
www.allitebooks.com

http://www.allitebooks.org

Introduction to
NETWORK EMULATION

Razvan Beuran

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Published by

Pan Stanford Publishing Pte. Ltd.

Penthouse Level, Suntec Tower 3

8 Temasek Boulevard

Singapore 038988

Email: editorial@panstanford.com

Web: www.panstanford.com

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Introduction to Network Emulation

Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any
form or by any means, electronic or mechanical, including photocopying,
recording or any information storage and retrieval system now known or to
be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying

fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive,

Danvers, MA 01923, USA. In this case permission to photocopy is not

required from the publisher.

ISBN 978-981-4310-91-8 (Hardcover)

ISBN 978-981-4364-09-6 (eBook)

Printed in the USA

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

To Yuki

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Contents

List of Acronyms xvii

Preface xxi

1 Introduction 1

PART I THE INS AND OUTS OF NETWORK EMULATION

2 Network Emulation 101 7
2.1 What is Network Emulation? 7

2.1.1 Background 7

2.1.2 Definition 13

2.1.2.1 Methodology 15

2.1.2.2 Possible points of failure 15

2.1.3 Evaluation 16

2.2 What is Emulation Good For? 19

2.2.1 Equipment Assessment 19

2.2.2 Application Assessment 21

2.2.3 Protocol Assessment 23

2.2.4 Complex Scenarios 25

2.3 Emulation vs. the Others 27

2.3.1 Analytical Modeling 27

2.3.1.1 Methodology 28

2.3.1.2 Possible points of failure 28

2.3.1.3 Evaluation 29

2.3.2 Network Simulation 30

2.3.2.1 Methodology 30

2.3.2.2 Possible points of failure 31

2.3.2.3 Evaluation 32

2.3.3 Real-World Testing 33

2.3.3.1 Methodology 34

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

viii Contents

2.3.3.2 Possible points of failure 35

2.3.3.3 Evaluation 35

2.3.4 Comparison 37

3 Emulators in the Wild 41
3.1 What is Out There? 41

3.2 Emulator Classification 49

3.2.1 Availability 50

3.2.2 Implementation Manner 51

3.2.2.1 Software emulators 51

3.2.2.2 Hardware emulators 52

3.2.2.3 Network testbeds 54

3.2.3 Emulation Level 55

3.2.3.1 Link-level emulators 56

3.2.3.2 Topology-level emulators 57

3.2.4 Model Complexity 59

3.2.4.1 Low-complexity emulators 60

3.2.4.2 Medium-complexity emulators 60

3.2.4.3 High-complexity emulators 61

3.2.5 Summary 63

3.3 Carrying Out Emulations 63

3.3.1 Emulation Execution 64

3.3.1.1 Centralized emulation 64

3.3.1.2 Distributed execution 66

3.3.2 Running Applications 71

3.3.2.1 One application instance per host 73

3.3.2.2 Multiple application instances per

host 73

3.3.2.3 Multiple applications per host 75

3.3.2.4 Application traffic generation 75

3.3.3 Performing Experiments 77

3.3.3.1 Experiment management 77

3.3.3.2 Management tools 78

PART II NETWORK EMULATORS TO REMEMBER

4 Free Network Emulators 83
4.1 Dummynet 83

4.1.1 Implementation 84

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Contents ix

4.1.2 Configuration 85

4.1.3 Discussion 88

4.2 NIST Net 89

4.2.1 Implementation 90

4.2.2 Configuration 91

4.2.3 Discussion 92

4.3 NetEm 93

4.3.1 Implementation 94

4.3.2 Configuration 95

4.3.3 Discussion 97

4.4 Comparison 99

5 Commercial Network Emulators 103
5.1 Shunra 103

5.1.1 Shunra VE Appliance 104

5.1.1.1 Implementation 105

5.1.1.2 Configuration 106

5.1.1.3 Discussion 108

5.1.2 Shunra VE Cloud 111

5.1.2.1 Implementation 112

5.1.2.2 Configuration 112

5.1.2.3 Discussion 113

5.1.3 Shunra VE Desktop 113

5.1.3.1 Shunra VE Desktop Standard 113

5.1.3.2 Shunra VE Desktop Professional 114

5.1.3.3 Discussion 114

5.1.4 Discussion 115

5.2 PacketStorm Communications 117

5.2.1 PacketStorm Series 118

5.2.1.1 PacketStorm 4XG 118

5.2.1.2 PacketStorm E series 120

5.2.2 Hurricane Series 121

5.2.2.1 Configuration 121

5.2.2.2 Discussion 122

5.2.3 Tornado 122

5.2.3.1 Configuration 123

5.2.3.2 Discussion 123

5.2.4 Discussion 123

5.2.4.1 Comparison 123

5.2.4.2 Other tools 125

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

x Contents

5.3 Simena 126

5.3.1 Overview 127

5.3.1.1 General features 127

5.3.1.2 Configuration 130

5.3.2 PTC Series 133

5.3.3 NE Series 133

5.3.3.1 NE3000 and NE2000 133

5.3.3.2 NE100 134

5.3.4 Discussion 135

5.3.4.1 Comparison 135

5.3.4.2 Other tools 137

5.4 Apposite Technologies 138

5.4.1 Linktropy Series 139

5.4.1.1 Linktropy 10G 139

5.4.1.2 Linktropy 7500 PRO 142

5.4.1.3 Linktropy 5500 144

5.4.1.4 Linktropy Mini2 144

5.4.2 Netropy Series 145

5.4.2.1 Netropy 10G 145

5.4.2.2 Netropy N80 148

5.4.2.3 Netropy N60 148

5.4.3 Discussion 148

5.5 Anue Systems 153

5.5.1 XGEM 154

5.5.1.1 Configuration 155

5.5.2 GEM 157

5.5.2.1 Configuration 157

5.5.3 Discussion 158

5.5.3.1 Comparison 158

5.5.3.2 Other tools 159

5.6 Comparison 160

6 Emulation-Capable Network Simulators 169
6.1 Ns-2 Network Simulator 169

6.1.1 Emulation Support 171

6.1.1.1 Architecture for emulation 171

6.1.2 Operation Modes 172

6.1.3 Emulation Components 174

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Contents xi

6.1.4 Discussion 177

6.2 OPNET Modeler 178

6.2.1 Feature Overview 178

6.2.2 System-in-the-loop Module 180

6.2.3 Emulation Scenarios 181

6.2.3.1 Live-Sim-Live 181

6.2.3.2 Sim-Live-Sim 182

6.2.3.3 Complex scenarios 183

6.2.4 Discussion 184

6.3 QualNet Developer 186

6.3.1 Components 186

6.3.2 EXata Emulator 187

6.3.2.1 EXata features 188

6.3.2.2 EXata components 189

6.3.2.3 EXata/Cyber 191

6.3.3 Discussion 191

6.4 NCTUns 194

6.4.1 Emulation Features 195

6.4.2 Basic Methodology 196

6.4.3 Additional Features 199

6.4.4 Discussion 200

6.5 Comparison 201

7 Network Emulation Testbeds 205
7.1 Emulab 205

7.1.1 Overview 206

7.1.2 Architecture 208

7.1.2.1 Control servers 208

7.1.2.2 Experiment hosts 209

7.1.2.3 Connectivity 211

7.1.2.4 Other components 212

7.1.3 Node Virtualization 213

7.1.3.1 Basic support 214

7.1.3.2 Xen-based virtualization 216

7.1.4 Wireless Network Testbed 217

7.1.4.1 Features 218

7.1.4.2 Configuration 219

7.1.5 Discussion 221

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

xii Contents

7.2 PlanetLab 222

7.2.1 Overview 222

7.2.2 Features 223

7.2.3 Architecture 226

7.2.3.1 Slices 226

7.2.3.2 Design challenges 228

7.2.4 Discussion 229

7.3 ORBIT 231

7.3.1 Overview 232

7.3.2 Architecture 234

7.3.2.1 ORBIT hardware 235

7.3.2.2 ORBIT software 237

7.3.3 Emulation Features 240

7.3.3.1 Network topology emulation 240

7.3.3.2 Mobility emulation 243

7.3.4 Discussion 244

7.4 Comparison 245

8 More to Consider 251
8.1 Network Emulation Issues 251

8.1.1 Realism 252

8.1.2 Scalability 255

8.1.3 Flexibility 256

8.1.4 Other Issues 259

8.2 Network Emulator Research 260

8.2.1 Time Flow 261

8.2.2 Network Protocols 262

8.2.3 Network Interfaces 263

8.2.4 Network Conditions 264

8.2.4.1 Uncontrolled real conditions 265

8.2.4.2 Controlled real conditions 266

8.2.4.3 Modeled conditions 268

8.3 Discussion 269

PART III A CASE STUDY: QOMB

9 QOMB Overview 277
9.1 Motivation 278

9.1.1 Internet Access 278

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Contents xiii

9.1.2 Smart Environments 279

9.2 Requirements 280

9.2.1 Background 280

9.2.2 Large-Scale Wireless Emulation 281

9.3 Design Outline 283

10 QOMET 285
10.1 Overview 285

10.2 DeltaQ Library 287

10.2.1 Scenario Representation 288

10.2.2 Wireless Communication 288

10.2.2.1 Wireless network technologies 289

10.2.2.2 Wireless network antennas 291

10.2.2.3 Propagation models 292

10.2.3 Node Mobility 293

10.2.4 Synthetic Environments 293

10.2.5 �Q Description 294

10.3 Wireconf Library 294

10.3.1 Overview 294

10.3.2 Network Configuration 295

10.3.2.1 Link-layer emulator actions 295

10.3.2.2 Wireconf actions 297

10.4 Chanel Library 298

10.5 Command-Line Tools 299

10.5.1 Qomet Executable 299

10.5.2 Do wireconf Executable 300

10.6 Discussion 301

11 StarBED 303
11.1 Overview 303

11.2 Infrastructure 305

11.2.1 Experiment Hosts 306

11.2.2 Switches 308

11.3 SpringOS 309

11.3.1 Host Reservation 310

11.3.2 Management Server 310

11.3.3 Experiment Hosts 311

11.3.4 Scenario File 312

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

xiv Contents

11.3.5 Experiment Execution 313

11.4 RUNE 314

11.4.1 Scenario Elements 315

11.4.2 Architecture 316

11.4.3 Experiment Execution 318

11.5 Discussion 319

12 QOMET on StarBED 321
12.1 Experiment Features 321

12.2 QOMB Architecture 323

12.3 Integration with SpringOS 325

12.3.1 Alternatives 325

12.3.2 Example Experiment 327

12.3.2.1 QOMET scenario 327

12.3.2.2 SpringOS script 329

12.3.2.3 Shell script 332

12.4 Integration with RUNE 334

12.4.1 Ubiquitous Network Devices 334

12.4.1.1 Control space 336

12.4.1.2 Communication space 336

12.4.2 Example Experiment 337

12.4.2.1 RUNE definition file 337

12.4.2.2 Experiment execution 340

12.5 Discussion 341

13 QOMB Experiments 345
13.1 WLAN Experiments 345

13.1.1 VoIP Performance Assessment 346

13.1.1.1 VoIP requirements 346

13.1.1.2 User-perceived quality 347

13.1.1.3 Experiment overview 348

13.1.2 Motion Planning for Robots 349

13.1.2.1 Robot assumptions 350

13.1.2.2 Evaluation methodology 350

13.1.2.3 Experiment overview 351

13.1.3 Routing Protocol Evaluation 353

13.1.3.1 OLSR protocol 353

13.1.3.2 Experiment overview 354

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Contents xv

13.2 Active RFID Tag Experiments 356

13.2.1 Pedestrian Localization System 356

13.2.1.1 Prototype system 357

13.2.1.2 Real-world trials 357

13.2.2 Emulation Framework 358

13.2.2.1 Communication space 359

13.2.2.2 Control space 360

13.2.2.3 Time flow 361

13.2.3 Experimental Results 361

13.2.3.1 Emulation framework validation 362

13.2.3.2 Prototype system analysis 362

13.2.3.3 Parameter selection 363

13.2.3.4 Large-scale experiments 364

13.2.3.5 Experimentation procedure 365

13.3 Discussion 366

14 Concluding Remarks 367
14.1 Summing It All Up 367

14.1.1 The Ins and Outs of Network Emulation 367

14.1.2 Network Emulators to Remember 368

14.1.3 A Case Study: QOMB 370

14.2 Practical Advice 372

14.2.1 Small Company 372

14.2.2 Large Company 374

14.2.3 Research Group 376

14.2.3.1 When modeling comes first 376

14.2.3.2 When scale comes first 378

Bibliography 379

Index 389

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

List of Acronyms

ADSL asymmetric digital subscriber line

AODV ad hoc on-demand distance vector routing

ARP Address Resolution Protocol

BER bit error rate

BGP Border Gateway Protocol

CBQ class-based queuing

CBR constant bit rate

CDMA code division multiple access

CPU central processing unit

CRC cyclic redundancy check

CSV comma-separated values

CTS clear to send

DHCP Dynamic Host Configuration Protocol

ECN explicit congestion notification

EFS error-free seconds

ERM electronic records management

ERP enterprise resource planning

FER frame error rate

FIFO first in first out

FPGA field programmable gate array

FTP File Transfer Protocol

GIS geographic information systems

GPRS general packet radio service

GPS global positioning system

GSM global system for mobile communications

GUI graphical user interface

HDD hard disk drive

ICMP Internet Control Message Protocol

ICT information and communication technology

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

xviii List of Acronyms

IDE integrated drive electronics

IETF Internet Engineering Task Force

IP Internet Protocol

IPTV Internet Protocol Television

ISO International Organization for Standardization

ISP internet service provider

IT information technology

ITU International Telecommunication Union

JGN Japanese Gigabit Network

JPGIS Japanese Geographic Information Systems

LAN local area network

LCD liquid crystal display

LHC large Hadron collider

LTE long-term evolution

MAC media access control

MAN metropolitan area network

MANET mobile ad hoc network

MOS mean opinion score

MPEG Motion Picture Experts Group

MPLS multi-protocol label switching

NFS network file system

NIC network interface card

NICT National Institute of Information and Communications

Technology

NIST National Institute of Standards and Technology

NSF National Science Foundation

OLSR optimized link state routing

OMF ORBIT Management Framework

OML ORBIT Measurement Library

OS operating system

OSI open systems interconnection

OSPF open shortest path first

PAN personal area network

PC personal computer

PER packet error rate

PESQ perceptual evaluation of speech quality

PEVQ perceptual evaluation of video quality

PHY physical layer

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

List of Acronyms xix

PLC PlanetLab Central

PPP Point-to-Point Protocol

QA quality assurance

QoE quality of experience

QoS quality of service

RAM random access memory

RED random early detection

RF radio frequency

RFC request for comments

RFID radio frequency identification

RIP Routing Information Protocol

RSSI received signal strength indicator

RTP Real-Time Transport Protocol

RTS request to send

SAN storage area network

SATA serial advanced technology architecture

SCSI small computer system interface

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SNR signal-to-noise ratio

SQL structured query language

TCL tool command language

TCP Transmission Control Protocol

ToS type of service

UDP User Datagram Protocol

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

UPQ user-perceived quality

USB universal serial bus

USRP Universal Software Radio Peripheral

VLAN virtual local area network

VM virtual machine

VoIP voice over IP

VPN virtual private network

VTC video teleconferencing

WAN wide area network

WLAN wireless local area network

XML Extensible Markup Language

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Preface

When the prehistoric people crafted their first tools, they had to

test them in the real world. A knife that would not cut would serve

no purpose; it would have to be discarded or improved. Real-world
testing was the first experiment technique to be ever used.

Tens of thousands of years later, mathematicians used the power

of thought to evaluate systems by what is now called analytical
modeling. Reality was thus replaced by mathematical models,

and its properties inferred from the properties of these models.

Nevertheless, the results would only be as good as the models

themselves, and over the years the process of modeling proved to

be difficult for complicated systems.

In the modern era, computers provided an alternative experi-

mentation technique: simulation. This technique is also based on

creating logical models of systems. One, then, runs these models in

a computer environment so as to simulate system behavior. Using

computing power for model execution makes it possible to evaluate

more complex systems in more detail, including network devices,

applications, and protocols.

Emulation is a hybrid experimentation technique intended to

bridge the gap between simulation experiments and real-world

testing. The key idea of emulation is to reproduce in real time and in

a controlled manner the essential functionality of a system, so that it

can interact with other real systems that can thus be evaluated.

The network emulation methodology applies the technique of

emulation to the field of networks both for network equipment,

whose behavior is reproduced, and for the communication condi-

tions between devices, which are modeled and reproduced in a

controlled way in the emulated network, thus providing flexibility

and repeatability. These emulated components are used in a setup

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

xxii Preface

together with the real network equipments and applications under

test. Therefore, the experimental results are close to reality, and

the observations are directly applicable to real situations. Hence,

network emulation is a powerful tool for evaluating network

equipment, protocols, and applications, for research and education

purposes, as well as for pre-deployment assessments.

To facilitate its understanding and promote its usage, we shall

attempt to thoroughly describe in this book the technique of

network emulation and compare it with the other experimental

approaches: the scholarly analytical modeling, the popular network

simulation, and the demanding real-world testing. To emphasize the

practical aspects related to emulation, we shall also give a large

number examples of network emulators on the market, as well as

provide an in-depth analysis of a case study, the wireless network

emulation testbed called QOMB.

One key feature of this book is the fact that we discuss not only

the emulation of wired networks, which is perhaps an easier task,

but also that of wireless networks (WLANs, active RFID tags, IEEE

802.15.4). Given that wireless environments are more exposed to

external influences, the technique of network emulation is even

more useful in such cases. Hence, more people will be willing to

adopt it once it becomes sufficiently usable, reliable, and accurate.

An evidence in this sense is the fact that all currently widely used

network simulators, such as Ns-2, QualNet Developer, or OPNET

Modeler, do offer now the possibility of emulation as an optional

feature.

Thus, by writing this book we intend to provide our readers

with an instrument for understanding the differences between

the various experiment techniques and for mastering the various

approaches that are available for network emulation, both for the

wired and wireless cases. Therefore, this book will be useful for the

following categories of readers:

• students, researchers and ICT specialists, who can use it as a

guidebook to make informed choices of the methodologies

they use at different stages of their activities and to

know all they need to know in order to successfully set

up a network emulation testbed and to reliably perform

emulation experiments

September 6, 2012 13:5 PSP Book - 9in x 6in 00-Razvan-Beuran–prelims

Preface xxiii

• developers of network emulators, who will get insightful

hints for the future development of such systems

This book would not have been possible without the contribution

and valuable advice of many people. I would like to list them here

in alphabetic order: Prof. Dr. Vasile Buzuloiu, Assoc. Prof. Dr. Ken-

ichi Chinen, Dr. Matei Ciobotaru, Prof. Dr. Neil Davies, Assoc. Prof.

Dr. Mihai Ivanovici, Dr. Khin Thida Latt, Dr. Brian Martin, Dr. Catalin

Meirosu, Dr. Toshiyuki Miyachi, Dr. Junya Nakata, Dr. Lan Tien

Nguyen, Takashi Okada, Prof. Dr. Yoichi Shinoda, Dr. Stefan Stancu,

Prof. Dr. Yasuo Tan, and Dr. Saber Zrelli.

R. Beuran

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 1

Introduction

Computers were first created with the purpose of making calcula-

tions. Processing data using computers helped people do various

tedious tasks faster and also made it easier to avoid mistakes. As

computers became more versatile and more widely spread, they

became part of information systems, and the corresponding field

started being called IT (information technology).

It is generally agreed that the first person to discuss the idea

of a calculating engine was Charles Babbage, in 1822. But the first

functional digital computer, ENIAC, was completed more than 100

years later, in 1946. Still, it was only 22 years after that when

ARPANET, the first computer network, started being used in 1968.

Since then, information is being communicated in an ever easier and

more reliable manner, which translated into technical terms means

with higher bandwidth, lower delay, and lower loss.

As today’s society moves at a faster rate than it used to some

decades ago, information is rendered obsolete very quickly. This

is perhaps why in recent years the communication aspect (and

network connectivity) became more important than the computing

aspect for most of us when talking about computers. Although some

people still own powerful desktops, we all use mobile devices in

our everyday lives. Such mobile devices don’t typically have much

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

2 Introduction

processing power, but they are able to provide us with a function

that became almost vital: connecting us to the world. This is why IT

has turned into ICT (information and communication technology).

As communications and networks became so important, the

infrastructure that supports such services, and the associated

applications, became more diverse. New or improved network

systems, applications, and protocols appear very frequently as

technology evolves. This leads to the need of being able to quickly

test such systems, applications, and protocols, so that they can be

marketed as soon as possible.

At the moment, in the field of networks, simulation is the most

widely used technique for performing network-related experiments

during the research and development phase. Although this approach

allows for controlled, reproducible experiments, the lack of any

real components in a simulation setup leads to a lack of realism of

the results. This is why prototypes and products must necessarily

be tested in real-world environments before deployment, even if

simulation was extensively used for their development.

The technique of network emulation is intended to bridge the gap

between simulation experiments and real-world testing. Emulation

inherits reproducibility and control from simulation, but makes

possible direct experiments with the real components under test,

thus increasing the realism of the results. In this respect, emulation

can be seen as aurea mediocritas, the golden mean between

simulation and real-world trials that trades off reproducibility and

control for realism.

Although a significant number of emulation platforms and

testbeds exist, we believe that this technique is not yet sufficiently

well understood or widely spread, and not yet sufficiently well

presented. In this book we attempt to give a thorough introduction

to network emulation, so that its advantages and disadvantages

compared with other experiment techniques can be better assessed

for each particular situation.

The term “network emulation” is not well established yet,

and there is still some amount of confusion and disagreement

surrounding it. Thus, we have noticed this term being used for

several techniques that nevertheless differ from each other, and

we have also noticed the term “network simulation” being used

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Introduction 3

in its place, although the technique described is clearly that of

emulation. Therefore, in the first part of this book, titled “The Ins

and Outs of Network Emulation,” we start by defining network

emulation and discussing its usage, as well as compare it to the

other experimentation techniques: analytical modeling, simulation,

and real-world testing (Chapter 2). Following that, in Chapter 3 we

briefly review most of the existing emulation tools and then provide

a comprehensive classification method that is intended to help

readers put some order in the crowd of miscellaneous emulators

and understand what characterizes each of them. To this end we also

describe the various approaches to network emulation and compare

them with each other.

A description without examples would be dry, and hence, in the

second part of the book, titled “Network Emulators to Remember,”

we provide several examples of emulators that are in use at this time.

Thus, we introduce existing tools for network emulation, such as

the most used open-source ones, Dummynet, NIST Net, and NetEm,

presented in Chapter 4. The most used commercial emulators,

from companies such as Shunra, PacketStorm Communications,

Simena, Apposite Technologies, and Anue Systems, are described in

Chapter 5. Then in Chapter 6 we introduce the emulation features

of widely used network simulators, such as Ns-2, OPNET Modeler,

QualNet Developer, and NCTUns. For each tool we analyze its

strengths and weaknesses from several points of view (realism,

usability, etc.) and compare them to each other. The second part

of the book continues with Chapter 7, in which we present

several emulation testbeds that are available for R&D in various

organizations all over the world. At the end we include a chapter

dedicated to discussing several issues raised in the second part of

the book (Chapter 8) and talk about the current research related to

network emulation. Thus, the second part of the book represents

a thorough analysis of the current state of the art for network

emulators.

I first started working on network emulation in 2003, while

being a project associate at CERN, the European Laboratory for

Particle Physics, in Geneva, Switzerland. Our team was one of the

first in the world to work in this field, using both software and

hardware platforms, and ever since, network emulation has been my

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

4 Introduction

main research topic. Over the years we have accumulated significant

hands-on experience in this field, and we would like to share it with

our readers.

The third part of this book, “A Case Study: QOMB,” is intended

to provide a pragmatic view on network emulation by discussing all

the practical issues related to setting up an emulation environment

and to running emulation experiments. For this purpose we

present a wireless network emulation testbed, to the development

of which we contributed significantly, while with the National

Institute of Information and Communications Technology in Japan

namely QOMB. After a general overview on QOMB (Chapter 9),

we proceed to introduce its two main components, the wireless

network emulation set of tools QOMET, and the large-scale network

experiment environment StarBED, in Chapter 10 and Chapter 11,

respectively. The following chapter, Chapter 12, discusses how the

two components were actually integrated to create QOMB. Finally,

we illustrate the effective use of the technique of network emulation

with several examples of experiments that we carried out on QOMB

(Chapter 13). Since these experiments are related to employing

emulation in connection with wireless networks, they perhaps best

demonstrate the power and usefulness of network emulation. This

presentation will help readers understand what are the effective

steps that need to be undertaken in connection with network

emulation experiments. The examples will also illustrate the wide

range of possible applications of network emulation.

The book ends with a series of concluding remarks in Chapter 14.

There we first sum up the entire book to provide an overview on

its content, and thus a global view on network emulation. Then

we provide detailed practical advice that applies the information

included in this book to a series of application cases.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PART I

THE INS AND OUTS OF NETWORK

EMULATION

5

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 2

Network Emulation 101

In this chapter, we define the key concepts related to network

emulation, and we explain what it can be used for. Then we give a

summary of the other experimental techniques and conclude with a

comparison of all these approaches.

2.1 What is Network Emulation?

Let us start by looking more deeply into the origins of network

emulation and its place in the family of network testing techniques.

2.1.1 Background

Emulation as such is not a new concept in computer science, and not

even in a wider sense, since this approach is already well established

in several domains, as noted in [32].

One area in which emulation is widely used is that of training,

especially for high-risk activities such as airplane flying, nuclear

power plant operation, surgery, etc. In these fields it is necessary

to provide a realistic environment in which training can take

place without endangering human lives or risking damage to

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

8 Network Emulation 101

expensive equipment. The flight simulators used for training pilots

are probably the most well-known example in this category.1

Another example of emulation usage, this time in the field of

computer science, is the emulation of old personal computers, such

as the Commodore Amiga, Atari, or ZX-Spectrum platforms, or for

operating systems of handheld devices, such as Palm OS. In all these

cases the functionality of one piece of hardware, such as an Atari

computer or a Palm OS device, is reproduced on a different hardware

platform, typically a modern PC, so that the same specific software

for the emulated device can be run in real time on the emulation

platform. A related tool is QEMU, which emulates a standard PC,

so that a full-grown operating system can be run inside another

operating system. QEMU is defined by its author as “a generic [. . .]

machine emulator and virtualizer” [9].

The use of emulation in connection with networking is tightly

related to the field of network testing, and more precisely to that

of network experiment techniques, a concept that we define below.

Definition 2.1. A network experiment technique is a methodology

by which the characteristics of a network system, application,

or protocol are assessed so as to determine its performance,

conformance to design or product specifications, etc.

The field of network emulation is not very new either. Perhaps the

very first emulation experiments were performed in 1980, although

in a very primitive manner, and they were related to the testing of

the then relatively new TCP/IP protocol.2 This methodology was

made public in 1987 in a memo describing “some of the procedures,

scoring, and tests used in the TCP and IP bake offs” [89]. Although

the technique used at that time may be considered “primitive” by

today’s standards, it did play a significant role in network testing; its

description in the memo is as follows:

1Although the name used is “flight simulator,” according to the definitions we shall

give later in this section a more appropriate name is probably “flight emulator,” since

pilots interact with the system in real time, often by using real airplane cockpits as

the interface between them and the computer that executes the flight simulation

program.
2TCP/IP was first proposed by Vint Cerf and Bob Kahn in 1974.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Network Emulation? 9

Some tests are made more interesting by the use of a “flakeway.”

A flakeway is a purposely flakey gateway. It should have control

parameters that can be adjusted while it is running to specify a

percentage of datagrams to be dropped, a percentage of datagrams

to be corrupted and passed on, and a percentage of datagrams to

be reordered so that they arrive in a different order than sent.

Although network emulation refers here only to effects such as

dropping, erroring, and reordering, and parameters such as delay

and bandwidth are ignored (although we now know how important

they are for TCP/IP performance), the work mentioned clearly

indicates that by doing alterations to the normal operation of the

network one is able to do “more interesting” tests. By extending

the concepts expressed above, we can say that the first emulation

setup appeared because of the need to control the network quality
degradation so as to perform reproducible tests with network

protocols that were under development at that time.

Some readers may ask what network quality degradation

actually is and where does it come from. To put it simply, network

degradation appears because of the laws of physics. Because of,

at minimum, signal propagation, network traffic will always be

received later than it is sent (hence, with delay), including with

a potential variation in the inter-packet gaps (hence, with jitter).

Moreover, traffic interacts with all the network devices on the

communication path. Hence it is subjected to their limitations;

therefore, there will be bounds on the total amount of data being

communicated (i.e., throughput), and potential loss of information

(i.e., packet loss). This property can be formalized as follows.

Definition 2.2. Network quality degradation is the decline of

the network performance parameters that occurs while traffic is

transiting a communication network.

Davies was one of the first researchers to put forward the concept

of network quality degradation and its inexorableness (“Quality is

only ever lost”) and to use network quality degradation in connec-

tion with quality provisioning in communication networks [24]. We

follow his work and denote the network quality degradation by �Q .

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

10 Network Emulation 101

Figure 2.1. Controlling the network quality degradation between two

devices.

To summarize, for the very first emulation experiment that

we previously mentioned researchers needed and built a way to

control network quality degradation in order to make reproducible

experiments with network protocols. Their experimental setup can

be conceptually depicted as shown in Fig. 2.1, where A and B are two

network devices, for example two PCs running the network protocol

under test, and the “�Q Controller” is a system that can control the

network quality degradation on the link between the two devices

(i.e., the “flakeway” mentioned before).

The next notable emulation experiments were done in 1995, and

it is not surprising that they were also related to the evaluation of

a variant of the TCP/IP protocol. In these experiments, Ahn et al.
used, in parallel with real-world testing, a wide area network (WAN)

emulation testbed for comparing a variant of TCP/IP protocol called

TCP Vegas, against its competitor called TCP Reno [1]. The testbed

consisted of a dozen of workstations, and an operating system patch

made it possible to assign to each link the desired characteristics in

terms of bandwidth, propagation delay, bit error rate, and output-

buffer size. Basically, we can say that the authors of [1] managed to

integrate a “�Q Controller” into the end nodes, by modifying the

operating system of those PCs, and thus introduced the possibility

of creating in a local area network (LAN) conditions similar to those

that would appear in a large global network.

Thus the WAN emulator presented in [1] became the first

network emulator in a modern sense. The motivation given by its

authors for building such a system, and the gains of using it, are the

following:

The fact that Vegas offers higher performance under normal

network conditions, does not guarantee better performance under

extraordinary ones. [. . .] [We managed] to study Vegas’ ability

to cope with severe and swiftly changing congestion, to evaluate

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Network Emulation? 11

how Vegas and Reno compete for available network bandwidth,

and to contrast Vegas and Reno performance as path buffer

capacity increases. In the experiments summarized here, the

network frequently reached 100% utilization. As the network

was saturated, our experiments tested Vegas’ stability, not its

throughput gains.

This quote summarizes very well why researchers felt that a

technique such as network emulation is needed. This feeling was

not isolated, since, not long after, one of the first emulation tools

that is still in use today, Dummynet, was made public in 1997

[94]. Dummynet was included by default in the FreeBSD operating

system in 1998. In about the same period, more precisely in 1997,

was founded one of the first companies that are still involved in

commercial applications of network emulation, Shunra [99].

By extending the concepts presented above, we can say that

emulation appeared due to the need to transform a physical testbed

(e.g., the PCs A, B, and C in Fig. 2.2 that are all connected to

each other by a network switch and located in a single area) into

a virtual testbed which is globally distributed, similar to the one

shown in Fig. 2.3, while avoiding the cost and effort needed to

effectively create the global testbed. In this hypothetical scenario,

the technique of network emulation is used to recreate the network

quality degradation that occurs in the wide area communication

networks on the physical testbed at hand.

Despite the fact that the idea of network emulation appeared

almost 30 years ago, and that network emulation as such has existed

for a more than 10 years, there is still no full agreement upon

what network emulation should be defined as, and there is often

confusion with the related technique of network simulation. Most

researchers seem to agree that emulation involves real elements

used together with simulated components. However, additional

properties are required in some works. For example, Guruprasad

et al. present “running in real time” as a defining property of

emulators [34]. This view is shared by Nicol et al. [72]. Nevertheless,

the more recent work of Gokturk recognizes that time is only

another part of the reality that can be simulated in an emulation

experiment [32]. To support this statement the paper mentions the

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

12 Network Emulation 101

Figure 2.2. A physical network testbed consisting of PCs interconnected

by means of a network switch, with all the elements being located in a single

area.

Figure 2.3. A globally distributed virtual testbed built upon a physical

testbed by employing the technique of network emulation.

PC emulators that allow running the emulated PCs slower or faster

than they would do in real time, while still having the properties of

an emulator, since they do continue to run unmodified real programs

in an identical fashion to the original platform.

We agree with the stance of Gokturk and further emphasize

that sometimes being in full control of time may increase the value

of an emulation platform. Being able to run an application slower

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Network Emulation? 13

or faster than real time makes it possible to observe effects that

may otherwise go unnoticed, or speed up execution of lengthy

operations.

Note that, although some of the ideas presented in this book can

be used in general for experiment techniques in any field, unless

noted otherwise, from this point we shall restrict our discussion to

the area of networking.

2.1.2 Definition

Now that we have reviewed the historical background of network

emulation, let us define it more formally, so that we can later

compare it to other experimental techniques. Before defining it,

though, we need to introduce two concepts that are necessary for

this purpose.

Definition 2.3. An analytical model (also called “mathematical

model”) is a model that uses mathematical equations to describe a

system.

For example, in order to describe a queuing system, one needs to

consider mathematical models and to make assumptions for several

aspects such as

• interarrival time distribution (basically the pattern of

arrival of items into the queue)

• service time distribution, i.e., the pattern of servicing queue

items

• number of servers that service the queue

• system capacity, i.e., the total number of slots in the queue

• calling population, i.e., the total number of incoming items

• service discipline, meaning in what order the queue items

are served, usually compared with their arrival time

Distributions can be, for example, deterministic, exponential,

general (arbitrary), and the number of servers can be 1, multiple, or

even infinite. System capacity and calling population are also usually

assumed to be infinite. The service discipline is typically first-in,

first-out (FIFO).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

14 Network Emulation 101

Another type of model that is used in computer science and that

may be built on the basis of analytical models is defined below.

Definition 2.4. A computer model is a computer representation

of a system in which the physical components of the system are

represented by virtual components.

Note that a computer model may contain analytical models to

describe system functioning, but this is not necessary. For instance,

modeling a network protocol can be done by implementing as

a computer model the behavior of the protocol according to its

specifications. In this sense the computer model is just another

implementation of the protocol, similar to its real implementation,

but specific to the model execution environment. However, some

aspects of a network system functioning may need to be modeled

analytically, such as, for instance, the physical error rate in Ethernet

communication (e.g., random errors with a certain probability)

or the effect of shadowing in wireless networks (e.g., Gaussian

distribution with a certain variance).

Definition 2.5. Network emulation is a network experiment

technique that employs an experimental setup containing both
real3 network components, be it either hardware or software,

and components that are reproduced virtually through computer

models.

In Fig. 2.4 we show a representative emulation setup. As before,

and without losing any generality, we assume that the devices of

interest are three PCs, denoted by A, B, and C. These PCs are

connected to each other through a virtual network, which can

be built by modeling the equivalent physical network over which

communication is studied. This virtual network reproduces the

communication characteristics of the physical one by means of

computer models. However, the traffic flowing through the virtual

network is real, being generated by the end PCs, and sometimes by

the virtual PCs too.

3In this context “real” is equivalent in meaning to “that is used in the physical reality.”

A real network component may be a physically existing network device that is real,

or a network application or protocol implementation that can be run on a physical

computing platform.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Network Emulation? 15

Figure 2.4. Typical emulation setup: the real network devices of interest

are connected through a virtual network.

2.1.2.1 Methodology

When performing a network emulation experiment, one attempts

to recreate the network conditions that correspond to a certain

network scenario and assumes that the real components included

in the emulation experiment will interact with the emulated ones as

if they were placed in the equivalent real-world setup.

Note that this effectively contrives the emulated part of the

network as a black box, for which only the input, output, and

transfer characteristic are of importance. The transfer characteristic

of a network is actually the network quality degradation �Q
introduced in Definition 2.2. Therefore, in an emulation experiment,

one effectively assumes that by recreating the end-to-end �Q of the

emulated network it is possible to reproduce realistically a network

scenario.

2.1.2.2 Possible points of failure

Considering the network as black box may pose problems, depend-

ing on the additional assumptions that are made about its transfer

function. One may consider the equivalent �Q as constant, which

may be true as long as the input and output are very low compared to

the congestion threshold. A variation of �Q depending on the input

requires real-time model calculations that may impede experiment

execution.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

16 Network Emulation 101

2.1.3 Evaluation

In order to be able to compare emulation with the other experiment

techniques, we need to use some clear criteria. Therefore, let

us discuss next the most important points for evaluating such a

methodology.

First of all, when thinking about an experimentation technique,

one of the issues that comes to mind is cost. One aspect is the

financial cost related to acquiring all the tools and equipment

needed to make the experiment (or even to build them, if they

don’t exist). In some cases this cost can be very small; however,

network equipment can become very expensive, especially in large-

scale experiments, or when it is necessary to build it from scratch.

One issue to note in this context is that if a tool can be reused for

making experiments, then it can be considered as a fixed cost that

gets amortized over the years. Another aspect related to cost is the

time required to prepare for, and effectively make, the experiments.

Time can be translated into financial cost if needed, for instance by

considering the necessary man-hours to accomplish a task.

A second issue to consider is execution time. We use this aspect

to evaluate how efficient an experiment technique is from the point

of view of execution time. This refers essentially to whether the

act of effectively running the experiment happens in real time or

not. However, even when execution doesn’t happen in real time, but

the decrease or increase in execution speed when compared to real

time is constant, one still has good control over time; hence, such a

technique’s performance can be considered equivalent to the real-

time case.

Another issue to take into account is flexibility. Given a set of

tools, how much control does the user have over the experiment

when employing a certain technique? This is particularly important

with respect to experiment conditions. Ideally, one wishes to have

full control over experimental conditions, so that many scenarios

can be studied, and undesired interferences can be avoided.

Therefore good control translates into the possibility to explore a

wide range of scenarios.

A fourth issue related to judging experiment techniques is

reliability. Assuming that a certain experiment was performed, how

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Network Emulation? 17

much can we trust the correctness of the results? Do they represent

only a possible trend, or are they data we can use to make practical

decisions about the system? In this context the realism of the results

is probably the most important point.

One more issue to bear in mind is usability. This helps us

evaluate how easy it is to use an experiment technique, meaning how

straightforward are all the preparations and changes needed before

and during the experiment. However, we do not include here the

usability of the experiment tools by themselves, although we agree

that the learning curve associated with a certain tool has a strong

influence on its adoption, due to obvious human psychology reasons.

On the basis of the discussion above, we propose the following

criteria for evaluating experiment techniques and for comparing

them to each other:

• Experimentation cost, meaning the cost of practically

conducting experiments with a certain technique, from the

point of view of both finance and time, but excluding the

fixed cost of acquiring tools that can be used repetitively

over multiple experiments

• Real-time execution, meaning whether the experiment done

by a certain method is effectively executed in real time or

not4

• Control over experimental conditions, meaning how well the

experiment conditions can be controlled for a particular

technique and how wide is the range of experiment

conditions that can be studied

• Result reliability, meaning what is the realism of the

experimental results obtained with a particular method,

and how much trust can one put in them for making

practical decisions about the system

• Ease of use, meaning how easy it is to make experiments

when employing a particular approach, but excluding

the usability aspects referring to experiment tools by

themselves

4By extension this can be applied to experiment techniques in which time is

controlled, even though the execution time is not the same as wall-clock time.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

18 Network Emulation 101

Using these criteria, network emulation can be evaluated as

follows:

Experimentation cost Although the cost of running emulated

components can be viewed as low, network emulation does require

physical equipment to be included in the experiment. A related

issue is how expensive it is to make any changes to the emulation

testbed, for example in order to test new conditions. For the

emulated components, this cost is that of the model alteration,

but for the physical ones, the cost may be higher. Therefore

we consider the experimentation cost of this approach to be

medium.

Real-time execution Emulation experiments are typically executed

in real time, although this is not a definite requirement, since — as

we already mentioned — some researchers consider time as just

another parameter that can be emulated [32]. As long as the lapse of

time is made slower or faster in a controlled manner for the entire

system, emulation using real applications is still possible. We shall

actually show an example of how to apply this approach in practice

in Section 13.2.

Control over experimental conditions Network emulation can be

said to provide full control over the experiment conditions, but

this only extends to those components that are modeled; the real

components that are part of the experiment cannot be interfered

with more than one could do so in a real-world trial. Although the

range of conditions that can be tested through emulation may seem

infinite for the modeled components of an emulation experiment,

the fact that the emulated components have to interact with real

elements during the experiment makes that the emulation technique

is subjected to the physical constraints of the real world. For

instance, zero end-to-end delays are impossible to obtain in an

emulation testbed, and the largest delays that can be introduced are

practically limited by different physical parameters of the execution

platform, such as the size of the buffers used to store the real traffic

packets while in transit through the emulated components of the

system.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Emulation Good For? 19

Result reliability Result reliability is difficult to evaluate in general,

since it depends on a significant number of factors, but we claim

that the best-case realism level is at least medium for the case

of emulation, and this is owing to the real components being

included in the experiment. Their use also makes the results of the

experiment very intuitive, since they are obtained by really using

the equipment under test, albeit in an emulated environment. Still,

if the models based on which the emulated components run are too

simplistic, then the final results of the experiment may very well lack

realism.

Ease of use When making emulation experiments, one has to

control and configure several real systems and devices. However, the

use of computer models, and the ability to easily reproduce some

aspects such as mobility, significantly improve usability. Therefore

the ease of use can be evaluated as medium at worst.

2.2 What is Emulation Good For?

Before diving into more details regarding network emulation and

the other experiment techniques, let us first clarify what are

the potential applications of emulation experiments. The main

purpose of such experiments is to assess the performance of a

network system, and depending on what is being evaluated one can

distinguish several types of emulation experiments. One could, for

example, use emulation experiments to assess

• network equipment

• network applications

• network protocols

2.2.1 Equipment Assessment

Let us assume that a company has manufactured a new generation

of network equipment, or that the IT division of an enterprise wants

to assess the performance of several network equipment produced

by different manufacturers in order to decide which of them should

be acquired. Both for basic network devices, such as NICs (network

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

20 Network Emulation 101

interface cards), and for more advanced equipment, such as switches

and routers, a realistic environment needs to be created in order to

make possible a thorough evaluation.

At this point network emulation can play an essential role. By

using the technique of emulation, IT specialists can build a network

environment in which the communication conditions and traffic load

are similar to those in the production network for which the new

equipment is intended. By inserting the equipment under test into

such an environment, its properties can be thoroughly assessed.

Since the environment is dedicated to testing, and it’s not the

production network itself, extreme situations can be reproduced

without worrying about the influence on uninvolved users or

customers.

This methodology is very similar to the idea of a network testbed.

However, instead of using only the equipment at hand, emulation

contributes at least one main enhancement. By emulation, network

conditions are controlled so as to reproduce desired scenarios

instead of the freely changing conditions of a standard testbed

not using emulation. In addition, network traffic could also be

recreated in a controlled way, so as to reproduce the load created

by several human users, without effectively requiring the presence

of the human users. This is usually done by using tools called

traffic generators, which are typically part of most emulation

testbeds.

A (non-exhaustive) list of network equipment that can be tested

by emulation is given below:

• wired and wireless NICs

• wireless network access points

• switches and routers

• hardware firewalls and other network security devices

• IP telephony products

• videoconferencing equipment

We show in Fig. 2.5 an example of how IP phones could be tested

by using network emulation. The two IP phones are connected

through an emulated network using a “�Q controller” that will

introduce artificial packet loss and jitter so that their effect on voice

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Emulation Good For? 21

Figure 2.5. Equipment assessment: evaluating IP phones by using

network emulation.

quality can be assessed.5 The assessment can be done by users in

a subjective way, or objective metrics such as the PESQ (Perceptual

Evaluation of Speech Quality) score could be used [45].

2.2.2 Application Assessment

Network application developers often face the following challenge:

once an application is implemented and ready to be released,

how can they make sure that it performs well? More specifically,

developers ideally wish to be able to assess the performance of the

application in a wide range of network conditions, so that they can

detect potential problem before shipping the software to customers.

As an example let us consider the case of a Voice over Internet

Protocol (VoIP) application. Although the application was tested on

the local network and seemed to behave well, how can one guarantee

that the application would have good performance when used on

the Internet as well, where larger delays and packet loss as well as

bandwidth limitations will occur?

Doing some real-world testing with the application may not be

so difficult, but one can never make sure that the entire range of

possible network conditions that can be met in a real deployment

are explored in this way. Emulation can help exactly at this point: by

enabling application testing in a wide range of conditions, network

emulation will help developers understand the behavior of their

application under various circumstances and will also help them

determine the breaking points of the application, if any.

5Note that this setup is actually simplified for clarity purposes. Typically, access to a

SIP server is required in order for IP phones to function; hence, such a server needs

to be placed in the same network with the IP phones for being able to effectively run

such an experiment.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

22 Network Emulation 101

In case any problems were detected, once they are fixed, the

reproducibility property of network emulation ensures that re-

testing the application in the same conditions that caused it to fail in

the first place is possible. Thus emulation makes possible iterative

development of network applications, as well as regression testing,

which is an important component of modern software development

(e.g., in extreme programming).

A significant aspect related to network application testing is the

requirement to be able to test the application itself, and not a model

or simplified version of it. This is where network emulation comes

into play. Note that a prerequisite for such kind of experiments is

the possibility to run the application under test on a host that is

as similar as possible to the computing platform of the intended

customers (e.g., in terms of CPU frequency, amount of memory).

As a side note, a desirable feature when assessing an application

is to be able to evaluate quantitatively its behavior in different

experiments, so that judgments about differences can be easily

made. At this point the so-called quality of experience (QoE), also

known as user-perceived quality (UPQ), plays an essential role. By

associating a metric, be it subjective or objective, to the quality

delivered by an application from the point of view of users, it

becomes easy to compare performance between different scenarios.

The issue of UPQ for file transfer and VoIP was studied, for example,

in [13].

Basically, for any network/distributed application one can

benefit from employing emulation for testing, in order to evaluate

its end-to-end performance in realistic scenarios, and to determine

its behavior in extreme conditions, as well as its breaking points.

We provide below a few instances of network application testing

scenarios for which the advantages of emulation should be obvious

for any reader:

• Determine the end-to-end quality of VoIP and videoconfer-

encing systems.

• Study the responsiveness of remote access and control

applications.

• Study the behavior of content sharing and other kinds of

peer-to-peer applications.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Emulation Good For? 23

Figure 2.6. Application assessment: evaluating streaming video playback

software by using network emulation.

Figure 2.6 illustrates an example of how streaming video

playback client software could be evaluated by using network

emulation. The video playback client is connected to the streaming

server by means of an emulated network, in this case the “�Q
controller” that will introduce artificial packet loss and jitter so that

their effect on video quality can be assessed. This assessment can

be done subjectively by human users, or it can be performed by

employing an objective metric such as PEVQ (Perceptual Evaluation

of Video Quality) [81].

2.2.3 Protocol Assessment

Network protocol assessment refers to experiments for evaluating

the performance characteristics of a network protocol, such as a data

transfer protocol, or a routing protocol.

If the network protocol under test is end-to-end, such as TCP, (a

data transfer protocol), then the testing procedure is very similar

to that described in the previous section, since such a protocol is

almost always run as part of an application. For instance, in the case

of file transfer, FTP is the typical application and high-level protocol

running on top of TCP to transfer a file between two PCs.

However, network protocols, such as those for routing, are not

part of any specific application, and their role is only to make sure

that the network as a whole is operating properly. Since a network

with no traffic is close to meaningless, protocol assessment is usually

done by injecting application traffic into the network. Application

traffic can be produced by one or more instances of real applications,

or it can come from traffic generators that will produce traffic with

the same characteristics as that of real applications, as it was already

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

24 Network Emulation 101

discussed in Section 2.2.1. Such an approach is often used for Web

traffic generation, when a single software or hardware system is

used to reproduce the traffic pattern of thousands of Web clients.

Network protocol performance assessment can be done either

directly or indirectly. In this context, direct assessment refers to

gathering data related to the behavior of the protocol during the

experiment, such as the time needed to update routing tables in the

case of routing protocols. Or, if we go back to the case of file transfer,

one could measure the goodput for the transfer, or the time needed

to finish the transfer (for a discussion of UPQ metrics for file transfer

see [13]).

Perhaps a more important kind of assessment for routing

protocols is the indirect one, in which the experimenter will

gather data about the performance of the applications running

over the network managed by the routing protocol under test.

Such results will make it possible to evaluate whether the protocol

under test performs better or not than other similar proto-

cols, determine parameter values that give optimal performance,

etc.

At first sight, network protocol testing may seem to be related

more to researchers and developers, whereas network equipment

and application testing may seem more oriented toward regular

users and IT engineers. However, in many cases the protocols

are part of more complex systems, such as videoconferencing

appliances. In this context even a regular user or IT engineer may

wish to evaluate the differences between several distinct transport

protocols that can be used. For videoconferencing, UDP provides

lower latency, but may not give good performance in lossy networks;

on the other hand, TCP has higher latency, but supports well

small levels of loss. Nevertheless, the best choice may depend

on the actual circumstances and network conditions in which

the application will be used. Therefore practical testing is usually

necessary.

Below, you may find some examples of network protocols that

can be tested by emulation:

• data transfer protocols

• VoIP

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Emulation Good For? 25

Figure 2.7. Protocol assessment: evaluating a data transfer protocol using

network emulation.

• routing protocols

• peer-to-peer protocols

• distributed computing protocols and middleware

Figure 2.7 depicts an example of how a data transfer protocol

could be evaluated by using network emulation. We assume in this

example that data transfer performance is evaluated by using on

top of the data transfer protocol a Web application using a high-

level protocol such as HTTP. The Web client is connected to the

Web server by means of an emulated network, in this case the “�Q
controller” that will introduce artificial packet loss and jitter so that

their effect on the data transfer protocol, and indirectly on the Web

application performance, can be assessed.

2.2.4 Complex Scenarios

Although in the preceding sections we already gave several basic

examples of what emulation could be used for, the real scenarios

related to network testing are usually more complex and may imply

the need to simultaneously test two or all of the elements that were

mentioned so far (equipment, applications, and protocols).

Moreover, even though in some cases basic network degradation

such as artificial packet loss or jitter may suffice, a realistic scenario

usually includes a larger emulated network, similar to that shown

in Fig. 2.4. In this case, the end-to-end network degradation is not

controlled directly by the user, for instance by varying packet loss

rates in a certain range of interest, but is the result of the interaction

between the virtual network elements and the real network traffic

passing through them.

To get a clearer understanding of how complex networking

scenarios could benefit from using emulation as an experiment

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

26 Network Emulation 101

technique, let us look at several situations in which some major IT

decisions must be made. Note that the scenarios presented below

are not completely fictional, as they are loosely based on several real

use cases made public by Anue Systems [4].

Operating systems Let us imagine that a certain company is consid-

ering to upgrade their server operating system (e.g., from Microsoft

Windows Server 2003 to Microsoft Windows Server 2008), as well

as the operating system of client PCs (e.g., from Microsoft Windows

XP to Microsoft Windows 7). Before doing this operation in the

production network, IT engineers could use an emulated network

that reproduces the bandwidth, delay, and loss characteristics of

the company’s network. By thoroughly testing the various operating

system combinations in that controlled environment, IT engineers

can determine which of those combinations provides the best

cost/performance trade-off.

Data centers Establishing a remote data center or relocating an

existing one is a major challenge for any organization. Using an

emulation testbed to reproduce the network conditions between

user PCs and the remote location can help IT engineers answer

questions such as the following: Which solution meets the business-

critical storage needs of the organization? What are the performance

parameters that need to be guaranteed by the network service

provider6 in order for the data center to operate satisfactorily?

Recovery from failure Suppose that an enterprise wishes to

implement a network failure recovery solution, so that its critical

IT systems continue to operate satisfactorily in the event a major

network failure occurs. Usually this involves setting up a backup

system at a remote location that will provide the necessary services

starting at the moment when the main system fails and until its

recovery is completed. To validate a certain solution, instead of

waiting for the worst to happen, IT engineers should attempt to

test in advance how the backup system will perform by emulating

6Such guarantees may include basic metrics, such as minimum guaranteed

bandwidth, maximum packet loss, maximum delay, or composite ones, such as the

error-free seconds (EFS) figure.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 27

both the network failure, and the network conditions at the remote

location on an emulation testbed.

Network performance In order to verify correct and adequate

functioning of its network, an operator or ISP may want to test what

is the impact of delays and impairments across its own network on

customer application traffic. This is particularly important as new

services or equipment are deployed, but can also be used to evaluate

the network performance in both normal utilization conditions, as

well as in disaster scenarios. The operator can achieve this goal by

reproducing in an emulated network the topology of its production

network, and recreating in it those conditions that need to be tested.

Thus the network operator may be confident about the behavior of

its network in various hypothetical scenarios and is able to design,

implement, and validate robust protection and service restoration

mechanisms.

2.3 Emulation vs. the Others

In order to fully understand the particular aspects of emulation as a

network experiment technique, and what differentiates it from the

other approaches, such as analytical modeling, simulation, and real-

world testing, we need to define those as well, and to evaluate them

using the same criteria, i.e., those presented in the Section 2.1.3. At

the end of this section we shall then compare network emulation to

the other network experiment techniques.

2.3.1 Analytical Modeling

Although analytical modeling is only fit for thought experiments,

and hence is not a genuine experimental technique per se, we do

include it here for the sake of completeness and also because we

find that it is a very useful starting point for any network evaluation.

Moreover, modeling itself is actually an essential component of

network emulation and it is sine qua non for network simulation.

Definition 2.6. Analytical modeling is a thought experiment tech-

nique, and hence a network experiment technique in a wider sense,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

28 Network Emulation 101

that exclusively employs analytical equations to predict the behavior

of network systems, applications, and protocols.

2.3.1.1 Methodology

Analytical modeling has always played an important role in

understanding phenomena and systems, and also for system and

protocol design. The mathematical models involved are usually built

by making several assumptions to simplify reality and then by

creating analytical equations that describe this simplified reality.

In connection with networks, the most used analytical models

are those of queues, which can then be put together to build models

of switches. A related class of models are those concerning network

traffic, which closely interact with the queue models. One can model

many other things, such as network protocols and applications, for

example.

Although modeling cannot be used directly to verify whether

a system works as designed, it does play a significant role

in understanding the properties of the system and in making

predictions related to its behavior. Modeling, be it very simple or

more complex, is done (or should be done!) before proceeding with

the implementation of any network system. This modeling activity

can then become the basis for the next development and testing

phase, which is experimental in nature. For instance, the developed

analytical model could be integrated into a network simulator or

emulator to reproduce the behavior of the modeled system.

2.3.1.2 Possible points of failure

The most important caveat related to analytical modeling is

the following: since for creating most mathematical models a

simplification of reality is necessary, one must always be aware that

the analytical model can — at best — accurately predict the behavior

of the simplified system, and only approximates, better or worse,

that of the real system. In some cases this difference may not be

so important, but one must always keep in mind this aspect and

consider its influence when drawing conclusions.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 29

2.3.1.3 Evaluation

Using the criteria introduced in Section 2.1.3, analytical modeling

can be evaluated as follows:

Experimentation cost Experimentation cost is very low for analyt-

ical modeling,7 since at most computational processing is needed if

numerical models are used.

Real-time execution This is not available for analytical modeling,

since a mathematical model cannot be executed directly, but only

computed.

Control over experimental conditions Analytical modeling provides

full control over the conditions and characteristics of the system to

be evaluated, since no restrictions whatsoever apply to the model.

The range of conditions that can be studied is large, one could say

practically infinite, since even physically impossible assumptions

can be made.

Result reliability Prediction realism can be low for analytical mod-

eling, depending on the quality of the assumptions that were made

in order to derive the models. Moreover, real systems always have a

certain amount of variability,8 which may be difficult or impossible

to include in the mathematical model. Such restrictive assumptions

(for instance, in modeling queues, particular distributions for arrival

and service times are often used) do impact result reliability.

Ease of use Analytical models typically have a high ease of use,

since this requires, at most, for the model to be evaluated in order

to obtain numerical results. Note that interpreting the results may

not be so easy though, as the relationship between the mathematical

models and reality needs to be established.

7Note that we don’t consider here the creation of the model itself, which requires

significant expertise and may be expensive, nor the potential implementation in

view of numerical calculations.
8Variability is a property of systems referring to the changes that occur in them. This

variations can be predictable, if it is known in advance when they will happen, or

unpredictable, if it is not possible to tell in advance what these changes are (such as

the variation of the arrival intervals of packets).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

30 Network Emulation 101

2.3.2 Network Simulation

Anybody who has been involved in the design and implementation

of a network system has probably used simulation at one point

or another. Network simulation is a widely spread experimental

technique, and this is mainly because of the convenience with which

some experiments can be done by simulation.

Definition 2.7. Network simulation is a network experiment tech-

nique that employs an experimental setup consisting entirely of

computer models of network systems, applications, and protocols.

Network simulation experiments can be done even on a single

PC, and therefore the infrastructure costs are minimum. The cost of

the simulation software itself can vary between very low or free, for

the open-source simulators, to very high, for the commercial ones.

Even though a thorough comparison from the point of view of

realism between different simulators is yet to be done, we can

probably say without worrying too much of being wrong that the

main differences in cost between various simulator software tools

don’t necessarily derive from the realism of the results. The higher

price of commercial simulators is usually paid for indirect features

such as increased usability, customer support, and execution speed.

Commercial simulators may sometime include a larger number of

models, especially for military applications, in which the details of

the corresponding technologies cannot be made public, and are only

provided under non-disclosure agreements. This leads to the fact

that the USA Department of Defense is one of the biggest markets

for commercial network simulators.

In Fig. 2.8 we show a typical simulation setup. Both the nodes of

interest and all the other nodes in the test scenario are virtual, and

all their properties are represented by computer models.

2.3.2.1 Methodology

Network simulation is usually done using a technique called

discrete-event simulation.9 Discrete-event simulation is a general

9An alternative to discrete-event simulation is to use a probabilistic representation of

the system, for example, by means of finite-state machines, but this approach is by

far less used than discrete-event simulation.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 31

Figure 2.8. Typical simulation setup: all network components are virtual.

simulation method by which the operation of a system is repre-

sented as a chronological sequence of events. Each simulated event

occurs at an instant in time and marks a change of state in the system

[95]. It is usually said that simulations run in “logical time,” because

the discrete time of simulations is completely decoupled from the

continuous real time (also known as the “wall-clock time”).

Execution in discrete time is only one aspect of simulation,

though. In order to be able to imitate a system through simulation,

its behavior must be modeled, and this model transformed into

computer-executable code. One way to accomplish this is to simply

write programming code that can be directly compiled and executed

on a PC. An alternative is to use a higher-level script language, which

is interpreted and then executed on a PC.

To summarize, network simulation implies modeling all the

components of a communication system, including both physical

aspects (transmission media, queues, etc.) and logical elements

(communication and routing protocols, applications, etc.). These

computer models are then run in logical time on one or more (in

the case of distributed execution) PCs. The results and observations

of the experiment are then associated with the network system that

was modeled.

2.3.2.2 Possible points of failure

One significant difference between reality and simulation is the use

of logical time, which was discussed above. This makes simulated

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

32 Network Emulation 101

systems very predictable, but at the same time the simulation

experiment results may not be very accurate when compared to

reality.

For components that are functionally described very thoroughly

by specifications (e.g., IETF RFCs), such as network protocols,

accurate simulation models can be created. However, real protocol

implementations may differ from standards, for example in order

to improve performance compared to that of the standard protocol.

Because of this, the usefulness of simulation results may suffer: the

experiment may very well closely predict the performance of an

ideal protocol, but may be more or less wrong when compared to

the real implementations.

One more potential weakness, and perhaps the most important,

is related to the necessity to model elements that enter the network

scenario but for which no specification exists. The most obvious

examples of this kind are radio propagation and node mobility.

To model radio propagation and its components (attenuation,

shadowing, etc.) one is limited to approximating the corresponding

physical phenomena. The quality of this approximation depends on

a series of assumptions about propagation, which may or may not

hold in real cases. Similarly, to recreate node mobility one has to

make several assumptions about how people and vehicles move in

reality, which may or may not be relevant to all real situations. The

realism of the assumptions as well as of the models themselves has

a direct impact on the reliability of the results obtained.

2.3.2.3 Evaluation

Using the criteria presented in Section 2.1.3, we can evaluate

network simulation as follows:

Experimentation cost One PC is sufficient to run simulation

experiments, and any required changes can be introduced simply

by implementing the necessary computer model modifications.

Therefore, we consider experimentation cost to be low.10

10Simulation software itself may be quite expensive, though, and so too the expertise

needed to analyze the network system under study and to create the computer

models that represent it with sufficient accuracy.

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 33

Real-time execution Since simulation uses logical time, real-time

execution doesn’t take place.11 For very simple scenarios, simulation

execution will be much faster than real time, but for realistic large-

scale scenarios, simulation is usually much slower than real time.

Essentially, execution speed of simulation is not controlled, but

depends on the complexity of the scenario and the processing power

of the computing platform on which experiments are run.

Control over experimental conditions Simulation has absolute

control over experiment conditions, since everything is virtual in

a simulated environment, and hence no practical restrictions exist.

The range of conditions that can be studied through network sim-

ulation is very large, since even physically impossible assumptions

can be used, as in analytical modeling.

Result reliability Given the exclusive use of models in network

simulation, the realism of the experimental results can be low,

especially if very complex scenarios are simulated. Result quality

also depends on how detailed the computer models are, but the

trade-off between level of detail and execution speed implies that,

more often than not, simulation uses simplified models of reality.

The validity conditions of the underlying models, simplifications,

and assumptions should always be considered when interpreting

the experimental results of network simulations.

Ease of use Although the learning curve for network simulators is

usually quite long, the ease of use when making the experiment itself

is high, since all a user has to do is write the simulation scenario and

execute it. The results obtained may be intuitive enough, since they

are associated with virtual representations of real devices.

2.3.3 Real-World Testing

Real-world testing is used to verify that the characteristics of

a network system, application, and protocol conform to design

requirements or specifications. This is often done using prototypes

11Some network simulators do have a real-time scheduler as well, but this is used in

the “emulation mode” of the simulator, so in this situation the simulator actually

acts as an emulator.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

34 Network Emulation 101

Figure 2.9. Typical real-world testing setup: all network components are

real.

of the system that is to be manufactured, or early releases of the

software, and — especially in the case of prototypes — happens

toward the end of the development cycle.

Definition 2.8. Real-world testing (or real-world trial) is a network

experiment technique that employs an experimental setup consist-

ing entirely of real network systems, applications, and protocols.

In Fig. 2.9 we show a typical real-world testing setup. Both the

PCs of interest and all the other network equipment involved in the

experiment are real and physically available.

2.3.3.1 Methodology

The procedure for real-world testing consists in placing the real

system, application, or protocol under test in a real environment

(both physically and from network point of view) which is the

same or very similar to that for which the corresponding system

is intended. For most experiments, some kind of measurement

equipment is also used, so that various parameters of the system

can be quantified, and system performance can be assessed. The

results of these experiments are often considered to be a definitive

evaluation of the system under test, and if no problem occurs one

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 35

can proceed to large-scale manufacturing of the system, or to public

release in the case of software.

2.3.3.2 Possible points of failure

Even though a real environment is used in such trials, because of the

intrinsic lack of control over the environment, influences that are

beyond the control of the experimenter may perturb the results. If

possible, all the potential influencing factors need to be measured,

and their effect on the experimental results need to be estimated.

Moreover, the lack of control implies that the tested conditions

are limited to what the real environment provides at the time and

place where the experiment is performed. The only alternative is

to repeat the tests in different circumstances, aiming to obtain a

statistically sound range of results. For network experiments it is

customary to run the same test at different times of day and on

different days of the week, since network state is tightly related

to human activities. Typically one can expect a larger network

utilization during business hours and on working days than during

night hours and holidays. However, considering global scenarios

wherein network components may be physically located in different

areas of the world, planning the hours and days of an experiment so

that the results are relevant may prove to be rather difficult.

To compensate for the lack of control, one may try to regulate the

environment, by isolating it from external influences. This can mean

using an isolated network segment, so that there is no influence from

other traffic sources than those involved in the experiment. Or, for

wireless communication, it can mean using a radio anechoic room, to

keep out the potential interferences. Of course, one may argue that

such an alteration of the real environment may actually influence

the validity of the results, since the results obtained in a controlled

environment may be completely different than the ones that would

have been obtained in the unrestricted environment for which the

network system is intended.

2.3.3.3 Evaluation

Using the criteria discussed in Section 2.1.3, real-world testing can

be evaluated as follows:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

36 Network Emulation 101

Experimentation cost Experimentation cost is high for real-world

testing because of several reasons: real equipment needs to be used

and configured, human users need to be involved in the experiment,

etc. If the real systems don’t exist yet and need to be built for the

purpose of making experiments, then cost may become prohibitive.

This is also true for the case when the system is already in use.

Interrupting day-to-day operation of a computer network may be

costly. The same can be said regarding customer dissatisfaction

whenever there is a risk of worsening the system operation during

the testing period.

Real-time execution Real-world testing always implies real-time

execution, since all the elements in the experiment exist physically.

Although this is mostly regarded as an advantage, we have to

mention that if the behavior of the system needs to be evaluated over

a long duration, real-time execution may prove to be a disadvantage,

and a (controlled) increase in execution speed may be preferable in

such a situation.

Control over experimental conditions In typical real-world testing,

control over the global experiment conditions is low, and sometimes

missing completely, since most factors may be independent of

the experimenters. Trying to introduce such control may actually

decrease the realism of the experiment. In real-world testing the

conditions that can be studied are those of the environment in which

the experiment takes place. Therefore the range of conditions that

can be tested is low. One more aspect is that the behavior of potential

human users participating in the experiment cannot be completely

controlled (e.g., walking speed), and hence reproducibility of

experiments may be low.

Result reliability Since everything is “for real,” result realism is

implicitly high for real-world testing, although the results of a

certain experiment may not necessarily be representative of all

the possible cases. One issue to note is that when human users

are involved in an experiment, one has to be aware of issues such

as the “observer-expectancy effect,” by which the behavior of a

person involved in an experiment changes because of the explicit

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 37

expectations the experimenter has from that person. Such a change

may affect experimental results.

Ease of use Working with real equipment is usually very hard,

especially as the scale of an experiment grows, and therefore the

ease of use for real-world testing is generally low. That being said, for

IT engineers it may be easier to configure a real network device —

basically their daily job anyway — than to learn how to configure

the equivalent virtual element that would appear in a simulation

experiment.

2.3.4 Comparison

We claimed that network emulation is a hybrid experimentation

technique that bridges the gap between network simulation and

real-world testing. So far we evaluated each experiment technique,

including analytical modeling, by several criteria. Readers are

probably interested at this point in seeing the big picture and in

knowing how exactly emulation compares to the other experimental

techniques.

Let us use the same criteria as before to make an overall

evaluation based on the individual ones made in the previous

sections and to indicate for each criterion the strong and weak

points of network emulation.

Experimentation cost Although emulation cost is typically higher

than that of simulation and analytical modeling, it is still lower than

that of real-world testing. Hence emulation can be regarded as an

advantageous trade-off between those two experiment techniques

from this point of view.

Real-time execution Network emulation is usually done in real

time, and therefore it is comparable to real-world testing from this

point of view, and superior to simulation and analytical modeling.

Moreover, the ability to control time in emulation may actually prove

as an advantage compared with real-time testing in some cases.

Control over experimental conditions Network emulation offers

good control over experiment conditions, an advantage inherited

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

38 Network Emulation 101

from simulation and derived from the use of computer models. This

makes it superior to real-world testing whenever it is desired to

eliminate unwanted interferences. The ability to have reproducible

experiments is a strong requirement. The range of conditions that

can be studied by network emulation is large, an advantage it shares

with simulation and analytical modeling, and this makes it superior

to real-time testing whenever a wide range of scenarios needs to be

tested.

Result reliability Given the medium realism of network emulation

experiment results, we can say that from this point of view emula-

tion can do at least as well as simulation, if not better, and is certainly

better than analytical modeling. The inclusion of real components

makes emulation more fitted than simulation for scenarios in which

real equipment or applications/protocols must be tested, and from

this point of view it is only inferior to real-world testing.

Ease of use Given its medium ease of use, emulation is superior

to real-world testing, as it requires the use of less physical network

devices. However, it is inferior to simulation and analytical modeling,

since real network hardware is needed, and its configuration

may become difficult for large-scale experiments. This reason

may explain why simulation is actually the preferred experiment

technique for most current network research. Note that in order

to successfully conduct an emulation experiment one requires both
knowledge about how to emulate the networks and skills related

to setting up the real equipment. Therefore one may conceive

emulation as a more challenging task, from this point of view, than

doing only simulation or only real-world testing.

In Table 2.1 we summarize the above considerations so as to

provide an easy-to-read qualitative view of the differences between

network emulation and the other experiment techniques.

We would like to conclude this section with a remark intended

to make users judge by themselves what is the best choice of

an experiment technique for a particular situation. Although we

believe that emulation does indeed borrow the best aspects of

simulation and real-world testing, by no means do we suggest that

the other experiment techniques can be disregarded. Each of them

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulation vs. the Others 39

Table 2.1. Comparison of network emulation with analytical modeling,

simulation, and real-world testing

Analytical modeling Simulation Real-world testing Emulation

Experimentation cost Very low Low High Medium

Real-time execution N/A no Yes Typically yes

Control over Very high High Low High

experimental

conditions

Result reliability Very Low Low High Medium

Ease of use Very high High Low Medium

has its own advantages and disadvantages and may be more or less

appropriate for a certain stage in the research and development

process. Therefore, the technique that is the most appropriate for a

particular situation should always be chosen by the involved persons

after a careful and thorough deliberation.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 3

Emulators in the Wild

In the previous chapter, we discussed the concept of network

emulation in general, and how it is different from other experiment

techniques. Now let us give an overview of the network emulation

tools that are available for use. You will see that there are almost 30

such relatively well-known tools and environments. Following the

overview, we shall provide several criteria and use them to classify

the presented emulators. This should help our readers put some

order in the emulator world and make it an easier task for them if the

need to choose and use a network emulator appears at some point

in their career.

3.1 What is Out There?

The number of network emulators that exist is quite large; hence,

we cannot mention all of them in this book. We have chosen some

of the most important ones that are in use today in various fields of

activity: research, education, commercial applications, etc. The list

that we give below will briefly introduce, in alphabetic order, these

tools so as to offer our readers an image of the diversity that exists

“in the wild.” The list will also be useful in providing examples as we

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

42 Emulators in the Wild

shall proceed to classify emulation tools. Note that in Chapters 4 to 7,

we shall make an in-depth analysis of several of the most frequently

used emulators in several categories.

CORE The Common Open Research Emulator, a framework that

allows emulating entire networks on one or more hosts [2]. The

emulated networks can be connected to live networks or other

emulated networks. CORE uses virtualized networks stacks in a

patched FreeBSD kernel (based on IMUNES, see below), or Linux

virtual machines.

Dummynet A software tool that can enforce queue and bandwidth

limitations, delays, packet loss, and multi-path effects [94] for the

outgoing and/or incoming traffic of a PC. The main execution

platform for Dummynet is FreeBSD, but recently it has become

possible to use it on Linux, Mac OS X and Windows. This emulator

will be detailed in Section 4.1.

EMPOWER A distributed network emulation system for both wired

and wireless networks that uses virtual routers to emulate the target

network topology [118]. EMPOWER can generate user-defined

network conditions and traffic dynamics at packet level. EMPOWER

is highly scalable in that each emulator node can be configured to

emulate multiple network nodes.

Emulab A network testbed, giving researchers a wide range of

environments in which to develop, debug, and evaluate their

systems [108]. Emulab provides integrated access to several

experimental environments, such as a wired network testbed, a

wireless IEEE 802.11a/b/g testbed deployed on multiple floors of

an office building, and a sensor network testbed. This system will be

described in more detail in Section 7.1.

Hurricane A family of IP network hardware emulators developed

by PacketStorm Communications, Inc., that provides WAN emulation

and network simulation features [82]. Hurricane products can

introduce various kinds of impairments so as to reproduce various

network conditions in a repeatable and controllable lab setting. This

series of emulators will be described in more detail in Section 5.2.2.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Out There? 43

IMUNES The Integrated Multi-protocol Network Emulator/

Simulator, a network topology emulation/simulation framework

based on the FreeBSD operating system kernel [117]. IMUNES uses

multiple lightweight virtual nodes that can be interconnected via

kernel-level links to form arbitrarily complex network topologies.

Each virtual node offers a set of capabilities identical to the standard

FreeBSD kernel. This enables each virtual node to run a private copy

of any unmodified user-level application, including routing protocol

daemons, traffic generators, analyzers, or application servers.

INE The iTrinegy Network Emulator, a family of emulation prod-

ucts by iTrinegy, Ltd. [44]. INE products enable users to recreate

a variety of network conditions, such as latency, jitter, packet

loss/error/reordering, and bandwidth restrictions. Therefore INE

can be used to emulate environments such as WANs, WLANs, GPRS,

3G, satellite, and MPLS networks. Although most of the INE variants

are hardware, a software solution is available as well, called “INE for

Windows.”

LANforge-ICE A software emulator from Candela Technologies

capable of emulating networks of various latency, throughput,

and packet degradation characteristics for speeds up to 1 Gbps

[19]. LANforge-ICE applies these characteristics to flows defined

by source and destination IP addresses (or sub-nets) and MAC

addresses.

Linktropy A family of WAN emulation products from Apposite

Technologies [5]. Linktropy WAN Emulators simulate wide-area

network bandwidth, delay, jitter, packet loss, congestion, and other

important link impairments to test the performance of applications

in the lab under a spectrum of realistic conditions. The Linktropy

Player/Recorder captures and replays the conditions of a live

link, and the Linktropy Scheduler makes it easy to emulate even

dynamically changing network conditions. This series of emulators

will be described in more detail in Section 5.4.1.

