }
49 }

980 Chapter 26 AVL Trees

Figure 26.11 shows how the tree evolves as elements are deleted. After deleting 34, 30,
and 50, the tree is as shown in Figure 26.11b. The tree is not balanced. Perform an LL rotation
to result in an AVL tree, as shown in Figure 26.11c.

After deleting 5, the tree is as shown in Figure 26.11d. The tree is not balanced. Perform
an RL rotation to result in an AVL tree, as shown in Figure 26.11e.

26.19 Show the change of an AVL tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 into the
tree, in this order.

26.20 For the tree built in the preceding question, show its change after 1, 2, 3, 4, 10, 9, 7,
5, 8, 6 are deleted from the tree in this order.

26.21 Can you traverse the elements in an AVL tree using a foreach loop?

✓Point✓Check

FIGURE 26.10 The tree evolves as new elements are inserted.

Need LL rotation
at node 25

Need RR rotation
at node 25

RL rotation at
node 20

LR rotation at
node 20

25

20 20

5

25

5

20

25 5

20

25

34

5

20

34

25 50

20

25

5

34

30 50 5

10

25

34

30 5020

5

20

25

34

50

20

25

5

34

30 50

10

5

20

34

25 50

30

(a) Insert 25, 20

(e) Insert 50 (f) Balanced (g) Insert 30

(h) Balanced (i) Insert 10 (j) Balanced

(b) Insert 5 (c) Balanced (d) Insert 34

26.9 AVL Tree Time Complexity Analysis 981

26.9 AVL Tree Time Complexity Analysis
Since the height of an AVL tree is O(log n), the time complexity of the search,
insert, and delete methods in AVLTree is O(log n).

The time complexity of the search, insert, and delete methods in AVLTree depends on
the height of the tree. We can prove that the height of the tree is O(log n).

Let G(h) denote the minimum number of the nodes in an AVL tree with height h. Obvi-
ously, G(1) is 1 and G(2) is 2. The minimum number of nodes in an AVL tree with height
h Ú 3 must have two minimum subtrees: one with height h - 1 and the other with height
h - 2. Thus,

G(h) = G(h - 1) + G(h - 2) + 1

Recall that a Fibonacci number at index i can be described using the recurrence relation
F(i) = F(i - 1) + F(i - 2). Therefore, the function G(h) is essentially the same as F(i). It
can be proven that

h 6 1.4405 log(n + 2) - 1.3277

where n is the number of nodes in the tree. Hence, the height of an AVL tree is O(log n).
The search, insert, and delete methods involve only the nodes along a path in the tree.

The updateHeight and balanceFactor methods are executed in a constant time for each
node in the path. The balancePath method is executed in a constant time for a node in the
path. Thus, the time complexity for the search, insert, and delete methods is O(log n).

26.22 What is the maximum/minimum height for an AVL tree of 3 nodes, 5 nodes, and 7
nodes?

26.23 If an AVL tree has a height of 3, what maximum number of nodes can the tree have?
What minimum number of nodes can the tree have?

26.24 If an AVL tree has a height of 4, what maximum number of nodes can the tree have?
What minimum number of nodes can the tree have?

Key
Point

tree height

✓Point✓Check

FIGURE 26.11 The tree evolves as elements are deleted from the tree.

5

10

25

34

30 5020

5

10

25

205

10

25

20

(a) Delete 34, 30, 50 (b) After 34, 30, 50 are deleted

(d) After 5 is deleted (e) Balanced

(c) Balanced

LL rotation
at node 25

RL rotation at 10
10

20

25

20

25

10

982 Chapter 26 AVL Trees

CHAPTER SUMMARY

1. An AVL tree is a well-balanced binary tree. In an AVL tree, the difference between the
heights of two subtrees for every node is 0 or 1.

2. The process for inserting or deleting an element in an AVL tree is the same as in a regu-
lar binary search tree. The difference is that you may have to rebalance the tree after an
insertion or deletion operation.

3. Imbalances in the tree caused by insertions and deletions are rebalanced through subtree
rotations at the node of the imbalance.

4. The process of rebalancing a node is called a rotation. There are four possible rotations:
LL rotation, LR rotation, RR rotation, and RL rotation.

5. The height of an AVL tree is O(log n). Therefore, the time complexities for the search,
insert, and delete methods are O(log n).

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

*26.1 (Display AVL tree graphically) Write a program that displays an AVL tree along
with its balance factor for each node.

26.2 (Compare performance) Write a test program that randomly generates 500,000
numbers and inserts them into a BST, reshuffles the 500,000 numbers and per-
forms a search, and reshuffles the numbers again before deleting them from
the tree. Write another test program that does the same thing for an AVLTree.
Compare the execution times of these two programs.

***26.3 (AVL tree animation) Write a program that animates the AVL tree insert,
delete, and search methods, as shown in Figure 26.1.

**26.4 (Parent reference for BST) Suppose that the TreeNode class defined in BST con-
tains a reference to the node’s parent, as shown in Programming Exercise 25.15.
Implement the AVLTree class to support this change. Write a test program that
adds numbers 1, 2, . . . , 100 to the tree and displays the paths for all leaf nodes.

**26.5 (The kth smallest element) You can find the kth smallest element in a BST in
O(n) time from an inorder iterator. For an AVL tree, you can find it in O(log n)
time. To achieve this, add a new data field named size in AVLTreeNode to
store the number of nodes in the subtree rooted at this node. Note that the size of

KEY TERMS

AVL tree 966
balance factor 966
left-heavy 966
LL rotation 967
LR rotation 967
perfectly balanced tree 966

right-heavy 966
RL rotation 967
rotation 966
RR rotation 967
well-balanced tree 966

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 983

a node v is one more than the sum of the sizes of its two children. Figure 26.12
shows an AVL tree and the size value for each node in the tree.

FIGURE 26.12 The size data field in AVLTreeNode stores the number of nodes in the sub-
tree rooted at the node.

20

5

25

34

30 50

size: 6

size: 1

size: 2

size: 1 size: 1

size: 3

 In the AVLTree class, add the following method to return the kth smallest ele-
ment in the tree.

public E find(int k)

 The method returns null if k < 1 or k > the size of the tree. This method
can be implemented using the recursive method find(k, root), which returns
the kth smallest element in the tree with the specified root. Let A and B be the left
and right children of the root, respectively. Assuming that the tree is not empty
and k … root.size, find(k, root) can be recursively defined as follows:

find(k, root) = E root.element, if A is null and k is 1;

B.element, if A is null and k is 2;

find(k, A), if k 6 = A.size;

root.element, if k = A.size + 1;

find(k - A.size - 1, B), if k 7 A.size + 1;

 Modify the insert and delete methods in AVLTree to set the correct value
for the size property in each node. The insert and delete methods will still
be in O(log n) time. The find(k) method can be implemented in O(log n) time.
Therefore, you can find the kth smallest element in an AVL tree in O(log n) time.

 Use the following main method to test your program:

import java.util.Scanner;

public class Exercise26_05 {
public static void main(String[] args) {

 AVLTree<Double> tree = new AVLTree<>();
 Scanner input = new Scanner(System.in);
 System.out.print("Enter 15 numbers: ");

for (int i = 0; i < 15; i++) {
 tree.insert(input.nextDouble());
 }

 System.out.print("Enter k: ");
 System.out.println("The " + k + "th smallest number is " +
 tree.find(k));
 }
}

**26.6 (Test AVLTree) Design and write a complete test program to test if the AVLTree
class in Listing 26.4 meets all requirements.

This page intentionally left blank

HASHING

Objectives
■ To understand what hashing is and what hashing is used for (§27.2).

■ To obtain the hash code for an object and design the hash function to
map a key to an index (§27.3).

■ To handle collisions using open addressing (§27.4).

■ To know the differences among linear probing, quadratic probing, and
double hashing (§27.4).

■ To handle collisions using separate chaining (§27.5).

■ To understand the load factor and the need for rehashing (§27.6).

■ To implement MyHashMap using hashing (§27.7).

■ To implement MyHashSet using hashing (§27.8).

CHAPTER

27

986 Chapter 27 Hashing

27.1 Introduction
Hashing is superefficient. It takes O(1) time to search, insert, and delete an element
using hashing.

The preceding chapter introduced binary search trees. An element can be found in O(log n)
time in a well-balanced search tree. Is there a more efficient way to search for an element in a
container? This chapter introduces a technique called hashing. You can use hashing to imple-
ment a map or a set to search, insert, and delete an element in O(1) time.

27.2 What Is Hashing?
Hashing uses a hashing function to map a key to an index.

Before introducing hashing, let us review map, which is a data structure that is implemented
using hashing. Recall that a map (introduced in Section 21.5) is a container object that stores
entries. Each entry contains two parts: a key and a value. The key, also called a search key, is
used to search for the corresponding value. For example, a dictionary can be stored in a map,
in which the words are the keys and the definitions of the words are the values.

Note
A map is also called a dictionary, a hash table, or an associative array.

The Java Collections Framework defines the java.util.Map interface for modeling maps.
Three concrete implementations are java.util.HashMap, java.util.LinkedHashMap,
and java.util.TreeMap. java.util.HashMap is implemented using hashing, java.
util.LinkedHashMap using LinkedList, and java.util.TreeMap using red-black
trees. (Bonus Chapter 41 introduces red-black trees.) You will learn the concept of hashing
and use it to implement a hash map in this chapter.

If you know the index of an element in the array, you can retrieve the element using the
index in O(1) time. So does that mean we can store the values in an array and use the key as
the index to find the value? The answer is yes—if you can map a key to an index. The array
that stores the values is called a hash table. The function that maps a key to an index in the
hash table is called a hash function. As shown in Figure 27.1, a hash function obtains an index
from a key and uses the index to retrieve the value for the key. Hashing is a technique that
retrieves the value using the index obtained from the key without performing a search.

Key
Point

why hashing?

Key
Point

map

key

value

dictionary

hash table

associative array

hash table

hash function

hashing

FIGURE 27.1 A hash function maps a key to an index in the hash table.

Hash function

i = hash(key)

0

1

2

i

N – 1

key value
An entry

.

.

.

.

.

How do you design a hash function that produces an index from a key? Ideally, we would
like to design a function that maps each search key to a different index in the hash table. Such
a function is called a perfect hash function. However, it is difficult to find a perfect hash perfect hash function

27.3 Hash Functions and Hash Codes 987

function. When two or more keys are mapped to the same hash value, we say that a collision
has occurred. Although there are ways to deal with collisions, which are discussed later in this
chapter, it is better to avoid collisions in the first place. Thus, you should design a fast and
easy-to-compute hash function that minimizes collisions.

27.1 What is a hash function? What is a perfect hash function? What is a collision?

27.3 Hash Functions and Hash Codes
A typical hash function first converts a search key to an integer value called a hash
code, then compresses the hash code into an index to the hash table.

Java’s root class Object has the hashCode method, which returns an integer hash code. By
default, the method returns the memory address for the object. The general contract for the
hashCode method is as follows:

1. You should override the hashCode method whenever the equals method is overridden
to ensure that two equal objects return the same hash code.

2. During the execution of a program, invoking the hashCode method multiple times
returns the same integer, provided that the object’s data are not changed.

3. Two unequal objects may have the same hash code, but you should implement the
hashCode method to avoid too many such cases.

27.3.1 Hash Codes for Primitive Types
For search keys of the type byte, short, int, and char, simply cast them to int. Therefore,
two different search keys of any one of these types will have different hash codes.

For a search key of the type float, use Float.floatToIntBits(key) as the hash
code. Note that floatToIntBits(float f) returns an int value whose bit representation
is the same as the bit representation for the floating number f. Thus, two different search keys
of the float type will have different hash codes.

For a search key of the type long, simply casting it to int would not be a good choice,
because all keys that differ in only the first 32 bits will have the same hash code. To take the
first 32 bits into consideration, divide the 64 bits into two halves and perform the exclusive-
or operation to combine the two halves. This process is called folding. The hash code for a
long key is

int hashCode = (int)(key ^ (key >> 32));

Note that >> is the right-shift operator that shifts the bits 32 positions to the right. For exam-
ple, 1010110 >> 2 yields 0010101. The ^ is the bitwise exclusive-or operator. It operates
on two corresponding bits of the binary operands. For example, 1010110 ^ 0110111 yields
1100001. For more on bitwise operations, see Appendix G, Bitwise Operations.

For a search key of the type double, first convert it to a long value using the
Double.doubleToLongBits method, and then perform a folding as follows:

long bits = Double.doubleToLongBits(key);
int hashCode = (int)(bits ^ (bits >> 32));

27.3.2 Hash Codes for Strings
Search keys are often strings, so it is important to design a good hash function for strings. An
intuitive approach is to sum the Unicode of all characters as the hash code for the string. This
approach may work if two search keys in an application don’t contain the same letters, but

collision

✓Point✓Check

Key
Point

hash code

hashCode()

byte, short, int, char

float

long

folding

double

folding

988 Chapter 27 Hashing

it will produce a lot of collisions if the search keys contain the same letters, such as tod and
dot.

A better approach is to generate a hash code that takes the position of characters into con-
sideration. Specifically, let the hash code be

s0*b(n - 1) + s1*b(n - 2) + c + sn-1

where si is s.charAt(i). This expression is a polynomial for some positive b, so this is called
a polynomial hash code. Using Horner’s rule for polynomial evaluation (see Section 6.7), the
hash code can be calculated efficiently as follows:

(c((s0*b + s1)b + s2)b + c + sn-2)b + sn-1

This computation can cause an overflow for long strings, but arithmetic overflow is ignored
in Java. You should choose an appropriate value b to minimize collisions. Experiments show
that good choices for b are 31, 33, 37, 39, and 41. In the String class, the hashCode is over-
ridden using the polynomial hash code with b being 31.

27.3.3 Compressing Hash Codes
The hash code for a key can be a large integer that is out of the range for the hash-table index,
so you need to scale it down to fit in the index’s range. Assume the index for a hash table is
between 0 and N-1. The most common way to scale an integer to between 0 and N-1 is to use

h(hashCode) = hashCode % N

To ensure that the indices are spread evenly, choose N to be a prime number greater than 2.
Ideally, you should choose a prime number for N. However, it is time consuming to find

a large prime number. In the Java API implementation for java.util.HashMap, N is set
to a value of the power of 2. There is a good reason for this choice. When N is a value of the
power of 2,

h(hashCode) = hashCode % N

is the same as

h(hashCode) = hashCode & (N – 1)

The ampersand, &, is a bitwise AND operator (see Appendix G, Bitwise Operations). The
AND of two corresponding bits yields a 1 if both bits are 1. For example, assume N = 4 and
hashCode = 11, 11 % 4 = 3, which is the same as 01011 & 00011 = 11. The & operator
can be performed much faster than the % operator.

To ensure that the hashing is evenly distributed, a supplemental hash function is also used
along with the primary hash function in the implementation of java.util.HashMap. This
function is defined as:

private static int supplementalHash(int h) {
 h ^= (h >>> 20) ^ (h >>> 12);

return h ^ (h >>> 7) ^ (h >>> 4);
}

^ and >>> are bitwise exclusive-or and unsigned right-shift operations (also introduced in
Appendix G). The bitwise operations are much faster than the multiplication, division, and
remainder operations. You should replace these operations with the bitwise operations when-
ever possible.

The complete hash function is defined as:

h(hashCode) = supplementalHash(hashCode) % N

polynomial hash code

27.4 Handling Collisions Using Open Addressing 989

This is the same as

h(hashCode) = supplementalHash(hashCode) & (N – 1)

since N is a value of the power of 2.

27.2 What is a hash code? What is the hash code for Byte, Short, Integer, and
Character?

27.3 How is the hash code for a Float object computed?

27.4 How is the hash code for a Long object computed?

27.5 How is the hash code for a Double object computed?

27.6 How is the hash code for a String object computed?

27.7 How is a hash code compressed to an integer representing the index in a hash table?

27.8 If N is a value of the power of 2, is N / 2 same as N >> 1?

27.9 If N is a value of the power of 2, is m % N same as m & (N – 1) for any integer m?

27.4 Handling Collisions Using Open Addressing
A collision occurs when two keys are mapped to the same index in a hash table.
Generally, there are two ways for handling collisions: open addressing and separate
chaining.

Open addressing is the process of finding an open location in the hash table in the event of
a collision. Open addressing has several variations: linear probing, quadratic probing, and
double hashing.

27.4.1 Linear Probing
When a collision occurs during the insertion of an entry to a hash table, linear probing finds
the next available location sequentially. For example, if a collision occurs at hashTable[k %
N], check whether hashTable[(k+1) % N] is available. If not, check hashTable[(k+2)
% N] and so on, until an available cell is found, as shown in Figure 27.2.

Note
When probing reaches the end of the table, it goes back to the beginning of the table.

Thus, the hash table is treated as if it were circular.

✓Point✓Check

Key
Point

open addressing

add entry

linear probing

circular hash table

FIGURE 27.2 Linear probing finds the next available location sequentially.

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

For simplicity, only the keys are
shown and the values are not
shown. Here N is 11 and
index = key % N.

New element with
key 26 to be inserted

Probe 3 times before
finding an empty

cell

990 Chapter 27 Hashing

To search for an entry in the hash table, obtain the index, say k, from the hash function
for the key. Check whether hashTable[k % N] contains the entry. If not, check whether
hashTable[(k+1) % N] contains the entry, and so on, until it is found, or an empty cell is
reached.

To remove an entry from the hash table, search the entry that matches the key. If the entry
is found, place a special marker to denote that the entry is available. Each cell in the hash table
has three possible states: occupied, marked, or empty. Note that a marked cell is also available
for insertion.

Linear probing tends to cause groups of consecutive cells in the hash table to be occupied.
Each group is called a cluster. Each cluster is actually a probe sequence that you must search
when retrieving, adding, or removing an entry. As clusters grow in size, they may merge into even
larger clusters, further slowing down the search time. This is a big disadvantage of linear probing.

Pedagogical Note
For an interactive GUI demo to see how linear probing works, go to www.cs.armstrong.edu/

liang/animation/HashingLinearProbingAnimation.html, as shown in Figure 27.3.

27.4.2 Quadratic Probing
Quadratic probing can avoid the clustering problem that can occur in linear probing. Linear
probing looks at the consecutive cells beginning at index k. Quadratic probing, on the other
hand, looks at the cells at indices (k + j2) % N, for j Ú 0, that is, k % N, (k + 1)% N, (k + 4)
% n, (k + 9)% N, and so on, as shown in Figure 27.4.

search entry

remove entry

cluster

linear probing animation on

Companion Website

quadratic probing

FIGURE 27.3 The animation tool shows how linear probing works.

www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html

27.4 Handling Collisions Using Open Addressing 991

Quadratic probing works in the same way as linear probing except for a change in the
search sequence. Quadratic probing avoids linear probing’s clustering problem, but it has its
own clustering problem, called secondary clustering; that is, the entries that collide with an
occupied entry use the same probe sequence.

Linear probing guarantees that an available cell can be found for insertion as long as the
table is not full. However, there is no such guarantee for quadratic probing.

Pedagogical NOTE
For an interactive GUI demo to see how quadratic probing works, go to www.cs.armstrong.

edu/liang/animation/HashingQuadraticProbingAnimation.html, as shown in Figure 27.5.

27.4.3 Double Hashing
Another open addressing scheme that avoids the clustering problem is known as double hash-
ing. Starting from the initial index k, both linear probing and quadratic probing add an incre-
ment to k to define a search sequence. The increment is 1 for linear probing and j2 for quadratic
probing. These increments are independent of the keys. Double hashing uses a secondary hash
function h′(key) on the keys to determine the increments to avoid the clustering problem. Spe-
cifically, double hashing looks at the cells at indices (k + j* h′(key)) % N, for j Ú 0, that is,
k % N, (k + h′(key))% N, (k + 2* h′(key)) % N, (k + 3* h′(key)) % N, and so on.

For example, let the primary hash function h and secondary hash function h' on a hash
table of size 11 be defined as follows:

h(key) = key % 11;
h'(key) = 7 – key % 7;

For a search key of 12, we have

h(12) = 12 % 11 = 1;
h'(12) = 7 – 12 % 7 = 2;

Suppose the elements with the keys 45, 58, 4, 28, and 21 are already placed in the hash table.
We now insert the element with key 12. The probe sequence for key 12 starts at index 1. Since
the cell at index 1 is already occupied, search the next cell at index 3 (1 + 1 * 2). Since
the cell at index 3 is already occupied, search the next cell at index 5 (1 + 2 * 2). Since the
cell at index 5 is empty, the element for key 12 is now inserted at this cell. The search process
is illustrated in Figure 27.6.

The indices of the probe sequence are as follows: 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10. This sequence
reaches the entire table. You should design your functions to produce a probe sequence that

secondary clustering

quadratic probing animation

on Companion Website

double hashing

FIGURE 27.4 Quadratic probing increases the next index in the sequence by j2 for
j = 1, 2, 3,

0

1

2

3

4

5

6

7

8

9

10

key: 44

key: 4

key: 16

key: 28

key: 21

.

.

.

For simplicity, only the keys are
shown and not the values. Here
N is 11 and index = key % N.

New element with
key 26 to be inserted

Quadratic probe 2
times before finding

an empty cell

www.cs.armstrong.edu/liang/animation/HashingQuadraticProbingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingQuadraticProbingAnimation.html

992 Chapter 27 Hashing

FIGURE 27.5 The animation tool shows how quadratic probing works.

FIGURE 27.6 The secondary hash function in a double hashing determines the increment of the next index in the probe
sequence.

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 28

key: 21

h(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 28

key: 21

h(12) + h'(12)

0

1

2

3

4

5

6

7

8

9

10

key: 45

key: 4

key: 58

key: 28

key: 21

h(12) + 2*h'(12)

.

.
.
.

.

.

reaches the entire table. Note that the second function should never have a zero value, since
zero is not an increment.

27.10 What is open addressing? What is linear probing? What is quadratic probing? What
is double hashing?

27.11 Describe the clustering problem for linear probing.
✓Point✓Check

27.6 Load Factor and Rehashing 993

27.12 What is secondary clustering?

27.13 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using linear probing.

27.14 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using quadratic probing.

27.15 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120,
39, 45, and 40, using double hashing with the following functions:

h(k) = k % 11;
h'(k) = 7 – k % 7;

27.5 Handling Collisions Using Separate Chaining
The separate chaining scheme places all entries with the same hash index in the same
location, rather than finding new locations. Each location in the separate chaining
scheme uses a bucket to hold multiple entries.

You can implement a bucket using an array, ArrayList, or LinkedList. We will use
LinkedList for demonstration. You can view each cell in the hash table as the reference to
the head of a linked list, and elements in the linked list are chained starting from the head, as
shown in Figure 27.7.

Key
Point

separate chaining

implementing bucket

FIGURE 27.7 Separate chaining scheme chains the entries with the same hash index in a
bucket.

0

1

2

3
4

5

6

7

8

9

10

key: 44

key: 28

key: 21

key: 26key: 4

key: 16

New element with
key 26 to be inserted

For simplicity, only the keys are
shown, and not the values. Here
N is 11 and index = key % N.

.

.

.

27.16 Show the hash table of size 11 after inserting entries with the keys 34, 29, 53, 44,
120, 39, 45, and 40, using separate chaining.

27.6 Load Factor and Rehashing
The load factor measures how full a hash table is. If the load factor is exceeded,
increase the hash-table size and reload the entries into a new larger hash table. This
is called rehashing.

Load factor l (lambda) measures how full a hash table is. It is the ratio of the number of
elements to the size of the hash table, that is, l =

n

N
, where n denotes the number of elements

and N the number of locations in the hash table.
Note that l is zero if the hash table is empty. For the open addressing scheme, l is between

0 and 1; l is 1 if the hash table is full. For the separate chaining scheme, l can be any value.

✓Point✓Check

Key
Point

rehashing

load factor

994 Chapter 27 Hashing

As l increases, the probability of a collision increases. Studies show that you should maintain
the load factor under 0.5 for the open addressing scheme and under 0.9 for the separate
chaining scheme.

Keeping the load factor under a certain threshold is important for the performance of hash-
ing. In the implementation of the java.util.HashMap class in the Java API, the threshold
0.75 is used. Whenever the load factor exceeds the threshold, you need to increase the hash-
table size and rehash all the entries in the map into a new larger hash table. Notice that you
need to change the hash functions, since the hash-table size has been changed. To reduce the
likelihood of rehashing, since it is costly, you should at least double the hash-table size. Even
with periodic rehashing, hashing is an efficient implementation for map.

Pedagogical Note
For an interactive GUI demo to see how separate chaining works, go to www.cs.armstrong

.edu/liang/animation/HashingUsingSeparateChainingAnimation.html, as shown in Figure 27.8.

threshold

rehash

separate chaining animation

on Companion Website

FIGURE 27.8 The animation tool shows how separate chaining works.

27.17 What is load factor? Assume the hash table has the initial size 4 and its load factor is
0.5; show the hash table after inserting entries with the keys 34, 29, 53, 44, 120, 39,
45, and 40, using linear probing.

27.18 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash
table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using
quadratic probing.

✓Point✓Check

www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html
www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html

27.7 Implementing a Map Using Hashing 995

27.19 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash
table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using
separate chaining.

27.7 Implementing a Map Using Hashing
A map can be implemented using hashing.

Now you understand the concept of hashing. You know how to design a good hash function
to map a key to an index in a hash table, how to measure performance using the load factor,
and how to increase the table size and rehash to maintain the performance. This section dem-
onstrates how to implement a map using separate chaining.

We design our custom Map interface to mirror java.util.Map and name the interface
MyMap and a concrete class MyHashMap, as shown in Figure 27.9.

Key
Point

FIGURE 27.9 MyHashMap implements the MyMap interface.

MyHashMap<K, V>

+clear(): void

+containsKey(key: K): boolean

+containsValue(value: V): boolean

+entrySet(): Set<Entry<K, V>>

+get(key: K): V

+isEmpty(): boolean

+keySet(): Set<K>

+put(key: K, value: V): V

+remove(key: K): void

+size(): int

+values(): Set<V>

Removes all entries from this map.

Returns true if this map contains an entry for the
 specified key.

Returns true if this map maps one or more keys to the
 specified value.

Returns a set consisting of the keys in this map.

Returns a set consisting of the entries in this map.

Returns a value for the specified key in this map.

Returns true if this map contains no mappings.

Puts a mapping in this map.

Removes the entries for the specified key.

Returns the number of mappings in this map.

Returns a set consisting of the values in this map.

Creates an empty map with default capacity 4 and
 default load factor threshold 0.75f.

+MyHashMap()

Creates a map with a specified capacity and
 default load factor threshold 0.75f.

+MyHashMap(capacity: int)

Creates a map with a specified capacity and
 load factor threshold.

+MyHashMap(capacity: int,
 loadFactorThreshold: float)

Constructs an entry with the specified key and value.

Returns the key in the entry.

Returns the value in the entry.

-key: K

-value: V

+Entry(key: K, value: V)

+getkey(): K

+getValue(): V

MyMap.Entry<K, V>

«interface»
MyMap<K, V>

996 Chapter 27 Hashing

How do you implement MyHashMap? If you use an ArrayList and store a new entry at
the end of the list, the search time will be O(n). If you implement MyHashMap using a binary
tree, the search time will be O(log n) if the tree is well balanced. Nevertheless, you can imple-
ment MyHashMap using hashing to obtain an O(1) time search algorithm. Listing 27.1 shows
the MyMap interface and Listing 27.2 implements MyHashMap using separate chaining.

LISTING 27.1 MyMap.java
 1 public interface MyMap<K, V> {
 2 /** Remove all of the entries from this map */
 3 public void clear();
 4
 5 /** Return true if the specified key is in the map */
 6 public boolean containsKey(K key);
 7
 8 /** Return true if this map contains the specified value */
 9 public boolean containsValue(V value);
10
11 /** Return a set of entries in the map */
12 public java.util.Set<Entry<K, V>> entrySet();
13
14 /** Return the value that matches the specified key */
15 public V get(K key);
16
17 /** Return true if this map doesn't contain any entries */
18 public boolean isEmpty();
19
20 /** Return a set consisting of the keys in this map */
21 public java.util.Set<K> keySet();
22
23 /** Add an entry (key, value) into the map */
24 public V put(K key, V value);
25
26 /** Remove an entry for the specified key */
27 public void remove(K key);
28
29 /** Return the number of mappings in this map */
30 public int size();
31
32 /** Return a set consisting of the values in this map */
33 public java.util.Set<V> values();
34
35 /** Define an inner class for Entry */
36 public static class Entry<K, V> {
37 K key;
38 V value;
39
40 public Entry(K key, V value) {
41 this.key = key;
42 this.value = value;
43 }
44
45 public K getKey() {
46 return key;
47 }
48
49 public V getValue() {
50 return value;
51 }
52

interface MyMap

clear

containsKey

containsValue

entrySet

get

isEmpty

keySet

put

remove

size

values

Entry inner class

27.7 Implementing a Map Using Hashing 997

53 @Override
54 public String toString() {
55 return "[" + key + ", " + value + "]";
56 }
57 }
58 }

LISTING 27.2 MyHashMap.java
 1 import java.util.LinkedList;
 2
 3 public class MyHashMap<K, V> implements MyMap<K, V> {
 4 // Define the default hash-table size. Must be a power of 2
 5 private static int DEFAULT_INITIAL_CAPACITY = 4;
 6
 7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
 8 private static int MAXIMUM_CAPACITY = 1 << 30;
 9
 10 // Current hash-table capacity. Capacity is a power of 2
 11 private int capacity;
 12
 13 // Define default load factor
 14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 15
 16 // Specify a load factor used in the hash table
 17 private float loadFactorThreshold;
 18
 19 // The number of entries in the map
 20 private int size = 0;
 21
 22 // Hash table is an array with each cell being a linked list
 23 LinkedList<MyMap.Entry<K,V>>[] table;
 24
 25 /** Construct a map with the default capacity and load factor */
 26 public MyHashMap() {
 27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
 28 }
 29
 30 /** Construct a map with the specified initial capacity and
 31 * default load factor */
 32 public MyHashMap(int initialCapacity) {
 33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
 34 }
 35
 36 /** Construct a map with the specified initial capacity
 37 * and load factor */
 38 public MyHashMap(int initialCapacity, float loadFactorThreshold) {
 39 if (initialCapacity > MAXIMUM_CAPACITY)
 40 this.capacity = MAXIMUM_CAPACITY;
 41 else

 42 this.capacity = trimToPowerOf2(initialCapacity);
 43
 44 this.loadFactorThreshold = loadFactorThreshold;
 45 table = new LinkedList[capacity];
 46 }
 47
 48 @Override /** Remove all of the entries from this map */
 49 public void clear() {
 50 size = 0;
 51 removeEntries();
 52 }

class MyHashMap

default initial capacity

maximum capacity

current capacity

default load factor

load-factor threshold

size

hash table

no-arg constructor

constructor

constructor

clear

998 Chapter 27 Hashing

 53
 54 @Override /** Return true if the specified key is in the map */
 55 public boolean containsKey(K key) {
 56 if (get(key) != null)
 57 return true;
 58 else

 59 return false;
 60 }
 61
 62 @Override /** Return true if this map contains the value */
 63 public boolean containsValue(V value) {
 64 for (int i = 0; i < capacity; i++) {
 65 if (table[i] != null) {
 66 LinkedList<Entry<K, V>> bucket = table[i];
 67 for (Entry<K, V> entry: bucket)
 68 if (entry.getValue().equals(value))
 69 return true;
 70 }
 71 }
 72
 73 return false;
 74 }
 75
 76 @Override /** Return a set of entries in the map */
 77 public java.util.Set<MyMap.Entry<K,V>> entrySet() {
 78 java.util.Set<MyMap.Entry<K, V>> set =
 79 new java.util.HashSet<>();
 80
 81 for (int i = 0; i < capacity; i++) {
 82 if (table[i] != null) {
 83 LinkedList<Entry<K, V>> bucket = table[i];
 84 for (Entry<K, V> entry: bucket)
 85 set.add(entry);
 86 }
 87 }
 88
 89 return set;
 90 }
 91
 92 @Override /** Return the value that matches the specified key */
 93 public V get(K key) {
 94 int bucketIndex = hash(key.hashCode());
 95 if (table[bucketIndex] != null) {
 96 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
 97 for (Entry<K, V> entry: bucket)
 98 if (entry.getKey().equals(key))
 99 return entry.getValue();
100 }
101
102 return null;
103 }
104
105 @Override /** Return true if this map contains no entries */
106 public boolean isEmpty() {
107 return size == 0;
108 }
109
110 @Override /** Return a set consisting of the keys in this map */
111 public java.util.Set<K> keySet() {
112 java.util.Set<K> set = new java.util.HashSet<K>();

containsKey

containsValue

entrySet

get

isEmpty

keySet

27.7 Implementing a Map Using Hashing 999

113
114 for (int i = 0; i < capacity; i++) {
115 if (table[i] != null) {
116 LinkedList<Entry<K, V>> bucket = table[i];
117 for (Entry<K, V> entry: bucket)
118 set.add(entry.getKey());
119 }
120 }
121
122 return set;
123 }
124
125 @Override /** Add an entry (key, value) into the map */
126 public V put(K key, V value) {
127 if (get(key) != null) { // The key is already in the map
128 int bucketIndex = hash(key.hashCode());
129 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
130 for (Entry<K, V> entry: bucket)
131 if (entry.getKey().equals(key)) {
132 V oldValue = entry.getValue();
133 // Replace old value with new value
134 entry.value = value;
135 // Return the old value for the key
136 return oldValue;
137 }
138 }
139
140 // Check load factor
141 if (size >= capacity * loadFactorThreshold) {
142 if (capacity == MAXIMUM_CAPACITY)
143 throw new RuntimeException("Exceeding maximum capacity");
144
145 rehash();
146 }
147
148 int bucketIndex = hash(key.hashCode());
149
150 // Create a linked list for the bucket if not already created
151 if (table[bucketIndex] == null) {
152 table[bucketIndex] = new LinkedList<Entry<K, V>>();
153 }
154
155 // Add a new entry (key, value) to hashTable[index]
156 table[bucketIndex].add(new MyMap.Entry<K, V>(key, value));
157
158 size++; // Increase size
159
160 return value;
161 }
162
163 @Override /** Remove the entries for the specified key */
164 public void remove(K key) {
165 int bucketIndex = hash(key.hashCode());
166
167 // Remove the first entry that matches the key from a bucket
168 if (table[bucketIndex] != null) {
169 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
170 for (Entry<K, V> entry: bucket)
171 if (entry.getKey().equals(key)) {
172 bucket.remove(entry);

put

remove

1000 Chapter 27 Hashing

173 size—–; // Decrease size
174 break; // Remove just one entry that matches the key
175 }
176 }
177 }
178
179 @Override /** Return the number of entries in this map */
180 public int size() {
181 return size;
182 }
183
184 @Override /** Return a set consisting of the values in this map */
185 public java.util.Set<V> values() {
186 java.util.Set<V> set = new java.util.HashSet<>();
187
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 LinkedList<Entry<K, V>> bucket = table[i];
191 for (Entry<K, V> entry: bucket)
192 set.add(entry.getValue());
193 }
194 }
195
196 return set;
197 }
198
199 /** Hash function */
200 private int hash(int hashCode) {
201 return supplementalHash(hashCode) & (capacity - 1);
202 }
203
204 /** Ensure the hashing is evenly distributed */
205 private static int supplementalHash(int h) {
206 h ^= (h >>> 20) ^ (h >>> 12);
207 return h ^ (h >>> 7) ^ (h >>> 4);
208 }
209
210 /** Return a power of 2 for initialCapacity */
211 private int trimToPowerOf2(int initialCapacity) {
212 int capacity = 1;
213 while (capacity < initialCapacity) {
214 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
215 }
216
217 return capacity;
218 }
219
220 /** Remove all entries from each bucket */
221 private void removeEntries() {
222 for (int i = 0; i < capacity; i++) {
223 if (table[i] != null) {
224 table[i].clear();
225 }
226 }
227 }
228
229 /** Rehash the map */
230 private void rehash() {
231 java.util.Set<Entry<K, V>> set = entrySet(); // Get entries
232 capacity <<= 1; // Same as capacity *= 2. <= is more efficient

size

values

hash

supplementalHash

trimToPowerOf2

removeEntries

rehash

27.7 Implementing a Map Using Hashing 1001

233 table = new LinkedList[capacity]; // Create a new hash table
234 size = 0; // Reset size to 0
235
236 for (Entry<K, V> entry: set) {
237 put(entry.getKey(), entry.getValue()); // Store to new table
238 }
239 }
240
241 @Override /** Return a string representation for this map */
242 public String toString() {
243 StringBuilder builder = new StringBuilder("[");
244
245 for (int i = 0; i < capacity; i++) {
246 if (table[i] != null && table[i].size() > 0)
247 for (Entry<K, V> entry: table[i])
248 builder.append(entry);
249 }
250
251 builder.append("]");
252 return builder.toString();
253 }
254 }

The MyHashMap class implements the MyMap interface using separate chaining. The param-
eters that determine the hash-table size and load factors are defined in the class. The default
initial capacity is 4 (line 5) and the maximum capacity is 230 (line 8). The current hash-table
capacity is designed as a value of the power of 2 (line 11). The default load-factor threshold
is 0.75f (line 14). You can specify a custom load-factor threshold when constructing a map.
The custom load-factor threshold is stored in loadFactorThreshold (line 17). The data
field size denotes the number of entries in the map (line 20). The hash table is an array. Each
cell in the array is a linked list (line 23).

Three constructors are provided to construct a map. You can construct a default map with
the default capacity and load-factor threshold using the no-arg constructor (lines 26–28), a
map with the specified capacity and a default load-factor threshold (lines 32–34), and a map
with the specified capacity and load-factor threshold (lines 38–46).

The clear method removes all entries from the map (lines 49–52). It invokes
removeEntries(), which deletes all entries in the buckets (lines 221–227). The
removeEntries() method takes O(capacity) time to clear all entries in the table.

The containsKey(key) method checks whether the specified key is in the map
by invoking the get method (lines 55–60). Since the get method takes O(1) time, the
containsKey(key) method takes O(1) time.

The containsValue(value) method checks whether the value is in the map (lines
63–74). This method takes O(capacity + size) time. It is actually O(capacity), since
capacity 7 size.

The entrySet() method returns a set that contains all entries in the map (lines 77–90).
This method takes O(capacity) time.

The get(key) method returns the value of the first entry with the specified key (lines
93–103). This method takes O(1) time.

The isEmpty() method simply returns true if the map is empty (lines 106–108). This
method takes O(1) time.

The keySet() method returns all keys in the map as a set. The method finds the keys from
each bucket and adds them to a set (lines 111–123). This method takes O(capacity) time.

The put(key, value) method adds a new entry into the map. The method first tests if
the key is already in the map (line 127), if so, it locates the entry and replaces the old value
with the new value in the entry for the key (line 134) and the old value is returned (line 136). If

toString

hash-table parameters

three constructors

clear

containsKey

containsValue

entrySet

get

isEmpty

keySet

put

1002 Chapter 27 Hashing

the key is new in the map, the new entry is created in the map (line 156). Before inserting the
new entry, the method checks whether the size exceeds the load-factor threshold (line 141). If
so, the program invokes rehash() (line 145) to increase the capacity and store entries into
the new larger hash table.

The rehash() method first copies all entries in a set (line 231), doubles the capacity (line
232), creates a new hash table (line 233), and resets the size to 0 (line 234). The method then cop-
ies the entries into the new hash table (lines 236–238). The rehash method takes O(capacity)
time. If no rehash is performed, the put method takes O(1) time to add a new entry.

The remove(key) method removes the entry with the specified key in the map (lines
164–177). This method takes O(1) time.

The size() method simply returns the size of the map (lines 180–182). This method takes
O(1) time.

The values() method returns all values in the map. The method examines each entry
from all buckets and adds it to a set (lines 185–197). This method takes O(capacity) time.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 200–208). This method takes O(1) time.

Table 27.1 summarizes the time complexities of the methods in MyHashMap.

rehash

remove

size

values

hash

Methods Time

clear() O(capacity)

containsKey(key: Key) O(1)

containsValue(value: V) O(capacity)

entrySet() O(capacity)

get(key: K) O(1)

isEmpty() O(1)

keySet() O(capacity)

put(key: K, value: V) O(1)

remove(key: K) O(1)

size() O(1)

values() O(capacity)

rehash() O(capacity)

TABLE 27.1 Time Complexities for Methods in
MyHashMap

Since rehashing does not happen very often, the time complexity for the put method is
O(1). Note that the complexities of the clear, entrySet, keySet, values, and rehash
methods depend on capacity, so to avoid poor performance for these methods you should
choose an initial capacity carefully.

Listing 27.3 gives a test program that uses MyHashMap.

LISTING 27.3 TestMyHashMap.java
 1 public class TestMyHashMap {
 2 public static void main(String[] args) {
 3 // Create a map
4 MyMap<String, Integer> map = new MyHashMap<>();

 5 map.put("Smith", 30);
 6 map.put("Anderson", 31);
 7 map.put("Lewis", 29);
 8 map.put("Cook", 29);

create a map
put entries

27.7 Implementing a Map Using Hashing 1003

 9 map.put("Smith", 65);
10
11 System.out.println("Entries in map: " + map);
12
13 System.out.println("The age for Lewis is " +
14 map.get("Lewis"));
15
16 System.out.println("Is Smith in the map? " +
17 map.containsKey("Smith"));
18 System.out.println("Is age 33 in the map? " +
19 map.containsValue(33));
20
21 map.remove("Smith");
22 System.out.println("Entries in map: " + map);
23
24 map.clear();
25 System.out.println("Entries in map: " + map);
26 }
27 }

display entries

get value

is key in map?

is value in map?

remove entry

Entries in map: [[Anderson, 31][Smith, 65][Lewis, 29][Cook, 29]]
The age for Lewis is 29
Is Smith in the map? true
Is age 33 in the map? false
Entries in map: [[Anderson, 31][Lewis, 29][Cook, 29]]
Entries in map: []

The program creates a map using MyHashMap (line 4) and adds five entries into the map
(lines 5–9). Line 5 adds key Smith with value 30 and line 9 adds Smith with value 65. The
latter value replaces the former value. The map actually has only four entries. The program
displays the entries in the map (line 11), gets a value for a key (line 14), checks whether the
map contains the key (line 17) and a value (line 19), removes an entry with the key Smith
(line 21), and redisplays the entries in the map (line 22). Finally, the program clears the map
(line 24) and displays an empty map (line 25).

27.20 What is 1 << 30 in line 8 in Listing 27.2? What are the integers resulted from 1 << 1,
1 << 2, and 1 << 3?

27.21 What are the integers resulted from 32 >> 1, 32 >> 2, 32 >> 3, and 32 >> 4?

27.22 In Listing 27.2, will the program work if LinkedList is replaced by ArrayList?
In Listing 27.2, how do you replace the code in lines 55–59 using one line of code?

27.23 Describe how the put(key, value) method is implemented in the MyHashMap
class.

27.24 In Listing 27.5, the supplementalHash method is declared static, can the hash
method be declared static?

27.25 Show the output of the following code.

MyMap<String, String> map = new MyHashMap<>();
map.put("Texas", "Dallas");
map.put("Oklahoma", "Norman");
map.put("Texas", "Austin");
map.put("Oklahoma", "Tulsa");

System.out.println(map.get("Texas"));
System.out.println(map.size());

✓Point✓Check

1004 Chapter 27 Hashing

27.8 Implementing Set Using Hashing
A hash set can be implemented using a hash map.

A set (introduced in Chapter 21) is a data structure that stores distinct values. The Java Collections
Framework defines the java.util.Set interface for modeling sets. Three concrete implemen-
tations arejava.util.HashSet,java.util.LinkedHashSet, and java.util.TreeSet.
java.util.HashSet is implemented using hashing, java.util.LinkedHashSet using
LinkedList, and java.util.TreeSet using red-black trees.

You can implement MyHashSet using the same approach as for implementing MyHashMap.
The only difference is that key/value pairs are stored in the map, while elements are stored in
the set.

We design our custom Set interface to mirror java.util.Set and name the interface
MySet and a concrete class MyHashSet, as shown in Figure 27.10.

Key
Point

hash set

hash map

set

MySet

MyHashSet

FIGURE 27.10 MyHashSet implements the MySet interface.

Removes all elements from this set.

Returns true if the element is in the set.

Adds the element to the set and returns true if the element is added
successfully.

Removes the element from the set and returns true if the set
 contained the element.

Returns true if this set does not contain any elements.

Returns the number of elements in this set.

MyHashSet<E>

+clear(): void

«interface»
MySet<E>

+size(): int

+isEmpty(): boolean

+remove(e: E): boolean

+add(e: E): boolean

+contains(e: E): boolean

«interface»
java.lang.Iterable<E>

Creates an empty set with default capacity 4 and default load
 factor threshold 0.75f.

+MyHashSet()

Creates a set with a specified capacity and default load factor
 threshold 0.75f.

+MyHashMap(capacity: int)

Creates a set with a specified capacity and load factor threshold.+MyHashMap(capacity: int,
 loadFactorThreshold: float)

+iterator(): java.util.Iterator<E>

Listing 27.4 shows the MySet interface and Listing 27.5 implements MyHashSet using
separate chaining.

LISTING 27.4 MySet.java
 1 public interface MySet<E> extends java.lang.Iterable<E> {
 2 /** Remove all elements from this set */
 3 public void clear();
 4
 5 /** Return true if the element is in the set */

clear

27.8 Implementing Set Using Hashing 1005

 6 public boolean contains(E e);
 7
 8 /** Add an element to the set */
 9 public boolean add(E e);
10
11 /** Remove the element from the set */
12 public boolean remove(E e);
13
14 /** Return true if the set doesn't contain any elements */
15 public boolean isEmpty();
16
17 /** Return the number of elements in the set */
18 public int size();
19 }

LISTING 27.5 MyHashSet.java
 1 import java.util.LinkedList;
 2
 3 public class MyHashSet<E> implements MySet<E> {
 4 // Define the default hash-table size. Must be a power of 2
 5 private static int DEFAULT_INITIAL_CAPACITY = 4;
 6
 7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
 8 private static int MAXIMUM_CAPACITY = 1 << 30;
 9
 10 // Current hash-table capacity. Capacity is a power of 2
 11 private int capacity;
 12
 13 // Define default load factor
 14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 15
 16 // Specify a load-factor threshold used in the hash table
 17 private float loadFactorThreshold;
 18
 19 // The number of elements in the set
 20 private int size = 0;
 21
 22 // Hash table is an array with each cell being a linked list
 23 private LinkedList<E>[] table;
 24
 25 /** Construct a set with the default capacity and load factor */
 26 public MyHashSet() {
 27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
 28 }
 29
 30 /** Construct a set with the specified initial capacity and
 31 * default load factor */
32 public MyHashSet(int initialCapacity) {

 33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
 34 }
 35
 36 /** Construct a set with the specified initial capacity
 37 * and load factor */
 38 public MyHashSet(int initialCapacity, float loadFactorThreshold) {
 39 if (initialCapacity > MAXIMUM_CAPACITY)
 40 this.capacity = MAXIMUM_CAPACITY;
 41 else

 42 this.capacity = trimToPowerOf2(initialCapacity);

contains

add

remove

isEmpty

size

class MyHashSet

default initial capacity

maximum capacity

current capacity

default max load factor

load-factor threshold

size

hash table

no-arg constructor

constructor

constructor

1006 Chapter 27 Hashing

 43
 44 this.loadFactorThreshold = loadFactorThreshold;
 45 table = new LinkedList[capacity];
 46 }
 47
 48 @Override /** Remove all elements from this set */
 49 public void clear() {
 50 size = 0;
 51 removeElements();
 52 }
 53
 54 @Override /** Return true if the element is in the set */
 55 public boolean contains(E e) {
 56 int bucketIndex = hash(e.hashCode());
 57 if (table[bucketIndex] != null) {
 58 LinkedList<E> bucket = table[bucketIndex];
 59 for (E element: bucket)
 60 if (element.equals(e))
 61 return true;
 62 }
 63
 64 return false;
 65 }
 66
 67 @Override /** Add an element to the set */
 68 public boolean add(E e) {
 69 if (contains(e)) // Duplicate element not stored
 70 return false;
 71
 72 if (size + 1 > capacity * loadFactorThreshold) {
 73 if (capacity == MAXIMUM_CAPACITY)
 74 throw new RuntimeException("Exceeding maximum capacity");
 75
 76 rehash();
 77 }
 78
 79 int bucketIndex = hash(e.hashCode());
 80
 81 // Create a linked list for the bucket if not already created
 82 if (table[bucketIndex] == null) {
 83 table[bucketIndex] = new LinkedList<E>();
 84 }
 85
 86 // Add e to hashTable[index]
 87 table[bucketIndex].add(e);
 88
 89 size++; // Increase size
 90
 91 return true;
 92 }
 93
 94 @Override /** Remove the element from the set */
 95 public boolean remove(E e) {
 96 if (!contains(e))
 97 return false;
 98
 99 int bucketIndex = hash(e.hashCode());
100
101 // Create a linked list for the bucket if not already created
102 if (table[bucketIndex] != null) {

clear

contains

add

remove

27.8 Implementing Set Using Hashing 1007

103 LinkedList<E> bucket = table[bucketIndex];
104 for (E element: bucket)
105 if (e.equals(element)) {
106 bucket.remove(element);
107 break;
108 }
109 }
110
111 size——; // Decrease size
112
113 return true;
114 }
115
116 @Override /** Return true if the set contain no elements */
117 public boolean isEmpty() {
118 return size == 0;
119 }
120
121 @Override /** Return the number of elements in the set */
122 public int size() {
123 return size;
124 }
125
126 @Override /** Return an iterator for the elements in this set */
127 public java.util.Iterator<E> iterator() {
128 return new MyHashSetIterator(this);
129 }
130
131 /** Inner class for iterator */
132 private class MyHashSetIterator implements java.util.Iterator<E> {
133 // Store the elements in a list
134 private java.util.ArrayList<E> list;
135 private int current = 0; // Point to the current element in list
136 private MyHashSet<E> set;
137
138 /** Create a list from the set */
139 public MyHashSetIterator(MyHashSet<E> set) {
140 this.set = set;
141 list = setToList();
142 }
143
144 @Override /** Next element for traversing? */
145 public boolean hasNext() {
146 if (current < list.size())
147 return true;
148
149 return false;
150 }
151
152 @Override /** Get current element and move cursor to the next */
153 public E next() {
154 return list.get(current++);
155 }
156
157 /** Remove the current element and refresh the list */
158 public void remove() {
159 // Delete the current element from the hash set
160 set.remove(list.get(current));
161 list.remove(current); // Remove current element from the list
162 }

isEmpty

size

iterator

inner class

1008 Chapter 27 Hashing

163 }
164
165 /** Hash function */
166 private int hash(int hashCode) {
167 return supplementalHash(hashCode) & (capacity - 1);
168 }
169
170 /** Ensure the hashing is evenly distributed */
171 private static int supplementalHash(int h) {
172 h ^= (h >>> 20) ^ (h >>> 12);
173 return h ^ (h >>> 7) ^ (h >>> 4);
174 }
175
176 /** Return a power of 2 for initialCapacity */
177 private int trimToPowerOf2(int initialCapacity) {
178 int capacity = 1;
179 while (capacity < initialCapacity) {
180 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
181 }
182
183 return capacity;
184 }
185
186 /** Remove all e from each bucket */
187 private void removeElements() {
188 for (int i = 0; i < capacity; i++) {
189 if (table[i] != null) {
190 table[i].clear();
191 }
192 }
193 }
194
195 /** Rehash the set */
196 private void rehash() {
197 java.util.ArrayList<E> list = setToList(); // Copy to a list
198 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
199 table = new LinkedList[capacity]; // Create a new hash table
200 size = 0;
201
202 for (E element: list) {
203 add(element); // Add from the old table to the new table
204 }
205 }
206
207 /** Copy elements in the hash set to an array list */
208 private java.util.ArrayList<E> setToList() {
209 java.util.ArrayList<E> list = new java.util.ArrayList<>();
210
211 for (int i = 0; i < capacity; i++) {
212 if (table[i] != null) {
213 for (E e: table[i]) {
214 list.add(e);
215 }
216 }
217 }
218
219 return list;
220 }
221
222 @Override /** Return a string representation for this set */

hash

supplementalHash

trimToPowerOf2

rehash

setToList

27.8 Implementing Set Using Hashing 1009

223 public String toString() {
224 java.util.ArrayList<E> list = setToList();
225 StringBuilder builder = new StringBuilder("[");
226
227 // Add the elements except the last one to the string builder
228 for (int i = 0; i < list.size() - 1; i++) {
229 builder.append(list.get(i) + ", ");
230 }
231
232 // Add the last element in the list to the string builder
233 if (list.size() == 0)
234 builder.append("]");
235 else

236 builder.append(list.get(list.size() - 1) + "]");
237
238 return builder.toString();
239 }
240 }

The MyHashSet class implements the MySet interface using separate chaining. Imple-
menting MyHashSet is very similar to implementing MyHashMap except for the following
differences:

1. The elements are stored in the hash table for MyHashSet, but the entries (key/value
pairs) are stored in the hash table for MyHashMap.

2. MySet extends java.lang.Iterable and MyHashSet implements MySet and over-
rides iterator(). So the elements in MyHashSet are iterable.

Three constructors are provided to construct a set. You can construct a default set with the
default capacity and load factor using the no-arg constructor (lines 26–28), a set with the
specified capacity and a default load factor (lines 32–34), and a set with the specified capacity
and load factor (lines 38–46).

The clear method removes all elements from the set (lines 49–52). It invokes
removeElements(), which clears all table cells (line 190). Each table cell is a linked list
that stores the elements with the same hash code. The removeElements() method takes
O(capacity) time.

The contains(element) method checks whether the specified element is in the set by
examining whether the designated bucket contains the element (lines 55–65). This method
takes O(1) time.

The add(element) method adds a new element into the set. The method first checks if
the element is already in the set (line 69). If so, the method returns false. The method then
checks whether the size exceeds the load-factor threshold (line 72). If so, the program invokes
rehash() (line 76) to increase the capacity and store elements into the new larger hash table.

The rehash() method first copies all elements in a list (line 197), doubles the capacity
(line 198), creates a new hash table (line 199), and resets the size to 0 (line 200). The method
then copies the elements into the new larger hash table (lines 202–204). The rehash method
takes O(capacity) time. If no rehash is performed, the add method takes O(1) time to add a
new element.

The remove(element) method removes the specified element in the set (lines 95–114).
This method takes O(1) time.

The size() method simply returns the number of elements in the set (lines 122–124). This
method takes O(1) time.

The iterator() method returns an instance of java.util.Iterator. The
MyHashSetIterator class implements java.util.Iterator to create a forward iterator.
When a MyHashSetIterator is constructed, it copies all the elements in the set to a list

toString

MyHashSet vs. MyHashMap

three constructors

clear

contains

add

rehash

remove

size

iterator

1010 Chapter 27 Hashing

(line 141). The variable current points to the element in the list. Initially, current is 0
(line 135), which points to the first element in the list. MyHashSetIterator implements
the methods hasNext(), next(), and remove() in java.util.Iterator. Invoking
hasNext() returns true if current < list.size(). Invoking next() returns the current
element and moves current to point to the next element (line 153). Invoking remove()
removes the current element in the iterator from the set.

The hash() method invokes the supplementalHash to ensure that the hashing is evenly
distributed to produce an index for the hash table (lines 166–174). This method takes O(1)
time.

Table 27.2 summarizes the time complexity of the methods in MyHashSet.

hash

Methods Time

clear() O(capacity)

contains(e: E) O(1)

add(e: E) O(1)

remove(e: E) O(1)

isEmpty() O(1)

size() O(1)

iterator() O(capacity)

rehash() O(capacity)

TABLE 27.2 Time Complexities for
Methods in MyHashSet

Listing 27.6 gives a test program that uses MyHashSet.

LISTING 27.6 TestMyHashSet.java
 1 public class TestMyHashSet {
 2 public static void main(String[] args) {
 3 // Create a MyHashSet
 4 MySet<String> set = new MyHashSet<>();
 5 set.add("Smith");
 6 set.add("Anderson");
 7 set.add("Lewis");
 8 set.add("Cook");
 9 set.add("Smith");
10
11 System.out.println("Elements in set: " + set);
12 System.out.println("Number of elements in set: " + set.size());
13 System.out.println("Is Smith in set? " + set.contains("Smith"));
14
15 set.remove("Smith");
16 System.out.print("Names in set in uppercase are ");
17 for (String s: set)
18 System.out.print(s.toUpperCase() + " ");
19
20 set.clear();
21 System.out.println("\nElements in set: " + set);
22 }
23 }

create a set
add elements

display elements
set size

remove element

foreach loop

clear set

Chapter Summary 1011

The program creates a set using MyHashSet (line 4) and adds five elements to the set (lines
5–9). Line 5 adds Smith and line 9 adds Smith again. Since only nonduplicate elements are
stored in the set, Smith appears in the set only once. The set actually has four elements. The
program displays the elements (line 11), gets its size (line 12), checks whether the set contains
a specified element (line 13), and removes an element (line 15). Since the elements in a set
are iterable, a foreach loop is used to traverse all elements in the set (lines 17–18). Finally, the
program clears the set (line 20) and displays an empty set (line 21).

27.26 Why can you use a foreach loop to traverse the elements in a set?

27.27 Describe how the add(e) method is implemented in the MyHashSet class.

27.28 In Listing 27.5, the remove method in the iterator removes the current element from
the set. It also removes the current element from the internal list (line 161):

list.remove(current); // Remove current element from the list

Is this necessary?

27.29 Replace the code in lines 146-149 In Listing 27.5 using one statement.

✓Point✓Check

Elements in set: [Cook, Anderson, Smith, Lewis]
Number of elements in set: 4
Is Smith in set? true
Names in set in uppercase are COOK ANDERSON LEWIS
Elements in set: []

KEY TERMS

associative array 986
cluster 990
dictionary 986
double hashing 991
hash code 987
hash function 986
hash map 1004
hash set 1004
hash table 986

linear probing 989
load factor 993
open addressing 989
perfect hash function 986
polynomial hash code 988
quadratic probing 990
rehashing 993
secondary clustering 991
separate chaining 993

CHAPTER SUMMARY

1. A map is a data structure that stores entries. Each entry contains two parts: a key and a
value. The key is also called a search key, which is used to search for the corresponding
value. You can implement a map to obtain O(1) time complexity on searching, retrieval,
insertion, and deletion using the hashing technique.

2. A set is a data structure that stores elements. You can use the hashing technique to imple-
ment a set to achieve O(1) time complexity on searching, insertion, and deletion for a set.

3. Hashing is a technique that retrieves the value using the index obtained from a key
without performing a search. A typical hash function first converts a search key to

1012 Chapter 27 Hashing

an integer value called a hash code, then compresses the hash code into an index to the
hash table.

4. A collision occurs when two keys are mapped to the same index in a hash table. Gener-
ally, there are two ways for handling collisions: open addressing and separate chaining.

5. Open addressing is the process of finding an open location in the hash table in the event
of collision. Open addressing has several variations: linear probing, quadratic probing,
and double hashing.

6. The separate chaining scheme places all entries with the same hash index into the
same location, rather than finding new locations. Each location in the separate chaining
scheme is called a bucket. A bucket is a container that holds multiple entries.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

**27.1 (Implement MyMap using open addressing with linear probing) Create a new con-
crete class that implements MyMap using open addressing with linear probing.
For simplicity, use f(key) = key % size as the hash function, where size is
the hash-table size. Initially, the hash-table size is 4. The table size is doubled
whenever the load factor exceeds the threshold (0.5).

**27.2 (Implement MyMap using open addressing with quadratic probing) Create a new
concrete class that implements MyMap using open addressing with quadratic
probing. For simplicity, use f(key) = key % size as the hash function, where
size is the hash-table size. Initially, the hash-table size is 4. The table size is
doubled whenever the load factor exceeds the threshold (0.5).

**27.3 (Implement MyMap using open addressing with double hashing) Create a new
concrete class that implements MyMap using open addressing with double hash-
ing. For simplicity, use f(key) = key % size as the hash function, where
size is the hash-table size. Initially, the hash-table size is 4. The table size is
doubled whenever the load factor exceeds the threshold (0.5).

**27.4 (Modify MyHashMap with duplicate keys) Modify MyHashMap to allow dupli-
cate keys for entries. You need to modify the implementation for the put(key,
value) method. Also add a new method named getAll(key) that returns a set
of values that match the key in the map.

**27.5 (Implement MyHashSet using MyHashMap) Implement MyHashSet using
MyHashMap. Note that you can create entries with (key, key), rather than (key,
value).

**27.6 (Animate linear probing) Write a program that animates linear probing, as shown
in Figure 27.3. You can change the initial size of the hash-table in the program.
Assume the load-factor threshold is 0.75.

**27.7 (Animate separate chaining) Write a program that animates MyHashMap, as
shown in Figure 27.8. You can change the initial size of the table. Assume the
load-factor threshold is 0.75.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 1013

**27.8 (Animate quadratic probing) Write a program that animates quadratic probing,
as shown in Figure 27.5. You can change the initial size of the hash-table in pro-
gram. Assume the load-factor threshold is 0.75.

**27.9 (Implement hashCode for string) Write a method that returns a hash code for
string using the approach described in Section 27.3.2 with b value 31. The func-
tion header is as follows:

public static int hashCodeForString(String s)

**27.10 (Compare MyHashSet and MyArrayList) MyArrayList is defined in Listing
24.3. Write a program that generates 1000000 random double values between 0
and 999999 and stores them in a MyArrayList and in a MyHashSet. Generate
a list of 1000000 random double values between 0 and 1999999. For each num-
ber in the list, test if it is in the array list and in the hash set. Run your program to
display the total test time for the array list and for the hash set.

**27.11 (setToList) Write the following method that returns an ArrayList from a set.

public static <E> ArrayList<E> setToList(Set<E> s)

This page intentionally left blank

GRAPHS AND
APPLICATIONS

Objectives
■ To model real-world problems using graphs and explain the Seven

Bridges of Königsberg problem (§28.1).

■ To describe the graph terminologies: vertices, edges, simple graphs,
weighted/unweighted graphs, and directed/undirected graphs (§28.2).

■ To represent vertices and edges using lists, edge arrays, edge objects,
adjacency matrices, and adjacency lists (§28.3).

■ To model graphs using the Graph interface, the AbstractGraph
class, and the UnweightedGraph class (§28.4).

■ To display graphs visually (§28.5).

■ To represent the traversal of a graph using the AbstractGraph.Tree
class (§28.6).

■ To design and implement depth-first search (§28.7).

■ To solve the connected-circle problem using depth-first search (§28.8).

■ To design and implement breadth-first search (§28.9).

■ To solve the nine-tail problem using breadth-first search (§28.10).

CHAPTER

28

1016 Chapter 28 Graphs and Applications

28.1 Introduction
Many real-world problems can be solved using graph algorithms.

Graphs are useful in modeling and solving real-world problems. For example, the problem
to find the least number of flights between two cities can be modeled using a graph, where
the vertices represent cities and the edges represent the flights between two adjacent cities,
as shown in Figure 28.1. The problem of finding the minimal number of connecting flights
between two cities is reduced to finding a shortest path between two vertices in a graph.

Key
Pointproblem

FIGURE 28.1 A graph can be used to model the flights between the cities.

Seattle (0)

San Francisco (1)

Los Angeles (2)

Dallas (10)

Houston (11)

Atlanta (8)

New York (7)

Boston (6)

Chicago (5)

Denver (3)

Kansas City (4)

Miami (9)

FIGURE 28.2 Seven bridges connected islands and land.

A

C

B

D

(b) Graph model (a) Seven bridges sketch

D

A

B

Island 2
Island 1
C

The study of graph problems is known as graph theory. Graph theory was founded by
Leonhard Euler in 1736, when he introduced graph terminology to solve the famous Seven
Bridges of Königsberg problem. The city of Königsberg, Prussia (now Kaliningrad, Russia),
was divided by the Pregel River. There were two islands on the river. The city and islands
were connected by seven bridges, as shown in Figure 28.2a. The question is, can one take a
walk, cross each bridge exactly once, and return to the starting point? Euler proved that it is
not possible.

graph theory

Seven Bridges of Königsberg

To establish a proof, Euler first abstracted the Königsberg city map by eliminating all
streets, producing the sketch shown in Figure 28.2a. Next, he replaced each land mass with

28.2 Basic Graph Terminologies 1017

a dot, called a vertex or a node, and each bridge with a line, called an edge, as shown in
Figure 28.2b. This structure with vertices and edges is called a graph.

Looking at the graph, we ask whether there is a path starting from any vertex, traversing
all edges exactly once, and returning to the starting vertex. Euler proved that for such a path
to exist, each vertex must have an even number of edges. Therefore, the Seven Bridges of
Königsberg problem has no solution.

Graph problems are often solved using algorithms. Graph algorithms have many appli-
cations in various areas, such as in computer science, mathematics, biology, engineering,
economics, genetics, and social sciences. This chapter presents the algorithms for depth-first
search and breadth-first search, and their applications. The next chapter presents the algo-
rithms for finding a minimum spanning tree and shortest paths in weighted graphs, and their
applications.

28.2 Basic Graph Terminologies
A graph consists of vertices, and edges that connect the vertices.

This chapter does not assume that you have any prior knowledge of graph theory or discrete
mathematics. We use plain and simple terms to define graphs.

What is a graph? A graph is a mathematical structure that represents relationships among
entities in the real world. For example, the graph in Figure 28.1 represents the flights among
cities, and the graph in Figure 28.2b represents the bridges among land masses.

A graph consists of a nonempty set of vertices (also known as nodes or points), and a set of
edges that connect the vertices. For convenience, we define a graph as G = (V, E), where V
represents a set of vertices and E represents a set of edges. For example, V and E for the graph
in Figure 28.1 are as follows:

V = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};

E = {{"Seattle", "San Francisco"},{"Seattle", "Chicago"},
 {"Seattle", "Denver"}, {"San Francisco", "Denver"},
 ...
 };

A graph may be directed or undirected. In a directed graph, each edge has a direction, which
indicates that you can move from one vertex to the other through the edge. You can model
parent/child relationships using a directed graph, where an edge from vertex A to B indicates
that A is a parent of B. Figure 28.3a shows a directed graph.

Key
Point

what is a graph?

define a graph

directed vs. undirected graphs

FIGURE 28.3 Graphs may appear in many forms.

(a) A directed graph

Peter (0)

Cindy (3)

Wendy (4)

Jane (1)

Mark (2)

(b) A complete graph

A

B

C

E

D

(c) A subgraph of the graph in (b)

A

B

C

E

D

In an undirected graph, you can move in both directions between vertices. The graph in
Figure 28.1 is undirected.

1018 Chapter 28 Graphs and Applications

Edges may be weighted or unweighted. For example, you can assign a weight for each edge
in the graph in Figure 28.1 to indicate the flight time between the two cities.

Two vertices in a graph are said to be adjacent if they are connected by the same edge.
Similarly, two edges are said to be adjacent if they are connected to the same vertex. An edge
in a graph that joins two vertices is said to be incident to both vertices. The degree of a vertex
is the number of edges incident to it.

Two vertices are called neighbors if they are adjacent. Similarly, two edges are called
neighbors if they are adjacent.

A loop is an edge that links a vertex to itself. If two vertices are connected by two or more
edges, these edges are called parallel edges. A simple graph is one that has doesn’t have any
loops or parallel edges. In a complete graph, every two pairs of vertices are connected, as
shown in Figure 28.3b.

A graph is connected if there exists a path between any two vertices in the graph. A
subgraph of a graph G is a graph whose vertex set is a subset of that of G and whose edge set
is a subset of that of G. For example, the graph in Figure 28.3c is a subgraph of the graph in
Figure 28.3b.

Assume that the graph is connected and undirected. A cycle is a closed path that starts from
a vertex and ends at the same vertex. A connected graph is a tree if it does not have cycles.
A spanning tree of a graph G is a connected subgraph of G and the subgraph is a tree that
contains all vertices in G.

Pedagogical Note
Before we introduce graph algorithms and applications, it is helpful to get acquainted with

graphs using the interactive tool at www.cs.armstrong.edu/liang/animation/GraphLearningTool

.html, as shown in Figure 28.4. The tool allows you to add/remove/move vertices and

draw edges using mouse gestures. You can also find depth-first search (DFS) trees and

breadth-first search (BFS) trees, and a shortest path between two vertices.

weighted vs. unweighted
graphs

adjacent vertices

incident edges

degree

neighbor

loop

parallel edge

simple graph

complete graph

connected graph

subgraph

cycle

tree

spanning tree

graph learning tool on

Companion Website

FIGURE 28.4 You can use the tool to create a graph with mouse gestures and show DFS/BFS trees and shortest paths.

www.cs.armstrong.edu/liang/animation/GraphLearningTool.html
www.cs.armstrong.edu/liang/animation/GraphLearningTool.html

28.3 Representing Graphs 1019

28.1 What is the famous Seven Bridges of Königsberg problem?

28.2 What is a graph? Explain the following terms: undirected graph, directed graph,
weighted graph, degree of a vertex, parallel edge, simple graph, complete graph,
connected graph, cycle, subgraph, tree, and spanning tree.

28.3 How many edges are in a complete graph with 5 vertices? How many edges are in a
tree of 5 vertices?

28.4 How many edges are in a complete graph with n vertices? How many edges are in a
tree of n vertices?

28.3 Representing Graphs
Representing a graph is to store its vertices and edges in a program. The data
structure for storing a graph is arrays or lists.

To write a program that processes and manipulates graphs, you have to store or represent data
for the graphs in the computer.

28.3.1 Representing Vertices
The vertices can be stored in an array or a list. For example, you can store all the city names
in the graph in Figure 28.1 using the following array:

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};

Note
The vertices can be objects of any type. For example, you can consider cities as objects

that contain the information such as its name, population, and mayor. Thus, you may

define vertices as follows:

City city0 = new City("Seattle", 608660, "Mike McGinn");
...
City city11 = new City("Houston", 2099451, "Annise Parker");
City[] vertices = {city0, city1, ... , city11};

public class City {
private String cityName;
private int population;
private String mayor;

public City(String cityName, int population, String mayor) {
this.cityName = cityName;
this.population = population;
this.mayor = mayor;

 }

public String getCityName() {
return cityName;

 }

public int getPopulation() {
return population;

 }

✓Point✓Check

Key
Point

vertex type

1020 Chapter 28 Graphs and Applications

public String getMayor() {
return mayor;

 }

public void setMayor(String mayor) {
this.mayor = mayor;

 }

public void setPopulation(int population) {
this.population = population;

 }
}

The vertices can be conveniently labeled using natural numbers 0, 1, 2, c, n - 1, for a
graph for n vertices. Thus, vertices[0] represents "Seattle", vertices[1] represents
"San Francisco", and so on, as shown in Figure 28.5.

FIGURE 28.5 An array stores the vertex names.

Seattle

San Francisco

Los Angeles

Dallas

Houston

Atlanta

New York

Boston

Chicago

Denver

Kansas City

Miami

vertices[0]

vertices[1]

vertices[2]

vertices[3]

vertices[4]

vertices[5]

vertices[6]

vertices[7]

vertices[8]

vertices[9]

vertices[10]

vertices[11]

Note
You can reference a vertex by its name or its index, whichever is more convenient. Obvi-

ously, it is easy to access a vertex via its index in a program.

28.3.2 Representing Edges: Edge Array
The edges can be represented using a two-dimensional array. For example, you can store all
the edges in the graph in Figure 28.1 using the following array:

int[][] edges = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},

reference vertex

28.3 Representing Graphs 1021

 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
 };

This representation is known as the edge array. The vertices and edges in Figure 28.3a can be
represented as follows:

 String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};

 int[][] edges = {{0, 2}, {1, 2}, {2, 4}, {3, 4}};

28.3.3 Representing Edges: Edge Objects
Another way to represent the edges is to define edges as objects and store the edges in a
java.util.ArrayList. The Edge class can be defined as follows:

public class Edge {
int u;
int v;

public Edge(int u, int v) {
this.u = u;
this.v = v;

 }

public boolean equals(Object o) {
return u == ((Edge)o).u && v == ((Edge)o).v;

 }
 }

For example, you can store all the edges in the graph in Figure 28.1 using the following list:

java.util.ArrayList<Edge> list = new java.util.ArrayList<>();
list.add(new Edge(0, 1));
list.add(new Edge(0, 3));
list.add(new Edge(0, 5));
...

Storing Edge objects in an ArrayList is useful if you don’t know the edges in advance.
While representing edges using an edge array or Edge objects in Section 28.3.2 and earlier

in this section may be intuitive for input, it’s not efficient for internal processing. The next two
sections introduce the representation of graphs using adjacency matrices and adjacency lists.
These two data structures are efficient for processing graphs.

28.3.4 Representing Edges: Adjacency Matrices
Assume that the graph has n vertices. You can use a two-dimensional n * n matrix,
say adjacencyMatrix, to represent the edges. Each element in the array is 0 or 1.
adjacencyMatrix[i][j] is 1 if there is an edge from vertex i to vertex j; otherwise,
adjacencyMatrix[i][j] is 0. If the graph is undirected, the matrix is symmetric, because
adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For example, the
edges in the graph in Figure 28.1 can be represented using an adjacency matrix as follows:

int[][] adjacencyMatrix = {
 {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
 {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco

edge array

adjacency matrix

1022 Chapter 28 Graphs and Applications

 {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
 {1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
 {0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City
 {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago
 {0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston
 {0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York
 {0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami
 {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} // Houston
};

Note
Since the matrix is symmetric for an undirected graph, to save storage you can use a

ragged array.

The adjacency matrix for the directed graph in Figure 28.3a can be represented as follows:

int[][] a = {{0, 0, 1, 0, 0}, // Peter
 {0, 0, 1, 0, 0}, // Jane
 {0, 0, 0, 0, 1}, // Mark
 {0, 0, 0, 0, 1}, // Cindy
 {0, 0, 0, 0, 0} // Wendy
 };

28.3.5 Representing Edges: Adjacency Lists
You can represent edges using adjacency vertex lists or adjacency edge lists. An adjacency
vertex list for a vertex i contains the vertices that are adjacent to i and an adjacency edge list
for a vertex i contains the edges that are adjacent to i. You may define an array of lists. The
array has n entries, and each entry is a list. The adjacency vertex list for vertex i contains all
the vertices j such that there is an edge from vertex i to vertex j. For example, to represent the
edges in the graph in Figure 28.1, you can create an array of lists as follows:

java.util.List<Integer>[] neighbors = new java.util.List[12];

neighbors[0] contains all vertices adjacent to vertex 0 (i.e., Seattle), neighbors[1] con-
tains all vertices adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 28.6.

To represent the adjacency edge lists for the graph in Figure 28.1, you can create an array
of lists as follows:

java.util.List<Edge>[] neighbors = new java.util.List[12];

neighbors[0] contains all edges adjacent to vertex 0 (i.e., Seattle), neighbors[1] con-
tains all edges adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 28.7.

Note
You can represent a graph using an adjacency matrix or adjacency lists. Which one is

better? If the graph is dense (i.e., there are a lot of edges), using an adjacency matrix is

preferred. If the graph is very sparse (i.e., very few edges), using adjacency lists is better,

because using an adjacency matrix would waste a lot of space.

Both adjacency matrices and adjacency lists can be used in a program to make algo-

rithms more efficient. For example, it takes O(1) constant time to check whether two

vertices are connected using an adjacency matrix, and it takes linear time O(m) to print

all edges in a graph using adjacency lists, where m is the number of edges.

ragged array

adjacency vertex lists

adjacency edge lists

adjacency matrices vs.
adjacency lists

28.3 Representing Graphs 1023

Note
Adjacency vertex list is simpler for representing unweighted graphs. However, adjacency

edge lists are more flexible for a wide range of graph applications. It is easy to add addi-

tional constraints on edges using adjacency edge lists. For this reason, this book will use

adjacency edge lists to represent graphs.

You can use arrays, array lists, or linked lists to store adjacency lists. We will use lists
instead of arrays, because the lists are easily expandable to enable you to add new vertices.
Further we will use array lists instead of linked lists, because our algorithms only require
searching for adjacent vertices in the list. Using array lists is more efficient for our algorithms.
Using array lists, the adjacency edge list in Figure 28.6 can be built as follows:

List<ArrayList<Edge>> neighbors = new ArrayList<>();
neighbors.add(new ArrayList<Edge>());
neighbors.get(0).add(new Edge(0, 1));

adjacency vertex list vs.
adjacency edge lists

using ArrayList

FIGURE 28.6 Edges in the graph in Figure 28.1 are represented using adjacency vertex lists.

1

0

0

1

2

0

5

4

4

8

2

8

Seattle

San Francisco

Los Angeles

Dallas

Houston

Atlanta

New York

Boston

Chicago

Denver

Kansas City

Miami

neighbors[0]

neighbors[1]

neighbors[2]

neighbors[3]

neighbors[4]

neighbors[5]

neighbors[6]

neighbors[7]

neighbors[8]

neighbors[9]

neighbors[10]

neighbors[11]

5

3

2

4

5

4

6

9

8

10

3

2

1

3

3

3

7

5

7

11

4

9

4

10

7

6

8

10

11

5

8

7

11

10

FIGURE 28.7 Edges in the graph in Figure 28.1 are represented using adjacency edge lists.

Edge(0, 1) Edge(0, 3) Edge(0, 5)

Edge(1, 0) Edge(1, 2) Edge(1, 3)

Edge(2, 1) Edge(2, 3) Edge(2, 4) Edge(2, 10)

Edge(3, 0) Edge(3, 1) Edge(3, 2) Edge(3, 4) Edge(3, 5)

Edge(4, 2) Edge(4, 3) Edge(4, 5) Edge(4, 7) Edge(4, 8) Edge(4, 10)

Edge(5, 0) Edge(5, 3) Edge(5, 4) Edge(5, 6) Edge(5, 7)

Edge(6, 5) Edge(6, 7)

Edge(7, 4) Edge(7, 5) Edge(7, 6) Edge(7, 8)

Edge(8, 4) Edge(8, 7) Edge(8, 9) Edge(8, 10) Edge(8, 11)

Edge(9, 8) Edge(9, 11)

Edge(10, 2) Edge(10, 4) Edge(10, 8) Edge(10, 11)

Edge(11, 8) Edge(11, 9) Edge(11, 10)

neighbors[0]

neighbors[1]

neighbors[2]

neighbors[3]

neighbors[4]

neighbors[5]

neighbors[6]

neighbors[7]

neighbors[8]

neighbors[9]

neighbors[10]

neighbors[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

1024 Chapter 28 Graphs and Applications

neighbors.get(0).add(new Edge(0, 3));
neighbors.get(0).add(new Edge(0, 5));
neighbors.add(new ArrayList<Edge>());
neighbors.get(1).add(new Edge(1, 0));
neighbors.get(1).add(new Edge(1, 2));
neighbors.get(1).add(new Edge(1, 3));
...
...
neighbors.get(11).add(new Edge(11, 8));
neighbors.get(11).add(new Edge(11, 9));
neighbors.get(11).add(new Edge(11, 10));

28.5 How do you represent vertices in a graph? How do you represent edges using an edge
array? How do you represent an edge using an edge object? How do you represent
edges using an adjacency matrix? How do you represent edges using adjacency lists?

28.6 Represent the following graph using an edge array, a list of edge objects, an adja-
cency matrix, an adjacency vertex list, and an adjacency edge list, respectively.

✓Point✓Check

1

0

2

3

4

5

FIGURE 28.8 Graphs can be modeled using interfaces, abstract classes, and concrete classes.

Graph AbstractGraph
WeightedGraph

Concrete ClassesAbstract ClassInterface

UnweightedGraph

28.4 Modeling Graphs
The Graph interface defines the common operations for a graph.

The Java Collections Framework serves as a good example for designing complex data struc-
tures. The common features of data structures are defined in the interfaces (e.g., Collection,
Set, List, Queue), as shown in Figure 20.1. Abstract classes (e.g., AbstractCollection,
AbstractSet, AbstractList) partially implement the interfaces. Concrete classes (e.g.,
HashSet, LinkedHashSet, TreeSet, ArrayList, LinkedList, PriorityQueue) provide
concrete implementations. This design pattern is useful for modeling graphs. We will define an
interface named Graph that contains all the common operations of graphs and an abstract class
namedAbstractGraph that partially implements the Graph interface. Many concrete graphs can
be added to the design. For example, we will define such graphs named UnweightedGraph and
WeightedGraph. The relationships of these interfaces and classes are illustrated in Figure 28.8.

Key
Point

What are the common operations for a graph? In general, you need to get the number of
vertices in a graph, get all vertices in a graph, get the vertex object with a specified index, get
the index of the vertex with a specified name, get the neighbors for a vertex, get the degree for
a vertex, clear the graph, add a new vertex, add a new edge, perform a depth-first search, and

28.4 Modeling Graphs 1025

perform a breadth-first search. Depth-first search and breadth-first search will be introduced
in the next section. Figure 28.9 illustrates these methods in the UML diagram.

AbstractGraph does not introduce any new methods. A list of vertices and an edge adja-
cency list are defined in the AbstractGraph class. With these data fields, it is sufficient to

FIGURE 28.9 The Graph interface defines the common operations for all types of graphs.

UnweightedGraph<V>

+getSize(): int

+getVertices(): List<V>

+getVertex(index: int): V

+getIndex(v: V): int

+getNeighbors(index: int): List<Integer>

+getDegree(index: int): int

+printEdges(): void

+clear(): void

+addVertex(v, V): boolean

+addEdge(u: int, v: int): boolean

+dfs(v: int): AbstractGraph<V>.Tree

+bfs(v: int): AbstractGraph<V>.Tree

Returns the number of vertices in the graph.

Returns the vertices in the graph.

Returns the vertex object for the specified vertex index.

Returns the index for the specified vertex.

Returns the neighbors of vertex with the specified index.

Returns the degree for a specified vertex index.

Prints the edges.

Clears the graph.

Returns true if v is added to the graph. Returns false if v
 is already in the graph.

Adds an edge from u to v to the graph throws
IllegalArgumentException if u or v is invalid. Returns true

 if the edge is added and false if (u, v) is already in the graph.

Obtains a depth-first search tree starting from v.

Obtains a breadth-first search tree starting from v.

«interface»
Graph<V>

#vertices: List<V>
#neighbors: List<List<Edge>>

+UnweightedGraph()
+UnweightedGraph(vertices: V[], edges:
 int[][])
+UnweightedGraph(vertices: List<V>,
 edges: List<Edge>)
+UnweightedGraph(edges: List<Edge>,
 numberOfVertices: int)
+UnweightedGraph(edges: int[][],
 numberOfVertices: int)

AbstractGraph<V>

Vertices in the graph.
Neighbors for each vertex in the graph.