Maxwell The Maxwell network emulator aims to help network

managers, software developers, and testers learn how their prod-

ucts will perform in real-world production networks (satellite

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

44 Emulators in the Wild

networks) and the Internet [41]. The emulator captures and changes

network flows, so as to induce the conditions that cause network

congestion, slow links, time outs, and many other adverse network

conditions.

ModelNet A scalable Internet emulation environment that en-

ables researchers to deploy unmodified software prototypes in

a configurable Internet-like environment and subject them to

faults and varying network conditions [109]. In ModelNet, edge

nodes running a user-specified operating system and application

software are configured to route their packets through a set of

core nodes, which cooperate to subject the traffic to the bandwidth,

congestion constraints, latency, and loss profile of a target network

topology.

NCTUns An extensible network simulator and emulator capable

of simulating various protocols used in both wired and wireless IP

networks [111]. Its core technology is based on a kernel re-entering

methodology, so that NCTUns can easily be used as an emulator. An

external host in the real world can exchange packets with nodes

in a network simulated by NCTUns. Two external hosts in the real

world can also exchange their packets via a network simulated by

NCTUns. NCTUns uses the real-life Linux TCP/IP protocol stack to

generate the simulation results. Thus, any real-life UNIX application

program can be run on a simulated node without any modification.

Application programs developed during simulation studies can be

subsequently deployed and run on real-world UNIX machines. This

simulator will be described in more detail in Section 6.4.

NetDisturb An IP network emulator software developed by

Omnicor [78]. NetDisturb can reproduce impairments (latency,

delay, jitter, limited bandwidth, and lost packets) over IP networks.

NetDisturb is inserted between two Ethernet segments (either on

the same IP network or in two different IP networks) and operates

bi-directional packet transfer on Ethernet, Fast Ethernet, and Gigabit

Ethernet network interface cards.

NetEm A software tool that provides network emulation func-

tionality for testing protocols by emulating the properties of wide

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Out There? 45

area networks, such as variable delay, loss, packet duplication, and

re-ordering [37]. NetEm is included in most Linux distributions

with 2.6 kernels and is controlled by the command line tool “tc,”

which is part of the “iproute2” package of tools. The following

effects can be introduced using NetEm: delay effects (including

correlation and predefined distributions), packet effects (loss,

duplication, corruption, re-ordering), and rate control by means

of several queuing disciplines. This emulator will be detailed in

Section 4.3.

Netropy A family of WAN emulation products from Apposite

Technologies [5]. Netropy WAN Emulators simulate wide-area

network bandwidth, delay, jitter, packet loss, congestion, and other

important link impairments to test the performance of applications

in the lab under a spectrum of realistic conditions. Netropy products

can emulate terrestrial, wireless, satellite, Internet, and other type of

wide area networks. This emulator series will be described in more

detail in Section 5.4.2.

NIST Net The NIST (National Institute of Standards and Technol-

ogy) Network Emulation Tool, a software package that allows a

single Linux PC to emulate a wide variety of network conditions

[22]. NIST Net is intended for reproducing performance dynamics

in IP networks and can emulate the critical end-to-end performance

characteristics imposed by various wide area network situations

(e.g., congestion loss) or by various underlying sub-network tech-

nologies (e.g., asymmetric bandwidth situations of xDSL and cable

modems). NIST Net is implemented as a kernel module extension

to the Linux operating system. Some of its features include tunable

packet delay distributions, packet loss, bandwidth limitation, and

packet reordering or duplication. NIST Net can also be driven by

traces produced from measurements of actual network conditions.

This emulator will be detailed in Section 4.2.

Ns-2 A discrete event simulator targeted at networking research

[105]. Ns-2 provides substantial support for simulation of TCP,

routing, and multicast protocols over wired and wireless (local and

satellite) networks. Ns-2 development began in 1989, and this tool

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

46 Emulators in the Wild

has substantially evolved over the years.1 Although Ns-2 is not a net-

work emulator per se, it does offer emulation capabilities by allowing

to introduce the simulator into a live network. Special objects within

Ns-2 are capable of introducing live traffic into the simulator and

injecting traffic from the simulator into the live network. Live traffic

can pass through the simulator (transparently to the endpoints) and

can be affected by objects within the simulation or by other traffic

on the live network. Ns-2 can also include traffic sources or sinks

that communicate with real-world entities. This simulator will be

described in more detail in Section 6.1.

OMNeT++ An extensible C++ simulation framework for building

network simulators for wired and wireless communication net-

works, on-chip networks, queueing networks, etc. [88]. OMNeT++

has a modular architecture, and support for new features can

be added through custom extensions. Currently such extensions

have been developed for real-time simulation, network emulation,

database integration, and so on.

OPNET Modeler/SITL A network simulation suite developed by

OPNET Technologies, Inc. [80]. OPNET Modeler can be used

for analyzing and designing communication networks, devices,

protocols, and applications. Users can analyze simulated networks

to compare the impact of different technology designs on end-to-end

behavior. OPNET Modeler incorporates a broad suite of protocols

and technologies and includes a development environment to

enable modeling of many network types and technologies. OPNET

Modeler can perform network emulation when using the optional

System-in-the-Loop (SITL) tool, so as to interface simulations with

live systems. This simulator will be described in more detail in

Section 6.2.

ORBIT A wireless network testbed project at Rutgers University,

the United States [115]. The objective of the project is to develop

a large-scale open-access wireless networking testbed for use

by the research community working on next-generation wireless

1Note that a successor for Ns-2, called Ns-3, has started being developed in 2006.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

What is Out There? 47

network protocols, middleware, and applications. This testbed will

be described in more detail in Section 7.3.

PacketStorm A family of IP network hardware emulators devel-

oped by PacketStorm Communications, Inc., that provide WAN

emulation and simulation capabilities [82]. PacketStorm emulators

can impair IP and non-IP traffic through various dynamic impair-

ments. The data generation feature of PacketStorm products makes

network emulation possible without utilizing additional network

resources or equipment. These emulators will be described in more

detail in Section 5.2.1.

PlanetLab A globally distributed network testbed with more than

1000 nodes at over 500 sites [84]. These nodes form a research

network testbed that is used for the evaluation of network services

over the Internet, in particular for the research and development

of new technologies for various applications of networks, such as

distributed storage and peer-to-peer systems. This testbed will be

described in more detail in Section 7.2.

QOMB A wireless network emulation testbed developed by the

National Institute of Information and Communications Technology,

Japan [15]. QOMB is used to perform large-scale wireless network

emulation experiments by dynamically reconfiguring a link-level

emulator such as Dummynet to recreate in the wired network

the wireless communications conditions corresponding to a user-

defined scenario. This testbed will be described in more detail in the

third part of this book, more precisely in Chapters 9 to 12.

QualNet Developer/EXata A simulation tool developed by Scalable

Network Technologies [96]. QualNet Developer is intended for

the analysis of alternatives, network design, and development. It

is a network evaluation software that predicts wireless, wired,

and mixed-platform network and networking device performance.

Initially, QualNet used to support emulation via a tool named IPNE.

Scalable Network Technologies now markets a separate product that

combines the functionality of QualNet and IPNE, called EXata. EXata

is intended for network testing, training, and operation activities.

EXata makes it possible to evaluate on-the-move communication

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

48 Emulators in the Wild

networks by creating a digital network replica that interfaces with

real networks in real time, using real applications. These tools will

be described in more detail in Section 6.3.

Shunra VE A family of WAN emulation products developed by

Shunra, Inc. [99]. The Shunra VE (Virtual Enterprise) network

emulators can create a replica of a network and incorporate a

variety of network attributes into their emulation models, including

the round-trip time across the network (latency), the amount of

available bandwidth, a given degree of packet loss, duplication of

packets, reordering packets, and network jitter. These tools will be

described in more detail in Section 5.1.

Simena NE A family of hardware and software solutions for

network emulation from Simena, Inc. [100]. The NE series of emu-

lators reproduces bandwidth limitations, latency, and congestion by

transparently capturing and processing the data packets. This series

of emulators will be described in more detail in Section 5.3.3.

Simena PTC A hardware solution for network emulation from

Simena, Inc. [101]. This appliance can be used for network protocols

such as IP, IPX, and AppleTalk. Since it operates at Ethernet layer

(true wire speed), it does not require any configuration change on

networks or servers. This emulator will be described in more detail

in Section 5.3.2.

StarBED A large-scale network experiment environment at the

National Institute of Information and Communications Technology,

Hokuriku Research Center, Ishikawa, Japan [64]. StarBED currently

provides more than 1000 PCs for experiments; the PCs are all

interconnected by means of several switches. The experiment-

support software tools SpringOS and RUNE are available so as to

facilitate large-scale experiments. This testbed will be described in

more detail in Chapter 11.

Tornado A WAN emulation software developed by PacketStorm

Communications, Inc. that transforms a PC into a wide area

network [82]. This allows IT network professionals to perform

pre-deployment testing in a lab environment for applications such

as ERP, storage, VoIP, videoconferencing, e-commerce, data center

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 49

consolidation, disaster recovery, and Web services. This emulator

will be described in more detail in Section 5.2.3.

WISER The Wireless IP Scalable Network Emulator, a network

emulation software jointly developed by Telcordia Technologies and

Candela Technologies for evaluating network system end-to-end

performance in a large-scale environment [107]. WISER enables

the development and testing of real-world software applications,

middleware, and advanced networking features in connection with

mobile wireless networks.

XGEM/GEM A family of hardware Ethernet network emulation

products by Anue Systems, Inc. [3]. GEM products are intended for

emulating 10/100/Gigabit Ethernet or IP-based networks in a lab

environment. XGEM products also support 10 Gigabit Ethernet. The

XGEM/GEM emulators can reproduce the delay and impairments

experienced by Ethernet frames across MANs and WANs regardless

of the underlying transport mechanism. These emulators will be

described in more detail in Section 5.5.1 and Section 5.5.2.

3.2 Emulator Classification

The definitions of network simulation and real-world testing place

these two methodologies at two extremes: simulation uses exclu-

sively logical models, whereas real-world testing uses exclusively

real systems. Network emulation is situated in-between and uses,

to various extents, modeling and real elements. How much is

modeled and how much is real in an emulation influences the results

obtained and is also related to other aspects such as execution

speed. Execution speed is also determined by characteristics such

as whether the implementation is done in software or hardware and

whether execution is centralized or distributed.

The network emulation approach that is most suited for a

particular case depends on the specific requirements of that case. To

be able to judge quickly whether a solution is appropriate for a par-

ticular problem, we provide here a classification system that can be

used for characterizing a network emulation solution to help readers

easily determine whether that solution is fit for their problem.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

50 Emulators in the Wild

The criteria we propose for classifying network emulation tech-

niques and the corresponding classes of emulators are as follows:

(1) based on the availability of an emulation tool

(a) free emulators

(b) research emulators

(c) commercial emulators

(2) based on the manner in which functionality is implemented

(a) software implementation

(b) hardware implementation (i.e., appliance)

(c) network testbed

(3) based on the level at which the network is emulated

(a) link-level emulation

(b) topology-level emulation

(4) based on the complexity of the network model used

(a) low-complexity modeling

(b) medium-complexity modeling

(c) high-complexity modeling

Let us now detail each of these classification criteria and

emphasize the strengths and weaknesses of each class of emulators.

As we shall provide a few examples in each category, please refer to

Section 3.1 for a brief description of each of these emulators. Also

note that Part 2 of the book contains a detailed discussion of the

most important emulators and should be consulted for gaining an

in-depth understanding of those network emulators.

3.2.1 Availability

Although availability is not an intrinsic characteristic of emulators,

we believe that it is an important factor when deciding what emu-

lation tool to choose for a certain purpose, and it does provide an

insight into the expectations one may have from a certain emulator.

Using this criterion, we distinguish the following types of emulators:

Free emulators This class includes those network emulators that

are free to use and that have wide availability, being included in

standard operating systems or very easy to install. In many cases,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 51

such emulators are open source and, hence, can be extended by

users if the default functionality is insufficient. Support for free

emulators is limited or may be lacking completely.

Research emulators We consider a network emulator to fall into

this category if its availability is limited to the research community,

it may be difficult to obtain, and it requires moderate to high level of

computer and networking skills to install and use. Note that such

emulators may be free for use or may require licenses for use in

commercial environments. Technical support may be available for

research emulators, but is limited to the human resources that the

teams involved in their development can spare.

Commercial emulators This type of network emulator refers to all

the emulation solutions that are provided on a commercial basis.

Typically they are easy to use and install, and there is professional

documentation and technical support available. The source code is

usually not provided; therefore, they are not extensible by end users

but could be extended by the company that markets them on a

contract basis.

3.2.2 Implementation Manner

The manner in which emulation functionality is implemented is an

important criterion in choosing a tool when one wishes to perform

emulation experiments. On the one hand, software emulators are

attractive from the point of pricing but may lack in performance

and accuracy, especially at high operating rates. On the other hand,

hardware emulators are usually expensive and may be bulky, but the

performance they offer is often at line-rate level even for 10 Gbps

ports.

3.2.2.1 Software emulators

Definition 3.1. A software network emulator is a network emulator

that exists only in electronic form and requires additional hardware

for execution, typically a PC or an equivalent execution platform.

The functionality of software emulators is implemented as a

computer program to be executed on a PC. Sometimes software

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

52 Emulators in the Wild

emulator manufacturers also make available a customized laptop

PC with the emulator being pre-installed, thus providing an out-

of-the-box solution. However, most of the time, the computer

platform for running the software emulator must be provided by the

user.

Software emulators are the most often used type of emulators,

especially in research environments, since they are usually cheap

or even free. Their performance is, nevertheless, limited by the

characteristics of the host on which they are executed. Still, since

many instances of a software emulator can be deployed in the

same environment, one can potentially use a distributed emulation

approach, so as to spread the computing complexity to many hosts.

Of course, this may introduce an overhead of communication be-

tween the emulator instances should such communication become

necessary.

Software emulators are easy to deploy, since they can be run

on off-the-shelf computer hosts. Most free software emulators are

usually integrated with typical operating systems in research envi-

ronments, such as Dummynet running on FreeBSD (see Section 4.1)

and NetEm running on Linux (see Section 4.3). Others, such as the

now-unmaintained NIST Net running on Linux (see Section 4.2) can

be easily added to a running platform by following the installation

procedure.

Free software emulators usually only have very basic emulation

capabilities. This is when commercial software emulators come into

play, offering a larger set of features and configuration options.

Examples in this category are Shunra VE Desktop (see Section 5.1.3),

Tornado from PacketStorm Communications (see Section 5.2.3),

and LANforge-ICE from Candela Technologies [19]. Since they are

intended for typical business environments, commercial emulators

usually target Windows as execution platform and can be installed

as any other Windows application.

3.2.2.2 Hardware emulators

Definition 3.2. A hardware network emulator is a network emulator

that is supplied as a hardware appliance that provides the emulation

functionality in a stand-alone manner.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 53

It is important to note from the beginning that although a

hardware emulator is an appliance, inside the “box” may very well

be a PC on which a software emulation program is installed. The

difference with respect to the typical software emulators is that

the PC is dedicated to this task, and its operating system may be

optimized for this purpose.

Another possibility is that the execution platform of a hardware

emulator is FPGA based or uses an equivalent form of dedicated

hardware. Such a solution typically offers higher execution speed

and higher accuracy of the effects being introduced. These emulators

are used mainly in commercial environments, since the high cost per

unit makes deploying many of them prohibitive. Typically only one

such emulator is deployed, and it is delegated the task to emulate the

entire network.

Although it may be difficult to know which approach is used by

a certain hardware emulator, carefully reading the documentation

provided by the manufacturer should at least provide hints

regarding this issue. As a rule of thumb, when line-rate execution is

claimed for operating rates of up to 10 Gbps, the network emulation

appliance is genuinely hardware based, since such execution rates

are not yet achievable on PCs. When in doubt, do not hesitate

to contact the manufacturer directly, who should provide this

information.

If accuracy is an issue, understanding clearly whether a network

emulation appliance is actually “hiding” a software emulator is

an essential aspect. Readers should also distinguish here the

hardware implementation from the all-in-one solution that some

manufacturers provide, and that is only a customized laptop

PC running a software network emulation implementation. The

expectations from such an all-in-one solution are similar to those

from software emulators, and they only bring the convenience

of not having to install the software by oneself, at the cost of

paying for the PC, and potentially for the customized operating

system.

Hardware emulators may have more features than software

emulators, especially when compared with the free ones. However,

the main characteristic that make hardware solutions preferable to

software ones under some circumstances is the fact that genuine

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

54 Emulators in the Wild

hardware emulators are able to operate at line rate for each of their

ports, even at 10 Gbps speeds.

Some examples of hardware network emulators are Shunra VE

Appliance from Shunra (see Section 5.1.1), Hurricane series from

PacketStorm Communications (see Section 5.2.2), PTC3000 from

Simena (see Section 5.3.2), Netropy 10G from Apposite Technologies

(see Section 5.4.2), and GEM from Anue Systems (see Section 5.5.2).

Note that many times the same company will sell both software

and hardware versions of the same emulator. The two versions

usually share some functionality, with the hardware version being

the solution of choice for the case when high speed and high

accuracy are needed. Considering the case of Shunra, for instance,

Shunra VE Desktop is the software network emulator, and Shunra

VE Appliance is the hardware-based network emulation solution (cf.

Section 5.1). In the same way, Tornado is the software solution, and

Hurricane is the hardware solution of PacketStorm Communications

(cf. Section 5.2).

3.2.2.3 Network testbeds

Definition 3.3. A testbed-based network emulator is a network

emulator that is built on top of a network testbed that is used as

the experiment execution platform.

A network testbed is a cluster of computers and the related

networking hardware (e.g., switches and routers). A testbed differs

from a typical network by the fact that it is dedicated to testing

purposes, and it is often isolated from production networks.

Some testbeds do include nodes that are connected to production

networks, and despite the complications that arise, related to

security and the necessity to control the traffic that leaves the

testbed, such a solution may be chosen for two reasons:

• A connection to an external network allows injecting outside

traffic into the testbed.

• The external network connection makes it possible to

include in the testbed nodes that are physically remote lo-

cations and thus use the Internet as part of the environment

in which the experiment is performed.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 55

Testbeds are certainly hardware based; however, they differ from

the hardware emulators since they are a collection of hardware

devices that can be used for network testing purposes, including

network emulation. Testbeds are a convenient solution for network

testing in general, and network emulation in particular, for several

reasons:

• The testbed hardware can be reused for several experi-

ments, without the need to set up and interconnect the

hardware devices each time.

• Custom software can be written for a particular testbed to

simplify the tasks of managing the experiment done on that

testbed (see also Section 3.3.3.2).

• Testbeds allow conducting large-scale experiments at a

cheaper cost than it would be typically possible by pur-

chasing the necessary hardware, or by reallocating existing

hardware for testing purposes.

Although testbeds are mainly used for research purposes and in

connection with not-for-profit activities, some testbeds can also be

used by commercial companies. Moreover, large corporations may

be able to build their own testbeds if network experiments need to

be done on a repeated basis.

Several examples of large-scale network testbeds are Emulab,

which was created at the University of Utah in the United States

(see Section 7.1), PlanetLab, a globally distributed testbed (see Sec-

tion 7.2), and StarBED, run by the National Institute of Information

and Communications Technology in Japan (see Chapter 11).

3.2.3 Emulation Level

In its simplest form, network emulation can be done at link level.

This means that the emulator is in charge of emulating the network

effects that occur on a network link: bandwidth limitation, packet

loss, and delay. However, to obtain more realistic results, one may

wish to use an emulator to reproduce an entire network topology,

defined either node by node and link by link, or — in a more abstract

manner — at sub-network level.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

56 Emulators in the Wild

3.2.3.1 Link-level emulators

Definition 3.4. A link-level network emulator is a network emulator

that creates in an unmediated manner the end-to-end characteristics

(network quality degradation) of the connection between two

network devices.

Given the simplicity of this approach, link-level emulators can

be regarded as an “entry-level approach” to network emulation.

While this alternative is supported by all emulators, do bear in mind

that it may be the only feature of free or cheap software network

emulators. Note that most modern network emulators, even when

doing exclusively link-level emulation, will attempt to reproduce a

realistic end-to-end connection through a complex network. This is

done by introducing a variation of network parameters, so that the

effect of varying conditions in a real network is reproduced.

Consider the case of packet loss. A basic link-level emulator

allows the user to set a fixed packet loss rate, which is perhaps the

most appropriate choice when loss is an effect of physical errors. A

more complex link-level emulator would permit additional settings,

such as parameters describing burst loss, which occurs in a real

network due to the interaction between concurrent traffic flows.

Now let us look at delay. A basic link-level emulator permits to

configure a fixed end-to-end delay. This is typical for reproducing

constant parameters such as propagation delay and transmission

delay.2 A more complex link-level emulator would allow to configure

a variable delay (e.g., by using a normal distribution with a certain

mean and variance). Such a model is intended to reproduce the delay

variation in a real network, where queue occupancy in the network

devices between the two endpoints changes in time depending on

traffic load.

In summary, we shall refer to a network emulator as a “link-

level emulator” whenever the parameters it reproduces directly

represent an end-to-end connection, no matter whether this is

done using fixed end-to-end parameters, or the intermediate links

are abstracted through statistical models into individual values of

2Note that transmission delay is only constant for constant packet size but will vary

among packets with different sizes.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 57

Figure 3.1. Typical link-level emulation setup.

bandwidth, packet loss, delay, and jitter. A typical setup for link-

level emulation is shown in Fig. 3.1. The block tagged “Link-Level

Emulator” controls the network �Q between the two computers A

and B according to a user-configured link model.

Examples of link-level emulators are Dummynet (see Sec-

tion 4.1), NIST Net (see Section 4.2), and NetEm (see Section 4.3)

for the free ones and Shunra VE Cloud (see Section 5.1.2), Simena

NE100 (see Section 5.3.3), and Linktropy Mini2 from Apposite

Technologies (see Section 5.4.1) for the commercial ones.

3.2.3.2 Topology-level emulators

Definition 3.5. A topology-level network emulator is a network

emulator that reproduces fully or partially the network topology

through which end points can connect to each other and the network

quality degradation at link level within the reproduced topology.

Topology-level emulators use a more advanced approach to

network emulation compared with the link-level ones. The idea

in this case is to create in the emulation environment virtual

representations of network devices, such as switches and routers, so

that the network topology is built and emulated element by element.

The resulting end-to-end network degradation is not the output

of an overall statistical model but is the cumulative effect of the

emulated virtual network devices on network traffic. The topology-

level approach is supported by most commercial emulators, whether

they are software or hardware. The fidelity with which the network

topology is reproduced depends on how the process is actually

implemented and, may vary in practice between different solutions.

For topology-level emulation, typically the user specifies on

a hop-by-hop basis the topology of the network that has to be

emulated. The properties of the links between hops are configured

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

58 Emulators in the Wild

Figure 3.2. Typical topology-level emulation setup.

individually. Such links can represent either physical network

connections, such as a 100 Mbps Ethernet connection, or can

stand for physical sub-networks, such as a Transatlantic connection.

Therefore, we can say that — conceptually — the network

degradation on the links between the virtual network devices in

a topology-level emulator is reproduced using individual link-level

emulators. Of course, in terms of practical implementation, the

design may be optimized so as to improve performance, and one may

not necessarily find several instances of link-level emulators running

in parallel within a topology-level emulator.

To summarize, we shall refer to a network emulator as a

“topology-level emulator” whenever it allows the user to define

the topology of the network to be emulated and the properties

of its links. A typical setup for topology-level emulation is shown

in Fig. 3.2. The blocks tagged “LE” are the conceptual link-level

emulators that control the network �Q of each link in the virtual

network defined within the topology-level emulator according to a

user-configured link model. The end-to-end degradation between

the two computers A and B is the cumulative effective of the network

degradation in the virtual network devices and links on the virtual

path between the two computers.

The approach of topology-level emulation is particularly useful

when one wishes to reproduce a known network topology with

minimal cost. This may be the case, for example, when one wishes

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 59

to test before deployment the performance of an application on

a corporation’s global network. Such a corporation may have the

headquarters in the United States and branches in Europe and

Japan. By creating a virtual network containing the most important

network devices in this global network (routers, gateways, and

firewalls) that are of interest for the intended test, an IT engineer

can run the application over this virtual network in a lab setting in

a reproducible manner, while watching the interaction between the

application and the virtual network elements.

Examples of topology-level emulators are Shunra VE Appliance

from Shunra (see Section 5.1.1), Hurricane series from PacketStorm

Communications (see Section 5.2.2), and NE3000 or NE2000 from

Simena (see Section 5.3.3).

As a final remark, note that although link-level emulation may

seem a simplistic approach when compared with topology-level

emulation, it is actually useful and important in several testing

scenarios and cannot be always replaced by the latter. Consider, for

instance, the case of routing protocol assessment that we presented

in Section 2.2.3. In such a case, it is imperative that the full topology

is recreated by using real hosts, so that on each of them an instance

of the new routing protocol that needs to be evaluated can be

deployed. If one would use a topology-level emulator, the new

routing protocol would have to be integrated with the network

emulator. This may be a difficult task in itself and is actually against

the goal of the experiment: testing the real implementation of the

routing protocol. The right approach in this case would be to

employ link-level emulators to reproduce the characteristics of the

communication links between routers and use them in a distributed

fashion running in real time on the physical network testbed on

which the routing protocol is executed.

3.2.4 Model Complexity

The complexity of the network model used by an emulator has

two consequences on emulation experiments: one related to the

realism of the emulation and the other related to execution

performance.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

60 Emulators in the Wild

From the point of view of the realism of the network conditions

that are being reproduced, too low a model complexity leads to

recreating conditions that are very abstract and that never occur in

practice. Although such conditions may very well be used to do some

basic testing, their lack of realism may shed doubts on the results

obtained in such tests.

Given the above, one may assume that higher model complexity

is always better. Unfortunately, higher complexity translates into

slower execution speed and, hence, into lower performance and into

a lower scale of the experiments that can be performed. Therefore,

in practice, there is always a trade-off to be done between the

complexity of the model used for emulation and the scale and speed

of emulation execution.

3.2.4.1 Low-complexity emulators

Definition 3.6. A low-complexity network emulator is a network

emulator that only allows fixed-value configurations for the network

degradation at link level.

In this category are included the emulators that only permit

setting a fixed loss rate, or a fixed delay, and cannot account for

more complex network phenomena such as congestion. Among the

currently used emulators, we believe that only Dummynet, which is

the oldest of them all, belongs to this class (see Section 4.1).

Readers should note that despite their simplicity, such emulators

can, nevertheless, be successfully used in distributed emulation

scenarios, a technique that will be described in Section 3.3.1.2.

Moreover, extensions of Dummynet to allow specifying distributions

for packet loss and delay do exist, such as the one created by the

Internet Automobility Laboratory in Japan [42].

3.2.4.2 Medium-complexity emulators

Definition 3.7. A medium-complexity network emulator is a net-

work emulator that allows specifying variable network parameters,

either in a statistic manner, as distributions, or by using rules of

variation.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulator Classification 61

When conducting experiments, it is important to choose the

statistical distribution or rule of variation that is known and proved

to represent the network to be emulated. Otherwise the results

obtained with such an emulator may not be representative for real

cases.

Most freely available network emulators, as well as most

commercial emulators, such as NetEm (see Section 4.3) and Shunra

VE product lines (see Section 5.1), fall into the category of medium-

complexity emulators. Note that even though model complexity

is increased, this does not necessarily imply that the emulated

conditions are fully realistic. However, given their widely-spread

use, we can infer that the level of realism of medium-complexity

emulators is sufficient for most commercial applications. In other

words, we can say that such emulators seem to provide currently

the best trade-off between complexity (both for models and ease of

use) and execution speed.

We also include in the class of medium-complexity emulators

those tools that instead of, or in addition to, using models allow

to “playback” a network trace that has been captured previously.

Although this mechanism is certainly useful, it does assume that

the captured traces include representative cases and that they fully

characterize the possible conditions to be met in the real network of

interest.

3.2.4.3 High-complexity emulators

Definition 3.8. A high-complexity network emulator is a network

emulator that goes beyond simple modeling of network devices and

link parameters and attempts to closely mimic reality.

Additional features that differentiate high-complexity emulators

from lower-complexity one are

(1) detailed modeling of network protocols, communication chan-

nels, etc.

(2) using instances of real devices for the network topology instead

of virtual ones

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

62 Emulators in the Wild

Table 3.1. Comparison of network emulation tools

Name Availability Type Level Complexity Execution

CORE Research Software Topology Medium Distributed

Dummynet Free Software Link Low Centralized

EMPOWER Research Software Topology Medium Distributed

Emulab Research Testbed Topology High Distributed

Hurricane Commercial Hardware Topology Medium Centralized

IMUNES Research Software Topology Medium Distributed

INE for Windows Commercial Software Link Medium Centralized

INE (others) Commercial Hardware Topology Medium Centralized

LANforge-ICE Commercial Software Topology Medium Centralized

Linktropy Commercial Hardware Link Medium Centralized

Maxwell Commercial Hardware Link Medium Centralized

ModelNet Free Software Topology High Distributed

NCTUns Free/commercial Software Topology High Centralized/

distributed

NetDisturb Commercial Software Link Medium Centralized

NetEm Free Software Link Medium Centralized

Netropy Commercial Hardware Topology Medium Centralized

NIST Net Free Software Link Medium Centralized/

distributed

Ns-2 (emulation mode) Free Software Topology High Centralized

OMNeT++ Free Software Topology High Centralized

OPNET Modeler/ SITL Commercial Software Topology High Centralized/

distributed

ORBIT Research Testbed Topology High Distributed

PacketStorm Commercial Hardware Topology Medium Centralized

PlanetLab Research Testbed Topology High Distributed

QOMB Research Testbed Topology High Distributed

QualNet Developer/

EXata

Commercial Software Topology High Centralized/

distributed

Shunra VE Appliance Commercial Hardware Topology Medium Centralized

Shunra VE Cloud Commercial Software Link Medium Centralized

Shunra VE Desktop Commercial Software Link Medium Centralized/

distributed

Simena NE Commercial Hardware Link/topology Medium Centralized

Simena PTC Commercial Hardware Topology Medium Centralized

StarBED Research Testbed Topology High Distributed

Tornado Commercial Software Link Medium Centralized

WISER Commercial Hardware Topology High Centralized

XGEM/GEM Commercial Hardware Topology Medium Centralized

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 63

In the first category enter the simulation-based emulators,

which by their nature reproduce in detail the network with

all its components. Examples of simulators that have network

emulation features are Ns-2 (see Section 6.1), OPNET Modeler (see

Section 6.2), QualNet Developer (see Section 6.3), and NCTUns (see

Section 6.4).

In the second category, we include the testbed-based emulation

frameworks, in which the emulation experiment is performed on

a large-scale testbed with tens and hundreds of PCs. Examples of

testbed-based network emulators are Emulab (see Section 7.1),

PlanetLab (see Section 7.2), ORBIT (see Section 7.3), and QOMB

(see Chapter 9).

Such approaches are not so straightforward to use in a

typical commercial environment; therefore, they are predominantly

employed by researchers and sometimes by large companies.

3.2.5 Summary

Our readers may feel lost in the network emulator “ecosystem”

that we have presented so far. To provide an overview of the most

important emulators that are currently in use (as presented in

Section 3.1), for each of these emulators we indicate in Table 3.1

the way in which we classify them according to the criteria we

proposed in the current section. We add an additional criterion

for this presentation, although the issue will only be detailed next

in Section 3.3.1, namely the way in which emulation is executed.

From this point of view, we distinguish two classes: (i) centralized

execution, when the emulation functionality is exclusively provided

by execution on a single system and (ii) distributed execution, when

the emulation functionality is provided by execution on multiple

systems.

3.3 Carrying Out Emulations

The following issues have to be considered in the context of

effectively making emulation experiments:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

64 Emulators in the Wild

• emulation execution, i.e., how to execute the emulation tool

itself

• application execution, i.e., how to run the necessary applica-

tions

• experiment execution, i.e., how to perform the emulation

experiment as a whole, including all of the above elements

3.3.1 Emulation Execution

The possibilities of emulation execution can be classified into the

following categories and sub-categories:

• centralized emulation

• distributed emulation

— fully distributed emulation

— partially distributed emulation

When executing an emulation tool, one has several constraints

related to the execution platform, since emulation tools can

be run on one computer, using some specialized hardware, or

using a testbed, depending on the implementation manner (see

Section 3.2.2). Therefore, not all of the above categories may be

usable in connection with a certain tool.

3.3.1.1 Centralized emulation

In centralized emulation execution, the emulation is effectively

performed on a single piece of hardware, be it a computer when

using a software network emulator or a dedicated device when using

hardware emulation. A typical setup for centralized emulation is

presented in Fig. 3.3.

The central emulation unit in Fig. 3.3 acts as a bridge through

which all the network traffic passes. The application hosts are

connected to the emulation unit and communicate through it. The

simplest scenario one can imagine is that in which the application

hosts (end nodes) are connected directly to the network interfaces

of the emulation unit. This scenario eliminates any other source of

network degradation, but the possibilities are limited by the number

of ports on the emulation unit.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 65

Figure 3.3. Centralized emulation execution.

If the unit does not have enough ports available to accommodate

all the end nodes in the experiment, some kind of network switching

equipment must be employed. Thus, an arbitrary number of end

nodes can use the emulation unit. The drawback in this case is that

the network equipment may introduce some additional degradation

to that of the emulation unit. However, if the additional degradation

can be considered negligible when compared with that of the

emulation unit, this solution does not pose a significant problem.

In the example shown in Fig. 3.3, we consider that there are

three clients, the desktops A, B, and C running an application, such

as videoconferencing, or a routing protocol. The network traffic

between all of the clients goes through the “emulation appliance,”

as all the PCs are connected directly to the ports of the appliance.

Although this figure only shows a particular small-scale case, it

is easy to generalize the setup for other situations, such as the

following:

• The PCs involved in the experiment can have different

characteristics, such as low specifications for clients and

high specifications for servers, and the resulting setup can

be used to test a Web-based application.

• Instead of the emulation appliance it is possible to use a

computer running a software network emulator. In this case

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

66 Emulators in the Wild

a network switch is probably needed to connect the end

nodes to the emulation host, since the number of NICs that

are available on typical PCs is limited.

With the centralized approach, if the emulation unit does

only link emulation, then system performance will depend solely

on the load injected by the application hosts. However, if the

emulation unit does topology emulation as well, then the complexity

of the emulated network has an important influence on system

performance and one must be careful to check in advance what the

limits on the size of the emulated network are.

3.3.1.2 Distributed execution

In the distributed-execution approach, the emulation task is distrib-

uted to all or several of the hosts participating in the experiment. In

this way the computational power needed per host is reduced. The

disadvantage of this approach is that, if the emulation execution on

a host cannot be done independently from that on the other hosts,

then a communication mechanism between the hosts needs to be

introduced. Such a requirement does not appear in the centralized-

emulation approach, since all the processes are executed on the

same host in that case.

Note that distributed emulation execution uses link-level emu-

lators to reproduce the communication conditions between a node

and all the other nodes with which it can communicate. The way

in which link emulation is done is, nevertheless, implementation

specific.

Within the class of distributed-execution approaches, we distin-

guish the following two categories, depending on whether all of

the hosts in an experiment or only several of them participate to

emulation execution:

• fully distributed execution

• partially distributed execution

Fully distributed execution The straightforward way to distribute

the execution of emulation is to assign the task of emulating

the communication of one node to one host. Usually the host

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 67

Figure 3.4. Fully distributed execution: Both applications and emulation

run on the same host.

representing the network node will also run the emulation task that

reproduces the communication conditions between that network

node and the other nodes in the scenario. The disadvantage of this

approach is that some restrictions are imposed on the operating

system used for the application. For example, if one uses Dummynet

as link emulator, then the application must also run on the same

operating system as Dummynet, which is FreeBSD.

This type of approach is illustrated in Fig. 3.4. Note the module

labeled “LE” that is running on each of the desktops involved in the

experiment. This module is the link-level emulator that we discussed

previously, and its role is to ensure that the communication

conditions between a node and all the others recreate the conditions

in the virtual network that is being emulated, which may very well

be the global network that we showed in Fig. 2.3. Please bear in mind

that for larger-scale experiments a single network switch may be

insufficient; if that is the case, a switch cluster must be used instead

for interconnecting all the participating nodes.

To eliminate the restriction on operating system mentioned

previously, a possibility that was proposed by the authors of SWOON

which is an emulation-based testbed created for security-related

experiments, is to group hosts in pairs [39]. One of the hosts in a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

68 Emulators in the Wild

Figure 3.5. Fully distributed execution: Applications and emulation run

on different hosts.

pair will be the application host, with an arbitrary operating system,

and the other will be the emulation host (called “shadow node” by

the authors of SWOON). The application node is connected only to

the shadow node, which acts as a bridge and forwards the traffic

to and from the application host to the other shadow nodes that

correspond to the communication peer node of the application node.

While such an approach allows using custom operating systems for

emulation and arbitrary operating systems for applications, it does

have the disadvantage of doubling the number of hosts effectively

required to perform an experiment.

This second approach for fully distributed emulation is illus-

trated in Fig. 3.5. In addition to the three desktops, three additional

PCs are needed for the emulation hosts, and are denoted by the

lower-case letters a, b, and c in the figure. All the traffic exchanged

between desktops passes through the emulation hosts that are

in charge of reproducing the conditions of the emulated virtual

network.

One can also imagine a hybrid approach between the two

mentioned here, in which a hardware virtualization technology is

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 69

Figure 3.6. Fully distributed execution: Applications and emulation run

on different virtual machines executed on the same host.

used to make it possible to run two operating systems on the same

physical host, one for applications and the another for emulation.

This solution eliminates the need to have double the number of

hosts that was proposed for SWOON, while keeping the flexibility

advantage for the application execution. Of course, this method has

the performance penalty induced by hardware virtualization, and

high-specification computers, possibly having hardware-assisted

virtualization mechanisms, become mandatory for the experiment

hosts.

This third approach for fully distributed emulation is illustrated

in Fig. 3.6. Our example shows a scenario using three experiment

nodes. On each of these hosts, hardware virtualization software

such as VMWare, Xen or VirtualBox is used to create two virtual

machines. One of these virtual machines will play the role of the

desktop running the network application of interest. The other

virtual machine will play the role of the emulation host, handling

all the network traffic between the desktop virtual machine on the

same host and the other virtual machines running on the other

experiments nodes.

Partially distributed execution Another approach, which is effec-

tively at midway between the centralized emulation execution and

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

70 Emulators in the Wild

the second type of fully distributed execution approach, is the

following, as proposed by the authors of ModelNet [109]. In their

system, application execution and emulation execution are done on

separate hosts, but the number of hosts dedicated to emulation is

smaller than that dedicated to application execution. Thus, there is

a pool of emulation servers, and each of these servers is in charge of

reproducing the communication conditions in an area of the virtual

network connecting the application hosts. When such an emulation

server receives traffic from an application host in its sub-network,

the server will decide whether the destination is within the same

sub-network. If this is the case, then it will apply the necessary

network degradation and then it will forward the traffic to the

destination. On the other hand, if the traffic is intended for a node

in a sub-network assigned to a different emulation server, then the

emulation servers will collaborate to apply the required network

degradation equivalent to transiting the two sub-networks as well as

all the intermediate sub-networks that may exist. Once the process

of applying network degradation is fully completed, the traffic will

be forwarded to the destination host.

The partially distributed execution approach is illustrated in

Fig. 3.7. Three desktop PCs, A, B, and C in our example, are connected

by a typical network switch. Let us assume that A sends a packet

intended for C. The routing tables of the application hosts are

configured to forward all traffic to the emulation servers. Therefore,

the traffic from A will not go directly to desktop C. Instead, it is

forwarded by the network switch dedicated to application hosts

to the high-performance network switch in charge of connecting

the emulation hosts, typically through trunking, and finally arrives

at one of the emulation hosts M or N, specifically the one that

is assigned to handle the traffic from the sub-network to which

A belongs. Let us say that the emulation host handling node A is

the one labeled M. Emulation host M will then consult the virtual

network topology for the current time and will decide what are the

communication conditions between A and C in the virtual network.

These communication conditions may be very good or poor, and

the nodes could even be disconnected from each other. Host M will

then forward the packet after applying the corresponding network

degradation for the sub-network it is in charge of, or it may even

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 71

Figure 3.7. Partially distributed emulation execution.

drop it to recreate the conditions in the virtual network. The

emulation hosts are connected to each other by high-speed links, so

that they can quickly exchange packets if, let us say, the emulation

host handling the sub-network of destination (node C) is different

from the one handling the traffic source (node A).

The high-speed links (10 Gbps, or at least 1 Gbps) used in the

emulation-side network are intended to minimize the undesired

network degradation that is related only to the specificity of this

experimental approach and does not originate from the virtual

network that is emulated. Moreover, for making sure that traffic from

the application hosts does not exceed the capacity of the servers,

the network operating rate between the application hosts is lower,

e.g., 100 Mbps. This ensures that the overhead induced by emulation

when forwarding traffic, applying the network degradation, and

possibly exchanging the necessary messages in order to maintain a

common view of the virtual network they emulate does not interfere

with the network degradation.

3.3.2 Running Applications

One of the specific features of emulation is that real network

devices, applications, and protocols can be included in emulation

experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

72 Emulators in the Wild

Network devices For the case of network systems, let us say a

network device such as a switch or a router, powering the device,

configuring and connecting it to the network, is sufficient for

including it in an experiment. For this reason, we consider that for

most network systems there are no significant difficulties from the

point of view of emulation when conducting an experiment.3 Two

issues that one may have with emulation experiments targeted at

validating network systems are as follows:

• starting and stopping the device at precise moments of time,

including starting and stopping any embedded applications,

such as the VoIP application in an IP phone

• logging data on the device and retrieving such logs once the

experiment is finished

Both of these issues are related to the hardware nature of the

network devices that we refer to. In some cases these tasks can

be achieved on the device itself; however, more often than not an

external device such as a network analyzer must be used to capture

and record the traffic of interest. Such solutions are very specific to

the devices being tested; therefore, they do not fall under the scope

of this book.

Applications and protocols Network applications and protocols are

software executed by a computer. This means that for application

and protocol testing, the corresponding hardware infrastructure for

running them must be available and their execution on the hardware

platform must be initiated in a controlled way. The computer-based

execution ensures that both initiation and logging can be done

more easily than for network devices; however other specific issues

appear.

The following sections will investigate the possibilities that exist

for running applications in an emulation experiment. Most of the

time our remarks also apply to network protocols, which can be seen

in this context as a specific type of network application.

3We do not take into account the difficulties in configuring the network systems,

which represents a different class of issues by itself.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 73

Depending on what is being tested and the goal of the

experiment, one can distinguish several alternatives when running

applications, that will be detailed next:

• one application instance per host

• multiple application instances per host

• multiple applications per host

• application traffic generation

3.3.2.1 One application instance per host

The case in which each experiment host runs only one instance

of an application is perhaps the most realistic scenario. This is

because one human user is seldom running more instances of

the same application at one time. One notable exception is that

of file transfers, for which users tend to start several downloads

simultaneously.

However, in a testing environment there may be scalability

problems with this approach, since the number of hosts made

available for the experiment must be equal to the number of

application instances that need to be tested.

In Fig. 3.8 we show an example in which three desktops play

the roles of Web clients and access a Web server. Emulation is done

using a centralized approach by means of an emulation appliance.

The number of hosts necessary to run the Web clients is three, and a

total of four hosts are required.

3.3.2.2 Multiple application instances per host

To improve scalability given a limited set of hardware resources, it

is possible to run several instances of one application on the same

host. This mimics the case when more real users run the same

network application. However, there are several reasons why such

an approach may lack in accuracy:

• The total amount of traffic generated by all application

instances may approach the link capacity for the connection

between the host and the network.

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

74 Emulators in the Wild

Figure 3.8. Executing one application instance per host.

• The total processing and memory requirements of all

application instances may exceed the limitations of the host.

• Undesired interactions between application instances may

perturb the experimental results. For instance, videocon-

ferencing applications are probably not designed to run as

multiple instances on the same host; hence, these instances

may not function properly (e.g., when accessing the video

card of the host).

Nevertheless, if these issues are properly handled, this method

improves scalability, since the number of hosts required to run

an experiment decreases proportionally with the number of

application instances that are run on the same host. For the last

issue that we mentioned here, a possible solution is to use hardware

virtualization software and let that software handle the interactions

between application instances and the physical resources of the

host.

In Fig. 3.9 we show an example in which one desktop play

the roles of three Web clients by running multiple instances of a

Web application. Emulation is done using a centralized approach by

means of an emulation appliance. Since only one host is necessary

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 75

Figure 3.9. Executing multiple application instances per host.

to run the three Web clients, a reduction by a factor of 3 could be

achieved if using this approach compared to the previous one.

3.3.2.3 Multiple applications per host

So far we have only considered the case of instances of the same
network application. Nevertheless, for some experiments, it may

be important to see how applications interact with each other.

For example, one may wish to see what is the performance of a

videoconferencing or VoIP application while downloading files on

the same host. For this purpose, most of the considerations made in

the previous section hold. Virtualization is, however, not a solution in

this case, because having multiple applications on exactly the same
host is important for this type of experiment.

In Fig. 3.10 we show an example in which on three desktops

several applications are run concurrently, such as a Web-based

application, a VoIP software, and a file transfer application. Again,

we consider that emulation is done using a centralized approach

by means of an emulation appliance. Note that although the

applications in this type of experiment can be real network

applications, they could very well be application traffic generators,

which produce network traffic with the same properties as real

network applications; this possibility will be discussed in the next

section.

3.3.2.4 Application traffic generation

In the previous sections, we have discussed general issues regarding

how to conduct experiments with real network applications, done

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

76 Emulators in the Wild

Figure 3.10. Executing multiple applications per host.

usually in order to evaluate their behavior in typical network

conditions.

Nevertheless, under some circumstances, only one of the running

applications is of interest and the other ones are just used to

recreate the network traffic that corresponds to a realistic situation.

This is the case for the file transfer traffic, whose influence on

a VoIP application was being analyzed in the scenario presented

in the preceding section. However, this kind of network traffic is

not important per se, but only through the influence it has over

the application of interest. Such network traffic that needs to be

present in order to recreate realistic network conditions is called

background traffic.

Background traffic generation is a method by which traffic that is

similar to the traffic of a real application is produced in an artificial

manner. For example, it is possible to reproduce traffic with the same

characteristics as a sequence of file transfers (including parallel

sessions), without actually transferring any useful data. A software

tool such as iperf [43] and netperf [70] could be used for this

purpose. In other cases, it may be important to generate traffic that

is similar to one or more VoIP streams. This can be achieved by

modeling features such as silence detection in VoIP software and

the length of speech spurts in typical human speech. A software tool

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 77

such as D-ITG (Distributed Internet Traffic Generator) [26] provides

the necessary functionality in this case.

There are also several commercial tools that can be used for this

purpose, both as software and hardware solutions. Products such

as SmartBits from Spirent Communications [104] and the family

of tools provided by Ixia [47] offer high-speed traffic generation

solutions for many compliance testing purposes.

While traffic generation is certainly convenient, it may not be

appropriate for all situations, such as for reasons of lack of accuracy,

especially for custom applications that generate unusual traffic

patterns. Moreover, if it is necessary to measure the UPQ for the

application used, not only the traffic pattern but also the traffic

content is important. In this case, real application content (or an

equivalent) must necessarily be sent so that quality degradation

from the user’s point of view can be evaluated. Fortunately, most

recent commercial tools include this feature for typical applications

such as VoIP and video streaming.

3.3.3 Performing Experiments

In this section, we shall discuss all the other aspects that are relevant

for putting everything together so as to perform an emulation

experiment.

3.3.3.1 Experiment management

Let us assume that all the equipment and software needed for

both executing the emulation and running the network systems,

applications, or protocols are available, physically set up and ready

to use. So what needs still to be done? Let us see in chronological

order what the necessary steps for carrying out an emulation

experiment are.

Configure experiment components Experiment configuration in-

cludes several or all of the following tasks:

• Configure the hardware used in the experiment, such as IP

addresses for network devices and VLAN tags for switches.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

78 Emulators in the Wild

• Configure the software used in the experiment, such as

IP addresses for clients and servers and application or

protocol-specific parameters.

• Configure the emulation software/hardware used in the

experiment, such as the topology or scenario for the virtual

network to be emulated and the emulated link parameters.

Manage experiment execution Managing the execution of an

emulation experiment includes several or all of the following steps:

• Start the execution of the emulation software or hardware.

The moment when this happens is considered to be the

starting time of the emulated scenario.

• Start background traffic generation should such traffic be

required for the experiment.

• Initiate the execution of the network system under test. For

instance, one may need to power on the network equipment

that is being evaluated, start executing the application or

protocol that are being tested, etc. The order in which the

experiment components are started depends on the exper-

iment and does not necessarily happen at the beginning of

the experiment. One may imagine a case in which many Web

clients are started sequentially to reproduce a situation in

which more and more users join the system and to help

determine the breaking point of the Web server.

• End the execution of all the components involved in the

experiment when the system under test has finished running

or after a specified amount of time or number of events.

Collect the results Although collecting the results may not seem

to be a significant part of experiment management, we believe it is

important to stress that such a phase exists as well, as it may be not

so trivial a task for large-scale experiments.

3.3.3.2 Management tools

Depending on how an emulation experiment is conducted, the

aforementioned tasks can be more or less complicated to perform.

For simple experiments, such as two end nodes communicating

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Carrying Out Emulations 79

through an emulation host, it may be easy enough to do all the

configurations by hand for all the three computers involved.

However, in order to be able to run large-scale experiments

repeatedly — for instance, in order to explore the behavior of an

application with hundreds of users in a wide range of network

conditions — it is preferable to have a way to automate experiment

execution as much as possible.

We shall now discuss two alternatives for automating experiment

execution in the increasing order of their complexity.

Scripting Scripts, such as shell scripts in Unix-based systems and

batch files in Windows, are perhaps the easiest way of configuring

devices, starting software, and collecting experimental results

without human intervention. Here are some insights on scripting

possibilities for different aspects of experiment management:

• Many emulation tools allow script-based configuration or

even provide some kind of scripting language for configu-

ration. For instance, Shunra VE Appliance includes an XML-

based open API that makes it possible both to automatically

manage other third-party lab resources and to be managed

by them (see Section 5.1.1).

• Network devices such as switches also offer the possibility of

being configured via scripting languages, such as Cisco IOS.

• On computers it is possible to use shell scripts to execute

commands automatically.4 Some applications, however, may

not have good support for command-line execution; hence,

we advise our readers to try to use or build applications

that support configuration and operation without human

intervention.

• Experimental results can be collected by using scripts, for

example, by copying remotely log files from the PCs involved

in the experiment to a centralized location for further

analysis and study.

4A caveat applies when the execution of a software program needs to be started

in a synchronized way on a large number of computers. In this case scripting and

sequential execution of commands may not be accurate and/or fast enough for large

sets of hosts.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

80 Emulators in the Wild

Experiment-support software A more advanced method of per-

forming experiments, especially for the experiment management

phase, is to use special software tools that are dedicated to this a

task. This solution is employed in particular in the case of network

testbeds. In such a case, the investment in an experiment-support

tool pays off quickly, since the same management software can be

used many times on the testbed. Moreover, having a standard way

of running experiments limits the trial-and-error phase that usually

accompanies ad hoc scripting solutions. In addition, the experiment-

support tools can be optimized for the testbed they are used on

and can thus provide better performance characteristics compared

with simple scripting approaches, for instance, in what concerns the

time synchronization between commands. Examples of experiment-

support software tools and the corresponding testbed they were

designed for are

• Emulab software for managing the Emulab testbed (see

Section 7.1)

• PLC (PlanetLab Central) on the PlanetLab distributed

testbed (see Section 7.2)

• OMF/OML (ORBIT Management Framework/ORBIT Mea-

surement Library) on the ORBIT wireless network testbed

(see Section 7.3)

• SpringOS and RUNE experiment-support tools for StarBED

(see Chapter 11)

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PART II

NETWORK EMULATORS TO REMEMBER

81

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 4

Free Network Emulators

At present, the user community widely employs three main free

software network emulators:

• Dummynet

• NIST Net

• NetEm

All of these three emulators are of production quality. They are

available in operating systems that are extensively used for research,

such as Linux and FreeBSD. In addition to being used directly,

these emulators are also integrated into testbed-based network

emulators. For example, Emulab reportedly uses Dummynet on its

FreeBSD nodes and NetEm on its Linux nodes [108].

4.1 Dummynet

Dummynet was developed in the second half of the 1990s by Luigi

Rizzo at the University of Pisa, Italy, as a tool for testing network

protocols. Dummynet can enforce queue and bandwidth limitations,

delays, packet loss, and multi-path effects. The legacy Dummynet

implements a weighted-fair queueing algorithm called W F 2 Q +

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

84 Free Network Emulators

(improved worst-case weighted-fair queueing algorithm). Other

queueing algorithms were added in recent versions. Dummynet

can be used both on user workstations, to control the traffic to

and from workstations, and on machines acting as routers or

bridges, to control the traffic going through those routers and

bridges.

Dummynet was initially developed for the FreeBSD operating

system, with which it was integrated in 1998. Later, Dummynet was

ported to Mac OS X (2006), and more recently to Linux (2009) and

even Windows (2010). Despite its age, Dummynet is still actively

used in many projects, such as Emulab [108] and OneLab [85].

The description we provide in this section is based on the

seminal paper by Rizzo [94], as well as on a more recent technical

report regarding the latest development efforts pertaining to

Dummynet [21].

4.1.1 Implementation

Dummynet works by intercepting packets as they make their way

through the protocol stack of the host. On FreeBSD, Dummynet is

integrated with the tool called IPFW (IP Firewall), which is one of the

FreeBSD firewall systems. IPFW rules are the filtering mechanism

used to select which packets are passed through Dummynet and

which are not.

Internally, Dummynet has a structure of objects called pipes and

queues, which are used to practically enforce the network degra-

dation effects. The pipes represent fixed-bandwidth communication

channels and hence are used to enforce bandwidth limitations, but

also delay and packet loss, thus reproducing data communication.

The queues represent the queues of packets in network devices,

which delay or drop packets when congestion occurs. The queues

must to be connected to pipes; all queues that are connected to

the same pipe share its bandwidth. A scheduling algorithm such

as W F 2 Q + is used to determine the proportion of bandwidth

that is available for serving each of these queues, depending

on their allocated weights. Basically, in Dummynet the pipes are

used to emulate the transmission, propagation, and reception of

packets over communication networks, and the queue objects are

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Dummynet 85

used to reproduce the queueing effects in the network devices on

the way.

Dummynet has very little overhead, as all the processing is

done within the operating system kernel. There is no data copying

involved to move packets through pipes, as these operations are

handled using pointers. The implementation is designed to be able

to handle thousands of pipes with O (logN) cost, where N is the

number of active pipes. The implemented weighted-fair queueing

algorithm, W F 2 Q +, has a complexity which is O (logN) in the

number of active flows, and hence it is also able to efficiently handle

thousands of flows.

4.1.2 Configuration

Pipes and queues in Dummynet can be configured through the

command-line interface provided by IPFW, and a set of operating

system-specific control variables. Interested readers should consult

the user manual for practical details about how to perform

these configurations. We shall only conceptually discuss the

possible settings in order to give an insight into the power

and capabilities of Dummynet. In this subsection we use the

information in the Dummynet command-line manual available on

FreeBSD 5.4.

The following parameters can be configured for Dummynet

pipes, but not for queues:

Bandwidth Set the amount of bandwidth allocated for the pipe,

expressed either in bits or bytes per second. A value of 0, which is the

default value, signifies that unlimited bandwidth will be provided for

that pipe.1

Delay Configure the propagation delay, measured in milliseconds,

through the pipe that is introduced by Dummynet. The value is

1This refers only to Dummynet-related settings; bandwidth will nevertheless be

bounded by the host computer network interface data transmission rate, and

possibly by operating system resources and host capabilities.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

86 Free Network Emulators

rounded to the next multiple of the operating system’s internal

clock tick. A clock tick on FreeBSD typically has 10 ms, but it is

recommended to reduce the granularity to 1 ms or less in order to

increase delay accuracy in Dummynet.2 The default value for delay

is 0, meaning that no artificial delay is introduced by Dummynet.3

The following parameters can be configured for Dummynet

queues, but not for pipes:

Pipe number Specify the number of the pipe to which the queue

should be connected. Multiple queues, having the same or different

weights, can be connected to the same pipe, which computes the

aggregate rate for the set of queues.

Weight Configure the weight to be used for the flows matching this

queue. The weight must be in the range from 1 to 100, and defaults

to the value 1.

Finally, the most important parameters that can be configured for

both pipes and queues are as follows:

Packet loss rate Set the packet loss probability for the correspond-

ing queue or pipe. The value must be a floating-point number in the

range [0, 1], with “0” meaning no loss, and “1” representing 100%

loss.

Queue size Specify the amount of storage allocated to the queue,

expressed either in slots (i.e., packets) or in kilobytes. The default

value is 50 slots, which is the typical queue size for Ethernet

devices. Queueing delay is directly proportional to the queue size,

and therefore its value must be thoroughly considered, especially

when the bandwidth limit is set to low values, as the maximum

queueing delay for the default queue size may be of the order of

seconds in this case.

2On FreeBSD this can be done by configuring a kernel parameter named “HZ,” which

indicates the frequency in Hertz of the OS internal clock. For setting the frequency to

1000 Hz (hence the tick duration to 1 ms), one should use the kernel configuration

instruction “options HZ=1000,” and then recompile the kernel.
3This refers only to the intentionally introduced delays. Dummynet may actually

create an unintended small amount of delay due to the processing that it performs.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Dummynet 87

RED parameters Various parameters of the Random Early Detec-

tion (RED) queue management algorithm, which is intended to

prevent congestion by dropping packets before congestion builds

up. The meaning of RED parameter values depends on whether the

queue size has been defined in bytes or in slots. Dummynet also

supports the gentle RED (GRED) algorithm.

The following are a few other significant features of Dummynet:

• It supports dynamic queues and pipes associated with a

statically defined “parent” queue or pipe. These dynamic

objects are created automatically by Dummynet as needed

by using flow identifiers that are constructed by masking

the IP addresses, ports, and protocol types as specified by

the user. For each different flow identifier, a new pipe or

queue is created with the same parameters as the parent

object, and matching packets are sent to it. When dynamic

pipes are used, each flow will get the same bandwidth as

defined by the parent pipe, whereas when dynamic queues

are used, each flow will share evenly the bandwidth of the

parent pipe with the other flows generated by the same

queue. Queues with different weights may be connected to

the same pipe. The total number of such dynamic objects is

limited by a parameter called “hash table size,” which has

the default value 64, and the allowed range 16 to 65536.

These dynamic structures are useful when it is necessary

to differentiate between traffic flows that are difficult or

impossible to define beforehand.

• It supports simulating loss or congestion at a remote router,

by allowing the user to specify whether Dummynet packet

drops are reported to the caller routine in the kernel, the

normal behavior when a device queue fills up, or instead

the packet is falsely reported as successfully delivered, thus

mimicking a remote loss that the sender is not directly aware

of.

• It allows for a packet to pass through several queues

and pipes, thus reproducing the situation when a packet

traverses a network made of a certain number of network

devices. By default, a packet will only go through the first

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

88 Free Network Emulators

matching queue and pipe pair, but this behavior can be

changed by modifying the corresponding system setting.4

4.1.3 Discussion

Dummynet can be used in both classes of scenarios that were

presented in Section 3.3.1, i.e., for both centralized and distributed

emulation.

In the case of centralized emulation, the host on which

Dummynet runs needs to be configured to behave as a bridge and

must have at least two network interfaces. This means that the host

will act as a sort of router and will pass the packets arriving at one

of its network interfaces to the other one.5

For distributed execution, each host involved in the experiment

must run Dummynet in order to control the traffic that it sends

and receives. Note that the authors of Dummynet call this emulation

manner “in-node emulation.”

Let us go over the classification done in Table 3.1. As Dummynet

is included by default in a standard operating system such as

FreeBSD, and is also open source, we classified it as “Free” from the

point of view of availability and of the “Software” type. Dummynet

has no knowledge about network topology, and therefore it does

emulation at the “Link” level. Since the amount of possible settings

is not very high, we consider it to have a “Low” complexity.

Note that this section discusses the legacy version of Dummynet,

which has been available for more than a decade. In recent years,

new features were added to Dummynet, including support for

more widely spread operating systems such as Linux, Mac OS

X, and Windows. Moreover, the recent versions have additional

4On FreeBSD, the setting is named “net.inet.ip.fw.one pass.” The default value of “1”

needs to be changed to “0” to enable multiple passes through firewall rules, and

hence through Dummynet queues and pipes.
5On FreeBSD, in order to enable bridging, one has to assign the value “1” to the system

setting “net.link.ether.bridge.” Moreover, in order to also enable the firewall filtering

for the traffic passing through the bridge, the setting “net.link.ether.bridge ipfw”

must also be assigned the value “1.”

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NIST Net 89

features such as delay profiles and varying links, which extend

the emulation capabilities of Dummynet to wireless networks.

Delay profiles allow users to reproduce wireless MAC overheads

(such as contention, framing, retransmissions) through empirical

profiles; the transmission time is thus extended by a random

amount, computed by Dummynet according to a user-provided

distribution. Varying links can be used to model the variability of

wireless channels (including loss rates and bandwidth) over time

due to factors such as external interference or mobility. A pipe

corresponding to such an emulated wireless link can be in several

states, each with its own set of parameters. For each state it is

possible to specify, once again using empirical distribution curves,

the amount of time spent in the state before moving to a new

one, and the probability associated with each of the transitions.

Dummynet will then randomly switch between states in a way

that yields the same distribution as that programmed by the user.

If we consider all these new features, then the “modern” version

of Dummynet can be classified as a medium complexity network

emulator.

4.2 NIST Net

NIST Net is a network emulation package that runs on Linux [22].

The first (beta) version was released in 1998, just one year after

Dummynet, and several stable releases appeared in the following

years. However, the project is not active anymore, and the last

version was released in 2005. A reason for this is probably the

emergence of another network emulator for Linux, called NetEm,

that we shall discuss in Section 4.3.

The NIST Net network emulator is a general-purpose tool for

emulating performance dynamics in IP networks in a wide variety

of network conditions. The tool is designed to allow controlled,

reproducible experiments with applications and protocols that are

sensitive or adaptive to network performance in a simple laboratory

setting. By operating at the IP level, NIST Net can emulate the

critical end-to-end performance characteristics imposed by various

wide area network situations, such as loss due to congestion,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

90 Free Network Emulators

or by various underlying sub-network technologies, such as the

asymmetric bandwidth provided by the various types of DSL

modems.

From the NIST Net perspective, the word emulation refers to

testing an application or protocol implementation inserted into a

live scenario that imitates the performance characteristics of other

networks. As opposed to this, simulation is a totally synthetic test en-

vironment, without a live component. Readers will notice that these

definitions are in complete agreement with the ones we use in this

book.

Our presentation in this section follows a paper written by

Carson and Santay, who are NIST Net authors [22], as well as the

web page of NIST Net [73].

4.2.1 Implementation

The core functionality of NIST Net is implemented as a kernel

module extension to the Linux operating system. There is also an

X Window System-based graphical user interface application that

facilitates configuring NIST Net. The GUI allows the user to select

and monitor specific traffic streams passing through the router and

to apply selected performance degradation characteristics to the

IP packets of each stream. Note that this functionality can also be

achieved through the command line.

NIST Net allows an inexpensive PC-based router to emulate

numerous complex network performance scenarios, such as

• tunable packet delay distributions

• congestion and background loss

• bandwidth limitations

• packet reordering and duplication

Two additional features are

• the possibility to drive NIST Net with traces produced from

measurements of actual network conditions. This effectively

allows to “play back” a recorded scenario, for instance in

order to debug an application that failed in that network

scenario

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NIST Net 91

• support for extensions through user-defined packet han-

dlers. Examples of uses for such packet handlers include

— time stamping of packets

— data collection by capturing the packets of interest

— interception and diversion of selected flows

— generation of protocol responses from the emulated

clients

4.2.2 Configuration

NIST Net allows users to defines rules for pairs of source

and destination IP addresses. The following parameters can be

configured for each rule:

Delay Set the propagation delay introduced by NIST Net, expressed

in milliseconds. NIST Net makes it possible to vary the delay in more

realistic ways than the typical uniform distribution by letting users

specify optional parameters, such as the variance of a Gaussian delay

distribution, and the correlation of successive delay values.

Packet drop Configure the percentage of packets to be dropped by

NIST Net. One can also specify the correlation between successive

drop events. This also contributes to creating more realistic loss

effects, since often in real networks, loss is caused by congestion and

takes place as burst loss, i.e., when several packets are lost in a row.

Packet duplication Specify the percentage of packets to be dupli-

cated by NIST Net. As for packet loss, it is possible to specify the

correlation between successive duplication events.

Bandwidth Limit the throughput of the flow to a certain value

expressed in bytes per second.

Congestion-dependent packet dropping mechanism NIST Net im-

plements the queue management mechanism called DRD (derivative

random drop) so as to emulate the behavior of a router in congestion

conditions. NIST Net allows users to configure the minimum and

maximum queue length parameters in DRD, measured in number

of packets. When the number of packets in a queue reaches

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

92 Free Network Emulators

the configured minimum queue length, DRD starts dropping 10%

of packets, and the loss percentage increases linearly until the

actual queue occupancy reaches the configured maximum queue

length. At the configured maximum queue length, DRD drops

95% of packets. This mechanism makes it possible to control

downstream congestion. It is also possible to specify an intermediate

congestion threshold between the minimum and maximum queue

lengths, which are used in connection with ECN (explicit congestion

notification). Thus, ECN-enabled packets that are to be dropped will

only be marked with the ECN congestion flag if queue occupancy is

between the minimum threshold and the congestion threshold and

will be dropped if queue size exceeds the congestion threshold.

4.2.3 Discussion

Typically, NIST Net is installed on a computer that has two Ethernet

cards dedicated to emulation. The computer is set up as a router

between the two sub-networks, so that it can handle all the traffic

flowing between them. This is equivalent to what we called the

centralized approach. There is no restriction on the interface type,

and, in addition to Ethernet, NIST Net can also operate on loopback,

token ring, and PPP interfaces.

According to its developer, the computing requirements of NIST

Net are reasonably low. Thus, it is reported that NIST Net has been

run successfully on a 50 MHz 486 PC with 16 MB of memory doing

emulation on 10 Mbps Ethernet, and also on a 200 MHz Pentium

PC with 32 MB of memory doing emulation on 100 Mbps Ethernet.

The measured per-packet overhead for the first configuration

was around 28 microseconds, and for the second, around 5–7

microseconds. Since both these values are under the minimum

inter-packet times on these networks, it is considered that NIST

Net running on those platforms should have no intrinsic adverse

effect on packet handling. Given that modern PC specifications

largely exceed the above characteristics, it is realistic to assume

that these claims should also hold for current computers. Note that

NIST Net uses its own timer for operation and therefore does not

depend on kernel configurations, as opposed to Dummynet and

NetEm.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NetEm 93

Regarding the second type of approach that we mentioned, that

of distributed emulation, one issue to note is that the network

degradation introduced by NIST Net only affects the incoming traffic,

and not the outgoing one. When NIST Net is used on a router

intercepting packets at receive time, this approach suffices to affect

all traffic. However, this isn’t true on an end node. Therefore, if NIST

Net is set up on an end node, it will only process traffic going into that

node. Although this doesn’t prevent distributed emulation, it does

limit the potential scenarios in which NIST Net can be used.

One more issue to note in connection with NIST Net is

that, although it does not support direct configuration of packet

reordering, this effect will occur if the jitter specified through a delay

distribution is large enough compared with the inter-packet arrival

time of a certain flow. While this can be a useful feature, at times it is

something one wishes to avoid, since packet reordering may have an

important effect on application performance. Whether reordering

may occur naturally in the target scenario (such as through multi-

path routing effects) or not is up to the user to decide. Once the

decision is made, care should be taken when configuring NIST Net

so as to allow or prevent the reordering effects.

If we go back to the classification done in Table 3.1, the following

remarks apply to NIST Net. Since it is a tool that can be easily

included in a standard operating system such as Linux, and it is

also open source, we classified it as “Free” from the point of view

of availability, and of the “Software” type. Since NIST Net has no

knowledge about network topology, it only performs emulation

at “Link” level. The range of possible configuration settings is

relatively large, and therefore we consider it to have a “Medium”

complexity.

4.3 NetEm

NetEm is a module providing network emulation functionality on

Linux for testing protocols by emulating the properties of wide

area networks [37]. The current version emulates effects such as

variable delay, loss, duplication, and re-ordering. The NetEm module

is enabled by default in recent Linux distribution with 2.6 kernel

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

94 Free Network Emulators

versions, such as Fedora, OpenSuse, Gentoo, Debian, Mandriva, or

Ubuntu. NetEm is included in the collection of utilities for controlling

networking and traffic in Linux called “iproute2.”

Our description in this section uses the information in the paper

written by the author of NetEm, Hemminger [37], as well as that on

the web page of NetEm [68].

4.3.1 Implementation

NetEm is implemented as one of the components of the traffic

controller in Linux and can be configured through the command

called “tc,” which is used to show and manipulate the traffic control

settings of a Linux PC.

Traffic control can be used for tasks such as given below:

Shaping Control the transmission rate of a flow. Shaping doesn’t

refer only to lowering the available bandwidth. It can also be used

to smooth out bursts in traffic for a better network behavior, since

this reduces downstream congestion probability. Shaping occurs on

egress.

Scheduling Plan the time for transmission of packets so as to im-

prove interactivity for real-time traffic that needs this characteristic,

while still guaranteeing bandwidth to bulk transfers. Reordering

packets for transmission is also called “prioritizing” and happens

only on egress.

Policing Control the properties of the arriving traffic, similar to the

way in which shaping controls the properties of the outgoing traffic.

Policing thus occurs on ingress.

Dropping Discard the traffic that exceeds a configured bandwidth

limit. Dropping can take place both on ingress and on egress.

Traffic processing is controlled by three kinds of objects, called in

this context qdiscs, classes, and filters. In particular, the type of object

used in connection with NetEm is “qdisc,” whose name is short for

“queueing discipline.” Qdisc is one of the elementary instruments of

traffic control. Whenever the Linux kernel needs to send a packet to

an interface, that packet is enqueued to the queue configured for that

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NetEm 95

interface. The kernel also tries to get as many packets as possible

from the queue, and provides them to the network adapter driver

for being sent into the network. The simplest queueing discipline

is FIFO (first-in, first-out). The FIFO queuing discipline does no

processing at all, but does store traffic when the network interface

cannot handle it immediately.

NetEm works by modifying the way in which queuing disciplines

function and introduces additional delay or packet loss than those

resulting from the normal operation of the networking interface.

4.3.2 Configuration

NetEm configuration is usually done via command line, using the

“tc” command with the “qdisc” option followed by the “netem”

modifier. Please consult the relevant documentation for specific

details. Below, we shall only conceptually describe the parameters

that can be configured in this way:

Delay Configure the WAN-emulated delay introduced by NetEm.

The delay can be specified in several ways as follows:

• Fixed delay: This represents propagation and transmission

delay (e.g., 100 ms).

• Delays uniformly distributed in a certain interval (e.g., 100 ±
10 ms): This is closer to real WANs, in which delay variation

around an average occurs.

• Delays following a statistical distribution other than the

uniform one, for more realistic emulation: By default NetEm

supports the following distributions: normal, Pareto, and

Pareto normal. However, it can also load tables specifying

user-defined distributions.

• Correlated successive delay values, which try to mimic the

effects of congestion: In this case a random delay value will

depend on the previous one by a certain amount6 (e.g., a

10% correlation means that there will be a 10% dependency

on the previous delay value).

6The correlation in NetEm is not a true statistical correlation, but only an

approximation of it.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

96 Free Network Emulators

Packet loss Set the random packet loss introduced by NetEm,

specified in percent. A value of 1%, for example, will cause

approximately 1 out of 100 packets to be randomly dropped. An

optional correlation between losses can also be configured. This

causes the random number generator to be less random and is useful

for emulating burst losses.

Packet duplication Specify the amount of packet duplication

introduced by NetEm, in percent. The syntax is the same as that

used for packet loss. This feature is useful when trying to recreate

a situation in which both the original packet and a retransmitted

instance arrive at destination. This can happen in the case of an

adaptive protocol, such as TCP, if the original packet is delayed long

enough to make the protocol think that the packet was lost and

retransmit it. It is important to verify how an adaptive protocol or

application handles such duplication.

Packet corruption Configure the packet corruption introduced by

NetEm. Starting with Linux kernel 2.6.16, the “corrupt” option

can be used to emulate the packet errors caused by noise in the

transmission media. This option introduces a single bit error at a

random offset in the packet. Although the bit error probability in

wired and optical networks is very low (e.g., a maximum of 10−10

in Fast Ethernet), such errors have a considerably higher probability

in wireless networks; hence, this option is particularly useful for

emulating wireless networks, but can also be used to verify the

robustness of the receiving end in coping with errored packets.

Packet reordering Specify the amount of packet reordering intro-

duced by NetEm. This is done to reproduce the effects that occur

in networks where there are several disjoint routes between source

and destination, which can cause packets to arrive at the destination

in a different order than that in which they were sent. There are two

different ways to effectively specify reordering in NetEm:

(1) Configure N , the index of the packet that will be sent out of

order. This method uses a fixed packet indexing sequence and

sends immediately every N th packet, while delaying all the other

packets by the amount of time configured for that queue. This is

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NetEm 97

a predictable reordering method, useful particularly for testing

basic protocol aspects such as reassembly.

(2) Configure the percentage of the packets that will be sent out of

order. This second method is more realistic, since in real life

one cannot control precisely the fashion in which packets are

reordered. A correlation between events can be specified for

packet reordering, too.

Note that for any of these two reordering methods to function, a

certain amount of delay must be specified for the corresponding

NetEm queue. Moreover, if the configured delay is less than the inter-

packet arrival time, then no reordering will take place.

Rate control Although there is no rate control built into NetEm, one

of the other disciplines in “tc” that controls bandwidth can be used

for the purpose of limiting output, such as TBF (Token Bucket Filter).