Constructs an empty graph.
Constructs a graph with the specified edges and vertices
 stored in arrays.
Constructs a graph with the specified edges and vertices
 stored in lists.
Constructs a graph with the specified edges in an array
 and the integer vertices 1, 2,
Constructs a graph with the specified edges in a list and
 the integer vertices 1, 2, ….

Adds an edge into the adjacency edge list.

Constructs an empty unweighted graph.
Constructs a graph with the specified edges and vertices
 in arrays.
Constructs a graph with the specified edges and vertices
 stored in lists.
Constructs a graph with the specified edges in an array
 and the integer vertices 1, 2,
Constructs a graph with the specified edges in a list and
 the integer vertices 1, 2, ….

The generic type V is the type for vertices.

#AbstractGraph()
#AbstractGraph(vertices: V[], edges:
 int[][])
#AbstractGraph(vertices: List<V>, edges:
 List<Edge>)
#AbstractGraph(edges: int[][],
 numberOfVertices: int)
#AbstractGraph(edges: List<Edge>,
 numberOfVertices: int)
+addEdge(e: Edge): boolean
Inner classes Tree is defined here

1026 Chapter 28 Graphs and Applications

implement all the methods defined in the Graph interface. For convenience, we assume the
graph is a simple graph, i.e., a vertex has no edge to itself and there are no parallel edges from
vertex u to v.

AbstractGraph implements all the methods from Graph, and it does not introduce any
new methods except a convenient addEdge(edge) method that adds an Edge object to the
adjacency edge list. UnweightedGraph simply extends AbstractGraph with five construc-
tors for creating the concrete Graph instances.

Note
You can create a graph with any type of vertices. Each vertex is associated with an index,

which is the same as the index of the vertex in the vertices list. If you create a graph

without specifying the vertices, the vertices are the same as their indices.

Note
The AbstractGraph class implements all the methods in the Graph interface. So

why is it defined as abstract? In the future, you may need to add new methods to

the Graph interface that cannot be implemented in AbstractGraph. To make the

classes easy to maintain, it is desirable to define the AbstractGraph class as abstract.

Assume all these interfaces and classes are available. Listing 28.1 gives a test program that
creates the graph in Figure 28.1 and another graph for the one in Figure 28.3a.

LISTING 28.1 TestGraph.java
 1 public class TestGraph {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 // Edge array for graph in Figure 28.1
 8 int[][] edges = {
 9 {0, 1}, {0, 3}, {0, 5},
10 {1, 0}, {1, 2}, {1, 3},
11 {2, 1}, {2, 3}, {2, 4}, {2, 10},
12 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
13 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
14 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
15 {6, 5}, {6, 7},
16 {7, 4}, {7, 5}, {7, 6}, {7, 8},
17 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
18 {9, 8}, {9, 11},
19 {10, 2}, {10, 4}, {10, 8}, {10, 11},
20 {11, 8}, {11, 9}, {11, 10}
21 };
22
23 Graph<String> graph1 = new UnweightedGraph<>(vertices, edges);
24 System.out.println("The number of vertices in graph1: "
25 + graph1.getSize());
26 System.out.println("The vertex with index 1 is "
27 + graph1.getVertex(1));
28 System.out.println("The index for Miami is " +
29 graph1.getIndex("Miami"));
30 System.out.println("The edges for graph1:");
31 graph1.printEdges();
32
33 // List of Edge objects for graph in Figure 28.3a
34 String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};

vertices and their indices

why AbstractGraph?

vertices

edges

create a graph

number of vertices

get vertex

get index

print edges

28.4 Modeling Graphs 1027

35 java.util.ArrayList<AbstractGraph.Edge> edgeList
36 = new java.util.ArrayList<>();
37 edgeList.add(new AbstractGraph.Edge(0, 2));
38 edgeList.add(new AbstractGraph.Edge(1, 2));
39 edgeList.add(new AbstractGraph.Edge(2, 4));
40 edgeList.add(new AbstractGraph.Edge(3, 4));
41 // Create a graph with 5 vertices
42 Graph<String> graph2 = new UnweightedGraph<>
43 (java.util.Arrays.asList(names), edgeList);
44 System.out.println("\nThe number of vertices in graph2: "
45 + graph2.getSize());
46 System.out.println("The edges for graph2:");
47 graph2.printEdges();
48 }
49 }

list of Edge objects

create a graph

print edges

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Seattle (0): (0, 1) (0, 3) (0, 5)
San Francisco (1): (1, 0) (1, 2) (1, 3)
Los Angeles (2): (2, 1) (2, 3) (2, 4) (2, 10)
Denver (3): (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)
Kansas City (4): (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)
Chicago (5): (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)
Boston (6): (6, 5) (6, 7)
New York (7): (7, 4) (7, 5) (7, 6) (7, 8)
Atlanta (8): (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)
Miami (9): (9, 8) (9, 11)
Dallas (10): (10, 2) (10, 4) (10, 8) (10, 11)
Houston (11): (11, 8) (11, 9) (11, 10)

The number of vertices in graph2: 5
The edges for graph2:
Peter (0): (0, 2)
Jane (1): (1, 2)
Mark (2): (2, 4)
Cindy (3): (3, 4)
Wendy (4):

The program creates graph1 for the graph in Figure 28.1 in lines 3–23. The vertices for graph1
are defined in lines 3–5. The edges for graph1 are defined in 8–21. The edges are represented
using a two-dimensional array. For each row i in the array, edges[i][0] and edges[i][1]
indicate that there is an edge from vertex edges[i][0] to vertex edges[i][1]. For exam-
ple, the first row, {0, 1}, represents the edge from vertex 0 (edges[0][0]) to vertex 1
(edges[0][1]). The row {0, 5} represents the edge from vertex 0 (edges[2][0]) to ver-
tex 5 (edges[2][1]). The graph is created in line 23. Line 31 invokes the printEdges()
method on graph1 to display all edges in graph1.

The program creates graph2 for the graph in Figure 28.3a in lines 34–43. The edges
for graph2 are defined in lines 37–40. graph2 is created using a list of Edge objects in
line 43. Line 47 invokes the printEdges() method on graph2 to display all edges in
graph2.

Note that both graph1 and graph2 contain the vertices of strings. The vertices are asso-
ciated with indices 0, 1, . . . , n-1. The index is the location of the vertex in vertices. For
example, the index of vertex Miami is 9.

1028 Chapter 28 Graphs and Applications

Now we turn our attention to implementing the interface and classes. Listings 28.2, 28.3,
and 28.4 give the Graph interface, the AbstractGraph class, and the UnweightedGraph
class, respectively.

LISTING 28.2 Graph.java
 1 public interface Graph<V> {
 2 /** Return the number of vertices in the graph */
 3 public int getSize();
 4
 5 /** Return the vertices in the graph */
 6 public java.util.List<V> getVertices();
 7
 8 /** Return the object for the specified vertex index */
 9 public V getVertex(int index);
10
11 /** Return the index for the specified vertex object */
12 public int getIndex(V v);
13
14 /** Return the neighbors of vertex with the specified index */
15 public java.util.List<Integer> getNeighbors(int index);
16
17 /** Return the degree for a specified vertex */
18 public int getDegree(int v);
19
20 /** Print the edges */
21 public void printEdges();
22
23 /** Clear the graph */
24 public void clear();
25
26 /** Add a vertex to the graph */
27 public void addVertex(V vertex);
28
29 /** Add an edge to the graph */
30 public void addEdge(int u, int v);
31
32 /** Obtain a depth-first search tree starting from v */
33 public AbstractGraph<V>.Tree dfs(int v);
34
35 /** Obtain a breadth-first search tree starting from v */
36 public AbstractGraph<V>.Tree bfs(int v);
37 }

LISTING 28.3 AbstractGraph.java
 1 import java.util.*;
 2
 3 public abstract class AbstractGraph<V> implements Graph<V> {
 4 protected List<V> vertices = new ArrayList<>(); // Store vertices
 5 protected List<List<Edge>> neighbors
 6 = new ArrayList<>(); // Adjacency lists
 7
 8 /** Construct an empty graph */
 9 protected AbstractGraph() {
 10 }
 11
 12 /** Construct a graph from vertices and edges stored in arrays */
 13 protected AbstractGraph(V[] vertices, int[][] edges) {

getSize

getVertices

getVertex

getIndex

getNeighbors

getDegree

printEdges

clear

addVertex

addEdge

dfs

bfs

no-arg constructor

constructor

28.4 Modeling Graphs 1029

 14 for (int i = 0; i < vertices.length; i++)
 15 addVertex(vertices[i]);
 16
 17 createAdjacencyLists(edges, vertices.length);
 18 }
 19
 20 /** Construct a graph from vertices and edges stored in List */
 21 protected AbstractGraph(List<V> vertices, List<Edge> edges) {
 22 for (int i = 0; i < vertices.size(); i++)
 23 addVertex(vertices.get(i));
 24
 25 createAdjacencyLists(edges, vertices.size());
 26 }
 27
 28 /** Construct a graph for integer vertices 0, 1, 2 and edge list */
 29 protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
 30 for (int i = 0; i < numberOfVertices; i++)
 31 addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}
 32
 33 createAdjacencyLists(edges, numberOfVertices);
 34 }
 35
 36 /** Construct a graph from integer vertices 0, 1, and edge array */
 37 protected AbstractGraph(int[][] edges, int numberOfVertices) {
 38 for (int i = 0; i < numberOfVertices; i++)
 39 addVertex((V)(new Integer(i))); // vertices is {0, 1, ...}
 40
 41 createAdjacencyLists(edges, numberOfVertices);
 42 }
 43
 44 /** Create adjacency lists for each vertex */
 45 private void createAdjacencyLists(
 46 int[][] edges, int numberOfVertices) {
 47 for (int i = 0; i < edges.length; i++) {
 48 addEdge(edges[i][0], edges[i][1]);
 49 }
 50 }
 51
 52 /** Create adjacency lists for each vertex */
 53 private void createAdjacencyLists(
 54 List<Edge> edges, int numberOfVertices) {
 55 for (Edge edge: edges) {
 56 addEdge(edge.u, edge.v);
 57 }
 58 }
 59
 60 @Override /** Return the number of vertices in the graph */
61 public int getSize() {

 62 return vertices.size();
 63 }
 64
 65 @Override /** Return the vertices in the graph */
 66 public List<V> getVertices() {
 67 return vertices;
 68 }
 69
 70 @Override /** Return the object for the specified vertex */
 71 public V getVertex(int index) {
 72 return vertices.get(index);
 73 }

constructor

constructor

constructor

getSize

getVertices

getVertex

1030 Chapter 28 Graphs and Applications

 74
 75 @Override /** Return the index for the specified vertex object */
 76 public int getIndex(V v) {
 77 return vertices.indexOf(v);
 78 }
 79
 80 @Override /** Return the neighbors of the specified vertex */
 81 public List<Integer> getNeighbors(int index) {
 82 List<Integer> result = new ArrayList<>();
 83 for (Edge e: neighbors.get(index))
 84 result.add(e.v);
 85
 86 return result;
 87 }
 88
 89 @Override /** Return the degree for a specified vertex */
 90 public int getDegree(int v) {
 91 return neighbors.get(v).size();
 92 }
 93
 94 @Override /** Print the edges */
 95 public void printEdges() {
 96 for (int u = 0; u < neighbors.size(); u++) {
 97 System.out.print(getVertex(u) + " (" + u + "): ");
 98 for (Edge e: neighbors.get(u)) {
 99 System.out.print("(" + getVertex(e.u) + ", " +
100 getVertex(e.v) + ") ");
101 }
102 System.out.println();
103 }
104 }
105
106 @Override /** Clear the graph */
107 public void clear() {
108 vertices.clear();
109 neighbors.clear();
110 }
111
112 @Override /** Add a vertex to the graph */
113 public boolean addVertex(V vertex) {
114 if (!vertices.contains(vertex)) {
115 vertices.add(vertex);
116 neighbors.add(new ArrayList<Edge>());
117 return true;
118 }
119 else {
120 return false;
121 }
122 }
123
124 /** Add an edge to the graph */
125 protected boolean addEdge(Edge e) {
126 if (e.u < 0 || e.u > getSize() - 1)
127 throw new IllegalArgumentException("No such index: " + e.u);
128
129 if (e.v < 0 || e.v > getSize() - 1)
130 throw new IllegalArgumentException("No such index: " + e.v);
131
132 if (!neighbors.get(e.u).contains(e)) {
133 neighbors.get(e.u).add(e);

getIndex

getNeighbors

getDegree

printEdges

clear

addVertex

addEdge

28.4 Modeling Graphs 1031

134 return true;
135 }
136 else {
137 return false;
138 }
139 }
140
141 @Override /** Add an edge to the graph */
142 public boolean addEdge(int u, int v) {
143 return addEdge(new Edge(u, v));
144 }
145
146 /** Edge inner class inside the AbstractGraph class */
147 public static class Edge {
148 public int u; // Starting vertex of the edge
149 public int v; // Ending vertex of the edge
150
151 /** Construct an edge for (u, v) */
152 public Edge(int u, int v) {
153 this.u = u;
154 this.v = v;
155 }
156
157 public boolean equals(Object o) {
158 return u == ((Edge)o).u && v == ((Edge)o).v;
159 }
160 }
161
162 @Override /** Obtain a DFS tree starting from vertex v */
163 /** To be discussed in Section 28.7 */
164 public Tree dfs(int v) {
165 List<Integer> searchOrder = new ArrayList<>();
166 int[] parent = new int[vertices.size()];
167 for (int i = 0; i < parent.length; i++)
168 parent[i] = -1; // Initialize parent[i] to -1
169
170 // Mark visited vertices
171 boolean[] isVisited = new boolean[vertices.size()];
172
173 // Recursively search
174 dfs(v, parent, searchOrder, isVisited);
175
176 // Return a search tree
177 return new Tree(v, parent, searchOrder);
178 }
179
180 /** Recursive method for DFS search */
181 private void dfs(int u, int[] parent, List<Integer> searchOrder,
182 boolean[] isVisited) {
183 // Store the visited vertex
184 searchOrder.add(u);
185 isVisited[u] = true; // Vertex v visited
186
187 for (Edge e : neighbors.get(u)) {
188 if (!isVisited[e.v]) {
189 parent[e.v] = u; // The parent of vertex e.v is u
190 dfs(e.v, parent, searchOrder, isVisited); // Recursive search
191 }
192 }
193 }

addEdge overloaded

Edge inner class

dfs method

1032 Chapter 28 Graphs and Applications

194
195 @Override /** Starting bfs search from vertex v */
196 /** To be discussed in Section 28.9 */
197 public Tree bfs(int v) {
198 List<Integer> searchOrder = new ArrayList<>();
199 int[] parent = new int[vertices.size()];
200 for (int i = 0; i < parent.length; i++)
201 parent[i] = -1; // Initialize parent[i] to -1
202
203 java.util.LinkedList<Integer> queue =
204 new java.util.LinkedList<>(); // list used as a queue
205 boolean[] isVisited = new boolean[vertices.size()];
206 queue.offer(v); // Enqueue v
207 isVisited[v] = true; // Mark it visited
208
209 while (!queue.isEmpty()) {
210 int u = queue.poll(); // Dequeue to u
211 searchOrder.add(u); // u searched
212 for (Edge e: neighbors.get(u)) {
213 if (!isVisited[e.v]) {
214 queue.offer(e.v); // Enqueue w
215 parent[e.v] = u; // The parent of w is u
216 isVisited[e.v] = true; // Mark it visited
217 }
218 }
219 }
220
221 return new Tree(v, parent, searchOrder);
222 }
223
224 /** Tree inner class inside the AbstractGraph class */
225 /** To be discussed in Section 28.6 */
226 public class Tree {
227 private int root; // The root of the tree
228 private int[] parent; // Store the parent of each vertex
229 private List<Integer> searchOrder; // Store the search order
230
231 /** Construct a tree with root, parent, and searchOrder */
232 public Tree(int root, int[] parent, List<Integer> searchOrder) {
233 this.root = root;
234 this.parent = parent;
235 this.searchOrder = searchOrder;
236 }
237
238 /** Return the root of the tree */
239 public int getRoot() {
240 return root;
241 }
242
243 /** Return the parent of vertex v */
244 public int getParent(int v) {
245 return parent[v];
246 }
247
248 /** Return an array representing search order */
249 public List<Integer> getSearchOrder() {
250 return searchOrder;
251 }
252
253 /** Return number of vertices found */
254 public int getNumberOfVerticesFound() {

bfs method

Tree inner class

28.4 Modeling Graphs 1033

255 return searchOrder.size();
256 }
257
258 /** Return the path of vertices from a vertex to the root */
259 public List<V> getPath(int index) {
260 ArrayList<V> path = new ArrayList<>();
261
262 do {
263 path.add(vertices.get(index));
264 index = parent[index];
265 }
266 while (index != -1);
267
268 return path;
269 }
270
271 /** Print a path from the root to vertex v */
272 public void printPath(int index) {
273 List<V> path = getPath(index);
274 System.out.print("A path from " + vertices.get(root) + " to " +
275 vertices.get(index) + ": ");
276 for (int i = path.size() - 1; i >= 0; i--)
277 System.out.print(path.get(i) + " ");
278 }
279
280 /** Print the whole tree */
281 public void printTree() {
282 System.out.println("Root is: " + vertices.get(root));
283 System.out.print("Edges: ");
284 for (int i = 0; i < parent.length; i++) {
285 if (parent[i] != -1) {
286 // Display an edge
287 System.out.print("(" + vertices.get(parent[i]) + ", " +
288 vertices.get(i) + ") ");
289 }
290 }
291 System.out.println();
292 }
293 }
294 }

LISTING 28.4 UnweightedGraph.java
 1 import java.util.*;
 2
 3 public class UnweightedGraph<V> extends AbstractGraph<V> {
 4 /** Construct an empty graph */
 5 public UnweightedGraph() {
 6 }
 7
 8 /** Construct a graph from vertices and edges stored in arrays */
 9 public UnweightedGraph(V[] vertices, int[][] edges) {
10 super(vertices, edges);
11 }
12
13 /** Construct a graph from vertices and edges stored in List */
14 public UnweightedGraph(List<V> vertices, List<Edge> edges) {
15 super(vertices, edges);
16 }
17
18 /** Construct a graph for integer vertices 0, 1, 2 and edge list */

no-arg constructor

constructor

constructor

1034 Chapter 28 Graphs and Applications

19 public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
20 super(edges, numberOfVertices);
21 }
22
23 /** Construct a graph from integer vertices 0, 1, and edge array */
24 public UnweightedGraph(int[][] edges, int numberOfVertices) {
25 super(edges, numberOfVertices);
26 }
27 }

The code in the Graph interface in Listing 28.2 and the UnweightedGraph class in
Listing 28.4 are straightforward. Let us digest the code in the AbstractGraph class in
Listing 28.3.

The AbstractGraph class defines the data field vertices (line 4) to store vertices and
neighbors (line 5) to store edges in adjacency lists. neighbors.get(i) stores all edges adja-
cent to vertex i. Four overloaded constructors are defined in lines 9–42 to create a default graph,
or a graph from arrays or lists of edges and vertices. The createAdjacencyLists(int[][]
edges, int numberOfVertices) method creates adjacency lists from edges in an array (lines
45–50). The createAdjacencyLists(List<Edge> edges, int numberOfVertices)
method creates adjacency lists from edges in a list (lines 53–58).

The getNeighbors(u) method (lines 81–87) returns a list of vertices adjacent to vertex
u. The clear() method (lines 106–110) removes all vertices and edges from the graph. The
addVertex(u) method (lines 112–122) adds a new vertex to vertices and returns true. It
returns false if the vertex is already in the graph (line 120).

The addEdge(e) method (lines 124–139) adds a new edge the adjacency edge list and
returns true. It returns false if the edge is already in the graph. This method may throw
IllegalArgumentExcepiton if the edge is invalid (lines 126–130).

The printEdges() method (lines 95–104) displays all vertices and edges adjacent to
each vertex.

The code in lines 164–293 gives the methods for finding a depth-first search tree and a
breadth-first search tree, which will be introduced in Sections 28.7 and 28.9, respectively.

28.7 Describe the relationships among Graph,AbstractGraph, and UnweightedGraph.

28.8 For the code in Listing 28.1, TestGraph.java, what is graph1.getIndex("Seattle")?
What is graph1.getDegree(5)? What is graph1.getVertex(4)?

28.5 Graph Visualization
To display a graph visually, each vertex must be assigned a location.

The preceding section introduced how to model a graph using the Graph interface,
AbstractGraph class, and UnweightedGraph class. This section discusses how to display
graphs graphically. In order to display a graph, you need to know where each vertex is dis-
played and the name of each vertex. To ensure a graph can be displayed, we define an inter-
face named Displayable that has the methods for obtaining the x- and y-coordinates and
their names, and make vertices instances of Displayable, in Listing 28.5.

LISTING 28.5 Displayable.java
1 public interface Displayable {
2 public int getX(); // Get x-coordinate of the vertex
3 public int getY(); // Get y-coordinate of the vertex
4 public String getName(); // Get display name of the vertex
5 }

A graph with Displayable vertices can now be displayed on a pane named GraphView,
as shown in Listing 28.6.

constructor

constructor

✓Point✓Check

Key
Point

Displayable interface

28.5 Graph Visualization 1035

LISTING 28.6 GraphView.java
 1 import javafx.scene.layout.Pane;
 2 import javafx.scene.shape.Circle;
 3 import javafx.scene.shape.Line;
 4 import javafx.scene.text.Text;
 5
 6 public class GraphView extends Pane {
 7 private Graph<? extends Displayable> graph;
 8
 9 public GraphView(Graph<? extends Displayable> graph) {
10 this.graph = graph;
11
12 // Draw vertices
13 java.util.List<? extends Displayable> vertices
14 = graph.getVertices();
15 for (int i = 0; i < graph.getSize(); i++) {
16 int x = vertices.get(i).getX();
17 int y = vertices.get(i).getY();
18 String name = vertices.get(i).getName();
19
20 getChildren().add(new Circle(x, y, 16)); // Display a vertex
21 getChildren().add(new Text(x - 8, y - 18, name));
22 }
23
24 // Draw edges for pairs of vertices
25 for (int i = 0; i < graph.getSize(); i++) {
26 java.util.List<Integer> neighbors = graph.getNeighbors(i);
27 int x1 = graph.getVertex(i).getX();
28 int y1 = graph.getVertex(i).getY();
29 for (int v: neighbors) {
30 int x2 = graph.getVertex(v).getX();
31 int y2 = graph.getVertex(v).getY();
32
33 // Draw an edge for (i, v)
34 getChildren().add(new Line(x1, y1, x2, y2));
35 }
36 }
37 }
38 }

To display a graph on a pane, simply create an instance of GraphView by passing the
graph as an argument in the constructor (line 9). The class for the graph’s vertex must imple-
ment the Displayable interface in order to display the vertices (lines 13–22). For each
vertex index i, invoking graph.getNeighbors(i) returns its adjacency list (line 26). From
this list, you can find all vertices that are adjacent to i and draw a line to connect i with its
adjacent vertex (lines 27–34).

Listing 28.7 gives an example of displaying the graph in Figure 28.1, as shown in
Figure 28.10.

LISTING 28.7 DisplayUSMap.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.stage.Stage;
 4
 5 public class DisplayUSMap extends Application {
 6 @Override // Override the start method in the Application class
 7 public void start(Stage primaryStage) {
 8 City[] vertices = {new City("Seattle", 75, 50),

extends Pane
Displayable vertices

display a vertex
display a text

draw an edge

1036 Chapter 28 Graphs and Applications

 9 new City("San Francisco", 50, 210),
10 new City("Los Angeles", 75, 275), new City("Denver", 275, 175),
11 new City("Kansas City", 400, 245),
12 new City("Chicago", 450, 100), new City("Boston", 700, 80),
13 new City("New York", 675, 120), new City("Atlanta", 575, 295),
14 new City("Miami", 600, 400), new City("Dallas", 408, 325),
15 new City("Houston", 450, 360) };
16
17 // Edge array for graph in Figure 28.1
18 int[][] edges = {
19 {0, 1}, {0, 3}, {0, 5}, {1, 0}, {1, 2}, {1, 3},
20 {2, 1}, {2, 3}, {2, 4}, {2, 10},
21 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
22 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
23 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
24 {6, 5}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 8},
25 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
26 {9, 8}, {9, 11}, {10, 2}, {10, 4}, {10, 8}, {10, 11},
27 {11, 8}, {11, 9}, {11, 10}
28 };
29
30 Graph<City> graph = new UnweightedGraph<>(vertices, edges);
31
32 // Create a scene and place it in the stage
33 Scene scene = new Scene(new GraphView(graph), 750, 450);
34 primaryStage.setTitle("DisplayUSMap"); // Set the stage title
35 primaryStage.setScene(scene); // Place the scene in the stage
36 primaryStage.show(); // Display the stage
37 }
38
39 static class City implements Displayable {
40 private int x, y;
41 private String name;
42
43 City(String name, int x, int y) {
44 this.name = name;
45 this.x = x;
46 this.y = y;
47 }
48
49 @Override
50 public int getX() {
51 return x;
52 }
53
54 @Override
55 public int getY() {
56 return y;
57 }
58
59 @Override
60 public String getName() {
61 return name;
62 }
63 }
64 }

The class City is defined to model the vertices with their coordinates and names (lines 39–63).
The program creates a graph with the vertices of the City type (line 30). Since City implements
Displayable, a GraphView object created for the graph displays the graph in the pane (line 33).

As an exercise to get acquainted with the graph classes and interfaces, add a city (e.g.,
Savannah) with appropriate edges into the graph.

create a graph

create a GraphView

City class

28.6 Graph Traversals 1037

28.9 Will Listing 28.7 DisplayUSMap.java work, if the code in lines 30–34 in Listing 28.6
GraphView.java is replaced by the following code?

if (i < v) {
int x2 = graph.getVertex(v).getX();
int y2 = graph.getVertex(v).getY();

// Draw an edge for (i, v)
 getChildren().add(new Line(x1, y1, x2, y2));

}

28.10 For the graph1 object created in Listing 28.1, TestGraph.java, can you create a
GraphView object as follows?

GraphView view = new GraphView(graph1);

28.6 Graph Traversals
Depth-first and breadth-first are two common ways to traverse a graph.

Graph traversal is the process of visiting each vertex in the graph exactly once. There are two
popular ways to traverse a graph: depth-first traversal (or depth-first search) and breadth-
first traversal (or breadth-first search). Both traversals result in a spanning tree, which can be
modeled using a class, as shown in Figure 28.11. Note that Tree is an inner class defined in
the AbstractGraph class. AbstractGraph<V>.Tree is different from the Tree interface
defined in Section 25.2.5. AbstractGraph.Tree is a specialized class designed for describing
the parent–child relationship of the nodes, whereas the Tree interface defines common opera-
tions such as searching, inserting, and deleting in a tree. Since there is no need to perform these
operations for a spanning tree, AbstractGraph<V>.Tree is not defined as a subtype of Tree.

The Tree class is defined as an inner class in the AbstractGraph class in lines 226–293
in Listing 28.3. The constructor creates a tree with the root, edges, and a search order.

The Tree class defines seven methods. The getRoot() method returns the root of the
tree. You can get the order of the vertices searched by invoking the getSearchOrder()
method. You can invoke getParent(v) to find the parent of vertex v in the search. Invok-
ing getNumberOfVerticesFound() returns the number of vertices searched. The method
getPath(index) returns a list of vertices from the specified vertex index to the root. Invok-
ing printPath(v) displays a path from the root to v. You can display all edges in the tree
using the printTree() method.

✓Point✓Check

Key
Point

depth-first search

breadth-first search

FIGURE 28.10 The graph is displayed in the pane.

1038 Chapter 28 Graphs and Applications

Sections 28.7 and 28.9 will introduce depth-first search and breadth-first search, respec-
tively. Both searches will result in an instance of the Tree class.

28.11 Does AbstractGraph<V>.Tree implement the Tree interface defined in Listing 25.3
Tree.java?

28.12 What method do you use to find the parent of a vertex in the tree?

28.7 Depth-First Search (DFS)
The depth-first search of a graph starts from a vertex in the graph and visits all
vertices in the graph as far as possible before backtracking.

The depth-first search of a graph is like the depth-first search of a tree discussed in Section 25.2.4,
Tree Traversal. In the case of a tree, the search starts from the root. In a graph, the search can
start from any vertex.

A depth-first search of a tree first visits the root, then recursively visits the subtrees of the
root. Similarly, the depth-first search of a graph first visits a vertex, then it recursively visits
all the vertices adjacent to that vertex. The difference is that the graph may contain cycles,
which could lead to an infinite recursion. To avoid this problem, you need to track the vertices
that have already been visited.

The search is called depth-first because it searches “deeper” in the graph as much as possible.
The search starts from some vertex v. After visiting v, it visits an unvisited neighbor of v. If v has
no unvisited neighbor, the search backtracks to the vertex from which it reached v. We assume
that the graph is connected and the search starting from any vertex can reach all the vertices. If
this is not the case, see Programming Exercise 28.4 for finding connected components in a graph.

28.7.1 Depth-First Search Algorithm
The algorithm for the depth-first search is described in Listing 28.8.

LISTING 28.8 Depth-First Search Algorithm
 Input: G = (V, E) and a starting vertex v
 Output: a DFS tree rooted at v

 1 Tree dfs(vertex v) {
2 visit v;

✓Point✓Check

Key
Point

visit v

FIGURE 28.11 The Tree class describes the nodes with parent–child relationships.

-root: int

-parent: int[]

-searchOrder: List<Integer>

+Tree(root: int, parent: int[],

 searchOrder: List<Integer>)

+printPath(index: int): void

+printTree(): void

AbstractGraph<V>.Tree

Constructs a tree with the specified root, parent, and
searchOrder.

The root of the tree.

The parents of the vertices.

The orders for traversing the vertices.

Returns the root of the tree.
Returns the order of vertices searched.
Returns the parent for the specified vertex index.
Returns the number of vertices searched.
Returns a list of vertices from the specified vertex index
 to the root.
Displays a path from the root to the specified vertex.
Displays tree with the root and all edges.

+getRoot(): int

+getSearchOrder(): List<Integer>

+getParent(index: int): int

+getNumberOfVerticesFound(): int

+getPath(index: int): List<V>

28.7 Depth-First Search (DFS) 1039

 3 for each neighbor w of v
 4 if (w has not been visited) {
 5 set v as the parent for w in the tree;
 6 dfs(w);
 7 }
 8 }

You can use an array named isVisited to denote whether a vertex has been visited.
Initially, isVisited[i] is false for each vertex i. Once a vertex, say v, is visited,
isVisited[v] is set to true.

Consider the graph in Figure 28.12a. Suppose we start the depth-first search from vertex
0. First visit 0, then any of its neighbors, say 1. Now 1 is visited, as shown in Figure 28.12b.
Vertex 1 has three neighbors—0, 2, and 4. Since 0 has already been visited, you will visit
either 2 or 4. Let us pick 2. Now 2 is visited, as shown in Figure 28.12c. Vertex 2 has three
neighbors: 0, 1, and 3. Since 0 and 1 have already been visited, pick 3. 3 is now visited, as
shown in Figure 28.12d. At this point, the vertices have been visited in this order:

0, 1, 2, 3

Since all the neighbors of 3 have been visited, backtrack to 2. Since all the vertices of 2
have been visited, backtrack to 1. 4 is adjacent to 1, but 4 has not been visited. Therefore, visit
4, as shown in Figure 28.12e. Since all the neighbors of 4 have been visited, backtrack to 1.
Since all the neighbors of 1 have been visited, backtrack to 0. Since all the neighbors of 0 have
been visited, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the dfs
method is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of
vertices.

check a neighbor

recursive search

DFS time complexity

FIGURE 28.12 Depth-first search visits a node and its neighbors recursively.

0 1

2

3 4

(a)

0 1

2

3 4

0 1

2

3 4

(b) (c)

0 1

2

3 4

0 1

2

3 4

(d) (e)

28.7.2 Implementation of Depth-First Search
The algorithm for DFS in Listing 28.8 uses recursion. It is natural to use recursion to imple-
ment it. Alternatively, you can use a stack (see Programming Exercise 28.3).

1040 Chapter 28 Graphs and Applications

The dfs(int v) method is implemented in lines 164–193 in Listing 28.3. It returns an
instance of the Tree class with vertex v as the root. The method stores the vertices searched in
the list searchOrder (line 165), the parent of each vertex in the array parent (line 166), and
uses the isVisited array to indicate whether a vertex has been visited (line 171). It invokes
the helper method dfs(v, parent, searchOrder, isVisited) to perform a depth-first
search (line 174).

In the recursive helper method, the search starts from vertex u. u is added to searchOrder
in line 184 and is marked as visited (line 185). For each unvisited neighbor of u, the method
is recursively invoked to perform a depth-first search. When a vertex e.v is visited, the parent
of e.v is stored in parent[e.v] (line 189). The method returns when all vertices are visited
for a connected graph, or in a connected component.

Listing 28.9 gives a test program that displays a DFS for the graph in Figure 28.1 start-
ing from Chicago. The graphical illustration of the DFS starting from Chicago is shown in
Figure 28.13. For an interactive GUI demo of DFS, go to www.cs.armstrong.edu/liang/animation/
USMapSearch.html.

LISTING 28.9 TestDFS.java
 1 public class TestDFS {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 int[][] edges = {
 8 {0, 1}, {0, 3}, {0, 5},
 9 {1, 0}, {1, 2}, {1, 3},
10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
14 {6, 5}, {6, 7},
15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
17 {9, 8}, {9, 11},
18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
19 {11, 8}, {11, 9}, {11, 10}
20 };
21
22 Graph<String> graph = new UnweightedGraph<>(vertices, edges);
23 AbstractGraph<String>.Tree dfs =
24 graph.dfs(graph.getIndex("Chicago"));
25
26 java.util.List<Integer> searchOrders = dfs.getSearchOrder();
27 System.out.println(dfs.getNumberOfVerticesFound() +
28 " vertices are searched in this DFS order:");
29 for (int i = 0; i < searchOrders.size(); i++)
30 System.out.print(graph.getVertex(searchOrders.get(i)) + " ");
31 System.out.println();
32
33 for (int i = 0; i < searchOrders.size(); i++)
34 if (dfs.getParent(i) != -1)
35 System.out.println("parent of " + graph.getVertex(i) +
36 " is " + graph.getVertex(dfs.getParent(i)));
37 }
38 }

vertices

edges

create a graph

get DFS

get search order

U.S. Map Search

www.cs.armstrong.edu/liang/animation/USMapSearch.html
www.cs.armstrong.edu/liang/animation/USMapSearch.html

28.7 Depth-First Search (DFS) 1041

12 vertices are searched in this DFS order:
 Chicago Seattle San Francisco Los Angeles Denver
 Kansas City New York Boston Atlanta Miami Houston Dallas
parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is San Francisco
parent of Denver is Los Angeles
parent of Kansas City is Denver
parent of Boston is New York
parent of New York is Kansas City
parent of Atlanta is New York
parent of Miami is Atlanta
parent of Dallas is Houston
parent of Houston is Miami

FIGURE 28.13 A DFS search starts from Chicago.

28.7.3 Applications of the DFS
The depth-first search can be used to solve many problems, such as the following:

 ■ Detecting whether a graph is connected. Search the graph starting from any vertex.
If the number of vertices searched is the same as the number of vertices in the graph,

1042 Chapter 28 Graphs and Applications

the graph is connected. Otherwise, the graph is not connected. (See Programming
Exercise 28.1.)

 ■ Detecting whether there is a path between two vertices (see Programming
Exercise 28.5).

 ■ Finding a path between two vertices (see Programming Exercise 28.5).

 ■ Finding all connected components. A connected component is a maximal connected
subgraph in which every pair of vertices are connected by a path (see Programming
Exercise 28.4).

 ■ Detecting whether there is a cycle in the graph (see Programming Exercise 28.6).

 ■ Finding a cycle in the graph (see Programming Exercise 28.7).

 ■ Finding a Hamiltonian path/cycle. A Hamiltonian path in a graph is a path that visits
each vertex in the graph exactly once. A Hamiltonian cycle visits each vertex in the
graph exactly once and returns to the starting vertex (see Programming Exercise 28.17).

The first six problems can be easily solved using the dfs method in Listing 28.3. To
find a Hamiltonian path/cycle, you have to explore all possible DFSs to find the one that
leads to the longest path. The Hamiltonian path/cycle has many applications, including for
solving the well-known Knight’s Tour problem, which is presented in Supplement VI.E on
the Companion Website.

28.13 What is depth-first search?

28.14 Draw a DFS tree for the graph in Figure 28.3b starting from node A.

28.15 Draw a DFS tree for the graph in Figure 28.1 starting from vertex Atlanta.

28.16 What is the return type from invoking dfs(v)?

28.17 The depth-first search algorithm described in Listing 28.8 uses recursion. Alterna-
tively, you can use a stack to implement it, as shown below. Point out the error in this
algorithm and give a correct algorithm.

// Wrong version
Tree dfs(vertex v) {
 push v into the stack;
 mark v visited;

while (the stack is not empty) {
 pop a vertex, say u, from the stack
 visit u;

for each neighbor w of u
if (w has not been visited)

 push w into the stack;
 }
}

28.8 Case Study: The Connected Circles Problem
The connected circles problem is to determine whether all circles in a two-dimensional
plane are connected. This problem can be solved using a depth-first traversal.

The DFS algorithm has many applications. This section applies the DFS algorithm to solve
the connected circles problem.

In the connected circles problem, you determine whether all the circles in a two-dimen-
sional plane are connected. If all the circles are connected, they are painted as filled circles, as
shown in Figure 28.14a. Otherwise, they are not filled, as shown in Figure 28.14b.

✓Point✓Check

Key
Point

28.8 Case Study: The Connected Circles Problem 1043

We will write a program that lets the user create a circle by clicking a mouse in a blank
area that is not currently covered by a circle. As the circles are added, the circles are repainted
filled if they are connected or unfilled otherwise.

We will create a graph to model the problem. Each circle is a vertex in the graph. Two
circles are connected if they overlap. We apply the DFS in the graph, and if all vertices are
found in the depth-first search, the graph is connected.

The program is given in Listing 28.10.

LISTING 28.10 ConnectedCircles.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Point2D;
 3 import javafx.scene.Node;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Circle;
 8 import javafx.stage.Stage;
 9
10 public class ConnectedCircles extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 // Create a scene and place it in the stage
14 Scene scene = new Scene(new CirclePane(), 450, 350);
15 primaryStage.setTitle("ConnectedCircles"); // Set the stage title
16 primaryStage.setScene(scene); // Place the scene in the stage
17 primaryStage.show(); // Display the stage
18 }
19
20 /** Pane for displaying circles */
21 class CirclePane extends Pane {
22 public CirclePane() {
23 this.setOnMouseClicked(e -> {
24 if (!isInsideACircle(new Point2D(e.getX(), e.getY()))) {
25 // Add a new circle
26 getChildren().add(new Circle(e.getX(), e.getY(), 20));
27 colorIfConnected();
28 }
29 });
30 }

create a circle pane

pane for showing circles

handle mouse clicked
is it inside another circle?

add a new circle
color if all connected

FIGURE 28.14 You can apply DFS to determine whether the circles are connected.

(a) Circles are connected (b) Circles are not connected

1044 Chapter 28 Graphs and Applications

31
32 /** Returns true if the point is inside an existing circle */
33 private boolean isInsideACircle(Point2D p) {
34 for (Node circle: this.getChildren())
35 if (circle.contains(p))
36 return true;
37
38 return false;
39 }
40
41 /** Color all circles if they are connected */
42 private void colorIfConnected() {
43 if (getChildren().size() == 0)
44 return; // No circles in the pane
45
46 // Build the edges
47 java.util.List<AbstractGraph.Edge> edges
48 = new java.util.ArrayList<>();
49 for (int i = 0; i < getChildren().size(); i++)
50 for (int j = i + 1; j < getChildren().size(); j++)
51 if (overlaps((Circle)(getChildren().get(i)),
52 (Circle)(getChildren().get(j)))) {
53 edges.add(new AbstractGraph.Edge(i, j));
54 edges.add(new AbstractGraph.Edge(j, i));
55 }
56
57 // Create a graph with circles as vertices
58 Graph<Node> graph = new UnweightedGraph<>
59 ((java.util.List<Node>)getChildren(), edges);
60 AbstractGraph<Node>.Tree tree = graph.dfs(0); // a DFS tree
61 boolean isAllCirclesConnected = getChildren().size() == tree
62 .getNumberOfVerticesFound();
63
64 for (Node circle: getChildren()) {
65 if (isAllCirclesConnected) { // All circles are connected
66 ((Circle)circle).setFill(Color.RED);
67 }
68 else {
69 ((Circle)circle).setStroke(Color.BLACK);
70 ((Circle)circle).setFill(Color.WHITE);
71 }
72 }
73 }
74 }
75
76 public static boolean overlaps(Circle circle1, Circle circle2) {
77 return new Point2D(circle1.getCenterX(), circle1.getCenterY()).
78 distance(circle2.getCenterX(), circle2.getCenterY())
79 <= circle1.getRadius() + circle2.getRadius();
80 }
81 }

The JavaFX Circle class contains the data fields x, y, and radius, which specify the
circle’s center location and radius. It also defines the contains for testing if a point is in the
circle. The overlaps method (lines 76–80) checks whether two circles overlap.

When the user clicks the mouse outside of any existing circle, a new circle is created cen-
tered at the mouse point and the circle is added to the pane (line 26).

To detect whether the circles are connected, the program constructs a graph (lines 46–59).
The circles are the vertices of the graph. The edges are constructed in lines 49–55. Two circle

contains the point?

create edges

create a graph

get a search tree
connected?

connected

not connected

two circles overlap?

28.9 Breadth-First Search (BFS) 1045

vertices are connected if they overlap (line 51). The DFS of the graph results in a tree (line 60).
The tree’s getNumberOfVerticesFound() returns the number of vertices searched. If it is
equal to the number of circles, all circles are connected (lines 61–62).

28.18 How is a graph created for the connected circles problem?

28.19 When you click the mouse inside a circle, does the program create a new circle?

28.20 How does the program know if all circles are connected?

28.9 Breadth-First Search (BFS)
The breadth-first search of a graph visits the vertices level by level. The first level
consists of the starting vertex. Each next level consists of the vertices adjacent to the
vertices in the preceding level.

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in
Section 25.2.4, Tree Traversal. With breadth-first traversal of a tree, the nodes are visited
level by level. First the root is visited, then all the children of the root, then the grandchildren
of the root, and so on. Similarly, the breadth-first search of a graph first visits a vertex, then all
its adjacent vertices, then all the vertices adjacent to those vertices, and so on. To ensure that
each vertex is visited only once, it skips a vertex if it has already been visited.

28.9.1 Breadth-First Search Algorithm
The algorithm for the breadth-first search starting from vertex v in a graph is described in
Listing 28.11.

LISTING 28.11 Breadth-First Search Algorithm
 Input: G = (V, E) and a starting vertex v
 Output: a BFS tree rooted at v

 1 Tree bfs(vertex v) {
 2 create an empty queue for storing vertices to be visited;
 3 add v into the queue;
 4 mark v visited;
 5
 6 while (the queue is not empty) {
 7 dequeue a vertex, say u, from the queue;
 8 add u into a list of traversed vertices;
 9 for each neighbor w of u
10 if w has not been visited {
11 add w into the queue;
12 set u as the parent for w in the tree;
13 mark w visited;
14 }
15 }
16 }

Consider the graph in Figure 28.15a. Suppose you start the breadth-first search from vertex
0. First visit 0, then visit all its neighbors, 1, 2, and 3, as shown in Figure 28.15b. Vertex 1
has three neighbors: 0, 2, and 4. Since 0 and 2 have already been visited, you will now visit
just 4, as shown in Figure 28.15c. Vertex 2 has three neighbors, 0, 1, and 3, which have all
been visited. Vertex 3 has three neighbors, 0, 2, and 4, which have all been visited. Vertex 4
has two neighbors, 1 and 3, which have all been visited. Hence, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the bfs method
is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of vertices.

✓Point✓Check

Key
Point

create a queue
enqueue v

dequeue into u
u traversed
check a neighbor w
is w visited?
enqueue w

BFS time complexity

1046 Chapter 28 Graphs and Applications

28.9.2 Implementation of Breadth-First Search
The bfs(int v) method is defined in the Graph interface and implemented in the
AbstractGraph class in Listing 28.3 (lines 197–222). It returns an instance of the Tree class
with vertex v as the root. The method stores the vertices searched in the list searchOrder
(line 198), the parent of each vertex in the array parent (line 199), uses a linked list for a
queue (lines 203–204), and uses the isVisited array to indicate whether a vertex has been
visited (line 207). The search starts from vertex v. v is added to the queue in line 206 and is
marked as visited (line 207). The method now examines each vertex u in the queue (line 210)
and adds it to searchOrder (line 211). The method adds each unvisited neighbor e.v of u to
the queue (line 214), sets its parent to u (line 215), and marks it as visited (line 216).

Listing 28.12 gives a test program that displays a BFS for the graph in Figure 28.1 start-
ing from Chicago. The graphical illustration of the BFS starting from Chicago is shown in
Figure 28.16. For an interactive GUI demo of BFS, go to www.cs.armstrong.edu/liang/animation/
USMapSearch.html.

LISTING 28.12 TestBFS.java
 1 public class TestBFS {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 int[][] edges = {
 8 {0, 1}, {0, 3}, {0, 5},
 9 {1, 0}, {1, 2}, {1, 3},
10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
14 {6, 5}, {6, 7},
15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
17 {9, 8}, {9, 11},
18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
19 {11, 8}, {11, 9}, {11, 10}
20 };
21
22 Graph<String> graph = new UnweightedGraph<>(vertices, edges);
23 AbstractGraph<String>.Tree bfs =
24 graph.bfs(graph.getIndex("Chicago"));
25
26 java.util.List<Integer> searchOrders = bfs.getSearchOrder();

vertices

edges

create a graph

create a BFS tree

get search order

FIGURE 28.15 Breadth-first search visits a node, then its neighbors, then its neighbors’s
neighbors, and so on.

0 1

2

3 4

(a)

0 1

2

3 4

0 1

2

3 4

(b) (c)

www.cs.armstrong.edu/liang/animation/USMapSearch.html
www.cs.armstrong.edu/liang/animation/USMapSearch.html

28.9 Breadth-First Search (BFS) 1047

27 System.out.println(bfs.getNumberOfVerticesFound() +
28 " vertices are searched in this order:");
29 for (int i = 0; i < searchOrders.size(); i++)
30 System.out.println(graph.getVertex(searchOrders.get(i)));
31
32 for (int i = 0; i < searchOrders.size(); i++)
33 if (bfs.getParent(i) != -1)
34 System.out.println("parent of " + graph.getVertex(i) +
35 " is " + graph.getVertex(bfs.getParent(i)));
36 }
37 }

12 vertices are searched in this order:
 Chicago Seattle Denver Kansas City Boston New York
 San Francisco Los Angeles Atlanta Dallas Miami Houston
parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is Denver
parent of Denver is Chicago
parent of Kansas City is Chicago
parent of Boston is Chicago
parent of New York is Chicago
parent of Atlanta is Kansas City
parent of Miami is Atlanta
parent of Dallas is Kansas City
parent of Houston is Atlanta

28.9.3 Applications of the BFS
Many of the problems solved by the DFS can also be solved using the BFS. Specifically, the
BFS can be used to solve the following problems:

 ■ Detecting whether a graph is connected. A graph is connected if there is a path
between any two vertices in the graph.

 ■ Detecting whether there is a path between two vertices.

 ■ Finding a shortest path between two vertices. You can prove that the path between
the root and any node in the BFS tree is a shortest path between the root and the node.
(See Check Point Question 28.25.)

 ■ Finding all connected components. A connected component is a maximal connected
subgraph in which every pair of vertices are connected by a path.

 ■ Detecting whether there is a cycle in the graph (see Programming Exercise 28.6).

 ■ Finding a cycle in the graph (see Programming Exercise 28.7).

 ■ Testing whether a graph is bipartite. (A graph is bipartite if the vertices of the graph
can be divided into two disjoint sets such that no edges exist between vertices in the
same set.) (See Programming Exercise 28.8.)

28.21 What is the return type from invoking bfs(v)?

28.22 What is breadth-first search?

28.23 Draw a BFS tree for the graph in Figure 28.3b starting from node A.

28.24 Draw a BFS tree for the graph in Figure 28.1 starting from vertex Atlanta.

28.25 Prove that the path between the root and any node in the BFS tree is a shortest path
between the root and the node.

✓Point✓Check

1048 Chapter 28 Graphs and Applications

28.10 Case Study: The Nine Tails Problem
The nine tails problem can be reduced to the shortest path problem.

The nine tails problem is as follows. Nine coins are placed in a three-by-three matrix with
some face up and some face down. A legal move is to take a coin that is face up and reverse it,
together with the coins adjacent to it (this does not include coins that are diagonally adjacent).
Your task is to find the minimum number of moves that lead to all coins being face down. For
example, start with the nine coins as shown in Figure 28.17a. After you flip the second coin in
the last row, the nine coins are now as shown in Figure 28.17b. After you flip the second coin
in the first row, the nine coins are all face down, as shown in Figure 28.17c.

Key
Point

FIGURE 28.16 BFS search starts from Chicago.

FIGURE 28.17 The problem is solved when all coins are face down.

H

(a)

H

(b)

T

(c)

T

T

T

T

T

T

T

T

H

T

T

H

T

H

T

T

H

T

H

H

T

H

T

H

We will write a program that prompts the user to enter an initial state of the nine coins and
displays the solution, as shown in the following sample run.

28.10 Case Study: The Nine Tails Problem 1049

Each state of the nine coins represents a node in the graph. For example, the three states in
Figure 28.17 correspond to three nodes in the graph. For convenience, we use a 3 * 3 matrix to
represent all nodes and use 0 for heads and 1 for tails. Since there are nine cells and each cell is
either0 or 1, there are a total of 29 (512) nodes, labeled 0,1, . . . , and 511, as shown in Figure 28.18.

Enter the initial nine coins Hs and Ts: HHHTTTHHH

The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

FIGURE 28.18 There are total of 512 nodes labeled in this order: 0, 1, 2, . . . , 511.

.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

2

0

0

0

0

0

0

0

0

1

3

0

0

1

1

1

1

1

1

1

511

1

1

1

We assign an edge from node v to u if there is a legal move from u to v. Figure 28.19 shows
a partial graph. Note there is an edge from 511 to 47, since you can flip a cell in node 47 to
become node 511.

The last node in Figure 28.18 represents the state of nine face-down coins. For convenience,
we call this last node the target node. Thus, the target node is labeled 511. Suppose the initial
state of the nine tails problem corresponds to the node s. The problem is reduced to finding
a shortest path from node s to the target node, which is equivalent to finding a shortest path
from node s to the target node in a BFS tree rooted at the target node.

Now the task is to build a graph that consists of 512 nodes labeled 0, 1, 2, . . . , 511, and
edges among the nodes. Once the graph is created, obtain a BFS tree rooted at node 511. From
the BFS tree, you can find a shortest path from the root to any vertex. We will create a class
named NineTailModel, which contains the method to get a shortest path from the target
node to any other node. The class UML diagram is shown in Figure 28.20.

Visually, a node is represented in a 3 * 3 matrix with the letters H and T. In our program,
we use a single-dimensional array of nine characters to represent a node. For example, the
node for vertex 1 in Figure 28.18 is represented as {'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H',
'T'} in the array.

The getEdges() method returns a list of Edge objects.
The getNode(index) method returns the node for the specified index. For example,

getNode(0) returns the node that contains nine Hs. getNode(511) returns the node that
contains nine Ts. The getIndex(node) method returns the index of the node.

Note that the data field tree is defined as protected so that it can be accessed from the
WeightedNineTail subclass in the next chapter.

The getFlippedNode(char[] node, int position) method flips the node at the
specified position and its adjacent positions. This method returns the index of the new node.

1050 Chapter 28 Graphs and Applications

The position is a value from 0 to 8, which points to a coin in the node, as shown in the
following figure.

FIGURE 28.19 If node u becomes node v after cells are flipped, assign an edge from v to u.

1
0 1 1

1 0

0 0

408

0

1
1 0 1

1 1

0 0

488

0

0
1 1 0

1 1

0 0

240

0

0
0 1 1

0 0

1 1

30

0

0
1 0 1

0 0

1 1

47

1

0
1 1 1

0 0

0 0

56

0

1
1 1 1

1 1

1 1

511

1

0
1 1 0

0 0

0 1

51

1

FIGURE 28.20 The NineTailModel class models the nine tails problem using a graph.

NineTailModel

#tree: AbstractGraph<Integer>.Tree A tree rooted at node 511.

+NineTailModel()
+getShortestPath(nodeIndex: int):
 List<Integer>

-getEdges():
 List<AbstractGraph.Edge>

+getNode(index: int): char[]

+getIndex(node: char[]): int
+getFlippedNode(node: char[],
 position: int): int
+flipACell(node: char[], row: int,
 column: int): void
+printNode(node: char[]): void

Constructs a model for the nine tails problem and obtains the tree.
Returns a path from the specified node to the root. The path
 returned consists of the node labels in a list.

Flips the node at the specified row and column.

Displays the node on the console.

Returns a list of Edge objects for the graph.

Returns a node consisting of nine characters of Hs and Ts.
Returns the index of the specified node.

Flips the node at the specified position and its adjacent positions
 and returns the index of the flipped node.

For example, for node 56 in Figure 28.19, flip it at position 0, and you will get node 51. If
you flip node 56 at position 1, you will get node 47.

The flipACell(char[] node, int row, int column) method flips a node at the
specified row and column. For example, if you flip node 56 at row 0 and column 0, the new
node is 408. If you flip node 56 at row 2 and column 0, the new node is 30.

0

H H H H T T T H H HH

T

H

T

H

H

T

H

0

1

0

0

1

0

1

0 Position is 2
here in a node

A node is an
array of nine
characters

28.10 Case Study: The Nine Tails Problem 1051

Listing 28.13 shows the source code for NineTailModel.java.

LISTING 28.13 NineTailModel.java
 1 import java.util.*;
 2
 3 public class NineTailModel {
 4 public final static int NUMBER_OF_NODES = 512;
 5 protected AbstractGraph<Integer>.Tree tree; // Define a tree
 6
 7 /** Construct a model */
 8 public NineTailModel() {
 9 // Create edges
 10 List<AbstractGraph.Edge> edges = getEdges();
 11
 12 // Create a graph
 13 UnweightedGraph<Integer> graph = new UnweightedGraph<>(
 14 edges, NUMBER_OF_NODES);
 15
 16 // Obtain a BSF tree rooted at the target node
 17 tree = graph.bfs(511);
 18 }
 19
 20 /** Create all edges for the graph */
 21 private List<AbstractGraph.Edge> getEdges() {
 22 List<AbstractGraph.Edge> edges =
 23 new ArrayList<>(); // Store edges
 24
 25 for (int u = 0; u < NUMBER_OF_NODES; u++) {
 26 for (int k = 0; k < 9; k++) {
 27 char[] node = getNode(u); // Get the node for vertex u
 28 if (node[k] == 'H') {
 29 int v = getFlippedNode(node, k);
 30 // Add edge (v, u) for a legal move from node u to node v
 31 edges.add(new AbstractGraph.Edge(v, u));
 32 }
 33 }
 34 }
 35
 36 return edges;
 37 }
 38
 39 public static int getFlippedNode(char[] node, int position) {
 40 int row = position / 3;
 41 int column = position % 3;
 42
 43 flipACell(node, row, column);
 44 flipACell(node, row - 1, column);
 45 flipACell(node, row + 1, column);
 46 flipACell(node, row, column - 1);
 47 flipACell(node, row, column + 1);
 48
 49 return getIndex(node);
 50 }
 51
 52 public static void flipACell(char[] node, int row, int column) {
 53 if (row >= 0 && row <= 2 && column >= 0 && column <= 2) {
54 // Within the boundary

 55 if (node[row * 3 + column] == 'H')
 56 node[row * 3 + column] = 'T'; // Flip from H to T

declare a tree

create edges

create graph

create tree

get edges

add an edge

flip cells

flip a cell

row

column

Flip

1052 Chapter 28 Graphs and Applications

 57 else

 58 node[row * 3 + column] = 'H'; // Flip from T to H
 59 }
 60 }
 61
 62 public static int getIndex(char[] node) {
 63 int result = 0;
 64
 65 for (int i = 0; i < 9; i++)
 66 if (node[i] == 'T')
 67 result = result * 2 + 1;
 68 else

 69 result = result * 2 + 0;
 70
 71 return result;
 72 }
 73
 74 public static char[] getNode(int index) {
 75 char[] result = new char[9];
 76
 77 for (int i = 0; i < 9; i++) {
 78 int digit = index % 2;
 79 if (digit == 0)
 80 result[8 - i] = 'H';
 81 else

 82 result[8 - i] = 'T';
 83 index = index / 2;
 84 }
 85
 86 return result;
 87 }
 88
 89 public List<Integer> getShortestPath(int nodeIndex) {
 90 return tree.getPath(nodeIndex);
 91 }
 92
 93 public static void printNode(char[] node) {
 94 for (int i = 0; i < 9; i++)
 95 if (i % 3 != 2)
 96 System.out.print(node[i]);
 97 else

 98 System.out.println(node[i]);
 99
100 System.out.println();
101 }
102 }

The constructor (lines 8–18) creates a graph with 512 nodes, and each edge corresponds to
the move from one node to the other (line 10). From the graph, a BFS tree rooted at the target
node 511 is obtained (line 17).

To create edges, the getEdges method (lines 21–37) checks each node u to see
if it can be flipped to another node v. If so, add (v, u) to the Edge list (line 31). The
getFlippedNode(node, position) method finds a flipped node by flipping an H cell
and its neighbors in a node (lines 43–47). The flipACell(node, row, column) method
actually flips an H cell and its neighbors in a node (lines 52–60).

The getIndex(node) method is implemented in the same way as converting a binary
number to a decimal number (lines 62–72). The getNode(index) method returns a node
consisting of the letters H and T (lines 74–87).

get index for a node

get node for an index

shortest path

display a node

node: HHHHHHHTT

H H H
H H H
H T T

index: 3
For example:

For example:

T H H
H H H
H T T

node: THHHHHHTT
index: 259

For example:

T H H
H H H
H T T

node: THHHHHHTT
Output:

Key Terms 1053

The getShortestpath(nodeIndex) method invokes the getPath(nodeIndex)
method to get a vertices in a shortest path from the specified node to the target node
(lines 89–91).

The printNode(node) method displays a node on the console (lines 93–101).
Listing 28.14 gives a program that prompts the user to enter an initial node and displays the

steps to reach the target node.

LISTING 28.14 NineTail.java
 1 import java.util.Scanner;
 2
 3 public class NineTail {
 4 public static void main(String[] args) {
 5 // Prompt the user to enter nine coins' Hs and Ts
 6 System.out.print("Enter the initial nine coins Hs and Ts: ");
 7 Scanner input = new Scanner(System.in);
 8 String s = input.nextLine();
 9 char[] initialNode = s.toCharArray();
10
11 NineTailModel model = new NineTailModel();
12 java.util.List<Integer> path =
13 model.getShortestPath(NineTailModel.getIndex(initialNode));
14
15 System.out.println("The steps to flip the coins are ");
16 for (int i = 0; i < path.size(); i++)
17 NineTailModel.printNode(
18 NineTailModel.getNode(path.get(i).intValue()));
19 }
20 }

The program prompts the user to enter an initial node with nine letters with a combination
of Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates
a graph model to get a BFS tree (line 11), obtains a shortest path from the initial node to the
target node (lines 12–13), and displays the nodes in the path (lines 16–18).

28.26 How are the nodes created for the graph in NineTailModel?

28.27 How are the edges created for the graph in NineTailModel?

28.28 What is returned after invoking getIndex("HTHTTTHHH".toCharArray()) in
Listing 28.13? What is returned after invoking getNode(46) in Listing 28.13?

28.29 If lines 26 and 27 are swapped in Listing 28.13, NineTailModel.java, will the pro-
gram work? Why?

initial node

create model

get shortest path

✓Point✓Check

KEY TERMS

adjacency list 1022
adjacency matrix 1021
adjacent vertices 1018
breadth-first search 1037
complete graph 1018
cycle 1018
degree 1018
depth-first search 1037
directed graph 1017
graph 1016

incident edges 1018
parallel edge 1018
Seven Bridges of Königsberg 1016
simple graph 1018
spanning tree 1018
tree 1018
undirected graph 1017
unweighted graph 1018
weighted graph 1018

1054 Chapter 28 Graphs and Applications

CHAPTER SUMMARY

1. A graph is a useful mathematical structure that represents relationships among entities
in the real world. You learned how to model graphs using classes and interfaces, how to
represent vertices and edges using arrays and linked lists, and how to implement opera-
tions for graphs.

2. Graph traversal is the process of visiting each vertex in the graph exactly once. You
learned two popular ways for traversing a graph: the depth-first search (DFS) and
breadth-first search (BFS).

3. DFS and BFS can be used to solve many problems such as detecting whether a graph
is connected, detecting whether there is a cycle in the graph, and finding a shortest path
between two vertices.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 28.6–28.10

*28.1 (Test whether a graph is connected) Write a program that reads a graph from
a file and determines whether the graph is connected. The first line in the file
contains a number that indicates the number of vertices (n). The vertices are
labeled as 0, 1, . . . , n-1. Each subsequent line, with the format u v1 v2 ...,
describes edges (u, v1), (u, v2), and so on. Figure 28.21 gives the examples of
two files for their corresponding graphs.

FIGURE 28.21 The vertices and edges of a graph can be stored in a file.

(a) (b)

File
6
0 1 2
1 0 3
2 0 3 4
3 1 2 4 5
4 2 3 5
5 3 4

0

2

4

1

3

5

File
6
0 1 2 3
1 0 3
2 0 3
3 0 1 2
4 5
5 4

0

2 3

1

4 5

 Your program should prompt the user to enter the name of the file, then it should
read data from the file, create an instance g of UnweightedGraph, invoke
g.printEdges() to display all edges, and invoke dfs() to obtain an instance
tree of AbstractGraph.Tree. If tree.getNumberOfVerticesFound()
is the same as the number of vertices in the graph, the graph is connected. Here
is a sample run of the program:

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 1055

 (Hint: Use new UnweightedGraph(list, numberOfVertices) to create
a graph, where list contains a list of AbstractGraph.Edge objects. Use
new AbstractGraph.Edge(u, v) to create an edge. Read the first line to
get the number of vertices. Read each subsequent line into a string s and use
s.split("[\\s+]") to extract the vertices from the string and create edges
from the vertices.)

*28.2 (Create a file for a graph) Modify Listing 28.1, TestGraph.java, to create a file
representinggraph1. The file format is described in Programming Exercise 28.1.
Create the file from the array defined in lines 8–21 in Listing 28.1. The number
of vertices for the graph is 12, which will be stored in the first line of the file.
The contents of the file should be as follows:

12
0 1 3 5
1 0 2 3
2 1 3 4 10
3 0 1 2 4 5
4 2 3 5 7 8 10
5 0 3 4 6 7
6 5 7
7 4 5 6 8
8 4 7 9 10 11
9 8 11
10 2 4 8 11
11 8 9 10

*28.3 (Implement DFS using a stack) The depth-first search algorithm described in
Listing 28.8 uses recursion. Design a new algorithm without using recursion.
Describe it using pseudocode. Implement it by defining a new class named
UnweightedGraphWithNonrecursiveDFS that extends UnweightedGraph
and overriding the dfs method.

*28.4 (Find connected components) Create a new class named MyGraph as a subclass
of UnweightedGraph that contains a method for finding all connected com-
ponents in a graph with the following header:

public List<List<Integer>> getConnectedComponents();

 The method returns a List<List<Integer>>. Each element in the list is
another list that contains all the vertices in a connected component. For exam-
ple, for the graph in Figure 28.21b, getConnectedComponents() returns
[[0, 1, 2, 3], [4, 5]].

Enter a file name: c:\exercise\GraphSample1.txt
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The graph is connected

1056 Chapter 28 Graphs and Applications

*28.5 (Find paths) Add a new method in AbstractGraph to find a path between two
vertices with the following header:

public List<Integer> getPath(int u, int v);

 The method returns a List<Integer> that contains all the vertices in a path
from u to v in this order. Using the BFS approach, you can obtain a shortest
path from u to v. If there isn’t a path from u to v, the method returns null.

*28.6 (Detect cycles) Add a new method in AbstractGraph to determine whether
there is a cycle in the graph with the following header:

public boolean isCyclic();

*28.7 (Find a cycle) Add a new method in AbstractGraph to find a cycle in the
graph with the following header:

public List<Integer> getACycle(int u);

 The method returns a List that contains all the vertices in a cycle starting from
u. If the graph doesn’t have any cycles, the method returns null.

**28.8 (Test bipartite) Recall that a graph is bipartite if its vertices can be divided into
two disjoint sets such that no edges exist between vertices in the same set. Add
a new method in AbstractGraph with the following header to detect whether
the graph is bipartite:

public boolean isBipartite();

**28.9 (Get bipartite sets) Add a new method in AbstractGraph with the following
header to return two bipartite sets if the graph is bipartite:

public List<List<Integer>> getBipartite();

 The method returns a List that contains two sublists, each of which contains a
set of vertices. If the graph is not bipartite, the method returns null.

28.10 (Find a shortest path) Write a program that reads a connected graph from a
file. The graph is stored in a file using the same format specified in Program-
ming Exercise 28.1. Your program should prompt the user to enter the name of
the file, then two vertices, and should display a shortest path between the two
vertices. For example, for the graph in Figure 28.21a, a shortest path between 0
and 5 may be displayed as 0 1 3 5.

 Here is a sample run of the program:

Enter a file name: c:\exercise\GraphSample1.txt

Enter two vertices (integer indexes): 0 5
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The path is 0 1 3 5

Programming Exercises 1057

**28.11 (Revise Listing 28.14, NineTail.java) The program in Listing 28.14 lets the user
enter an input for the nine tails problem from the console and displays the result
on the console. Write a program that lets the user set an initial state of the nine
coins (see Figure 28.22a) and click the Solve button to display the solution, as
shown in Figure 28.22b. Initially, the user can click the mouse button to flip a
coin. Set a red color on the flipped cells.

FIGURE 28.22 The program solves the nine tails problem.

(a) (b)

**28.12 (Variation of the nine tails problem) In the nine tails problem, when you flip a
coin, the horizontal and vertical neighboring cells are also flipped. Rewrite the
program, assuming that all neighboring cells including the diagonal neighbors
are also flipped.

**28.13 (4 * 4 16 tails problem) Listing 28.14, NineTail.java, presents a solution for
the nine tails problem. Revise this program for the 4 * 4 16 tails problem.
Note that it is possible that a solution may not exist for a starting pattern. If so,
report that no solution exists.

**28.14 (4 * 4 16 tails analysis) The nine tails problem in the text uses a 3 * 3 matrix.
Assume that you have 16 coins placed in a 4 * 4 matrix. Write a program to
find out the number of the starting patterns that don’t have a solution.

*28.15 (4 * 4 16 tails GUI) Rewrite Programming Exercise 28.14 to enable the user to
set an initial pattern of the 4 * 4 16 tails problem (see Figure 28.23a). The user
can click the Solve button to display the solution, as shown in Figure 28.23b.
Initially, the user can click the mouse button to flip a coin. If a solution does not
exist, display a message to report it.

FIGURE 28.23 The problem solves the 16 tails problem.

(b)(a)

1058 Chapter 28 Graphs and Applications

**28.16 (Induced subgraph) Given an undirected graph G = (V, E) and an integer
k, find an induced subgraph H of G of maximum size such that all vertices
of H have a degree 7 = k, or conclude that no such induced subgraph exists.
Implement the method with the following header:

public static Graph maxInducedSubgraph(Graph g, int k)

 The method returns null if such a subgraph does not exist.

 (Hint: An intuitive approach is to remove vertices whose degree is less than k.
As vertices are removed with their adjacent edges, the degrees of other vertices
may be reduced. Continue the process until no vertices can be removed, or all
the vertices are removed.)

***28.17 (Hamiltonian cycle) The Hamiltonian path algorithm is implemented in Sup-
plement VI.E. Add the following getHamiltonianCycle method in the
Graph interface and implement it in the AbstractGraph class:

/** Return a Hamiltonian cycle
* Return null if the graph doesn't contain a Hamiltonian cycle */

public List<Integer> getHamiltonianCycle()

***28.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Sup-
plement VI.E to find a knight’s tour that visits each square in a chessboard and
returns to the starting square. Reduce the Knight’s Tour cycle problem to the
problem of finding a Hamiltonian cycle.

**28.19 (Display a DFS/BFS tree in a graph) Modify GraphView in Listing 28.6 to
add a new data field tree with a set method. The edges in the tree are dis-
played in red. Write a program that displays the graph in Figure 28.1 and the
DFS/BFS tree starting from a specified city, as shown in Figures 28.13 and
28.16. If a city not in the map is entered, the program displays an error mes-
sage in the label.

*28.20 (Display a graph) Write a program that reads a graph from a file and displays it.
The first line in the file contains a number that indicates the number of vertices
(n). The vertices are labeled 0, 1, . . . , n-1. Each subsequent line, with the for-
mat u x y v1 v2 ..., describes the position of u at (x, y) and edges (u, v1),
(u, v2), and so on. Figure 28.24a gives an example of the file for their corre-
sponding graph. Your program prompts the user to enter the name of the file,
reads data from the file, and displays the graph on a pane using GraphView, as
shown in Figure 28.24b.

FIGURE 28.24 The program reads the information about the graph and displays it visually.

(a) (b)

File
7
0 30 30 1 2
1 90 30 0 3 6
2 30 90 0 3 4
3 90 90 1 2 4 5
4 30 150 2 3 5
5 90 150 3 4 6
6 130 90 1 5

0

2

4

1

3 6

5

Programming Exercises 1059

**28.21 (Display sets of connected circles) Modify Listing 28.10,
ConnectedCircles.java, to display sets of connected circles in different colors.
That is, if two circles are connected, they are displayed using the same color;
otherwise, they are not in same color, as shown in Figure 28.25. (Hint: See
Programming Exercise 28.4.)

*28.22 (Move a circle) Modify Listing 28.10, ConnectedCircles.java, to enable the
user to drag and move a circle.

**28.23 (Connected rectangles) Listing 28.10, ConnectedCircles.java, allows the user
to create circles and determine whether they are connected. Rewrite the pro-
gram for rectangles. The program lets the user create a rectangle by clicking a
mouse in a blank area that is not currently covered by a rectangle. As the rec-
tangles are added, the rectangles are repainted as filled if they are connected or
are unfilled otherwise, as shown in Figure 28.25b–c.

*28.24 (Remove a circle) Modify Listing 28.10, ConnectedCircles.java, to enable the
user to remove a circle when the mouse is clicked inside the circle.

FIGURE 28.25 (a) Connected circles are displayed in the same color. (b) Rectangles are not filled with a color if they are
not connected. (c) Rectangles are filled with a color if they are connected.

(a) (b) (c)

This page intentionally left blank

WEIGHTED GRAPHS
AND APPLICATIONS

Objectives
■ To represent weighted edges using adjacency matrices and adjacency

lists (§29.2).

■ To model weighted graphs using the WeightedGraph class that
extends the AbstractGraph class (§29.3).

■ To design and implement the algorithm for finding a minimum
spanning tree (§29.4).

■ To define the MST class that extends the Tree class (§29.4).

■ To design and implement the algorithm for finding single-source
shortest paths (§29.5).

■ To define the ShortestPathTree class that extends the Tree class
(§29.5).

■ To solve the weighted nine tails problem using the shortest-path
algorithm (§29.6).

CHAPTER

29

1062 Chapter 29 Weighted Graphs and Applications

29.1 Introduction
A graph is a weighted graph if each edge is assigned a weight. Weighted graphs have
many practical applications.

Figure 28.1 assumes that the graph represents the number of flights among cities. You
can apply the BFS to find the fewest number of flights between two cities. Assume that
the edges represent the driving distances among the cities as shown in Figure 29.1. How
do you find the minimal total distances for connecting all cities? How do you find the
shortest path between two cities? This chapter will address these questions. The former
is known as the minimum spanning tree (MST) problem and the latter as the shortest path
problem.

Key
Point

problem

FIGURE 29.1 The graph models the distances among the cities.

Seattle (0)

San Francisco (1)

Los Angeles (2)

Dallas (10)

Houston (11)

Atlanta (8)

New York (7)

Boston (6)

Chicago (5)

Denver (3)

807

381

1267

2097

1331

1663

496

239

1187

810

661

781

864

888

214

1435

1003

533
599

1260

983

787

1015
Kansas City (4)

Miami (9)

The preceding chapter introduced the concept of graphs. You learned how to represent
edges using edge arrays, edge lists, adjacency matrices, and adjacency lists, and how to model
a graph using the Graph interface, the AbstractGraph class, and the UnweightedGraph
class. The preceding chapter also introduced two important techniques for traversing graphs:
depth-first search and breadth-first search, and applied traversal to solve practical prob-
lems. This chapter will introduce weighted graphs. You will learn the algorithm for finding
a minimum spanning tree in Section 29.4 and the algorithm for finding shortest paths in
Section 29.5.

Pedagogical Note
Before we introduce the algorithms and applications for weighted graphs, it is helpful to

get acquainted with weighted graphs using the GUI interactive tool at www.cs.armstrong

.edu/liang/animation/WeightedGraphLearningTool.html, as shown in Figure 29.2. The tool

allows you to enter vertices, specify edges and their weights, view the graph, and find

an MST and all shortest paths from a single source, as shown in Figure 29.2.

weighted graph learning tool

on Companion Website

www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html
www.cs.armstrong.edu/liang/animation/WeightedGraphLearningTool.html

29.2 Representing Weighted Graphs 1063

29.2 Representing Weighted Graphs
Weighted edges can be stored in adjacency lists.

There are two types of weighted graphs: vertex weighted and edge weighted. In a vertex-
weighted graph, each vertex is assigned a weight. In an edge-weighted graph, each edge
is assigned a weight. Of the two types, edge-weighted graphs have more applications. This
chapter considers edge-weighted graphs.

Weighted graphs can be represented in the same way as unweighted graphs, except that
you have to represent the weights on the edges. As with unweighted graphs, the vertices in
weighted graphs can be stored in an array. This section introduces three representations for
the edges in weighted graphs.

29.2.1 Representing Weighted Edges: Edge Array
Weighted edges can be represented using a two-dimensional array. For example, you can
store all the edges in the graph in Figure 29.3a using the array in Figure 29.3b.

Note
Weights can be of any type: Integer, Double, BigDecimal, and so on. You

can use a two-dimensional array of the Object type to represent weighted edges as

follows:

Object[][] edges = {
 {new Integer(0), new Integer(1), new SomeTypeForWeight(2)},
 {new Integer(0), new Integer(3), new SomeTypeForWeight(8)},
 ...
};

Key
Point

vertex-weighted graph

edge-weighted graph

FIGURE 29.2 You can use the tool to create a weighted graph with mouse gestures and show the MST and shortest paths.

1064 Chapter 29 Weighted Graphs and Applications

29.2.2 Weighted Adjacency Matrices
Assume that the graph has n vertices. You can use a two-dimensional n * n matrix, say
weights, to represent the weights on edges. weights[i][j] represents the weight on
edge (i, j). If vertices i and j are not connected, weights[i][j] is null. For example,
the weights in the graph in Figure 29.3a can be represented using an adjacency matrix as
follows:

Integer[][] adjacencyMatrix = {
 {null, 2, null, 8, null},
 {2, null, 7, 3, null},
 {null, 7, null, 4, 5},
 {8, 3, 4, null, 6},
 {null, null, 5, 6, null}
};

29.2.3 Adjacency Lists
Another way to represent the edges is to define edges as objects. The AbstractGraph.Edge
class was defined to represent an unweighted edge in Listing 28.3. For weighted edges, we
define the WeightedEdge class as shown in Listing 29.1.

LISTING 29.1 WeightedEdge.java
 1 public class WeightedEdge extends AbstractGraph.Edge
 2 implements Comparable<WeightedEdge> {
 3 public double weight; // The weight on edge (u, v)
 4
 5 /** Create a weighted edge on (u, v) */
 6 public WeightedEdge(int u, int v, double weight) {
 7 super(u, v);
 8 this.weight = weight;
 9 }
10
11 @Override /** Compare two edges on weights */
12 public int compareTo(WeightedEdge edge) {
13 if (weight > edge.weight)
14 return 1;
15 else if (weight == edge.weight)
16 return 0;
17 else

18 return -1;
19 }
20 }

edge weight

constructor

compare edges

0 1 2 3 4

0 null 2 null 8 null

1 2 null 7 3 null

2 null 7 null 4 5

3 8 3 4 null 6

4 null null 5 6 null

FIGURE 29.3 Each edge is assigned a weight in an edge-weighted graph.

(a) (b)

int[][] edges = {{0, 1, 2}, {0, 3, 8},

{1, 0, 2}, {1, 2, 7}, {1, 3, 3},

{2, 1, 7}, {2, 3, 4}, {2, 4, 5},

{3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},

{4, 2, 5}, {4, 3, 6}

};

weightvertex

42

7

8

3

6

5

0

1 2

3 4

29.3 The WeightedGraph Class 1065

AbstractGraph.Edge is an inner class defined in the AbstractGraph class. It represents
an edge from vertex u to v. WeightedEdge extends AbstractGraph.Edge with a new
property weight.

To create a WeightedEdge object, use new WeightedEdge(i, j, w), where w is the
weight on edge (i, j). Often you need to compare the weights of the edges. For this reason,
the WeightedEdge class implements the Comparable interface.

For unweighted graphs, we use adjacency lists to represent edges. For weighted graphs, we
still use adjacency lists, the adjacency lists for the vertices in the graph in Figure 29.3a can be
represented as follows:

java.util.List<WeightedEdge>[] list = new java.util.List[5];

WeightedEdge(0, 1, 2) WeightedEdge(0, 3, 8)

WeightedEdge(1, 0, 2) WeightedEdge(1, 2, 3) WeightedEdge(1, 2, 7)

WeightedEdge(2, 3, 4) WeightedEdge(2, 4, 5) WeightedEdge(2, 1, 7)

WeightedEdge(3, 1, 3) WeightedEdge(3, 2, 4) WeightedEdge(3, 4, 6)

WeightedEdge(4, 2, 5) WeightedEdge(4, 3, 6)

WeightedEdge(3, 0, 8)

list[0]

list[1]

list[2]

list[3]

list[4]

list[i] stores all edges adjacent to vertex i.
For flexibility, we will use an array list rather than a fixed-sized array to represent list

as follows:

List<List<WeightedEdge>> list = new java.util.ArrayList<>();

29.1 For the code WeightedEdge edge = new WeightedEdge(1, 2, 3.5), what is
edge.u, edge.v, and edge.weight?

29.2 What is the output of the following code?

 List<WeightedEdge> list = new ArrayList<>();
 list.add(new WeightedEdge(1, 2, 3.5));
 list.add(new WeightedEdge(2, 3, 4.5));
 WeightedEdge e = java.util.Collections.max(list);
 System.out.println(e.u);
 System.out.println(e.v);
 System.out.println(e.weight);

29.3 The WeightedGraph Class
The WeightedGraph class extends AbstractGraph.

The preceding chapter designed the Graph interface, the AbstractGraph class, and
the UnweightedGraph class for modeling graphs. Following this pattern, we design
WeightedGraph as a subclass of AbstractGraph, as shown in Figure 29.4.

WeightedGraph simply extends AbstractGraph with five constructors for creating con-
crete WeightedGraph instances. WeightedGraph inherits all methods from AbstractGraph,
overrides the clear and addVertex methods, implements a new addEdge method for add-
ing a weighted edge, and also introduces new methods for obtaining minimum spanning trees
and for finding all single-source shortest paths. Minimum spanning trees and shortest paths will
be introduced in Sections 29.4 and 29.5, respectively.

Listing 29.2 implements WeightedGraph. Edge adjacency lists (lines 38–63) are used
internally to store adjacent edges for a vertex. When a WeightedGraph is constructed, its edge

✓Point✓Check

Key
Point

1066 Chapter 29 Weighted Graphs and Applications

adjacency lists are created (lines 47 and 57). The methods getMinimumSpanningTree()
(lines 99–138) and getShortestPath() (lines 156–197) will be introduced in upcoming
sections.

LISTING 29.2 WeightedGraph.java
 1 import java.util.*;
 2
 3 public class WeightedGraph<V> extends AbstractGraph<V> {
 4 /** Construct an empty */
 5 public WeightedGraph() {
 6 }
 7
 8 /** Construct a WeightedGraph from vertices and edged in arrays */
 9 public WeightedGraph(V[] vertices, int[][] edges) {
 10 createWeightedGraph(java.util.Arrays.asList(vertices), edges);
 11 }
 12
 13 /** Construct a WeightedGraph from vertices and edges in list */
 14 public WeightedGraph(int[][] edges, int numberOfVertices) {
 15 List<V> vertices = new ArrayList<>();
 16 for (int i = 0; i < numberOfVertices; i++)
 17 vertices.add((V)(new Integer(i)));
 18
 19 createWeightedGraph(vertices, edges);
 20 }
 21

no-arg constructor

constructor

constructor

FIGURE 29.4 WeightedGraph extends AbstractGraph.

AbstractGraph<V>

WeightedGraph<V>

+WeightedGraph()

+WeightedGraph(vertices: V[], edges: int[][])

+WeightedGraph(vertices: List<V>, edges:
 List<WeightedEdge>)

+WeightedGraph(edges: int[][],
 numberOfVertices: int)

+WeightedGraph(edges: List<WeightedEdge>,
 numberOfVertices: int)

+printWeightedEdges(): void

+getWeight(int u, int v): double

+addEdges(u: int, v: int, weight: double): void

+getMinimumSpanningTree(): MST

+getMinimumSpanningTree(index: int): MST

+getShortestPath(index: int): ShortestPathTree

Constructs an empty graph.

Constructs a weighted graph with the specified edges and the
 number of vertices in arrays.

Constructs a weighted graph with the specified edges and the
 number of vertices.

Constructs a weighted graph with the specified edges in an
 array and the number of vertices.

Constructs a weighted graph with the specified edges in a list
 and the number of vertices.