4.3.3 Discussion

Several remarks need to be made regarding NetEm-based emula-

tion:

• When NetEm is used to control the traffic of the host on

which it is run (distributed emulation), it is important to

note that loss introduced by NetEm will be reported to

upper-level protocols. This may cause, for instance, TCP

to quickly resend the packet; this behavior is different

compared with the case when loss actually occurs in the

network, is detected by TCP by the lack of the corresponding

acknowledgment packet, and triggers the typical TCP

retransmission mechanism and adaptation. Therefore, to

test protocol response to network loss, it is necessary to

use NetEm on a bridge or router (the centralized emulation

approach).

• In addition to following the specific reordering configura-

tion, NetEm will also reorder packets if the random delay

values that it computes are out of order, because the default

queueing discipline in NetEm keeps packets in order until

they are sent. One should be aware of this potential effect

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

98 Free Network Emulators

when specifying large delay variation values. Since some

protocols may have very poor performance with reordering,

and reordering mainly occurs in networks with multiple

routes between source and destination, this “accidental”

reordering may need to be avoided in some scenarios. For

this purpose it is necessary to replace the internal queueing

discipline of NetEm (called TFIFO) with a pure packet FIFO

such as PFIFO.

• Although we have discussed only FIFO-based queueing so

far, NetEm does support several other queuing disciplines

that can be used for congestion control or prioritizing traffic,

such as GRED and CBQ (Class-Based Queueing).

Similar to Dummynet on FreeBSD, NetEm on Linux uses the

kernel tick, configured by means of the parameter named HZ. This

configurable parameter takes values of either 100 (the default), 250,

or 1000 Hz, corresponding to maximum delay resolutions of 10, 4,

and 1 ms, respectively. For NetEm it is most beneficial to set HZ to

1000, which will allow for emulating delays in increments of 1 ms.

In recent Linux kernel versions (2.6.22 or later), NetEm will use

a feature called “high-resolution timers,” if this feature is enabled.

Thus NetEm can achieve a finer time granularity than when using

kernel ticks.

An important thing to note is that although so far we have said

that NetEm can be used only for outgoing traffic, there is actually

a workaround for using NetEm with incoming traffic as well. For

this purpose one needs to use a so-called Intermediate Functional

Block pseudo-device (IFB). Such a virtual network device allows

for attaching queuing disciplines to incoming packets and thereby

enables the use of NetEm to control the network degradation of

the incoming traffic. This possibility makes NetEm superior to NIST

Net from this point of view and enables unrestricted distributed

emulation with NetEm. We should also mention that when using

NetEm on a network bridge (centralized emulation) and configuring

it for both NICs of the bridge, no special workaround is needed for

controlling traffic in both directions.

Concerning the classification we showed in Table 3.1, the

following can be said regarding NetEm. Since it is included by

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 99

default in a standard operating system such as Linux, and it is

also open source, we classified NetEm as “Free” from the point of

view of availability, and as a “Software” type emulator. Given that

NetEm has no knowledge about network topology, it introduces

network degradation only at the “Link” level. The range of possible

configuration settings of NetEm is relatively large, and therefore we

consider it to have a “Medium” complexity.

4.4 Comparison

After going through the detailed description of the three free

network emulators Dummynet, NIST Net, and NetEm, the read-

ers should have an understanding about the characteristics of

each of them. Nevertheless, we believe that a direct comparison

will help emphasize their respective strengths and weaknesses

(see Table 4.1). For those who would like to have an in-depth

comparison of these emulators, we recommend the paper by

Nussbaum and Richard [75], from which the following table is

derived.

Table 4.1 emphasizes first of all that out of these three free

network emulators, only two are still being actively developed

and maintained. The execution platform is different for Dummynet

compared with NIST Net and NetEm. Moreover, regarding timer

resolution, Dummynet is able to push the kernel clock up to 10

kHz, whereas the Linux emulators can only go up to 1 kHz or

have to use different timers. Regarding the emulation direction,

only Dummynet and NetEm (with a workaround) are able to

introduce network degradation for both incoming and outgoing

traffic. Constant bandwidth limitation is enforced by all three

emulators. As for delay, only NIST Net and NetEm make it possible

to use variable delay (jitter) and delay distributions. Moreover, only

constant packet loss rate can be used with Dummynet, whereas the

other two emulators allow specifying correlation for loss events.

NIST Net and NetEm also make it possible to introduce other

packet effects, such as duplication and reordering, features that are

unavailable with Dummynet. As for additional network degradation

support, both NIST Net and NetEm focus on reproducing congestion

Septem
ber6,2012

13:6
PSP

Book
-9in

x
6in

IN
E˙BO

O
K

100
Free

N
etw

ork
Em

ulators

Table 4.1. Comparison of free network emulators: Dummynet, NIST Net, and NetEm

Dummyneta NIST Net NetEm

Development status Active (reactivated in 2006) Inactive since 2005 Active

Platform FreeBSD Linux (patches required for new kernels) Linux

Timer resolution System clock, up to 10 kHz Internal real-time clock System clock, up to 1 kHz, or high-resolution

timers

Emulation direction Both incoming and outgoing Incoming only Outgoing onlyb

Bandwidth limitation Constant Constant Constant (enforced indirectly)

Delay Constant Constant or variable (following a distribution,

with optional correlation)

Constant or variable (following a distribution,

with optional correlation)

Packet loss Constant rate Constant rate with optional correlation Constant rate with optional correlation

Other packet effects None Duplication and reordering (indirectly) Duplication, corruption, and reordering

Additional features W F 2 Q + scheduling Congestion-dependent packet dropping, traffic

playback, user-defined packet handlers

Several queuing disciplines for congestion

control and traffic prioritizing

aWe discuss here the legacy Dummynet version; for the improvements starting from 2006, please refer to the discussion in the text.
bA workaround exists to enable network emulation for the incoming traffic, as mentioned at the end of Section 4.3.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 101

effects. NIST Net has two features that are not available in any of the

other two network emulators, namely network traffic playback and

user-defined packet handlers.

Note that the modern version of Dummynet, released in March

2010, extends significantly the legacy version through features such

as support for Mac OS X, Linux and Windows, delay profiles and

distributions, and so forth. Therefore, while until recently it would

have been easy to conclude that NetEm is currently the most feature-

rich emulator and the most obvious choice for users in terms of

capabilities, at this moment it is in a very tight race with the modern

Dummynet, and a decision over which of them is the best becomes

difficult. At least from the point of view of portability, Dummynet has

the lead, and we guess that in the future more projects will exploit

this flexibility.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 5

Commercial Network Emulators

The free network emulators that we have presented in the previous

chapter are probably the most appropriate solution for individuals

and for research environments. However, companies that have the

necessary financial resources may prefer a commercial solution, and

benefit of the possibility to use potentially very accurate hardware

network emulators, as well as the provided customer support.

We would like to warn our readers that several of the features

that we shall discuss in this chapter, such as the supported protocols

and technologies, or the maximum supported bandwidth, are valid

at the time of writing for the product versions that we present,

and may change in the future. Therefore, their discussion should

be taken only as an example of how differences between several

solutions should be analyzed in order to determine which is the most

appropriate alternative for a certain task.

5.1 Shunra

Shunra [99] is one of the first companies providing both hardware

and software network emulation products that address the needs

of IT groups throughout the application development lifecycle.

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

104 Commercial Network Emulators

Shunra solutions emulate production network environments in pre-

deployment labs. They represent a flexible and easy way to test

the performance of applications or network equipment under a

wide variety of network impairments that mimic real production

environments. Through this process users can understand the

impact that the network and applications have on each other and on

end-users, and become able to deal with potential problems before

deployment.

According to the company, the three specific goals of the Shunra

network emulation solutions are the following:

• Provide customers with a practical way to experience

networked applications before deployment.

• Help customers mitigate the risk and cost that are associated

with network-sensitive projects by addressing performance

objectives before making important changes.

• Enable customers to apply software engineering practices in

the early stages or even during the entire project life cycle.

Shunra was one of the pioneers of WAN emulation that lays

emphasis on empirical measurements rather than mathematical

modeling, a shift that focuses on the impact of the network on an

application. Being able to quantify application performance not only

in local development networks, but also in virtual geographically

dispersed real-world-like environments helps customers handle the

differences between these two.

In what follows, we shall look at the network emulation solutions

provided by Shunra, generically called Shunra Virtual Enterprise

(VE), starting with the hardware one, named, Shunra VE Appliance,

and followed by the software solutions Shunra VE Cloud, and Shunra

VE Desktop.

Our description in this section is based on the information

provided on the website of Shunra regarding its Virtual Enterprise

line of products [99].

5.1.1 Shunra VE Appliance

Shunra VE Appliance is the flagship of Shunra’s network emulation

solutions. Shunra VE Appliance makes it possible to construct a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 105

virtual network environment in a network lab. Thus it provides a

way to test the performance of applications and network equipment

under a wide variety of network impairments. However, Shunra

products not only assist empirical experiments, but also provide

report and analysis capabilities that can help users isolate and

resolve the causes of network and application performance issues.

Thus Shunra VE Appliance delivers the knowledge necessary to

make informed decisions about the potential modifications of the

application, network or infrastructure that may be necessary.

Shunra identified the following uses for its network emulation

products, that we summarize below:

• Understand how new applications or network services

will perform for remote end-users throughout the product

development life cycle.

• Avoid production-related network or application problems.

• Help ensure an optimal end-user experience for remote

users.

• Prevent the necessity of deploying fixes to remote end-users

after deployment.

• Make informed investment decisions without the need for

complex field trials.

• Troubleshoot post-production problems and verify their

resolution.

5.1.1.1 Implementation

Shunra VE Appliance itself is a hardware-based network emulator.

Shunra offers appliances with interfaces that range from 10/100

Mbps up to 10 Gbps, and a total switching capacity of up to 24 Gbps.

Shunra’s network emulation appliances have an architecture that

supports flexible network topology emulation providing switching

and routing capabilities between any two ports. Basically, Shunra VE

Appliance functions as a bridge or router which changes on purpose

the way in which network traffic travels across the local area

network, by exposing data packets to network impairments similar

to those on a wide area network. Shunra VE Appliance also includes

packet capture buffers that enable a detailed application analysis.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

106 Commercial Network Emulators

Shunra VE Appliance supports a Web-based GUI for testing

needs. This makes it possible for several teams to share a single

appliance, and to run independent emulations in parallel. The

appliances can also be controlled by a PC software program,

that provides network modeling, test automation, and application

performance analysis features.

5.1.1.2 Configuration

The network emulation capabilities of Shunra VE Appliance include

the following:

• Various network impairments

— delay and jitter

— bandwidth limitation

— congestion effects

— packet loss

— bit error rate

— packet fragmentation

— packet duplication

— link disconnection

— packet reordering

— data corruption and modification

• Several types of network topologies

— client-server scenarios

— multiple branch offices with distributed data centers

— full-mesh networks

— n-tier network topologies

— Internet-like structures

— e-commerce-like topologies

• A wide range of network technologies

— MPLS

— ethernet

— quality of service (QoS) mechanisms

— frame relay

— wireless and cellular networks

— satellite networks

— IPv4 and IPv6

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 107

• Capture and replay of production network conditions — can

be used to create a “copy” of the production network in the

emulator

This list of capabilities should give our readers an idea about

the potential they may expect from a commercial network emulator,

and emphasizes its advantages over the free network emulators

described in the previous chapter. The disadvantages may be the

cost, which is significantly higher, and potentially the lack of freedom

to modify the emulator features as desired.

Amongst the network impairments supported by Shunra VE

Appliance, there is an item which didn’t appear for the free network

emulators, namely link disconnection. Although at application level

link disconnection can be emulated through a period in which packet

loss reaches 100%, the “correct” way to create link disconnection

is to produce the loss of signal conditions that lead to link discon-

nection at physical layer. Such an effect exceeds the capabilities of

software network emulators, and can only be recreated on hardware

platforms.

The other two elements that make the list of emulation

capabilities of Shunra VE Appliance significantly longer than those

for the other emulators we discussed so far are

• support for network topologies, i.e., making possible for

the user to define more complex network structures than a

simple end-to-end link

• support for network technologies, i.e., providing features

that facilitate the emulation of other network types than

those over which the emulator is running (typically Ether-

net), such as wireless and satellite networks

Capture and replay is another important capability of Shunra

VE Appliance that was not present in the free network emulators.

This feature allows both to record production network conditions,

such as latency, jitter and packet loss, and to import them into

the network emulator. By replaying these recordings, Shunra VE

Appliance recreates the same conditions that were seen on the

production network, so that the user can test applications under

conditions as close as possible to real-world ones.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

108 Commercial Network Emulators

Additional features of Shunra VE Appliance that are not directly

related to the emulation process include

• a Microsoft Visio–based console that facilitates network

modeling

• integration with load generation tools, such as LoadRunner

from Hewlett-Packard, and with other traffic generators,

such as the VoIP call generators, etc.

• reporting various performance metrics to facilitate the

analysis of network-related troubles

• an open XML-based API for seamless integration with any

lab automation tool

With the Microsoft Visio-based modeler software, users can

create the desired network topology and experiment scenario. The

activation of the scenario triggers the execution of the model on the

appliance. From this point on, the network applications, services and

infrastructures connected to the appliance will be subjected to the

conditions defined in the model. This makes it possible to have a

first-hand experience of how remote end-users will experience the

application or server in a production environment.

Note that the experiment defined using the modeler software

is not static, and users can edit any network parameter at any

time, to create various scenarios (worst case, “what if,” etc.). These

scenarios can be replayed or modified repeatedly in order to try

out alternative solutions, verify problem resolution, and compare

performance between different versions or technologies.

As Shunra VE Appliance includes an XML-based open API, it

is possible both to automatically manage other third party lab

resources, and to be managed by them. These resources include PCs

running batch scripts, FTP clients and servers, custom developed

or off-the-shelf testing tools, traffic generators, network sniffers,

network management systems, etc.

5.1.1.3 Discussion

Shunra provides a list of possible applications of the Shunra VE

Appliance, that can be classified under two main categories:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 109

(1) projects related to infrastructure

• data center or server consolidation

• disaster recovery and business continuity

• network capacity planning

• network design and WAN optimization

• VoIP and video conference planning

• infrastructure change management

• tasks related to the migration to IPv6

• deployment of network management tools

• deployment of network applications

• post-deployment troubleshooting of network problems

(2) projects related to performance testing

• storage-area network (SAN) testing

• pre-deployment testing for enterprise applications

• vendor equipment evaluation

• user-acceptance testing

• post-deployment troubleshooting

• wireless, cellular and satellite network testing

• e-commerce and Internet testing

• remote-application deployment

• network performance management

Let us discuss in more details two applications of Shunra VE

Appliance, one from each of the two categories mentioned above:

Post-deployment troubleshooting Shunra VE Appliance can be used

to troubleshoot production network problems that occurred in the

past, for instance following the deployment of a new application.

The appliance stores network conditions for the last 30 days,

therefore the user can “rewind” the recording to the time when

the problem occurred, and determine the network state at that

time. This information can help identify the source of performance

problems, whether they occur in the application or in the network.

Moreover, it is possible to verify whether the problem was indeed

resolved after performing the required changes by replaying the

network conditions that caused it in the first place.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

110 Commercial Network Emulators

Pre-deployment application testing Distributed applications are

intended to be used by tens, hundreds or even thousands of

remote end-users. The user-generated load impacts both application

performance, and the performance of the network itself. Shunra

VE Predictor and VE Profiler provide integration of the emulator

with load testing tools, such as LoadRunner from Hewlett-Packard

and SilkPerformer from Borland. These specific solutions automate

the process of assessing application performance under remote

end-user load and network conditions. Other third-party test tools,

such as HP QuickTest Pro, IBM Rational Robot, Automated QA Test

Complete, can be used as well, this time through the use of the VE

Application Performance Analysis Package.

Defining a valid environment for load testing is a complex task.

If the environment does not reflect real-world WAN conditions, it is

possible that the results obtained and the decisions made are not

valid. Examples of such potentia issues for the hypothetical case of a

data center are given below:

• Effects of WAN delay: The larger latencies observed in WANs

cause the transactions and sessions to stay open longer than

they would do on a LAN. Without incorporating the WAN

delay into a load testing scenario, memory usage, thread

usage, and other critical server resources can be significantly

underestimated.

• Effects of WAN bandwidth limitation: The available band-

width for a WAN is typically lower than for a LAN, even by

an order of magnitude. This limitation affects data transfers

and transactions crossing the network by causing them to

take longer, thus impacting on important server resources.

• Complex effects: The totality of the potentially increased

network degradation in a WAN, induced not only by delay

and bandwidth limitations, but also by the packet loss

and jitter caused by congestion and interaction with other

traffic, has complex effects on application performance.

For instance, if specific response times are being targeted,

it is important to incorporate the WAN degradation into

testing so as to examine its impact on the total response

time of the application under test. Shunra VE Appliance

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 111

makes it possible to quantify the total response time for

remote end-users prior to deployment, and to analyze the

breakdown of total response time into the client, network,

and server components. Thus it assists users in diagnosing

and resolving transactions that do not meet the response

time requirements.

Reporting and analysis are important features of Shunra VE

Appliance. For every test, the appliance provides a low-level analysis,

and graphical diagnostics reports on application and network

performance. This information indicates the network performance

problems, and helps identify their cause. Reports and analysis are

available for the following aspects:

• application performance over the network

• application availability over the network

• application performance thresholds against a range and

combination of network conditions

• individual transaction performance measurements and de-

tailed information (through VE Analyzer)

All the reports provided by Shunra VE Appliance can be exported

to Microsoft Office documents or published in HTML format. An

executive summary report in Microsoft Word is also provided.

Additionally, all Shunra VE Appliance test results are stored in a

central repository for easy version comparison, change control, and

future reference.

5.1.2 Shunra VE Cloud

Shunra VE Cloud is a network emulation software product that is

designed for small-to-medium sized businesses that cannot afford

purchasing the appliance version.

Similarly to the appliance version, Shunra VE Cloud can be used

for tasks such as

• simulating network conditions at a remote site

• exposing network problems during pre-deployment testing

• determining network capacity needs of applications and

protocols

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

112 Commercial Network Emulators

5.1.2.1 Implementation

Shunra VE Cloud is a software network emulation solution that

simulates a point-to-point network link. This procedure enables

testing, comparisons and predictions of application performance

under a wide variety of network conditions including latency, packet

loss, jitter, and bandwidth constraints up to 10 Mbps. Tests are

customizable, and can be automated and easily repeated, making

it possible to perform “what-if” scenarios, and to predict end-user

experience, all this without requiring the costs, complexity and risks

associated to testing over the production WAN.

5.1.2.2 Configuration

Shunra VE Cloud supports multiple ways to emulate network links,

thus providing flexibility in creating the desired network scenarios.

The parameters that can be controlled using Shunra VE Cloud are

• delay (maximum 8 s) and jitter

• bandwidth limitation

— symmetric or asymmetric links

— any bandwidth from 2.4 Kbps to 10 Mbps, or unlimited

— physical layer protocol overhead

• packet loss (maximum 90%)

• queue management

— queue size limit

— byte mode and packet mode

— tail drop or random early detection mechanisms

There are two manners in which the delay and loss parameters

presented above can be used with Shunra VE Cloud, as follows:

• Fully customizable mode: The user has complete control over

the testing process, and can fully customize the latency and

packet loss parameters of any emulated link.

• Pre-defined statistical latency and packet loss models: The

user can create statistical models of latency and packet

loss, so as to simulate various WAN behaviors, including

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 113

worst-case scenarios. This capability is especially helpful in

determining product and network limitations.

5.1.2.3 Discussion

Note that mechanisms such as queue management algorithms,

which affect indirectly the loss and delay through the emulated WAN,

are important for recreating realistic network conditions.

Although support for packet capture and replay are not built into

Shunra VE Cloud, this can be done by using a companion software

tool named Shunra VE Network Catcher. Using this tool one can

capture and import real-life latency and packet loss values directly

from the production network into the test environment. Shunra VE

Cloud can replay these recordings, either in sequence or in random

order, as well as multiply/divide them by a factor of 0–200%. This

allows testing application performance and scalability in a wide

range of realistic conditions representing the production network.

Similar to the appliance version, Shunra VE Cloud has reporting

capabilities, albeit more limited. In particular, Shunra VE Cloud can

measure and report throughput (total throughput per direction,

and throughput per IP). Throughput reports and graphs help

with analyzing and determining the root causes of application

performance degradation. In addition, Shunra VE Cloud can also

save packet traces, for a more in-depth analysis of network behavior.

5.1.3 Shunra VE Desktop

Shunra VE Desktop is another network emulation software solution,

that comes in two versions: VE Desktop Standard and VE Desktop

Professional.

5.1.3.1 Shunra VE Desktop Standard

Shunra VE Desktop Standard is a Windows-based software that

emulates a network link so that application performance over a WAN

can be assessed from a desktop PC. Shunra VE Desktop Standard is

the entry-level version in this series, and allows the user to configure

the network impairments (latency, packet loss and bandwidth) by

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

114 Commercial Network Emulators

using preconfigured drop-down menus, or by specifying fixed values

through a GUI.

Shunra VE Desktop Standard is intended mainly as a simple

tool for application developers that transforms the local network

into a virtual WAN link. This makes the application behave as

if it were being used by a remote end-user under the specified

network conditions. As a result, the user can “see and feel” how

the application would perform in the real world. However, no

reporting and analysis support, nor the possibility to record and

replay network conditions are provided.

5.1.3.2 Shunra VE Desktop Professional

Shunra VE Desktop Professional is an improved version compared

to the standard software. First of all, the professional version has

a client/server architecture that enables its use on multiple PCs by

multiple users. Thus, Shunra VE Desktop Professional is in fact a

distributed emulation tool that will transform a LAN-based testing

environment to include realistic WAN-like conditions similar to

those of the production environment.

Compared to the standard version, Shunra VE Desktop Profes-

sional allows users to select not only basic impairments but also

complex network scenarios, thus offering more realistic emulation

capabilities. Shunra VE Desktop Professional contains several pre-

configured typical network topologies, and this library can be

extended with user-defined ones.

Other enhancements included in the latest version of Shunra VE

Desktop Professional include

• automatic delivery of post-test analysis, making it more

convenient to review test results

• integration with the analysis tool called Shunra VE Analyzer

for automated extraction of information from the results

• extension capabilities through an open API

5.1.3.3 Discussion

Because of the software nature of the Shunra VE Desktop solutions,

they are mainly intended to be used in conjunction with application

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Shunra 115

development and testing in order to verify the Quality of Experience

(QoE) and performance when operating over a WAN. This makes

it possible to address early potential design and implementation

problems. Thus developers can save time, reduce the overall

development expenses, and guarantee a satisfactory experience for

end-users.

5.1.4 Discussion

Table 5.1 shows a comparison between the Shunra VE family

products based on the presentation in [99]. The most important

aspects readers that are interested in Shunra VE products should be

aware of are the following:

• The VE Desktop series is intended for use on a small number

of PCs by a small number of users, whereas the VE Cloud and

VE Appliance versions are aimed at larger network labs and

groups of users.

• The VE Desktop Standard version, as an entry level

solution, is limited to very simple scenarios involving

fixed parameters, and the VE Desktop Professional or VE

Cloud solutions are required for investigating more complex

network situations that include, for instance, congestion

effects. Moreover, only the VE Appliance version allows

to change network degradation while the experiment is

running, or to program such changes.

• An important difference between the VE Desktop series and

the other solutions is that it only allows emulating a point-

to-point link originating on the PC on which the software is

installed (distributed emulation). VE Cloud can also used on

a computer bridging two networks and acting as a router,

to do what we call “centralized emulation.” Nevertheless, VE

Appliance is the most advanced centralized emulation solu-

tion, by reproducing internally a large number of topologies.

• Regarding protocols and technologies, it is important to

note that VE Cloud is only able to use the IPv4 pro-

tocol. As for network technologies such as MPLS, QoS

or VLAN, they are only supported by VE Appliance.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

116 Commercial Network Emulators

Table 5.1. Comparison of Shunra network emulation products

VE Desktop

Standard

VE Desktop

Professional VE Cloud VE Appliance

Implementation

platform

Software Software Software Hardware

Intended use Single desktop Multiple

desktops

Single lab user Multiple lab

users

Network

impairments

Fixed latency,

packet loss,

bandwidth

Latency & jitter,

packet loss,

fixed

bandwidth

Latency & jitter,

packet loss,

fixed

bandwidth,

queue

management

Latency & jitter,

packet loss,

bandwidth,

congestion

effects; changes

can be done in

real time or

programmed in

advance

Network

topologies

Single

point-to-point

link

Single

point-to-point

link

Single

point-to-point

link (can

operate on a

router)

Point-to-point

links, hub and

spoke, N-Tier,

fully meshed

networks

Protocols and

technologies

IPv4, IPv6 IPv4, IPv6 IPv4 IPv4, IPv6, QoS,

MPLS, Frame

Relay, OSPF,

VLAN

Reporting and

analysis

None Response time

per transaction,

transaction

analysis

breakdown,

throughput per

session, packet

traces

Throughput

reports, packet

traces

Response time

per transaction,

transaction

analysis

breakdown,

throughput per

session, video

and VoIP

quality,

application

profiling,

service level

prediction

Record & replay

of network

conditions

No Yes Yes Yes

Maximum

bandwidth

1 Mbps 45 Mbps 10 Mbps 10 Gbps

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PacketStorm Communications 117

• If reporting and analysis are important, the reader should

consider that this feature is not available on VE Desktop

Standard, and that VE Cloud has only basic reporting

capabilities. For more advanced features, one should look at

VE Desktop Professional or VE Appliance. The latter offers

not only network-level information, but also transaction and

application-level metrics, allowing, for instance, to deter-

mine the perceived quality for voice and video applications.

• Recording and replaying of network conditions is not

available on VE Desktop Standard, but can be used with any

of the other solutions.

• The maximum bandwidth that a user requires during exper-

iments should also be considered when making a choice. VE

Desktop Standard only supports rates up to 1 Mbps, which

limits considerably the potential applications. VE Desktop

Professional is usable up to 45 Mbps, which may be suffi-

cient for most typical applications. VE Cloud restricts the

maximum bandwidth utilization to 10 Mbps, probably due

to the fact that in can operate in bridge mode, case in which

it has to deal with the traffic flowing through two NICs. If

bandwidth is a significant requirement, then VE Appliance,

as a hardware implementation, is the most suited solution,

allowing to go up to 10 Gbps (depending on configuration).

Note that there are several additional issues that should be taken

into account when comparing network emulation products, and in

particular the Shunra VE family of products. For instance, not only

the maximum bandwidth is limited, but the maximum delay and

jitter are also bounded to different values for each product model.

The cost of the product is also an important factor in making a

decision, but we did not consider this aspect in the present book.

5.2 PacketStorm Communications

PacketStorm Communications is another company with a relatively

long activity in the field of network emulation [82]. PacketStorm

Communications has a full family of network emulators, including

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

118 Commercial Network Emulators

both hardware versions, with PacketStorm 4XG being the top of

the line, and software versions (Tornado). All the hardware-based

network emulators have packet recording capabilities, and the

PSCapture software can be used to provide this functionality on

a PC. By capturing the network characteristics, a user can then

transfer and replay them in a PacketStorm hardware emulator. The

PSCapture software provides real-time graphs and histograms of the

network characteristics that are being captured.

Each network emulator of the PacketStorm family is designed for

a particular range of applications. The powerful PacketStorm 4XG

can be used for links totaling up to 40 Gbps. The PacketStorm 2600E,

PacketStorm 8400E, Hurricane, and Hurricane II are designed

for Gigabit and/or many 10/100 Mbps port applications. The

PacketStorm 1800E emulator targets multiple 10/100 Mbps port

applications. In its turn, the Tornado software emulator addresses

low bandwidth needs and simple network applications.

Our discussion in this section follows the documentation

provided by PacketStorm Communication on its web site [82].

5.2.1 PacketStorm Series

The PacketStorm line of products is composed of PacketStorm 4XG,

and also a family of lower performance products that we group

under the name “E series.”

5.2.1.1 PacketStorm 4XG

The PacketStorm 4XG network emulator is the flagship of the Packet-

Storm Communications family of network emulation products, and

provides WAN emulation for multiple 1 and 10 Gbps Ethernet ports.

The most significant features of PacketStorm 4XG are the following:

• architecture supporting up to 40 Gbps and 64 million

packets per second throughput1

1Providing the packet rate in addition to the data rate is necessary in order to indicate

the performance of a network device when forwarding small-size packets, for which

the packet rate corresponding to a certain data rate is much higher than for large

packets.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PacketStorm Communications 119

• adaptable configuration, with up to 32 × 1 Gbps Ethernet or

up to 4 × 10 Gbps Ethernet modules that can be installed in

one chassis

• network and packet impairments, both for IP and non-IP

traffic

• support for packet modifications and packet filtering

• collect and display traffic statistics

• capture and replay network conditions

Configuration The list of network impairments that can be intro-

duced by PacketStorm 4XG is extensive and is as follows:

• delay and jitter

• packet drop, including decimation and burst drop

• packet duplication

• packet re-ordering

• bandwidth throttle, including packet accumulation and

burst

• packet fragmentation

• packet sink

• bit error rate

• real-time packet modifications, such as changing fields,

inserting and deleting data, etc.

For packet filtering, PacketStorm 4XG can use the following

packet fields:

• source and destination IP addresses

• source and destination MAC addresses

• source and destination network protocol ports (UDP, TCP)

• network protocol identifier

• miscellaneous other fields, such as ToS, DiffServ, MPLS,

VLAN

• a user-defined bit pattern

Discussion The PacketStorm 4XG emulator can be accessed re-

motely over any IP network through a browser control interface

or a remote TCL command set. Such remote control provides the

capability to monitor and modify if needed the emulated network

scenario.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

120 Commercial Network Emulators

PacketStorm 4XG can do measurements and compute statistics

for the following network parameters and metrics:

• bandwidth

• delay

• packet loss rate

• throughput (expressed in bytes or packets)

• media loss rate (i.e., loss rate at application level)

• QoE metrics (R-factor, MOS)

Given the high-speed processing capabilities of PacketStorm

4XG, PacketStorm Communications recommends it for network

experiments in the following set of scenarios:

• network storage

• video applications

• defense industry

• network security

• network carriers

• network equipment manufacturers

5.2.1.2 PacketStorm E series

The family of products that we designated as “PacketStorm E series”

includes the following products: PacketStorm 1800E, PacketStorm

2600E, and PacketStorm 8400E. The attributes that distinguish each

member of the PacketStorm E series are the number and maximum

data rate of interfaces they can use, as follows:

• PacketStorm 8400E has four 10/100/1000 ports and four

SFP (Small Form-factor Pluggable) ports

• PacketStorm 2600E has five interface slots, which can take

interfaces up to 1 Gbps

• PacketStorm 1800E has five interface slots, which can take

interfaces up to 155 Mbps

The main features and capabilities of the PacketStorm E series

are very similar to those of the Hurricane series, therefore the reader

is referred to the previous section for details.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PacketStorm Communications 121

5.2.2 Hurricane Series

The Hurricane and Hurricane II network emulators create realistic

network conditions in repeatable and controllable settings. This

includes dynamic, time-varying impairments configured through an

independent GUI, as well as data generation features.

The most important features of the Hurricane series of products

are

• network and packet impairments, both for IP and non-IP

traffic

• packet modifiers and packet filtering

• dynamic emulation support

• data generation capability

• statistics gathering

• support for multiple interfaces with rates up to 1 Gbps (five

interface slots)

• network condition capture and replay

5.2.2.1 Configuration

When comparing in terms of network impairments, packet modi-

fiers and filtering, the feature list of Hurricane products is similar to

that of PacketStorm 4XG. The following are the two most important

differences from this point of view:

(1) They support dynamic emulation, which allows users to change

the degradation parameters of the emulated network as the

experiment proceeds. This can be accomplished by defining the

conditions that trigger changes. Each packet stream can have

several different impairment profiles. In addition, impairment

and modifier values can be changed on-the-fly by the user

during an experiment.

(2) They support data generation, which makes it possible to

inject traffic into the experiment network without the need for

additional equipment.

Another difference regards the supported network interfaces.

Thus, Hurricane series products can use in the five available slots

only network interfaces with rates up to 1 Gbps, such as

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

122 Commercial Network Emulators

• 10/100/1000 Ethernet

• T1/E1

• DS3

• X.21

• OC-3

• OC-12

• RS-232

5.2.2.2 Discussion

The Hurricane network emulators can decode over two hundred

protocols, including IP, RTP, iSCSI, MPLS, SIP, VLAN, and WLAN.

The packet analyzer tool can be used to monitor live or captured

traffic. Network traffic can be filtered and displayed according to its

protocol. Data is displayed in several formats: simple packet listing,

with decoding of packet fields, or even in raw hexadecimal format.

The network testing fields envisaged by PacketStorm Communi-

cations for Hurricane and Hurricane II are

• enterprise networks (e.g., for intranet applications)

• application developers

• quality assurance

• network equipment manufacturers

• network carriers

5.2.3 Tornado

Tornado is a WAN emulation software developed by PacketStorm

Communications that makes it possible to employ a PC to emulate

a wide area network. This allows IT network professionals to

perform pre-deployment testing for applications such as ERP,

network storage, VoIP, video conferencing, e-commerce, data center

consolidation, disaster recovery, and Web services.

The main features of Tornado are similar to those of the

hardware emulators, albeit the number of options is reduced:

• several types of network impairments

• one-port and two-port WAN emulation

• possibility to define multiple IP networks

• traffic filtering

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PacketStorm Communications 123

5.2.3.1 Configuration

The network impairments that can be reproduced with Tornado are

as follows:

• delay and jitter (fixed delay, or delay following a statistical

distribution)

• bandwidth/throughput limitation

• packet loss (random, including burst loss by dropping a

group of packets)

• packet reordering

• packet duplication

• bit error insertion

5.2.3.2 Discussion

The number of applications for which PacketStorm Communications

advises the use of Tornado is reduced compared to those for the

hardware solutions. Thus, Tornado is recommended for tasks such

as

• enterprise-level testing

• application performance evaluation

• remote location testing

• application development

5.2.4 Discussion

To conclude the presentation of the products of PacketStorm

Communications, we shall first compare the network emulation

solutions, and then present several other tools that are of use in this

context.

5.2.4.1 Comparison

In Table 5.2 we compare the network emulation products of Packet-

Storm Communications by using the corresponding documentation

made available by the company on its website. The table shows

that PacketStorm focuses mainly on hardware network emulation

solutions, and only provides one software emulation product. The

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

124 Commercial Network Emulators

Table 5.2. Comparison of PacketStorm Communications network emula-

tion products

PacketStorm E Hurricane and

Hurricane II

PacketStorm

4XGModel Tornado Series

Type Software Hardware Hardware Hardware

Network

impairments

Delay & jitter,

packet loss,

reordering and

duplication,

bandwidth

limitation, bit

error insertion

Same with

Tornado plus

packet

fragmentation,

packet

modification,

and packet sink

Same with

Tornado plus

packet

fragmentation,

packet

modification,

and packet sink

Same with

Tornado plus

packet

fragmentation,

packet

modification,

and packet sink

Number of

ports

1 or 2 (multiple

IP networks)

Multiple Multiple Multiple

Maximum data

rate per

interface

Not specified

(host

dependent)

155 Mbps for

1800E, and 1

Gbps for 2600E

and 8400E

1 Gbps 10 Gbps

Filters Advanced Advanced Advanced Advanced

Dynamic

emulation

Not possible Possible Possible Not possible

Data generation Not possible Possible Possible Not possible

Traffic statistics Not possible Possible Possible Possible

Record & replay

network

conditions

Not possible Possible Possible Possible

Impair IP and

non-IP traffic

Not possible Possible Possible Possible

hardware solutions are more or less equivalent from the point

of view of network impairments they can introduce, whereas the

software one, Tornado, lacks some of the advanced functions such

as packet modification. Regarding the number of available ports,

hardware solutions have again an advantage with a large number

of ports (for instance, PacketStorm 4XG can take up to 32 1 Gbps

interface). Tornado can be used with only 1 or 2 ports (including

in bridge mode), however multiple IP networks can be defined.

Similarly, the maximum supported rate goes from up to 10 Gbps for

PacketStorm 4XG to an unspecified value for Tornado; in practice,

the maximum throughput that can be handled by Tornado will

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PacketStorm Communications 125

depend on the specifications of the PC it is installed on, and possibly

on the properties of the traffic (size of packets, lengths of bursts,

etc.).

As far as the more advanced features are concerned, namely

dynamic emulation and data generation, only the hardware-based

emulators provide such support. At the time of writing, PacketStorm

4XG could not handle dynamic emulation nor data generation,

which are supported by the other hardware emulators, but this

will probably change in the future. One more thing to note is that

Tornado, which is a software solution, is limited to impairing IP

traffic, whereas the hardware solutions also allow impairing non-IP

traffic, hence can be used for lower-level network investigations.

5.2.4.2 Other tools

PacketStorm markets two software tools that are not network

emulators in themselves, but can be used in the context of network

emulation. Therefore we shall briefly present them in what follows.

PSCapture The PacketStorm PSCapture network monitor and

recorder software provides the capability to transfer the character-

istics of a production network into the test lab. The real network

data gathered by PSCapture can be replayed in PacketStorm’s

hardware emulators for repeatable WAN emulation experiments.

Thus PSCapture is effectively a companion of the network emulation

family of products.

Some of the relevant features of PSCapture are given below:

• is compatible with PacketStorm emulators

• displays real-time graphs and histograms of the traffic

• performs up to 16 simultaneous captures

• can use different formats for saving and retrieving captured

data

In addition to network emulation, other potential applications of

PSCapture are

• network monitoring

• network characterization

• network security

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

126 Commercial Network Emulators

Route Analyzer The Route Analyzer is another companion software

product of the PacketStorm family of network emulation products.

The Route Analyzer provides OSPF analysis and recording capa-

bilities for network management. It is designed to monitor traffic

and provide fast diagnostics. The Route Analyzer includes intelligent

error analysis and four settable alarm conditions. The supported

interfaces are 1 Gbps and 10 Gbps Ethernet, and OC-192C.

Route Analyzer is basically a tool for monitoring routing

protocols, and could be used in the context of emulation to analyze

routing-related protocol behavior or network issues. The most

important features of the Route Analyzer that can be used in the

context of network emulation are

• real-time monitoring of routing information

• dynamic data graphs

• recording of OSPF data

According to PacketStorm Communications, possible areas for

using the Route Analyzer are

• service providers

• financial institutions

• large enterprises

• network management

• router upgrades

5.3 Simena

Simena is a company that focuses on hardware network emulators,

and markets an entire family of such products [100, 101]. These

products are meant to enable software developers and network

engineers to determine how their product or service would perform

under various network conditions, such as bandwidth limitations,

latency, congestion, etc.

The network emulator products from Simena are network

impairment generators, which can emulate network conditions by

transparently capturing and processing the data packets. These

emulators can be used for a number of network protocols, such as

IP, IPX, AppleTalk, etc.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 127

The presentation we make in this section uses information

provided by Simena on its web site dedicated to network emulation

products [100, 101].

5.3.1 Overview

Simena network emulators are available in several different models

that meet various user requirements and budgets. The high-end

models are true wire-speed, multi-user, multi-port appliances, and

one of them is even portable, namely PTC3000.

5.3.1.1 General features

Some of the key benefits of the Simena network emulation family of

products according to the company are given below:

• Speed up testing of network applications, equipments or

services.

• Help organizations deliver fully tested products and ser-

vices.

• Minimize the development cost and time by making it easier

to find and eliminate software bugs.

• Provide quality assurance mechanisms for network applica-

tions and network equipment.

• Minimize the bandwidth cost by accurately determining

bandwidth requirements of applications.

• Allow determining VoIP and video conferencing perfor-

mance characteristics in a laboratory environment.

• Allow multiple users to run independent emulation experi-

ments simultaneously.

• Realistically evaluate emerging applications, products and

standards.

The general features of the Simena network emulator family of

products according to the company are as follows:

• Patent-pending wire-speed network emulation for all ports.

As the emulators operate at Ethernet level, no IP network

reconfiguration is required. The emulator will forward the

traffic between its ports soon after it is powered on, and only

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

128 Commercial Network Emulators

minimum configuration is required. The portable emulators

solutions make tool sharing and carrying easy.

• Support various network connection types: point-to-point,

hub and spoke, partially or fully meshed. In mesh network

emulation mode, users can create uni-directional virtual

connections among all the available Ethernet interfaces of

the network emulator. Each such connection has associated

filters that determine which packets should be sent to

which virtual connections. This extended flexibility makes

it possible to create any type of connection topology, such

as ring, mesh, star, or fully connected. Any combination of

impairments can be assigned to virtual mesh connections,

and network statistics can be collected separately for each

individual virtual connection.

• Support standard network models for evaluating multime-

dia transmission performance, namely ITU-T G.1050/TIA-

921. The G.1050 standard refers to performance over

IP networks in terms of network conditions and impair-

ments. Simena’s network emulators provide an interface for

defining, customizing, and running G.1050-based network

emulations.

• Provide up to 16 simultaneous multiple-link emulations.

Simena’s patent-pending technology allows users to emulate

up to 16 different network degradation characteristics

simultaneously through one pair of Ethernet interfaces.

Users can divide the traffic into several classes using

filters, and apply different network impairments to each of

these classes. This capability does not require any network

reconfiguration, since all of the traffic goes through the same

network interfaces.

• Support QoS mechanisms through the use of up to 64

DiffServ classes.

• Provide mechanisms for multiple, stacked MPLS and VLAN

(IEEE 802.11QinQ) emulation experiments. The extensive

MPLS support in Simena’s network emulation products

makes it possible for users to filter, impair, modify, and also

inject MPLS and stacked MPLS packets.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 129

• Support real-time packet modifications. Any protocol field

can be modified with user data, with checksums being

optionally recomputed. With custom packet modifications,

it is even possible to modify data located anywhere inside

the packet, such as payloads or certain fields in proprietary

protocols. Packet modifications can be utilized together with

filtering and other impairments.

• Provide real-time packet analysis with packet filters on

every interface. Several types of packet filters are supported,

including custom filters with up to 4-byte patterns.

• Display real-time throughput in bits and packets per second

in tabular and graphical formats. The results are collected

from the network emulator core, therefore statistics will

be reliable even when conducting heavy emulation experi-

ments. The statistics can be saved in CSV format for further

analysis with user-defined sampling rate and number of

samples.

• Do not require a dedicated host, and can be configured

and used via a Web browser interface that allows access

to the network emulator from anywhere in the network.

The GUI provides a complete set of management functions,

such as configuring networking parameters, Ethernet inter-

face properties, and system settings (date and time, user

password, etc.), as well as to remotely reboot the network

emulator.

• In addition to the Web-based remote management, pro-

vide in-line management capabilities. In-line management

signifies that any port of the appliance can be used for

management, in-line with the test traffic. This allows users

to connect to the network emulator directly from the

workstations used in the experiment, without the need for

additional network cables.

• Provide Command Line Interface (CLI) for controlling the

network emulators and scripting.

• Make available an on-line user guide in hypertext format that

facilitates navigation when attempting to perform complex

experiments or administrative tasks.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

130 Commercial Network Emulators

• Enable users to perform detailed IPv6 emulation tests. IPv6-

specific filters, such as “traffic class,” “flow label,” and “hop

limit,” allow selecting specific IPv6 packets. Filtering can also

use source and destination addresses (single values or a

ranges of addresses). The “next header” filter can be used to

parse cascaded headers. In addition, the “fragmentation ID”

filter can be used to identify all or some of the fragmented

packets.

5.3.1.2 Configuration

Simena network emulators allow saving, loading, and deleting

multiple configurations. This makes it easy to switch between

different experiments, and increases overall product usability.

The possible configuration options of Simena products are listed

below, split into four categories:

(1) emulated network types

• point-to-point links

• partially and fully meshed networks

• hub and spoke networks

(2) experiment types

• uni- and bi-directional emulations

• simultaneous emulations

(3) network degradation parameters

• delay

— fixed delay

— uniform and normal distributions

— jitter

• packet loss

— fixed packet loss

— dynamic packet loss

— burst packet loss, including accumulate and burst

• bandwidth

• additional packet effects

— fixed and dynamic packet duplication

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 131

— random packet reordering

— packet modifications

— congestion emulation

— bit error injection

(4) other features

• packet filtering

• carrier loss emulation

• VLAN emulation

• jumbo frame support

• packet fragmentation

As mentioned before, Simena products allow to use filters for

selecting the traffic flows to which network degradation is applied.

These filters are described in an XML-based language that allows

users to define custom packet filters. Thus one can easily define

filters for specific network protocols, such as IPTV, iSCSI, etc. The

filters can be combined with logical operators to create more

complex filter sets. In addition, filters can be even defined on the

packet payload.

For example, Simena network emulators can be used for

impairing MPEG-based video streams, such as those for IPTV. Since

the network emulator dynamically examines every byte in packets,

users can easily impair specific video packets, such as the MPEG-

specific I, P and B frames. The impairments can be applied to video

streams both uni- and bi-directionally, and are configurable through

detailed packet filters.

The following list shows the available filter types for Simena

network emulators, split into several categories:

• Ethernet level

— Ethernet source and destination addresses

— Ethernet payload type

— VLAN priority

— VLAN IDs

— stacked VLANs

— MPLS

• IP level

— IP source and destination addresses

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

132 Commercial Network Emulators

— IP payload type

— DiffServ TOS (Type of Service)

— IPv6 traffic class

— IPv6 flow label

— IPv6 payload length

— IPv6 next header

— IPv6 hop limit

— IPv6 source and destination addresses

— IPv6 fragment ID

• Other filters

— TCP source and destination port

— TCP flags

— UDP source and destination port

— custom filters: up to 4-byte patterns can be used to match

packets against data found at user-defined offsets

One of the important features of Simena network emulators is

that the packets can be modified on-the-fly during an experiment.

The following packet modifications are possible in this manner, by

category:

• Ethernet level

— Ethernet source and destination addresses

— Ethernet payload type

— VLAN priority

— VLAN IDs

— stacked VLANs

— MPLS

• IP level

— IP source and destination address

— IP payload type

— DiffServ TOS (Type of Service)

• other modifications

— TCP source and destination ports

— TCP flags

— UDP source and destination ports

— payload modifications

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 133

— custom modifications at arbitrary packet offsets

— optional CRC computation (required in order to preserve

the correctness of the packet should any modifications

be performed)

5.3.2 PTC Series

The Portable Test Center (PTC) line of products by Simena currently

includes only one item. PTC3000 is Simena’s portable, multi-user

and multi-port network emulator and traffic generator model, with

up to 10 Gbps Ethernet speeds [101]. Multiple users can run

independent experiments concurrently.

PTC3000 supports up to 22 fiber and/or copper-based 1 Gbps

and 10 Gbps Ethernet ports. As it is a portable stand-alone system,

including LCD screen, keyboard and mouse, PTC3000 can be used

directly and transported between locations.

In addition to network emulation, PTC3000 also provides traffic

generation features such as traffic injection and capture & replay.

This makes it possible to run all or most of the necessary tests for

evaluating a system without the need of any other equipment.

PTC3000 can be used not only for emulation experiments,

but also for network measurements, for instance in connection

with network problem diagnosis. The system can measure latency,

bandwidth, packet loss, and other network characteristics, thus

assisting with investigating the root cause of network problems.

The results are displayed in real-time, and can be saved for future

analysis.

5.3.3 NE Series

The Network Emulator (NE) line of products by Simena includes

several models, with a relatively wide range of features.

5.3.3.1 NE3000 and NE2000

NE3000 and NE2000 are Simena’s rack-mountable, multi-user and

multi-port network emulator and traffic generator models, with up

to 10 Gbps Ethernet speeds [100]. Similarly to PTC3000, multiple

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

134 Commercial Network Emulators

users can run independent emulation tests and traffic generations

simultaneously.

Both models support up to 22 fiber and/or copper-based 1 Gbps

and 10 Gbps Ethernet ports. These emulators are 19” wide and 13”

deep, so that one can mount them in racks, or use them as desktop

units.

NE3000 is the higher-end model in the series, as it provides, in

addition to network emulation, traffic generation features. Thus, the

following two functions are only available on the NE3000 model and

not on the NE2000 model:

• traffic capture and replay, with modification, filtering and

impairments; traffic is still forwarded through the appliance,

both while capturing and while replaying

• packet generation, both along with traffic replay and with

traffic forwarding; multiple packet streams can be generated

per port, currently limited to a number of 20 streams

As with PTC3000, these two product models can also be used for

network measurements, such as latency, bandwidth, packet loss, as

well as other network characteristics; the results are displayed in

real-time.

Note that a network emulator from the same family, called

NE1000, is now discontinued. NE1000 could support up to 6 fiber

and/or copper-based 10/100/1000 Mbps Ethernet ports, and had

1U size. Obviously both current models exceed its specifications.

5.3.3.2 NE100

NE100 is the compact model of the Simena network emulator family

[100]. It is marketed as “ideal for traveling technicians and sales

engineers, as it can easily fit in a laptop bag and carried on the field.”

The chassis of NE100 is small, being about the same size with a

book according to Simena. By using the in-line management feature,

NE100 can be employed between a workstation and the network

without requiring additional network cables for management. As

with the other network emulators, NE100 can also be accessed

remotely via its Web interface.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 135

NE100 has two 10/100/1000 Mbps test ports which can

introduce network impairments at wire speed in full-duplex mode

up to OC-12 rates (622 Mbps). Given its traffic generation capability,

NE100 can also be used as a portable packet generator.

5.3.4 Discussion

Although the possible applications of the Simena network emulators

are similar, there are nevertheless differences between models that

make them more or less suited to some of the applications. In what

follows we shall compare the emulator models, and also present

several other tools that Simena markets in this area.

5.3.4.1 Comparison

Table 5.3 shows a comparison of the current Simena network

emulator family of products according to [100]. Note that we

excluded the discontinued model NE1000 from this comparison. The

first part of the table shows that all models are equivalent from

the point of view of basic functionality; thus, all models support

layer 2 and 3 emulation, uni and bi-directional emulation, multiple

protocols, per flow and per direction statistics, emulation of DiffServ,

VLAN and MPLS (including stacked ones), bit error rates, packet

filters, and delay and loss distributions. Notable differences include:

the maximum forwarding rate per port and direction (622 Mbps

for NE100, 10 Gbps for the rest), appliance size and whether it is

rack mountable or not, the maximum number of Gigabit Ethernet

interfaces (2 for NE100, 22 for the other models), and the maximum

number of multi-link emulations (2 for NE100, 16 for the rest).

The second part of the table focuses mainly on the advanced

features that differentiate the network emulator models from each

other. Thus, NE100 does not support packet modifications, network

measurements, IPv6 and mesh network emulation, command line

interface, multiple users, 10 Gbps interfaces, nor the G.1050 model

and MPEG impairment optional features, all of which are supported

by the other models. Furthermore, neither NE100 nor NE2000

support traffic capture and replay, nor packet generation, both

features being present in the higher-end models NE3000 and

www.allitebooks.com

http://www.allitebooks.org

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

136 Commercial Network Emulators

Table 5.3. Comparison of Simena network emulation products

Feature NE100 NE2000 NE3000 PTC3000

Maximum forwarding rate per port

and per direction

622 Mbps 10 Gbps 10 Gbps 10 Gbps

Layer 2 and 3 emulation Yes Yes Yes Yes

Uni and bi-directional emulation Yes Yes Yes Yes

Ethernet, IP, TCP, and UDP packet

filters

Yes Yes Yes Yes

Per flow and per direction emula-

tion and interface statistics

Yes Yes Yes Yes

DiffServ emulation Yes Yes Yes Yes

VLAN, MPLS, stacked VLAN,

stacked MPLS emulation

Yes Yes Yes Yes

Bit Error Rate emulation Yes Yes Yes Yes

Rack mountable No (book size) Yes Yes No (portable)

Number of Gigabit Ethernet test

interfaces

2 2-22 2-22 2-22

Multi-link emulation limit 2 16 16 16

Custom packet filters Yes Yes Yes Yes

Custom delay & packet loss distrib-

utions

Yes Yes Yes Yes

Packet modifications No Yes Yes Yes

Network measurements No Yes Yes Yes

IPv6 emulation No Yes Yes Yes

Mesh network emulation No Yes Yes Yes

Command line interface No Yes Yes Yes

Multi-user support No Yes Yes Yes

10 Gbps interface support No Yes Yes Yes

G.1050 network model emulation

(optional)

No Yes Yes Yes

MPEG video frame impairments

(optional)

No Yes Yes Yes

Traffic capture and replay with

modification, filtering, and impair-

ments

No No Yes Yes

Packet generation along with traffic

replay and traffic flow

No No Yes Yes

Forwarding traffic while capturing

and replaying

No No Yes Yes

Multiple packet generation streams

per port

No No Up to 20 Up to 20

Portable unit with LCD and key-

board

No No No Yes

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Simena 137

PTC3000. Finally, the only stand-alone portable network emulator

model from Simena is PTC3000.

5.3.4.2 Other tools

Simena markets several other tools that are not network emulators,

but can be used in connection with emulation experiments. We shall

present these tools in what follows.

Traffic generators They are one type of equipment that can be

used very effectively in conjunction with network emulation. Simena

traffic generators have two main functions:

(1) packet generation (the feature is called “Traffic Injector” by

Simena)

(2) packet capture and replay (the feature is called “Capture and

Replay” by Simena)

The key benefits of Simena’s traffic generators according to the

company are as follows:

• Allow testing the same scenarios at different locations and

times by means of the packet capture and replay feature.

• Generate realistic high-speed background traffic with the

packet-generation feature.

• Help deliver products and services that are fully tested in

realistic conditions.

• Reduce costs by helping find and eliminate software bugs.

• Assist with the quality assurance analysis of network

applications and equipment.

Note that the above traffic generation features are already

included in the PTC3000 and NE3000 network emulator models;

therefore a stand-alone traffic generator is only required in

conjunction with the other lower-end models.

Packet Flow Switch Simena’s Packet Flow Switch (PFS) allows

users to aggregate traffic and collect packets from many sources

during an emulation experiment, and send them to various devices,

such as traffic analyzers, loggers or monitoring systems. Thus, PFS

eliminates the need for equivalent mechanisms, such as network

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

138 Commercial Network Emulators

taps (devices that allow monitoring network links) or port mirroring

(an option on certain network switches that allow sending traffic

seen on one port to another port).

A packet filtering mechanisms allows users to pick and choose

which packets are to be forwarded. PFS can use up to 22 ports,

and up to 10 Gbps speeds with jumbo frame support. PFS is

available both as a stand-alone product, and also as a feature on

PTC3000 and NE3000 network emulator models, as well as on traffic

generators.

According to Simena, the most important applications of the

Packet Flow Switch include the following:

• Load balance heavy traffic to multiple monitoring tools.

• Allow sharing of expensive network tools.

• Multicast critical traffic to multiple security devices.

• Bridge traffic between 10 Gbps and multiple 1 Gbps ports.

• XML-based packet filtering and packet slicing2 to reduce the

amount of traffic, and the potential overload on monitoring

tools.

• Dynamically create aggregating and regenerating tap-like

functionality, including the possibility to perform media and

speed conversion.

5.4 Apposite Technologies

Apposite Technologies network emulators are intended for testing

the performance of applications over wide-area networks by repro-

ducing bandwidth limitations, latency, jitter, loss, congestion, and

other important link impairments similar to real-world conditions

[5]. The Apposite Technologies product family currently includes

the following two lines of network emulation products and their

respective models:

Linktropy Devices in this product line emulate a single network

link through each pair of interfaces, thus they are appropriate for

2Packet slicing refers to the possibility of forwarding partial packets by striping the

entire payload or only a portion of it. Users can specify to slice packets to sizes from

64 to 4096 bytes.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 139

recreating simple scenarios with a single set of conditions between

two networks. The models in this line are

• Linktropy 10G: three links, up to 10 Gbps

• Linktropy 7500 PRO: four links, up to 1 Gbps

• Linktropy 5500: one link, up to 1 Gbps

• Linktropy Mini2: one link, up to 100 Mbps

Netropy Devices in this product line emulate multiple separate

network links (up to 15), each with their own bandwidth, delay, and

loss characteristics, through each possible pair of ports. This makes

Netropy models suited for recreating complex network topologies,

or for running multiple concurrent tests. The models in this line are

• Netropy 10G: six ports, up to 10 Gbps

• Netropy N80: eight ports, up to 1 Gbps

• Netropy N60: two ports, up to 1 Gbps

The presentation in this section is based on the information

provided by Apposite Technologies on its product web site [5].

5.4.1 Linktropy Series

Let us look first in more detail at each model in the Linktropy

product line, which focuses on emulating single links.

5.4.1.1 Linktropy 10G

The Linktropy 10G WAN emulator provides network emulation for

high-speed links up to 10 Gbps. Linktropy 10G emulates wide-

area network bandwidth, delay, jitter, packet loss, congestion,

and other important network characteristics. The product can be

installed as either a network bridge or router, thus providing

easy integration with existing test configurations in a centralized

emulation approach.

The Linktropy 10G model has the following main characteristics:

• supports link speeds up to 10 Gbps

• has three separate links: 2 × 10 Gbps, and 1 × 1 Gbps:

each link is implemented through an independent pair of

interfaces

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

140 Commercial Network Emulators

• aggregate capacity of 20 Gbps and 12 million packets per

second

• Supports jumbo frames up to 9 kB

Configuration The network impairments supported by Linktropy

10G include the following features:

• bandwidth limitation, from 300 bps to the maximum

operating rate in 1 bps increments

• delay, from 0 ms up to 10 seconds (0.1 ms increments) in

each direction, either as a constant value, or following a

normal or uniform distribution

• packet errors, either as packet loss rate, bit error rate, or

both of them; loss rate can be between 0 and 100% in

increments of 0.0001%

• other packet effects, such as packet reordering and duplica-

tion

• reproduce congestion conditions by specifying the back-

ground link utilization, and its burstiness; the background

traffic utilization can be between 0 and 100% in increments

of 0.1%

• possibility to adjust frame overhead and maximum queue

depth to match real link behavior

• dynamic condition emulation: the device scheduler allows

any combination of emulation parameters to vary over

time; this makes it possible to emulate conditions such as

connection outages, variable bandwidth links, satellite fade,

wireless interference, etc.

Other features of Linktropy 10G are given below:

• capture and replay live network conditions, so as to

reproduce the varying characteristics of the production

network in a repeatable test environment

• traffic monitoring by displaying statistics and graphs in real

time or post-experiment; up to 24 hours of statistics can be

retrieved for further analysis

• automated testing through the use of the device scheduler,

or through the command line interface

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 141

• a dedicated Gigabit Ethernet interface for management, as

well as an RS-232 serial console

Discussion Below we provide a list of possible applications of

Linktropy 10G, and the corresponding usage scenarios, as indicated

by Apposite Technologies:

• Application testing and troubleshooting: When developing a

client/server application, testing it only on a local network

may not be enough. This is because one cannot know how

well it will run when users are located far away from the

server. The only way to find out is to recreate the end-user

experience. Basically, Linktropy 10G can be used to ensure

that an application works well under all conditions before

deployment. Linktropy 10G can also be used to troubleshoot

application problems, and validate the solutions without

disrupting the production network.

• Network equipment testing: High-speed network equipment

developers need a way to emulate customer networks

for product development, quality assurance, and customer

support. This can be achieved by using Linktropy 10G to

reproduce customer network conditions. Similarly, when

evaluating network products in view of a purchase, it

is possible to use Linktropy 10G to determine whether

the product effectively delivers the expected performance

characteristics.

• VoIP and video assessment: The quality of voice and video

systems degrades with latency, jitter, and packet loss. VoIP

is delay sensitive, and IPTV or tele-presence applications

are both bandwidth-hungry, and highly sensitive to link

impairments. Before making a purchase it is advisable

to evaluate the quality of a solution under real-world

conditions, so as to verify that it meets the requirements.

• Remote backup and storage: Assume that data at some

remote offices needs to be backed up to a central facility, or

that centralized records have to be moved off-site for backup

purposes. Linktropy 10G can help ensure that bandwidth

limitations and link latency do not prevent these processes

from being completed within the available time frame.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

142 Commercial Network Emulators

• Network validation: When a company has to choose between

different carriers, that provide different latency, loss, and

jitter guarantees, assessment may be difficult. In addition

to the cost differences, it is important to quantify how

the different link conditions affect performance for the

applications the company plans to use remotely. Configuring

Linktropy 10G with the different network conditions makes

it possible to perform such objective evaluations before a

choice is made.

5.4.1.2 Linktropy 7500 PRO

The Linktropy 7500 PRO network emulator recreates bandwidth,

delay, jitter, packet loss, congestion, and other network impairments

at speeds of up to 1 Gbps per link. Linktropy 7500 PRO can emulate

a maximum of 4 individual links simultaneously, and provides

separate pairs of interfaces for each link.3 The unit has an aggregate

throughput of 4 Gbps and up to 3 million packets per second, making

it ideal for both multi-link configurations and multi-user labs. The

compact 1U-sized appliance includes both copper Gigabit Ethernet

interfaces, and modular fiber/copper ones. Jumbo frames up to 9 kB

can be used with the device.

The network impairments that can be emulated using Linktropy

7500 PRO are similar to those for Linktropy 10G in terms of

bandwidth and delay control, as well as in terms of possible

packet effects. This includes the possibility to introduce dynamic

impairment variations.

The non-emulation features of Linktropy 7500 PRO also are

similar to those of the 10G model. Thus, it is possible to capture and

replay live network conditions, to perform traffic monitoring, and to

automate testing procedures.

The fact that Linktropy 7500 PRO offers the possibility to emu-

late four 1 Gbps links (instead of the mixed 10 Gbps and 1 Gbps capa-

bilities of Linktropy 10G) is the most significant difference between

the two models. Having a larger number of links of the same type

leads to more possibilities of using the device, such as given below:

3The Linktropy 7500 model, which could only emulate one 1 Gbps link, was

discontinued in 2010.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 143

• Allow up to 4 individual developers to use the device simul-

taneously to test different products, or to demonstrate the

performance of different products to potential customers.

• Make it possible to run up to 4 sets of different tests in

parallel, by using multiple instances of the same product,

thus saving time and resources.

• Allow testing up to 4 separate products in parallel through

independent links, so as to provide a direct comparison

between competing solutions for video, voice, and other

network applications.

We can say that with Linktropy 7500 PRO the focus shifts from

high-speed performance to flexibility. Using this network emulator

it is possible to test several types of network technologies and

scenarios, such as the ones given below:

Terrestrial networks Linktropy 7500 PRO can be used to emulate

the bandwidth, delay, and loss characteristics of T1, E1, T3, E3, OC-

3, ATM, xDSL, Frame Relay, and dial-up modems. In this way one

can determine the necessary conditions that provide satisfactory

application performance.

WANs and Internet One can use Linktropy 7500 PRO in order to

determine what happens to applications, such as e-commerce or

VoIP, when they are run over WANs or over the Internet, and to plan

their deployment in advance.

Wireless networks Since network degradation characteristics of

mobile as well as fixed wireless networks differ from those of

terrestrial networks, one may use Linktropy 7500 PRO to determine

whether a wireless solution is appropriate for a certain task or not.

Satellite networks Communication using satellite networks has to

cope with two main issue: high latencies (sometimes in excess of

500 ms), and high bit error rates (potentially larger than 10−6).

These conditions have a strong impact on network protocols and

applications, which needs to be evaluated in advance should the use

of such networks be envisaged. For this purpose, Linktropy network

emulators were designed to accommodate the long delays and high

error rates of satellite networks.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

144 Commercial Network Emulators

5.4.1.3 Linktropy 5500

The Linktropy 5500 network emulator is basically identical from the

point of view of network emulation features to Linktropy 7500 PRO,

but has a reduced number of ports. The characteristics of Linktropy

5500 are summarized below:

• emulation of only one link

• link speeds up to 1 Gbps and up to 1 million packets per

second

• copper Gigabit Ethernet interfaces or optional SFP ports

• compact, 1U-sized appliance

With features similar to Linktropy 7500 PRO, Linktropy 5500 is

basically a scaled down, lighter version of the other model. Thus,

Linktropy 5500 is particular useful for product demonstrations,

since it is easier to carry around. One can use Linktropy 5500

to demonstrate a product to customers under their production

network conditions by taking the appliance to the customer site, and

recording and replaying the actual conditions there. This avoids the

hassles of installing the equipment in the live production network,

and the disturbance of the network that may occur. Linktropy 5500

can also be used at trade shows, to demonstrate the performance

characteristics and features of a product.

5.4.1.4 Linktropy Mini2

Linktropy Mini2 is a portable network emulator designed to recreate

basic network conditions for use in connection with application

development, and for demonstrations of networking products.

Linktropy Mini2 emulates bandwidth limitation, delay, and

packet loss separately in each direction for one link at rates of

maximum 100 Mbps, and up to 80,000 packets per second. Its small

size (6” × 6”) and light weight make it easy to carry. Linktropy

Mini2 is easily configured via a browser-based interface. The GUI

allows the audience to view the test conditions, and even to adjust

the emulation parameters. Linktropy Mini2 displays throughput

graphs and statistics, revealing the effects of network conditions on

application performance.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 145

The following parameters can be configured for Linktropy Mini2:

• bandwidth limitation, between 300 bps and 100 Mbps in 1

bps increments

• delay, between 0 ms and 10 seconds in 0.1 ms increments; it

can be specified as a constant value, or as having uniform or

normal distributions

• packet loss rate, between 0 and 100% with increments of

0.0001%

• additional parameters include: bit error rate, queue depth,

framing overhead

Given the low operating rates of Linktropy Mini2, and the fact

that Apposite Technologies claims its accuracy is not as high as that

of the other models, it may be that this appliance is actually a small

form computer running a network emulation software. This would

make us classify it as a software emulator not a hardware one, but as

we can only speculate about this aspect, we shall leave this question

open.

5.4.2 Netropy Series

The other line of products from Apposite Technologies, focusing on

emulating multiple links, hence, by extension, on network topology,

is Netropy.

5.4.2.1 Netropy 10G

The Netropy 10G network emulator makes it possible to benchmark,

troubleshoot, and optimize the performance of critical applications

over 10 Gbps networks. Netropy 10G includes two 10 Gbps, and

one 1 Gbps emulation engines, each of which can emulate up to 15

separate WAN links. It has four 10 Gbps ports (XFP or CX4) and two

1 Gbps ports (copper); the total capacity is of 22 Gbps and 10 million

packets per second. Thus, one can use Netropy 10G to model high-

speed complex network topologies, or run multiple concurrent tests.

Netropy 10G can be configured and managed through a browser-

based interface for the most basic tasks, or through a comprehensive

command line interface for integration with test automation tools.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

146 Commercial Network Emulators

Configuration The network impairments supported by Netropy

10G are almost identical to those of Linktropy 10G, as the list below

proves:

• bandwidth limitation, from 100 bps to the maximum

operating rate in 1 bps increments

• delay, from 0 ms up to 10 seconds (0.1 ms increments) in

each direction, either as a constant value, or following a

normal or uniform distribution

• Packet errors, either as packet loss rate, bit error rate,

or both of them; packet loss can be random (uniform

distribution), in bursts, or periodic

• other packet effects, such as packet reordering and duplica-

tion

• packet filtering, using a combination of source and destina-

tion IP addresses, VLAN ID, and MPLS label

• reproduce congestion conditions by specifying the back-

ground link utilization and its burstiness; the background

traffic can be between 0 and 100% in increments of 0.1%

• adjust framing overhead and maximum queue depth to

match real link behavior; in addition to the default tail drop

queueing, the RED management mechanism can also be used

• dynamic condition emulation through a scheduler that

allows any combination of emulation parameters to vary

over time; this makes it possible to emulate conditions such

as connection outages, variable bandwidth links, satellite

fade, wireless interference, etc.

Other non-emulation features of Netropy 10G include the

following features:

• Traffic monitoring can be done through the display of

throughput graphs and link statistics. Throughput graphs

are available for a 24 hour period and are reviewable with

pan and zoom controls. Moreover, up to 24 hours of statistics

can be retrieved for further analysis.

• Automated testing can be done through the use of a

comprehensive command line interface.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 147

• It is a dedicated Gigabit Ethernet interface for management,

as well as an RS-232 serial console.

Discussion Given the ability of Netropy 10G to emulate up to

15 separate WAN links on each of the three emulation engines,

several utilization patterns become possible according to Apposite

Technologies, as follows:

• Emulate multi-site networks: The high-speed and complex

emulation capabilities of Netropy 10G make it possible to

model a full enterprise network, including headquarters,

regional, branch, and local offices, etc. IT engineers can then

use Netropy 10G to accomplish tasks such as

— experience applications as they will be seen by different

end-users from the various remote locations

— verify the correct operation of application servers with a

potentially large number of concurrent users

• Side-by-side benchmarking: Since Netropy 10G has multiple

ports and emulation engines, one can run separate experi-

ments side-by-side, for example in order to

— determine the effects of different network conditions on

the performance of the same application, and possibly

tune application settings so as to maximize overall

performance

— compare similar products from different vendors using

the same network conditions, and analyze their benefits

for the company

• Concurrent testing: Related to the previous item, concurrent

testing helps minimize the time needed to complete a series

of independent experiments — such as when using a matrix

of conditions to explore a parameter space — by running

multiple experiments in parallel using several instances of

the network application of device under test.

• Impair individual applications: The filtering capabilities of

Netropy 10G make it possible to differentiate traffic from

individual sources. Thus, one can apply impairments only
to specific applications, or can even apply different levels of

impairment to different applications.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

148 Commercial Network Emulators

5.4.2.2 Netropy N80

The Netropy N80 network emulator offers the same network

emulation capabilities with Netropy 10G. The differences with

respect to Netropy 10G are restricted to the number of available

interfaces and number of emulation engines, as well as the

maximum link rate. Thus, Netropy N80 has four 1 Gbps emulation

engines that can each be used for the emulation of up to 15 separate

WAN links between any of the ports of the appliance. Netropy N80

is a compact 1U-sized device, with eight 1 Gigabit Ethernet ports (4

copper and 4 SFP). The aggregate capacity is of 4 Gbps, and up to 3

million packets per second.

More interfaces compared to Netropy 10G means that there are

even more opportunities to share the appliance across multiple

experiments, while bearing in mind the reduced maximum link rate

(1 Gbps instead of 10 Gbps). The potential applications for Netropy

80N are similar to those previously indicated for Netropy 10G.

5.4.2.3 Netropy N60

The Netropy N60 network emulator is a scaled-down version of

Netropy N80 that has only one emulation engine. This engine can

still be used to recreate up to 15 separate WAN links, but this can

only take place on the single connection between the two ports of

the appliance. Netropy N60 can emulate complex networks up to 1

Gbps, and its two ports are Gigabit Ethernet, with a choice between

copper and SFP. The aggregate throughput is 2 Gbps, and up to 1

million packets per second.

Netropy N60 is a compact, 1U-sized appliance. Being lighter than

Netropy N80, it is a more appropriate for temporary deployments to

customer sites or trade shows.

5.4.3 Discussion

Apposite Technologies is the company with the most diversified

range of models among those that we have reviewed. Readers may

therefore be puzzled by what are the actual differences between all

these models.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 149

In order to make things more clear, let us first compare

the models in the older line of models, Linktropy, by using the

information provided on the company website. Table 5.4 shows

this comparison. When analyzing the table, several aspects become

obvious:

• Linktropy 10G is the model aimed at high speeds, whereas

7500 PRO and 5500 focus on typical 1 Gbps connections,

although the maximum number of links that can be emulated

is different; Linktropy Mini2 is a portable but in the same

time lower rate solution, and it is not classified as “high

precision” by the company.

• All emulators can recreate basic network impairments,

however Linktropy Mini2 lacks all the advanced features,

such as packet reordering and duplication, introduction

of background traffic and dynamic scheduling. Moreover,

Linktropy Mini2 does not support network traffic capture

and replay, nor statistics download for further analysis.

Let us compare next the models of the newer line of models

of Apposite Technologies, Netropy, using again the information on

the company’s website (see Table 5.5). Note that, since Netropy

series emulators have the same network emulation capabilities, in

this table we shall focus on the performance differences. Table 5.5

emphasizes the fact that performance characteristics basically

increase from one end, the Netropy N60 model, which has only 2

Gigabit Ethernet ports, to Netropy N80, which has 8 Gigabit Ethernet

ports, and finally to the top-of-the-line Netropy 10G which has even

10 Gbps interfaces, and a total of 6 ports.

At this point, the differences that exist between models within

the same line of products should have become clear. To conclude this

discussion, let us compare the model lines to each other (excluding

the entry-level Linktropy model, Mini2). Table 5.6 presents the

comparison, as outlined by Apposite Technologies. An analysis of the

table reveals the following aspects:

• The main difference between the Linktropy and Netropy

lines is that Linktropy only supports emulation of 1 link per

port pair, whereas Netropy can go up to 15 links per port

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

150 Commercial Network Emulators

Table 5.4. Comparison of Apposite Technologies Linktropy network

emulation products

Linktropy

model Mini2 5500 7500 PRO 10G

Number of

emulated links

1 1 4 3 (2 × 10 Gbps,

1 × 1 Gbps)

Number of

emulation

interfaces

2 × 10/100

Ethernet

2 Gigabit

Ethernet

8 Gigabit

Ethernet (4

copper, 4 SFP)

4 × 10 Gigabit

Ethernet, 2 × 1

Gigabit

Ethernet

Maximum link

rate

100 Mbps 1 Gbps 1 Gbps (4 Gbps

total)

10 Gbps (20

Gbps total)

Maximum

packet rate

80,000 pps 1 million pps 3 million pps Over 10 million

pps

High precision No Yes Yes Yes

Bandwidth

limitation

Yes Yes Yes Yes

Delay (constant

or variable) and

jitter

Yes Yes Yes Yes

Packet loss Yes Yes Yes Yes

Bit errors Yes Yes Yes Yes

Packet

reordering

No Yes Yes Yes

Packet

duplication

No Yes Yes Yes

Background

traffic

No Yes Yes Yes

Dynamic

scheduling

No Yes Yes Yes

Capture and

replay

No Yes Yes Yes

Statistics

download

No Yes Yes Yes

Install as bridge

or router

Yes Yes Yes Yes

Jumbo frame

support

No Yes (9 kB) Yes (9 kB) Yes (9kB)

Form factor Portable 1U 1U 2U

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Apposite Technologies 151

Table 5.5. Comparison of Apposite Technologies Netropy network

emulation products

Netropy model N60 N80 10G

Number of emulation

interfaces

2 Gigabit

Ethernet (copper

or SFP)

8 Gigabit

Ethernet (4

copper, 4 SFP)

4 × 10 Gigabit

Ethernet, 2 × 1

Gigabit Ethernet

Maximum rate per link

direction

1 Gbps 1 Gbps 10 Gbps

Aggregate throughput 2 Gbps 4 Gbps 22 Gbps

Maximum packet rate 1 million pps 3 million pps 10 million pps

Form factor 1U 1U 2U

Table 5.6. Comparison of Apposite Technologies lines of network

emulation products

Product line & models Linktropy 5500/7500 PRO/10G Netropy N60/N80/10G

Number of emulated

links

1 link per port pair 15 links per port pair

Number of port pairs 1/4/3 1/4/3

Maximum rate per port 1/1/10 Gbps 1/1/10 Gbps

Bandwidth limitation 300 bps to maximum operating rate in 1 bps increments

Delay & jitter 0–10 s in 0.1 ms increments (constant or distributions)

Packet loss/error Random, BER Random, periodic, burst, BER

Other effects Packet reordering, packet duplication

Queue management Tail drop Tail drop, RED

Rate control direction Outgoing only Both incoming and outgoing

Background traffic 0–100% in increments of 0.1%

Jumbo frames Supported, maximum 9kB

Capture and replay Yes No

Dynamic scheduler Yes No

Statistics download Last 24 hours

Throughput graphs Last 10 minutes Last 24 hours, reviewable

Command line interface Supported

pair, resulting in a corresponding increase of the complexity

of the networks that can be emulated with the model of the

latter series.