Displays all edges and weights.

Returns the weight on the edge from u to v. Throw an
 exception if the edge does not exist.

Adds a weighted edge to the graph and throws an
IllegalArgumentException if u, v, or w is invalid. If
(u, v) is already in the graph, the new weight is set.

Returns a minimum spanning tree starting from vertex 0.

Returns a minimum spanning tree starting from vertex v.

Returns all single-source shortest paths.

«interface»
Graph<V>

29.3 The WeightedGraph Class 1067

 22 /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */
 23 public WeightedGraph(List<V> vertices, List<WeightedEdge> edges) {
 24 createWeightedGraph(vertices, edges);
 25 }
 26
 27 /** Construct a WeightedGraph from vertices 0, 1, and edge array */
 28 public WeightedGraph(List<WeightedEdge> edges,
 29 int numberOfVertices) {
 30 List<V> vertices = new ArrayList<>();
 31 for (int i = 0; i < numberOfVertices; i++)
 32 vertices.add((V)(new Integer(i)));
 33
 34 createWeightedGraph(vertices, edges);
 35 }
 36
 37 /** Create adjacency lists from edge arrays */
 38 private void createWeightedGraph(List<V> vertices, int[][] edges) {
 39 this.vertices = vertices;
 40
 41 for (int i = 0; i < vertices.size(); i++) {
 42 neighbors.add(new ArrayList<Edge>()); // Create a list for vertices
 43 }
 44
 45 for (int i = 0; i < edges.length; i++) {
 46 neighbors.get(edges[i][0]).add(
 47 new WeightedEdge(edges[i][0], edges[i][1], edges[i][2]));
 48 }
 49 }
 50
 51 /** Create adjacency lists from edge lists */
 52 private void createWeightedGraph(
 53 List<V> vertices, List<WeightedEdge> edges) {
 54 this.vertices = vertices;
 55
 56 for (int i = 0; i < vertices.size(); i++) {
 57 neighbors.add(new ArrayList<Edge>()); // Create a list for vertices
 58 }
 59
 60 for (WeightedEdge edge: edges) {
 61 neighbors.get(edge.u).add(edge); // Add an edge into the list
 62 }
 63 }
 64
 65 /** Return the weight on the edge (u, v) */
 66 public double getWeight(int u, int v) throws Exception {
 67 for (Edge edge : neighbors.get(u)) {
 68 if (edge.v == v) {
 69 return ((WeightedEdge)edge).weight;
 70 }
 71 }
 72
 73 throw new Exception("Edge does not exit");
 74 }
 75
 76 /** Display edges with weights */
 77 public void printWeightedEdges() {
 78 for (int i = 0; i < getSize(); i++) {
 79 System.out.print(getVertex(i) + " (" + i + "): ");
 80 for (Edge edge : neighbors.get(i)) {
 81 System.out.print("(" + edge.u +

constructor

constructor

create list for vertices

create a weighted edge

create list for vertices

print edges

get edge weight

1068 Chapter 29 Weighted Graphs and Applications

 82 ", " + edge.v + ", " + ((WeightedEdge)edge).weight + ") ");
 83 }
 84 System.out.println();
 85 }
 86 }
 87
 88 /** Add edges to the weighted graph */
 89 public boolean addEdge(int u, int v, double weight) {
 90 return addEdge(new WeightedEdge(u, v, weight));
 91 }
 92
 93 /** Get a minimum spanning tree rooted at vertex 0 */
 94 public MST getMinimumSpanningTree() {
 95 return getMinimumSpanningTree(0);
 96 }
 97
 98 /** Get a minimum spanning tree rooted at a specified vertex */
 99 public MST getMinimumSpanningTree(int startingVertex) {
100 // cost[v] stores the cost by adding v to the tree
101 double[] cost = new double[getSize()];
102 for (int i = 0; i < cost.length; i++) {
103 cost[i] = Double.POSITIVE_INFINITY; // Initial cost
104 }
105 cost[startingVertex] = 0; // Cost of source is 0
106
107 int[] parent = new int[getSize()]; // Parent of a vertex
108 parent[startingVertex] = -1; // startingVertex is the root
109 double totalWeight = 0; // Total weight of the tree thus far
110
111 List<Integer> T = new ArrayList<>();
112
113 // Expand T
114 while (T.size() < getSize()) {
115 // Find smallest cost v in V - T
116 int u = -1; // Vertex to be determined
117 double currentMinCost = Double.POSITIVE_INFINITY;
118 for (int i = 0; i < getSize(); i++) {
119 if (!T.contains(i) && cost[i] < currentMinCost) {
120 currentMinCost = cost[i];
121 u = i;
122 }
123 }
124
125 T.add(u); // Add a new vertex to T
126 totalWeight += cost[u]; // Add cost[u] to the tree
127
128 // Adjust cost[v] for v that is adjacent to u and v in V - T
129 for (Edge e : neighbors.get(u)) {
130 if (!T.contains(e.v) && cost[e.v] > ((WeightedEdge)e).weight) {
131 cost[e.v] = ((WeightedEdge)e).weight;
132 parent[e.v] = u;
133 }
134 }
135 } // End of while
136
137 return new MST(startingVertex, parent, T, totalWeight);
138 }
139
140 /** MST is an inner class in WeightedGraph */
141 public class MST extends Tree {

add edge

get an MST
start from vertex 0

MST from a starting vertex

initialize cost

initialize parent

minimum spanning tree

exapnd MST
update total cost

vertex with smallest coust

add to tree

adjust cost

create an MST

MST inner class

29.3 The WeightedGraph Class 1069

142 private double totalWeight; // Total weight of all edges in the tree
143
144 public MST(int root, int[] parent, List<Integer> searchOrder,
145 double totalWeight) {
146 super(root, parent, searchOrder);
147 this.totalWeight = totalWeight;
148 }
149
150 public double getTotalWeight() {
151 return totalWeight;
152 }
153 }
154
155 /** Find single source shortest paths */
156 public ShortestPathTree getShortestPath(int sourceVertex) {
157 // cost[v] stores the cost of the path from v to the source
158 double[] cost = newdouble[getSize()];
159 for (int i = 0; i < cost.length; i++) {
160 cost[i] = Double.POSITIVE_INFINITY; // Initial cost set to infinity
161 }
162 cost[sourceVertex] = 0; // Cost of source is 0
163
164 // parent[v] stores the previous vertex of v in the path
165 int[] parent = newint[getSize()];
166 parent[sourceVertex] = -1; // The parent of source is set to -1
167
168 // T stores the vertices whose path found so far
169 List<Integer> T = new ArrayList<>();
170
171 // Expand T
172 while (T.size() < getSize()) {
173 // Find smallest cost v in V - T
174 int u = -1; // Vertex to be determined
175 double currentMinCost = Double.POSITIVE_INFINITY;
176 for (int i = 0; i < getSize(); i++) {
177 if (!T.contains(i) && cost[i] < currentMinCost) {
178 currentMinCost = cost[i];
179 u = i;
180 }
181 }
182
183 T.add(u); // Add a new vertex to T
184
185 // Adjust cost[v] for v that is adjacent to u and v in V - T
186 for (Edge e : neighbors.get(u)) {
187 if (!T.contains(e.v)
188 && cost[e.v] > cost[u] + ((WeightedEdge)e).weight) {
189 cost[e.v] = cost[u] + ((WeightedEdge)e).weight;
190 parent[e.v] = u;
191 }
192 }
193 } // End of while
194
195 // Create a ShortestPathTree
196 return new ShortestPathTree(sourceVertex, parent, T, cost);
197 }
198
199 /** ShortestPathTree is an inner class in WeightedGraph */
200 public class ShortestPathTree extends Tree {
201 private double[] cost; // cost[v] is the cost from v to source

total weight in tree

getShortestPath

initialize cost

shortest path tree

expand tree

vertex with smallest cost

add to T

adjust cost
adjust parent

create a tree

shortest path tree
cost

1070 Chapter 29 Weighted Graphs and Applications

202
203 /** Construct a path */
204 public ShortestPathTree(int source, int[] parent,
205 List<Integer> searchOrder, double[] cost) {
206 super(source, parent, searchOrder);
207 this.cost = cost;
208 }
209
210 /** Return the cost for a path from the root to vertex v */
211 public double getCost(int v) {
212 return cost[v];
213 }
214
215 /** Print paths from all vertices to the source */
216 public void printAllPaths() {
217 System.out.println("All shortest paths from " +
218 vertices.get(getRoot()) + " are:");
219 for (int i = 0; i < cost.length; i++) {
220 printPath(i); // Print a path from i to the source
221 System.out.println("(cost: " + cost[i] + ")"); // Path cost
222 }
223 }
224 }
225 }

The WeightedGraph class extends the AbstractGraph class (line 3). The properties
vertices and neighbors in AbstractGraph are inherited in WeightedGraph.
neighbors is a list. Each element is the list is another list that contains edges. For unweighted
graph, each edge is an instance of AbstractGraph.Edge. For a weighted graph, each edge
is an instance of WeightedEdge. WeightedEdge is a subtype of Edge. So you can add a
weighted edge into neighbors.get(i) for a weighted graph (line 47).

Listing 29.3 gives a test program that creates a graph for the one in Figure 29.1 and another
graph for the one in Figure 29.3a.

LISTING 29.3 TestWeightedGraph.java
 1 public class TestWeightedGraph {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
12 {3, 5, 1003},
13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
14 {4, 8, 864}, {4, 10, 496},
15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
16 {5, 6, 983}, {5, 7, 787},
17 {6, 5, 983}, {6, 7, 214},
18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
20 {8, 10, 781}, {8, 11, 810},
21 {9, 8, 661}, {9, 11, 1187},
22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}

constructor

get cost

print all paths

vertices

edges

29.3 The WeightedGraph Class 1071

24 };
25
26 WeightedGraph<String> graph1 =
27 new WeightedGraph<>(vertices, edges);
28 System.out.println("The number of vertices in graph1: "
29 + graph1.getSize());
30 System.out.println("The vertex with index 1 is "
31 + graph1.getVertex(1));
32 System.out.println("The index for Miami is " +
33 graph1.getIndex("Miami"));
34 System.out.println("The edges for graph1:");
35 graph1.printWeightedEdges();
36
37 edges = new int[][] {
38 {0, 1, 2}, {0, 3, 8},
39 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
40 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
41 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
42 {4, 2, 5}, {4, 3, 6}
43 };
44 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
45 System.out.println("\nThe edges for graph2:");
46 graph2.printWeightedEdges();
47 }
48 }

create graph

print edges

edges

create graph

print edges

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Vertex 0: (0, 1, 807) (0, 3, 1331) (0, 5, 2097)
Vertex 1: (1, 2, 381) (1, 0, 807) (1, 3, 1267)
Vertex 2: (2, 1, 381) (2, 3, 1015) (2, 4, 1663) (2, 10, 1435)
Vertex 3: (3, 4, 599) (3, 5, 1003) (3, 1, 1267)
 (3, 0, 1331) (3, 2, 1015)
Vertex 4: (4, 10, 496) (4, 8, 864) (4, 5, 533) (4, 2, 1663)
 (4, 7, 1260) (4, 3, 599)
Vertex 5: (5, 4, 533) (5, 7, 787) (5, 3, 1003)
 (5, 0, 2097) (5, 6, 983)
Vertex 6: (6, 7, 214) (6, 5, 983)
Vertex 7: (7, 6, 214) (7, 8, 888) (7, 5, 787) (7, 4, 1260)
Vertex 8: (8, 9, 661) (8, 10, 781) (8, 4, 864)
 (8, 7, 888) (8, 11, 810)
Vertex 9: (9, 8, 661) (9, 11, 1187)
Vertex 10: (10, 11, 239) (10, 4, 496) (10, 8, 781) (10, 2, 1435)
Vertex 11: (11, 10, 239) (11, 9, 1187) (11, 8, 810)

The edges for graph2:
Vertex 0: (0, 1, 2) (0, 3, 8)
Vertex 1: (1, 0, 2) (1, 2, 7) (1, 3, 3)
Vertex 2: (2, 3, 4) (2, 1, 7) (2, 4, 5)
Vertex 3: (3, 1, 3) (3, 4, 6) (3, 2, 4) (3, 0, 8)
Vertex 4: (4, 2, 5) (4, 3, 6)

The program creates graph1 for the graph in Figure 29.1 in lines 3–27. The vertices for
graph1 are defined in lines 3–5. The edges for graph1 are defined in lines 7–24. The edges
are represented using a two-dimensional array. For each row i in the array, edges[i][0]
and edges[i][1] indicate that there is an edge from vertex edges[i][0] to vertex

1072 Chapter 29 Weighted Graphs and Applications

edges[i][1] and the weight for the edge is edges[i][2]. For example, {0, 1, 807}
(line 8) represents the edge from vertex 0 (edges[0][0]) to vertex 1 (edges[0][1])
with weight 807 (edges[0][2]). {0, 5, 2097} (line 8) represents the edge from ver-
tex 0 (edges[2][0]) to vertex 5 (edges[2][1]) with weight 2097 (edges[2][2]).
Line 35 invokes the printWeightedEdges() method on graph1 to display all edges
in graph1.

The program creates the edges for graph2 for the graph in Figure 29.3a in lines 37–44.
Line 46 invokes the printWeightedEdges() method on graph2 to display all edges in
graph2.

29.3 If a priority queue is used to store weighted edges, what is the output of the following
code?

PriorityQueue<WeightedEdge> q = new PriorityQueue<>();
q.offer(new WeightedEdge(1, 2, 3.5));
q.offer(new WeightedEdge(1, 6, 6.5));
q.offer(new WeightedEdge(1, 7, 1.5));
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);

29.4 If a priority queue is used to store weighted edges, what is wrong in the following
code? Fix it and show the output.

List<PriorityQueue<WeightedEdge>> queues = new ArrayList<>();
queues.get(0).offer(new WeightedEdge(0, 2, 3.5));
queues.get(0).offer(new WeightedEdge(0, 6, 6.5));
queues.get(0).offer(new WeightedEdge(0, 7, 1.5));
queues.get(1).offer(new WeightedEdge(1, 0, 3.5));
queues.get(1).offer(new WeightedEdge(1, 5, 8.5));
queues.get(1).offer(new WeightedEdge(1, 8, 19.5));
System.out.println(queues.get(0).peek()
 .compareTo(queues.get(1).peek()));

29.4 Minimum Spanning Trees
A minimum spanning tree of a graph is a spanning tree with the minimum total
weights.

A graph may have many spanning trees. Suppose that the edges are weighted. A minimum span-
ning tree has the minimum total weights. For example, the trees in Figures 29.5b, 29.5c, 29.5d are
spanning trees for the graph in Figure 29.5a. The trees in Figures 29.3c and 29.3d are minimum
spanning trees.

The problem of finding a minimum spanning tree has many applications. Consider a com-
pany with branches in many cities. The company wants to lease telephone lines to connect all
the branches together. The phone company charges different amounts of money to connect
different pairs of cities. There are many ways to connect all branches together. The cheapest
way is to find a spanning tree with the minimum total rates.

29.4.1 Minimum Spanning Tree Algorithms
How do you find a minimum spanning tree? There are several well-known algorithms for
doing so. This section introduces Prim’s algorithm. Prim’s algorithm starts with a spanning
tree T that contains an arbitrary vertex. The algorithm expands the tree by repeatedly adding a
vertex with the lowest-cost edge incident to a vertex already in the tree. Prim’s algorithm is a
greedy algorithm, and it is described in Listing 29.4.

✓Point✓Check

Key
Point

minimum spanning tree

Prim’s algorithm

29.4 Minimum Spanning Trees 1073

LISTING 29.4 Prim’s Minimum Spanning Tree Algorithm
 Input: A connected undirected weighted G = (V, E) with non-negative weights
 Output: MST (a minimum spanning tree)

 1 MST minimumSpanningTree() {
 2 Let T be a set for the vertices in the spanning tree;
 3 Initially, add the starting vertex to T;
 4
 5 while (size of T < n) {
 6 Find u in T and v in V – T with the smallest weight
 7 on the edge (u, v), as shown in Figure 29.6;
 8 Add v to T and set parent[v] = u;
 9 }
10 }

add initial vertex

more vertices?
find a vertex

add to tree

FIGURE 29.5 The trees in (c) and (d) are minimum spanning trees of the graph in (a).

(d)(c)

(b)(a)

56

10

5

8

7

7

12

7

10

8

8

5

5

10

7 7
8

5

5

6

7 7 8

5

5

6
7

7 8

FIGURE 29.6 Find a vertex u in T that connects a vertex v in V – T with the smallest weight.

u

v

T

V – T
Vertices already in
the spanning tree

Vertices not currently in
the spanning tree

The algorithm starts by adding the starting vertex into T. It then continuously adds a vertex
(say v) from V – T into T. v is the vertex that is adjacent to the vertex in T with the smallest
weight on the edge. For example, there are five edges connecting vertices in T and V – T as example

1074 Chapter 29 Weighted Graphs and Applications

shown in Figure 29.6, and (u, v) is the one with the smallest weight. Consider the graph in
Figure 29.7. The algorithm adds the vertices to T in this order:

1. Add vertex 0 to T.

2. Add vertex 5 to T, since Edge(5, 0, 5) has the smallest weight among all edges inci-
dent to a vertex in T, as shown in Figure 29.7a. The arrow line from 0 to 5 indicates that
0 is the parent of 5.

3. Add vertex 1 to T, since Edge(1, 0, 6) has the smallest weight among all edges inci-
dent to a vertex in T, as shown in Figure 29.7b.

4. Add vertex 6 to T, since Edge(6, 1, 7) has the smallest weight among all edges inci-
dent to a vertex in T, as shown in Figure 29.7c.

FIGURE 29.7 The adjacent vertices with the smallest weight are added successively to T.

(b)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(c)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(e)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(f)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1
T

T

T

T

T

T

(a)

5 4

5

12

77 8

6 3

2

0

56

10

8

7

10

8

1

(d)

29.4 Minimum Spanning Trees 1075

5. Add vertex 2 to T, since Edge(2, 6, 5) has the smallest weight among all edges
incident to a vertex in T, as shown in Figure 29.7d.

6. Add vertex 4 to T, since Edge(4, 6, 7) has the smallest weight among all edges
incident to a vertex in T, as shown in Figure 29.7e.

7. Add vertex 3 to T, since Edge(3, 2, 8) has the smallest weight among all edges
incident to a vertex in T, as shown in Figure 29.7f.

Note
A minimum spanning tree is not unique. For example, both (c) and (d) in Figure 29.5

are minimum spanning trees for the graph in Figure 29.5a. However, if the weights are

distinct, the graph has a unique minimum spanning tree.

Note
Assume that the graph is connected and undirected. If a graph is not connected or

directed, the algorithm will not work. You can modify the algorithm to find a spanning

forest for any undirected graph. A spanning forest is a graph in which each connected

component is a tree.

29.4.2 Refining Prim’s MST Algorithm
To make it easy to identify the next vertex to add into the tree, we use cost[v] to store the
cost of adding a vertex v to the spanning tree T. Initially cost[s] is 0 for a starting vertex
and assign infinity to cost[v] for all other vertices. The algorithm repeatedly finds a vertex
u in V – T with the smallest cost[u] and moves u to T. The refined version of the alogrithm
is given in Listing 29.5.

LISTING 29.5 Refined Version of Prim’s Algorithm
Input: A connected undirected weighted G = (V, E) with non-negative weights
Output: a minimum spanning tree with the starting vertex s as the root

 1 MST getMinimumSpanngingTree(s) {
 2 Let T be a set that contains the vertices in the spanning tree;
 3 Initially T is empty;
 4 Set cost[s] = 0; and cost[v] = infinity for all other vertices in V;
 5
 6 while (size of T < n) {
 7 Find u not in T with the smallest cost[u];
 8 Add u to T;
 9 for (each v not in T and (u, v) in E)
10 if (cost[v] > w(u, v)) { // Adjust cost[v]
11 cost[v] = w(u, v); parent[v] = u;
12 }
13 }
14 }

29.4.3 Implementation of the MST Algorithm
The getMinimumSpanningTree(int v) method is defined in the WeightedGraph class.
It returns an instance of the MST class, as shown in Figure 29.4. The MST class is defined
as an inner class in the WeightedGraph class, which extends the Tree class, as shown in
Figure 29.8. The Tree class was shown in Figure 28.11. The MST class was implemented in
lines 141–153 in Listing 29.2.

unique tree?

connected and undirected

find next vertex
add a vertex to T

adjust cost[v]

getMinimumSpanningTree()

1076 Chapter 29 Weighted Graphs and Applications

The refined version of the Prim’s algoruthm greatly simplifies the implementation. The
getMinimumSpanningTree method was implemented using the refined version of the
Prim’s algorithm in lines 99–138 in Listing 29.2. The getMinimumSpanningTree(int
startingVertex) method sets cost[startingVertex] to 0 (line 105) and cost[v] to
infinity for all other verties (lines 102–104). The parent of startingVertex is set to -1 (line
108). T is a list that stores the vertices added into the spanning tree (line 111). We use a list for
T rather than a set in order to record the order of the vertices added to T.

Initially, T is empty. To expand T, the method performs the following operations:

1. Find the vertex u with the smallest cost[u] (lines 118–123 and add it into T (line 125).

2. After adding u in T, update cost[v] and parent[v] for each v adjacent to u in V-T if
cost[v] > w(u, v) (lines 129–134).

After a new vertex is added to T, totalWeight is updated (line 126). Once all vertices are
added to T, an instance of MST is created (line 137). Note that the method will not work if the
graph is not connected. However, you can modify it to obtain a partial MST.

The MST class extends the Tree class (line 141). To create an instance of MST, pass
root, parent, T, and totalWeight (lines 144-145). The data fields root, parent,
and searchOrder are defined in the Tree class, which is an inner class defined in
AbstractGraph.

Note that testing whether a vertex i is in T by invoking T.conatins(i) takes O(n) time,
since T is a list. Therefore, the overall time complexity for this implemention is O(n3). Inter-
ested readers may see Programming Exercise 29.20 for improving the implementation and
reduce the complexity to O(n2).

Listing 29.6 gives a test program that displays minimum spanning trees for the graph in
Figure 29.1 and the graph in Figure 29.3a, respectively.

LISTING 29.6 TestMinimumSpanningTree.java
 1 public class TestMinimumSpanningTree {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},

time complexity

create vertices

create edges

FIGURE 29.8 The MST class extends the Tree class.

AbstractGraph.Tree

WeightedGraph.MST

-totalWeight: int

+MST(root: int, parent: int[], searchOrder:
 List<Integer> totalWeight: int)

+getTotalWeight(): int

Total weight of the tree.

Constructs an MST with the specified root, parent array,
searchOrder, and total weight for the tree.

Returns the totalWeight of the tree.

29.4 Minimum Spanning Trees 1077

12 {3, 5, 1003},
13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
14 {4, 8, 864}, {4, 10, 496},
15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
16 {5, 6, 983}, {5, 7, 787},
17 {6, 5, 983}, {6, 7, 214},
18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
20 {8, 10, 781}, {8, 11, 810},
21 {9, 8, 661}, {9, 11, 1187},
22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
24 };
25
26 WeightedGraph<String> graph1 =
27 new WeightedGraph<>(vertices, edges);
28 WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
29 System.out.println("Total weight is " + tree1.getTotalWeight());
30 tree1.printTree();
31
32 edges = new int[][]{
33 {0, 1, 2}, {0, 3, 8},
34 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
35 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
36 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
37 {4, 2, 5}, {4, 3, 6}
38 };
39
40 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
41 WeightedGraph<Integer>.MST tree2 =
42 graph2.getMinimumSpanningTree(1);
43 System.out.println("\nTotal weight is " + tree2.getTotalWeight());
44 tree2.printTree();
45 }
46 }

create graph1

MST for graph1
total weight

print tree

create edges

create graph2

MST for graph2
total weight
print tree

Total weight is 6513.0
Root is: Seattle
Edges: (Seattle, San Francisco) (San Francisco, Los Angeles)
 (Los Angeles, Denver) (Denver, Kansas City) (Kansas City, Chicago)
 (New York, Boston) (Chicago, New York) (Dallas, Atlanta)
 (Atlanta, Miami) (Kansas City, Dallas) (Dallas, Houston)

Total weight is 14.0
Root is: 1
Edges: (1, 0) (3, 2) (1, 3) (2, 4)

The program creates a weighted graph for Figure 29.1 in line 27. It then invokes
getMinimumSpanningTree() (line 28) to return an MST that represents a minimum span-
ning tree for the graph. Invoking printTree() (line 30) on the MST object displays the
edges in the tree. Note that MST is a subclass of Tree. The printTree() method is defined
in the Tree class.

The graphical illustration of the minimum spanning tree is shown in Figure 29.9. The ver-
tices are added to the tree in this order: Seattle, San Francisco, Los Angeles, Denver, Kansas
City, Dallas, Houston, Chicago, New York, Boston, Atlanta, and Miami.

graphical illustration

1078 Chapter 29 Weighted Graphs and Applications

29.5 Find a minimum spanning tree for the following graph.✓Point✓Check
FIGURE 29.9 The edges in a minimum spanning tree for the cities are highlighted.

Seattle

Los Angeles

Denver

Chicago

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

San Francisco
Kansas City

2

1

3

4

5

7

8

10

11

9

6

5 4

5

2

77 8

6 3

2

0

75

10

2

7

10

8

1

29.6 Is a minimum spanning tree unique if all edges have different weights?

29.7 If you use an adjacency matrix to represent weighted edges, what will be the time
complexity for Prim’s algorithm?

29.8 What happens to the getMinimumSpanningTree() method in WeightedGraph
if the graph is not connected? Verify your answer by writing a test program that cre-
ates an unconnected graph and invokes the getMinimumSpanningTree() method.
How do you fix the problem by obtaining a partial MST?

29.5 Finding Shortest Paths
The shortest path between two vertices is a path with the minimum total weights.

Given a graph with nonnegative weights on the edges, a well-known algorithm for finding a
shortest path between two vertices was discovered by Edsger Dijkstra, a Dutch computer sci-
entist. In order to find a shortest path from vertex s to vertex v, Dijkstra’s algorithm finds the

Key
Point

shortest path

Dijkstra’s algorithm

29.5 Finding Shortest Paths 1079

shortest path from s to all vertices. So Dijkstra’s algorithm is known as a single-source shortest
path algorithm. The algorithm uses cost[v] to store the cost of a shortest path from vertex v to
the source vertex s. cost[s] is 0. Initially assign infinity to cost[v] for all other vertices. The
algorithm repeatedly finds a vertex u in V – T with the smallest cost[u] and moves u to T.

The algorithm is described in Listing 29.7.

LISTING 29.7 Dijkstra’s Single-Source Shortest-Path
Algorithm
Input: a graph G = (V, E) with non-negative weights
Output: a shortest path tree with the source vertex s as the root

 1 ShortestPathTree getShortestPath(s) {
 2 Let T be a set that contains the vertices whose
 3 paths to s are known; Initially T is empty;
 4 Set cost[s] = 0; and cost[v] = infinity for all other vertices in V;
 5
 6 while (size of T < n) {
 7 Find u not in T with the smallest cost[u];
 8 Add u to T;
 9 for (each v not in T and (u, v) in E)
10 if (cost[v] > cost[u] + w(u, v)) {
11 cost[v] = cost[u] + w(u, v); parent[v] = u;
12 }
13 }
14 }

This algorithm is very similar to Prim’s for finding a minimum spanning tree. Both algorithms
divide the vertices into two sets: T and V - T. In the case of Prim’s algorithm, set T contains
the vertices that are already added to the tree. In the case of Dijkstra’s, set T contains the
vertices whose shortest paths to the source have been found. Both algorithms repeatedly find
a vertex from V – T and add it to T. In the case of Prim’s algorithm, the vertex is adjacent
to some vertex in the set with the minimum weight on the edge. In Dijkstra’s algorithm, the
vertex is adjacent to some vertex in the set with the minimum total cost to the source.

The algorithm starts by setting cost[s] to 0 (line 4), sets cost[v] to infinity for all other
vertices. It then continuously adds a vertex (say u) from V – T into T with smallest cost[u]
(lines 7–8), as shown in Figure 29.10a. After adding u to T, the algorithm updates cost[v]
and parent[v] for each v not in T if (u, v) is in T and cost[v] > cost[u] + w(u, v)
(lines 10–11).

single-source shortest path

find next vertex
add a vertex to T

adjust cost[v]

FIGURE 29.10 (a) Find a vertex u in V – T with the smallest cost[u]. (b) Update cost[v] for v in V – T and v is
adjacent to u.

s

v1

v2

v3

u
T

V – T

T contains
vertices whose
shortest path to s
are known

V – T contains vertices whose shortest
path to s are not known yet.

s

v1

v2

v3

u

T

V – T

T contains
vertices whose
shortest path to s
are known

V – T contains vertices whose shortest
path to s are not known yet.

(a) Before moving u to T (b) After moving u to T

1080 Chapter 29 Weighted Graphs and Applications

Let us illustrate Dijkstra’s algorithm using the graph in Figure 29.11a. Suppose the source
vertex is 1. Therefore, cost[1] = 0 and the costs for all other vertices are initially ∞, as
shown in Figure 29.11b. We use the parent[i] to denote the parent of i in the path. For
convenience, set the parent of the source node to -1.

FIGURE 29.11 The algorithm will find all shortest paths from source vertex 1.

0 1 2 3 4 5 6

parent

–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

�� � � � �

Initially set T is empty. The algorithm selects the vertex with the smallest cost. In this case,
the vertex is 1. The algorithm adds 1 to T, as shown in Figure 29.12a. Afterwrads, it adjusts
the cost for each vertex adjacent to 1. The cost for vertices 2, 0, 6, and 3 and their parents are
now updated, as shown, as shown in Figure 29.12b.

FIGURE 29.12 Now vertex 1 is in set T.

0 1 2 3 4 5 6

parent

–1 11 1 1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1
T

0 1 2 3 4 5 6

08

cost

5 10 � � 9

Vertices 2, 0, 6, and 3 are adjacent to the source vertex, and vertex 2 is the one in V-T
with the smallest cost, so add 2 to T, as shown in Figure 29.13 and update the cost and
parent for vertices in V-T and adjacent to 2. cost[0] is now updated to 6 and its parent is
set to 2. The arrow line from 1 to 2 indicates that 1 is the parent of 2 after 2 is added into T.

29.5 Finding Shortest Paths 1081

Now T contains {1, 2}. Vertex 0 is the one in V-T with the smallest cost, so add 0 to T, as
shown in Figure 29.14 and update the cost and parent for vertices in V-T and adjacent to 0
if applicable. cost[5] is now updated to 10 and its parent is set to 0 and cost[6] is now
updated to 8 and its parent is set to 0.

FIGURE 29.13 Now vertices 1 and 2 are in set T.

0 1 2 3 4 5 6

parent

2 1 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

T 10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 � � 9

1

FIGURE 29.14 Now vertices {1, 2, 0} are in set T.

0 1 2 3 4 5 6

parent

2 1 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

T 10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 � 10 8

00

Now T contains {1, 2, 0}. Vertex 6 is the one in V-T with the smallest cost, so add 6 to T,
as shown in Figure 29.15 and update the cost and parent for vertices in V-T and adjacent to 6
if applicable.

FIGURE 29.15 Now vertices {1, 2, 0, 6} are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1T

0 1 2 3 4 5 6

0

cost

56 10 � 10 8

01 0

1082 Chapter 29 Weighted Graphs and Applications

Now T contains {1, 2, 0, 6}. Vertex 3 or 5 is is the one in V-T with the smallest cost. You
may add either 3 or 5 into T. Let us add 3 to T, as shown in Figure 29.16 and update the cost
and parent for vertices in V-T and adjacent to 3 if applicable. cost[4] is now updated to 18
and its parent is set to 3.

FIGURE 29.16 Now vertices {1, 2, 0, 6, 3} are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1

0 1 2 3 4 5 6

0

cost

56 10 18 10 8

01 03

T

FIGURE 29.17 Now vertices {1, 2, 0, 6, 3, 5} are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1T

0 1 2 3 4 5 6

0

cost

56 10 15 10 8

01 05

Now T contains {1, 2, 0, 6, 3}. Vertex 5 is the one in V-T with the smallest cost, so add 5
to T, as shown in Figure 29.17 and update the cost and parent for vertices in V-T and adjacent
to 5 if applicable. cost[4] is now updated to 10 and its parent is set to 5.

Now T contains {1, 2, 0, 6, 3, 5}. Vertex 4 is the one in V-T with the smallest cost, so add
4 to T, as shown in Figure 29.18.

As you can see, the algorithm essentially finds all shortest paths from a source ver-
tex, which produces a tree rooted at the source vertex. We call this tree a single-source
all-shortest-path tree (or simply a shortest-path tree). To model this tree, define a class
named ShortestPathTree that extends the Tree class, as shown in Figure 29.19.
ShortestPathTree is defined as an inner class in WeightedGraph in lines 200–224
in Listing 29.2.

ThegetShortestPath(int sourceVertex) method was implemented in lines 156–197
in Listing 29.2. The method sets cost[sourceVertex] to 0 (line 162) and cost[v] to

shortest-path tree

29.5 Finding Shortest Paths 1083

infinity for all other vertices (lines 159–161). The parent of sourceVertex is set to -1
(line 166). T is a list that stores the vertices added into the shortest path tree (line 169). We use
a list for T rather than a set in order to record the order of the vertices added to T.

Initially, T is empty. To expand T, the method performs the following operations:

1. Find the vertex u with the smallest cost[u] (lines 175–181) and add it into T (line 183).

2. After adding u in T, update cost[v] and parent[v] for each v adjacent to u in V-T if
cost[v] > cost[u] + w(u, v) (lines 186–192).

Once all vertices from s are added to T, an instance of ShortestPathTree is created
(line 196).

The ShortestPathTree class extends the Tree class (line 200). To create an instance
of ShortestPathTree, pass sourceVertex, parent, T, and cost (lines 204–205).
sourceVertex becomes the root in the tree. The data fields root,parent, and searchOrder
are defined in the Tree class, which is an inner class defined in AbstractGraph.

Note that testing whether a vertex i is in T by invoking T.conatins(i) takes O(n) time,
since T is a list. Therefore, the overall time complexity for this implemention is O(n3). Inter-
ested readers may see Programming Exercise 29.20 for improving the implementation and
reducing the complexity to O(n2).

Dijkstra’s algorithm is a combination of a greedy algorithm and dynamic programming. It
is a greedy algorithm in the sense that it always adds a new vertex that has the shortest distance
to the source. It stores the shortest distance of each known vertex to the source and uses it
later to avoid redundant computing, so Dijkstra’s algorithm also uses dynamic programming.

ShortestPathTree class

Dijkstra’s algorithm time
complexity

greedy and dynamic
programming

FIGURE 29.19 WeightedGraph.ShortestPathTree extends AbstractGraph.Tree.

WeightedGraph.ShortestPathTree

-cost: int[]

+ShortestPathTree(source: int, parent: int[],
searchOrder: List<Integer>, cost: int[])

+getCost(v: int): int

+printAllPaths(): void

cost[v] stores the cost for the path from the source to v.

Constructs a shortest path tree with the specified source,
parent array, searchOrder, and cost array.

Returns the cost for the path from the source to vertex v.

Displays all paths from the source.

AbstractGraph.Tree

FIGURE 29.18 Now vertices {1, 2, 6, 0, 3, 5, 4} are in set T.

0 1 2 3 4 5 6

parent

2 1–1

(b)(a)

0 5

1

4

72 5

6 4

3

2

55

10

8

9

8

8

1T

0 1 2 3 4 5 6

0

cost

56 10 15 10 8

01 05

1084 Chapter 29 Weighted Graphs and Applications

Pedagogical Note
Go to www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html to use a GUI inter-

active program to find a shortest path between any two cities, as shown in Figure 29.20.shortest path animation on

Companion Website

FIGURE 29.20 The animation tool displays a shortest path between two cities.

Listing 29.8 gives a test program that displays the shortest paths from Chicago to all other
cities in Figure 29.1 and the shortest paths from vertex 3 to all vertices for the graph in
Figure 29.3a, respectively.

LISTING 29.8 TestShortestPath.java
 1 public class TestShortestPath {
 2 public static void main(String[] args) {
 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
 12 {3, 5, 1003},
 13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
 14 {4, 8, 864}, {4, 10, 496},
 15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
 16 {5, 6, 983}, {5, 7, 787},
 17 {6, 5, 983}, {6, 7, 214},
 18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
 20 {8, 10, 781}, {8, 11, 810},
 21 {9, 8, 661}, {9, 11, 1187},

vertices

edges

www.cs.armstrong.edu/liang/animation/ShortestPathAnimation.html

29.5 Finding Shortest Paths 1085

 22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 24 };
 25
 26 WeightedGraph<String> graph1 =
 27 new WeightedGraph<>(vertices, edges);
 28 WeightedGraph<String>.ShortestPathTree tree1 =
 29 graph1.getShortestPath(graph1.getIndex("Chicago"));
 30 tree1.printAllPaths();
 31
 32 // Display shortest paths from Houston to Chicago
 33 System.out.print("Shortest path from Houston to Chicago: ");
 34 java.util.List<String> path
 35 = tree1.getPath(graph1.getIndex("Houston"));
 36 for (String s: path) {
 37 System.out.print(s + " ");
 38 }
 39
 40 edges = new int[][] {
 41 {0, 1, 2}, {0, 3, 8},
 42 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 43 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 44 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 45 {4, 2, 5}, {4, 3, 6}
 46 };
 47 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
 48 WeightedGraph<Integer>.ShortestPathTree tree2 =
 49 graph2.getShortestPath(3);
 50 System.out.println("\n");
 51 tree2.printAllPaths();
 52 }
 53 }

create graph1

shortest path

create edges

create graph2

print paths

All shortest paths from Chicago are:
A path from Chicago to Seattle: Chicago Seattle (cost: 2097.0)
A path from Chicago to San Francisco:
 Chicago Denver San Francisco (cost: 2270.0)
A path from Chicago to Los Angeles:
 Chicago Denver Los Angeles (cost: 2018.0)
A path from Chicago to Denver: Chicago Denver (cost: 1003.0)
A path from Chicago to Kansas City: Chicago Kansas City (cost: 533.0)
A path from Chicago to Chicago: Chicago (cost: 0.0)
A path from Chicago to Boston: Chicago Boston (cost: 983.0)
A path from Chicago to New York: Chicago New York (cost: 787.0)
A path from Chicago to Atlanta:
 Chicago Kansas City Atlanta (cost: 1397.0)
A path from Chicago to Miami:
 Chicago Kansas City Atlanta Miami (cost: 2058.0)
A path from Chicago to Dallas: Chicago Kansas City Dallas (cost: 1029.0)
A path from Chicago to Houston:
 Chicago Kansas City Dallas Houston (cost: 1268.0)
Shortest path from Houston to Chicago:
 Houston Dallas Kansas City Chicago

All shortest paths from 3 are:
A path from 3 to 0: 3 1 0 (cost: 5.0)
A path from 3 to 1: 3 1 (cost: 3.0)
A path from 3 to 2: 3 2 (cost: 4.0)
A path from 3 to 3: 3 (cost: 0.0)
A path from 3 to 4: 3 4 (cost: 6.0)

1086 Chapter 29 Weighted Graphs and Applications

The program creates a weighted graph for Figure 29.1 in line 27. It then invokes the
getShortestPath(graph1.getIndex("Chicago")) method to return a Path

object that contains all shortest paths from Chicago. Invoking printAllPaths() on the
ShortestPathTree object displays all the paths (line 30).

The graphical illustration of all shortest paths from Chicago is shown in Figure 29.21. The
shortest paths from Chicago to the cities are found in this order: Kansas City, New York,
Boston, Denver, Dallas, Houston, Atlanta, Los Angeles, Miami, Seattle, and San Francisco.

FIGURE 29.21 The shortest paths from Chicago to all other cities are highlighted.

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810
Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

1

2

3

4

6

7

8

9

11

10

5

29.9 Trace Dijkstra’s algorithm for finding shortest paths from Boston to all other cities in
Figure 29.1.

29.10 Is a shortest path between two vertices unique if all edges have different weights?

29.11 If you use an adjacency matrix to represent weighted edges, what would be the time
complexity for Dijkstra’s algorithm?

29.12 What happens to the getShortestPath() method in WeightedGraph if the source
vertex cannot reach all vertieces in the graph? Verify your answer by writing a test
program that creates an unconnected graph and invoke the getShortestPath()
method. How do you fix the problem by obtaining a partial shortest path tree?

29.13 If there is no path from vertex v to the source vertex, what will be cost[v]?

29.14 Assume that the graph is connected; will the getShortestPath method find the
shortest paths correctly if lines 159–161 in WeightedGraph are deleted?

29.6 Case Study: The Weighted Nine Tails Problem
The weighted nine tails problem can be reduced to the weighted shortest path problem.

Section 28.10 presented the nine tails problem and solved it using the BFS algorithm. This
section presents a variation of the problem and solves it using the shortest-path algorithm.

✓Point✓Check

Key
Point

29.6 Case Study: The Weighted Nine Tails Problem 1087

The nine tails problem is to find the minimum number of the moves that lead to all coins
facing down. Each move flips a head coin and its neighbors. The weighted nine tails problem
assigns the number of flips as a weight on each move. For example, you can change the coins
in Figure 29.22a to those in Figure 29.22b by flipping the first coin in the first row and its two
neighbors. Thus, the weight for this move is 3. You can change the coins in Figure 29.22c to
Figure 29.22d by flipping the center coin and its four neighbors. So the weight for this move is 5.

FIGURE 29.22 The weight for each move is the number of flips for the move.

H

T T T

H H

H H H

(a)

T

H T T

T H

H H H

(b)

T

H H T

T H

H H H

(c)

T

T T H

H H

H T H

(d)

The weighted nine tails problem can be reduced to finding a shortest path from a starting
node to the target node in an edge-weighted graph. The graph has 512 nodes. Create an edge
from node v to u if there is a move from node u to node v. Assign the number of flips to be
the weight of the edge.

Recall that in Section 28.10 we defined a class NineTailModel for modeling the nine
tails problem. We now define a new class named WeightedNineTailModel that extends
NineTailModel, as shown in Figure 29.23.

FIGURE 29.23 The WeightedNineTailModel class extends NineTailModel.

WeightedNineTailModel

+WeightedNineTailModel() Constructs a model for the weighted nine tails problem
 and obtains a ShortestPathTree rooted from the target
 node.

NineTailModel

#tree: AbstractGraph<Integer>.Tree A tree rooted at node 511.

+NineTailModel() Constructs a model for the nine tails problem and obtains the
 tree.

+getShortestPath(nodeIndex: int):
 List<Integer>

Returns a path from the specified node to the root. The path
 returned consists of the node labels in a list.
Returns a list of Edge objects for the graph.

Flips the node at the specified position and returns the index
 of the flipped node.

Returns a node consisting of nine characters of H’s and T’s.

Returns the index of the specified node.

Flips the node at the specified row and column.

Displays the node to the console.

+getNumberOfFlips(u: int): int Returns the number of flips from node u to the target
 node 511.

-getNumberOfFlips(u: int, v: int): int Returns the number of different cells between the two
 nodes.

-getEdges(): List<WeightedEdge> Gets the weighted edges for the weighted nine tail
 problem.

-getEdges():
 List<AbstractGraph.Edge>
+getNode(index: int): char[]

+getIndex(node: char[]): int
+getFlippedNode(node: char[],
 position: int): int

+flipACell(node: char[], row: int,
 column: int): void
+printNode(node: char[]): void

1088 Chapter 29 Weighted Graphs and Applications

The NineTailModel class creates a Graph and obtains a Tree rooted at the target node
511. WeightedNineTailModel is the same as NineTailModel except that it creates a
WeightedGraph and obtains a ShortestPathTree rooted at the target node 511. Weight-
edNineTailModel extends NineTailModel. The method getEdges() finds all edges in
the graph. The getNumberOfFlips(int u, int v) method returns the number of flips
from node u to node v. The getNumberOfFlips(int u) method returns the number of flips
from node u to the target node.

Listing 29.9 implements WeightedNineTailModel.

LISTING 29.9 WeightedNineTailModel.java
 1 import java.util.*;
 2
 3 public class WeightedNineTailModel extends NineTailModel {
 4 /** Construct a model */
 5 public WeightedNineTailModel() {
 6 // Create edges
 7 List<WeightedEdge> edges = getEdges();
 8
 9 // Create a graph
10 WeightedGraph<Integer> graph = new WeightedGraph<>(
11 edges, NUMBER_OF_NODES);
12
13 // Obtain a shortest path tree rooted at the target node
14 tree = graph.getShortestPath(511);
15 }
16
17 /** Create all edges for the graph */
18 private List<WeightedEdge> getEdges() {
19 // Store edges
20 List<WeightedEdge> edges = new ArrayList<>();
21
22 for (int u = 0; u < NUMBER_OF_NODES; u++) {
23 for (int k = 0; k < 9; k++) {
24 char[] node = getNode(u); // Get the node for vertex u
25 if (node[k] == ’H’) {
26 int v = getFlippedNode(node, k);
27 int numberOfFlips = getNumberOfFlips(u, v);
28
29 // Add edge (v, u) for a legal move from node u to node v
30 edges.add(new WeightedEdge(v, u, numberOfFlips));
31 }
32 }
33 }
34
35 return edges;
36 }
37
38 private static int getNumberOfFlips(int u, int v) {
39 char[] node1 = getNode(u);
40 char[] node2 = getNode(v);
41
42 int count = 0; // Count the number of different cells
43 for (int i = 0; i < node1.length; i++)
44 if (node1[i] != node2[i]) count++;
45
46 return count;
47 }
48

extends NineTailModel

constructor

get edges

create a graph

get a tree

get weighted edges

get adjacent node
weight

add an edge

number of flips

29.6 Case Study: The Weighted Nine Tails Problem 1089

49 public int getNumberOfFlips(int u) {
50 return (int)((WeightedGraph<Integer>.ShortestPathTree)tree)
51 .getCost(u);
52 }
53 }

WeightedNineTailModel extends NineTailModel to build a WeightedGraph to model
the weighted nine tails problem (lines 10–11). For each node u, the getEdges() method
finds a flipped node v and assigns the number of flips as the weight for edge (v, u) (line 30).
The getNumberOfFlips(int u, int v) method returns the number of flips from node u
to node v (lines 38–47). The number of flips is the number of the different cells between the
two nodes (line 44).

The WeightedNineTailModel obtains a ShortestPathTree rooted at the target
node 511 (line 14). Note that tree is a protected data field defined in NineTailModel and
ShortestPathTree is a subclass of Tree. The methods defined in NineTailModel use
the tree property.

The getNumberOfFlips(int u) method (lines 49–52) returns the number of flips from
node u to the target node, which is the cost of the path from node u to the target node. This cost
can be obtained by invoking the getCost(u) method defined in the ShortestPathTree
class (line 51).

Listing 29.10 gives a program that prompts the user to enter an initial node and displays the
minimum number of flips to reach the target node.

LISTING 29.10 WeightedNineTail.java
 1 import java.util.Scanner;
 2
 3 public class WeightedNineTail {
 4 public static void main(String[] args) {
 5 // Prompt the user to enter the nine coins’ Hs and Ts
 6 System.out.print("Enter an initial nine coins’ Hs and Ts: ");
 7 Scanner input = new Scanner(System.in);
 8 String s = input.nextLine();
 9 char[] initialNode = s.toCharArray();
10
11 WeightedNineTailModel model = new WeightedNineTailModel();
12 java.util.List<Integer> path =
13 model.getShortestPath(NineTailModel.getIndex(initialNode));
14
15 System.out.println("The steps to flip the coins are ");
16 for (int i = 0; i < path.size(); i++)
17 NineTailModel.printNode(NineTailModel.getNode(path.get(i)));
18
19 System.out.println("The number of flips is " +
20 model.getNumberOfFlips(NineTailModel.getIndex(initialNode)));
21 }
22 }

total number of flips

initial node

create model

get shortest path

print node

number of flips

Enter an initial nine coins Hs and Ts: HHHTTTHHH

The steps to flip the coins are
HHH
TTT
HHH

1090 Chapter 29 Weighted Graphs and Applications

The program prompts the user to enter an initial node with nine letters with a combination of
Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates a
model (line 11), obtains the shortest path from the initial node to the target node (lines 12–13),
displays the nodes in the path (lines 16–17), and invokes getNumberOfFlips to get the
number of flips needed to reach the target node (line 20).

29.15 Why is the tree data field in NineTailModel in Listing 28.13 defined protected?

29.16 How are the nodes created for the graph in WeightedNineTailModel?

29.17 How are the edges created for the graph in WeightedNineTailModel?

✓Point✓Check

KEY TERMS

Dijkstra’s algorithm 1078
edge-weighted graph 1063
minimum spanning tree 1072
Prim’s algorithm 1072

shortest path 1078
single-source shortest path 1079
vertex-weighted graph 1063

HHH
THT
TTT

TTT
TTT
TTT

The number of flips is 8

CHAPTER SUMMARY

1. You can use adjacency matrices or lists to store weighted edges in graphs.

2. A spanning tree of a graph is a subgraph that is a tree and connects all vertices in the graph.

3. Prim’s algorithm for finding a minimum spanning tree works as follows: the algorithm starts
with a spanning tree that contains an arbitrary vertex. The algorithm expands the tree by
adding a vertex with the minimum-weight edge incident to a vertex already in the tree.

4. Dijkstra’s algorithm starts search from the source vertex and keeps finding vertices that have
the shortest path to the source until all vertices are found.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

*29.1 (Kruskal’s algorithm) The text introduced Prim’s algorithm for finding a mini-
mum spanning tree. Kruskal’s algorithm is another well-known algorithm for
finding a minimum spanning tree. The algorithm repeatedly finds a minimum-
weight edge and adds it to the tree if it does not cause a cycle. The process ends

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 1091

when all vertices are in the tree. Design and implement an algorithm for finding
an MST using Kruskal’s algorithm.

*29.2 (Implement Prim’s algorithm using an adjacency matrix) The text implements
Prim’s algorithm using lists for adjacent edges. Implement the algorithm using
an adjacency matrix for weighted graphs.

*29.3 (Implement Dijkstra’s algorithm using an adjacency matrix) The text imple-
ments Dijkstra’s algorithm using lists for adjacent edges. Implement the algo-
rithm using an adjacency matrix for weighted graphs.

*29.4 (Modify weight in the nine tails problem) In the text, we assign the number of
the flips as the weight for each move. Assuming that the weight is three times
of the number of flips, revise the program.

*29.5 (Prove or disprove) The conjecture is that both NineTailModel and
WeightedNineTailModel result in the same shortest path. Write a program to
prove or disprove it. (Hint: Let tree1 and tree2 denote the trees rooted at node
511 obtained from NineTailModel and WeightedNineTailModel, respec-
tively. If the depth of a node u is the same in tree1 and in tree2, the length of
the path from u to the target is the same.)

**29.6 (Weighted 4 * 4 16 tails model) The weighted nine tails problem in the text
uses a 3 * 3 matrix. Assume that you have 16 coins placed in a 4 * 4 matrix.
Create a new model class named WeightedTailModel16. Create an instance
of the model and save the object into a file named WeightedTailModel16.dat.

**29.7 (Weighted 4 * 4 16 tails) Revise Listing 29.9, WeightedNineTail.java, for the
weighted 4 * 4 16 tails problem. Your program should read the model object
created from the preceding exercise.

**29.8 (Traveling salesperson problem) The traveling salesperson problem (TSP) is
to find a shortest round-trip route that visits each city exactly once and then
returns to the starting city. The problem is equivalent to finding a shortest
Hamiltonian cycle in Programming Exercise 28.17. Add the following method
in the WeightedGraph class:

// Return a shortest cycle
// Return null if no such cycle exists
public List<Integer> getShortestHamiltonianCycle()

*29.9 (Find a minimum spanning tree) Write a program that reads a connected graph
from a file and displays its minimum spanning tree. The first line in the file
contains a number that indicates the number of vertices (n). The vertices are
labeled as 0, 1, ..., n-1. Each subsequent line describes the edges in the form
of u1, v1, w1 | u2, v2, w2 | Each triplet in this form describes
an edge and its weight. Figure 29.24 shows an example of the file for the cor-
responding graph. Note that we assume the graph is undirected. If the graph has

FIGURE 29.24 The vertices and edges of a weighted graph can be stored in a file.

(a) (b)

0
100

40

5

9

2

4

1

3 20

2 5

3

5

File
6
0, 1, 100 | 0, 2, 3
1, 3, 20
2, 3, 40 | 2, 4, 2
3, 4, 5 | 3, 5, 5
4, 5, 9

1092 Chapter 29 Weighted Graphs and Applications

an edge (u, v), it also has an edge (v, u). Only one edge is represented in the
file. When you construct a graph, both edges need to be added.

 Your program should prompt the user to enter the name of the file, read data from the
file, create an instance g of WeightedGraph, invoke g.printWeightedEdges()
to display all edges, invoke getMinimumSpanningTree() to obtain an instance
tree of WeightedGraph.MST, invoke tree.getTotalWeight() to display the
weight of the minimum spanning tree, and invoke tree.printTree() to display
the tree. Here is a sample run of the program:

Enter a file name: c:\exercise\WeightedGraphSample.txt
The number of vertices is 6
Vertex 0: (0, 2, 3) (0, 1, 100)
Vertex 1: (1, 3, 20) (1, 0, 100)
Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)
Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)
Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)
Vertex 5: (5, 3, 5) (5, 4, 9)
Total weight in MST is 35
Root is: 0
Edges: (3, 1) (0, 2) (4, 3) (2, 4) (3, 5)

12
0, 1, 807 | 0, 3, 1331 | 0, 5, 2097
1, 2, 381 | 1, 3, 1267
2, 3, 1015 | 2, 4, 1663 | 2, 10, 1435
3, 4, 599 | 3, 5, 1003
4, 5, 533 | 4, 7, 1260 | 4, 8, 864 | 4, 10, 496
5, 6, 983 | 5, 7, 787
6, 7, 214
7, 8, 888
8, 9, 661 | 8, 10, 781 | 8, 11, 810
9, 11, 1187
10, 11, 239

 (Hint: Use new WeightedGraph(list, numberOfVertices) to create
a graph, where list contains a list of WeightedEdge objects. Use new
WeightedEdge(u, v, w) to create an edge. Read the first line to get the number
of vertices. Read each subsequent line into a string s and use s.split("[\\|]")
to extract the triplets. For each triplet, use triplet.split("[,]") to extract
vertices and weight.)

*29.10 (Create a file for a graph) Modify Listing 29.3, TestWeightedGraph.java,
to create a file for representing graph1. The file format is described in
Programming Exercise 29.9. Create the file from the array defined in lines 7–24
in Listing 29.3. The number of vertices for the graph is 12, which will be stored
in the first line of the file. An edge (u, v) is stored if u < v. The contents of the
file should be as follows:

*29.11 (Find shortest paths) Write a program that reads a connected graph from a file.
The graph is stored in a file using the same format specified in Programming
Exercise 29.9. Your program should prompt the user to enter the name of
the file then two vertices, and should display a shortest path between the two

Programming Exercises 1093

vertices. For example, for the graph in Figure 29.23, a shortest path between 0
and 1 can be displayed as 0 2 4 3 1.

 Here is a sample run of the program:

Enter a file name: WeightedGraphSample2.txt

Enter two vertices (integer indexes): 0 1
The number of vertices is 6
Vertex 0: (0, 2, 3) (0, 1, 100)
Vertex 1: (1, 3, 20) (1, 0, 100)
Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)
Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)
Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)
Vertex 5: (5, 3, 5) (5, 4, 9)
A path from 0 to 1: 0 2 4 3 1

*29.12 (Display weighted graphs) Revise GraphView in Listing 28.6 to display a
weighted graph. Write a program that displays the graph in Figure 29.1 as
shown in Figure 29.25. (Instructors may ask students to expand this program
by adding new cities with appropriate edges into the graph).

FIGURE 29.25 Programming Exercise 29.12 displays a weighted graph.

*29.13 (Display shortest paths) Revise GraphView in Listing 28.6 to display a
weighted graph and a shortest path between the two specified cities, as shown
in Figure 29.19. You need to add a data field path in GraphView. If a path
is not null, the edges in the path are displayed in red. If a city not in the map is
entered, the program displays a text to alert the user.

*29.14 (Display a minimum spanning tree) Revise GraphView in Listing 28.6
to display a weighted graph and a minimum spanning tree for the graph in
Figure 29.1, as shown in Figure 29.26. The edges in the MST are shown in red.

***29.15 (Dynamic graphs) Write a program that lets the users create a weighted graph
dynamically. The user can create a vertex by entering its name and location, as
shown in Figure 29.27. The user can also create an edge to connect two verti-
ces. To simplify the program, assume that vertex names are the same as vertex

1094 Chapter 29 Weighted Graphs and Applications

indices. You have to add the vertex indices 0, 1, . . ., and n, in this order. The user
can specify two vertices and let the program display their shortest path in red.

***29.16 (Display a dynamic MST) Write a program that lets the user create a weighted
graph dynamically. The user can create a vertex by entering its name and loca-
tion, as shown in Figure 29.28. The user can also create an edge to connect two
vertices. To simplify the program, assume that vertex names are the same as
those of vertex indices. You have to add the vertex indices 0, 1, . . ., and n, in
this order. The edges in the MST are displayed in red. As new edges are added,
the MST is redisplayed.

***29.17 (Weighted graph visualization tool) Develop a GUI program as shown in
Figure 29.2, with the following requirements: (1) The radius of each vertex is
20 pixels. (2) The user clicks the left mouse button to place a vertex centered
at the mouse point, provided that the mouse point is not inside or too close to
an existing vertex. (3) The user clicks the right mouse button inside an exist-
ing vertex to remove the vertex. (4) The user presses a mouse button inside
a vertex and drags to another vertex and then releases the button to create an

FIGURE 29.26 Programming Exercise 29.14 displays an MST.

FIGURE 29.27 The program can add vertices and edges and display a shortest path between
two specified vertices.

Programming Exercises 1095

edge, and the distance between the two vertices is also displayed. (5) The user
drags a vertex while pressing the CTRL key to move a vertex. (6) The verti-
ces are numbers starting from 0. When a vertex is removed, the vertices are
renumbered. (7) You can click the Show MST or Show All SP From the Source
button to display an MST or SP tree from a starting vertex. (8) You can click
the Show Shortest Path button to display the shortest path between the two
specified vertices.

***29.18 (Alternative version of Dijkstra algorithm) An alternative version of the Dijk-
stra algorithm can be described as follows:

Input: a weighted graph G = (V, E) with non-negative weights
Output: A shortest path tree from a source vertex s

 1 ShortestPathTree getShortestPath(s) {
 2 Let T be a set that contains the vertices whose
 3 paths to s are known;
 4 Initially T contains source vertex s with cost[s] = 0;
 5 for (each u in V – T)
 6 cost[u] = infinity;
 7
 8 while (size of T < n) {
 9 Find v in V – T with the smallest cost[u] + w(u, v) value
10 among all u in T;
11 Add v to T and set cost[v] = cost[u] + w(u, v);
12 parent[v] = u;
13 }
14 }

 The algorithm uses cost[v] to store the cost of a shortest path from vertex v
to the source vertex s. cost[s] is 0. Initially assign infinity to cost[v] to
indicate that no path is found from v to s. Let V denote all vertices in the graph
and T denote the set of the vertices whose costs are known. Initially, the source
vertex s is in T. The algorithm repeatedly finds a vertex u in T and a vertex v
in V – T such that cost[u] + w(u, v) is the smallest, and moves v to T.
The shortest path algorithm given in the text coninously update the cost and
parent for a vertex in V – T. This algorithm initializes the cost to infinity for
each vertex and then changes the cost for a vertex only once when the vertex is
added into T. Implement this algorithm and use Listing 29.7, TestShortestPath.
java, to test your new algorithm.

add initial vertex

more vertex
find next vertex

add a vertex

FIGURE 29.28 The program can add vertices and edges and display MST dynamically.

1096 Chapter 29 Weighted Graphs and Applications

***29.19 (Find u with smallest cost[u] efficiently) The getShortestPath method
finds a u with the smallest cost[u] using a linear search, which takes O(�V �).
The search time can be reduced to O(log �V �) using an AVL tree. Modify the
method using an AVL tree to store the vertices in V – T. Use Listing 29.7,
TestShortestPath.java, to test your new implementation.

***29.20 (Test if a vertex u is in T efficiently) Since T is implemented using a list
in the getMinimumSpanningTree and getShortestPath methods in
Listing 29.2 WeightedGraph.java, testing whether a vertex u is in T by invoking
T.contains(u) takes O(n) time. Modify these two methods by introducing
an array named isInT. Set isInT[u] to true when a vertex u is added to T.
Testing whether a vertex u is in T can now be done in O(1) time. Write a test
program using the following code, where graph1 is created from Figure 29.1.

WeightedGraph<String> graph1 = new WeightedGraph<>(edges, vertices);

WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();

System.out.println("Total weight is " + tree1.getTotalWeight());

tree1.printTree();

WeightedGraph<String>.ShortestPathTree tree2 =
 graph1.getShortestPath(graph1.getIndex("Chicago"));

tree2.printAllPaths();

MULTITHREADING
AND PARALLEL
PROGRAMMING

Objectives
■ To get an overview of multithreading (§30.2).

■ To develop task classes by implementing the Runnable interface
(§30.3).

■ To create threads to run tasks using the Thread class (§30.3).

■ To control threads using the methods in the Thread class (§30.4).

■ To control animations using threads and use Platform.runLater
to run the code in the application thread (§30.5).

■ To execute tasks in a thread pool (§30.6).

■ To use synchronized methods or blocks to synchronize threads to
avoid race conditions (§30.7).

■ To synchronize threads using locks (§30.8).

■ To facilitate thread communications using conditions on locks
(§§30.9 and 30.10).

■ To use blocking queues (ArrayBlockingQueue,
LinkedBlockingQueue, PriorityBlockingQueue) to
synchronize access to a queue (§30.11).

■ To restrict the number of concurrent tasks that access a shared
resource using semaphores (§30.12).

■ To use the resource-ordering technique to avoid deadlocks (§30.13).

■ To describe the life cycle of a thread (§30.14).

■ To create synchronized collections using the static methods in the
Collections class (§30.15).

■ To develop parallel programs using the Fork/Join Framework (§30.16).

CHAPTER

30

1098 Chapter 30 Multithreading and Parallel Programming

30.1 Introduction
Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent
running of multiple tasks within a program. In many programming languages, you have to
invoke system-dependent procedures and functions to implement multithreading. This chapter
introduces the concepts of threads and how multithreading programs can be developed in Java.

30.2 Thread Concepts
A program may consist of many tasks that can run concurrently. A thread is the flow
of execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple
threads from a program concurrently. These threads can be executed simultaneously in multi-
processor systems, as shown in Figure 30.1a.

Key
Pointmultithreading

Key
Point

thread
task

FIGURE 30.1 (a) Here multiple threads are running on multiple CPUs. (b) Here multiple
threads share a single CPU.

Thread 1

Thread 3

Thread 2

(a)

Thread 1

Thread 3

Thread 2

(b)

In single-processor systems, as shown in Figure 30.1b, the multiple threads share CPU
time, known as time sharing, and the operating system is responsible for scheduling and allo-
cating resources to them. This arrangement is practical because most of the time the CPU is
idle. It does nothing, for example, while waiting for the user to enter data.

Multithreading can make your program more responsive and interactive, as well as enhance
performance. For example, a good word processor lets you print or save a file while you are
typing. In some cases, multithreaded programs run faster than single-threaded programs even
on single-processor systems. Java provides exceptionally good support for creating and run-
ning threads and for locking resources to prevent conflicts.

You can create additional threads to run concurrent tasks in the program. In Java, each task
is an instance of the Runnable interface, also called a runnable object. A thread is essentially
an object that facilitates the execution of a task.

30.1 Why is multithreading needed? How can multiple threads run simultaneously in a
single-processor system?

30.2 What is a runnable object? What is a thread?

30.3 Creating Tasks and Threads
A task class must implement the Runnable interface. A task must be run from a
thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which imple-
ments the Runnable interface. The Runnable interface is rather simple. All it contains is the
run method. You need to implement this method to tell the system how your thread is going
to run. A template for developing a task class is shown in Figure 30.2a.

time sharing

task

runnable object
thread

✓Point✓Check

Key
Point

Runnable interface

run() method

30.3 Creating Tasks and Threads 1099

FIGURE 30.2 Define a task class by implementing the Runnable interface.

// Client class
public class Client {
 ...

public void someMethod() {
 ...

// Create an instance of TaskClass
 TaskClass task = new TaskClass(...);

// Create a thread
 Thread thread = new Thread(task);

// Start a thread
 thread.start();
 ...

}
 ...
}

// Custom task class
public class TaskClass implements Runnable {
 ...

public TaskClass(...) {
 ...

}

// Implement the run method in Runnable
public void run() {

// Tell system how to run custom thread
 ...

}
 ...
}

TaskClassjava.lang.Runnable

(a) (b)

Once you have defined a TaskClass, you can create a task using its constructor. For
example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for cre-
ating threads and many useful methods for controlling threads. To create a thread for a
task, use

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as
follows:

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 30.2b outlines
the major steps for creating a task, a thread, and starting the thread.

Listing 30.1 gives a program that creates three tasks and three threads to run them.

 ■ The first task prints the letter a 100 times.

 ■ The second task prints the letter b 100 times.

 ■ The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing letters
and numbers on the console. Figure 30.3 shows a sample run of the program.

Thread class
create a task

create a thread

start a thread

FIGURE 30.3 Tasks printA, printB, and print100 are executed simultaneously to
display the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.

1100 Chapter 30 Multithreading and Parallel Programming

LISTING 30.1 TaskThreadDemo.java
 1 public class TaskThreadDemo {
 2 public static void main(String[] args) {
 3 // Create tasks
 4 Runnable printA = new PrintChar('a', 100);
 5 Runnable printB = new PrintChar('b', 100);
 6 Runnable print100 = new PrintNum(100);
 7
 8 // Create threads
 9 Thread thread1 = new Thread(printA);
10 Thread thread2 = new Thread(printB);
11 Thread thread3 = new Thread(print100);
12
13 // Start threads
14 thread1.start();
15 thread2.start();
16 thread3.start();
17 }
18 }
19
20 // The task for printing a character a specified number of times
21 class PrintChar implements Runnable {
22 private char charToPrint; // The character to print
23 private int times; // The number of times to repeat
24
25 /** Construct a task with a specified character and number of
26 * times to print the character
27 */
28 public PrintChar(char c, int t) {
29 charToPrint = c;
30 times = t;
31 }
32
33 @Override /** Override the run() method to tell the system
34 * what task to perform
35 */
36 public void run() {
37 for (int i = 0; i < times; i++) {
38 System.out.print(charToPrint);
39 }
40 }
41 }
42
43 // The task class for printing numbers from 1 to n for a given n
44 class PrintNum implements Runnable {
45 private int lastNum;
46
47 /** Construct a task for printing 1, 2, ..., n */
48 public PrintNum(int n) {
49 lastNum = n;
50 }
51
52 @Override /** Tell the thread how to run */
53 public void run() {
54 for (int i = 1; i <= lastNum; i++) {
55 System.out.print(" " + i);
56 }
57 }
58 }

create tasks

create threads

start threads

task class

run

task class

run

30.3 Creating Tasks and Threads 1101

The program creates three tasks (lines 4–6). To run them concurrently, three threads are created
(lines 9–11). The start() method (lines 14–16) is invoked to start a thread that causes the
run() method in the task to be executed. When the run() method completes, the thread
terminates.

Because the first two tasks, printA and printB, have similar functionality, they
can be defined in one task class PrintChar (lines 21–41). The PrintChar class imple-
ments Runnable and overrides the run() method (lines 36–40) with the print-character
action. This class provides a framework for printing any single character a given number
of times. The runnable objects, printA and printB, are instances of the PrintChar
class.

The PrintNum class (lines 44–58) implements Runnable and overrides the run()
method (lines 53–57) with the print-number action. This class provides a framework for print-
ing numbers from 1 to n, for any integer n. The runnable object print100 is an instance of
the class printNum class.

Note
If you don’t see the effect of these three threads running concurrently, increase the

number of characters to be printed. For example, change line 4 to

Runnable printA = new PrintChar('a', 10000);

Important Note
The run() method in a task specifies how to perform the task. This method is auto-

matically invoked by the JVM. You should not invoke it. Invoking run() directly merely

executes this method in the same thread; no new thread is started.

30.3 How do you define a task class? How do you create a thread for a task?

30.4 What would happen if you replace the start() method with the run() method in
lines 14–16 in Listing 30.1?

effect of concurrency

run() method

✓Point✓Check

print100.start();

printA.start();

printB.start();

Replaced by print100.run();
printA.run();
printB.run();

30.5 What is wrong in the following two programs? Correct the errors.

public class Test implements Runnable {
public static void main(String[] args) {

new Test();
 }

public Test() {
Test task = new Test();

 new Thread(task).start();
 }

public void run() {
 System.out.println("test");
 }
}

(a)

public class Test implements Runnable {
public static void main(String[] args) {

new Test();
 }

public Test() {
 Thread t = new Thread(this);

t.start();
t.start();

 }

public void run() {
 System.out.println("test");
 }
}

(b)

1102 Chapter 30 Multithreading and Parallel Programming

30.4 The Thread Class
The Thread class contains the constructors for creating threads for tasks and the
methods for controlling threads.

Figure 30.4 shows the class diagram for the Thread class.

Key
Point

FIGURE 30.4 The Thread class contains the methods for controlling threads.

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a thread for a specified task.

Creates an empty thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts a thread to sleep for a specified time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

FIGURE 30.5 Define a thread class by extending the Thread class.

// Client class
public class Client {
 ...

public void someMethod() {
 ...

// Create a thread
 CustomThread thread1 = new CustomThread(...);

// Start a thread
 thread1.start();

// Create another thread
 CustomThread thread2 = new CustomThread(...);

// Start a thread
 thread2.start();

}
 ...
}

// Custom thread class
public class CustomThread extends Thread {
 ...
 public CustomThread(...) {
 ...

}

// Override the run method in Runnable
 public void run() {

// Tell system how to perform this task
 ...

}
 ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

Note
Since the Thread class implements Runnable, you could define a class that extends

Thread and implements the run method, as shown in Figure 30.5a, and then create

an object from the class and invoke its start method in a client program to start the

thread, as shown in Figure 30.5b. separating task from thread

30.4 The Thread Class 1103

This approach is, however, not recommended because it mixes the task and the mecha-

nism of running the task. Separating the task from the thread is a preferred design.

Note
The Thread class also contains the stop(), suspend(), and resume() methods.

As of Java 2, these methods were deprecated (or outdated) because they are known to

be inherently unsafe. Instead of using the stop() method, you should assign null to

a Thread variable to indicate that has stopped.

You can use the yield() method to temporarily release time for other threads. For exam-
ple, suppose you modify the code in the run() method in lines 53–57 for PrintNum in
Listing 30.1 as follows:

public void run() {
for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);
Thread.yield();

 }
}

Every time a number is printed, the thread of the print100 task is yielded to other threads.
The sleep(long millis) method puts the thread to sleep for a specified time in

milliseconds to allow other threads to execute. For example, suppose you modify the code in
lines 53–57 in Listing 30.1, as follows:

public void run() {
try {

for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);

if (i >= 50) Thread.sleep(1);
 }
 }

catch (InterruptedException ex) {
 }
}

Every time a number (>= 50) is printed, the thread of the print100 task is put to sleep for
1 millisecond.

The sleep method may throw an InterruptedException, which is a checked exception.
Such an exception may occur when a sleeping thread’s interrupt() method is called. The
interrupt() method is very rarely invoked on a thread, so an InterruptedException
is unlikely to occur. But since Java forces you to catch checked exceptions, you have to put
it in a try-catch block. If a sleep method is invoked in a loop, you should wrap the loop
in a try-catch block, as shown in (a) below. If the loop is outside the try-catch block, as
shown in (b), the thread may continue to execute even though it is being interrupted.

deprecated method

yield()

sleep(long)

InterruptedException

public void run() {
try {

while (...) {
 ...

Thread.sleep(1000);
 }
 }

catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

(a) correct

public void run() {
while (...) {

try {
 ...
 Thread.sleep(sleepTime);
 }

catch (InterruptedException ex) {
 ex.printStackTrace();
 }

}
}

(b) Incorrect

1104 Chapter 30 Multithreading and Parallel Programming

You can use the join() method to force one thread to wait for another thread to finish. For
example, suppose you modify the code in lines 53–57 in Listing 30.1 as follows:

join()

Thread
print100

Wait for thread4
to finish

Thread
thread4

thread4 finished

public void run() {
Thread thread4 = new Thread(

new PrintChar('c', 40));
thread4.start();

 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print (" " + i);
 if (i == 50) thread4.join();

}
}

 catch (InterruptedException ex) {
}

}

thread4.join()

A new thread4 is created and it prints character c 40 times. The numbers from 50 to 100
are printed after thread thread4 is finished.

Java assigns every thread a priority. By default, a thread inherits the priority of the
thread that spawned it. You can increase or decrease the priority of any thread by using the
setPriority method, and you can get the thread’s priority by using the getPriority
method. Priorities are numbers ranging from 1 to 10. The Thread class has the int constants
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and 10, respec-
tively. The priority of the main thread is Thread.NORM_PRIORITY.

The JVM always picks the currently runnable thread with the highest priority. A lower-
priority thread can run only when no higher-priority threads are running. If all runnable
threads have equal priorities, each is assigned an equal portion of the CPU time in a circular
queue. This is called round-robin scheduling. For example, suppose you insert the following
code in line 16 in Listing 30.1:

thread3.setPriority(Thread.MAX_PRIORITY);

The thread for the print100 task will be finished first.

Tip
The priority numbers may be changed in a future version of Java. To minimize the impact

of any changes, use the constants in the Thread class to specify thread priorities.

Tip
A thread may never get a chance to run if there is always a higher-priority thread run-

ning or a same-priority thread that never yields. This situation is known as contention

or starvation. To avoid contention, the thread with higher priority must periodically

invoke the sleep or yield method to give a thread with a lower or the same priority

a chance to run.

30.6 Which of the following methods are instance methods in java.lang.Thread?
Which method may throw an InterruptedException? Which of them are depre-
cated in Java?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

30.7 If a loop contains a method that throws an InterruptedException, why should
the loop be placed inside a try-catch block?

30.8 How do you set a priority for a thread? What is the default priority?

setPriority(int)

round-robin scheduling

contention or starvation

✓Point✓Check

30.5 Case Study: Flashing Text 1105

30.5 Case Study: Flashing Text
You can use a thread to control an animation.

The use of a Timeline object to control animations was introduced in Section 15.11, Ani-
mation. Alternatively, you can also use a thread to control animation. Listing 30.2 gives an
example that displays flashing text on a label, as shown in Figure 30.6.

Key
Point

FIGURE 30.6 The text “Welcome” blinks.

LISTING 30.2 FlashText.java
 1 import javafx.application.Application;
 2 import javafx.application.Platform;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.stage.Stage;
 7
 8 public class FlashText extends Application {
 9 private String text = "";
10
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 StackPane pane = new StackPane();
14 Label lblText = new Label("Programming is fun");
15 pane.getChildren().add(lblText);
16
17 new Thread(new Runnable() {
18 @Override
19 public void run() {
20 try {
21 while (true) {
22 if (lblText.getText().trim().length() == 0)
23 text = "Welcome";
24 else

25 text = "";
26
27 Platform.runLater(new Runnable() { // Run from JavaFX GUI
28 @Override
29 public void run() {
30 lblText.setText(text);
31 }
32 });
33
34 Thread.sleep(200);
35 }
36 }
37 catch (InterruptedException ex) {
38 }
39 }
40 }).start();
41

create a label
label in a pane

create a thread

run thread

change text

Platform.runLater

update GUI

sleep

1106 Chapter 30 Multithreading and Parallel Programming

42 // Create a scene and place it in the stage
43 Scene scene = new Scene(pane, 200, 50);
44 primaryStage.setTitle("FlashText"); // Set the stage title
45 primaryStage.setScene(scene); // Place the scene in the stage
46 primaryStage.show(); // Display the stage
47 }
48 }

The program creates a Runnable object in an anonymous inner class (lines 17–40). This
object is started in line 40 and runs continuously to change the text in the label. It sets a text
in the label if the label is blank (line 23) and sets its text blank (line 25) if the label has a text.
The text is set and unset to simulate a flashing effect.

JavaFX GUI is run from the JavaFX application thread. The flashing control is run from
a separate thread. The code in a nonapplication thread cannot update GUI in the application
thread. To update the text in the label, a new Runnable object is created in lines 27–32.
Invoking Platform.runLater(Runnable r) tells the system to run this Runnable object
in the application thread.

The anonymous inner classes in this program can be simplifed using lambda expressions
as follows:

new Thread(() -> { // lambda expression
try {

while (true) {
if (lblText.getText().trim().length() == 0)

 text = "Welcome";
else

 text = "";

 Platform.runLater(() -> lblText.setText(text)); // lambda exp

 Thread.sleep(200);
 }
 }

catch (InterruptedException ex) {
 }
 }).start();

30.9 What causes the text to flash?

30.10 Is an instance of FlashText a runnable object?

30.11 What is the purpose of using Platform.runLater?

30.12 Can you replace the code in lines 27–32 using the following code?

 Platform.runLater(e -> lblText.setText(text));

30.13 What happens if line 34 (Thread.sleep(200)) is not used?

30.6 Thread Pools
A thread pool can be used to execute tasks efficiently.

In Section 30.3, Creating Tasks and Threads, you learned how to define a task class by imple-
menting java.lang.Runnable, and how to create a thread to run a task like this:

Runnable task = new TaskClass(task);
new Thread(task).start();

JavaFX application thread

Platform.runLater

✓Point✓Check

Key
Point

30.6 Thread Pools 1107

This approach is convenient for a single task execution, but it is not efficient for a large
number of tasks because you have to create a thread for each task. Starting a new thread for
each task could limit throughput and cause poor performance. Using a thread pool is an ideal
way to manage the number of tasks executing concurrently. Java provides the Executor
interface for executing tasks in a thread pool and the ExecutorService interface for man-
aging and controlling tasks. ExecutorService is a subinterface of Executor, as shown in
Figure 30.7.

FIGURE 30.7 The Executor interface executes threads, and the ExecutorService subinterface manages threads.

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

«interface»
java.util.concurrent.ExecutorService

+execute(Runnable object): void

«interface»
java.util.concurrent.Executor

Executes the runnable task.

Shuts down the executor, but allows the tasks in the executor
 to complete. Once shut down, it cannot accept new tasks.
Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished tasks.
Returns true if the executor has been shut down.
Returns true if all tasks in the pool are terminated.

FIGURE 30.8 The Executors class provides static methods for creating Executor objects.

Creates a thread pool with a fixed number of threads executing
 concurrently. A thread may be reused to execute another task
 after its current task is finished.

Creates a thread pool that creates new threads as needed, but
 will reuse previously constructed threads when they are
 available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:
 int): ExecutorService

+newCachedThreadPool():
 ExecutorService

To create an Executor object, use the static methods in the Executors class, as shown
in Figure 30.8. The newFixedThreadPool(int) method creates a fixed number of threads
in a pool. If a thread completes executing a task, it can be reused to execute another task. If
a thread terminates due to a failure prior to shutdown, a new thread will be created to replace
it if all the threads in the pool are not idle and there are tasks waiting for execution. The
newCachedThreadPool() method creates a new thread if all the threads in the pool are not
idle and there are tasks waiting for execution. A thread in a cached pool will be terminated if
it has not been used for 60 seconds. A cached pool is efficient for many short tasks.

Listing 30.3 shows how to rewrite Listing 30.1 using a thread pool.

LISTING 30.3 ExecutorDemo.java
 1 import java.util.concurrent.*;
 2
 3 public class ExecutorDemo {

1108 Chapter 30 Multithreading and Parallel Programming

 4 public static void main(String[] args) {
 5 // Create a fixed thread pool with maximum three threads
 6 ExecutorService executor = Executors.newFixedThreadPool(3);
 7
 8 // Submit runnable tasks to the executor
 9 executor.execute(new PrintChar('a', 100));
10 executor.execute(new PrintChar('b', 100));
11 executor.execute(new PrintNum(100));
12
13 // Shut down the executor
14 executor.shutdown();
15 }
16 }

Line 6 creates a thread pool executor with a total of three threads maximum. Classes PrintChar
and PrintNum are defined in Listing 30.1. Line 9 creates a task, new PrintChar('a',
100), and adds it to the pool. Similarly, another two runnable tasks are created and added
to the same pool in lines 10 and 11. The executor creates three threads to execute three tasks
concurrently.

Suppose that you replace line 6 with

ExecutorService executor = Executors.newFixedThreadPool(1);

What will happen? The three runnable tasks will be executed sequentially because there is
only one thread in the pool.

Suppose you replace line 6 with

ExecutorService executor = Executors.newCachedThreadPool();

What will happen? New threads will be created for each waiting task, so all the tasks will be
executed concurrently.

The shutdown() method in line 14 tells the executor to shut down. No new tasks can be
accepted, but any existing tasks will continue to finish.

Tip
If you need to create a thread for just one task, use the Thread class. If you need to

create threads for multiple tasks, it is better to use a thread pool.

30.14 What are the benefits of using a thread pool?

30.15 How do you create a thread pool with three fixed threads? How do you submit a task
to a thread pool? How do you know that all the tasks are finished?

30.7 Thread Synchronization
Thread synchronization is to coordinate the execution of the dependent threads.

A shared resource may become corrupted if it is accessed simultaneously by multiple threads.
The following example demonstrates the problem.

Suppose you create and launch 100 threads, each of which adds a penny to an account.
Define a class named Account to model the account, a class named AddAPennyTask to add
a penny to the account, and a main class that creates and launches threads. The relationships
of these classes are shown in Figure 30.9. The program is given in Listing 30.4.

create executor

submit task

shut down executor

✓Point✓Check

Key
Point

30.7 Thread Synchronization 1109

LISTING 30.4 AccountWithoutSync.java
 1 import java.util.concurrent.*;
 2
 3 public class AccountWithoutSync {
 4 private static Account account = new Account();
 5
 6 public static void main(String[] args) {
 7 ExecutorService executor = Executors.newCachedThreadPool();
 8
 9 // Create and launch 100 threads
10 for (int i = 0; i < 100; i++) {
11 executor.execute(new AddAPennyTask());
12 }
13
14 executor.shutdown();
15
16 // Wait until all tasks are finished
17 while (!executor.isTerminated()) {
18 }
19
20 System.out.println("What is balance? " + account.getBalance());
21 }
22
23 // A thread for adding a penny to the account
24 private static class AddAPennyTask implements Runnable {
25 public void run() {
26 account.deposit(1);
27 }
28 }
29
30 // An inner class for account
31 private static class Account {
32 private int balance = 0;
33
34 public int getBalance() {
35 return balance;
36 }
37
38 public void deposit(int amount) {
39 int newBalance = balance + amount;
40
41 // This delay is deliberately added to magnify the

create executor

submit task

shut down executor

wait for all tasks to terminate

FIGURE 30.9 AccountWithoutSync contains an instance of Account and 100 threads of AddAPennyTask.

100 1
AddAPennyTask

+run(): void

AccountWithoutSync

-account: Account

+main(args: String[]): void

1 1
Account

+getBalance(): int
+deposit(amount: int): void

-balance: int

«interface»
java.lang.Runnable

1110 Chapter 30 Multithreading and Parallel Programming

42 // data-corruption problem and make it easy to see.
43 try {
44 Thread.sleep(5);
45 }
46 catch (InterruptedException ex) {
47 }
48
49 balance = newBalance;
50 }
51 }
52 }

The classes AddAPennyTask and Account in lines 24–51 are inner classes. Line 4 creates
an Account with initial balance 0. Line 11 creates a task to add a penny to the account and
submits the task to the executor. Line 11 is repeated 100 times in lines 10–12. The program
repeatedly checks whether all tasks are completed in lines 17 and 18. The account balance is
displayed in line 20 after all tasks are completed.

The program creates 100 threads executed in a thread pool executor (lines 10–12). The
isTerminated() method (line 17) is used to test whether the thread is terminated.

The balance of the account is initially 0 (line 32). When all the threads are finished, the bal-
ance should be 100 but the output is unpredictable. As can be seen in Figure 30.10, the answers
are wrong in the sample run. This demonstrates the data-corruption problem that occurs when
all the threads have access to the same data source simultaneously.

FIGURE 30.10 The AccountWithoutSync program causes data inconsistency.

FIGURE 30.11 Task 1 and Task 2 both add 1 to the same balance.

Step Balance Task 1 Task 2

1 0 newBalance = balance + 1;

newBalance = balance + 1;2 0
3 1 balance = newBalance;
4 1 balance = newBalance;

Lines 39–49 could be replaced by one statement:

balance = balance + amount;

It is highly unlikely, although plausible, that the problem can be replicated using this single
statement. The statements in lines 39–49 are deliberately designed to magnify the data-
corruption problem and make it easy to see. If you run the program several times but still
do not see the problem, increase the sleep time in line 44. This will increase the chances for
showing the problem of data inconsistency.

What, then, caused the error in this program? A possible scenario is shown in Figure 30.11.

30.7 Thread Synchronization 1111

In Step 1, Task 1 gets the balance from the account. In Step 2, Task 2 gets the same bal-
ance from the account. In Step 3, Task 1 writes a new balance to the account. In Step 4, Task 2
writes a new balance to the account.

The effect of this scenario is that Task 1 does nothing because in Step 4 Task 2 overrides
Task 1’s result. Obviously, the problem is that Task 1 and Task 2 are accessing a common
resource in a way that causes a conflict. This is a common problem, known as a race condition,
in multithreaded programs. A class is said to be thread-safe if an object of the class does not
cause a race condition in the presence of multiple threads. As demonstrated in the preceding
example, the Account class is not thread-safe.

30.7.1 The synchronized Keyword
To avoid race conditions, it is necessary to prevent more than one thread from simultane-
ously entering a certain part of the program, known as the critical region. The critical region
in Listing 30.4 is the entire deposit method. You can use the keyword synchronized
to synchronize the method so that only one thread can access the method at a time. There
are several ways to correct the problem in Listing 30.4. One approach is to make Account
thread-safe by adding the keyword synchronized in the deposit method in line 38, as
follows:

public synchronized void deposit(double amount)

A synchronized method acquires a lock before it executes. A lock is a mechanism for exclu-
sive use of a resource. In the case of an instance method, the lock is on the object for which
the method was invoked. In the case of a static method, the lock is on the class. If one thread
invokes a synchronized instance method (respectively, static method) on an object, the lock of
that object (respectively, class) is acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method of that object (respectively, class)
is blocked until the lock is released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 1
enters the method, Task 2 is blocked until Task 1 finishes the method, as shown in Figure 30.12.

race condition

thread-safe

critical region

FIGURE 30.12 Task 1 and Task 2 are synchronized.

Acquire a lock on the object account

Execute the deposit method

Release the lock

Release the lock

Task 1

Execute the deposit method

Task 2

Wait to acquire the lock

Acquire a lock on the object account

30.7.2 Synchronizing Statements
Invoking a synchronized instance method of an object acquires a lock on the object, and
invoking a synchronized static method of a class acquires a lock on the class. A synchronized
statement can be used to acquire a lock on any object, not just this object, when executing a

1112 Chapter 30 Multithreading and Parallel Programming

block of the code in a method. This block is referred to as a synchronized block. The general
form of a synchronized statement is as follows:

synchronized (expr) {
 statements;
}

The expression expr must evaluate to an object reference. If the object is already locked by
another thread, the thread is blocked until the lock is released. When a lock is obtained on the
object, the statements in the synchronized block are executed and then the lock is released.

Synchronized statements enable you to synchronize part of the code in a method instead
of the entire method. This increases concurrency. You can make Listing 30.4 thread-safe by
placing the statement in line 26 inside a synchronized block:

synchronized (account) {
 account.deposit(1);
}

Note
Any synchronized instance method can be converted into a synchronized statement.

For example, the following synchronized instance method in (a) is equivalent to (b):

synchronized block

public synchronized void xMethod() {
// method body

}

(a)

public void xMethod() {
synchronized (this) {

// method body
 }
}

(b)

30.16 Give some examples of possible resource corruption when running multiple threads.
How do you synchronize conflicting threads?

30.17 Suppose you place the statement in line 26 of Listing 30.4 inside a synchronized
block to avoid race conditions, as follows:

synchronized (this) {
 account.deposit(1);
}

 Will it work?

30.8 Synchronization Using Locks
Locks and conditions can be explicitly used to synchronize threads.

Recall that in Listing 30.4, 100 tasks deposit a penny to the same account concurrently, which
causes conflicts. To avoid it, you use the synchronized keyword in the deposit method,
as follows:

public synchronized void deposit(double amount)

A synchronized instance method implicitly acquires a lock on the instance before it executes
the method.

Java enables you to acquire locks explicitly, which give you more control for coordinating
threads. A lock is an instance of the Lock interface, which defines the methods for acquiring and
releasing locks, as shown in Figure 30.13. A lock may also use the newCondition() method
to create any number of Condition objects, which can be used for thread communications.

✓Point✓Check

Key
Point

lock

30.8 Synchronization Using Locks 1113

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive
locks. You can create a lock with the specified fairness policy. True fairness policies guar-
antee that the longest-waiting thread will obtain the lock first. False fairness policies grant a
lock to a waiting thread arbitrarily. Programs using fair locks accessed by many threads may
have poorer overall performance than those using the default setting, but they have smaller
variances in times to obtain locks and prevent starvation.

Listing 30.5 revises the program in Listing 30.7 to synchronize the account modification
using explicit locks.

LISTING 30.5 AccountWithSyncUsingLock.java
 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class AccountWithSyncUsingLock {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 ExecutorService executor = Executors.newCachedThreadPool();
 9
10 // Create and launch 100 threads
11 for (int i = 0; i < 100; i++) {
12 executor.execute(new AddAPennyTask());
13 }
14
15 executor.shutdown();
16
17 // Wait until all tasks are finished
18 while (!executor.isTerminated()) {
19 }
20
21 System.out.println("What is balance? " + account.getBalance());
22 }
23
24 // A thread for adding a penny to the account
25 public static class AddAPennyTask implements Runnable {
26 public void run() {
27 account.deposit(1);
28 }
29 }
30

fairness policy

package for locks

FIGURE 30.13 The ReentrantLock class implements the Lock interface to represent a lock.

«interface»
java.util.concurrent.locks.Lock

+lock(): void
+unlock(): void
+newCondition(): Condition

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()
+ReentrantLock(fair: boolean)

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

1114 Chapter 30 Multithreading and Parallel Programming

31 // An inner class for Account
32 public static class Account {
33 private static Lock lock = new ReentrantLock(); // Create a lock
34 private int balance = 0;
35
36 public int getBalance() {
37 return balance;
38 }
39
40 public void deposit(int amount) {
41 lock.lock(); // Acquire the lock
42
43 try {
44 int newBalance = balance + amount;
45
46 // This delay is deliberately added to magnify the
47 // data-corruption problem and make it easy to see.
48 Thread.sleep(5);
49
50 balance = newBalance;
51 }
52 catch (InterruptedException ex) {
53 }
54 finally {
55 lock.unlock(); // Release the lock
56 }
57 }
58 }
59 }

Line 33 creates a lock, line 41 acquires the lock, and line 55 releases the lock.

Tip
It is a good practice to always immediately follow a call to lock() with a try-catch

block and release the lock in the finally clause, as shown in lines 41–56, to ensure

that the lock is always released.

Listing 30.5 can be implemented using a synchronize method for deposit rather than
using a lock. In general, using synchronized methods or statements is simpler than using
explicit locks for mutual exclusion. However, using explicit locks is more intuitive and flex-
ible to synchronize threads with conditions, as you will see in the next section.

30.18 How do you create a lock object? How do you acquire a lock and release a lock?

30.9 Cooperation among Threads
Conditions on locks can be used to coordinate thread interactions.

Thread synchronization suffices to avoid race conditions by ensuring the mutual exclusion
of multiple threads in the critical region, but sometimes you also need a way for threads to
cooperate. Conditions can be used to facilitate communications among threads. A thread can
specify what to do under a certain condition. Conditions are objects created by invoking the
newCondition() method on a Lock object. Once a condition is created, you can use its
await(), signal(), and signalAll() methods for thread communications, as shown in
Figure 30.14. The await() method causes the current thread to wait until the condition is
signaled. The signal() method wakes up one waiting thread, and the signalAll() method
wakes all waiting threads.

create a lock

acquire the lock

release the lock

✓Point✓Check

Key
Point

condition

30.9 Cooperation among Threads 1115

Let us use an example to demonstrate thread communications. Suppose that you create
and launch two tasks: one that deposits into an account and one that withdraws from the same
account. The withdraw task has to wait if the amount to be withdrawn is more than the cur-
rent balance. Whenever new funds are deposited into the account, the deposit task notifies the
withdraw thread to resume. If the amount is still not enough for a withdrawal, the withdraw
thread has to continue to wait for a new deposit.

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit
added to the account). If the balance is less than the amount to be withdrawn, the withdraw task
will wait for the newDeposit condition. When the deposit task adds money to the account,
the task signals the waiting withdraw task to try again. The interaction between the two tasks
is shown in Figure 30.15.

thread cooperation example

FIGURE 30.14 The Condition interface defines the methods for performing
synchronization.

«interface»
java.util.concurrent.Condition

+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

FIGURE 30.15 The condition newDeposit is used for communications between the two
threads.

while (balance < withdrawAmount)
newDeposit.await();

Withdraw Task

balance -= withdrawAmount

lock.unlock();

Deposit Task

lock.lock();

newDeposit.signalAll();

balance += depositAmount

lock.unlock();

lock.lock();

You create a condition from a Lock object. To use a condition, you have to first obtain a
lock. The await() method causes the thread to wait and automatically releases the lock on the
condition. Once the condition is right, the thread reacquires the lock and continues executing.

Assume that the initial balance is 0 and the amount to deposit and withdraw are ran-
domly generated. Listing 30.6 gives the program. A sample run of the program is shown in
Figure 30.16.

FIGURE 30.16 The withdraw task waits if there are not sufficient funds to withdraw.

1116 Chapter 30 Multithreading and Parallel Programming

LISTING 30.6 ThreadCooperation.java
 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ThreadCooperation {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new DepositTask());
11 executor.execute(new WithdrawTask());
12 executor.shutdown();
13
14 System.out.println("Thread 1\t\tThread 2\t\tBalance");
15 }
16
17 public static class DepositTask implements Runnable {
18 @Override // Keep adding an amount to the account
19 public void run() {
20 try { // Purposely delay it to let the withdraw method proceed
21 while (true) {
22 account.deposit((int)(Math.random() * 10) + 1);
23 Thread.sleep(1000);
24 }
25 }
26 catch (InterruptedException ex) {
27 ex.printStackTrace();
28 }
29 }
30 }
31
32 public static class WithdrawTask implements Runnable {
33 @Override // Keep subtracting an amount from the account
34 public void run() {
35 while (true) {
36 account.withdraw((int)(Math.random() * 10) + 1);
37 }
38 }
39 }
40
41 // An inner class for account
42 private static class Account {
43 // Create a new lock
44 private static Lock lock = new ReentrantLock();
45
46 // Create a condition
47 private static Condition newDeposit = lock.newCondition();
48
49 private int balance = 0;
50
51 public int getBalance() {
52 return balance;
53 }
54
55 public void withdraw(int amount) {
56 lock.lock(); // Acquire the lock
57 try {
58 while (balance < amount) {

create two threads

create a lock

create a condition

acquire the lock

30.9 Cooperation among Threads 1117

59 System.out.println("\t\t\tWait for a deposit");
60 newDeposit.await();
61 }
62
63 balance -= amount;
64 System.out.println("\t\t\tWithdraw " + amount +
65 "\t\t" + getBalance());
66 }
67 catch (InterruptedException ex) {
68 ex.printStackTrace();
69 }
70 finally {
71 lock.unlock(); // Release the lock
72 }
73 }
74
75 public void deposit(int amount) {
76 lock.lock(); // Acquire the lock
77 try {
78 balance += amount;
79 System.out.println("Deposit " + amount +
80 "\t\t\t\t\t" + getBalance());
81
82 // Signal thread waiting on the condition
83 newDeposit.signalAll();
84 }
85 finally {
86 lock.unlock(); // Release the lock
87 }
88 }
89 }
90 }

The example creates a new inner class named Account to model the account with two meth-
ods, deposit(int) and withdraw(int), a class named DepositTask to add an amount
to the balance, a class named WithdrawTask to withdraw an amount from the balance, and a
main class that creates and launches two threads.

The program creates and submits the deposit task (line 10) and the withdraw task (line 11).
The deposit task is purposely put to sleep (line 23) to let the withdraw task run. When there are
not enough funds to withdraw, the withdraw task waits (line 59) for notification of the balance
change from the deposit task (line 83).

A lock is created in line 44. A condition named newDeposit on the lock is created in
line 47. A condition is bound to a lock. Before waiting or signaling the condition, a thread
must first acquire the lock for the condition. The withdraw task acquires the lock in line
56, waits for the newDeposit condition (line 60) when there is not a sufficient amount
to withdraw, and releases the lock in line 71. The deposit task acquires the lock in line 76
and signals all waiting threads (line 83) for the newDeposit condition after a new deposit
is made.

What will happen if you replace the while loop in lines 58–61 with the following if
statement?

if (balance < amount) {
 System.out.println("\t\t\tWait for a deposit");

newDeposit.await();
}

The deposit task will notify the withdraw task whenever the balance changes.
(balance < amount) may still be true when the withdraw task is awakened. Using the if

wait on the condition

release the lock

acquire the lock

signal threads

release the lock

1118 Chapter 30 Multithreading and Parallel Programming

statement may lead to an incorrect withdraw. Using the loop statement, the withdraw task
will have a chance to recheck the condition before performing a withdraw.

Caution
Once a thread invokes await() on a condition, the thread waits for a signal to resume.

If you forget to call signal() or signalAll() on the condition, the thread will wait

forever.

Caution
A condition is created from a Lock object. To invoke its method (e.g., await(),

signal(), and signalAll()), you must first own the lock. If you invoke these

methods without acquiring the lock, an IllegalMonitorStateException will be

thrown.

Locks and conditions were introduced in Java 5. Prior to Java 5, thread communications were
programmed using the object’s built-in monitors. Locks and conditions are more powerful
and flexible than the built-in monitor, so you will not need to use monitors. However, if you
are working with legacy Java code, you may encounter Java’s built-in monitor.

A monitor is an object with mutual exclusion and synchronization capabilities. Only one
thread can execute a method at a time in the monitor. A thread enters the monitor by acquiring
a lock on it and exits by releasing the lock. Any object can be a monitor. An object becomes a
monitor once a thread locks it. Locking is implemented using the synchronized keyword on
a method or a block. A thread must acquire a lock before executing a synchronized method or
block. A thread can wait in a monitor if the condition is not right for it to continue executing
in the monitor. You can invoke the wait() method on the monitor object to release the lock
so that some other thread can get in the monitor and perhaps change the monitor’s state. When
the condition is right, the other thread can invoke the notify() or notifyAll() method
to signal one or all waiting threads to regain the lock and resume execution. The template for
invoking these methods is shown in Figure 30.17.

ever-waiting threads

IllegalMonitorState-
Exception

Java’s built-in monitor

monitor

FIGURE 30.17 The wait(), notify(), and notifyAll() methods coordinate thread communication.

synchronized (anObject) {
try {

// Wait for the condition to become true
while (!condition)

anObject.wait();

// Do something when condition is true
}
catch (InterruptedException ex) {

ex.printStackTrace();
}

}

Task 1

synchronized (anObject) {
// When condition becomes true
anObject.notify(); or anObject.notifyAll();
...

}

Task 2

resume

The wait(), notify(), and notifyAll() methods must be called in a synchronized
method or a synchronized block on the receiving object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously releases the lock on the
object. When the thread is restarted after being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are analogous to the
await(), signal(), and signalAll() methods on a condition.

30.10 Case Study: Producer/Consumer 1119

30.19 How do you create a condition on a lock? What are the await(), signal(), and
signalAll() methods for?

30.20 What would happen if the while loop in line 58 of Listing 30.6 was changed to an
if statement?

✓Point✓Check

while (balance < amount)
Replaced by

if (balance < amount)

30.21 Why does the following class have a syntax error?

public class Test implements Runnable {
public static void main(String[] args) {

new Test();
 }

public Test() throws InterruptedException {
 Thread thread = new Thread(this);
 thread.sleep(1000);
 }

public synchronized void run() {
 }
}

30.22 What is a possible cause for IllegalMonitorStateException?

30.23 Can the wait(), notify(), and notifyAll() be invoked from any object? What
is the purpose of these methods?

30.24 What is wrong in the following code?

synchronized (object1) {
try {

while (!condition) object2.wait();
 }

catch (InterruptedException ex) {
 }
}

30.10 Case Study: Producer/Consumer
This section gives the classic Consumer/Producer example for demonstrating thread
coordination.

Suppose you use a buffer to store integers and that the buffer size is limited. The buffer pro-
vides the method write(int) to add an int value to the buffer and the method read()
to read and delete an int value from the buffer. To synchronize the operations, use a lock
with two conditions: notEmpty (i.e., the buffer is not empty) and notFull (i.e., the buffer
is not full). When a task adds an int to the buffer, if the buffer is full, the task will wait for
the notFull condition. When a task reads an int from the buffer, if the buffer is empty, the
task will wait for the notEmpty condition. The interaction between the two tasks is shown in
Figure 30.18.

Listing 30.7 presents the complete program. The program contains the Buffer class (lines
50–101) and two tasks for repeatedly adding and consuming numbers to and from the buffer
(lines 16–47). The write(int) method (lines 62–79) adds an integer to the buffer. The
read() method (lines 81–100) deletes and returns an integer from the buffer.

Key
Point

1120 Chapter 30 Multithreading and Parallel Programming

The buffer is actually a first-in, first-out queue (lines 52–53). The conditions notEmpty
and notFull on the lock are created in lines 59–60. The conditions are bound to a lock. A
lock must be acquired before a condition can be applied. If you use the wait() and notify()
methods to rewrite this example, you have to designate two objects as monitors.

LISTING 30.7 ConsumerProducer.java
 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ConsumerProducer {
 5 private static Buffer buffer = new Buffer();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
 10 executor.execute(new ProducerTask());
 11 executor.execute(new ConsumerTask());
 12 executor.shutdown();
 13 }
 14
 15 // A task for adding an int to the buffer
 16 private static class ProducerTask implements Runnable {
 17 public void run() {
 18 try {
 19 int i = 1;
 20 while (true) {
 21 System.out.println("Producer writes " + i);
 22 buffer.write(i++); // Add a value to the buffer
 23 // Put the thread into sleep
 24 Thread.sleep((int)(Math.random() * 10000));
 25 }
 26 }
 27 catch (InterruptedException ex) {
 28 ex.printStackTrace();
 29 }
 30 }
 31 }
 32
 33 // A task for reading and deleting an int from the buffer
 34 private static class ConsumerTask implements Runnable {
 35 public void run() {

create a buffer

create two threads

producer task

consumer task

FIGURE 30.18 The conditions notFull and notEmpty are used to coordinate task
interactions.

while (count == CAPACITY)
notFull.await();

Task for adding an int

Add an int to the buffer

notEmpty.signal();

while (count == 0)
notEmpty.await();

Task for deleting an int

Delete an int from the buffer

notFull.signal();

30.10 Case Study: Producer/Consumer 1121

 36 try {
 37 while (true) {
 38 System.out.println("\t\t\tConsumer reads " + buffer.read());
 39 // Put the thread into sleep
 40 Thread.sleep((int)(Math.random() * 10000));
 41 }
 42 }
 43 catch (InterruptedException ex) {
 44 ex.printStackTrace();
 45 }
 46 }
 47 }
 48
 49 // An inner class for buffer
 50 private static class Buffer {
 51 private static final int CAPACITY = 1; // buffer size
 52 private java.util.LinkedList<Integer> queue =
 53 new java.util.LinkedList<>();
 54
 55 // Create a new lock
 56 private static Lock lock = new ReentrantLock();
 57
 58 // Create two conditions
 59 private static Condition notEmpty = lock.newCondition();
 60 private static Condition notFull = lock.newCondition();
 61
 62 public void write(int value) {
 63 lock.lock(); // Acquire the lock
 64 try {
 65 while (queue.size() == CAPACITY) {
 66 System.out.println("Wait for notFull condition");
 67 notFull.await();
 68 }
 69
 70 queue.offer(value);
 71 notEmpty.signal(); // Signal notEmpty condition
 72 }
 73 catch (InterruptedException ex) {
 74 ex.printStackTrace();
 75 }
 76 finally {
 77 lock.unlock(); // Release the lock
 78 }
 79 }
 80
 81 public int read() {
 82 int value = 0;
 83 lock.lock(); // Acquire the lock
 84 try {
 85 while (queue.isEmpty()) {
 86 System.out.println("\t\t\tWait for notEmpty condition");
 87 notEmpty.await();
 88 }
 89
 90 value = queue.remove();
 91 notFull.signal(); // Signal notFull condition
 92 }
 93 catch (InterruptedException ex) {
 94 ex.printStackTrace();
 95 }

create a lock

create a condition
create a condition

acquire the lock

wait for notFull

signal notEmpty

release the lock

acquire the lock

wait for notEmpty

signal notFull

1122 Chapter 30 Multithreading and Parallel Programming

 96 finally {
 97 lock.unlock(); // Release the lock
 98 return value;
 99 }
100 }
101 }
102 }

A sample run of the program is shown in Figure 30.19.

release the lock

FIGURE 30.20 BlockingQueue is a subinterface of Queue.

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.
Waits if the queue is full.

Retrieves and removes the head of this
 queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

«interface»
 java.util.concurrent.BlockingQueue<E>

FIGURE 30.19 Locks and conditions are used for communications between the Producer and
Consumer threads.

30.25 Can the read and write methods in the Buffer class be executed concurrently?

30.26 When invoking the read method, what happens if the queue is empty?

30.27 When invoking the write method, what happens if the queue is full?

30.11 Blocking Queues
Java Collections Framework provides ArrayBlockingQueue, LinkedBlockingQueue,
and PriorityBlockingQueue for supporting blocking queues.

Queues and priority queues are introduced in Section 20.9. A blocking queue causes a thread
to block when you try to add an element to a full queue or to remove an element from an
empty queue. The BlockingQueue interface extends java.util.Queue and provides the
synchronized put and take methods for adding an element to the tail of the queue and for
removing an element from the head of the queue, as shown in Figure 30.20.

✓Point✓Check

Key
Point

blocking queue

30.11 Blocking Queues 1123

Three concrete blocking queues—ArrayBlockingQueue, LinkedBlockingQueue,
and PriorityBlockingQueue—are provided in Java, as shown in Figure 30.21. All are
in the java.util.concurrent package. ArrayBlockingQueue implements a block-
ing queue using an array. You have to specify a capacity or an optional fairness to con-
struct an ArrayBlockingQueue. LinkedBlockingQueue implements a blocking queue
using a linked list. You can create an unbounded or bounded LinkedBlockingQueue.
PriorityBlockingQueue is a priority queue. You can create an unbounded or bounded
priority queue.

FIGURE 30.21 ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue are concrete
blocking queues.

«interface»
java.util.concurrent.BlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,
 fair: boolean)

ArrayBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

LinkedBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

Note
The put method will never block an unbounded LinkedBlockingQueue or

PriorityBlockingQueue.

Listing 30.8 gives an example of using an ArrayBlockingQueue to simplify the
Consumer/Producer example in Listing 30.10. Line 5 creates an ArrayBlockingQueue to
store integers. The Producer thread puts an integer into the queue (line 22), and the Consumer
thread takes an integer from the queue (line 38).

LISTING 30.8 ConsumerProducerUsingBlockingQueue.java
 1 import java.util.concurrent.*;
 2
 3 public class ConsumerProducerUsingBlockingQueue {
 4 private static ArrayBlockingQueue<Integer> buffer =
 5 new ArrayBlockingQueue<>(2);
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new ProducerTask());
11 executor.execute(new ConsumerTask());
12 executor.shutdown();
13 }
14
15 // A task for adding an int to the buffer
16 private staticclass ProducerTask implements Runnable {
17 public void run() {
18 try {
19 int i = 1;
20 while (true) {
21 System.out.println("Producer writes " + i);
22 buffer.put(i++); // Add any value to the buffer, say, 1
23 // Put the thread into sleep

unbounded queue

create a buffer

create two threads

producer task

put

1124 Chapter 30 Multithreading and Parallel Programming

24 Thread.sleep((int)(Math.random() * 10000));
25 }
26 }
27 catch (InterruptedException ex) {
28 ex.printStackTrace();
29 }
30 }
31 }
32
33 // A task for reading and deleting an int from the buffer
34 private static class ConsumerTask implements Runnable {
35 public void run() {
36 try {
37 while (true) {
38 System.out.println("\t\t\tConsumer reads " + buffer.take());
39 // Put the thread into sleep
40 Thread.sleep((int)(Math.random() * 10000));
41 }
42 }
43 catch (InterruptedException ex) {
44 ex.printStackTrace();
45 }
46 }
47 }
48 }

In Listing 30.7, you used locks and conditions to synchronize the Producer and Consumer
threads. This program does not use locks and conditions, because synchronization is already
implemented in ArrayBlockingQueue.

30.28 What is a blocking queue? What blocking queues are supported in Java?

30.29 What method do you use to add an element to an ArrayBlockingQueue? What
happens if the queue is full?

30.30 What method do you use to retrieve an element from an ArrayBlockingQueue?
What happens if the queue is empty?

30.12 Semaphores
Semaphores can be used to restrict the number of threads that access a shared resource.

In computer science, a semaphore is an object that controls the access to a common resource. Before
accessing the resource, a thread must acquire a permit from the semaphore. After finishing with
the resource, the thread must return the permit back to the semaphore, as shown in Figure 30.22.

consumer task

take

✓Point✓Check

Key
Point

semaphore

FIGURE 30.22 A limited number of threads can access a shared resource controlled by
a semaphore.

Acquire a permit from a semaphore.
Wait if the permit is not available.

Release the permit to the semaphore.

A thread accessing a shared resource.

Access the resource

semaphore.acquire();

semaphore.release();

30.12 Semaphores 1125

To create a semaphore, you have to specify the number of permits with an optional fair-
ness policy, as shown in Figure 30.23. A task acquires a permit by invoking the semaphore’s
acquire() method and releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of available permits in a semaphore is
reduced by 1. Once a permit is released, the total number of available permits in a semaphore
is increased by 1.

FIGURE 30.23 The Semaphore class contains the methods for accessing a semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

A semaphore with just one permit can be used to simulate a mutually exclusive lock.
Listing 30.9 revises the Account inner class in Listing 30.9 using a semaphore to ensure that
only one thread at a time can access the deposit method.

LISTING 30.9 New Account Inner Class
 1 // An inner class for Account
 2 private static class Account {
 3 // Create a semaphore
 4 private static Semaphore semaphore = new Semaphore(1);
 5 private int balance = 0;
 6
 7 public int getBalance() {
 8 return balance;
 9 }
10
11 public void deposit(int amount) {
12 try {
13 semaphore.acquire(); // Acquire a permit
14 int newBalance = balance + amount;
15
16 // This delay is deliberately added to magnify the
17 // data-corruption problem and make it easy to see
18 Thread.sleep(5);
19
20 balance = newBalance;
21 }
22 catch (InterruptedException ex) {
23 }
24 finally {
25 semaphore.release(); // Release a permit
26 }
27 }
28 }

A semaphore with one permit is created in line 4. A thread first acquires a permit when execut-
ing the deposit method in line 13. After the balance is updated, the thread releases the permit
in line 25. It is a good practice to always place the release() method in the finally clause
to ensure that the permit is finally released even in the case of exceptions.

create a semaphore

acquire a permit

release a permit

1126 Chapter 30 Multithreading and Parallel Programming

30.31 What are the similarities and differences between a lock and a semaphore?

30.32 How do you create a semaphore that allows three concurrent threads? How do you
acquire a semaphore? How do you release a semaphore?

30.13 Avoiding Deadlocks
Deadlocks can be avoided by using a proper resource ordering.

Sometimes two or more threads need to acquire the locks on several shared objects. This could
cause a deadlock, in which each thread has the lock on one of the objects and is waiting for
the lock on the other object. Consider the scenario with two threads and two objects, as shown
in Figure 30.24. Thread 1 has acquired a lock on object1, and Thread 2 has acquired a lock
on object2. Now Thread 1 is waiting for the lock on object2, and Thread 2 for the lock on
object1. Each thread waits for the other to release the lock it needs and until that happens,
neither can continue to run.

✓Point✓Check

Key
Point

deadlock

FIGURE 30.24 Thread 1 and Thread 2 are deadlocked.

synchronized (object1) {

 // do something here

synchronized (object2) {

// do something here
}

}

Thread 1

synchronized (object2) {

// do something here

synchronized (object1) {
// do something here

}
}

Thread 2 Step

1
2
3
4
5
6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

Deadlock is easily avoided by using a simple technique known as resource ordering. With
this technique, you assign an order to all the objects whose locks must be acquired and ensure
that each thread acquires the locks in that order. For the example in Figure 30.24, suppose
that the objects are ordered as object1 and object2. Using the resource ordering technique,
Thread 2 must acquire a lock on object1 first, then on object2. Once Thread 1 acquires a
lock on object1, Thread 2 has to wait for a lock on object1. Thus, Thread 1 will be able to
acquire a lock on object2 and no deadlock will occur.

30.33 What is a deadlock? How can you avoid deadlock?

30.14 Thread States
A thread state indicates the status of thread.

Tasks are executed in threads. Threads can be in one of five states: New, Ready, Running,
Blocked, or Finished (see Figure 30.25).

When a thread is newly created, it enters the New state. After a thread is started by calling
its start() method, it enters the Ready state. A ready thread is runnable but may not be run-
ning yet. The operating system has to allocate CPU time to it.

When a ready thread begins executing, it enters the Running state. A running thread can
enter the Ready state if its given CPU time expires or its yield() method is called.

resource ordering

✓Point✓Check

Key
Point

30.15 Synchronized Collections 1127

A thread can enter the Blocked state (i.e., become inactive) for several reasons. It may have
invoked the join(), sleep(), or wait() method. It may be waiting for an I/O operation
to finish. A blocked thread may be reactivated when the action inactivating it is reversed. For
example, if a thread has been put to sleep and the sleep time has expired, the thread is reacti-
vated and enters the Ready state.

Finally, a thread is Finished if it completes the execution of its run() method.
The isAlive() method is used to find out the state of a thread. It returns true if a thread

is in the Ready, Blocked, or Running state; it returns false if a thread is new and has not
started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently
in the Ready or Running state, its interrupted flag is set; if a thread is currently blocked, it is
awakened and enters the Ready state, and a java.lang.InterruptedException is thrown.

30.34 What is a thread state? Describe the states for a thread.

30.15 Synchronized Collections
Java Collections Framework provides synchronized collections for lists, sets, and maps.

The classes in the Java Collections Framework are not thread-safe; that is, their contents may
become corrupted if they are accessed and updated concurrently by multiple threads. You can
protect the data in a collection by locking the collection or by using synchronized collections.

The Collections class provides six static methods for wrapping a collection into a syn-
chronized version, as shown in Figure 30.26. The collections created using these methods are
called synchronization wrappers.

✓Point✓Check

Key
Point

synchronized collection

synchronization wrapper

FIGURE 30.25 A thread can be in one of five states: New, Ready, Running, Blocked, or Finished.

Thread created start()
run()

Wait for target
to finish

Ready

Running

FinishedNew

Wait for time
out

Wait to be
notified

run() completed
yield(), or
time out

sleep()join() wait()
Target
finished

SignaledTime out

Blocked

FIGURE 30.26 You can obtain synchronized collections using the methods in the Collections class.

java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the specified list.

Returns a synchronized map from the specified map.

Returns a synchronized set from the specified set.

Returns a synchronized sorted map from the specified
sorted map.

Returns a synchronized sorted set.

1128 Chapter 30 Multithreading and Parallel Programming

Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original collection c are synchro-
nized. These methods are implemented using the synchronized keyword. For example, the
add method is implemented like this:

public boolean add(E o) {
synchronized (this) {

return c.add(o);
 }
}

Synchronized collections can be safely accessed and modified by multiple threads concurrently.

Note
The methods in java.util.Vector, java.util.Stack, and

java.util.Hashtable are already synchronized. These are old classes introduced

in JDK 1.0. Starting with JDK 1.5, you should use java.util.ArrayList to replace

Vector, java.util.LinkedList to replace Stack, and java.util.Map to

replace Hashtable. If synchronization is needed, use a synchronization wrapper.

The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This means
that if you are using an iterator to traverse a collection while the underlying collection is being
modified by another thread, then the iterator will immediately fail by throwing java.util.
ConcurrentModificationException, which is a subclass of RuntimeException. To
avoid this error, you need to create a synchronized collection object and acquire a lock on the
object when traversing it. For example, to traverse a set, you have to write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());

synchronized (hashSet) { // Must synchronize it
 Iterator iterator = hashSet.iterator();

while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
}

Failure to do so may result in nondeterministic behavior, such as a
ConcurrentModificationException.

30.35 What is a synchronized collection? Is ArrayList synchronized? How do you make
it synchronized?

30.36 Explain why an iterator is fail-fast.

30.16 Parallel Programming
The Fork/Join Framework is used for parallel programming in Java.

The widespread use of multicore systems has created a revolution in software. In order to
benefit from multiple processors, software needs to run in parallel. JDK 7 introduces the new
Fork/Join Framework for parallel programming, which utilizes the multicore processors.

The Fork/Join Framework is illustrated in Figure 30.27 (the diagram resembles a fork, hence
its name). A problem is divided into nonoverlapping subproblems, which can be solved indepen-
dently in parallel. The solutions to all subproblems are then joined to obtain an overall solution
for the problem. This is the parallel implementation of the divide-and-conquer approach. In JDK
7’s Fork/Join Framework, a fork can be viewed as an independent task that runs on a thread.

fail-fast

✓Point✓Check

Key
Point

JDK 7 feature

Fork/Join Framework

30.16 Parallel Programming 1129

The framework defines a task using the ForkJoinTask class, as shown in Figure 30.28
and executes a task in an instance of ForkJoinPool, as shown in Figure 30.29.

ForkJoinTask

ForkJoinPool

FIGURE 30.27 The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

FIGURE 30.28 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
 returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
 result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void Defines how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V Defines how task is performed. Return the
 value after the task is completed.

FIGURE 30.29 The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the specified number of processors.
Performs the task and returns its result upon completion.

See Figure 30.7

1130 Chapter 30 Multithreading and Parallel Programming

ForkJoinTask is the abstract base class for tasks. A ForkJoinTask is a thread-like
entity, but it is much lighter than a normal thread because huge numbers of tasks and sub-
tasks can be executed by a small number of actual threads in a ForkJoinPool. The tasks are
primarily coordinated using fork() and join(). Invoking fork() on a task arranges asyn-
chronous execution, and invoking join() waits until the task is completed. The invoke()
and invokeAll(tasks) methods implicitly invoke fork() to execute the task and join()
to wait for the tasks to complete, and return the result, if any. Note that the static method
invokeAll takes a variable number of ForkJoinTask arguments using the ... syntax,
which is introduced in Section 7.9.

The Fork/Join Framework is designed to parallelize divide-and-conquer solutions, which
are naturally recursive. RecursiveAction and RecursiveTask are two subclasses of
ForkJoinTask. To define a concrete task class, your class should extend RecursiveAction
or RecursiveTask. RecursiveAction is for a task that doesn’t return a value, and
RecursiveTask is for a task that does return a value. Your task class should override the
compute() method to specify how a task is performed.

We now use a merge sort to demonstrate how to develop parallel programs using the Fork/
Join Framework. The merge sort algorithm (introduced in Section 25.3) divides the array into
two halves and applies a merge sort on each half recursively. After the two halves are sorted,
the algorithm merges them. Listing 30.10 gives a parallel implementation of the merge sort
algorithm and compares its execution time with a sequential sort.

LISTING 30.10 ParallelMergeSort.java
 1 import java.util.concurrent.RecursiveAction;
 2 import java.util.concurrent.ForkJoinPool;
 3
 4 public class ParallelMergeSort {
 5 public static void main(String[] args) {
 6 final int SIZE = 7000000;
 7 int[] list1 = new int[SIZE];
 8 int[] list2 = new int[SIZE];
 9
10 for (int i = 0; i < list1.length; i++)
11 list1[i] = list2[i] = (int)(Math.random() * 10000000);
12
13 long startTime = System.currentTimeMillis();
14 parallelMergeSort(list1); // Invoke parallel merge sort
15 long endTime = System.currentTimeMillis();
16 System.out.println("\nParallel time with "
17 + Runtime.getRuntime().availableProcessors() +
18 " processors is " + (endTime - startTime) + " milliseconds");
19
20 startTime = System.currentTimeMillis();
21 MergeSort.mergeSort(list2); // MergeSort is in Listing 23.5
22 endTime = System.currentTimeMillis();
23 System.out.println("\nSequential time is " +
24 (endTime - startTime) + " milliseconds");
25 }
26
27 public static void parallelMergeSort(int[] list) {
28 RecursiveAction mainTask = new SortTask(list);
29 ForkJoinPool pool = new ForkJoinPool();
30 pool.invoke(mainTask);
31 }
32
33 private static class SortTask extends RecursiveAction {
34 private final int THRESHOLD = 500;

RecursiveAction

RecursiveTask

invoke parallel sort

invoke sequential sort

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete
ForkJoinTask

30.16 Parallel Programming 1131

35 private int[] list;
36
37 SortTask(int[] list) {
38 this.list = list;
39 }
40
41 @Override
42 protected void compute() {
43 if (list.length < THRESHOLD)
44 java.util.Arrays.sort(list);
45 else {
46 // Obtain the first half
47 int[] firstHalf = new int[list.length / 2];
48 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
49
50 // Obtain the second half
51 int secondHalfLength = list.length - list.length / 2;
52 int[] secondHalf = new int[secondHalfLength];
53 System.arraycopy(list, list.length / 2,
54 secondHalf, 0, secondHalfLength);
55
56 // Recursively sort the two halves
57 invokeAll(new SortTask(firstHalf),
58 new SortTask(secondHalf));
59
60 // Merge firstHalf with secondHalf into list
61 MergeSort.merge(firstHalf, secondHalf, list);
62 }
63 }
64 }
65 }

perform the task

sort a small list

split into two parts

solve each part

merge two parts

Parallel time with 2 processors is 2829 milliseconds
Sequential time is 4751 milliseconds

Since the sort algorithm does not return a value, we define a concrete ForkJoinTask class by
extending RecursiveAction (lines 33–64). The compute method is overridden to imple-
ment a recursive merge sort (lines 42–63). If the list is small, it is more efficient to be solved
sequentially (line 44). For a large list, it is split into two halves (lines 47–54). The two halves
are sorted concurrently (lines 57 and 58) and then merged (line 61).

The program creates a main ForkJoinTask (line 28), a ForkJoinPool (line 29), and
places the main task for execution in a ForkJoinPool (line 30). The invoke method will
return after the main task is completed.

When executing the main task, the task is split into subtasks and the subtasks are invoked
using the invokeAll method (lines 57 and 58). The invokeAll method will return after all
the subtasks are completed. Note that each subtask is further split into smaller tasks recur-
sively. Huge numbers of subtasks may be created and executed in the pool. The Fork/Join
Framework automatically executes and coordinates all the tasks efficiently.

The MergeSort class is defined in Listing 23.5. The program invokes MergeSort.merge
to merge two sorted sublists (line 61). The program also invokes MergeSort.mergeSort
(line 21) to sort a list using merge sort sequentially. You can see that the parallel sort is much
faster than the sequential sort.

Note that the loop for initializing the list can also be parallelized. However, you should
avoid using Math.random() in the code because it is synchronized and cannot be executed
in parallel (see Programming Exercise 30.12). The parallelMergeSort method only sorts

1132 Chapter 30 Multithreading and Parallel Programming

an array of int values, but you can modify it to become a generic method (see Programming
Exercise 30.13).

In general, a problem can be solved in parallel using the following pattern:

if (the program is small)
 solve it sequentially;
else {
 divide the problem into nonoverlapping subproblems;
 solve the subproblems concurrently;
 combine the results from subproblems to solve the whole problem;
}

Listing 30.11 develops a parallel method that finds the maximal number in a list.

LISTING 30.11 ParallelMax.java
 1 import java.util.concurrent.*;
 2
 3 public class ParallelMax {
 4 public static void main(String[] args) {
 5 // Create a list
 6 final int N = 9000000;
 7 int[] list = new int[N];
 8 for (int i = 0; i < list.length; i++)
 9 list[i] = i;
10
11 long startTime = System.currentTimeMillis();
12 System.out.println("\nThe maximal number is " + max(list));
13 long endTime = System.currentTimeMillis();
14 System.out.println("The number of processors is " +
15 Runtime.getRuntime().availableProcessors());
16 System.out.println("Time is " + (endTime - startTime)
17 + " milliseconds");
18 }
19
20 public static int max(int[] list) {
21 RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);
22 ForkJoinPool pool = new ForkJoinPool();
23 return pool.invoke(task);
24 }
25
26 private static class MaxTask extends RecursiveTask<Integer> {
27 private final static int THRESHOLD = 1000;
28 private int[] list;
29 private int low;
30 private int high;
31
32 public MaxTask(int[] list, int low, int high) {
33 this.list = list;
34 this.low = low;
35 this.high = high;
36 }
37
38 @Override
39 public Integer compute() {
40 if (high - low < THRESHOLD) {
41 int max = list[0];
42 for (int i = low; i < high; i++)
43 if (list[i] > max)
44 max = list[i];
45 return new Integer(max);

invoke max

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete
ForkJoinTask

perform the task

solve a small problem

Chapter Summary 1133

46 }
47 else {
48 int mid = (low + high) / 2;
49 RecursiveTask<Integer> left = new MaxTask(list, low, mid);
50 RecursiveTask<Integer> right = new MaxTask(list, mid, high);
51
52 right.fork();
53 left.fork();
54 return new Integer(Math.max(left.join().intValue(),
55 right.join().intValue()));
56 }
57 }
58 }
59 }

split into two parts

fork right
fork left
join tasks

KEY TERMS

condition 1114
deadlock 1126
fail-fast 1128
fairness policy 1113
Fork/Join Framework 1128
lock 1112
monitor 1118

multithreading 1098
race condition 1111
semaphore 1124
synchronization wrapper 1127
synchronized block 1112
thread 1098
thread-safe 1111

The maximal number is 8999999
The number of processors is 2
Time is 44 milliseconds

Since the algorithm returns an integer, we define a task class for fork join by extending
RecursiveTask<Integer> (lines 26–58). The compute method is overridden to return the
max element in a list[low..high] (lines 39–57). If the list is small, it is more efficient to
be solved sequentially (lines 40–46). For a large list, it is split into two halves (lines 48–50).
The tasks left and right find the maximal element in the left half and right half, respec-
tively. Invoking fork() on the task causes the task to be executed (lines 52 and 53). The
join() method awaits for the task to complete and then returns the result (lines 54 and 55).

30.37 How do you define a ForkJoinTask? What are the differences between
RecursiveAction and RecursiveTask?

30.38 How do you tell the system to execute a task?

30.39 What method can you use to test if a task has been completed?

30.40 How do you create a ForkJoinPool? How do you place a task into a ForkJoinPool?

✓Point✓Check

CHAPTER SUMMARY

1. Each task is an instance of the Runnable interface. A thread is an object that facilitates
the execution of a task. You can define a task class by implementing the Runnable
interface and create a thread by wrapping a task using a Thread constructor.

2. After a thread object is created, use the start() method to start a thread, and the
sleep(long) method to put a thread to sleep so that other threads get a chance to run.

1134 Chapter 30 Multithreading and Parallel Programming

3. A thread object never directly invokes the run method. The JVM invokes the run
method when it is time to execute the thread. Your class must override the run method
to tell the system what the thread will do when it runs.

4. To prevent threads from corrupting a shared resource, use synchronized methods or
blocks. A synchronized method acquires a lock before it executes. In the case of an
instance method, the lock is on the object for which the method was invoked. In the case
of a static method, the lock is on the class.

5. A synchronized statement can be used to acquire a lock on any object, not just this
object, when executing a block of the code in a method. This block is referred to as a
synchronized block.

6. You can use explicit locks and conditions to facilitate communications among threads,
as well as using the built-in monitor for objects.

7. The blocking queues (ArrayBlockingQueue, LinkedBlockingQueue,
PriorityBlockingQueue) provided in the Java Collections Framework automati-
cally synchronize access to a queue.

8. You can use semaphores to restrict the number of concurrent tasks that access a shared
resource.

9. Deadlock occurs when two or more threads acquire locks on multiple objects and each
has a lock on one object and is waiting for the lock on the other object. The resource
ordering technique can be used to avoid deadlock.

10. The JDK 7’s Fork/Join Framework is designed for developing parallel programs. You
can define a task class that extends RecursiveAction or RecursiveTask and exe-
cute the tasks concurrently in ForkJoinPool and obtains the overall solution after all
tasks are completed.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

Sections 30.1–30.5

*30.1 (Revise Listing 30.1) Rewrite Listing 30.1 to display the output in a text area,
as shown in Figure 30.30.

FIGURE 30.30 The output from three threads is displayed in a text area.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 1135

30.2 (Racing cars) Rewrite Programming Exercise 15.29 using a thread to control
car racing. Compare the program with Programming Exercise 15.29 by setting
the delay time to 10 in both programs. Which one runs the animation faster?

30.3 (Raise flags) Rewrite Listing 15.13 using a thread to animate a flag being
raised. Compare the program with Listing 15.13 by setting the delay time to 10
in both programs. Which one runs the animation faster?

Sections 30.8–30.12

30.4 (Synchronize threads) Write a program that launches 1,000 threads. Each
thread adds 1 to a variable sum that initially is 0. Define an Integer wrapper
object to hold sum. Run the program with and without synchronization to see
its effect.

30.5 (Display a running fan) Rewrite Programming Exercise 15.28 using a thread to
control the fan animation.

30.6 (Bouncing balls) Rewrite Listing 15.17 BallPane.java using a thread to animate
bouncing ball movements.

30.7 (Control a clock) Rewrite Programming Exercise 15.32 using a thread to con-
trol the clock animation.

30.8 (Account synchronization) Rewrite Listing 30.6, ThreadCooperation.java,
using the object’s wait() and notifyAll() methods.

30.9 (Demonstrate ConcurrentModificationException) The iterator is fail-
fast. Write a program to demonstrate it by creating two threads that concurrently
access and modify a set. The first thread creates a hash set filled with numbers,
and adds a new number to the set every second. The second thread obtains an
iterator for the set and traverses the set back and forth through the iterator every
second. You will receive a ConcurrentModificationException because
the underlying set is being modified in the first thread while the set in the sec-
ond thread is being traversed.

*30.10 (Use synchronized sets) Using synchronization, correct the problem
in the preceding exercise so that the second thread does not throw a
ConcurrentModificationException.

Section 30.15

*30.11 (Demonstrate deadlock) Write a program that demonstrates deadlock.

Section 30.18

*30.12 (Parallel array initializer) Implement the following method using the Fork/
Join Framework to assign random values to the list.

public static void parallelAssignValues(double[] list)

 Write a test program that creates a list with 9,000,000 elements and invokes
parallelAssignValues to assign random values to the list. Also
implement a sequential algorithm and compare the execution time of the
two. Note that if you use Math.random(), your parallel code execu-
tion time will be worse than the sequential code execution time because
Math.random() is synchronized and cannot be executed in parallel. To
fix this problem, create a Random object for assigning random values to a
small list.

1136 Chapter 30 Multithreading and Parallel Programming

30.13 (Generic parallel merge sort) Revise Listing 30.10, ParallelMergeSort.java, to
define a generic parallelMergeSort method as follows:

public static <E extends Comparable<E>> void
 parallelMergeSort(E[] list)

*30.14 (Parallel quick sort) Implement the following method in parallel to sort a list
using quick sort (see Listing 23.7).

public static void parallelQuickSort(int[] list)

 Write a test program that times the execution time for a list of size 9,000,000
using this parallel method and a sequential method.

*30.15 (Parallel sum) Implement the following method using Fork/Join to find the
sum of a list.

public static double parallelSum(double[] list)

 Write a test program that finds the sum in a list of 9,000,000 double values.

*30.16 (Parallel matrix addition) Programming Exercise 8.5 describes how to perform
matrix addition. Suppose you have multiple processors, so you can speed up the
matrix addition. Implement the following method in parallel.

public static double[][] parallelAddMatrix(
double[][] a, double[][] b)

 Write a test program that measures the execution time for adding two
2,000 * 2,000 matrices using the parallel method and sequential method,
respectively.

*30.17 (Parallel matrix multiplication) Programming Exercise 7.6 describes how to
perform matrix multiplication. Suppose you have multiple processors, so you
can speed up the matrix multiplication. Implement the following method in
parallel.

public static double[][] parallelMultiplyMatrix(
double[][] a, double[][] b)

 Write a test program that measures the execution time for multiplying two
2,000 * 2,000 matrices using the parallel method and sequential method,
respectively.

*30.18 (Parallel Eight Queens) Revise Listing 22.11, EightQueens.java, to develop a
parallel algorithm that finds all solutions for the Eight Queens problem. (Hint:
Launch eight subtasks, each of which places the queen in a different column in
the first row.)

Comprehensive

***30.19 (Sorting animation) Write an animation for selection sort, insertion sort, and
bubble sort, as shown in Figure 30.31. Create an array of integers 1, 2, . . . ,
50. Shuffle it randomly. Create a pane to display the array in a histogram. You
should invoke each sort method in a separate thread. Each algorithm uses two
nested loops. When the algorithm completes an iteration in the outer loop, put
the thread to sleep for 0.5 seconds, and redisplay the array in the histogram.
Color the last bar in the sorted subarray.

Programming Exercises 1137

***30.20 (Sudoku search animation) Modify Programming Exercise 22.21 to display the
intermediate results of the search. Figure 30.32 gives a snapshot of an animation
in progress with number 2 placed in the cell in Figure 30.32a, number 3 placed
in the cell in Figure 30.32b, and number 3 placed in the cell in Figure 30.32c.
The animation displays all the search steps.

FIGURE 30.31 Three sorting algorithms are illustrated in the animation.

FIGURE 30.32 The intermediate search steps are displayed in the animation for the Sudoku problem.

(a) (b) (c)

1138 Chapter 30 Multithreading and Parallel Programming

30.21 (Combine colliding bouncing balls) Rewrite Programming Exercise 20.5 using
a thread to animate bouncing ball movements.

***30.22 (Eight Queens animation) Modify Listing 22.11, EightQueens.java, to display
the intermediate results of the search. As shown in Figure 30.33, the current
row being searched is highlighted. Every one second, a new state of the chess
board is displayed.

FIGURE 30.33 The intermediate search steps are displayed in the animation for the Eight Queens problem.

NETWORKING

Objectives
■ To explain terms: TCP, IP, domain name, domain name server, stream-

based communications, and packet-based communications (§31.2).

■ To create servers using server sockets (§31.2.1) and clients using client
sockets (§31.2.2).

■ To implement Java networking programs using stream sockets (§31.2.3).

■ To develop an example of a client/server application (§31.2.4).

■ To obtain Internet addresses using the InetAddress class (§31.3).

■ To develop servers for multiple clients (§31.4).

■ To send and receive objects on a network (§31.5).

■ To develop an interactive tic-tac-toe game played on the Internet (§31.6).

CHAPTER

31

1140 Chapter 31 Networking

31.1 Introduction
Computer networking is used to send and receive messages among computers on the Internet.

To browse the Web or send an email, your computer must be connected to the Internet. The
Internet is the global network of millions of computers. Your computer can connect to the
Internet through an Internet Service Provider (ISP) using a dialup, DSL, or cable modem, or
through a local area network (LAN).

When a computer needs to communicate with another computer, it needs to know the other
computer’s address. An Internet Protocol (IP) address uniquely identifies the computer on the
Internet. An IP address consists of four dotted decimal numbers between 0 and 255, such as
130.254.204.31. Since it is not easy to remember so many numbers, they are often mapped
to meaningful names called domain names, such as liang.armstrong.edu. Special servers called
Domain Name Servers (DNS) on the Internet translate host names into IP addresses. When a
computer contacts liang.armstrong.edu, it first asks the DNS to translate this domain name into
a numeric IP address and then sends the request using the IP address.

The Internet Protocol is a low-level protocol for delivering data from one computer to
another across the Internet in packets. Two higher-level protocols used in conjunction with
the IP are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).
TCP enables two hosts to establish a connection and exchange streams of data. TCP guaran-
tees delivery of data and also guarantees that packets will be delivered in the same order in
which they were sent. UDP is a standard, low-overhead, connectionless, host-to-host protocol
that is used over the IP. UDP allows an application program on one computer to send a data-
gram to an application program on another computer.

Java supports both stream-based and packet-based communications. Stream-based com-
munications use TCP for data transmission, whereas packet-based communications use UDP.
Since TCP can detect lost transmissions and resubmit them, transmissions are lossless and reli-
able. UDP, in contrast, cannot guarantee lossless transmission. Stream-based communications
are used in most areas of Java programming and are the focus of this chapter. Packet-based
communications are introduced in Supplement III.P, Networking Using Datagram Protocol.

31.2 Client/Server Computing
Java provides the ServerSocket class for creating a server socket and the Socket
class for creating a client socket. Two programs on the Internet communicate through
a server socket and a client socket using I/O streams.

Networking is tightly integrated in Java. The Java API provides the classes for creating sock-
ets to facilitate program communications over the Internet. Sockets are the endpoints of logi-
cal connections between two hosts and can be used to send and receive data. Java treats socket
communications much as it treats I/O operations; thus, programs can read from or write to
sockets as easily as they can read from or write to files.

Network programming usually involves a server and one or more clients. The client sends
requests to the server, and the server responds. The client begins by attempting to establish a
connection to the server. The server can accept or deny the connection. Once a connection is
established, the client and the server communicate through sockets.

The server must be running when a client attempts to connect to the server. The server
waits for a connection request from the client. The statements needed to create sockets on a
server and on a client are shown in Figure 31.1.

31.2.1 Server Sockets
To establish a server, you need to create a server socket and attach it to a port, which is where
the server listens for connections. The port identifies the TCP service on the socket. Port num-
bers range from 0 to 65536, but port numbers 0 to 1024 are reserved for privileged services.

Key
Point

IP address

domain name

domain name server

TCP

UDP

stream-based communication

packet-based communication

Key
Point

socket

server socket

port

31.2 Client/Server Computing 1141

For instance, the email server runs on port 25, and the Web server usually runs on port 80.
You can choose any port number that is not currently used by other programs. The following
statement creates a server socket serverSocket:

ServerSocket serverSocket = new ServerSocket(port);

Note
Attempting to create a server socket on a port already in use would cause a

java.net.BindException.

31.2.2 Client Sockets
After a server socket is created, the server can use the following statement to listen for
connections:

Socket socket = serverSocket.accept();

This statement waits until a client connects to the server socket. The client issues the follow-
ing statement to request a connection to a server:

Socket socket = new Socket(serverName, port);

This statement opens a socket so that the client program can communicate with the server.
serverName is the server’s Internet host name or IP address. The following statement creates
a socket on the client machine to connect to the host 130.254.204.33 at port 8000:

Socket socket = new Socket("130.254.204.33", 8000)

Alternatively, you can use the domain name to create a socket, as follows:

Socket socket = new Socket("liang.armstrong.edu", 8000);

When you create a socket with a host name, the JVM asks the DNS to translate the host name
into the IP address.

Note
A program can use the host name localhost or the IP address 127.0.0.1 to refer

to the machine on which a client is running.

BindException

connect to client

client socket

use IP address

use domain name

localhost

FIGURE 31.1 The server creates a server socket and, once a connection to a client is established, connects to the client
with a client socket.

Server Host

Step 1: Create a server socket on a port, e.g.,
8000, using the following statement:

ServerSocket serverSocket = new
ServerSocket(8000);

Step 2: Create a socket to connect to a client,
using the following statement:

Socket socket =
serverSocket.accept();

Client Host

Step 3: A client program uses the following
statement to connect to the server:

Socket socket = new
Socket(serverHost, 8000);

I/O Stream

Network

1142 Chapter 31 Networking

Note
The Socket constructor throws a java.net.UnknownHostException if the host

cannot be found.

31.2.3 Data Transmission through Sockets
After the server accepts the connection, communication between the server and the client is
conducted in the same way as for I/O streams. The statements needed to create the streams and
to exchange data between them are shown in Figure 31.2.

UnknownHostException

FIGURE 31.2 The server and client exchange data through I/O streams on top of the socket.

int port = 8000; int port = 8000;

Connection
Request

I/O
Streams

Server Client

DataInputStream in;
DataOutputStream out;
ServerSocket server;
Socket socket;

server = new ServerSocket(port);
socket = server.accept();
in = new DataInputStream
 (socket.getInputStream());
out = new DataOutStream
(socket.getOutputStream());

System.out.println(in.readDouble());
out.writeDouble(aNumber);

String host = "localhost"
DataInputStream in;
DataOutputStream out;
Socket socket;

socket = new Socket(host, port);
in = new DataInputStream
 (socket.getInputStream());
out = new DataOutputStream
 (socket.getOutputStream());

System.out.println(in.readDouble());
out.writeDouble(aNumber);

To get an input stream and an output stream, use the getInputStream() and
getOutputStream() methods on a socket object. For example, the following statements
create an InputStream stream called input and an OutputStream stream called output
from a socket:

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

The InputStream and OutputStream streams are used to read or write bytes. You can
use DataInputStream, DataOutputStream, BufferedReader, and PrintWriter to
wrap on the InputStream and OutputStream to read or write data, such as int, double,
or String. The following statements, for instance, create the DataInputStream stream
input and the DataOutput stream output to read and write primitive data values:

DataInputStream input = new DataInputStream
 (socket.getInputStream());
DataOutputStream output = new DataOutputStream
 (socket.getOutputStream());

The server can use input.readDouble() to receive a double value from the client and
output.writeDouble(d) to send the double value d to the client.

Tip
Recall that binary I/O is more efficient than text I/O because text I/O requires encoding

and decoding. Therefore, it is better to use binary I/O for transmitting data between a

server and a client to improve performance.

31.2 Client/Server Computing 1143

31.2.4 A Client/Server Example
This example presents a client program and a server program. The client sends data to a
server. The server receives the data, uses it to produce a result, and then sends the result back
to the client. The client displays the result on the console. In this example, the data sent from
the client comprise the radius of a circle, and the result produced by the server is the area of
the circle (see Figure 31.3).

FIGURE 31.3 The client sends the radius to the server; the server computes the area and
sends it to the client.

compute area

Server Client
radius

area

FIGURE 31.4 (a) The client sends the radius to the server. (b) The server sends the area to the client.

Server
radius

DataInputStream

socket.getInputStream

socket

Network

radius

DataOutputStream

socket.getOutputStream

socket

Client

(a)

Server
area

DataOutputStream

socket.getOutputStream

socket

Network

area

DataInputStream

socket.getInputStream

socket

Client

(b)

The client sends the radius through a DataOutputStream on the output stream socket,
and the server receives the radius through the DataInputStream on the input stream socket,
as shown in Figure 31.4a. The server computes the area and sends it to the client through a
DataOutputStream on the output stream socket, and the client receives the area through
a DataInputStream on the input stream socket, as shown in Figure 31.4b. The server and
client programs are given in Listings 31.1 and 31.2. Figure 31.5 contains a sample run of the
server and the client.

FIGURE 31.5 The client sends the radius to the server. The server receives it, computes the
area, and sends the area to the client.

LISTING 31.1 Server.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;

1144 Chapter 31 Networking

 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
10
11 public class Server extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 // Text area for displaying contents
15 TextArea ta = new TextArea();
16
17 // Create a scene and place it in the stage
18 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
19 primaryStage.setTitle("Server"); // Set the stage title
20 primaryStage.setScene(scene); // Place the scene in the stage
21 primaryStage.show(); // Display the stage
22
23 new Thread(() -> {
24 try {
25 // Create a server socket
26 ServerSocket serverSocket = new ServerSocket(8000);
27 Platform.runLater(() ->
28 ta.appendText("Server started at " + new Date() + '\n'));
29
30 // Listen for a connection request
31 Socket socket = serverSocket.accept();
32
33 // Create data input and output streams
34 DataInputStream inputFromClient = new DataInputStream(
35 socket.getInputStream());
36 DataOutputStream outputToClient = new DataOutputStream(
37 socket.getOutputStream());
38
39 while (true) {
40 // Receive radius from the client
41 double radius = inputFromClient.readDouble();
42
43 // Compute area
44 double area = radius * radius * Math.PI;
45
46 // Send area back to the client
47 outputToClient.writeDouble(area);
48
49 Platform.runLater(() -> {
50 ta.appendText("Radius received from client: "
51 + radius + '\n');
52 ta.appendText("Area is: " + area + '\n');
53 });
54 }
55 }
56 catch(IOException ex) {
57 ex.printStackTrace();
58 }
59 }).start();
60 }
61 }

create server UI

server socket
update UI

connect client

input from client

output to client

read radius

write area

update UI

31.2 Client/Server Computing 1145

LISTING 31.2 Client.java
 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.geometry.Insets;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
10 import javafx.scene.control.TextField;
11 import javafx.scene.layout.BorderPane;
12 import javafx.stage.Stage;
13
14 public class Client extends Application {
15 // IO streams
16 DataOutputStream toServer = null;
17 DataInputStream fromServer = null;
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 // Panel p to hold the label and text field
22 BorderPane paneForTextField = new BorderPane();
23 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
24 paneForTextField.setStyle("-fx-border-color: green");
25 paneForTextField.setLeft(new Label("Enter a radius: "));
26
27 TextField tf = new TextField();
28 tf.setAlignment(Pos.BOTTOM_RIGHT);
29 paneForTextField.setCenter(tf);
30
31 BorderPane mainPane = new BorderPane();
32 // Text area to display contents
33 TextArea ta = new TextArea();
34 mainPane.setCenter(new ScrollPane(ta));
35 mainPane.setTop(paneForTextField);
36
37 // Create a scene and place it in the stage
38 Scene scene = new Scene(mainPane, 450, 200);
39 primaryStage.setTitle("Client"); // Set the stage title
40 primaryStage.setScene(scene); // Place the scene in the stage
41 primaryStage.show(); // Display the stage
42
43 tf.setOnAction(e -> {
44 try {
45 // Get the radius from the text field
46 double radius = Double.parseDouble(tf.getText().trim());
47
48 // Send the radius to the server
49 toServer.writeDouble(radius);
50 toServer.flush();
51
52 // Get area from the server
53 double area = fromServer.readDouble();
54
55 // Display to the text area
56 ta.appendText("Radius is " + radius + "\n");
57 ta.appendText("Area received from the server is "
58 + area + '\n');

create UI

handle action event

read radius

write radius

read area

1146 Chapter 31 Networking

59 }
60 catch (IOException ex) {
61 System.err.println(ex);
62 }
63 });
64
65 try {
66 // Create a socket to connect to the server
67 Socket socket = new Socket("localhost", 8000);
68 // Socket socket = new Socket("130.254.204.36", 8000);
69 // Socket socket = new Socket("drake.Armstrong.edu", 8000);
70
71 // Create an input stream to receive data from the server
72 fromServer = new DataInputStream(socket.getInputStream());
73
74 // Create an output stream to send data to the server
75 toServer = new DataOutputStream(socket.getOutputStream());
76 }
77 catch (IOException ex) {
78 ta.appendText(ex.toString() + '\n');
79 }
80 }
81 }

You start the server program first and then start the client program. In the client program, enter
a radius in the text field and press Enter to send the radius to the server. The server computes
the area and sends it back to the client. This process is repeated until one of the two programs
terminates.

The networking classes are in the package java.net. You should import this package
when writing Java network programs.

The Server class creates a ServerSocket serverSocket and attaches it to port 8000
using this statement (line 26 in Server.java):

ServerSocket serverSocket = new ServerSocket(8000);

The server then starts to listen for connection requests, using the following statement (line 31
in Server.java):

Socket socket = serverSocket.accept();

The server waits until the client requests a connection. After it is connected, the server reads
the radius from the client through an input stream, computes the area, and sends the result
to the client through an output stream. The ServerSocket accept() method takes time
to execute. It is not appropriate to run this method in the JavaFX application thread. So, we
place it in a separate thread (lines 23–59). The statements for updating GUI need to run from
the JavaFX application thread using the Platform.runLater method (lines 27–28, 49–53).

The Client class uses the following statement to create a socket that will request a con-
nection to the server on the same machine (localhost) at port 8000 (line 67 in Client.java).

Socket socket = new Socket("localhost", 8000);

If you run the server and the client on different machines, replace localhost with the server
machine’s host name or IP address. In this example, the server and the client are running on
the same machine.
If the server is not running, the client program terminates with a
java.net.ConnectException. After it is connected, the client gets input and output
streams—wrapped by data input and output streams—in order to receive and send data to the
server.

request connection

input from server

output to server

If you receive a java.net.BindException when you start the server, the server port
is currently in use. You need to terminate the process that is using the server port and then
restart the server.

Note
When you create a server socket, you have to specify a port (e.g., 8000) for the socket.

When a client connects to the server (line 67 in Client.java), a socket is created on the

client. This socket has its own local port. This port number (e.g., 2047) is automatically

chosen by the JVM, as shown in Figure 31.6.

client socket port

FIGURE 31.6 The JVM automatically chooses an available port to create a socket for the
client.

Server 0

socket

Client

port number

1

.

.

.

8000
.
.
.

0
1

.

.

.
2047

.

.

.

socket

To see the local port on the client, insert the following statement in line 70 in

Client.java.

System.out.println("local port: " + socket.getLocalPort());

31.1 How do you create a server socket? What port numbers can be used? What happens
if a requested port number is already in use? Can a port connect to multiple clients?

31.2 What are the differences between a server socket and a client socket?

31.3 How does a client program initiate a connection?

31.4 How does a server accept a connection?

31.5 How are data transferred between a client and a server?

31.3 The InetAddress Class
The server program can use the InetAddress class to obtain the information about
the IP address and host name for the client.

Occasionally, you would like to know who is connecting to the server. You can use the
InetAddress class to find the client’s host name and IP address. The InetAddress class
models an IP address. You can use the following statement in the server program to get an
instance of InetAddress on a socket that connects to the client.

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client’s host name and IP address, as follows:

System.out.println("Client's host name is " +
 inetAddress.getHostName());

✓Point✓Check

Key
Point

31.3 The InetAddress Class 1147

1148 Chapter 31 Networking

System.out.println("Client's IP Address is " +
 inetAddress.getHostAddress());

You can also create an instance of InetAddress from a host name or IP address using the
static getByName method. For example, the following statement creates an InetAddress
for the host liang.armstrong.edu.

InetAddress address = InetAddress.getByName("liang.armstrong.edu");

Listing 31.3 gives a program that identifies the host name and IP address of the arguments
you pass in from the command line. Line 7 creates an InetAddress using the getByName
method. Lines 8 and 9 use the getHostName and getHostAddress methods to get the
host’s name and IP address. Figure 31.7 shows a sample run of the program.

FIGURE 31.7 The program identifies host names and IP addresses.

LISTING 31.3 IdentifyHostNameIP.java
 1 import java.net.*;
 2
 3 public class IdentifyHostNameIP {
 4 public static void main(String[] args) {
 5 for (int i = 0; i < args.length; i++) {
 6 try {
 7 InetAddress address = InetAddress.getByName(args[i]);
 8 System.out.print("Host name: " + address.getHostName() + " ");
 9 System.out.println("IP address: " + address.getHostAddress());
10 }
11 catch (UnknownHostException ex) {
12 System.err.println("Unknown host or IP address " + args[i]);
13 }
14 }
15 }
16 }

31.6 How do you obtain an instance of InetAddress?

31.7 What methods can you use to get the IP address and hostname from an
InetAddress?

31.4 Serving Multiple Clients
A server can serve multiple clients. The connection to each client is handled by one
thread.

Multiple clients are quite often connected to a single server at the same time. Typically, a
server runs continuously on a server computer, and clients from all over the Internet can con-
nect to it. You can use threads to handle the server’s multiple clients simultaneously—simply

get an InetAddress
get host name
get host IP

✓Point✓Check

Key
Point

31.4 Serving Multiple Clients 1149

create a thread for each connection. Here is how the server handles the establishment of a
connection:

while (true) {
 Socket socket = serverSocket.accept(); // Connect to a client
 Thread thread = new ThreadClass(socket);
 thread.start();
}

The server socket can have many connections. Each iteration of the while loop creates a new
connection. Whenever a connection is established, a new thread is created to handle commu-
nication between the server and the new client, and this allows multiple connections to run at
the same time.

Listing 31.4 creates a server class that serves multiple clients simultaneously. For each con-
nection, the server starts a new thread. This thread continuously receives input (the radius of a
circle) from clients and sends the results (the area of the circle) back to them (see Figure 31.8).
The client program is the same as in Listing 31.2. A sample run of the server with two clients
is shown in Figure 31.9.

FIGURE 31.8 Multithreading enables a server to handle multiple independent clients.

Server

Client n. . .Client 1

A server socket
on a port

A socket for a
client A socket for a

client

LISTING 31.4 MultiThreadServer.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10

FIGURE 31.9 The server spawns a thread in order to serve a client.

1150 Chapter 31 Networking

 11 public class MultiThreadServer extends Application {
 12 // Text area for displaying contents
 13 private TextArea ta = new TextArea();
 14
 15 // Number a client
 16 private int clientNo = 0;
 17
 18 @Override // Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 // Create a scene and place it in the stage
 21 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
 22 primaryStage.setTitle("MultiThreadServer"); // Set the stage title
 23 primaryStage.setScene(scene); // Place the scene in the stage
 24 primaryStage.show(); // Display the stage
 25
 26 new Thread(() -> {
 27 try {
 28 // Create a server socket
 29 ServerSocket serverSocket = new ServerSocket(8000);
 30 ta.appendText("MultiThreadServer started at "
 31 + new Date() + '\n');
 32
 33 while (true) {
 34 // Listen for a new connection request
 35 Socket socket = serverSocket.accept();
 36
 37 // Increment clientNo
 38 clientNo++;
 39
 40 Platform.runLater(() -> {
 41 // Display the client number
 42 ta.appendText("Starting thread for client " + clientNo +
 43 " at " + new Date() + '\n');
 44
 45 // Find the client's host name, and IP address
 46 InetAddress inetAddress = socket.getInetAddress();
 47 ta.appendText("Client " + clientNo + "'s host name is "
 48 + inetAddress.getHostName() + "\n");
 49 ta.appendText("Client " + clientNo + "'s IP Address is "
 50 + inetAddress.getHostAddress() + "\n");
 51 });
 52
 53 // Create and start a new thread for the connection
 54 new Thread(new HandleAClient(socket)).start();
 55 }
 56 }
 57 catch(IOException ex) {
 58 System.err.println(ex);
 59 }
 60 }).start();
 61 }
 62
 63 // Define the thread class for handling new connection
 64 class HandleAClient implements Runnable {
 65 private Socket socket; // A connected socket
 66
 67 /** Construct a thread */
 68 public HandleAClient(Socket socket) {
 69 this.socket = socket;
 70 }
 71

server socket

connect client

update GUI

network information

create task

start thread

task class

31.5 Sending and Receiving Objects 1151

 72 /** Run a thread */
 73 public void run() {
 74 try {
 75 // Create data input and output streams
 76 DataInputStream inputFromClient = new DataInputStream(
 77 socket.getInputStream());
 78 DataOutputStream outputToClient = new DataOutputStream(
 79 socket.getOutputStream());
 80
 81 // Continuously serve the client
 82 while (true) {
 83 // Receive radius from the client
 84 double radius = inputFromClient.readDouble();
 85
 86 // Compute area
 87 double area = radius * radius * Math.PI;
 88
 89 // Send area back to the client
 90 outputToClient.writeDouble(area);
 91
 92 Platform.runLater(() -> {
 93 ta.appendText("radius received from client: " +
 94 radius + '\n');
 95 ta.appendText("Area found: " + area + '\n');
 96 });
 97 }
 98 }
 99 catch(IOException e) {
100 ex.printStackTrace();
101 }
102 }
103 }
104 }

The server creates a server socket at port 8000 (line 29) and waits for a connection (line 35).
When a connection with a client is established, the server creates a new thread to handle
the communication (line 54). It then waits for another connection in an infinite while loop
(lines 33–55).

The threads, which run independently of one another, communicate with designated
clients. Each thread creates data input and output streams that receive and send data to a
client.

31.8 How do you make a server serve multiple clients?

31.5 Sending and Receiving Objects
A program can send and receive objects from another program.

In the preceding examples, you learned how to send and receive data of primitive types. You
can also send and receive objects using ObjectOutputStream and ObjectInputStream
on socket streams. To enable passing, the objects must be serializable. The following example
demonstrates how to send and receive objects.

The example consists of three classes: StudentAddress.java (Listing 31.5), StudentClient.
java (Listing 31.6), and StudentServer.java (Listing 31.7). The client program collects student
information from the client and sends it to a server, as shown in Figure 31.10.

The StudentAddress class contains the student information: name, street, city, state,
and zip. The StudentAddress class implements the Serializable interface. Therefore, a
StudentAddress object can be sent and received using the object output and input streams.

I/O

update GUI

✓Point✓Check

Key
Point

1152 Chapter 31 Networking

LISTING 31.5 StudentAddress.java
 1 public class StudentAddress implements java.io.Serializable {
 2 private String name;
 3 private String street;
 4 private String city;
 5 private String state;
 6 private String zip;
 7
 8 public StudentAddress(String name, String street, String city,
 9 String state, String zip) {
10 this.name = name;
11 this.street = street;
12 this.city = city;
13 this.state = state;
14 this.zip = zip;
15 }
16
17 public String getName() {
18 return name;
19 }
20
21 public String getStreet() {
22 return street;
23 }
24
25 public String getCity() {
26 return city;
27 }
28
29 public String getState() {
30 return state;
31 }
32
33 public String getZip() {
34 return zip;
35 }
36 }

The client sends a StudentAddress object through an ObjectOutputStream on
the output stream socket, and the server receives the Student object through the
ObjectInputStream on the input stream socket, as shown in Figure 31.11. The client uses
the writeObject method in the ObjectOutputStream class to send data about a stu-
dent to the server, and the server receives the student’s information using the readObject
method in the ObjectInputStream class. The server and client programs are given in
Listings 31.6 and 31.7.

serialized

FIGURE 31.10 The client sends the student information in an object to the server.

31.5 Sending and Receiving Objects 1153

LISTING 31.6 StudentClient.java
 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.event.ActionEvent;
 5 import javafx.event.EventHandler;
 6 import javafx.geometry.HPos;
 7 import javafx.geometry.Pos;
 8 import javafx.scene.Scene;
 9 import javafx.scene.control.Button;
10 import javafx.scene.control.Label;
11 import javafx.scene.control.TextField;
12 import javafx.scene.layout.GridPane;
13 import javafx.scene.layout.HBox;
14 import javafx.stage.Stage;
15
16 public class StudentClient extends Application {
17 private TextField tfName = new TextField();
18 private TextField tfStreet = new TextField();
19 private TextField tfCity = new TextField();
20 private TextField tfState = new TextField();
21 private TextField tfZip = new TextField();
22
23 // Button for sending a student to the server
24 private Button btRegister = new Button("Register to the Server");
25
26 // Host name or ip
27 String host = "localhost";
28
29 @Override // Override the start method in the Application class
30 public void start(Stage primaryStage) {
31 GridPane pane = new GridPane();
32 pane.add(new Label("Name"), 0, 0);
33 pane.add(tfName, 1, 0);
34 pane.add(new Label("Street"), 0, 1);
35 pane.add(tfStreet, 1, 1);
36 pane.add(new Label("City"), 0, 2);
37

create UI

FIGURE 31.11 The client sends a StudentAddress object to the server.

Server

student object

in: ObjectInputStream

socket.getInputStream()

socket

Network

student object

out: ObjectOutputStream

in.readObject() out.writeObject(Object)

socket.getOutputStream()

socket

Client

1154 Chapter 31 Networking

38 HBox hBox = new HBox(2);
39 pane.add(hBox, 1, 2);
40 hBox.getChildren().addAll(tfCity, new Label("State"), tfState,
41 new Label("Zip"), tfZip);
42 pane.add(btRegister, 1, 3);
43 GridPane.setHalignment(btRegister, HPos.RIGHT);
44
45 pane.setAlignment(Pos.CENTER);
46 tfName.setPrefColumnCount(15);
47 tfStreet.setPrefColumnCount(15);
48 tfCity.setPrefColumnCount(10);
49 tfState.setPrefColumnCount(2);
50 tfZip.setPrefColumnCount(3);
51
52 btRegister.setOnAction(new ButtonListener());
53
54 // Create a scene and place it in the stage
55 Scene scene = new Scene(pane, 450, 200);
56 primaryStage.setTitle("StudentClient"); // Set the stage title
57 primaryStage.setScene(scene); // Place the scene in the stage
58 primaryStage.show(); // Display the stage
59 }
60
61 /** Handle button action */
62 private class ButtonListener implements EventHandler<ActionEvent> {
63 @Override
64 public void handle(ActionEvent e) {
65 try {
66 // Establish connection with the server
67 Socket socket = new Socket(host, 8000);
68
69 // Create an output stream to the server
70 ObjectOutputStream toServer =
71 new ObjectOutputStream(socket.getOutputStream());
72
73 // Get text field
74 String name = tfName.getText().trim();
75 String street = tfStreet.getText().trim();
76 String city = tfCity.getText().trim();
77 String state = tfState.getText().trim();
78 String zip = tfZip.getText().trim();
79
80 // Create a Student object and send to the server
81 StudentAddress s =
82 new StudentAddress(name, street, city, state, zip);
83 toServer.writeObject(s);
84 }
85 catch (IOException ex) {
86 ex.printStackTrace();
87 }
88 }
89 }
90 }

LISTING 31.7 StudentServer.java
 1 import java.io.*;
 2 import java.net.*;
 3
 4 public class StudentServer {

register listener

server socket

output stream

send to server

31.5 Sending and Receiving Objects 1155

 5 private ObjectOutputStream outputToFile;
 6 private ObjectInputStream inputFromClient;
 7
 8 public static void main(String[] args) {
 9 new StudentServer();
10 }
11
12 public StudentServer() {
13 try {
14 // Create a server socket
15 ServerSocket serverSocket = new ServerSocket(8000);
16 System.out.println("Server started ");
17
18 // Create an object output stream
19 outputToFile = new ObjectOutputStream(
20 new FileOutputStream("student.dat", true));
21
22 while (true) {
23 // Listen for a new connection request
24 Socket socket = serverSocket.accept();
25
26 // Create an input stream from the socket
27 inputFromClient =
28 new ObjectInputStream(socket.getInputStream());
29
30 // Read from input
31 Object object = inputFromClient.readObject();
32
33 // Write to the file
34 outputToFile.writeObject(object);
35 System.out.println("A new student object is stored");
36 }
37 }
38 catch(ClassNotFoundException ex) {
39 ex.printStackTrace();
40 }
41 catch(IOException ex) {
42 ex.printStackTrace();
43 }
44 finally {
45 try {
46 inputFromClient.close();
47 outputToFile.close();
48 }
49 catch (Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53 }
54 }

On the client side, when the user clicks the Register to the Server button, the client creates
a socket to connect to the host (line 67), creates an ObjectOutputStream on the output
stream of the socket (lines 70 and 71), and invokes the writeObject method to send the
StudentAddress object to the server through the object output stream (line 83).

On the server side, when a client connects to the server, the server creates an
ObjectInputStream on the input stream of the socket (lines 27 and 28), invokes the
readObject method to receive the StudentAddress object through the object input stream
(line 31), and writes the object to a file (line 34).

server socket

output to file

connect to client

input stream

get from client

write to file

1156 Chapter 31 Networking

31.9 How does a server receive connection from a client? How does a client connect to a
server?

31.10 How do you find the host name of a client program from the server?

31.11 How do you send and receive an object?

31.6 Case Study: Distributed Tic-Tac-Toe Games
This section develops a program that enables two players to play the tic-tac-toe game
on the Internet.

In Section 16.12, Case Study: Developing a Tic-Tac-Toe Game, you developed a program
for a tic-tac-toe game that enables two players to play the game on the same machine. In this
section, you will learn how to develop a distributed tic-tac-toe game using multithreads and
networking with socket streams. A distributed tic-tac-toe game enables users to play on dif-
ferent machines from anywhere on the Internet.