• It is possible to draw a “correspondence” between individual

Linktropy and Netropy models, according to their number

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

152 Commercial Network Emulators

of ports and the maximum supported operating rate per

port. Thus, Linktropy 5500 corresponds to Netropy N60,

Linktropy 7500 PRO to Netropy N80, and Linktropy 10G to

Netropy 10G.

• Regarding the network emulation features, models in both

lines of products are identical, with the exception of the

following aspects:

— In addition to the packet loss and error features of the

Linktropy line, Netropy models also support periodic

packet loss, as well as burst loss.

— In addition to the basic tail drop available for the

Linktropy series, Netropy models also support RED as a

queue management mechanism.

— Control can be enforced both for incoming and outgoing

traffic in Netropy models, but only for outgoing traffic in

Linktropy models.

• Concerning non-emulation features, the following differ-

ences should be noted:

— Netropy products do not support traffic capture and

replay, which means that live network conditions cannot

be reproduced with these products, as it could be done

with Linktropy models, but only modeled through the

use of the available impairments.

— Moreover, Netropy products do not support dynamic

scheduling either; this implies that advanced emulation

scenarios that are possible with Linktropy models, such

as wireless or satellite networks in which conditions

change over time, cannot be recreated.

— As a minor difference, the throughput graphs provided

by Linktropy products only contain the last 10 minutes

of operation, whereas Netropy models can show up to

24 hours of traffic statistics, and have zooming and

panning capabilities to allow investigating the data in

detail.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Anue Systems 153

5.5 Anue Systems

Anue Systems markets a series of Ethernet network emulators that

are intended to reproduce impairments similar to those exhibited

on MANs and WANs [3]. Note that Anue Systems also offers fiber

channel and SONET/SDH network emulators, but we shall focus only

on the Ethernet ones, which are equivalent to those of the other

manufacturers. There are two Anue Systems products that enter in

this category, namely

• XGEM: 10 Gigabit Ethernet network emulator

• GEM: 10/100/Gigabit Ethernet network emulator

The main benefits indicated by Anue Systems for its network

emulators are as follows:

• Identify network performance issues before deployment.

• Troubleshoot systems in a quantifiable and repeatable

manner.

• Create and use real-world network profiles that represent

different locations or usage patterns.

The general features of Anue Systems Ethernet network emula-

tors are as follows:

• Each models runs at 100% line rate.

• Emulator operation can be done interactively, locally or

remotely, and can also be automated:

— Local control is done via a front panel LCD.

— Remote control uses a dedicated Ethernet port and can

be done either through a Graphical User Interface or

through a TCL API, which allows for the automation of

common tasks.

• It has high emulation accuracy, down to one-bit time

increments.

Regarding the network emulation features, Anue Systems products

support a large range of configurable impairments, such as

bandwidth control, delay and jitter, packet loss, reordering, du-

plication, fragmentation, modification, corruption, and even signal

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

154 Commercial Network Emulators

loss conditions. Frames can be selected for impairment based on a

variety of Ethernet (Layer 2) or IP (Layer 3) characteristics, such

as VLAN tag, source or destination address, or any other data in an

Ethernet frame.

This section is based on information available on the web site of

Anue Systems dedicated to its network emulation products [3].

5.5.1 XGEM

XGEM Ethernet network emulators are intended for precisely

emulating 10 Gigabit Ethernet networks in a lab environment. They

can reproduce the delay and impairments experienced by Ethernet

signals across MANs and WANs regardless of the underlying

transport mechanism. This makes it possible to test the behavior

of network applications, protocols, and devices in the presence of

delay and packet jitter, to determine how well they detect and handle

errored frames, and how they manage situations with frames that

are dropped, fragmented, duplicated or out of sequence.

The main characteristics of XGEM network emulators according

to Anue Systems are as follows:

• They run at 100% line rate at 10 Gbps.

• They support up to 64 different impairment profiles selected

based on user-defined filters.

• They can be automated or operated interactively, both

locally and remotely.

• They have an impairment accuracy down to one-bit time

increments.

• They provide a maximum delay of 250 ms at all supported

bit rates.4

The XGEM network emulator is available as a 2U rack-mount

chassis that supports data rates up to 11.3 Gbps. The 10 Gigabit

Ethernet interfaces can be either copper or optical. The unit has

a front panel LCD control that allows for standalone operation.

It is also possible to perform remotely configuration tasks via

a dedicated Ethernet control port. The remote control can be

4Anue Systems states that this value can be increased upon customer request.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Anue Systems 155

either interactive (browser-based GUI with save/load capability) or

automated (using a TCL script library).

5.5.1.1 Configuration

The network emulation features of XGEM as indicated by Anue

Systems are the following:

Network profiles Users can define up to 64 distinct network

profiles that represent 64 distinct network clouds. Throughput,

delay and other network impairments are specified independently

for each profile.

Packet filtering In order to determine which type of impairment

(profile) is applied to an incoming packet, up to 512 filtering rules

can be used. There are two types of possible rules:

• Data-based rules: Use a variable-length mask of up to 32

bytes to match data anywhere within an Ethernet frame.

For instance, a certain rule could test the MAC address,

IP address, VLAN tag, and a fixed byte offset. This type

of rule is appropriate for scenarios in which the network

through which a packet goes is deterministically decided by

its content: packets to destination D 1 go through network

N 1, packets to destination D 2 go through network N 2, and

so on.

• Order-based rules: Select packets at regular intervals (i.e.,

every N th packet), or at randomly distributed intervals

(with Poisson, Gaussian, or uniform distributions). This

alternative makes it possible to emulate scenarios in which

networks are not decided deterministically, for instance

when there are multiple paths from a source to a destination.

Thus, a packet to destination D may go either through the

network N 1 or through the network N 2, depending on

factors such as congestion on the path.

Bandwidth control XGEM can limit throughput down to a minimum

of 0.005% of line rate (equivalent to 500 kbps for 10 Gigabit Eth-

ernet). The emulator can optionally generate Pause Frames (XOFF

& XON messages, used for “software flow control”). Appropriate

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

156 Commercial Network Emulators

bandwidth thresholds are specified by the user in terms of surplus

and deficit of bytes.

Delay/jitter For each network profile, the user can define specific

delay and delay variation characteristics. With the standard config-

uration, it is possible to insert packet delays between 50 μs and 250

ms in 26 ns increments. The maximum delay value can be increased

through a mechanism tagged Delay Doubler and Quadrupler; greater

delay amounts are said to be available upon request. Inter-packet

delay variation (jitter) can also be specified.

Packet impairments Several packet-level impairment types can be

configured for each network profile. The following packet effects are

supported:

• packet drop

• packet reordering

• packet duplication

• packet fragmentation

• packet corruption (both for data and CRC)

Multiple impairments can be combined for the same packet, and

the emulator can optionally recalculate the Ethernet CRC or IP

checksum. XGEM can also reproduce a “Loss of Signal” effect,

equivalent to network disconnection.

Bit error rate One can set error rates from 10−12 to 10−2 (i.e., up

to 1%) at Layer 1 or MAC layer. Errors can be injected with a fixed

rate (periodic errors), or randomly, following a uniform, Poisson or

Gaussian distribution. The error can affect a single bit or 32 bits, in

the latter case either as a contiguous area or following a user-defined

bit pattern.

As the above description shows, the range of impairments that

can be introduced using XGEM is large. Two additional remarks

regarding XGEM apply:

• Network impairment configurations can be modified in

real time, without interrupting the traffic flow, hence not

requiring to restart ongoing experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Anue Systems 157

• The following standard-based network impairment models

are supported by XGEM: MEF-18, ITU-T G.8261, and ITU-T

G.1050/TIA-921.

A non-emulation feature of XGEM is the fact that it can operate

either in transparent mode (i.e., as an “invisible” network device), or

in router mode, that routes network traffic between its interfaces.

For router mode operation, up to 16 virtual ports are supported per

physical interface.

5.5.2 GEM

The GEM Ethernet network emulators are intended for simulating

10/100/Gigabit Ethernet networks in a lab environment. They

are basically a lower-end version of XGEM with similar general

characteristics, but only supporting lower operating rates. GEM

network emulators run at 100% line rate speed from 10 Mbps to

1 Gbps at any frame size.

The GEM network emulators are available on two different

hardware platforms. Both platforms have a 2U rack-mount chassis

that supports either up to four blades (and data rates up to 2.6

Gbps), or up to two blades (and data rates up to 11.3Gbps). Each

interface supports the Ethernet standard at 10 Mbps (copper), 100

Mbps (copper), and 1 Gbps (copper or fiber).

5.5.2.1 Configuration

The network emulation features of GEM follow closely those

of XGEM, and the differences that appear are caused by the

dissimilarity concerning supported line rates. GEM features can be

summarized as follows (we emphasize the difference with respect

XGEM when this applies):

• There is a possibility to define up to 64 distinct network

profiles and use up to 512 filtering rules to identify those

profiles. Rules can be either data based or order based.

• Bandwidth limitation is configurable to a minimum of

0.005% of line rate (50 kbps at 1 Gigabit Ethernet, hence

lower than for XGEM).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

158 Commercial Network Emulators

• Delay/jitter values from 50 μs to 250 ms in 16 ns increments

for Gigabit Ethernet in the standard configuration (the

smallest increment is 26 ns for XGEM).

• Packet impairment and bit error capabilities are the same

with those of XGEM.

5.5.3 Discussion

The two network emulator models from Anue Systems are very sim-

ilar, but a side-by-side comparison will emphasize the differences

between them. We shall also present in this subsection another tool

from the same company that can be used in the network emulation

context.

5.5.3.1 Comparison

Table 5.7 shows the comparison of the two Ethernet network

emulation models by Anue Systems according to the information

on the company’s web site [5]. From the beginning one notes that

XGEM is superior to GEM both in terms of number of interfaces

(up to 8 for the first, versus only 2 for the latter), and in terms of

maximum supported rates per interface (10 Gbps for XGEM, versus

1 Gbps for GEM). However, beside these characteristics, the two

network emulators are identical in terms of emulation features. The

Table 5.7. Comparison of Anue Systems network emulation products

Model name GEM XGEM

Number of emulation interfaces 2 Up to 8 or 4

Supported rates per interface 10/100/1000 Mbps 10 Gbps

Bandwidth control Yes Yes

Delay & jitter Yes Yes

Packet loss Yes Yes

Bit errors Yes Yes

Packet reordering, duplication, etc. Yes Yes

Capture and replay Yes No

Statistics Yes Yes

Jumbo frame support Yes Yes

Form factor 2U 2U

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Anue Systems 159

only difference of importance is the lack of the capture and replay

capability for XGEM, which is undoubtedly caused by the high rate

at which this emulator operates, which makes it difficult to store a

significant enough amount of captured traffic.

5.5.3.2 Other tools

Network emulators are often employed in complex network

scenarios. In this context, issues such as network monitoring and

tool control become important. The Anue 5200 Series Net Tool

Optimizer is a solution for optimizing the network monitoring

activity. According to Anue Systems, the Net Tool Optimizer can

be used in conjunction not only with network emulators, but

also with tools such as intrusion detection systems, application

monitors, traffic sniffers, protocol analyzers, compliance monitors,

VoIP analyzers, data recorders, etc.

The Net Tool Optimizer is available in two models, supporting up

to 28 ports per system. Moreover, both models can be daisy-chained

to increase port capacity. The possible configurations of the models

are one of

• twenty 1G RJ-45, four SFP 1G, and four 10G XFP ports

• twenty 10G/1G SFP+, four 10G XFP, and four 1G RJ-45 ports

The Net Tool Optimizer links in a simple manner test and

monitoring tools with the experiment network. The possible

operating modes of the Net Tool Optimizer are as follows:

(1) Any-to-any: This directs data from any link in the network to any

test and monitoring tool.

(2) Any-to-many: This multicasts the traffic from one network link

to multiple test and monitoring tools, thus eliminating the need

for switch mirroring ports and TAPs.

(3) Many-to-any: This aggregates traffic from multiple network

links, and provide it to any test and monitoring tool as a whole.

The flexibility in selecting traffic is enhanced by the packet

filtering capabilities of Net Tool Optimizer, which ensure that only

the necessary data reaches each test and monitoring tool. Filtering

can be done on Layers 2 to 4, using criteria such as MAC addresses,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

160 Commercial Network Emulators

VLANs, Ethernet frame types, IP addresses, and UDP/TCP ports.

The rules can be combined using Boolean operations, such as

“AND,” “OR,” and “DENY.” Anue Systems claims that filters are even

automatically adjusted, to cope with testbed changes in terms of

connections, other filter settings, or tools.

5.6 Comparison

In this chapter we have presented commercial network emulators

from five companies, namely Shunra, PacketStorm Communications,

Simena, Apposite Technologies, and Anue Systems. As the marketing

efforts of these companies are driven by commercial purposes, the

description of their products is often focused on emphasizing what

are perceived as differentiating characteristics. Such an approach

makes it difficult sometimes to objectively compare two products,

especially since certain identical features are tagged with different

names that are specific to each company.

While comparing in an exhaustive manner the products of

these companies is not an objective of our book, in what follows

we attempt, for illustration purposes, a comparison that should

reveal at least some of the similarities and differences between the

products of these five companies. For this purpose, we have selected

from each company what we perceived as the flagship model, which

has the highest supported operating rate per interface. Since some

features were not present in the flagship model, but did exist for

other products of the same company, we indicate this fact in our

comparison so as to allow readers have a better overall perception

of product capabilities.

Thus, in Table 5.8 we compare the following products developed

and marketed by the corresponding companies:

(1) Shunra VE Appliance

(2) PacketStorm Communications 4XG (labeled as “PacketStorm

4XG”)

(3) Simena PTC3000

(4) Apposite Technologies Netropy 10G (labeled as “Apposite

Netropy 10G”)

(5) Anue Systems XGEM (labeled as “Anue XGEM”)

Septem
ber6,2012

13:6
PSP

Book
-9in

x
6in

IN
E˙BO

O
K

Com
parison

161
Table 5.8. Comparison of commercial network emulators by Shunra, PacketStorm Communications, Simena, Apposite

Technologies, and Anue Systems

Shunra VE Appliance PacketStorm 4XG Simena PTC3000 Apposite Netropy 10G Anue XGEM

Platform type Hardware Hardware Hardware Hardware Hardware

Maximum rate 10 Gbps 10 Gbps 10 Gbps 10 Gbps 10 Gbps

Bandwidth control Yes, with packet

accumulation and burst

Yes, with packet

accumulation and burst

Yes, with congestion

emulation, packet

accumulation and burst

Constant bandwidth;

background link

utilization; RED

Yes, including Pause

Frames

Delay & jitter Constant, or variable

with predefined

distributions

Constant, or variable

with predefined

distributions

Constant, or variable

with predefined and

custom distributions

Constant, or variable

with predefined

distributions

Constant, or variable

with predefined

distributions; limit

extension mechanism

Packet loss Yes, including

decimation and burst

loss

Yes, including

decimation and burst

loss

Yes, including burst loss Yes, including periodic

and burst loss

Yes, including periodic

and burst loss

Other packet effects Reordering, duplication,

fragmentation,

corruption,

modification

Reordering, duplication,

fragmentation,

modification

Reordering, duplication,

fragmentation,

corruption,

modification

Reordering, duplication,

corruption

Reordering, duplication,

fragmentation,

corruption (with

custom bit patterns)

Other impairments N/A N/A Carrier loss emulation;

ITU-T G.1050; MPEG

impairments

N/A Loss of signal

emulation; ITU-T

G.1050 and G.8261,

MEF-18

(Contd.)

Septem
ber6,2012

13:6
PSP

Book
-9in

x
6in

IN
E˙BO

O
K

162
Com

m
ercialN

etw
ork

Em
ulators

Table 5.8. (Contd.)

Shunra VE Appliance PacketStorm 4XG Simena PTC3000 Apposite Netropy 10G Anue XGEM

Packet filtering Data-based filters (MAC

and IP layers)

Data-based filters (MAC

and IP layers)

Data-based filters (MAC

and IP layers)

Data-based filters (IP

layer only)

Data-based filters (MAC

and IP layers);

order-based filters

Dynamic impairments Yes (can also be

programmed to change)

No (available on

Hurricane models)

Yes (only packet effects) Yes (can also be

programmed to change)

Yes (can also be

programmed to change)

Network topologies Point-to-point, hub and

spoke, N-Tier and fully

meshed

None predefined Point-to-point, hub and

spoke, partially and

fully meshed; up to 16

multiple-link

emulations

Up to 15 links per port

pair

Up to 64 impairment

profiles

Protocols &

technologies

IPv6, QoS, MPLS, Frame

Relay, OSPF, VLAN

QoS, MPLS, VLAN IPv6, QoS, MPLS, VLAN

(including stacked)

MPLS, VLAN VLAN

Reporting & analysis Traffic statistics;

transactions, video and

VoIP quality, application

profiling; service level

prediction

Traffic statistics at

network and

application level, QoE

metrics

Traffic statistics per

flow and per direction

Traffic statistics per link Traffic statistics per

network profile

Capture and replay Yes Yes Yes (with modification,

filtering and

impairments)

No (available for

Linktropy 10G)

No (available for GEM)

Command line interface Yes Yes Yes Yes Yes

Other features N/A N/A (data generation

on Hurricane models)

LCD; data generation;

uni and bi-directional

emulation

Incoming and outgoing

emulation

N/A

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 163

The comparison starts by looking at the platform type, and the

maximum supported rate per interface for each of the examined

network emulation models. We conclude that all products are

hardware-based solutions, and can support rates up to 10 Gbps.

Bandwidth control is an important network emulation feature

that is supported by all five products. Particular features in addition

to the basic bandwidth control support include the following:

• Shunra VE Appliance, PacketStorm 4XG, and Simena

PTC3000 all support packet accumulation and bursts effects,

with the latter also having congestion emulation capabilities.

• While Apposite Netropy 10G only supports constant band-

width for direct configuration, it does include support for

emulating congestion through the use of the background

link utilization feature; this emulator also supports the RED

queue management technique.

• Anue XGEM has a particular feature that is related to

bandwidth control, namely the support for pause frames at

Ethernet level.

Delay and jitter are another important set of network parame-

ters, and their control is supported by all the analyzed models.

We emphasize the fact that not only constant values, but also

distributions can be used for this type of impairment. Note however

that, while the other emulators only allow the use of predefined

distributions, Simena PTC3000 also lets users configure their own

custom distributions. The Anue XGEM emulator has a specific

feature in this category: the maximum value of the delay that can

be introduced (by default, 250 ms) can be increased by a doubling

or quadrupling mechanism at the expense of accuracy (the 26 ns

increments become 52 ns and 104 ns, respectively).

The third basic type of impairment is packet loss. In addition to

the usual random loss, several emulators allow to configure burst

loss effects. Four of them, namely Shunra VE Appliance, PacketStorm

4XG, Apposite Netropy 10G, and Anue XGEM have a supplementary

common feature, which is essentially the same although it is called

“decimation” in the first two cases, and “periodic loss” in the last two

ones.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

164 Commercial Network Emulators

Regarding other packet effects, we note that all emulators

support packet reordering and duplication, and only Apposite

Netropy 10G does not support fragmentation. The following are

other important features:

• Shunra VE Appliance, PacketStorm 4XG, and Simena

PTC3000 all support packet modification.

• Shunra VE Appliance, Simena PTC3000, Apposite Netropy

10G, and Anue XGEM all support packet corruption. It is pos-

sible to say that Apposite Netropy 10G, which only supports

packet corruption, has limited modification functionality,

since corruption is equivalent to modifying the packet, albeit

one does not have control over the modification.

• Although PacketStorm 4XG has no direct support for packet

corruption, the effect can be achieved through the packet

modification feature it has, which is more general.

• Anue XGEM has the most advanced packet corruption

mechanism, which allows using custom bit patterns.

Two of the examined network emulators, Simena PTC3000 and

Anue XGEM have several supplementary impairment functions:

• First of all, we note the possibility to emulate link discon-

nection, a feature termed “carrier loss emulation” for Simena

PTC3000, and “loss of signal emulation” for Anue XGEM.

• The two emulators also have support for using standards

for evaluating multimedia transmission performance, such

as ITU-T G.1050, with Anue XGEM adding support for ITU-T

G.8261 and MEF-18.

• Simena PTC3000 additionally makes it possible to impair

specific packets in MPEG-based video streams.

Packet filtering is an essential feature of network emulators,

since it makes possible to select the packets of interest, to split

the traffic into streams, etc. All emulators support what we called

data-based filters, i.e., using packet data (including both headers

and payload) to define filtering rules. The following remarks can be

made:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 165

• While the other emulators allow filter definition using either

MAC or IP level information, Apposite Netropy 10G can only

use IP data for this purpose.

• Anue XGEM introduces a distinct feature compared to the

other network emulators, named “order-based filtering,”

which selects packets at constant or variable intervals, to

emulate real network conditions such as multi-path.

Complex network scenarios are rarely static, therefore dynamic

impairments that change in time offer users an increased flexibility

in terms of possible experiments. All the examined emulators except

PacketStorm 4XG support such a control method. Some aspects to

note about dynamic impairments are given below:

• Shunra VE Appliance, Apposite Netropy 10G, and Anue

XGEM provide mechanisms that allow not only changing the

impairments in real time, but also controlling their change

in a programmatic mode, either directly through a specific

interface or through scripting support.

• While PacketStorm 4XG does not support this feature, it is

present in a lower rate model from the same manufacturer,

namely Hurricane.

• For Simena PTC3000, dynamic effects are limited to packet

effects such as loss and duplication.

Network topology is an aspect where we noticed that vendors

have a wide range of approaches and can conclude the following:

• Shunra VE Appliance and Simena PTC3000, in addition to

the basic point-to-point connections, offer the possibility to

define more complex network topologies, such as hub and

spoke, and fully meshed; Simena PTC3000 claims up to 16

simultaneous emulations of such topologies.

• PacketStorm 4XG on the other hand, does not provide any

predefined network topologies, nor clear statements about

the limitations in this respect.

• Apposite Netropy 10G and Anue XGEM do not predefine

topologies other, but clearly claim to support up to 15 links

per port pair for the first emulator, and up to 64 impairment

profiles for the latter.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

166 Commercial Network Emulators

Regarding protocols and technologies, we note the following:

• All the emulators support the VLAN standard, and only Anue

XGEM does not support the MPLS technology.

• Support for QoS is present for Shunra VE Appliance,

PacketStorm 4XG, and Simena PTC3000.

• Only Shunra VE Appliance and Simena PTC3000 recognize

the IPv6 protocol.

• Shunra VE Appliance has the largest range of supported

protocols and technology: in addition to the ones already

mentioned, it also features Frame Relay and OSPF support.

Reporting and analysis are important in order to quickly provide

users with a detailed view of the experiment, as well as with higher

level information. All network emulators in our comparison support

reporting throughput statistics, at least in text form but many times

also in graphical forms. Specific remarks concerning each model

follow:

• Shunra VE Appliance has the richest set of reporting

features, including higher-level statistics such as those

for transactions. Moreover, it supports application-specific

reporting & analysis, such as video and VoIP quality,

profiling, and even service level prediction.

• PacketStorm 4XG too has application-level reporting fea-

tures, and also allows the calculation of QoE metrics.

• Simena PTC3000 has only traffic level statistics, but they

can be computed independently per flow and per direction,

hence could be associated to applications by the user.

• Apposite Netropy 10G only provides per-link statistics,

hence does not allow a detailed analysis of the traffic.

• Anue XGEM only provides statistics per network profile,

therefore, as in the previous case, does not allow a detailed

analysis of the traffic.

Capture and replay makes it possible to reproduce conditions

that were recorded in a real network, thus enabling repeated exper-

iments in the same conditions. Shunra VE Appliance, PacketStorm

4XG, and Simena PTC3000 all support this capability, with the latter

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 167

also allowing the recorded traffic to be subjected to modification,

filtering, and even impairments. The other two models we examined,

Apposite Netropy 10G and Anue XGEM, do not have capture and

replay capabilities, although they are present in other models

from the same manufacturers, namely Linktropy 10G and GEM,

respectively.

Command line interface support makes it possible to run

complex experiments with less effort, hence it is important in

particular for complex experiments, such as those involving dynamic

condition variations. All the models we compared support the use

of a command line interface. However, some of them use custom

PC programs and interfaces to achieve this goal (e.g., Shunra VE

Appliance), whereas other use standard languages, such as TCL (e.g.,

PacketStorm 4XG).

Other features that we did not discuss so far are present on some

of the analyzed network emulators. While nothing significant can

be said for Shunra VE Appliance, PacketStorm 4XG (which does not

support data generation, differently from the Hurricane models),

nor for Anue XGEM, the following aspects are to be noted about the

other two products:

• Simena PTC3000 provides an LCD to allow direct control of

the appliance; it also has data generation, eliminating the

need of using additional equipment for this purpose.

• Both Simena PTC3000 and Apposite Netropy 10G allow to

introduce network quality degradation in both traffic direc-

tions, a feature called “uni- and bi-directional emulation” for

the first one, and “incoming and outgoing emulation” for the

latter.

As a final remark, the relatively large number of models for

each company we discussed made it difficult to analyze each of

these products individually. We refer our readers to the “rough”

classification in Table 3.1 for a summary view on all commercial

emulators that we presented in this chapter. We briefly note here

that most of these emulators are of hardware type (Hurricane,

Linktropy, Netropy, PacketStorm, Shunra VE Appliance, Simena NE

& PTC, and XGEM/GEM), and only a few of software type (Shunra VE

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

168 Commercial Network Emulators

Cloud & Desktop, and Tornado).5 While some commercial emulators

can only emulate links (Shunra VE Cloud & Desktop, and Tornado

— note they are the software ones), all the others can emulate

complex network topologies. In general, the commercial emulators

have a medium complexity, and almost all solutions are executed in

a centralized manner; the exception is that of Shunra VE Desktop,

which includes support for distributed execution.

5As we have mentioned before, some of the appliances actually contain dedicated

computers running a software emulator. Since it is difficult in general to know when

this is the case, we included all appliances in the “hardware” type of emulator.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 6

Emulation-Capable Network Simulators

Simulation is probably the most used experimental technique. While

it has many advantages over other methodologies, it does have its

disadvantages too. This is one reason why many network simulators,

in addition to the pure simulation functionality, offer the possibility

of network emulation, that is interaction with live traffic. Basically,

this means creating special interfaces that allow bringing real

network traffic into and out of the simulation engine. In this chapter

we review several of the most important network simulators, with

emphasis on their emulation features, and discuss how effective

from the network emulation perspective is the approach they

propose.

6.1 Ns-2 Network Simulator

Ns-2 is a discrete event simulator targeted at networking research

[105]. Ns-2 development began in 1989, under the name Ns

(or ns), as a variant of the REAL network simulator. Ns-2 has

evolved substantially over the years, and the digit “2” actually

indicates the second version of Ns. Starting from 1995 until 2005,

Ns-2 development was supported by the USA Defense Advanced

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

170 Emulation-Capable Network Simulators

Research Projects Agency (DARPA) through various projects, and

it is currently also supported by USA National Science Foundation

(NSF).1 Development is done as a collaboration between several

universities and laboratories, and the project includes substantial

contributions from different other researchers.

Ns-2 provides substantial support for the simulation of TCP, rout-

ing, and multicast protocols over wired and wireless networks. It is

the most used simulator in research and academic environments,

and because of this, as well as due to its open source nature, also

one of the most “abused.” In this context it is important to note the

warning that welcomes visitors of the Ns-2 website even at present:

While we have considerable confidence in ns, ns is not a

polished and finished product, but the result of an on-going

effort of research and development. In particular, bugs in the

software are still being discovered and corrected. Users of ns are

responsible for verifying for themselves that their simulations

are not invalidated by bugs. We are working to help the user

with this by significantly expanding and automating the validation

tests and demos. Similarly, users are responsible for verifying

for themselves that their simulations are not invalidated because

the model implemented in the simulator is not the model that

they were expecting. The ongoing ns manual should help in this

process.

This warning does not mean that the Ns-2 network simulator

is not reliable, but is intended to inform users about the need to

validate both the models used in simulation, and the experiment

results obtained. Note that the fact that other simulators do not

explicitly provide such a warning doesn’t signify that they are

necessarily better than Ns-2, and care should be taken whenever

models are used in an experimental setup.

The presentation we make in this section is based on the

documentation from the web site dedicated to Ns-2 at the institution

that maintains its, the University of Southern California [105].

1A new version of Ns, called Ns-3, started being developed, and its first release

occurred in 2008. However, even as of 2010, this newer version has not reached a

very large user base, and we shall not discuss it in this book, despite the fact that it

does have network emulation features, just as Ns-2.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Ns-2 Network Simulator 171

6.1.1 Emulation Support

According to its authors, in the case of Ns-2 emulation refers to

the ability to introduce the simulator into a live network. For this

purpose, special objects exist within the simulator that are capable

of performing the following two tasks:

• Introduce traffic from a live network into the simulator.

• Inject traffic from the simulator into a live network.

There are two primary types of scenarios for Ns-2 based

emulation, as follows:

(1) The simulator appears to the real end nodes in the experiment

as a router, or even as a larger network, depending on the

simulated models. In this case, the live traffic from the end nodes

passes through the simulator (transparently to end nodes), and

is affected by the objects within the simulation, or by other

traffic in the live network.

(2) The simulator appears to the real end nodes as another end

station. This alternative means that the simulator can include

traffic sources or sinks that communicate with real-world

entities.

Of course, one may imagine a scenario in which the nodes within

the simulated network (as per the first kind of scenario) generate

traffic that interacts with the end nodes sending their traffic through

the simulator. Note however that the interaction between internally

generated traffic and real end nodes is not a fully developed feature

in Ns-2.

6.1.1.1 Architecture for emulation

Figure 6.1 shows the architecture used by Ns-2 for network

emulation. The interface between the real world and the simulator

is handled by modules that perform the capture of the live traffic,

and the injection of the traffic that went through or was generated

within the simulator into the live network. However, the data

representation within Ns-2 is different than that in a real network.

This is because in simulation environments several optimizations

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

172 Emulation-Capable Network Simulators

Figure 6.1. Emulation architecture of Ns-2.

are made in order to speed up simulation, and a class of such

optimizations refers to representing data in a more compact way

than the actual network encoding. Obviously such optimizations are

not compatible with the live network. For this reason, traffic capture

is immediately followed by a conversion of the real packets to Ns-

2 internal representation. Similarly, once data leaves the simulator,

it has to be converted from the internal representation to the live

network format before it can be injected into the real network.

One more issue when using the emulation capabilities of Ns-2

is the event scheduler. As a discrete event simulator, Ns-2 normally

uses a scheduler that orders events by the logical time associated to

them, and executes them in this order. For the purpose of emulation,

real time (the so called “wall clock”) must be used when executing

events. This function is accomplished by a real-time scheduler that,

while using the same underlying structure as the standard calendar-

queue based scheduler, ties event execution to real time.

6.1.2 Operation Modes

There are two operation modes for network emulation with Ns-2, as

follows:

• Opaque mode: Data packets originating from the live

network are treated as “opaque,” i.e., their content is ignored.

• Protocol mode: Live data packets are interpreted by Ns-2,

and can even be generated within the simulator.

In opaque mode, Ns-2 treats live network data as uninterpreted

packets. This means that real-world protocol fields are not directly

manipulated by the simulator. Thus, live data packets may be

dropped, delayed, re-ordered, or duplicated by the simulator; how-

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Ns-2 Network Simulator 173

Figure 6.2. Ns-2 operation in “opaque mode.”

ever, since no protocol processing is performed, protocol-specific

traffic manipulation scenarios, such as dropping the TCP segment

containing a certain sequence number, cannot be performed.

Figure 6.2 depicts a typical usage of Ns-2 based emulation in

opaque mode. In this mode, the simulator acts as a router, allowing

real-world traffic to be passed through without being manipulated.

The internal representation of Ns-2 packets contains a pointer to

the real network packet data. Simulator actions on Ns-2 packets are

equivalent to actions on the real packets. For instance, when Ns-2

drops internally a packet, the corresponding real network packet

will not be injected into the live network anymore, as if it would have

been dropped in a real network. The opaque mode of operation is

useful for evaluating the behavior of real-world network application

and protocol implementations when subjected to adverse network

conditions that are not protocol specific (packet loss, delay, packet

reordering or duplication, etc.).

In protocol mode, Ns-2 interprets and/or generates live network

traffic containing arbitrary data. This makes it possible to make

more complex experiments, but puts a higher load on the simulator.

This is because, as explained above, packet data (including headers)

has to be dealt with in real time in the same encoding format

with that of the live network. Moreover, simulator components that

generate traffic have to do it using network packet representation

and in real time. In protocol mode, the Ns-2 representation of a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

174 Emulation-Capable Network Simulators

Figure 6.3. Ns-2 operation in “protocol mode.”

packet will contain a pointer to the corresponding field within the

real packet.

In Fig. 6.3 we present a typical example of using Ns-2 in protocol

mode. In this example an emulated TCP client running in Ns-2

interacts transparently with a real-world TCP server that runs on

a PC by generating and receiving real TCP traffic. At present, the

emulation functionality of Ns-2 makes it possible to use in protocol

mode ICMP, ARP, and TCP agents. Thus, Ns-2 based emulation can

used for end-to-end application testing, protocol and conformance

testing while applying in Ns-2 protocol-specific impairments to the

traffic for these protocols.

6.1.3 Emulation Components

When running as an emulator, the interface between the Ns-2

simulator and the live network is provided by a set of objects, called

tap agents and network objects. In addition, the aforementioned real-

time scheduler must also be used when performing an emulation

experiment with Ns-2. We shall describe next in more detail each of

these components.

Tap agents Tap agents are software components that embed live

network data into simulated packets, and create live network

packets using the data from simulated packets. Tap agents can

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Ns-2 Network Simulator 175

generate simulator packets containing arbitrarily assigned values

within the Ns-2 packet representation. In particular, tap agents

handle setting the packet size field and the type field2 for the internal

representations of the real packets injected into the simulator.

Equivalent actions are taken for the packets than need to be injected

by the simulator into the live network. One or more tap agents can

be instantiated in a simulator, but each of these tap agents can have

at most one associated network object.

Network objects Network objects are components associated to

tap agents, and provide an entry point for the sending and receiving

of live data. They mediate the access to either a live network,

or to a trace file of captured network packets. There are several

classes of network objects, depending on the protocol layer used to

access the underlying network. Generally, network objects provide

an entry point into the live network at a particular protocol layer

(e.g., Ethernet, IP, UDP, etc.), and with a particular access mode

(read-only, write-only, or read-write). Some network objects provide

specialized facilities, such as filtering or promiscuous access in the

case of the Pcap/BPF network object, or group membership for the

UDP/IP multicast function of the UDP/IP network object. Several

types of network objects are currently supported by Ns-2, as follows:

• Pcap/BPF network objects: Provide an extended interface to

the LBNL packet capture library called “libpcap.” This library

gives the ability to capture link-layer frames from network

interface drivers. The library delivers a copy of the frames

to those programs making use of it. Another function of the

library is reading and writing packet trace files in the format

of the “tcpdump” program. The interface provided by Ns-2

also allows for writing frames out to the network interface

driver, provided the driver itself allows this action.

An important issue related to capture is filtering. Ns-

2 supports the Berkeley Packet Filter (BPF) mechanism,

an implementation of which processes the filter rules,

and applies the resulting pattern matching instructions to

2In the context of emulation, a specific value is used for the packet type field, called

“PT LIVE.”

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

176 Emulation-Capable Network Simulators

received frames. Only those frames that match the filter

patterns are effectively “received” in Ns-2; the other frames

are unaffected.

Although Pcap/BPF objects can be used directly to generate

traffic, Ns-2 developers recommend using the raw IP

network object for sending IP packets, as this will ensure

that the system routing table is used to determine proper

link-layer headers. Alternatively, one can use the Pcap/file

network objects described below to generate traffic based

on a trace file.

• Pcap/file network objects: Are similar to the Pcap/BPF

objects, except that network data injected into the simulator

is obtained from a previously captured trace file rather than

from a live network. The opposite function, i.e., the ability

to output data to trace files instead of injecting it into the

real network, is said to be under development. This facility

would make it possible to create with Ns-2 trace files that

are compatible with tcpdump.

• IP network objects: Provide raw access to the IP protocol,

and allow the complete specification of IP packets, including

headers. This class of network objects can be used as a base

for deriving network object implementations for higher-

layer protocols.

• UDP/IP network objects: Provide access to the UDP imple-

mentation of the system on which Ns-2 is running. Another

important function is the support for IP multicast group

membership operations. However, this type of network

objects is marked as “in progress” by Ns-2 developers, so one

can only expect limited functionality.

Real-time scheduler A software real-time scheduler that ties event

execution within the simulator to real time. Provided sufficient

CPU resources are available to keep up with arriving packets, the

virtual time managed by Ns-2 should be close enough to the real

time. However, if the simulator becomes too slow to keep up with

real time elapse, a warning will be triggered. According to Ns-2

documentation, by default this warning will be generated if the clock

skew exceeds 10 ms.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Ns-2 Network Simulator 177

6.1.4 Discussion

The previous sections show that Ns-2 developers have put effort

into making the simulator work as an emulator too. The fact that

the required architectural changes are not so significant facilitated

this task. Nevertheless, at this moment it is probably too early to

claim the Ns-2 can be fully used as an emulator. The main reasons

for saying this are given below:

• No guarantees whatsoever are given regarding execution

speed. This is certainly first of all due to the fact that there

is such a wide range of execution platforms and operating

systems on which Ns-2 can be run. Moreover, as execution

optimization for emulation is not necessarily a priority, we

suspect that Ns-2 performance is lower when compared to

tools designed on purpose for network emulation.

• The description of the supported network objects shows

that the range of protocols for which interaction with real

hosts is possible is still very limited; this restricts the range

of possible applications of the Ns-2 based emulation.

Note that there are independent efforts in improving the

accuracy and performance of Ns-2, such as the work in [62].

However, we believe that the new generation of the network

simulator, Ns-3, will also address these concerns, and once the

implementation is finalized, Ns-3 can become a strong competitor

to the medium and high-complexity emulators that exist at present.

This is because, if the entire range of existing models available in

simulation mode in Ns-2 (or Ns-3) could also be put to use for

emulation, experiments with complex scenarios could be performed.

Finally, let us justify the classification made in Table 3.1 regarding

Ns-2. As an open-source software, Ns-2 is clearly part of the free

network emulators, and of software type. Powered by a simulation

engine, complex networks can be modeled with Ns-2, hence it is a

topology level emulator. The same simulation engine ensures that

the conditions that can be reproduced have a high complexity. As for

emulation execution, it is centralized.3

3Note that extensions of Ns-2 that enable distributed execution do exist, such as the

one called PDNS [93].

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

178 Emulation-Capable Network Simulators

6.2 OPNET Modeler

OPNET Modeler is a network simulator developed by OPNET

Technologies [80]. OPNET Modeler is intended for use in the

R&D process for analyzing and designing communication networks,

devices, protocols, and applications. Its users can employ simulated

networks to compare the impact of different technology designs

on the end-to-end behavior of applications and protocols. OPNET

Modeler incorporates a broad suite of protocols and technologies,

and includes a development environment to enable modeling

several network types and technologies including

• network-layer protocols, such as IPv4 and IPv6

• transport-layer protocols, such as TCP and UDP

• traffic engineering techniques, such as MPLS

• routing protocols, such as AODV, OLSR, and OSPF

• network applications, such as VoIP

The description we provide in this section is mainly based on the

information from the web site of OPNET Modeler [80].

6.2.1 Feature Overview

The key features of OPNET Modeler according to OPNET Technolo-

gies are the following:

• Fast simulation engine

• Large library of models for wired and wireless protocols,

as well as for vendor devices, provided with source code to

enable customization

• Object-oriented and hierarchical modeling environment

• Wireless simulation capabilities, including terrain, mobility,

and multiple path loss models

• Multiple simulation approaches

— Discrete event simulation: standard approach

— Analytical simulation: less detail for faster execution

— Hybrid simulation: combines discrete event and analyti-

cal simulation methods

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

OPNET Modeler 179

• parallel simulation engine for 32-bit and 64-bit CPU archi-

tectures

• support for distributed simulation through grid computing

• possibility to interface simulations with live systems via the

optional System-in-the-Loop (SITL) module

• open interface for integrating external libraries and other

simulators

• integrated, GUI-based debugging and analysis

One of the strong selling points of OPNET Modeler is probably the

extensive support for wireless networks through “Wireless Suite”

and the “Wireless Suite for Defense” library suites. Wireless network

professionals can use these libraries for analyzing the end-to-end

behavior of applications, tuning network performance, planning

networks services, and so on.

The OPNET Modeler Wireless Suite is a set of libraries that make

possible the modeling, simulation, and analysis of a broad range

of wireless networks. Researchers can use these libraries to design

and optimize proprietary wireless protocols, such as access control

and scheduling algorithms. Simulations for mobile networks are also

possible, including ground, airborne, and satellite systems. OPNET

Modeler Wireless Suite supports several types of wireless networks,

such as

• cellular networks: GSM, CDMA, UMTS, WiMAX (IEEE

802.16), LTE, etc.

• wireless LAN (IEEE 802.11) and mobile ad hoc networks

(MANET)

• personal area networks (PAN): bluetooth, ZigBee, etc.

• satellite networks

The OPNET Modeler Wireless Suite for Defense is a set of

libraries containing implementations of military-specific protocols

and architectures. In addition, it allows the three-dimensional

display of network simulations, including network topology, node

relationships, and performance statistics, all of them overlaid on a

realistically rendered terrain.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

180 Emulation-Capable Network Simulators

6.2.2 System-in-the-loop Module

The OPNET System-in-the-Loop module provides an interface

for connecting live network hardware or software applications

to an OPNET Modeler discrete event simulation. This enables

emulation experiments with OPNET Modeler for the evaluation

of real implementations of network systems. Using this approach,

the prototype hardware or software system can interact in real

time with the simulated virtual devices within OPNET, potentially

avoiding the need for an expensive test lab.

OPNET Technologies suggests the following use cases for the

combination of OPNET Modeler with the SITL module:

• Test prototype hardware and software applications for R&D,

interoperability, scalability, or conformance purposes.

• Create a virtual training facility for network devices or appli-

cations that run over a simulated network infrastructure.

• Assess the behavior and performance of prototype appli-

cations and protocols by deploying them on a simulated

network topology into which real network traffic is injected.

In order to use the SITL functionality, the computer hosting

OPNET Modeler must be connected to the live network. Multiple

simultaneous connections to multiple live devices or network

segments are possible through different network interfaces. For

each of the connected live devices, the simulated model must contain

a so-called “gateway,” which transforms real packets into simulated

packets and vice versa, as they flow between the real network and

the simulated one.

When the OPNET simulation begins, packets will flow in real-

time between the live devices and the simulated network. As

live packets arrive, they are captured, filtered, and converted into

simulated packets by the corresponding gateway, then passed to

the simulation engine. This has to take place in real time in order

to guarantee the synchronization of the packet conversion and the

inward flow of traffic. Similar actions are carried out for the outgoing

packets.

Conversion models are required to “translate” the traffic between

live and simulated devices in both directions, hence to perform

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

OPNET Modeler 181

emulation experiments. Such OPNET models are available for the

following protocols:

• Network-layer protocols: IPv4, IPv6, ICMP, and ICMPv6

• Transport-layer protocols: TCP and UDP

• Routing protocols: OSPF, RIPv1, and RIPv2

• Application-layer protocols: FTP

In addition to the built-in conversion models, users can develop

their own custom models by using the OPNET modeling environ-

ment, thus extending the built-in capabilities of the simulator.

6.2.3 Emulation Scenarios

OPNET Modeler documentation distinguishes two types of usage

of the OPNET emulation features, depending on the role of the

simulator in the experimental setup, as follows:

(1) Live-Sim-Live: most suited for software application testing and

training

(2) Sim-Live-Sim: mainly recommended for network hardware

testing and training

Let us look in more detail at each of these two alternatives.

6.2.3.1 Live-Sim-Live

In the Live-Sim-Live scenario, a live prototype application operates

through a virtual network created by OPNET Modeler, which plays

the role of a “virtual lab.” This usage scenario allows developers

to thoroughly analyze network applications by subjecting them to

various experiments and interoperability tests over the simulated

network. Developers can also estimate the user-perceived perfor-

mance of an application when subjected to network effects such as

latency, errors, etc.

Figure 6.4 illustrates the Live-Sim-Live type of scenario. Although

OPNET Technologies indicates “testing and training for software

applications” as the primary use case for the Live-Sim-Live scenario,

we note that it is actually suited for any kind of activity in which the

end devices/applications are available, and only the network over

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

182 Emulation-Capable Network Simulators

Figure 6.4. Emulation using OPNET Modeler & SITL in a Live-Sim-Live

scenario.

which they communicate must be simulated. One could very well

connect end devices such as IP phones through the OPNET Modeler

running in emulation mode to determine how network conditions

influence communication quality.

Some of the benefits of this approach when applied to live

systems such as network applications, protocols, or devices are

according to OPNET Technologies are given below:

• Experiment using models that are derived directly from

operational network device configurations.

• Assess the holistic effects of a test network (albeit virtual)

instead of only tuning end-to-end parameters such as packet

delay and discard ratios.

• Study the interaction between users and the live systems

over realistic networks.

• Train users on live systems that are subjected to realistic

network effects.

6.2.3.2 Sim-Live-Sim

Hardware testing during R&D activities, for interoperability, or for

scalability purposes, can be accomplished by creating first a small

live network with a few prototype devices, and then expanding the

testbed to larger scenarios by using virtual networks. Two typical

setups using this approach are shown in Fig. 6.5. One possibility is

to employ two instances of OPNET Modeler and SITL, as depicted

in Fig. 6.5(a). However, if network complexity is not very high,

two ports of the live system could be connected to two network

interfaces of the computer on which OPNET Modeler is running; this

scenario makes it possible to perform the experiment by using only

one instance of the simulator, as shown in Fig. 6.5(b).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

OPNET Modeler 183

(a) (b)

Figure 6.5. Emulation using OPNET Modeler & SITL in a Sim-Live-

Sim scenario. (a) Using two simulator instances. (b) Using one simulator

instance.

According to OPNET Technologies, integrating live systems into

simulated network entities provides several advantages:

• Test prototype network devices with simulated control and

data traffic.

• Scale-up testbeds beyond the number of prototype systems

and other required network devices that are available for

experimental purposes.

• Perform interoperability testing without the need to remove

legacy systems from production networks.

• Train users on new production devices that are placed in

realistic network conditions.

6.2.3.3 Complex scenarios

An important issue when using SITL is the real-time execution

speed requirement. This can become a hindrance should one wish

to emulate large networks. To cope with this, SITL provides a

feature called “daisy chaining.” This operation mode of SITL allows

connecting together simulator instances, each running a portion

of the overall simulation scenario. Reducing the complexity of

the scenario executed by each simulator instance makes real-time

operation possible even for large networks. Readers may recognize

this operation mode as being similar to the approach we called

“partially distributed emulation” in Section 3.3.1.

Another advantage of daisy chaining of OPNET Modelers is that

it allows building more complex setups than the ones we discussed

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

184 Emulation-Capable Network Simulators

Figure 6.6. Emulation using OPNET Modeler & SITL in a complex setup

with multiple live and simulated components.

so far. A hypothetical “Live-Sim-Live-Sim-Live” scenario could be as

follows:

(1) An end user runs a live application on a computer.

(2) The traffic is communicated via an emulated network to a real

wireless station.

(3) The real wireless station sends the traffic via radio to another

wireless station situated at a different location (e.g., by a satellite

network).

(4) The wireless station at the other end communicates the traffic

via a second emulated network to a central server.

OPNET Technologies suggests using such configurations for

• testing a live network application as it is transmitted over

a set of live radios that are integrated with a more complex

virtual network

• training on a network application during a live transmission

over live radios that are integrated with a more complex

virtual network

• testing live radio prototypes by driving real application

traffic through them, and through virtual networks

• training on a live radio as live application traffic is being

communicated through it

6.2.4 Discussion

OPNET Modeler is clearly a mature product, and its support for

emulation through the use of the System-in-the-Loop (SITL) feature

is good. Although OPNET Technologies indicates two types of

scenarios in which simulator-based emulation can be used, we

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

OPNET Modeler 185

believe that the Live-Sim-Live approach, and the more complex

scenarios that can be derived from it, are of most interest. The other

scenario type, Sim-Live-Sim, is undoubtedly useful for some kind of

tests, such as interoperability. However, the fact that OPNET Modeler

is basically a software tool has a strong impact on the amount of

traffic it can generate; therefore, it can never become a substitute

for dedicated test equipment in situations when the load that must

be injected into the device under test is significant, as is the case of

switches/routers, for example.

A related issue that applies to all the alternatives of using OPNET

Modeler is that there can be no guarantees on the real-time execu-

tion speed of the simulator for arbitrary-size networks. This means

that success will vary depending on how complex the simulated

networks are, how much traffic they are loaded with, and what is the

processing power of the computer on which OPNET Modeler runs.

While the support for distributed execution through grid computing

should increase the size of the network that can be emulated, OPNET

provides no figures regarding the performance level one may expect.

The list of protocols that are fully supported by OPNET

Modeler in emulation mode is reasonably long (see Section 6.2.2).

Nevertheless, we want to emphasize that this list is still far from

being complete; for instance, none of the widely used protocols in

ad hoc or mesh network, OLSR and AODV, are supported. For the

unsupported protocols, the user has the choice to either implement

the required conversion models, or use the simulator in what was

called in the context of Ns-2 “opaque mode” (see Section 6.1.2). This

means that the simulator will only let those packets flow through it,

but will not be able to interact with them at protocol level.

Let us review now the classification presented in Table 3.1

regarding OPNET Modeler in an emulation context. As a software

product of OPNET Technologies, OPNET Modeler is a commercial

network emulator, and of software type. Emulation with OPNET

Modeler and the SITL module makes use of the simulation engine

and the associated libraries of network models; hence, complex

networks can be modeled with it, making it a topology-level

emulator with high scenario complexity. Both centralized and

distributed execution are possible with OPNET Modeler, which also

provides support for parallel execution.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

186 Emulation-Capable Network Simulators

6.3 QualNet Developer

QualNet Developer is a simulation tool developed by Scalable

Network Technologies [96]. QualNet Developer is based on a

wireless network simulator named GloMoSim that is still available

freely for academic use. The simulation engine of QualNet Developer

was however rewritten, and support for many additional protocols

and technologies was added; hence, they cannot be currently

regarded as equivalent solutions.

The QualNet Developer network simulator is intended for

estimating wireless, wired and mixed network system performance,

and runs on several versions of Windows, Mac OS X, and Linux

operating systems. It was designed to take full advantage of the

multi-threading capabilities of multi-core 64-bit processors; as such,

it is said to support the simulation of thousands of network nodes.

In addition, QualNet Developer permits distributed execution on

computer clusters. It also features the required components for

linking seamlessly with other modeling/simulation applications, as

well as with live networks.

In addition to the included sets of libraries of models, QualNet

Developer also allows users to develop and run custom network

models. Using a visual development environment one can design

the models, and efficiently code the required protocols. The same

environment makes it possible to run the models, and presents

to users real-time statistics for the experiment, as well as helpful

packet-level information.

This section uses mainly information available on the web site of

QualNet Developer [96].

6.3.1 Components

QualNet Developer is marketed as a suite of tools that complement

each other when making simulation experiments. These tools are:

QualNet Scenario Designer Modeling tool that allows users to set

up the geographical distribution, the physical connections, and the

functional parameters of the network nodes that are to be simulated.

The tool uses a GUI in which the scenario can be built using a library

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

QualNet Developer 187

of node types. The user can also define network layer protocols and

traffic characteristics for each of the scenario nodes.

QualNet Animator Visualization and analysis tool that can be

used to watch the traffic flows through the network, and view

dynamic graphs of critical performance metrics while a simulation

experiment is running. This visualizer can also be used to animate

the results of a previous experiment.

QualNet 3D Visualizer QT-based tool for displaying rich-content 3D

animations of network simulations. It can be used instead of QualNet

Animator to visualize in a more realistic fashion the simulated

scenarios.

QualNet Analyzer Statistics representation tool that displays the

metrics of simulation experiments. One can use pre-designed

reports in QualNet Analyzer, but also customize graphs with user-

defined statistics. One can view the metrics in real time while

a simulation is running. Other features include: multi-experiment

reports, and graph export to spreadsheets.

QualNet Packet Tracer Packet-level visualization tool for viewing

the contents of a packet as it goes through the network protocol

stack. This tool is useful in particular for understanding low-level

protocol behavior, and for debugging purposes.

6.3.2 EXata Emulator

Until recently, Scalable Network Technologies provided an optional

library, called IPNE (IP Network Emulator), that added emulation

capabilities to QualNet Developer. Nevertheless, since 2009 the

functionality of IPNE was integrated with that of QualNet Developer,

resulting in a standalone tool named EXata.

EXata is a wireless network emulator that creates a digital

network replica that interfaces with real networks in real time,

using real applications. This makes it possible to recreate realistic

communication conditions at different layers of the network instead

of the often-used “perfect communication.”

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

188 Emulation-Capable Network Simulators

Next generation communication system development lead to

the concept of net-centric systems, which refers to those systems

that use the network as an essential component, typically as

the operating infrastructure that makes their operation possible.

In a military context, net-centric systems aim at connecting all

personnel, improve situational awareness, and provide a common

operational picture. This makes that the network systems have

gradually increased in importance, and are currently essential

both in commercial and military applications, being often “mission

critical.”

All networks face impairments, such as bandwidth limitation,

security attacks, scalability issues, traffic congestion, etc. Mobile

networks present even more challenges, including terrain, weather

and environmental conditions, mobility effects, and limited battery

power. EXata is intended to help evaluate the effects of these

conditions on network systems.

6.3.2.1 EXata features

The most important features of EXata according to Scalable Network

Technologies are as follows:

• Accuracy: The digital representation of networks created by

EXata is so accurate that a user or network system connected

to the virtual network cannot differentiate between the

digital representation and a real network.

• Realism: As EXata allows the digitally representation of

network devices, software, transmitters, antennas, terrain

effects, atmospheric effects, and human interaction effects,

the virtual network created becomes a realistic alternative

for the real network, as it includes the parameters that will

affect the performance of network systems in reality.

• Time and cost savings: By using emulation instead of the typ-

ical network test equipment, evaluations that traditionally

required a long time to complete can be performed faster by

using EXata, and at a lower cost.

• Scalability: EXata is said to provide the same fidelity for

networks between 50 and 5,000 nodes. This claim seems

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

QualNet Developer 189

to be based on the presence of multi-threading (parallel)

and distributed execution features of QualNet Developer, as

the following statement of Scalable Network Technologies

indicates:

Competitors’ simulation programs, written with legacy se-

quential processing code, can only simulate a maximum of

about 200 devices, and fidelity drops as you approach that

number. With EXata, you get the same accurate represen-

tation of your network whether you’re testing 50 nodes or

5,000.

Although QualNet Developer supports a large number of network

protocols, those that can be used in an emulation experiment using

EXata are limited. The current list of the supported protocols in

EXata is given below:

• Network-layer protocols: IPv4, ICMP, ARP

• Transport-layer protocols: TCP, UDP

• Routing protocols: OSPFv2, RIPv2, OLSR

• Application-layer protocols: FTP, HTTP, Ping, SNMP, Telnet,

Traceroute

6.3.2.2 EXata components

The components of EXata share many features with those of QualNet

Developer, which is not surprising given that EXata is derived from

QualNet Developer. The components are the following:

EXata Architect GUI intended for building network topologies.

EXata Architect includes editors allowing detailed design of devices

and networks; thus, the Device Model Editor can be used to build

custom communication devices. Alternatively, one can use pre-

defined devices models for routers, switches, hubs, wireless access

points, base stations, and mobile users. As shown in the screenshot

in Fig. 6.7, one can create complex and realistic 3D scenarios

using EXata Architect. The visualization controls allow monitoring

emulation progress, and event animation.

EXata Connection Manager In addition to the EXata emulation

engine, that runs on a server and creates the virtual emu-

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

190 Emulation-Capable Network Simulators

Figure 6.7. EXata Architect screenshot (from EXata web site).

lated network, using EXata requires the presence of Connection

Managers that run on the end systems involved in the exper-

iment. EXata Connection Manager ensures that the applications

under test running on the end system communicate their traffic

through the emulated virtual network. Note that applications

require no modification or customization for being used with

EXata.

An important feature of EXata Connection Manager is that it

allows to “map” the computer on which it is running to any node

in the emulated network. All traffic from that computer will be sent

by EXata from the mapped node into the emulated network, and

all traffic to the mapped node will be delivered by EXata to the

associated computer.

EXata Analyzer An analysis and debugging tool that allows

investigating network experiments as a complement to EXata

Architect. With EXata Analyzer one can monitor the values of

important parameters, and view dynamic graphs of critical perfor-

mance indicators, such as received signal strength or throughput.

EXata Analyzer also allows displaying customized performance

metrics.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b13256-9&iName=master.img-000.jpg&w=190&h=165

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

QualNet Developer 191

6.3.2.3 EXata/Cyber

EXata/Cyber is a specialized version of EXata that is intended for

the analysis of cyber-security network issues. Network security is

an increasing issue in computer networks, and affects wireless net-

works in particular. Such networks are vulnerable to radio jamming

attacks that may be difficult to distinguish from phenomena such as

interference, terrain and weather effects. Mobile ad-hoc networks

(MANET) can also be subjected to other attack techniques, such

as eavesdropping, network probes or port scanning, and denial of

service attacks.

EXata/Cyber is a platform that builds on EXata, and adds features

that allow users to create and modify network attacks and counter

measures. The generated attacks can be targeted to both wired

and wireless networks. Users can then analyze their impact on the

network itself, on the applications, and on the end-users.

The two supplementary tools that makes such investigations

possible with EXata/Cyber are:

Network Security Library A toolkit with models that encrypt,

authenticate, manage key distribution and certificates, create worm-

hole attacks, route securely, and mimic adversaries. The library can

be customized to include new attacks, network intrusion techniques,

as well as counter measures.

Cyber Warfare Support EXata/Cyber includes features that allow

users to dynamically launch cyber attacks on the virtual emulated

network built in EXata. Such features include

• eavesdropping

• radio jamming attacks

• distributed denial of service (DDoS) attacks

• other specific attacks that can be detected using network

intrusion detection software tools, such as “snort” [103]

6.3.3 Discussion

As OPNET Technologies did for the OPNET Modeler, Scalable

Network Technologies too have added several years ago the

capability of network emulation to their simulator product, QualNet

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

192 Emulation-Capable Network Simulators

Developer. Nevertheless, Scalable Network Technologies decided

to take emulation support even further, and market the emulator

component as a standalone product, replacing the previously

optional library for QualNet Developer. This shows that even large

commercial companies realized the potential offered by network

emulation for network system evaluation. We speculate that what

may seem now as a niche market, will become larger and larger, and

all companies developing network simulators, as well as all the free

network simulator developers, will seriously consider emulation

support in the near future, and will provide solutions targeted at this

market.

One aspect that we believe needs more discussion regarding EX-

ata is the claim regarding the network size that can be emulated (up

to 5000 nodes without loss in fidelity). While this claim is certainly

a strong selling point, we recommend that readers should take it

“with a grain of salt.” Although we agree that, given the right cir-

cumstances, such an exploit is possible, we warn about the fact that

it cannot be accomplished on an ordinary PC, especially when the

network throughput is high. Therefore, any user needs to determine

empirically whether the scenario he/she intends to emulate, and

the load that will be placed on the emulated network, do no exceed

the capabilities of the execution platform. The parallel execution

features of EXata should improve performance through a partially-

distributed emulation approach, but Scalable Network Technologies

doesn’t provide any details about the conditions in which the said

“5000 node network” was emulated. Nevertheless, the following

related statement appears in QualNet Developer documentation:

[...] a cluster of 16 dual 2 GHz Opteron systems connected by

an Infiniband switch achieved real-time speed for 3,500 nodes

(this scenario was designed for optimum performance in terms of

traffic, mobility, and partitioning).

This statement shows that a 16 computer cluster was required to

achieve real-time execution of 3500 nodes (hence, make emulation

of that network possible). In addition, the scenario had to be de-

signed in an optimum way to achieve this performance. We conclude

that, given a sufficiently large cluster, one can probably emulate

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

QualNet Developer 193

a 5000 node scenario. However, this may be a challenging task,

especially since the scenario design methodology for such a purpose

is not documented by the company. Moreover, as traffic details are

not revealed for the cited experiment, network throughput may

have been rather low. Achieving a higher throughput may require

a significant increase in resources, or may very well be impossible at

this time.

Nevertheless, Scalable Network Technology did provide more

details about performance in an article about the parallel ca-

pabilities of its products [98]. The data shows the experiment

duration when using QualNet Developer 4.0 running on three

different multi-core platforms. The simulation experiment was an

IEEE 802.11b wireless scenario running 700 nodes with terrain-

based propagation, random mobility at a speed of 30 m/s, and AODV

routing. The simulated time was 900 s. Traffic through the network

consisted of 625 CBR sessions sending 512-byte packets at one

second intervals.

Table 6.1 shows the results of these experiments based on the

graphs presented in [98]. The data shows that all dual and quad-

core trials ran faster than real time (about three times faster in the

best case, the quad-core AMD CPU using all 4 cores). This means that

such platforms could potentially be used for emulation experiments

as well. We note however that, even though the network size is

large, the total amount of traffic generated (approximately 625 512-

byte packets per second, i.e., 2.56 Mbps) is not significant compared

to the network capacity, in which the maximum operating rate of

each wireless link is 11 Mbps. We suspect that a higher load on the

Table 6.1. Simulation experiment duration using QualNet 4.0 on three

different multi-core platforms

CPU type 2 GHz Intel Core Duo 2.6 GHz AMD Quad 2 × 2.6 GHz AMD Dual Core

Number of CPU

cores

1 2 1 2 4 1 2 4

Experiment

duration [s]

1247 806 982 620 334 963 610 352

Faster than real

time

No Yes No Yes Yes No Yes Yes

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

194 Emulation-Capable Network Simulators

network may have changed the results significantly, and emulation

of this scenario may have become impossible even on the fastest

tested configuration. In such cases, distributed architectures such as

computer clusters, which are supported both by QualNet Developer

and EXata, may be the only alternative that is left for improving

simulation speed.

Another issue that is worth noting regarding EXata is that, at this

moment, it cannot be used to evaluate IPv6-related technologies.

As such, related protocols, such as ICMPv6, are also not available.

However, with the spread of IPv6, we expect that in the near future

such capabilities will also be present in EXata.

As for the classification presented in Table 3.1, QualNet Devel-

oper, and more specifically EXata, were categorized as follows. Given

the nature of the product, EXata is a commercial software network

emulator. EXata is also a topology-level emulator, and it supports

both centralized and distributed execution (as well as parallel

one).

6.4 NCTUns

NCTUns is a different kind of tool compared to the ones presented

so far in this chapter, as it is a hybrid between a network simulator

and emulator [111]. As such, NCTUns is capable both of simulating

and emulating various protocols used in wired and wireless IP

networks. The core technology that makes this possible is a specific

kernel re-entering methodology that provides several advantages

when compared to typical network simulators, such as Ns-2 (see

Section 6.4.2 for more details).

The NCTUns simulation engine is open source and has an open

API, which can be used to implement new protocols and integrate

them into the simulation engine. The settings and configurations

of a simulation task are typically generated by a GUI, and are

automatically transferred to the simulation engine for execution.

However, these files can also be changed using a text editor, and

distributed manually if needed.

Note that, although NCTUns is open source, it can only be

used free of charge for non-commercial non-profit academic or

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NCTUns 195

education purposes. Use by commercial entities requires purchasing

a commercial license.

Our presentation in this section is based on two papers related

to NCTUns written by its authors [111, 112], as well as on the

information available on the web site of NCTUns [67].

6.4.1 Emulation Features

NCTUns supports a wide range of network technologies, both

wired and wireless. As for network protocols, NCTUns support the

following ones:

• Network-layer protocols: IP, ICMP, Mobile IP

• Transport-layer protocols: TCP, UDP

• Routing protocols: OSPF, RIP, DSR, AODV, ADV, DSDV

• Application-layer protocols: FTP, HTTP, RTP/RTCP/SDP,

Telnet, Traceroute, BitTorrent

The most important features of NCTUns, with focus on em-

ulation, are given below following the description given by its

developers:

• NCTUns can be used as an emulator, both to let a real-world

host exchange packets with nodes in the network simulated

by NCTUns, and to allow two real-world hosts to exchange

packets through the network simulated by NCTUns. Thus,

a seamless integration between real-life networks and

simulated ones is achieved, with real-life network traffic

passing through and interacting with simulated networks.

• NCTUns supports distributed emulation of large networks

by employing multiple computers. For experiments that

involve a large number of network applications and real-

world devices, resulting in a significant amount of traffic,

a single computer may not have enough CPU power and

memory to run the emulation experiment in real time.

In such situations, NCTUns can partition the emulated

network into several smaller fragments, and have each such

fragment emulated by a different computer. This distributed

emulation mechanism is transparent for NCTUns users.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

196 Emulation-Capable Network Simulators

• NCTUns uses the Linux TCP/IP protocol stack to generate

high-fidelity results. This is made possible by using a specific

kernel re-entering simulation methodology that we shall

discuss in the next section.

• NCTUns can run real-life Unix application programs on

the simulated nodes without any modification. The real-

life programs can be used to generate realistic network

traffic. This capability also enables researchers to evaluate

the functionality and performance of a real distributed

application or system under various network conditions.

Another important advantage of this feature is that applica-

tion programs that are being developed during simulation

studies can subsequently be directly deployed and run

on real-world Unix machines. This eliminates the need to

port the prototype implementation used for simulation to

a real-world system, as required by traditional network

simulators.

• Network setup and usage using NCTUns are the same as in

real-life IP networks. For example, network interfaces in the

NCTUns virtual network have an IP address automatically

assigned to them, and application programs use these

IP addresses to communicate with each other. Moreover,

NCTUns employs real-life Unix network configuration and

monitoring tools. For example, the Unix “route,” “ifconfig,”

“netstat,” “tcpdump,” and “traceroute” commands can be

run on the simulated nodes to configure and monitor the

simulated network. For these reasons, any person who is

familiar with real-life IP networks will easily learn how to

use NCTUns. For the same reasons, NCTUns can be used as

an educational tool to teach students how to configure and

operate a real-life network.

6.4.2 Basic Methodology

The key difference between NCTUns and the other network simula-

tors presented in this chapter is the technique called by its authors

“kernel re-entering simulation methodology.” We recommend the

reference [112] to readers interested in obtaining more details

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NCTUns 197

Figure 6.8. Target emulation scenario for NCTUns.

about this methodology, and how it is applied to enable network

emulation using NCTUns; below we provide only a brief description.

The kernel re-entering simulation methodology uses a type of

network interface called tunnel network interface. These interfaces

are a pseudo network interfaces that are not attached to a physical

network, but are associated to a real network interface. Tunnel

interfaces are available on many Unix operating systems, and are

treated in the same way as the real network interfaces by the

operating system. A network application program can send or

receive packets through a tunnel network interface, in the same way

it would do through an Ethernet interface.

When using tunnel network interfaces, the communication

between user applications and the operating system is done through

special files. If an application program opens the special file of a

tunnel interface, and writes a packet into it, the packet will enter

the kernel. From the kernel perspective, the packet is like any other

network packet, and will go up through the kernel network protocol

stack. Similarly, when an application tries to read a packet from the

special file associated to a tunnel interface, the first packet in the

corresponding output queue maintained by the operating system

kernel will be dequeued and copied to the application program.

From the kernel point of view, it is as if the packet would have been

transmitted on a real network interface.

Let us imagine that one would like the emulate the simple

scenario depicted in Fig. 6.8, in which a TCP client wants to access

a TCP server over a network link whose quality degradation is to be

emulated.

The structure that NCTUns would build for such a scenario is

shown in Fig. 6.9. The target scenario is completely created on one

computer, on which the NCTUns simulation engine is also running,

as follows:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

198 Emulation-Capable Network Simulators

Figure 6.9. Emulation structure built by NCTUns for a target scenario.

• The two physical TCP client and server hosts are repre-

sented by equivalent application instances running on the

same simulation host.

• The operating system routing table of the simulation host is

configured so that packets originating from the TCP client

are delivered to one tunnel interface, and packets coming

from the TCP server are delivered to the other tunnel

interface; the same interfaces are used to provide packets to

the TCP client and server, respectively.

• Applications use the TCP/IP stack of the simulation host

multiple times, but this has no adverse effect, and it doesn’t

require any specific processing from the point of view of the

operating system.

• Both tunnel interfaces are attached to the NCTUns simu-

lation engine, which ensure that the communication takes

place as if it would over a network link. This is done as

follows:

— The simulation engine opens the two special files

associated to the two tunnel interfaces and reads the

outgoing packets produced by those interfaces.

— Whenever the TCP client sends a packet, it is taken by

the simulation engine, it is subjected to the network

degradation for the emulated network link, including

propagation delay, transmission time, possible packet

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

NCTUns 199

loss, etc., and then written to the special file of the tunnel

interface associated to the TCP server.

— Similarly, packets from the TCP server are delivered to

the TCP client via the emulated network link, possibly

with different degradation characteristics.

The kernel re-entering methodology described makes that the

emulated network is actually very similar to a real network from the

protocol stack point of view, and only differs in the emulation of the

network degradation that occurs in transit. Both the application and

the simulation engine run in the user area of the operating system,

but they communicate with each other by means of standard kernel

mechanisms. This has the following effects:

• The TCP client and server programs, which run on top of the

kernels, do not know about the network emulation process.

Other existing real-world application programs can run on

the emulated network as well, and network utility programs

can be used on the emulated network in a straightforward

manner.

• The kernel has no knowledge of the emulation process, since

it occurs outside it, and is involved in a communication

process no different compared to that taking place over a

real network.

• Although Fig. 6.9 shows two TCP/IP stacks, they are actually

a single one, the protocol stack of the computer on which

the entire simulation process takes place. This makes that

NCTUns doesn’t have to model the protocol stack, which is a

significant difference when compared to the other network

simulators.

6.4.3 Additional Features

NCTUns has several other features that facilitate experiments, as

follows:

• Despite the fact that NCTUns uses real implementations for

some aspects of the simulation, as with other simulation

tools, fixing the random number seed to a certain value for a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

200 Emulation-Capable Network Simulators

simulation task will lead to obtaining the same results across

different simulation runs, even though there may be other

activities occurring on the simulation machine.

• NCTUns provides a GUI environment that helps users

accomplish tasks such as

— draw network topologies

— configure the protocol modules used by the simulated

nodes

— specify the movement of mobile nodes

— plot network performance graphs

— replay the animation of a previous simulation experi-

ment

• NCTUns supports remote and concurrent simulations by

using a distributed architecture. The GUI and simulation

engine are separately implemented, and use a client-server

model to communicate with each other. Thus, one can

submit from the GUI a simulation job to a server that runs

the simulation engine. The server will execute the submitted

simulation job, and return the results to the remote GUI

when finished. This approach makes it possible to use

cluster computing, and execute multiple simulation jobs

in parallel on different servers to increase the simulation

capacity.

• Unlike other free source programs, for which documentation

is often lacking, NCTUns provides a rich documentation,

including a user manual and a developer manual.

6.4.4 Discussion

A strong point that differentiates NCTUns from other simulators is

that NCTUns uses the Linux TCP/IP stack for simulation/emulation,

therefore it is in principle more accurate to real life compared

to simulators that use specific TCP/IP model implementations.

Readers should note however that, because NCTUns is limited to

the Linux TCP/IP implementation, it is not possible to use it to

build networks containing virtual Windows, FreeBSD, or Solaris

computers. Such an approach would be possible with a typical

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 201

simulator, since it would only require to implement a protocol

model similar to that of the new operating system that needs to be

emulated.

Although NCTUns has certain advantages over other network

simulators, we have noticed that it is not so widely spread as

Ns-2 in academic environments, or OPNET Modeler and QualNet

Developer in commercial ones. However, it appears that the support

for vehicular networks has received a wider recognition, and it

represents one of its most appreciated features.

Table 3.1 includes the classification of NCTUns according to

several categories, as follows. Regarding availability, NCTUns can

be used both freely for non-commercial purposes, and also through

a commercial license for purposes that do not fit the free use. As

for implementation type, NCTUns is a software network simulator

and emulator. Similar to the other emulation-capable simulators,

NCTUns is a topology-level tool, and can reproduce scenarios with

a high complexity. Moreover, NCTUns supports both centralized and

distributed execution.