You need to develop a server for multiple clients. The server creates a server socket and
accepts connections from every two players to form a session. Each session is a thread that
communicates with the two players and determines the status of the game. The server can
establish any number of sessions, as shown in Figure 31.13.

For each session, the first client connecting to the server is identified as player 1 with token
X, and the second client connecting is identified as player 2 with token O. The server notifies
the players of their respective tokens. Once two clients are connected to it, the server starts a
thread to facilitate the game between the two players by performing the steps repeatedly, as
shown in Figure 31.13.

✓Point✓Check

Key
Point

FIGURE 31.12 The server can create many sessions, each of which facilitates a tic-tac-toe
game for two players.

Server

Player 2

Session n...

Player 1 Player 2Player 1

Session 1

...

The server does not have to be a graphical component, but creating it in a GUI in which
game information can be viewed is user-friendly. You can create a scroll pane to hold a text
area in the GUI and display game information in the text area. The server creates a thread to
handle a game session when two players are connected to the server.

The client is responsible for interacting with the players. It creates a user interface with
nine cells and displays the game title and status to the players in the labels. The client class is
very similar to the TicTacToe class presented in the case study in Listing 16.13. However,
the client in this example does not determine the game status (win or draw); it simply passes
the moves to the server and receives the game status from the server.

Based on the foregoing analysis, you can create the following classes:

 ■ TicTacToeServer serves all the clients in Listing 31.9.

 ■ HandleASession facilitates the game for two players. This class is defined in
TicTacToeServer.java.

31.6 Case Study: Distributed Tic-Tac-Toe Games 1157

 ■ TicTacToeClient models a player in Listing 31.10.

 ■ Cell models a cell in the game. It is an inner class in TicTacToeClient.

 ■ TicTacToeConstants is an interface that defines the constants shared by all the
classes in the example in Listing 31.8.

The relationships of these classes are shown in Figure 31.14.

LISTING 31.8 TicTacToeConstants.java
 1 public interface TicTacToeConstants {
 2 public static int PLAYER1 = 1; // Indicate player 1
 3 public static int PLAYER2 = 2; // Indicate player 2
 4 public static int PLAYER1_WON = 1; // Indicate player 1 won
 5 public static int PLAYER2_WON = 2; // Indicate player 2 won
 6 public static int DRAW = 3; // Indicate a draw
 7 public static int CONTINUE = 4; // Indicate to continue
 8 }

LISTING 31.9 TicTacToeServer.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;

FIGURE 31.13 The server starts a thread to facilitate communications between the two players.

Player 1

1. Initialize user interface.

2. Request connection to the server

and learn which token to use from the

server.

3. Get the start signal from the server.

4. Wait for the player to mark a cell,

send the cell's row and column index to

the server.

5. Receive status from the server.

6. If WIN, display the winner; if Player

2 wins, receive the last move from

Player 2. Break the loop.

7. If DRAW, display game is over;

break the loop.

8. If CONTINUE, receive Player 2's

selected row and column index and

mark the cell for Player 2.

Server

Create a server socket.

Accept connection from the first player and notify

the player who is Player 1 with token X.

Accept connection from the second player and

notify the player who is Player 2 with token O.

Start a thread for the session.

Handle a session:

1. Tell Player 1 to start.

2. Receive row and column of the selected cell from

Player 1.

3. Determine the game status (WIN, DRAW,

CONTINUE). If Player 1 wins, or draws, send the status

(PLAYER1_WON, DRAW) to both players and send

Player 1's move to Player 2. Exit.

4. If CONTINUE, notify Player 2 to take the turn, and

send Player 1's newly selected row and column index to

Player 2.

5. Receive row and column of the selected cell from

Player 2.

6. If Player 2 wins, send the status (PLAYER2_WON)

to both players, and send Player 2's move to Player 1.

Exit.

7. If CONTINUE, send the status, and send Player 2's

newly selected row and column index to Player 1.

Player 2

1. Initialize user interface.

2. Request connection to the server and

learn which token to use from the server.

3. Receive status from the server.

4. If WIN, display the winner. If Player 1

wins, receive Player 1's last move, and

break the loop.

5. If DRAW, display game is over, and

receive Player 1's last move, and break

the loop.

6. If CONTINUE, receive Player 1's

selected row and index and mark the cell

for Player 1.

7. Wait for the player to move, and send

the selected row and column to the

server.

1158 Chapter 31 Networking

 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10
 11 public class TicTacToeServer extends Application
 12 implements TicTacToeConstants {
 13 private int sessionNo = 1; // Number a session
 14
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
 17 TextArea taLog = new TextArea();
 18
 19 // Create a scene and place it in the stage
 20 Scene scene = new Scene(new ScrollPane(taLog), 450, 200);
 21 primaryStage.setTitle("TicTacToeServer"); // Set the stage title
 22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24
 25 new Thread(() -> {
 26 try {
 27 // Create a server socket
 28 ServerSocket serverSocket = new ServerSocket(8000);

create UI

server socket

FIGURE 31.14 TicTacToeServer creates an instance of HandleASession for each session of two players.
TicTacToeClient creates nine cells in the UI.

TicTacToeConstants

Runnable

TicTacToeServer

TicTacToeClient CellApplication

Application

Similar to
Listing 18.10

TicTacToeServer

+PLAYER1 = 1: int
+PLAYER2 = 2: int
+PLAYER1_WON = 1: int
+PLAYER2_WON = 2: int
+DRAW = 3: int
+CONTINUE = 4: int

HandleASession TicTacToeClient

-player1: Socket
-player2: Socket
-cell: char[][]
-continueToPlay: boolean

+run(): void
-isWon(): boolean
-isFull(): boolean
-sendMove(out:
 DataOutputStream, row: int,
 column: int): void

-myTurn: boolean
-myToken: char
-otherToken: char
-cell: Cell[][]
-continueToPlay: boolean
-rowSelected: int
-columnSelected: int
-fromServer: DataInputStream
-toServer: DataOutputStream
-waiting: boolean

+run(): void
-connectToServer(): void
-receiveMove(): void
-sendMove(): void
-receiveInfoFromServer(): void
-waitForPlayerAction(): void

HandleASession

«interface»
TicTacToeConstants

start(primaryStage: Stage):
 void

31.6 Case Study: Distributed Tic-Tac-Toe Games 1159

 29 Platform.runLater(() -> taLog.appendText(new Date() +
 30 ": Server started at socket 8000\n"));
 31
 32 // Ready to create a session for every two players
 33 while (true) {
 34 Platform.runLater(() -> taLog.appendText(new Date() +
 35 ": Wait for players to join session " + sessionNo + '\n'));
 36
 37 // Connect to player 1
 38 Socket player1 = serverSocket.accept();
 39
 40 Platform.runLater(() -> {
 41 taLog.appendText(new Date() + ": Player 1 joined session "
 42 + sessionNo + '\n');
 43 taLog.appendText("Player 1's IP address" +
 44 player1.getInetAddress().getHostAddress() + '\n');
 45 });
 46
 47 // Notify that the player is Player 1
 48 new DataOutputStream(
 49 player1.getOutputStream()).writeInt(PLAYER1);
 50
 51 // Connect to player 2
 52 Socket player2 = serverSocket.accept();
 53
 54 Platform.runLater(() -> {
 55 taLog.appendText(new Date() +
 56 ": Player 2 joined session " + sessionNo + '\n');
 57 taLog.appendText("Player 2's IP address" +
 58 player2.getInetAddress().getHostAddress() + '\n');
 59 });
 60
 61 // Notify that the player is Player 2
62 new DataOutputStream(

 63 player2.getOutputStream()).writeInt(PLAYER2);
 64
 65 // Display this session and increment session number
 66 Platform.runLater(() ->
 67 taLog.appendText(new Date() +
 68 ": Start a thread for session " + sessionNo++ + '\n'));
 69
 70 // Launch a new thread for this session of two players
 71 new Thread(new HandleASession(player1, player2)).start();
 72 }
 73 }
 74 catch(IOException ex) {
 75 ex.printStackTrace();
 76 }
 77 }).start();
 78 }
 79
 80 // Define the thread class for handling a new session for two players
 81 class HandleASession implements Runnable, TicTacToeConstants {
 82 private Socket player1;
 83 private Socket player2;
 84
 85 // Create and initialize cells
 86 private char[][] cell = new char[3][3];
 87
 88 private DataInputStream fromPlayer1;

connect to client

to player1

connect to client

to player2

a session for two players

1160 Chapter 31 Networking

 89 private DataOutputStream toPlayer1;
 90 private DataInputStream fromPlayer2;
 91 private DataOutputStream toPlayer2;
 92
 93 // Continue to play
 94 private boolean continueToPlay = true;
 95
 96 /** Construct a thread */
 97 public HandleASession(Socket player1, Socket player2) {
 98 this.player1 = player1;
 99 this.player2 = player2;
100
101 // Initialize cells
102 for (int i = 0; i < 3; i++)
103 for (int j = 0; j < 3; j++)
104 cell[i][j] = ' ';
105 }
106
107 /** Implement the run() method for the thread */
108 public void run() {
109 try {
110 // Create data input and output streams
111 DataInputStream fromPlayer1 = new DataInputStream(
112 player1.getInputStream());
113 DataOutputStream toPlayer1 = new DataOutputStream(
114 player1.getOutputStream());
115 DataInputStream fromPlayer2 = new DataInputStream(
116 player2.getInputStream());
117 DataOutputStream toPlayer2 = new DataOutputStream(
118 player2.getOutputStream());
119
120 // Write anything to notify player 1 to start
121 // This is just to let player 1 know to start
122 toPlayer1.writeInt(1);
123
124 // Continuously serve the players and determine and report
125 // the game status to the players
126 while (true) {
127 // Receive a move from player 1
128 int row = fromPlayer1.readInt();
129 int column = fromPlayer1.readInt();
130 cell[row][column] = 'X';
131
132 // Check if Player 1 wins
133 if (isWon('X')) {
134 toPlayer1.writeInt(PLAYER1_WON);
135 toPlayer2.writeInt(PLAYER1_WON);
136 sendMove(toPlayer2, row, column);
137 break; // Break the loop
138 }
139 else if (isFull()) { // Check if all cells are filled
140 toPlayer1.writeInt(DRAW);
141 toPlayer2.writeInt(DRAW);
142 sendMove(toPlayer2, row, column);
143 break;
144 }
145 else {
146 // Notify player 2 to take the turn
147 toPlayer2.writeInt(CONTINUE);
148

IO streams

X won?

Is full?

31.6 Case Study: Distributed Tic-Tac-Toe Games 1161

149 // Send player 1's selected row and column to player 2
150 sendMove(toPlayer2, row, column);
151 }
152
153 // Receive a move from Player 2
154 row = fromPlayer2.readInt();
155 column = fromPlayer2.readInt();
156 cell[row][column] = 'O';
157
158 // Check if Player 2 wins
159 if (isWon('O')) {
160 toPlayer1.writeInt(PLAYER2_WON);
161 toPlayer2.writeInt(PLAYER2_WON);
162 sendMove(toPlayer1, row, column);
163 break;
164 }
165 else {
166 // Notify player 1 to take the turn
167 toPlayer1.writeInt(CONTINUE);
168
169 // Send player 2's selected row and column to player 1
170 sendMove(toPlayer1, row, column);
171 }
172 }
173 }
174 catch(IOException ex) {
175 ex.printStackTrace();
176 }
177 }
178
179 /** Send the move to other player */
180 private void sendMove(DataOutputStream out, int row, int column)
181 throws IOException {
182 out.writeInt(row); // Send row index
183 out.writeInt(column); // Send column index
184 }
185
186 /** Determine if the cells are all occupied */
187 private boolean isFull() {
188 for (int i = 0; i < 3; i++)
189 for (int j = 0; j < 3; j++)
190 if (cell[i][j] == ' ')
191 return false; // At least one cell is not filled
192
193 // All cells are filled
194 return true;
195 }
196
197 /** Determine if the player with the specified token wins */
198 private boolean isWon(char token) {
199 // Check all rows
200 for (int i = 0; i < 3; i++)
201 if ((cell[i][0] == token)
202 && (cell[i][1] == token)
203 && (cell[i][2] == token)) {
204 return true;
205 }
206
207 /** Check all columns */
208 for (int j = 0; j < 3; j++)

O won?

send a move

1162 Chapter 31 Networking

209 if ((cell[0][j] == token)
210 && (cell[1][j] == token)
211 && (cell[2][j] == token)) {
212 return true;
213 }
214
215 /** Check major diagonal */
216 if ((cell[0][0] == token)
217 && (cell[1][1] == token)
218 && (cell[2][2] == token)) {
219 return true;
220 }
221
222 /** Check subdiagonal */
223 if ((cell[0][2] == token)
224 && (cell[1][1] == token)
225 && (cell[2][0] == token)) {
226 return true;
227 }
228
229 /** All checked, but no winner */
230 return false;
231 }
232 }
233 }

LISTING 31.10 TicTacToeClient.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
 10 import javafx.scene.layout.BorderPane;
 11 import javafx.scene.layout.GridPane;
 12 import javafx.scene.layout.Pane;
 13 import javafx.scene.paint.Color;
 14 import javafx.scene.shape.Ellipse;
 15 import javafx.scene.shape.Line;
 16 import javafx.stage.Stage;
 17
 18 public class TicTacToeClient extends Application
 19 implements TicTacToeConstants {
 20 // Indicate whether the player has the turn
 21 private boolean myTurn = false;
 22
 23 // Indicate the token for the player
 24 private char myToken = ' ';
 25
 26 // Indicate the token for the other player
 27 private char otherToken = ' ';
 28
 29 // Create and initialize cells
 30 private Cell[][] cell = new Cell[3][3];
 31

31.6 Case Study: Distributed Tic-Tac-Toe Games 1163

 32 // Create and initialize a title label
 33 private Label lblTitle = new Label();
 34
 35 // Create and initialize a status label
 36 private Label lblStatus = new Label();
 37
 38 // Indicate selected row and column by the current move
 39 private int rowSelected;
 40 private int columnSelected;
 41
 42 // Input and output streams from/to server
 43 private DataInputStream fromServer;
 44 private DataOutputStream toServer;
 45
 46 // Continue to play?
 47 private boolean continueToPlay = true;
 48
 49 // Wait for the player to mark a cell
 50 private boolean waiting = true;
 51
 52 // Host name or ip
 53 private String host = "localhost";
 54
 55 @Override // Override the start method in the Application class
 56 public void start(Stage primaryStage) {
 57 // Pane to hold cell
 58 GridPane pane = new GridPane();
 59 for (int i = 0; i < 3; i++)
 60 for (int j = 0; j < 3; j++)
 61 pane.add(cell[i][j] = new Cell(i, j), j, i);
 62
 63 BorderPane borderPane = new BorderPane();
 64 borderPane.setTop(lblTitle);
 65 borderPane.setCenter(pane);
 66 borderPane.setBottom(lblStatus);
 67
 68 // Create a scene and place it in the stage
 69 Scene scene = new Scene(borderPane, 320, 350);
 70 primaryStage.setTitle("TicTacToeClient"); // Set the stage title
 71 primaryStage.setScene(scene); // Place the scene in the stage
 72 primaryStage.show(); // Display the stage
 73
 74 // Connect to the server
 75 connectToServer();
 76 }
 77
 78 private void connectToServer() {
 79 try {
 80 // Create a socket to connect to the server
 81 Socket socket = new Socket(host, 8000);
 82
 83 // Create an input stream to receive data from the server
 84 fromServer = new DataInputStream(socket.getInputStream());
 85
 86 // Create an output stream to send data to the server
 87 toServer = new DataOutputStream(socket.getOutputStream());
 88 }
 89 catch (Exception ex) {
 90 ex.printStackTrace();
 91 }

create UI

connect to server

input from server

output to server

1164 Chapter 31 Networking

 92
 93 // Control the game on a separate thread
 94 new Thread(() -> {
 95 try {
 96 // Get notification from the server
 97 int player = fromServer.readInt();
 98
 99 // Am I player 1 or 2?
100 if (player == PLAYER1) {
101 myToken = 'X';
102 otherToken = 'O';
103 Platform.runLater(() -> {
104 lblTitle.setText("Player 1 with token 'X'");
105 lblStatus.setText("Waiting for player 2 to join");
106 });
107
108 // Receive startup notification from the server
109 fromServer.readInt(); // Whatever read is ignored
110
111 // The other player has joined
112 Platform.runLater(() ->
113 lblStatus.setText("Player 2 has joined. I start first"));
114
115 // It is my turn
116 myTurn = true;
117 }
118 else if (player == PLAYER2) {
119 myToken = 'O';
120 otherToken = 'X';
121 Platform.runLater(() -> {
122 lblTitle.setText("Player 2 with token 'O'");
123 lblStatus.setText("Waiting for player 1 to move");
124 });
125 }
126
127 // Continue to play
128 while (continueToPlay) {
129 if (player == PLAYER1) {
130 waitForPlayerAction(); // Wait for player 1 to move
131 sendMove(); // Send the move to the server
132 receiveInfoFromServer(); // Receive info from the server
133 }
134 else if (player == PLAYER2) {
135 receiveInfoFromServer(); // Receive info from the server
136 waitForPlayerAction(); // Wait for player 2 to move
137 sendMove(); // Send player 2's move to the server
138 }
139 }
140 }
141 catch (Exception ex) {
142 ex.printStackTrace();
143 }
144 }).start();
145 }
146
147 /** Wait for the player to mark a cell */
148 private void waitForPlayerAction() throws InterruptedException {
149 while (waiting) {
150 Thread.sleep(100);
151 }

31.6 Case Study: Distributed Tic-Tac-Toe Games 1165

152
153 waiting = true;
154 }
155
156 /** Send this player's move to the server */
157 private void sendMove() throws IOException {
158 toServer.writeInt(rowSelected); // Send the selected row
159 toServer.writeInt(columnSelected); // Send the selected column
160 }
161
162 /** Receive info from the server */
163 private void receiveInfoFromServer() throws IOException {
164 // Receive game status
165 int status = fromServer.readInt();
166
167 if (status == PLAYER1_WON) {
168 // Player 1 won, stop playing
169 continueToPlay = false;
170 if (myToken == 'X') {
171 Platform.runLater(() -> lblStatus.setText("I won! (X)"));
172 }
173 else if (myToken == 'O') {
174 Platform.runLater(() ->
175 lblStatus.setText("Player 1 (X) has won!"));
176 receiveMove();
177 }
178 }
179 else if (status == PLAYER2_WON) {
180 // Player 2 won, stop playing
181 continueToPlay = false;
182 if (myToken == 'O') {
183 Platform.runLater(() -> lblStatus.setText("I won! (O)"));
184 }
185 else if (myToken == 'X') {
186 Platform.runLater(() ->
187 lblStatus.setText("Player 2 (O) has won!"));
188 receiveMove();
189 }
190 }
191 else if (status == DRAW) {
192 // No winner, game is over
193 continueToPlay = false;
194 Platform.runLater(() ->
195 lblStatus.setText("Game is over, no winner!"));
196
197 if (myToken == 'O') {
198 receiveMove();
199 }
200 }
201 else {
202 receiveMove();
203 Platform.runLater(() -> lblStatus.setText("My turn"));
204 myTurn = true; // It is my turn
205 }
206 }
207
208 private void receiveMove() throws IOException {
209 // Get the other player's move
210 int row = fromServer.readInt();
211 int column = fromServer.readInt();

1166 Chapter 31 Networking

212 Platform.runLater(() -> cell[row][column].setToken(otherToken));
213 }
214
215 // An inner class for a cell
216 public class Cell extends Pane {
217 // Indicate the row and column of this cell in the board
218 private int row;
219 private int column;
220
221 // Token used for this cell
222 private char token = ' ';
223
224 public Cell(int row, int column) {
225 this.row = row;
226 this.column = column;
227 this.setPrefSize(2000, 2000); // What happens without this?
228 setStyle("-fx-border-color: black"); // Set cell's border
229 this.setOnMouseClicked(e -> handleMouseClick());
230 }
231
232 /** Return token */
233 public char getToken() {
234 return token;
235 }
236
237 /** Set a new token */
238 public void setToken(char c) {
239 token = c;
240 repaint();
241 }
242
243 protected void repaint() {
244 if (token == 'X') {
245 Line line1 = new Line(10, 10,
246 this.getWidth() - 10, this.getHeight() - 10);
247 line1.endXProperty().bind(this.widthProperty().subtract(10));
248 line1.endYProperty().bind(this.heightProperty().subtract(10));
249 Line line2 = new Line(10, this.getHeight() - 10,
250 this.getWidth() - 10, 10);
251 line2.startYProperty().bind(
252 this.heightProperty().subtract(10));
253 line2.endXProperty().bind(this.widthProperty().subtract(10));
254
255 // Add the lines to the pane
256 this.getChildren().addAll(line1, line2);
257 }
258 else if (token == 'O') {
259 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
260 this.getHeight() / 2, this.getWidth() / 2 - 10,
261 this.getHeight() / 2 - 10);
262 ellipse.centerXProperty().bind(
263 this.widthProperty().divide(2));
264 ellipse.centerYProperty().bind(
265 this.heightProperty().divide(2));
266 ellipse.radiusXProperty().bind(
267 this.widthProperty().divide(2).subtract(10));
268 ellipse.radiusYProperty().bind(
269 this.heightProperty().divide(2).subtract(10));
270 ellipse.setStroke(Color.BLACK);
271 ellipse.setFill(Color.WHITE);

model a cell

register listener

draw X

draw O

31.6 Case Study: Distributed Tic-Tac-Toe Games 1167

272
273 getChildren().add(ellipse); // Add the ellipse to the pane
274 }
275 }
276
277 /* Handle a mouse click event */
278 private void handleMouseClick() {
279 // If cell is not occupied and the player has the turn
280 if (token == ' ' && myTurn) {
281 setToken(myToken); // Set the player's token in the cell
282 myTurn = false;
283 rowSelected = row;
284 columnSelected = column;
285 lblStatus.setText("Waiting for the other player to move");
286 waiting = false; // Just completed a successful move
287 }
288 }
289 }
290 }

The server can serve any number of sessions simultaneously. Each session takes care of two
players. The client can be deployed to run as a Java applet. To run a client as a Java applet
from a Web browser, the server must run from a Web server. Figures 31.15 and 31.16 show
sample runs of the server and the clients.

mouse clicked handler

FIGURE 31.15 TicTacToeServer accepts connection requests and creates sessions to
serve pairs of players.

FIGURE 31.16 TicTacToeClient can run as an applet or standalone.

The TicTacToeConstants interface defines the constants shared by all the classes in the
project. Each class that uses the constants needs to implement the interface. Centrally defining
constants in an interface is a common practice in Java.

Once a session is established, the server receives moves from the players in alterna-
tion. Upon receiving a move from a player, the server determines the status of the game. If
the game is not finished, the server sends the status (CONTINUE) and the player’s move to

1168 Chapter 31 Networking

the other player. If the game is won or a draw, the server sends the status (PLAYER1_WON,
PLAYER2_WON, or DRAW) to both players.

The implementation of Java network programs at the socket level is tightly synchronized.
An operation to send data from one machine requires an operation to receive data from the
other machine. As shown in this example, the server and the client are tightly synchronized
to send or receive data.

33.11 What would happen if the preferred size for a cell is not set in line 227 in Listing
31.10?

33.12 If a player does not have the turn but clicks on an empty cell, what will the client
program in Listing 31.10 do?

✓Point✓Check

KEY TERMS

client socket 1141
domain name 1140
domain name server 1140
localhost 1141
IP address 1140
port 1140

packet-based communication 1140
server socket 1140
socket 1140
stream-based communication 1140
TCP 1140
UDP 1140

CHAPTER SUMMARY

1. Java supports stream sockets and datagram sockets. Stream sockets use TCP (Trans-
mission Control Protocol) for data transmission, whereas datagram sockets use UDP
(User Datagram Protocol). Since TCP can detect lost transmissions and resubmit them,
transmissions are lossless and reliable. UDP, in contrast, cannot guarantee lossless
transmission.

2. To create a server, you must first obtain a server socket, using new ServerSocket
(port). After a server socket is created, the server can start to listen for connections,
using the accept() method on the server socket. The client requests a connection to a
server by using new Socket(serverName, port) to create a client socket.

3. Stream socket communication is very much like input/output stream communication
after the connection between a server and a client is established. You can obtain an
input stream using the getInputStream() method and an output stream using the
getOutputStream() method on the socket.

4. A server must often work with multiple clients at the same time. You can use threads
to handle the server’s multiple clients simultaneously by creating a thread for each
connection.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

www.cs.armstrong.edu/liang/intro10e/quiz.html

Programming Exercises 1169

PROGRAMMING EXERCISES

Section 31.2

*31.1 (Loan server) Write a server for a client. The client sends loan informa-
tion (annual interest rate, number of years, and loan amount) to the server
(see Figure 31.17a). The server computes monthly payment and total pay-
ment, and sends them back to the client (see Figure 31.17b). Name the client
Exercise31_01Client and the server Exercise31_01Server.

FIGURE 31.17 The client in (a) sends the annual interest rate, number of years, and loan amount to the server and
receives the monthly payment and total payment from the server in (b).

(a) (b)

FIGURE 31.18 The client in (a) sends the weight and height of a person to the server and receives the BMI from the
server in (b).

(a) (b)

*31.2 (BMI server) Write a server for a client. The client sends the weight and
height for a person to the server (see Figure 31.18a). The server computes
BMI (Body Mass Index) and sends back to the client a string that reports the
BMI (see Figure 31.18b). See Section 3.8 for computing BMI. Name the client
Exercise31_02Client and the server Exercise31_02Server.

Sections 31.3 and 31.4

*31.3 (Loan server for multiple clients) Revise Programming Exercise 31.1 to write a
server for multiple clients.

Section 31.5

31.4 (Count clients) Write a server that tracks the number of the clients connected to
the server. When a new connection is established, the count is incremented by
1. The count is stored using a random-access file. Write a client program that

1170 Chapter 31 Networking

receives the count from the server and display a message, such as You are visi-
tor number 11, as shown in Figure 31.19. Name the client Exercise31_04Client
and the server Exercise31_04Server.

FIGURE 31.19 The client displays how many times the server has been accessed. The server stores the count.

FIGURE 31.20 You can view and add an address.

31.5 (Send loan information in an object) Revise Exercise 31.1 for the client to
send a loan object that contains annual interest rate, number of years, and loan
amount and for the server to send the monthly payment and total payment.

Section 31.6

31.6 (Display and add addresses) Develop a client/server application to view and
add addresses, as shown in Figure 31.20.

 ■ Use the StudentAddress class defined in Listing 31.5 to hold the name,
street, city, state, and zip in an object.

 ■ The user can use the buttons First, Next, Previous, and Last to view an
address, and the Add button to add a new address.

 ■ Limit the concurrent connections to two clients.

 Name the client Exercise31_06Client and the server Exercise31_6Server.

*31.7 (Transfer last 100 numbers in an array) Programming Exercise 22.12 retrieves
the last 100 prime numbers from a file PrimeNumbers.dat. Write a client
program that requests the server to send the last 100 prime numbers in an
array. Name the server program Exercise31_07Server and the client program
Exercise31_07Client. Assume that the numbers of the long type are stored in
PrimeNumbers.dat in binary format.

*31.8 (Transfer last 100 numbers in an ArrayList) Programming Exercise 24.12
retrieves the last 100 prime numbers from a file PrimeNumbers.dat. Write a
client program that requests the server to send the last 100 prime numbers in
an ArrayList. Name the server program Exercise31_08Server and the client
program Exercise31_08Client. Assume that the numbers of the long type are
stored in PrimeNumbers.dat in binary format.

Programming Exercises 1171

Section 31.7

**31.9 (Chat) Write a program that enables two users to chat. Implement one user
as the server (Figure 31.21a) and the other as the client (Figure 31.21b). The
server has two text areas: one for entering text and the other (noneditable) for
displaying text received from the client. When the user presses the Enter key,
the current line is sent to the client. The client has two text areas: one (nonedit-
able) for displaying text from the server and the other for entering text. When
the user presses the Enter key, the current line is sent to the server. Name the
client Exercise31_09Client and the server Exercise31_09Server.

FIGURE 31.21 The server and client send text to and receive text from each other.

(a) (b)

FIGURE 31.22 The server starts in (a) with three clients in (b) and (c).

(a) (b) (c)

***31.10 (Multiple client chat) Write a program that enables any number of clients to
chat. Implement one server that serves all the clients, as shown in Figure 31.22.
Name the client Exercise31_10Client and the server Exercise31_10Server.

This page intentionally left blank

JAVA DATABASE
PROGRAMMING

Objectives
■ To understand the concepts of databases and database management

systems (§32.2).

■ To understand the relational data model: relational data structures,
constraints, and languages (§32.2).

■ To use SQL to create and drop tables and to retrieve and modify data
(§32.3).

■ To learn how to load a driver, connect to a database, execute statements,
and process result sets using JDBC (§32.4).

■ To use prepared statements to execute precompiled SQL statements
(§32.5).

■ To use callable statements to execute stored SQL procedures and
functions (§32.6).

■ To explore database metadata using the DatabaseMetaData and
ResultSetMetaData interfaces (§32.7).

CHAPTER

32

1174 Chapter 32 Java Database Programming

32.1 Introduction
Java provides the API for developing database applications that works with any
relational database systems.

You may have heard a lot about database systems. Database systems are everywhere. Your
social security information is stored in a database by the government. If you shop online,
your purchase information is stored in a database by the company. If you attend a university,
your academic information is stored in a database by the university. Database systems not
only store data, they also provide means of accessing, updating, manipulating, and analyzing
data. Your social security information is updated periodically, and you can register for courses
online. Database systems play an important role in society and in commerce.

This chapter introduces database systems, the SQL language, and how database applica-
tions can be developed using Java. If you already know SQL, you can skip Sections 32.2
and 32.3.

32.2 Relational Database Systems
SQL is the standard database language for defining and accessing databases.

A database system consists of a database, the software that stores and manages data in the
database, and the application programs that present data and enable the user to interact with
the database system, as shown in Figure 32.1.

Key
Point

Key
Pointdatabase system

FIGURE 32.1 A database system consists of data, database management software, and
application programs.

database

Application Users

Application Programs

Database Management System (DBMS)

System Users

A database is a repository of data that form information. When you purchase a database
system—such as MySQL, Oracle, IBM’s DB2 and Informix, Microsoft SQL Server, or
Sybase—from a software vendor, you actually purchase the software comprising a database
management system (DBMS). Database management systems are designed for use by profes-
sional programmers and are not suitable for ordinary customers. Application programs are
built on top of the DBMS for customers to access and update the database. Thus, applica-
tion programs can be viewed as the interfaces between the database system and its users.
Application programs may be stand-alone GUI applications or Web applications and may
access several different database systems in the network, as shown in Figure 32.2.

Most of today’s database systems are relational database systems. They are based on the
relational data model, which has three key components: structure, integrity, and language.

DBMS

32.2 Relational Database Systems 1175

Structure defines the representation of the data. Integrity imposes constraints on the data.
Language provides the means for accessing and manipulating data.

32.2.1 Relational Structures
The relational model is built around a simple and natural structure. A relation is actually a
table that consists of nonduplicate rows. Tables are easy to understand and use. The relational
model provides a simple yet powerful way to represent data.

A row of a table represents a record, and a column of a table represents the value of a single
attribute of the record. In relational database theory, a row is called a tuple and a column is
called an attribute. Figure 32.3 shows a sample table that stores information about the courses
offered by a university. The table has eight tuples, and each tuple has five attributes.

relational model

tuple

attribute

FIGURE 32.2 An application program can access multiple database systems.

Database Management System

database

Application Programs

Application Users

Database Management System

……

…

FIGURE 32.3 A table has a table name, column names, and rows.

Columns/Attributes

Tuples/
Rows 11111 CSCI 1301 Introduction to Java I 4

11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

courseId subjectId courseNumber title numOfCreditsCourse Table

Relation/Table Name

Tables describe the relationship among data. Each row in a table represents a record of
related data. For example, “11111,” “CSCI,” “1301,” “Introduction to Java I,” and “4” are
related to form a record (the first row in Figure 32.3) in the Course table. Just as the data in
the same row are related, so too data in different tables may be related through common attrib-
utes. Suppose the database has two other tables, Student and Enrollment, as shown in

1176 Chapter 32 Java Database Programming

Figures 32.4 and 32.5. The Course table and the Enrollment table are related through their
common attribute courseId, and the Enrollment table and the Student table are related
through ssn.

FIGURE 32.4 A Student table stores student information.

deptID

444111110 Jacob R Smith 9129219434 1985-04-09 99 Kingston Street 31435 BIOL
444111111 John K Stevenson 9129219434 null 100 Main Street 31411 BIOL
444111112 George K Smith 9129213454 1974-10-10 1200 Abercorn St. 31419 CS
444111113 Frank E Jones 9125919434 1970-09-09 100 Main Street 31411 BIOL
444111114 Jean K Smith 9129219434 1970-02-09 100 Main Street 31411 CHEM
444111115 Josh R Woo 7075989434 1970-02-09 555 Franklin St. 31411 CHEM
444111116 Josh R Smith 9129219434 1973-02-09 100 Main Street 31411 BIOL
444111117 Joy P Kennedy 9129229434 1974-03-19 103 Bay Street 31412 CS
444111118 Toni R Peterson 9129229434 1964-04-29 103 Bay Street 31412 MATH
444111119 Patrick R Stoneman 9129229434 1969-04-29 101 Washington St. 31435 MATH
444111120 Rick R Carter 9125919434 1986-04-09 19 West Ford St. 31411 BIOL

Student Table

ssn firstName mi lastName phone birthDate street zipCode

FIGURE 32.5 An Enrollment table stores student enrollment information.

Enrollment Table

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
444111111 11111 2004-03-19 D
444111111 11112 2004-03-19 F
444111111 11113 2004-03-19 A
444111112 11114 2004-03-19 B
444111112 11115 2004-03-19 C
444111112 11116 2004-03-19 D
444111113 11111 2004-03-19 A
444111113 11113 2004-03-19 A
444111114 11115 2004-03-19 B
444111115 11115 2004-03-19 F
444111115 11116 2004-03-19 F
444111116 11111 2004-03-19 D
444111117 11111 2004-03-19 D
444111118 11111 2004-03-19 A
444111118 11112 2004-03-19 D
444111118 11113 2004-03-19 B

ssn courseId dateRegistered grade

32.2.2 Integrity Constraints
An integrity constraint imposes a condition that all the legal values in a table must satisfy.
Figure 32.6 shows an example of some integrity constraints in the Subject and Course
tables.

In general, there are three types of constraints: domain constraints, primary key con-
straints, and foreign key constraints. Domain constraints and primary key constraints are
known as intrarelational constraints meaning that a constraint involves only one relation.
The foreign key constraint is interrelational meaning that a constraint involves more than
one relation.

integrity constraint

32.2 Relational Database Systems 1177

Domain Constraints
Domain constraints specify the permissible values for an attribute. Domains can be specified
using standard data types, such as integers, floating-point numbers, fixed-length strings, and
variant-length strings. The standard data type specifies a broad range of values. Additional
constraints can be specified to narrow the ranges. For example, you can specify that the
numOfCredits attribute (in the Course table) must be greater than 0 and less than 5. You
can also specify whether an attribute can be null, which is a special value in a database
meaning unknown or not applicable. As shown in the Student table, birthDate may be
null.

Primary Key Constraints
To understand primary keys, it is helpful to know superkeys, keys, and candidate keys. A
superkey is an attribute or a set of attributes that uniquely identifies the relation. That is, no
two tuples have the same values on a superkey. By definition, a relation consists of a set of
distinct tuples. The set of all attributes in the relation forms a superkey.

A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A
relation can have several keys. In this case, each of the keys is called a candidate key. The
primary key is one of the candidate keys designated by the database designer. The primary
key is often used to identify tuples in a relation. As shown in Figure 32.6, courseId is the
primary key in the Course table.

Foreign Key Constraints
In a relational database, data are related. Tuples in a relation are related, and tuples in dif-
ferent relations are related through their common attributes. Informally speaking, the com-
mon attributes are foreign keys. The foreign key constraints define the relationships among
relations.

Formally, a set of attributes FK is a foreign key in a relation R that references relation T if
it satisfies the following two rules:

 ■ The attributes in FK have the same domain as the primary key in T.

 ■ A nonnull value on FK in R must match a primary key value in T.

domain constraint

superkey

primary key

candidate key

relational database

foreign key constraint

foreign key

FIGURE 32.6 The Enrollment table and the Course table have integrity constraints.

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
...

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
...

Course Table

Each value in the
numOfCredits column must be
greater than 0 and less than 5

Each value in courseId in the
Enrollment table must match a value
in courseId in the Course table

Each row must have a
value for courseId, and
the value must be unique

Enrollment Table ssn courseId dateRegistered grade

courseId subjectId courseNumber title numOfCredits

1178 Chapter 32 Java Database Programming

As shown in Figure 32.6, courseId is the foreign key in Enrollment that references the
primary key courseId in Course. Every courseId value must match a courseId value
in Course.

Enforcing Integrity Constraints
The database management system enforces integrity constraints and rejects operations that
would violate them. For example, if you attempt to insert the new record (“11115,” “CSCI,”
“2490,” “C++ Programming,” 0) into the Course table, it would fail because the credit hours
must be greater than 0; if you attempted to insert a record with the same primary key as an
existing record in the table, the DBMS would report an error and reject the operation; if you
attempted to delete a record from the Course table whose primary key value is referenced by
the records in the Enrollment table, the DBMS would reject this operation.

Note
All relational database systems support primary key constraints and foreign key

constraints but not all database systems support domain constraints. In the Microsoft

Access database, for example, you cannot specify the constraint that numOfCredits

is greater than 0 and less than 5.

32.1 What are superkeys, candidate keys, and primary keys?

32.2 What is a foreign key?

32.3 Can a relation have more than one primary key or foreign key?

32.4 Does a foreign key need to be a primary key in the same relation?

32.5 Does a foreign key need to have the same name as its referenced primary key?

32.6 Can a foreign key value be null?

32.3 SQL
Structured Query Language (SQL) is the language for defining tables and integrity
constraints, and for accessing and manipulating data.

SQL (pronounced “S-Q-L” or “sequel”) is the universal language for accessing relational
database systems. Application programs may allow users to access a database without directly
using SQL, but these applications themselves must use SQL to access the database. This
section introduces some basic SQL commands.

Note
There are many relational database management systems. They share the common SQL

language but do not all support every feature of SQL. Some systems have their own

extensions to SQL. This section introduces standard SQL supported by all systems.

SQL can be used on MySQL, Oracle, Sybase, IBM DB2, IBM Informix, MS Access, or
any other relational database system. This chapter uses MySQL to demonstrate SQL and uses
MySQL, Oracle, and Access to demonstrate Java database programming. The Companion
Website contains the following supplements on how to install and use three popular databases:
MySQL, Oracle, and Access:

 ■ Supplement IV.B: Tutorial for MySQL

 ■ Supplement IV.C: Tutorial for Oracle

 ■ Supplement IV.D: Tutorial for Microsoft Access

auto enforcement

✓Point✓Check

Key
Point

SQL

database language

standard SQL

MySQL Tutorial

Oracle Tutorial

Access Tutorial

32.3 SQL 1179

32.3.1 Creating a User Account on MySQL
Assume that you have installed MySQL 5 with the default configuration. To match all the
examples in this book, you should create a user named scott with the password tiger. You can
perform the administrative tasks using the MySQL Workbench or using the command line.
MySQL Workbench is a GUI tool for managing MySQL databases. Here are the steps to cre-
ate a user from the command line:

1. From the DOS command prompt, type

mysql –uroot -p

You will be prompted to enter the root password, as shown in Figure 32.7.

2. At the mysql prompt, enter

use mysql;

3. To create user scott with password tiger, enter

create user 'scott'@'localhost' identified by 'tiger';

4. To grant privileges to scott, enter

grant select, insert, update, delete, create, create view, drop,

execute, references on *.* to 'scott'@'localhost';

 ■ If you want to enable remote access of the account from any IP address, enter

grant all privileges on *.* to 'scott'@'%'

 identified by 'tiger';

 ■ If you want to restrict the account’s remote access to just one particular IP address,
enter

grant all privileges on *.* to 'scott'@'ipAddress'

 identified by 'tiger';

5. Enter

exit;

to exit the MySQL console.

FIGURE 32.7 You can access a MySQL database server from the command window.

1180 Chapter 32 Java Database Programming

Note
On Windows, your MySQL database server starts every time your computer starts. You

can stop it by typing the command net stop mysql and restart it by typing the

command net start mysql.

By default, the server contains two databases named mysql and test. The mysql database
contains the tables that store information about the server and its users. This database is
intended for the server administrator to use. For example, the administrator can use it to cre-
ate users and grant or revoke user privileges. Since you are the owner of the server installed
on your system, you have full access to the mysql database. However, you should not cre-
ate user tables in the mysql database. You can use the test database to store data or create
new databases. You can also create a new database using the command create database

databasename or delete an existing database using the command drop database

databasename.

32.3.2 Creating a Database
To match the examples in this book, you should create a database named javabook. Here are
the steps to create it:

1. From the DOS command prompt, type

mysql –uscott -ptiger

to login to mysql, as shown in Figure 32.8.

2. At the mysql prompt, enter

create database javabook;

stop mysql
start mysql

FIGURE 32.8 You can create databases in MySQL.

For your convenience, the SQL statements for creating and initializing tables used in this
book are provided in Supplement IV.A. You can download the script for MySQL and save it
to script.sql. To execute the script, first switch to the javabook database using the following
command:

use javabook;

and then type

source script.sql;

as shown in Figure 32.9.

run script file

32.3 SQL 1181

FIGURE 32.9 You can run SQL commands in a script file.

Note
You can populate the javabook database using the script from Supplement IV.A.

32.3.3 Creating and Dropping Tables
Tables are the essential objects in a database. To create a table, use the create table state-
ment to specify a table name, attributes, and types, as in the following example:

create table Course (
 courseId char(5),
 subjectId char(4) not null,
 courseNumber integer,
 title varchar(50) not null,
 numOfCredits integer,

primary key (courseId)
);

This statement creates the Course table with attributes courseId, subjectId,
courseNumber, title, and numOfCredits. Each attribute has a data type that specifies
the type of data stored in the attribute. char(5) specifies that courseId consists of five
characters. varchar(50) specifies that title is a variant-length string with a maximum
of 50 characters. integer specifies that courseNumber is an integer. The primary key is
courseId.

The tables Student and Enrollment can be created as follows:

create table Student (
 ssn char(9),
 firstName varchar(25),
 mi char(1),
 lastName varchar(25),
 birthDate date,
 street varchar(25),
 phone char(11),
 zipCode char(5),
 deptId char(4),

primary key (ssn)
);

populating database

create table

create table Enrollment (
 ssn char(9),
 courseId char(5),
 dateRegistered date,
 grade char(1),

primary key (ssn, courseId),
foreign key (ssn) references

 Student(ssn),
foreign key (courseId) references

 Course(courseId)
);

Note
SQL keywords are not case sensitive. This book adopts the following naming conventions:

tables are named in the same way as Java classes, and attributes are named in the same

way as Java variables. SQL keywords are named in the same way as Java keywords.

naming convention

1182 Chapter 32 Java Database Programming

If a table is no longer needed, it can be dropped permanently using the drop table com-
mand. For example, the following statement drops the Course table:

drop table Course;

If a table to be dropped is referenced by other tables, you have to drop the other tables
first. For example, if you have created the tables Course, Student, and Enrollment and
want to drop Course, you have to first drop Enrollment, because Course is referenced by
Enrollment.

Figure 32.10 shows how to enter the create table statement from the MySQL console.

drop table

FIGURE 32.10 A table is created using the create table statement.

FIGURE 32.11 (a) You can use Notepad to create a text file for SQL commands. (b) You
can run the SQL commands in a script file from MySQL.

(a) (b)

If you make typing errors, you have to retype the whole command. To avoid retyping, you
can save the command in a file, and then run the command from the file. To do so, create a
text file to contain commands, named, for example, test.sql. You can create the text file using
any text editor, such as Notepad, as shown in Figure 32.11a. To comment a line, precede it
with two dashes. You can now run the script file by typing source test.sql from the SQL
command prompt, as shown in Figure 32.11b.

32.3.4 Simple Insert, Update, and Delete
Once a table is created, you can insert data into it. You can also update and delete records.
This section introduces simple insert, update, and delete statements.

The syntax to insert a record into a table is:

insert into tableName [(column1, column2, ..., column)]
values (value1, value2, ..., valuen);

32.3 SQL 1183

For example, the following statement inserts a record into the Course table. The new record
has the courseId ‘11113’, subjectId ‘CSCI’, courseNumber ‘3720’, title ‘Database
Systems’, and creditHours 3.

insert into Course (courseId, subjectId, courseNumber, title, numOfCredits)
values ('11113', 'CSCI', '3720', 'Database Systems', 3);

The column names are optional. If they are omitted, all the column values for the record must
be entered, even though the columns have default values. String values are case sensitive and
enclosed inside single quotation marks in SQL.

The syntax to update a table is:

update tableName
set column1 = newValue1 [, column2 = newValue2, ...]
[where condition];

For example, the following statement changes the numOfCredits for the course whose
title is Database Systems to 4.

update Course
set numOfCredits = 4
where title = 'Database Systems';

The syntax to delete records from a table is:

delete from tableName
[where condition];

For example, the following statement deletes the Database Systems course from the Course
table:

delete from Course
where title = 'Database Systems';

The following statement deletes all the records from the Course table:

delete from Course;

32.3.5 Simple Queries
To retrieve information from tables, use a select statement with the following syntax:

select column-list
from table-list
[where condition];

The select clause lists the columns to be selected. The from clause refers to the tables
involved in the query. The optional where clause specifies the conditions for the selected
rows.

Query 1: Select all the students in the CS department, as shown in Figure 32.12.

select firstName, mi, lastName
from Student
where deptId = 'CS';

1184 Chapter 32 Java Database Programming

32.3.6 Comparison and Boolean Operators
SQL has six comparison operators, as shown in Table 32.1, and three Boolean operators, as
shown in Table 32.2.

Operator Description

= Equal to

<> or != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

TABLE 32.1 Comparison Operators

Operator Description

not Logical negation

and Logical conjunction

or Logical disjunction

TABLE 32.2 Boolean Operators

FIGURE 32.12 The result of the select statement is displayed in the MySQL console.

Note
The comparison and Boolean operators in SQL have the same meanings as in Java. In

SQL the equal to operator is =, but in Java it is ==. In SQL the not equal to

operator is <> or !=, but in Java it is !=. The not, and, and or operators are !, &&

(&), and || (|) in Java.

Query 2: Get the names of the students who are in the CS dept and live in the ZIP code
31411.

select firstName, mi, lastName
from Student
where deptId = 'CS' and zipCode = '31411';

Note
To select all the attributes from a table, you don’t have to list all the attribute names

in the select clause. Instead, you can just use an asterisk (*), which stands for all the

attributes. For example, the following query displays all the attributes of the students

who are in the CS dept and live in ZIP code 31411.

select *
from Student
where deptId = 'CS' and zipCode = '31411';

32.3 SQL 1185

32.3.7 The like, between-and, and is null Operators
SQL has a like operator that can be used for pattern matching. The syntax to check whether
a string s has a pattern p is

s like p or s not like p

You can use the wildcard characters % (percent symbol) and _ (underline symbol) in the
pattern p. % matches zero or more characters, and _ matches any single character in s. For
example, lastName like '_mi%' matches any string whose second and third letters are
m and i. lastName not like '_mi%' excludes any string whose second and third letters
are m and i.

Note
In earlier versions of MS Access, the wildcard character is *, and the character ? matches

any single character.

The between-and operator checks whether a value v is between two other values, v1 and
v2, using the following syntax:

v between v1 and v2 or v not between v1 and v2

v between v1 and v2 is equivalent to v >= v1 and v <= v2, and v not
between v1 and v2 is equivalent to v < v1 or v > v2.

The is null operator checks whether a value v is null using the following syntax:

v is null or v is not null

Query 3: Get the Social Security numbers of the students whose grades are between ‘C’ and ‘A’.

select ssn
from Enrollment
where grade between 'C' and 'A';

32.3.8 Column Alias
When a query result is displayed, SQL uses the column names as column headings. Usually
the user gives abbreviated names for the columns, and the columns cannot have spaces when
the table is created. Sometimes it is desirable to give more descriptive names in the result
heading. You can use the column aliases with the following syntax:

select columnName [as] alias

Query 4: Get the last name and ZIP code of the students in the CS department. Display the
column headings as “Last Name” for lastName and “Zip Code” for zipCode. The query result
is shown in Figure 32.13.

FIGURE 32.13 You can use a column alias in the display.

1186 Chapter 32 Java Database Programming

select lastName as "Last Name", zipCode as "Zip Code"

from Student
where deptId = 'CS';

Note
The as keyword is optional in MySQL and Oracle, but it is required in MS Access.

32.3.9 The Arithmetic Operators
You can use the arithmetic operators * (multiplication), / (division), + (addition), and –
(subtraction) in SQL.

Query 5: Assume that a credit hour is 50 minutes of lectures and get the total minutes for
each course with the subject CSCI. The query result is shown in Figure 32.14.

select title, 50 * numOfCredits as "Lecture Minutes Per Week"

from Course
where subjectId = 'CSCI';

FIGURE 32.14 You can use arithmetic operators in SQL.

FIGURE 32.15 (a) The duplicate tuples are displayed. (b) The distinct tuples are displayed.

(a) (b)

32.3.10 Displaying Distinct Tuples
SQL provides the distinct keyword, which can be used to eliminate duplicate tuples in the
result. Figure 32.15a displays all the subject IDs used by the courses, and Figure 32.15b dis-
plays all the distinct subject IDs used by the courses using the following statement.

select distinct subjectId as "Subject ID"
from Course;

32.3 SQL 1187

When there is more than one column in the select clause, the distinct keyword applies
to the whole tuple in the result. For example, the following statement displays all tuples with
distinct subjectId and title, as shown in Figure 32.16. Note that some tuples may have
the same subjectId but different title. These tuples are distinct.

select distinct subjectId, title
from Course;

FIGURE 32.17 You can sort results using the order by clause.

FIGURE 32.16 The keyword distinct applies to the entire tuple.

32.3.11 Displaying Sorted Tuples
SQL provides the order by clause to sort the output using the following syntax:

select column-list
from table-list
[where condition]
[order by columns-to-be-sorted];

In the syntax, columns-to-be-sorted specifies a column or a list of columns to be sorted.
By default, the order is ascending. To sort in a descending order, append the desc keyword.
You could also append the asc keyword after columns-to-be-sorted, but it is not neces-
sary. When multiple columns are specified, the rows are sorted based on the first column, then
the rows with the same values on the first column are sorted based on the second column, and
so on.

Query 6: List the full names of the students in the CS department, ordered primarily on
their last names in descending order and secondarily on their first names in ascending order.
The query result is shown in Figure 32.17.

1188 Chapter 32 Java Database Programming

select lastName, firstName, deptId
from Student
where deptId = 'CS'
order by lastName desc, firstName asc;

32.3.12 Joining Tables
Often you need to get information from multiple tables, as demonstrated in the next query.

Query 7: List the courses taken by the student Jacob Smith. To solve this query, you need
to join tables Student and Enrollment, as shown in Figure 32.18.

FIGURE 32.18 Student and Enrollment are joined on ssn.

A tuple

Student Table

ssn lastName mi firstName …

Enrollment Table

ssn courseId …

Equal

FIGURE 32.19 Query 7 demonstrates queries involving multiple tables.

You can write the query in SQL:

select distinct lastName, firstName, courseId
from Student, Enrollment
where Student.ssn = Enrollment.ssn and
 lastName = 'Smith' and firstName = 'Jacob';

The tables Student and Enrollment are listed in the from clause. The query examines
every pair of rows, each made of one item from Student and another from Enrollment and
selects the pairs that satisfy the condition in the where clause. The rows in Student have the
last name, Smith, and the first name, Jacob, and both rows from Student and Enrollment
have the same ssn values. For each pair selected, lastName and firstName from Student
and courseId from Enrollment are used to produce the result, as shown in Figure 32.19.
Student and Enrollment have the same attribute ssn. To distinguish them in a query, use
Student.ssn and Enrollment.ssn.

32.4 JDBC 1189

For more features of SQL, see Supplements IV.H and IV.I.

32.7 Create the tables Course, Student, and Enrollment using the create table
statements in Section 32.3.3, Creating and Dropping Tables. Insert rows into the
Course, Student, and Enrollment tables using the data in Figures 32.3–32.5.

32.8 List all CSCI courses with at least four credit hours.

32.9 List all students whose last names contain the letter e two times.

32.10 List all students whose birthdays are null.

32.11 List all students who take Math courses.

32.12 List the number of courses in each subject.

32.13 Assume that each credit hour is 50 minutes of lectures. Get the total minutes for the
courses that each student takes.

32.4 JDBC
JDBC is the Java API for accessing relational database.

The Java API for developing Java database applications is called JDBC. JDBC is the trade-
marked name of a Java API that supports Java programs that access relational databases.
JDBC is not an acronym, but it is often thought to stand for Java Database Connectivity.

JDBC provides Java programmers with a uniform interface for accessing and manipulating
relational databases. Using the JDBC API, applications written in the Java programming lan-
guage can execute SQL statements, retrieve results, present data in a user-friendly interface,
and propagate changes back to the database. The JDBC API can also be used to interact with
multiple data sources in a distributed, heterogeneous environment.

The relationships between Java programs, JDBC API, JDBC drivers, and relational data-
bases are shown in Figure 32.20. The JDBC API is a set of Java interfaces and classes used to
write Java programs for accessing and manipulating relational databases. Since a JDBC driver
serves as the interface to facilitate communications between JDBC and a proprietary data-
base, JDBC drivers are database specific and are normally provided by the database vendors.
You need MySQL JDBC drivers to access the MySQL database, and Oracle JDBC drivers

✓Point✓Check

Key
Point

FIGURE 32.20 Java programs access and manipulate databases through JDBC drivers.

Java Programs

JDBC API

JDBC-ODBC
Bridge Driver

Local or remote
ORACLE DB

Microsoft ODBC
Driver

Microsoft Access
Database

MySQL JDBC
Driver

Local or remote
MySQL DB

Oracle JDBC
Driver

1190 Chapter 32 Java Database Programming

to access the Oracle database. For the Access database, use the JDBC-ODBC bridge driver
included in the JDK. ODBC is a technology developed by Microsoft for accessing databases
on the Windows platform. An ODBC driver is preinstalled on Windows. The JDBC-ODBC
bridge driver allows a Java program to access any ODBC data source.

32.4.1 Developing Database Applications Using JDBC
The JDBC API is a Java application program interface to generic SQL databases that enables
Java developers to develop DBMS-independent Java applications using a uniform interface.

The JDBC API consists of classes and interfaces for establishing connections with data-
bases, sending SQL statements to databases, processing the results of SQL statements, and
obtaining database metadata. Four key interfaces are needed to develop any database appli-
cation using Java: Driver, Connection, Statement, and ResultSet. These interfaces
define a framework for generic SQL database access. The JDBC API defines these interfaces,
and the JDBC driver vendors provide the implementation for the interfaces. Programmers use
these interfaces.

The relationship of these interfaces is shown in Figure 32.21. A JDBC application loads an
appropriate driver using the Driver interface, connects to the database using the Connection
interface, creates and executes SQL statements using the Statement interface, and processes
the result using the ResultSet interface if the statements return results. Note that some state-
ments, such as SQL data definition statements and SQL data modification statements, do not
return results.

FIGURE 32.21 JDBC classes enable Java programs to connect to the database, send SQL
statements, and process results.

Driver

Connection Connection

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

The JDBC interfaces and classes are the building blocks in the development of Java data-
base programs. A typical Java program takes the following steps to access a database.

1. Loading drivers.

An appropriate driver must be loaded using the statement shown below before connecting to
a database.

Class.forName("JDBCDriverClass");

A driver is a concrete class that implements the java.sql.Driver interface. The drivers for
Access, MySQL, and Oracle are listed in Table 32.3. If your program accesses several differ-
ent databases, all their respective drivers must be loaded.

The JDBC-ODBC driver for Access is bundled in JDK. The most recent platform inde-
pendent version of MySQL JDBC driver is mysql-connector-java-5.1.26.jar. This
file is contained in a ZIP file downloadable from dev.mysql.com/downloads/connector/j/. The
most recent version of Oracle JDBC driver is ojdbc6.jar (downloadable from www.oracle
.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html). To use the MySQL and

mysql-connector-java-5.1.26.jar

www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

32.4 JDBC 1191

Oracle drivers, you have to add mysql-connector-java-5.1.26.jar and ojdbc6.jar in the
classpath using the following DOS command on Windows:

set classpath=%classpath%;c:\book\lib\mysql-connector-java-5.1.26.jar;

c:\book\lib\ojdbc6.jar

If you use an IDE such as Eclipse or NetBeans, you need to add these jar files into the library
in the IDE.

Note
com.mysql.jdbc.Driver is a class in mysql-connector-java-5.1.26.jar, and

oracle.jdbc.driver.OracleDriver is a class in ojdbc6.jar. mysql-connector-

java-5.1.26.jar, and ojdbc6.jar contains many classes to support the driver. These

classes are used by JDBC but not directly by JDBC programmers. When you use a class

explicitly in the program, it is automatically loaded by the JVM. The driver classes,

however, are not used explicitly in the program, so you have to write the code to tell

the JVM to load them.

Note
Java 6 supports automatic driver discovery, so you don’t have to load the driver explicitly.

At the time of this writing, however, this feature is not supported for all database drivers.

To be safe, load the driver explicitly.

2. Establishing connections.

To connect to a database, use the static method getConnection(databaseURL) in the
DriverManager class, as follows:

Connection connection = DriverManager.getConnection(databaseURL);

where databaseURL is the unique identifier of the database on the Internet. Table 32.4 lists
the URL patterns for the Access, MySQL, and Oracle databases.

ojdbc6.jar

why load a driver?

automatic driver discovery

Database URL Pattern

Access jdbc:odbc:dataSource

MySQL jdbc:mysql://hostname/dbname

Oracle jdbc:oracle:thin:@hostname:port#:oracleDBSID

TABLE 32.4 JDBC URLs

TABLE 32.3 JDBC Drivers

Database Driver Class Source

Access sun.jdbc.odbc.JdbcOdbcDriver Already in JDK

MySQL com.mysql.jdbc.Driver mysql-connector-java-5.1.26.jar

Oracle oracle.jdbc.driver.OracleDriver ojdbc6.jar

For an ODBC data source, the databaseURL is jdbc:odbc:dataSource. An ODBC
data source can be created using the ODBC Data Source Administrator on Windows. See
Supplement IV.D, Tutorial for Microsoft Access, on how to create an ODBC data source for
an Access database. connect Access DB

1192 Chapter 32 Java Database Programming

Suppose a data source named ExampleMDBDataSource has been created for an Access
database. The following statement creates a Connection object:

Connection connection = DriverManager.getConnection
 ("jdbc:odbc:ExampleMDBDataSource");

The databaseURL for a MySQL database specifies the host name and database name to
locate a database. For example, the following statement creates a Connection object for the
local MySQL database javabook with username scott and password tiger:

Connection connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook", "scott", "tiger");

Recall that by default, MySQL contains two databases named mysql and test. Section 32.3.2,
Creating a Database, created a custom database named javabook. We will use javabook in
the examples.

The databaseURL for an Oracle database specifies the hostname, the port# where the
database listens for incoming connection requests, and the oracleDBSID database name to
locate a database. For example, the following statement creates a Connection object for the
Oracle database on liang.armstrong.edu with the username scott and password tiger:

Connection connection = DriverManager.getConnection
 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",

"scott", "tiger");

3. Creating statements.

If a Connection object can be envisioned as a cable linking your program to a database, an
object of Statement can be viewed as a cart that delivers SQL statements for execution by
the database and brings the result back to the program. Once a Connection object is created,
you can create statements for executing SQL statements as follows:

Statement statement = connection.createStatement();

4. Executing statements.

SQL data definition language (DDL) and update statements can be executed using
executeUpdate(String sql), and an SQL query statement can be executed using
executeQuery(String sql). The result of the query is returned in ResultSet. For
example, the following code executes the SQL statement create table Temp (col1
char(5), col2 char(5)):

statement.executeUpdate
 ("create table Temp (col1 char(5), col2 char(5))");

This next code executes the SQL query select firstName, mi, lastName from

Student where lastName = 'Smith':

// Select the columns from the Student table
ResultSet resultSet = statement.executeQuery
 ("select firstName, mi, lastName from Student where lastName "
 + " = 'Smith'");

5. Processing ResultSet.

The ResultSet maintains a table whose current row can be retrieved. The initial row posi-
tion is null. You can use the next method to move to the next row and the various getter
methods to retrieve values from a current row. For example, the following code displays all
the results from the preceding SQL query.

// Iterate through the result and print the student names
while (resultSet.next())

connect MySQL DB

connect Oracle DB

32.4 JDBC 1193

 System.out.println(resultSet.getString(1) + " " +
 resultSet.getString(2) + " " + resultSet.getString(3));

The getString(1), getString(2), and getString(3) methods retrieve the col-
umn values for firstName, mi, and lastName, respectively. Alternatively, you can use
getString("firstName"), getString("mi"), and getString("lastName") to
retrieve the same three column values. The first execution of the next() method sets the cur-
rent row to the first row in the result set, and subsequent invocations of the next() method
set the current row to the second row, third row, and so on, to the last row.

Listing 32.1 is a complete example that demonstrates connecting to a database, executing
a simple query, and processing the query result with JDBC. The program connects to a local
MySQL database and displays the students whose last name is Smith.

LISTING 32.1 SimpleJDBC.java
 1 import java.sql.*;
 2
 3 public class SimpleJdbc {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
13 System.out.println("Database connected");
14
15 // Create a statement
16 Statement statement = connection.createStatement();
17
18 // Execute a statement
19 ResultSet resultSet = statement.executeQuery
20 ("select firstName, mi, lastName from Student where lastName "
21 + " = 'Smith'");
22
23 // Iterate through the result and print the student names
24 while (resultSet.next())
25 System.out.println(resultSet.getString(1) + "\t" +
26 resultSet.getString(2) + "\t" + resultSet.getString(3));
27
28 // Close the connection
29 connection.close();
30 }
31 }

The statement in line 7 loads a JDBC driver for MySQL, and the statement in lines 11–13
connects to a local MySQL database. You can change them to connect to an Access or Oracle
database. The program creates a Statement object (line 16), executes an SQL statement and
returns a ResultSet object (lines 19–21), and retrieves the query result from the ResultSet
object (lines 24–26). The last statement (line 29) closes the connection and releases resources
related to the connection. You can rewrite this program using the try-with-resources syntax.
See www.cs.armstrong.edu/liang/intro10e/html/SimpleJdbcWithAutoClose.html.

Note
If you run this program from the DOS prompt, specify the appropriate driver in the

classpath, as shown in Figure 32.22.

load driver

connect database

create statement

execute statement

get result

close connection

run from DOS prompt

www.cs.armstrong.edu/liang/intro10e/html/SimpleJdbcWithAutoClose.html

1194 Chapter 32 Java Database Programming

The classpath directory and jar files are separated by commas. The period (.) represents

the current directory. For convenience, the driver files are placed under the c:\book\lib

directory.

Caution
Do not use a semicolon (;) to end the Oracle SQL command in a Java program. The

semicolon may not work with the Oracle JDBC drivers. It does work, however, with the

other drivers used in this book.

Note
The Connection interface handles transactions and specifies how they are processed.

By default, a new connection is in autocommit mode, and all its SQL statements are

executed and committed as individual transactions. The commit occurs when the state-

ment completes or the next execute occurs, whichever comes first. In the case of state-

ments returning a result set, the statement completes when the last row of the result set

has been retrieved or the result set has been closed. If a single statement returns multiple

results, the commit occurs when all the results have been retrieved. You can use the

setAutoCommit(false) method to disable autocommit, so that all SQL statements

are grouped into one transaction that is terminated by a call to either the commit() or

the rollback() method. The rollback() method undoes all the changes made

by the transaction.

32.4.2 Accessing a Database from JavaFX
This section gives an example that demonstrates connecting to a database from a JavaFX pro-
gram. The program lets the user enter the SSN and the course ID to find a student’s grade, as
shown in Figure 32.23. The code in Listing 32.2 uses the MySQL database on the localhost.

the semicolon issue

auto commit

FIGURE 32.22 You must include the driver file to run Java database programs.

FIGURE 32.23 A JavaFX client can access the database on the server.

LISTING 32.2 FindGrade.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;

32.4 JDBC 1195

10
11 public class FindGrade extends Application {
12 // Statement for executing queries
13 private Statement stmt;
14 private TextField tfSSN = new TextField();
15 private TextField tfCourseId = new TextField();
16 private Label lblStatus = new Label();
17
18 @Override // Override the start method in the Application class
19 public void start(Stage primaryStage) {
20 // Initialize database connection and create a Statement object
21 initializeDB();
22
23 Button btShowGrade = new Button("Show Grade");
24 HBox hBox = new HBox(5);
25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
26 new Label("Course ID"), tfCourseId, (btShowGrade));
27
28 VBox vBox = new VBox(10);
29 vBox.getChildren().addAll(hBox, lblStatus);
30
31 tfSSN.setPrefColumnCount(6);
32 tfCourseId.setPrefColumnCount(6);
33 btShowGrade.setOnAction(e -> showGrade());
34
35 // Create a scene and place it in the stage
36 Scene scene = new Scene(vBox, 420, 80);
37 primaryStage.setTitle("FindGrade"); // Set the stage title
38 primaryStage.setScene(scene); // Place the scene in the stage
39 primaryStage.show(); // Display the stage
40 }
41
42 private void initializeDB() {
43 try {
44 // Load the JDBC driver
45 Class.forName("com.mysql.jdbc.Driver");
46 // Class.forName("oracle.jdbc.driver.OracleDriver");
47 System.out.println("Driver loaded");
48
49 // Establish a connection
50 Connection connection = DriverManager.getConnection
51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
53 // "scott", "tiger");
54 System.out.println("Database connected");
55
56 // Create a statement
57 stmt = connection.createStatement();
58 }
59 catch (Exception ex) {
60 ex.printStackTrace();
61 }
62 }
63
64 private void showGrade() {
65 String ssn = tfSSN.getText();
66 String courseId = tfCourseId.getText();
67 try {
68 String queryString = "select firstName, mi, " +
69 "lastName, title, grade from Student, Enrollment, Course " +

button listener

load driver
Oracle driver commented

connect to MySQL database

connect to Oracle commented

create statement

execute statement

show result

1196 Chapter 32 Java Database Programming

70 "where Student.ssn = '" + ssn + "' and Enrollment.courseId "

71 + "= '" + courseId +
72 "' and Enrollment.courseId = Course.courseId " +
73 " and Enrollment.ssn = Student.ssn";
74
75 ResultSet rset = stmt.executeQuery(queryString);
76
77 if (rset.next()) {
78 String lastName = rset.getString(1);
79 String mi = rset.getString(2);
80 String firstName = rset.getString(3);
81 String title = rset.getString(4);
82 String grade = rset.getString(5);
83
84 // Display result in a label
85 lblStatus.setText(firstName + " " + mi +
86 " " + lastName + "'s grade on course " + title + " is " +
87 grade);
88 } else {
89 lblStatus.setText("Not found");
90 }
91 }
92 catch (SQLException ex) {
93 ex.printStackTrace();
94 }
95 }
96 }

The initializeDB() method (lines 42–62) loads the MySQL driver (line 45), connects
to the MySQL database on host liang.armstrong.edu (lines 50–51) and creates a state-
ment (line 57).

Note
There is a security hole in this program. If you enter 1' or true or '1 in the SSN

field, you will get the first student’s score, because the query string now becomes

select firstName, mi, lastName, title, grade
from Student, Enrollment, Course
where Student.ssn = '1' or true or '1' and

 Enrollment.courseId = ' ' and

 Enrollment.courseId = Course.courseId and
 Enrollment.ssn = Student.ssn;

You can avoid this problem by using the PreparedStatement interface, which is

discussed in the next section.

32.14 What are the advantages of developing database applications using Java?

32.15 Describe the following JDBC interfaces: Driver, Connection, Statement, and
ResultSet.

32.16 How do you load a JDBC driver? What are the driver classes for MySQL, Access,
and Oracle?

32.17 How do you create a database connection? What are the URLs for MySQL, Access,
and Oracle?

32.18 How do you create a Statement and execute an SQL statement?

32.19 How do you retrieve values in a ResultSet?

32.20 Does JDBC automatically commit a transaction? How do you set autocommit to false?

security hole

✓Point✓Check

32.5 PreparedStatement
PreparedStatement enables you to create parameterized SQL statements.

Once a connection to a particular database is established, it can be used to send SQL statements
from your program to the database. The Statement interface is used to execute static SQL
statements that don’t contain any parameters. The PreparedStatement interface, extend-
ing Statement, is used to execute a precompiled SQL statement with or without parameters.
Since the SQL statements are precompiled, they are efficient for repeated executions.

A PreparedStatement object is created using the prepareStatement method in the
Connection interface. For example, the following code creates a PreparedStatement for
an SQL insert statement:

PreparedStatement preparedStatement = connection.prepareStatement
 ("insert into Student (firstName, mi, lastName) " +

"values (?, ?, ?)");

This insert statement has three question marks as placeholders for parameters representing
values for firstName, mi, and lastName in a record of the Student table.

As a subinterface of Statement, the PreparedStatement interface inherits all the
methods defined in Statement. It also provides the methods for setting parameters in the
object of PreparedStatement. These methods are used to set the values for the parameters
before executing statements or procedures. In general, the setter methods have the following
name and signature:

setX(int parameterIndex, X value);

where X is the type of the parameter, and parameterIndex is the index of the parameter
in the statement. The index starts from 1. For example, the method setString(int
parameterIndex, String value) sets a String value to the specified parameter.

The following statements pass the parameters "Jack", "A", and "Ryan" to the placehold-
ers for firstName, mi, and lastName in preparedStatement:

preparedStatement.setString(1, "Jack");
preparedStatement.setString(2, "A");
preparedStatement.setString(3, "Ryan");

After setting the parameters, you can execute the prepared statement by invoking
executeQuery() for a SELECT statement and executeUpdate() for a DDL or update
statement.

The executeQuery() and executeUpdate() methods are similar to the ones defined
in the Statement interface except that they don’t have any parameters, because the SQL
statements are already specified in the prepareStatement method when the object of
PreparedStatement is created.

Using a prepared SQL statement, Listing 32.2 can be improved as in Listing 32.3.

LISTING 32.3 FindGradeUsingPreparedStatement.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;
10

Key
Point

32.5 PreparedStatement 1197

1198 Chapter 32 Java Database Programming

11 public class FindGradeUsingPreparedStatement extends Application {
12 // PreparedStatement for executing queries
13 private PreparedStatement preparedStatement;
14 private TextField tfSSN = new TextField();
15 private TextField tfCourseId = new TextField();
16 private Label lblStatus = new Label();
17
18 @Override // Override the start method in the Application class
19 public void start(Stage primaryStage) {
20 // Initialize database connection and create a Statement object
21 initializeDB();
22
23 Button btShowGrade = new Button("Show Grade");
24 HBox hBox = new HBox(5);
25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
26 new Label("Course ID"), tfCourseId, (btShowGrade));
27
28 VBox vBox = new VBox(10);
29 vBox.getChildren().addAll(hBox, lblStatus);
30
31 tfSSN.setPrefColumnCount(6);
32 tfCourseId.setPrefColumnCount(6);
33 btShowGrade.setOnAction(e -> showGrade());
34
35 // Create a scene and place it in the stage
36 Scene scene = new Scene(vBox, 420, 80);
37 primaryStage.setTitle("FindGrade"); // Set the stage title
38 primaryStage.setScene(scene); // Place the scene in the stage
39 primaryStage.show(); // Display the stage
40 }
41
42 private void initializeDB() {
43 try {
44 // Load the JDBC driver
45 Class.forName("com.mysql.jdbc.Driver");
46 // Class.forName("oracle.jdbc.driver.OracleDriver");
47 System.out.println("Driver loaded");
48
49 // Establish a connection
50 Connection connection = DriverManager.getConnection
51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
53 // "scott", "tiger");
54 System.out.println("Database connected");
55
56 String queryString = "select firstName, mi, " +
57 "lastName, title, grade from Student, Enrollment, Course " +
58 "where Student.ssn = ? and Enrollment.courseId = ? " +
59 "and Enrollment.courseId = Course.courseId";
60
61 // Create a statement
62 preparedStatement = connection.prepareStatement(queryString);
63 }
64 catch (Exception ex) {
65 ex.printStackTrace();
66 }
67 }
68
69 private void showGrade() {
70 String ssn = tfSSN.getText();

load driver

connect database

placeholder

prepare statement

71 String courseId = tfCourseId.getText();
72 try {
73 preparedStatement.setString(1, ssn);
74 preparedStatement.setString(2, courseId);
75 ResultSet rset = preparedStatement.executeQuery();
76
77 if (rset.next()) {
78 String lastName = rset.getString(1);
79 String mi = rset.getString(2);
80 String firstName = rset.getString(3);
81 String title = rset.getString(4);
82 String grade = rset.getString(5);
83
84 // Display result in a label
85 lblStatus.setText(firstName + " " + mi +
86 " " + lastName + "'s grade on course " + title + " is " +
87 grade);
88 } else {
89 lblStatus.setText("Not found");
90 }
91 }
92 catch (SQLException ex) {
93 ex.printStackTrace();
94 }
95 }
96 }

This example does exactly the same thing as Listing 32.2 except that it uses the prepared
statement to dynamically set the parameters. The code in this example is almost the same as
in the preceding example. The new code is highlighted.

A prepared query string is defined in lines 56–59 with ssn and courseId as parameters.
An SQL prepared statement is obtained in line 62. Before executing the query, the actual
values of ssn and courseId are set to the parameters in lines 73–74. Line 75 executes the
prepared statement.

32.21 Describe prepared statements. How do you create instances of
PreparedStatement? How do you execute a PreparedStatement? How do
you set parameter values in a PreparedStatement?

32.22 What are the benefits of using prepared statements?

32.6 CallableStatement
CallableStatement enables you to execute SQL stored procedures.

The CallableStatement interface is designed to execute SQL-stored procedures. The
procedures may have IN, OUT or IN OUT parameters. An IN parameter receives a value
passed to the procedure when it is called. An OUT parameter returns a value after the proce-
dure is completed, but it doesn’t contain any value when the procedure is called. An IN OUT
parameter contains a value passed to the procedure when it is called and returns a value after
it is completed. For example, the following procedure in Oracle PL/SQL has IN parameter p1,
OUT parameter p2, and IN OUT parameter p3.

create or replace procedure sampleProcedure
 (p1 in varchar, p2 out number, p3 in out integer) is

begin

 /* do something */
end sampleProcedure;
/

execute statement

show result

✓Point✓Check

Key
Point

IN parameter

OUT parameter

IN OUT parameter

32.6 CallableStatement 1199

1200 Chapter 32 Java Database Programming

Note
The syntax of stored procedures is vendor specific. We use both Oracle and MySQL for

demonstrations of stored procedures in this book.

A CallableStatement object can be created using the prepareCall(String
call) method in the Connection interface. For example, the following code cre-
ates a CallableStatement cstmt on Connection connection for the procedure
sampleProcedure.

CallableStatement callableStatement = connection.prepareCall(
"{call sampleProcedure(?, ?, ?)}");

{call sampleProcedure(?, ?, ...)} is referred to as the SQL escape syntax, which
signals the driver that the code within it should be handled differently. The driver parses
the escape syntax and translates it into code that the database understands. In this example,
sampleProcedure is an Oracle procedure. The call is translated to the string begin
sampleProcedure(?, ?, ?); end and passed to an Oracle database for execution.

You can call procedures as well as functions. The syntax to create an SQL callable state-
ment for a function is:

{? = call functionName(?, ?, ...)}

CallableStatement inherits PreparedStatement. Additionally, the
CallableStatement interface provides methods for registering the OUT parameters and
for getting values from the OUT parameters.

Before calling an SQL procedure, you need to use appropriate setter methods to pass values
to IN and IN OUT parameters, and use registerOutParameter to register OUT and IN OUT
parameters. For example, before calling procedure sampleProcedure, the following state-
ments pass values to parameters p1 (IN) and p3 (IN OUT) and register parameters p2 (OUT)
and p3 (IN OUT):

callableStatement.setString(1, "Dallas"); // Set Dallas to p1
callableStatement.setLong(3, 1); // Set 1 to p3
// Register OUT parameters
callableStatement.registerOutParameter(2, java.sql.Types.DOUBLE);
callableStatement.registerOutParameter(3, java.sql.Types.INTEGER);

You can use execute() or executeUpdate() to execute the procedure depending on the
type of SQL statement, then use getter methods to retrieve values from the OUT parameters.
For example, the next statements retrieve the values from parameters p2 and p3.

double d = callableStatement.getDouble(2);
int i = callableStatement.getInt(3);

Let us define a MySQL function that returns the number of the records in the table that match
the specified firstName and lastName in the Student table.

/* For the callable statement example. Use MySQL version 5 */
drop function if exists studentFound;

delimiter //

create function studentFound(first varchar(20), last varchar(20))
returns int

begin

declare result int;

select count(*) into result

from Student
where Student.firstName = first and

 Student.lastName = last;

return result;
end;

//

delimiter ;
/* Please note that there is a space between delimiter and ; */

If you use an Oracle database, the function can be defined as follows:

create or replace function studentFound
 (first varchar2, last varchar2)

/* Do not name firstName and lastName. */
return number is

 numberOfSelectedRows number := 0;
begin

select count(*) into numberOfSelectedRows
from Student
where Student.firstName = first and

 Student.lastName = last;

return numberOfSelectedRows;
end studentFound;
/

Suppose the function studentFound is already created in the database. Listing 32.4 gives an
example that tests this function using callable statements.

LISTING 32.4 TestCallableStatement.java
 1 import java.sql.*;
 2
 3 public class TestCallableStatement {
 4 /** Creates new form TestTableEditor */
 5 public static void main(String[] args) throws Exception {
 6 Class.forName("com.mysql.jdbc.Driver");
 7 Connection connection = DriverManager.getConnection(
 8 "jdbc:mysql://localhost/javabook",
 9 "scott", "tiger");
10 // Connection connection = DriverManager.getConnection(
11 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
12 // "scott", "tiger");
13
14 // Create a callable statement
15 CallableStatement callableStatement = connection.prepareCall(
16 "{? = call studentFound(?, ?)}");
17
18 java.util.Scanner input = new java.util.Scanner(System.in);
19 System.out.print("Enter student's first name: ");
20 String firstName = input.nextLine();
21 System.out.print("Enter student's last name: ");
22 String lastName = input.nextLine();
23
24 callableStatement.setString(2, firstName);
25 callableStatement.setString(3, lastName);
26 callableStatement.registerOutParameter(1, Types.INTEGER);
27 callableStatement.execute();

load driver
connect database

create callable statement

enter fistName

enter lastName

set IN parameter
set IN parameter
register OUT parameter
execute statement

32.6 CallableStatement 1201

1202 Chapter 32 Java Database Programming

28
29 if (callableStatement.getInt(1) >= 1)
30 System.out.println(firstName + " " + lastName +
31 " is in the database");
32 else

33 System.out.println(firstName + " " + lastName +
34 " is not in the database");
35 }
36 }

get OUT parameter

Enter student's first name: Jacob

Enter student's last name: Smith

Jacob Smith is in the database

Enter student's first name: John

Enter student's last name: Smith

John Smith is not in the database

The program loads a MySQL driver (line 6), connects to a MySQL database (lines 7–9),
and creates a callable statement for executing the function studentFound (lines 15–16).

The function’s first parameter is the return value; its second and third parameters corre-
spond to the first and last names. Before executing the callable statement, the program sets the
first name and last name (lines 24–25) and registers the OUT parameter (line 26). The state-
ment is executed in line 27.

The function’s return value is obtained in line 29. If the value is greater than or equal to 1,
the student with the specified first and last name is found in the table.

32.23 Describe callable statements. How do you create instances of CallableStatement?
How do you execute a CallableStatement? How do you register OUT parameters
in a CallableStatement?

32.7 Retrieving Metadata
The database metadata such as database URL, username, JDBC driver name can be
obtained using the DatabaseMetaData interface and result set metadata such as table
column count and column names can be obtained using the ResultSetMetaData
interface.

JDBC provides the DatabaseMetaData interface for obtaining database-wide information,
and the ResultSetMetaData interface for obtaining information on a specific ResultSet.

32.7.1 Database Metadata
The Connection interface establishes a connection to a database. It is within the context of a
connection that SQL statements are executed and results are returned. A connection also provides
access to database metadata information that describes the capabilities of the database, supported
SQL grammar, stored procedures, and so on. To obtain an instance of DatabaseMetaData for
a database, use the getMetaData method on a Connection object like this:

DatabaseMetaData dbMetaData = connection.getMetaData();

If your program connects to a local MySQL database, the program in Listing 32.5 displays the
database information statements shown in Figure 32.24.

✓Point✓Check

Key
Point

database metadata

32.7 Retrieving Metadata 1203

LISTING 32.5 TestDatabaseMetaData.java
 1 import java.sql.*;
 2
 3 public class TestDatabaseMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 DatabaseMetaData dbMetaData = connection.getMetaData();
16 System.out.println("database URL: " + dbMetaData.getURL());
17 System.out.println("database username: " +
18 dbMetaData.getUserName());
19 System.out.println("database product name: " +
20 dbMetaData.getDatabaseProductName());
21 System.out.println("database product version: " +
22 dbMetaData.getDatabaseProductVersion());
23 System.out.println("JDBC driver name: " +
24 dbMetaData.getDriverName());
25 System.out.println("JDBC driver version: " +
26 dbMetaData.getDriverVersion());
27 System.out.println("JDBC driver major version: " +
28 dbMetaData.getDriverMajorVersion());
29 System.out.println("JDBC driver minor version: " +
30 dbMetaData.getDriverMinorVersion());
31 System.out.println("Max number of connections: " +
32 dbMetaData.getMaxConnections());
33 System.out.println("MaxTableNameLength: " +
34 dbMetaData.getMaxTableNameLength());
35 System.out.println("MaxColumnsInTable: " +
36 dbMetaData.getMaxColumnsInTable());
37
38 // Close the connection
39 connection.close();
40 }
41 }

load driver

connect database

database metadata
get metadata

FIGURE 32.24 The DatabaseMetaData interface enables you to obtain database information.

1204 Chapter 32 Java Database Programming

32.7.2 Obtaining Database Tables
You can identify the tables in the database through database metadata using the getTables
method. Listing 32.6 displays all the user tables in the javabook database on a local MySQL
database. Figure 32.25 shows a sample output of the program.

LISTING 32.6 FindUserTables.java
 1 import java.sql.*;
 2
 3 public class FindUserTables {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 DatabaseMetaData dbMetaData = connection.getMetaData();
16
17 ResultSet rsTables = dbMetaData.getTables(null, null, null,
18 new String[] {"TABLE"});
19 System.out.print("User tables: ");
20 while (rsTables.next())
21 System.out.print(rsTables.getString("TABLE_NAME") + " ");
22
23 // Close the connection
24 connection.close();
25 }
26 }

load driver

connect database

database metadata

obtain tables

get table names

FIGURE 32.25 You can find all the tables in the database.

Line 17 obtains table information in a result set using the getTables method. One of the
columns in the result set is TABLE_NAME. Line 21 retrieves the table name from this result
set column.

32.7.3 Result Set Metadata
The ResultSetMetaData interface describes information pertaining to the result set. A
ResultSetMetaData object can be used to find the types and properties of the columns in a
ResultSet. To obtain an instance of ResultSetMetaData, use the getMetaData method
on a result set like this.

ResultSetMetaData rsMetaData = resultSet.getMetaData();

32.7 Retrieving Metadata 1205

You can use the getColumnCount() method to find the number of columns in the result and
the getColumnName(int) method to get the column names. For example, Listing 32.7 dis-
plays all the column names and contents resulting from the SQL SELECT statement select
* from Enrollment. The output is shown in Figure 32.26.

LISTING 32.7 TestResultSetMetaData.java
 1 import java.sql.*;
 2
 3 public class TestResultSetMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 // Create a statement
16 Statement statement = connection.createStatement();
17
18 // Execute a statement
19 ResultSet resultSet = statement.executeQuery
20 ("select * from Enrollment");
21
22 ResultSetMetaData rsMetaData = resultSet.getMetaData();
23 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
24 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
25 System.out.println();
26
27 // Iterate through the result and print the students' names
28 while (resultSet.next()) {
29 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
30 System.out.printf("%-12s\t", resultSet.getObject(i));
31 System.out.println();
32 }
33
34 // Close the connection
35 connection.close();
36 }
37 }

load driver

connect database

create statement

create result set

result set metadata
column count
column name

FIGURE 32.26 The ResultSetMetaData interface enables you to obtain result set
information.

1206 Chapter 32 Java Database Programming

32.24 What is DatabaseMetaData for? Describe the methods in DatabaseMetaData.
How do you get an instance of DatabaseMetaData?

32.25 What is ResultSetMetaData for? Describe the methods in ResultSetMetaData.
How do you get an instance of ResultSetMetaData?

32.26 How do you find the number of columns in a result set? How do you find the column
names in a result set?

✓Point✓Check

KEY TERMS

candidate key 1177
database system 1174
domain constraint 1177
foreign key 1177
foreign key constraint 1177

integrity constraint 1176
primary key 1177
relational database 1177
Structured Query Language (SQL) 1178
superkey 1177

CHAPTER SUMMARY

1. This chapter introduced the concepts of database systems, relational databases,
relational data models, data integrity, and SQL. You learned how to develop database
applications using Java.

2. The Java API for developing Java database applications is called JDBC. JDBC provides
Java programmers with a uniform interface for accessing and manipulating relational
databases.

3. The JDBC API consists of classes and interfaces for establishing connections with data-
bases, sending SQL statements to databases, processing the results of SQL statements,
and obtaining database metadata.

4. Since a JDBC driver serves as the interface to facilitate communications between JDBC
and a proprietary database, JDBC drivers are database specific. A JDBC-ODBC bridge
driver is included in JDK to support Java programs that access databases through ODBC
drivers. If you use a driver other than the JDBC-ODBC bridge driver, make sure it is in
the classpath before running the program.

5. Four key interfaces are needed to develop any database application using Java: Driver,
Connection, Statement, and ResultSet. These interfaces define a framework for
generic SQL database access. The JDBC driver vendors provide implementation for them.

6. A JDBC application loads an appropriate driver using the Driver interface, connects
to the database using the Connection interface, creates and executes SQL statements
using the Statement interface, and processes the result using the ResultSet interface
if the statements return results.

7. The PreparedStatement interface is designed to execute dynamic SQL statements
with parameters. These SQL statements are precompiled for efficient use when
repeatedly executed.

8. Database metadata is information that describes the database itself. JDBC provides
the DatabaseMetaData interface for obtaining database-wide information and the
ResultSetMetaData interface for obtaining information on the specific ResultSet.

Programming Exercises 1207

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

*32.1 (Access and update a Staff table) Write a program that views, inserts, and
updates staff information stored in a database, as shown in Figure 32.27a. The
View button displays a record with a specified ID. The Insert button inserts a new
record. The Update button updates the record for the specified ID. The Staff
table is created as follows:

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
 primary key (id)
);

FIGURE 32.27 (a) The program lets you view, insert, and update staff information. (b) The PieChart and BarChart
components display the query data obtained from the data module.

(a) (b)

**32.2 (Visualize data) Write a program that displays the number of students in each
department in a pie chart and a bar chart, as shown in Figure 32.27b. The number
of students for each department can be obtained from the Student table (see
Figure 32.4) using the following SQL statement:

select deptId, count(*)
from Student
where deptId is not null

group by deptId;

*32.3 (Connection dialog) Develop a subclass of BorderPane named DBConnectionPane
that enables the user to select or enter a JDBC driver and a URL and to enter a user-
name and password, as shown in Figure 32.28. When the Connect to DB button is
clicked, a Connection object for the database is stored in the connection prop-
erty. You can then use the getConnection() method to return the connection.

www.cs.armstrong.edu/liang/intro10e/quiz.html

1208 Chapter 32 Java Database Programming

*32.4 (Find grades) Listing 32.2, FindGrade.java, presented a program that finds a stu-
dent’s grade for a specified course. Rewrite the program to find all the grades for
a specified student, as shown in Figure 32.29.

FIGURE 32.28 The DBConnectionPane component enables the user to enter database information.

FIGURE 32.29 The program displays the grades for the courses for a specified student.

FIGURE 32.30 (a) Enter a table name to display the table contents. (b) Select a table name from the combo box to
display its contents.

(a) (b)

*32.5 (Display table contents) Write a program that displays the content for a given
table. As shown in Figure 32.30a, you enter a table and click the Show Contents
button to display the table contents in the text area.

*32.6 (Find tables and showing their contents) Write a program that fills in table names
in a combo box, as shown in Figure 32.30b. You can select a table from the combo
box to display its contents in the text area.

**32.7 (Populate Quiz table) Create a table named Quiz as follows:

create table Quiz(
 questionId int,
 question varchar(4000),
 choicea varchar(1000),

Programming Exercises 1209

 choiceb varchar(1000),
 choicec varchar(1000),
 choiced varchar(1000),
 answer varchar(5));

The Quiz table stores multiple-choice questions. Suppose the multiple-choice
questions are stored in a text file accessible from www.cs.armstrong.edu/liang/data/
Quiz.txt in the following format:

1. question1
a. choice a
b. choice b
c. choice c
d. choice d
Answer:cd

2. question2
a. choice a
b. choice b
c. choice c
d. choice d
Answer:a

...

Write a program that reads the data from the file and populate it into the Quiz
table.

*32.8 (Populate Salary table) Create a table named Salary as follows:

create table Salary(
 firstName varchar(100),
 lastName varchar(100),
 rank varchar(15),
 salary float);

Obtain the data for salary from http://cs.armstrong.edu/liang/data/Salary.txt and popu-
late it into the Salary table in the database.

*32.9 (Copy table) Suppose the database contains a student table defined as follows:

create table Student1 (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,

constraint pkStudent primary key (username)
);

Create a new table named Student2 as follows:

create table Student2 (
 username varchar(50) not null,
 password varchar(50) not null,
 firstname varchar(100),
 lastname varchar(100),

constraint pkStudent primary key (username)
);

A full name is in the form of firstname mi lastname or firstname

lastname. For example, John K Smith is a full name. Write a program that

www.cs.armstrong.edu/liang/data/Quiz.txt
www.cs.armstrong.edu/liang/data/Quiz.txt
http://cs.armstrong.edu/liang/data/Salary.txt

1210 Chapter 32 Java Database Programming

copies table Student1 into Student2. Your task is to split a full name into
firstname, mi, and lastname for each record in Student1 and store a new
record into Student2.

*32.10 (Record unsubmitted exercises) The following three tables store information on
students, assigned exercises, and exercise submission in LiveLab. LiveLab is an
automatic grading system for grading programming exercises.

create table AGSStudent (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,
 instructorEmail varchar(100) not null,

constraint pkAGSStudent primary key (username)
);

create table ExerciseAssigned (
 instructorEmail varchar(100),
 exerciseName varchar(100),
 maxscore double default 10,

constraint pkCustomExercise primary key
 (instructorEmail, exerciseName)
);

create table AGSLog (
 username varchar(50), /* This is the student's user name */
 exerciseName varchar(100), /* This is the exercise */
 score double default null,
 submitted bit default 0,

constraint pkLog primary key (username, exerciseName)
);

The AGSStudent table stores the student information. The ExerciseAssigned
table assigns the exercises by an instructor. The AGSLog table stores the grading
results. When a student submits an exercise, a record is stored in the AGSLog table.
However, there is no record in AGSLog if a student did not submit the exercise.

Write a program that adds a new record for each student and an assigned exercise
to the student in the AGSLog table if a student has not submitted the exercise.
The record should have 0 on score and submitted. For example, if the tables
contain the following data in AGSLog before you run this program, the AGSLog
table now contains the new records after the program runs.

AGSStudent

username password fullname instructorEmail

abc p1 John Roo t@gmail.com

cde p2 Yao Mi c@gmail.com

wbc p3 F3 t@gmail.com

ExerciseAssigned

instructorEmail exerciseName maxScore

t@gmail.com e1 10

t@gmail.com e2 10

c@gmail.com e1 4

c@gmail.com e4 20

Programming Exercises 1211

*32.11 (Baby names) Create the following table:

create table Babyname (
 year integer,
 name varchar(50),
 gender char(1),
 count integer,

constraint pkBabyname primary key (year, name, gender)
);

The baby name ranking data was described in Programming Exercise 12.31. Write
a program to read data from the following URL and store into the Babyname table.

http://www.cs.armstrong.edu/liang/data/babynamesranking2001.txt,
…
http://www.cs.armstrong.edu/liang/data/babynamesranking2010.txt.

AGSLog

username exerciseName score submitted

abc e1 9 1

wbc e2 7 1

AGSLog after the program runs

username exerciseName score submitted

abc e1 9 1

wbc e2 7 1

abc e2 0 0

wbc e1 0 0

cde e1 0 0

cde e4 0 0

http://www.cs.armstrong.edu/liang/data/babynamesranking2001.txt
http://www.cs.armstrong.edu/liang/data/babynamesranking2010.txt

This page intentionally left blank

JAVASERVER FACES

Objectives
■ To explain what JSF is (§33.1).

■ To create a JSF project in NetBeans (§33.2.1).

■ To create a JSF page (§33.2.2).

■ To create a JSF managed bean (§33.2.3).

■ To use JSF expressions in a facelet (§33.2.4).

■ To use JSF GUI components (§33.3).

■ To obtain and process input from a form (§33.4).

■ To develop a calculator using JSF (§33.5).

■ To track sessions in application, session, view, and request scopes
(§33.6).

■ To validate input using the JSF validators (§33.7).

■ To bind database with facelets (§33.8).

■ To open a new JSF page from the current page (§33.9).

CHAPTER

33

1214 Chapter 33 JavaServer Faces

33.1 Introduction
JavaServer Faces (JSF) is a new technology for developing server-side Web
applications using Java.

JSF enables you to completely separate Java code from HTML. You can quickly build Web
applications by assembling reusable UI components in a page, connecting these components
to Java programs and wiring client-generated events to server-side event handlers. The appli-
cation developed using JSF is easy to debug and maintain.

Note
This chapter introduces JSF 2.2, the latest standard for JavaServer Faces. You need to

know XHTML (eXtensible HyperText Markup Language) and CSS (Cascading Style

Sheet) to start this chapter. For information on XHTML and CSS, see Supplements V.A

and V.B on the Companion Website.

Caution
The examples and exercises in this chapter were tested using NetBeans 7.4, GlassFish 4,

JSF2.2, and J2EE 7. You need to use NetBeans 7.4 or a higher version with GlassFish 4,

JSF 2.2, and J2EE to develop your JSF projects.

33.2 Getting Started with JSF
NetBeans is an effective tool for developing JSF applications.

We begin with a simple example that illustrates the basics of developing JSF projects using
NetBeans. The example is to display the date and time on the server, as shown in Figure 33.1.

Key
Point

JSF

JSF 2.2
XHTML
CSS

NetBeans 7.4
GlassFish 4
J2EE 7

Key
Point

FIGURE 33.1 The application displays the date and time on the server.

33.2.1 Creating a JSF Project
Here are the steps to create the application.

Step 1: Choose File, New Project to display the New Project dialog box. In this box,
choose Java Web in the Categories pane and Web Application in the Projects pane. Click
Next to display the New Web Application dialog box.

In the New Web Application dialog box, enter and select the following fields, as shown
in Figure 33.2a:

Project Name: jsf2demo
Project Location: c:\book

Step 2: Click Next to display the dialog box for choosing servers and settings. Select
the following fields as shown in Figure 33.2b. (Note: You can use any server such as
GlassFish 4.x that supports Java EE 7.)

Server: GlassFish 4
Java EE Version: Java EE 7 Web

create a project

choose server and J2EE 7

33.2 Getting Started with JSF 1215

FIGURE 33.2 The New Web Application dialog box enables you to create a new Web project.

(a) (b)

FIGURE 33.3 Check JavaServer Faces and JSF 2.2 to create a Web project.

33.2.2 A Basic JSF Page
A new project was just created with a default page named index.xhtml, as shown in Figure 33.4.
This page is known as a facelet, which mixes JSF tags with XHTML tags. Listing 33.1 lists
the contents of index.xhtml.

LISTING 33.1 index.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!-- index.xhtml -->
 3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 5 <html xmlns="http://www.w3.org/1999/xhtml"

facelet

xml version
comment
DOCTYPE

default namespace

Step 3: Click Next to display the dialog box for choosing frameworks, as shown in
Figure 33.3. Check JavaServer Faces and JSF 2.2 as Server Library. Click Finish to
create the project, as shown in Figure 33.4.

choose JavaServer Faces
and JSF 2.2

1216 Chapter 33 JavaServer Faces

 6 xmlns:h="http://xmlns.jcp.org/jsf/html">
 7 <h:head>
 8 <title>Facelet Title</title>
 9 </h:head>
10 <h:body>
11 Hello from Facelets
12 </h:body>
13 </html>

Line 1 is an XML declaration to state that the document conforms to the XML version 1.0
and uses the UTF-8 encoding. The declaration is optional, but it is a good practice to use it.
A document without the declaration may be assumed of a different version, which may lead
to errors. If an XML declaration is present, it must be the first item to appear in the document.
This is because an XML processor looks for the first line to obtain information about the docu-
ment so that it can be processed correctly.

Line 2 is a comment for documenting the contents in the file. XML comment always
begins with <!-- and ends with -->.

Lines 3 and 4 specify the version of XHTML used in the document. This can be used by
the Web browser to validate the syntax of the document.

An XML document consists of elements described by tags. An element is enclosed between
a start tag and an end tag. XML elements are organized in a tree-like hierarchy. Elements
may contain subelements, but there is only one root element in an XML document. All the
elements must be enclosed inside the root tag. The root element in XHTML is defined using
the html tag (line 5).

Each tag in XML must be used in a pair of the start tag and the end tag. A start tag begins
with < followed by the tag name and ends with >. An end tag is the same as its start tag except
that it begins with </. The start tag and end tag for html are <html> and </html>.

The html element is the root element that contains all other elements in an XHTML page.
The starting <html> tag (lines 5 and 6) may contain one or more xmlns (XML namespace)
attributes to specify the namespace for the elements used in the document. Namespaces are
like Java packages. Java packages are used to organize classes and to avoid naming conflict.
XHTML namespaces are used to organize tags and resolve naming conflict. If an element
with the same name is defined in two namespaces, the fully qualified tag names can be used
to differentiate them.

JSF namespace
h:head

h:body

XML declaration

XML comment

DOCTYPE

element

tag

html tag

FIGURE 33.4 A default JSF page is created in a new Web project.

33.2 Getting Started with JSF 1217

Each xmlns attribute has a name and a value separated by an equal sign (=). The following
declaration (line 5)

xmlns="http://www.w3.org/1999/xhtml"

specifies that any unqualified tag names are defined in the default standard XHTML
namespace.

The following declaration (line 6)

xmlns:h="http://xmlns.jcp.org/jsf/html"

allows the tags defined in the JSF tag library to be used in the document. These tags must have
a prefix h.

An html element contains a head and a body. The h:head element (lines 7–9) defines an
HTML title element. The title is usually displayed in the browser window’s title bar.

A h:body element defines the page’s content. In this simple example, it contains a string
to be displayed in the Web browser.

Note
The XML tag names are case sensitive, whereas HTML tags are not. So, <html> is

different from <HTML> in XML. Every start tag in XML must have a matching end tag,

whereas some tags in HTML do not need end tags.

You can now display the page in index.xhtml by right-clicking on index.xhtml in the pro-
jects pane and choose Run File. The page is displayed in a browser, as shown in Figure 33.5.

xmlns

h:head

h:body

FIGURE 33.5 The index.xhtml is displayed in the browser.

33.2.3 Managed JavaBeans for JSF
JSF applications are developed using the Model-View-Controller (MVC) architecture, which
separates the application’s data (contained in the model) from the graphical presentation (the
view). The controller is the JSF framework that is responsible for coordinating interactions
between view and the model.

In JSF, the facelets are the view for presenting data. Data are obtained from Java objects.
Objects are defined using Java classes. In JSF, the objects that are accessed from a facelet are
JavaBeans objects. A JavaBean class is simply a public Java class with a no-arg constructor.
JavaBeans may contain properties. By convention, a property is defined with a getter and a
setter method. If a property only has a getter method, the property is called a read-only prop-
erty. If a property only has a setter method, the property is called a write-only property. A
property does not need to be defined as a data field in the class.

Our example in this section is to develop a JSF facelet to display current time. We will cre-
ate a JavaBean with a getTime() method that returns the current time as a string. The facelet
will invoke this method to obtain current time.

Here are the steps to create a JavaBean named TimeBean.

JavaBean

1218 Chapter 33 JavaServer Faces

Step 1. Right-click the project node jsf2demo to display a context menu as shown in
Figure 33.6. Choose New, JSF Managed Bean to display the New JSF Managed Bean
dialog box, as shown in Figure 33.7. (Note: if you don’t see JSF Managed Bean in the
menu, choose Other to locate it in the JavaServer Faces category.)

Step 2. Enter and select the following fields, as shown in Figure 33.7:

Class Name: TimeBean
Package: jsf2demo
Name: timeBean
Scope: request
Click Finish to create TimeBean.java, as shown in Figure 33.8.

Step 3. Add the getTime() method to return the current time, as shown in Listing 33.2.

FIGURE 33.6 Choose JSF Managed Bean to create a JavaBean for JSF.

LISTING 33.2 TimeBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.RequestScoped;
 5
6 @Named

 7 @RequestScoped
 8 public class TimeBean {

@Named
@RequestScoped

33.2 Getting Started with JSF 1219

 9 public TimeBean() {
10 }
11
12 public String getTime() {
13 return new java.util.Date().toString();
14 }
15 }

time property

FIGURE 33.7 Specify the name, location, scope for the bean.

FIGURE 33.8 A JavaBean for JSF was created.

1220 Chapter 33 JavaServer Faces

TimeBean is a JavaBeans with the @Named annotation, which indicates that the JSF frame-
work will create and manage the TimeBean objects used in the application. You have learned
to use the @Override annotation in Chapter 11. The @Override annotation tells the com-
piler that the annotated method is required to override a method in a superclass. The @Named
annotation tells the compiler to generate the code to enable the bean to be used by JSF facelets.

The @RequestScope annotation specifies that the scope of the JavaBeans object is within
a request. You can also use @ViewScope, @SessionScope or @ApplicationScope to
specify the scope for a session or for the entire application.

33.2.4 JSF Expressions
We demonstrate JSF expressions by writing a simple application that displays the current
time. You can display current time by invoking the getTime() method in a TimeBean object
using a JSF expression.

To keep index.xhtml intact, we create a new JSF page named CurrentTime.xhtml as
follows:

Step 1. Right-click the jsf2demo node in the project pane to display a context menu and
choose New, JSF Page to display the New JSF File dialog box, as shown in Figure 33.9.

Step 2. Enter CurrentTime in the File Name field, choose Facelets and click Finish to
generate CurrentTime.xhtml, as shown in Figure 33.10.

Step 3. Add a JSF expression to obtain the current time, as shown in Listing 33.3.

Step 4. Right-click on CurrentTime.xhtml in the project to display a context menu and
choose Run File to display the page in a browser as shown in Figure 33.1.

@RequestScope

FIGURE 33.9 The New JSF Page dialog is used to create a JSF page.

LISTING 33.3 CurrentTime.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"

33.2 Getting Started with JSF 1221

 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Display Current Time</title>
 8 <meta http-equiv="refresh" content ="60" />
 9 </h:head>
10 <h:body>
11 The current time is #{timeBean.time}
12 </h:body>
13 </html>

Line 8 defines a meta tag inside the h:head tag to tell the browser to refresh every 60 seconds.
This line can also be written as

<meta http-equiv="refresh" content ="60"></ meta>

An element is called an empty element if there are no contents between the start tag and end
tag. In an empty element, data are typically specified as attributes in the start tag. You can
close an empty element by placing a slash immediately preceding the start tag’s right angle
bracket, as shown in line 8, for brevity.

Line 11 uses a JSF expression #{timeBean.time} to obtain the current time. timeBean
is an object of the TimeBean class. The object name can be changed in the @Named annotation
(line 6 in Listing 33.2) using the following syntax:

@Named(name = "anyObjectName")

By default, the object name is the class name with the first letter in lowercase.
Note that time is a JavaBeans property because the getTime() method is defined in

TimeBeans. The JSF expression can either use the property name or invoke the method to
obtain the current time. So the following two expressions are both fine.

#{timeBean.time}
#{timeBean.getTime()}

The syntax of a JSF expression is

#{expression}

refresh page

JSF expression

empty element

FIGURE 33.10 A New JSF page CurrentTime was created.

1222 Chapter 33 JavaServer Faces

JSF expressions bind JavaBeans objects with facelets. You will see more use of JSF expres-
sions in the upcoming examples in this chapter.

33.1 What is JSF?

33.2 How do you create a JSF project in NetBeans?

33.3 How do you create a JSF page in a JSF project?

33.4 What is a facelet?

33.5 What is the file extension name for a facelet?

33.6 What is a managed bean?

33.7 What is the @Named annotation for?

33.8 What is the @RequestScope annotation for?

33.3 JSF GUI Components
JSF provides many elements for displaying GUI components.

Table 33.1 lists some of the commonly used elements. The tags with the h prefix are in the JSF
HTML Tag library. The tags with the f prefix are in the JSF Core Tag library.

✓Point✓Check

Key
Point

JSF Tag Description

h:form inserts an XHTML form into a page.

h:panelGroup similar to a JavaFX FlowPane.

h:panelGrid similar to a JavaFX GridPane.

h:inputText displays a textbox for entering input.

h:outputText displays a textbox for displaying output.

h:inputTextArea displays a textarea for entering input.

h:inputSecret displays a textbox for entering password.

h:outputLabel displays a label.

h:outputLink displays a hypertext link.

h:selectOneMenu displays a combo box for selecting one item.

h:selectOneRadio displays a set of radio button.

h:selectManyCheckbox displays checkboxes.

h:selectOneListbox displays a list for selecting one item.

h:selectManyListbox displays a list for selecting multiple items.

f:selectItem specifies an item in an h:selectOneMenu,

h:selectOneRadio, or h:selectManyListbox.

h:message displays a message for validating input.

h:dataTable displays a data table.

h:column specifies a column in a data table.

h:graphicImage displays an image.

TABLE 33.1 JSF GUI Form Elements

Listing 33.4 is an example that uses some of these elements to display a student registration
form, as shown in Figure 33.11.

33.3 JSF GUI Components 1223

LISTING 33.4 StudentRegistrationForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>
16
17 <!-- Use h:panelGrid -->
18 <h:panelGrid columns="6" style="color:green">
19 <h:outputLabel value="Last Name"/>
20 <h:inputText id="lastNameInputText" />
21 <h:outputLabel value="First Name" />
22 <h:inputText id="firstNameInputText" />
23 <h:outputLabel value="MI" />
24 <h:inputText id="miInputText" size="1" />
25 </h:panelGrid>
26
27 <!-- Use radio buttons -->
28 <h:panelGrid columns="2">
29 <h:outputLabel>Gender </h:outputLabel>

jsf core namespace

graphicImage

h:panelGrid
h:outputLabel
h:inputText

FIGURE 33.11 A student registration form is displayed using JSF elements.

1224 Chapter 33 JavaServer Faces

30 <h:selectOneRadio id="genderSelectOneRadio">
31 <f:selectItem itemValue="Male"
32 itemLabel="Male"/>
33 <f:selectItem itemValue="Female"
34 itemLabel="Female"/>
35 </h:selectOneRadio>
36 </h:panelGrid>
37
38 <!-- Use combo box and list -->
39 <h:panelGrid columns="4">
40 <h:outputLabel value="Major "/>
41 <h:selectOneMenu id="majorSelectOneMenu">
42 <f:selectItem itemValue="Computer Science"/>
43 <f:selectItem itemValue="Mathematics"/>
44 </h:selectOneMenu>
45 <h:outputLabel value="Minor "/>
46 <h:selectManyListbox id="minorSelectManyListbox">
47 <f:selectItem itemValue="Computer Science"/>
48 <f:selectItem itemValue="Mathematics"/>
49 <f:selectItem itemValue="English"/>
50 </h:selectManyListbox>
51 </h:panelGrid>
52
53 <!-- Use check boxes -->
54 <h:panelGrid columns="4">
55 <h:outputLabel value="Hobby: "/>
56 <h:selectManyCheckbox id="hobbySelectManyCheckbox">
57 <f:selectItem itemValue="Tennis"/>
58 <f:selectItem itemValue="Golf"/>
59 <f:selectItem itemValue="Ping Pong"/>
60 </h:selectManyCheckbox>
61 </h:panelGrid>
62
63 <!-- Use text area -->
64 <h:panelGrid columns="1">
65 <h:outputLabel>Remarks:</h:outputLabel>
66 <h:inputTextarea id="remarksInputTextarea"
67 style="width:400px; height:50px;" />
68 </h:panelGrid>
69
70 <!-- Use command button -->
71 <h:commandButton value="Register" />
72 </h:form>
73 </h:body>
74 </html>

The tags with prefix f are in the JSF core tag library. Line 6

xmlns:f="http://xmlns.jcp.org/jsf/core">

locates the library for these tags.
The h:graphicImage tag displays an image in the file usIcon.gif (line 14). The file is

located in the /resources/image folder. In JSF 2.2, all resources (image files, audio files, CCS
files) should be placed under the resources folder under the Web Pages node. You can create
these folders as follows:

Step 1: Right-click the Web Pages node in the project pane to display a context menu and
choose New, Folder to display the New Folder dialog box. (If Folder is not in the context
menu, choose Other to locate it.)

h:selectOneRadio
f:selectItem

h:selectOneMenu

h:selectManyListBox

h:selectMany Checkbox

h:inputTextarea

h:commandButton

jsf core xmlns

h:graphicImage

33.3 JSF GUI Components 1225

Step 2: Enter resources as the Folder Name and click Finish to create the resources
folder, as shown in Figure 33.12.

Step 3: Right-click the resources node in the project pane to create the image folder
under resources. You can now place usIcon.gif under the image folder.

FIGURE 33.12 The resources folder was created.

JSF provides h:panelGrid and h:panelGroup elements to contain and layout subele-
ments. h:panelGrid places the elements in a grid like the JavaFX GridPane. h:panelGroup
places the elements like a JavaFX FlowPane. Lines 18–25 places six elements (labels and
input texts) are in a h:panelGrid. The columns attribute specifies that each row in the
grid has 6 columns. The elements are placed into a row from left to right in the order they
appear in the facelet. When a row is full, a new row is created to hold the elements. We used
h:panelGrid in this example. You may replace it with h:panelGroup to see how the ele-
ments would be arranged.

You may use the style attribute with a JSF html tag to specify the CSS style for the ele-
ment and its subelements. The style attribute in line 18 specifies color green for all elements
in this h:panelGrid element.

The h:outputLabel element is for displaying a label (line 19). The value attribute
specifies the lable’s text.

The h:inputText element is for displaying a text input box for the user to enter a text
(line 20). The id attribute is useful for other elements or the server program to reference this
element.

The h:selectOneRadio element is for displaying a group of radio buttons (line 30).
Each radio button is defined using an f:selectItem element (lines 31–34).

The h:selectOneMenu element is for displaying a combo box (line 41). Each item in the
combo box is defined using an f:selectItem element (lines 42 and 43).

The h:selectManyListbox element is for displaying a list for the user to choose multi-
ple items in a list (line 46). Each item in the list is defined using an f:selectItem element
(lines 47–49).

The h:selectManyCheckbox element is for displaying a group of check boxes (line 56).
Each item in the check box is defined using an f:selectItem element (lines 57–59).

The h:selectTextarea element is for displaying a text area for multiple lines of input
(line 66). The style attribute is used to specify the width and height of the text area (line 67).

The h:commandButton element is for displaying a button (line 71). When the button is
clicked, an action is performed. The default action is to request the same page from the server.
The next section shows how to process the form.

h:panelGrid

the style attribute

h:outputLabel

h:inputText

h:selectOneRadio

h:selectOneMenu

h:selectManyListbox

h:selectManyCheckbox

h:selectTextarea

h:commandButton

1226 Chapter 33 JavaServer Faces

33.9 What is the name space for JSF tags with prefix h and prefix f?

33.10 Describe the use of the following tags?

h:form, h:panelGroup, h:panelGrid, h:inputText, h:outputText,
h:inputTextArea, h:inputSecret, h:outputLabel, h:outputLink,
h:selectOneMenu, h:selectOneRadio, h:selectManyCheckbox,
h:selectOneListbox, h:selectManyListbox, h:selectItem, h:message,
h:dataTable, h:columm, h:graphicImage

33.4 Processing the Form
Processing forms is a common task for Web programming. JSF provides tools for
processing forms.

The preceding section introduced how to display a form using common JSF elements. This
section shows how to obtain and process the input.

To obtain input from the form, simply bind each input element with a property in
a managed bean. We now define a managed bean named registration as shown in
Listing 33.5.

LISTING 33.5 RegistrationJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.RequestScoped;
 4 import javax.inject.Named;
 5
 6 @Named(value = "registration")
 7 @RequestScoped
 8 public class RegistrationJSFBean {

9 private String lastName;
 10 private String firstName;
 11 private String mi;
 12 private String gender;
 13 private String major;
 14 private String[] minor;
 15 private String[] hobby;
 16 private String remarks;
 17
 18 public RegistrationJSFBean() {
 19 }
 20
 21 public String getLastName() {
 22 return lastName;
 23 }
 24
 25 public void setLastName(String lastName) {
 26 this.lastName = lastName;
 27 }
 28
 29 public String getFirstName() {
 30 return firstName;
 31 }
 32
 33 public void setFirstName(String firstName) {
 34 this.firstName = firstName;
 35 }
 36

✓Point✓Check

Key
Point

managed bean
request scope

property lastName

33.4 Processing the Form 1227

 37 public String getMi() {
 38 return mi;
 39 }
 40
 41 public void setMi(String mi) {
 42 this.mi = mi;
 43 }
 44
 45 public String getGender() {
 46 return gender;
 47 }
 48
 49 public void setGender(String gender) {
 50 this.gender = gender;
 51 }
 52
 53 public String getMajor() {
 54 return major;
 55 }
 56
 57 public void setMajor(String major) {
 58 this.major = major;
 59 }
 60
 61 public String[] getMinor() {
 62 return minor;
 63 }
 64
 65 public void setMinor(String[] minor) {
 66 this.minor = minor;
 67 }
 68
 69 public String[] getHobby() {
 70 return hobby;
 71 }
 72
 73 public void setHobby(String[] hobby) {
 74 this.hobby = hobby;
 75 }
 76
 77 public String getRemarks() {
 78 return remarks;
 79 }
 80
 81 public void setRemarks(String remarks) {
82 this.remarks = remarks;
 83 }
 84
 85 public String getResponse() {
 86 if (lastName == null)
 87 return ""; // Request has not been made
 88 else {
 89 String allMinor = "";
 90 for (String s: minor) {
 91 allMinor += s + " ";
 92 }
 93
 94 String allHobby = "";
 95 for (String s: hobby) {
 96 allHobby += s + " ";
 97 }
 98

getResponse()

1228 Chapter 33 JavaServer Faces

 99 return "<p style=\"color:red\">You entered
" +
100 "Last Name: " + lastName + "
" +
101 "First Name: " + firstName + "
" +
102 "MI: " + mi + "
" +
103 "Gender: " + gender + "
" +
104 "Major: " + major + "
" +
105 "Minor: " + allMinor + "
" +
106 "Hobby: " + allHobby + "
" +
107 "Remarks: " + remarks + "</p>";
108 }
109 }
110 }

The RegistrationJSFBean class is a managed bean that defines the properties lastName,
firstName, mi, gender, major, minor, and remarks, which will be bound to the elements
in the JSF registration form.

The registration form can now be revised as shown in Listing 33.6. Figure 33.13 shows that
new JSF page displays the user input upon clicking the Register button.

LISTING 33.6 ProcessStudentRegistrationForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>
16
17 <!-- Use h:panelGrid -->
18 <h:panelGrid columns="6" style="color:green">
19 <h:outputLabel value="Last Name"/>
20 <h:inputText id="lastNameInputText"
21 value="#{registration.lastName}"/>
22 <h:outputLabel value="First Name" />
23 <h:inputText id="firstNameInputText"
24 value="#{registration.firstName}"/>
25 <h:outputLabel value="MI" />
26 <h:inputText id="miInputText" size="1"
27 value="#{registration.mi}"/>
28 </h:panelGrid>
29
30 <!-- Use radio buttons -->
31 <h:panelGrid columns="2">
32 <h:outputLabel>Gender </h:outputLabel>
33 <h:selectOneRadio id="genderSelectOneRadio"
34 value="#{registration.gender}">
35 <f:selectItem itemValue="Male"
36 itemLabel="Male"/>
37 <f:selectItem itemValue="Female"
38 itemLabel="Female"/>
39 </h:selectOneRadio>

bean properties

jsf core namespace

bind lastName

bind firstName

bind mi

bind gender

33.4 Processing the Form 1229

40 </h:panelGrid>
41
42 <!-- Use combo box and list -->
43 <h:panelGrid columns="4">
44 <h:outputLabel value="Major "/>
45 <h:selectOneMenu id="majorSelectOneMenu"
46 value="#{registration.major}">
47 <f:selectItem itemValue="Computer Science"/>
48 <f:selectItem itemValue="Mathematics"/>
49 </h:selectOneMenu>
50 <h:outputLabel value="Minor "/>
51 <h:selectManyListbox id="minorSelectManyListbox"
52 value="#{registration.minor}">
53 <f:selectItem itemValue="Computer Science"/>
54 <f:selectItem itemValue="Mathematics"/>
55 <f:selectItem itemValue="English"/>
56 </h:selectManyListbox>
57 </h:panelGrid>
58
59 <!-- Use check boxes -->
60 <h:panelGrid columns="4">
61 <h:outputLabel value="Hobby: "/>
62 <h:selectManyCheckbox id="hobbySelectManyCheckbox"
63 value="#{registration.hobby}">
64 <f:selectItem itemValue="Tennis"/>
65 <f:selectItem itemValue="Golf"/>
66 <f:selectItem itemValue="Ping Pong"/>
67 </h:selectManyCheckbox>
68 </h:panelGrid>
69
70 <!-- Use text area -->
71 <h:panelGrid columns="1">
72 <h:outputLabel>Remarks:</h:outputLabel>
73 <h:inputTextarea id="remarksInputTextarea"
74 style="width:400px; height:50px;"
75 value="#{registration.remarks}"/>
76 </h:panelGrid>
77
78 <!-- Use command button -->
79 <h:commandButton value="Register" />
80

81 <h:outputText escape="false" style="color:red"
82 value="#{registration.response}" />
83 </h:form>
84 </h:body>
85 </html>

The new JSF form in this listing binds the h:inputText element for last name, first name,
and mi with the properties lastName, firstName, and mi in the managed bean (lines 21,
24, 27). When the Register button is clicked, the page is sent to the server, which invokes the
setter methods to set the properties in the managed bean.

The h:selectOneRadio element is bound to the gender property (line 34). Each radio
button has an itemValue. The selected radio button’s itemValue is set to the gender prop-
erty in the bean when the page is sent to the server.

The h:selectOneMenu element is bound to the major property (line 46). When the page
is sent to the server, the selected item is returned as a string and is set to the major property.

The h:selectManyListbox element is bound to the minor property (line 52). When the
page is sent to the server, the selected items are returned as an array of strings and set to the
minor property.

bind major

bind minor

bind hobby

bind remarks

bind response

binding input texts

binding radio buttons

binding combo box

binding list box

1230 Chapter 33 JavaServer Faces

The h:selectManyCheckbox element is bound to the hobby property (line 63). When
the page is sent to the server, the checked boxes are returned as an array of itemValues and
set to the hobby property.

The h:selectTextarea element is bound to the remarks property (line 75). When the
page is sent to the server, the content in the text area is returned as a string and set to the
remarks property.

The h:outputText element is bound to the response property (line 82). This is a read-
only property in the bean. It is "" if lastName is null (lines 86–87 in Listing 33.5). When
the page is returned to the client, the response property value is displayed in the output text
element (line 82).

The h:outputText element’s escape attribute is set to false (line 81) to enable the
contents to be displayed in HTML. By default, the escape attribute is true, which indicates
the contents are considered as regular text.

33.11 In the h:outputText tag, what is the escape attribute for?

33.12 Does every GUI component tag in JSF have the style attribute?

33.5 Case Study: Calculator
This section gives a case study on using GUI elements and processing forms.

This section uses JSF to develop a calculator to perform addition, subtraction, multiplication,
and division, as shown in Figure 33.14.

binding check boxes

binding text area

binding response

escape attribute

✓Point✓Check

Key
Point

FIGURE 33.13 The user input is collected and displayed after clicking the Register button.

33.5 Case Study: Calculator 1231

Here are the steps to develop this project:

Step 1. Create a new managed bean named calculator with the request scope as
shown in Listing 33.7, CalculatorJSFBean.java.

Step 2. Create a JSF facelet in Listing 33.8, Calculator.xhtml.

LISTING 33.7 CalculatorJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.RequestScoped;
 5
 6 @Named(value = "calculator")
 7 @RequestScoped
 8 public class CalculatorJSFBean {
 9 private Double number1;
10 private Double number2;
11 private Double result;
12
13 public CalculatorJSFBean() {
14 }
15
16 public Double getNumber1() {
17 return number1;
18 }
19
20 public Double getNumber2() {
21 return number2;
22 }
23
24 public Double getResult() {
25 return result;
26 }
27
28 public void setNumber1(Double number1) {
29 this.number1 = number1;
30 }
31
32 public void setNumber2(Double number2) {
33 this.number2 = number2;
34 }
35
36 public void setResult(Double result) {
37 this.result = result;
38 }
39

create managed bean

create JSF facelet

property number1
property number2
property result

FIGURE 33.14 This JSF application enables you to perform addition, subtraction,
multiplication, and division.

1232 Chapter 33 JavaServer Faces

40 public void add() {
41 result = number1 + number2;
42 }
43
44 public void subtract() {
45 result = number1 - number2;
46 }
47
48 public void divide() {
49 result = number1 / number2;
50 }
51
52 public void multiply() {
53 result = number1 * number2;
54 }
55 }

The managed bean has three properties number1, number2, and result (lines 9–38). The
methods add(), subtract(), divide(), and multiply() add, subtract, multiply, and
divide number1 with number2 and assigns the result to result (lines 40–54).

LISTING 33.8 Calculator.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Calculator</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:panelGrid columns="6">
12 <h:outputLabel value="Number 1"/>
13 <h:inputText id="number1InputText" size ="4"
14 style="text-align: right"
15 value="#{calculator.number1}"/>
16 <h:outputLabel value="Number 2" />
17 <h:inputText id="number2InputText" size ="4"
18 style="text-align: right"
19 value="#{calculator.number2}"/>
20 <h:outputLabel value="Result" />
21 <h:inputText id="resultInputText" size ="4"
22 style="text-align: right"
23 value="#{calculator.result}"/>
24 </h:panelGrid>
25
26 <h:panelGrid columns="4">
27 <h:commandButton value="Add"
28 action ="#{calculator.add}"/>
29 <h:commandButton value="Subtract"
30 action ="#{calculator.subtract}"/>
31 <h:commandButton value="Multiply"
32 action ="#{calculator.multiply}"/>
33 <h:commandButton value="Divide"
34 action ="#{calculator.divide}"/>
35 </h:panelGrid>
36 </h:form>
37 </h:body>
38 </html>

add

subtract

divide

multiply

right align
bind text input

action

33.6 Session Tracking 1233

Three text input components along with their labels are placed in the grid panel (lines 11–24).
Four button components are placed in the grid panel (lines 26–35).

The bean property number1 is bound to the text input for Number 1 (line 15). The CSS
style text-align: right (line 14) specifies that the text is right-aligned in the input box.

The action attribute for the Add button is set to the add method in the calculator bean
(line 28). When the Add button is clicked, the add method in the bean is invoked to add
number1 with number2 and assign the result to result. Since the result property is bound
to the Result input text (line 23), the new result is now displayed in the text input field.

33.6 Session Tracking
You can create a managed bean at the application scope, session scope, view scope,
or request scope.

JSF supports session tracking using JavaBeans at the application scope, session scope, view
scope, and request scope. The scope is the lifetime of a bean. A request-scoped bean is alive
in a single HTTP request. After the request is processed, the bean is no longer alive. A view-
scoped bean lives as long as you are in the same JSF page. A session-scoped bean is alive
for the entire Web session between a client and the server. An application-scoped bean lives
as long as the Web application runs. In essence, a request-scoped bean is created once for a
request; a view-scoped bean is created once for the view; a session-scoped bean is created
once for the entire session; and an application-scoped bean is created once for the entire
application.

Consider the following example that prompts the user to guess a number. When the page starts,
the program randomly generates a number between 0 and 99. This number is stored in a bean.
When the user enters a guess, the program checks the guess with the random number in the bean
and tells the user whether the guess is too high, too low, or just right, as shown in Figure 33.15.

Here are the steps to develop this project:

Step 1. Create a new managed bean named guessNumber with the view scope as shown
in Listing 33.9, GuessNumberJSFBean.java.

Step 2. Create a JSF facelet in Listing 33.10, GuessNumber.xhtml.

LISTING 33.9 GuessNumberJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.faces.view.ViewScoped;
 5
 6 @Named(value = "guessNumber")
 7 @ViewScoped
 8 public class GuessNumberJSFBean {
 9 private int number;
10 private String guessString;
11
12 public GuessNumberJSFBean() {
13 number = (int)(Math.random() * 100);
14 }
15
16 public String getGuessString() {
17 return guessString;
18 }
19
20 public void setGuessString(String guessString) {
21 this.guessString = guessString;
22 }

Key
Point

scope

request scope

view scope

session scope

application scope

create managed bean

create JSF facelet

view scope

random number
guess by user

create random number

getter method

setter method

1234 Chapter 33 JavaServer Faces

23
24 public String getResponse() {
25 if (guessString == null)
26 return ""; // No user input yet
27
28 int guess = Integer.parseInt(guessString);
29 if (guess < number)
30 return "Too low";
31 else if (guess == number)
32 return "You got it";
33 else

34 return "Too high";
35 }
36 }

The managed bean uses the @ViewScope annotation (line 7) to set up the view scope for the
bean. The view scope is most appropriate for this project. The bean is alive as long as the view
is not changed. The bean is created when the page is displayed for the first time. A random
number between 0 and 99 is assigned to number (line 13) when the bean is created. This
number will not change as long as the bean is alive in the same view.

get response

check guess

FIGURE 33.15 The user enters a guess and the program displays the result.

33.7 Validating Input 1235

The getResponse method converts guessString from the user input to an integer
(line 28) and determines if the guess is too low (line 30), too high (line 34), and just right (line 32).

LISTING 33.10 GuessNumber.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Guess a number</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputLabel value="Enter you guess: "/>
12 <h:inputText style="text-align: right; width: 50px"
13 id="guessInputText"
14 value="#{guessNumber.guessString}"/>
15 <h:commandButton style="margin-left: 60px" value="Guess" />
16

17 <h:outputText style="color: red"
18 value="#{guessNumber.response}" />
19 </h:form>
20 </h:body>
21 </html>

The bean property guessString is bound to the text input (line 14). The CSS style
text-align: right (line 13) specifies that the text is right-aligned in the input box.

The CSS style margin-left: 60px (line 15) specifies that the command button has a
left margin of 60 pixels.

The bean property response is bound to the text output (line 18). The CSS style color:
red (line 17) specifies that the text is displayed in red in the output box.

The project uses the view scope. What happens if the scope is changed to the request
scope? Every time the page is refreshed, JSF creates a new bean with a new random number.
What happens if the scope is changed to the session scope? The bean will be alive as long as
the browser is alive. What happens if the scope is changed to the application scope? The bean
will be created once when the application is launched from the server. So every client will use
the same random number.

33.13 What is a scope? What are the available scopes in JSF? Explain request scope, view
scope, session scope, and application scope. How do you set a request scope, view
scope, session scope, and application scope in a managed bean?

33.14 What happens if the bean scope in Listing 33.9 GuessNumberJSFBean.java is
changed to request?

33.15 What happens if the bean scope in Listing 33.9 GuessNumberJSFBean.java is
changed to session?

33.16 What happens if the bean scope in Listing 33.9 GuessNumberJSFBean.java is
changed to application?

33.7 Validating Input
JSF provides tools for validating user input.

In the preceding GuessNumber page, an error would occur if you entered a noninteger in the
input box before clicking the Guess button. One way to fix the problem is to check the text
field before processing any event. But a better way is to use the validators. You can use the

bind text input

bind text output

scope

✓Point✓Check

Key
Point

1236 Chapter 33 JavaServer Faces

standard validator tags in the JSF Core Tag Library or create custom validators. Table 33.2
lists some JSF input validator tags.

JSF Tag Description

f:validateLength validates the length of the input.

f:validateDoubleRange validates whether numeric input falls within acceptable range of double values.

f:validateLongRange validates whether numeric input falls within acceptable range of long values.

f:validateRequired validates whether a field is not empty.

f:validateRegex validates whether the input matches a regualar expression.

f:validateBean invokes a custom method in a bean to perform custom validation.

TABLE 33.2 JSF Input Validator Tags

FIGURE 33.16 The input fields are validated.

(a) The required messages are displayed if input is required, but empty.

(b) Error messages are displayed if input is incorrect.

Consider the following example that displays a form for collecting user input as shown in
Figure 33.16. All text fields in the form must be filled. If not, error messages are displayed.
The SSN must be formatted correctly. If not, an error is displayed. If all input are correct,
clicking Submit displays the result in an output text, as shown in Figure 33.17.

Here are the steps to create this project.

Step 1. Create a new page in Listing 33.11, ValidateForm.xhtml.

Step 2. Create a new managed bean named validateForm, as shown in Listing 33.12.

33.7 Validating Input 1237

LISTING 33.11 ValidateForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Validate Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <h:panelGrid columns="3">
13 <h:outputLabel value="Name:"/>
14 <h:inputText id="nameInputText" required="true"
15 requiredMessage="Name is required"
16 validatorMessage="Name must have 1 to 10 chars"
17 value="#{validateForm.name}">
18 <f:validateLength minimum="1" maximum="10" />
19 </h:inputText>
20 <h:message for="nameInputText" style="color:red"/>
21
22 <h:outputLabel value="SSN:" />
23 <h:inputText id="ssnInputText" required="true"
24 requiredMessage="SSN is required"
25 validatorMessage="Invalid SSN"
26 value="#{validateForm.ssn}">
27 <f:validateRegex pattern="[\d]{3}-[\d]{2}-[\d]{4}"/>
28 </h:inputText>
29 <h:message for="ssnInputText" style="color:red"/>
30
31 <h:outputLabel value="Age:" />
32 <h:inputText id="ageInputText" required="true"
33 requiredMessage="Age is required"
34 validatorMessage="Age must be between 16 and 120"
35 value="#{validateForm.ageString}">
36 <f:validateLongRange minimum="16" maximum="120"/>
37 </h:inputText>
38 <h:message for="ageInputText" style="color:red"/>
39
40 <h:outputLabel value="Height:" />

required input
required message
validator message

validate length

message element

validate regex

validate integer range

FIGURE 33.17 The correct input values are displayed.

1238 Chapter 33 JavaServer Faces

41 <h:inputText id="heightInputText" required="true"
42 requiredMessage="Height is required"
43 validatorMessage="Height must be between 3.5 and 9.5"
44 value="#{validateForm.heightString}">
45 <f:validateDoubleRange minimum="3.5" maximum="9.5"/>
46 </h:inputText>
47 <h:message for="heightInputText" style="color:red"/>
48 </h:panelGrid>
49
50 <h:commandButton value="Submit" />
51
52 <h:outputText style="color:red"
53 value="#{validateForm.response}" />
54 </h:form>
55 </h:body>
56 </html>

For each input text field, set its required attribute true (lines 14, 23, 32, 41) to indi-
cate that an input value is required for the field. When a required input field is empty, the
requiredMessage is displayed (lines 15, 24, 33, 42).

The validatorMessage attribute specifies a message to be displayed if the input field is
invalid (line 16). The f:validateLength tag specifies the minimum or maximum length of
the input (line 18). JSF will determine whether the input length is valid.

The h:message element displays the validatorMessage if the input is invalid. The ele-
ment’s for attribute specifies the id of the element for which the message will be displayed
(line 20).

The f:validateRegex tag specifies a regular expression for validating the input (line 27).
For information on regular expression, see Appendix H.

The f:validateLongRange tag specifies a range for an integer input using the minimum
and maximum attribute (line 36). In this project, a valid age value is between 16 and 120.

The f:validateDoubleRange tag specifies a range for a double input using the minimum
and maximum attribute (line 45). In this project, a valid height value is between 3.5 and 9.5.

LISTING 33.12 ValidateFormJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.RequestScoped;
 4 import javax.inject.Named;
 5
 6 @Named(value = "validateForm")
 7 @RequestScoped
 8 public class ValidateFormJSFBean {
 9 private String name;
10 private String ssn;
11 private String ageString;
12 private String heightString;
13
14 public String getName() {
15 return name;
16 }
17
18 public void setName(String name) {
19 this.name = name;
20 }
21
22 public String getSsn() {
23 return ssn;

validate double range

required attribute

requiredMessage

validatorMessage

f:validateLength

h:message

f:validateRegex

f:validateLongRange

f:validateDoubleRange

33.8 Binding Database with Facelets 1239

24 }
25
26 public void setSsn(String ssn) {
27 this.ssn = ssn;
28 }
29
30 public String getAgeString() {
31 return ageString;
32 }
33
34 public void setAgeString(String ageString) {
35 this.ageString = ageString;
36 }
37
38 public String getHeightString() {
39 return heightString;
40 }
41
42 public void setHeightString(String heightString) {
43 this.heightString = heightString;
44 }
45
46 public String getResponse() {
47 if (name == null || ssn == null || ageString == null
48 || heightString == null) {
49 return "";
50 }
51 else {
52 return "You entered " +
53 " Name: " + name +
54 " SSN: " + ssn +
55 " Age: " + ageString +
56 " Height: " + heightString;
57 }
58 }
59 }

If an input is invalid, its value is not set to the bean. So only when all input are correct, the
getResponse() method will return all input values (lines 46–58)

33.17 Write a tag that validates an input text with minimal length of 2 and maximum 12.

33.18 Write a tag that validates an input text for SSN using a regular expression.

33.19 Write a tag that validates an input text for a double value with minimal 4.5 and
maximum 19.9.

33.20 Write a tag that validates an input text for an integer value with minimal 4 and
maximum 20.

33.21 Write a tag that makes an input text required.

33.8 Binding Database with Facelets
You can bind a database in JSF applications.

Often you need to access a database from a Web page. This section gives examples of building
Web applications using databases.

Consider the following example that lets the user choose a course, as shown in Figure 33.18.
After a course is selected in the combo box, the students enrolled in the course are displayed
in the table, as shown in Figure 33.19. In this example, all the course titles in the Course table

some input not set

✓Point✓Check

Key
Point

1240 Chapter 33 JavaServer Faces

are bound to the combo box and the query result for the students enrolled in the course is bound
to the table.

Here are the steps to create this project:

Step 1. Create a managed bean named courseName with application scope, as shown
in Listing 33.13.

Step 2. Create a JSF page in Listing 33.14, DisplayStudent.xhtml.

Step 3. Create a cascading style sheet for formatting the table as follows:

Step 3.1. Right-click the resources node to choose New, Others to display the New
File dialog box, as shown in Figure 33.20.

Step 3.2. Choose Other in the Categories section and Cascading Style Sheet in
the File Types section to display the New Cascading Style Sheet dialog box, as shown
in Figure 33.21.

Managed bean

JSF page

style sheet

FIGURE 33.18 You need to choose a course and display the students enrolled in the course.

FIGURE 33.19 The table displays the students enrolled in the course.

33.8 Binding Database with Facelets 1241

Step 3.3. Enter tablestyle as the File Name and click Finish to create tablestyle.css
under the resources node.

Step 3.4. Define the CSS style as shown in Listing 33.15.

FIGURE 33.20 You can create CSS files for Web project in NetBenas.

FIGURE 33.21 The New Cascading Style Sheet dialog box creates a new style sheet file.

1242 Chapter 33 JavaServer Faces

LISTING 33.13 CourseNameJSFBean.java
 1 package jsf2demo;
 2
 3 import java.sql.*;
 4 import java.util.ArrayList;
 5 import javax.enterprise.context.ApplicationScoped;
 6 import javax.inject.Named;
 7
 8 @Named(value = "courseName")
 9 @ApplicationScoped
10 public class CourseNameJSFBean {
11 private PreparedStatement studentStatement = null;
12 private String choice; // Selected course
13 private String[] titles; // Course titles
14
15 /** Creates a new instance of CourseName */
16 public CourseNameJSFBean() {
17 initializeJdbc();
18 }
19
20 /** Initialize database connection */
21 private void initializeJdbc() {
22 try {
23 Class.forName("com.mysql.jdbc.Driver");
24 System.out.println("Driver loaded");
25
26 // Connect to the sample database
27 Connection connection = DriverManager.getConnection(
28 "jdbc:mysql://localhost/javabook", "scott", "tiger");
29
30 // Get course titles
31 PreparedStatement statement = connection.prepareStatement(
32 "select title from course");
33
34 ResultSet resultSet = statement.executeQuery();
35
36 // Store resultSet into array titles
37 ArrayList<String> list = new ArrayList<>();
38 while (resultSet.next()) {
39 list.add(resultSet.getString(1));
40 }
41 titles = new String[list.size()]; // Array for titles
42 list.toArray(titles); // Copy strings from list to array
43
44 // Define a SQL statement for getting students
45 studentStatement = connection.prepareStatement(
46 "select Student.ssn, "

47 + "student.firstName, Student.mi, Student.lastName, "
48 + "Student.phone, Student.birthDate, Student.street, "
49 + "Student.zipCode, Student.deptId "
50 + "from Student, Enrollment, Course "
51 + "where Course.title = ? "
52 + "and Student.ssn = Enrollment.ssn "
53 + "and Enrollment.courseId = Course.courseId;");
54 }
55 catch (Exception ex) {
56 ex.printStackTrace();
57 }
58 }

application scope

initialize JDBC

connect to database

get course titles

execute SQL

titles array

33.8 Binding Database with Facelets 1243

59
60 public String[] getTitles() {
61 return titles;
62 }
63
64 public String getChoice() {
65 return choice;
66 }
67
68 public void setChoice(String choice) {
69 this.choice = choice;
70 }
71
72 public ResultSet getStudents() throws SQLException {
73 if (choice == null) {
74 if (titles.length == 0)
75 return null;
76 else

77 studentStatement.setString(1, titles[0]);
78 }
79 else {
80 studentStatement.setString(1, choice); // Set course title
81 }
82
83 // Get students for the specified course
84 return studentStatement.executeQuery();
85 }
86 }

We use the same MySQL database javabook created in Chapter 32, “Java Database Pro-
gramming.” The scope for this managed bean is application. The bean is created when the
project is launched from the server. The initializeJdbc method loads the JDBC driver for
MySQL (lines 23–24), connects to the MySQL database (lines 27–28), creates statement for
obtaining course titles (lines 31–32), and creates a statement for obtaining the student infor-
mation for the specified course (lines 45–53). Lines 31–42 execute the statement for obtaining
course titles and store them in array titles.

The getStudents() method returns a ResultSet that consists of all students enrolled in
the specified course (lines 72–85). The choice for the title is set in the statement to obtain the
student for the specified title (line 80). If choice is null, the first title in the titles array is set
in the statement (line 77). If no titles in the course, getStudents() returns null (line 75).

TIP
In order to use the MySQL database from this project, you have to add the MySQL JDBC

driver from the Libraries node in the Project pane in NetBeans.

LISTING 33.14 DisplayStudent.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Display Student</title>
 9 <h:outputStylesheet name="tablestyle.css" />
10 </h:head>
11 <h:body>

get students

set a default course

set a course

return students

add MySQL in the Libraries
node

style sheet

1244 Chapter 33 JavaServer Faces

12 <h:form>
13 <h:outputLabel value="Choose a Course: " />
14 <h:selectOneMenu value="#{courseName.choice}">
15 <f:selectItems value="#{courseName.titles}" />
16 </h:selectOneMenu>
17
18 <h:commandButton style="margin-left: 20px"
19 value="Display Students" />
20
21

22 <h:dataTable value="#{courseName.students}" var="student"
23 rowClasses="oddTableRow, evenTableRow"
24 headerClass="tableHeader"
25 styleClass="table">
26 <h:column>
27 <f:facet name="header">SSN</f:facet>
28 #{student.ssn}
29 </h:column>
30
31 <h:column>
32 <f:facet name="header">First Name</f:facet>
33 #{student.firstName}
34 </h:column>
35
36 <h:column>
37 <f:facet name="header">MI</f:facet>
38 #{student.mi}
39 </h:column>
40
41 <h:column>
42 <f:facet name="header">Last Name</f:facet>
43 #{student.lastName}
44 </h:column>
45
46 <h:column>
47 <f:facet name="header">Phone</f:facet>
48 #{student.phone}
49 </h:column>
50
51 <h:column>
52 <f:facet name="header">Birth Date</f:facet>
53 #{student.birthDate}
54 </h:column>
55
56 <h:column>
57 <f:facet name="header">Dept</f:facet>
58 #{student.deptId}
59 </h:column>
60 </h:dataTable>
61 </h:form>
62 </h:body>
63 </html>

Line 9 specifies that the style sheet tablestyle.css created in Step 3 is used in this XMTHL
file. The rowClasses = "oddTableRow, evenTableRow" attribute specifies the style
applied to the rows alternately using oddTableRow and evenTableRow (line 23). The
headerClasses = "tableHeader" attribute specifies that the tableHeader class is
used for header style (line 24). The styleClasses = "table" attribute specifies that the
table class is used for the style of all other elements in the table (line 25).

bind choice
titles

display button

bind result set
rowClasses
headerClass
styleClass

ssn column

firstName column

mi column

lastName column

phone column

birthDate column

deptId column

33.9 Opening New JSF Pages 1245

Line 14 binds the choice property in the courseName bean with the combo box. The
selection values in the combo box are bound with the titles array property (line 15).

Line 22 binds the table value with a database result set using the attribute
value="#{courseName.students}". The var="student" attribute associ-
ates a row in the result set with student. Lines 26–59 specify the column values using
student.ssn (line 28), student.firstName (line 33), student.mi (line 38),
student.lastName (line 33), student.phone (line 48), student.birthDate (line 53),
and student.deptId (line 58).

LISTING 33.15 tablestyle.css
 1 /* Style for table */
 2 .tableHeader {
 3 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
 4 border-collapse:collapse;
 5 font-size:1.1em;
 6 text-align:left;
 7 padding-top:5px;
 8 padding-bottom:4px;
 9 background-color:#A7C942;
10 color:white;
11 border:1px solid #98bf21;
12 }
13
14 .oddTableRow {
15 border:1px solid #98bf21;
16 }
17
18 .evenTableRow {
19 background-color: #eeeeee;
20 font-size:1em;
21
22 padding:3px 7px 2px 7px;
23
24 color:#000000;
25 background-color:#EAF2D3;
26 }
27
28 .table {
29 border:1px solid green;
30 }

The style sheet file defines the style classes tableHeader (line 2) for table header style,
oddTableRow for odd table rows (line 14), evenTableRow for even table rows (line 18), and
table for all other table elements (line 28).

33.9 Opening New JSF Pages
You can open new JSF pages from the current JSF pages.

All the examples you have seen so far use only one JSF page in a project. Suppose you want to
register student information to the database. The application first displays the page as shown
in Figure 33.22 to collect student information. After the user enters the information and clicks
the Submit button, a new page is displayed to ask the user to confirm the input, as shown in
Figure 33.23. If the user clicks the Confirm button, the data are stored into the database and
the status page is displayed, as shown in Figure 33.24. If the user clicks the Go Back button,
it goes back to the first page.

tableHeader

oddTableRow

evenTableRow

table

Key
Point

1246 Chapter 33 JavaServer Faces

FIGURE 33.22 This page lets the user enter input.

FIGURE 33.23 This page lets the user confirm the input.

FIGURE 33.24 This page displays the status of the user input.

33.9 Opening New JSF Pages 1247

For this project, you need to create three JSF pages named AddressRegistration.xhtml,
ConfirmAddress.xhtml, AddressStoredStatus.xhtml in Listings 33.16–33.18. The project
starts with AddressRegistration.xhtml. When clicking the Submit button, the action for the
button returns ”ConfirmAddress” if the last name and first name are not empty, which causes
ConfirmAddress.xhtml to be displayed. When clicking the Confirm button, the status page
AddressStoredStatus is displayed. When clicking the Go Back button, the first page Address-
Registration is now displayed.

LISTING 33.16 AddressRegistration.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>
16
17 Please register to your instructor's student address book.
18 <!-- Use h:panelGrid -->
19 <h:panelGrid columns="6">
20 <h:outputLabel value="Last Name" style="color:red"/>
21 <h:inputText id="lastNameInputText"
22 value="#{addressRegistration.lastName}"/>
23 <h:outputLabel value="First Name" style="color:red"/>
24 <h:inputText id="firstNameInputText"
25 value="#{addressRegistration.firstName}"/>
26 <h:outputLabel value="MI" />
27 <h:inputText id="miInputText" size="1"
28 value="#{addressRegistration.mi}"/>
29 </h:panelGrid>
30
31 <h:panelGrid columns="4">
32 <h:outputLabel value="Telephone"/>
33 <h:inputText id="telephoneInputText"
34 value="#{addressRegistration.telephone}"/>
35 <h:outputLabel value="Email"/>
36 <h:inputText id="emailInputText"
37 value="#{addressRegistration.email}"/>
38 </h:panelGrid>
39
40 <h:panelGrid columns="4">
41 <h:outputLabel value="Street"/>
42 <h:inputText id="streetInputText"
43 value="#{addressRegistration.street}"/>
44 </h:panelGrid>
45
46 <h:panelGrid columns="6">
47 <h:outputLabel value="City"/>
48 <h:inputText id="cityInputText"
49 value="#{addressRegistration.city}"/>

jsf core namespace

bind lastName

bind firstName

bind mi

bind telephone

bind email

bind street

bind city

1248 Chapter 33 JavaServer Faces

50 <h:outputLabel value="State"/>
51 <h:selectOneMenu id="stateSelectOneMenu"
52 value="#{addressRegistration.state}">
53 <f:selectItem itemLabel="Georgia-GA" itemValue="GA" />
54 <f:selectItem itemLabel="Oklahoma-OK" itemValue="OK" />
55 <f:selectItem itemLabel="Indiana-IN" itemValue="IN"/>
56 </h:selectOneMenu>
57 <h:outputLabel value="Zip"/>
58 <h:inputText id="zipInputText"
59 value="#{addressRegistration.zip}"/>
60 </h:panelGrid>
61
62 <!-- Use command button -->
63 <h:commandButton value="Register"
64 action="#{addressRegistration.processSubmit()}"/>
65

66 <h:outputText escape="false" style="color:red"
67 value="#{addressRegistration.requiredFields}" />
68 </h:form>
69 </h:body>
70 </html>

LISTING 33.17 ConfirmAddress.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Confirm Student Registration</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputText escape="false" style="color:red"
12 value="#{registration1.input}" />
13 <h:panelGrid columns="2">
14 <h:commandButton value="Confirm"
15 action = "#{registration1.storeStudent()}"/>
16 <h:commandButton value="Go Back"
17 action = "AddressRegistration"/>
18 </h:panelGrid>
19 </h:form>
20 </h:body>
21 </html>

LISTING 33.18 AddressStoredStatus.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Address Stored?</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputText escape="false" style="color:green"
12 value="#{registration1.status}" />

bind state

bind zip

process register

process confirm

go to AddressRegistration
page

display status

33.9 Opening New JSF Pages 1249

13 </h:form>
14 </h:body>
15 </html>

LISTING 33.19 AddressRegistrationJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.SessionScoped;
 5 import java.sql.*;
 6 import java.io.Serializable;
 7
 8 @Named(value = "addressRegistration")
 9 @SessionScoped
 10 public class AddressRegistrationJSFBean implements Serializable {
 11 private String lastName;
 12 private String firstName;
 13 private String mi;
 14 private String telephone;
 15 private String email;
 16 private String street;
 17 private String city;
 18 private String state;
 19 private String zip;
 20 private String status = "Nothing stored";
 21 // Use a prepared statement to store a student into the database
 22 private PreparedStatement pstmt;
 23
 24 public AddressRegistrationJSFBean() {
25 initializeJdbc();

 26 }
 27
 28 public String getLastName() {
 29 return lastName;
 30 }
 31
 32 public void setLastName(String lastName) {
 33 this.lastName = lastName;
 34 }
 35
 36 public String getFirstName() {
 37 return firstName;
 38 }
 39
 40 public void setFirstName(String firstName) {
 41 this.firstName = firstName;
 42 }
 43
 44 public String getMi() {
 45 return mi;
 46 }
 47
 48 public void setMi(String mi) {
 49 this.mi = mi;
 50 }
 51
 52 public String getTelephone() {
 53 return telephone;
 54 }

managed bean
session scope

property lastName

initialize database

1250 Chapter 33 JavaServer Faces

 55
 56 public void setTelephone(String telephone) {
 57 this.telephone = telephone;
 58 }
 59
 60 public String getEmail() {
 61 return email;
 62 }
 63
 64 public void setEmail(String email) {
 65 this.email = email;
 66 }
 67
 68 public String getStreet() {
 69 return street;
 70 }
 71
 72 public void setStreet(String street) {
 73 this.street = street;
 74 }
 75
 76 public String getCity() {
 77 return city;
 78 }
 79
 80 public void setCity(String city) {
 81 this.city = city;
 82 }
 83
 84 public String getState() {
 85 return state;
 86 }
 87
 88 public void setState(String state) {
 89 this.state = state;
 90 }
 91
 92 public String getZip() {
 93 return zip;
 94 }
 95
 96 public void setZip(String zip) {
 97 this.zip = zip;
 98 }
 99
100 private boolean isRquiredFieldsFilled() {
101 return !(lastName == null || firstName == null
102 || lastName.trim().length() == 0
103 || firstName.trim().length() == 0);
104 }
105
106 public String processSubmit() {
107 if (isRquiredFieldsFilled())
108 return "ConfirmAddress";
109 else

110 return "";
111 }
112
113 public String getRequiredFields() {
114 if (isRquiredFieldsFilled())

go to a new page

check required fields

33.9 Opening New JSF Pages 1251

115 return "";
116 else

117 return "Last Name and First Name are required";
118 }
119
120 public String getInput() {
121 return "<p style=\"color:red\">You entered
"

122 + "Last Name: " + lastName + "
"
123 + "First Name: " + firstName + "
"
124 + "MI: " + mi + "
"
125 + "Telephone: " + telephone + "
"
126 + "Email: " + email + "
"
127 + "Street: " + street + "
"
128 + "City: " + city + "
"
129 + "Street: " + street + "
"
130 + "City: " + city + "
"
131 + "State: " + state + "
"
132 + "Zip: " + zip + "</p>";
133 }
134
135 /** Initialize database connection */
136 private void initializeJdbc() {
137 try {
138 // Explicitly load a MySQL driver
139 Class.forName("com.mysql.jdbc.Driver");
140 System.out.println("Driver loaded");
141
142 // Establish a connection
143 Connection conn = DriverManager.getConnection(
144 "jdbc:mysql://localhost/javabook", "scott", "tiger");
145
146 // Create a Statement
147 pstmt = conn.prepareStatement("insert into Address (lastName,"
148 + " firstName, mi, telephone, email, street, city, "
149 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
150 }
151 catch (Exception ex) {
152 System.out.println(ex);
153 }
154 }
155
156 /** Store an address to the database */
157 public String storeStudent() {
158 try {
159 pstmt.setString(1, lastName);
160 pstmt.setString(2, firstName);
161 pstmt.setString(3, mi);
162 pstmt.setString(4, telephone);
163 pstmt.setString(5, email);
164 pstmt.setString(6, street);
165 pstmt.setString(7, city);
166 pstmt.setString(8, state);
167 pstmt.setString(9, zip);
168 pstmt.executeUpdate();
169 status = firstName + " " + lastName
170 + " is now registered in the database.";
171 }
172 catch (Exception ex) {
173 status = ex.getMessage();
174 }

get input

store address

update status

1252 Chapter 33 JavaServer Faces

175
176 return "AddressStoredStatus";
177 }
178
179 public String getStatus() {
180 return status;
181 }
182 }

A session-scoped managed bean must implement the java.io.Serializable interface.
So, the AddressRegistration class is defined as a subtype of java.io.Serializable.

The action for the Register button in the AddressRegistration JSF page is
processSubmit() (line 64 in AddressRegistration.xhtml). This method checks if last name
and first name are not empty (lines 106–111 in AddressRegistrationJSFBean.java). If so, it
returns a string "ConfirmAddress", which causes the ConfirmAddress JSF page to be
displayed.

The ConfirmAddress JSF page displays the data entered from the user
(line 12 in ConfirmAddress.xhtml). The getInput() method (lines 120–133 in
AddressRegistrationJSFBean.java) collects the input.

The action for the Confirm button in the ConfirmAddress JSF page is storeStudent()
(line 15 in ConfirmAddress.xhtml). This method stores the address in the database (lines
157–177 in AddressRegistrationJSFBean.java) and returns a string "AddressStoredStatus",
which causes the AddressStoredStatus page to be displayed. The status message is dis-
played in this page (line 12 in AddressStoredStatus.xhtml).

The action for the Go Back button in the ConfirmAddress page is
"AddressRegistration" (line 17 in ConfirmAddress.xhtml). This causes the
AddressRegistration page to be displayed for the user to reenter the input.

The scope of the managed bean is session (line 9 AddressRegistrationJSFBean.java) so the
multiple pages can share the same bean.

Note that this program loads the database driver explicitly (line 139
AddressRegistrationJSFBean.java). Sometimes, an IDE such as NetBeans is not able to find a
suitable driver. Loading a driver explicitly can avoid this problem.

go to a new page

KEY TERMS

application scope 1233
JavaBean 1217
request scope 1233

scope 1233
session scope 1233
view scope 1233

CHAPTER SUMMARY

1. JSF enables you to completely separate Java code from HTML.

2. A facelet is an XHTML page that mixes JSF tags with XHTML tags.

3. JSF applications are developed using the Model-View-Controller (MVC) architecture,
which separates the application’s data (contained in the model) from the graphical pres-
entation (the view).

4. The controller is the JSF framework that is responsible for coordinating interactions
between view and the model.

Programming Exercises 1253

5. In JSF, the facelets are the view for presenting data. Data are obtained from Java objects.
Objects are defined using Java classes.

6. In JSF, the objects that are accessed from a facelet are JavaBeans objects.

7. The JSF expression can either use the property name or invoke the method to obtain the
current time.

8. JSF provides many elements for displaying GUI components. The tags with the h prefix
are in the JSF HTML Tag library. The tags with the f prefix are in the JSF Core Tag
library.

9. You can specify the JavaBeans objects at the application scope, session scope, view
scope, or request scope.

10. The view scope keeps the bean alive as long as you stay on the view. The view scope is
between session and request scopes.

11. JSF provides several convenient and powerful ways for input validation. You can use
the standard validator tags in the JSF Core Tag Library or create custom validators.

QUIZ

Answer the quiz for this chapter online at www.cs.armstrong.edu/liang/intro10e/quiz.html.

PROGRAMMING EXERCISES

*33.1 (Factorial table in JSF) Write a JSF page that displays a factorial page as
shown in Figure 33.25. Display the table in an h:outputText component. Set
its escape property to false to display it as HTML contents.

*33.2 (Multiplication table) Write a JSF page that displays a multiplication table as
shown in Figure 33.26.

*33.3 (Calculate tax) Write a JSF page to let the user enter taxable income and filing
status, as shown in Figure 33.27a. Clicking the Compute Tax button computes
and displays the tax, as shown in Figure 33.27b. Use the computeTax method
introduced in Listing 3.5, ComputeTax.java, to compute tax.

*33.4 (Calculate loan) Write a JSF page that lets the user enter loan amount, interest
rate, and number of years, as shown in Figure 33.28a. Click the Compute Loan
Payment button to compute and display the monthly and total loan payments,
as shown in Figure 33.28b. Use the Loan class given in Listing 10.2, Loan.java,
to compute the monthly and total payments.

*33.5 (Addition quiz) Write a JSF program that generates addition quizzes randomly,
as shown in Figure 33.29a. After the user answers all questions, it displays the
result, as shown in Figure 33.29b.

*33.6 (Large factorial) Rewrite Exercise 33.1 to handle large factorial. Use the
BigInteger class introduced in Section 10.9.

*33.7 (Guess birthday) Listing 4.3, GuessBirthday.java, gives a program for guessing
a birthday. Write a JSF program that displays five sets of numbers, as shown in
Figure 33.30a. After the user checks the appropriate boxes and clicks the Guess
Birthday button, the program displays the birthday, as shown in Figure 33.30b.

www.cs.armstrong.edu/liang/intro10e/quiz.html

1254 Chapter 33 JavaServer Faces

FIGURE 33.26 The JSF page displays the multiplication table.

FIGURE 33.25 The JSF page displays factorials for the numbers from 0 to 10 in a table.

Programming Exercises 1255

FIGURE 33.27 The JSF page computes the tax.

(a)

(b)

*33.8 (Guess capitals) Write a JSF that prompts the user to enter a capital for a state,
as shown in Figure 33.31a. Upon receiving the user input, the program reports
whether the answer is correct, as shown in Figure 33.31b. You can click the
Next button to display another question. You can use a two-dimensional array
to store the states and capitals, as proposed in Exercise 8.37. Create a list from
the array and apply the shuffle method to reorder the list so the questions will
appear in random order.

*33.9 (Access and update a Staff table) Write a JSF program that views, inserts, and
updates staff information stored in a database, as shown in Figure 33.32. The
view button displays a record with a specified ID. The Staff table is created as
follows:

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),

1256 Chapter 33 JavaServer Faces

 state char(2),
 telephone char(10),
 email varchar(40),

primary key (id)
);

*33.10 (Random cards) Write a JSF that displays four random cards from a deck of 52
cards, as shown in Figure 33.33. When the user clicks the Refresh button, four
new random cards are displayed.

***33.11 (Game: the 24-point card game) Rewrite Exercise 20.13 using JSF, as shown in
Figure 33.34. Upon clicking the Refresh button, the program displays four ran-
dom cards and displays an expression if a 24-point solution exists. Otherwise,
it displays No solution.

***33.12 (Game: the 24-point card game) Rewrite Exercise 20.17 using JSF, as shown
in Figure 33.35. The program lets the user enter four card values and finds a
solution upon clicking the Find a Solution button.

FIGURE 33.28 The JSF page computes the loan payment.

(a)

(b)

Programming Exercises 1257

FIGURE 33.29 The program displays addition questions in (a) and answers in (b).

(a)

(b)

*33.13 (Day of week) Write a program that displays the day of the week for a given day,
month, and year, as shown in Figure 33.36. The program lets the user select a
day, month, and year, and click the Get Day of Week button to display the day
of week. The Time field displays Future if it is a future day or Past otherwise.
Use the Zeller’s congruence to find the day of the week (See Programming
Exercise 3.21).

1258 Chapter 33 JavaServer Faces

FIGURE 33.30 (a) The program displays five sets of numbers for the user to check the
boxes. (b) The program displays the date.

(b)

(a)

FIGURE 33.31 (a) The program displays a question. (b) The program displays the answer to the question.
(b)

(a)

Programming Exercises 1259

FIGURE 33.32 The web page lets you view, insert, and update staff information.

FIGURE 33.33 This JSF application displays four random cards.

1260 Chapter 33 JavaServer Faces

FIGURE 33.34 The JSF application solves a 24-Point card game.

FIGURE 33.35 The user enters four numbers and the program finds a solution.

Programming Exercises 1261

FIGURE 33.36 The user enters a day, month, and year and the program finds the day of the
week.

This page intentionally left blank

1263

APPENDIXES

Appendix A
Java Keywords

Appendix B
The ASCII Character Set

Appendix C
Operator Precedence Chart

Appendix D
Java Modifiers

Appendix E
Special Floating-Point Values

Appendix F
Number Systems

Appendix G
Bitwise Operations

Appendix H
Regular Expressions

Appendix I
Enumerated Types

This page intentionally left blank

1265

Java Keywords
The following fifty keywords are reserved for use by the Java language:

APPENDIX A

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

package

private

protected

public

return

short

static

strictfp*

super

switch

synchronized

this

throw

throws

transient

try

void

volatile

while

The keywords goto and const are C++ keywords reserved, but not currently used in Java.
This enables Java compilers to identify them and to produce better error messages if they
appear in Java programs.

The literal values true, false, and null are not keywords, just like literal value 100.
However, you cannot use them as identifiers, just as you cannot use 100 as an identifier.

In the code listing, we use the keyword color for true, false, and null to be consistent
with their coloring in Java IDEs.

*The strictfp keyword is a modifier for a method or class that enables it to use strict floating-point calcu-
lations. Floating-point arithmetic can be executed in one of two modes: strict or nonstrict. The strict mode
guarantees that the evaluation result is the same on all Java Virtual Machine implementations. The nonstrict
mode allows intermediate results from calculations to be stored in an extended format different from the
standard IEEE floating-point number format. The extended format is machine-dependent and enables code
to be executed faster. However, when you execute the code using the nonstrict mode on different JVMs, you
may not always get precisely the same results. By default, the nonstrict mode is used for floating-point calcu-
lations. To use the strict mode in a method or a class, add the strictfp keyword in the method or the class
declaration. Strict floating-point may give you slightly better precision than nonstrict floating-point, but the
distinction will only affect some applications. Strictness is not inherited; that is, the presence of strictfp on
a class or interface declaration does not cause extended classes or interfaces to be strict.

1266

APPENDIX B
The ASCII Character Set
Tables B.1 and B.2 show ASCII characters and their respective decimal and hexadecimal
codes. The decimal or hexadecimal code of a character is a combination of its row index and
column index. For example, in Table B.1, the letter A is at row 6 and column 5, so its decimal
equivalent is 65; in Table B.2, letter A is at row 4 and column 1, so its hexadecimal equivalent
is 41.

1
2

6
7

TABLE B.1 ASCII Character Set in the Decimal Index

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dcl dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! ” # $ % & ’

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 6 = 7 ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ¿ - ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { � } ∼ del

TABLE B.2 ASCII Character Set in the Hexadecimal Index

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si

1 dle dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us

2 sp ! ” # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; 6 = 7 ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ¿ -

6 ’ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { � } ∼ del

1268

APPENDIX C
Operator Precedence Chart
The operators are shown in decreasing order of precedence from top to bottom. Operators in
the same group have the same precedence, and their associativity is shown in the table.

Operator Name Associativity

() Parentheses Left to right

() Function call Left to right

[] Array subscript Left to right

. Object member access Left to right

++ Postincrement Left to right

–– Postdecrement Left to right

++ Preincrement Right to left

–– Predecrement Right to left

+ Unary plus Right to left

– Unary minus Right to left

! Unary logical negation Right to left

(type) Unary casting Right to left

new Creating object Right to left

* Multiplication Left to right

/ Division Left to right

% Remainder Left to right

+ Addition Left to right

– Subtraction Left to right

<< Left shift Left to right

>> Right shift with sign extension Left to right

>>> Right shift with zero extension Left to right

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than or equal to Left to right

instanceof Checking object type Left to right

Appendix C 1269

Operator Name Associativity

== Equal comparison Left to right

!= Not equal Left to right

& (Unconditional AND) Left to right

^ (Exclusive OR) Left to right

| (Unconditional OR) Left to right

&& Conditional AND Left to right

|| Conditional OR Left to right

?: Ternary condition Right to left

= Assignment Right to left

+= Addition assignment Right to left

–= Subtraction assignment Right to left

*= Multiplication assignment Right to left

/= Division assignment Right to left

%= Remainder assignment Right to left

1270

APPENDIXD
Java Modifiers
Modifiers are used on classes and class members (constructors, methods, data, and class-level
blocks), but the final modifier can also be used on local variables in a method. A modifier
that can be applied to a class is called a class modifier. A modifier that can be applied to a
method is called a method modifier. A modifier that can be applied to a data field is called a
data modifier. A modifier that can be applied to a class-level block is called a block modifier.
The following table gives a summary of the Java modifiers.