6.5 Comparison

In this section we shall compare the emulation-capable network

simulators that we presented in this chapter. The comparison is

summarized in Table 6.2.

If we look at the supported platforms, the clear “winner” appears

to be Ns-2, which can be run basically on any modern operating

system, and is followed closely by QualNet Developer. Readers

should note that in the case of Ns-2 it is mainly the simulation

engine that can run on all the supported platforms; however, for

QualNet Developer most of the features are available on all the

supported platforms, including the user-friendly GUI which lacks in

Ns-2. OPNET Modeler supports mainly Windows, but also Linux. As

for NCTUns, the only officially supported platform is Linux, which is

understandable given the specific simulation methodology used (cf.

Section 6.4.2).

Regarding the license type, Ns-2 is a purely free software,

whereas NCTUns is only free for non-commercial uses. The other

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

202 Emulation-Capable Network Simulators

Table 6.2. Comparison of emulation-capable network simulators: Ns-2,

OPNET Modeler (SITL), QualNet Developer (EXata), and NCTUns

Ns-2 OPNET Modeler

(SITL)

QualNet

Developer

(EXata)

NCTUns

Supported

platforms

Linux, FreeBSD,

Mac OS X,

Solaris,

Windows

Linux, Windows Linux,

Windows, Mac

OS X

Linux

License type Free Commercial Commercial Free for non-

commercial

use

Network-layer

protocols

IPv4, ICMP, ARP IPv4, IPv6,

ICMP, ICMPv6,

ARP

IPv4, ICMP, ARP IPv4, ICMP, ARP,

Mobile IP

Transport-layer

protocols

TCP, UDP TCP, UDP TCP, UDP TCP, UDP

Routing

protocols

None OSPF, RIP OSPF, RIP, OLSR OSPF, RIP, DSR,

AODV, ADV,

DSDV

Application-

layer

protocols

None FTP FTP, HTTP, Ping,

SNMP, Telnet,

Traceroute

FTP, HTTP,

RTP/RTCP/SDP,

Telnet,

Traceroute,

BitTorrent

Parallel and

distributed

execution

No Yes Yes Yes

Facilitated

emulation

setup

No No Yes, using EXata

Connection

Manager

Yes, using the

built-in GUI

two simulators, OPNET Modeler, and QualNet Developer are both

commercial tools. We note that academic licenses at a significant

discount are nevertheless available for these commercial tools.

The next rows of Table 6.2 refer to the emulation capabilities

of the discussed simulators. Note that we focused only on those

characteristics that are significant in the context of network

emulation, and did not try to compare the features which are

not directly relevant in this context, such as the types of wireless

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 203

networks that each of them can simulate. The following remarks

regarding the supported protocols can be made:

• All the presented simulators support the basic network-

layer protocols for emulation experiments: IP, ICMP, and ARP.

We note that OPNET Modeler does also provide support for

the version 6 of IP and ICMP, unlike the other simulators.

Another difference is the support of Mobile IP that is

included with NCTUns.

• As expected, all the simulators make it possible to conduct

emulations using both TCP and UDP at transport layer.

• A notable issue with Ns-2 is that no routing protocol is

supported in emulation mode, which drastically reduces

the area of potential applications. All the other simulators

offer support for wired network routing protocols, such as

OSPF and RIP. In addition, wireless routing protocols are

also supported by some of them, as is the case of OLSR,

supported by EXata, and DSR as well as several distance

vector protocols, such as AODV, in the case of NCTUns.

• Ns-2 provides no support whatsoever for application layer

either, and OPNET Modeler has only a minimal support for

FTP. QualNet Developer and EXata, on the other hand, have

an extensive support for emulating protocols such as HTTP,

SNMP, and applications such as Ping, Telnet and Traceroute.

NCTUns adds support for the RTP family of protocols, and for

BitTorrent applications, pushed forward by the development

of peer-to-peer network-related research.

One important issue related to all the emulation-capable network

simulators is the size of the network that they can effectively

emulate. Although it is not a direct indication of the supported

network size, all the simulators except Ns-2 offer the possibility of

distributed and parallel execution in a manner that is transparent

to the user. Nevertheless, only QualNet Developer documentation

provides clear figures about the performance one may expect in

emulation mode (specifically, the 3500 node network emulated on

a 16 dual-core 2 GHz Opteron computer cluster; see Section 6.3.3 for

details).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

204 Emulation-Capable Network Simulators

We have mentioned in Chapter 2 that emulation experiments

are more difficult to run than simulations, because of the increased

configuration complexity. This is why our comparison also includes

the facilitated emulation setup aspect. We observe that QualNet

Developer (EXata) provides a tool called “EXata Connection Man-

ager” that can be used to easily setup an emulation experiment. An

equivalent task can be accomplished by using the GUI of NCTUns.

The other two simulators do not provide such support.

If one had to make a global comparison by taking into account

the emulation-related features that we emphasized in Table 6.2, we

believe that the QualNet Developer-based emulation software EXata

is the tool that totals the largest number of features, and could be the

best choice, at least amongst the commercial tools. NCTUns appears

as a strong contender as well, and its specific approach to simulation

make it a good choice for emulation experiments; another advantage

may be the fact that it can be freely used in academic environments.

As for OPNET Modeler, despite its support for emulation through

the System-in-the-Loop module, we believe that it does not reach

the same feature and usability level with EXata. Despite the strong

position that it has in the field of simulation, Ns-2 unfortunately

seems to have only a very basic support for emulation, and we

cannot recommend it for this purpose. Nevertheless, we hope that

its successor, Ns-3, will improve the balance and provide a viable free

software alternative to the other emulation-capable simulators.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 7

Network Emulation Testbeds

So far we have presented several network emulators, both freely

available and commercial ones, that all share one common char-

acteristic: they can be used as standalone systems. In this chapter

we shall discuss a different class of network emulators, with a

significantly increased complexity, namely the network emulation

testbeds.

It is important to notice that a network testbed doesn’t qualify

automatically as a network emulation testbed. Network testbeds are

widely used for making experiments. The element that differentiate

a typical network testbed from a network emulation testbed is the

fact that the emulation testbed has features that make possible

experiments that could otherwise not be carried out using only that

testbed’s network hardware. Considering Def. 2.5, there has to be at

least one component that is “reproduced virtually” on a testbed to

qualify it as an emulation testbed. We only present in this chapter

examples of those testbeds that meet this requirement.

7.1 Emulab

Emulab is probably the very first network emulation testbed, as

its development started in 1999 [108]. The Emulab testbed was

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

206 Network Emulation Testbeds

designed so as to provide researchers with a wide range of network

environments in which to develop, debug, and evaluate their

systems. Emulab is widely used by computer science researchers in

the fields of networking and distributed systems. It is also designed

to support education, and has reportedly been used to teach classes

in those fields.

Note that the name “Emulab” is used by its developers to

designate one of the following:

• a network facility, i.e., the testbed itself

• a software system, which is used to manage the network

facility

The primary Emulab installation (testbed plus software) is run

by the Flux Group, which is part of the School of Computing at the

University of Utah. However, according to its developers, there are

also installations of the Emulab software on other network testbeds

at more than two dozen sites around the world, with up to hundreds

of nodes. In what follows we shall refer exclusively to the main

Emulab installation.

In this section we base our presentation on the information

available on the web site of Emulab [108], as well as on the seminal

paper regarding its design by White et al. [113].

7.1.1 Overview

Emulab is a public facility, and as such it is available without

charge to most researchers worldwide. A policy document details

the condition of use, which are very flexible. Basically any legitimate

research/experimental use is allowed, including use by commercial

companies. Emulab developers say however that the wide-area

nodes can only be used for research purposes due to resource

limitations, and educational and development use are not permitted.

The experimental environments to which researchers can

currently have access through Emulab are the following:

Network emulation Users can specify arbitrary network topologies

on Emulab. Moreover, the communication conditions between the

nodes can be controlled in one of these three ways:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 207

• using Dummynet on the FreeBSD nodes

• using NetEm on the Linux nodes

• using the emulation capabilities of Ns-2

Thus, users can create controllable, predictable, and repeatable

settings for their network experiments.

Internet experimentation Through its interface to a globally

distributed testbed, namely PlanetLab (see Section 7.2), Emulab

provides an environment for deploying, running, and controlling

network applications at Internet scale.

To facilitate experiments, Emulab provides support for creating

PlanetLab virtual nodes (called “slices”), automatic setup of these

slices, slice visualization and control (including rebooting and

termination), all through Emulab’s user interface.

Wireless network testbeds There are two types of general-purpose

wireless network testbeds available on Emulab, as follows:

(1) An IEEE 802.11a/b/g (Wi-Fi) wireless network testbed, with

fixed wireless nodes deployed on multiple floors of an office

building. Users can configure them to act as access points,

clients, or in ad hoc mode. All the nodes have two wireless

interfaces, plus wired control network access. Although they are

now discontinued Emulab used to also include several mobile

nodes. These nodes were actual robots that carried wireless

interfaces, and were able to move in a designated area of the lab.

Robot motion could be controlled by the user in order to create

the desired mobility scenarios.

(2) A testbed of software-defined radio devices called Universal

Software Radio Peripheral (USRP) from the GNU Radio project

[35]. These nodes give the user control over the physical layer of

wireless networks, since everything is done in software, starting

at the signal processing level. The GNU USRP hardware devices

are connected via USB to Emulab nodes scattered in a building of

the University of Utah campus. Each of these nodes also contains

one or more Wi-Fi interfaces. The deployed USRP devices are

said to have 900 MHz band transceiver boards and antennas.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

208 Network Emulation Testbeds

It is important to note that Emulab unifies all of these

environments under a common user interface, and integrates them

into a common framework. This common framework provides the

same type of abstractions for all the environments, and internally

maps the abstractions into domain-specific mechanisms. Thus,

Emulab masks much of the heterogeneity of the different resources,

and simplifies the task of making experiments.

One interesting fact is that the Emulab team decided to use the

same syntax with Ns-2 for defining experiments. This makes easier

the transition from using simulation and Ns-2 to Emulab. Note that

some extensions of Ns-2 were required to support on Emulab the

emulation features that do not exist in Ns-2. Moreover, in addition to

defining scenarios as text files, Emulab users have the possibility to

employ a Java-based GUI to create their scenarios.

7.1.2 Architecture

Emulab architecture is composed of a number of control servers,

the experiment hosts used to run experiments, and the network

topology that interconnects all of these.

7.1.2.1 Control servers

Emulab uses a master computer, called “boss,” that manages the

entire testbed. This computer has several roles according to Emulab

developers, such as given below:

• Control general testbed functionality.

• Store the database containing all the data related to the

testbed.

• Allow node power cycling.

• Provide Web-based access to the testbed.

• Ensure name resolution functionality (Domain Name

Server).

• Store disk images of the experiment nodes.

A second management component is the computer named

“users,” with the aliases “ops” and “fs.” This is the main server

machine for users of the testbed, and hosts the home directories and

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 209

all project files. This server is intended to be used for those tasks that

users cannot perform through the Web interface. The main functions

of the “users” computer are

• file server

• interface for user login, low-level testbed control, and

console access

• facilitate access to the debugging information that can be

obtained from some of the Emulab nodes, such as the IXP

network processors (see Section 7.1.2.4)

7.1.2.2 Experiment hosts

The most important elements of the testbed are undoubtedly the

testbed nodes themselves. According to the Emulab website, there

are currently 374 PCs available for experiments; some of them

contain wireless NICs, and we counted a total of 72 wireless

interfaces, 36 of them being installed in 18 PCs (two per PC), and

the remaining 36 in other 36 PCs.

Testbed nodes run a variety of operating systems, including

FreeBSD, Linux, and Windows XP. One can use the provided

operating systems as they are, but also customize them, or even

use other operating systems by loading the appropriate OS image.

Although we shall not go into all the technical details, here is a brief

description of the nodes, so as to give our readers an idea about

what they can expect in terms of performance from a testbed such

as Emulab:

• 20 hosts with

— 2.4 GHz 64-bit Intel Core 2 Duo CPU

— 2 GB RAM

— built-in GbE NIC (the control interface)

— dual-port GbE NIC (the one port in use is connected to

the experimental network)

— 250 GB SATA HDD

• 160 hosts with

— 3.0 GHz 64-bit Intel Xeon CPU

— 2 GB RAM

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

210 Network Emulation Testbeds

— 6 GbE NICs (one being the control interface)

— 2 × 146 GB SCSI HDD

• 18 hosts with1

— 3.0 GHz Intel Pentium IV processors

— 1 GB RAM

— 2 × Netgear WAG311 802.11a/b/g (Atheros) Wi-Fi cards

— built-in GbE NIC (the control interface)

— 10/100 Mbps Ethernet NIC

— 2 × 120 GB SATA HDD

• 8 hosts with

— 2.0 GHz Pentium IV processors

— 512 MB RAM

— 5 × 10/100 Mbps Ethernet NICs (one being the control

interface)

— 2 × 20 GB IDE HDD

• 128 hosts with

— 850 MHz Intel Pentium III CPU

— 512 MB RAM

— 5 × 10/100 Mbps Ethernet NICs (one being the control

interface)

— 40 GB IDE HDD

• 40 hosts with2

— 600 MHz Intel Pentium III CPU

— 256 MB RAM

— 5 × 10/100 Mbps Ethernet NICs (one being the control

interface)

— D-Link DWL-AG530 802.11a/b/g wireless NIC with

external antenna (only on 36 of these hosts)

— 13 GB IDE HDD

We note a broad range of specifications, from fast CPUs and large

amounts of memory at the top of the list to slow CPUs and limited

memory at the bottom. This is not necessarily a limitation, since not

all emulation experiments require high-spec PCs. Moreover, such a

1Note that these hosts contain wireless network interfaces.
2Note that these hosts contain wireless network interfaces.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 211

broad range of available hosts makes it possible to test the same

software on different platforms, so as to recreate the experience of a

wide range of end users.

7.1.2.3 Connectivity

A network testbed would not be complete without ensuring

the connectivity between all its nodes. On Emulab this is done

by using seven Cisco high-end switches. Five of these switches

serve as the “programmable” backplane of the testbed, ensuring

connectivity in the experiment network. The other two switches

provide connectivity for the control network. One switch also has

routing functionality, and operates as the core router for the testbed,

regulating access to the testbed servers and the outside world.

Figure 7.1 shows the Emulab topology that corresponds to a

simple scenario involving only 3 experiment hosts, named HOST

1, HOST 2, and HOST 3, that play the roles of a router, and of

two computer nodes, respectively. The figure also includes the two

Emulab servers mentioned before, namely, “boss” and “users.” With

thick lines we depicted the links between the host that are used

for experiment traffic, and that are configured by the user. We used

the convention we introduced in this book to denote by “LE” blocks

the link-level emulators. In the case of Emulab, link-level emulators

are managed directly by the testbed control software, and are

called delay nodes. A delay node is essentially just another Emulab

host that is loaded with an operating system such as FreeBSD,

and uses a tool such as Dummynet to control the communication

conditions between the other nodes in the experiment.3 The thin

lines in the figure represent the control network, used for all the

management traffic, including the user access from anywhere in the

Internet.

3Note that, despite their name, delay nodes can also be used to control bandwidth

and packet loss, not only delay.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

212 Network Emulation Testbeds

Figure 7.1. Emulab topology for a simple experiment.

7.1.2.4 Other components

In addition to the testbed components that we have mentioned so

far, there are a few other elements that are part of the Emulab

testbed, as follows:

NetFPGA Programmable network devices [69] that are available

for remote experimentation in a similar manner to other Emulab

resources. Thus, NetFPGA devices can be configured as part of

an arbitrary topology with end nodes, links and LANs, traffic

generators, etc. At the moment of writing, 6 NetFPGA devices were

installed into 6 experiment hosts. Access to the devices is done via

the computer that is hosting them.

ProtoGENI General control framework for networking testbeds

that is developed by Emulab together with the NSF GENI project

[90]. As part of this project, Emulab are deploying hardware at a

number of sites around the USA, both on backbone networks and at

edge sites (e.g., university campuses). Users can employ these nodes

for experiments in the same way they do it with traditional Emulab

nodes. Note that, since these nodes are not actually on the Emulab

site, the communication conditions with them are not guaranteed. In

this sense, the ProtoGENI nodes can be seen as some remote nodes

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 213

integrated with Emulab to create a distributed testbed, similarly to

the way in which PlanetLab nodes were also integrated with Emulab.

Two NetFPGA cards are also available on two dedicated PCs in this

class of hosts.

Network processors Intel IXP1200 network processors are inte-

grated into Emulab, and available to external researchers for remote

experimentation. IXP nodes can be allocated through the usual

Emulab mechanisms, and can be configured as part of an arbitrary

topology of PCs, IXP nodes, etc. Control and debugging is done

through the serial consoles of the IXP nodes. A number of 8 Emulab

nodes host such network processors.

Although the following facilities are discontinued, and cannot

be used anymore on Emulab, we present them here briefly in

order to give readers a broader view on the testbed. In 2006,

Emulab has opened to public external use for a limited period a

mobile robotic wireless testbed [50]. The testbed used six remotely-

controlled robots that could move in a designated area according

to user instructions. Each robot was equipped with a sensor node

(MICA2 mote, currently available from the company MEMSIC [63]).

In addition, there were 25 static sensor nodes. The sensor nodes had

a serial port for control and debugging purposes. The goal of this

“mobile wireless testbed” was to give Emulab users an opportunity

to conduct experiments with wireless nodes that are truly mobile,

and that move in a controllable and repeatable manner. Such a

testbed could be used, for example, to evaluate ad-hoc routing

algorithms.

7.1.3 Node Virtualization

Despite the fact that Emulab has almost 400 hosts, there are

times when users may wish to make bigger experiments that this.

Alternatively, in busy periods, one may only be able to use a smaller

number of hosts than necessary. In such cases, a solution to extend

experiment scale given a limited number of hardware resources is to

use the technique of virtualization. According to Emulab developers,

if the CPU, memory, and network requirements of an application are

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

214 Network Emulation Testbeds

modest, virtual nodes allow an experiment to use 10 to 20 times as

many nodes as there are available physical machines.

7.1.3.1 Basic support

Conceptually speaking, virtual nodes fall somewhere between

simulated nodes (for instance, using Ns-2) and real hosts in terms

of accuracy of representing the real world. A virtual node in the

default Emulab implementation is just a lightweight virtual machine

running on top of a regular operating system. In particular, Emulab

virtual nodes are based either on the “jail” mechanism in FreeBSD

[52], or on the OpenVZ container-based virtualization in Linux [79].

Both methods allow groups of processes to be isolated from each

other while running on the same physical machine.

Emulab virtual nodes provide isolation of the file system,

processes, network, and accounts. This level of virtualization allows

unmodified applications to run as though they were on a real

machine. One can also introduce network impairments on the

virtual network links connecting virtual nodes. These virtual links

are multiplexed over physical links when used to connect to other

physical hosts, and “exist” inside a single physical host when

connecting virtual nodes within the same machine.

With some limitations, virtual nodes can have the same roles as

normal Emulab hosts: end node, router, or traffic generator. They can

be used in arbitrary topologies of links and LANs, including mixing

virtual and real nodes. The number of virtual nodes that can be

multiplexed on a single physical host depends on a variety of factors,

such as

• resource requirements of the network applications that are

run

• characteristics (CPU, memory, hard disk speed, etc.) of the

underlying physical host

• throughput on the emulated virtual network links

• targeted emulation fidelity

Although the solution of virtualization may appeal to many

users, readers should be aware of the limitations of the Emulab

virtual node implementation. According to its developers, the most

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 215

important such limitations of the Emulab virtualization technique

are given below:

• It is not a complete virtualization of a node: The Emulab

virtualization implementation does not create true virtual

machines. The primary goal of Emulab developers was

to provide functional transparency to applications. As a

result, there are also security concerns, since virtual node

separation is not complete, and they could spy on each other.

This was not considered a problem in the case that all virtual

nodes on a physical host are used for the same experiment.

• It is not a complete virtualization of the network: While each

virtual nodes has its own virtual network interfaces and

routing tables, much of the network stack of a physical host

remains shared, in particular all the resources used by the

higher-level protocols. Users should be aware of potential

interactions and “interference” between nodes at that level.

• There are no CPU and memory resource guarantees on the
virtual nodes: No performance isolation, and no specific

CPU scheduling mechanisms exist. Processes running on the

virtual nodes are just processes on the physical machine,

and are scheduled according to the standard OS scheduler

of the host. There are also no limits imposed on the memory

consumption of virtual nodes.

• Choice of operating systems is limited: Due to the particu-

larities of the Emulab implementation, both the experiment

hosts on which virtual nodes are run, and the virtual nodes

themselves, can only use a specific version of FreeBSD or

Fedora Linux.

• Maximum scale is only of about one thousand virtual nodes:

Due to several practical issues, it is not possible to use

Emulab for experiments of more than about 1000–2000

nodes. These issues are related to: the algorithms used by

Emulab for resource allocation; the characteristics of the

physical nodes; the difficulty to visualize in a meaningful

manner thousands of nodes.

• Virtual nodes are not externally visible: Virtual nodes are

assigned addresses in the control network that are not

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

216 Network Emulation Testbeds

visible externally due to the limitation of the available IP

address space. As virtual nodes cannot be accessed directly

from outside Emulab, one must use a suitable proxy server,

or access them through the Emulab “users” server.

• Internal network bandwidth of experiment hosts is limited
to about 400 Mbps: This limitation comes from the perfor-

mance characteristics of older hosts, which prevent running

a significant number of virtual nodes or high-capacity virtual

links.

• Virtual nodes do not have a virtual console: Users have to use

login mechanisms such as “ssh” to access and control the

virtual nodes.

• Virtual node traffic is shaped on the host itself : For virtual

nodes, instead of using dedicated “delay nodes,” network

impairments are applied directly on the experiment host.

This makes it possible to create a complete topology

on a single node, and conserves testbed resources. The

requirements and overhead of traffic shaping needs to be

taken into account when designing an Emulab experiment

that uses such features.

7.1.3.2 Xen-based virtualization

In addition to the basic support for virtualization using the

default implementation presented above, one can also use the

Xen virtualization technique on Emulab [108]. The main difference

between Xen and the previous approach is that Xen does create a

complete virtual machine on the experiment host. This makes it

possible to use a wide range of operating systems on the virtual

nodes, which can be different than the one of the physical host.

Moreover, separation between the Xen-based virtual machines is

complete from a logical point of view. Of course, the virtual nodes

still share the resources (CPU, memory, network interfaces) of the

host, so they may influence each other indirectly from a performance

point of view. Hence, the expected fidelity of network emulation is

still lower with Xen than when using physical links.

Support for Xen-based virtualization is present on Emulab,

meaning that it is possible to create the Xen virtual nodes simply

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 217

by selecting the appropriate node types. The nodes are created

automatically, with predefined characteristics (amount of memory,

etc.); shared file systems are also created. As with the virtual nodes

created with the default method, the IP addresses of Xen-based

virtual nodes are not directly accessible from outside Emulab.

Other limitations mentioned in the previous section also apply

for Xen-based virtual nodes, as follows:

• no resource guarantees

• limited maximum scale

• limited internal network bandwidth

• traffic shaping is done on the host itself, etc.

7.1.4 Wireless Network Testbed

In addition to the wired network testbed, Emulab also provides

wireless nodes to its users. As we have already mentioned in

Section 7.1.1, there are 72 IEEE 802.11a/b/g Wi-Fi nodes in Emulab,

which can be used through the same control system as the other

nodes. The wireless NICs are split into two categories, distributed

as follows:

• 36 NICs are installed in 18 PCs (3.0 GHz Intel Pentium

4 class) that are scattered at various locations in a large

building. Emulab provides to registered users a floor map

which indicates the location of these nodes, as well as their

properties. These PCs also include one wired NIC that can be

used for experiments.

• 36 NICs are concentrated in a machine room, and are

installed in 36 PCs (600 MHz Intel Pentium III class). The

external antennas of these wireless interfaces are deployed

in a 6 × 6 grid on the back side of the racks housing the PCs,

with all the antennas pointing down. The size of the grid

is 300 × 224 cm. As the nodes are closely located to each

other, and deployed in an unfriendly environment, signal

interference is reported to be quite strong. These PCs also

include four wired NICs for use in experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

218 Network Emulation Testbeds

Although the maker of the NICs in each of the two categories is

different (Netgear for the first category, and D-Link for the second

one), they all use the same Atheros 5212 chipset. The advantage

of this chipset is that most of the 802.11 MAC layer functionality is

handled in software, therefore it is highly configurable. Emulab uses

the “madwifi” Atheros and derived drivers for the wireless NICs in

the testbed.

7.1.4.1 Features

It is important to note that, although the wireless NICs in Emulab are

dedicated to testing, they are not placed in an isolated environment.

This means that both the traffic of the university wireless network,

as well as the traffic of other users of the Emulab wireless nodes

could interfere with any experiment. In this context, two policy

items regarding wireless network transmission in Emulab should be

considered according to web the site of the testbed [108]:

(1) Do not transmit on channels that another experiment on the

testbed is using, unless it’s your own. You can find out which

channels are currently in use by looking at the top of the

wireless floor map. Where possible, choose channels that have

the least frequency overlap with other experiments.

(2) Do not flood a wireless network with non-responsive traffic

for any significant period of time. The following channels are

“production networks” used by others at this location, so are

more restricted [table of channels provided]. You may not send

“large” amounts of traffic on them, and may send only low rates

of non-responsive traffic.

Such restrictions imply that, although certainly useful, the

wireless Emulab testbed cannot actually be used for the full range

of experiments one may wish to carry out.

To use wireless interfaces in an Emulab experiment, users must

provide a few Emulab-specific Ns-2 commands in their scenario

file. These commands also allow selecting which types of nodes are

used from the two categories mentioned in the beginning of this

section. Users can also control whether a wireless node behaves

as a regular end station, or as an access point; networks without

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 219

any access point can be configured to operate in ad hoc mode.

Moreover, the standard used in the experiment can be selected from

one of 802.11a, 802.11b, and 802.11g. Note that experiments using

wireless nodes are not restricted to use only such nodes, and one

can build topologies that mix wired and wireless links, as long as the

number of links per node does not exceed the physically available

number of network interfaces.

One limitation regarding the PCs hosting wireless interfaces is

that users need to employ exclusively one of the two supported

Linux distributions4 if they want to be able to control the wireless

interfaces.

Moreover, Emulab developers recommend to select the wireless

nodes used in an experiment actively, instead of letting Emulab’s

mapping algorithm do it. This is because the algorithm does not

take into account the connectivity of the nodes; as a consequence,

automatic mapping may result in choosing nodes that cannot

physically communicate with each other. Users should make sure by

themselves that, for instance, at least the designated access point

is in the communication range of all of the nodes in the wireless

network topology they create. For ad hoc networks, users must make

sure that none of the wireless nodes is completely isolated from the

others.

7.1.4.2 Configuration

Emulab users can configure various wireless node settings using

built-in mechanisms, either for the wireless LAN as a whole (e.g.,

communication channel), or for individual interfaces (e.g., transmit

power). Most configurable parameters correspond to options

that are available using the “iwconfig,” “iwpriv,” and “wlanconfig”

commands in Linux. Below we give the list of the possible settings

to emphasize the capabilities of the Emulab control system:

• Operating mode: Configure the LAN or interface to operate in

one of the modes given below:

4Namely Fedora Core 4 or RedHat 9.0.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

220 Network Emulation Testbeds

(1) “Master” — The interface behaves as an access point

(not to be used for LANs).

(2) “Managed” — The interface behaves as an end station

which connects to an access point (the access point

needs to be configured separately).

(3) “Adhoc” — The interface or LAN operates in IEEE 802.11

ad hoc mode.

(4) “Monitor” — The interface or LAN are put in monitoring

mode, useful in the context of network sniffing.

• Operating channel/frequency: Set the channel on which the

interface or LAN operates to either a channel number or a

frequency value. The channel is automatically selected for

LANs that do not define it explicitly, but it is recommended to

actively select the channel in order to prevent conflicts with

other users.

• Operating rate: Change the operating bit rate of an interface.

If not configured, interfaces use the “auto” mode, which

performs rate adaptation, and varies the operating rate

according to the communication conditions.

• Transmit power: Change the power used for transmission by

an interface.

• Receive sensitivity: Change the sensitivity for receive opera-

tion of an interface.

• RTS/CTS threshold: Set the size of the smallest packet for

which the interface will use the RTS/CTS mechanism. A

value equal to the maximum packet size effectively disables

the mechanism. The default on Emulab hardware is to turn

off this mechanism.

• Fragmentation threshold: Configure the IP packet size above

which the packet will be split into multiple fragments. Can

also be set to “auto” or “off.”

Although some of the above settings must necessarily be

configured before performing an experiment, they can also be

changed on the fly, while the experiment is running. Emulab

provides functionality to assist with such dynamic operations, such

as allowing settings to be “remembered” between operating mode

changes.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Emulab 221

7.1.5 Discussion

Emulab is perhaps the most widely used open network testbed, and

a quick look at the long list of projects that have used Emulab reveals

its popularity. Moreover, the wide range of features and capabilities

make it the testbed of choice for a large class of applications. This

has lead its developers to use the subtitle “total network testbed”

for Emulab.

One thing to note about Emulab is the separation that exists

between the control network and the experiment network. The main

goal of this separation is to make sure there is no interference

between the two networks, as follows:

• The traffic used for experiment control and management

(including logging, etc.) does not perturb the experiment

itself.

• The experiment traffic does not perturb the control network,

thus avoiding potential influences to the experiments made

by the same user and by others.

This separation is used by many other testbeds, and is a

fundamental requirement in ensuring the accuracy of experiment

results.

As we mentioned in the beginning of Section 7.1, Emulab is more

than just a network testbed because it enables users to introduce

controlled network impairments in a repeatable way. Therefore, the

use of the word “emulation” agrees with the meaning we have given

to this concept in the present book. However, this only applies to

the wired network testbed in Emulab. The Wi-Fi testbed does not

fit our definition. This is because there is no modeled component in

the static Wi-Fi testbed currently available in Emulab (cf. Def. 2.5).

However, the Mobile Emulab testbed that used to be available did

agree with our definition for emulation, since it included the mobile

robots, whose motion needed to be modeled and controlled by

users. Consequently, we prefer to use the name “wireless network

testbed” for the wireless component of Emulab, while we agree with

the term “wired network emulation testbed” for the wired-network

component of Emulab.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

222 Network Emulation Testbeds

If we consider the classification in Table 3.1, Emulab is clearly

a research emulation tool, and is of testbed type. As experiments

are executed over a real network it means, experiments are done

at topology level, and Emulab has a high complexity. A number of

testbed hosts can be used to emulate network conditions, hence this

is done in a distributed manner.

7.2 PlanetLab

PlanetLab is different type of network testbed that is globally

distributed. At the moment of writing the PlanetLab website reports

that there are 1087 nodes at 509 sites all over the world. These

nodes form a research network testbed that is used for the

evaluation of network services over the Internet [84]. PlanetLab

started operating in 2003, and has been used by more than 1,000

teams for the research and development of new technologies for

various applications of networks, such as distributed storage, peer-

to-peer systems, etc. Note that, while PlanetLab use is free for

academic institutions, use by for-profit companies requires paying

a membership fee to support the running costs.

In this section we use mainly information provided on the web

site of PlanetLab [86], complemented by two technical papers by its

developers [7, 84].

7.2.1 Overview

According to its website, PlanetLab is composed of several elements,

as follows:

(1) First of all, the testbed itself, as a collection of computers

distributed over the globe. Most of these computers are hosted

by various participating research and academic institutions,

and some of them are placed in routing centers. All of the

machines are connected to the Internet, forming a network

that is distributed over the majority of regional and long-haul

Internet backbones.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PlanetLab 223

(2) Secondly, a software package that runs on all the computers

in the testbed. This common software package includes the

following components:

• a Linux-based operating system

• mechanisms for starting the nodes and distributing soft-

ware updates

• a collection of management tools for tasks such as moni-

toring node health, auditing system activity, and controlling

system parameters

• a facility for managing user accounts and for distributing

access keys

The software package, called MyPLC, manages PlanetLab, but

can also be used to deploy other PlanetLab-like testbeds, in a

similar manner in which Emulab software can be used to create

other Emulab-like testbeds.

(3) Thirdly, there is the PlanetLab Consortium, a group of academic,

industrial, and government institutions cooperating to support

and enhance PlanetLab. The consortium is responsible for

• overseeing the long-term growth of the PlanetLab hardware

infrastructure

• designing and implementing the PlanetLab software archi-

tecture

• providing operational support to PlanetLab users

• defining policies that govern appropriate use of PlanetLab

7.2.2 Features

PlanetLab was designed mainly to serve as a testbed for overlay

networks. For this purpose, researchers are given access to a

distributed set of machines that are part of PlanetLab. To manage

this access, PlanetLab uses an abstraction called slice. A slice

is therefore a collection of resources distributed across multiple

PlanetLab nodes. Slices are managed using a technique called

“distributed virtualization.” By reserving such a slice, researchers

can experiment with planetary-scale services. Currently, PlanetLab

reports over 600 active research projects in areas such as

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

224 Network Emulation Testbeds

• file sharing and network-embedded storage

• content distribution networks

• routing and multicast overlays

• network anomaly detection mechanisms

• scalable location systems

• network measurement tools

All the operations related to slice management are transparent

to users and are handled by the MyPLC software package. This

software performs the distributed virtualization task, i.e., allocate

a “slice” of the network-wide hardware resources in PlanetLab to

an application or service. The application or service will then run

on some or even all of the PlanetLab computers that are distributed

over the globe. The distributed virtualization also makes it possible

to have multiple users and applications running simultaneously in

different slices of PlanetLab, including the case when slices share the

same physical machines.

The advantage of using PlanetLab compared to a network

testbed with geographically co-located hosts is the opportunity

to run experiments under real-world network conditions, and

potentially at a larger scale. Services such as those mentioned above

benefit from the distribution over the Internet, which according to

PlanetLab developers provides benefits such as

• multiple points from which applications can observe and

react to network conditions

• proximity to existing external data sources and data sinks

• communication across multiple administrative boundaries

To summarize, the value of using PlanetLab as a testbed derives

from the following three points:

(1) a large set of geographically dispersed computers

(2) a realistic network infrastructure, including effects such as

congestion, network failures, etc.

(3) a realistic client workload (given enough applications are

running on the same PlanetLab host)

Note that its developers mention the fact that PlanetLab is not

only a testbed, but also a deployment platform. This means that,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PlanetLab 225

in addition to short-term experiments, researchers can also deploy

long-running services for client applications that are also running on

PlanetLab. Thus, PlanetLab is envisaged as a platform supporting the

entire life cycle of an application, from an early prototype, through

design iterations, to an evolving live network service. Being able to

deploy services on PlanetLab is part of a technology transfer view,

allowing users to access the new services and potentially build upon

them. According to PlanetLab developers, the following are some of

the services currently running continuously on the testbed:

• CoDeeN, Coral: content distribution networks

• ScriptRoute: network measurement service

• Chord, OpenDHT: scalable object location services

• PIER, Trumpet, CoMon: network monitoring services

An important advantage of using PlanetLab for Internet-level

experiments is that its virtualization mechanism allows to safely run

applications and services that may perturb its functionality if run

over the Internet itself. The PlanetLab team says the following about

the difficulty to experiment on the Internet [86]:

Unfortunately, the very commercial success that has fueled our

increased dependency on the Internet has also reduced our ability

to evolve its underlying architecture to meet new demands and

correct emerging vulnerabilities.

We can say that Internet has become a sort of “production

network” for the entire mankind, which makes it impossible

to investigate new technologies through experiments that may

perturb this “production network.” The overlay network created

by PlanetLab provides an opportunity to introduce disruptive

technologies without risking an impact on other network systems.

Thus, the overlay nodes can implement the new capability or feature,

and use the conventional computers and networks they are run

on to provide the underlying connectivity. After extensive testing

and a long-term deployment, if the service deployed in the overlay

network proves useful and secure, its developer may choose to

migrate the functionality into the Internet itself, for instance, by

adding it as a feature of commercial routers.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

226 Network Emulation Testbeds

7.2.3 Architecture

At its core, PlanetLab functionality is provided through the

technique of distributed virtualization, as mentioned previously.

This means that each deployed application or service runs in a

“slice” of the global resources in PlanetLab [7]. The concept of

slice in this context refers to some amount of processing, memory,

storage, and network resources that are provided to a user across

a set of individual PlanetLab hosts that are distributed over the

Internet. Thus, a PlanetLab slice is equivalent to a network of virtual

machines, each providing a certain amount of local resources. A

certain number of slices run concurrently on PlanetLab at any time,

and act as network-wide containers that isolate services from each

other.

7.2.3.1 Slices

Each PlanetLab host runs a Virtual Machine Monitor (VMM)

software component that implements and isolates the virtual

machines. Hence, all the remote services offered on PlanetLab

are provided at host level by the VMM. This software component

consists from the Linux kernel plus a set of kernel extensions that

provide additional functionality.

All the virtual machines on one host are monitored and managed

by a special, privileged virtual machine running on top of the VMM,

which is called Node Manager (NM). The NM enforces policies on

creating virtual machines and allocating resources to them. Local

services interact with the NM to create new virtual machines. We

emphasize the fact that all interactions with the NM are local,

and only local services on a virtual machine can interact with the

corresponding NM. Remote access to a specific NM is mediated

by the VMM running on that node, thus creating a hierarchical

relationship between these software components.

Figure 7.2 presents the software components that are running on

each PlanetLab host. The base layer consists of the VMM, providing

the interface with the physical host. On top of the VMM run all the

virtual machines, including the privileged one, NM, and the ordinary

ones, that are part of PlanetLab slices. Each of the virtual machines

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PlanetLab 227

Figure 7.2. Software components running on each PlanetLab host.

runs a set of network applications and services that both provide

the functionality related to the experiment, and also ensure the

operation of PlanetLab itself.

The services that run on PlanetLab hosts can be divided into two

classes, namely

• unprivileged services for PlanetLab end-users

• privileged services related to PlanetLab infrastructure

The unprivileged services run on normal slices, and don’t require

any special execution rights. As for the infrastructure services, there

are three types of such services that are used to ensure the proper

operation of PlanetLab:

• Brokerage services: Acquire PlanetLab resources and create

slices linked to these resources.

• Environment services: Initialize and maintain the PlanetLab

software components of each slice.

• Monitoring services: Discover the available resources on

PlanetLab hosts and monitor the health of PlanetLab

services.

The general policy in PlanetLab is to implement a service in a

slice with the minimum required privileges that support the desired

functionality. Thus, the implementation is done in unprivileged

slices whenever possible, and in the privileged ones, NM and VMM

(in this particular order), only when absolutely necessary.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

228 Network Emulation Testbeds

7.2.3.2 Design challenges

The PlanetLab software package, MyPLC, is an implementation of

various existing operating systems abstractions and techniques,

applied to the context of a distributed testbed environment. In

what follows we shall summarize the most important aspects of the

design as reported in [7].

Node virtualization The first issue is the provision of a virtual

machine abstraction for PlanetLab slices. While full hardware

virtualization solutions such as VMWare are attractive by allowing

to run multiple, unmodified operating systems, they have a major

drawback: performance. Since each of these fully virtualized

machines have large memory requirements, it is not possible to

scale much the number of concurrent slices on a host by using this

method.

Hence, PlanetLab adopted the system-call-level virtualization

methodology, which is similar to the approach used in Emulab.

In particular, PlanetLab uses the Linux virtualization mechanism

called “VServer” [59]. Such a high-level virtualization proved to

be adequate for supporting large numbers of overlay services on

PlanetLab, while providing reasonable isolation mechanisms.

Resource allocation and isolation PlanetLab includes mechanisms

for the distributed allocation and coordination of resources. As the

testbed must support multiple approaches for creating and binding

resources to slices, PlanetLab developers opted for implementing

these mechanisms on top of the basic software platform. Currently

available frameworks include, for instance, the Globus grid toolkit

[31], and the account management system of Emulab [113].

Isolation mechanisms are an important requirement for Planet-

Lab, given the resource sharing that takes place when using slices.

The techniques used by PlanetLab for isolating service performance

are said to be inspired by the contention management for shared

resources proposed in Scout [65]. However, these mechanisms are

controlled on PlanetLab in a different way than in a typical operating

system, since each PlanetLab host runs multiple competing tasks

that belong to a globally distributed slice, rather than a set of

cooperating local tasks.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PlanetLab 229

Network virtualization Another issue in PlanetLab design is net-

work virtualization, i.e., how to provide to each of the slices running

on a physical host the “illusion” of its own network connection.

For this purpose, PlanetLab uses a modified version of the raw

socket interface found in typical operating systems. The kernel

of PlanetLab hosts is thus responsible for sharing raw access —

reception and transmission of arbitrary packets — among multiple

competing services in a controlled manner that complies with

existing administrative policies. The kernel is also in charge of

protecting the physical network from malicious or misbehaving

services, an aspect that is typically ignored in normal network

virtualization mechanisms.

Monitoring A challenge which is perhaps specific to PlanetLab,

due to its testbed nature, is the support for the monitoring and

management of the large distributed infrastructure of the testbed.

This has to be done both on the network side, and for the PlanetLab

hosts themselves. PlanetLab uses for this purpose a low-level

sensor-like software interface that can export data regarding the

underlying OS and network, as well as from individual services,

in a uniform manner. Exported data may represent simple scalar

values, such as the process load average on a host, or complex

structures, such as the network topology obtained from the local

BGP routing tables. Thus, the PlanetLab “sensors” encapsulate raw

observations from different sources, and provide a shared interface

through which this data can be access by the monitoring services.

7.2.4 Discussion

PlanetLab is a geographically distributed testbed, in which the

experiment hosts are dispersed in the global Internet. This makes

it possible to conduct planetary-scale experiments in realistic

conditions. With more than 1000 hosts available for experiments,

PlanetLab is indeed a large-scale testbed.

Despite the clear benefits of using PlanetLab, we would like our

readers to note that the three most important features that we

presented as PlanetLab advantages in Section 7.2.2 can also turn into

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

230 Network Emulation Testbeds

disadvantages, depending on the perspective taken. The potential

drawbacks of those three features are as follows:

(1) A large set of geographically dispersed computers It may be less

effective to use thousands of computers managed by hundreds

of organizations compared to the case of a testbed with

geographically co-located hosts, since any physical issues may

take longer to identify and fix in such a hierarchical distributed

management scheme.

(2) A realistic network infrastructure, including effects such as
congestion, network failures, etc. While realistic, the overlay

network of PlanetLab offers no guarantees regarding the

repeatability of the network conditions. This means that it is

impossible to recreate a certain network state, for instance,

in order to verify that a previously observed problem has

been fixed, or to repeat an experiment in the same network

conditions but with different parameters.

(3) A realistic client workload (given enough applications are
running on the same PlanetLab host) Realistic workloads on the

application clients are certainly important, however, the lack

of control means that it is impossible to make reproducible

experiments from this point of view as well.

As stated above, the same three properties can be regarded both

as an advantage or as a disadvantage, depending on the point of

view. For this reason, PlanetLab is perhaps the most appropriate

for evaluating network applications and services that are mature

enough from the point of view of the basic features, and which need

to be tested in large-scale settings with realistic varying network

conditions that don’t necessarily need to be reproducible. In this

sense, PlanetLab can act as a testbed platform for performing the

final validation series of experiments. This means that it may be

good to use a typical controllable network emulator in a first stage,

to eliminate all the simple bugs, and proceed to PlanetLab usage

only towards the end of the development process, for investigating

in realistic network conditions issues such as scalability, parameter

optimization, and so on.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 231

One more issue to note regarding PlanetLab is that it is more

difficult to use it for testing network hardware systems than for

software systems. Applications and service implementations can

be easily deployed using the built-in distributed virtualization

mechanisms of PlanetLab. However, if one wishes to include

hardware systems in the PlanetLab network, it has to be done at

those network locations to which the user has direct physical access.

Moreover, we are not aware about the policy of PlanetLab in this

respect, since hardware systems cannot behave as typical PlanetLab

hosts.

As a last remark, we would like to discuss the classification of

PlanetLab as a network emulation testbed. It is obvious that network

control and experiment repeatability in PlanetLab are low. This

brings PlanetLab closer to a network testbed than to a network

emulator. However, we claim that the virtualization technique

employed by PlanetLab, which creates an isolation layer between

the physical host and the virtual experiment nodes, and the overlay

network which is constructed between these experiment nodes, are

sufficient characteristics for including PlanetLab in a category of

“virtual network” testbeds. Therefore, although PlanetLab is not a

network emulation testbed in itself, the techniques it uses bring it

very close to being one.

As for Table 3.1, PlanetLab is a research emulation tool of

testbed type. Since experiments are executed over the Internet, it

can reproduce network topologies, and it has a high complexity.

Emulation is done in a distributed manner in the sense that the

network conditions are determined by the totality of the network

links used in an experiment.

7.3 ORBIT

ORBIT is a wireless network testbed project that was started in

September 2003 under an USA NSF program [115]. The objective

of the project is to develop a large-scale open-access wireless

networking testbed for use by the research community working

on next-generation wireless network protocols, middleware and

applications. The project is a collaborative effort between several

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

232 Network Emulation Testbeds

universities: Rutgers, Columbia, and Princeton, along with industrial

partners Lucent Bell Labs, IBM Research and Thomson. ORBIT is

being developed and operated by WINLAB, at Rutgers University.

The ORBIT project is also related to the GENI (Global Environment

for Network Innovation) program, as an experimental platform for

the wireless aspects of GENI [30].

ORBIT development is motivated by the fact that large-scale ex-

perimental facilities for research in the area of wireless networking

are scarce. Thus, most validation tests for new protocols are done

using network simulation, or in small-scale environments. In the

latter case, experiments are difficult to reproduce by independent

researchers, due to variations in wireless equipment and radio

environment. Among the advantages of a large-scale wireless

network testbed compared to the other solutions, ORBIT developers

include

• possibility to work with larger networks

• encourages result validation and extensions by other re-

searchers

• platform for the trial deployment of new wireless services

and software

The ORBIT testbed is available for remote or on-site access by

researchers both nationally and internationally. According to the

ORBIT website, the total number of registered users exceeds 250,

with more than 12,000 experiments completed on the radio grid

facility (data provided as of 2008).

The description in this section is mainly based on the information

provided on the web page or ORBIT [115], with technical details

obtained from two technical papers by ORBIT developers [53, 92].

7.3.1 Overview

The core of the ORBIT testbed is a 400-node two-dimensional radio

grid providing facilities for reproducible networking experiments

with hundreds of wireless nodes. While we shall not discuss it in this

book, it is reported that the ORBIT testbed also includes an outdoor

field trial setup, aimed at the real-world evaluation of the network

protocols that have been already validated on the radio grid, as well

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 233

as for application development involving mobile end-users. The field

trial network is said to provide a configurable mix of both high-speed

cellular (3G) and IEEE 802.11 wireless nodes in a real-world setting.

In addition to the radio grid and the outdoor setup, there are a

number of hardware devices that facilitate the experiments, such as

• several “sandbox” units that can be used to get familiar with

the testbed and prepare experiments before running them

on the radio grid

• GNU radios (i.e., software-defined radios)

• noise generators that are intended to allow topology control

on the radio grid

Construction of the 400-node ORBIT radio grid facility took place

in one of the buildings of the Rutgers University, in New Jersey, USA.

In October 2005 the testbed services were released to the public.

Examples of some research topics for which ORBIT developers claim

the testbed was used include

• mobile ad hoc networks (MANET)

• mesh network protocols for Wi-Fi access

• delay tolerant networks (DTN)

• future Internet architecture

• media streaming over wireless networks

• mobile content delivery

• wireless network security

Following the public release, ORBIT developers focused mainly

on technology and service software improvements necessary to

meet new research community needs. Such new features that were

already or are being implemented include

• testbed enhancements

— software-defined radio (SDR) nodes; reportedly, about

10 GNU/USRP (Universal Software Radio Peripheral)

devices have been included in ORBIT and used for

cognitive radio networking experiments; inclusion of the

higher performance USRP2 radio is said to be in progress

— improved topology and mobility control

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

234 Network Emulation Testbeds

— integration with wired-network testbeds, in particular,

integration into the emerging GENI research infrastruc-

ture

• software development

— enhanced user portal as well as software and operations

support services; the ORBIT management framework

(OMF) software includes support for grid virtualization

and integrated experiments with PlanetLab

— software kit for small-scale deployments at user sites

and an open-source software repository; the design of

the ORBIT kit has been completed, and a consortium has

been established to enable other institutions to set up

smaller ORBIT-like radio grids

ORBIT developers report that OMF was selected as one of

the competing experimental network control architectures for the

GENI Spiral 1 prototyping project in September 2009. The related

GENI/OMF project is expected to lead to a broader availability

of the ORBIT testbed resources integrated with wired-network

components through the GENI experiment management framework.

7.3.2 Architecture

The ORBIT testbed is operated as a shared service that allows

users to conduct wireless network experiments on-site or remotely.

However, only one experiment can run on the testbed at a time.

The use of the testbed is automated, so that to minimize lag in

performing experiments, and the results are saved to a database for

later analysis.

Its developers propose to view ORBIT as a set of services: users

input experiment definitions and receive the experimental results as

output. This concept is illustrated in Fig. 7.3.

The input of ORBIT, the experiment definition, is a script that

manages ORBIT services through a control system. The control

system supervises the radio grid and a configuration system in order

to perform actions such as given below:

• Reboot the wireless nodes in the radio grid.

• Load the operating system, as well as other system and

application software onto each node.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 235

Figure 7.3. Architecture of the ORBIT testbed operation mechanism.

• Set the relevant parameters for the experiment both for

the grid nodes, and for the additional ones that are used

to introduce controlled interference, monitor traffic and

interference, etc.

• Manage the measurement system by specifying the required

parameters for the filtering and collection of the experiment

results, and the database schema for storing the results.

The measurement system gets data from the radio grid, provides

feedback to the control system, and also delivers the experiment

results to users, which represent the output of ORBIT.

7.3.2.1 ORBIT hardware

The main component of the ORBIT testbed is the interconnected 20

× 20 grid of wireless nodes. The placement of the nodes is shown in

Fig. 7.4, each of them represented by a small circle or filled square,

depending on the type of adapter. The convention used in ORBIT

when referring to nodes is to employ their coordinates, first the

index on the horizontal axis, and then the one on the vertical axes,

separated by a dash. Thus, the node in the bottom right corner is

referred to as “node 20-1.”

Each wireless node in ORBIT is a PC with a 1 GHz VIA processor,

512 MB of RAM, 20 GB of local disk, 2 × FastEthernet ports, 2 ×
IEEE 802.11 a/b/g cards, and a chassis manager. The two kinds of

wireless cards in the main ORBIT radio grid are

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

236 Network Emulation Testbeds

Figure 7.4. The radio grid of the ORBIT testbed.

• 377 × Atheros AR5212 (shown as circles on lighter

background in Fig. 7.4)

• 23 × Intel IPW2915 (shown as filled squares on darker

background in Fig. 7.4)

The chassis manager of ORBIT nodes is used to control them

and has a 10 Mbps Ethernet port. The FastEthernet ports of the

wireless nodes are dedicated one for control, to load and manage

the ORBIT node and to collect measurements, and one for data

communication for experiment purposes, as needed by the user.

Readers may remember that a similar network separation was

used by Emulab. Note that on ORBIT there is also a fundamental

separation between the wireless experiment network, and the wired

networks used for control and user data.

The other wireless devices that are represented in Fig. 7.4 are as

follows:

• Noise generation antennas: A number of four, they are shown

as a rhombus marked with the symbol “N,” and are located

between nodes 1-1 and 2-1, nodes 19-1 and 20-1, nodes 19-

20 and 20-20, and finally between nodes 1-20 and 2-20. The

electromagnetic noise produced using this antennas is used

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 237

to emulate the effect of distance in wireless networks, as it

will be explained in Section 7.3.3.

• Traffic sniffers: Also a number of four, they are depicted as

circles marked with the symbol “S,” and are located near the

nodes 1-4, 20-1, 20-20, and 1-20. The sniffers, manufactured

by Aruba, can be configured to sniff specific channels, and

to report every sniffed packet to the ORBIT database. Thus,

users can capture the experiment traffic in an independent

manner, for further analysis, such as packet correlation,

correctness checking, verifying experiment outcomes, etc.

Note that the sniffers are reported to currently work only on

IEEE 802.11b/g channels.

While we shall not go into details, readers should be aware that

other hardware is available for experiments on ORBIT, which is as

follows:

• IEEE 802.11 wireless cards used on the eight sandboxes,

from manufacturers such as Atheros, Intel, Realtek, Intersil,

and Zydas

• GNU radio hardware, installed into one of the sandboxes

• bluetooth cards, installed into 46 of the main radio grid

nodes

7.3.2.2 ORBIT software

The software components of ORBIT are essential for facilitating

experiments with the testbed. The functions of the ORBIT software,

which is globally called “Experiment Management Service,”5 are

provided by several components that can be grouped into three

categories given below:

(1) experiment control

(2) experiment execution

(3) measurement and result collection

Experiment control The main component related to experiment

control is the Node Handler. This software module sends commands

5More recently the software has been renamed to ORBIT Management Framework

(OMF), which is the name in use currently.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

238 Network Emulation Testbeds

to the radio nodes at the appropriate time, and keeps track of their

execution. The peer of the Node Handler, which resides on each radio

node, is called Node Agent. This software module listens for, and

executes the commands from the Node Handler. Node Agents also

report information back to the Node Handler.

The functionality provided by the combined execution of these

two components is as follows:

• Give the user control over the testbed, by allowing actions

such as controlling the power state of the wireless nodes,

initializing the interfaces, launching applications simultane-

ously on the nodes involved in the experiment, etc.

• Enable the automated collection of experimental results.

This function includes the creation of databases consistent

with the measurements for that particular experiment.

Occasional feedback may be required to fine tune the

operation of the Node Handler, since it uses a rule-based

approach for monitoring and controlling experiments.

• Load hard disk images onto the experiment nodes, and save

the image of a hard disk into an archive for future use. This

imaging process allows users to use customized OS images

on experiment nodes.

All these actions can be performed through a single command-

line interface, using the generic command “orbit,”6 which is the

interface for controlling the Node Handler, the experiment, and the

nodes on the testbed.

The ORBIT management software also assists users in per-

forming experiments. Thus, the ORBIT software includes several

predefined scripts for performing experiment tasks such as

• starting applications, such as traffic generation

• defining active node placement

Starting applications is done in ORBIT via Ruby scripts, that are

wrappers for the real applications to be executed. Such applications

can be used for traffic capture (e.g., “tcpdump”), or for traffic

generation. Regarding traffic generation, in addition to a specific

6In OMF, the command has been renamed to “omf.”

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 239

tool developed for ORBIT, called ORBIT Traffic Generator (OTG),

support is also included for commonly used software. Thus, tools

such as Iperf and Distributed Internet Traffic Generator (D-ITG)

were integrated with ORBIT, so that even when using these tools

measurement collection is still done using ORBIT specific mecha-

nisms, and the statistics are written to the experiment database.

By using specific ORBIT commands, users can select for

experiments certain testbed nodes, thus creating networks with

custom node placement (within the physical limits of the radio grid).

More complex mechanisms are required should one wish to use, for

instance, multi-hop network topologies, as it will be described in

Section 7.3.3.1.

Measurement and result collection ORBIT uses for collecting ex-

perimental results a set of tools known as the ORBIT Measurement

Framework & Library (OML). This framework has a client/server

architecture as it will be explained next.

The Node Handler starts one instance of an OML Collection

Server for each experiment run. The server will listen and collect

experimental results from the various nodes involved in the

experiment (see below). An SQL database is employed for archiving

the results.

Each Node Agent on each experiment node controls one OML

Collection Client that is associated with the applications used in

the experiment. During experiment execution, the applications will

forward any required outputs or measurement results to the OML

Collection Client. After applying optional filtering/processing of

the data, the OML Collection Client will send the results to the

OML Collection Server mentioned above. The server collects the

measurements sent by the clients, and inserts the data into the

appropriate columns of the database.

While this client/server approach provide an easy-to-use high-

level mechanism for conducting measurements, ORBIT also pro-

vides a low-level interface for such tasks, named “Libmac.” According

to ORBIT developers, Libmac is a library that allows users to perform

low-level tasks such as

• inject and capture MAC layer frames

• manipulate wireless interface parameters, both at aggregate

and per-frame levels

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

240 Network Emulation Testbeds

• communicate wireless interface parameters over the air on

a per-frame level

• collect MAC layer measurements from experiments

7.3.3 Emulation Features

ORBIT is first of all a wireless network testbed. However, it is

different from typical wireless network testbeds in that it has

features that enable experiments that would not otherwise be

possible by simply using the wireless hardware itself. The most

important features in this category are

(1) network topology emulation

(2) mobility emulation

7.3.3.1 Network topology emulation

Users can select various nodes in the ORBIT testbed to create

active node placements with different shapes. However, all these

node configurations will be essentially located in the same com-

munication range. This is because ORBIT developers report that

even the lowest transmit power setting, 1 mW, still results in a

communication range that is larger than 20 m, the length and width

of the testbed. Moreover, using a low fixed transmit power setting

prevents doing experiments with power control algorithms, thus

reducing the usability of the testbed.

There are two solutions that can be used on ORBIT to create

complex multi-hop network topologies, as it will be described next:

• MAC address filtering

• noise generation

MAC address filtering ORBIT users can make use of standard MAC

address filtering tools, such as “iptable,” “ebtable,” or “mackill,” to

force given nodes to ignore other ones. In this way it is possible to

create virtual links between nodes, and thus emulate an arbitrary

multi-hop connectivity.

Another lower-level approach is available in the MAC address

filtering category. ORBIT developers have modified the driver of

the wireless interfaces, called “madwifi” to allow a specific MAC

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 241

filtering mechanism to be executed. Thus, the modified driver allows

filtering incoming packets by the sending MAC address. The packets

are not only filtered though; they can have a user-defined received

signal strength indicator (RSSI) value assigned to them. Moreover, a

specified percent of these incoming packets can be ignored, so as to

simulate a poor radio environment in which packet loss occurs.

This driver modification is transparent to routing protocols

and any other applications running on the wireless nodes. Hence,

developers claim that this approach can be used to accomplish tasks

such as

• emulate arbitrary static and mobile topologies

• emulate custom radio environments, including very noisy,

low signal conditions

• real-time adjustment of the emulated topologies and radio

environments

Note that this mechanism doesn’t actually create those topologies

and radio environments, but only emulates their effects. Therefore

the following caveats should be noted:

• Packet filtering is only applied to correctly received packets,

hence IEEE 802.11 MAC mechanisms such as frame retrans-

mission have no effect on packet receive percentages as

configured in the modified driver.

• Packets are still being sent and received at the hardware

layer by all the wireless nodes involved, therefore the

contention for the radio environment will still take place,

even when configuring high packet loss rates in the modified

driver.

Noise generation The noise generation subsystem in ORBIT, called

Centralized Arbitrary Waveform Injection Subsystem (CAWIS),

consists of an arbitrary waveform generator, namely Agilent ESG,

that is connected through a distribution network to four multi-

band antennas located in the four corners of the main ORBIT radio

grid (cf. Fig. 7.4). Using CAWIS, users can inject additive white

Gaussian noise signals into the main ORBIT grid, and thus control

the radio environment of the nodes. Adding noise to the radio

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

242 Network Emulation Testbeds

environment effectively changes the value of the signal-to-noise

ratio (SNR) as seen by the wireless transceivers. This is because,

while the signal level doesn’t change, the noise level increases. In real

wireless networks, low SNR values are typically related to increased

distances between the transmitter and the receiver, which brings

signal values closer to the noise level. Therefore, the effect of noise

injection on SNR can be used to create the effects of distance in

ORBIT, hence to create different network topologies. In a similar

manner, noise injection can also be used to emulate mobility, as it

will be explained in the next section.

By using an ORBIT experiment description script, users can

define the noise generation antennas to be included in the

experiment, along with the other experiment components. The

configurable parameters for these antennas are

• Operating channel: any of the valid channels of the IEEE

802.11a/b/g standard

• Noise power: any value in the range from −95 to +5 dBm7

The distribution network that connects the waveform generator

to the four antennas allows users to control the attenuation of each

individual antenna feed. By default, this additional attenuation on

all antennas is zero, which means that the injected noise power

is equally distributed. To create unequal signal distributions, users

specify an appropriate attenuation setting that will reduce the noise

level in parts of the radio grid.

While the noise generation system makes it possible to control

the radio environment, it doesn’t by itself create the required

multi-hop topologies unless it is appropriately configured. ORBIT

developers proposed a method called Select Nodes with Fixed

Interference (SNFI) to address this issue, and demonstrated that

multi-hop topologies can be successfully created with only four

noise sources [53]. Thus, SNFI could automatically select suitable

nodes for a number of different 2 and 3-hop topologies. However,

the long-term reproducibility of the results was reduced when nodes

with marginal SNR were involved. We also note that those 2 or 3-hop

7Note that the noise floor in an interference-free environment (due to the so called

“thermal noise”) is around -100 dBm for the frequency band used by IEEE 802.11

networks.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

ORBIT 243

topologies were actually relatively small when compared to the full

400-node size of ORBIT.

7.3.3.2 Mobility emulation

ORBIT is composed of a large number of fixed wireless nodes. Hence,

real mobility is not possible on the main radio grid. However, ORBIT

can emulate mobility by leveraging the tight grid topology of the

radio antennas in the testbed through a technique called spatial
switching [92]. Practically, ORBIT emulates mobility by switching

a virtual mobile node to different radios and antennas as time

progresses, thus changing physically the position of the transceiver

that corresponds to the virtual mobile node. As a consequence,

the path of the mobile node comprises a number of discrete steps,

an approximation of the actual path a moving node would take.

Although support for real-time control of the virtual trajectory of

mobile node is planned, only predefined paths are possible for the

moment.

Spatial switching is implemented by ORBIT developers in

software, over the Gigabit Ethernet connections available on the

ORBIT testbed. This method allows scaling up the setup to a large

number of nodes at a much lower cost than by using hardware

antenna switches. The software spatial switching system uses a

split-stack architecture, meaning that the network stack of a single

mobile node is split between a virtual mobile node and a real

grid node. For every additional mobile node in the experiment, the

emulator requires an additional pair of a virtual mobile node and a

grid node.

The network layer of the virtual mobile node resides on the same

physical computer throughout the experiment, and is connected to

various grid nodes by means of network tunnels running on the

wired Ethernet network available in ORBIT. As time progresses, the

end point of the tunnel changes, so that the virtual mobile node

effectively uses the link and physical layers of different grid nodes.

The virtual mobile node can be either a dedicated grid node, or

any computer that is on the same local area network as the grid

nodes. On the virtual mobile node, the software components of the

spatial switching system provide a virtual network interface, which

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

244 Network Emulation Testbeds

is associated to a grid node radio interface. Therefore, network

applications can be run over the virtual mobile network simply by

changing the routing table of the virtual mobile node to point to the

virtual interface.

Given that ORBIT testbed area has 20 × 20 m, and the fact that

the nodes are separated by 1 m on both horizontal and vertical

axes, it is possible to directly emulate motion with such bounds and

movement accuracy. To emulate larger distances between the nodes,

an experimenter needs to utilize the ORBIT noise generation system

to raise the noise floor in the environment, which creates the effect

of greater distances between transmitter and receiver, as it was

described in the paragraph on noise generation in Section 7.3.3.1.

7.3.4 Discussion

ORBIT is definitely a great tool for making wireless network

experiments. As an indoor wireless network testbed, it provides a

large number of nodes that can be configured and used with ease

by means of a specific management framework. However, the high

density of the nodes prevents users from making certain types of

realistic experiments. This is why ORBIT developers have added

emulation mechanisms that extend functionality of the testbed itself

with features such as mobility and network topology creation.

Readers should note that while these mechanisms are undoubt-

edly useful, they do not recreate the actual mobility patterns or

target topologies, but only reproduce their effects. This may cause

issues with experiments than employ such emulation techniques, as

follows:

(1) Topology emulation through MAC filtering does not eliminate

the contention that occurs when multiple nodes attempt to

access the wireless media simultaneously. Therefore, only

experiments with low amounts of traffic can be executed in this

manner, since contention can only be ignored in such cases.

(2) Topology emulation through noise generation only allows

creating a limited number of small topologies using a small

percent of ORBIT nodes. Hence, this method leads to an

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 245

inefficient usage of resources, and seriously restricts the range

of possible experiments.

(3) Mobility emulation through spatial switching, even with the

addition of noise generation for large distance emulation, does

not take into account the complex electromagnetic effects that

occur in mobile networks, such as multi-path fading, shadowing,

Doppler effects, etc. Hence, the mobility emulator can be used

only for discrete small-scale mobility scenarios, such as laptop

usage in an office or conference environments.

While the disadvantage mentioned at point (1) above cannot be

easily eliminated, the issues described at points (2) and (3) are both

related to the quality of the noise injection system. One can assume

that a fine-grained variable noise control in many points of the radio

grid (ideally near each node) would allow to faithfully reproduce a

broad range of topologies with a high-utilization efficiency of the

testbed, as well as more detailed and more accurate mobility effects.

When referring to Table 3.1, it is obvious that ORBIT was

classified as a research emulation tool of testbed type. ORBIT

experiments use real wireless network interfaces, and also control

the topology, hence the testbed has topology emulation capabilities

and a high complexity. Emulation is done by using several systems

simultaneously, hence it is done in a distributed manner.

7.4 Comparison

In this section we shall compare the three network emulation

testbeds presented in this chapter. Although these testbeds cannot

be said equivalent from the point of view of their characteristics and

intended usage, the comparison is intended to give our readers a

quick overview on the features of each of them, and to emphasize

the similarities and differences for those points that these testbeds

do have in common.

Table 7.1 summarizes the main facilities provided by each test-

bed. Note that we did not include the aspects related to experiment

preparation, such as the sandboxes on ORBIT, nor those features that

were discontinued, such as the mobile robots on Emulab.

Septem
ber6,2012

13:6
PSP

Book
-9in

x
6in

IN
E˙BO

O
K

246
N

etw
ork

Em
ulation

Testbeds

Table 7.1. Comparison of network emulation testbeds: Emulab, PlanetLab, and ORBIT

Emulab PlanetLab ORBIT

Wired-node count 374 1087 None dedicated

Wireless-node count 72 None 400

Network features 10/100/1000

Mbps Ethernet, NetFPGA, IPX

network processors, GNU Ra-

dio, IEEE 802.11a/b/g

Virtual network inter-

faces only

IEEE 802.11a/b/g, GNU Ra-

dio, Bluetooth

Node virtualization Possible Used by default Possible

Emulation features Link degradation control,

wired-network topology

Overlay network Wireless-network topology,

node mobility

External connectivity for

experiments

Possible through PlanetLab Used by default Possible through PlanetLab

(wired network)

Geographical distribution

of nodes

Collocated Globally dispersed Collocated

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 247

The first criterion in Table 7.1 is the count of wired nodes.

It is obvious the PlanetLab is the “winner” in this category, with

over one thousand nodes. Note that those nodes are not owned

by one institution, therefore the financial costs are divided among

the PlanetLab members. Emulab, on the other hand, is the full

owner of all the testbed nodes. While this implies higher costs, it

also provides more freedom in using the nodes, upgrading them,

better uniformity regarding the characteristics of the resources, and

potentially a faster fixing of problems. The label “None dedicated”

we used for ORBIT in this category means that, although the hosts

for the wireless nodes are connected by wired networks, both for

control and experiment purposes, these hosts are only intended to

support the wireless network experiments, and are not meant to be

used directly for wired network tests.

The second comparison criterion is the count of wireless nodes.

ORBIT, which is the wireless network emulation testbed, has the

lead, with 400 wireless nodes on the main radio grid. Emulab makes

76 nodes available for wireless experiments; however, they are

hosted by some of the wired nodes in the testbed, so there is a

resource sharing scheme that needs to be considered. Given that

PlanetLab nodes connect over Internet, there are no wireless nodes

available on that testbed, for the obvious reason that they could not

connect in a wireless fashion with each other.

An analysis of the network features shows that Emulab offers the

largest set of choices. While in terms of network interfaces Ethernet

and IEEE 802.11 are definitely the most used, there are several

other features that make possible a wider range of experiments on

Emulab, such as the NetFPGA and the Intel IPX network processors,

or the GNU Radio platforms. On the other hand, PlanetLab only

provides virtual network interfaces for its overlay networks; this

emphasizes the focus of PlanetLab not on low-level network

issues, but rather on higher-level network protocol and application

evaluations. The features of ORBIT are the most rich from the point

of view of the available wireless network technologies; thus, ORBIT

also provides Bluetooth interfaces in addition to the more “classic”

IEEE 802.11 and GNU Radio platforms. Even though the hosts for the

wireless nodes on ORBIT are interconnected by wired Ethernet too,

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

248 Network Emulation Testbeds

as mentioned above, we did not include this feature, since it is not

meant to be used exclusively for wired-network experiments.

Node virtualization is a technique that allows to logically increase

the number of nodes available for experiments by running several

virtual machines on the same physical host. This technique can

be used on Emulab through a custom light-weight virtualization

mechanism. PlanetLab uses node virtualization as a fundamental

component in ensuring the separation of the overlay networks built

by each user (the so-called slices). As for ORBIT, virtualization is

indeed supported in the latest releases of the management software.

Note that all node virtualization methods imply also the use of

network virtualization, which boils down to having more virtual

nodes use the same network interface. While it can be argued that

when the network connection has very high speed, the effect of

virtualization may be negligible, for high amounts of traffic, or for

limited network capacities (such as the wireless networks), influ-

ences and interference cannot be ignored. Problems are most severe

on a testbed such as ORBIT, in which the wireless nodes are closely

located to each other, hence reducing the total network capacity

that is useful. Such issues limit the usefulness of virtualization in

the above cases to low-scale low-traffic experiments, or when doing

experiment debugging and preparation work.

In addition to node virtualization, which can be regarded as

an emulation mechanism in itself, each of the presented testbeds

supports a series of features that effectively transform it into

an emulation testbed. Thus, on Emulab, users can control the

link conditions between the experiment nodes, and can build the

desired topologies in the wired network. On PlanetLab, emulation

is achieved by the use of overlay networks, which represent virtual

networks spanning over the real underlying network, the Internet.

As for ORBIT, the customizable wireless-network topologies, and the

emulated mobility mechanism make possible a range of experiments

that could otherwise not be conducted on the fixed wireless network

testbed that the ORBIT radio grid is.

The external connectivity for experiments is an important aspect

when considering the possibility to extend the capabilities of a

testbed through connection to other testbeds or networks. Emulab

includes such support, as it can be connected to PlanetLab. As

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Comparison 249

for, PlanetLab external connectivity is intrinsic to the operation of

the testbed, therefore it is included by design. Due to the wireless

nature of ORBIT, no external connectivity exists for wireless network

experiments. However, ORBIT is integrated with PlanetLab, and

their combination can be used to run mixed experiments that

include wireless nodes on ORBIT and wired nodes on PlanetLab.

The geographical distribution of the experiment nodes is an

important characteristic of any testbed. Both in Emulab and

ORBIT the nodes are located within the same area, in particular

in university campuses. This ensures easy management, and —

more importantly — the highest level of control over network

conditions. On the downside, the observed network conditions

are not necessarily representative of the wide range of possible

situations that can occur over the Internet. PlanetLab gives up

condition control to achieve the realistic, albeit not reproducible,

network degradation observed in the Internet.

To conclude this comparison, we would like to indicate our

view on what are the most appropriate applications for each of the

wireless network emulation testbeds presented here:

• Emulab: As a testbed with a large number of wired and

wireless nodes, that are all located in the same geographical

area, Emulab is particularly suited for network experiments

in which large scale, condition control, and reproducibility

are the main requirements. Therefore, Emulab can be used

to assess the performance of network applications and

protocols starting from the early stages of the development

process, and continuing to more advanced evaluation phases

aimed at validation in view of public release.

• PlanetLab: Over one thousand physical hosts available for

experiments, that are distributed at various locations in

the Internet, recommend PlanetLab for situations in which

network conditions realism is the main requirement. Thus,

PlanetLab is mainly suited for real-life evaluation of network

applications and protocols that are sufficiently stable for

such environments.

• ORBIT: Focusing on wireless network experiments, ORBIT

is obviously the best choice for the evaluation of network

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

250 Network Emulation Testbeds

applications over wireless networks, as well as for the

assessment of wireless network protocols in realistic but

controllable conditions.

Regarding wired-network experiments, we suggest that the

combined testbed that can be created by combining Emulab and

PlanetLab makes for a perfect evaluation platform, since users could

potentially start on Emulab, and then “move” their experiments

seamlessly to PlanetLab as the system they develop becomes more

stable and more robust.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 8

More to Consider

In the first part of this book, “The Ins and Outs of Network Emu-

lation,” we have presented the fundamentals of network emulation.

In the second part, entitled “Network Emulators to Remember,” we

have proceeded to analyze practical examples of network emulators.

Building on this knowledge, we shall summarize in this chapter the

main issues related to network emulation. Then we shall introduce

several network emulators from the research community, so as to

once more emphasize the challenges and requirements related to

advanced network emulation characteristics.

8.1 Network Emulation Issues

We identify several issues that need to be considered in connection

with network emulation:

• realism

• scalability

• flexibility

While this list is certainly not exhaustive, we believe it contains

the most important factors that must be taken into account when

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

252 More to Consider

analyzing a network emulator. Therefore, we shall discuss each of

these issues in more detail in the following sections.

8.1.1 Realism

Realism is certainly the first issue that comes to mind when

discussing network emulation, and network experiment techniques

in general. In this context, realism refers to the accuracy with which

a network emulation tool can reproduce reality.

For discussion purposes, we consider three classes of tools in this

section:

• Network testbeds: all kinds of testbeds, including temporary

experiment setups, that are employed for real-world trials

• Network emulators: all categories of network emulation

tools, including network simulators used in emulation mode

• Network simulators: all types of network simulation tools

In Table 8.1 we make a generic comparison between the three

classes of experiment tools mentioned before. To help judge the

realism of each class of experiment tools, we use the following

criteria:

• the nature of the network applications used

• the way in which time flow is considered

• the nature of the network protocols used

• the types of network interfaces employed

• the nature of the network conditions

Network applications are of course real in all the experiments

performed using network testbeds, and are also real for network

Table 8.1. Comparison of network experiment tools

Network testbeds Network emulators Network simulators

Network applications Real Real Simulated

Time flow Real Real/Emulated Simulated

Network protocols Real Real/Emulated Simulated

Network interfaces Real Real/Emulated Simulated

Network conditions Real Real/Emulated Simulated

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulation Issues 253

emulators, as the ability of running such applications is one of

the main goals of emulation. However, network applications are

modeled, hence simulated, in network simulators.