Modifier Class Constructor Method Data Block Explanation

(default)* U U U U U A class, constructor, method,
or data field is visible in this
package.

public U U U U A class, constructor, method,
or data field is visible to all the
programs in any package.

private U U U A constructor, method, or data
field is only visible in this class.

protected U U U A constructor, method, or data
field is visible in this package
and in subclasses of this class in
any package.

static U U U Define a class method, a class
data field, or a static initializa-
tion block.

final U U U A final class cannot be
extended. A final method cannot
be modified in a subclass.
A final data field is a constant.

abstract U U An abstract class must be
extended. An abstract method
must be implemented in a con-
crete subclass.

native U A native method indicates that
the method is implemented
using a language other than
Java.

*Default access doesn’t have a modifier associated with it. For example: class Test {}

Appendix D 1271

The modifiers default (no modifier), public, private, and protected are known as
visibility or accessibility modifiers because they specify how classes and class members are
accessed.

The modifiers public, private, protected, static, final, and abstract can also
be applied to inner classes.

Modifier Class Constructor Method Data Block Explanation

synchronized U U Only one thread at a time can
execute this method.

strictfp U U Use strict floating-point
calculations to guarantee that
the evaluation result is the
same on all JVMs.

transient U Mark a nonserializable
instance data field.

1272

APPENDIX E
Special Floating-Point Values
Dividing an integer by zero is invalid and throws ArithmeticException, but dividing a
floating-point value by zero does not cause an exception. Floating-point arithmetic can over-
flow to infinity if the result of the operation is too large for a double or a float, or under-
flow to zero if the result is too small for a double or a float. Java provides the special
floating-point values POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN (Not a Num-
ber) to denote these results. These values are defined as special constants in the Float class
and the Double class.

If a positive floating-point number is divided by zero, the result is POSITIVE_INFINITY.
If a negative floating-point number is divided by zero, the result is NEGATIVE_INFINITY.
If a floating-point zero is divided by zero, the result is NaN, which means that the result is
undefined mathematically. The string representations of these three values are Infinity,
-Infinity, and NaN. For example,

System.out.print(1.0 / 0); // Print Infinity
System.out.print(–1.0 / 0); // Print –Infinity
System.out.print(0.0 / 0); // Print NaN

These special values can also be used as operands in computations. For example, a number
divided by POSITIVE_INFINITY yields a positive zero. Table E.1 summarizes various com-
binations of the /, *, %, +, and – operators.

TABLE E.1 Special Floating-Point Values

x y x/y x*y x%y x + y x - y

Finite { 0.0 { infinity { 0.0 NaN Finite Finite

Finite { infinity { 0.0 { 0.0 x { infinity infinity

{ 0.0 { 0.0 NaN { 0.0 NaN { 0.0 { 0.0

{ infinity Finite { infinity { 0.0 NaN { infinity { infinity

{ infinity { infinity NaN { 0.0 NaN { infinity infinity

{ 0.0 { infinity { 0.0 NaN { 0.0 { infinity { 0.0

NaN Any NaN NaN NaN NaN NaN

Any NaN NaN NaN NaN NaN NaN

Note
If one of the operands is NaN, the result is NaN.

1273

Number Systems
F.1 Introduction
Computers use binary numbers internally, because computers are made naturally to store and
process 0s and 1s. The binary number system has two digits, 0 and 1. A number or character
is stored as a sequence of 0s and 1s. Each 0 or 1 is called a bit (binary digit).

In our daily life we use decimal numbers. When we write a number such as 20 in a pro-
gram, it is assumed to be a decimal number. Internally, computer software is used to convert
decimal numbers into binary numbers, and vice versa.

We write computer programs using decimal numbers. However, to deal with an operating
system, we need to reach down to the “machine level” by using binary numbers. Binary num-
bers tend to be very long and cumbersome. Often hexadecimal numbers are used to abbreviate
them, with each hexadecimal digit representing four binary digits. The hexadecimal number
system has 16 digits: 0–9 and A–F. The letters A, B, C, D, E, and F correspond to the decimal
numbers 10, 11, 12, 13, 14, and 15.

The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A decimal
number is represented by a sequence of one or more of these digits. The value that each digit
represents depends on its position, which denotes an integral power of 10. For example, the
digits 7, 4, 2, and 3 in decimal number 7423 represent 7000, 400, 20, and 3, respectively, as
shown below:

� 7 � 4 � 2 � 3 � = 7 * 103 + 4 * 102 + 2 * 101 + 3 * 100

103 102 101 100 = 7000 + 400 + 20 + 3 = 7423

The decimal number system has ten digits, and the position values are integral powers of 10.
We say that 10 is the base or radix of the decimal number system. Similarly, since the binary
number system has two digits, its base is 2, and since the hex number system has 16 digits,
its base is 16.

If 1101 is a binary number, the digits 1, 1, 0, and 1 represent 1 * 23, 1 * 22, 0 * 21, and
1 * 20, respectively:

� 1 � 1 � 0 � 1 � = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

23 22 21 20 = 8 + 4 + 0 + 1 = 13

If 7423 is a hex number, the digits 7, 4, 2, and 3 represent 7 * 163, 4 * 162, 2 * 161, and
3 * 160, respectively:

� 7 � 4 � 2 � 3 � = 7 * 163 + 4 * 162 + 2 * 161 + 3 * 160

163 162 161 160 = 28672 + 1024 + 32 + 3 = 29731

binary numbers

decimal numbers

hexadecimal number

radix
base

APPENDIX F

1274 Appendix F

F.2 Conversions Between Binary and Decimal Numbers
Given a binary number bnbn - 1bn - 2 c b2b1b0, the equivalent decimal value is

bn * 2n + bn - 1 * 2n - 1 + bn - 2 * 2n - 2 + c + b2 * 22 + b1 * 21 + b0 * 20

Here are some examples of converting binary numbers to decimals:

binary to decimal

Binary Conversion Formula Decimal

10 1 * 21 + 0 * 20 2

1000 1 * 23 + 0 * 22 + 0 * 21 + 0 * 20 8

10101011 1 * 27 + 0 * 26 + 1 * 25 + 0 * 24 + 1 * 23 + 0 * 22 +

1 * 21 + 1 * 20

171

To convert a decimal number d to a binary number is to find the bits bn, bn—1, bn—2, . . . , b2, b1

and b0 such that

d = bn * 2n + bn - 1 * 2n - 1 + bn - 2 * 2n - 2 + c + b2 * 22 + b1 * 21 + b0 * 20

These bits can be found by successively dividing d by 2 until the quotient is 0. The remainders
are b0, b1, b2,c , bn - 2, bn - 1, and bn.

For example, the decimal number 123 is 1111011 in binary. The conversion is done as follows:

2 1

0

1

b6

0

2 3

2

1

2 7

6

b4

1

3

b5

1

2

Quotient

Remainder

15

14

b3

1

7

2

30

b2

0

15

2

60

61

b1

1

30

b0

2

122

1

61

12330

Tip
The Windows Calculator, as shown in Figure F.1, is a useful tool for performing number

conversions. To run it, search for Calculator from the Start button and launch Calcula-

tor, then under View select Scientific.

decimal to binary

BinaryDecimal

Hex

FIGURE F.1 You can perform number conversions using the Windows Calculator.

Appendix F 1275

F.3 Conversions Between Hexadecimal and Decimal
Numbers
Given a hexadecimal number hnhn - 1hn - 2 c h2h1h0, the equivalent decimal value is

hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + c + h2 * 162 + h1 * 161 + h0 * 160

Here are some examples of converting hexadecimal numbers to decimals:

hex to decimal

Hexadecimal Conversion Formula Decimal

7F 7 * 161 + 15 * 160 127

FFFF 15 * 163 + 15 * 162 + 15 * 161 + 15 * 160 65535

431 4 * 162 + 3 * 161 + 1 * 160 1073

To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits
hn, hn - 1, hn - 2, c , h2, h1, and h0 such that

d = hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + c + h2 * 162

+ h1 * 161 + h0 * 160

These numbers can be found by successively dividing d by 16 until the quotient is 0. The
remainders are h0, h1, h2,c , hn - 2, hn - 1, and hn.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows:

Quotient

Remainder

16 7

0

7

h1

0

16 123

112

11

h0

7

F.4 Conversions Between Binary and Hexadecimal
Numbers
To convert a hexadecimal to a binary number, simply convert each digit in the hexadecimal
number into a four-digit binary number, using Table F.1.

For example, the hexadecimal number 7B is 1111011, where 7 is 111 in binary, and B is
1011 in binary.

To convert a binary number to a hexadecimal, convert every four binary digits from right
to left in the binary number into a hexadecimal number.

For example, the binary number 1110001101 is 38D, since 1101 is D, 1000 is 8, and 11 is
3, as shown below.

1 1 1 0 0 0 1 1 0 1

D83

decimal to hex

hex to binary

binary to hex

1276 Appendix F

Note
Octal numbers are also useful. The octal number system has eight digits, 0 to 7. A deci-

mal number 8 is represented in the octal system as 10.

Here are some good online resources for practicing number conversions:

 ■ http://forums.cisco.com/CertCom/game/binary_game_page.htm

 ■ http://people.sinclair.edu/nickreeder/Flash/binDec.htm

 ■ http://people.sinclair.edu/nickreeder/Flash/binHex.htm

F.1 Convert the following decimal numbers into hexadecimal and binary numbers:

100; 4340; 2000

F.2 Convert the following binary numbers into hexadecimal and decimal numbers:

1000011001; 100000000; 100111

F.3 Convert the following hexadecimal numbers into binary and decimal numbers:

FEFA9; 93; 2000

✓Point✓Check

TABLE F.1 Converting Hexadecimal to Binary

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

http://forums.cisco.com/CertCom/game/binary_game_page.htm
http://people.sinclair.edu/nickreeder/Flash/binDec.htm
http://people.sinclair.edu/nickreeder/Flash/binHex.htm

1277

Bitwise Operations
To write programs at the machine-level, often you need to deal with binary numbers directly
and perform operations at the bit-level. Java provides the bitwise operators and shift operators
defined in Table G.1.

The bit operators apply only to integer types (byte, short, int, and long). A character
involved in a bit operation is converted to an integer. All bitwise operators can form bitwise
assignment operators, such as =, |=, <<=, >>=, and >>>=.

APPENDIX G

TABLE G.1

Operator Name
Example

(using bytes in the example) Description

& Bitwise AND 10101110 & 10010010
yields 10000010

The AND of two corresponding
bits yields a 1 if both bits are 1.

| Bitwise
inclusive OR

10101110 | 10010010
yields 10111110

The OR of two corresponding bits
yields a 1 if either bit is 1.

^ Bitwise
exclusive OR

10101110 ^ 10010010
yields 00111100

The XOR of two corresponding
bits yields a 1 only if two bits are
different.

~ One’s
complement

~10101110 yields
01010001

The operator toggles each bit from
0 to 1 and from 1 to 0.

<< Left shift 10101110 << 2 yields
10111000

The operator shifts bits in the first
operand left by the number of bits
specified in the second operand,
filling with 0s on the right.

>> Right shift
with sign
extension

10101110 >> 2 yields
11101011

00101110 >> 2 yields
00001011

The operator shifts bit in the first
operand right by the number of bits
specified in the second operand,
filling with the highest (sign) bit
on the left.

>>> Unsigned right
shift with zero
extension

10101110 >>> 2 yields
00101011

00101110 >>> 2 yields
00001011

The operator shifts bit in the first
operand right by the number of bits
specified in the second operand,
filling with 0s on the left.

1278

APPENDIXH
Regular Expressions
Often you need to write the code to validate user input such as to check whether the input is
a number, a string with all lowercase letters, or a social security number. How do you write
this type of code? A simple and effective way to accomplish this task is to use the regular
expression.

A regular expression (abbreviated regex) is a string that describes a pattern for matching
a set of strings. Regular expression is a powerful tool for string manipulations. You can use
regular expressions for matching, replacing, and splitting strings.

H.1 Matching Strings
Let us begin with the matches method in the String class. At first glance, the matches
method is very similar to the equals method. For example, the following two statements
both evaluate to true.

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but
also a set of strings that follow a pattern. For example, the following statements all evaluate
to true.

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

"Java.*" in the preceding statements is a regular expression. It describes a string pattern
that begins with Java followed by any zero or more characters. Here, the substring .* matches
any zero or more characters.

H.2 Regular Expression Syntax
A regular expression consists of literal characters and special symbols. Table H.1 lists some
frequently used syntax for regular expressions.

Note
Backslash is a special character that starts an escape sequence in a string. So you need

to use \\d in Java to represent \d.

Note
Recall that a whitespace character is ' ', '\t', '\n', '\r', or '\f'. So \s is the

same as [\t\n\r\f], and \S is the same as [^ \t\n\r\f].

regular expression

matches

Appendix H 1279

TABLE H.1 Frequently Used Regular Expressions

Regular Expression Matches Example

x a specified character x Java matches Java

. any single character Java matches J..a

(ab|cd) ab or cd ten matches t(en|im)

[abc] a, b, or c Java matches Ja[uvwx]a

[^abc] any character except
a, b, or c

Java matches Ja[^ars]a

[a-z] a through z Java matches [A-M]av[a-d]

[^a-z] any character except
a through z

Java matches Jav[^b-d]

[a-e[m-p]] a through e or
m through p

Java matches [A-G[I-M]]av[a-d]

[a-e&&[c-p]] intersection of a-e
with c-p

Java matches [A-P&&[I-M]]av[a-d]

\d a digit, same as [0-9] Java2 matches "Java[\\d]"

\D a non-digit $Java matches "[\\D][\\D]ava"

\w a word character Java1 matches "[\\w]ava[\\w]"

\W a non-word character $Java matches "[\\W][\\w]ava"

\s a whitespace character "Java 2" matches "Java\\s2"

\S a non-whitespace char Java matches "[\\S]ava"

p* zero or more
occurrences of pattern p

aaaabb matches "a*bb"
ababab matches "(ab)*"

p+ one or more occurrences
of pattern p

a matches "a+b*"
able matches "(ab)+.*"

p? zero or one occurrence of
pattern p

Java matches "J?Java"
Java matches "J?ava"

p{n} exactly n occurrences of
pattern p

Java matches "Ja{1}.*"
Java does not match ".{2}"

p{n,} at least n occurrences of
pattern p

aaaa matches "a{1,}"
a does not match "a{2,}"

p{n,m} between n and m occur-
rences (inclusive)

aaaa matches "a{1,9}"
abb does not match "a{2,9}bb"

Note
A word character is any letter, digit, or the underscore character. So \w is the same

as [a-z[A-Z][0-9]_] or simply [a-zA-Z0-9_], and \W is the same as

[^a-zA-Z0-9_].

Note
The last six entries *, +, ?, {n}, {n,}, and {n, m} in Table H.1 are called quantifiers

that specify how many times the pattern before a quantifier may repeat. For example, A*

matches zero or more A’s, A+ matches one or more A’s, A? matches zero or one A’s, A{3}

matches exactly AAA, A{3,} matches at least three A’s, and A{3,6} matches between

3 and 6 A’s. * is the same as {0,}, + is the same as {1,}, and ? is the same as {0,1}.

quantifier

1280 Appendix H

Caution
Do not use spaces in the repeat quantifiers. For example, A{3,6} cannot be written as

A{3, 6} with a space after the comma.

Note
You may use parentheses to group patterns. For example, (ab){3} matches ababab,

but ab{3} matches abbb.

Let us use several examples to demonstrate how to construct regular expressions.

Example 1
The pattern for social security numbers is xxx-xx-xxxx, where x is a digit. A regular
expression for social security numbers can be described as

[\\d]{3}-[\\d]{2}-[\\d]{4}

For example,

"111-22-3333".matches("[\\d]{3}-[\\d]{2}-[\\d]{4}") returns true.
"11-22-3333".matches("[\\d]{3}-[\\d]{2}-[\\d]{4}") returns false.

Example 2
An even number ends with digits 0, 2, 4, 6, or 8. The pattern for even numbers can be
described as

[\\d]*[02468]

For example,

"123".matches("[\\d]*[02468]") returns false.
"122".matches("[\\d]*[02468]") returns true.

Example 3
The pattern for telephone numbers is (xxx) xxx-xxxx, where x is a digit and the first
digit cannot be zero. A regular expression for telephone numbers can be described as

\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}

Note that the parentheses symbols (and) are special characters in a regular expression for
grouping patterns. To represent a literal (or) in a regular expression, you have to use \\(
and \\).
For example,

"(912) 921-2728".matches("\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}")

returns true.
"921-2728".matches("\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}")

returns false.

Example 4
Suppose the last name consists of at most 25 letters and the first letter is in uppercase. The
pattern for a last name can be described as

[A-Z][a-zA-Z]{1,24}

Note that you cannot have arbitrary whitespace in a regular expression. For example, [A-Z]
[a-zA-Z]{1, 24} would be wrong.

Appendix H 1281

For example,

"Smith".matches("[A-Z][a-zA-Z]{1,24}") returns true.
"Jones123".matches("[A-Z][a-zA-Z]{1,24}") returns false.

Example 5
Java identifiers are defined in Section 2.4, “Identifiers.”

 ■ An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot
start with a digit.

 ■ An identifier is a sequence of characters that consists of letters, digits, underscores
(_), and dollar signs ($).

The pattern for identifiers can be described as

[a-zA-Z_$][\\w$]*

Example 6
What strings are matched by the regular expression "Welcome to (Java|HTML)"? The
answer is Welcome to Java or Welcome to HTML.

Example 7
What strings are matched by the regular expression "A.*"? The answer is any string that
starts with letter A.

H.3 Replacing and Splitting Strings
The matches method in the String class returns true if the string matches the regular
expression. The String class also contains the replaceAll, replaceFirst, and split
methods for replacing and splitting strings, as shown in Figure H.1.

FIGURE H.1 The String class contains the methods for matching, replacing, and splitting strings using regular
expressions.

java.lang.String

+matches(regex: String): boolean
+replaceAll(regex: String, replacement:
 String): String

+replaceFirst(regex: String,
 replacement: String): String

+split(regex: String): String[]

+split(regex: String, limit: int): String[]

Returns true if this string matches the pattern.
Returns a new string that replaces all matching substrings with
 the replacement.

Returns a new string that replaces the first matching substring
 with the replacement.

Returns an array of strings consisting of the substrings split by
 the matches.

Same as the preceding split method except that the limit
 parameter controls the number of times the pattern is applied.

The replaceAll method replaces all matching substring and the replaceFirst method
replaces the first matching substring. For example, the following code

System.out.println("Java Java Java".replaceAll("v\\w", "wi"));

displays

Jawi Jawi Jawi

1282 Appendix H

The following code

System.out.println("Java Java Java".replaceFirst("v\\w", "wi"));

displays

Jawi Java Java

There are two overloaded split methods. The split(regex) method splits a string into
substrings delimited by the matches. For example, the following statement

String[] tokens = "Java1HTML2Perl".split("\\d");

splits string "Java1HTML2Perl" into Java, HTML, and Perl and saved in tokens[0],
tokens[1], and tokens[2].

In the split(regex, limit) method, the limit parameter determines how many times
the pattern is matched. If limit <= 0, split(regex, limit) is same as split(regex).
If limit > 0, the pattern is matched at most limit – 1 times. Here are some examples:

"Java1HTML2Perl".split("\\d", 0); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 1); splits into Java1HTML2Perl
"Java1HTML2Perl".split("\\d", 2); splits into Java, HTML2Perl
"Java1HTML2Perl".split("\\d", 3); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 4); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 5); splits into Java, HTML, Perl

Note
By default, all the quantifiers are greedy. This means that they will match as many

occurrences as possible. For example, the following statement displays JRvaa, since

the first match is aaa.

System.out.println("Jaaavaa".replaceFirst("a+", "R"));

You can change a qualifier’s default behavior by appending a question mark (?) after it.

The quantifier becomes reluctant, which means that it will match as few occurrences

as possible. For example, the following statement displays JRaavaa, since the first

match is a.

System.out.println("Jaaavaa".replaceFirst("a+?", "R"));

1283

Enumerated Types

I.1 Simple Enumerated Types
An enumerated type defines a list of enumerated values. Each value is an identifier. For exam-
ple, the following statement declares a type, named MyFavoriteColor, with values RED,
BLUE, GREEN, and YELLOW in this order.

enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW};

A value of an enumerated type is like a constant and so, by convention, is spelled with all
uppercase letters. So, the preceding declaration uses RED, not red. By convention, an enumer-
ated type is named like a class with first letter of each word capitalized.

Once a type is defined, you can declare a variable of that type:

MyFavoriteColor color;

The variable color can hold one of the values defined in the enumerated type
MyFavoriteColor or null, but nothing else. Java enumerated type is type-safe, meaning
that an attempt to assign a value other than one of the enumerated values or null will result
in a compile error.

The enumerated values can be accessed using the syntax

EnumeratedTypeName.valueName

For example, the following statement assigns enumerated value BLUE to variable color:

color = MyFavoriteColor.BLUE;

Note that you have to use the enumerated type name as a qualifier to reference a value such
as BLUE.

As with any other type, you can declare and initialize a variable in one statement:

MyFavoriteColor color = MyFavoriteColor.BLUE;

An enumerated type is treated as a special class. An enumerated type variable is therefore a
reference variable. An enumerated type is a subtype of the Object class and the Comparable
interface. Therefore, an enumerated type inherits all the methods in the Object class and the
compraeTo method in the Comparable interface. Additionally, you can use the following
methods on an enumerated object:

 ■ public String name();

Returns a name of the value for the object.

 ■ public int ordinal();

Returns the ordinal value associated with the enumerated value. The first value in
an enumerated type has an ordinal value of 0, the second has an ordinal value of 1,
the third one 3, and so on.

APPENDIX I

1284 Appendix I

Listing I.1 gives a program that demonstrates the use of enumerated types.

LISTING I.1 EnumeratedTypeDemo.java
 1 public class EnumeratedTypeDemo {
 2 static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 3 FRIDAY, SATURDAY};
 4
 5 public static void main(String[] args) {
 6 Day day1 = Day.FRIDAY;
 7 Day day2 = Day.THURSDAY;
 8
 9 System.out.println("day1's name is " + day1.name());
 10 System.out.println("day2's name is " + day2.name());
 11 System.out.println("day1's ordinal is " + day1.ordinal());
 12 System.out.println("day2's ordinal is " + day2.ordinal());
 13
 14 System.out.println("day1.equals(day2) returns " +
 15 day1.equals(day2));
 16 System.out.println("day1.toString() returns " +
 17 day1.toString());
 18 System.out.println("day1.compareTo(day2) returns " +
 19 day1.compareTo(day2));
 20 }
 21 }

define an enum type

declare an enum variable

get enum name

get enum ordinal

compare enum values

day1's name is FRIDAY
day2's name is THURSDAY
day1's ordinal is 5
day2's ordinal is 4
day1.equals(day2) returns false
day1.toString() returns FRIDAY
day1.compareTo(day2) returns 1

An enumerated type Day is defined in lines 2–3. Variables day1 and day2 are declared
as the Day type and assigned enumerated values in lines 6–7. Since day1’s value is FRIDAY,
its ordinal value is 5 (line 11). Since day2’s value is THURSDAY, its ordinal value is 4
(line 12).

Since an enumerated type is a subclass of the Object class and the Comparable interface,
you can invoke the methods equals, toString, and comareTo from an enumerated object
reference variable (lines 14–19). day1.equals(day2) returns true if day1 and day2 have
the same ordinal value. day1.compareTo(day2) returns the difference between day1’s
ordinal value to day2’s.

Alternatively, you can rewrite the code in Listing I.1 into Listing I.2.

LISTING I.2 StandaloneEnumTypeDemo.java
 1 public class StandaloneEnumTypeDemo {
 2 public static void main(String[] args) {
 3 Day day1 = Day.FRIDAY;
 4 Day day2 = Day.THURSDAY;
 5
 6 System.out.println("day1's name is " + day1.name());
 7 System.out.println("day2's name is " + day2.name());
 8 System.out.println("day1's ordinal is " + day1.ordinal());

Appendix I 1285

 9 System.out.println("day2's ordinal is " + day2.ordinal());
 10
 11 System.out.println("day1.equals(day2) returns " +
 12 day1.equals(day2));
 13 System.out.println("day1.toString() returns " +
 14 day1.toString());
 15 System.out.println("day1.compareTo(day2) returns " +
 16 day1.compareTo(day2));
 17 }
 18 }
 19
 20 enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 21 FRIDAY, SATURDAY}

An enumerated type can be defined inside a class, as shown in lines 2–3 in Listing I.1, or
standalone as shown in lines 20–21 Listing I.2. In the former case, the type is treated as an
inner class. After the program is compiled, a class named EnumeratedTypeDemo$Day.class
is created. In the latter case, the type is treated as a standalone class. After the program is
compiled, a class named Day.class is created.

Note
When an enumerated type is declared inside a class, the type must be declared as a

member of the class and cannot be declared inside a method. Furthermore, the type is

always static. For this reason, the static keyword in line 2 in Listing I.1 may be

omitted. The visibility modifiers on inner class can be also be applied to enumerated

types defined inside a class.

Tip
Using enumerated values (e.g., Day.MONDAY, Day.TUESDAY, and so on) rather than

literal integer values (e.g., 0, 1, and so on) can make program easier to read and maintain.

I.2 Using if or switch Statements with an
Enumerated Variable
An enumerated variable holds a value. Often your program needs to perform a specific action
depending on the value. For example, if the value is Day.MONDAY, play soccer; if the value is
Day.TUESDAY, take piano lesson, and so on. You can use an if statement or a switch state-
ment to test the value in the variable, as shown in (a) and (b)

if (day.equals(Day.MONDAY)) {
// process Monday

}
else if (day.equals(Day.TUESDAY)) {

// process Tuesday
}
else

 ...

switch (day) {
case MONDAY:

// process Monday
break;

case TUESDAY:
// process Tuesday
break;

 ...
}

Equivalent

(a) (b)

In the switch statement in (b), the case label is an unqualified enumerated value (e.g.,
MONDAY, but not Day.MONDAY).

1286 Appendix I

I.3 Processing Enumerated Values Using
a Foreach Loop
Each enumerated type has a static method values() that returns all enumerated values for
the type in an array. For example,

Day[] days = Day.values();

You can use a regular for loop in (a) or a foreach loop in (b) to process all the values in
the array.

I.4 Enumerated Types with Data Fields,
Constructors, and Methods
The simple enumerated types introduced in the preceding section define a type with a list of
enumerated values. You can also define an enumerate type with data fields, constructors, and
methods, as shown in Listing I.3.

LISTING I.3 TrafficLight.java
 1 public enum TrafficLight {
 2 RED ("Please stop"), GREEN ("Please go"),
 3 YELLOW ("Please caution");
 4
 5 private String description;
 6
 7 private TrafficLight(String description) {
 8 this.description = description;
 9 }
 10
 11 public String getDescription() {
 12 return description;
 13 }
 14 }

The enumerated values are defined in lines 2–3. The value declaration must be the first
statement in the type declaration. A data field named description is declared in line 5 to
describe an enumerated value. The constructor TrafficLight is declared in lines 7–9. The
constructor is invoked whenever an enumerated value is accessed. The enumerated value’s
argument is passed to the constructor, which is then assigned to description.

Listing I.4 gives a test program to use TrafficLight.

LISTING I.4 TestTrafficLight.java
 1 public class TestTrafficLight {
 2 public static void main(String[] args) {
 3 TrafficLight light = TrafficLight.RED;
 4 System.out.println(light.getDescription());
 5 }
 6 }

for (int i = 0; i < days.length; i++)
 System.out.println(days[i]);

for (Day day: days)
 System.out.println(day);

Equivalent

(a) (b)

Appendix I 1287

An enumerated value TrafficLight.red is assigned to variable light (line 3). Accessing
TrafficLight.RED causes the JVM to invoke the constructor with argument “please stop”.
The methods in enumerated type are invoked in the same way as the methods in a class.
light.getDescription() returns the description for the enumerated value (line 4).

Note
The Java syntax requires that the constructor for enumerated types be private to prevent

it from being invoked directly. The private modifier may be omitted. In this case, it is

considered private by default.

This page intentionally left blank

1289

INDEX
Symbols
— (decrement operator), 55–56
- (subtraction operator), 46, 50–51
. (dot operator), 330
. (object member access operator), 330, 429
/ (division operator), 46, 50
//, in line comment syntax, 18
/*, in block comment syntax, 18
/**.*/ (Javadoc comment syntax), 18
/= (division assignment operator), 54–55
; (semicolons), common errors, 84
\ (backslash character), as directory separator, 474
\ (escape characters), 126
|| (or logical operator), 93–97
+ (addition operator), 46, 50
+ (string concatenation operator), 38, 131
++ (increment operator), 55–56
+= (addition assignment operator), augmented, 54–55
= (assignment operator), 41–43, 54–55
= (equals operator), 76
-= (subtraction assignment operator), 54–55
== (comparison operator), 76, 432
== (equal to operator), 76
! (not logical operator), 93–97
!= (not equal to comparison operator), 76
$ (dollar sign character), use in source code, 40
% (remainder or modulo operator), 46, 50
%= (remainder assignment operator), 54–55
&& (and logical operator), 93–97
() (parentheses), 14, 225
* (multiplication operator), 15, 46, 50
*= (multiplication assignment operator), 54–55
^ (exclusive or logical operator), 93–97
{} (curly braces), 13, 79, 83
< (less than comparison operator), 76
<= (less than or equal to comparison operator), 76
> (greater than comparison operator), 76
>= (greater than or equal to comparison operator), 76

Numbers
24-point game, 794–796

A
abs method, Math class, 121–122, 524
Absolute file name, 473
Abstract classes

AbstractCollection class, 762
AbstractGraph, 1025–1026
AbstractGraph.java example, 1028–1033
AbstractMap class, 812
AbstractSet class, 798
AbstractTree class, 935–936
case study: abstract number class, 501–503
case study: Calendar and GregorianCalendar classes, 503–506
characteristics of, 500–501
Circle.java and Rectangle.java examples, 498

compared with interfaces, 517–520
GeometricObject.java example, 496–498
InputStream and OutputStream classes, 680–681
interfaces compared to, 506
key terms, 528–529
modeling graphs and, 1024
MyAbstractList.java example, 899
overview of, 366–367, 495–496
questions and exercises, 528–533
Rational.java example, 522–524
reasons for using abstract methods, 498
summary, 528–529
TestCalendar.java example, 504–505
TestGeometricObject.java example, 498–499
TestRationalClass.java example, 521–522
using as interface, 896

Abstract data type (ADT), 366
Abstract methods

characteristics of, 500
GenericMatrix.java example, 753–755
GeometricObject class, 497–498
implementing in subclasses, 496
in interfaces, 506
in Number class, 524
overview of, 225–226
reasons for using, 498–499

abstract modifier, for denoting abstract methods, 496
Abstract number class

LargestNumbers.java, 502–503
overview of, 501–503

Abstract Windows Toolkit. see AWT (Abstract Windows Toolkit)
AbstractCollection class, 763
AbstractGraph class, 1062

AbstractGraph.java example, 1028–1033
Edge as inner class of, 1065
overview of, 1025–1026
WeightedGraph class extending, 1065–1066

AbstractMap class, 812
AbstractSet class, 798
AbstractTree class, 936–937
Access, Microsoft

JDBC drivers for accessing Oracle databases, 1189–1196
tutorials on, 1178

Accessor methods. see Getter (accessor) methods
acos method, trigonometry, 120–121
Actions (behaviors), object, 322
ActionEvent, 588–589
Activation records, invoking methods and, 208
Actual concrete types, 738
Actual parameters, defining methods and, 205
Ada, high-level languages, 8
add method

implementing linked lists, 906–907
List interface, 768

Addition (+) operator, 46, 50
Addition (+=) assignment operator, augmented assignment

operators, 54–55

1290 Index

APIs (Application Program Interfaces)
Java API for accessing relational databases. see JDBC (Java Database

Connectivity)
libraries as, 11

Application Program Interfaces (APIs), 11
Application-scoped bean, 1233
Apps, developing on Web servers, 11
Arc

overview, 567
ShowArc.java, 568–569

Arguments
defining methods and, 205
passing by values, 212–215
receiving string arguments from command line, 272–273
variable-length argument lists, 264–265

Arithmetic operators, in SQL, 1186
ArithmeticException class, 453
Arithmetic/logic units, CPU components, 3
Array elements, 248
Array initializers, 248–249
ArrayBlockingQueue class, 1122–1123
arraycopy method, System class, 256
ArrayIndexOutOfBoundsException, 251
ArrayList class

animation of array lists, 897
case study: custom stack class, 439
cloning arrays, 514
compared with LinkedList, 769–770
creating and adding numbers to array lists, 437–438
creating array lists and adding elements to, 764–767
defined under List interface, 767
DistinctNumbers.java example, 435–438
as example of generic class, 738–739
implementing array lists, 900–901
implementing bucket sorts, 881–882
implementing buckets, 993
implementing stacks using array lists. see Stacks
MyArrayList, 897
MyArrayList compared with MyLinkedList, 918–919
MyArrayList.java example, 901–904
representing edges in graphs, 1023–1024
SetListPerformanceTest.java example, 807–808
storing edge objects in, 1021
for storing elements in a list, 762
storing heaps in, 875
storing list of objects in, 432–433
TestArrayAndLinkedList.java, 770–771
TestArrayList.java example, 433–436
TestMyArrayList.java example, 905–906
Vector class compared with, 781

Arrays, in general
edge arrays, 1020–1021
as fixed-size data structure, 900
implementing binary heaps using, 875
ragged arrays, 1022
sorting using Heap class, 879
storing lists in. see ArrayList class
storing vertices in, 1020

Arrays, multi-dimensional
case study: daily temperature and humidity,

302–303
case study: guessing birthdays, 304–305
overview of, 301–302

Adelson-Velsky, G. M., 966
Adjacency lists, representing edges, 1022–1024
Adjacency matrices

representing edges, 1021–1024
weighted, 1064

Adjacent edges, overview of, 1018
ADT (abstract data type), 366
Aggregating classes, 374
Aggregating objects, 374
Aggregation relationships, objects, 374–375
AIFF audio files, 662
Algorithms, 34

analyzing Towers of Hanoi problem, 828–829
Big O notation for measuring efficiency of, 822–825
binary search, 828
bubble sort, 864–866
comparing growth functions, 829–830
comparing prime numbers, 837
determining Big O for repetition, sequence, and selection statements,

824–827
EfficientPrimeNumbers.java example, 839–842
external sorts. see External sorts
finding closest pair of points, 843–846
finding convex hull for a set of points, 849–851
finding Fibonacci numbers, 831–833
finding greatest common denominator, 833–834
finding prime numbers, 837
GCDEuclid.java example, 835–837
GCD.java example, 834–835
gift-wrapping algorithm, 849–850
Graham’s algorithm, 850–851
graph algorithms, 1017
greedy, 956
heap sort. see Heap sorts
key terms, 851
merge sort, 867–870
overview of, 821–822
PrimeNumbers.java example, 838–839
questions and exercises, 853–860
quick sort, 870–874
recurrence relations and, 829
selection sort and insertion sort, 828
SieveOfEratosthenes.java example, 842–843
solving Eight Queens problem, 846–849
for sort method, 745
summary, 851–852

Algorithms, spanning tree
Dijkstra’s single-source shortest-path algorithm, 1079–1084
MST algorithm, 1075–1076
Prim’s minimum spanning tree algorithm, 1073–1075

Aliases, column aliases, 1185–1186
Ambiguous invocation, of methods, 221
American Standard Code for Information Interchange (ASCII). see ASCII

(American Standard Code for Information Interchange)
And (&&) logical operator, 93–97
Animation

ClockAnimation.java, 615–616
FadeTransition, 612–613
PathTransition, 609–612
Timeline, 614–616
using threads to control (flashing text case study), 1105

Anonymous arrays, 258
Anonymous objects, 331

Index 1291

Assignment statements (assignment expressions)
assigning value to variables, 36
overview of, 41–43

Associative arrays. see Maps
Associativity, of operators, 105, 1268–1269
atan method, trigonometry, 120–121
Attributes

columns in relational structures, 1175
object, 322
table, 1181

Audio files
case study: national flags and anthems, 665–667
MediaDemo.java, 663–664

Auto commit, SQL statements and, 1194
Autoboxing/Autounboxing, 383–384, 739–740
Autoenforcement, of integrity constraints, 1178
Average-case analysis, measuring algorithm efficiency,

522, 836
AVL trees

AVLTree.java, 972–977
balancing nodes on a path, 970–971
deleting elements, 972
designing classes for, 969–970
key terms, 982
overriding the insert method, 970
overview of, 965–966
questions and exercises, 982–983
rebalancing, 966–968
rotations for balancing, 971
summary, 982
TestAVLTree.java, 978–981
time complexity of, 981

AVLTree class
overview of, 972–977
as subclass of BST class, 969
testing, 978–981

AWT (Abstract Windows Toolkit)
Color class, 546–547
Date class, 334–335, 503–504
Error class, 456, 458
event classes in, 588
EventObject class, 588–590
exceptions. see Exception class
File class, 473–475, 678
Font class, 547–548
GeometricObject class, 496–499
GuessDate class, 304–305
IllegalArgumentException class, 459
InputMismatchException class, 454–455, 479
KeyEvent class, 603
MalformedURLException class, 483
MouseEvent class, 602–603
Polygon class, 569–570
String class, 386
Swing vs., 536

B
Babylonian method, 239
Backslash character (\), as directory separator, 474
Backtracking algorithm, 846–849
Backward pointer, in doubly linked lists, 920
Balance factor, for AVL nodes, 966

questions and exercises, 305–319
summary, 305

Arrays, single-dimensional
accessing elements, 248
ArrayList class, 435–436
Arrays class, 270–272
case study: analyzing numbers, 253–254
case study: counting occurrences of letters,

261–264
case study: deck of cards, 254–256
case study: generic method for sorting, 744–745
constructing strings from, 386
converting strings to/from, 389–390
copying, 256–257
creating, 246–248, 510–512
declaring, 246
foreach loops, 251–253
initializers, 248–249
key terms, 275
of objects, 351–353
overview of, 245–246
passing to methods, 257–260
processing, 249–251
questions and exercises, 276–285
returning from methods, 260–261
searching, 265–269
serializing, 696–697
size and default values, 248
sorting, 269–270, 510–512
summary, 275–276
treating as objects in Java, 330
variable-length argument lists, 264–265

Arrays, two-dimensional
case study: finding closest pair of points, 296–297
case study: grading multiple-choice test, 294–296
case study: Sudoku, 298–301
declaring variables and creating two-dimensional arrays,

288–289
obtaining length of two-dimensional arrays, 289–290
overview of, 287–288
passing to methods to two-dimensional arrays, 293–294
processing two-dimensional arrays, 291–293
questions and exercises, 305–319
ragged arrays, 290–291
representing graph edges with, 1020–1021
representing weighted graphs, 1063–1064
summary, 305

Arrays class, 270–271
Arrows keys, on keyboards, 5
ASCII (American Standard Code for Information Interchange)

character data type (char) and, 126
data input and output streams, 685
decimal and hexadecimal equivalents, 1267
encoding scheme, 3
text encoding, 678
text I/O vs. binary I/O, 679

asin method, trigonometry, 120–121
asList method, 771
Assemblers, 7
Assembly language, 7
Assignment operator (=), 1277

augmented, 54–55
overview of, 41–43

1292 Index

TestBSTWithIterator.java example, 953–954
tree traversal, 933–934
TreeControl.java example, 949–952
Tree.java example, 935–936

Binary trees, 930
binarySearch method

applying to lists, 774
Arrays class, 270–271

BindException, server sockets and, 1141
Binding properties

BindingDemo.java, 544
ShowCircleCentered.java, 542–543

Bit operators, 1277
Bits (binary digits), 3
Bitwise operators, 1277
Block comments, in Welcome.java, 12–13
Block modifiers, 1270–1271
Block style, programming style, 19
Blocking queues, 1122–1124
Blocks, in Welcome.java, 12–13
BMI (Body Mass Index), 89–90, 370–373
Boolean accessor method, 345
boolean data type

java.util.Random, 334–335
overview of, 76–78

Boolean expressions
case study: determining leap year, 97–98
conditional expressions, 103–104
defined, 76
if statements and, 78–79
if-else statements, 80–81
writing, 86–87

Boolean literals, 77
Boolean operators, 1184
Boolean values

defined, 76
as format specifier, 146
logical operators and, 93–94
redundancy in testing, 84

Boolean variables
assigning, 86
overview of, 76–77
redundancy in testing, 84

BorderPane

overview of, 556
ShowBorderPane.java, 557

Bottom-up implementation, 227–229
Bounded generic types

erasing, 750–751
GenericMatrix.java example, 752–757
MaxUsingGenericType.java example, 746–747
overview of, 743–744

Bounded wildcards, 748
Boxing, converting wrapper object to primitive value, 383
Braces. see Curly braces ({})
Breadth-first searches (BFS)

AbstractGraph class, 1031
applications of, 1047–1048
finding BFS trees, 1018
implementing, 1046
overview of, 1045
TestBFS.java, 1046–1047
traversing graphs, 1037

Breadth-first traversal, tree traversal, 934

Balanced nodes
in AVL trees, 966
AVLTree class, 972–973, 976–977

Base cases, in recursion, 712
BASIC, high-level languages, 8
Bean machine game, 280–281, 627
beginIndex method, for obtaining substrings from strings, 136
Behaviors (actions), object, 322
Behind the scene evaluation, expressions, 105
Best-case input, measuring algorithm efficiency, 822, 836
between-and operator, in SQL, 1185
BFS (breadth-first searches). see Breadth-first searches (BFS)
Big O

determining for repetition, sequence, and selection statements,
824–827

for measuring algorithm efficiency, 822–823
BigDecimal class, 384–385, 501
Binary

files, 678
machine language as binary code, 7
operators, 47
searches, 266–269, 716–717

Binary digits (Bits), 3
Binary heaps (binary trees), 874. see also Heap sorts
Binary I/O

BufferedInputStream and BufferedOutputStream classes,
719–722

characters and strings in, 716
classes, 712–713
DataInputStream and DataOutputStream classes, 716–718
DetectEndOfFile.java, 687–688
FileInputStream and FileOutputStream classes,

681–682
FilterInputStream and FilterOutputStream classes, 684
overview of, 678
TestDataStream.java, 686–687
TestFileStream.java, 682–683
vs. text I/O, 679–680

Binary numbers
converting to/from decimal, 731, 1274
converting to/from hexadecimal, 1275
overview of, 1271

Binary search algorithm, 858
analyzing, 828
recurrence relations and, 829

Binary search trees (BST)
AbstractTree.java example, 936–937
BST class, 935–936
BST.java example, 937–941
case study: data compression, 954–956
deleting elements, 943–945
displaying/visualizing binary trees, 949
HuffmanCode.java example, 956–958
implementing using linked structure, 930–931
inserting elements, 932–933
iterators, 952–953
key terms, 959
overview of, 929–930
questions and exercises, 959–964
representation of, 931–932
searching for elements, 932
summary, 959
TestBSTDelete.java example, 946–948
TestBST.java example, 942–943

Index 1293

Catching exceptions. see also try-catch blocks
catch block omitted when finally clause is used, 467
CircleWithException.java example, 463
InputMismatchExceptionDemo.java example, 454–455
overview of, 459–461
QuotientWithException.java example, 521–522

CDs (compact discs), as storage device, 5
Cells

in Sudoku grid, 298
in tic-tac-toe case study, 657–662

Celsius, converting to/from Fahrenheit, 50–51, 236
Chained exceptions, 469–470
char data type. see Characters (char data type)
Characters (char data type)

applying numeric operators to, 223–224
in binary I/O, 684–685
case study: counting monetary units, 63–65
case study: ignoring nonalphanumeric characters when checking

palindromes, 396–398
casting to/from numeric types, 127
comparing, 76
constructing strings from arrays of, 386
converting to strings, 389–390
decimal and hexadecimal equivalents of ASCII character set, 1267
escape characters, 126
finding, 136–137
generic method for sorting array of Comparable objects, 744
hash codes for primitive types, 987
overview of, 125
RandomCharacter.java, 224
retrieving in strings, 131–132
TestRandomCharacter.java, 224–225
Unicode and ASCII and, 125–126

charAt (index) method
retrieving characters in strings, 131–132
StringBuilder class, 395

CheckBox, 634–636
Checked exceptions, 457
checkIndex method, 906
Checkpoint Questions, recurrence relations and, 829
Child, searching for elements in BST, 932–933
Choice lists. see Combo boxes
Circle class, 322
Circle and Ellipse

overview, 565
ShowEllipse.java, 566–567

Circular
doubly linked lists, 920

Circular, singly linked lists, 919
Clarity, class design guidelines, 526
Class diagrams, UML, 323
Class loaders, 17
Class modifiers, Java modifiers, 1270–1271
ClassCastException, 428
Classes

abstract. see Abstract classes
abstraction and encapsulation in, 366–367
benefits of generics, 738
case study: designing class for matrix using generic types, 752–755
case study: designing class for stacks, 378–380
case study: designing Course class, 376–377
in CircleWithPrivateDataFields.java example, 345–346
in CircleWithStaticMembers.java example, 338–339
clients of, 325

break statements
controlling loops, 184–187
using with switch statements, 100

Breakpoints, setting for debugging, 106
Brute-force algorithm, 833
BST (binary search trees). see Binary search trees (BST)
BST class

AbstractTree.java example, 936–937
AVLTree class as subclass of, 969
BST.java example, 937–941
overview of, 935
TestBSTDelete.java example, 946–948
TestBST.java example, 942–943
time complexity of, 948
Tree.java example, 935–936

Bubble sorts, 279
bubble sort algorithms, 865
BubbleSort.java example, 866
overview of, 864–865
time complexity of, 866

Buckets
bucket sorts, 881–883
separate chaining and, 993, 1012

BufferedInputStream and BufferedOutputStream classes, 688–690
Buffers, creating, 1120, 1123
Bugs (logic errors), 21, 106
Bus, function of, 2–3
Button, 632–634
ButtonBase, 632–633
Button, ButtonDemo.java, 633–634
byte type, numeric types

hash codes for primitive types, 987
overview of, 45

Bytecode
translating Java source file into, 15
verifier, 17

Bytes
defined, 3
measuring storage capacity in, 4

C
C, high-level languages, 8
C++, high-level languages, 8
Cable modems, 6
Calendar class, 503–504
Call stacks

displaying in debugging, 106
invoking methods and, 207

CallableStatement, for executing SQL stored procedures, 1199–1202
Calling

methods, 206–208
objects, 331

Candidate keys, 1215
canRead method, File class, 474–475
canWrite method, File class, 474–475
capacity method, StringBuilder class, 395
Case sensitivity

identifiers and, 39–40
in Welcome.java, 14

Casting. see Type casting
Casting objects

CastingDemo.java example, 428–431
overview of, 427–428

1294 Index

clone method, shallow and deep copies, 515–516
Cloneable interface

House.java example, 514–517
overview, 513–514

Closest-pair animation, 858
Closest pair problem, two-dimensional array applied to,

296–297COBOL, high-level languages, 8
Code

arrays for simplifying, 250–251
comments and, 101
incremental development, 161
programming. see Programs/programming
reuse. see Reusable code
sharing. see Sharing code
in software development process, 61–62

Coding trees, 954–955. see also Huffman coding trees
Coherent purpose, class design guidelines, 526
Collections

Collection interface, 762–764
iterators for traversing collections, 766
singleton and unmodifiable, 816–817
static methods for, 773–777
synchronized collections, 1127–1128
TestCollection.java example, 764–766

Collections class
singleton and unmodifiable collections, 816–817
static methods, 774
synchronization wrapper methods, 1127

Collections Framework hierarchy
ArrayList and LinkedList classes, 769–771
case study: applet displaying bouncing balls, 777–781
case study: stacks used to evaluate expressions, 786–790
Collection interface, 762–764
Comparator interface, 772–773
Dequeue interface, 783–784
designing complex data structures, 1024
iterators for traversing collections, 766
key terms, 790
List interface, 767–768
Map interface, 986
methods of List interface, 767–768
overview of, 761–762
PriorityQueue class, 784–785
quiz and exercises, 791–796
Queue interface, 783
queues and priority queues, 783
static methods for lists and collections, 773–777
summary, 790–791
synchronized collections for lists, sets, and maps,

1127–1128
TestCollection.java example, 764–766
TestIterator.java example, 766–767
Vector and Stack classes, 781–782

Collisions, in hashing
double hashing, 991–993
handling using open addressing, 989
handling using separate chaining, 993
linear probing, 989–990
overview of, 987
quadratic probing, 990–991

Columns (attributes)
column aliases, 1185–1186
creating, 336–337
relational structures, 1175

Classes (continued)
commenting, 18–19
in ComputeExpression.java, 14–15
data field encapsulation for maintaining, 344–345
defining custom exception classes, 470–473
defining for objects, 322–324
defining generic, 740–742
design guidelines, 525–528
identifiers, 39–40
inner (nested) classes. see Inner (nested) classes
from Java Library, 334
JDBC, 1190
names/naming conventions, 13, 44
Point2D, 336–337
preventing extension of, 442–443
raw types and backward compatibility, 746
static variables, constants, and methods, 337–338
in TestCircleWithPrivateDataFields.java example,

346–347
in TestCircleWithStaticMembers.java example, 339–342
thread-safe, 1111
in UML diagram, 324
variable scope and, 337–338
visibility modifiers, 342–344
in Welcome.java, 12
in WelcomeWithThreeMessages.java, 14

Classes, binary I/O
BufferedInputStream and BufferedOutputStream classes,

688–690
DataInputStream and DataOutputStream classes, 684–686
DetectEndOfFile.java, 687–688
FileInputStream and FileOutputStream classes, 681–683
FilterInputStream and FilterOutputStream classes, 684
overview of, 680–681
TestDataStream.java, 686–687
TestFileStream.java, 682–683

Class’s contract, 366
Clients

client sockets, 1141–1142
client.java, 1145–1146
client/server example, 1143
multiple clients connected to single server, 1148–1157
StudentClient.java, 1153–1154
TicTacToeClient.java, 1162–1167

Client/server computing
case study: distributed tic-tac-toe games, 1156–1157
client sockets, 1141–1142
client.java, 1145–1146
client/server example, 1143
data transmission through sockets, 1142
InetAddress class, 1147–1148
multiple clients connected to single server, 1148–1151
overview of, 1140
sending and receiving objects, 1151–1156
server sockets, 1140–1141
server.java, 1143–1144
TicTacToeClient.java, 1162–1167
TicTacToeConstants.java, 1157
TicTacToeServer.java, 1157–1162

ClockPane Class
ClockPane.java, 574–577
DisplayClock.java, 573–574
paintClock method, 576–577

Clock speed, CPUs, 3

Index 1295

naming conventions,
overview of, 629–630
quiz and exercises, 668–676
scroll bars, 651–652
ScrollBarDemo.java, 652–653
SliderDemo.java, 655–656
sliders, 654
summary, 668
text area, 641–642
TextAreaDemo.java, 644

Composition, in designing stacks and queues, 921
Composition relationships

between ArrayList and MyStack, 439–440
aggregation and, 374–375

Compound expressions
case study: stacks used to evaluate, 786–787
EvaluateExpression.java example,

788–790
Compression

data compression using Huffman coding,
954–956

of hash codes, 988–989
HuffmanCode.java example, 956–958

Compute expression, 14
Computers

communication devices, 6–7
CPUs, 3
input/output devices, 5–6
memory, 4
OSs (operating systems), 9–10
overview of, 2–3
programming languages, 7–9
storage devices, 4–5

concat method, 131
Concatenate strings, 36, 131
Concurrency, impact of running multiple threads, 1101
Conditional expressions, 103–104
Conditions

on locks for thread cooperation, 1114–1115
thread synchronization using, 1112–1113
ThreadCooperation.java, 1116–1119

Connect four game, 313
Connected circles problem

ConnectedCircles.java, 1043–1045
overview of, 1042–1043

Connected graphs, 1018
Consistency, class design guidelines, 526
Consoles

defined, 12
formatting output, 145–149
input, 12
output, 12
reading input, 37–39

Constant time, comparing growth functions, 830
Constants

class, 337–338
declaring, 338
identifiers, 39–40
KeyCode constants, 604
named constants, 43
naming conventions, 44
TicTacToeConstants.java, 1157
wrapper classes and, 381

Constructor chaining, 417–418

Combo boxes
ComboBoxDemo.java, 645–646
overview of, 644–645

Command-line arguments, 272–275
Comments

code maintainability and, 101
programming style and, 18
in Welcome.java, 12–13

Common denominator, finding greatest common denominator. see Gcd
(greatest common denominator)

Communication devices, computers and, 6–7
Compact discs (CDs), as storage device, 4–5
Comparable interface

ComparableRectangle.java example, 511–512
Comparator interface vs., 773
as example of generic interface, 738–739
generic method for sorting array of Comparable objects, 744
overview of, 509–510
PriorityQueue class and, 784
Rational class implementing, 522
SortComparableObjects.java example, 510–511
SortRectangles.java example, 512–513
TreeMap class and, 813

Comparator interface
Comparable vs., 773
GeometricObjectComparator.java, 772
methods of, 772
PriorityQueue class and, 784
TestComparator.java, 772–773
TestTreeSetWithComparator.java example, 804–806
TreeMap class and, 813

compare method, 772–773
compareTo method

Cloneable interface and, 513
Comparable interface defining, 509–510
ComparableRectangle.java example, 511–512
comparing strings, generic method for sorting array of Comparable

objects, 745
implementing in Rational class, 522
wrapper classes and, 381

compareToIgnoreCase method, strings, Comparing strings,
Comparison operators, 76, 432, 1184

Compatibility, raw types and backward compatibility, 746–747
Compile errors (Syntax errors)

common errors, 13–14
debugging, 106
programming errors, 20

Compile time
error detection at, 738
restrictions on generic types, 751
Xlint:unchecked error, 746

Compilers
ambiguous invocation and, 221
reporting syntax errors, 20
translating Java source file into bytecode file, 15–16
translating source program into machine code, 8–9

Complete graphs, 1018
Completeness, class design guidelines, 527
Complex numbers, Math class, 531
Components

JSF GUI, 1222–1226
TextFieldDemo.java, 639–641
ListView, 647–649
ListViewDemo.java, 649–650, 661–662

1296 Index

Cursor, mouse, 6
Cycle, connected graphs, 1018

D
.dat files (binary), 680
Data, arrays for referencing, 246
Data compression

Huffman coding for, 954–956
HuffmanCode.java example, 956–959

Data definition language (DDL), 1192
Data fields

accessing object data, 330–331
encapsulating, 344–345, 526
in interfaces, 508
object state represented by, 322–323
protected in abstract classes, 899
referencing, 331, 356–357
in SimpleCircle example, 325–326
in TV.java example, 327
UML diagram of, 324

Data modifiers, 1270–1271
Data streams. see DataInputStream/DataOutputStream classes
Data structures. see also Collections Framework hierarchy

array lists. see ArrayList class
choosing, 762
collections. see Collections
first-in, first-out, 782
linked lists. see LinkedList class
lists. see Lists
queues. see Queues
stacks. see Stacks

Data structures, implementing
array lists, 900–901
GenericQueue.java example, 922
implementing MyLinkedList class, 909–915
linked lists, 906–908
lists, 896–897
MyAbstractList.java example, 899
MyArrayList compared with MyLinkedList, 918–919
MyArrayList.java example, 901–904
MyLinkedList.java example, 908–910, 916–918
MyList.java example, 897–898
MyPriorityQueue.java example, 924
overview of, 895–896
priority queues, 924
quiz and exercises, 926–928
stacks and queues, 920–921
summary, 925
TestMyArrayList.java example, 905–906
TestMyLinkedList.java example, 909–910
TestPriorityQueue.java example, 924–925
TestStackQueue.java example, 922–923
variations on linked lists, 919–920

Data transmission, through sockets, 1142
Data types

ADT (abstract data type), 366
boolean, 76–78, 335

Constructors
in abstract classes, 498
for AbstractGrpah class, 1028–1029
for AVLTree class, 972–973
for BMI class, 372
calling subclass constructors, 416–417
creating objects with, 329
creating Random objects, 335
for DataInputStream and DataOutputStream classes, 685
for Date class, 335
generic classes and, 742
interfaces vs. abstract classes, 517
invoking with this reference, 374–375
for Loan class, 357–358
object methods and, 322–323
private, 344
in SimpleCircle example, 325–326
for String class, 386
for StringBuilder class, 393
in TV.java example, 327
UML diagram of, 324
for UnweightedGraph class, 1033–1034
for WeightedGraph class, 1066–1067
wrapper classes and, 527

Containers
creating data structures, 762
maps as, 810
removing elements from, 808
storing objects in, 763
types supported by Java Collections

Framework, 762
contains method, 809
Contention, thread priorities and, 1104
continue statements, for controlling loops, 184–187
Contract, object class as, 322
Control, 539–542
Control units, CPUs, 3
Control variables, in for loops, 171–172
Conversion methods, for wrapper classes, 381
Convex hull

finding for set of points, 849
gift-wrapping algorithm applied to, 849–580
Graham’s algorithm applied to, 850–851

Copying
arrays, 256–257
files, 691

Core, of CPU, 3
cos method, trigonometry, 120–121
Cosine function, 581
Counter-controlled loops, 159
Coupon collector’s problem, 260
Course class, 376
CPUs (central processing units), 3

round-robin scheduling, 1104
time sharing by threads, 1098

create table statement, 1181
Critical regions, avoiding thread race conditions, 1111
Cubic time, comparing growth functions, 829–830
Curly braces ({})

in block syntax, 13
dangers of omitting, 172
forgetting to use, 83

currentTimeMillis method, 52

Index 1297

Declaring methods
generic methods, 743
static methods, 337

Declaring variables
array variables, 246
overview of, 40–41
specifying data types and, 35–36
two-dimensional array variables, 288–289

Decrement (––) operator, 55–56
Deep copies, 516
Default field values, for data fields, 331–332
Degree of vertex, 1018
Delete key, on keyboards, 6
delete method, AVLTree class, 981
Delete statements, SQL, 1182–1183
Delimiters, token reading methods and, 479
Denominator. see Gcd (greatest common denominator)
Denominators, in rational numbers, 520
Deployment, in software development process, 60
Depth-first searches (DFS)

AbstractGraph class, 1031
applications, 1041–1042
case study: connected circles problem, 1042–1043
finding DFS trees, 1018
implementing, 1039–1040
traversing graphs, 1037–1038

Depth-first traversal, tree traversal, 933
Dequeue interface, LinkedList class, 783–784
dequeue method, 922
DescriptionPane class, 642–643
Descriptive names

benefits of, 40
for variables, 35

Deserialization, of objects, 695
Design guidelines, classes, 525–528
Determining Big O

for repetition statements, 824–827
for selection statements, 824–827
for sequence statements, 824–827

DFS (depth-first searches). see Depth-first searches (DFS)
Dial-up modems, 6
Dictionaries. see Maps
Digital subscriber lines (DSLs), 6
Digital versatile disc (DVDs), 5
Digits, matching, 98
Dijkstra’s single-source shortest-path algorithm, 1079–1083
Direct recursion, 709
Directed graphs, 1017
Directories

case study: determining directory size, 717
DirectorySize.java, 717–718
File class and, 474
file paths, 473

disjoint method, 776
Disks, as storage device, 5
Display message

in Welcome.java, 12
in WelcomeWithThreeMessages.java, 14

distinct keyword, for eliminating duplicate tuples,
1186–1187

Divide-and-conquer algorithm, 844
Divide-and-conquer strategy. see Stepwise refinement
Division (/=) assignment operator, 42

char. see Characters (char data type)
double. see double (double precision), numeric types
float. see Floating-point numbers (float data type)
fundamental. see Primitive types
generic. see Generics
int. see Integers (int data type)
long. see long, numeric types
numeric, 44–46, 56–58
reference types. see Reference types
specifying, 35
strings, 130
types of, 41
using abstract class as, 500

Database management system (DBMS)
overview of, 1174
SQL as. see SQL (Structured Query Language)

Database metadata
DatabaseMetaData interface, 1202–1204
obtaining database tables, 1204
overview of, 1202
ResultSetMetaData interface, 1204–1205
TestDatabaseMetaData.java, 1203
TestResultSetMetaData.java, 1205

Databases
accessing using JavaFX, 1194–1196
creating in MySQL, 1180–1181
database system, 1174–1175
populating, 1181
relational. see Relational DBMS

DataInputStream/DataOutputStream classes
DetectEndOfFile.java, 687
external sorts and, 884–885
overview of, 684
TestDataStream.java, 686

Date class
case study: Calendar and GregorianCalendar

classes, 503–504
java.util, 334–335

DBMS (database management system). see Database management
system (DBMS)

DDL (data definition language), 1192
De Morgan’s law, 95
Deadlocks, avoiding, 1126
Debugging

benefits of stepwise refinement, 232
code modularization and, 215
selections, 106

Decimal numbers
BigDecimal class, 384–385
converting to hexadecimals, 182–183, 217–219, 731
converting to/from binary, 731, 1274
converting to/from hexadecimal, 1275
division of, 51
equivalents of ASCII character set, 1267
overview of, 1273

Declaring constants, 43, 337
Declaring exceptions

CircleWithException.java example, 463–464
ReadData.java example, 478–479
TestCircleWithCustomException.java example, 471–472
throws keyword for, 458

1298 Index

Edge-weighted graphs
overview of, 1062
WeightedGraph class, 1064

Eight Queens puzzle
EightQueens.java, 847–848
parallel, 1136
recursion, 734–735
single-dimensional arrays, 281
solving, 846–847

Element type, specifying for arrays, 246
Emirp, 240
Empty element, 1221
Encapsulation

in CircleWithPrivateDataFields.java example,
345–346

class design guidelines, 525–526
of classes, 366–367
of data fields, 344–345
information hiding with, 225
of Rational class, 525

Encoding schemes
defined, 3–4
mapping characters to binary equivalents, 125

End of file exception (EOFException), 687
End-of-line style, block styles, 19
enqueue method, 922
entrySet method, Map interface, 812
Equal (=) operator, for assignment, 76
Equal to (==) operator, for comparison, 76
equalArea method, for comparing areas of geometric objects, 499
Equals method

Arrays class, 271
Comparator interface, 772
Object class, 422

Erasure and restrictions, on generics, 750–752
Error class, 456, 458
Errors, programming. see Programming errors
Euclid’s algorithm

finding greatest common denominator, 835
GCDEuclid.java example, 835–837

Euler, 1016–1017
Event delegation, 589
Event handlers/event handling, 587–588, 604, 597–599
Ever-waiting threads, 1118
Exception class

exceptions in, 456
extending, 470
in java.lang, 471
subclasses of, 456–457

Exception handling. see also Programming errors
BindException, 1141
catching exceptions, 459–461, 463
chained exceptions, 469–470
checked and unchecked, 457
CircleWithException.java example, 463–464
ClassCastException, 428
declaring exceptions (throws), 458, 463
defined, 450
defining custom exception classes, 470–473
EOFException, 687
in Exception class, 456
exception classes cannot be generic, 752
FileNotFoundException, 681

Division operator (/), 46, 50
DNS (Domain Name Servers), 1140
Documentation, programming and, 18
Domain constraints, integrity constraints in relational

model, 1176
Domain Name Servers (DNS), 1140
Domain names

overview of, 1140
using to create socket, 1141

Dot operator (.), 330
Dot pitch, measuring sharpness of displays, 6
double (double precision), numeric types

converting characters and numeric values to strings, 389
declaring variables and, 41
generic method for sorting array of Comparable

objects, 744
hash codes for primitive types, 987
java.util.Random, 335
overview of numeric types, 45
precision of, 178–179

Double hashing, collision handling, 991–993
Doubly linked lists, 920

do-while loops
deciding when to use, 174–175
overview of, 168–170

Downcasting objects, 427
drawArc method, 567–569
Drivers, JDBC, 1189–1191
Drives, 5
drop table statement, 1182
Drop-down lists. see Combo boxes
DSLs (digital subscriber lines), 6
DVDs (Digital versatile disc), 5
Dynamic binding, inheritance and, 424–427
Dynamic programming

computing Fibonacci numbers, 832–833
Dijkstra’s algorithm, 1083

E
Eclipse

built in debugging, 106
creating/editing Java source code, 15

Edge arrays
representing edges, 1020–1021
weighted edges using, 1063–1064

Edge class, 1021
Edges

AbstractGraph class, 1029
adjacency lists, 1022–1024
adjacency matrices, 1021–1022
adjacent and incident, 1018
defining as objects, 1021
Graph.java example, 1028
on graphs, 1017
Prim’s algorithm and, 1072
representing edge arrays, 1020–1021
TestGraph.java example, 1026
TestMinimumSpanningTree.java, 1076–1077
TestWeightedGraph.java, 1070–1071
weighted adjacency matrices, 1064
weighted edges using edge array, 1063–1064
weighted graphs, 1062
WeightedGraph class, 1065–1066

Index 1299

Feet, converting to/from meters, 236
fib method, 710–712
Fibonacci, Leonardo, 710
Fibonacci numbers

algorithm for finding, 831
case study: computing, 709–710
ComputeFibonacci.java, 710–712
computing recursively, 729
ImprovedFibonacci.java example, 832
recurrence relations and, 829

FigurePanel class
File class, 473–475, 678
File I/O. see I/O (input/output)
File pointers, random-access files and, 698
FileInputStream/FileOutputStream classes

overview of, 681–682
TestFileStream.java, 682–684

Files
case study: copying files, 691
case study: replacing text in, 480
File class, 473–475, 678
input/output, 476
key terms, 486
quiz and exercises, 488–493
reading data from, 478–479
reading data from Web, 482–484
summary, 487
TestFileClass.java, 475
writing data to, 476–477

fill method, 776
FilterInputStream/FilterOutputStream classes, 684
final keyword, for declaring constants, 43
final modifier, for preventing classes from being extended,

442–443
finally clause, in exception handling, 466–467
First-in, first out data structures, 783
float data type. see Floating-point numbers (float data type)
Floating-point literals, 49
Floating-point numbers (float data type)

approximation of, 66
converting to integers, 56
hash codes for primitive types, 987
java.util.Random, 335
minimizing numeric errors related to loops, 178–179
numeric types for, 45
overview of numeric types, 45
special values, 1272
specifying data types, 35
specifying precision, 147

Flowcharts
do-while loops, 169
if statements, 78–79
if-else statements, 80
for loops, 171
switch statements, 100
while loops, 158

FlowLayout class
FlowPane

HBox and VBox, 558
overview, 552
ShowFlowPane.java, 553

Folding, hash codes and, 987
Font, FontDemo.java, 548

finally clause in, 466–467
getting information about exceptions, 461–462
in House.java example, 515
IllegalMonitorStateException, 1118
InputMismatchExceptionDemo.java example, 454
InterruptedException, 1103
IOException, 456
key terms, 486
NotSerializableException, 695
overview of, 39, 449–450
quiz and exercises, 488–493
Quotient.java example, 450
QuotientWithException.java example, 452–454
QuotientWithIf.java example, 451
QuotientWithMethod.java example, 451–452
rethrowing exceptions, 468–469
summary, 487
TestCircleWithException.java example, 464–466
TestException.java example, 462
throwing exceptions, 458–459, 468
types of exceptions, 455–459
UnknownHostException, 1142
unsupported operations of Collection interface, 764
when to use exceptions, 467–468

Exception propagation, 459
Exclusive or (^) logical operator, 93–97
Execution stacks. see Call stacks
Executor interface, 1107
Executors

AccountWithoutSync.java, 1109–1110
thread pools and, 1107–1108

exists method, for checking file instances, 474
Explicit casting, 56–57, 427
Exponent method, Math class, 121
Exponent operations, 48
Exponential algorithms, 829, 852
Expressions

assignment statements and, 41–43
behind the scene evaluation, 105
Boolean. see Boolean expressions
case study: stacks used to evaluate, 786–787
EvaluateExpression.java example, 788–790
evaluating, 50–51

extends keyword, interface inheritance and, 518
External sorts

complexity of, 889–890
CreateFile.java example, 883–885
implementation phases, 884–889
overview of, 883

F
Facelet, binding database with, 1239–1245
Factorials

case study: computing factorials, 706–707
ComputeFactorial.java, 707–709
ComputeFactorialTailRecusion.java, 727–728
tail recursion and, 727

FadeTransition, 612–613
Fahrenheit, converting Celsius to/from, 51, 235
Fail-fast, iterators, 1128
Fairness policy, locks and, 1113
Fall-through behavior, switch statements, 101

1300 Index

restrictions on generic types, 750–752
summary, 757–758
wildcards for specifying range of generic types, 747–750

Genome, 367
GeometricObject class

Circle.java and Rectangle.java, 498
overview of, 496
TestGeometricObject.java, 498–499

getAbsolutePath method, File class, 574–575
getArea method, SimpleCircle example, 325
getArray method, 293–294
getBMI method, BMI class, 372
getCharacterFrequency method, 958
getChars method, converting strings into arrays, 389
getDateCreated method, Date class, 354
getIndex method, ArrayList class, 435
getMinimumSpanningTree method, WeightedGraph class, 107,

1077–1078
getPerimeter method, SimpleCircle example, 325
getRadius method, CircleWithPrivateDataFields.java

example, 346
getRandomLowerCaseLetter method, 261, 263
getResponse method, 1235, 1239, 1243
getSize method, finding directory size, 440
getSource method, events, 588
getStackTrace method, for getting information about exceptions, 462
getStatus method, BMI class, 372
Getter (accessor) methods

ArrayList class and, 436
encapsulation of data fields and, 344–347
implementing linked lists, 906–907

getTime() method, 1221
Gift-wrapping algorithm, 849–850
Gigabytes (GBs), of storage, 4
Gigahertz (GHz), clock speed, 3
GMT (Greenwich Mean Time), 52
Gosling, James, 10
Graham’s algorithm, 850–851
Graph interface, 1024–1025
Graph theory, 1016
Graphical user interface (GUI), 630, 1222–1226
Graphs

AbstractGraph.java example, 1028–1033
breadth-first searches (BFS), 1045–1048
case study: connected circles problem, 1042–1045
case study: nine tails problem, 1048–1053
ConnectedCircles.java, 1043–1045
depth-first searches (DFS), 1038–1042
Displayable.java example, 1034
DisplayUSMap.java example, 1035–1037
Graph.java example, 1028
GraphView.java example, 1035
key terms, 1053
modeling, 1024–1026
overview of, 1047–1049
questions and exercises, 1054–1059
representing edges, 1020–1021
representing vertices, 1019–1020
summary, 1054
terminology regarding, 1017–1019
TestGraph.java example, 1026–1028
traversing, 1038
UnweightedGraph.java example, 1033–1034
visualization of, 1034–1035

for loops
deciding when to use, 175
nesting, 176, 291
overview of, 170–174
processing arrays with, 249
variable scope and, 222–223

foreach (enhanced) loops
implicit use of iterator by, 771
overview of, 251–253
for traversing collections, 767

Foreign key constraints, integrity constraints in relational model,
1176–1178

Fork/Join Framework
merge sorts compared with, 869
for parallel programming, 1128–1130
ParallelMax.java, 1132–1133

ForkJoinTask class, 1129
Forks, 1129
Formal generic type, 738
Formal parameters. see Parameters
Format specifiers, 146–148
FORTRAN, high-level languages, 8
Forward pointer, in doubly linked lists, 920
Fractals

case study, 722–723
H-tree fractals, 735
Koch snowflake fractal, 733
SierpinskiTriangle.java, 723–725

Frames (windows)
ScrollBarDemo.java, 652–653
SliderDemo.java, 655–656

Free cells, in Sudoku grid, 298
frequency method, collections and, 776
from clause, select statements, 1183
Function keys, on keyboards, 5
Functions, 205. see also Methods
Fundamental types (Primitive types). see Primitive types

G
Galton box, 280
Garbage collection, JVM and, 333
GBs (gigabytes), of storage, 4
Gcd (greatest common denominator)

algorithm for finding, 833–835
case study: finding greatest common denominator, 179–181
computing recursively, 729
gcd method, 216, 424
GCDEuclid.java example, 835–837
GCD.java example, 834–835
Rational class and, 522

Generic instantiation, 738
Generics

case study: designing class for matrix using generic types, 752–757
case study: generic method for sorting array, 744–745
defining generic classes and interfaces, 740–741
erasing generic types, 750–752
GenericStack class, 740–742
key terms, 757
methods, 742–744
motivation for using, 738–740
overview of, 737–738
questions and exercises, 758–759
raw types and backward compatibility and, 746–747

Index 1301

TestMyHashMap.java example of map implementation,
1002–1003

TestMyHashSet.java example of set implementation, 1010–1011
what it is, 986–987

HashMap class
concrete implementation of Map class, 810–812
implementation of Map class, 986
load factor thresholds, 994
overview of, 813
TestMap.javaexample, 813–815
types of maps, 810–811

HashSet class
case study: counting keywords, 809–810
implementation of Set class, 1002
overview of, 797–798
TestHashSet.java example, 799–800
TestMethodsInCollection.java example, 800–802
types of sets, 798

Hashtable, 813
HBox and VBox

definition, 560
overview, 558
ShowHBoxVBox.java, 559

Heap class
Heap.java example, 878–879
operations for manipulating heaps in, 878
sorting arrays with, 879

Heap sorts
adding nodes to heaps, 875–876
algorithm for, 874–875
arrays using heaps, 879
complexity of, 880–881
Heap class, 877–878
Heap.java example, 878–879
HeapSort.java example, 879–880
removing root from heap, 876–877
storing heaps, 875

Heaps
adding nodes to, 875–876
arrays using, 879
binary heaps (binary trees), 874
dynamic memory allocation and, 259
implementing priority queues with, 924
removing root from, 876–877
storing, 875

Helper methods, recursive
overview of, 714
RecursivePalindrome.java, 714–715

Hertz (Hz), clock speed in, 3
Hex integer literals, 49
Hexadecimal numbers

converting to/from binary, 1275–1276
converting to/from decimal, 182–183, 217–219, 731, 1275
equivalents of ASCII character set, 1267
overview of, 1273

Hidden data fields, referencing, 356–357
High-level languages, 8–9
Hilbert curve, 736
Horizontal scroll bars, 652
Horizontal sliders, 654, 655
Hosts

IdentifyHostNameIP.java, 1148
local hosts and, 1141
UnknownHostException, 1142

Greater than (>) comparison operator, 76
Greater than or equal to (>=) comparison operator, 76
Greatest common denominator. see Gcd (greatest common denominator)
Greedy algorithms

Dijkstra’s algorithm, 1083
overview of, 956

Greenwich Mean Time (GMT), 52
GregorianCalendar class

Cloneable interface and, 513–514
in java.util package, 361
overview of, 503–504
TestCalendar.java, 504–506

GridPane

overview, 555
ShowGridPane.java, 555–556

Grids, representing using two-dimensional array, 298
Growth rates

algorithm for comparing, 829–830
comparing algorithms based on, 822

H
Hamiltonian path/cycle, 1042
Hand-traces, for debugging, 106
Hangman game, 284, 490, 581, 792, 794
Hard disks, as storage device, 5
Hardware, 2
Has-a relationships

in aggregation models, 374–375
composition and, 440

Hash codes
compressing, 988–389
vs. hash functions, 987
for primitive types, 987
for strings, 987–988

Hash functions
vs. hash codes, 987
as index to hash table, 986

Hash tables, 986. see also Maps
measuring fullness using load factor, 993
parameters, 1001

hashCode method, 798, 987
Hashing

collision handling using open addressing, 989
collision handling using separate chaining, 993
compressing hash codes, 988–989
double hashing open addressing, 991–993
function, 986
hash codes for primitive types, 987
hash codes for strings, 987–988
hash functions vs. hash codes, 987
key terms, 1011
linear probing open addressing, 989–990
load factor and rehashing, 993–995
map implementation with, 995–996
MyHashMap.java example of map implementation, 997–1002
MyHashSet.java example of set implementation, 1005–1010
MyMap.java example of map implementation, 996–997
MySet.java example of set implementation, 1004–1005
overview of, 985–986
quadratic probing open addressing, 990–991
questions and exercises, 1012–1013
set implementation with, 1004
summary, 1011–1012

1302 Index

MyList.java, 897–898
string index range, 131

indexOf method, 136–137
List interface, 769
MyArrayList.java example, 901, 905

Indirect recursion, 709
InetAddress class, 1147–1148
Infinite loops, 160
Infinite recursion, 709
Information

getting information about exceptions, 461–462
hiding (encapsulation), 225

Inheritance
ArrayList object, 432–433
calling subclass constructors, 416–417
calling superclass methods, 418–419
case study: custom stack class, 439–440
casting objects and, 427–428
CastingDemo.java example, 427–431
CircleFromGeometricObject.java example, 412–414
constructor chaining and, 417–418
in designing stacks and queues, 921
DistinctNumbers.java example, 436–438
dynamic binding and, 424–427
equals method of Object class, 431–432
generic classes, 742
interface inheritance, 506–507, 518
is-a relationships and, 440
key terms, 443
Object class and, 422–423
overriding methods and, 420–422
overview of, 409–410
preventing classes from being extended or overridden,

442–443
protected data and methods, 440–442
questions and exercises, 448–493
RectangleFromGeometricObject.java example, 414–415
SimpleGeometricObject.java example, 411–412
summary, 443–444
superclasses and subclasses and, 410–411
TestArrayList.java example, 433–436
TestCircleRectangle.java example, 415–416
using super keyword, 416

initializeJdbc method, 1243
Initializing variables

AnalyzeNumbers.java, 253–254
arrays, 249–250
declaring variables and, 41
multidimensional arrays, 289
two-dimensional arrays, 291

Inner (nested) classes
AbstractGraph class, 1031
anonymous, 594–595
AnonymousListenerDemo.java, 595–597
creating new, 1125–1126
for defining listener classes, 593–594
KeyEventDemo.java, 604
ShortestPathTree class as inner class of WeightedGraph class,

1082–1083
TicTacToe.java, 658–659

Inorder traversal
time complexity of, 948
tree traversal, 933

HTML (Hypertext Markup Language)
element, 1217
scripting language for document layout, 11

H-trees
fractals, 735
recursive approach to, 706

Huffman coding trees
data compression using, 954–956
HuffmanCode.java example, 956–959

Hypertext Markup Language. see HTML (Hypertext Markup Language)
Hz (Hertz), clock speed in, 3

I
Icons. see Image icons
Identifiers, 39–40
IDEs (integrated development environments)for creating/editing Java

source code, 11, 15–16
IEEE (Institute of Electrical and Electronics Engineers), floating point

standard (IEEE 754), 45
if statements

common errors, 83–87
in computing body mass index, 89–90
in computing taxes, 90–93
conditional operator used with, 104
nesting, 81
overview of, 78–80
SimpleIfDemo.java example, 79–80

if-else statements
conditional expressions and, 112
dangling else ambiguity, 84–85
multi-way, 81–83
overview of, 81–83
recursion and, 712

IllegalArgumentException class, 459
IllegalMonitorStateException, 1118
Image , 549–552
Image class, 549
Image icons, ComboBoxDemo.java, 646
Images, ShowImage.java, 550–551
ImageView , 549–552
Immutable

BigInteger and BigDecimal classes, 384–385
class, 354
objects, 353–354
Rational class, 525
String object, 386–387
wrapper classes, 381

Implementation (coding), in software development process, 61–62
Implementation methods, 229–232
Implicit casting, 127, 427
Importing, types of import statements, 38
Increment (++) operator, 55–56
increment method, in Increment.java example, 212–213
Incremental development

benefits of stepwise refinement, 232
coding incrementally, 161
testing and, 62

Indentation, programming style, 19
Indexed variables Elements, 248
Indexes

accessing elements in arrays, 246, 248
finding characters/substrings in a string, 136–137
List interface and, 769

Index 1303

generic method for sorting array of Comparable objects, 744
greatest common denominator of, 833
hash codes for primitive types, 987
IntegerMatrix.java example, 755–756
java.util.Random, 335–336
numeric types for, 44–45
sorting, 881
sorting int values, 887
specifying data types, 35
TestIntegerMatrix.java example, 756

Integrated development environments (IDEs), 11–12, 15–16
for creating/editing Java source code, 15–16
overview of, 11–12

Integrity, in relational data model, 1174–1175
Integrity constraints

domain constraints, 1177
enforcing, 1178
overview of, 1176–1177
primary and foreign key constraints, 1177–1178

Intelligent guesses, 161
Interfaces

abstract classes compared with, 517–520
benefits of, 512
benefits of generics, 738
case study: Rational class, 520–521
Cloneable interface, 513–514
Comparable interface, 509–510
ComparableRectangle.java example, 511–512
DBMS as, 1174
for defining common class behaviors, 560
defining generic, 740–742
House.java example, 514–517
key terms, 528
overview of, 496
questions and exercises, 528–533
raw types and backward compartibility, 778
SortComparableObjects.java example, 510–512
SortRectangles.java example, 512–513
summary, 528–529
TestEdible.java example, 506–509

Interned strings, 386–387
Internet, 1140
Internet Protocol (IP) addresses. see IP (Internet Protocol) addresses
Internet Service Providers (ISPs), 1140
Interpreters, translating source program into machine code, 10–11
Interrelational constraints, 1176–1177
InterruptedException, Thread class, 1103
Intrarelational constraints, 1176–1177
Invoking methods, 206–207, 331, 743

I/O (input/output)
binary I/O classes, 680–681
BufferedInputStream and BufferedOutputStream classes,

688–690
case study: copying files, 391
case study: replacing text, 580–581
Copy.java, 691–692
data transmission streams through sockets, 1142
DataInputStream and DataOutputStream classes, 684–686
DetectEndOfFile.java, 687–688
FileInputStream and FileOutputStream classes, 681–682
FilterInputStream and FilterOutputStream classes, 684
handling text I/O in Java, 678–679
key terms, 700

Input. see also I/O (input/output)
reading from console, 37–40
redirecting using while loops, 168–169
runtime errors, 20–21
streams. see InputStream classes

Input, process, output (IPO), 39
InputMismatchException class, 454–455, 479
Input/output devices, computers and, 5–6
InputStream classes

BufferedInputStream, 688–690
case study: copying files, 691
data transmission through sockets, 1142
DataInputStream, 684–686
deserialization and, 695
DetectEndOfFile.java, 687–688
FileInputStream, 681–682
FilterInputStream, 684
ObjectInputStream, 692–693, 1151
overview of, 680–681
TestDataStream.java, 686–687
TestFileStream.java, 682–683
TestObjectInputStream.java, 694