Time flow is real in network testbeds but may be either real
or emulated in network emulators. By emulated time flow, we

understand the case when time flows in a controlled manner, even

though it may be faster or slower than real time; this is a necessary

property when dealing with real network applications. Network

simulators use logical time during execution; hence we labeled time

flow as simulated in their case.

Network protocols as well are real in all the experiments per-

formed using network testbeds. As for network emulators, network

protocols are also real, or at least equivalent to real in the case of

network simulators running in emulation mode, since otherwise

no interaction with real protocols could take place; we labeled

this latter case as emulated network protocols. In pure network

simulators though, network protocols are modeled, hence simulated.

Network interfaces too are real for network testbeds. In the

case of network emulators, they can be either real or emulated.

We categorize a network interface used in a network emulator as

real when the physical interface effectively employed is of the same

nature with that in the emulated network, and we categorize it as

emulated when the physical network interface used is of a different

nature than that in the emulated network. The first case corresponds

to emulating wired networks over wired interfaces, whereas the

second case represents, for instance, the emulation of wireless

networks over wired interfaces. As an example in the second

category, readers can refer to the cellular and satellite network

emulation features of Shunra VE Appliance (see Section 5.1.1), or

those of Apposite Technologies Linktropy and Netropy emulators

(see Section 5.4.1 and Section 5.4.2, respectively). In the case of

network simulators, network interfaces exist only logically, and are

therefore simulated.

As for network conditions, they are naturally real in network

testbeds and are typically emulated in the case of network

emulators. However, some network emulators do use real network

conditions; this is the case of PlanetLab, for instance. In network

simulators, network conditions too are modeled, hence simulated.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

254 More to Consider

Figure 8.1. Realism versus control for network experiment tools.

Note that the nature of each of the network emulator differ-

entiating criteria above, whether real or emulated, can be used

to distinguish various classes of network emulators, such as the

emulators using real network interfaces versus the ones using

emulated interfaces, and so on. We shall return to this discussion

with more details in Section 8.3.

Using Table 8.1 as a guideline, we represented in Fig. 8.1 the

degree of realism that can be generally expected for each of the three

classes of experiment tools. Note that in experimentation there is

always a trade-off to be made between realism and control. Thus,

the more realistic a setup is, the less control one has over that setup,

and vice versa. To emphasize this trade-off, we also represented in

Fig. 8.1, as a secondary characteristic, the degree of control that each

class of tools provides.

Discussing the realism of a particular emulation tool compared

with another is not our goal. This is because such an attempt is

bound to provide conclusions that are only of limited use, given the

large number of existing tools, and the fact that their features keep

evolving in time. Instead we prefer to provide some guidelines that

readers can use to determine how realistic an emulator is. Two key

aspects in this respect are the following:

• Models: Emulators that contain models for networks and

communication conditions that are close to reality will

have an overall increased realism compared with those

tools using simplified such models. As an example, let us

consider delay emulation. While some emulators only allow

configuring a fixed delay, others let users choose delay

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulation Issues 255

distributions, such as Gaussian or Poisson, and several

emulators even make possible for users to define their own

distributions.

• Scenarios:1 Emulators that allow users to create scenarios

that are close to reality (in terms of number of nodes,

network topology, and so on) are more realistic than

those that only make possible experiments in limited

circumstances. In this context, some emulators only allow

users to configure one end-to-end link, while others let users

create a virtual network topology within the emulators, and

some emulators allow to seamlessly mix real and emulated

nodes to create arbitrary topologies.

Aspects such as those mentioned above must be thoroughly

considered when making decisions about using or purchasing

an emulation tool. Note that such criteria can also be used to

differentiate between network emulators and network simulators,

and also network simulators with respect to each other.

A related issue is that while network emulators do have the

potential of a higher realism compared with simulators, it is obvious

that a network emulator that uses low-fidelity models will be less

realistic that a network simulator that uses high-fidelity ones. Hence,

analyzing the realism of emulation tools and equivalent simulation

tools may help users choose the best solution for a certain purpose,

depending on the totality of their requirements.

8.1.2 Scalability

Scalability refers to the possibility of conducting experiments with

a large number of nodes. It is obvious that in network testbeds

scalability comes at a cost proportional to the number of nodes,

which is potentially high. Given enough processing power to emulate

more nodes on a single host, network emulators can achieve a

reasonable scalability at a reasonable cost. Network simulators can

push scalability to extremes and keep the cost at low values, since all

the nodes are virtual. The relationship between scalability and cost

for the three types of experiment tools is illustrated in Fig. 8.2.

1This issue is related also to the flexibility criterion that we discuss in Section 8.1.3.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

256 More to Consider

Figure 8.2. Scalability versus cost for network experiment tools.

A caveat regarding the discussion of scalability and cost is that

there is a hidden factor, namely time. While network testbeds and

emulators have a real flow of time, as discussed in the previous

section, network simulators use logical time. This means that they

can achieve extreme scalability, but only at the expense of time.

This makes that, even though very large-scale experiments may be

possible through simulation, they could be impractical to effectively

carry out due to the potentially long time to complete. This aspect is

important to bear in mind when comparing experiment techniques

or equivalent experiment tools.

If comparing network emulators with each other, the size of

the network that can be emulated is the most important feature

related to scalability. In particular, emulators that use centralized

execution are affected by scalability problems, which are generally

more severe for software implementations than for hardware ones

due to processing speed capabilities. We have thus seen that in

centralized approaches the size of the emulated network is limited

to tens of nodes and network profiles. To cope with this issue, the

distributed emulation approach comes to rescue and allows making

experiments with hundreds and even thousands of nodes.

8.1.3 Flexibility

Flexibility is another important feature when comparing experiment

tools. There are several aspects related to flexibility, and in this

context we mainly refer to the amount of freedom users have in

doing the following things:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulation Issues 257

Figure 8.3. Flexibility versus learning speed for network experiment

tools.

• Customize the tool and even improve its functionality

according to their needs.

• Employ the tool in various manners and configurations.

With network testbeds, there is in general a reduced flexibility,

since it is typically difficult to customize the hardware devices

involved in the experiment or to change the configuration, topology,

etc., unless one designs the testbed. At the other extreme, we

place network simulators, which can, in principle, be customized as

needed and used in many configurations. Network emulators fall in

between due to that fact that they combine the use of real systems

and that of modeled ones.

In Fig. 8.3, we represent graphically the flexibility for the three

classes of experiment tools that we analyze. As flexibility usually

comes at the cost of complexity, we show in the same figure how

the learning speed changes for the same classes of tools. As network

testbeds use real equipment mostly in static configurations, the time

required to learn how to use that network equipment is usually low

for engineers and researchers in the area, since they are similar to

the systems they use in their daily activities. Network simulators

typically have their own specific interfaces, description languages,

etc. All these make learning slow, in particular if one wishes to

be able to exploit the full capability of a flexible (hence complex)

network simulator. Again, emulators fall somewhere in between

network testbeds and network simulators, as users can employ

well-known practices for the real equipment, but must learn new

procedures for the emulated components.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

258 More to Consider

The same way of thinking can be used to compare different

network emulators with each other. Some emulators may have more

restrictions, and thus less flexibility, than others. If we consider the

issue of user customization, it is obvious that features such as user-

defined models, and the possibility to modify the source code are

key. This makes that many hardware-based emulators will fall in

the low-flexibility category, although some of them do allow users

to upload their own custom network models; source-level changes

are nevertheless impossible. Open-source emulators are at the high

end of the flexibility axis, since a user has absolute freedom in

customizing such network emulators.

As for the possibility to employ a tool in many configurations,

we note that many network emulators that used a centralized

approach restrict the user to a single topology, with the emulated

network being in the middle and the end nodes connected to each

other through it.2 However, such restrictions are not intrinsic to the

centralized emulation approach, as we shall see next.

Let us consider the following two use cases: In Fig. 8.4, we

show a typical emulation scenario that can be created by using, for

instance, a hardware network emulator. Notice the difference that

exists between the real nodes, denoted by A, B, and C that can only

be placed at the edges of the emulated network, and the emulated

network nodes that exist within the inner virtual network created

by the emulator. Therefore, this topology only allows for simple end-

to-end emulation experiments.

In Fig. 8.5 we show a more complex situation, in which the real

nodes, again denoted by capital letters, are “immersed” into the

emulated network. Such a topology can of course be created by

using a testbed and many instances of a link-level emulator, hence

a distributed approach. However, the same scenario can be create

by using an advanced network emulator, such as the simulator-

based ones, simply by a mechanism that allows to associate virtual

nodes in the emulated network with real nodes. This mechanism

is implemented, for instance, by EXata from Scalable Network

Technologies, as we discussed in Section 6.3.2.2. Such flexibility

2Obviously, this restriction doesn’t apply to distributed approaches, in which users

have the freedom to build any desired network topology.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulation Issues 259

Figure 8.4. Simple emulation topology: the real nodes are at the edges of

the emulated network.

Figure 8.5. Complex emulation topology: the real nodes are “immersed”

into the emulated network.

makes it possible to experiment with complex network topologies,

in which the real nodes closely interact with each other and with the

emulated ones.

8.1.4 Other Issues

In addition to the aforementioned issues, which concern all classes

of experiment tools, and all types of network emulators, there are

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

260 More to Consider

other aspects that are of particular importance for some categories

of network emulators.

An issue that we have already partially discussed is that of

open source, namely in the context of flexibility. However, the fact

whether a software network emulator is open source or not has

other effects as well. The user of an open-source emulator can not

only make any desired modifications but also package the changed

version and distribute it as a new tool. Depending on the copyright

associated to the open-source tool, one could potentially even

create commercial products in this way. We appreciate that code

availability is important in order to increase the speed with which

network emulators evolve and gain new features. We also note that

these remarks could apply to some hardware emulators as well:

If the source code would be available, the corresponding emulator

could be improved by the developer community in the same way it

is done for many hardware open-source projects, such as GNU Radio.

One other issue, mainly regarding large emulation deployments

such as testbeds, is security. While this is not a problem that

concerns only emulators, and is also critical for network testbeds

in general, we would like to stress its importance. Network

experiments can produce a lot of traffic and in some cases may

involve malicious behavior, either intended (e.g., malware study)

or unintended (not-yet-discovered program bugs). In such cases,

it is important to properly isolate the traffic and prevent it from

reaching production networks or even the Internet. Nevertheless,

this requirement may conflict with the need to sometimes allow

traffic from remote sources to flow through an emulator, hence

external connectivity. Therefore security is an issue that needs to be

carefully analyzed for any large-scale network deployments.

8.2 Network Emulator Research

In the previous chapters, we have discussed network emulation

solutions that are well established and that have been in use for

years or even tens of years. While such solutions are definitely the

most important for an introduction to network emulation — the goal

of our book — they do not totally encompass the wide range of ideas

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulator Research 261

and concepts that have been put forward in recent years in the field

of network emulation.

In this section, we shall briefly discuss some of the research

projects focused on network emulation. Our presentation borrows

some ideas from the survey in [32], which we recommend for a rela-

tively exhaustive discussion on this issue. Another thorough survey,

albeit dedicated to MANET emulators, is the one presented in [56].

We remind our readers that in Table 8.1 we emphasized the main

characteristics of network emulators that differentiate them from

other experiment techniques. While we said that applications are

real for all network emulators, as a most distinctive characteristic

that differentiates them from network simulators, all the other

features of network emulators could be either real or emulated.

Thus, we distinguished four aspects that network emulators must

take into account in this respect:

(1) time flow

(2) network protocols

(3) network interfaces

(4) network conditions

In what follows, we shall discuss several examples of network

emulators that we have selected and grouped to illustrate various

approaches proposed for the four aspects that we enumerated

above.

8.2.1 Time Flow

Most network emulators use real-time flow during execution, and

in many ways this is regarded as a defining property of network

emulators. However, as we have stated in several contexts, time flow

is just another component of an emulator that can very well be

emulated instead of being real.

While this is not true for most typical network systems,

a particular case in this respect is represented by ubiquitous

systems, such as sensor networks. For such systems, emulation faces

additional challenges. Differently from typical networks, which are

established between computers or equivalents, ubiquitous systems

use special low-power processors and other specific hardware, such

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

262 More to Consider

as sensors or actuators. These circumstances make impossible the

direct emulation of ubiquitous systems on PC hardware.

As a consequence, all the hardware components of such an ubiq-

uitous system need to be emulated, including the processor, so as

to be able to run unmodified application programs (typically called

firmware). ATEMU is such an emulation system which allows differ-

ent hardware configurations [87]. Similarly, MEADOWS allows run-

ning multiple virtual motes per physical host participating in the em-

ulation [60]. While mote applications can be run unmodified on such

emulators, not only the hardware components (including sensors

and actuators) but also the network communication between the

devices, often done through a wireless medium, must be emulated in

this approach. This makes that such systems can be seen as running

in an emulated time that can flow slower or faster than real time,

but also with the same speed as the real time. Nevertheless, in all

cases time needs to be accounted for in some way, which constitutes

a significant difference compared with the typical emulators, which

do not specifically take time into account. An important requirement

for systems that use emulated time, which differentiates them from

simulators, is that time flow should be controlled in a deterministic

manner, so that a direct correspondence can be established between

such emulated devices and the real devices that are emulated.

8.2.2 Network Protocols

Network simulators use — by design — models of network

protocols when conducting experiments. Many see this as an

important drawback of network simulation and of the corre-

sponding simulator-based network emulation. As a consequence,

researchers have worked considerably on devising techniques that

make more realistic experiments possible through the use of real

protocol implementations. This is mainly achieved by integrating

real protocol implementations from open-source operating systems

with network emulators/simulators by creating suitable wrappers,

so that those protocol implementations can be used for experiments

from within network emulators/simulators.

The ENTRAPID system packed the FreeBSD network stack,

allowing protocol developers to experiment with their own protocol

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulator Research 263

implementations integrated into the stack [38]. For this purpose

though, the processes running on the experiment nodes require

modifications. The other characteristics of the network, i.e., the

topology and the physical layer are nevertheless emulated.

IMUNES goes further than ENTRAPID regarding flexibility and

modifies the protocol stack of FreeBSD in order to allow for multiple
independent instances of the protocol stack to coexist in the kernel,

connected via emulated links [117].

The project Network Simulation Cradle aims to integrate the

protocol stacks of multiple operating systems with the Ns-2 network

simulator [48]. This project packed network protocol stacks in the

Linux, FreeBSD, and OpenBSD as shared libraries, and implemented

an Ns-2 agent that allows researchers to use these stacks from

within the simulator.

Another approach is used by the VINI project, which builds

a virtual network infrastructure on top of PlanetLab’s overlay

network [8]. Network functions are provided by using open-

source software implementations for routing, packet forwarding and

network address translation, etc.

One can also use virtualization techniques in order to realistically

reproduce the behavior of different operating systems and protocol

implementations. The User Mode Linux (UML) project provides a

virtual Linux kernel running in user mode. UML has been used

for implementing virtual nodes that are then connected through a

virtual network driver to an emulated network. Examples of UML-

based systems include vBET [49], which targets wired networks,

and the system developed by Guffens and Bastin [33], which targets

MANETs. A similar technique is that of using micro-kernel based

Linux systems, such as the work of Engel et al. [27], which targets

wireless network emulation.

8.2.3 Network Interfaces

Using real network interfaces is the main advantage of many

emulation systems, as this creates a behavior of the connected

devices that is very close to reality. While this is possible without

much difficulty for wired networks, a trade-off situation appears

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

264 More to Consider

regarding wireless networks. Thus, one has two choices when

wishing to perform wireless network emulation:

(1) Use real wireless network interfaces and take advantage of the

realism they provide but lose in terms of control and sometimes

risk undesired interferences.

(2) Emulate the wireless network interfaces, thus gaining full

control over their behavior, at the cost of increased system

complexity and a potential lack of realism.

The first approach is mainly used by wireless network emulation

testbeds such as ORBIT. We have seen in Section 7.3 that achieving

a high level of control is difficult on ORBIT and can only be

accomplished partially through rather complex hardware and

software solutions.

The second approach is taken by several other network

emulators whenever they emulate networks of a different nature

with that of the actual interfaces they are equipped with. We have

seen many examples so far of such network emulators, for instance,

the emulation of satellite, Wi-Fi and cell phone network using a

hardware-based emulator such as Shunra VE Appliance, or Apposite

Technologies Linktropy and Netropy emulators, as we have already

mentioned in Section 8.1.1.

Note that in order to facilitate the control of network conditions,

some researchers have chosen to use emulated network interfaces

even for wired-network emulation. This functionality can be

implemented through operating system specific drivers that are

designed for creating user-defined tunneling mechanisms or virtual

network interfaces. In addition to NCTUns, which we have already

discussed, EmuNET [54] and NEMAN [91] also use this approach.

Of the two, EmuNet has the advantage of distributed execution

capabilities. In all of these systems, the protocol layers starting

at IP level, as well as the network applications, are those of the

experiment hosts, hence real.

8.2.4 Network Conditions

The most challenging task related to network emulation is definitely

that of recreating the communication conditions between the

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulator Research 265

experiment nodes in a realistic manner. This is true for all types of

emulators, no matter how many of the other components are real

and how many emulated. The possible approaches for recreating

network conditions in an emulator are as follows:

• Use real network conditions between the nodes, which can

be either controlled or uncontrolled.

• Use communication models to create the network conditions

between nodes.

8.2.4.1 Uncontrolled real conditions

If realism of the experiment results is the most important, then

alternatives that use as much as possible real components are the

ideal solution. In addition to PlanetLab, which falls in this category

and we have discussed already, we introduce below several other

projects that focus on the use of uncontrolled network conditions.

Monarch is a system that attempts to recreate the communica-

tion conditions (in particular, delay) between two virtual nodes by

using real values of this parameter [36]. Thus, Monarch uses the

latency observed between the host on which both the virtual sender

and the virtual receiver reside, and a remote host on the Internet

that is “associated” to the virtual receiver. The implementation

works as follows. Every packet transmitted by the virtual sender

is captured by Monarch, which sends a probe packet of the same

size to the remote host associated with the virtual receiver. Only

when Monarch receives a reply from the remote host, it will deliver

to the virtual receiver the packet destined to it. For the opposite

direction, from the virtual receiver to the virtual sender, Monarch

passes the packets without delay. This ensures that both the sender

and the receiver observe the round-trip time experienced by the

probe packet, albeit in an asymmetric manner.

The record and replay mechanisms that we have discussed

for NIST Net as well as for several of the commercial network

emulators can also be included in the category of “uncontrolled

real conditions” approaches, since they reproduce in an emulated

network conditions that were previously recorded in a real

production network. Although the conditions are reproduced in a

repeatable manner, they are nevertheless “raw” in the sense that the

experimenter had no control over them when they were captured.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

266 More to Consider

8.2.4.2 Controlled real conditions

Experiments with uncontrolled real conditions are limited to condi-

tions they reproduce. To give users more power over the experiment,

emulator designers attempted to exert a certain influence over the

real conditions.

One example in this category is “replay with modifications,” a

feature that we have seen for the Simena PTC3000 and NE3000

network emulators that we have presented in Section 5.3.2 and

Section 5.3.3, respectively.

Due to the nature of wired networks, the control one can

exert over network conditions and still keep them real is limited.

Things are, however, different for wireless networks. Wireless

communication is by its nature open, which means that it is easy to

exert an influence over it. Of course, this fact can be both negative

and positive, depending on whether the influence is undesired, such

as accidental interference, or desired, case in which it becomes an

instrument of control.

Using controlled real conditions is of particular importance

for wireless networks because such network communication is

traditionally difficult to model. This makes that many researchers

prefer to use field trials for wireless network evaluation, although

their results can end up biased because of external influences. As

a consequence, network emulator developers have paid significant

attention to the possibility of controlling to a certain degree the

wireless communication conditions, either directly or indirectly. An

example in this category has already been provided through ORBIT,

but other projects in this category exist as well.

Direct condition control This approach refers to exerting an

unmediated influence over the wireless media used by the network

interfaces. This can be done by using noise generators to create

adverse communication conditions, as we have seen for ORBIT, or

by using anechoic RF shielded rooms to isolate the experiment area

from external influences, as we will see later for iWWT.

Another possibility in this class of methods, which enables con-

trolled wireless network experiments with unmodified hardware,

is to connect the communicating network interfaces through a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Network Emulator Research 267

wired media instead of the wireless one. The simplest solution

is to use cables and configurable attenuators. A more powerful

approach is used by Judd and Steenkiste under the name “physical

emulation” [51]. Their proposal is to capture the radio signals at

the antenna and to use an FPGA-based digital signal processor to

attenuate signals between the transmitting and receiving stations in

a controlled way. Thus, it becomes possible to accurately reproduce

wireless physical layer effects in repeatable experiments, while still

employing unmodified NICs.

Indirect condition control These methods work by managing in

a reproducible manner various aspects of the experiment that

indirectly influence the communication conditions between the

experiment nodes. One typical example of such an aspect is node

mobility. We have already mentioned that through Mobile Emulab

researchers tried to recreate controlled mobility conditions for

wireless network experiments by using robots. Another solution,

the Ad hoc Protocol Evaluation testbed (APE) presented in [74],

coordinates the movement of the human participants in the

experiment through motion instructions displayed on their laptop

screen as they move, thus controlling motion to a certain degree, and

achieving reproducibility.

Combined condition control We include in this category the

network emulators that mix direct and indirect control methods

to achieve higher experiment flexibility. For direct control, the

Illinois Wireless Wind Tunnel (iWWT) uses an anechoic chamber

to prevent outside RF interferences and create an enclosure for

experimentation [110]. This project also employs the following

techniques for extending the range of possible experiments:

• Similar to ORBIT, network topology is controlled through the

explicit introduction of background noise; transmit power

level is also reduced for topology-control purposes.

• Similar to Mobile Emulab, iWWT employs small mobile

robots to create reproducibility in connection with mobility

experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

268 More to Consider

An equivalent approach from a functional point of view is used

in MiNT (Miniaturized Wireless Network Testbed) [25]. Instead of

noise generators, in MiNT signal power is reduced by attenuators

attached to the wireless devices. MiNT nodes are mounted on

small mobile robots that are remotely controlled to create control

movement trajectories.

8.2.4.3 Modeled conditions

Another approach instead of using real conditions is to model the

network communication and route the traffic of the experiment

nodes, be they real or virtual, through a virtual network built on

top of the real one. In addition to the solutions in this category that

we have already discussed, such as the simulator-based emulation

in Ns-2, or an emulation testbed such as Emulab, we provide a few

more examples of such tools in what follows.

An important research direction in this class is related to

emulators that are designed to be used in a distributed manner. For

example, IP-TNE [102] uses the Critical Channel Traversing (CCT)

algorithm for parallel discrete event simulation and employs real

network interfaces for getting traffic into and out of the network

emulator.

Another system that uses a discrete event simulator for network

emulation purposes is RINSE [58]. RINSE uses a multi-resolution

modeling approach to achieve the target performance level as

follows. Background traffic is simulated in RINSE by using fluid

models requiring less computation resources to simulate, whereas

the traffic of interest is simulated at the packet level.

ModelNet distributes the emulation process by using two sets

of hosts: core nodes and edge nodes [109]. The virtual network is

modeled as a set of pipes, which are managed by the core nodes.

These core nodes cooperate to subject the traffic to the impairments

corresponding to the target network topology. The edge nodes are

the real hosts in the emulation experiment, and their traffic is routed

through the virtual network create by the core nodes. We recall

that we named such an approach “partially distributed emulation”

in Section 3.3.1.2.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 269

While ModelNet is intended for wired IP networks, MobiNet is an

extension of the same approach that targets mobile ad hoc networks

[61]. MobiNet also introduces a virtualization mechanism on the

edge nodes, allowing to scale up experiments to a node count that

exceeds the number of physical edge nodes.

An often-used approach in network emulation is the use of

link-level emulators to control the network conditions for each

experiment node, thus achieving a fully distributed emulation solu-

tion. The link-level emulators are inserted in-between the protocol

stack and the network device driver of an operating system. This

approach makes it possible to use the existing protocol stack and

programs running on a host, while emulating the rest of the network.

EMPOWER, which targets the emulation of both wired and wireless

IP networks is an example of a network emulator employing

this technique [118]. As already mentioned in Section 3.3.1.2,

the wireless network emulation testbed SWOON employs two

experimental nodes to emulate one single wireless node in order to

separate emulation execution from application execution [39].

8.3 Discussion

In Table 8.1, we have mentioned that several aspects can be either

real or emulated in the case of network emulators. The order in

which we listed these aspects corresponds to the order in which

they can be conceptually ordered in real life when considering

network communication. Thus, when starting from the bottom of

the list, we see first “network conditions,” which corresponds to

the medium through which network communication takes place.

Following that, “network interfaces” refers to the physical devices

used to perform the network communication. Further up, “network

protocols” contains those software components that are used to

mediate the network communication that takes place at application

level. The item “time flow” is a global issue that indicates whether

the communication process takes place in real time or not. As we

previously said, we placed “network applications” at the top because

it is the component that is always real for at least some of the

nodes involved in the emulation experiments, and that distinguishes

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

270 More to Consider

Table 8.2. Classes of network emulators

Network Network

testbeds Class A Class B Class C Class D simulators

Network Real Real Real Real Real Simulated

applications

Time flow Real Real Real Real Emulated Simulated

Network Real Real Real Emulated Emulated Simulated

protocols

Network Real Real Emulated Emulated Emulated Simulated

interfaces

Network Real Emulated Emulated Emulated Emulated Simulated

conditions

emulators from simulators. Note, however, that applications should

be viewed rather as a component of the experimentation process

than as a building component of network emulators.

Existing network emulators can be grouped by how many

components of the communication process they emulate and how

many they use as real. While it may not be always true, we noticed

that most network emulators will draw a line between real and

emulated aspects somewhere in the list that we presented, while

preserving their order. We illustrate this idea in Table 8.2, where we

denoted the resulting classes of network emulators with alphabet

letters from A to D. We indicated again the properties of network

testbeds and network simulators at the left-hand and right-hand

sides of the table for clarity purposes.

Note in Table 8.2 how some systems use mostly real components

and emulate only the network conditions, placing themselves closest

to network testbeds. Other systems will use mostly emulated

components, thus being closest to network simulators. Yet some

systems will use a different balance between the real and emulated

components, and fall somewhere in the middle. In what follows we

shall give a brief description and several examples for each network

emulator class:

Class A Closest to network testbeds, the emulators in this class

use real components for all experiment aspects except for network

conditions, which are emulated. In this category, enter testbeds

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 271

such as Emulab [108], using link-level emulation for recreating

the network conditions of a target scenario, or like ORBIT [115],

using various mechanisms to control the network conditions in a

wireless network. The most important characteristic of this class

of emulators is that their physical interfaces match those used

in the emulated network (e.g., wired network emulated on wired

interfaces, or wireless network emulated on wireless interfaces).

Class B The emulators in this category introduce one more level of

modeling, thus getting one step further away from network testbeds.

In this class enter those emulators that use physical interfaces that

are different in nature from those used in the emulated network

(e.g., wireless network emulation over wired network interfaces).

Examples include distributed emulation solutions such as MobiNet

[61] or EMPOWER [118], which are dedicated to wireless network

emulation on top of wired-network testbeds. Another group of

emulators is represented by those that use centralized approaches,

in which a software or hardware system is used to emulate a series of

network elements; the constraint is that the network protocols used

are real, as is the case of NCTUns [111], for example. PlanetLab [84]

can also be included in this class if we consider that the network

interfaces of the virtual nodes on PlanetLab are also virtual —

hence emulated — even though the traffic finally flows through real

network interfaces.

Class C Network emulators of this type use models of network

protocols that are compatible, but not necessarily identical with

the real implementations. In this category, enter most centralized

emulation solutions, which use a software or hardware system to

emulate an entire network, and use models or re-implementations

of network protocols for this purpose. Simulator-based network

emulators are the most representative member of this class. Hence,

typical examples include Ns-2 [105], OPNET Modeler/SITL [80], and

QualNet Developer/EXata [96] network simulators when used in

emulation mode.

Class D Closest to network simulators, the network emulators in

this class emulate all aspects, including time flow. The need for a

time flow that is not real appears rarely for emulation applications

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

272 More to Consider

targeting PC-based (or equivalent) network technologies. For

ubiquitous systems, such as sensor networks, RFID tags, and so on,

it may be necessary to emulate several hardware components, such

as the processor, in order to allow emulation experiments to run on

PCs. An example of such a system is the wireless network testbed

QOMB [15], which we shall discuss in the third part of this book.3

A related example is ATEMU [87]; note that ATEMU is, however,

defined by its authors as a simulator, since time flow is not strictly

controlled; hence, it should be treated only as a closest possible

alternative, and not as an example per se.

We warn our readers that the above classification is not

exhaustive, as some network emulators do not fit in any of these

classes. This is because the layered view for real and emulated

aspects is not a requirement. For example, systems such as

PlanetLab or Monarch use real network conditions (i.e., the lowest

layer in Table 8.2 is real), but they emulate the network interfaces

and network hosts through virtualization techniques (the higher

layers in Table 8.2).

Nevertheless, most existing network emulators can be included

in this classification, since most researchers and developers are

faced with the decision over which components to emulate and

which to keep real in negotiating the trade-off between realism

and control. Drawing the boundary between the layers that we

presented provides an easy-to-understand such trade-off, since the

layers above the boundary will provide the degree of realism, and

those below the boundary will provide the desired degree of control.

Please note that the layered structure that we presented in

Table 8.2 is not fortuitous, as this structure loosely corresponds

to the ISO-OSI network layer model used in most current network

implementations, as follows:

• The item “network conditions” parallels the network media

below the physical network layer (PHY).

• “Network interfaces” is related to the physical (PHY) and

data link (MAC) layers.

3Note that QOMB falls in Class D only when used in the context of ubiquitous systems.

When used for other purposes, such as WLAN emulation, QOMB falls in Class B, since

it emulated wireless networks over wired interfaces.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 273

• The item “Network protocols” is equivalent mainly to the

network (IP) and transport (TCP/UDP) network layers.

• “Network applications” refers to the layers above transport

layer, such as session, presentation, and application layers

(with focus on the latter).

The way in which we split the network layers into four aspects

was determined by the separation of hardware and software

components that exist on most network systems. When emulating

a system though, one can make even more detailed separations. For

instance, one may choose to emulate the network conditions and the

physical layer of a system, but use real implementations for the MAC

protocols and above, by creating the necessary interfaces between

the real and emulated domains. Thus, one can effectively split the

“network interfaces” category into its two components and deal with

them separately.

Note that time flow is the only criterion in our classification that

is unrelated to such a layered structure. Since most emulators do use

real-time flow, we considered that we can safely place it at the top of

the list just below network applications, as the most unlikely aspect

that is going to be emulated.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

PART III

A CASE STUDY: QOMB

275

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 9

QOMB Overview

With this chapter starts the third part of our book, dedicated to

the thorough presentation of QOMB, a wireless network emula-

tion testbed to the development of which we participated and

still contribute actively [15]. QOMB is a relatively new network

emulation tool, hence not so widely known in the research

community. Nevertheless, the issues that we encountered during its

development also apply to other network emulators. We therefore

think that reporting our hands-on experience with QOMB will help

our readers in two possible ways:

• Those involved in developing network emulators should find

helpful hints by reading the description of the components

of QOMB, and their integration (Chapter 10, Chapter 11, and

Chapter 12).

• Those interested only in using network emulators can focus

on Chapter 12 for an outline and on Chapter 13 for finding

practical information about how to run experiments.

In this chapter we shall provide first of all some background

information about our work and the motivations that lead to the

development of QOMB. Then we shall outline the architecture of

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

278 QOMB Overview

QOMB and briefly introduce its two main components: StarBED and

QOMET.

9.1 Motivation

The WLAN technology is currently widely deployed in corporations,

universities, homes, and even public spaces. Terminals with a wide

range of specifications and processing power, in both static and

mobile settings, use this technology as an essential component to

ensure that their users can freely accomplish various tasks that

require Internet connection.

New wireless network technologies, such as ZigBee or WiMAX,

have appeared in recent years to address the nascent needs that

appear as users start to value more and more their connectivity. The

new technologies also target the limitations of existing technologies,

by providing lower power consumption, or higher throughput.

The realistic evaluation of network applications and protocols

running over such wireless technologies plays a significant role in

understanding their performance characteristics. While the range of

possible applications of wireless network technologies is large, we

shall focus below on two of them, namely Internet access and smart

environments.

9.1.1 Internet Access

Network users rely more and more on the fact that they can connect

to the Internet to accomplish their business-related or private tasks.

Emailing, Internet browsing, photo sharing, are only a few examples

of activities that necessitate an Internet connection.

The most used wireless network technology for Internet access is

currently WLAN. Other technologies have also emerged as solutions

for ensuring Internet connectivity from non-computer devices such

as mobile phones. In this category enter the 3G generation of

standards, which were more recently followed by so-called 4G

standards, LTE (Long Term Evolution) and Mobile WiMAX.

Such technologies make it possible to connect wirelessly not only

to the Internet but also with other users. Thus, one could use a

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Motivation 279

WLAN connection to make a VoIP call even from a mobile phone,

thus making significant savings on call charges in those areas where

WLAN connections are possible. These technologies could also be

used in the case of disasters to connect rescue workers with each

other and with the command center. In these contexts, the quality

of voice communication and the performance of routing protocols

are some of the issues that need to be fully understood before

deployment.

Experiments with such technologies are nevertheless difficult,

first of all because of the evanescent nature of the wireless

communication, which makes it difficult to thoroughly observe and

capture the traffic. This issue is amplified by factors such as mobility

and the potential significant number of nodes distributed over a

large geographical area. Moreover, the possibility of undesired and

uncontrollable interferences further contributes to increasing the

experimentation difficulty.

9.1.2 Smart Environments

A concept that seems very promising as a near-future application

of wireless network technologies is that of smart environments,

also known as Ambient Intelligence (AmI), or ubiquitous computing.

Such intelligent environments combine a large number of small

sensing and computing devices in order to “proactively, but sensibly,

support people in their daily lives” [6]. Each of these devices has

limited communication, computational and energy resources, but

together they can be used to accomplish a wide range of tasks, such

as people and asset localization and environment condition control.

AmI devices are typically embedded in homes or deployed

in outdoor environments, which makes controlled experiments

difficult. Development is further hindered by the small form factor

of such devices and by the limited access to their internal state.

Moreover, the usual organization issues related to large-scale

experiments make it difficult, if not impossible, to exhaustively

validate a system.

Ubiquitous systems often employ wireless networks to commu-

nicate with each other. This is because wireless interfaces provide

significant advantages in terms of deployment facility if considering

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

280 QOMB Overview

a large number of small-size devices. The performance of the

algorithms and protocols that are implemented in the firmware

of the ubiquitous network systems should be assessed as they

communicate wirelessly, so as to validate their operation, and in

order to decide the various parameter values that ensure optimum

performance characteristics under specific circumstances.

9.2 Requirements

As we have mentioned in several places in this book, traditionally,

most of the investigations related to network applications and

protocols are done using network simulations, including for the case

of wireless networks. The opposite alternative, real-world trials,

suffers from disadvantages such as potential undesired interference,

and difficulties in orchestrating mobility, all these resulting in low

result reproducibility. The technique of network emulation, bridging

the gap between simulation experiments and real-world trials, is

a hybrid approach that is particularly suited for wireless network

experiments.

9.2.1 Background

Our activity in the field of networks started in 2001, when we

joined a team at CERN, the European Laboratory for Particle Physics,

located in Geneva, Switzerland. The team was (and still is) involved

in activities related to the design, implementation, and management

of the network architecture used by ATLAS, one of the particle

physics experiments on the LHC (Large Hadron Collider). LHC,

which is being built at CERN, is at this moment the world’s largest

and highest-energy particle accelerator, and it started operation in

March 2010.

Our work was related to the study of the relationship between

network QoS, i.e., the conditions in a network, and application QoE,

that is the user-perceived quality (UPQ) for the applications running

over that network. While this activity was of significance for ATLAS-

related network traffic, it is also of general interest for widely used

network applications, such as VoIP and video streaming. This is

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Requirements 281

because our work resulted in a methodology for answering two

types of questions:

(1) Given a certain network, with its respective QoS, what is the QoE

that one can expect to have for a certain application?

(2) Given some requirements regarding the QoE of an application,

what is the minimum network QoS that is needed in order to

achieve the desired QoE?

This work is presented in detail in our PhD thesis, “Measuring

Quality in Computer Networks” [10]. One of the issues that became

obvious during this activity was that in order to be able to conduct

objectively a study on the relationship between network QoS and

application QoE, one needs the ability to control network state, so

as to perform repeatable experiments in a wide range of conditions.

This fact basically emphasized the need for network emulation.

In our PhD thesis, we performed network emulation mostly in

simple wired-network scenarios, and we employed for emulation

purposes Dummynet, which we have already described in Sec-

tion 4.1. Due to its limitations in terms of speed, accuracy, and

realism, we started working with a colleague, Mihai Ivanovici, on

implementing a hardware-based network emulator that operates

at line-speed for 1 Gbps rates, has a high accuracy, and includes

background traffic models. This work is described in his PhD

thesis, “Network Quality Degradation Emulation — An FPGA-based

Approach to Application Performance Assessment” [46].

9.2.2 Large-Scale Wireless Emulation

From a current perspective, our previous work had two main

limitations:

(1) It only dealt with wired-network emulation.

(2) It only targeted small-scale experiments.

While high-speed wired networks are certainly the backbone of

the Internet, one can notice a proliferation in recent years of the

use of wireless networks. These networks have gained significant

ground and may have become the access method of choice for

typical users, especially in public places, but often at home too.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

282 QOMB Overview

Moreover, since wireless network quality degradation is usually

more severe than that in wired networks, even in mixed scenarios

the wireless communication is the component that has a dominant

effect on application QoE. Therefore, the possibility to emulate

wireless networks appears as an important feature of modern

network emulators.

Small-scale experiments are certainly useful do determine

baselines for the operation of a network system. However, any real

network, be it wired or wireless, will have a large number of users.

Hence, the ability to perform large-scale experiments emerges as

another significant requirement for modern network emulators.

In 2006 we joined the Hokuriku Research Center1 of the

National Institute of Information and Communications Technology,

located in Ishikawa, Japan. Since then, our activity was dedicated to

designing and implementing a wireless network emulation testbed

that answers the aforementioned requirements, which can be

summarized as follows:

(1) Make wireless network emulation experiments possible.

(2) Do this for large-scale scenarios, with a minimum of several tens

of nodes.

The range of possible applications of such a testbed is broad,

from experiments related to mobile networks and mesh networks,

to research related to ubiquitous systems and sensor networks. As

an example, we ask our readers to imagine the following scenario.

In order to design and validate wireless network equipment that

is to be used in mission-critical circumstances, such as the rescue

operations following a disaster, one needs to perform a thorough

validation of the equipment under test. While this can certainly

— and should necessarily — be done up to a certain point by

using the real equipment under evaluation, practical reasons may

restrict the extent of the scenarios that can be explored in this

manner. A wireless network emulation testbed can help the network

engineers assess the performance and validate the equipment under

test in a wide range of network conditions. This will help provide

the required guarantees that at the time when rescue workers will

1Starting with 2011 the center was renamed to “Hokuriku StarBED Technology

Center”.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Design Outline 283

actually use the equipment in real circumstances, it will operate as

intended and at the desired QoE level.

9.3 Design Outline

The process of designing the wireless network emulation testbed

QOMB was driven by the two requirements presented in the

previous section. To tackle those requirements we employ two

elements:

• a software component named QOMET, which is a set of tools

for wireless network emulation

• a hardware component named StarBED, which is a wired-

network testbed, and the experiment-support software tools

associated to it

The software tools provided by QOMET enable experiments with

emulated wireless networks over physical wired networks. Our

choice of using such an approach for our testbed design is motivated

by two factors:

• As discussed in Section 8.2.3, emulating the wireless

network interface gives more control over the experiment

compared to the use of real wireless network interfaces (e.g.,

the approach used in ORBIT).

• Software tools allow more flexibility in designing the

experiment platform, and in our case allow for a distributed-

execution mechanism, that makes large-scale experiments

possible.

StarBED is the large-scale network experiment environment that

is managed by our research center. It was natural to leverage this

resource in designing QOMB, so as to enhance its functionality

with additional capabilities. Note that StarBED comes with a set

of experiment-support software tools, namely SpringOS and RUNE,

that make it easier to run experiments on this testbed.

The two components that we discussed so far will be presented

in more details in the next chapters, QOMET in Chapter 10, and

StarBED and its tools in Chapter 11, respectively. Note that while

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

284 QOMB Overview

there is no strict dependency between these two QOMB components

— in the sense that QOMET can be run on top of other testbeds

as well — the integration between QOMET and StarBED makes it

possible to conduct wireless network emulation experiments in a

straightforward manner on the resulting testbed, QOMB, as it will

be illustrated in Chapter 12. In fact, the name QOMB simply stands

for “QOMET on StarBED.”

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 10

QOMET

In this chapter, we describe the wireless network emulation set

of tools named QOMET. We present first the fundamentals behind

QOMET and the libraries that provide the network emulation

functionality, namely deltaQ, wireconf, and chanel. Then we outline

the command-line tools used to effectively perform emulation

experiments, namely “qomet” and “do wireconf.”

10.1 Overview

QOMET is a wireless network emulator that was initially dedicated

to IEEE 802.11 networks (WLAN, also known as Wi-Fi) [17, 18] and

was later extended to support other wireless network technologies,

such as IEEE 802.15.4 and active RFID tag wireless communication.

Support for IEEE 802.16 (WiMAX) is planned for the future.

Differently from ORBIT, QOMET does not rely on real wire-

less network cards. Instead, QOMET employs a scenario-driven

architecture with two stages to reproduce the wireless network

communication conditions in a wired-network environment. The

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

286 QOMET

Figure 10.1. The logical organization and processing flow of QOMET.

logical organization of QOMET is presented in Fig. 10.1. The

processing flow is as follows:

(1) In the first stage, QOMET computes from a real-world sce-

nario representation the network quality degradation (�Q)

description that corresponds to the real-world events. This

computation is done by the library called deltaQ (presented

later in Section 10.2).

(2) In the second stage, the �Q description is applied into the wired

network during the live experiment execution to recreate the

wireless network communication conditions. This function is

ensured by the libraries wireconf or chanel, depending on the

type of experiment (more details about each of these libraries

and their use will be provided in Section 10.3 and Section 10.4,

respectively).

The main features of QOMET are summarized as follows:

• support for wireless communication emulation

— wireless network technologies

∗ IEEE 802.11a/b/g

∗ active RFID tag communication

∗ IEEE 802.15.4

— 2D and 3D wireless network antennas

— propagation models

∗ free space path loss model

∗ log-distance path loss model

• support for node mobility models

— linear motion

— circular and rotation motion

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

DeltaQ Library 287

— random way point motion

— behavioral motion1

• support for synthetic environments2

— 2D and 3D objects, such as buildings

— 2D street topology

• support for routing protocols

— Optimized Link State Routing (OLSR)

All of these feature sets except the last one are supported

via the deltaQ library, and will be described in more details in

the next section. Routing protocol support is only needed during

live execution, and is implemented in the wireconf library (see

Section 10.3).

10.2 DeltaQ Library

The role of the deltaQ library is to convert the scenario repre-

sentation of the emulation experiment to a network degradation

description as the first stage of the process presented in Fig. 10.1.

The library is called to perform this computation process by the two

executable programs in QOMET, namely “qomet” and “do wireconf,”

as it will be detailed in Section 10.5.1 and Section 10.5.2,

respectively.

The conversion process makes use of several models for handling

the three main functions of the deltaQ library:

• wireless communication emulation

• node mobility emulation

• synthetic environment creation

1The behavioral motion model implemented in deltaQ is a mechanism for computing

the trajectory of a mobile node given its start position and destination. We shall

discuss this model more thoroughly in Section 10.2.3.
2QOMET can use real map data in JPGIS format for the definition of buildings and

streets, so as to create a realistic virtual environment for the emulation experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

288 QOMET

10.2.1 Scenario Representation

The scenario representation is the input of the deltaQ library.

This representation is provided by the user as an XML-based

description of the experiment conditions that must be emulated.

The scenario representation will indicate, for example, the initial

position of the wireless nodes, their motion pattern, the topology of

the virtual environment which is being reproduced (such as streets

and buildings), and so on. While the syntax of this representation

is not within the scope of this book, readers can consult the user

manual of QOMET for details [40].

As an experiment progresses, new information is added to

the scenario representation, such as, for instance, the amount of

traffic that is being sent during the actual emulation experiment.3

Moreover, the initial XML-based scenario does not have to include all

the information that is used during the experiment. For example, one

can define only the initial position of mobile nodes but dynamically

determine their trajectory while the experiment is running. This

approach has been used in conjunction with the evaluation of robot

motion-planning algorithms [76].

All the information in the scenario representation, both the

one provided at the beginning of the experiment and any dynamic

information gathered or provided during the experiment, is used

by the deltaQ library to compute the communication conditions

between any two given wireless nodes at each moment of time. This

computation uses communication models that are specific to each

supported wireless network technology.

10.2.2 Wireless Communication

The wireless communication emulation represents the core of

the deltaQ library functionality. The three components that are

necessary to provide this functionality are

• wireless network technology models

• wireless network antenna models

• electromagnetic wave propagation models

3These traffic statistics are employed to calculate the contention in the emulated

wireless channel.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

DeltaQ Library 289

10.2.2.1 Wireless network technologies

As already mentioned, three wireless network technologies are

currently supported by QOMET (with a fourth one, WiMAX, being

planned for the future):

• IEEE 802.11a/b/g

• active RFID tag communication

• IEEE 802.15.4

While there are certainly many differences between these

network technologies, the approach used for all of them in deltaQ is

to employ probabilistic models to compute the most important pa-

rameters that characterize wireless communication in the synthetic

emulated environment, and then at different network levels.

Wireless communication is first of all influenced by the distance

between the wireless nodes, a property of the synthetic environment

in which the experiment takes place. Wave propagation through the

wireless medium depends on the properties of the communication

environment, such as attenuation. These parameters represent the

input of the wireless propagation models (see Section 10.2.2.3)

that are used to compute the receive power which characterizes

communication at the physical network layer (ISO OSI Layer 1).

Other parameters influencing communication at this level are the

transmit power of the wireless adapters and the properties of the

antennas (see Section 10.2.2.2), which are all Layer 1 parameters.

Receive power, together with other properties of the physical net-

work layer, namely receive power sensitivity, noise power, and tech-

nology characteristics (encoding, etc.), represents the input of the

error model that is used to compute the frame error rate, a parame-

ter of the data link network layer (ISO OSI Layer 2). For some trans-

ceivers, error models are provided by manufacturers, typically as a

dependency between bit error rate and signal-to-noise ratio. Given

that such information is difficult to obtain for all wireless devices, we

used the fact that this dependency is almost exponential to create an

equivalent generic error model. Our error model has, as the main pa-

rameter, the receive sensitivity of the wireless transceiver, which is

specified in the regular documentation of most wireless devices, and

it computes the frame error rate given a certain received power level.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

290 QOMET

Frame error rate, together with technology-specific parameters

such as operating rate, can first of all be used to compute other Layer

2 parameters, such as frame delay and jitter, or L2 bandwidth. They

also represent the input of the data link network layer model, which

is employed to compute network layer parameters (ISO OSI Layer

3). These L3 parameters are packet delay and jitter, packet loss, and

bandwidth. Our readers will probably observe that the above are

exactly the network quality degradation parameters (see Def. 2.2)

that we labeled as �Q parameters.

The parameters used at each level of the overall multi-layer

model that we presented, as well as the individual models used to

convert one layer characteristics to next layer ones, are presented

in Table 10.1. We emphasize with italic font those parameters

that are actually computed by the deltaQ library; the non-italicized

parameters are provided by the user or are derived from the

characteristics of the specific wireless network technology used.

Note that not all of the above levels must necessarily be imple-

mented for each modeled wireless network technology, depending

on its properties. For instance, the active RFID tag communication

Table 10.1. Generic multi-level characterization of wireless network

technologies

Level at which

characterization is performed

Parameters

characterizing the level

Models for conversion to

the next-higher level

Synthetic environment Distance, environment

properties (attenuation,

shadowing)

Propagation model

Physical layer (ISO OSI Layer 1) Transmit power, antenna

properties, receive power,

receive sensitivity, noise

power, wireless network

technology characteristics

Frame error rate model

Data link layer (ISO OSI Layer 2) Frame error rate, wireless

network technology

characteristics, frame delay

and jitter, bandwidth (L2)

Data link layer models

Network layer (ISO OSI Layer 3) Packet delay and jitter,

packet loss rate, bandwidth

(L3)

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

DeltaQ Library 291

supported in QOMET uses no data link layer protocol model, as

no such protocol exists. As a consequence, computation is only

done up to data link layer parameters, which represent the �Q
description for this case. Similarly, for IEEE 802.15.4 emulation we

execute a Layer 2 implementation to account for the corresponding

functionality; therefore, again no Layer 2 model is required, and

computation is only done up to data link layer parameters.

Table 10.1 emphasizes the fact that our modeling stops at Layer

2 in all cases, which allows us to use the Layer 3 and above protocol

implementations that are available on the experiment hosts. This

increases the emulation realism compared with the case of a typical

simulator-based emulation, for example.

10.2.2.2 Wireless network antennas

One factor that characterizes antennas is antenna gain, which

represents how much an antenna amplifies a signal. This parameter

refers to both the transmitting side and the receiving one; hence, it

can appear twice in the electromagnetic wave propagation model.

Another issue related to antennas is directionality. An idealized

version of an antenna will send the same signal power in all

directions (or receive with equal gain from all directions). This type

of antenna is called omni-directional. Note that for a 2D antenna this

corresponds to a disc around the antenna, while for 3D antennas

it corresponds to a sphere centered at the antenna. Other antennas

will focus the energy in certain areas of the space, thus allowing to

increase the communication range and to control the area in which

an antenna induces interference. This type of antenna is typically

called directional. For the receiving side, a directional antenna will

provide better gain for certain directions, and high attenuation for

the remaining portion of space.

While an omni-directional antenna is fully characterized by its

gain, for directional antennas other parameters are needed to spec-

ify directionality properties. In our models we focus on how wide

the signal beam of the antenna is. The parameter that characterizes

this property is called beamwidth and represents the angle around

the direction on which the transmitted signal has maximum power

at which the power attenuation reaches 3 dB. The deltaQ library sup-

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

292 QOMET

ports both omni-directional and directional antennas, characterized

by gain and beamwidth, in both 2D and 3D environments.

Note that other factors may attenuate the signal on the path

between the sender and the receiver in a wireless communication

scenario. One of them are the losses in the transceiver circuits;

this aspect in not specifically modeled in deltaQ but can be taken

into account by subtracting this attenuation from the antenna

gain. The other reason for attenuation is the propagation of the

electromagnetic waves through space that will be discussed next.

10.2.2.3 Propagation models

As electromagnetic waves travel through space, their signal strength

is attenuated. While there are several models that describe this

attenuation, deltaQ implements the following two ones:4

• free space path loss model

• log-distance path loss model

Free space propagation assumes that the wireless communica-

tion medium is ideal, and the sender and receiver are located on a

line-of-sight path without any surrounding obstacles. According to

this model, path loss is proportional to the square of the distance

between transmitter and receiver.

The log-distance propagation characterizes more realistic en-

vironments, both indoors and outdoors, with buildings and other

obstacles. The parameters used in this model are given below:

• Attenuation coefficient, α: exponent of the proportionality

between path loss and distance

• Shadowing parameter, σ : standard deviation of the

normally distributed random variation of signal strength,

expressed in dB

• Wall attenuation, W: signal attenuation induced by impor-

tant obstacles such as building walls, expressed in dB

We note that the values α = 2, σ = 0 dB, and W = 0 dB,

transform the log-distance model into the free space one. Actually,

this is how the free space path loss model is implemented in deltaQ.

4The Ricean and Rayleigh fading models are currently being implemented as well.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

DeltaQ Library 293

10.2.3 Node Mobility

The possibility of node mobility is one of the main features that

makes an approach such as that used by QOMET preferable to

wireless emulation testbeds such as ORBIT. Providing mobility

emulation features requires offering users support for different

mobility models that can be used to create node trajectories in the

synthetic environment created within the emulator.

The types of node motion currently supported by deltaQ are as

follows:

• Linear motion: The node moves in a straight line, either with

constant velocity or in accelerated manner.

• Circular motion: The node moves on a circle around a certain

motion center.

• Rotation motion: The node turns around its own axis; used

especially in relation with directional antennas, for which

node orientation becomes important.

• Random walk motion: Each node selects randomly and

independently a speed and direction and then moves into

that direction for a predefined amount of time; movement

is followed by a waiting period, then the process is repeated.

• Behavioral motion: The node moves autonomously between

a specified start position and a destination, while taking into

account the buildings and street topology in the synthetic

environment in which motion takes place. The behavioral

motion model that we implemented is based and extends an

idea proposed in [57].

10.2.4 Synthetic Environments

Synthetic environments allow creating a virtual world in which the

wireless nodes are located, move, and communicate with each other.

In order to allow realistic emulation experiments, deltaQ includes

support for defining 2D and 3D synthetic environments.

In 2D, users can define objects with polygonal shape that

can represent communication obstacles, buildings, etc. DeltaQ also

supports the use of real map data to create representations of

roads and buildings that correspond to real locations. Only the JPGIS

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

294 QOMET

format is supported at present, which is a Japanese version of the

standard GIS format for map representation. Note that map data has

been available free of charge in Japan for the entire country starting

April 2008.

Synthetic 3D environments in deltaQ are an extension of the

2D ones and use height information as an additional parameter

to create 3D objects that correspond to 2D polygons. This feature

makes it possible to create realistic 3D buildings that correspond to

locations in real cities (when using map information to generate the

2D building contours).

10.2.5 �Q Description

The �Q description is the output of the deltaQ library and

contains the network degradation parameters that correspond to

the emulated scenario representation at each moment of time.

Note that the deltaQ library itself only produces this �Q descrip-

tion in the memory of the computer on which the library is called.

However, the description corresponding to the entire experiment

duration can also be saved in the form of a file, both in text and in

binary formats, by using the command “qomet” that is included in

the QOMET set of emulation tools. These files can be used to initial-

ize the scenario representation in an emulation experiment and also

in order to draw graphical representations of the evolution of �Q
parameters in time, for instance for scenario verification purposes.

10.3 Wireconf Library

The wireconf library is one of the options for the second stage of

the process presented in Fig. 10.1. We remind our readers that the

goal of this second stage is to configure the wired network on top

of which the emulation experiment is performed based on the �Q
description computed by the deltaQ library.

10.3.1 Overview

The wireconf library is intended for the emulation of computer-

based wireless network technologies, such as Wi-Fi. The main

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Wireconf Library 295

characteristic of these networks is that the corresponding network

interface is designed for being included in computer platforms.

Hence, the network applications and protocols used over the

emulated wireless network are also running on computer platforms,

and use IP addressing mechanisms.

If these conditions are met, network conditions can be config-

ured using a link-level network emulator running on a computer,

that is driven by the �Q description. In particular, wireconf

uses Dummynet [94] for this purpose, and continuously updates

at regular time intervals the network degradation induced by

Dummynet during the experiment.5 Support for an alternative link-

level emulator, NetEm [37], is currently being added to wireconf.

Note that the wireconf library itself is just an interface to control

the link-level emulator, and in order to perform an experiment the

command-line tool called “do wireconf” must be used, as it will be

discussed in Section 10.5.2.

10.3.2 Network Configuration

To facilitate the understanding of the mechanism through which

the wireconf library controls the network conditions, we present

the conceptual architecture of the network configuration process

in Fig. 10.2. While there may be implementation differences for

different platforms, we consider that the architecture we present,

which is based on the case when wireconf uses Dummynet, is still

sufficiently general.

10.3.2.1 Link-layer emulator actions

A link-layer software network emulator intercepts packets as they

go through the protocol stack of the computer host on which the

emulator is running. However, not all the packets are intercepted,

but usually only those that meet certain conditions, typically using

a built-in filter mechanism of the operating system, such as the

firewall. In Fig. 10.2 we show the case when the filtering is done

5The interval between updates was 0.5 s for most of the experiments that we have

performed so far.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

296 QOMET

Figure 10.2. Conceptual architecture of the network configuration

process in wireconf.

between the data link and the network layer, but in principle it could

be also done at a lower level.

For each packet that the emulator has to handle, the emulator

can perform the following actions (if configured to do so, and if the

necessary support is implemented):

• Apply bandwidth limitation: Make sure that the throughput

of the traffic flow to which the packet belongs does not

exceed a configured limit.

• Apply delay: Keep the packet in the system (network

emulator queue) until the configured delay has elapsed.

• Apply packet effects: Perform any necessary additional

actions on the packet. Although packet drop (discarding the

packet on purpose) is supported by all emulators, other

effects such as packet reordering or packet erroring may be

implemented as well.

The packets that have underwent all the emulation actions are

reinserted into the protocol stack and continue their course towards

upper or lower levels, depending whether the traffic flow it belonged

to was incoming or outgoing.

Note that the order of the three actions that we show in Fig. 10.2

is that followed by Dummynet. The following remarks concerning

this order are to be considered:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Wireconf Library 297

(1) The order in which the link-layer emulator actions take place

is important, because changing the order will also change the

network degradation observed. Let us imagine that the user

wants to apply a 1 Mbps bandwidth limit and a 10% packet

loss. Assuming an input stream of 2 Mbps, applying bandwidth

limitation first and packet loss second will lead to having a 0.9

Mbps output stream. However, if packet loss is applied first and

bandwidth limitation second, then the output stream will have

1 Mbps. The remark about the importance of order also holds

as far as delay is concerned. Since delaying packets in a queue

will lead to packet loss if the queue becomes full, applying delay

before loss will lead to a potentially larger overall delay and

higher packet loss than in the opposite case.

(2) Not only the link-emulator actions are non-commutative,

but also they must be executed in a predefined order in

order to realistically reproduce the network degradation in a

communication network. Thus, delay represents mainly packet

transmission (which takes place at the sender) and propagation

delay, therefore it must necessarily be applied before packet

loss, which represents the loss in the network. As for bandwidth

limitations, it should be applied before delay if it represents

the limitations at the sending network adapter (for instance

a IEEE 802.11b WLAN link at 11 Mbps emulated over a 100

Mbps Ethernet adapter). Given that the combination mentioned

here above may not accurately emulate all situations one may

encounter (such as bandwidth limitations on bottleneck links

instead of those at the sender), ideally one may wish to use

a chain of degradation elements that closely follow the target

network path taken by the traffic.

10.3.2.2 Wireconf actions

A look at Fig. 10.2 makes clear the fact that most of the hard work

regarding network configuration is done by the link-level emulator

on top of which the wireconf library runs.

The only function that must be performed by wireconf itself

is to change, at regular time intervals, the configuration of the

link-level emulator (bandwidth, delay, packet effects) following

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

298 QOMET

the variation of the �Q parameters. This causes the network

degradation introduced by the link-level emulator to vary in time

according to the user scenario describing the emulation experiment.

Note that in connection with multi-hop routing protocols such

as OLSR, special steps have to be taken in order to ensure that

the �Q parameters used correspond to the nodes that effectively

communicate with each other (e.g., next-hop nodes), not the IP-level

source and destination of the traffic. For this purpose, a routing

information module is used to retrieve the next-hop information

from the routing table on the PC on which the wireconf library

is called. The next-hop information is then employed to select the

appropriate �Q parameters that correspond to the next hop.

10.4 Chanel Library

Not all wireless network systems are computer based. Hence, some

of them will not meet the requirements stated in the previous

section. In particular, the general class of ubiquitous network

systems is typically represented by embedded systems, such as

active RFID tags, sensors, actuators, etc. Their network interfaces

are specifically designed for these systems, and the network

applications and protocols used over the wireless network are

running on low-cost, low-energy, and typically low-performance

processors that are specific to each type of embedded system.

Moreover, such ubiquitous network systems often do not use IP

addressing for communication.

As a consequence, the wireconf library and the link-level emula-

tor solution used on computer systems cannot be employed for the

emulation of ubiquitous network systems. For their case we created

an alternative library called chanel that plays the role of the link-

level emulator for ubiquitous system emulation. Thus, the chanel

library is used to recreate the scenario-specific communication

conditions between the ubiquitous network systems by using the

�Q description computed by the deltaQ library.

To achieve this goal, the chanel library is inserted between the

node that the library is in charge of, and the other wireless nodes

in the experiment. As with wireconf, the chanel library too is not

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Command-Line Tools 299

intended for standalone use. In particular, chanel is integrated with

the ubiquitous network system emulation environment called RUNE

(see Section 11.4), as it will be described in Section 12.4.

The main functionality of chanel is ensured by two independent

threads, as follows:

• Receiving thread: This thread adds the incoming packets

from the node the current chanel library instance is in

charge of to the internal queue of the library.

• Sending thread: The packet at the head of the internal queue

is removed and forwarded to the other wireless nodes after

the corresponding �Q description is applied for each link;

note that if packet loss criteria are met, the packet may be

dropped instead of being forwarded.

10.5 Command-Line Tools

While the libraries described so far provide the core functionality of

QOMET, they are in principle not intended for direct (standalone)

use by those who perform experiments. Instead, users should

employ the command-line tools that are also part of QOMET and

that are described below. In addition, users can also integrate these

libraries with their own source code so as to have more flexibility

in their usage. Note that, as mentioned before, the chanel library is

not included in any QOMET command-line tool but integrated with

RUNE (see Section 12.4).

10.5.1 Qomet Executable

The command “qomet” integrates with the deltaQ library to provide

the following functions:

• Read an XML-based scenario representation that describes

the emulation experiment.

• Use the scenario description to calculate the motion of the

wireless nodes (if motion occurs) and to compute the �Q
description that corresponds to the emulated scenario.6

6Since the experiment is not yet running at this point, during processing with qomet,

deltaQ assumes contention-free communication between the wireless nodes.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

300 QOMET

initialize scenario representation and deltaQ

parameters do for the entire experiment duration

adjust deltaQ parameters based on contention

information wait for next time step

apply adjusted deltaQ parameters

Figure 10.3. Pseudo-code of the algorithm implemented by do wireconf.

• Output the �Q description to a file that can be used to

graphically represent the data, and also to initialize an

effective emulation experiment.

In summary, qomet is used to validate the scenario of the

emulation experiment, to compute off-line those aspects of the

scenario which are known in advance (such as motion trajectories),

and to create the file that is used to initialize the effective emulation

experiment.

10.5.2 Do wireconf Executable

The command “do wireconf” integrates with the wireconf and

deltaQ libraries to provide the following functions:

• Initialize the emulation experiment using the �Q descrip-

tion file produced by the qomet command.

• Adjust the current �Q parameters by taking into account

the contention of the emulated wireless media.7

• Configure at regular intervals the underlying link-level emu-

lator (Dummynet) using the �Q parameters corresponding

to the current moment of time.

The algorithm followed by do wireconf is given in Fig. 10.3 as

pseudo-code.

Note that in addition to the two libraries already mentioned,

one other important module is included in do wireconf in order

to be able to provide the above functionality. In particular, a traffic

statistics collection module is used on each node to determine the

7An extension of the data-link layer model in deltaQ was required to perform this

contention-dependent adjustment.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 301

contention of the emulated wireless channel. Thus, each node will

compute the statistics for its own traffic and send the information

to all the other nodes using multicast messages in the management

network. Every node uses this information to calculate a global

view of the network utilization, hence channel contention, during

the experiment. This information is then used to adjust the �Q
parameters based on real-time network conditions before providing

them to the wireconf library, which uses the adjusted parameters to

configure the underlying link-level emulator.

10.6 Discussion

QOMET is a set of tools for wireless network emulation that can

be used to perform emulation experiments with wireless networks

over a wired-network testbed. QOMET was designed in a distributed

emulation paradigm; hence, it is not a standalone wireless network

emulator. Although execution on one or a small number of PCs is

certainly possible for small-scale scenarios, the full power of QOMET

is only “unleashed” when using it on top of a large testbed, such as

StarBED. This is exactly the approach we have taken in creating the

QOMB wireless network emulation testbed, as it will be detailed in

Chapter 12.

One more aspect readers should note is the following. Due to

the approach taken in QOMET, this emulator is mainly intended

for network application and protocol evaluation at ISO OSI Layer

3 and above. This is because — at least for Wi-Fi — the lower

network layers, namely the data link and physical layers, are

modeled in QOMET in a probabilistic manner as it was explained in

Section 10.2.2. Nevertheless, QOMET can also be used for MAC layer

evaluations if employed in the following manner:

• The physical network layer is modeled using a probabilistic

model similar to the ones in the current implementation.

• The MAC layer, or at least those aspects that need to be

evaluated through emulation, is implemented in software

and run during the emulation experiment like any other

network protocol.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

302 QOMET

While this approach sounds promising, and we are currently

using it in connection with IEEE 802.15.4 network system emula-

tion, and also investigating it in connection with WiMAX data link

layer scheduling algorithm evaluations, we have to warn potential

users about two important difficulties that arise when using such an

approach:

(1) The software MAC layer implementation needs to be integrated

with QOMET and the network stack of the computer on which

the experiment is running, for example by intercepting the

traffic that flows through the normal network stack, by creating

some virtual network interfaces, or possibly by other equivalent

solutions. This requires OS support when running emulation

directly on a computer but is easier to achieve when emulating

ubiquitous systems, for which the device itself is emulated

hence, under the direct control of the emulation framework.

(2) The expected performance of a software MAC implementation

is not comparable to that of a hardware implementation. This

limitation may restrict the operating rate and complexity of

the software MAC implementation, depending on the charac-

teristics of the computer on which the software is executed.

Alternative solutions, such as an FPGA-based implementation

may improve performance at the cost of increasing further the

complexity of the system and its cost.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 11

StarBED

In this chapter, we describe the StarBED network testbed, its

architecture, its hardware components, and the experiment-support

tools developed for StarBED.

11.1 Overview

StarBED is a large-scale network experiment environment designed

and managed by the Hokuriku Research Center of the National

Institute of Information and Communications Technology (NICT),

located in Ishikawa prefecture, Japan [64].

StarBED development started in 2002 with the goal of creating

a testbed on which researchers can evaluate network technologies

in realistic situations similar to those in the Internet. Thus, the

main initial target was to enable scalability experiments for Internet

technologies.

As new network technologies gained ground, the focus of

StarBED changed during its second phase, which started in 2006.

The coverage area of StarBED widened to include more network

technologies, such as ad hoc networks, mobile networks, home

networks, and sensor networks, all of them being included under

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

304 StarBED

the name of “ubiquitous networks.” Another change is related to

broadening the area of applications. Thus, in addition to scalability,

experiments investigating dependability issues also became targets

of StarBED development.

StarBED is composed of both hardware and software compo-

nents that work together to help users achieve the above-mentioned

goals, as follows:

• Hardware: More than 1000 PCs and more than a dozen

switches make up the physical infrastructure of the testbed.

• Software: Two main sets of tools, called SpringOS and RUNE,

were developed to enable experiments on the testbed.

The use of actual computers and network equipment makes

large-scale realistic experiments possible. Similar to other testbeds,

virtualization technologies can be used to increase experiment scale

over the number of physically available hosts. The experiment-

support software tools make the process of running experiments

faster and more secure. Moreover, built-in support for link-level

emulators, such as Dummynet and NetEm, allows users to do basic

network emulation experiments on StarBED.

The main features of StarBED are summarized as follows:

• support for various operating systems (Linux, FreeBSD,

Windows)

• support for virtualization technologies (VMWare, Xen)

• concurrent use and configurable topologies (based on

VLANs)

• external connectivity to Japanese research networks (WIDE,

JGN2)

• possibility of remote access (via VPN)

• powerful management and experiment-support software

(SpringOS)

• ubiquitous systems emulation support software (RUNE)

• link-level network emulation capabilities (Dummynet,

NetEm)

Note that for more complex experiments that include mobility

and wireless communication, StarBED has been integrated with

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Infrastructure 305

QOMET (the set of network emulation tools presented in Chap-

ter 10), resulting in QOMB, as it will be described in Chapter 12.

11.2 Infrastructure

The testbed hardware represents the experiment execution in-

frastructure for all network experiments, both using when and not

using network emulation mechanisms. The architecture of StarBED

is presented in Fig. 11.1.

The fundamental components of the StarBED infrastructure are

the experiment hosts, consisting of more than 1000 commodity PCs.

The hosts have each between three and five network interfaces,

operating either at 100 Mbps or at 1 Gbps. This allows to have

redundant full connectivity by means of two sets of switches, the

experiment switches and the management switches. Thus, there are

two separate networks in StarBED, the experiment network and the

management network (see Fig. 11.1). Network separation ensures

that the management traffic does not interfere with that of the

experiments being run.

Experiment execution is controlled by a management server,

which can be effectively any PC in the cluster that does not partic-

ipate in the experiment. Specific switch configurations are used to

Figure 11.1. StarBED architecture.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

306 StarBED

produce logically separated experiment network topologies by using

VLANs, so that several users can actively carry out experiments

simultaneously. By means of the dedicated management network,

experiment hosts can be loaded with the appropriate software, con-

trolled and monitored, all without affecting running experiments.

The standard operating systems currently supported on StarBED

are Linux, FreeBSD, and Windows. One can also deploy specialized

installations, such as software router systems, or use link-level

emulators, such as Dummynet on FreeBSD.

StarBED infrastructure can be extended in two ways. First of

all, in a virtual manner as, users can employ machine virtualization

techniques, such as VMWare, to logically increase the number

of experiment hosts available for experiments. Second, the core

network has several empty locations where users of the experiment

environment can plug in their own devices and thus integrate them

in the experiment network. Examples of such devices are products

under test, commercial routers, measurement equipment, etc. One

can also connect StarBED to external networks and the Internet, so

that remote locations can be included in experiments.

To assist StarBED users, two experiment-support software tools

are available: SpringOS and RUNE. Thus, by using StarBED as a

network experiment platform assisted by these support tools, one

benefits from the following general features:

• use of commodity PCs in a large-scale setup that makes it

possible to emulate large network environments

• flexibility of the experiment environment that allows to

easily switch between multiple different configurations,

depending on the intended experiment

• powerful management and experiment-support software

tools that enable easy control, quick reconfiguration, and

concurrent use of the facility for independent experiments

11.2.1 Experiment Hosts

Experiment hosts in StarBED are divided into groups, and all the

PCs in a group have the same specifications. Groups are denoted by

capital letters that were assigned in the order in which hardware

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Infrastructure 307

purchases were made. Therefore, the groups assigned letters at

the beginning of the alphabet include the oldest and lowest-

performance PCs (namely groups A to E).

The specifications of the experiment hosts are given next for

each of the groups. We also indicate the number of hosts in each

group. Note that the network interfaces mentioned in the list are

those connecting the hosts to the experiment network. All the PCs

have an additional NIC, either FastEthernet or Gigabit Ethernet,

that connects them to the management network. The groups are as

follows:

• Group A (208 PCs)

— 1 GHz Intel Pentium 3 CPU

— 512 MB RAM

— 1 x Gigabit Ethernet NIC

— ATA HDD

• Group B (64 PCs)

— 1 GHz Intel Pentium 3 CPU

— 512 MB RAM

— 1 x ATM and 1 x FastEthernet NICs

— ATA HDD

• Group C (32 PCs)

— 1 GHz Intel Pentium 3 CPU

— 512 MB RAM

— 1 x ATM and 4 x FastEthernet NICs

— SCSI HDD

• Group D (144 PCs)

— 1 GHz Intel Pentium 3 CPU

— 512 MB RAM

— 1 x FastEthernet NIC

— ATA HDD

• Group E (64 PCs)

— 1 GHz Intel Pentium 3 CPU

— 512 MB RAM

— 4 x FastEthernet NICs

— ATA HDD

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

308 StarBED

• Group F (168 PCs)

— 3.2 GHz Intel Pentium 4 CPU

— 2 GB RAM

— 4 x Gigabit Ethernet NICs

— SATA HDD

• Groups G (150 PCs)

— 2 GHz AMD Opteron CPU

— 4 or 8 GB RAM

— 1 x Gigabit Ethernet NICs

— SATA HDD

• Group H (240 PCs)

— 2.66 GHz Intel QuadCore Xeon CPU

— 8 GB RAM

— 2 x Gigabit Ethernet NICs

— SATA HDD

11.2.2 Switches

Network switches interconnect all the experiment hosts in StarBED.

They are divided into two classes:

• Experiment switches, which ensure the connectivity between

hosts for experiment purposes and also make possible

external connections when necessary.

• Management switches, which ensure both local and remote

user access to experiment hosts through the management

network; VPN technology is used in the case of remote

access.

The experiment switches must have a large number of ports and

good switching performance, in the range of terabits per second,

so as to allow high-throughput experiments. The switches used in

StarBED are the following:

• Brocade (formerly Foundry) BigIron

— 1 x MG8

— 4 x RX16

— 1 x RX32

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

SpringOS 309

• Catalyst

— 1 x 6009

— 2 x 6509

The management switches do not need to support very large

amounts of traffic, therefore can have lower performance specifica-

tions than the experiment switches. In particular, the models used in

StarBED for this purpose are as follows:

• D-Link

— 5 x DGS3427

— 30 x DGS3450

11.3 SpringOS

SpringOS is an experiment-support software tool used to manage

experiment execution on StarBED. SpringOS also makes it possible

for multiple users to use the testbed simultaneously in terms of

experiment hosts and switches. This is accomplished by access

restrictions and mediation mechanisms for sharing such resources

that are built into SpringOS by design.

The steps that a user must take in order to perform an

experiment on StarBED are the following1 (see next sections for

detailed descriptions for each of them):

(1) Reserve a number of experiment hosts.

(2) Prepare one of the experiment hosts to act as management

server.

(3) Set up the other hosts for experiment purposes.

(4) Write a SpringOS configuration file (scenario) that describes the

experiment.