Insert key, on keyboards, 6
insert method

AVLTree class, 981
overriding, 970–971

Insert statements, SQL, 1182–1183
Insertion order, LinkedHashMap class, 813
Insertion sort algorithms

analyzing, 828
recurrence relations and, 829

Insertion sorts, arrays, 862–864
Instance methods

accessing object data and methods, 330–331
in CircleWithStaticMembers.java, 338–339
class design guidelines, 325–328
invoking, 368, 371
when to use instance methods vs. static, 338–339

Instance variables
accessing object data and methods, 305
class design guidelines, 392–393
static variables compared with, 337–339
in TestCircleWithStaticMembers.java, 339
when to use instance variables vs. static, 341

Instances. see also Objects
checking file instantiation, 474
checking object instantiation, 322, 428
generic instantiation, 738

Institute of Electrical and Electronics Engineers (IEEE), floating point
standard (IEEE 754), 45

int data type. see Integers (int data type)
Integer literals, 49
Integers (int data type)

ArrayList for, 437
BigInteger class, 387–385
bit operators and, 1277
case study: designing class for matrix using generic types, 752–753
casting to/from char types, 127
converting characters and numeric values to strings, 389–390
declaring variables and, 40
division of, 46, 51, 450–454
finding larger between two, 205
floating-point numbers converted to, 56–57

1304 Index

Java database programming
accessing databases using JavaFX, 1194–1196
CallableStatement for executing SQL stored procedures,

1199–1202
column aliases, 1185–1186
creating databases, 1180–1181
creating tables, 1181–1182
creating user account in MySQL, 1179–1180
database metadata, 1202–1203
developing database applications using JDBC, 1190–1193
insert, update, and delete statements, 1182–1183
integrity constraints, 1176–1178
JDBC (Java Database Connectivity), 1189–1190
key terms, 1206
metadata retrieval, 1202
obtaining tables, 1204
operators, 1184–1186
overview of, 1173–1174
PreparedStatement for creating parameterized SQLstatements,

1197–1199
queries, 1183–1184
questions and exercises, 1207–1211
relational DBMS, 1174–1175
relational structures, 1175–1176
result set metadata, 1204–1206
SimpleJDBC.java, 1193–1194
SQL (Structured Query Language), 1178
summary, 1206
table joins, 1188–1189
tuples, 1186–1188

Java Development Toolkit (JDK)
jdb debugger in, 106
overview of, 11–12

Java EE (Java Enterprise Edition), 12
JavaFX

Arc, 567–569
binding properties, 542–544
BorderPane, 556–558
case study: ClockPane Class, 572–577
Circle and Ellipse, 565–567
Color class, 546–547
FlowPane, 552–554
Font class, 547–549
GridPane, 555–556
HBox and VBox, 558–560
Image and ImageView Classes, 549–552
key terms, 577
Layout panes, 552
Line, 562–563
nodes, 545–546
panes, 539–540
Polygon and Polyline, 569–572
quiz and exercises, 578–583
Rectangle, 564–565
shapes, 560
structure, 536–539
summary, 577–578
Text, 560–562
vs Swing and AWT, 536

JavaFX CSS, 545
JavaFX UI controls

BounceBallSlider.java, 656
button, 632–634

Invoking methods (continued)
object I/O, 692–693
overview of, 476, 677–678
questions and exercises, 701–704
random-access files, 697–699
reading data from file using Scanner class, 478–480
reading data from Web, 482–484
serializable interface, 695–696
serializing arrays, 696–697
summary, 701
TestDataStream.java, 686–687
TestFileStream.java, 682–683
TestObjectInputStream.java, 694
TestObjectOutputStream.java, 693–694
TestRandomAccessFile.java, 699–700
text I/O vs. binary I/O, 679–680
types of I/O devices, 5–6
writing data to file using PrintWriter class,

476–477
IOException, 681–682
IP (Internet Protocol) addresses

client sockets and, 1141
InetAddress class, 1147–1148
overview of, 1140

IPO (input, process, output), 39
is null operator, in SQL, 1185
Is-a relationships

design guide for when to use interfaces vs. classes, 518
inheritance and, 440

isAbsolute method, File class, 474–475
isDigit method, Character class, 144
isDirectory method, File class, 474–475
isFile method, File class, 474–475
isHidden method, File class, 474–475
Is-kind-of relationships, 518
isPalindrome method

RecursivePalindrome.java, 714–715
as tail-recursive method, 727

isPrime method, prime numbers, 217
ISPs (Internet Service Providers), 1140
isValid method, applying to grid, 300
Iterable interface, 766
Iteration/iterators

advantages and variations of, 953–954
binary search trees and, 952–953
fail-fast, 1128
Iterable interface, 952
Iterator object, 766
lists and, 770–771
loops and, 158
MyArrayList.java example, 901
recursion compared with, 726
TestIterator.java example, 766–767
TestMyArrayList.java example, 905
traversing collections, 766

J
JavaBean, 1217–1220
Java Collections Framework. see Collections

Framework hierarchy
java command, for executing Java program, 17
Java Database Connectivity. see JDBC (Java Database Connectivity)

Index 1305

Random class, 335–336
Scanner class, 38, 578–480

jdb debugger, 106
JDBC (Java Database Connectivity)

developing database applications, 1190–1193
overview of, 1189–1190
SimpleJDBC.java, 1193–1194

JDK (Java Development Toolkit)
Fork/Join Framework in JDK 7, 1128–1129
jdb debugger in, 106
overview of, 11–12

join method, Thread class, 1104
Joins

Fork/Join Framework and, 1128
tables, 1188–1189

JSF (JavaServer Faces)
AddressRegistration.xhtml, 1247–1248
AddressRegistrationJSFBean.java, 1249–1252
AddressStoredStatus.xhtml, 1248–1249
binding database with Facelets, 1239–1245
Calculator.xhtml, 1232–1233
CalculatorJSFBean.java, 1231–1232
case study: calculator, 1230–1233
ConfirmAddress.xhtml, 1248
Core Tag Library, 1236
CourseNameJSFBean.java, 1242–1243
creating pages in, 1215–1217
CurrentTime.xhtml, 1220–1222
DisplayStudent.xhtml, 1243–1245
expressions, 1220–1222
GuessNumber.xhtml, 1235
GuessNumberJSFBean.java, 1233–1235
GUI components, 1222–1226
index.xhtml, 1215–1217
introduction to, 1214
managed JavaBean for, 1217–1220
key terms, 1252
opening new pages in, 1245–1261
processing forms, 1226–1230
ProcessStudentRegistrationForm.xhtml, 1228–1230
project development, using NetBeans, 1214
projects, creating steps of, 1214–1215
question and exercises, 1253–1261
RegistrationJSFBean.java, 1226–1228
session tracking, 1233–1235
StudentRegistrationForm.xhtml, 1223–1226
summary, 1206
tablestyle.css, 1245
TimeBean.java, 1218–1220
ValidateForm.xhtml, 1237–1238
ValidateFormJSFBean.java, 1238–1239
validating input, 1235–1239

JVM (Java Virtual Machine)
defined, 16
detecting runtime errors, 450
garbage collection, 256
heap as storage area in, 259
interned string and, 387

K
KBs (kilobytes), 4
Key constants, 604
Keyboards, 5–6

ButtonDemo.java, 633–634
case study: developing tic-tac-toe game, 657–662
case study: national flags and anthems, 665–667
CheckBox, 634–636
CheckBoxDemo.java, 635–636
ComboBox, 644–647
ComboBoxDemo.java, 646–647
DescriptionPane.java, 642–643
Labeled and Label, 630–632
LabelWithGraphic.java, 630–632
ListView, 647–651
ListViewDemo.java, 649–650
MediaDemo.java, 663–665
programming exercises, 668–676
quiz, 668
RadioButton, 637–639
RadioButtonDemo.java, 638–639
ScrollBar, 651–653
ScrollBarDemo.java, 652–653
Slider, 654–657
SliderDemo.java, 655
TextArea, 641–644
TextAreaDemo.java, 644
Textfield, 639–641
TextFieldDemo.java, 639–641
TicTacToe.java, 658–661
video and audio, 662–665

Java language specification, 11–12
Java Library, 334
Java ME (Java Micro Edition), 12
Java programming

creating, compiling, and executing programs,
15–18

displaying text in message dialog box, 23
high-level languages, 8
introduction to, 11–12
simple examples, 12–15

Java SE (Java Standard Edition), 12
JavaServer Faces. see JSF (JavaServer Faces)
Java Virtual Machine. see JVM (Java Virtual Machine)
javac command, for compiling Java program, 17
Javadoc comments (/**.*/), 18
java.io

File class, 473–475
PrintWriter class, 476–477
RandomAccessFile class, 698

java.lang

Comparable interface, 509
Exception class, 471
Number class, 501
packages, 62
Throwable class, 455–457, 461–462

java.net

MalformedURLException class, 483
URL class, 483

java.util

Arrays class, 270–272
Calandar class, 503–504
creating stacks, 790
Date class, 334–335, 384
EventObject class, 588–589
GregorianCalendar class, 361, 503–504
Java Collections Framework and, 762

1306 Index

Line

overview, 562
ShowLine.java, 562–563

Line comments, in Welcome.java, 13
Line numbers, in Welcome.java, 12
Linear probing, collision handling, 989–990
Linear search algorithm, 857–858

comparing growth functions, 829–830
recurrence relations and, 829

Linear searches, arrays, 265–266
Linked data structures

binary search trees, 930–931
blocking queues, 1122–1123
hash maps. see LinkedHashMap class
hash sets. see LinkedHashSet class
lists. see LinkedList class

LinkedBlockingQueue class, 1122–1123
LinkedHashMap class

concrete implementation of Map class, 810–812
implementation of Map class, 986
overview of, 813
TestMap.java example, 813–815
types of maps, 810–811

LinkedHashSet class
implementation of Set class, 1002
ordering elements in hash sets, 800
overview of, 802
SetListPerformanceTest.java example, 807
types of sets, 798

LinkedList class
animation of linked lists, 897
compared with ArrayList, 769–770
defined under List interface, 767
Dequeue interface, 783–784
implementing buckets, 993
implementing linked lists, 906–908
implementing MyLinkedList class, 909–916
implementing queues using linked lists. see Queues
MyArrayList compared with MyLinkedList, 918–919
MyLinkedList, 897
MyLinkedList.java example, 908–909, 916–918
representing edges in graphs using linked lists, 1023
SetListPerformanceTest.java example, 807
TestArrayAndLinkedList.java, 770–771
TestMyLinkedList.java example, 909
variations on linked lists, 919–920

Linux OS, 9
List interface

common features of lists defined in, 896–897
methods of, 767–769
overview of, 767
Vector class implementing, 781

ListIterator interface, 768
Lists

adjacency lists for representing edges, 1022
array lists. see ArrayList class
as collection type, 762
comparing performance with sets, 806–808
finding maximum number in, 1132–1133
implementing, 896–897
linked lists. see LinkedList class
List interface, 767
ListViewDemo.java, 649–650
methods of List interface, 767–769

KeyEvents

ControlCircleWithMouseAndKey.java,
605–606

KeyEventDemo.java, 604–605
overview of, 603–604

KeyListener interface, 603
Keys

hashing functions, 986
integrity constraints, 1176–1178
maps and, 1011

keySet method, Map interface, 812
Key/value pairs, in maps, 810–811
Keywords (reserved words)

break and continue, 184–187
case study: counting, 809–810
distinct, 1186–1187
extends, 518
final, 43
list of Java keywords, 1265
super, 416
synchronized, 1111
throw, 158–459
throws, 458
transient, 295
in Welcome.java, 13

Kilobytes (KBs), 4
Knight’s Tour, 733–734, 1058
Koch snowflake fractal, 733
Kruskal’s algorithm, 1090–1091

L
Labeling vertices, 1020
Label, 630–632
Labeled, 630–632
Labels, LabelWithGraphic.java, 630–632
Lambda expression, 597–599
Landis, E. M., 966
Languages

in relational data model, 1174–1175
SQL as database language, 1178

LANs (local area networks), 6
lastIndexOf method

List interface, 767
MyArrayList.java example, 897, 904
MyList.java, 897
strings, 136–137

lastModified method, File class, 174–175
Latin square, 318–319
Layout panes

BorderPane, 556–558
FlowPane, 552–554
GridPane, 555–556
HBox and VBox, 558–560

Left subtree, of binary trees, 930
Left-heavy, balancing AVL nodes, 966
Length, strings, 130–131, 395
length method, File class, 474–475
Less than (<) comparison operator, 1184
Less than or equal to (<=) comparison

operator, 1184
Letters, counting, 263–264
Libraries, APIs as, 11–12
like operator, in SQL, 1185

Index 1307

creating arrays, 257
deciding which to use, 174–176
design strategies, 163
do-while loop, 168–170
examples of determining Big O, 824–827
graph edges, 1018
input and output redirections, 167–168
iteration compared with recursion, 726
key terms, 190
for loop, 170–174
minimizing numeric errors related to, 178–179
nesting, 176–177
overview of, 158
quiz and exercises, 191–201
sentinel-controlled, 165–167
summary, 191
while loop, 158–161

Lottery game, 792
Lower-bound wildcards, 748
Low-level languages, 7
LR imbalance, AVL nodes, 967–968
LR rotation

AVLTree class, 973
balancing nodes on a path, 970
options for balancing AVL nodes, 967–968

M
Mac OS, 9
Machine language

bytecode compared with, 16
overview of, 7
translating source program into, 8–9

Machine stacks. see Call stacks
Main class

defined, 323
in TestSimpleCircle.java example, 324

main method
in ComputeExpression.java, 114–15
invoking, 207
main class vs., 323
receiving string arguments from command line, 272–273
in SimpleCircle.java example, 326–327
in TestSimpleCircle.java example, 324
in TestTV.java example, 328–329
thread for, 1098
in Welcome.java, 13
in WelcomeWithThreeMessages.java, 14

Maintenance, in software development process, 60
MalformedURLException class, 483
Map interface

methods, 811
overview of, 811

Maps
case study: counting occurrence of words using tree map, 815–816
containers supported by Java Collections Framework, 762
hash maps. see HashMap class
key terms, 817
linked hash maps. see LinkedHashMap class
overview of, 797–798, 810–813
quiz and exercises, 818–820

MyAbstractList.java example, 899
MyList.java example, 897–898
singleton and unmodifiable, 816–817
static methods for, 773–777
synchronized collections for, 1127–1128

ListView, 647–651
Literal values, not using as identifiers, 1265
Literals

Boolean literals, 77
character literals, 125
constructing strings from string literal, 386
defined, 48
floating-point literals, 49
integer literals, 49

LL imbalance, AVL nodes, 966–967
LL rotation

AVLTree class, 973–974
balancing nodes on a path, 970
implementing, 971
options for balancing AVL nodes, 966–967

Load factor
hash sets and, 798
rehashing and, 993–995

Loans
Loan calculator case study, in event-driven programming, 600–602
Loan.java object, 368–370

Local area networks (LANs), 6
Local hosts, IP addresses and, 1141
Local variables, 222
Lock interface, 1112
Locker puzzle, 281
Locks

AccountWithSyncUsingLock.java, 1113–1114
case study: producer/consumer thread cooperation, 1121–1122
deadlocks and, 1126
enforcing cooperation among threads, 1114–1115
semaphores compared with, 1125–1126
thread synchronization using, 1112–1113
ThreadCooperation.java, 1116–1119

Logarithmic algorithm, 828–830
Logic errors (bugs), 21, 106
Logical operators (Boolean operators)

overview of, 93
TestBooleanOperators.java example, 94–96
truth tables, 93–94

Long, numeric types
converting characters and numeric values to strings, 389–390
hash codes for primitive types, 987
integer literals and, 49
java.util.Random, 335–336
overview of numeric types, 45

Loop body, 158
Loop-continuation-condition

do-while loop, 168–169
loop design and, 163
in multiple subtraction quiz, 164
overview of, 158–159

Loops
break and continue keywords as controls in, 184–187
case study: displaying prime numbers, 188–190
case study: finding greatest common denominator, 179–181
case study: guessing numbers, 161–163
case study: multiple subtraction quiz, 164–165
case study: predicting future tuition, 181

1308 Index

Mersenne prime, 240
MessagePanel class

DisplayClock.java, 573–574
ClockPane.java, 574–576

Metadata retrieval, from databases
database metadata, 1202–1203
obtaining tables, 1204
overview of, 1202
result set metadata, 1204–1205

Meters, converting to/from feet, 236
Method header, 205
Method modifiers, 205, 1270–1271
Method signature, 205
Methods

abstraction and, 225–226
accessing object methods, 330–331
calling, 206–208
case study: converting decimals to hexadecimals, 182–183
case study: generating random numbers, 223–225
case study: generic method for sorting array, 744–745
class, 337–338
Collection interface, 764
commenting, 18
Comparator interface, 772
defining, 204–206
deprecated methods of Thread class, 1103
generic, 742–744
identifiers, 39–40
implementation details, 229–232
invoking, 206–208, 331, 743
key terms, 232
modularizing code, 215–217
naming conventions, 44
object actions defined by, 322–323
overloading, 219–222
overriding, 970
overview of, 203–204
passing arrays to, 257–260
passing objects to, 347–351
passing parameters by values, 212–215
passing to two-dimensional arrays, 293–294
quiz and exercises, 234–244
recursive methods, 706
returning arrays from, 260–261
rounding, 121
static. see Static methods
stepwise refinement, 225–226, 232
summary, 233
synchronization wrapper methods, 1127
thread coordination, 1118–1119
top-down and/or bottom-up implementation, 227–229
top-down design, 226–227
tracing or stepping over as debugging technique, 106
trigonometric, 120–121
variable scope and, 222–223
void method example, 209–211

MHz (Megahertz), clock speed, 3
Microsoft Access. see Access
Microsoft Windows, 9
Million bits per second (Mbps), 6
min method

finding minimum element in lists, 776
Math class, 122

Maps (continued)
singleton and unmodifiable, 816–817
summary, 817–818
synchronized collections for, 1127–1128
TestMap.java example, 813–814
tree maps. see TreeMap class

Maps, implementing with hashing
MyHashMap.java example, 997–1002
MyMap.java example, 996–997
overview of, 995–996
TestMyHashMap.java, 1002–1003

Marker interfaces, 513
Match braces, in Welcome.java, 13
matches method, strings, 342
Math class

BigInteger and BigDecimal classes, 384–385
complex numbers, 531–532
exponent methods, 121
invoking object methods, 331
methods generally, 120
pow(a, b) method, 48
random method, 87–88, 98–99, 122
rounding methods, 121–122
service methods, 122
trigonometric methods, 120–121

Matrices
adjacency matrices for representing edges, 1021–1022
case study: designing class for matrix using generic types, 752–753
GenericMatrix.java example, 753–755
IntegerMatrix.java example, 755
RationalMatrix.java example, 755–756
TestIntegerMatrix.java example, 756
TestRationalMatrix.java example, 756–757
two-dimensional arrays for storing, 288–289

max method
defining and invoking, 206–208
finding maximum element in lists, 776
finding maximum number in lists, 1132–1133
GeometricObjectComparator.java example, 773
MaxUsingGenericType.java example, 746–747
overloading, 220
overview of, 122
ParallelMax.java, 1132–1133

maxRow variable, for finding largest sum, 292
Mbps (million bits per second), 6
MBs (megabytes), of storage, 4
Media, 662–665
MediaPlayer, 662–665
MediaView, 662–665
Megabytes (MBs), of storage, 4
Megahertz (MHz), clock speed, 3
Memory, computers, 3–4
Merge sorts

CreateFile.java example of external sort, 884
heap sort compared with, 880
merge sort algorithms, 867
MergeSort.java example, 867–869
overview of, 866
ParallelMergeSort.java, 1130–1132
quick sorts compared with, 874
recurrence relations and, 829
time complexity of, 870

mergeSort method, 868–869

Index 1309

Multi-way if-else statements
in computing taxes, 90–93
overview of, 81–83

Mutator methods. see Setter (mutator) methods
MySQL

creating databases, 1180–1181
creating tables, 1181–1182
creating user account in, 1179–1180
JDBC drivers for accessing Oracle databases,

1189–1192
stopping/starting, 1180
tutorials on, 1178

N
Named constants. see Constants
Naming conventions

class design guidelines, 526
interfaces, 518
programming and, 44
SQL tables, 1181
wrapper classes, 380

Naming rules, identifiers, 39–40
NavigableMap interface, 813
N-by-n matrix, 238
Negative angles, drawing arcs, 569
Neighbors

depth-first searches (DFS), 1038
vertices, 1018, 1022–1023

Nested classes. see Inner (nested) classes
Nested if statements

in computing body mass index, 89–90
in computing taxes, 90–93
overview of, 81

Nested loops, 176–177, 291, 824–825
NetBeans

built in debugging, 106
for creating/editing Java source code, 15
for developing JSF applications, 1214

Network interface cards (NICs), 6
Networking

case study: distributed tic-tac-toe games,
1156–1157

client sockets, 1141–1142
client.java, 1145–1147
client/server computing, 1140
client/server example, 1143
data transmission through sockets, 1142
InetAddress class, 1147–1148
multiple clients connected to single server,

1148–1151
overview of, 1139–1140
quiz and exercises, 1168–1171
sending and receiving objects, 1151–1156
server sockets, 1140–1141
server.java, 1143–1144
summary, 1168
TicTacToeClient.java, 1162–1168
TicTacToeConstants.java, 1157
TicTacToeServer.java, 1157–1162

new operator
creating arrays, 246–247
creating objects, 329

next method, whitespace characters and, 133
nextLine method, whitespace characters and, 133

Minimum spanning trees (MSTs)
MST algorithm, 1075–1076
overview of, 1072
Prim’s minimum spanning tree algorithm, 1073–1075
TestMinimumSpanningTree.java, 1076–1078
weighted graphs and, 1062
WeightedGraph class, 1067–1069

Mnemonics, in assembly language, 7
Modeling, graphs and, 1024–1028
Model-View-Controller (MVC) architecture, 1217
Modems (modulator/demodulator), 6
Modifier keys, on keyboards, 5
Modifiers

list of, 1270–1271
method modifier, 205

Modularizing code
GreatestCommonDivisorMethod.java, 215–216
overview of, 215
PrimeNumberMethod.java, 216–217

Monitors (displays), 6
Monitors/monitoring, threads and, 1118
Motherboard, 3
Mouse, as I/O device, 6

MouseEvents

ControlCircleWithMouseAndKey.java, 605–606
event-driven programming, 602–603
MouseEvent, 602–603

MST algorithm, 1075–1076
MST class, 1075–1076
MSTs. see Minimum spanning trees (MSTs)
Multi-dimensional arrays. see Arrays, multi-dimensional
Multimedia. see JavaFX UI controls
Multiple choice test, 294–296
Multiplication (*=) assignment operator, 54
Multiplication operator (*), 15, 46, 50
Multiplication table, 176
Multiplicities, in object composition, 373
Multiprocessing, 10
Multiprogramming, 10
Multithreading, 10

blocking queues, 1122–1124
case study: clock with audio, 1139–1142
case study: flashing text, 1105–1106
case study: producer/consumer, 1119–1122
cooperation among threads, 114–1119
creating tasks and threads, 1098–1099
deadlocks and, 1126
key terms, 1133
MultiThreadServer.java, 1149–1151
overview of, 1097–1098
quiz and exercises, 1134–1138
semaphores, 1124–1126
servers serving multiple clients, 1149
summary, 1133–1134
synchronization using locks, 1112–1114
synchronized collections, 1127–1128
synchronized keyword, 1111
synchronizing statements, 1111–1112
TaskThreadDemo.java, 1100–1101
Thread class, 1102–1104
thread concepts, 1198
thread pools, 1106–1108
thread states, 1126–1127
thread synchronization, 1108–1111

1310 Index

O
Object class, 422–423, 431–432
Object I/O. see ObjectInputStream/ObjectOutputStream classes
Object member access operator (.), 330, 429
Object reference variables, 330
ObjectInputStream/ObjectOutputStream classes

overview of, 692–693
serializable interface, 695–696
Serializing arrays, 696–697
TestObjectInputStream.java, 694
TestObjectOutputStream.java, 693–694

Object-oriented programming (OOP), 322, 330, 370–373
Objects

accessing data and methods of, 330–331
accessing via reference variables, 330
array of, 351–352
ArrayList class, 432–433
arrays as, 259
automatic conversion between primitive types and wrapper class

types, 383–384
BigInteger and BigDecimal classes, 384–385
cannot be created from abstract classes, 500
case study: designing class for stacks, 378–380
case study: designing Course class, 376–377
casting, 427–428
CircleWithPrivateDataFields.java example, 345–346
CircleWithStaticMembers.java example, 338–339
class abstraction and encapsulation, 366–367
class design guidelines, 525–527
classes from Java Library, 334
comparing primitive variables with reference variables, 332–334
composing, 374–375
constructors, 329
creating, 324–325
data field encapsulation for maintaining classes, 344–345
Date class, 334–335
defining classes for, 322–324
edges defined as, 1021
equals method of Object class, 431–432
event listener object, 589
event objects, 588
immutable, 353–354
inheritance. see inheritance
key terms, 358, 399
Loan.java, 368–370
null values, 331–332
Object class, 422–423
object-oriented thinking, 370–373
overview of, 321–322, 365–366
passing to methods, 347–351
polymorphism, 123
processing primitive data type values as, 380–383
quiz and exercises, 359–364, 399–408
Random class, 355–356
reference data fields and, 331
representing edges, 1021
runnable objects, 1098
sending and receiving over network, 1151–1156
SimpleCircle.java example, 324–325
static variables, constants, and methods and, 337–338
summary, 359, 398–399
TestCircleWithPrivateDataFields.java example, 346–347
TestCircleWithStaticMembers.java example, 339–342

Next-line style, block styles, 19
NICs (network interface cards), 6
Nine tails problem

graphic approach to, 1048–1053
reducing to shortest path problem, 1086–1090

No-arg constructors
class design guidelines, 526
Loan class, 368
wrapper classes not having, 381

Node, 536–539
Nodes, AVL trees

balancing on a path, 970–971
creating, 973
creating and storing in AVLTreeNode, 969–970
deleting elements, 972
rotation, 973–974

Nodes, binary trees
deleting leaf node, 944–945
overview of, 930
representing binary search trees, 931

Nodes, JavaFX, 545–546
Nodes, linked lists

creating, 910
deleting, 914–916
overview of, 906–908
storing elements in, 911

Nonleaves, finding, 960
Not (!) logical operator, 93–97
Not equal to (!=) comparison operator, 76
NotSerializableException, 695
null values, objects, 331–332
NullPointerException, as runtime error, 332
Number class

case study: abstract number class, 501
as root class for numeric wrapper classes, 585

Numbers/numeric types
abstract number class, 501–503
binary. see Binary numbers
case study: converting hexadecimals to decimals, 217–219
case study: displaying prime numbers, 188–190
case study: generating random numbers, 223–225
case study: guessing numbers, 161–163
casting to/from char types, 127
conversion between numeric types, 56–58, 364
converting to/from strings, 389–390
decimal. see Decimal numbers
double. see double
floating-point. see Floating-point numbers

(float data type)
generating random numbers, 87–88
GreatestCommonDivisorMethod.java, 215–216
hexadecimal. see Hexadecimal numbers
integers. see Integers (int data type)
LargestNumbers.java, 502–503
overview of, 44–46
PrimeNumberMethod.java, 216–217
processing large numbers, 384–385
types of number systems, 1273

Numerators, in rational numbers, 520
Numeric keypads, on keyboards, 5
Numeric literals, 48–49
Numeric operators

applied to characters, 127
overview of, 46–47

Index 1311

Overflows
Rational class, 524
variables, 45

Overloading methods, 219–222
Overriding methods, 419–422, 970

P
p (pi), estimating, 237
Package-private (package-access) visibility modifiers, 342
Packages

organizing classes in, 343
organizing programs in, 18

Packet-based communication, Java supporting, 1140
Page Down key, on keyboards, 5
Page Up key, on keyboards, 5
Pair of points, algorithm for finding closest, 843–846
Palindromes

case study: checking if string is a palindrome, 187–188
case study: ignoring nonalphanumeric characters when checking

palindromes, 396–398
palindrome integers, 234
palindromic primes, 240
RecursivePalindrome.java, 714–715
RecursivePalindromeUsingSubstring.java, 713–714

Panels
ButtonInPane.java, 540
MessagePanel class. see MessagePanel class

Parallel edges, 1018
Parallel programming. see also Multithreading

overview of, 1128–1129
ParallelMax.java, 1132–1133
ParallelMergeSort.java, 1130–1132

Parameters
actual parameters, 205
defining methods and, 204–205
generic classes, 742
generic methods, 744
generic parameters not allowed in static context, 751–752
as local variable, 222
order association, 212
passing by values, 212–215
variable-length argument lists, 264–265

Parent, 539
Parentheses (())

defining and invoking methods and, 225
in Welcome.java, 14

Parsing methods, 382
Pascal, high-level languages, 8
Pass-by-sharing

arrays to methods, 258
objects to methods, 348–349

Pass-by-value
arrays to methods, 258
Increment.java example, 212–213
objects to methods, 347–348
overview of, 212
TestPassByValue.java example, 213–215

PaswordField, 641
PathTransition, 609–612
Passwords, checking if string is valid password, 238
Pentagonal numbers, 234
Perfect hash function, 986

TestLoanClass.java, 367–368
TestSimpleCircle.java example, 324–326
TestTV.java example, 328–329
this reference and, 356–358
TotalArea.java example, 352–353
TV.java example, 327–328
variable scope and, 355–356
vertices as object of any type, 1019
visibility modifiers, 342–344

Octal integer literals, 49
Off-by-one errors

arrays and, 251
in loops, 160

OOP (object-oriented programming), 322, 330, 370–373
Open addressing, hashing

collision handling using, 989
double hashing, 991–993
linear probing, 989–990
quadratic probing, 990–991

Operands
defined, 46
incompatible, 95

Operators
assignment operator (=), 41–43
augmented assignment operators, 54–55
bit operators, 1277
comparison operators, 76
increment and decrement operators, 55–56
numeric operators, 46–47
precedence and associativity, 104–106
precedence and associativity chart, 1268–1269
precedence rules, 50–51
processing, 786
SQL arithmetic operators, 1186
SQL comparison or Boolean operators, 1184
SQL like, between-between-and, and is null operators, 1185
unary and binary, 47

Option buttons. See Radio buttons
Or (||) logical operator, 93–97
Oracle

JDBC drivers for accessing Oracle databases, 1189–1192
tutorials on, 1178

order by clause, displaying sorted tuples, 1187–1188
OSs (operating systems)

overview of, 9
tasks of, 9–10

Output. see also I/O (input/output)
redirection, 167–168
streams, 678–679

OutputStream classes
BufferedOutputStream, 688–690
case study: copying files, 691–692
data transmission through sockets, 1142
DataOutputStream, 684–686
DetectEndOfFile.java, 687
FileOutputStream, 681–682
FilterOutputStream, 684
ObjectOutputStream, 692–693, 1151
overview of, 680–681
serialization and, 695
TestDataStream.java, 686–687
TestFileStream.java, 682–683
TestObjectOutputStream.java, 693–694

1312 Index

Priority queues
implementing, 924
MyPriorityQueue.java example, 924
overview of, 783
PriorityQueue class, 784–785
for storing weighted edges, 1063
TestPriorityQueue.java example, 924–925

PriorityBlockingQueue class, 1122–1123
PriorityQueue class, 784–785
private

encapsulation of data fields and, 344–345
visibility modifier, 343–344, 440–443

Problems
breaking into subproblems, 190
creating programs to address, 34
solving with recursion, 712–713

Procedural paradigm, compared with object-oriented paradigm,
372–373

Procedures, 205. see also Methods
Processing arrays, 249–251
Programming errors. see also Exception handling

ClassCastException, 428
debugging, 106
logic errors, 21–23
minimizing numeric errors related to loops, 178–179
runtime errors, 20–21
selections, 83–87
syntax errors, 14, 20
using generic classes for detecting, 738–739

Programming languages
assembly language, 7
high-level languages, 8–9
Java. see Java programming
machine language, 7
overview of, 2

Programming style
block styles, 19
comments and, 19
indentation and spacing, 19
overview of, 18–19

Programs/programming
assignment statements and expressions, 41–43
augmented assignment operators, 54–55
case study: counting monetary units, 63–65
case study: displaying current time, 52–53
character data type, 125–130
coding incrementally, 161
databases. see Java database programming
evaluating expressions and operator precedence rules,

50–51
exponent operations, 48
identifiers, 39–40
increment and decrement operators, 55–56
introduction to, 34
with Java language. see Java programming
key terms, 67
modularizing code, 215–217
named constants, 43
naming conventions, 44
numeric literals, 48–50
numeric operators, 46–47
numeric type conversions, 56–58
numeric types, 44–45

Perfectly balanced trees, 966
Pivot element, 870
Pixels (picture elements)

measuring resolution in, 6
Points, 849

algorithm for finding closest pair of, 843–846
finding convex hull for a set of points, 849

Polygon and Polyline
overview, 569
ShowPolygon.java, 570–571

Polymorphism
CastingDemo.java example, 428–431
overview of, 423
PolymorphismDemo.java example, 423

Polynomial hash codes, 988
Postfix decrement operator, 55–56
Postfix increment operator, 55–56
Postorder traversal

time complexity of, 948
tree traversal, 933

pow method, Math class, 48
Precedence, operator, 104–106, 1268–1270
Prefix decrement operator, 55–56
Prefix increment operator, 55–56
Prefix notation, 794
Preorder traversal

time complexity of, 948
tree traversal, 933

PreparedStatement, for creating parameterized SQL statements,
1197–1199

Primary key constraints, integrity constraints in relational model,
1176–1178

Prime numbers
algorithm for finding, 837
case study: displaying prime numbers, 188–190
comparing prime number algorithms, 843
EfficientPrimeNumbers.java example, 839–842
PrimeNumberMethod.java, 216–217
PrimeNumbers.java example, 838–839
SieveOfEratosthenes.java example, 842–843
types of, 240

Primitive types (fundamental types)
automatic conversion between primitive types and wrapper class

types, 383–384, 739
casting, 429
comparing parameters of primitive type with parameters of reference

types, 349
comparing primitive variables with reference variables, 332–334
converting wrapper object to/from (boxing/unboxing), 383
creating arrays of, 351
hash codes for, 987

Prim’s minimum spanning tree algorithm
Dijkstra’s algorithm compared to, 1078
overview of, 1073–1075

print method, PrintWriter class, 38, 476–477, 744–745
printf method, PrintWriter class, 476
Printing arrays, 291
println method, PrintWriter class, 38, 476
printStackTrace method, 461
PrintWriter class

case study: replacing text, 480–482
writing data to file using, 476–477
for writing text data, 678

Index 1313

random method
case study: generating random numbers, 223–225
case study: lottery, 98–99
Math class, 87–88, 122

Random numbers
case study: generating random numbers, 223–225
case study: lottery, 98–99
generating, 87–88

Random-access files
overview of, 697–699
TestRandomAccessFile.java, 699–700

Random-access memory (RAM), 4–5
Rational class

case study: designing class for matrix using generic types, 752–753
overview of, 520–521
Rational.java example, 522–525
RationalMatrix.java example, 755–756
TestRationalClass.java example, 521–522
TestRationalMatrix.java example, 756–757

Rational numbers, representing and processing, 520–522
Raw types, backward compatiblity and, 746–747
readASolution method, applying to Sudoku grid, 300
Read-only streams, 697. see also InputStream class
Read-only views, Collections class, 816
Rebalancing AVL trees, 966–968
Records

insert, update, and delete, 1182–1183
relational structures, 1175

Rectangle

overview, 564
ShowRectangle.java, 564–565

Recurrence relations, in analysis of algorithm complexity, 829
Recursion

binary searches, 716–717
case study: computing factorials, 706–707
case study: computing Fibonacci numbers, 709–710
case study: determining directory size, 717
case study: fractals, 722–723
case study: Towers of Hanoi, 719–721
ComputeFactorial.java, 707–709
ComputeFactorialTailRecursion.java, 727–728
ComputeFibonacci.java, 710–712
depth-first searches (DFS), 1038–1039
DirectorySize.java, 717–719
displaying/visualizing binary trees, 949
Fork/Join Framework and, 1128
helper methods, 714
iteration compared with, 726–727
key terms, 728
overview of, 706
problem solving by thinking recursively, 712–713
questions and exercises, 728–736
RecursivePalindrome.java, 714–715
RecursivePalindromeUsingSubstring.java, 713–714
RecursiveSelectionSort.java, 715–716
selection sorts, 715
SierpinskiTriangle.java, 723–724
summary, 728
tail recursion, 727
TowersOfHanoi.java, 721–722

Recursive methods, 706
Red-black trees, 986, 1002
Reduction, characteristics of recursion, 712

overview of, 2
questions and exercises, 68–74
reading input from console, 37–39
recursive methods in, 706
software development process, 59–63
string data type, 130–139
summary, 67–68
variables, 40–41
writing a simple program, 34–37

protected

data and methods, 440–442
visibility modifier, 343–344, 440–442

Protected data fields, in abstract classes, 899
Pseudocode, 34
Public classes, 325
public method, 346
public visibility modifier, 342–344, 440–442
Python, high-level languages, 8

Q
Quadratic algorithm, 825, 829–830
Quadratic probing, collision handling, 990–991
Queries, SQL, 1183–1184
Query methods, Map interface, 811
Query operations, Collection interface, 764
Queue interface, 783, 1123
Queues

blocking queues. see Blocking queues
breadth-first search algorithm, 1045
bucket sorts and, 882–883
as collection type, 762
Deque interface, 783–786
GenericQueue.java example, 922–923
implementing, 920–921
overview of, 782
priority queues. see Priority queues
Queue interface, 783, 1123
TestStackQueue.java example, 922–923
unbounded, 1122
WeightedGraph class, 1067–1068

Quick sorts
merge sorts compared with, 874
overview of, 870
quick sort algorithm, 870–871
QuickSort.java example, 871–874

Quincunx, 280
Quotients

Quotient.java example, 450
QuotientWithException.java example, 452–454
QuotientWithIf.java example, 451
QuotientWithMethod.java example, 451–452

R
Race conditions, in multithreaded programs, 1111
Radio buttons

creating, 1222–1226
RadioButtonDemo.java, 638–639

Radix sorts, 881–883
Ragged arrays, 290–291, 1022
RAM (random-access memory), 4–5
Random class, java.util, 335–336

1314 Index

Right subtree, of binary trees, 930
Right-heavy, balancing AVL nodes, 966
RL imbalance, AVL nodes, 967–968
RL rotation

AVLTree class, 972–973
balancing nodes on a path, 970
options for balancing AVL nodes, 967–968

Root, of binary trees, 930–931
Rotation

AVLTree class, 972–973
balancing nodes on a path, 970–971
implementing, 971
methods for performing, 977
options for balancing AVL nodes, 966–967

Rounding methods, Math class, 122
Round-robin scheduling, of CPU time, 1104
Rows. see Tuples (rows)
RR imbalance, AVL nodes, 966–967
RR rotation

AVLTree class, 974, 975
balancing nodes on a path, 970
options for balancing AVL nodes, 966–967

run method, for running threads, 1100, 1101
Runnable interface

tasks as instances of, 1098–1099
Thread class, 1102

Runtime errors
debugging, 106
declaring, 457–458
exception handling and, 39, 450
NullPointerException as, 332
programming errors, 21

Runtime stacks. see Call stacks

S
Scanner class

obtaining input with, 67
for reading console input, 37–39
reading data from file using, 478–479
for reading text data, 678

Scanners
case study: replacing text, 480–481
creating, 454

Scene, 536–539
Scheduling operations, 10
Scientific notation, of integer literals, 49–50
Scope, of variables, 42, 222–223
Screen resolution, 6
Script, for creating MySQL database, 1180–1181
Scroll bars

overview of, 651
ScrollBarDemo.java, 652–653

Scroll panes
DescriptionPanel.java, 643
overview of, 641
scrolling lists, 648

search method, AVLTree class, 981
Searches

arrays, 265
binary search trees. see Binary search trees
binary searches, 266–269, 716–717
linear searches, 265–266

Reference types
classes as, 330
comparing parameters of primitive type with parameters of reference

types, 349
comparing primitive variables with, 332–334
generic types as, 738
reference data fields, 331–332
string data type as, 130

Reference variables
accessing objects with, 330
array of objects as array of, 352
comparing primitive variables with, 332–334

regionMatches method, strings, 134–135
Register listeners

ControlCircle.java, 592–593
ControlCircleWithMouseAndKey.java, 605–606
KeyEventDemo.java, 604
LoanCalculator.java, 600
overview of, 589–590

Regular expressions, matching strings with, 388
Rehashing

load factor and, 993–995
time complexity of hashing methods and, 1002

Relational DBMS
foreign keys in, 1177
integrity constraints, 1176–1178
overview of, 1174–1175
relational structures, 1175–1176

Relational model, 1175
Relational structures, 1175–1176
Relations, 1175
Relative file names, 473–474
Remainder (%) or modulo operator, 46, 50
Remainder (%=) assignment operator, 54–55
remove method, linked lists, 906–907
Repetition

determining Big O for repetition statements, 824–827
loops. see Loops

replace method, strings, 388
replaceAll method, strings, 388
replaceFirst method, strings, 388
Request-scoped bean, 1233
Requirements specification, in software development process, 59–60
Reserved words. see Keywords (reserved words)
Resource ordering, to avoid deadlocks, 1126
Resources, role of OSs in allocating, 9
Responsibilities, separation as class design principle, 526
Result set metadata, 1205
ResultSetMetaData interface

overview of, 1205
TestResultSetMetaData.java, 1205–106

return statements, 207
Return value type

constructors not having, 329
in defining methods, 205

Reusable code
benefits of stepwise refinement, 232
code modularization and, 215
method enabling, 208
methods for, 204

reverse method
applying to lists, 774
returning arrays from methods, 260–261

Index 1315

setPriority method, Thread class, 1104
setRadius method

CircleWithPrivateDataFields.java example, 346
SimpleCircle example, 325

Sets
case study: counting keywords, 809–810
as collection type, 762
comparing list performance with, 806–808
HashSet class, 798–799
key terms, 817
LinkedHashSet class, 802
overview of, 798
questions and exercises, 818–820
singleton and unmodifiable, 8816–817
summary, 817–818
synchronized collections for, 1127–1128
TestHashSet.java example, 799–800
TestMethodsInCollection.java example, 800–801
TestTreeSet.java example, 803–804
TestTreeSetWithComparator.java example, 804–806
TreeSet class, 802–803

Sets, implementing with hashing
MyHashSet.java example, 1005–1010
MySet.java example, 1004–1005
overview of, 1004
TestMyHashSet.java example, 1010–1011

Setter (mutator) methods
ArrayList class and, 436
encapsulation of data fields and, 344–347
implementing linked lists, 906–907

Seven Bridges of Königsberg problem, 1016–1017
Shallow copies, clone method and, 515–516
Shapes, 539–542

Arc, 567–569
Circle and Ellipse, 565–567
Line, 562–563
Polygon and Polyline, 569–572
Rectangle, 564–565
text, 560–562

Sharing code, 208
short, numeric types

hash codes for primitive types, 987
overview of, 45

Short-circuited OR operator, 96
Shortest path tree, 1082
Shortest paths

case study: weighted nine tails problem, 1086–1090
Dijkstra’s algorithm, 1079–1084
finding with graph, 117
nine tails problem, 1048–1053
overview of, 1078–1079
TestShortestPath.java, 1084–1086
WeightedGraph class and, 1069

ShortestPathTree class, 1082–1084
Shuffling arrays, 250–251, 292
Sierpinski triangle

case study, 722–723
computing recursively, 729, 735–736
SierpinskiTriangle.java, 723–726

Sieve of Eratosthenes, 842–843
Simple graphs, 1017
sin method, trigonometry, 120–121
Single precision numbers. see Floating-point numbers (float data type)

recursive approach to searching for words, 706
search keys, 986, 1011

Secondary clustering, quadratic probing issue, 991
Segments, merging, 886–887
select statements

column aliases and, 1185–1186
queries with, 1183–1184

Selection sort algorithm
analyzing, 828
recurrence relations and, 829

Selection sorts
arrays, 265, 269–270
RecursiveSelectionSort.java, 715–716
using recursion, 715

Selection statements, 76, 78, 724–727
Selections

Addition.Quiz.java example, 77–78
boolean data type, 76–78
case study: computing Body Mass Index, 89–90
case study: computing taxes, 90–93
case study: determining leap year, 97
case study: guessing birthdays, 139–142
case study: lottery, 98–99
common errors, 83–84
conditional expressions, 103–104
debugging, 106
formatting console output, 145–146
generating random numbers, 87–88
if statements, 78–79
if-else statements, 80–81
key terms, 107
logical operators, 93–97
nested if statements and multi-way if-else statements, 81–83
operator precedence and associativity, 104–106
overview of, 76
questions and exercises, 108–118
summary and exercises, 107
switch statements, 100–103

Semaphores, controlling thread access to shared resources, 1124–1126
Semicolons (;), common errors, 83
Sentinel-controlled loops, 165–167
Separate chaining

handling collision in hashing, 993
implementing map using hashing, 995–996

Sequence statements, determining Big O for, 824–827
Sequential files, input/output streams, 697
Serialization

of arrays, 696–697
of objects, 695
Student.java example, 1152

Servers
client/server example, 1143
multiple clients connected to single server, 1148–1151
server sockets, 1140–1141
server.java, 1143–1144
StudentServer.java, 1154–1156
TicTacToeServer.java, 1157–1162

ServerSocket class, 1140
Session-scoped bean, 1233, 1252
Session tracking, 1233–1235
set method, List interface, 768
Set operations, Collection interface, 764
setLength method, StringBuilder class, 395–396

1316 Index

Specific import, 18
split method, strings, 388, 389
SQL (Structured Query Language)

CallableStatement for executing SQL stored procedures,
1199–1202

column aliases, 1185–1186
creating databases, 1180–1181
creating tables, 1181–1182
creating user account in MySQL, 1179–1180
for defining and accessing databases, 1174
insert, update, and delete statements, 1182–1183
JDBC and, 1190–1194
operators, 1184–1186
overview of, 1178
PreparedStatement for creating parameterized SQL statements,

1197–1198
queries, 1183–1184
table joins, 1188–1189
tuples, 1187–1188

Stack class, 782
StackOfIntegers class, 378–379
StackOverflowError, recursion causing, 726
Stacks

case study: designing class for stacks, 378–379
case study: evaluating expressions, 786–787
EvaluateExpression.java example, 788–790
GenericStack class, 741–742
implementing, 820–821
Stack class, 782
TestStackQueue.java example, 922–923

Stage , 536, 539
start method, for starting threads, 1099, 1101
Starvation, thread priorities and, 1104
State

of objects, 322–323
of threads, 1126–1127

Statements
break statements, 101
continue statements, 184–185
executing one at a time, 106
executing repeatedly (loops), 158
in high-level languages, 7
if. see if statements
if-else. see if-else statements
return statements, 206
switch statements, 100–101
synchronizing, 1111–1112
terminators, 13

Statements, SQL
auto commit and, 1194
CallableStatement for executing SQL stored procedures, 1199–1200
create table statement, 1181
drop table statement, 1182
insert, update, and delete, 1182–1183
PreparedStatement for creating parameterized SQL statements,

1103–1104
select statements, 1183–1185

Static methods
in CircleWithStaticMembers.java, 338–339
class design guidelines, 526–527
declaring, 338
defined, 338
for lists and collections, 773

Single-dimensional arrays. see Arrays, single-dimensional
Single-source shortest path algorithm, Dijkstra’s, 1079–1084
Singly linked lists. see LinkedList class
Sinking sorts, 280, 864–866
sleep method, Thread class, 1103
Sliders

overview of, 654
SliderDemo.java, 655–656

Sockets
client sockets, 1141–1142
data transmission through, 1142
overview of, 1140
server sockets, 1140–1141
in Server.java example, 1143–1144

Software
development process, 59–61
programs as, 2

sort method
Arrays class, 270–271
ComparableRectangle.java example, 511–512
lists and, 773–774
SortRectangles.java example, 512–513
using recursion, 715–716

SortedMap interface, 812, 813
Sorting

adding nodes to heaps, 875–876
arrays using heaps, 879
bubble sort algorithm, 962–963
bucket sorts and radix sorts, 881–882
complexity of external sorts, 889–890
complexity of heap sorts, 879–880
CreateFile.java example of external sort, 883–885
external sorts, 883
Heap class and, 878–879
heap sort algorithm, 874–875
Heap.java example, 878–879
HeapSort.java example, 879–880
implementation phases of external sorts, 884–885
key terms, 890
merge sort algorithm, 867–870
overview of, 862
questions and exercises, 891–894
quick sort algorithm, 870–874
removing root from heap, 876–877
storing heaps, 875
summary, 890

Sorting arrays
bubble sorts, 279
case study: generic method for, 744–745
insertion sorts, 862–864
overview of, 269
selection sorts, 265, 269–270

Source objects, event sources and, 588–589
Source program or source code, 7, 39–40
Spacing, programming style and, 18
Spanning trees

graphs, 1018
minimum spanning trees, 1072–1073
MST algorithm, 1075–1076
Prim’s minimum spanning tree algorithm, 1073–1075
TestMinimumSpanningTree.java, 1076–1078
traversing graphs and, 1037–1038

Special characters, 14

Index 1317

Structure, in relational data model, 1174–1175
Structured Query Language. see SQL (Structured Query Language)
Subclasses

abstract methods and, 496
abstracting, 500
constructors, 416–417
of Exception class, 456–457
inheritance and, 410–411
of RuntimeException class, 457

Subdirectories, 717
Subgraphs, 1018
Subinterfaces, 518
substring method, 135, 714
Substrings, 135–136
Subtraction (-) operator, 46, 50
Subtraction (-=) assignment operator, 54–55
Subtrees

of binary trees, 930
searching for elements in BST, 932

Sudoku puzzle, 298–301, 859–860, 1137–1138
sum method, 293–294
super keyword, 416
Superclass methods, 418–419
Superclasses

of abstract class can be concrete, 500
classes extending, 517
inheritance and, 410–411
subclasses related to, 496

Superkey attribute, primary key constraints and, 1177
Supplementary characters, Unicode, 125
swap method

swapping elements in an array, 259–260
in TestPassByValue.java example, 213–214

switch statements
ChineseZodiac.java example, 102–103
overview of, 100–101

Synchronization wrapper methods, Collections class, 1128
Synchronized blocks, 1112, 1133
Synchronized collections, 1126–1127
synchronized keyword, 1111
Syntax errors (compile errors)

common errors, 14
debugging, 106–107
programming errors, 20–21

Syntax rules, in Welcome.java, 14
System activities, role of OSs, 9
System analysis, in software development process, 59–60
System design, in software development process, 59, 61
System errors, 456
System resources, allocating, 9
System.in, 37
System.out, 37, 145–149

T
Tables

creating, 1181–1182
dropping, 1182
insert, update, and delete records, 1182–1183
integrity constraints, 1176–1178
joins, 1188–1189
obtaining, 1204
queries, 1183–1184
relational structures, 1175

when to use instance methods vs. static, 338–339
wrapper classes and, 382

Static variables
in CircleWithStaticMembers.java, 338–339
class, 337–338
class design guidelines, 526–527
declaring, 338
instance variables compared with, 337
in TestCircleWithStaticMembers.java, 339
when to use instance variables vs. static, 340

Stepwise refinement
benefits of, 232
implementation details, 229–232
method abstraction, 225–226
top-down and/or bottom-up implementation, 227–229
top-down design, 226–227

Storage devices
CDs and DVDs, 5
disks, 5
overview of, 4–5
USB flash drives, 5

Storage units, for measuring memory, 3-
Stored procedures, executing SQL stored procedures, 1199–1202
Stream-based communication, Java supporting, 1140
String class, 386
String concatenation operator (+), 36
String literals, 386
String variables, 386
StringBuffer class, 386, 393, 397
StringBuilder class

case study: ignoring nonalphanumeric characters when checking
palindromes, 396–397

modifying strings in, 393–395
overview of, 338, 393
toString, capacity, length, setLength, and charAt methods,

395–396
Strings

in binary I/O, 684–685
case study: checking if string is a palindrome, 187–188
case study: converting hexadecimals to decimals, 188–189
case study: ignoring nonalphanumeric characters when checking

palindromes, 396–397
Character class, 189–190
command-line arguments, 272–275
concatenating, 36, 130
constructing, 386
converting to/from arrays, 389
finding characters or substrings in, 388–389
formatting, 390–392
generic method for sorting array of Comparable objects,

744–745
hash codes for, 987–988
immutable and interned, 386–387
key terms, 275
matching, replacing, and splitting by patterns, 388–389
overview of, 386
questions and exercises, 276–285
replacing, and splitting, 387
string data type, 130
StringBuilder and StringBuffer classes, 393–396
substrings, 37, 135–136
summary, 275–276
in Welcome.java, 12–13

1318 Index

Three-dimensional arrays. see Arrays, multi-dimensional
throw keyword

chained exceptions, 470
throw ex for rethrowing exceptions, 469
for throwing exceptions, 459

Throwable class
generic classes not extending, 752
getting information about exceptions, 461–462
java.lang, 455–456

Throwing exceptions
CircleWithException.java example, 463
QuotientWithException.java example, 453
rethrowing, 468–469
TestCircleWithCustomException.java example, 471
throw keyword for, 458–459

throws keyword
for declaring exceptions, 458
IOException, 680–681

Tic-tac-toe game, 308, 1156–1157
TimeBean, 1220
Time sharing, threads sharing CPU time, 1098
Timers, for animation control, 1105–1106
toCharArray method, converting strings into arrays, 389
ToggleButton, 637
ToggleGroup, 637–638
Token reading methods, Scanner class, 479–480
Top-down design, 226–227
Top-down implementation, 227–229
toString method

ArrayList class, 435
Arrays class, 270–271
Date class, 335
MyArrayList.java example, 903
Object class, 431
StringBuilder class, 395–396

total variable, for storing sums, 291
Towers of Hanoi problem

analyzing algorithm for, 828–829
computing recursively, 730
nonrecursive computation, 796
recurrence relations and, 829

Tracing a program, 36
transient keyword, serialization and, 695
Transistors, CPUs, 3
Transmission Control Protocol (TCP), 1140
Traveling salesperson problem (TSP), 1091
Traversing binary search trees, 933–934
Traversing graphs

breadth-first searches (BFS), 1045–1048
case study: connected circles problem, 1042–1045
depth-first searches (DFS), 1038–1042
overview of, 1038
TestWeightedGraph.java, 1071

Tree class
as inner class of AbstractGraph class, 1031
MST class extending, 1075–1076
ShortestPathTree class extending, 1082–1084
traversing graphs and, 1037

Tree interface, BST class, 935–936
Tree traversal, 933–935
TreeMap class

case study: counting occurrence of words, 815–816
concrete implementation of Map class, 810–812

Tables, storing, 288
Tail recursion

ComputeFactorialTailRecusion.java, 727–728
overview of, 727

tan method, trigonometry, 120–121
TaskClass, 1100
Tasks

creating, 1098–1099
running multiple. see Multithreading
TaskThreadDemo.java, 1100–1101
threads providing mechanism for running, 1098

TBs (terabytes), of storage, 4
TCP (Transmission Control Protocol), 1140
Teamwork, facilitated by stepwise refinement, 232
Terabytes (TBs), of storage, 4
Testing

benefits of stepwise refinement, 232
in software development process, 60, 62–63

Text
case study: replacing text, 480–481
files, 678
overview, 560
ShowText.java, 561–562
.txt files (text), 680
TextAreaDemo.java, 644
TextFieldDemo.java, 639–641
TextArea, 641–644
TextField, 639–641

Text I/O
vs. binary I/O, 679–680
handling in Java, 678–679
overview of, 678

TextPad, for creating/editing Java source code, 15
this reference

invoking constructors with, 357–358
overview of, 356–358
referencing hidden data fields with, 356–357

Thread class
creating tasks and, 1100
deprecated methods, 1103
methods of, 1103–1104
overview of, 1102

Thread pools, 1106–1108
Thread synchronization

AccountWithoutSync.java, 1109–1111
overview of, 1108–1109
synchronization using locks, 1112–1114
synchronized keyword, 1111
synchronizing statements, 1111–1112

Threads
blocking queues, 1122–1124
case study: producer/consumer thread cooperation, 1119–1122
controlling animation with (flashing text case study), 1105–1106
creating, 1098–1099
deadlocks and, 1126
locks enforcing cooperation among threads, 1114–1115
overview of, 1098
semaphores, 1124–1126
states, 1126–1127
TaskThreadDemo.java, 1100–1102
Thread class, 1102–1104
ThreadCooperation.java, 1116–1119

Thread-safe classes, 1111, 1128

Index 1319

Underflow, floating point numbers, 66
Undirected graphs, 1017
Unicode

character data type (char) and, 125–129
data input and output streams, 685
generating random numbers and, 223
text encoding, 678
text I/O vs. binary I/O, 679

Unified Modeling Language. see UML (Unified Modeling Language)
Uniform Resource Locators. see URLs (Uniform Resource Locators)
Unique addresses, for each byte of memory, 4
Universal serial bus (USB) flash drives, 5
UNIX epoch, 52
UnknownHostException, local hosts and, 1142
Unweighted graphs

defined, 1018
modeling graphs and, 1024, 1026
UnweightedGraph.java example, 1033–1034

Upcasting objects, 427
Update methods, Map interface, 811
Update statements, SQL, 1182–1183
URL class, java.net, 482
URLs (Uniform Resource Locators)

for connecting JDBC to other databases, 1191
ReadFileFromURL.java example, 483–484
reading data from Web, 482–483

USB (universal serial bus) flash drives, 5
User accounts, MySQL, 1179–1180
User Datagram Protocol (UDP), 1140
UTF-8, 685. see also Unicode

V
valueOf methods

converting strings into arrays, 389
wrapper classes and, 382

Value-returning methods
return statements required by, 207
TestReturnGradeMethod.java, 209–211
void method and, 205

Values
hashing functions, 986
maps and, 1011

values method, Map interface, 811
Variable-length argument lists, 264–265
Variables

Boolean variables. see Boolean variables
comparing primitive variables with reference variables,

332–334
control variables in for loops, 171–172
declaring, 35–36, 41
declaring array variables, 246
declaring for two-dimensional arrays, 288–289
displaying/modifying, 106
hidden, 355
identifiers, 39–40
naming conventions, 44
overflow, 65
overview of, 40–41
reference variables, 330
scope of, 41, 222–223, 355–356
static variables, 337–338

implementation of Map class, 986
overview of, 813
TestMap.java example, 813–815
types of maps, 810–811

Trees
AVL trees. see AVL trees
binary search. see Binary search trees
connected graphs, 1018
creating BFS trees, 1046
Huffman coding. see Huffman coding trees
overview of, 930
red-black trees, 986, 1002
spanning trees. see Spanning trees
traversing, 933–934

TreeSet class
implementation of Set class, 1002
overview of, 802–803
TestTreeSet.java example, 803–804
TestTreeSetWithComparator.java example, 504–506
types of sets, 798

Trigonometric methods, Math class, 120–121
trimToSize method, 904
True/false (Boolean) values, 76
Truth tables, 93–94
try-catch blocks

catching exceptions, 457, 459–461
chained exceptions, 469–470
CircleWithException.java example, 464–465
exception classes cannot be generic, 752
InputMismatchExceptionDemo.java example, 454
QuotientWithException.java example, 452
rethrowing exceptions, 468–469
when to use exceptions, 467–468

Tuples (rows)
displaying distinct, 1186–1187
displaying sorted, 1187–1188
primary key constraints and, 1176
relational structures, 1175

Twin primes, 240
Two-dimensional arrays. see Arrays, two-dimensional
Type casting

between char and numeric types, 127
generic types and, 740
loss of precision, 65
for numeric type conversion, 56–57

Type erasure, erasing generic types, 750–751

U
UDP (User Datagram Protocol), 1140
UML (Unified Modeling Language)

aggregation shown in, 374
class diagrams with, 323
diagram for Loan class, 367
diagram of StackOfIntegers, 378
diagram of static variables and methods, 337–339

Unary operators, 47
Unbounded queues, 1123
Unbounded wildcards, 748
Unboxing, 383
Unchecked exceptions, 457
Unconditional AND operator, 104

1320 Index

representing, 1063
shortest paths, 1078
summary, 1090
TestMinimumSpanningTree.java, 1076–1078
TestShortestPath.java, 1084–1086
TestWeightedGraph.java, 1070–1072
weighted adjacency matrices, 1064
weighted edges using edge array, 1063–1064
WeightedGraph class, 1065–1066
WeightedGraph.java, 1066–1070

WeightedEdge class, 1064
WeightedGraph class

getMinimumSpanningTree method, 1075, 1077–1078
overview of, 1097–1098
ShortestPathTree class as inner class of, 1082–1083
TestWeightedGraph.java, 1070–1072
WeightedGraph.java, 1066–1070

Well-balanced trees
AVL trees, 966
binary search trees, 986

where clause, select statements, 1183
while loops

case study: guessing numbers, 161–163
case study: multiple subtraction quiz, 164–165
case study: predicting future tuition, 181
deciding when to use, 174–176
design strategies, 163
do-while loop. see do-while loop
input and output redirections, 167–168
overview of, 158–159
RepeatAdditionQuiz.java example, 160–161
sentinel-controlled, 165–167
servers serving multiple clients, 1149
syntax of, 158

Whitespace
characters, 133
as delimiter in token reading methods, 479

Wildcard import, 38
Wildcards, for specifying range of generic types,

747–750
Windows. see Frames (windows)
Windows OSs, 9
Wireless networking, 6
Worst-case input

heap sorts and, 880
measuring algorithm efficiency, 822, 836

Wrapper classes
automatic conversion between primitive types and wrapper class

types, 683–684, 739
File class as, 473
numeric, 521
primitive types and, 380–383

Wrapping lines of text or words, 641, 643
Write-only streams, 697. see also OutputStream class

X
Xlint:unchecked error, compile time errors, 746

Vector class
methods, 781–782
overview of, 781
Stack class extending, 782

Vertex-weighted graphs, 1063
Vertical scroll bars, 652
Vertical sliders, 654, 655
Vertices

AbstractGraph class, 1031
adjacent and incident, 1018
depth-first searches (DFS), 1038
Graph.java example, 1028
on graphs, 1017
Prim’s algorithm and, 1072
representing on graphs, 1019–1020
shortest paths. see Shortest paths
TestBFS.java, 1046
TestGraph.java example, 1026
TestMinimumSpanningTree.java, 1076
TestWeightedGraph.java, 1070
vertex-weighted graphs, 1063
weighted adjacency matrices, 1064
WeightedGraph class, 1065–1066

Video, MediaDemo.java, 663–664
View-scoped bean, 1233
Virtual machines (VMs), 16. see also JVM

(Java Virtual Machine)
Visibility (accessibility) modifiers

classes and, 342–343
protected, public, and private, 440–442

Visual Basic, high-level languages, 8
Visualizing (displaying) graphs

Displayable.java example, 1034
DisplayUSMap.java example, 1035–1037
GraphView.java example, 1035
overview of, 1034

VLSI (very large-scale integration), 706
VMs (virtual machines), 21. see also JVM (Java Virtual Machine)
void method

defined, 205
defining and invoking, 209
TestVoidMethod.java, 209

W
Web, reading file data from, 482–484
Weighted graphs

case study: weighted nine tails problem, 1086–1089
defined, 1017
Dijkstra’s single-source shortest-path algorithm, 1079–1084
key terms, 1090
minimum spanning trees, 1072–1073
modeling graphs and, 1024
MST algorithm, 1075–1076
overview of, 1015–1016
Prim’s minimum spanning tree algorithm, 1073–1075
priority adjacency lists, 1064–1065
questions and exercises, 1090–1096

Console Input

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
long longValue = input.nextLong();
double doubleValue = input.nextDouble();
float floatValue = input.nextFloat();
String string = input.next();
String line = input.nextLine();

Console Output

System.out.println(anyValue);

Primitive Data Types

byte 8 bits
short 16 bits
int 32 bits
long 64 bits
float 32 bits
double 64 bits
char 16 bits
boolean true/false

Relational Operators

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal

Logical Operators

&& short circuit AND
|| short circuit OR
! NOT
^ exclusive OR

Arithmetic Operators

+ addition
- subtraction
* multiplication
/ division
% remainder
++var preincrement
--var predecrement
var++ postincrement
var-- postdecrement

switch Statements

switch (intExpression) {
 case value1:
 statements;

break;
 ...

case valuen:
 statements;

break;
 default:
 statements;
}

Companion Web site: www.pearsonhighered.com/liang

Assignment Operators

= assignment
+= addition assignment
-= subtraction assignment
*= multiplication assignment
/= division assignment
%= remainder assignment

if Statements

if (condition) {
 statements;
}

if (condition) {
 statements;
}
else {
 statements;
}

if (condition1) {
 statements;
}
else if (condition2) {
 statements;
}
else {
 statements;
}

loop Statements

while (condition) {
 statements;
}

do {
 statements;
} while (condition);

for (init; condition;
 adjustment) {
 statements;
}

Java Quick Reference

Conditional Expression

boolean-expression ? expression1 :
 expression2

y = (x > 0) ? 1 : -1

System.out.println(number % 2 == 0 ?
 "number is even" : "number is odd");

www.pearsonhighered.com/liang

Frequently Used Static Constants/Methods

Math.PI
Math.random()
Math.pow(a, b)
Math.abs(a)
Math.max(a, b)
Math.min(a, b)
Math.sqrt(a)
Math.sin(radians)
Math.asin(a)
Math.toRadians(degrees)
Math.toDegress(radians)
System.currentTimeMillis()
Integer.parseInt(string)
Integer.parseInt(string, radix)
Double.parseDouble(string)
Arrays.sort(type[] list)
Arrays.binarySearch(type[] list, type key)

Array/Length/Initializer

 int[] list = new int[10];
 list.length;
 int[] list = {1, 2, 3, 4};

Multidimensional Array/Length/Initializer

 int[][] list = new int[10][10];
 list.length;
 list[0].length;
 int[][] list = {{1, 2}, {3, 4}};

Ragged Array

 int[][] m = {{1, 2, 3, 4},
 {1, 2, 3},
 {1, 2},
 {1}};

String Class

String s = "Welcome";
String s = new String(char[]);
int length = s.length();
char ch = s.charAt(index);
int d = s.compareTo(s1);
boolean b = s.equals(s1);
boolean b = s.startsWith(s1);
boolean b = s.endsWith(s1);
boolean b = s.contains(s1);
String s1 = s.trim();
String s1 = s.toUpperCase();
String s1 = s.toLowerCase();
int index = s.indexOf(ch);
int index = s.lastIndexOf(ch);
String s1 = s.substring(ch);
String s1 = s.substring(i,j);
char[] chs = s.toCharArray();
boolean b = s.matches(regex);
String s1 = s.replaceAll(regex,repl);
String[] tokens = s.split(regex);

Companion Web site: www.pearsonhighered.com/liang

Object Class

Object o = new Object();
o.toString();
o.equals(o1);

File Class

File file =
 new File(filename);
file.exists()
file.renameTo(File)
file.delete()

Text File Output

 PrintWriter output =
 new PrintWriter(filename);
 output.print(...);
 output.println(...);
 output.printf(...);

Text File Input

 Scanner input = new Scanner(
 new File(filename));

ArrayList Class

ArrayList<E> list = new ArrayList<>();
list.add(object);
list.add(index, object);
list.clear();
Object o = list.get(index);
boolean b = list.isEmpty();
boolean b = list.contains(object);
int i = list.size();
list.remove(index);
list.set(index, object);
int i = list.indexOf(object);
int i = list.lastIndexOf(object);

printf Method

System.out.printf("%b %c %d %f %e %s",
 true, 'A', 45, 45.5, 45.5, "Welcome");
System.out.printf("%-5d %10.2f %10.2e %8s",

45, 45.5, 45.5, "Welcome");

Comparable Interface

c.compareTo(Comparable)
c is a Comparable object

Java Quick Reference

Uploaded by [StormRG]

www.pearsonhighered.com/liang

	Cover
	Title Page
	Copyright Page
	PREFACE
	Acknowledgments
	VideoNotes
	CONTENTS
	Chapter 1 Introduction to Computers, Programs, and Java
	1.1 Introduction
	1.2 What Is a Computer?
	1.3 Programming Languages
	1.4 Operating Systems
	1.5 Java, the World Wide Web, and Beyond
	1.6 The Java Language Specification, API, JDK, and IDE
	1.7 A Simple Java Program
	1.8 Creating, Compiling, and Executing a Java Program
	1.9 Programming Style and Documentation
	1.10 Programming Errors
	1.11 Developing Java Programs Using NetBeans
	1.12 Developing Java Programs Using Eclipse

	Chapter 2 Elementary Programming
	2.1 Introduction
	2.2 Writing a Simple Program
	2.3 Reading Input from the Console
	2.4 Identifiers
	2.5 Variables
	2.6 Assignment Statements and Assignment Expressions
	2.7 Named Constants
	2.8 Naming Conventions
	2.9 Numeric Data Types and Operations
	2.10 Numeric Literals
	2.11 Evaluating Expressions and Operator Precedence
	2.12 Case Study: Displaying the Current Time
	2.13 Augmented Assignment Operators
	2.14 Increment and Decrement Operators
	2.15 Numeric Type Conversions
	2.16 Software Development Process
	2.17 Case Study: Counting Monetary Units
	2.18 Common Errors and Pitfalls

	Chapter 3 Selections
	3.1 Introduction
	3.2 Boolean Data Type
	3.3 If Statements
	3.4 Two-Way if-else Statements
	3.5 Nested if and Multi-Way if-else Statements
	3.6 Common Errors and Pitfalls
	3.7 Generating Random Numbers
	3.8 Case Study: Computing Body Mass Index
	3.9 Case Study: Computing Taxes
	3.10 Logical Operators
	3.11 Case Study: Determining Leap Year
	3.12 Case Study: Lottery
	3.13 switch Statements
	3.14 Conditional Expressions
	3.15 Operator Precedence and Associativity
	3.16 Debugging

	Chapter 4 Mathematical Functions, Characters, and Strings
	4.1 Introduction
	4.2 Common Mathematical Functions
	4.3 Character Data Type and Operations
	4.4 The String Type
	4.5 Case Studies
	4.6 Formatting Console Output

	Chapter 5 Loops
	5.1 Introduction
	5.2 The while Loop
	5.3 The do-while Loop
	5.4 The for Loop
	5.5 Which Loop to Use?
	5.6 Nested Loops
	5.7 Minimizing Numeric Errors
	5.8 Case Studies
	5.9 Keywords break and continue
	5.10 Case Study: Checking Palindromes
	5.11 Case Study: Displaying Prime Numbers

	Chapter 6 Methods
	6.1 Introduction
	6.2 Defining a Method
	6.3 Calling a Method
	6.4 Void Method Example
	6.5 Passing Arguments by Values
	6.6 Modularizing Code
	6.7 Case Study: Converting Hexadecimals to Decimals
	6.8 Overloading Methods
	6.9 The Scope of Variables
	6.10 Case Study: Generating Random Characters
	6.11 Method Abstraction and Stepwise Refinement

	Chapter 7 Single-Dimensional Arrays
	7.1 Introduction
	7.2 Array Basics
	7.3 Case Study: Analyzing Numbers
	7.4 Case Study: Deck of Cards
	7.5 Copying Arrays
	7.6 Passing Arrays to Methods
	7.7 Returning an Array from a Method
	7.8 Case Study: Counting the Occurrences of Each Letter
	7.9 Variable-Length Argument Lists
	7.10 Searching Arrays
	7.11 Sorting Arrays
	7.12 The Arrays Class
	7.13 Command-Line Arguments

	Chapter 8 Multidimensional Arrays
	8.1 Introduction
	8.2 Two-Dimensional Array Basics
	8.3 Processing Two-Dimensional Arrays
	8.4 Passing Two-Dimensional Arrays to Methods
	8.5 Case Study: Grading a Multiple-Choice Test
	8.6 Case Study: Finding the Closest Pair
	8.7 Case Study: Sudoku
	8.8 Multidimensional Arrays

	Chapter 9 Objects and Classes
	9.1 Introduction
	9.2 Defining Classes for Objects
	9.3 Example: Defining Classes and Creating Objects
	9.4 Constructing Objects Using Constructors
	9.5 Accessing Objects via Reference Variables
	9.6 Using Classes from the Java Library
	9.7 Static Variables, Constants, and Methods
	9.8 Visibility Modifiers
	9.9 Data Field Encapsulation
	9.10 Passing Objects to Methods
	9.11 Array of Objects
	9.12 Immutable Objects and Classes
	9.13 The Scope of Variables
	9.14 The this Reference

	Chapter 10 Object-Oriented Thinking
	10.1 Introduction
	10.2 Class Abstraction and Encapsulation
	10.3 Thinking in Objects
	10.4 Class Relationships
	10.5 Case Study: Designing the Course Class
	10.6 Case Study: Designing a Class for Stacks
	10.7 Processing Primitive Data Type Values as Objects
	10.8 Automatic Conversion between Primitive Types and Wrapper Class Types
	10.9 The BigInteger and BigDecimal Classes
	10.10 The String Class
	10.11 The StringBuilder and StringBuffer Classes

	Chapter 11 Inheritance and Polymorphism
	11.1 Introduction
	11.2 Superclasses and Subclasses
	11.3 Using the super Keyword
	11.4 Overriding Methods
	11.5 Overriding vs. Overloading
	11.6 The Object Class and Its toString() Method
	11.7 Polymorphism
	11.8 Dynamic Binding
	11.9 Casting Objects and the instanceof Operator
	11.10 The Object’s equals Method
	11.11 The ArrayList Class
	11.12 Useful Methods for Lists
	11.13 Case Study: A Custom Stack Class
	11.14 The protected Data and Methods
	11.15 Preventing Extending and Overriding

	Chapter 12 Exception Handling and Text I/O
	12.1 Introduction
	12.2 Exception-Handling Overview
	12.3 Exception Types
	12.4 More on Exception Handling
	12.5 The finally Clause
	12.6 When to Use Exceptions
	12.7 Rethrowing Exceptions
	12.8 Chained Exceptions
	12.9 Defining Custom Exception Classes
	12.10 The File Class
	12.11 File Input and Output
	12.12 Reading Data from the Web
	12.13 Case Study: Web Crawler

	Chapter 13 Abstract Classes and Interfaces
	13.1 Introduction
	13.2 Abstract Classes
	13.3 Case Study: the Abstract Number Class
	13.4 Case Study: Calendar and GregorianCalendar
	13.5 Interfaces
	13.6 The Comparable Interface
	13.7 The Cloneable Interface
	13.8 Interfaces vs. Abstract Classes
	13.9 Case Study: The Rational Class
	13.10 Class Design Guidelines

	Chapter 14 JavaFX Basics
	14.1 Introduction
	14.2 JavaFX vs Swing and AWT
	14.3 The Basic Structure of a JavaFX Program
	14.4 Panes, UI Controls, and Shapes
	14.5 Property Binding
	14.6 Common Properties and Methods for Nodes
	14.7 The Color Class
	14.8 The Font Class
	14.9 The Image and ImageView Classes
	14.10 Layout Panes
	14.11 Shapes
	14.12 Case Study: The ClockPane Class

	Chapter 15 Event-Driven Programming and Animations
	15.1 Introduction
	15.2 Events and Event Sources
	15.3 Registering Handlers and Handling Events
	15.4 Inner Classes
	15.5 Anonymous Inner Class Handlers
	15.6 Simplifying Event Handling Using Lambda Expressions
	15.7 Case Study: Loan Calculator
	15.8 Mouse Events
	15.9 Key Events
	15.10 Listeners for Observable Objects
	15.11 Animation
	15.12 Case Study: Bouncing Ball

	Chapter 16 JavaFX UI Controls and Multimedia
	16.1 Introduction
	16.2 Labeled and Label
	16.3 Button
	16.4 CheckBox
	16.5 RadioButton
	16.6 TextField
	16.7 TextArea
	16.8 ComboBox
	16.9 ListView
	16.10 ScrollBar
	16.11 Slider
	16.12 Case Study: Developing a Tic-Tac-Toe Game
	16.13 Video and Audio
	16.14 Case Study: National Flags and Anthems

	Chapter 17 Binary I/O
	17.1 Introduction
	17.2 How Is Text I/O Handled in Java?
	17.3 Text I/O vs. Binary I/O
	17.4 Binary I/O Classes
	17.5 Case Study: Copying Files
	17.6 Object I/O
	17.7 Random-Access Files

	Chapter 18 Recursion
	18.1 Introduction
	18.2 Case Study: Computing Factorials
	18.3 Case Study: Computing Fibonacci Numbers
	18.4 Problem Solving Using Recursion
	18.5 Recursive Helper Methods
	18.6 Case Study: Finding the Directory Size
	18.7 Case Study: Tower of Hanoi
	18.8 Case Study: Fractals
	18.9 Recursion vs. Iteration
	18.10 Tail Recursion

	Chapter 19 Generics
	19.1 Introduction
	19.2 Motivations and Benefits
	19.3 Defining Generic Classes and Interfaces
	19.4 Generic Methods
	19.5 Case Study: Sorting an Array of Objects
	19.6 Raw Types and Backward Compatibility
	19.7 Wildcard Generic Types
	19.8 Erasure and Restrictions on Generics
	19.9 Case Study: Generic Matrix Class

	Chapter 20 Lists, Stacks, Queues, and Priority Queues
	20.1 Introduction
	20.2 Collections
	20.3 Iterators
	20.4 Lists
	20.5 The Comparator Interface
	20.6 Static Methods for Lists and Collections
	20.7 Case Study: Bouncing Balls
	20.8 Vector and Stack Classes
	20.9 Queues and Priority Queues
	20.10 Case Study: Evaluating Expressions

	Chapter 21 Sets and Maps
	21.1 Introduction
	21.2 Sets
	21.3 Comparing the Performance of Sets and Lists
	21.4 Case Study: Counting Keywords
	21.5 Maps
	21.6 Case Study: Occurrences of Words
	21.7 Singleton and Unmodifiable Collections and Maps

	Chapter 22 Developing Efficient Algorithms
	22.1 Introduction
	22.2 Measuring Algorithm Efficiency Using Big O Notation
	22.3 Examples: Determining Big O
	22.4 Analyzing Algorithm Time Complexity
	22.5 Finding Fibonacci Numbers Using Dynamic Programming
	22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm
	22.7 Efficient Algorithms for Finding Prime Numbers
	22.8 Finding the Closest Pair of Points Using Divide-and-Conquer
	22.9 Solving the Eight Queens Problem Using Backtracking
	22.10 Computational Geometry: Finding a Convex Hull

	Chapter 23 Sorting
	23.1 Introduction
	23.2 Insertion Sort
	23.3 Bubble Sort
	23.4 Merge Sort
	23.5 Quick Sort
	23.6 Heap Sort
	23.7 Bucket Sort and Radix Sort
	23.8 External Sort

	Chapter 24 Implementing Lists, Stacks, Queues, and Priority Queues
	24.1 Introduction
	24.2 Common Features for Lists
	24.3 Array Lists
	24.4 Linked Lists
	24.5 Stacks and Queues
	24.6 Priority Queues

	Chapter 25 Binary Search Trees
	25.1 Introduction
	25.2 Binary Search Trees
	25.3 Deleting Elements from a BST
	25.4 Tree Visualization and MVC
	25.5 Iterators
	25.6 Case Study: Data Compression

	Chapter 26 AVL Trees
	26.1 Introduction
	26.2 Rebalancing Trees
	26.3 Designing Classes for AVL Trees
	26.4 Overriding the insert Method
	26.5 Implementing Rotations
	26.6 Implementing the delete Method
	26.7 The AVLTree Class
	26.8 Testing the AVLTree Class
	26.9 AVL Tree Time Complexity Analysis

	Chapter 27 Hashing
	27.1 Introduction
	27.2 What Is Hashing?
	27.3 Hash Functions and Hash Codes
	27.4 Handling Collisions Using Open Addressing
	27.5 Handling Collisions Using Separate Chaining
	27.6 Load Factor and Rehashing
	27.7 Implementing a Map Using Hashing
	27.8 Implementing Set Using Hashing

	Chapter 28 Graphs and Applications
	28.1 Introduction
	28.2 Basic Graph Terminologies
	28.3 Representing Graphs
	28.4 Modeling Graphs
	28.5 Graph Visualization
	28.6 Graph Traversals
	28.7 Depth-First Search (DFS)
	28.8 Case Study: The Connected Circles Problem
	28.9 Breadth-First Search (BFS)
	28.10 Case Study: The Nine Tails Problem

	Chapter 29 Weighted Graphs and Applications
	29.1 Introduction
	29.2 Representing Weighted Graphs
	29.3 The WeightedGraph Class
	29.4 Minimum Spanning Trees
	29.5 Finding Shortest Paths
	29.6 Case Study: The Weighted Nine Tails Problem

	Chapter 30 Multithreading and Parallel Programming
	30.1 Introduction
	30.2 Thread Concepts
	30.3 Creating Tasks and Threads
	30.4 The Thread Class
	30.5 Case Study: Flashing Text
	30.6 Thread Pools
	30.7 Thread Synchronization
	30.8 Synchronization Using Locks
	30.9 Cooperation among Threads
	30.10 Case Study: Producer/Consumer
	30.11 Blocking Queues
	30.12 Semaphores
	30.13 Avoiding Deadlocks
	30.14 Thread States
	30.15 Synchronized Collections
	30.16 Parallel Programming

	Chapter 31 Networking
	31.1 Introduction
	31.2 Client/Server Computing
	31.3 The InetAddress Class
	31.4 Serving Multiple Clients
	31.5 Sending and Receiving Objects
	31.6 Case Study: Distributed Tic-Tac-Toe Games

	Chapter 32 Java Database Programming
	32.1 Introduction
	32.2 Relational Database Systems
	32.3 SQL
	32.4 JDBC
	32.5 PreparedStatement
	32.6 CallableStatement
	32.7 Retrieving Metadata

	Chapter 33 JavaServer Faces
	33.1 Introduction
	33.2 Getting Started with JSF
	33.3 JSF GUI Components
	33.4 Processing the Form
	33.5 Case Study: Calculator
	33.6 Session Tracking
	33.7 Validating Input
	33.8 Binding Database with Facelets
	33.9 Opening New JSF Pages

	APPENDIXES
	Appendix A: Java Keywords
	Appendix B: The ASCII Character Set
	Appendix C: Operator Precedence Chart
	Appendix D: Java Modifiers
	Appendix E: Special Floating-Point Values
	Appendix F: Number Systems
	Appendix G: Bitwise Operations
	Appendix H: Regular Expressions
	Appendix I: Enumerated Types

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