(5) Run the experiment.

1For explanation purposes we assume the user has already registered with StarBED

and is therefore authorized to conduct experiments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

310 StarBED

11.3.1 Host Reservation

Each time a user starts a new series of experiment, he/she needs to

reserve a number of experiment hosts to which exclusive access is

granted. While the procedure itself does not enter the scope of our

book, we note that for making a reservation each user must decide

details such as

• the group from which hosts will be requested, de-

pending on desired host specifications for the intended

experiments

• the number of hosts to be requested in the selected

StarBED group depending on the scale of the intended

experiments

• the number of VLAN tags that will be requested, depending

on the complexity of the network topology of the intended

experiments

11.3.2 Management Server

The current policy of StarBED is to let each user set up his/her

own management server for performing experiments. While this

introduces some overhead when doing experiments for the first

time, it also helps ensure the good performance of the management

server, since the user has full control and exclusive access to

it. Of course, the alternative of sharing a management server

with other users exists and can be employed if the experiment

allows it.

Setting up a management server is a simple procedure that

involves as its main step installing the SpringOS software, a

straightforward process on the supported operating systems. Users

can leave the default SpringOS configuration files unchanged if

there are no special requirements, or can customize them if

necessary.

Note that the possibility to set up a management server and

to customize the configuration files makes it possible to use

SpringOS on other testbeds than StarBED, or even in other types of

environments, such as those using virtual machines.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

SpringOS 311

11.3.3 Experiment Hosts

The experiment hosts on StarBED can be used with pre-configured

operating systems, which are one of Fedora Linux, FreeBSD or

Windows. In this case, no special configurations are needed, since

the required SpringOS components are already installed and ready

to use.

However, in many cases users need to install their own software

in order to perform experiments. In addition, users may wish to

use other versions of operating systems than the one provided

by StarBED. Under such circumstances, in order to prepare the

experiment hosts, a user has to take the following actions on one of

the experiment hosts, which will play the role of a “template host”:

(1) Install and configure a custom OS: Users who want to make

experiments with a different OS than the default ones need to

install and configure this OS on the template host.

(2) Install and configure SpringOS: An optional step that is only

required when using custom OSes but not needed when using

one of the default OSes.

(3) Configure the network interfaces: This is again an optional step

only required for custom OSes; the DHCP protocol should be

used so that the network interfaces are dynamically assigned

predetermined IP addresses based on their MAC address.

(4) Install and configure any required custom software: Users must

install and configure any custom software that may be required

for their specific experiments.

(5) Create a disk image: In order to quickly create a large set of

experiment hosts with the same software properties, the disk

image of the template host is saved, and written to the other

hosts that will be used in an experiment; this procedure is

performed using two SpringOS tools, namely “pickup” for saving

the image, and “wipeout” for writing it, respectively.

In summary, the above procedure makes it possible to create a

large set of experiment hosts that have identical configurations in a

simple and straightforward manner.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

312 StarBED

11.3.4 Scenario File

The scenario file contains all the information needed to perform

an experiment on StarBED by using SpringOS. In particular, the

scenario file must include information such as the following:

• Global experiment settings: parameters regarding the exper-

iment as a whole, such as user and project names, the IP

address of the master server, etc.

• Experiment host settings: information related to host-specific

items, such as the path to the disk image file, and the

identifier of the partition onto which the disk image should

be written for an experiment host2

• Node scenario: actions to be executed by each experiment

host, typically referring to specific application execution

commands; note that more types (classes) of nodes can be

defined, each with a different type of scenario

• Node sets: instructions to create sets of experiment hosts of a

certain type by specifying the type and the number of hosts

that are included in that class

• Network topology: definition of sub-networks and assign-

ment of node sets to sub-networks; sub-networks are

effectively created using VLAN mechanisms

• Global scenario: description of the main scenario that

coordinates the actions of all classes of nodes through a

message-passing mechanism

We emphasize the important role played in SpringOS by

the message-based synchronization of scenario actions. Specific

commands are available for sending messages, including sending

to multiple destinations, and stopping execution until a specified

message is received from one or more nodes. All these commands

make it possible to coordinate the actions of the nodes for

performing tasks such as given below:

• Delay the execution of a command until an initialization

process is finalized on all nodes.

2This information is only required when disk images are effectively used in an

experiment, since users can also make this configurations independently, by using

the SpringOS commands pickup and wipeout.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

SpringOS 313

• Synchronize the start of execution of a command on multiple

nodes.

• Perform conditional execution of commands, for example

by only executing a client application once the server

application has reached a certain execution stage, etc.

A thorough description of the SpringOS language is not within

the scope of this book. Hence, for more details about the SpringOS

configuration file syntax, as well as regarding the effective operation

of SpringOS, we refer our readers to [64]. However, in Section 12.3

we shall provide a sample SpringOS scenario for an example

experiment. With that occasion we shall describe some of the

SpringOS commands, so as to give our readers an idea about the

capabilities of the SpringOS language.

We note that the SpringOS scenario file can be used to launch

both end-user commands, such as network applications, but also

daemons, such as routing protocol ones, or even link-level emula-

tors, such as Dummynet. In this way, users can create scenarios of

high complexity by combining the appropriate commands placed in

the right order of execution.

11.3.5 Experiment Execution

Once users write the SpringOS configuration file that describes the

experiment they intend to perform on StarBED, SpringOS takes over

for effectively performing the experiment. This is done by means

of the SpringOS “master” command that, in addition to several

configuration parameters, takes as input the scenario file. Based on

the instructions included in the scenario file, the SpringOS “master”

command automatically performs the following tasks:

(1) Assign to the user the requested number of experiment hosts

from the pool of reserved cluster PCs.

(2) Upload the appropriate operating system disk image to the

assigned experiment hosts (when this applies).

(3) Configure the StarBED experiment switches to build the

required network topology.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

314 StarBED

(4) Drive experiment execution according to the global scenario

and the node scenarios described in the configuration file by

executing the actions defined therein.

Note that SpringOS must necessarily be used to perform the steps

(1) to (3) above in order to ensure that the experiment is properly

configured in a multi-user environment. This is because at each of

those steps a verification process takes place to ensure that the user

has the required credentials for accessing the requested experiment

hosts and switches. The execution itself, i.e., step (4), can only use

the hosts for which verification was successful. Hence, experiment

execution can be done either by using SpringOS, or by using an

alternative solution, such as RUNE (see Section 11.4). Shell scripts

are another possibility for experiment execution, but they are only

appropriate for simple experiments, in which no synchronization is

needed between the actions of the experiment hosts.

11.4 RUNE

RUNE (Real-time Ubiquitous Network Emulation environment) is

another experiment-support software tool that is being developed

for StarBED [66]. RUNE was designed specifically to support the

emulation of large ubiquitous network systems. This is because

SpringOS has a PC-oriented architecture, intended for controlling

computer hosts that run IP network applications. This approach

is not suited for ubiquitous network systems, such as active RFID

tags or sensor networks, which do not run on computers, and do

not necessarily use IP networking. As a consequence, RUNE was

developed to allow the fine-grain control level needed for running

ubiquitous network experiments.

The most significant features of RUNE that are particularly

targeted at ubiquitous network system emulation are the following:

• Support for the concurrent execution of numerous nodes: A

characteristic of ubiquitous network systems is that they

are composed of a potentially large number of elements

that need to be executed simultaneously in order to make

emulation experiments possible.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

RUNE 315

• Provision of multi-level emulation layers: Given the com-

plexity of ubiquitous systems, flexibility is necessary to

allow experiments that contain the desired combination of

modeled, emulated, and real components according to the

goals and constraints of each experiment.

• Ability to emulate the surrounding environment: Ubiquitous

network systems are usually immersed in a physical

space and are often used to sense its properties, such as

temperature, humidity, and luminosity; the properties of the

surrounding environment must therefore be emulated as

well in order to allow for realistic experiments.

11.4.1 Scenario Elements

In order to describe an experiment, RUNE users have to define first

its components in logical terms. The basic elements of the logical

structure used in RUNE are called spaces. A space is an entity that

behaves as any of the emulated elements according to their function.

Hence, spaces can represent any of the following:

• Nodes: physical ubiquitous network devices, such as sensors,

actuators, and active RFID tags

• Environments: the characteristics of interest of the sur-

rounding environment, such as the temperature in a room

• Networks: communication mechanisms between ubiquitous

network devices

Information is sent and received between spaces by another class

of RUNE elements called conduits. A conduit is an abstract error-

free communication pipe between two spaces. Communication via

conduits is transparent to the user, making it possible to execute

spaces on the same experiment host, or on different hosts, without

any modification. Thus, conduits play an essential role in the

concurrent execution mechanisms of RUNE. Note that conduits are

essentially unidirectional, and for bidirectional communication one

has to define a pair of conduits going in opposite directions.

We use Fig. 11.2 to illustrate the two concepts, spaces and

conduits, as used in an example RUNE-based experiment topology.

The hypothetical scenario includes two ubiquitous computing

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

316 StarBED

Figure 11.2. RUNE experiment topology for a two node scenario.

devices placed in a certain environment and communicating with

each other via a wireless network technology such as IEEE 802.15.4.

The two devices are represented by the two spaces “node space

#1” and “node space #2.” The communication conditions between

the two devices are reproduced by the “network space” pictured in

the upper part of the figure. This space is in charge of recreating

the network degradation effects, such as frame errors and packet

loss, delay and jitter, and bandwidth limitations that would occur in

the corresponding real-world scenario. Node spaces are connected

to the network space by means of RUNE conduits, represented

by arrows in the figure; one such conduit is needed for each

communication direction. The “environment space” is introduced so

as to reproduce the physical environment in which the nodes are

placed, for instance by providing them with temperature values in a

realistic fashion. Data is communicated to node spaces by means of

conduits.

11.4.2 Architecture

The scenario elements presented in the previous section, spaces and

conduits, are those RUNE components that are of relevance to end

users. However, in order to effectively make large-scale experiments,

the end-user spaces and conduits must be executed and supervised

by RUNE in a unified manner.

Like SpringOS, RUNE achieves this goal by employing a master

controller that manages the entire experiment, called RUNE Master.

This module performs global functions, such as initiating and ending

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

RUNE 317

Figure 11.3. RUNE general architecture.

the execution of the experiment. Figure 11.3 shows the general

architecture of RUNE, with RUNE Master in the top position.

As experiments usually involve more computers, RUNE uses

another module, named RUNE Manager, which is executed on each

experiment host to manage locally the emulation process. RUNE

Manager is in charge of operations such as loading the space

objects, calling interface functions in spaces (internally named

“entry points”), and relaying the communication between spaces

via conduits. Regarding communication we would like to emphasize

the following aspect. Conceptually, from an end-user perspective,

spaces are connected to each other by conduits, as it was illustrated

in Fig. 11.2. However, practically, all the communication between

spaces is being mediated by RUNE Manager, as follows:

• If two communicating spaces are located on the same

computer, the RUNE Manager in charge of that computer

will directly pass the messages between the sending and

receiving spaces.

• If the two communicating spaces are located on different

computers, the RUNE Manager in charge of the computer

on which the sending space is executed will relay the

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

318 StarBED

messages to the RUNE Manager on the computer on which

the receiving space is executed; that RUNE Manager will

finally pass the messages to the destination space.

While this mediation process is entirely transparent to the

user, it is important to understand it, as it is the mechanism

that makes possible the distributed execution of RUNE-based

experiments without any direct user intervention. In this context

note that the arrows in Fig. 11.3 do not represent conduits, but

the internal communication channels between spaces and RUNE

Manager, between RUNE Manager entities on several computers,

and between RUNE Master and RUNE Managers. As a consequence,

instead of the unidirectional thin continuous lines used previously

for conduits, we employ bidirectional thick interrupted lines in this

figure.

One more thing to note is that spaces are implemented as

shared objects loaded by RUNE Manager using the operating system

dynamic loading mechanism. In RUNE architecture, each space is

required to have five entry points, one for each of the following

five operations: initialization, execution step, finalization, read, and

write. For more low-level details about RUNE, we recommend our

readers to consult [66].

11.4.3 Experiment Execution

A RUNE-based experiment includes the following steps that are

executed without any direct user intervention once the start of an

experiment is triggered:

(1) Upon the “start” command issued by a user, experiment

execution is initiated by RUNE Master, which informs the RUNE

Managers on all experiment hosts.

(2) RUNE Managers load the objects corresponding to spaces and

then notify RUNE Master of completion.

(3) RUNE Master commands the initialization process of all spaces

to the RUNE Managers on each host.

(4) RUNE Managers initiate heap memory allocation for spaces; this

area is permanently needed for emulation execution, and RUNE

Managers store a pointer to the memory area for each space

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 319

they are in charge of.3 Once initialization is complete, each RUNE

Manager informs the RUNE Master.

(5) Following initialization, RUNE Master commands the iterated

invocation of the execution step function.

(6) RUNE Managers proceed with the iterations until one of the

spaces on the PC they control returns an exit status. This status

is then communicated to the RUNE Master.

(7) Upon receiving the exit status notification, RUNE Master

commands experiment finalization by notifying the end of

experiment to all RUNE Managers.

(8) Under RUNE Managers’ control, spaces release the work area

allocated in the initialization process, and the experiment

finishes.

The description above mentioned three of the entry points we

discussed: initialization, execution step, and finalization. The other

two, the I/O operations read and write, are performed by spaces as

needed during the iterative execution step.

Note that RUNE is practically a stand-alone tool for ubiquitous

network system emulation experiments, therefore its dependency

on StarBED-specific mechanisms is minimal. Nevertheless, RUNE-

based experiments on StarBED must also use SpringOS for exper-

iment preparation steps, such as imaging the experiment hosts,

configuring the network, authenticating users, and so on. Only the

execution of the experiment itself is done by RUNE independently

from SpringOS.

11.5 Discussion

StarBED is a large-scale general purpose testbed for network

experiments. In this sense, StarBED is very close to Emulab from

the point of view of functionality. SpringOS is used on StarBED as

an experiment support and management tool, and is similar to the

equivalent Emulab software and management architecture.

3RUNE spaces do not use stack memory for execution. Thus, each space object can

emulate multiple instances of the same node on one host, while sharing the binary

code. This approach also ensures that spaces are thread-safe, since they do not have

any static data.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

320 StarBED

The second experiment-support tool that is being developed

for StarBED, RUNE, has no equivalent on Emulab though. Thus,

RUNE makes it possible to use the testbed’s IP wired-network

infrastructure even for non-IP network experiments, including those

using wireless network emulation. RUNE also provides mechanisms

to support various features that are necessary for ubiquitous device

emulation, such as the processor emulation of those devices.

The feature-rich support tools of StarBED, combined with the

versatility of the wireless network emulation set of tools provided

by QOMET, made it possible for us to create the wireless network

emulation testbed named QOMB, which can be used for both IP and

non-IP wireless network systems, as it will be discussed in the next

chapter.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 12

QOMET on StarBED

In this chapter, we describe the mechanisms that made it possible

to integrate QOMET with StarBED to create the wireless network

emulation testbed named QOMB. QOMB merges the realistic

wireless network emulation capabilities of QOMET with the large-

scale experiment support of StarBED into an emulation testbed that

allows performing experiments reproducing large-scale realistic

wireless network scenarios.

12.1 Experiment Features

The QOMET wireless network emulator makes it possible to emulate

the wireless network communication between a node and its peers.

In this sense, QOMET is a link-level emulator, similar to Dummynet,

for instance. The main difference with respect to an emulator such

as Dummynet comes from complexity and synchronized distributed

execution. While Dummynet only allows users to configure link

degradation to predefined values, QOMET has several features that

make it possible to emulate complex wireless network scenarios in

a realistic fashion, as follows:

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

322 QOMET on StarBED

• Communication conditions between nodes are computed

on the basis of scenarios that include descriptions of the

wireless network nodes, their motion, the communication

environment, and street and building topology.

• The communication models include properties of wireless

network technologies, as well as of the wireless network

media, including dynamic characteristic such as contention.

• Computations are done locally but with a global perspective,

and the communication conditions are reproduced on the

participating hosts in an unified manner; this distributed

approach is key for making realistic large-scale scenario

emulation possible.

StarBED is a large-scale network testbed that can be used

to run various experiments on its large computer and switch

infrastructure. The most important features of StarBED from the

perspective of its integration with QOMET are as follows:

• rich infrastructure, with more than 1000 interconnected

computers available for experiments

• experiment-support software tools that allow users to make

experiments in a straightforward manner

While StarBED does make it possible to run large-scale network

experiments, and does support link-level network emulation com-

mands in SpringOS scenarios (e.g., Dummynet or NIST Net), StarBED

has no built-in wireless network experimentation mechanisms.

While oversimplifying to a certain extent, we could say that QOMET

is a tool that cannot be used without an infrastructure, since it

cannot be executed standalone, and StarBED is an infrastructure that

cannot be used for wireless network experiments without QOMET,

as only wired-network interfaces are provided on StarBED.

As a consequence, integrating the two systems appears as

an obvious solution for enabling large-scale wireless network

experiments. The resulting wireless network emulation testbed,

QOMB, combines the features mentioned above for QOMET with

those of StarBED in a synergistic manner. Hence, using QOMB,

one can perform in a straightforward manner realistic wireless

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

QOMB Architecture 323

network emulation experiments with complex scenarios in dynamic

communication conditions and at large scale.

12.2 QOMB Architecture

Neither StarBED and its support tools nor QOMET was specifically

designed for each other. This is because StarBED is intended as

a general-purpose testbed, for which emulation is only one of its

possible uses. QOMET is also intended as a general-purpose wireless

network emulator that could be executed on both small and large

testbeds and was designed to be independent of the infrastructure

on which it is run.

Creating QOMB required putting in place several integration

mechanisms that allow users to make experiments on QOMB

without having to spend time on making these tools work with each

other. While the integration mechanisms that we shall describe next

are definitely dependent on both QOMET and StarBED, we believe

that they can be used to derive more generic design principles, so

that QOMET can be integrated with other testbeds should the need

arise.

Before going into more technical details, let us have first an

overview look at the relationship between all the components at

play. Figure 12.1 presents the logical hierarchy of the elements we

discuss, as follows:

• The lowest level is represented by the infrastructure of

StarBED, the hardware on which everything is executed.

• The next level is represented by SpringOS, which manages

the access to hardware resources and can supervise experi-

ment execution.

• RUNE is placed at a higher level in the hierarchy, adding

support for ubiquitous network emulation.

• QOMET is the highest-level component of QOMB that

performs the wireless network emulation. For some ex-

periments, such as Wi-Fi emulation, QOMET tools are

executed directly on top of SpringOS mechanisms, whereas

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

324 QOMET on StarBED

Figure 12.1. Logical hierarchy of testbed components.

for ubiquitous network experiments, QOMET is used on top

of RUNE.

• Users and experiments are represented above the testbed

components to suggest the various possible ways to employ

these components:

— Experiments can use StarBED hardware infrastructure

directly for certain purposes.

— Most operations on StarBED are executed by means of

the SpringOS commands.

— RUNE can also be used independently for making

experiments that do not involve wireless network

communication.

— Finally, users can employ QOMB for wireless network

emulation experiments. QOMB is represented in our

figures by the combination “QOMET on SpringOS on

StarBED,” or alternatively, “QOMET on RUNE on SpringOS

on StarBED,” depending on the nature of the experiment.

Note that the QOMET software, as any other software running

on StarBED, is practically executed on the StarBED infrastructure

of computers. However, logically, all the QOMET-specific commands

and tools are run by means of either SpringOS or RUNE experiment-

support mechanisms, as our figure suggests. Therefore, in what

follows, we shall discuss in more detail the integration of QOMET

with StarBED from the point of view of these two software tools.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with SpringOS 325

12.3 Integration with SpringOS

QOMET was integrated with SpringOS for the experiments involving

computer-based wireless networks, such as Wi-Fi. In this context,

QOMET makes use of SpringOS features for the following purposes:

• Prepare the experiment:

— Power the experiment hosts.1

— Create and write disk images once the installation

process on an experiment host template has been

completed.

— Configure the experiment network.2

• Run the experiment:

— Configure and start the QOMET command do wireconf.

— Configure and start the applications and protocols

required in the experiment.

— End experiment execution.

12.3.1 Alternatives

While experiment preparation contains no QOMET-specific issues,

running a wireless network experiment on QOMB requires writing a

SpringOS scenario file that is customized for QOMET, in particular

for the do wireconf command. Moreover, there are two possible

choices related to the integration of the execution of do wireconf

and other network applications and protocols via SpringOS:

(1) Light-weight integration: SpringOS is used for all the configura-

tion tasks and launches a shell script that in its turn executes all

the necessary commands.

(2) Tight integration: SpringOS is used both for all configuration

tasks and for executing all the individual commands that are

necessary in the experiment.

The first approach limits the flexibility of command execution,

since the SpringOS-specific message passing mechanisms cannot be

1SpringOS can also be used to power off and reboot the experiment hosts if needed.
2Since no wired network topology is required in wireless network emulation

experiments, all the experiment hosts are included in the same VLAN.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

326 QOMET on StarBED

used to create complex execution patterns. However, it simplifies the

SpringOS scenario, which can be then regarded as a template that

does not change most of the time, since modifications are only made

to the shell script that is launched by SpringOS.

The second approach makes full use of the power of SpringOS

but increases the complexity of the SpringOS scenario and makes

changes more difficult for beginners. Moreover, while shell script

languages may already be familiar to users, SpringOS syntax needs

to be learned from scratch the very first time.3

While none of the above solutions is perfect for all situations,

we preferred solution (1) in the experiments we carried out so

far. One reason is that the applications and protocols used in

our experiments are mostly the same all the time, with only

minor differences between experiment series. Moreover, no complex

orchestration of command execution is required. In addition, we

believe that the separation of the SpringOS-specific issues from

those particular to running applications and protocols by means of

shell scripts makes this method of carrying out experiments more

easily understandable for new users. Note that we may use solution

(2) at some point in the future, especially if the need for running

complex experiments arises.

We would also like to share with our readers a fact that

we learned from our experience with using SpringOS. While the

disk image creation and writing mechanisms that are provided

by SpringOS are undoubtedly useful for initially setting up the

experiment hosts, we have found them of limited use for later phases

of the experiments. This is because the changes done between series

of experiments tend to be minor and hence do not justify the full

process of image creation and writing, which is time consuming. As

a consequence, we found it useful to use what one may call a “file

distribution mechanism” that will only copy a limited set of files from

an experiment host template to all the other hosts. This distribution

mechanism simply makes use of commands such as “scp” or “rsync”

to achieve this goal and has the advantage of a faster completion time

3While SpringOS scripting language is relatively simple, and contains instructions

from other languages, such as “if,” or “for,” it does also contain specific instructions

that are not found in typical languages, especially related to the message-passing

mechanisms in SpringOS.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with SpringOS 327

Figure 12.2. Example experiment with two nodes.

(depending of course on the magnitude of the changes that are being

propagated to all the experiment hosts involved in the experiment).

12.3.2 Example Experiment

Let us consider the following experiment that we shall use to

illustrate how to write the SpringOS scenario and shell scripts in

a practical case. The example experiment contains two nodes, as

shown in Fig. 12.2. Initially, the two nodes are placed at a distance

of 5 m with respect to each other. The first node, labeled “Node #1,”

is fixed, and the second one, “Node #2,” moves for 30 s towards

right and then returns to the initial position during the next 30 s.

The absolute value of the speed is 0.5 m/s for both movement

directions.

In what follows, we shall present the various files necessary to

describe this experiment on QOMB by using SpringOS and QOMET.

Note that for each file lines will be numbered so as to make

explanation easier, but the line numbers themselves are not part of

the files that we discuss. Some long lines have been split for better

readability, but this is only for display purposes, as line numbers

indicate in each case the lines in the corresponding file.

12.3.2.1 QOMET scenario

To use QOMB, first of all one has to write the corresponding QOMET

scenario, as shown in Fig. 12.3. The content of this file is the

following:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

328 QOMET on StarBED

• Define the global parameters of the scenario in the

“qomet scenario” XML element (line 1), namely experiment

duration (60 s) and the time step used for computation of

communication conditions (0.5 s).

• Specify the properties of the wireless nodes (lines 2 and

3), in particular the node internal names and ids (“node1”

with id 0, and “node2” with id 1, respectively), their initial

position (the coordinates (0, 0, 0) and (0, 5, 0), respectively),

and the transmit power (20 dBm).

• Indicate the properties of the environment used for wireless

communication (line 4), specifically the internal name

(“env”), the parameters of the log-distance path loss model

(α = 5.6, σ = 0 dB, and W = 0 dB), and the strength of the

environment noise (–100 dBm).

• Define the motion trajectory (lines 5 and 6). The definition

specifies the internal name of the node to which motion

description should be applied (“node2”), the movement

speed (0.5 m/s on the horizontal axis, with positive sign

for the first motion definition, and with negative sign for

the second one), and the start and stop time (first motion

description applies between 0 and 30 s, and the second one

between 30 and 60 s).

• Provide the parameters of the connection between nodes

(line 7). Thus, the file specifies the source (“node2”)

and destination (“node1”) of the wireless connection, the

communication environment (“env”), the wireless network

standard used (“802.11b”), and the expected size of the

communicated packets (1024 bytes).

• Close the XML element “qomet scenario” that was previ-

ously opened on line 1 (line 8).

Note that this QOMET scenario is intended only as a simple exam-

ple that demonstrates the basic capabilities of the wireless network

emulator, and should not be taken as a complete reference to the fea-

tures of QOMET. For more details readers are advised to consult the

QOMET user manual [40]. When performing an actual experiment,

the above scenario should be processed using the command “qomet”

for validation purposes before proceeding to the next step.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with SpringOS 329

1: <qomet_scenario duration="60" step="0.5">

2: <node name="node1" id="0" x="0" y="0" z="0"

Pt="20"/>

3: <node name="node2" id="1" x="0" y="5" z="0"

Pt="20"/>

4: <environment name="env" alpha="5.6" sigma="0" W="0"

noise_power="-100"/>

5: <motion node_name="node2" speed_x="0.5" speed_y="0"

speed_z="0" start_time="0" stop_time="30"/>

6: <motion node_name="node2" speed_x="-0.5" speed_y="0"

speed_z="0" start_time="30" stop_time="60"/>

7: <connection from_node="node2" to_node="node1"

through_environment="env" standard="802.11b"

packet_size="1024"/>

8: </qomet_scenario>

Figure 12.3. QOMET scenario for the two-node example experiment.

12.3.2.2 SpringOS script

The SpringOS script that is required in order to run the above

experiments on QOMB is shown in Fig. 12.4. Following is the detailed

explanation:

• Assign the necessary number of experiment hosts (line 1),

and export the variable for future use (line 2).

• Define a class of experiment hosts called “client class” (lines

3 to 17), as follows:

— Specify that the disk image does not have to be rewritten

by specifying the “thru” keyword (line 4); thus, it is

assumed that the appropriate disk image has already

been written to the corresponding experiment hosts.

— Indicate that the second partition will be used, and that

the operating system installed on is FreeBSD (lines 5 and

6).

— Describe the actions to be executed by each experiment

host (lines 7 to 16):

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

330 QOMET on StarBED

1: assure num_nodes=2

2: export num_nodes

3: nodeclass client_class {

4: method ‘‘thru’’

5: partition 2

6: ostype ‘‘FreeBSD’’

7: scenario {

8: test_name="two_node_test"

9: test_duration="60"

10: packet_size="1024"

11: offered_load="200k"

12: recv my_id

13: send "setup_done"

14: recv start_msg

15: callw "/bin/sh" "run_experiment_node.sh"

test_name my_id offered_load test_duration

packet_size > "/tmp/scenario.log"

16: }

17: }

18: nodeset clients class client_class num num_nodes

19: for(i=0; i<num_nodes; i++) {

20: clients[i].agent.ipaddr = "172.16.3."

+ tostring(10+i)

21: clients[i].agent.port = "2345"

22: }

23: scenario {

24: for(i=0; i<num_nodes; i++) {

25: send clients[i] tostring(i)

26: }

27: sync {

28: multimsgmatch clients "setup_done"

29: }

30: multisend clients "start"

31: sleep 60

32: }

Figure 12.4. SpringOS script for the two-node example experiment.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with SpringOS 331

∗ Assign values to several variables that will be used in

the experiment, such as the name and duration of the

experiment, and the packet size and offered load used

during traffic generation (lines 8 to 11).

∗ Wait to receive the ID of the current node in the

variable “my id” (line 12); this ID is being sent by the

experiment master using the instruction to be found at

line 25 (see below for explanation).

∗ Send the “setup done” message to master to indicate

the end of the initialization phase (line 13).

∗ Wait to receive a message in the variable “start msg”

(line 14); this reception effectively triggers the execu-

tion of the body of the experiment.

∗ Call the shell script that executes the body of the

experiment (line 15); the SpringOS keyword “callw”

(i.e., call with wait) is used to specify that SpringOS

processing should stop until the called script returns.

Note how the above variables are passed to the shell

script and that the output is redirected to a log file.

• Create the set of experiment hosts (line 18); the set is

called “clients” and will use the class “client class” for each

member. The member count is equal to “num nodes” (i.e., 2

in our example).

• Assign IP addresses to the experiment hosts that will be

used by SpringOS, and the SpringOS-specific communication

port (lines 19 to 22); the IP address assignment we use here

is employed so as to control which of the PCs in the pool

of available experiment hosts is effectively used during an

experiment.

• Describe the actions to be executed by the SpringOS

experiment master (lines 23 to 32), as follows:

— Send to each of the experiment hosts their corresponding

ID (lines 24 to 26); IDs are sent to each client as string

Representations.

— Wait for the “setup done” message from all the hosts

(lines 27 to 29); waiting is done in a “sync” block,

which stops execution until the block terminates. In

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

332 QOMET on StarBED

particular, the block contains an instruction that matches

a specified string (“setup done”) to those received from

all the clients.

— Send the message “start” to all the clients to trigger the

beginning of the execution of their main body (line 30).

The SpringOS instruction “multisend” is used to accom-

plish this task simultaneously for all destinations; this

mechanism is employed to ensure that all nodes start the

execution of their body of actions in the same time.

— Pause the execution of the master until the experiment

finishes on all clients (line 31).

12.3.2.3 Shell script

The body of actions to be executed by each QOMB experiment host in

our example is described as a shell script with the following content

(see Fig. 12.5):

• Assign command-line arguments values to internal variables

(lines 1 to 5).

• Initialize a variable that will be used when calling the

“do wireconf” command (line 6), namely the IP address

used for broadcast messages.

• Initialize the variables that will be used for controlling traffic

generation (lines 7 and 8), specifically the node ID and the IP

address of the first node.

• Launch the “do wireconf” command in the background and

with super-user execution rights (line 9); the necessary

arguments are passed to the command, including the file

“node settings.txt” that will be described below.

• Launch the traffic generation command “iperf”4 (lines 10 to

16); the execution mode differs on the two hosts, as follows:

— If the script is executed on the first node, with ID 0,

then the “iperf” command will be executed in server

mode (line 11), that is as a traffic sink, and after

the experiment duration period elapses (line 12), it is

forcefully terminated (line 13).

4For the detailed use of this command, please see its user manual.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with SpringOS 333

1: test_name=$1

2: node_id=$2

3: offered_load=$3

4: test_duration=$4

5: packet_size=$5

6: broadcast_IP=192.168.3.255

7: first_node_id=0

8: first_node_IP=192.168.3.10

9: sudo -b ../wireconf/do_wireconf -q $test_name -i

$node_id -s node_settings.txt -m 0.5 -b

$broadcast_IP

10: if [$node_id -eq $first_node_id]; then

11: iperf --server --udp --interval 0.5 --format k

--len $packet_size &

12: sleep $test_duration

13: killall -INT iperf

14: else

15: iperf --client $first_node_IP --udp --interval

0.5 --format k --len $packet_size

--bandwidth $offered_load --time

$test_duration

16: fi

Figure 12.5. Shell script for the two-node example experiment.

— If the script is executed on the second node, then

“iperf” is executed in client mode (line 15), that is, as a

traffic generator; the duration of the generation action is

included as one of the arguments.

The file “node settings.txt” that was mentioned above is neces-

sary to inform the “do wireconf” command about the association

between node IDs, which are a QOMET internal representation, and

IP addresses, which are used on StarBED to identify experiment

hosts. The content of the file is given in Fig. 12.6, the meaning of each

line being the following:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

334 QOMET on StarBED

1: 0 192.168.3.10

2: 1 192.168.3.11

Figure 12.6. The file “node settings.txt” used to configure the command

do wireconf for the two-node example experiment.

• Associate QOMET node with ID “0” to StarBED host with the

experiment network IP address “192.168.3.10” (line 1).

• Associate QOMET node with ID “1” to StarBED host with the

experiment network IP address “192.168.3.11” (line 2).

12.4 Integration with RUNE

Computer-based network applications that use IP addressing can

be easily integrated with SpringOS and QOMET for performing

experiments on QOMB, as everything can be dealt with in terms of

standalone processes running on a PC. However, ubiquitous network

applications do not run on typical computers. Hence, they can only

be executed on a computer by means of a processor emulator that

reproduces the processor of the embedded devices composing the

ubiquitous network system to be experimented with.

That is why the emulation of ubiquitous network systems

requires a tight integration between the modules providing the

various emulation functions, including those related to application

execution and those related to communication. This tight integration

is ensured by RUNE.

12.4.1 Ubiquitous Network Devices

In Fig. 12.7, we represent the components that logically form an

instance of an ubiquitous network device in RUNE. Note that even

though we consider for explanation purposes that these separate

components form a single unit in practice they are only logically

integrated through RUNE conduits.

The functions of an ubiquitous network device can be split into

two main categories:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with RUNE 335

Figure 12.7. An instance of an ubiquitous network device as represented

in RUNE.

• Control: These components control the behavior of the

ubiquitous network device. In our implementation, this is

achieved through a RUNE space called “Control Space,”

which has at its core the “Processor Emulator” that directly

executes the firmware of the ubiquitous network device

through processor emulation.

• Communication: These components perform the communi-

cation function of the ubiquitous network device. In our

implementation this is accomplished through a RUNE space

called “Communication Space,” which wraps the QOMET

chanel library into a RUNE-compatible form and interfaces

the communication between the current ubiquitous network

device and the other devices in the experiment.

Note that depending on the properties of an ubiquitous network

system, other functions and the corresponding RUNE spaces may be

required in order to perform experiments, such as spaces emulating

the surrounding virtual environment (and providing temperature

information, for instance). Such sensing spaces should be connected

to the control space, providing it with sensor data that is used to

make decisions or is reported to other systems. However, for clarity

reasons, in what follows, we will focus our explanation on the above

example, which can be considered a baseline.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

336 QOMET on StarBED

12.4.1.1 Control space

The most important component of the control space is the processor

emulator. This module runs the firmware of the ubiquitous network

device in the same way the real processor would run it, but uses the

resources of a PC to achieve this task. This means that the processor

emulator must recognize the binary instructions in the firmware and

must be able to deal with hardware properties such as memory and

interrupts. All this has to be done while keeping a constant execution

speed, similar to that dictated by the clock of a real device processor.

As each ubiquitous network device may use a different processor,

the task of processor emulation is perhaps one of the most difficult

in the context of ubiquitous network system emulation. During our

research, we have already implemented a PIC processor emulator

for active RFID tag experiments and also an OpenRISC processor

emulator for IEEE 802.15.4 experiments.

12.4.1.2 Communication space

The communication space is the emulation component that is in

charge of reproducing the wireless communication conditions for

the communication between the ubiquitous network devices in an

emulation experiment.

As shown in Fig. 12.7, the communication space mediates the

sending and receiving of data from and to the control space of

the ubiquitous network device. The core of the communication

space is represented by the chanel library in QOMET. Thus, the

communication space uses this library to forward the data from the

current ubiquitous network device to all the other devices in its com-

munication range by applying the appropriate �Q parameters. Note

that since communication conditions are applied in the outgoing

direction, in the incoming direction data can simply be delivered to

the corresponding control space in a transparent manner; hence, the

two conduits incoming into the communication space and control

space of an ubiquitous network device can in practice be replaced

by a single conduit reaching directly the control space. Nevertheless,

there are cases when actions have to be taken for incoming packets,

for instance in order to account for packet collision on a per packet

basis at ingress, instead of the probabilistic model at egress.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with RUNE 337

Similar to the “do wireconf” command described in Sec-

tion 10.5.2, the communication space also includes a thread that

periodically reconfigures the �Q parameters so as to reproduce the

potentially changing conditions that correspond to the real-world

scenario description.

12.4.2 Example Experiment

In order to make emulation experiments with large ubiquitous

network systems, all the spaces composing the logical module

shown in Fig. 12.7 — which represents a single ubiquitous network

device — must be connected to the spaces corresponding to other

equivalent devices. For illustrating the use of RUNE in QOMB, we

shall use the same example scenario that was already presented

in Fig. 12.2 of Section 12.3.2. Note that the QOMET scenario

that corresponds to that example remains unchanged even when

using RUNE and is detailed in Section 12.3.2.1. The additional

configuration file that is required relates to RUNE itself.

12.4.2.1 RUNE definition file

RUNE uses a specific definition file called “runedefs.h,” which must

include all the information needed to perform the experiment.

This file should be included with the source code of RUNE and

compiled together with all the other source files that make up

RUNE. The resulting executable commands, called “runemaster”

and “runemanager,” need to be executed on the experiment hosts

involved in the experiment; this process will be detailed in the next

subsection.

The information included in a RUNE definition file refers mainly

to the following aspects that are particular to it:

• space information (for each space)

— internal name of the space

— IP address of the experiment host on which the space

should be executed

— name of the object file that should be loaded for the space

• conduit information (for each conduit)

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

338 QOMET on StarBED

Figure 12.8. Logical view of the two ubiquitous network device example

experiment.

— internal name of the space representing the start point of

the conduit

— internal name of the space at the end point of the conduit

To make the following explanation easier to understand, let us

first draw in Fig. 12.8 the logical view of the experiment scenario

previously shown in Fig. 12.2, this time considering it an ubiquitous

network system experiment. Basically, we used the architecture

presented in Fig. 12.7 for each of the two ubiquitous network

devices and interconnected them by conduits, taking into account

the fact that communication conditions are applied only for outgoing

messages and incoming messages for a certain device reach directly

its control space, without passing through the communication space

of that device.

The RUNE definition file “runedefs.h” that corresponds to the two

device example experiment is shown in Fig. 12.9. The meaning of the

information in the file is as follows:

• Include for compilation purposes the C header file

“runebase.h” that is required in order to successfully

parse “rundefs.h” (line 1); the header files includes among

others the RUNE-specific keywords BGNSPACELIST, END-

SPACELIST, BGNCONDUITLIST, ENDCONDUITLIST, SPACE,

and CONDUIT that will be used next to define RUNE spaces

and conduits.

• Describe the RUNE spaces used in the experiment (lines 2 to

7):

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Integration with RUNE 339

1: #include "runebase.h"

2: BGNSPACELIST

3: SPACE(ctrl_space1, 192.168.3.10, control.so)

4: SPACE(ctrl_space2, 192.168.3.11, control.so)

5: SPACE(comm_space1, 192.168.3.10, communication.so)

6: SPACE(comm_space2, 192.168.3.11, communication.so)

7: ENDSPACELIST

8: BGNCONDUITLIST

9: CONDUIT(ctrl_space1, comm_space1)

10: CONDUIT(ctrl_space2, comm_space2)

11: CONDUIT(comm_space1, ctrl_space2)

12: CONDUIT(comm_space2, ctrl_space1)

13: ENDCONDUITLIST

Figure 12.9. RUNE definition file “runedefs.h.”

— Define the control spaces named “ctrl space1” and

“ctrl space2” to be executed on the hosts with IP ad-

dresses “192.168.3.10” and “192.168.3.11,” respectively

(lines 3 and 4). Both control spaces will be executed by

loading the object file “control.so”.

— Define the two communication spaces named “comm

space1” and “comm space2” to be executed on the hosts

with IP addresses “192.168.3.10” and “192.168.3.11,”

respectively (lines 5 and 6). Both communication spaces

will be executed by loading the object file “communica-

tion.so”.

• Specify the RUNE conduits used in the experiment (lines 8 to

13):

— Connect the control spaces named “ctrl space1” and

“ctrl space2” to their counter part communication

spaces “comm space1” and “comm space2,” respectively

(lines 9 and 10).

— Connect the two communication spaces named “comm

space1” and “comm space2” to the control spaces

of their peer devices, “ctrl space2” and “ctrl space1,”

respectively (lines 11 and 12).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

340 QOMET on StarBED

Note that the object files “control.so” and “communication.so”

depend on the actual functionality of the ubiquitous system that is

emulated. However this issue is outside the scope of this book; we

recommend for instance [16] for practical examples of such systems.

12.4.2.2 Experiment execution

For a better understanding of the internals of RUNE, we also present

in Fig. 12.10 the actual architecture that RUNE uses for the definition

file given previously. The following should be noted about this

architecture:

• RUNE Master is supervising the entire experiment by com-

municating with the RUNE Managers on the two experiment

hosts in StarBED.

• The two RUNE Managers control locally the experiment

under RUNE Master supervision and communicate with

each other to exchange data that is created by the spaces on

the host they manage.

Figure 12.10. Actual RUNE architecture of the two-node example

experiment.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 341

• The logical module on each host that is marked by

dashed line emulates a ubiquitous network device via its

communication and control functions, which are reproduced

by the communication and control RUNE spaces.

• Communication between RUNE Master, RUNE Managers,

and spaces is achieved by internal communication channels,

marked by bidirectional thick lines.

Note that even when using RUNE, SpringOS is still employed, but

mainly for experiment preparation tasks. This is because in a RUNE-

based experiment the only required commands to be executed are

“runemanager” on the experiment hosts and “runemaster” on the

master host. This execution simplicity makes it possible to launch a

RUNE experiment independently from SpringOS. Nevertheless, it is

straightforward to start the RUNE experiment via a SpringOS script

if desired.

One more thing to emphasize is that although in our example

we have only two emulated devices and each of them is executed

through emulation on a different experiment host, in practice it

is possible to emulate more ubiquitous network devices on the

same experiment host. This is achieved simply by specifying the

same IP address in the RUNE definition file for several of the

spaces in charge of control and communication. This effectively

instructs RUNE to execute several logical modules representing

ubiquitous network devices on the designated experiment host,

hence increasing experiment scale.

12.5 Discussion

The QOMB wireless network emulation testbed was created by

integrating QOMET with StarBED and its experiment-support tools,

SpringOS and RUNE. While we have already discussed in this chapter

in detail the mechanisms of this integration, we would like to stress

now a few additional issues.

Integration between QOMET and SpringOS is loose. This is first

of all because of the nature of the experiments that this integration

aims at: computer network application and protocol performance

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

342 QOMET on StarBED

evaluation over wireless networks such as IEEE 802.11a/b/g.

Besides using SpringOS to perform all the experiment preparation

tasks, QOMB also employs SpringOS to launch the QOMET-specific

and experiment-specific commands by means of a SpringOS scenario

script. In this sense, we view the scenario we presented in Sec-

tion 12.3.2.2 as a QOMB configuration template that enables users to

make use of the testbed only by minimal modifications of this script.

On the other hand, integration between QOMET and RUNE is

tight. Again, this is mainly because of the nature of the experiments

that are envisaged through this integration: ubiquitous network

application and protocol performance evaluation over wireless

networks such as active RFID tags or IEEE 802.15.4. The definition

file presented in Section 12.4.2.1 can be used by potential users as

a template for using QOMB in this context, or at least as a starting

point for their own definition file.

One more issue that needs to be stressed is the following. The

approach used in QOMB, which is to employ QOMET-based wireless

network emulation over the wired-network testbed StarBED, makes

possible a large range of experiments with network applications and

protocols, including ubiquitous network systems. However, an area

that cannot be tackled using QOMB is that of physical network layer

research. Due to the fact that QOMET models cover the physical layer,

and currently most of the data link layer, experiments with QOMB

only allow investigations of higher layer protocols (starting at Layer

3) and, of course, network applications.

Finally, to position QOMB with respect to other wireless

network experiment approaches, we go back to the discussion

in Section 8.1.1. There we made a generic comparison between

network testbeds, network emulators, and network simulators. Here

we focus only on wireless-related tools, as follows:

• wireless network testbeds, which are pure testbeds without

any emulation feature, such as those used for field trials

• several examples and classes of wireless network emulators

— ORBIT, as a representative of wireless-network-

hardware-based wireless network emulators

— QOMB, as a representative of wired-network-hardware-

based wireless network emulators

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Discussion 343

Table 12.1. Comparison of QOMB with other approaches for wireless

network experiments

Wireless Simulator-based Wireless

network wireless network network

testbeds ORBIT QOMB emulators simulators

Applications Real Real Real Real/Emulated Simulated

Time flow Real Real Real Real Simulated

Network protocols Real Real Real Emulated/Real Simulated

Network interfaces Real Real Emulated Emulated Simulated

Network conditions Real Emulated Emulated Emulated Simulated

— simulator-based wireless network emulators, such as

Ns-2, QualNet, or OPNET when used in emulation mode

• wireless network simulators, such as Ns-2, QualNet, or

OPNET

Table 12.1 summarizes the characteristics of each of these

approaches from the point of view of the executed applications,

time flow, network protocols, network interfaces, and network

conditions, similar to the comparison made in Table 8.1. While

we have already discussed the characteristics of wireless network

testbeds and simulators from these points of view in Section 8.1.1

(albeit not for the particular case of wireless networks), let us see

how the three types of wireless network emulators compare to each

other:

• Executed applications are typically real for all three wireless

network emulator classes, although the simulator-based

solutions do sometimes emulate applications as well.

• Time flow also is real for all three emulator types, either

naturally for ORBIT and QOMB or by synchronization of

logical time with the wall clock for the simulation-based

approaches.

• Network protocols are real for ORBIT and QOMB, since they

use real PCs for node execution, and typically emulated

for simulator-based solutions (an exception is, for instance,

NCTUns, which uses real protocol stacks).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

344 QOMET on StarBED

Figure 12.11. Realism versus control for QOMB and other wireless

network experiment approaches.

• Network interfaces are real only for ORBIT, which uses real

wireless network hardware, but are emulated over wired-

network interfaces in the case of QOMB, and as logical

interfaces for simulator-based emulators.

• Network conditions are emulated for all the three classes of

emulators that we compare.

o provide a better insight into the differences between emulation

approaches, we further extend Fig. 8.1 to include the three types of

wireless network emulators that we discussed in this section. Thus,

the realism of QOMB versus other approaches for wireless network

experiments is shown in Fig. 12.11, based on the comparison done

in Table 12.1. The figure suggests that QOMB is placed in the middle

of the realism axis, allowing us to say that QOMB is a trade-off not

only between the advantages and disadvantages of wireless network

testbeds and wireless network simulators but also between those of

wireless network emulation testbeds such as ORBIT, and simulator-

based wireless network emulators.

While we shall not discuss other aspects here, such as scalability

or flexibility, Fig. 12.11 can be used as an indication for positioning

QOMB with respect to other approaches from those points of view

as well, as we argued in the general case of emulation techniques

in Section 8.1.2 and Section 8.1.3, respectively. Also regarding

positioning, an inspection of Table 8.2 in Section 8.3 shows that

QOMB can be included in the “Class B” of network emulators if we

follow that classification and the corresponding discussion.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 13

QOMB Experiments

In this chapter, we shall present a series of experiments to

demonstrate how QOMB can be used in practice. We shall focus on

the procedure of making experiments and underline some of the

advantages of using QOMB in each case when compared with other

experiment techniques. For the scientific results of each experiment,

we recommend consulting the references we shall provide for each

experiment class.

13.1 WLAN Experiments

We start by reviewing several IEEE 802.11 (WLAN) experiments

that we performed while developing QOMB. In particular, we shall

present the following classes of experiments:

(1) VoIP performance assessment: a small-scale experiment done

on QOMB that demonstrates the use of QoE metrics for the

objective assessment of VoIP user-perceived quality

(2) Motion planning for robots: a large-scale experiment empha-

sizing the integration between an end-user application — the

motion planning algorithm implementation — and the QOMET

deltaQ library

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

346 QOMB Experiments

(3) Routing protocol evaluation: a medium-scale experiment under-

lining the use of QOMB for the assessment of the performance of

an ad hoc network routing protocol, OLSR, in a realistic scenario

involving mobility

Note that since all these experiments refer to IP networks, we

used the QOMB components QOMET, SpringOS, and StarBED to

perform them.

13.1.1 VoIP Performance Assessment

When talking about real-time applications, voice and video com-

munication are the most often used examples. This is because

applications such as Voice over IP (VoIP) or Video Tele-Conferencing

(VTC) impose more strict requirements on the network compared

with other applications, such as Web browsing or file transfer.

Using QOMB for the evaluation of VoIP communication makes it

possible to use real VoIP applications, and not abstract models, as it

would be done by simulation. Moreover, since real network traffic

flows through the emulator, users can experience by themselves

the quality of the VoIP communication. When using QOMB, speech

signals can also be recorded for later playback, or for comparisons

against the input waveform to determine objectively the quality

degradation through the network.

13.1.1.1 VoIP requirements

VoIP requires low packet loss conditions, because missing packets

will lead to a poor voice quality at the receiver. Various methods exist

for coping with packet loss, such as using redundant information

in the VoIP packets, or reconstructing missing voice data from the

samples that precede and follow the gap. Nevertheless, no matter

whether any kind of packet loss concealment techniques are used or

not, when packet loss exceeds a certain threshold, voice quality will

suffer.

VoIP also has specific requirements regarding the one-way delay.

Probably the most important aspect is jitter, or better said the lack

thereof. This is because VoIP applications must play back the audio

data at the receiver; however, they may not be able to do it properly

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

WLAN Experiments 347

if there is too much variation in the arrival time of the packets.

Basically, if a packet arrives too late compared with the previous

packet, the packet may not be in the system in time for its playback.

Hence, even if the packet is not lost, it is still useless, and its late

arrival contributes to lowering VoIP quality. VoIP applications use

a buffer in which arriving packets are temporarily stored before

playback. This helps coping with a certain amount of jitter, but

the size of the buffer cannot be made indefinitely large. This is

because VoIP has another requirement on delay, this time on the

value of the one-way delay itself. Recall that VoIP is a communication

tool, meaning that VoIP data flows in both directions between

the conversation participants. As a consequence, if the time lapse

between speaking at one end of the communication line and hearing

the voice at the other end is too big, communication interactivity will

suffer and the general call quality will degrade.

Regarding the bandwidth requirements of VoIP, we would like to

stress that they are not significant, with most VoIP codecs topping

at 64 kbps, while typical bandwidth requirements can be as low as

8 kbps, especially if mechanisms such as silence suppression are

used. Nevertheless, even such low bandwidth requirements may

pose problems in high-congestion periods.

13.1.1.2 User-perceived quality

While the general requirements for VoIP are clear, the problem

that remains is how to estimate the quality of a VoIP call, so that

the performance of a VoIP system can be evaluated over a certain

network. One possibility is to use subjective scores, such as the

mean opinion score (MOS) defined in the ITU-T Recommendation

P.800. Another possibility is to use the E-model, defined in ITU-

T Recommendation G.107, which is an objective metric calculated

based on the values of the network degradation parameters for a

given connection.

In our work, we preferred to use yet another objective metric,

namely the perceptual evaluation of speech quality (PESQ) score,

as defined in ITU-T Recommendation P.862. PESQ is a method for

predicting the subjective quality of narrow-band telephony and

speech codecs by using the original and degraded waveforms as

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

348 QOMB Experiments

the input of an algorithm that will calculate a quality score. This

algorithm employs models of the human speech perception system

to produce a score that corresponds to what human subjects would

perceive as quality level for a certain communication.

As a side note, we refer our users to an exhaustive analysis

that we have done on the relationship between network quality

degradation parameters and user-perceived quality for several

VoIP codecs [12]. That work provides guidelines regarding the

requirements that the network must meet in order to achieve a

certain speech quality level.

13.1.1.3 Experiment overview

The experiments we did with VoIP on QOMB demonstrate how the

testbed can be used for the objective evaluation of VoIP quality

in a realistic scenario. While we did several types of experiments

in this context [11, 15, 17, 18], the key points regarding all these

experiments are the following:

• Our experiments focused on ad hoc wireless networks such

as MANET.

• We used both simple scenarios with up to 5 nodes and also

more realistic scenarios with 13 nodes that take place in a

virtual street environment using real map data from an area

in Kawasaki, Japan.

• Some of the scenarios tried to reproduce situations related

to the intervention of rescue workers after a disaster, when

the quality of VoIP communication becomes essential for the

accomplishment of their task.

• For the assessment of VoIP quality, we mostly used a PESQ

implementation acquired from OPTICOM. In some cases,

however, we simply used network metrics such as packet

loss as indication of VoIP quality.

• The input data for the PESQ algorithm were sample speech

files provided with the ITU-T Recommendation P.862 and

their degraded versions as recorded after being sent through

the emulated wireless network.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

WLAN Experiments 349

• The VoIP application used in our experiments was a

modified version of SpeakFreely 7.6a [114].

The following steps were carried out in order to effectively

perform the experiments:

(1) Define the appropriate QOMET scenario, specifying the number

of nodes, their properties, motion trajectory, as well as the

environment conditions.

(2) Define the appropriate SpringOS scenario file, indicating the

number of experiment hosts used and their generic behavior.

(3) Define the actions of the nodes in a shell script file. In particular,

the following commands are important1:

• Launch the QOMET “do wireconf” command, which repro-

duces the WLAN communication conditions in the emulated

network.

• Launch the VoIP application that sends and records the VoIP

Traffic.

(4) Execute the experiment using SpringOS mechanisms.

(5) Compute VoIP communication quality off-line by using the PESQ

algorithm implementation.

13.1.2 Motion Planning for Robots

The development of autonomous robots is an important step in

making possible access to areas where humans cannot enter due

to hazardous conditions, physical size of the environment, etc.

An important component of the artificial intelligence embedded

into such autonomous robots is the motion planning algorithm

that decides the trajectory of the robot based on the environment

properties (e.g., obstacles), other moving objects and robots, etc.

In order to evaluate a motion planning algorithm, experiments

must be performed that re-create the environment and the

communication conditions of the target area, as well as the

intended number of robots. Emulation can play a significant role

1Some of the experiments did not use real VoIP traffic but a similar traffic stream

sent using the “iperf” tool. Moreover, in some cases we used the “ping” command for

round-trip delay measurements.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

350 QOMB Experiments

in this process, and QOMB, in particular, provides all the necessary

functionality for accomplishing this task. We used this approach in

several instances, as reported in [18, 76].

13.1.2.1 Robot assumptions

For the purposes of motion planning algorithms, robots do not have

to be modeled in great detail (such as joints and so on). Instead,

only the most basic features of the robots need to be taken into

consideration, at least in a first stage.

Thus, we considered the robots to have a known size and

movement speed. They are equipped with visual sensors that allow

them to detect optically obstacles and other robots (it was assumed

that once an object enters the visual range of a robot, it will be

immediately detected). Robots also have a GPS system that makes

it possible for them to know their absolute position. Finally, robots

can communicate with each other using WLAN technology.

Of course, in later stages of the evaluation one could make more

detailed models of the robots, including physical motion properties

such as acceleration and inertia, and integrate a real object-detection

algorithm with the system. Nevertheless, our simple model did allow

the evaluation of the most important features of motion-planning

algorithms in large-scale scenarios.

13.1.2.2 Evaluation methodology

In our scenarios, the robots depart from initial positions and head

toward predefined destinations. The trajectory they follow was

computed by the motion planning algorithm in real time as the

experiment progressed. The objective of the algorithm was to lead a

robot to its destination while avoiding collisions with obstacles and

other robots.

Although there are several criteria for evaluating motion-

planning algorithms, we focused on the time to reach the destination

as the main performance indicator when comparing different

motion-planning algorithms, or versions of the same algorithm that

use different parameter values, or slightly different assumptions.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

WLAN Experiments 351

13.1.2.3 Experiment overview

The key points of the robot experiments for motion-planning

performance evaluation are as follows:

• A large number of robots (from 10 and up to 400) are placed

in virtual environments that include certain obstacles; the

number of obstacles in an environment is proportional to

that of robots so as to create equivalent conditions.

• The positions of the robots and obstacles, and robot

destinations were defined by the user for some small-scale

experiments, or selected randomly for the large-scale ones.

• The motion planning algorithm of the robots was integrated

with the QOMET deltaQ and wireconf libraries.

• Log files were used after each experiment to compute the

time needed for robots to reach their destination and to

verify that no collisions occurred.

We would like to discuss in more detail the third point above,

referring to the integration of the motion-planning algorithm with

QOMET libraries. As mentioned in Section 10.2.3, the QOMET

scenario file allows users to define the motion trajectory of the

emulated nodes in advance. However, for robots that autonomously

plan their motion, this is obviously not possible. As a consequence,

the motion-planning algorithm has to be integrated with the deltaQ

library, as follows:

• The robots first load a QOMET scenario that describes their

initial position and all the other components of the virtual

environment.

• Following initialization, whenever a robot decides its next-

step position, it will also update the information in the

virtual world scenario that it keeps in its memory.

• In order for all the robots to have the same information

(hence have a unified view of the virtual world), robots

also multicast their intended future position to all the other

robots through the management network.2

2Note that this information is in principle only used for wireless communication

condition computation and is not available to the motion-planning algorithm itself.

However, a version of the algorithm that communicates through the experiment

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

352 QOMB Experiments

• Each robot uses the deltaQ library to compute the communi-

cation conditions between itself and the other robots for the

next step in the future.

The integration with the deltaQ library was necessary so

that the robots can compute the communication conditions in

the changing world representation by themselves, which would

have been impossible using the standalone command “qomet.” In

a similar manner, since the robots compute by themselves the

communication conditions, they cannot make use of the standalone

command “do wireconf” either. Instead, robots also integrated the

QOMET wireconf library, which allows each robot to re-create the

communication conditions with the other robots by itself.

The steps that we carried out for the robot motion planning

algorithm evaluation are the following:

(1) Define the appropriate QOMET scenario, specifying the number

of robots, their properties, and their initial position, as well as

the obstacles; no mobility is defined for the robots at this point.

(2) Define the appropriate SpringOS scenario file, indicating the

number of experiment hosts used and their generic behavior.

(3) Define the actions of the experiment hosts. In this particular

case, since all the necessary functionality was integrated into

one executable, the executable that represents the emulated

robots and performs motion planning (including the related

communications when necessary) and communication condi-

tion computation and re-creation, must be started.

(4) Execute the experiment using SpringOS mechanisms.

(5) Evaluate off-line experiment logs to compute the time needed by

the robots to reach their destinations in the virtual environment

and to check that no collisions with obstacles or other robots

took place.

We would like to note that these robot experiments are the

largest to date carried out using QOMB. In particular, we ran 100

network and uses announced the future position of the neighboring robots to

optimize planning has also been implemented. This version of the algorithm showed

an improvement in the time to completion over the agnostic version, which only uses

optical sensors to detect neighboring robots and obstacles.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

WLAN Experiments 353

robot experiments using 100 StarBED hosts (one robot per host) and

also 400 robot experiments using the same 100 StarBED hosts (four

robots per host). We can mention that some limitation effects were

noticed at such a large scale at the level of the shared file system

(NFS) used for logging purposes, but no significant scalability

problem occurred regarding QOMB itself.

13.1.3 Routing Protocol Evaluation

Routing protocols are an essential component of multi-hop wireless

networks, since they decide which path the packets must take from

source to destination. Ad hoc networks and their variant Mobile Ad

hoc Networks (MANET) require such protocols in order to function.

The same can be said about mesh networks, another type of wireless

networks that gained ground in recent days.

The evaluation of the performance of routing protocols requires

creating scenarios that are representative for the intended use

of these protocols. By using QOMB, one can evaluate not models

of routing protocols, as it would be done by simulation, but real

implementations of such protocols. Moreover, users can run real

network applications over the network managed by those protocols

and evaluate firsthand the effects of the protocols on application

performance (such as shortages cause by route reconfiguration

when the network topology changes, for instance, due to the

movement of mobile nodes).

13.1.3.1 OLSR protocol

The Optimized Link State Routing (OLSR) protocol is one of the main

contenders in the area of ad hoc network routing protocols, next

to its competitor, AODV. The OLSR protocol is part of the so-called

“pro-active” class of routing protocols, since it actively maintains the

topology of the network by a periodic message exchange between

the wireless nodes.

Although there are several variations of the protocol that attempt

optimizations under some circumstances, and there are several

configurable parameters, one could say that the protocol in general

is stable enough for everyday use. Nevertheless, an area that

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

354 QOMB Experiments

is actively researched at present is that of the routing metrics

employed by the protocol.

A routing metric is a measure of the quality of network links and

paths and is used by the routing protocol to determine the best path

between a given source and a destination. Note that we use the terms

“quality” and “best” in a generally accepted way, since each routing

metric tends to define these concepts in specific ways. The hop count

metric, for instance, uses the number of hops on a certain path as

a measure of its quality, and the best path is that with a minimum

number of hops.

While hop count is only the simplest routing metric, more

advanced metrics have been developed by various researchers. The

effect of different metrics on a routing protocol, and the effects of

various system parameters on that protocol can all be evaluated by

emulation on QOMB.

13.1.3.2 Experiment overview

The routing protocol evaluation experiments we have performed are

characterized by the following key points [14, 15, 71]:

• We performed two classes of experiments, one in static

conditions (mesh network) and another one including

mobility (MANET):

— For the static scenario, a number of wireless nodes (up

to 50) were distributed randomly over a certain area;

some of them were designated as gateways, i.e., the

destinations of the traffic, and some of them as traffic

sources.

— For the scenario with mobility, a number of wireless

nodes (up to 50) were placed in a virtual street environ-

ment that was defined using real map data for an area

in Kawasaki, Japan; the mobility was defined using the

behavioral model in QOMET, by specifying a (common)

starting position and a destination for each node; the

gateway was fixed in this case at the departure position,

and all the other nodes could represent traffic sources.

• Each of the above classes of experiments had different goals:

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

WLAN Experiments 355

— For the mesh network, the goal was to compare the per-

formance of the routing protocol when using different

routing metrics; the performance was evaluated from the

point of view of the throughput and delay for the traffic

sent by the designated sources.

— For the MANET, the goal was to evaluate the effect of

wireless network parameters, such as transmit power,

on the topology being built dynamically by OLSR (when

using the same routing metric) as the mobile nodes

moved from their starting position to their individual

destinations.

• In all experiments we used the version 0.5.5 of the OLSR

protocol as implemented by the olsr.org project [77].

• We logged the network topology created by OLSR in real

time so that we can see how it evolves in time, useful in

particular for the MANET experiments.

The necessary steps for carrying out the routing protocol

evaluation experiments were the following:

(1) Define the appropriate QOMET scenario, specifying the number

of static or mobile wireless nodes, their properties, and —

for the MANET case — their motion; the street topology that

constrained the motion of the mobile was also indicated.

(2) Define the appropriate SpringOS scenario file, specifying the

number of experiment hosts used and their generic behavior.

(3) Define the actions of the nodes in a shell script file. In particular,

the following commands are important3:

• Launch the QOMET “do wireconf” command that repro-

duces the WLAN communication conditions in the emulated

network.

• Launch the “iperf” traffic generation command that sends

traffic between the designated traffic sources and the

gateways.

• Launch the “ping” command that we used for round-trip

delay measurements.

3Note that the OLSR daemons also have to be launched, but this was not done at each

experiment execution, but only once for a series of experiments; hence, the daemon-

launching command was not included in this shell script.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

356 QOMB Experiments

(4) Execute the experiment using SpringOS mechanisms.

(5) Evaluate off-line the experiment logs to compute the perfor-

mance of the routing protocol, either in terms of network

performance or from the point of view of the network topology

produced.

13.2 Active RFID Tag Experiments

Active RFID tags have many applications in the area of location

tracking, mainly in relation to assets. However, they could also be

used for tracking the location of people, as Panasonic Corporation

is aiming to do by developing an active RFID tag-based pedestrian

localization system.

Active RFID tags are a perfect example of ubiquitous systems.

Real-world trials with such devices are difficult, especially in the

context of person localization system. This is because in addition

to the typical difficulties associated with ubiquitous systems (small

size, wireless communication), real-world trials must necessarily

include people wearing these devices that move according to known

scenarios.4 QOMB played an essential role in evaluating the above-

mentioned pedestrian localization system, since it allowed using

the same firmware with the active RFID tag prototype system in

an emulated virtual environment, in which pedestrian mobility

could be accurately controlled and repeated for performing series

of experiments in the same mobility situations [16].

13.2.1 Pedestrian Localization System

To facilitate the understanding of the challenges related to the

emulation of the active RFID tag system, and the motivation behind

the various types of experiments that we performed, we proceed by

introducing first the pedestrian localization system.

4Known or pre-defined scenarios are essential in order to be able to evaluate how

accurate the localization provided by the system is and serve as a reference for this

evaluation.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Active RFID Tag Experiments 357

13.2.1.1 Prototype system

The location tracking system prototype developed by Panasonic

Corporation uses the AYID32305 active RFID tags manufactured by

Ymatic Corporation [116]. The processing unit of the tags is the

PIC16LF627A micro-controller, which has an operating frequency

of 4 MHz. The active tag wireless transceiver works on the 303.2

MHz frequency, and communicates at an effective data rate of 2400

bps. According to Ymatic Corporation, the error-free communication

range of these tags is between 3 and 5 meters, depending on the type

of antenna being used.

The pedestrian localization system developed by Panasonic

Corporation uses these active RFID tags to provide to a central

software component, called localization engine, the information

required for automatically computing the trajectory to date and the

current location of the active tag wearer.

The communication protocol used by the active RFID tags

was custom designed by Panasonic based on the time-division

multiplexing paradigm. The protocol uses a pre-configured number

of communication slots, one of which is selected at random before

the effective transmission procedure. Communicated data contains

the ID of the transmitting tag and current time information. Given

the memory limitations of the active RFID tags, the received data

items are not saved individually but merged into a unique record

that indicates the IDs of the tags that were met during a certain

time period. The duration of the period for which merging occurs

is defined as a system configuration parameter.

13.2.1.2 Real-world trials

Several real-world trials were done by Panasonic with the prototype

localization system. The most important ones orchestrated the

movement of 16 pedestrians, each carrying an active RFID tag,

in an area of approximately 100 m × 300 m that included

several buildings. Each pedestrian received movement instructions

indicating the time in minutes and the location at which the

participant should be at that moment of time, including both

indoors and outdoors trajectories. Timing the motion was done by

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

358 QOMB Experiments

participants on their own. Participants were also equipped with GPS

devices, so that the robustness of the two tracking methods could be

compared.

The experiment made it possible to validate the basic behavior of

the prototype localization system. However, it also revealed several

issues:

(1) Organizing the real-world trials was time consuming: A 15-

minute 16-person experiment took several hours to prepare and

could be repeated only two times during one day.

(2) Movement variations prevented the reproducibility of the results:

The results of the two trials were not comparable because of

the variable movement speed of the participants and the fact

that they used sometimes other information than the movement

instructions to decide when to move, such as the fact whether

their active tags were communicating with each other or not.

(3) Battery depletion was relatively fast: This caused the wireless

signal to weaken during and between trials and further

amplified the lack of reproducibility.

(4) Off-the-shelf GPS receivers could not be used for validation: The

GPS receivers had difficulties in providing a reliable location for

small-scale movements and did not function inside buildings (as

expected).

13.2.2 Emulation Framework

The issues related to real-world trials motivated the collaboration

between NICT Hokuriku Research Center and Panasonic Corpora-

tion, which lead to the development of the emulation framework

presented here. The goal of our research was to make possible

reproducible experiments with the pedestrian localization system,

by emulating the communication between active RFID tags while

running the same firmware that was used in the prototype system,

so that its performance characteristics could be more thoroughly

assessed.

The emulation framework that we designed and implemented

builds upon the RUNE-based ubiquitous system emulation mech-

anism that we developed for QOMB. In particular, creating the

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Active RFID Tag Experiments 359

active RFID tag emulation framework required to implement specific

functionality in the generic communication and control spaces that

were shown in Fig. 12.7.

13.2.2.1 Communication space

The communication space uses the QOMET chanel library to apply

the computed network degradation in the emulated network. This

is a generic procedure that does not change for the case of active

RFID tag emulation. However, computing the network degradation

needs to be done using specific models that correspond to the

communication of the active RFID tags that we emulated. This model

was integrated with the QOMET deltaQ library.

The active RFID tags use a simple wireless communication tech-

nology and protocol when compared with IEEE 802.11. Therefore,

we created a communication model that sufficiently approximates

the real communication conditions between active RFID tags, while

not being exceedingly accurate. This is because our focus was on the

evaluation of the functionality implemented as the firmware of the

active RFID tags.

As a consequence, for active tags we used a model that

establishes the relationship between the distance that separates two

active RFID tags and the average frame error rate (FER) that occurs

during communication. This model is based on measurements made

by Panasonic with the prototype system in an RF-shielded room

while using a helical antenna, the same with the one used in the

practical experiment. A second-degree equation was fitted on the

measurement results to make computation possible in an easy

manner.

In order to enable emulation experiments with the active RFID

tag system in a wide range of network conditions, we further

extended this model by introducing a parameter for scaling the

communication range of the devices. This parameter makes it

possible to evaluate the performance of the system by emulation

experiments in situations when using a communication range of the

active RFID tags different than the default one. In principle, range

may also be changed in reality by varying the transmission power of

the active tags.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

360 QOMB Experiments

As mentioned before, the deltaQ library of QOMET supports the

definition of realistic virtual spaces, including buildings and streets.

As buildings interfere with the active RFID tag communication,

we had to take them into account when computing the wireless

communication conditions. Given the low transmission power and

short range of the emulated active tags, we could ignore complex

propagation aspects such as multi-path fading and absorption and

made the simplifying assumption that only line-of-sight communi-

cation is possible between two active tags. Line-of-sight calculations

are done by taking into account the position of the tags, and

the shape and position of the buildings present in the virtual

environment that we emulated.

13.2.2.2 Control space

In order to be able to execute the active RFID tag firmware on our

emulation framework without any modification or recompilation,

we emulated the active RFID tag micro-controller, which is a PIC

processor. The following aspects were taken into account and

implemented:

• instruction execution for all 35 instructions of the PIC

processor

• data I/O through the only method used by the active RFID

tag application, USART (Universal Synchronous Asynchro-

nous Receiver Transmitter)

• all the interrupts that were necessary for the active RFID tag

application

We evaluated by experiments the time accuracy of the PIC

processor emulator, and demonstrated that even on a low-spec

platform such as 1 GHz PC (with FreeBSD 5.4 operating system), it is

still possible to have 3 instances of the processor emulator running

in parallel at the correct frequency of 4 MHz. Performance improved

quickly with processor frequency, as the operating system overhead

becomes less and less important when more processor emulator in-

stances are run simultaneously. Thus, almost 40 instances of the PIC

processor emulator could be run in parallel if experiments would be

executed on a 3 GHz PC (with FreeBSD 7.1 operating system).

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Active RFID Tag Experiments 361

13.2.2.3 Time flow

We initially intended to use a time flow for experiments that is the

same with the wall-clock time (i.e., 1 emulated second lasts 1 real-

time second). However, the jitter in the StarBED wired network

prevented us from doing that. The reason is that each of the

communication slots of the real active RFID tags has a duration

of 53 ms. This value is only one order of magnitude higher than

latency and jitter values in a wired network, which are in the order

of milliseconds. As a consequence, there was a risk that network

latency and jitter would perturb experimental results. For instance,

two packets sent simultaneously from logical point of view may

have physically arrived in different communication slots during the

emulation process.

The solution for countering this issue was to use time flow

emulation. Thus, we decided to execute the experiment 10 times

slower than wall-clock time (i.e., 1 emulated second lasts 10 real-

time seconds). The actual duration of a communication slot in the

emulation framework became 530 ms when following this approach

(although logically it is still 53 ms). The 530 ms value is two orders

of magnitude greater than the undesired network effects, thus

eliminating the potential of interference with the communication

protocol.

As discussed previously in this book, a constant slow-down factor

of time flow compared with real time still allows for emulation

experiments that are different in this respect from simulation. This

is because simulation uses purely logical time, and the duration of

an experiment always varies, depending on how many nodes are

involved, the complexity of calculations, the amount of traffic, and

so on.

13.2.3 Experimental Results

We used the QOMB-based active RFID tag emulation framework for

several series of experiments, which will be summarized next. Note

that for comparison purposes we have also performed several real-

world trials with the prototype localization system developed by

Panasonic.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

362 QOMB Experiments

The metric we used to evaluate the performance of the localiza-

tion system is the average localization error, i.e., how well the system

can identify the location of the pedestrians at each moment of time.

For emulation experiments, the average localization error is com-

puted as the mean of the distances at each moment of time between

the position tracked by the pedestrian localization system, and the

pedestrian position in the virtual emulation environment. For the

real-world trials, the average localization error is computed as the

mean of the distances at each moment of time between the position

tracked by the pedestrian localization system, and the scenario-

based (intended) position of the pedestrian in the real environment.

13.2.3.1 Emulation framework validation

First of all, we carried out a two-pedestrian real-world trial with

the prototype localization system developed by Panasonic in an

outdoor environment. The goal of the experiment was to validate our

emulation platform by comparing the results obtained in the real-

world trial with those of an emulation experiment that reproduced

the said trial.

Comparing the mean localization error calculated for each

pedestrian, in both the real-world experiment and the emulation

experiment, showed a good agreement between the two experiment

techniques. The confidence in the correctness of the emulation

framework built in this manner allowed us to proceed toward

using QOMB to investigate the properties of the localization system

prototype.

13.2.3.2 Prototype system analysis

We performed several emulation experiments that reproduced

the conditions of the 16-pedestrian experiment carried out by

Panasonic. These emulation experiments were aimed at assessing

the firmware running on the active RFID tags of the localization

system.

We first analyzed how the localization error differs between the

real-world trials done by Panasonic and the results on our emulation

testbed. Our results showed that the localization error follows the

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Active RFID Tag Experiments 363

same trend in both types of experiments, demonstrating again the

correctness of the emulation framework. As expected, emulation

results had better reproducibility, given the lack of uncertainty in

the virtual environment.

Through the analysis of the experimental data, we were also able

to identify two issues with the active RFID tag based system, as

follows:

(1) The random number generation implementation was incorrect

in the active RFID tag firmware, causing many tags to choose

the same slot for communication. The negative effect of this

firmware issue was an artificially induced high collision rate

between tags that were in the same communication area.

Following our observations, Panasonic has fixed this firmware

problem.

(2) The time synchronization algorithm was causing a drift when-

ever two active RFID tags would be next to each other for a long

period of time, as each of them would repeatedly try to speed

up its internal clock to catch up with the other one. Panasonic

has revised the algorithm so that this issue does not occur in the

next version of the localization system.

13.2.3.3 Parameter selection

One important use of the emulation framework that we designed

and implemented is for system parameter selection, such as

determining the optimum values in specified circumstances. In

particular, the parameters that we investigated through emulation

on QOMB are the following:

Transmission range Transmission range is an important parame-

ter of the localization system since it determines the average

distance over which the active tags can communicate with each

other. Transmission range mainly depends on the antenna and

transmission power of the active RFID tags. However, it may

be difficult to perform many experiments while changing such

hardware parameters. Under such circumstances, the approach

of emulation simplifies considerably the task of experimentally

evaluating different conditions. Through our experiments we have

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

364 QOMB Experiments

identified for a certain emulated scenario the optimal transmission

range that ensures best localization accuracy through a trade-off

between the communication probability and interference conditions

that correspond to a given transmission range.

Number of communication slots The prototype localization system

uses 9 slots for the time-multiplexed communication, preceded

and followed by one guard slot. The advantage of using a smaller

number of slots is that the active duration of the RFID tags is

decreased, and therefore battery life potentially increases. The

disadvantage is that when several tags want to communicate with

each other, a smaller number of slots leads to a high collision

rate and impedes information exchange. Our experimental results

indicated that there is a performance gain when increasing the

number of slots, especially for long-range communication (around

9 m), and an optimal value was determined.

ID record merging period One other parameter of the localization

system is the length of the period used when merging ID record

information, as it was already mentioned in Section 13.2.1.1.

The two-pedestrian experiment was used to illustrate how our

emulation framework can be employed for analyzing this parameter.

In this case as well, we identified the merging period that provides

optimum performance in term of localization error and results

stability.

13.2.3.4 Large-scale experiments

Perhaps one of the most important motivations for developing

an emulation framework such as QOMB is running large-scale

experiments that cannot be easily executed in the real world. For

the pedestrian localization system, this corresponds to experiments

with groups of several tens and even 100 pedestrians, which

are difficult to organize in reality. To carry out such large-scale

emulation experiments, the movement of the pedestrians in the

virtual space was automatically generated by using the behavioral

motion model in QOMET. The topology of the virtual space was

based on real map data for a region in Kawasaki, Japan.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Active RFID Tag Experiments 365

Although we have performed several series of 100-pedestrian

experiments, due to an issue related to the active RFID tag commu-

nication protocol, we were not able to obtain the localization results

in the same way we did for the other smaller-scale experiments.

The issue was the following: In the 100-pedestrian experiment,

the number of tags that reach the one or two destinations in our

scenarios is large compared with the previous experiments. This

leads to having many collisions as the active RFID tags try to

upload their information to the localization system. As a result,

many tags do not manage to upload enough information before the

experiment ends. Panasonic Corporation is designing an enhanced

communication protocol that includes collision avoidance, since our

experiments have clearly shown that without such an algorithm the

active tag localization system cannot function for relatively crowded

areas. This is one of the important findings that were made possible

by using our emulation framework for large-scale experiments.

A related problem we discovered is that the current version of

the localization system software is not able to cope with the case

when only incomplete information is available. This meant that

although more than half of the tags did upload some information, no

localization results were produced. This robustness issue with the

software implementation of the localization algorithm is now being

considered by Panasonic.

13.2.3.5 Experimentation procedure

In order to perform the active RFID tag experiments that we have

described so far, the following steps need to be carried out:

(1) Define the appropriate QOMET scenario, specifying the number

of emulated active RFID tags (corresponding to pedestrians),

their initial position, as well as the destination of their

movement.

(2) Create the RUNE definition file that describes the spaces

and conduits that represent the emulated active RFID tags;

when using a large number of emulated tags, we recommend

generating the definition file in a programmatic manner in order

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

366 QOMB Experiments

to avoid mistakes that may appear if writing the file by hand, for

instance, in interconnecting the RUNE spaces by conduits.

(3) Execute the experiment on the allocated StarBED hosts.5

(4) Compute off-line the localization error by using the localization

information provided by the localization engine and the known

trajectories of the pedestrians.

Note that in these experiments, we did not use SpringOS

mechanisms for the execution of the experiment but only for the

preparation phase. However, SpringOS could have been used for

experiment execution as well.

13.3 Discussion

The experiments presented in this chapter demonstrated the wide

range of evaluation procedures that can be carried out by using

QOMB, both for computer networks and for ubiquitous ones.

We are currently in the process of finalizing the support for IEEE

802.15.4-based ubiquitous network systems. For this purpose, we

use an approach that is similar to the one presented for active RFID

tags. Our preliminary results show that QOMB functionality can be

easily extended to this new type of network and system.

We also envisage extending QOMB functionality to support

WiMAX networks, and in this case we plan to use the same approach

employed for WLAN networks. Although the work in this area is only

in an initial phase, again we expect to be able to easily modify the

framework of QOMB to allow carrying out WiMAX experiments as

well.

5These hosts should be prepared for experiment in advance by using SpringOS

mechanisms.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Chapter 14

Concluding Remarks

In this final chapter, we shall first summarize on a chapter-by-

chapter basis the most important issues that we discussed in each

part of this book. Then we shall use some of the information

already presented in the book to provide a series of practical advices

identifying and detailing the network emulation approach that is

most suited for three real-world situations.

14.1 Summing It All Up

In this book we tried to cover a large varieties of issues related

to network emulation, so as to provide our readers with a

comprehensive background regarding this topic. We believe that

summarizing the most important issues discussed in each chapter

would help readers to better grasp the overall content of our book.

14.1.1 The Ins and Outs of Network Emulation

The first part of this book was intended as an introduction to the

general concept of network emulation.

Introduction to Network Emulation
Razvan Beuran
Copyright c© 2013 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4310-91-8 (Hardcover), 978-981-4364-09-6 (eBook)
www.panstanford.com

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

368 Concluding Remarks

In Chapter 2, we started by presenting the background and

motivations that lead to the development of network emulation

techniques. We then defined formally the concept of network emula-

tion, as well as the other network experiment techniques. Following

that, we discussed how network emulation can be put to use to ac-

complish tasks such as network equipment assessment, application

assessment, protocol assessment, and finally some more complex

scenarios. The chapter ended with a comparison of network

emulation against the other network experiment techniques, namely

analytical modeling, network simulation, and real-world testing.

In Chapter 3 we attempted to provide a quick overview on

the wide range of network emulators that have been or are being

developed. To facilitate understanding, we provided a classification

methodology that used criteria such as availability, implementation

manner, emulation level, and model complexity. We also gave a

summary of the most important aspects related to the manner

in which to effectively carry out experiments through emulation.

In particular, we focused on how to execute the emulation

tools how to run applications, and how to perform the overall

experiments.

14.1.2 Network Emulators to Remember

Whereas the first part of the book was a general introduction, the

second part plunges into more details regarding network emulation.

We opted for a hands-on approach, in which we discuss particular

cases of network emulators, grouped by several classes: free

emulators, commercial emulators, emulation-capable simulators,

and emulation testbeds. The discussion of each class and each

network emulator belonging to that class provides a series of

practical details that both facilitate the understanding of that

particular tool and also help gaining a better insight into the general

concept of network emulation.

In Chapter 4, we focused on free network emulators, which are

most popular with regular users, as their source code is available

for use, inspection, and modification without any financial costs. We

started by introducing Dummynet, which is the oldest member of

the network emulator family that is still currently in use. Then we

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Summing It All Up 369

discussed NIST Net, which was the initial equivalent of Dummynet

for Linux, and further contributed to popularizing the concept of

network emulation. NetEm followed as the modern incarnation of

the concept on Linux, which has now become a popular operating

system in research communities.1 The chapter ended with a

comparison of these three network emulators, emphasizing their

most important properties.

In Chapter 5, we presented examples from the most used

class of network emulators in business environments, namely the

commercial emulators. Our discussion revealed the large number of

companies that provide network emulation solutions and the variety

of tools each company provides. Specifically, we discussed products

of Shunra, PacketStorm Communications, Simena, Apposite Tech-

nologies, and Anue Systems. While the large amount of information

available prevented us from being exhaustive, we tried to capture

the most significant data related to each emulation product. The

comparison section, which selected a representative product for

each of the above companies, hopefully helped underline the most

important features of each of these network emulators.

In Chapter 6 we moved to a different category of tools, the

emulation-capable network simulators, which are most popular in

the research or business environments that also embrace those

network simulators. In that chapter, we discussed Ns-2, OPNET

Modeler, QualNet Developer, and NCTUns, with focus on their

emulation features. These four simulator-based network emulation

solutions were compared in the final section of the chapter.

In Chapter 7, we presented yet another type of network

emulators, the testbed-based ones. Network emulation testbeds are

mainly used by researchers with affiliation to universities, research

institutes, and sometimes commercial companies. Such affiliation

represents the necessary credentials needed in order to obtain

access to those testbeds. We presented in that chapter Emulab,

PlanetLab, and ORBIT, as representative examples for the various

alternatives of this category of network emulation tools. Although

1We noted that Dummynet was itself revived in recent years and ported to both Linux

and Windows, thus becoming a strong contender for NetEm.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

370 Concluding Remarks

the three testbeds have largely different purposes, we tried to em-

phasize both their similarities and differences, as well as advantages

and disadvantages in the comparison section of that chapter.

Chapter 8 concluded the second part of our book. In that chapter,

we dealt first with several generic issues related to network emula-

tion, which we discussed in the light of the details about various net-

work emulators that had been presented that far. Thus, we analyzed

the issues of realism, scalability, and control, as well as other aspects

related to network emulation as an experiment technique (e.g.,

security). That chapter also included a more thorough discussion

of various approaches in network emulation research, and solutions

proposed for the different levels of the emulation process.

14.1.3 A Case Study: QOMB

The third and final part of this book went even more practical.

To achieve this goal, we thoroughly discussed a system for which

we have firsthand knowledge, since we actively participated to

its design and development. This system is the wireless network

emulation testbed named QOMB. QOMB is particularly suited for

a detailed analysis in the context of network emulation because it

addresses at least three factors that are important and challenging

in this area: wireless network support, large-scale experiments, and

distributed execution.

In Chapter 9, we presented the motivation behind the project that

resulted in the design and development of QOMB, with focus on two

issues: Internet access and smart environments. We also discussed

the requirements that have driven the design of QOMB as a large-

scale wireless network emulation testbed. The chapter ended with

an outline of the design of QOMB that briefly introduced its compo-

nents to readers, and explained their relationship to each other.

Chapter 10 presented QOMET, the set of tools for wireless

network emulation that provide the corresponding capability on

QOMB. After an overview of QOMET, we proceeded to presenting

the library called deltaQ, which is in charge of computing the

communication conditions between wireless nodes based on the

characteristics of a user-defined scenario. The deltaQ library is also

in charge of creating mobility patterns in the synthetic environment

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Summing It All Up 371

that constitutes the virtual world in which the wireless nodes

communicate with each other. The two other libraries discussed,

wireconf and chanel, are used during the effective emulation

experiments to enforce the communication conditions computed by

deltaQ in a wired network, thus effectively recreating the conditions

corresponding to the user-defined scenario. Wireconf is used for

IP-based communication between PC hosts, whereas chanel is

dedicated to the case of non-IP communication between ubiquitous

network devices. We also introduced in that chapter the command-

line tools “qomet” and “do wireconf” that users can employ to drive

the above-mentioned libraries.

In Chapter 11, we presented StarBED, the large-scale wired

network experiment testbed that represents the infrastructure of

QOMB and on which QOMET is executed in a distributed manner.

Following a discussion of the hardware components of StarBED,

we introduced SpringOS, which is an experiment-support software

tool that was created as a user interface for experiment preparation

(mainly, configuring the testbed hardware) and execution. Then we

presented RUNE, which is an alternative for SpringOS in experiment

scenarios that the latter cannot handle directly. In particular, RUNE

is intended for use in connection with the emulation of ubiquitous

network systems.

Chapter 12 detailed the way in which QOMET and StarBED

are integrated using the support tools on StarBED to create the

synergistic entity that is QOMB, thus consolidating the building

components in order to create a new type of testbed. After looking

at the architecture of QOMB, we then explained the integration with

the two experiment-support tools for StarBED, namely SpringOS and

RUNE. For each of these two tools, we presented a simple example

experiment that illustrated all the steps that need to be carried out

in order to perform an experiment with any of the two solutions.

That chapter ended with a general discussion of QOMB, and a

comparison of QOMB against equivalent approaches for wireless

network experiments.

In Chapter 13, we demonstrated the wide spectrum of applica-

tions of a wireless network emulation testbed such as QOMB, and in

the same time the usefulness of the technique of network emulation

in general. For this purpose we presented first several WLAN

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

372 Concluding Remarks

emulation experiments performed on QOMB. These experiments

focused, in turn, on VoIP performance assessment, on a motion

planning algorithm for autonomous robots, and on the evaluation

of a routing protocol (OLSR). The second part of that chapter

was dedicated to a series of active RFID tag experiments, as an

illustration of the ubiquitous network system emulation capabilities

of QOMB. As these experiments were done in the framework

of the development of a pedestrian localization system, we also

summarized the key points of that project. Then, we described

the emulation framework of QOMB that made possible these

experiments. Finally, we presented several categories of active RFID

tag experimental results that we obtained on QOMB, emphasizing

the opportunities provided by such a testbed for ubiquitous network

system evaluation and optimization.

14.2 Practical Advice

We believe that practical information is the most useful to those who

want to enter for the first time the world of network emulation.

This is why we end this book with a series of advices for those

readers interested in starting to use network emulation in their

activity. While it is of course impossible to foresee all potential needs

for emulation-based network experiments, we identified three use

cases that we consider the most probable, namely

(1) a small company

(2) a large company

(3) a research group

In the following sections, we shall present the typical require-

ments associated with each of the three use cases above, and we

shall propose the network emulation solutions that we see as most

fitted for these scenarios.

14.2.1 Small Company

A small company may be developing network software that it

would like to push as quickly as possible to market, so as to

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Practical Advice 373

gain market share from its competitors and perhaps even a

competitive advantage. The application probably addresses a limited

problem that the company, nevertheless, envisages as important

enough for its customers. Possible examples include communication

applications, e-commerce, and so on. Note that even when the

application itself does not have direct network functionality, it may

still include such support for purposes such as communicating usage

statistics to the company, for automatic updates, and so on.

From the network point of view, the requirements for our

hypothetical application would be to effectively use the network

to communicate a moderate amount of data between two end-user

clients, or between an end-user client and the company server, in a

manner which is robust enough to potential network impairments.

Given these requirements, we propose the use of a software

network emulator solution, which we expect is capable of support-

ing the expected moderate amount of traffic, and can introduce

the necessary network degradation for testing the application in

a scenario corresponding to two remote locations, between which

network conditions may be less than perfect in terms of delay, packet

loss, and bandwidth limitations.

As a consequence, a possible experiment setup would be

that shown in Fig. 14.1. The two end nodes “Client A” and

the “Client/Server B”2 communicate with each other through

the software network emulator that is installed on a dedicated

workstation. The application under test is installed on the two

end nodes. The network emulation software is configured so as to

reproduce several typical scenarios such as

• low delay and low packet loss

• low delay and high packet loss

• high delay and low packet loss

• high delay and high packet loss

In all cases bandwidth limitations can also be introduced,

depending on what are the expected conditions for the end users.

For instance, to test the possibility of using the application over an

2Node “B” can be either identical to “A”, hence another application client, or provide

some sort of service the node “A”, hence a server.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

374 Concluding Remarks

Figure 14.1. Suggested setup for use of a software network emulator by a

small company.

ADSL modem, an appropriate rate limitation configuration of the

network emulator should be used.

Such simple scenarios should be sufficient for most needs and

should give application developers an idea about how their product

would behave in a wide range of network conditions. Note that

while we focused on small companies in this section, everything

we discussed also applies to the case of private developers, or any

other kind of users that may be interested in network application

performance evaluation.

Depending on their financial capabilities and whether they

would like to receive technical support, the category of users

concerned by this use case have the choice between a free software

emulator, such as Dummynet or NetEm, or a commercial software

emulator, such as Shunra VE Cloud or Desktop, or PacketStorm

Communications Tornado, which we described in detail in the

corresponding chapters, Chapter 4 and Chapter 5, respectively.

Simena NE100 also meets the requirements of the presented

scenario, even though given the fact that it is an integrated solution,

it may come at a slightly higher cost. A company may, nevertheless,

consider that the higher cost is compensated by the fact that no

setup is required in this case for the workstation used to run the

network emulation software in the other cases.

14.2.2 Large Company

A large company is probably developing a more complex network

system compared with a small company. Examples include various

kinds of managements systems (e.g., ERM), cloud computing

applications, etc. Requirements that derive from such application

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Practical Advice 375

Figure 14.2. Suggested setup for use of a hardware network emulator by

a large company.

complexity are a larger amount of traffic, a larger number of nodes,

as well as more intricate interactions between these nodes when

compared with the previous use case.

As a consequence, a software network emulator may not be

sufficient to thoroughly evaluate such complex applications, mainly

because of limitations in terms of supported throughput and the

complexity of the network scenarios it can reproduce. Therefore,

we propose the use of a hardware network emulator for the typical

goals of large companies.

A possible setup for this use case is shown in Fig. 14.2. We

assume that the experiment involves a number of n clients (which

can represent either end-user desktops or application servers) that

are connected to a hardware network emulator appliance. Although

we depicted direct connections between all clients and the network

emulator, if the number of ports of the appliance is insufficient,

network switches can be used to aggregate the traffic produced by

clients, so as to extend the scale of the experiment. Moreover, while

we depicted all clients as desktop PC, some of them can also be other

kind of devices, such as hardware systems (e.g., hardware traffic

generators) that are required to perform the intended experiment,

or that may be even under test themselves.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

376 Concluding Remarks

The application that is being test is considered to be installed on

the n clients (including the use of hardware solutions). The hardware

network emulator is configured to create the required complex

network topology, and the composite network degradation effects

that correspond to it. As the complexity of the setup increases, the

complexity of the configuration step is also more significant, and

users must make sure that the scenarios they will evaluate indeed

cover the range of conditions they expect to encounter in the target

production network.

We have reviewed in the second part of this book a large number

of commercial network emulators that are suited for the use cases

presented here, such as the Shunra VE Appliance, the PacketStorm

Communications Hurricane and E series, the Simena PTC3000 and

NE series, the Apposite Technologies Linktropy and Netropy series,

or the Anue Systems GEM (see Chapter 5). The most appropriate

of these alternatives must be decided by the company based on

its requirements in terms of execution speed, network emulation

capabilities, and, perhaps, cost.

14.2.3 Research Group

Researchers have usually different interests compared with com-

mercial companies. They will typically not test already developed

products but rather new ideas that are still under development.

Moreover, researchers may be interested in a lower-level evaluation

of the system they develop, requiring realistic but controllable

network conditions. Research experiments may also be carried out

on larger scales that those performed by companies, often with

the Internet as a target. Peer-to-peer systems and distributed file

systems are but a few examples that enter in this category.

We envisage that there are two possible solutions for the types

of experiments a research group may intend to perform, depending

on whether the most important requirement concerns modeling

accuracy or experiment scale.

14.2.3.1 When modeling comes first

One type of situation is when modeling comes first, in the sense that

researchers want to be able to make experiments with networks that

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Practical Advice 377

Figure 14.3. Suggested setup for use of a simulator-based network

emulator by a research group.

were thoroughly and accurately modeled down to a very detailed

level, so that they can fully understand the internal behavior of the

system they develop.

For such a case, we deem that emulation-capable network

simulators are the most appropriate solution, especially given the

fact that the researchers do probably already have experience with

those network simulators. In Fig. 14.3 we show one of the many

scenarios possible with such a tool, in which a few real nodes (clients

“A”, “B”, and “C”) are completely embedded into a simulated network

that is intended as an accurate replica of the target real network

for the developed application. We estimate that in many cases

this approach comes as a natural continuation of the simulation-

only experiments that may have been carried out by researchers, a

continuation meant to validate an initial prototype implementation

of the developed protocol or system.

While we have discussed several simulator-based network

emulation solutions in Chapter 6, we believe that for general-

purpose experiments the commercial variants, such as the system-

in-the-loop module of OPNET Modeler, or EXata network emulator

are most usable. If certain restrictions on the execution platforms

are not a problem, then NCTUns, with its many features, can be a

viable solution, for both academic and commercial environments.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

378 Concluding Remarks

On the other hand, the Ns-2 emulation features do not seem mature

enough yet for such experiments.3

14.2.3.2 When scale comes first

The other important scenario is when experiment scale is the

most significant requirement. Simulator-based network emulation

does not have the necessary scalability properties in terms of

number of nodes and amount of traffic for being used in such

a context. Therefore, in large-scale scenarios, only a network

emulation testbed can provide the necessary resources to perform

the experiments.

In Chapter 7, we have introduced three testbeds that could be

used for the purpose of such large-scale experiments. Thus, for

experiments in an isolated network, Emulab is the first choice,

whereas for experiments distributed over the Internet, PlanetLab is

the most suited alternative. For wireless network related research,

obviously ORBIT is the best solution. To these three testbeds, we add

those presented in the third part of this book: first, the large-scale

network experiment testbed, StarBED, which can be considered an

equivalent of Emulab (although StarBED exceeds Emulab by more

than double in size) and, second, QOMB, which is adding wireless

network emulation support to StarBED and, hence, is an alternative

to ORBIT.

3Recent communications we had with Ns-3 developers indicate that the emulation

features of this network simulator are being actively developed, and Ns-3 based

emulation may soon become an applicable alternative.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Bibliography

1. Ahn, J., Danzig, P. B., Liu, Z., and Yan, L. (1995). Evaluation of TCP Vegas:
emulation and experiment, in Proc. of the ACM SIGCOMM, Cambridge,

Massachusetts, August 1995, pp. 185–195.

2. Ahrenholz, J., Danilov, C., Henderson, T. R., and Kim, J. H. (2008).

CORE: a real-time network emulator, in Proc. of IEEE Military

Communications Conference (MILCOM), San Diego, USA, November

16–19, 2008.

3. Anue Systems, Inc., Ethernet Network Emulators, http://www.

anuesystems.com/Products NetworkEmulator Ethernet.shtml.

4. Anue Systems, Inc., Network Emulation Case Studies, http://www.

anuesystems.com/Resources NetworkEmulator CaseStudies.shtml.

5. Apposite Technologies, Inc., Network Emulation Product Lines,

http://www.apposite-tech.com/products/index.html.

6. Augusto, J. C., and McCullagh, P. (2007). Ambient intelligence: concepts

and applications, International Journal on Computer Science and
Information Systems, vol. 4, no. 1, 2007, pp. 1–28.

7. Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson,

L., Roscoe, T., Spalink, T., and Wawrzoniak, M. (2004). Operating system
support for planetary-scale services, in Proc. of the 1st Symposium on

Network Systems Design and Implementation (NSDI’04), March 2004.

8. Bavier, A., Feamster, N., Huang, M., Peterson, L. and Rexford, J. (2006). In
VINI veritas: realistic and controlled network experimentation, in Proc.

of the 2006 Conf. on Applications, Technologies, Architectures, and

Protocols for Computer Communications (SIGCOMM’06), New York,

USA, 2006, pp. 3–14.

9. Bellard, F., QEMU open source processor emulator, http://www.

qemu.org/.

10. Beuran, R. (2004). Mesure de la qualite dans les reseaux informatiques
(Measuring Quality in Computer Networks), Ph.D. thesis, CERN-

http://www.anuesystems.com/Products NetworkEmulator Ethernet.shtml
http://www.anuesystems.com/Products NetworkEmulator Ethernet.shtml
http://www.anuesystems.com/Resources NetworkEmulator CaseStudies.shtml
http://www.anuesystems.com/Resources NetworkEmulator CaseStudies.shtml
http://www.qemu.org/
http://www.qemu.org/

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

380 Bibliography

THESIS-2005-004, Université Jean Monnet, Saint-Etienne, France, and

University Politechnica of Bucharest, Romania, July 2004.

11. Beuran, R., Chinen, K., Latt, K. T., Miyachi, T., Nakata, J., Nguyen, L. T.,

Shinoda, Y., and Tan, Y. (2006). Application performance assessment

on wireless ad hoc networks, in Asian Internet Engineering Conference

(AINTEC 2006), Springer-Verlag LNCS 4311, Bangkok, Thailand,

November 28–30, 2006, pp. 128–138.

12. Beuran, R., and Ivanovici, M. (2004). User-Perceived Quality Assessment
for VoIP Applications, technical report (delivered to U4EA Technolo-

gies), CERN-OPEN-2004-007, CERN, Geneva, Switzerland, January

2004.

13. Beuran, R., Ivanovici, M., Dobinson, B., Davies, N., and Thompson, P.

(2003). Network Quality of service measurement system for application
requirements evaluation, in Proc. of Intl. Symp. on Performance

Evaluation of Computer and Telecommunication Systems (SPECTS

2003), Montreal, Canada, July 20–24, 2003, pp. 380–387.

14. Beuran, R., Nguyen, L. T., and Shinoda, Y. (2010). QOMB wireless
network emulation testbed: evaluation and case study, in 5th ACM

International Workshop on Wireless Network Testbeds, Experimental

Evaluation and Characterization (WiNTECH 2010), in conjunction with

MobiCom 2010, Chicago, USA, September 20–24, 2010.

15. Beuran, R., Nguyen, L. T., Miyachi, T., Nakata, J., Chinen, K., Tan, Y., and

Shinoda, Y. (2009). QOMB: A Wireless Network Emulation Testbed, IEEE

Global Communications Conference (GLOBECOM 2009), Honolulu,

Hawaii, USA, November 30–December 4, 2009.

16. Beuran, R., Nakata, J., Okada, T., Kawakami, T., Chinen, K., Tan,

Y. and Shinoda, Y. (2010). Emulation framework for the design

and development of active RFID tag systems, Journal of Ambient
Intelligence and Smart Environments (JAISE), vol. 2, no. 2, April 2010,

pp. 155–177.

17. Beuran, R., Nguyen, L. T., Latt, K. T., Nakata, J. and Shinoda, Y. (2007).

QOMET: A Versatile WLAN Emulator, in Proc. of IEEE Intl. Conf. on

Advanced Information Networking and Applications (AINA 2007),

Niagara Falls, Ontario, Canada, May 21–23, 2007, pp. 348–353.

18. Beuran, R., Nakata, J., Okada, T., Nguyen, L. T., Tan, Y. and Shinoda,

Y. (2008). A Multi-purpose Wireless Network Emulator: QOMET, 22nd

IEEE International Conference on Advanced Information Networking

and Applications (AINA 2008) Workshops, FINA 2008 symposium,

Okinawa, Japan, March 25–28, 2008, pp. 223–228.

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Bibliography 381

19. Candela Technologies, Inc., LANforge ICE WAN/Network Emulator,

http://www.candelatech.com/lanforge v3/datasheet.html#ice.

20. Carbone, M., Cecchetti, G, Rizzo, L., Checconi, F. and Ruscelli, A. (2007).

Wireless link emulation in OneLab, in Proc. of Intl. Workshop on Real

Overlays And Distributed Systems (ROADS), Warsaw, Poland, July

2007.

21. Carbone, M. and Rizzo, L. (2009). Dummynet Revisited, Technical

Report, University of Pisa, Italy, 31 May 2009.

22. Carson, M. and Santay, D. (2003). NIST Net: a Linux-based Network
Emulation Tool, ACM SIGCOMM Computer Communication Review, vol.

33, no. 3, pp. 111–126, 2003.

23. Conchon, E., Garcia, J, Perennou, T. and Diaz, M. (2007). Improved
IP-level Emulation for Mobile and Wireless Systems, in Proc. of IEEE

Wireless Communications and Networking Conference (WCNC07),

Hong Kong, China, March 2007.

24. Davies, N. (2003). Delivering Predictable Quality in Saturated Networks,

technical report, Predictable Network Solutions, September 2003.

25. De, P., Raniwala, A., Sharma, S. and Chiueh, T.-C. (2005). Design
considerations for a multihop wireless network testbed, IEEE Commun.,

vol. 43, no. 10, October 2005, pp. 102–109,

26. D-ITG, Distributed Internet Traffic Generator. http://www.grid.

unina.it/software/ITG/

27. Engel, M., Smith, M., Hanemann, S. and Freisleben, B. (2004). Wireless
ad-hoc network emulation using microkernel-based virtual Linux
systems, in Proc. of the 5th EUROSIM Congress on Modeling and

Simulation, 2004, pp. 198–203.

28. Fall, K. (1999). Network emulation in the Vint/NS simulator, in Proc. of

IEEE Symposium on Computers and Communications, 1999, pp. 244–

250.

29. Garcia, J., Conchon, E., Perennou, T. and Brunstrom, A. (2007). KauNet:
Improving Reproducibility for Wireless and Mobile Research, in Proc.

MobiEval Workshop at ACM MobiSys 2007, San Juan, Puerto Rico, June

2007.

30. Global Environment for Network Innovations (GENI) Project.

http://www.geni.net/.

31. Globus Grid Toolkit. http://www.globus.org/.

32. Gokturk, E. (2007). A stance on emulation and testbeds, and a survey of
network emulators and testbeds, in Proc. of 21st European Conference

http://www.candelatech.com/lanforge_v3/datasheet.html#ice
http://www.grid.unina.it/software/ITG
http://www.grid.unina.it/software/ITG

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

382 Bibliography

on Modelling and Simulation (ECMS 2007), Prague, Czech Republic,

June 4–6, 2007.

33. Guffens, V. and Bastin, G. (2005). Running virtualized native drivers in
user mode linux, in Proc. of USENIX 2005 Annual Technical Conf., 2005.

34. Guruprasad, S., Ricci, R. and Lepreau, J. (2005). Integrated network
experimentation using simulation and emulation, in: Proc. of 1st Intl.

Conf. on Testbeds and Research Infrastructures for Development of

Networks and Communities (TRIDENTCOM 2005), 2005.

35. GNU Radio Home Page. http://gnuradio.org/redmine/wiki/gnuradio.

36. Haeberlen, A., Dischinger, M., Gummadi, K. P. and Saroiu, S. (2006).

Monarch: a tool to emulate transport protocol flows over the Internet
at large, in Proc. of the 6th ACM SIGCOMM on Internet measurement

(IMC’06). New York, NY, USA, 2006, pp. 105–118.

37. Hemminger, S. (2005). Network Emulation with NetEm, in Proc. of the

Linux Australia Conference (linux.conf.au 2005), Canberra, Autralia,

April 2005.

38. Huang, X. W., Sharma, R. and Keshav, S. (1999). The ENTRAPID protocol
development environment, in Proc. of the Eighteenth Annual Joint Conf.

of the IEEE Computer and Communications Societies (INFOCOM’99),

vol. 3, March 1999, pp. 1107–1115.

39. Huang, Y. L., Tygar, J. D., Lin, H. Y., Yeh, L. Y., Tsai, H. Y., Sklower, K., Shieh,

S. P., Wu, C. C., Lu, P. H., Chien, S. Y., Lin, Z. S., Hsu, L. W., Hsu, C. W.,

Hsu, C. T., Wu, Y. C., Leong, M. S. (2008). SWOON: a testbed for secure
wireless overlay networks, in Proc. of. Workshop on Cyber Security

Experimentation and Test 2008 (CSET’08), July 28, 2008.

40. Hokuriku Research Center, National Institute of Information and

Communications technology, QOMET Wiki, https://www.starbed.

org/qoala/twiki/bin/view/QOALA/QOMET

41. InterWorking Labs, Inc., Maxwell Network Emulator, http://www.

maxwelltester.com/.

42. Internet Automobility Laboratory, Dummynet Extension EDN,

http://www.ial.jp/software.html.

43. Iperf Home Page at SourceForge. http://sourceforge.net/projects/

iperf/.

44. iTrinegy, Ltd., iTrinegy Network Emulators, http://www.itrinegy.com/

network-emulators/network-emulator-overview.html.

45. International Telecommunication Union, Telecommunication Stan-

dardization Sector (2001). ITU-T Recommendation P.862: Perceptual

https://www.starbed.org/qoala/twiki/bin/view/QOALA/QOMET
https://www.starbed.org/qoala/twiki/bin/view/QOALA/QOMET
http://www.maxwelltester.com/
http://www.maxwelltester.com/
http://sourceforge.net/projects/iperf/
http://sourceforge.net/projects/iperf/
http://www.itrinegy.com/network-emulators/network-emulator-overview.html
http://www.itrinegy.com/network-emulators/network-emulator-overview.html

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Bibliography 383

evaluation of speech quality (PESQ), an objective method for end to
end speech quality assessment of narrow-band telephone networks and
codecs, ITU-T, February 2001.

46. Ivanovici, M. (2005). Network Quality Degradation Emulation — An
FPGA-based Approach to Application Performance Assessment, PhD

Thesis, University “Politehnica” Bucharest, Bucharest Romania, 2005.

47. Ixia, Modern Networks Testing and Compliance, http://www.ixiacom.

com/products/index.php.

48. Jansen, S. and McGregor, A. (2005). Simulation with real world network
stacks, in Proc. of WSC’05, 2005, pp. 2454–2463.

49. Jiang X. and Xu, D. (2003). vBET: a vm-based emulation testbed, in Proc.

of the ACM SIGCOMM workshop on Models, methods and tools for

reproducible network research (MoMeTools’03), New York, NY, USA,

2003, pp. 95–104.

50. Johnson, D., Stack, T., Fish, R., Flickinger, D. M., Stoller, L., Ricci, R.

and Lepreau, J. (2006). Mobile Emulab: A robotic wireless and sensor
network testbed, in Proc. of IEEE INFOCOM 2006, Barcelona, Spain,

April 23–29, 2006.

51. Judd, G. and Steenkiste, P. (2004). Repeatable and realistic wireless
experimentation through physical emulation, SIGCOMM Comput. Com-

mun. Rev., vol. 34, no. 1, pp. 63–68, 2004.

52. Kamp, P.-H., Watson, R. N. M. (2000). Jails: Confining the omnipotent
root, in Proc. of 2nd Int. Conf. on System Administration and

Networking (SANE 2000), Maastricht, The Netherlands, March 22–25,

200.

53. Kaul, S., Gruteser, M., and Seskar, I. (2006). Creating Wireless Multi-
hop Topologies on Space-Constrained Indoor Testbeds Through Noise
Injection, in Proc. of 2nd International Conference on Testbeds

and Research Infrastructures for the Development of Networks and

Communities (Tridentcom 2006), Barcelona, Spain, March 1–3, 2006.

54. Kayssi, A. and El-Haj-Mahmoud, A. (2004). EmuNET: a real-time
network emulator, in Proc. of the 2004 ACM symp. on Applied

computing (SAC’04), New York, NY, USA, 2004, pp. 357–362.

55. Kojo, M., Gurtov, A., Manner, J., Sarolahti, P, Alanko, T. and Raatikainen,

K. (2001). Seawind: A Wireless Network Emulator, in Proc. of GI/ITG

Conference MMB 2001, Aachen, Germany, September 2001.

56. Kropff, M., Krop, T., Hollick, M., Mogre, P. S. and Steinmetz, R. (2006).

A Survey of Real-World and Emulation Testbeds for Mobile Ad hoc
Networks, TridentCom 2006.

http://www.ixiacom.com/products/index.php
http://www.ixiacom.com/products/index.php

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

384 Bibliography

57. Legendre, F., Borrel, V., De Amorim, M. D. and Fdida, S. (2006).

Reconsider microscopic mobility modeling for self-organizing networks,

IEEE Communications Magazine, 2006.

58. Liljenstam, M., Liu, J., Nicol, D., Yuan, Y., Yan, G. and Grier, C. (2005).

RINSE: The real-time immersive network simulation environment for
network security exercises, in Proc. of PADS’05. Washington, DC, USA,

2005, pp. 119–128.

59. Linux VServers Project. http://linux-vserver.org/.

60. Luo, Q., Ni, L. M., He, B., Wu, H. and Xue, W. (2004). MEADOWS:
modeling, emulation, and analysis of data of wireless sensor networks, in

Proceeedings of the 1st int. workshop on Data management for sensor

networks (DMSN’04), New York, NY, USA, 2004, pp. 58–67.

61. Mahadevan, P., Rodriguez, A., Becker, D. and Vahdat, A. (2005).

MobiNet: A Scalable Emulation Infrastructure for Ad Hoc and Wireless
Networks,in Proc. of 2005 workshop on wireless traffic measurements

and modeling (WiTMeMo ’05), Berkeley, CA, USA, 2005, pp. 7–12.

62. Mahrenholz D. and Ivanov, S. (2004). Real-Time Network Emulation
with ns-2, in Proc. of 8th IEEE International Symposium on Distributed

Simulation and Real Time Applications (DS-RT’04), 2004, pp. 29–36.

63. MEMSIC Wireless Modules. http://www.memsic.com/products/

wireless-sensor-networks/wireless-modules.html.

64. Miyachi, T., Chinen, K. and Shinoda, Y. (2006). StarBED and SpringOS:
Large-scale General Purpose Network Testbed and Supporting Software,

in Proc. of Intl. Conf. on Performance Evaluation Methodologies and

Tools (Valuetools 2006), ACM Press, Pisa, Italy, October 2006.

65. Mosberger D., and Peterson, L. L. (1996). Making Paths Explicit in the
Scout Operating System, in Proc. of the 2nd Symposium on Operating

Systems Design & Implementation (OSDI 1996), Seattle, WA, USA, Oct

1996, pp. 153–167.

66. Nakata, J., Miyachi, T., Beuran, R., Chinen, K., Uda, S., Masui, K., Tan,

Y., and Shinoda, Y. (2007). StarBED2: Large-scale, Realistic and Real-
time Testbed for Ubiquitous Networks, 3rd International Conference

on Testbeds and Research Infrastructures for the Development of

Networks & Communities (TridentCom 2007), Orlando, Florida, USA,

May 21–23, 2007.

67. NCTUns 6.0 Network Simulator and Emulator Home Page.

http://nsl.csie.nctu.edu.tw/nctuns.html.

68. NetEm Home Page. http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Bibliography 385

69. NetFPGA Home Page. http://netfpga.org/.

70. Netperf Home Page. http://www.netperf.org/netperf/.

71. Nguyen, L. T., Beuran, R. and Shinoda, Y. (2011). An Interference and

Load Aware Routing Metric for Wireless Mesh Networks, International
Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), vol. 7, no.1,

2011, pp. 25–37.

72. Nicol, D. M., Liljenstam, M. and Liu, J. (2005). Advanced concepts in
large-scale network simulation, in Proc. of the 37th Winter Simulation

Conference (WSC 2005), December 2005.

73. NIST Net Home Page. http://snad.ncsl.nist.gov/nistnet/.

74. Nordstrom, E., Gunningberg, P. and Lundgren, H. (2005). A testbed
and methodology for experimental evaluation of wireless mobile ad hoc
networks, in Proc. of TRIDENTCOM’05, 2005.

75. Nussbaum, L. and Richard, O., A Comparative Study of Network Link
Emulators, in: Proc. of the 12th Communications and Networking

Simulation Symposium (CNS’09), San Diego, USA, March 22–27, 2009.

76. Okada, T., Nakata, J., Beuran, R., Tan, Y. and Shinoda, Y. (2008).

Large-scale Simulation Method of Mobile Robots, 2nd International

Symposium on Universal Communication (ISUC 2008), Osaka, Japan,

December 15–16, 2008, pp. 309–314.

77. Olsr.org Project. Olsrd: An adhoc wireless mesh routing daemon,

http://www.olsr.org/.

78. Omnicor, NetDisturb, http://www.omnicor.biz/Products/Ethernet

TestSystems/tabid/99/Default.aspx.

79. OpenVZ Home Page. http://wiki.openvz.org/Main Page.

80. OPNET Technologies, OPNET Modeler, http://www.opnet.com/.

81. OPTICOM (2008). PEVQ: Advanced Perceptual Evaluation of Video
Quality, White Paper, 2008.

82. PacketStorm Communications, http://www.packetstorm.com/.

83. Perennou, T., Conchon, E., Dairaine, L. and Diaz, M. (2004). Two-stage
wireless network emulation, in Proc. of the Workshop on Challenges of

Mobility (WCM 2004), August 2004.

84. Peterson, L., Anderson, T., Culler, D. and Roscoe, T. (2002). A Blueprint
for Introducing Disruptive Technology into the Internet, in Proc. of the

1st ACM Workshop on Hot Topics in Networking (HotNets’02), October

2002.

85. PlanetLab Europe. The Onelab2 Project, http://www.onelab.eu/.

86. PlanetLab Home Page. http://www.planet-lab.org/.

http://www.omnicor.biz/Products/EthernetTestSystems/tabid/99/Default.aspx
http://www.omnicor.biz/Products/EthernetTestSystems/tabid/99/Default.aspx

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

386 Bibliography

87. Polley, J., Blazakis, D., McGee, J., Rusk, D. and Baras, J. S. (2004).

ATEMU: a fine-grained sensor network simulator, in Proc. of the First

Annual IEEE Communications Society Conf. on Sensor and Ad Hoc

Communications and Networks (SECON 2004), October 2004, pp.

145–152.

88. Pongor, G. (1993) OMNeT: Objective Modular Network Testbed, in Proc.

of the International Workshop on Modeling, Analysis, and Simulation

On Computer and Telecommunication Systems (MASCOTS ’93), La

Jolla, San Diego, CA, USA, January 17–20, 1993, pp. 323–326.

89. Postel, J. (1987). TCP and IP bake off, IETF RFC 1025, September 1987.

90. ProtoGENI Home Page, http://www.protogeni.net/trac/protogeni.

91. Puzar M. and Plagemann, T. (2005). NEMAN: A network emulator for
mobile ad-hoc networks, in Proc. of ConTEL 2005, 2005.

92. Ramachandran, K., Kaul, S., Mathur, S., Gruteser, M., Seskar, I. (2005).

Towards Large-Scale Mobile Network Emulation Through Spatial
Switching on a Wireless Grid, in Proc. of the Workshop on Experimental

Approaches to Wireless Network Design and Analysis (E-Wind), in

conjunction with ACM SIGCOMM 2005, Philadelphia, PA, USA, August

22–26, 2005.

93. Riley, G. F., Fujimoto, R. M., Ammar M. H. (1999). A generic framework
for parallelization of network simulations, in Proc. of Seventh Interna-

tional Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS’99), October 1999.

94. Rizzo, L. (1997). Dummynet: A simple approach to the evaluation of
network protocols, ACM SIGCOMM Computer Communication Review,

27(1):31–41, 1997.

95. Robinson, S. (2004). Simulation: The practice of model development and
use, Wiley, March 2004.

96. Scalable Network Technologies. QualNet Developer, http://www.

scalable-networks.com/products/qualnet/.

97. Scalable Network Technologies. EXata Software Virtual Network,

http://www.scalable-networks.com/exata/.

98. Scalable Network Technologies. Parallel Capabilities, http://www.

scalable-networks.com/products/parallel-processing/.

99. Shunra, Inc., Shunra Virtual Enterprise (Shunra VE), http://www.

shunra.com/ve-suite-overview.

100. Simena, Inc., Simena Network Emulator Series, http://www.

simena.net/NetworkEmulator.htm.

http://www.scalable-networks.com/products/qualnet/
http://www.scalable-networks.com/products/qualnet/
http://www.scalable-networks.com/products/parallel-processing/
http://www.scalable-networks.com/products/parallel-processing/
http://www.shunra.com/ve-suite-overview
http://www.shunra.com/ve-suite-overview
http://www.simena.net/NetworkEmulator.htm
http://www.simena.net/NetworkEmulator.htm

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

Bibliography 387

101. Simena, Inc., Simena Portable test Center, http://www.simena.

net/PTC3000.htm.

102. Simmonds, R., Bradford, R. and Unger, B. (2000). Applying parallel
discrete event simulation to network emulation, in Proc. of the four-

teenth workshop on Parallel and distributed simulation (PADS’00).

Washington, DC, USA, 2000, pp. 15–22.

103. Snort Home Page. http://www.snort.org/.

104. Spirent Communications, Inc., SmartBits: Award-winning traffic
generation & analysis, http://www.spirent.com/Solutions-Directory/

Smartbits.aspx

105. University of Southern California, Information Sciences Institute. The
ns-2 Network Simulator, http://nsnam.isi.edu/nsnam/index.php/.

106. University of Southern California, Information Sciences Institute. The
ns-3 Network Simulator, http://www.nsnam.org/.

107. Telcordia Technologies, Inc. and Candela Technologies, Inc., WISER —
Wireless IP Scalable Network Emulator, http://wiser.research.

telcordia.com/.

108. University of Utah, School of Computing. Emulab — Total network
testbed, http://www.emulab.net/.

109. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J. and

Becker, D. (2002). Scalability and accuracy in a large-scale network
emulator, ACM SIGOPS Operating Systems Review, 36: 271–284, 2002.

110. Vaidya, N. H., Bernhard, J., Veeravalli, V. V., Kumar, P. R. and Iyer, R.

K. (2005). Illinois wireless wind tunnel: a testbed for experimental
evaluation of wireless networks in Proc. of ACM SIGCOMM workshop

on experimental approaches to wireless network design and analysis

(E-WIND), Philadelphia, Pennsylvania, USA, August 22–26, 2005, pp.

64–69.

111. Wang, S. Y., Chou, C. L., Huang, C. H., Hwang, C. C., Yang, Z. M., Chiou, C. C.

and Lin, C. C. (2003). The Design and Implementation of the NCTUns 1.0
Network Simulator, in Computer Networks, vol. 42, issue 2, June 2003,

pp. 175–197.

112. Wang, S. Y. and Liao K. C. (2006). Innovative Network Emulations using
the NCTUns Tool, in Computer Networking and Networks, Nova Science

Publishers, 2006.

113. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M.,

Hibler, M., Barb, C., and Joglekar, A. (2002). An integrated experimental
environment for distributed systems and networks, in Proc. of 5th

http://www.simena.net/PTC3000.htm
http://www.simena.net/PTC3000.htm
http://www.spirent.com/Solutions-Directory/Smartbits.aspx
http://www.spirent.com/Solutions-Directory/Smartbits.aspx
http://wiser.research.telcordia.com/
http://wiser.research.telcordia.com/

September 6, 2012 13:6 PSP Book - 9in x 6in INE˙BOOK

388 Bibliography

Symposium on Operating Systems Design & Implementation (OSDI

2002), Boston, USA, December 9–11, 2002, pp. 255–270.

114. Wiles, B. C., and Walker, J. Speak Freely 7.6a, http://www. speak-

freely.org.

115. Wireless Information Network Laboratory, Rutgers University.

ORBIT — Wireless Network Testbed, http://www.orbit-lab.org/.

116. Ymatic, Inc., http://www.ymatic.co.jp.

117. Zec, M., and Mikuc, M. (2004). Operating system support for integrated
network emulation in IMUNES, in Proc. of First Workshop on Operating

System and Architectural Support for the On Demand IT Infrastructure

(OASIS), Boston, USA, 2004.

118. Zheng P. and Nil, L. M. (2003). EMPOWER: a network emulator for
wireline and wireless networks, in Proc. of IEEE INFOCOM 2003, San

Francisco, USA, 2003.

119. Zhou, J., Ji, Z., and Bagrodia, R. (2006). TWINE: a hybrid emulation
testbed for wireless networks and applications, in Proc. of IEEE

INFOCOM 2006, Barcelona, Spain, April 23–29, 2006.

http://www.speak-freely.org
http://www.speak-freely.org

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index

2-hop topologies 242

3-hop topologies 242

G.1050 128, 135, 136, 157, 161,

164

abstractions 208, 223

active node placements 240

active RFID 356, 360

tag communication 286,

289–290, 360

tag communication

protocol 365

tag emulation 359

tag emulation framework 359

tag experiments 336, 356–357,

359, 361, 363, 365, 372

tag firmware 360, 363

tag micro-controller 360

tag prototype system 356

tag system 356, 359

tag wireless communication 285

tags 298, 314–315, 342,

356–360, 362–363, 365–366,

372

actuators 262, 298, 315

Ad hoc Protocol Evaluation

(APE) 267

ad-hoc routing algorithms 213

ad hoc scripting solutions 80

ad hoc wireless networks 348

adaptive protocol 96

adjusted deltaQ parameters 300

ADSL modem 374

Agilent ESG 241

Ambient Intelligence (AmI) 279

AmI see Ambient Intelligence 279

AmI devices 279

analytical equations 28

analytical modeling 3, 27–29, 33,

37–39, 368

analytical simulation 178

analytical simulation methods 178

anechoic chamber 267

Anue Systems 3, 26, 49, 54,

153–155, 157–160, 369

claims 160

ethernet network emulators

153, 376

products 153

Anue XGEM 160, 163–167

Anue XGEM emulator 163

AODV 178, 185, 195, 202–203,

353

AODV routing 193

APE see Ad hoc Protocol Evaluation

AppleTalk 48, 126

application-layer protocols 181,

189, 195, 202

application performance 43, 45,

93, 104–105, 110–113, 138,

143–144, 353

analysis features 106

degradation 113

evaluation 123

issues 105

thresholds 111

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

390 Index

Application Performance Analysis

Package 110

application QoE 280–282

Apposite Netropy 160, 163–167

Apposite Technologies 3, 43, 45,

54, 57, 138–139, 141, 143,

145, 147–149, 151, 160, 369

claims 145

lines 151

product family 138, 302

Apposite Technologies

Linktropy 150, 376, 253, 264

Apposite Technologies

Netropy 149, 151, 160

Apposite Technologies

Netropy 151, 160

arbitrary-size networks 185

arbitrary waveform generator 241

ARP 174, 189, 202–203

ARP IPv4 202

ARPANET 1

associate QOMET node 334

ATEMU 262, 272

Atheros 210, 218, 237

Atheros AR5212 236

ATLAS 280

AYID32305 357

backbone networks 212

background link utilization

feature 163

background noise 267

background traffic 76, 146,

149–150, 268

background traffic models 281

background traffic utilization 140

bandwidth 1, 9, 26, 44, 57

constraints 112

control 153, 163

control XGEM 155

cost 127

limitations 21, 42, 45, 48, 55,

83–84

requirements 127, 347

restrictions 43

bandwidth-hungry 141

bandwidth thresholds 156

bandwidth throttle 119

Berkeley Packet Filter (BPF) 175

bi-directional emulation 130,

135–136, 167

bi-directional packet transfer 44

bit error injection 131

bit error insertion 123–124

bit error probability 96

bit error rate 106, 119, 135, 140,

145–146, 156, 289

BitTorrent applications 203

black box 15

bluetooth 179, 246

cards 237

interfaces 247

BPF see Berkeley Packet Filter

browser-based GUI 155

browser-based interface 144–145

browser control interface 119

buffers 18, 105, 347

building network simulators 46

building network topologies 189

bursts 94, 119

effects 163

business-critical storage 26

byte mode 112

captured network packets 175

captured trace file 176

captured traces 61

captured traffic 122, 159

cascaded headers 130

CAWIS see Centralized Arbitrary

Waveform Injection

Subsystem

CBQ see Class-Based Queueing

CBR sessions 193

CCT see Critical Channel Traversing

CDMA 179

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 391

Centralized Arbitrary Waveform

Injection Subsystem (CAWIS)

241

centralized emulation 64, 88, 98,

115

approach 97, 139, 258

execution 64–65, 69

CERN 3, 280

circular motion 293

Cisco IOS 79

Class-Based Queueing (CBQ) 98

CLI see command-line interface

client-server model 200

client-server scenarios 106

cluster computing 200

CoDeeN 225

cognitive radio networking

experiments 233

command line 90, 95

command-line arguments

values 332

command-line interface (CLI) 129,

135–136, 140, 145–146, 151,

167

support 167

command-line tools 285, 295, 299,

371

commercial network

emulators 103–104,

106–108, 110, 112, 114, 116,

118, 120, 122, 124, 126, 128,

130, 132, 160

commercial network

simulators 30

commercial simulators 30

commercial software

emulators 52, 374

commercial software network

emulator 194

Common Open Research Emulator

(CORE) 42

common operational picture 188

companion software product 126

complex hardware 264

complex link-level emulator 56

complex mechanisms 239

complex multi-hop network

topologies 240

complex network performance

scenarios 90

complex network phenomena 60

complex network scenarios 114,

159, 165

complex network situations 115

complex network structures 107

complex network system 374

complex network topologies 43,

139, 165, 168, 259

complex networking scenarios 25

complex networks 56, 148, 177,

185

complex orchestration 326

complex propagation 360

complex scenarios 25, 177, 183,

185, 323, 368

complex setups 183–184

complex virtual network 184

complex wireless network

scenarios 321

complexity 33, 50, 59–60, 376

composite network degradation

effects 376

computer-based execution 72

computer-based network

applications 334

computer-based wireless network

technologies 294

computer-based wireless

networks 325

computer clusters 54, 186, 192,

194

computer-executable code 31

CONDUIT 338–339

conduits 315–318, 336–38,

365–366

configurable attenuators 267

configurable impairments 153

configurable mix 233

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

392 Index

configurable parameters 98, 242,

353

configurable topologies 304

configuration change 48

configuration files 310, 314, 337

configuration parameters 313

configuration settings 93, 99

configuration step 376

configuration system 234

configuration tasks 154, 325

conformance 8, 174

congestion 43, 45, 48, 60, 84, 87

conditions 91, 140, 146

constraints 44

control 98

effects 95, 106, 115–116

emulation 131, 163

loss 45

threshold 15, 92

connection 4, 8–9, 28, 49, 54–56

outages 140, 146

topology 128

Connection Managers 190, 202

container-based virtualization 214

contention 89, 241, 244, 288,

300–301

information 300

management 228

contention-dependent adjustment

300

contention-free communication

299

controlled environment 26, 35

controlled experiments 279

controlled interference 235

controlled mobility conditions

267

controlled network impairments

221

controlled real conditions 266

copper Gigabit Ethernet interfaces

142, 144

CORE see Common Open Research

Emulator

core router 211

core technology 44, 194

CPU 213–216, 307–308

cores 193

frequency 22

power 195

resources 176

scheduling mechanisms 215

type 193

CRC 156

Critical Channel Traversing (CCT)

268

critical performance indicators

190

critical performance metrics 187

critical server resources 110

critical traffic 138

CSV format 129

customized operating system 53

customized OS images 238

customized performance metrics

190

cyber warfare support 191

D-Link 218, 309

D-Link DWL-AG530 210

daemon-launching command 355

DARPA 170

data link layer 290, 342

parameters 291

protocol model 291

data-link layer, model 300

data link network layer 289

data packets 48, 126, 172

database 208, 234, 238–239

database integration 46

DDoS see distributed denial of

service

degree of control 254, 272

degree of realism 254, 272

delay accuracy 86

delay amounts 156

delay control 142

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 393

delay distributions 93, 99

Delay Doubler 156

delay emulation 254

delay nodes 211, 216

delay profiles 89, 101

delay tolerant networks (DTN)

233

delay variation 56, 95, 156

deltaQ 285–287, 289, 292–294,

299–300, 370–371

library 287–291, 293–294,

298–300, 351–352, 370

parameters 300

destination network protocol

ports 119

destination ports 132

destination space 318

DHCP protocol 311

digital network replica 48, 187

directional antennas 291–293

discrete-event simulation 178,

180, 268

discrete small-scale mobility

scenarios 245

disruptive technologies 225

distance vector protocols 203

distributed architectures 194, 200

distributed data centers 106

distributed denial of service

(DDoS) 191

distributed emulation 64, 68–69,

93, 195

approach 52, 256

execution 71

mechanism 195

paradigm 301

scenarios 60

solutions 269, 271

tool 114

distributed execution 66, 88, 168,

177, 185

approach 70

approaches 66

capabilities 264

features 189

mechanism 283

Distributed Internet Traffic

Generator 77, 239

distributed intervals 155

distributed management scheme

230

distributed network emulation

system 42

distributed random variation 292

distributed simulation 179

distributed storage 47, 222

distributed testbed environment

228

distributed virtualization 223–224,

226

mechanisms 231

task 224

distribution mechanism 326

DRD 91–92

DS3 122

DSDV 195, 202

DSL modems 90

DSR 195, 202–203

DTN see delay tolerant networks

Dummynet 3, 11, 42, 47, 52, 57,

60, 67, 83–89, 92, 98–101,

295–296, 304, 321–322,

368–369

command-line manual 85

packet 87

pipes 85

queues 86, 88

dynamic condition emulation 140,

146

dynamic condition variations 167

E-model 347

ECN see explicit congestion

notification

ECN congestion flag 92

ECN-enabled packets 92

electromagnetic waves 292

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

394 Index

embedded applications 72

embedded devices 334

embedded systems 298

EMPOWER 42, 62, 269, 271

Emulab 42, 63, 205–206, 245

architecture 208

control system 219

experiment 216, 218

hardware 220

mechanisms 213

software 80, 206, 223

user interface 207

virtualization technique 215

emulation platform 2, 8, 12, 362

emulation servers 70

emulation-side network 71

emulation testbeds 3, 368

emulation tools 3, 42, 50, 64, 79,

255, 294, 368

end experiment execution 325

ENIAC 1

error-free seconds (EFS) 26

Ethernet 44, 107, 122, 150, 157

EXata 47, 62, 187

explicit congestion notification

(ECN) 92

FER see frame error rate

FIFO (first-in, first-out) 13, 95

FIFO-based queueing 98

FPGA 53

FPGA-based Approach to

Application Performance

Assessment 281

FPGA-based digital signal

processor 267

FPGA-based implementation 302

frame error rate (FER) 289–290,

359

frame error rate model 290

frame overhead 140

free emulators 50–51, 368

free software emulators 52, 374

FTP 23, 181, 189, 195, 202–203

full-mesh networks 106

gateways 59, 180, 354–355

Gaussian distribution 14, 156

GEM 54, 153, 157–158, 167

ethernet network emulators 157

features 157

network emulators 157

products 49

GENI see Global Environment for

Network Innovation

gentle RED (GRED) 87, 98

gentle red algorithm 87

Global Environment for Network

Innovation (GENI) 232

GRED see gentle RED

grid node radio interface 244

grid topology 243

grid virtualization 234

ground link utilization 140, 146

GSM 179

GUI 90, 114, 129, 144, 186, 194,

200–201

GUI-based debugging 179

Hurricane 42, 54, 118, 165, 167

models 167

network emulators 122

products 42, 121

Hurricane II 118

Hurricane series 54, 59, 120–121

hybrid approach 68, 280

hybrid simulation 178

ICMP 181, 189, 195, 202–203

ICMPv6 181, 194, 202

ICT 2

Illinois Wireless Wind Tunnel

(iWWT) 267

IMUNES 42–43, 263

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 395

INE see iTrinegy Network

Emulator 43

INE for Windows 43, 62

information technology (IT) 1

interfaces 8, 94, 120, 157, 174

IP address 155, 196, 332, 337, 341

IP checksum 156

IP Firewall (IPFW) 84–85

IP Network Emulator (IPNE) 47,

187

IP phones 20

iperf command 332

iperf tool 349

iperf traffic generation command

355

IPFW see IP Firewall

IPNE see IP Network Emulator

iproute2 94

IPTV 131, 141

IPX 48, 126, 246

iSCSI 122, 131

ISP 27

IT see information technology

iTrinegy Network Emulator

(INE) 43

ITUT Recommendation 347

iWWT see Illinois Wireless Wind

Tunnel

kernel 44, 86, 95, 194

clock 99

extensions 226

module extension 45, 90

network protocol stack 197

LANforge-ICE 43, 52

Large Hadron Collider (LHC) 280

LBNL packet 175

LCD 136, 162, 167

LHC see Large Hadron Collider

link latency 141

link-layer emulator actions 295,

297

link-layer frames 175

link-level emulation 50, 56–57

link-level network emulation,

capabilities 304

link-level network emulator 56,

295

Linktropy 43, 139, 146

devices 138

models 152

network emulators 143

products 152

Linktropy and Netropy models 151

Live-Sim-Live 181

approach 185

scenario 181–182

local area network (LAN) 10, 110,

212, 243

log-distance model 292

log-distance path loss model 286,

292, 328

low bandwidth 118

low-fidelity models 255

MAC 43, 162, 165, 240

filtering 244

layer 156, 239–240, 301

protocols 273

madwifi 218, 240

MANET see mobile ad hoc

networks

Maxwell 43

MEADOWS 262

mean opinion score (MOS) 120,

347

MEF-18 157, 161, 164

MICA2 mote 213

Miniaturized Wireless Network

Testbed (MinT) 268

MiNT see Miniaturized Wireless

Network Testbed

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

396 Index

mobile ad hoc networks (MANET)

179, 233, 355

Mobile Emulab 221, 267

mobile networks 179, 188, 245,

282, 303

mobile robotic wireless 213

mobile robots 221, 245

mobile topologies 241

Mobile WiMAX 278

MobiNet 269, 271

ModelNet 44, 70, 269

Monarch 265, 272

MOS see mean opinion score

multi-hop network topologies 239

multi-hop routing protocols 298

multi-hop topologies 242

multi-hop wireless networks 353

multi-layer model 290

multi-level emulation layers 315

multi-link configurations 142

multi-link emulation 135–136

multi-path 165, 245, 360

multimedia transmission

performance 128

MyPLC 223, 228

National Science Foundation

(NSF) 170

NCTUns 3, 44, 194–196

NEMAN 264

net-centric systems 188

Net Tool Optimizer 159

NetDisturb 44

NetEm 3, 44, 83, 93, 95–99, 101,

295, 304, 369, 374

NetFPGA 212–213, 246–247

Netropy 45, 145

netstat 196

network connectivity 1

network emulation 2, 5

network emulation techniques 50,

368

Network Emulator (NE) 3, 10, 41,

43

network interface cards (NICs) 19

network interface drivers 175

network intrusion techniques 191

network links 55, 113, 159,

197–198, 231, 354

network model emulation 136

network parameters 56, 108, 163

network performance 27, 89, 111,

356

network problems 109, 133

network profile 156, 166, 256

network QoS 280–281

network quality degradation 9–10,

56

network services 47, 105, 222

network simulation 2, 11, 27,

30–33, 37, 46, 49, 179, 187,

262, 368

network technologies 106–107,

115, 143, 195, 272, 289, 303,

322

network traffic 9, 20, 28, 57,

64–65, 69, 75–76, 105, 122

NICs see network interface cards

NIST Net 3, 45, 57, 83, 89–93,

98–99, 101, 265, 322

Node Agent 238–239

Node Manager 226

node mobility 32, 267, 293

emulation 287

models 286

node name 329

node orientation 293

node power cycling 208

noise generation 240–241,

244–245

antennas 236, 242

subsystem 241

system 242

noise power 242, 289–290

Ns-2 3, 45, 169, 171

Ns-3 46, 170

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 397

NSF see National Science

Foundation

OLSR see Optimized Link State

Routing

OMF see ORBIT management

framework

OML see ORBIT measurement

framework & library

omni-directional 291–292

OneLab 84

OpenBSD 263

OpenDHT 225

OpenRISC processor emulator for

IEEE 336

operating system kernel 43, 85,

197

OPNET 180, 185, 343

emulation features 181

modeling environment 181

models 181

simulation 180

OPNET Modeler 3, 46, 178, 180,

182

OPNET Modeler Wireless

Suite 179

OPNET Technologies 46, 178, 183,

191

OPTICOM 348

optimal end-user experience 105

optimal transmission range 364

Optimized Link State Routing

(OLSR) 178, 185, 189, 287,

298, 353

ORBIT 46, 231, 244–245, 249

emulates mobility 243

hardware 235

nodes 236, 244

noise generation system 244

wireless network 80

ORBIT management framework

(OMF) 234, 237–238

ORBIT measurement framework &

library (OML) 239

ORBIT radio grid 235, 241, 248

ORBIT Traffic Generator

(OTG) 239

OSPF support 166

OTG see ORBIT Traffic Generator

packed network protocol

stacks 263

packet analyzer tool 122

packet collision 336

packet conversion 180

packet correlation 237

packet corruption 96, 156, 164

packet delay 156, 182, 290

packet duplication 45, 48, 91, 96,

106, 119, 123, 150–151, 156

packet FIFO 98

packet filtering 119, 121, 131,

146, 155, 164, 241

Packet Flow Switch

(PFS) 137–138

Packet impairment 119, 121, 156,

158

packet jitter 154

packet listing 122

packet loss 9, 42–43, 45, 55–57,

83–84, 95–96, 106–107,

112–113, 116, 123–124,

133–134, 141–142, 152–153,

297, 346

packet loss concealment

techniques 346

packet mode 112

packet modifiers 121

packet re-ordering 119

packet sink 119, 124

PacketStorm 47

PacketStorm Communications 3,

42, 47, 54, 59, 117

PacketStorm e series 120

PacketStorm emulators 47, 125

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

398 Index

PacketStorm family 118

PacketStorm Series 118

patent-pending technology 128

pause frames 155, 163

PC emulators 12

PC-oriented architecture 314

Perceptual Evaluation of Speech

Quality (PESQ) 21, 347–348

Perceptual Evaluation of Video

Quality (PEVQ) 23

PESQ see Perceptual Evaluation of

Speech Quality

PEVQ see Perceptual Evaluation of

Video Quality

PFS see Packet Flow Switch

ping 189, 202, 349

PlanetLab 47, 55, 63, 80, 207

design 229

developers 224–225, 228

functionality 226

infrastructure 227

nodes 213

slices 224, 226, 228

PlanetLab Central 80

Portable Test Center (PTC) 54,

127, 133–134, 136–138,

163–164

protocol 2, 23, 28, 34

assessment 23, 25, 368

evaluation 301

implementations 14, 90, 173,

262–263, 291

mode 172–174

modules 200

performance evaluation 342

processing 173

stack 84, 199, 263, 269

uses 357

prototype localization system

357–358, 361–362

PSCapture 118, 125

PTC see Portable Test Center

qdiscs 94

QEMU 8

QoE see quality of experience

QoE metrics 120, 166, 345

QOMB 4, 47, 63, 272, 277, 305

architecture 323, 371

components 277, 284

components QOMET 346

experiment host 332

functionality 366

wireless network emulation

301, 341

QOMET 278, 283, 285–286, 290,

301

chanel library 335, 359

command 300, 325

command-line tool 299

deltaQ 345, 351, 359–360

QOMET on StarBED 284, 321–322,

324

QoS see quality of service

Quadrupler 156

quality of experience (QoE) 22,

115, 162, 281

quality of service (QoS) 106,

115–116, 162, 166

QualNet 47, 187, 191, 343

QualNet Developer 3, 47, 63, 186,

201

queue management 112, 116

algorithms 87, 113

tail 151

rack-mount chassis 154, 157

radio grid 232–233, 245

Random Early Detection (RED) 87

random mobility 193

random offset 96

real active RFID tags 361

real communication conditions

359

real device processor 336

real distributed application 196

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 399

real equipment 36–38, 257, 282

real-life evaluation 249

real-life IP networks 196

real-life networks 195–196

real network applications 75, 253,

353

real network conditions 165, 253,

265, 272

real network interfaces 197, 268,

271

real nodes 214, 258–259, 377

real packets 172–175, 180

real system 19, 28–29, 34, 36, 49,

257

real-time execution 17, 29, 33, 185

real-time flow 261, 273

real-time graphs 118, 125

real-time packet modifications

119, 129

real-time scheduler 33, 172, 174,

176

Real-time Ubiquitous Network

Emulation 48, 283, 299, 304,

306, 314–320, 323–324,

334–335, 337, 339–342, 371

real wireless network interfaces

245, 264, 283

real-world conditions 138, 141

real-world entities 46, 171

real-world environments 2

real-world setting 233

real-world testing 2–3, 10, 21, 27,

33, 39, 49, 368

real-world trials 2, 18, 34, 252

real-world Unix machines 44,

196

realistic client workload 224, 230

realistic environments 7, 20, 292

realistic experiments 244, 262,

315

realistic high-speed background

traffic 137

realistic network conditions 76,

113, 121, 183

realistic scenarios 22, 25, 346, 348

received signal strength indicator

(RSSI) 241

RED see Random Early Detection

RedHat 219

remote access 22, 226, 304, 308

remote end-users 105, 108,

110–111, 114

remote experimentation 212–213

remote host 265

RF interferences 267

RF-shielded room 359

RINSE 268

RIP 195, 202–203

robot experiments 351–353

robot motion-planning

algorithm 288, 352

router intercepting packets 93

router mode operation 157

routing 23, 45, 170, 224, 263

capabilities 105

centers 222

functionality 211

information 126

information module 298

metrics 354–355

protocol assessment 59

protocol evaluation 346, 353

protocol support 287

tables 70, 215, 244, 298

RS-232 122, 141, 147

RSSI see received signal strength

indicator

RUNE architecture 318, 340

RUNE-based experiment

topology 315

RUNE-based experiments 318,

341

RUNE Manager 317–319,

340–341

RUNE Master 316–319, 340–341

RUNE spaces 335, 338, 341, 366

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

400 Index

SAN see storage-area network

satellite 43, 45, 264

fade 140, 146

networks 106–107, 109, 143,

152, 179, 184

systems 179

scheduling algorithms 84, 179

SDR see software-defined radio

Select Nodes with Fixed

Interference (SNFI) 242

SFP 120, 148, 150–151, 159

Shunra 3, 11, 59, 79, 103

Shunra VE see Shunra Virtual

Enterprise

Shunra VE Cloud 57, 104,

111–113

Shunra VE Desktop Professional

114

Shunra VE Desktop Standard

113–114

Shunra Virtual Enterprise 48, 104

Sim-Live-Sim 181–182, 185

Simena 3, 48, 54, 59, 126, 129

network emulators 127,

130–132, 135

products 130–131

traffic generators 137

Simena markets 135, 137

Simena NE 48, 57, 374

Simena PTC 48, 160, 163–166

simulated networks 46, 171, 178,

180

simulated nodes 44, 196, 200, 214

simulated packets 174, 180

simulated scenarios 187

simulation 2–3, 27, 30, 33, 90, 169

capabilities 47

engine 169, 177, 180, 185–186

execution 33

experiments 2, 32, 37, 187

framework 46

functionality 169

host 198

machine 200

tool 47, 186

simulation setup 2

simulator-based emulation 184,

268

simulators 30, 33, 46, 63, 170

SITL see System-in-the-Loop

SNFI see Select Nodes with Fixed

Interference

SNR 242

software-defined radio (SDR) 207,

233

software emulators 43, 51–53,

145, 168

software network emulator 51,

54, 64–65, 107, 260, 373–375

SpringOS 283, 304, 306, 309

mechanisms 323, 366

software 310

syntax 326

StarBED 48, 55, 283, 303

architecture 305

development 303–304

experiment switches 313

hosts 334, 353

infrastructure 305–306, 323

storage-area network (SAN) 109

street topology 287, 293, 355

System-in-the-Loop (SITL) 46,

179, 182–184, 202

System-in-the-Loop module 46,

179

TCP 23, 45, 97, 203

agents 174

flags 132

server 197–199

source 132

TCP Reno 10

TCP Vegas 10

testbeds 2, 54–55, 205

thought experiments 27

topology-level emulation 50,

57–59

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

Index 401

topology level emulator 57–59,

177, 185, 194

Tornado 48, 52, 54, 118, 122

traceroute 189, 195, 202–203

commands 196

ubiquitous network systems 280

UDP 24, 119, 175, 178, 181, 189

Universal Software Radio

Peripheral (USRP) 207, 233

UPQ see user-perceived quality

USART 360

User Mode Linux (UML) 263

user-perceived quality (UPQ) 22,

77, 280, 345, 347–348

USRP see Universal Software Radio

Peripheral

variability 29

variable network parameters 60

video tele-conferencing (VTC) 346

VINI project 263

virtual emu 189

Virtual Machine Monitor (VMM)

226–227

virtual network 14–15, 78, 181,

184

devices 58, 98

driver 263

environment 105

interfaces 215, 243, 247, 264,

302

testbeds 231

topology 70, 255

virtual networks, spanning 248

virtual nodes 43, 207, 214

virtual representations 33, 57

virtual street environment 348,

354

VLAN 119, 122, 128, 135

VMM see Virtual Machine Monitor

Voice over Internet Protocol (VoIP)

21–22

VoIP see Voice over Internet

Protocol

VPN 304

VPN technology 308

VTC see video tele-conferencing

wall attenuation 292

WAN see wide area network

WAN bandwidth limitation 110

WAN degradation 110

WAN delay 110

WAN-emulated delay 95

WAN emulation 42, 47, 104, 118

WAN emulation experiments 125

WAN emulation products 43, 45,

48

WAN emulation software 48, 122

WAN emulator 10, 139

WAN optimization 109

wave propagation 289

web traffic generation 24

weighted-fair queueing algorithm

83

white Gaussian noise signals 241

Wi-Fi 207, 221, 264, 285, 294,

301, 325

access 233

cards 210

emulation 323

interfaces 207

nodes in Emulab 217

wide area networks (WAN) 10, 45,

48, 93, 105, 122

WiMAX 278, 285

wire-speed network

emulation 127

wireless network emulation 4, 47,

247, 253

experiments 282, 324–325

support 378

testbeds 249, 264, 344

August 31, 2012 13:37 PSP Book - 9in x 6in Razvan-Beuran-index

402 Index

wireless network experiments

247, 249, 267, 280

Wireless Suite 179

Wireless Suite for Defense 179

WISER 49

WLAN 43, 122, 278, 285, 345

communication conditions 349,

355

connections 279

emulation 272

experiments 345, 347, 349,

351, 353, 355

networks 366

technology 278

xDSL 45, 143

Xen 69, 216

XFP 145, 159

XGEM 154–157, 166

ZigBee 179, 278

ZX-Spectrum platforms 8

	Cit p_6:1:
	Cit p_6:2:
	Cit p_24:1:
	Cit p_27:1:
	Cit p_58:1:
	Cit p_58:2:
	Cit p_78:1:
	Cit p_78:2:
	Cit p_101:1:
	Cit p_116:1:
	Cit p_117:1:
	Cit p_117:2:
	Cit p_117:3:
	Cit p_117:4:

