
www.allitebooks.com

http://www.allitebooks.org

Ionic Cookbook

Over 20 exciting recipes to spice up your application
development with Ionic

Hoc Phan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ionic Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-797-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hoc Phan

Reviewers
Mike Hartington

Chady Kassouf

Ted Morin

Siva Prakash

Syed Iqrar Raza Zaidi

Acquisition Editors
Aaron Lazar

Rebecca Youé

Content Development Editor
Ritika Singh

Technical Editor
Edwin Moses

Copy Editors
Vedangi Narvekar

Jonathan Todd

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

This book is the result of 7 months of focused writing and coding by Hoc Phan, a talented
developer and dedicated writer with whom the Ionic team has collaborated on a past book.
Hoc is a dedicated Ionic community member who often speaks about Ionic, and we have the
utmost respect for his commitment to teaching others how to use Ionic in really effective
ways. This book provides recipes for getting a stew goin' with Ionic!

Hoc teaches developers how to set up a project by installing the Ionic command-line tool
(CLI) and creating a new project. He addresses platform-specific styles and how to target each
platform with SCSS and JavaScript. He explains how to integrate an Ionic app with Firebase
to create a connection to a real-time database. The book covers routing and navigation, as
well as running your app on a device (how to target the iOS and Android simulators).

For more advanced developers, the book explains how to integrate device APIs with ngCordova
by working with a device's camera. Hoc also addresses the topic of setting up the Whitelist
Plugin and working with CSP to make sure your app is secure.

Before I joined Ionic as a core team member and developer advocate, I was a developer and
created many internal hybrid apps for my company. Before I began building apps, I evaluated
multiple frameworks. Only Ionic provided a complete solution for hybrid mobile development.
I could focus on development, and Ionic handled architecture and design.

Ionic offers a complete ecosystem for building performant, beautiful mobile apps using one
code base, which saves time and money. We released the stable version of Ionic in May
2015 and have released alpha versions of four of our platform services since then. We
plan to continue to support the open source Ionic SDK and release new features, tools, and
services. As Ionic's developer advocate, I travel around the US to talk about Ionic and meet
Ionic developers, and my favorite part of my job is people's enthusiasm for Ionic. The Ionic
community is what makes Ionic great.

You'll find this book to be a great way to get cooking with Ionic and deep dive into the
SDK. We're glad to have you as a member of the Ionic community.

Enjoy!

Mike Hartington
Developer Advocate, Ionic.io

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hoc Phan is a technologist with a lot of experience in frontend development. He started
programming at the age of 12 with Pascal and Assembly on a 486 computer. The way he
learned was to start practicing right away even before figuring out concepts. Hoc worked
on many JavaScript projects in the past by teaching himself the framework using various
online sources. He was one of the first few developers who tested Ionic for its feasibility
as a JavaScript replacement of the native language of a device. He wrote the Full Stack
Mobile App with Ionic Framework book (for more information, visit http://www.amazon.
com/Full-Stack-Mobile-Ionic-Framework-ebook/dp/B00QF1H380/), which was
very well-received.

He has worked for both start-ups and large companies. By frequently speaking at local
meet-ups as well as cloud computing / Big Data industry events and conferences,
he learns from other experts. He holds an MBA degree from the University of Washington's
Michael G. Foster School of Business.

www.allitebooks.com

http://www.amazon.com/Full-Stack-Mobile-Ionic-Framework-ebook/dp/B00QF1H380/
http://www.amazon.com/Full-Stack-Mobile-Ionic-Framework-ebook/dp/B00QF1H380/
http://www.allitebooks.org

About the Reviewers

Mike Hartington is a JavaScript developer who has focused on hybrid technologies for
most of his career. By working on Ionic, he has been able to take his love of hybrid apps
to the next level, focussing on making a power SDK for developers of all skill levels. After
working with Arvind Ravulavaru on the Learning Ionic book by Packt Publishing, he used
his knowledge as an Ionic core team member to provide valuable feedback on this book's
content. He is thankful to the Ionic community for its support.

Chady Kassouf is an independent iOS and web development expert. He started
programming 23 years ago, and he hasn't stopped ever since. Seven years ago, he decided
to leave his job as a team leader in one of the leading digital agencies and to start his own
business.

His interests apart from computers include arts, music, and fitness. He can be found online
at http://chady.net/.

Ted Morin is a software developer with a focus on frontend technologies. He enjoys JavaScript
in its many forms and is always exploring new frameworks and tools. He is currently juggling
different projects and jobs and pursuing an undergraduate degree in software engineering at
the University of Ottawa.

www.allitebooks.com

http://chady.net/
http://www.allitebooks.org

Siva Prakash has been working in the field of software development for the last 7
years. He is currently working for CISCO, Bangalore. He has an extensive experience in the
development of desktop, mobile, and web-based applications in ERP, telecom, and the digital
media industry. He has a passion for learning new technologies and sharing knowledge thus
gained with others. He has worked on Big Data technologies for the digital media industry.
He loves trekking, travelling, listening to music, reading books, and blogging.

Syed Iqrar Raza Zaidi is a software engineer with an experience of 4 years. He is
currently designated as a Technical Lead at Bond Internet Consultancy LLC in Dubai, UAE.
He is an organized, energetic, and dedicated software developer at work who is motivated
to be of service by positively contributing towards every piece of work. He has vast knowledge
of core JavaScript, and he has dabbled in PHP and Node.js. He built multiple web portals,
web applications, mobile hybrid applications, and 2D and 3D games that delight and inform
users using the latest web technologies.

He received the Employee Performance Award at Systems Limited in December 2014.
He is a Microsoft Community Contributor as well as a technology leader at Mohammad
Ali Jinnah University, Karachi, Pakistan.

You can view his LinkedIn profile by visiting https://pk.linkedin.com/pub/
raza-zaidi/6a/201/a62. If you're interested in his work, you can drop him an email
(razazaidisd@gmail.com).

Whatever I am today is because of my parents' prayers and my family's love.

www.allitebooks.com

https://pk.linkedin.com/pub/raza-zaidi/6a/201/a62
https://pk.linkedin.com/pub/raza-zaidi/6a/201/a62
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface	 iii
Chapter 1: Creating Our First App with Ionic	 1

Introduction	 1
Setting up a development environment	 2
Creating a HelloWorld app via CLI	 4
Creating a HelloWorld app via Ionic Creator	 7
Copying examples from Ionic Codepen Demos	 11
Viewing the app using your web browser	 13
Viewing the app using iOS Simulator	 16
Viewing the app using Xcode for iOS	 17
Viewing the app using Genymotion for Android	 20
Viewing the app using Ionic View	 27
Customizing the app folder structure	 31

Chapter 2: Managing States and Navigation	 33
Introduction	 33
Creating a tab interface with nested views	 34
Creating a multistep form with validation	 42

Chapter 3: Adding Device Features Support	 57
Introduction	 57
Taking a photo using the device camera	 58
Capturing video and allowing playback	 64
Composing an email with an attachment from an app	 68
Picking and adding a contact	 73
Adding Google Maps with geocoding support	 81

ii

Table of Contents

Chapter 4: Offline Data Storage	 95
Introduction	 95
Creating a to-do app using ngStorage for Local Storage	 96
Creating a social networking app using SQLite	 103

Chapter 5: Handling Gestures and Events	 119
Introduction	 119
Detecting drag events with a gesture coordinate	 120
Communication between a view, controller, and directive using events	 126

Chapter 6: App Theme Customization	 135
Introduction	 135
Customizing themes for specific platforms	 136
Creating an introduction screen with a custom header	 139

Chapter 7: Extending Ionic with Your Own Components	 149
Introduction	 149
Creating a scroll progress bar directive	 150
Creating a custom filter	 155
Animating an app using requestAnimationFrame with event binding	 160

Chapter 8: User Registration and Authentication 	 169
Introduction	 170
Configuring a Facebook app with the Firebase authentication	 171
Configuring a Twitter app with the Firebase authentication	 176
Configuring a Google+ project with the Firebase authentication	 179
Creating an Ionic social authentication project for Facebook using
$firebaseAuth	 183
Creating a LinkedIn app and configuring the authentication in Auth0	 191
Integrating Auth0's LinkedIn authentication in an Ionic project	 204

Chapter 9: Saving and Loading Data Using Firebase	 209
Introduction	 209
Saving array data to Firebase	 210
Rendering a large Firebase data set using collection-repeat	 213
Saving form data to Firebase	 218

Chapter 10: Finalizing Your Apps for Different Platforms	 227
Introduction	 227
Building and publishing an app for iOS	 228
Building and publishing an app for Android	 233
Using PhoneGap Build for cross-platform applications	 236

Index	 239

iii

Preface
The world of mobile development is fragmented, with many platforms, frameworks, and
technologies. Ionic is intended to fill this gap with its open source HTML5 mobile app framework
that lets developers build native-feeling apps using web technologies such as HTML, CSS, and
AngularJS. Ionic makes it easy for frontend developers who want to become app developers.
The framework provides superior performance with deep Cordova integration and a
comprehensive set of tools for prototyping, backend support, and deployment.

This book will take you through the process of developing a cross-platform mobile app using
just HTML5 and JavaScript based on Ionic. You will start first by getting familiarized with the
CLI and learning how to build and run an app. You will have a look at some common features
of real-world mobile apps such as authenticating a user and receiving and saving data using
either Firebase or Local Storage.

Next, the book will explain how Ionic integrates with Cordova to support native device features
by using ngCordova and takes advantage of the existing modules around its ecosystem. You
will also explore the advanced topics related to extending Ionic to create new components.
Finally, the book will show you how to customize the Ionic theme and build the app for all
platforms.

What this book covers
Chapter 1, Creating Our First App with Ionic, introduces the Ionic framework and provides
instructions for setting up the development environment and quickly creating and running
the first app.

Chapter 2, Managing States and Navigation, walks through some examples of how to
manage views, states, and the overall navigation within the app. This can be done via
either the UI-Router component of AngularJS or the out-of-the-box Ionic directives.

Chapter 3, Adding Device Features Support, explains how to use ngCordova to access native
device functionalities such as the camera (photo and video), the contact list, e-mail, and map.

Preface

iv

Chapter 4, Offline Data Storage, explains how to work with persistent data when the device
is offline. You will understand the advantages and disadvantages of using Local Storage
versus SQLite.

Chapter 5, Handling Gestures and Events, explains how a touch event works and how to
process these events to create a better interaction or a custom component.

Chapter 6, App Theme Customization, provides instructions on how to customize an app for
different platforms and create an introduction screen for your own branding.

Chapter 7, Extending Ionic with Your Own Components, takes a deep dive into the AngularJS
directive and filter customization. You will learn how to leverage events from the core Ionic
components and use requestAnimationFrame for an improved animation performance.

Chapter 8, User Registration and Authentication, explains the different methods that can be
used to authenticate a user and how the Firebase authentication system works.

Chapter 9, Saving and Loading Data Using Firebase, walks through some examples,
such as those related to storing and retrieving data, using Firebase as the backend.
Also, you will learn how to manage and render large datasets.

Chapter 10, Finalizing Your Apps for Different Platforms, provides instructions for
performing the final steps of getting an app published.

What you need for this book
You need the following to work with the examples in this book:

ff A Mac computer with Mac OS X Yosemite and root privilege

ff Or a PC with Windows 7 or later with Administrator privileges

ff iPhone 5 or later

ff An Android device with Android 5.x or later (optional)

ff A Windows phone device (optional)

Who this book is for
Ionic Cookbook is intended for frontend developers who want to take advantage of their
existing skills to develop cross-platform mobile apps. This book will help you become an
intermediate or advanced Ionic developer by covering in-depth topics about AngularJS,
Cordova, and Sass. Since Ionic is open source, there is a large community that supports
this framework for you to continue the learning journey.

Preface

v

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Ionic Creator
allows the user to export everything as a project with all .html, .css, and .js files."

Preface

vi

A block of code is set as follows:

{
 "name": "myApp",
 "app_id": "",
 "watchPatterns": [
 "www/**/*",
 "!www/css/**/*",
 "your_folder_here/**/*"
]
}

Any command-line input or output is written as follows:

$ ionic start HelloWorld_Blank blank

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Once completed,
click on the Export button on the top navigation."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

vii

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1

1
Creating Our First App

with Ionic

In this chapter, we will cover:

ff Setting up a development environment

ff Creating a HelloWorld app via CLI

ff Creating a HelloWorld app via Ionic Creator

ff Copying examples from Ionic Codepen Demos

ff Viewing the app using your web browser

ff Viewing the app using iOS Simulator

ff Viewing the app using Xcode for iOS

ff Viewing the app using Genymotion for Android

ff Viewing the app using Ionic View

ff Customizing the app folder structure

Introduction
There are many options for developing mobile applications today. Native applications require
a unique implementation for each platform, such as iOS, Android, and Windows Phone. It's
required for some use cases such as high-performance CPU and GPU processing with lots of
memory consumption. Any application that does not need over-the-top graphics and intensive
CPU processing could benefit greatly from a cost-effective, write once, and run everywhere
HTML5 mobile implementation.

www.allitebooks.com

http://www.allitebooks.org

Creating Our First App with Ionic

2

For those who choose the HTML5 route, there are many great choices in this active market.
Some options may be very easy to start but could be very hard to scale or could face
performance problems. Commercial options are generally expensive for small developers
to discover product and market fit. It's a best practice to think of the users first. There are
instances where a simple responsive design website is a better choice; for example, the
business has mainly fixed content with minimal updating required or the content is better off
on the web for SEO purposes.

Ionic has several advantages over its competitors:

ff It's written on top of AngularJS

ff UI performance is strong because of its use of the requestAnimationFrame()
technique

ff It offers a beautiful and comprehensive set of default styles, similar to a mobile-
focused Twitter Bootstrap

ff Sass is available for quick, easy, and effective theme customization

In this chapter, you will go through several HelloWorld examples to bootstrap your Ionic app.
This process will give you a quick skeleton to start building more comprehensive apps. The
majority of apps have similar user experience flows such as tabs and a side menu.

Setting up a development environment
Before you create the first app, your environment must have the required components
ready. Those components ensure a smooth process of development, build, and test. The
default Ionic project folder is based on Cordova's. Therefore you will need the Ionic CLI to
automatically add the correct platform (that is, iOS, Android, or Windows Phone) and build
the project. This will ensure all Cordova plugins are included properly. The tool has many
options to run your app in the browser or simulator with live reload.

Getting ready
You need to install Ionic and its dependencies to get started. Ionic itself is just a collection
of CSS styles and AngularJS Directives and Services. It also has a command-line tool to help
manage all of the technologies such as Cordova and Bower. The installation process will
give you a command line to generate initial code and build the app.

Ionic uses npm as the installer, which is included when installing Node.js. Please install
the latest version of Node.js from http://nodejs.org/download/.

You will need Cordova, ios-sim (iOS Simulator), and Ionic:

$ npm install -g cordova ionic ios-sim

http://nodejs.org/download/

Chapter 1

3

This single command line will install all three components instead of issuing three command
lines separately. The -g parameter is to install the package globally (not just in the current
directory).

For Linux and Mac, you may need to use the sudo command to allow system access:

$ sudo npm install -g cordova ionic ios-sim

There are a few common options for an integrated development environment:

ff Xcode for iOS

ff Eclipse or Android Studio for Android

ff Microsoft Visual Studio Express or Visual Studio for Windows Phone

ff Sublime Text (http://www.sublimetext.com/) for web development

All of those have a free license. Sublime Text is free for non-commercial use only but you have
to purchase a license if you are a commercial developer. Most frontend developers would
prefer to use Sublime Text for coding HTML and JavaScript because it's very lightweight and
comes with a well-supported developer community. You could code directly in Xcode, Eclipse,
or Visual Studio Express, but those are somewhat heavy duty for web apps, especially when
you have a lot of windows open and just need something simple to code.

How to do it…
If you decide to use Sublime Text, you will need Package Control (https://
packagecontrol.io/installation), which is similar to a Plugin Manager. Since Ionic
uses Sass, it's optional to install the Sass Syntax Highlighting package:

1.	 Select Sublime Text | Preferences | Package Control:

http://www.sublimetext.com/
https://packagecontrol.io/installation
https://packagecontrol.io/installation

Creating Our First App with Ionic

4

2.	 Select Package Control: Install Package. You could also just type the commands
partially (that is, inst) and it will automatically select the right option.

3.	 Type Sass and the search results will show one option for TextMate & Sublime Text.
Select that item to install.

See also
There are tons of packages that you may want to use, such as Haml, JSHint, JSLint, Tag,
ColorPicker, and so on. You can browse around this website: https://sublime.wbond.
net/browse/popular, for more information.

Creating a HelloWorld app via CLI
It's quickest to start your app using existing templates. Ionic gives you three standard
templates out of the box via the command line:

ff Blank: This template has a simple one page with minimal JavaScript code.

ff Tabs: This template has multiple pages with routes. A route URL goes to one
tab or tabs.

ff Sidemenu: This is template with the left and/or right menu and with center
content area.

https://sublime.wbond.net/browse/popular
https://sublime.wbond.net/browse/popular

Chapter 1

5

There are two other additional templates: maps and salesforce.
But these are very specific to apps using Google Maps or for
integration with the Salesforce.com API.

How to do it…
To set up the app with a blank template from Ionic, use this command:

$ ionic start HelloWorld_Blank blank

If you don't have an account in http://ionic.io/, the command
line will ask for it. You could either press y or n to continue. It's not
required to have an account at this step.

If you replace blank with tabs, it will create a tab template:

$ ionic start HelloWorld_Tabs tabs

Similarly, this command will create an app with a sidemenu:

$ ionic start HelloWorld_Sidemenu sidemenu

The sidemenu template is the most common template as it provides a very nice routing
example with different pages in the templates folder under /www.

Additional guidance for the Ionic CLI is available on the GitHub page:

https://github.com/driftyco/ionic-cli

How it works…
This chapter will show you how to quickly start your codebase and visually see the result. More
detail about AngularJS and its template structure will be discussed across various chapters in
this book. However, the following are the core concepts:

ff Controller: Manage variables and models in the scope and trigger others, such as
services or states.

ff Directive: Where you manipulate the DOM, since the directive is bound to a
DOM object.

http://ionic.io/
https://github.com/driftyco/ionic-cli

Creating Our First App with Ionic

6

ff Service: Abstraction to manage models or collections of complex logic beside
get/set required.

ff Filter: Mainly used to process an expression in the template and return some data
(that is, rounding number, add currency) by using the format {{ expression
| filter }}. For example, {{amount | currency}} will return $100 if the
amount variable is 100.

The project folder structure will look like the following:

You will spend most of your time in the /www folder, because that's where your application
logic and views will be placed.

By default from the Ionic template, the AngularJS module name is called starter. You will
see something like this in app.js, which is the bootstrap file for the entire app:

angular.module('starter', ['ionic', 'ngCordova',
'starter.controllers', 'starter.services', 'starter.directives',
'starter.filters'])

This basically declares starter to be included in ng-app="starter" of index.html. We
would always have ionic and ngCordova (as in other examples from this book, although
ngCordova is not essential). The other modules are required and listed in the array of string
[...] as well. They can be defined in separate files.

Chapter 1

7

Note that if you double click on the index.html file to open in the browser, it will show
a blank page. This doesn't mean the app isn't working. The reason is that the AngularJS
component of Ionic dynamically loads all the .js files and this behavior requires server
access via an HTTP protocol (http://). If you open a file locally, the browser automatically
treats it as a file protocol (file://) and therefore AngularJS will not have the ability to load
additional .js modules to run the app properly. There are several methods of running the
app that will be discussed.

Creating a HelloWorld app via Ionic Creator
Another way to start your app codebase is to use Ionic Creator. This is a great interface
builder to accelerate your app development with a drag-and-drop style. You can quickly
take existing components and position them to visualize how it should look in the app via
a web-based interface. Most common components like buttons, images, checkboxes,
and so on are available.

Ionic Creator allows the user to export everything as a project with all .html, .css, and .js
files. You should be able edit content in the /www folder to build on top of the interface.

Getting ready
Ionic Creator requires registration for a free account at https://creator.ionic.io/ to
get started.

How to do it…
Create a new project called myApp:

https://creator.ionic.io/

Creating Our First App with Ionic

8

You will see this simple screen:

The center area is your app interface. The left side gives you a list of pages. Each page is a
single route. You also have access to a number of UI components that you would normally
have to code by hand in an HTML file. The right panel shows the properties of any selected
component.

You're free to do whatever you need to do here by dropping components to the center screen.
If you need to create a new page, you have to click the plus sign in the Pages panel. Each
page is represented as a link, which is basically a route in AngularJS UI Router's definition.
To navigate to another page (for example, after clicking a button), you can just change the
Link property and point to that page.

There is an Edit button on top where you can toggle back and forth between Edit Mode
and Preview Mode. It's very useful to see how your app will look and behave.

Chapter 1

9

Once completed, click on the Export button on the top navigation. You have three options:

ff Use the Ionic CLI tool to get the code

ff Download the project as a zip file

ff Review the raw HTML

The best way to learn Ionic Creator is to play with it. You can add a new page and pick out any
existing templates. This example shows a Login page template:

Creating Our First App with Ionic

10

Here is how it should look out of the box:

There's more...
To switch to Preview Mode where you can see the UI in a device simulator, click the switch
button on the top right to enable Test:

In this mode, you should be able to interact with the components in the web browser as
if it's actually deployed on the device.

If you break something, it's very simple to start a new project. It's a great tool to use for
"prototyping" and to get initial template or project scaffolding. You should continue to code
in your regular IDE for the rest of the app. Ionic Creator doesn't do everything for you, yet.
For example, if you want to access specific Cordova plugin features, you have to write that
code separately.

Also, if you want to tweak the interface outside of what is allowed within Ionic Creator, it will
also require specific modifications to the .html and .css files.

Chapter 1

11

Copying examples from Ionic Codepen
Demos

Sometimes it's easier to just get snippets of code from the example library. Ionic Codepen
Demos (http://codepen.io/ionic/public-list/) is a great website to visit. Codepen.
io is a playground (or sandbox) to demonstrate and learn web development. There are other
alternatives such as plnkr.com or jsfiddle.com. It's just a developer's personal preference
which one to choose.

However, all Ionic's demos are already available on Codepen, where you can experiment
and clone to your own account. http://plnkr.com has an existing AngularJS boilerplate
and could be used to just practice specific AngularJS areas because you can copy the link of
sample code and post on Stackoverflow.com if you have questions.

How to do it…
There are several tags of interest to browse through if you want specific UI component
examples:

www.allitebooks.com

http://codepen.io/ionic/public-list/
http://plnkr.com
http://www.allitebooks.org

Creating Our First App with Ionic

12

You don't need a Codepen account to view. However, if there is a need to save a custom pen
and share with others, free registration will be required.

The Ionic Codepen Demos site has more collections of demos comparing to the CLI. Some are
based on a nightly build of the platform so they could be unstable to use.

There's more...
You can find the same side menu example on this site:

1.	 Navigate to http://codepen.io/ionic/public-list/ from your browser.

2.	 Select Tag: menus and then click on Side Menu and Navigation: Nightly.

3.	 Change the layout to fit a proper mobile screen by clicking on the first icon of the
layout icons row on the bottom right of the screen.

http://codepen.io/ionic/public-list/

Chapter 1

13

Viewing the app using your web browser
In order to "run" the web app, you need to turn your /www folder into a web server. Again there
are many methods to do this and people tend to stick with one or two ways to keep things
simple. A few other options are unreliable such as Sublime Text's live watch package or static
page generator (for example, Jekyll, Middleman App, and so on). They are slow to detect
changes and may freeze your IDE so these won't be mentioned here.

Getting ready
The recommended method is to use the ionic serve command line. It basically launches
an HTTP server so you can open your app in a desktop browser.

How to do it…
1.	 First you need to be in the project folder. Let's assume it is the Side Menu

HelloWorld:
$ cd HelloWorld_Sidemenu

2.	 From there, just issue the simple command line:

$ ionic serve

That's it! There is no need to go into the /www folder or figure out which port to use.
The command line will provide these options while the web server is running:

The most common option to use here is r to restart or q to quit when you are done.

There is an additional step to view the app with the correct device resolution:

1.	 Install Google Chrome if it's not already on your computer.

2.	 Open the link (for example, http://localhost:8100/#/app/playlists) from
ionic serve in Google Chrome.

Creating Our First App with Ionic

14

3.	 Turn on Developer Tools. For example, in Mac's Google Chrome, select View |
Developer | Developer Tools:

4.	 Click on the small mobile icon in the Chrome Developer Tools area:

5.	 There will be a long list of devices to pick from:

Chapter 1

15

6.	 After selecting a device, you need to refresh the page to ensure the UI is updated.
Chrome should give you the exact view resolution of the device.

Most developers would prefer to use this method to code as you can debug the app using
Chrome Developer Tools. It works exactly like any web application. You can create breakpoints
or output variables to the console.

How it works...
Note that ionic serve is actually watching everything under the /www folder except the
JavaScript modules in the /lib folder. This makes sense because there is no need for the
system to scan through every single file when the probability for it to change is very small.
People don't code directly in the /lib folder but only update when there is a new version of
Ionic. However, there is some flexibility to change this.

Creating Our First App with Ionic

16

You can specify a watchPatterns property in the ionic.project file located in your
project root to watch (or not watch) for specific changes:

{
 "name": "myApp",
 "app_id": "",
 "watchPatterns": [
 "www/**/*",
 "!www/css/**/*",
 "your_folder_here/**/*"
]
}

While the web server is running, you can go back to the IDE and continue coding.
For example, let's open the playlists.html file under /www/templates and
change the first line to this:

<ion-view view-title="Updated Playlists">

Go back to the web browser where Ionic opened the new page; the app interface will change
the title bar right away without requiring you to refresh the browser. This is a very nice feature
when there is a lot of back and between code changes and allows checking on how it works
or looks in the app instantly.

Viewing the app using iOS Simulator
So far you have been testing the web-app portion of Ionic. In order to view the app in the
simulator, follow the next steps.

How to do it...
1.	 Add the specific platform using:

$ ionic platform add ios

Note that you need to do the "platform add" before building the app.

$ ionic build ios

2.	 The last step is to emulate the app:

$ ionic emulate ios

Chapter 1

17

Viewing the app using Xcode for iOS
Depending on personal preference, you may find it more convenient to just deploy the app
using ionic ios --device on a regular basis. This command line will push the app to
your physical device connected via USB without ever running Xcode. However, you could run
the app using Xcode (in Mac), too.

How to do it...
1.	 Go to the /platforms/ios folder.

2.	 Look for the folder with .xcodeproj and open in Xcode.

3.	 Click on the iOS Device icon and select your choice of iOS Simulator.

4.	 Click on the Run button and you should be able to see the app running in the
simulator.

Creating Our First App with Ionic

18

There's more...
You can connect a physical device via a USB port and it will show up in the iOS Device
list for you to pick. Then you can deploy the app directly on your device. Note that iOS
Developer Membership is required for this. This method is more complex than just viewing
the app via a web browser.

However, it's a must when you want to test your code related to device features such as
camera or maps. If you change code in the /www folder and want to run it again in Xcode,
you have to do ionic build ios first, because the running code is in the Staging folder of
your Xcode project:

For debugging, the Xcode Console can output JavaScript logs as well. However, you could use
the more advanced features of Safari's Web Inspector (which is similar to Google Chrome's
Developer Tools) to debug your app. Note that only Safari can debug a web app running on a
connected physical iOS device because Chrome does not support this on a Mac.

Chapter 1

19

It's simple to enable this capability:

1.	 Allow remote debugging for an iOS device by going to Settings | Safari | Advanced
and enable Web Inspector.

2.	 Connect the physical iOS device to your Mac via USB and run the app.

3.	 Open the Safari browser.

4.	 Select Develop, click on your device's name (or iOS Simulator), and click on
index.html.

Note: If you don't see the Develop menu in Safari, you need to navigate to menu Preferences
| Advanced and check on Show Develop menu in menu bar.

Safari will open a new console just for that specific device just as it's running within the
computer's Safari.

Creating Our First App with Ionic

20

Viewing the app using Genymotion for
Android

Although it's possible to install the Google Android simulator, many developers have
inconsistent experiences on a Mac computer. There are many commercial and free
alternatives that offer more convenience and a wide range of device support. Genymotion
provides some unique advantages such as allowing users to switch Android model and
version, supporting networking from within the app, and allowing SD card simulation.

In this recipe, you will learn how to set up an Android developer environment (on a Mac in this
case) first. Then you will install and configure Genymotion for mobile app development.

How to do it...
1.	 The first step is to set up the Android environment properly for development.

Download and install Android Studio from https://developer.android.com/
sdk/index.html.

2.	 Run Android Studio.

3.	 You need to install all required packages such as the Android SDK. Just click
on Next twice at the Setup Wizard screen and select the Finish button to start
packages installation.

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

Chapter 1

21

4.	 After installation is complete, you need to install additional packages and other SDK
versions. At the Quick Start screen, select Configure:

5.	 Then select SDK Manager:

Creating Our First App with Ionic

22

6.	 It's a good practice to install a previous version such as Android 5.0.1 and 5.1.1. You
may also want to install all Tools and Extras for later use.

7.	 Select the Install packages... button.

Chapter 1

23

8.	 Check the box on Accept License and click on Install.

9.	 The SDK Manager will give you SDK Path on the top. Make a copy of this path
because you need to modify the environment path.

10.	 Go to Terminal and type:
$ touch ~/.bash_profile; open ~/.bash_profile

11.	 It will open a text editor to edit your bash profile file. Insert the following line
where /YOUR_PATH_TO/android-sdk should be the SDK Path that you
copied earlier:
export ANDROID_HOME=/YOUR_PATH_TO/android-sdk

export PATH=$ANDROID_HOME/platform-tools:$PATH

export PATH=$ANDROID_HOME/tools:$PATH

12.	 Save and close that text editor.

13.	 Go back to Terminal and type:
$ source ~/.bash_profile

$ echo $ANDROID_HOME

Creating Our First App with Ionic

24

14.	 You should see the output as your SDK Path. This verifies that you have correctly
configured the Android developer environment.

15.	 The second step is to install and configure Genymotion. Download and install
Genymotion and Genymotion Shell from Genymotion.com.

16.	 Run Genymotion.

17.	 Select the Add button to start adding a new Android device.

18.	 Select a device you want to simulate. In this case, let's select Samsung Galaxy S5:

Chapter 1

25

19.	 You will see the device being added to "Your virtual devices". Click on that device:

20.	 Then click on Start.

21.	 The simulator will take a few seconds to start and will show another window. This is
just a blank simulator without your app running inside yet.

Creating Our First App with Ionic

26

22.	 Run Genymotion Shell.

23.	 From Genymotion Shell, you need to get a device list and keep the IP address of the
device attached, which is Samsung Galaxy S5. Type devices list:

24.	 Type adb connect 192.168.56.101 (or whatever the IP address was you saw
earlier from the devices list command line).

25.	 Type adb devices to confirm that it is connected.

26.	 Type ionic platform add android to add Android as a platform for your app.

27.	 Finally, type ionic run android.

28.	 You should be able to see the Genymotion window showing your app.

Chapter 1

27

Although there are many steps to get this working, it's a lot less likely that you will have to go
through the same process again. Once your environment is set up, all you need to do is to
leave Genymotion running while writing code. If there is a need to test the app in different
Android devices, it's simple just to add another virtual device in Genymotion and connect to it.

Viewing the app using Ionic View
Ionic View is an app viewer that you can download from the App Store or Google Play. When
you are in the development process and the app is not completed, you don't want to submit it
to either Apple or Google right away but rather, limit access to your testers. Ionic View can help
load your own app inside of Ionic View and make it behave like a real app with some access to
native device features. Additionally, Ionic View lets you use your app on an iOS device without
any certificate requirement.

Since Ionic View uses the Cordova inAppBrowser plugin to launch your app, all device features
have to be "hacked" to make it work. Currently, Ionic View version 1.0.5 only supports
SQLite, Battery, Camera, Device Motion, Device Orientation, Dialog/Notification, Geolocation,
Globalization, Network Information, and Vibration. It's a good idea to check the updated
support list before using Ionic View to ensure your app works properly.

How to do it...
There are two ways to use Ionic View. You can either upload your own app or load someone
else's App ID. If you test your own app, follow these steps:

1.	 Download Ionic View from either App Store or Google Play.

2.	 Make sure to register an account on ionic.io.

3.	 Go to your app's project folder.

4.	 Type ionic upload.

5.	 Enter your credentials.

6.	 The CLI will upload the entire app and give you the App ID, which is 152909f7 in this
case. You may want to keep this App ID to share with other testers later.

Creating Our First App with Ionic

28

7.	 Open Ionic View and log in if you haven't done so.

8.	 Select Load your own apps.

9.	 Now you should be able to see the app name in your My Apps page. Go ahead
and select the app name (myApp in this case).

Chapter 1

29

10.	 Select Download App to download the entire app in your Ionic View.

11.	 After the download process has completed, select View App to run the app.

Creating Our First App with Ionic

30

12.	 You will see the app interface appears with initial instructions on how to exit the app.
Since your app will cover the full screen of Ionic View, you need to swipe down by
using three fingers to exit back to Ionic View.

If there is no code update, the process is the same except that you need to select Sync to
latest at the menu.

In summary, there are several benefits of using Ionic View:

ff It's convenient because there is only one command line to push the app.

ff Anyone can access your app by entering the App ID.

ff There is no need to even have iOS Developer Membership to start developing with
Ionic. Apple has its own TestFlight app in which the use case is very similar.

ff You can stay agile in the developer process by having testers test the app as you
develop it.

ff Ionic View has a wide range of device feature support and continues to grow.

Chapter 1

31

Customizing the app folder structure
The structure in starter templates may not be good enough depending on the app. It's
important to understand its folder structure to allow further customization. Since the Ionic
project is based on Cordova, most of what you see will be either iOS or Android related.
This is the breakdown of what is inside the folder:

platforms/ (specific built code for iOS,
Android, or Windows phone)

lib/

plugins/ (Cordova plugins) ionic/ (CSS, fonts, JS, and SCSS
from Ionic)

scss/ templates/ (UI-router templates)
ionic.app.scss (your app's custom Sass
file)

index.html (main file)

www/ bower.json

css/ (your own css) gulpfile.js

style.css (processed CSS file that will
automatically be generated)

config.xml

img/ (your own images) ionic.project

js/ package.json

How to do it...
All application logic customization should be done in the /www folder as index.html
is the bootstrap template. If you add in more JavaScript modules, you can put them in
the /www/js/lib folder.

There is no need to modify the /platforms or /plugins folders manually unless
troubleshooting needs to be done. Otherwise, the ionic or cordova CLI will automate
the content inside those folders.

www.allitebooks.com

http://www.allitebooks.org

33

2
Managing States and

Navigation

In this chapter, we will cover the following tasks related to views and states:

ff Creating a tab interface with nested views

ff Creating a multistep form with validation

Introduction
It's possible to write a simple app with a handful of pages. However, when the app grows,
managing different views and their custom data at a specific time or triggered event could
be very complex. Ionic comes with UI-Router by default. You should leverage this advanced
routing management mechanism. In general, the following holds true:

ff A view should have its own state, which is basically a JSON object

ff A route (URL) will point to a view and its assigned controller

ff A state and view should allow nested views so that you can manage hierarchy

Since Ionic introduces many new components, you have to understand how these components
impact your app state hierarchy and when each state is triggered.

Managing States and Navigation

34

Creating a tab interface with nested views
This recipe will explain how to work with the Ionic tab interface and expand it for other use
cases. For example, it's possible to have additional views (that is, children) within each tab.
Since each tab has its own view and state, you can also watch the tab change event. The
following is the screenshot of the app:

In this app, you will learn the following:

ff How to create nested views and states

ff How to create a custom title per view

ff How to watch for state changes and inject your own conditions depending on
the new state

You will also use $ionicLoading, which is a very useful directive if you need to temporarily
show some content on the screen (that is, a loading indicator).

Getting ready
Since AngularJS UI-Router comes with the Ionic bundle, there is no need to download an
external library. You can test this in a web browser as well.

Chapter 2

35

How to do it...
Here are the steps to create a tab interface with nested views:

1.	 Create a new app using the blank template and go into the folder:
$ ionic start Route blank

$ cd Route

2.	 You need to set up the Sass dependencies in the following way because Ionic uses
a number of external libraries for this:
$ ionic setup sass

3.	 Open the index.html file and replace the <body> tag with the following:
<ion-nav-bar class="bar bar-stable">
 <ion-nav-back-button class="button-icon ion-arrow-left-c">
 </ion-nav-back-button>
</ion-nav-bar>

<ion-nav-view></ion-nav-view>

This will set up the view for your navigation, which includes the top bar and content.

4.	 Open app.js and edit it with the following code:
var app = angular.module('starter', ['ionic'])

app.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('app', {
 url: "/app",
 abstract: true,
 templateUrl: "templates/app.html",
 controller: "AppCtrl"
 })
 .state('app.students', {
 url: "/students",
 views: {
 'students': {
 templateUrl: "templates/students.html",
 controller: 'StudentsCtrl'
 }
 }
 })

Managing States and Navigation

36

 .state('app.students.details', {
 url: "/details/:id/:age",
 views: {
 'details': {
 templateUrl: "templates/details.html",
 controller: 'StudentDetailsCtrl'
 }
 }
 })
 .state('app.classes', {
 url: "/classes",
 views: {
 'classes': {
 templateUrl: "templates/classes.html",
 controller: 'ClassesCtrl'
 }
 }
 })
 .state('app.classes.details', {
 url: "/details/:id"
 });

 $urlRouterProvider.otherwise("/app/students");
});

The $stateProvider object is used to set up the routing. You may realize that
there are many template URLs that have not been defined yet. By default, the app
will go to /app/students.

5.	 To define the templates, go back to index.html and insert the following code into it:
<script id="templates/app.html" type="text/ng-template">
 <ion-tabs class="tabs-positive">

 <ion-tab title="STUDENTS" ui-sref="app.students">
 <ion-nav-view name="students"></ion-nav-view>
 </ion-tab>

 <ion-tab title="CLASSES" ui-sref="app.classes">
 <ion-nav-view name="classes"></ion-nav-view>
 </ion-tab>

 </ion-tabs>
</script>

<script id="templates/students.html" type=
"text/ng-template">

Chapter 2

37

 <ion-view view-title="{{ title }}">
 <div class="bar bar-stable bar-subheader">
 <ui-view name="details"/>
 </div>
 <ion-content class="padding content-stable
 has-subheader">
 <div class="card">
 <div class="item item-text-wrap"
 ui-sref="app.students.details({id: 0, age: 19})">
 First Student
 </div>
 <div class="item item-text-wrap"
 ui-sref="app.students.details({id: 1, age: 21})">
 Second Student
 </div>
 <div class="item item-text-wrap"
 ui-sref="app.students.details({id: 2, age: 25})">
 Third Student
 </div>
 </div>
 <button class="button button-block
 button-positive" ui-sref="app.classes">
 View Classes
 </button>
 <div class="hint">
 Click "View Classes" button OR "CLASSES" tab below
 </div>
 </ion-content>
 </ion-view>
</script>

<script id="templates/details.html" type=
"text/ng-template">
 <div class="button-bar">
 ID: {{ id }}
 Age: {{ age }}
 </div>
</script>

<script id="templates/classes.html" type=
"text/ng-template">
 <ion-view view-title="{{ title }}">
 <ion-content class="padding content-stable">
 <div class="hint">

Managing States and Navigation

38

 NOTE: No alert showing for
 "app.classes.details" when clicking below
 and no "ui-view" (optional)
 </div>
 <div class="card">
 <div class="item item-text-wrap"
 ui-sref-active-eq="item-active"
 ui-sref="app.classes.details({id:0})">
 Math
 </div>
 <div class="item item-text-wrap"
 ui-sref-active-eq="item-active" ui-sref=
 "app.classes.details({id:1})">
 English
 </div>
 <div class="item item-text-wrap"
 ui-sref-active-eq="item-active"
 ui-sref="app.classes.details({id:2})">
 Science
 </div>
 </div>
 <button class="button button-block
 button-positive" ng-click="gotoStudents()">
 View Students
 </button>
 <div class="hint">
 Click "View Students" button OR "STUDENTS"
 tab below
 </div>
 </ion-content>
 </ion-view>
</script>

The templates can be independent files, or they can be included in the index.html
file itself as a <script> tag. You just need to reference it using the id attribute.

6.	 Add the following controller code in app.js for the Students and Classes tab:
app.controller('StudentsCtrl', function($scope) {
 $scope.title = '<div class="round-icon"><i class="icon
 ion-person-stalker"></i></div>';
});

app.controller('StudentDetailsCtrl', function($scope,
$stateParams) {

Chapter 2

39

 $scope.id = $stateParams.id;
 $scope.age = $stateParams.age;
});

app.controller('ClassesCtrl', function($scope, $state) {
 $scope.title = '<div class="round-icon"><i class="icon
 ion-university"></i></div>';

 $scope.gotoStudents = function() {
 $state.go('app.students');
 }
});

Note that StudentDetailsCtrl is assigned to templates/details.html in the
preceding code. So, it's as simple as passing the scope variables to render the data
in the view.

7.	 One more thing that you need to do in app.js is create a high-level AppCtrl
object to detect the state change. This is done by using $rootScope.$on for
$stateChangeSuccess, as follows:
app.controller('AppCtrl', function($scope, $rootScope,
$ionicLoading, $timeout) {

 $rootScope.$on('$stateChangeSuccess', function(event,
 toState, toParams, fromState, fromParams) {

 if (toState.name == 'app.classes.details')
 return;

 $ionicLoading.show({
 template: 'Previous state: ' + fromState.name
 + '
Current state: ' + toState.name,
 noBackdrop: true
 });

 $timeout(function() {
 $ionicLoading.hide();
 }, 1000);
 });

});

Managing States and Navigation

40

8.	 To make the app look nice, you can customize it by using the following classes in the
ionic.app.scss file under /scss:
.bar .title {
 overflow: visible!important;
}

.round-icon {
 background-color: $positive;
 border-radius: 50%;
 width: $bar-height;
 height: $bar-height;
 margin-left: auto;
 margin-right: auto;
}

.round-icon > i.icon {
 color: white;
 font-size: 28px;
}

.content-stable{
 background-color: $stable
}

.hint {
 color: #aaa;
 font-size: 14px;
 text-align: center;
}

.item-active {
 background-color: darken($stable, 15%);
}

One creative use of classes is shown by the use of the round-icon one, as it
created a circle around the Ionic icon using border-radius.

9.	 Run the app by using the following command:
$ ionic serve

If you click on a student's name, it will switch to the app.students.details
state and pass the parameters (id and age) to that state. You will also see the
loading screen pop up to indicate the previous and current state.

Chapter 2

41

How it works...
At a high level, this is how the app is structured:

ff The <ion-nav-view></ion-nav-view> tag will be replaced by the app.html
template.

ff The app.html template basically contains just a skeleton of <ion-tabs>. For each
tab, the content will be replaced in <ion-nav-view name="students"></ion-
nav-view> and <ion-nav-view name="classes"></ion-nav-view>.

ff Each tab has to start with <ion-view> as the parent.

ff For the Students tab, there are actually detail views nested inside. That's why you
use <ui-view name="details"/> so that the additional children can replace it.

ff When you click on a student's name, it actually triggers ui-sref directly and passes
an expression such as app.students.details({id: 0, age: 19}). You
basically treat each state name as a function and pass the parameters as a JSON.
AngularJS UI-Router will take care of the rest.

ff You must also tell ion-tabs about what to do after each tab in the bottom bar is
clicked. That's why you must assign ui-sref for the <ion-tab> tag as well.

In Ionic, you cannot pass HTML code in the view-title directive. The workaround is to
fill it with a scope variable in the following way so that it can be updated with HTML from
the controller:

$scope.title = '<div class="round-icon"><i class=
"icon ion-person-stalker"></i></div>';

If the user clicks on the button at the bottom to go to another page, it is actually detected
automatically by the Ionic tab directive to update the view.

Managing States and Navigation

42

Every time a state is changed, it will trigger a $stateChangeSuccess event after the change is
completed. Watching for this event can be tricky because you have to set $rootScope.$on at
the topmost level (that is, the parent controller). The reason behind this is that this binding must
be persistent during navigation. Every time the app state is changed, there is no guarantee that
the controller will stay in the memory. It can be destroyed, and it may lose all the binding. The
parent controller will always remain persistent during the app's usage.

See also
For further usage of AngularJS UI-Router, you can check out the GitHub repository at
https://github.com/angular-ui/ui-router.

Creating a multistep form with validation
Forms are everywhere on the web as well as in mobile apps. If you go through a registration
process, it's done using a form. In a shopping cart solution, the user also steps through a
multipage form that consists of address, payment information, confirmation page, and so on.

The example in this recipe will explain how to create a form for your app that can be placed
in multiple pages and which can have a specific validation for each page. This may sound
simple, but it can get complex when there are many pages involved and the user must be
available to navigate back and forth. However, you give a lot of flexibility to the users, which
results in a better experience.

The app will have four steps. Let's go through the app's functionality:

1.	 The first step will require three text fields with one field as optional:

https://github.com/angular-ui/ui-router

Chapter 2

43

If the user does not fill in the First Name and Last Name fields, they will see the
following error:

2.	 Clicking on Next will lead to Step 2:

There is no required field here, but once the user fills in their email ID, it must
be validated:

Managing States and Navigation

44

3.	 In Step 3, the user must check off a checkbox to agree to some terms of service:

Otherwise, it will show an error if the user tries to click on Done:

At any step, the user can go back and edit the previous page without an issue. This is usually
very difficult if you are not using a Single Page Application framework such as Ionic.

Getting ready
You don't need to test this on a physical device or even a backend server. This example will
just simulate the saving of data in the memory and allow you to reset the app at the last step.

How to do it...
Follow these steps:

1.	 Create a new app using a blank template and go into that folder, as follows:
$ ionic start MultistepForm blank

$ cd MultistepForm

2.	 You need to set up the Sass dependencies in the following way:
$ ionic setup sass

Chapter 2

45

3.	 Open the index.html file and replace the <body> tag with the following:
<body ng-app="starter" ng-controller="AppCtrl">
 <ion-nav-bar class="bar bar-stable">
 <ion-nav-back-button ng-show="!hideBackButton">
 </ion-nav-back-button>
 </ion-nav-bar>

 <ion-nav-view></ion-nav-view>
 </body>

4.	 Let's ignore the JavaScript part for now and write the templates for the form. Since
you need four steps, you have to create each step as a separate page. Step 1 is
structured as follows:
<script id="templates/step1.html" type="text/ng-template">
 <ion-view>
 <ion-nav-buttons side="primary">
 <h1 class="title">Step 1</h1>
 <button class="button button-positive"
 ng-click="submit()" ui-sref="step2">
 Next
 </button>
 </ion-nav-buttons>
 <ion-content>
 <form name="step1Form" ng-controller=
 "Step1FormCtrl" novalidate>
 <div class="list">
 <label class="item item-input">
 <input type="text" placeholder="First Name"
 name="firstname" ng-model="data.firstname"
 required>
 </label>
 <div class="item item-message"
 ng-if="step1Submitted &&
 step1Form.firstname.$error.required">
 First name is required
 </div>
 <label class="item item-input">
 <input type="text" placeholder="Middle Name"
 name="middlename" ng-model="data.middlename">
 </label>
 <label class="item item-input">
 <input type="text" placeholder="Last Name"
 name="lastname" ng-model="data.lastname"
 required>
 </label>

Managing States and Navigation

46

 <div class="item item-message"
 ng-if="step1Submitted &&
 step1Form.lastname.$error.required">
 Last name is required
 </div>
 </div>
 </form>
 </ion-content>
 </ion-view>
</script>

5.	 The code of Step 2 is very much similar to that of Step 1, but it just has different
fields:
<script id="templates/step2.html" type="text/ng-template">
 <ion-view>
 <ion-nav-buttons side="primary">
 <h1 class="title">Step 2</h1>
 <button class="button button-positive"
 ng-click="submit()" ui-sref="step3">
 Next
 </button>
 </ion-nav-buttons>
 <ion-content>
 <form name="step2Form" ng-controller=
 "Step2FormCtrl" novalidate>
 <div class="list">
 <label class="item item-input">
 <input type="tel" placeholder="Cell phone"
 name="cell" ng-model="data.cell">
 </label>
 <label class="item item-input">
 <input type="email" placeholder="Email"
 name="email" ng-model="data.email">
 </label>
 <div class="item item-message"
 ng-if="step2Submitted &&
 step2Form.email.$error.email">
 Email address is invalid
 </div>
 </div>
 </form>
 </ion-content>
 </ion-view>
</script>

Chapter 2

47

6.	 Step 3 has the checkbox that needs to be checked off in order to proceed:
<script id="templates/step3.html" type="text/ng-template">
 <ion-view>
 <ion-nav-buttons side="primary">
 <h1 class="title">Step 3</h1>
 <button class="button button-positive"
 ng-click="submit()" ui-sref="done">
 Done
 </button>
 </ion-nav-buttons>
 <ion-content>
 <form name="step3Form" ng-controller="Step3FormCtrl"
 novalidate>
 <div class="list">
 <label class="item item-input">
 <textarea placeholder="Comments"
 name="comments" ng-model="data.comments"
 rows=10></textarea>
 </label>
 <div class="item item-checkbox">
 <label class="checkbox">
 <input type="checkbox" name="tos"
 ng-model="data.tos" ng-click="checkTos()">
 </label>
 Agree to Terms of Service
 </div>
 <div class="item item-message"
 ng-if="step3Submitted &&
 step3Form.tos.$error.agree">
 You must agree to Terms of Service
 </div>
 </div>
 </form>
 </ion-content>
 </ion-view>
</script>

7.	 Finally, Step 4 is just about the Done page, where you render all the data in
each page:
<script id="templates/done.html" type="text/ng-template">
 <ion-view>
 <ion-nav-buttons side="primary">
 <button class="button button-positive"
 ui-sref="step1" ng-click="reset()">
 Start Over

Managing States and Navigation

48

 </button>
 <h1 class="title">Thank You</h1>
 </ion-nav-buttons>
 <ion-content>
 <div class="list">
 <div class="item" ng-if="data.firstname">
 First name: {{ data.firstname }}
 </div>
 <div class="item" ng-if="data.middlename">
 Middle name: {{ data.middlename }}
 </div>
 <div class="item" ng-if="data.lastname">
 Last name: {{ data.lastname }}
 </div>
 <div class="item" ng-if="data.cell">
 Cell: {{ data.cell }}
 </div>
 <div class="item" ng-if="data.email">
 Email: {{ data.email }}
 </div>
 <div class="item" ng-if="data.comments">
 Comments: {{ data.comments }}
 </div>
 <div class="item" ng-if="data.tos">
 Terms of Service: {{ data.tos }}
 </div>
 </div>
 </ion-content>
 </ion-view>
</script>

8.	 Edit app.js and create the routes for all the steps, as follows:
var app = angular.module('starter', ['ionic'])

app.config(function($stateProvider, $urlRouterProvider,
$ionicConfigProvider) {

 $ionicConfigProvider.backButton.previousTitleText
 (false).text('');
 $ionicConfigProvider.views.swipeBackEnabled(false);
 $ionicConfigProvider.views.maxCache(0);

 $stateProvider
 .state('step1', {

Chapter 2

49

 url: "/step1",
 data: {
 step: 1
 },
 templateUrl: "templates/step1.html",
 controller: 'Step1Ctrl'
 })
 .state('step2', {
 url: "/step2",
 data: {
 step: 2
 },
 templateUrl: "templates/step2.html",
 controller: 'Step2Ctrl'
 })
 .state('step3', {
 url: "/step3",
 data: {
 step: 3
 },
 templateUrl: "templates/step3.html",
 controller: 'Step3Ctrl'
 })
 .state('done', {
 url: "/done",
 data: {
 step: 4
 },
 templateUrl: "templates/done.html",
 controller: 'DoneCtrl'
 });

 $urlRouterProvider.otherwise("/step1");
});

9.	 Create AppCtrl, which is the topmost parent controller for the app, in the
following way:
app.controller('AppCtrl', function($scope, $rootScope,
$ionicLoading, $timeout) {
 $scope.hideBackButton = false;
 $scope.data = {
 firstname: '',
 middlename: '',
 lastname: '',

Managing States and Navigation

50

 cell: '',
 email: '',
 comments: '',
 tos: false
 };

 $rootScope.$on('$stateChangeSuccess', function(event,
 toState, toParams, fromState, fromParams) {
 if ((toState.name == 'done') || (toState.name ==
 'step1'))
 $scope.hideBackButton = true;
 else
 $scope.hideBackButton = false;
 });

});

This controller will handle the form object initialization. Note that the best practice
should be to create a separate service/factory to keep the model of the form data.
However, to make things simple in this example, you can leverage the AngularJS
scope inheritance to share $scope.data in the entire app.

10.	 Each page will have two controllers: one to manage the entire page, and the other
to handle only the form in that page. The reason you have to do this is that <ion-
content> creates its own isolated scope. Since your Next button is in <ion-nav-
buttons>, which is outside <ion-content>, you cannot access child scopes from
parent scopes.
app.controller('Step1Ctrl', function($scope) {
 $scope.step1Submitted = false;

 $scope.submit = function() {
 $scope.step1Submitted = true;
 }
});

app.controller('Step1FormCtrl', function($scope,
$rootScope, $state) {
 var validate = $rootScope.$on('$stateChangeStart',
 function(event, toState, toParams, fromState,
 fromParams) {
 if (($scope.step1Form.$invalid) &&
 (toState.data.step > fromState.data.step))
 event.preventDefault();
 });

 $scope.$on('$destroy', validate);
});

Chapter 2

51

11.	 A great thing about this method is that your controller tends to look very similar in
each page. Here is the controller for Step 2:
app.controller('Step2Ctrl', function($scope) {
 $scope.step2Submitted = false;

 $scope.submit = function() {
 $scope.step2Submitted = true;
 }
});

app.controller('Step2FormCtrl', function($scope,
$rootScope, $state) {
 var validate = $rootScope.$on('$stateChangeStart',
 function(event, toState, toParams, fromState,
 fromParams) {
 if (($scope.step2Form.$invalid) && (toState.data.step
 > fromState.data.step))
 event.preventDefault();
 });

 $scope.$on('$destroy', validate);
});

12.	 The only difference in Step 3 is related to how you handle the checkbox:
app.controller('Step3Ctrl', function($scope) {
 $scope.step3Submitted = false;

 $scope.submit = function() {
 $scope.step3Submitted = true;
 }
});

app.controller('Step3FormCtrl', function($scope,
$rootScope, $timeout) {
 $timeout(function() {
 $scope.step3Form.tos.$setValidity('agree',
 $scope.data.tos);
 });

 $scope.checkTos = function() {
 $scope.step3Form.tos.$setValidity('agree',
 $scope.data.tos);
 }

 var validate = $rootScope.$on('$stateChangeStart',
 function(event, toState, toParams, fromState,
 fromParams) {

Managing States and Navigation

52

 if (($scope.step3Form.$invalid) &&
 (toState.data.step > fromState.data.step))
 event.preventDefault();
 });

 $scope.$on('$destroy', validate);
});

13.	 The last Done page will basically allow the user to reset the data using angular.
copy to avoid the hijacking of the object reference. Otherwise, you can lose the
two-way binding with other pages.
app.controller('DoneCtrl', function($scope, $rootScope,
$ionicHistory) {
 $scope.reset = function() {
 angular.copy({
 firstname: '',
 middlename: '',
 lastname: '',
 cell: '',
 email: '',
 comments: '',
 tos: false
 }, $scope.data);
 }

 var validate = $rootScope.$on('$stateChangeSuccess',
 function(event, toState, toParams, fromState,
 fromParams) {
 $ionicHistory.clearHistory();
 });

 $scope.$on('$destroy', validate);

});

14.	 To handle the error message style, edit ionic.app.scss and insert the following
code in it:
.item-message {
 background-color: $base-background-color;
 color: $assertive !important;
 font-size: 12px;
 padding:5px 0px 10px 10px!important;
 border-top: 2px solid $assertive;
 white-space:normal;
}

Chapter 2

53

15.	 From the command line, you can test the app using the following command:
$ ionic serve

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
To understand how a multistep form works, let's start with the routing system first. When you
define a route, you actually assign a piece of data to each route as a step number. This is
done using the data key, as follows:

$stateProvider
.state('step1', {
 url: "/step1",
 data: {
 step: 1
 },
 templateUrl: "templates/step1.html",
 controller: 'Step1Ctrl'
})

The reason you need to have this step number is to give the user the flexibility to go back to
the previous page without having to complete the form in the current page. You will check
whether the user goes back or forward using this step number.

To make a field required, you just need to put the required attribute in that <input>
element, as follows:

<input type="text" placeholder="First Name" name="firstname"
ng-model="data.firstname" required>

However, in terms of validation, there are two things that you need to do:

<div class="item item-message" ng-if="step1Submitted &&
step1Form.firstname.$error.required">
 First name is required
</div>

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Managing States and Navigation

54

First, you need to make sure that the user actually submitted the form by checking the
Boolean value for step1Submitted. You may realize that there is no submit event here,
since the app is just changing the state from one page to another. Each state change is
basically a submit event (except if the user goes back to a previous page). This is why you
cannot use the default submit event within AngularJS for validation.

The second thing that you should check for validation is any node in the $error object of
the field. Keep in mind that step1Form.firstname here is the name attribute of the
element, not the ng-model directive. Since there may be more validation errors, the only
thing that you need to check here is the required error.

In the email input, the type attribute basically dictates its own validation for the email
format, as follows:

<label class="item item-input">
 <input type="email" placeholder="Email" name="email"
 ng-model="data.email">
</label>

In this case, you check for step2Form.email.$error.email in the second step.

Handling the checkbox validation can get very tricky. What you can do is detect the click in
that box and validate whether it's true or false, as follows:

<input type="checkbox" name="tos" ng-model="data.tos"
ng-click="checkTos()">

The validation uses the $setValidity function from AngularJS to set the value, as follows:

$scope.step3Form.tos.$setValidity('agree', $scope.data.tos);

So, if this is invalid, the step3Form.tos.$error.agree variable will be true.

To handle the validation before the state change, you must watch the
$stateChangeStart event:

var validate = $rootScope.$on('$stateChangeStart',
function(event, toState, toParams, fromState, fromParams) {
 if (($scope.step1Form.$invalid) && (toState.data.step >
 fromState.data.step))
 event.preventDefault();
});

If the form is invalid, you will trigger preventDefault() so that the user will not navigate
to the next page.

Also, you should make sure that you destroy the watch at the $rootScope level when the
controller is destroyed, as follows:

$scope.$on('$destroy', validate);

Chapter 2

55

If you don't do this, you will end up having multiple instances of the function when the
controllers are no longer around but the function is tight into $rootScope instead. In the
config() function, this line purposely instructs Ionic not to cache any controller (to avoid
issues with old data, binding, and so on):

$ionicConfigProvider.views.maxCache(0);

The last area to look at is the Back button. To avoid showing the Back button in the first and
last screen (you don't want people to submit the entire form and go back to edit), you need to
manually hide it when the correct state matches, as follows:

 $rootScope.$on('$stateChangeSuccess', function(event, toState,
 toParams, fromState, fromParams) {
 if ((toState.name == 'done') || (toState.name == 'step1'))
 $scope.hideBackButton = true;
 else
 $scope.hideBackButton = false;
 });

Then, from the view, you can use ng-show to manage the visibility, as follows:

<ion-nav-back-button ng-show="!hideBackButton">

See also
It's highly recommended that you explore more on how AngularJS handles validation by
visiting https://docs.angularjs.org/guide/forms.

https://docs.angularjs.org/guide/forms

57

3
Adding Device

Features Support

In this chapter, we will cover tasks related to leveraging Cordova plug-ins for native
device functionalities:

ff Taking a photo using the device camera

ff Capturing video and allowing playback

ff Composing an email with an attachment from an app

ff Picking and adding a contact

ff Adding Google Maps with geocoding support

Introduction
In this chapter, you will learn how to access some common features of a device such as the
camera, contact list, email, and map. Some of those features can be written in a JavaScript-
only environment but the performance is not on a par with native support.

Cordova has a very well-supported community with many plugins. You may want to check
out http://plugins.cordova.io/ to understand what is out there. Luckily, you don't
need to deal with those plugins directly. You can use the ngCordova (http://ngcordova.
com/docs/) service on top of Cordova and AngularJS. Keep in mind that even if you use
ngCordova, you still need the Cordova plugin because ngCordova just "Angular-izes" the way
you interact with it.

http://plugins.cordova.io/
http://ngcordova.com/docs/
http://ngcordova.com/docs/

Adding Device Features Support

58

Taking a photo using the device camera
For this recipe, you will make an app to take a picture using the device camera or load
an existing picture from the device album. The picture could be either in Base64 format
or saved in a local filesystem of your app. Here is the high-level process:

ff Access the Cordova Camera plugin to trigger camera capture and get the
image back in the Base64 or file URI format

ff Parse the Base64 data or URI on a DOM object

ff Display URI if it's in the URI format

ff Capture an event of a toggle component

ff Display long data (for example, URI) using horizontal scroll

Getting ready
You should have a physical device ready in order to test camera capability. It's possible to
just run it via an emulator, but the filesystem support might look different across platforms.

This section also requires Bower to be installed. Bower is a utility to help you manage
packages for the frontend. It makes installing packages easier because you don't have
to hunt all over the place for correct versioning and dependencies. If you don't have
Bower yet, install it using the following command line:

$ npm install -g bower

How to do it...
Here are the instructions to add camera support:

1.	 Start a blank project (for example, Camera) and go to that folder:
$ ionic start Camera blank

$ cd Camera

2.	 Add the Cordova Camera plugin. The default template only has three plugins
in the /plugins folder: Console, Device, and Ionic.keyboard.
$ cordova plugin add cordova-plugin-camera

3.	 Install ngCordova:
$ bower install ngCordova

You should be able to see a new folder, org.apache.cordova.camera,
being added under the /plugins folder.

Chapter 3

59

4.	 Open index.html and add ngCordova in the header:
<script src="lib/ngCordova/dist/ng-cordova.js"></script>

Note that you have to put ng-cordova.js before cordova.js. Otherwise,
you may have a compile error during the build process.

5.	 Add a controller in your main parent tag. You can just put it in the <body> tag
as it's a simple app:
<body ng-app="starter" ng-controller="CameraCtrl">

6.	 This is basically the skeleton of the app: two buttons in a two-column grid, a list item
below with two items (toggle switch and URI display), and to show the photo
from the device camera. Inside the <body> tag, put in the following code:
<ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Camera</h1>
 </ion-header-bar>
 <ion-content>
 <div class="row">
 <div class="col">
 <button class="button button-calm button-full"
 ng-click="getPicture(1)">Show Camera</button>
 </div>
 <div class="col">
 <button class="button button-calm button-full"
 ng-click="getPicture(0)">Show Album</button>
 </div>
 </div>
 <ul class="list">

 <ion-toggle ng-model="item.destinationFILE_URI"
 toggle-class="toggle-calm" ng-click=
 "clickToggle()">Return image file URI</ion-toggle>

 <div class="item item-icon-left" style=
 "background-color: #f8f8f8;">
 <i class="icon ion-link"></i>
 <ion-scroll direction="x">
 {{ item.imagePath }}
 </ion-scroll>
 </div>

Adding Device Features Support

60

 </ion-content>
</ion-pane>

Note that the Ionic grid system is very similar to Bootstrap where you have to
declare rows and columns. However, Ionic makes it even simpler, so you don't
need to specify the column ratio upfront. If you use the col class, it will
automatically divide the width evenly.

7.	 Now let's write some code for the CameraCtrl controller. Open app.js and
add your skeleton as shown next:
var app = angular.module('starter', ['ionic',
'ngCordova']);

app.controller('CameraCtrl', function($scope,
$cordovaCamera) {
});

Note that you must include ngCordova as a module dependency in order to use
the $cordovaCamera service.

8.	 First, create an object to store the controller data:
$scope.item = {
 data: "",
 imagePath: "Photo capture as Base64",
 destinationFILE_URI: false
};

It's a good practice to store data in an object (that is, an item). Image
data will be stored in data. Every time the user changes the destination
type (base64 or file URI) or captures a new image, you need to update
item.imagePath accordingly. The destinationFILE_URI object
is just to save the current state of the toggle switch.

9.	 Now let's deal with the toggle switch by capturing the click or touch event:
$scope.clickToggle = function() {
 if ($scope.item.destinationFILE_URI)
 $scope.item.imagePath = "Photo capture as File URI";
 else
 $scope.item.imagePath = "Photo capture as Base64";
}

So basically every time the switch state is changed, the controller will update the
$scope.item.imagePath variable.

Chapter 3

61

10.	 The getPicture() function is the core part of this app because it does a
lot of processing:
$scope.getPicture = function(sourceType) {
 var options = {
 quality : 50,
 allowEdit : true,
 correctOrientation: false,
 targetWidth: 640,
 targetHeight: 1080,
 destinationType: $scope.item.destinationFILE_URI ?
 Camera.DestinationType.FILE_URI :
 Camera.DestinationType.DATA_URL,
 sourceType : sourceType,
 encodingType: Camera.EncodingType.JPEG,
 saveToPhotoAlbum: false
 };

 $cordovaCamera.getPicture(options).then(function(imageData)
 {
 if ($scope.item.destinationFILE_URI) {
 $scope.item.data = imageData;
 $scope.item.imagePath = imageData;
 } else {
 $scope.item.imagePath = "Photo capture as Base64";
 $scope.item.data = "data:image/jpeg;base64," +
 imageData;
 }
 console.log(imageData);
 }, function(err) {
 alert('Unable to take picture');
 });
 }

11.	 When you run the app, you should see the app as shown in the following screenshot:

Adding Device Features Support

62

How it works...
Let's start with step 6 of the preceding section.

Although this may look like a lot of stuffs, it's actually very simple. Let's start from the top
down. The <ion-header-bar> tag is just a simple header bar to display the current page.
You could even remove it. The <ion-content> tag is a wrapper for all app content. So this
is the biggest area of your device screen.

<ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Camera</h1>
 </ion-header-bar>
 <ion-content>
 <div class="row">
 <div class="col">
 <button class="button button-calm button-full"
 ng-click="getPicture(1)">Show Camera</button>
 </div>
 <div class="col">
 <button class="button button-calm button-full"
 ng-click="getPicture(0)">Show Album</button>
 </div>
 </div>
 <ul class="list">

 <ion-toggle ng-model="item.destinationFILE_URI"
 toggle-class="toggle-calm" ng-click="clickToggle()">Return
 image file URI</ion-toggle>

 <div class="item item-icon-left"
 style="background-color: #f8f8f8;">
 <i class="icon ion-link"></i>
 <ion-scroll direction="x">
 {{ item.imagePath }}
 </ion-scroll>
 </div>

 </ion-content>
</ion-pane>

Chapter 3

63

For the image to appear in the tag, you need to use ng-src instead
of src alone. The reason is that the attribute must be controlled by
AngularJS in order to have live binding. That's it for the view layer.

The grid system in Ionic is super simple. You can just define it using the .row and .col
classes. The concept is similar to the Bootstrap framework, but you don't have to specify
the device size (that is, –md, -lg, and so on) or even the number of columns. There are
two buttons and each is bound to the getPicture() function. The <ion-toggle> tag
is simply just an AngularJS directive to create a nicer toggle switch for a mobile device.
When the user clicks this toggle button, it will call the clickToggle() function.

$cordovaCamera.getPicture() is just an abstraction of navigator.camera.
getPicture() from the Cordova Camera plugin. To post image data to the server, the
common scenario is to upload the file from the filesystem. It's not a good idea to send data
as Base64 because of the data size, which will increase the original binary size.

You just need to call $cordovaCamera.getPicture() with the options parameter and
callbacks when there is success or an error. Note that it's a better option to reduce the image
size and quality, otherwise the app will crash (due to the large memory requirements):

ff quality is the quality of the saved image, expressed as a range of 0-100, where
100 is typically full resolution with no loss from file compression.

ff If you want the photo to be automatically saved into the device's album, you can
use saveToPhotoAlbum: true instead.

ff destinationType could be Camera.DestinationType.DATA_URL (Base64)
or Camera.DestinationType.FILE_URI (File URI).

ff The callback will provide the imageData variable with the Base64 data or URI.
Then you can assign it to the image's ng-src attribute.

You could get video in return but it only works if the video is already in the device (when
PictureSourceType is PHOTOLIBRARY or SAVEDPHOTOALBUM). This tutorial does not
go over the File plugin so that you can access existing photos, as it's a separate topic.

There's more...
It is possible to create Instagram-like filter effects using just JavaScript. You can leverage
an existing library such as Filterous (https://github.com/girliemac/Filterous)
to modify the image canvas directly.

There is an Instagram plugin (https://github.com/vstirbu/InstagramPlugin) for
Cordova on GitHub. You could write some extra code to pass the image to Instagram. The user
must have Instagram installed in the phone first, though. This idea is nice when you plan to do
some cool image processing (for example, adding funny text) before letting Instagram do the
photo filter.

https://github.com/girliemac/Filterous
https://github.com/vstirbu/InstagramPlugin

Adding Device Features Support

64

You can even use CSS3 filters (http://codepen.io/SitePoint/full/KwmeJZ/) to
render in the frontend. However, the disadvantage of this method is that you cannot extract
and save the binary of the new filtered image itself.

You could even add Cordova's Social Network plugin and post the resulting images to
Twitter or Facebook.

Capturing video and allowing playback
It's possible to capture video using Ionic. There is a different plugin called Cordova Media
Capture, which allows more flexible access to audio and video capability. ngCordova also
ported this plugin to create the $cordovaCapture service (http://ngcordova.com/
docs/plugins/capture/).

This is very convenient because you just need to call any of those three functions:

ff $cordovaCapture.captureAudio

ff $cordovaCapture.captureImage

ff $cordovaCapture.captureVideo

You could use this plugin for taking a photo as well, but it doesn't have a rich set of features like
the Cordova Camera plugin does. The Media Capture plugin only provides access to the video
camera to play back or update the resulting video file to a backend server. You cannot use this
plugin to perform video processing such as adding text, animation, and special effects.

In this section, you will create a small app with a video capture button. You will learn how to
create a video directive so that its playback content can be updated after recording a video.

Getting ready
You need a physical device with functional video capability in order to go through this section.

How to do it...
Here are the instructions:

1.	 Start a blank project (for example, Video-Capture) and go to that folder:
$ ionic start Video-Capture blank

$ cd Video-Capture

2.	 Add the Cordova Media Capture plugin:
$ cordova plugin add org.apache.cordova.media-capture

http://codepen.io/SitePoint/full/KwmeJZ/
http://ngcordova.com/docs/plugins/capture/
http://ngcordova.com/docs/plugins/capture/

Chapter 3

65

3.	 Install ngCordova:
$ bower install ngCordova

4.	 Open index.html and add ngCordova in the header above cordova.js:
<script src="lib/ngCordova/dist/ng-cordova.js"></script>

5.	 The body is very simple. You will create a VideoCtrl controller that triggers
captureVideo() when the user clicks on a button. The <cordova-video>
tag is a new directive to handle video playback.
<body ng-app="starter" ng-controller="VideoCtrl">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Video Capture</h1>
 </ion-header-bar>
 <ion-content>
 <button class="button button-calm button-full"
 ng-click="captureVideo()">Capture Video</button>
 <cordova-video src="data.videoPath"></cordova-video>
 </ion-content>
 </ion-pane>
</body>

6.	 Here is your VideoCtrl controller:
var app = angular.module('starter', ['ionic',
'ngCordova']);

app.controller('VideoCtrl', function($scope,
$cordovaCapture) {
 $scope.data = {
 videoPath: ""
 };

 $scope.captureVideo = $scope.captureVideo = function() {
 var options = { limit: 3, duration: 15 };

 $cordovaCapture.captureVideo(options).then(
 function(videoData) {
 // Success! Video data is here
 $scope.data.videoPath = "file:/" +
 videoData[0].fullPath;
 }, function(err) {
 // An error occurred. Show a message to the user
 console.log(err);
 });
 }
});

Adding Device Features Support

66

Basically you just need to include ngCordova as a module dependency and declare
that you plan to use $cordovaCapture in the controller. Then once the button
click is triggered, it will call $cordovaCapture.captureVideo() to open up the
device video recording. It's possible that the user will record multiple videos, so the
returned object (for example, videoData) will always be an array. Your recorded
video is stored locally in the app's folder, which you can access via videoData[0].
fullPath.

7.	 For the <cordova-video> directive, you just need to detect when a new video is
recorded and add that to the playback:
app.directive("cordovaVideo", function () {
 return {
 restrict: 'AEC',
 scope: {src: '='},
link: function(scope, element, attrs) {
 scope.$watch('src', function(newVal, oldVal) {
 if (scope.src != "") {
 // Create a div object
 var div = document.createElement('div');
 div.innerHTML = "<video id=\"myCordovaVideo\"
 controls>"+
 "<source src=\"" + scope.src +
 "\" type=\"video/quicktime\">"+
 "</video>";

 // Delete previous video if exists
 var previousDiv =
 document.getElementById('myCordovaVideo');
 if (previousDiv)
 previousDiv.remove();

 // Append new <video> tag into the DOM
 element.append(div);
 }

 });
 }
 }
});

Chapter 3

67

8.	 For minor styling effects of the video player, you can change style.css with
the following code:

#myCordovaVideo {
 background: red;
 width: 100%;
}

How it works...
For step 7, there is a reason you have to write a separate directive to handle the <video> tag.
AngularJS does not support live binding of the <video> tag, so if you write something such as
<video ng-src="yourObject">, it will not work. You also probably noticed that the directive
uses scope: {src: '='} as a way to direct the binding to the data.videoPath object. This
is just a straight assignment by changing the scope.src reference to data.videoPath so
that you can perform $watch() on this variable.

The main reason here is that the directive has its isolated scope, which is different from the
controller. Another important area here is to call remove() on the previous DIV element
inside this directive. The user may record one video after another. This is simply just a
replacement of inner content to show the current video and delete previous ones.

Every time the user records a video, your $cordovaCapture.captureVideo() function
will return an object in this format:

You can see that fullPath points to a folder with the unique ID of your app. This path
is relative to your app. That's why it's necessary to prepend file:/ in front of the string.
Otherwise, the Cordova web app will not know where to find the video file.

Depending on the platform, some parameters such as limit or duration might not be
supported by the Media Capture plugin. It's a good idea to visit the GitHub page for the latest
information at https://github.com/apache/cordova-plugin-media-capture.

https://github.com/apache/cordova-plugin-media-capture

Adding Device Features Support

68

There's more...
This section does not cover the process to send or update the video to a backend server
because it's not unique to Cordova or Ionic. You just need to use the filesystem path pointing
to the video file and upload it as normal.

There are many other free plugin and module alternatives to perform video playback. You could
check out Videogular (http://www.videogular.com/), which is a very advanced video
player written for AngularJS. There is also the Cordova Video Player plugin on GitHub if you want
flexibility to access the native player (https://github.com/macdonst/VideoPlayer).

Composing an email with an attachment
from an app

Your use case may include the ability to let users compose their own email with populated
fields. For example, after users perform some specific actions, the app automatically fills in
the email receiver, subject, and body to have users send it off. This functionality makes it
easy for users so that they don't have to manually compose the email. Many apps use this
technique for the tell a friend feature.

The code example in this section will use Cordova's Email Composer plugin so that your
Ionic app has a standard interface to communicate with the native device feature. You will
understand how to attach files such as images to user emails. The image could be a local file
in the app filesystem or Base64 string, which is a result from the device camera. The body
could even contain HTML tags. Here is the screenshot of the app you are going to build:

http://www.videogular.com/
https://github.com/macdonst/VideoPlayer

Chapter 3

69

However, keep in mind that there is no way to detect that the e-mail has been sent
successfully. There are many real-world scenarios that you cannot control such as Internet
connectivity (that is, Airplane mode), mail server error, and so on. The plugin only provides
the callback function when the user closes down their email composer app.

Getting ready
You will need a physical device to test an email. The device must have the email configured in
order to send the email.

How to do it...
Here are the steps for composing an email with an attachment from an app:

1.	 Create a blank Ionic app (for example, Email) and change the directory to
that folder:
$ ionic start Email blank

2.	 Install the Email Composer plugin:
$ cordova plugin add https://github.com/katzer/cordova-plugin-
email-composer.git

3.	 Install ngCordova:
$ bower install ngCordova

4.	 Open index.html and add ngCordova in the header:
<script src="lib/ngCordova/dist/ng-cordova.js"></script>

5.	 You will need to add the EmailCtrl controller:
<body ng-app="starter" ng-controller="EmailCtrl">

6.	 Let's show the content of the email object in the view. Add the card layout
as a way to organize this information:
<div class="card">
 <div class="item item-divider">
 {{ email.subject }}
 </div>
 <div class="item item-text-wrap">
 To: {{ email.to }}

 Body: {{ email.body }}

Adding Device Features Support

70

 </div>
</div>

The email's to, subject, and body fields are very straightforward. However, this
example will show you how to attach a local file (ionic.png) as well as a Base64
image. Since the Base64 string is a Base64Icon variable, you need to use ng-src
to properly parse this variable. The src attribute can take either URL or Base64 data.

7.	 Add a button to trigger the email composer, which you will write a function for later:
<button class="button button-full button-positive"
ng-click="send()">Send Email</button>

8.	 After the user closes down the composer (regardless of whether the email is sent
or not), show a "thank you" note by detecting the thankYou Boolean:
<p ng-if="thankYou" class="button button-clear
button-positive">
 Thank you!
</p>

9.	 Open app.js for editing. Make sure ngCordova is included as a dependency.
You can remove the entire run() function as there is no need for it.
var app = angular.module('starter', ['ionic',
'ngCordova']);

10.	 Create the controller:
app.controller('EmailCtrl', function($scope,
$ionicPlatform, $cordovaEmailComposer, Base64Icon) {
});

In this controller, you need to do three things:

�� Check to make sure emails are available on the device

�� Initialize the email object with some data

�� Create a send() function to trigger the email app

You will create a separate factory called Base64Icon later to store the
Base64 string.

Chapter 3

71

11.	 To check for email capability, you need to call the isAvailable() function. It's
possible that the device is not set up for emails or the email app is not available
for some reason.
$ionicPlatform.ready(function() {
 $cordovaEmailComposer.isAvailable().then(function() {
 // is available
 console.log('Email is available');
 }, function () {
 // not available
 alert('Email is not available');
 });
});

It's important to wrap isAvailable() around the ready() function. The reason
is that when your app starts, it may take a bit of time to load all plugins.

12.	 Initialize two scope variables: Base64Icon and email:
$scope.Base64Icon = Base64Icon;
$scope.email = {
 to: 'youremail@gmail.com',
 // You can add cc or bcc field with array of emails
 // cc: 'someone@gmail.com',
 // bcc: ['test1@gmail.com', 'test2@gmail.com'],
 attachments: [
 'file://img/ionic.png',
 // file:// is basically your www/ folder
 // You can include any file such as PDF
 // 'file://README.pdf'
 "base64:icon.jpg//" + Base64Icon
 // Note that you must include file name for base64
 such as icon.jpg
 // 'base64:icon.png//iVBORw0KGgoAAAANSUhEUg...',
],
 subject: 'Just testing Email Composer Cordova plugin',
 body: 'How are you? Nice greetings from Ionic',
 isHtml: true
};

www.allitebooks.com

http://www.allitebooks.org

Adding Device Features Support

72

You basically just assign the value of the Base64Icon factory into a
scope variable so you can access it from the view. Attachment is probably
the most difficult field to get right. You could attach a local file from the app
folder. By default, everything is under the www folder. So to reference to the
img folder, you just need to add file://img/ as the path.
For the Base64 image, you need to have "base64:icon.jpg//" as the
prefix. The email composer requires a filename in order to attach. If you
recall the view, the src attribute requires "data:image/jpg;base64,"
(don't forget the comma at the end) as the prefix instead. So that is the
main difference.

13.	 Create the send() function:
$scope.send = function() {
 $cordovaEmailComposer.open($scope.email).then(null,
 function () {
 // Callback when user cancelled or sent email
 $scope.thankYou = true;
 });
}

This function calls $cordovaEmailComposer.open() by passing the email object.
Once the composer is closed, it assigns thankYou = true in order to show the
note in the view.

14.	 You could include any Base64 string; the example in this book shows the Angular
logo. Create services.js and make sure to include it in the index.html header:
app.factory('Base64Icon', function() {
 return "/9j/4AAQSkZJRg…"
});

15.	 You cannot run this app in your browser. So the alternative is to deploy the app via
Xcode or TestFlight.

How it works...
The $cordovaEmailComposer factory only translates three functions from the plugin:

ff isAvailable

ff open

ff addAlias

Chapter 3

73

Keep in mind that although you can include HTML tags in the email body, it does not allow
any CSS. Here is the list of tags that you can use:

See also
ff You can read the code of this factory directly to understand it, at the following URL:

https://github.com/driftyco/ng-cordova/blob/master/src/plugins/
emailComposer.js

ff To see the latest update of $cordovaEmailComposer, you can visit the
documentation page:

http://ngcordova.com/docs/plugins/emailComposer/

ff There are many other topics that have not been discussed in this section, such as
specific problems per platform. The Email Composer's GitHub page is the best place
to get the details:

https://github.com/katzer/cordova-plugin-email-composer

Picking and adding a contact
Your app sometimes may need to access the device contact list for searching, picking, or
adding a contact. This ability can save users time instead of requesting them to enter the
information manually.

https://github.com/driftyco/ng-cordova/blob/master/src/plugins/emailComposer.js
https://github.com/driftyco/ng-cordova/blob/master/src/plugins/emailComposer.js
http://ngcordova.com/docs/plugins/emailComposer/
https://github.com/katzer/cordova-plugin-email-composer

Adding Device Features Support

74

In this section, you will learn how $cordovaContacts works. Also the app will demonstrate
the Ionic tabs feature by creating a navigation view container that has two tabs (a Find tab for
picking a contact and an Add tab for saving a contact). Then UI-Router will wire each tab to a
specific template. The following is the screenshot of the app:

How to do it...
Here are the steps to follow this recipe:

1.	 Create a blank Ionic app (for example, Contacts) and change the directory
to that folder:
$ ionic start Contacts blank

2.	 Install the Contacts plugin:
$ cordova plugin add org.apache.cordova.contacts

3.	 Install ngCordova:
$ bower install ngCordova

4.	 Open index.html and add ngCordova in the header:
<script src="lib/ngCordova/dist/ng-cordova.js"></script>

Chapter 3

75

5.	 You will need to add the ContactCtrl controller:
<body ng-app="starter" ng-controller="ContactCtrl">

6.	 Before writing the controller's code, you need to think how to structure the view.
This app will have two tabs. Each tab has its own title bar and content. So let's
create the outer frame using <ion-nav-bar> first:
<ion-nav-bar class="bar-positive">
</ion-nav-bar>

<ion-nav-view></ion-nav-view>

The <ion-nav-view> tag is just a blank container like ng-view. You will use
UI-Router to assign a template into this placeholder.

7.	 To use Ionic tabs, you need to put the structure in a separate template so that it
can be injected into <ion-nav-view> at runtime. You could have it in a separate
HTML file, but another option is to put the template inside the <script> tag:
<script id="templates/tabs.html" type="text/ng-template">
 <ion-tabs class="tabs-dark tabs-icon-top">
 <ion-tab title="Find" icon-on="ion-ios-search-strong"
 icon-off="ion-ios-search" ui-sref="tabs.find">
 <ion-nav-view name="find-tab"></ion-nav-view>
 </ion-tab>

 <ion-tab title="Add" icon-on="ion-ios-plus"
 icon-off="ion-ios-plus-outline" ui-sref="tabs.add">
 <ion-nav-view name="add-tab"></ion-nav-view>
 </ion-tab>
 </ion-tabs>
</script>

To create tabs, you need to start with the grouping <ion-tabs> and then the
individual tab item in <ion-tab>. The title attribute is for the label in each tab
icon. The ui-sref attribute is a part of UI-Router that assigns a state name to
that tab. This helps you avoid hardcoding the URL. You also need to give each child,
<ion-nav-view>, a name such as find-tab or add-tab. UI-Router will use these
names later in app.js to properly assign a template to each view.

8.	 Once you have the structure, let's work on the individual content of each tab:
<script id="templates/find.html" type="text/ng-template">
 <ion-view title="Find">
 <ion-content class="padding has-header">
 <div class="list card">

 <div class="item item-icon-left">

Adding Device Features Support

76

 <i class="icon ion-person"></i>
 {{ contactFind.name.givenName }} {{
 contactFind.name.familyName }}
 </div>

 <div class="item item-icon-left">
 <i class="icon ion-ios-telephone"></i>
 {{ contactFind.phoneNumbers[0].value }}
 </div>

 <div class="item item-icon-left">
 <i class="icon ion-at"></i>
 {{ (contactFind.emails[0].value) || "Not
 Available" }}
 </div>

 </div>
 <button class="button button-full button-positive"
 ng-click="pickContact()">Pick Contact</button>
 </ion-content>
 </ion-view>
</script>

The first tab will allow users to pick a contact and render the information such as
name and phone number. Each field can be displayed inside the Ionic's list card.
Below the card is just a button to trigger the pickContact() function, where the
Contacts app will appear for users to pick any contact.

You may notice that each tab's content starts with <ion-view> and then <ion-
content> as a child. The <ion-view> wrapper is necessary for Ionic to assign a
proper title text on the top bar. <ion-content> gives you flexibility to add padding
on the top and/or bottom so that there is no content hidden from the header bar.

9.	 The second tab content will trigger the addContact() function to add a contact
into the device's contact list.
<script id="templates/add.html" type="text/ng-template">
 <ion-view title="Add">
 <ion-content class="padding has-header">
 <div class="list card">

 <div class="item item-icon-left">
 <i class="icon ion-person"></i>
 {{ contactSave.name.givenName }} {{
 contactSave.name.familyName }}

Chapter 3

77

 </div>

 <div class="item item-icon-left">
 <i class="icon ion-ios-telephone"></i>
 {{ contactSave.phoneNumbers[0].value }}
 </div>

 <div class="item item-icon-left">
 <i class="icon ion-at"></i>
 {{ contactSave.emails[0].value }}
 </div>

 </div>
 <button class="button button-full button-positive"
 ng-click="addContact()">Add Contact</button>
 </ion-content>
 </ion-view>
</script>

10.	 Now you need to edit app.js to add the controller. Let's start with the app module:
var app = angular.module('starter', ['ionic',
'ngCordova']);

app.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to
 show the accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.
 hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 });
});

11.	 Then define the routing config:
app.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('tabs', {
 url: "/tab",

Adding Device Features Support

78

 abstract: true,
 templateUrl: "templates/tabs.html"
 })
 .state('tabs.find', {
 url: "/find",
 views: {
 'find-tab': {
 templateUrl: "templates/find.html"
 }
 }
 })
 .state('tabs.add', {
 url: "/add",
 views: {
 'add-tab': {
 templateUrl: "templates/add.html"
 }
 }
 });

 $urlRouterProvider.otherwise("/tab/find");
});

The state tabs is just a parent state to contain the tabs structure. Users cannot just
arrive at this state without going to the child state. That's why one of the parameters
has abstract: true value. Both tabs.find and tabs.add are children of tabs.

When you put a dot notation in the state name, UI-Router automatically interprets
it as a child. Note that find-tab and add-tab are the names you declared in the
tabs.html template earlier. The otherwise() function will tell the app to go to
the find tab by default:

$urlRouterProvider.otherwise("/tab/find");

12.	 Create the controller and include $cordovaContacts as a dependency:
app.controller('ContactCtrl', function($scope,
$cordovaContacts) {
});

13.	 Within the controller, let's initialize your contact objects:
$scope.contactFind = {
 "name": {
 "givenName": "Not",

Chapter 3

79

 "familyName": "Available"
 },
 "phoneNumbers": [
 {
 "value": "Not Available",
 "type": ""
 }
],
 "emails": [
 {
 "value": "Not Available"
 }
]
};

$scope.contactSave = {
 "name": {
 "givenName": "Student",
 "familyName": "Ionic"
 },
 "phoneNumbers": [
 {
 "value": "(408) 100-2000",
 "type": "mobile"
 }
],
 "emails": [
 {
 "value": "youremail@example.com"
 }
]
};

The contactFind object is used in the Find tab, whereas the contactSave object
is used in the Add tab. This is just a basic example to demonstrate the ability to get
and add a contact.

14.	 Write your pickContact() function:
$scope.pickContact = function() {
 $cordovaContacts.pickContact().then(function(result) {
 // Contact picked success
 console.log(result);

Adding Device Features Support

80

 $scope.contactFind = result;
 }, function(err) {
 // Contact picked error
 alert('There is an error picking contact.
 Please see console.log');
 console.log(err);
 });
};

This function simply triggers $cordovaContacts.pickContact() and assigns
the result back into your scope object $scope.contactFind.

15.	 To add a contact, call $cordovaContacts.save() and pass the contact object:
$scope.addContact = function() {
 $cordovaContacts.save($scope.contactSave).
 then(function(result) {
 // Contact saved success
 alert('The contact information has been saved');
 console.log(result);
 }, function(err) {
 // Contact saved error
 alert('There is an error saving contact.
 Please see console.log');
 console.log(err);
 });
};

This step requires the user to authorize the app's access to the device's contact list.
There is a possibility that the function may fail, so you need to catch that in an error
callback. If for some reason you cannot see the new contact Student Ionic being
added, it's probably because your device contact hides it. You just need to choose
to show all contacts from all groups within the device's contact list app.

16.	 You cannot run this app in the browser as there won't be a contact list available.
It's best if you load the app directly in the device or through TestFlight.

How it works...
There are many fields that can be returned from a contact object. However, they are not
supported consistently across all platforms. You may want to check the plugin developer page
on GitHub for details at https://github.com/apache/cordova-plugin-contacts/.

There is no way to query all contacts and return an array. This is due to
privacy. You can only ask the user to pick one contact at a time via the
pickContact() function.

https://github.com/apache/cordova-plugin-contacts/

Chapter 3

81

The user's mobile device may automatically convert a phone number string into a live
click-to-call link. If this happens, the browser actually modified the DOM and your Angular
binding won't work any more as it lost the reference to that new DOM. To prevent26 this
scenario from happening, make sure to add the following meta tag:

 <meta name="format-detection" content="telephone=no">

You could always manually add the link by using this syntax:

1-408-555-5555

It's better to control this process to avoid your DOM being modified by the device.

See also
To stay up to date with the current development of $cordovaContacts, you can visit this:

http://ngcordova.com/docs/plugins/contacts/

Adding Google Maps with geocoding support
Many mobile apps today utilize different mapping features such as showing the current
location, creating routes, and providing a suggestive business search. This recipe will show
you how to use the Cordova Google Maps plugin to provide mapping support. For more
information, visit https://github.com/wf9a5m75/phonegap-googlemaps-plugin.

You will create an app that can:

ff Display Google Maps in full screen with the ability to detect the current
device location

ff Perform geocoding to find the address of any coordinate

ff Add a marker with any text

ff Abstract all mapping functions into a new <ion-map> directive and
$ionicMap delegate

It is possible to use the HTML5 and JavaScript version of geolocation and maps, instead of
Cordova plugins. However, you will see a negative impact on performance. It's very obvious
that if you use the SDK, map rendering and optimization tends to be faster. In addition,
HTML5 geolocation sometimes has some strange bugs that require the user to accept
permission twice: once for the app and once for the inside browser object.

http://ngcordova.com/docs/plugins/contacts/
https://github.com/wf9a5m75/phonegap-googlemaps-plugin

Adding Device Features Support

82

Getting ready
The Google Maps plugin requires a Google Maps API key for your project. You need a Google
account and login credentials to get started.

1.	 Navigate to the Google APIs Console at https://code.google.com/apis/
console/.

2.	 Create a project if you don't have one yet. Just fill in the fields required:

3.	 You need to enable the Google Maps SDK for iOS or the Google Maps Android API, or
both. It depends on how many platforms you plan to support. Let's select the Google
Maps SDK for iOS for this example:

https://code.google.com/apis/console/
https://code.google.com/apis/console/

Chapter 3

83

4.	 Click on the Enable API button:

5.	 Go to Credentials to create your own key:

6.	 Click on the Create new Key button under the Public API Access section:

7.	 Click on the iOS key button:

Adding Device Features Support

84

8.	 Fill in your app's Bundle ID. You might not know exactly what it is yet because Ionic
will create a random ID. So just put in com.ionicframework.starter and
change that later.

9.	 Click on the Create button.

10.	 Now you should see the Key for iOS applications section like the following:

11.	 Copy that API key so you can use it to add the Cordova Google Maps plugin.

How to do it...
Let's start an Ionic project from scratch and add Google Maps features:

1.	 Create a blank Ionic project and go to that folder:
$ ionic start GoogleMaps blank

$ cd GoogleMaps

Chapter 3

85

2.	 Install the Google Maps plugin with your copied key replacing YOUR_IOS_API_KEY_
IS_HERE:
$ cordova plugin add plugin.google.maps --variable API_KEY_FOR_
IOS="YOUR_IOS_API_KEY_IS_HERE"`

If you do this for both iOS and Android, use the following command line:

$ cordova plugin add plugin.google.maps --variable API_KEY_FOR_
ANDROID="key" --variable API_KEY_FOR_IOS="key"

3.	 Since the Google Maps plugin is not part of the ngCordova support, there is no
need to install ngCordova in this project. Let's open index.html to start working
on the view.

4.	 The first thing you may want to do is to disable telephone number detection in iOS.
The reason is that some of the street address matches the phone number format
and it may interfere with your model binding. So add the following meta tag in your
index.html header:
<meta name="format-detection" content="telephone=no">

5.	 Your UI will consist of a top header bar with one button and the rest of the screen
will be Google Maps. You need to assign GoogleMapsCtrl first.
<body ng-app="starter" ng-controller="GoogleMapsCtrl">
 <ion-pane>
 <ion-header-bar align-title="left" class="bar-stable"
 ng-click="setCenterLocation()">
 <h1 class="title">{{ data.address }}</h1>
 <button class="button icon ion-location button-
 balanced" ng-click="gotoMyLocation()"></button>
 </ion-header-bar>
 <ion-content class="full-height">
 <ion-map width="100%" height="100%" map="map">
 </ion-map>
 </ion-content>
 </ion-pane>
</body>

If the user clicks on the header bar, it will get the middle coordinate of the
map and return the address at that location. You will write that functionality in
setCenterLocation() later. The gotoMyLocation() function basically gets the
current location of the device and shows a marker there with longitude and latitude.
The most important component here is <ion-map>, for which you will create a
directive called ionMap. The idea is to call the Google Maps plugin to render the
map inside this DOM object.

Adding Device Features Support

86

6.	 Ionic does not have full screen by default, so you need to customize the style sheet
by adding a new class. Let's open /www/css/style.css to add a class:
.full-height .scroll {
 height: 100%;
}

7.	 Now open app.js and start to create a controller, a directive, and a factory:
var app = angular.module('starter', ['ionic'])
app.controller('GoogleMapsCtrl', function($scope,
$ionicPlatform, $ionicMap) {
});
app.directive("ionMap", function ($ionicPlatform,
$ionicMap) {
});
app.factory('$ionicMap', function($ionicPlatform) {
});

The controller will only have two functions: gotoMyLocation() and
setCenterLocation(), so let's cover that one last. Most of the critical code
will be $ionicMap as that is your assigned delegate to provide many map services.

8.	 You need to make objects private to keep track of the map object and current center
location when the user moves the map around. Put these two lines right under the
$ionicMap factory:
var map = {}
 centerLoc = {};

9.	 This $ionicMap factory also returns a list of public functions. The skeleton
looks like this:
return {
 init: function(div) {
 },
 getMap: map,
 gotoMyLocation: function() {
 },
 setCenterLocation: function(callback) {
 }
}

You will start writing code for each of the functions.

Chapter 3

87

10.	 Let's start with the init() function, which is when the map is initialized from
the plugin.
init: function(div) {
 $ionicPlatform.ready(function() {
 // Initialize the map view
 map = plugin.google.maps.Map.getMap(div);

 // Wait until the map is ready status.
 map.addEventListener(plugin.google.maps.
 event.MAP_READY, function() {
 console.log('MAP_READY');
 });

 // When map is moved, get new center location
 map.on(plugin.google.maps.event.CAMERA_CHANGE,
 function(position) {
 centerLoc = position;
 });
 });
 return;
},

It's important to call plugin.google.maps.Map.getMap on some div element
because the plugin needs to know where it should render the map. You will call this
init() function from the directive later. There is even a camera change called
plugin.google.maps.event.CAMERA_CHANGE so that each time the user moves
the map around, you can get the center location and do this assignment: centerLoc
= position.

11.	 For the button to trigger the map to move to your location, you can use the map.
getMyLocation() function of the plugin.
gotoMyLocation: function() {

 // Get current coordinate where you are located
 map.getMyLocation(function(location) {
 var msg = ["Current your location:\n",
 "latitude:" + location.latLng.lat,
 "longitude:" + location.latLng.lng].join("\n");

 // Move the camera to your location

Adding Device Features Support

88

 map.moveCamera({
 'target': location.latLng,
 'zoom': 15
 });

 // Add a marker with position and title text
 map.addMarker({
 'position': location.latLng,
 'title': msg
 }, function(marker) {
 marker.showInfoWindow();
 });
 });
},

The location object returned will contain latitude (location.latLng.lat) and
longitude (location.latLng.lng). To move the camera to anywhere, just call
map.moveCamera by passing the location coordinate (location.latLng). To add
a marker, call map.addMarker with the position and title as HTML. That's it.

12.	 The setCenterLocation() function performs multiple functions at once. First, it
needs to use the centerLoc object to add a marker right in the middle of the map.
Second, from the coordinate data, Google geocoder will return the official address.
Here is the code:
setCenterLocation: function(callback) {
 if (centerLoc.hasOwnProperty('target')) {
 var msgCenter = [
 "latitude:" + centerLoc.target.lat,
 "longitude:" + centerLoc.target.lng].join("\n");

 map.addMarker({
 'position': centerLoc.target,
 'title': msgCenter
 }, function(marker) {
 marker.showInfoWindow();
 });

 var request = {
 'position': centerLoc.target
 };

 // Passing longitude and latitude and get back
 the address

Chapter 3

89

 plugin.google.maps.Geocoder.geocode(request,
 function(results) {
 if (results.length) {
 var result = results[0];
 var position = result.position;
 var address = [
 result.thoroughfare || "",
 result.locality || "",
 result.adminArea || "",
 result.postalCode || "",
 result.country || ""].join(", ");

 // Trigger callback function to provide the
 address string to the controller
 callback(address);
 } else {
 console.log("Not found");
 }
 });
 } else {
 console.log("No location defined");
 }
}

Note that for plugin.google.maps.Geocoder.geocode to work, you must pass
the request object with the position key. If you send centerLoc.target as the
parameter, it will not work. Once the address is returned, it will trigger the callback
parameter to pass the address string: callback(address).

13.	 Now that you have the $ionicMap delegate defined, this will be your <ion-map>
directive:
app.directive("ionMap", function ($ionicPlatform,
$ionicMap) {
 return {
 restrict: 'AEC',
 link: function(scope, element, attrs) {
 $ionicPlatform.ready(function() {

 // Create a div object
 var div = document.createElement('div');
 div.style.width = attrs.width;
 div.style.height = attrs.height;

 // Add this div to the DOM

Adding Device Features Support

90

 element.append(div);

 // Turn the div into Google Maps object
 $ionicMap.init(div);
 });

 }
 }
});

AngularJS automatically translates the directive naming of ionMap into the <ion-
map> tag in the HTML code. The attrs object will contain all the attributes in this
tag. So to reference an attribute, you can just call attrs.width or attrs.height.
The goal of this directive is to pass the width and height to this new div element and
append it in the DOM. Then it would call the $ionicMap delegate to initialize the map
right on this div element.

14.	 The last part is the easiest component to write. It will be your controller:
app.controller('GoogleMapsCtrl', function($scope,
$ionicPlatform, $ionicMap) {
 $scope.data = {
 address: "Tap for address"
 }

 $scope.gotoMyLocation = $ionicMap.gotoMyLocation;
 $scope.setCenterLocation = function() {
 $ionicMap.setCenterLocation(function(address) {
 $scope.data.address = address;

 // Call digest cycle to update $scope.data.address
 $scope.$digest();
 });
 }
});

Chapter 3

91

15.	 If you run the app in your mobile device (not in the browser as the plugin does not
work locally), you should be able to see something like the following screenshot:

Adding Device Features Support

92

16.	 Tap the green button for the current location. Tap the top header bar to identify the
current address in the middle of the map.

How it works...
The gotoMyLocation() function is a straight-up assignment. The setCenterLocation()
function will get the address within the callback of $ionicMap.setCenterLocation. It's
important that you trigger AngularJS' digest cycle in the callback because AngularJS will not
have knowledge of the variable change when it's outside the controller cycle.

This is to ensure the address change will be updated in the view as well. The
$scope.$digest() function is just a way to tell AngularJS to re-scan all variables for
change detection. If their current values are different from their previous values, then
update them in the $scope object. By default, Angular triggers the digest cycle in each
controller and directive. This cycle will do two main things:

ff Detect changes in scope variables

ff Update the changes in the UI or other bindings

Chapter 3

93

Although it might seem like there are a lot of moving parts, the basic flow is very simple:

1.	 Whenever Ionic and Cordova are ready, trigger a callback of $ionicPlatform.
ready to initialize the map.

2.	 Create a div element and append into the ion-map DOM object.

3.	 Call getMyLocation to get location data.

4.	 If the map is moved, trigger the event map.on(plugin.google.maps.event.
CAMERA_CHANGE,…) and update the middle coordinate.

5.	 Call plugin.google.maps.Geocoder.geocode to get the address string of
the coordinate.

It's important to know that plugin.google.maps.Map.getMap does take some time to
process, and it will trigger a ready event once it has successfully created the map. That's
why you need to add an event listener for plugin.google.maps.event.MAP_READY. This
example does not do anything right after the map is ready, but in the future you could add
more processing functions such as to jump to the current location automatically or add
more markers on the top of the map.

There's more...
The Cordova Google Maps plugin has many more features such as:

ff Show an InfoWindow
ff Add a marker with multiple lines
ff Modify an icon
ff Text styling
ff Base64 encoded icon
ff Click on a marker
ff Click on an InfoWindow
ff Create a draggable marker
ff Drag events
ff Create a flat marker

Since you cannot pop up a div element on top of the native Google Maps, the Marker
features are very handy. There are some additional scenarios:

ff Touch a marker and go to a page: you just need to listen to the plugin.google.
maps.event.MARKER_CLICK event and do whatever is needed in the
callback function.

ff Show an avatar / profile image as a marker: addMarker does take the base64
image string. So you can pass something like this in the argument title: canvas.
toDataURL().

Adding Device Features Support

94

Note that Google has a quota on free API usage. For example, you cannot exceed one request
per second per use, and you can only have a couple of thousand requests per day. This quota
changes all the time, but it's important to know about it. In any case, if you have problems
with your key, you have to go back to the Credentials page and regenerate the key. In order to
change the key manually in your app, you have to edit /plugins/ios.json. Look for
two places. The first one is this:

"*-Info.plist": {
 "parents": {
 "Google Maps API Key": [
 {
 "xml": "<string>YOUR_IOS_API_KEY_IS_HERE</string>",
 "count": 1
 }
]
 }
}

And this is the second one:

"plugin.google.maps": {
 "API_KEY_FOR_IOS": "YOUR_IOS_API_KEY_IS_HERE",
 "PACKAGE_NAME": "com.ionicframework.starter"
}

You just need to edit the YOUR_IOS_API_KEY_IS_HERE line and replace it with your
new key.

See also
There are lots of ways to work with Google Maps. You can visit the GitHub page of the
Google Maps plugin to learn more at https://github.com/wf9a5m75/phonegap-
googlemaps-plugin.

https://github.com/wf9a5m75/phonegap-googlemaps-plugin
https://github.com/wf9a5m75/phonegap-googlemaps-plugin

95

4
Offline Data Storage

In this chapter, we will cover the following tasks related to persistent data operations:

ff Creating a to-do app using ngStorage for Local Storage

ff Creating a social networking app using SQLite

Introduction
In this chapter, you will learn how to store and retrieve data from a local device when there
is no Internet access. This is important for some apps because of their specific use cases.
For example:

ff The data does not need to be stored in the server

ff It's faster to store data locally and sync it to the server using background processing

ff The app must work locally and send data to the server when it's online again

There are several methods for offline data persistence.

ff In the past, you probably leveraged cookies in some aspects to store session data
such as information regarding whether a user has visited a certain page. Cookies
are used for very basic use cases because of their size limitation (4,095 bytes).
Cookies are sent to a server on each HTTP request so that the server also has
access to this information. This may result in a waste of bandwidth.

ff Browsers today have Local Storage support, which is a better method. Local
Storage can store up to 5 MB of data and is available only to the client. There are
also various libraries supporting Local Storage in the open source community.

ff SQLite is also a great alternative for offline data access. However, SQLite is only
available as a device-specific feature and not as JavaScript-only. Therefore, in order
to use SQLite, you must install a Cordova plugin to support this feature.

Offline Data Storage

96

In general, you can use the following table to look at criteria, to determine the right technology
to use for your offline data storage:

Criteria Cookie Local Storage SQLite
Data available on the
server side

Yes No No

Data size <4 KB <5 MB This depends on the device
space (can be in terabytes)

JavaScript-only Yes Yes The Cordova plugin is required
Older device support Yes Yes You may see performance issues
Complex many-to-
many relationships

No You may see
performance issues

Yes

This chapter will go into detail regarding how to work with both Local Storage and SQLite.

Creating a to-do app using ngStorage for
Local Storage

There are many to-do apps out there, but it could get very complex when you just want to
explore one capability of the platform or framework. The example in this recipe will leverage
the idea of a to-do app to explain how Local Storage works. Most apps use Local Storage as
a method to ensure that the app data is persistent and available offline. You will learn some
basic knowledge about how to manipulate data by adding, editing, and deleting them. These
are some very common operations for any app.

Here is the high-level process:

ff Initialize a Local Storage object with some sample data

ff Render an array of objects in the frontend

ff Allow the user to delete an item in the array and then update Local Storage

ff Allow the user to edit an item in the array by using $ionicPopup

ff Allow the user to move the position of an item by manipulating the Local Storage
array

You will not access the localStorage object directly. Instead, you will use an existing
module called ngStorage. This module is compatible with AngularJS and works very
well in an Ionic app.

Chapter 4

97

The following is a screenshot of the to-do app that you are going to build:

Getting ready
You don't need to test Local Storage on a physical device, because it will work in a browser. If
you want to test the offline capability, you can even turn off the network connectivity and the
app should still be functional.

How to do it...
Follow these steps to create a to-do app:

1.	 Start a blank project (for example, LocalStorage) and go to that folder, as follows:
$ ionic start LocalStorage blank

$ cd LocalStorage

2.	 Install ngStorage:
$ bower install ngstorage

3.	 Add ngStorage in the header above app.js:
<script src="lib/ngstorage/ngStorage.js"></script>

Offline Data Storage

98

4.	 Add a controller in the <body> tag or a parent tag:
<body ng-app="starter" ng-controller="MainCtrl">

The body will consist of the header bar and content area. The header bar will show
the Delete and Reorder button. The content area will show your to-do list.

5.	 Create a header bar within the <body> tag:
<ion-header-bar class="bar-positive">
 <div class="buttons">
 <button class="button button-icon icon
 ion-ios-minus-outline"
 ng-click="data.showDelete = !data.showDelete;
 data.showReorder = false"></button>
 </div>
 <h1 class="title">Todo List</h1>
 <div class="buttons">
 <button class="button" ng-click="data.showDelete =
 false; data.showReorder = !data.showReorder">
 Reorder
 </button>
 </div>
</ion-header-bar>

This header bar is very simple. Both the Delete and Reorder buttons are wired
with some variables. Delete and reorder are two different modes that the user can
do only once at a time. The two Boolean variables, data.showDelete and data.
showReorder, will be passed on to the <ion-list> directive later as a toggle
for the action.

6.	 Now, let's add the <ion-content> tag to display the to-do list:
<ion-content>
 <ion-list show-delete="data.showDelete"
 show-reorder="data.showReorder">

 <ion-item ng-repeat="item in $storage.items"
 item="item" class="item-remove-animate">
 {{ item.label }}
 <ion-delete-button class="ion-minus-circled"
 ng-click="onItemDelete(item)">
 </ion-delete-button>
 <ion-option-button class="button-assertive"
 ng-click="edit($index)">
 Edit
 </ion-option-button>

Chapter 4

99

 <ion-reorder-button class="ion-navicon"
 on-reorder="moveItem(item, $fromIndex,
 $toIndex)"></ion-reorder-button>
 </ion-item>
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="Todo item"
 ng-model="data.item">
 </label>
 <button class="button button-small"
 ng-click="addItem()">
 Add
 </button>
 </div>

 </ion-list>
</ion-content>

The last row will allow the user to add a new to-do item. This is wrapped
within the <div class="item item-input-inset"> element.
Each <ion-item> element is just a div element with classes. In this
case, you shouldn't use the <ion-item> directive itself, because you
need to customize the internal components. This last item will contain
only an input box and a button.

7.	 The next step is to create a controller to handle all the events. Open app.js to
modify its content by first adding ngStorage as the dependency:
var app = angular.module('starter', ['ionic',
'ngStorage']);

8.	 The MainCtrl controller will need to have three dependencies: $ionicPopup to
handle the edit popup, $ionicListDelegate to let you trigger the close of the
Option button, and $localStorage from ngStorage:
app.controller('MainCtrl', function($scope, $ionicPopup,
$ionicListDelegate, $localStorage) {
});

9.	 First, you need to initialize this controller, as follows:
$scope.$storage = $localStorage.$default({
 items: [
 { label: 'First todo item' },
 { label: 'Second todo item' },
 { label: 'Third todo item' },

Offline Data Storage

100

 { label: 'Fourth todo item' },
 { label: 'Fifth todo item' }
]
});

There is no need to initialize showDelete or showReorder
because by default, we want them to be false anyway. In
JavaScript, an undefined variable is false.

To use Local Storage, you just need to assign a scope variable to $localStorage.
ngStorage will take care of the binding and updating of the $scope object. There
is no need to call getter() or setter() as you may have seen in some other
solutions. To assign a default value, you just need to call $default(). You can
treat Local Storage like a NoSQL solution, as you can just store any object with
any structure.

10.	 To edit an item, the controller will call $ionicPopup to show a popup with one
field to edit:
$scope.edit = function(index) {
 $scope.editItem = {label:
 $scope.$storage.items[index].label};
 var itemPopup = $ionicPopup.show({
 template: '<input type="text"
 ng-model="editItem.label">',
 title: 'Edit Todo',
 scope: $scope,
 buttons: [
 { text: 'Cancel' },
 {
 text: 'Save',
 type: 'button-positive',
 onTap: function(e) {
 if (!$scope.editItem.label) {
 e.preventDefault();
 } else {
 $scope.$storage.items[index].label =
 $scope.editItem.label;

Chapter 4

101

 return $scope.editItem;
 }
 }
 }
]
 });
 itemPopup.then(function(res) {
 $ionicListDelegate.closeOptionButtons();
 });
};

In the view, when the Edit button is clicked, you also pass the index of the current
item in the ng-click="edit($index)" array. By doing so, you can access the
label of that object by calling $scope.$storage.items[index].label. That
way, when the popup appears, it will show the value of the current item, which will
allow the user to edit the item.

11.	 To move or reorder an item, the moveItem() function will manipulate the array:
$scope.moveItem = function(item, fromIndex, toIndex) {
 $scope.$storage.items.splice(fromIndex, 1);
 $scope.$storage.items.splice(toIndex, 0, item);
};

The reordering action is done by using an array's splice() function, which is
basically a simple trick that can be used to delete an array item and insert it back
in a different index.

12.	 Next, to delete an item, the onItemDelete() function will handle splice() of
the exact item index:
$scope.onItemDelete = function(item) {
 $scope.$storage.items.splice($scope.$storage.
 items.indexOf(item), 1);
};

13.	 Finally, to add an item, you can just push the object into the $storage.items array:
$scope.addItem = function() {
 $scope.$storage.items.push({label: $scope.data.item});
 $scope.data.item = '';
}

After it's pushed, just reset $scope.data.item to an empty string again.

Offline Data Storage

102

14.	 That's it. If you test the app in the browser via ionic serve, you should be able to
see the Local Storage object being stored. Navigate to the Resources tab, expand
Local Storage, and click on http://localhost:8100/, as follows:

How it works...
This recipe introduced the usage of <ion-list>. This directive has two attributes:
show-delete and show-reorder in the view. If the value is true, it will enable
that feature. If you pass a variable to these attributes, they can be turned on and off
programmatically. Under <ion-list>, there are two components: a list of the existing
to-do items from Local Storage and an input box that can be used to add a new to-do item.

You can loop through a Local Storage object ($storage.items) just like any $scope
object. The $storage object defined in the controller is basically a Local Storage object created
by ngStorage, which makes it a lot easier to manipulate variables in an AngularJS way. To ensure
that there are some elements that can be used to handle delete and reorder, you need to put
the <ion-delete-button> and <ion-reorder-button> directives within <ion-item>.
This includes an individual button for each item. Besides these special function buttons, you
can add custom buttons using <ion-option-button>. All of these buttons must of course
be assigned with ng-click to process the event.

In this recipe, $ionicPopup was also introduced. This is an out-of-the-box Ionic delegate,
where you can control a custom pop-up dialog. When you click on the popup's button, onTap
will be triggered. You don't want the user to close and save the to-do item as an empty
string. That's why you need to call e.preventDefault() in order to ignore the tap event.
Otherwise, you need to reassign the new label to $scope.$storage.items[index].
label. In addition to this, the reason behind why you need to call itemPopup.then()
is that when you click on the option of the <ion-item>, it doesn't close automatically.
Therefore, you need to close this button once the user returns from the popup.

Chapter 4

103

Looking under the hood, ngStorage just leverages the native window.localStorage
object. There is no cookie failover, because most browsers already have support for the
Local Storage technology. ngStorage abstracts all the steps to convert JSON to a string and
vice versa. It also sets up $watch for the $scope object to detect changes in the Local
Storage objects. That's why you can use $scope.$storage in the same way as the
normal AngularJS $scope variables.

There's more...
For iOS devices, the data in Local Storage will be backed up to iCloud automatically by default.
This means that the app data will be persistent even if the user updates the app or restores
the entire iPhone. To disable automatic backup, you need to modify the config.xml of your
Ionic project, as follows:

<preference name="BackupWebStorage" value="none" />

If you want to completely erase all the Local Storage data of your app, use the $reset()
function, as follows:

$localStorage.$reset();

See also
For more information about ngStorage, you can access their GitHub project at
https://github.com/gsklee/ngStorage.

Creating a social networking app using
SQLite

This recipe will discuss how you can build a complex relational database app using SQLite.
In a real-world scenario, the database usually stays in the backend, where it's more feasible
to process a large amount of data for multiple users.

However, there are some cases where the app just needs to work on a limited set of data in
the local client device. While it's possible to leverage Local Storage, you will run into the 5 MB
limitation of Local Storage very quickly. In addition, you can take advantage of the relational
database features, such as table joins, because such a query can have a very
poor performance using Local Storage.

https://github.com/gsklee/ngStorage

Offline Data Storage

104

It's easy to get started by using a very common example in most social networking apps, where
there are definitions of users and memberships. You will go through a process in this recipe for
the creation of an app to allow users to subscribe to various groups. This is very similar to how
Facebook or Twitter may work. Here is a screenshot of the app that you will create:

You will learn how to:

ff Create a navigation menu and routes

ff Add an item and save it in the SQLite database

ff Update an item

ff Query an item by joining multiple tables (that is, users and groups)

Getting ready
Since SQLite does not work in the browser, you have to test the app using a real mobile
device or simulator.

Chapter 4

105

How to do it...
Here are the instructions to create a social networking app using SQLite:

1.	 Start a blank project (for example, SQLite) and go to that folder:
$ ionic start SQLite blank

$ cd SQLite

2.	 Install ngCordova, as follows:
$ bower install ngCordova

3.	 Open index.html and add ngCordova in the header above cordova.js:
<script src="lib/ngCordova/dist/ng-cordova.js"></script>

4.	 Install the Cordova SQLite plugin:
$ cordova plugin add https://github.com/litehelpers/Cordova-
sqlite-storage.git

5.	 Change the body tag of index.html to the following:
 <body ng-app="starter">
 <ion-nav-view></ion-nav-view>
 </body>

This app will leverage the sidemenu layout. That's why you just need to start
with <ion-nav-view>, as the rest will be injected into that directive.

6.	 Create a layout.html file and save it in the templates folder under www:
<ion-side-menus enable-menu-with-back-views="true">
 <ion-side-menu-content>
 <ion-nav-bar class="bar bar-dark">
 <ion-nav-buttons side="left">
 <button class="button button-icon icon ion-navicon"
 menu-toggle="left"></button>
 </ion-nav-buttons>
 </ion-nav-bar>

 <ion-nav-view name="main" animation="slide-left-
 right"></ion-nav-view>
 </ion-side-menu-content>

 <ion-side-menu side="left" width="150">

Offline Data Storage

106

 <ion-content>
 <ion-list>
 <ion-item class="item" ui-sref="app.users"
 menu-close>
 Users
 </ion-item>
 <ion-item class="item" ui-sref="app.groups"
 menu-close>
 Groups
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-side-menu>

</ion-side-menus>

This layout will give you <ion-nav-view> as the content area. The menu will be
on the left, with Users and Groups as two menu items.

7.	 The Users menu will let you view a list of users. If you click on a user, the app will
show a modal with the groups that the user belongs to. You can save the changes
in this modal and review them in the Groups menu. This Groups page is just a
view-only page that provides a summary of the mapping relationship between
the users and groups. So first, let's create a users.html template:
<ion-view view-title="Users">
 <ion-content>
 <ion-list>
 <ion-item class="item" ng-repeat="user in users"
 ng-click="openUserModal(user)">
 {{ user.name }}
 </ion-item>
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="New user"
 ng-model="newUser.name">
 </label>
 <button class="button button-small"
 ng-click="addUser()">
 Add
 </button>
 </div>
 </ion-list>
 </ion-content>
</ion-view>

Chapter 4

107

Note that the last line item is used to add a new user. This function is called
adduser(). You will write a controller for this later. Also, another function that
you should take note of is openUserModal(user), which will list all the groups
the user belongs to.

8.	 For the user modal that shows the group list, you have to create a separate file
called userModal.html:
<ion-modal-view>
 <ion-header-bar class="bar bar-dark">
 <button class="button button-clear"
 ng-click="cancel()">Cancel</button>
 <h1 class="title">User Detail</h1>
 <button class="button button-clear"
 ng-click="save(user, usergroup)">Save</button>
 </ion-header-bar>
 <ion-content>
 <div class="list">
 <label class="item item-checkbox" ng-repeat="group
 in groups">
 <label class="checkbox">
 <input type="checkbox"
 ng-model="usergroup[$index]">
 </label>
 {{ group.name }}
 </label>
 </div>
 </ion-content>
</ion-modal-view>

This modal just has the Cancel and Save buttons. The group list is just shown as
checkboxes in ng-repeat of the $scope.groups model. You will also write the
controller function to handle this later.

9.	 The final template is used to display the content in the Groups menu. Let's call
this the groups.html file:
<ion-view view-title="Groups">
 <ion-nav-buttons side="right">
 <button class="button button-icon button-clear
 ion-plus" ng-click="openGroupModal()"></button>
 </ion-nav-buttons>
 <ion-content>
 <div class="list">
 <div ng-repeat="group in groups">
 <label class="item item-divider">

Offline Data Storage

108

 {{ group.name }}
 </label>
 <label class="item" ng-repeat="user in
 group.users">
 {{ user.name }}
 </label>
 </div>
 </div>
 </ion-content>
</ion-view>

Like the group list modal, this one also lists all the groups, including the users in
each group. You can get an overall view of the relationship of the group and its
members. This is a view-only template, as there won't be any function to handle
change or save. The purpose is to show how the SQLite query join works.

10.	 Now, let's move to app.js, where you will write the controller and services to
handle all the data operations. First, you need to create the routes, as follows:
var app = angular.module('starter', ['ionic',
'ngCordova']);

app.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('app', {
 url: "/app",
 abstract: true,
 templateUrl: "templates/layout.html",
 controller: 'MainCtrl'
 })
 .state('app.users', {
 url: "/users",
 views: {
 'main': {
 templateUrl: "templates/users.html",
 controller: "UsersCtrl"
 }
 }
 })
 .state('app.groups', {
 url: "/groups",
 views: {
 'main': {
 templateUrl: "templates/groups.html"

Chapter 4

109

 }
 }
 });

 $urlRouterProvider.otherwise('/app/users');
});

The routing is straightforward, as it will start with layout.html and replace
the <ion-nav-view name="main"> node with either users.html or groups.
html, depending on the URL. Note that you need to declare ngCordova as a
dependency for the app.

11.	 In order to handle the database, you need to create a factory to open the database,
populate it with initial data, and perform data operations specifically for this app.
Let's add the following to app.js:
app.factory('MyData', function($ionicPlatform,
$cordovaSQLite, $q) {
 var db = {},
 users = [],
 groups = [],
 usergroup = [];

 var initdb = {
 users: ["User A", "User B", "User C", "User D",
 "User E"],
 groups: ["Group 1", "Group 2", "Group 3"]
 };
});

You will use the db object to store the database object itself, which is basically a
local file in the device filesystem. The users and groups will keep track of the existing
data in the memory for Users and Groups. In order to map the relationship between
them, you will use the usergroup array. You can change the values in initdb, as
it's used to initialize the database with some sample datasets.

12.	 When the app is started, you need to create the tables (this example actually drops
the previous tables to start afresh) and populate them with initdb:
var createUsers = function() {
 $cordovaSQLite.nestedExecute(db,
 'CREATE TABLE IF NOT EXISTS users (id integer primary
 key, name text)',
 'INSERT INTO users (name) VALUES (?),(?),(?),(?),(?)',
 [],
 initdb.users

Offline Data Storage

110

).then(function(res) {

 $cordovaSQLite.execute(db, 'SELECT * FROM
 users').then(function(res) {

 for (var i=0; i<res.rows.length; i++) {
 users.push(res.rows.item(i));
 }

 }, function (err) {
 console.error(err);
 });

 }, function (err) {
 console.error(err);
 });
};

var createGroups = function() {
 $cordovaSQLite.nestedExecute(db,
 'CREATE TABLE IF NOT EXISTS groups (id integer primary
 key, name text)',
 'INSERT INTO groups (name) VALUES (?),(?),(?)',
 [],
 initdb.groups
).then(function(res) {

 $cordovaSQLite.execute(db, 'SELECT * FROM
 groups').then(function(res) {

 for (var i=0; i<res.rows.length; i++) {
 groups.push(res.rows.item(i));
 }

 }, function (err) {
 console.error(err);
 });

 }, function (err) {
 console.error(err);
 });
}

$ionicPlatform.ready(function() {

Chapter 4

111

 db = $cordovaSQLite.openDB("my.db", 1);

 $cordovaSQLite.execute(db, 'DROP TABLE IF EXISTS
 users').then(function(res) {
 createUsers();
 }, function (err) {
 console.error(err);
 });

 $cordovaSQLite.execute(db, 'DROP TABLE IF EXISTS
 groups').then(function(res) {
 createGroups();
 }, function (err) {
 console.error(err);
 });

 $cordovaSQLite.execute(db, 'DROP TABLE IF EXISTS
 usergroup').then(function(res) {
 $cordovaSQLite.execute(db, 'CREATE TABLE IF NOT EXISTS
 usergroup (id integer primary key, userId integer,
 groupId integer)').then(function(res) {
 }, function (err) {
 console.error(err);
 });

 }, function (err) {
 console.error(err);
 });

});

This initialization code must be inside the factory and not in the return object
because we want it to be executed once the factory name is declared in the
controller. This app will start afresh with no mapping relationship between any
user and group. So, your usergroup table will be empty at the beginning.

13.	 You can continue to write the rest of the functions that handle data in the return
{} function of the MyData factory, as follows:
return {
 users: users,
 groups: groups,
 getGroupsByUserId: function(userId) {
 var q = $q.defer();
 var query = "SELECT groupId FROM usergroup WHERE
 userId = (?)";

Offline Data Storage

112

 $cordovaSQLite.execute(db, query,
 [userId]).then(function(res) {
 q.resolve(res);
 }, function (err) {
 console.error(err);
 q.reject(err);
 });

 return q.promise;
 },
 getGroupsAll: function() {
 var q = $q.defer();
 var query = "SELECT groups.id, groups.name,
 GROUP_CONCAT(usergroup.userId) AS userIds FROM groups
 LEFT OUTER JOIN usergroup ON groups.id =
 usergroup.groupId GROUP BY usergroup.groupId";
 $cordovaSQLite.execute(db, query).then(function(res) {
 q.resolve(res);
 }, function (err) {
 q.reject(err);
 });

 return q.promise;
 },
 addUser: function(params) {
 var q = $q.defer();
 var query = "INSERT INTO users (name) VALUES (?)";
 $cordovaSQLite.execute(db, query,
 [params.name]).then(function(res) {
 q.resolve(res);
 }, function (err) {
 console.error(err);
 q.reject(err);
 });

 return q.promise;
 },
updateGroupByUserId: function(userId, usergroups) {
 var q = $q.defer();
 var query = "DELETE FROM usergroup WHERE userId = (?)";
 $cordovaSQLite.execute(db, query,
 [userId]).then(function(res) {

Chapter 4

113

 var query = "INSERT INTO usergroup (userId, groupId)
 VALUES (?,?)";
 $cordovaSQLite.insertCollection(db, query,
 usergroups).then(function(res) {
 q.resolve(res);
 }, function (err) {
 console.error(err);
 q.reject(err);
 });

 }, function (err) {
 console.error(err);
 q.reject(err);
 });

 return q.promise;
 }
}

14.	 The next step is to create the UsersCtrl controller:
app.controller('UsersCtrl', function($scope, $timeout,
$ionicModal, $cordovaSQLite, MyData) {
 $scope.newUser = {};

 $ionicModal.fromTemplateUrl('templates/userModal.html', {
 scope: $scope,
 animation: 'fade-in'
 }).then(function(modal) {
 $scope.userModal = modal;
 });

 $scope.openUserModal = function(user) {
 $scope.user = user || {};
 $scope.usergroup = [];
 if ((user) && (angular.isObject(user)) &&
 (user.hasOwnProperty('id'))) {
 $scope.user.groups = [];
 MyData.getGroupsByUserId(user.id).then(function(res)
 {
 for (var i=0; i<res.rows.length; i++) {
 $scope.user.groups.push(
 res.rows.item(i).groupId);
 }

Offline Data Storage

114

 for (var i=0; i<$scope.groups.length; i++) {
 $scope.usergroup.push(
 $scope.user.groups.indexOf(
 $scope.groups[i].id) >= 0);
 }
 });
 }

 $scope.userModal.show();
 };

 $scope.addUser = function() {
 MyData.addUser($scope.newUser.name).then(function(res) {
 $scope.users.push({
 id: res.insertId,
 name: $scope.newUser.name
 });
 $scope.newUser.name = '';
 });
 }

 $scope.save = function(user, usergroup) {
 var usergroups = [];
 for (var i=0; i<$scope.groups.length; i++) {
 if (usergroup[i]) {
 usergroups.push([user.id, $scope.groups[i].id]);
 }
 }

 MyData.updateGroupByUserId(user.id,
 usergroups).then(function(res) {
 });

 $scope.userModal.hide();
 };

 $scope.cancel = function() {
 $scope.userModal.hide();
 };

});

Chapter 4

115

15.	 The following is the code that is used to handle MainCtrl, which tights to the
app state. If you assign a controller to a higher-level state, it will automatically
become the parent controller of its children states' controllers:
app.controller('MainCtrl', function($scope, $rootScope,
MyData) {
 $scope.users = MyData.users;
 $scope.groups = MyData.groups;

 $rootScope.$on('$stateChangeStart', function(event,
 toState, toParams, fromState, fromParams) {
 if (toState.name == 'app.groups') {
 getGroups();
 }
 });

 function getGroups() {
 MyData.getGroupsAll().then(function(res) {
 var newGroups = [];
 for (var i=0; i<res.rows.length; i++) {
 newGroups[i] = {
 id: res.rows.item(i).id,
 name: res.rows.item(i).name,
 users: []
 };
 var userIds = res.rows.item(i).userIds ?
 res.rows.item(i).userIds.split(',') : [];
 for (var j=0; j<userIds.length; j++) {
 var name = '';
 for (var t=0; t<$scope.users.length; t++) {
 if ($scope.users[t].id == userIds[j])
 name = $scope.users[t].name
 }
 newGroups[i].users.push({
 id: userIds[j],
 name: name
 });
 }
 }

 if (newGroups.length < $scope.groups.length) {
 for (var o=0; o<$scope.groups.length; o++) {
 var doesExist = false;

Offline Data Storage

116

 for (var n=0; n<newGroups.length; n++) {
 doesExist = doesExist || (newGroups[n].id ==
 $scope.groups[o].id);
 }
 if (!doesExist) {
 newGroups.push({
 id: $scope.groups[o].id,
 name: $scope.groups[o].name,
 users: []
 });
 }
 }
 }
 angular.copy(newGroups, $scope.groups);
 });
 }
});

The following two lines basically assign the reference pointing to the users
and groups object from the MyData factory:
 $scope.users = MyData.users;
 $scope.groups = MyData.groups;

This means that if you update the data, you will always have the same data in
the controller. There is no need to keep using get().

16.	 To test the app, you must run it within a simulator or physical device.

How it works...
For SQLite to initialize properly, the initialization code must start first by checking for the
$ionicPlatform.ready event before opening the database. This is done to avoid calling
the SQLite functions when the device is still loading. If you don't want the app to start afresh
with new tables each time the app runs, you can remove all the DROP TABLE queries.

To open the database for operations, you can use the following simple openDB() function:

db = $cordovaSQLite.openDB("my.db", 1);

This example leverages the nestedExecute() function to run one query after another.
The $cordovaSQLite only gives you the ability to nest one level. For additional nesting,
you have to call $cordovaSQLite.execute() again from within the promise.
Unfortunately, SQLite does not give you the inserted data. So, you have to run the
SELECT query after successful inserts in order to retrieve all the IDs for each row.

Chapter 4

117

The MyData factory has several key functions to work with SQLite:

ff addUser(): This is used to add a user. The addUser() function will handle
data insertions.

ff getGroupsByUserId(): When you click on a specific user, it will pop up the
modal and call the getGroupsByUserId() function to get a list of all the
groups that the user is a member of.

ff updateGroupByUserId(): When you change the mapping relationship in the
modal, updateGroupByUserId() will save all the changes. This update function
actually deletes all the existing relationships and inserts new relationships back in
the usergroup table. In a real-world scenario, you can optimize this process to
just REPLACE, INSERT, or DELETE, based on the new data.

ff getGroupsAll(): Under the Groups menu, you need to call getGroupsAll() in
order to get all the groups and the members in each group. This getGroupsAll()
is probably the most complex query in this example, because it performs a JOIN
operation between the groups and the usergroup table. This is required, since you
want to get the IDs as well as the names for all the groups. Also, all the user IDs will
be aggregated into a string with a comma delimited using GROUP_CONCAT. In your
controller, you can separate the user IDs again by using the array split() function.

The complexity within MyData.getGroupsAll() is due to the fact that you need to
translate data from the query into objects. That's why you need to loop through all the rows
to get the group information. Then, within each group, you get the list of userIds and names.
Finally, if the group has no user, you need to also show it by adding back into the array.

The UsersCtrl controller is where you tie everything together. If you remember the
input box at the end of the list, it is supposed to call $scope.addUser(), which will
pass the name string to MyData.addUser(). When you click on a user, it will open
a modal with $scope.openUserModal() and then get the group membership from
MyData.getGroupsByUserId(user.id). The saving action is done via MyData.
updateGroupByUserId():

Offline Data Storage

118

This controller assumes that the user list ($scope.users) and the group list ($scope.
groups) objects are already available. Actually, these two variables are inherited from the
parent MainCtrl controller.

Looking under the hood, the SQLite database is just a local file in the device. This means
that you may need to think ahead as regards whether it should be backed up or the user
is allowed to download. You need to change the second parameter, which is the location
option in the following line:

db = $cordovaSQLite.openDB("my.db", 1);

However, the location option is only applicable for iOS. The following is the description for
each option:

Value Description
0 (default) Documents that are visible to iTunes and backed up by iCloud
1 The library that is backed up by iCloud and is not visible to iTunes
2 Library/Local Database that is not visible to iTunes and not backed up by iCloud

There's more...
Other than this, SQLite behaves in a way that is very similar to that of standard SQL. The
trade-off for long-term performance and storage capacity is the embedded complexity of
working with the SQL queries. In addition to this, the design of SQL intends to eliminate the
loss of data that may be caused due to an app crash or a power failure of the device. If you
want to completely erase all the SQLite data of your app, use the deleteDB() function,
as follows:

$cordovaSQLite.deleteDB("my.db");

See also
ff You can find out more information about SQLite at https://www.sqlite.org/.

ff Currently, the SQLite plugin does not work well with the Windows Phone. You can
check out the notes in their documentation by simply navigating to https://
github.com/litehelpers/Cordova-sqlite-storage.

https://www.sqlite.org/
https://github.com/litehelpers/Cordova-sqlite-storage
https://github.com/litehelpers/Cordova-sqlite-storage

119

5
Handling Gestures

and Events

In this chapter, we will cover the following tasks related to handling gestures and events:

ff Detecting drag events with a gesture coordinate

ff Communication between a view, controller, and directive using events

Introduction
It's possible to write a simple app with a handful of pages. However, when the app grows,
managing different views and their custom data at a specific time or a triggered event can be
very complex. Ionic comes with UI-Router by default. So, you should leverage this advanced
routing management mechanism. In general, the following holds true:

ff A view should have its own state, which is basically a JSON object

ff A route (URL) will point to a view and its assigned controller

ff State and view should allow nested views so that you can manage the hierarchy

Since Ionic introduces many new components, you have to understand how those
components impact your app's state hierarchy when each state is triggered.

Handling Gestures and Events

120

Detecting drag events with a gesture
coordinate

Most mobile UI components leverage dragging to create a better touch-and-feel experience.
One common component that you will see everywhere is the scroll list. Another example is the
left or right menu. That's why it's important to understand the basic mechanism of a gesture
for drag events. It's even possible for you to create custom mobile components using gesture
events and pure HTML/CSS/JavaScript.

In this recipe, you will build an app example to understand how to use the data from gesture
events. The app will capture drag start, duration, and end events using $ionicGesture to
give you granular coordinate data for real-time processing. In terms of the UI, you will create
a div box to allow the dragging and showing of a coordinate.

Getting ready
Gestures can work on both web and physical devices. However, it's highly recommended to
test gestures on a physical device in order to experiment with the screen size and potential
performance impacts.

How to do it...
Here are the instructions to detect drag events with a gesture coordinate:

1.	 Create a new app using the blank template and go into the folder:
$ ionic start Gesture blank

$ cd Gesture

2.	 You need to set up the Sass dependencies to style the box, as follows:
$ ionic setup sass

3.	 Open the index.html file and replace the <body> tag with the following code:
<body ng-app="starter" ng-controller="MainCtrl">
 <div class="draggable" draggable="pos">
 <p>{{ pos.x }}, {{ pos.y }}<p>
 </div>
</body>

Chapter 5

121

You will write more code for MainCtrl later in app.js. The main focus here is
actually the draggable attribute of the div element. This will basically allow
you to bind the drag events.

4.	 Open app.js to edit it with the following code:
var app = angular.module('starter', ['ionic'])

app.controller('MainCtrl', function($scope) {
 $scope.pos = {
 x: 0,
 y: 0
 }
});

This code is used to simply initialize the pos object so that you can track the
x and y coordinates later.

5.	 Now create the draggable directive, as follows:
app.directive('draggable', function($ionicGesture) {
 return {
 link: function (scope, element, attrs) {
 var elementSize = 100;

 var x = Math.round((window.screen.width -
 elementSize) / 2, 0),
 y = Math.round((window.screen.height -
 elementSize) / 2, 0);

 scope.pos.x = x;
 scope.pos.y = y;

 element[0].style[ionic.CSS.TRANSFORM] =
 'translate3d(' + x + 'px, ' + y + 'px, 0)';

 $ionicGesture.on('dragstart', function(ev) {
 console.log('dragstart: ');
 console.log(ev);
 }, element);

 $ionicGesture.on('dragend', function(ev) {
 console.log('dragend: ');
 console.log(ev);

Handling Gestures and Events

122

 x += ev.gesture.deltaX;
 y += ev.gesture.deltaY;
 }, element);

 $ionicGesture.on('drag transform', function(ev) {
 console.log('drag transform: ');
 console.log(ev);

 scope.pos.x = Math.round(x + ev.gesture.deltaX, 0);
 scope.pos.y = Math.round(y + ev.gesture.deltaY, 0);
 scope.$digest();

 element[0].style[ionic.CSS.TRANSFORM] =
 'translate3d(' + (x + ev.gesture.deltaX)+ 'px, ' +
 (y + ev.gesture.deltaY) + 'px, 0)';
 }, element);

 }
 }
});

This directive will effectively apply to only the div element where it was assigned.
The purpose is to detect the drag events and appropriately process the user's touch
coordinate in order to move the box.

6.	 To style your app, add the draggable class in /scss/ionic.app.scss so that
it looks like a red box with some coordinate text at the center, as follows:
.draggable {
 background-color: $assertive;
 color: white;
 position: absolute;
 width: 100px;
 height: 100px;
 line-height: 100px;
 vertical-align: middle;
 text-align: center;
 z-index: 20;
}

Chapter 5

123

7.	 Test the app in the browser or a physical device. This is the screenshot of the app:

How it works...
The view and stylesheet for this app is very simple, as this is not the focus in this recipe. Let's
take a look at the draggable directive in detail. The assumption is that this square box has a
size of 100 px:

var elementSize = 100;

This must also match the draggable class in the scss file.

The core enabler that is used to detect the drag events is the $ionicGesture.on()
function. There are three events to watch:

ff dragstart: When the drag begins

ff drag: During the dragging process

ff dragend: When the drag ends

Handling Gestures and Events

124

If you run this app in the browser, you can monitor the console for the outputs of these events:

The dragstart and dragend events are only triggered once, while the drag event is
continuous. It's very granular. Hence, it gives you a very smooth movement. If you expand
the gesture object, which is returned from the drag event, you can see the detailed data:

Chapter 5

125

There are many types of data available for you to use such as target element, angle, timestamp,
direction, and so on. However, your main interest here is to use the deltaX and deltaY to
detect the new position of the touch pointer. The delta values are a measure of how far it is
from the original position when the dragging started.

To use the delta values, you just need to change the pos.x and pos.y values of the scope
by adding the delta value for the x and y coordinate, as follows:

scope.pos.x = Math.round(x + ev.gesture.deltaX, 0);
scope.pos.y = Math.round(y + ev.gesture.deltaY, 0);
scope.$digest();

Keep in mind that you must call the $digest() function for the AngularJS digest cycle to
kick in. The reason behind this is that $ionicGesture.on() will not do this for us, as it's
outside the default AngularJS controller, directive, or service.

The final part is to apply the new coordinate to the box by changing its transform value,
as follows:

element[0].style[ionic.CSS.TRANSFORM] = 'translate3d(' + (x +
ev.gesture.deltaX)+ 'px, ' + (y + ev.gesture.deltaY) + 'px, 0)';

There obviously are many ways to execute the actual animation. However, using a CSS
Transform always gives a better performance and frame rate. Again, element[0] is the
div object that you applied this directive on.

When the drag is performed, you just need to save the new position, as follows:

x += ev.gesture.deltaX;
y += ev.gesture.deltaY;

See also
It's possible to implement velocity with the help of velocityX and velocityY when
the drag event ends. This will allow your object to continue the motion after the touch
has completed.

ff Ionic has some default directives to handle gestures such as on-drag-left,
on-drag-right, and so on, which can be found at http://ionicframework.com/
docs/api/directive/onHold/.

ff However, you may not get the flexibility and rich set of data from $ionicGesture:
http://ionicframework.com/docs/api/service/$ionicGesture/.
This is because the default directives hid away the granularity of
$ionicGesture. For example, you cannot access coordinate data.

http://ionicframework.com/docs/api/directive/onHold/
http://ionicframework.com/docs/api/directive/onHold/
http://ionicframework.com/docs/api/service/$ionicGesture/

Handling Gestures and Events

126

Communication between a view, controller,
and directive using events

One of the most confusing aspects of using Ionic is when and how to leverage eventing for
communication between various components. Let's take a look at the various scenarios
and different ways to handle the data flow:

ff State to view and/or controller: This is handled by UI-Router. There are several
options. You can use the resolve object declared at the route level and pass it
to the controller just as a factory. Another option is to pass data as a parameter
in $stateParams so that the controller for that specific state can receive data.

ff View to view: To share data in different views, store them in a parent scope,
$stateParams, or factory. If it's just a simple piece of data, mainly for display
purposes, it's OK to use the parent scope method. However, if the data is specific
to state, it should be a part of the state parameters. Factory is always a good
practice to keep the shared data between state, view, and controller. You just
have to write the getter and setter methods for the factory.

ff View to controller: Communication is done via the two-way binding of the
$scope variables.

ff Controller to controller: The data can be passed from the parent to child $scope,
sent via some type of $broadcast event or detected from model change using
$watch. The example in this section will go over these mechanisms.

ff Controller to directive: There are two options here. You can watch the model
change from within the directive. This gives you the ability to get an old and a new
value. Alternatively, you can pass the model directly to the directive without creating
an isolated scope. This directive will use this model with the same reference to the
scope model.

ff Factory to factory: For internal communication between factories and services,
you just need to declare the factory in the function parameters just as a controller.

ff Directive to factory: There is normally no need to communicate between a directive
and factory. The reason is that your controller should take care as a middle man
in this process.

The app example in this recipe will explain how to broadcast an event and watch for a variable
change in a controller and directive. In addition, you will have some fun exploring the two
types of horizontal scrolling, which are commonly used in many mobile apps.

Chapter 5

127

The following is the screenshot of the app that you will build:

Getting ready
Since AngularJS and UI-Router comes with the Ionic bundle, there is no need to prepare this
in a physical device.

How to do it...
Here are the instructions to enable communication among a view, controller, and directive
using events:

1.	 Create a new app using the blank template and go into the respective folder,
as follows:
$ ionic start HorizontalSlide blank

$ cd HorizontalSlide

2.	 You need to set up the Sass dependencies because you will create a horizontal
scroll class later:
$ ionic setup sass

Handling Gestures and Events

128

3.	 Open the index.html file and replace the <body> tag with the following:
<body ng-app="starter" ng-controller="MainCtrl">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Events</h1>
 </ion-header-bar>
 <ion-content scroll="false">

 </ion-content>
 </ion-pane>
</body>

This is just a skeleton of the app view. You will fill out three more sections within
<ion-content> later.

4.	 The first section of the view is for the free-style horizontal scroller:
<div class="item item-divider">
 Free Scroll

 More

</div>

<ion-scroll direction="x" class="horizontal-scroll
padding" ng-controller="FirstCtrl">
 <button class="button button-positive button-large"
 ng-click="broadcast('Ionic')">
 <i class="icon ion-ionic"></i>
 </button>
 <button class="button button-calm button-large"
 ng-click="broadcast('Twitter')">
 <i class="icon ion-social-twitter"></i>
 </button>
 <button class="button button-balanced button-large"
 ng-click="broadcast('Facebook')">
 <i class="icon ion-social-facebook"></i>
 </button>
 <button class="button button-energized button-large"
 ng-click="broadcast('Googleplus')">
 <i class="icon ion-social-googleplus"></i>
 </button>
 <button class="button button-assertive button-large"
 ng-click="broadcast('Dribbble')">
 <i class="icon ion-social-dribbble"></i>
 </button>

Chapter 5

129

 <button class="button button-royal button-large"
 ng-click="broadcast('Octocat')">
 <i class="icon ion-social-octocat"></i>
 </button>
 <button class="button button-dark button-large"
 ng-click="broadcast('Instagram')">
 <i class="icon ion-social-instagram"></i>
 </button>
</ion-scroll>

This <ion-scroll> tag will lock the scroll in the x direction only.
Otherwise, it behaves just like a regular vertical scroll.

5.	 The second section is for the slider-style scroll:
<div class="item item-divider">
 Slide-by-Slide Scroll

 More

</div>

<div ng-controller="SecondCtrl">
 <ion-slide-box show-pager="false">
 <ion-slide class="padding">
 <button class="button button-block
 button-positive" ng-click="changeMyData('POSITIVE')">
 POSITIVE
 </button>
 </ion-slide>
 <ion-slide class="padding">
 <button class="button button-block button-calm"
 ng-click="changeMyData('CALM')">
 CALM
 </button>
 </ion-slide>
 <ion-slide class="padding">
 <button class="button button-block button-balanced"
 ng-click="changeMyData('BALANCED')">
 BALANCED
 </button>
 </ion-slide>
 </ion-slide-box>
</div>

Handling Gestures and Events

130

The main difference here is that the scrolling here takes place slide-by-slide, and
each slide will take the full width of the screen. Once you slide to the left, it will lock
or snap to the second screen.

6.	 The third section is just for us to view the event and variable. You will see a detailed
explanation on this later on:
<div class="item item-divider">
 Logs
</div>

<div ng-controller="ThirdCtrl">
 <ul class="list">
 <li class="item">
 myEvent {{ display.value }}

 <li class="item">
 myData <my-directive data="myData">
 </my-directive>

</div>

7.	 Open app.js and insert the following code in it:
var app = angular.module('starter', ['ionic']);

app.controller('MainCtrl', function($scope) {
 $scope.myData = {
 value: 'No value yet'
 }

 $scope.display = {
 value: 'Not fired yet'
 }
});

MainCtrl is the parent controller, which initialized two objects (myData and
display) for usage within its children controllers.

8.	 Let's write the three controllers that are needed to handle its three sections in
the view earlier:
app.controller('FirstCtrl', function($scope, $rootScope) {

 $scope.broadcast = function(param) {

Chapter 5

131

 $rootScope.$broadcast('myEvent', param);
 }

});

app.controller('SecondCtrl', function($scope, $rootScope) {

 $scope.changeMyData = function(param) {
 $scope.myData.value = param;
 }

});

app.controller('ThirdCtrl', function($scope, $rootScope) {

 $rootScope.$on('myEvent', function(e, val) {
 $scope.display.value = 'Fired with param: ' + val;
 });

});

Note that the purpose here is to understand the communication between the three
controllers. So, this example is very simple, as it only triggers an event or changes
some value. The third controller is your log screen, where you can view what is being
changed by detecting the event.

9.	 Now, you can put together a directive just to test the ability to watch a model
change from within the directive:
app.directive('myDirective', function($rootScope) {
 console.log('Start directive');
 return {
 template: '{{ myData.value }}',
 scope: {myData : '=data'},
 link: function(scope, element, attrs) {

 scope.$watch(attrs.data, function(newVal, oldVal) {
 if (newVal != oldVal) {
 console.log('myData has changed');
 console.log(newVal);
 }
 }, true);
 }
 }
});

www.allitebooks.com

http://www.allitebooks.org

Handling Gestures and Events

132

This directive does not show up anywhere in the view, as it is just for you to
understand the mechanism behind the scene.

10.	 Finally, add the scroll class to the first horizontal scroll in /scss/ionic.app.
scss, as follows:
.horizontal-scroll {
 white-space: nowrap;
 overflow: scroll;
}

11.	 That's it. Now, you can run the app in the browser to test it.

How it works...
If you click on any button in the first scroll section, you will see that the log will show the new
myEvent object, as shown in the following screenshot:

This is because the first controller has broadcast() that triggers
$rootScope.$broadcast(). You can pass a parameter to this broadcast mechanism
as a way to share data. Then, in the third controller, you will see the usage of
$rootScope.$on('myEvent', function(e, val) {}), as this will listen for
myEvent specifically, and pass the val variable as the parameter value.

There are three things that you should make a note of here:

ff You can give the event any name you like. It doesn't matter.

ff You can pass more than one parameter. If you have two or more parameters, just go
ahead and add more in the $on() function, such as function(e, val1, val2,…).

ff This must be done on $rootScope. Basically, firing an event will stick to a specific
scope. If you fire an event at the current $scope object, the external $scope object
won't be able to listen to or access the event.

In summary, you use $broadcast to broadcast an event, and listen by using $on at the
$rootScope level. Broadcasting is a very useful and easy-to-use mechanism for the
communication and sharing of data. However, you should not use broadcast everywhere.
The reason behind this is that when your app scales, it's very hard to keep track of and debug
all the events being broadcast. Any controller can broadcast and create a new event. You
might end up creating duplicate events, or listening to multiple events for the same purpose.

Chapter 5

133

Now, let's evaluate the second scenario using $watch. As you know, the AngularJS digest
cycle is very important if you want to keep track of variable changes. So, when a controller
function changes a variable, it will trigger $watch on that variable to execute a function.
That's why you are able to see the console output of this code when you click on the
POSITIVE button:

scope.$watch(attrs.data, function(newVal, oldVal) {
 if (newVal != oldVal) {
 console.log('myData has changed');
 console.log(newVal);
 }
}, true);

This is the output that will show up:

Note that the third parameter is true, which means that $watch will perform a deep
comparison of the object. Otherwise, it will only watch a variable by default and not
each key/value inside the object.

In the myDirective directive, there is a template with the following string:

{{ myData.value }}

This tells the view to parse the value here whenever there is a change. This myData object
is basically brought in by the directive via the following command:

scope: {myData : '=data'}

Furthermore, if you look at the view declaration, you put an attribute called data to
reference to the myData object of the controller:

<my-directive data="myData"></my-directive>

Handling Gestures and Events

134

The result is the following screen update:

Now, myData shows POSITIVE as the string in its value key.

Although there are several steps being described here, the concept is that in order to share
data from a controller to a directive, you can pass it via the attribute of that directive. Then,
you bring it in via the scope declaration of the directive. The rest of the step is similar to how
you handle the scope data.

See also
The best official documentation about $broadcast and $watch is the AngularJS
website itself. To have a look at it, visit https://docs.angularjs.org/api/ng/
type/$rootScope.Scope.

You should try to understand more about the detailed mechanism behind $rootScope
in this case.

https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope

135

6
App Theme

Customization

In this chapter, we will cover the following tasks related to theme customization:

ff Customizing themes for specific platforms

ff Creating an introduction screen with a custom header

Introduction
Although Ionic has its own default out-of-the-box themes, you might want to customize your
app's look and feel further. There are several methods that can be used to accomplish this.
The following are two of these:

ff Change the stylesheet within the Sass file

ff Detect a platform specific to JavaScript and apply custom classes or AngularJS
conditions

Either of the aforementioned methods should work, but it's highly recommended that you
apply customizations in the Sass file before the app is built in order to achieve maximum
rendering performance.

In this chapter, you will create the following three sample authentication apps:

ff Email and password authentication using Firebase

ff Social authentication (Facebook, Twitter, and Google+) using Firebase

ff Social authentication (LinkedIn) using Auth0 and Firebase

App Theme Customization

136

Depending on the app, you may not need to use all of these authentication methods. For
example, for an app focusing on working professionals, it would make more sense to use a
LinkedIn authentication to narrow down the audiences who fit the user profile of the app.

Customizing themes for specific platforms
Each mobile platform vendor has its own design guideline. This recipe will go over an example of
how to address the app theme differently for iOS and Android. In traditional development, using
either a native language or other hybrid app solutions, you have to keep separate repositories for
each platform in order to customize the theme. This can be very inefficient in the long run.

Ionic makes it very convenient by separating the stylesheet for each platform and specific
OS version within the same platform. The example in this recipe covers two possibilities of
customization using Sass and JavaScript. The following screenshot shows both the iOS and
Android app with different title bar colors and text:

Getting ready
There is no need to test the theme on a physical device because Ionic can render both iOS
and Android in the browser.

How to do it...
Here are the instructions to customize themes for specific platforms:

1.	 Create a new app using the blank template and go into the respective folder:
$ ionic start Theme blank

$ cd Theme

Chapter 6

137

2.	 You need to set up the Sass dependencies in the following way, because Ionic uses a
number of external libraries for this:
$ ionic setup sass

3.	 Open the index.html file and replace the <body> tag with the following:
<body ng-app="starter" ng-controller="MainCtrl">
 <ion-pane>
 <ion-header-bar class="bar-assertive">
 <h1 class="title" ng-if="isIOS">Welcome iOS</h1>
 <h1 class="title title-left"
 ng-if="isAndroid">Welcome Android</h1>
 </ion-header-bar>
 <ion-content>
 </ion-content>
 </ion-pane>
</body>

You will create the MainCtrl controller later in app.js to handle platform-specific
variables (such as isIOS and isAndroid).

4.	 Open app.js and add the controller, as follows:
.controller('MainCtrl', function($scope) {
 $scope.isIOS = ionic.Platform.isIOS();
 $scope.isAndroid = ionic.Platform.isAndroid();
});

5.	 Open the ionic.app.scss file under ./scss and add the following code at the
end after @import "www/lib/ionic/scss/ionic":
.platform-android {
 .bar {
 background-color: white!important;
 }

 .bar .title {
 color: $assertive!important;
 }
}

This simply overrides the Android theme with a customized bar and title classes.

This .scss file is in the scss folder in your root project. You don't want
to directly modify the default .scss files of Ionic under ./www/lib/
ionic/scss, because it's not a good practice.

App Theme Customization

138

6.	 Conduct a test run of the app in the browser, as follows:
$ ionic serve --lab

7.	 If you inspect the DOM, you will see that Android-specific classes are injected into
the DOM:

How it works...
Ionic automatically created platform-specific parent classes and put them at the <body>
tag. The iOS app will include the .platform-ios class. The Android app will have
.platform-android4_4 for Android v4.4, .platform-android5_0 for Android v5.0,
or just .platform-android. So, for stylesheet customization, you can leverage these
existing classes to change the look and feel of your app.

The example also leverages an existing function in an ionic object to detect platforms:

 $scope.isIOS = ionic.Platform.isIOS();
 $scope.isAndroid = ionic.Platform.isAndroid();

By making the scope variables available to the view, you can use it to hide or show a specific
DOM using ng-if. It's recommended that you use ng-if instead of ng-show because
ng-show may show and hide the element right away, thus creating a flickering effect.

There's more...
It would be better if you could take a look at several .scss files under ./www/lib/ionic/
scss to understand how Ionic builds its own .css files. Each component has its own .scss
file. The _variables.scss file will give you all the global theme variables that you can
override in ./scss/ionic.app.scss.

See also
ff There is other device information available from the ionic.Platform

object. You can even detect iPad devices. For more information, visit http://
ionicframework.com/docs/api/utility/ionic.Platform/.

http://ionicframework.com/docs/api/utility/ionic.Platform/
http://ionicframework.com/docs/api/utility/ionic.Platform/

Chapter 6

139

ff The Ionic website also has some basic instructions on how to write a Sass theme.
For more information on this, visit http://learn.ionicframework.com/
formulas/working-with-sass/.

Creating an introduction screen with a
custom header

Every app has a different onboarding experience. Some will show a short video, while others
walk the users through a few introduction slides. Creating slides is useful because you can
pitch initial key messages to set an expectation for users. Also, they can move between slides
at their own pace. Most apps will have three to five slides for an introduction screen.

In this recipe, you will learn how to create a three-slide intro screen using <ion-slide-
box>, which is an Ionic directive that is used to create horizontal slides. In addition to this,
you will incorporate ngStorage to detect whether the user has seen the introduction or not.
This is useful when you don't want users to keep seeing the introduction every time the app
starts. Here is the screenshot of the app:

http://learn.ionicframework.com/formulas/working-with-sass/
http://learn.ionicframework.com/formulas/working-with-sass/

App Theme Customization

140

Getting ready
Since ngStorage can work locally in the browser, there is no need to test this app on a
physical device.

How to do it...
Here are the instructions to create an introduction screen with custom header:

1.	 Create a new app using the blank template and go into the folder:
$ ionic start Intro blank

$ cd Intro

2.	 Set up the Sass dependencies, as follows:
$ ionic setup sass

3.	 Install ngStorage by executing the following command:
$ bower install ngstorage

ngstorage is in lowercase in the command because ngStorage is a
different repository.

4.	 Open index.html and include the ngStorage script:
<script src="lib/ngstorage/ngStorage.js"></script>

5.	 For the body content, all you need to do is place a view holder, as follows:
<body ng-app="starter">
 <ion-nav-view></ion-nav-view>
</body>

This is basically just used to hold the additional templates of the intro and
app screen.

6.	 First, let's knock off the easy template—app.html in the ./www/templates folder:
 <ion-pane>
 <ion-header-bar class="bar-assertive">
 <h1 class="title">Welcome</h1>
 </ion-header-bar>
 <ion-content class="has-header">
 	 Hello World!
 </ion-content>
</ion-pane>

Chapter 6

141

This template is just the app screen that you want the user to go to after
viewing the introduction. Since this is not the focus of this example, you
can make it super simple.

7.	 Create intro.html in the templates folder under./www, as follows:
<ion-nav-view class="intro">
 <ion-header-bar align-title="middle" class="bar-balanced
 bar">
 <button class="button button-icon icon
 ion-ios-arrow-back" ng-if="slides.currentSlide > 0"
 ng-click="slides.currentSlide = slides.currentSlide-1">
 </button>

 <button class="button button-clear" ui-sref="app">
 Skip
 </button>
 </ion-header-bar>
 <ion-content class="has-footer" scroll="false">
 <ion-slide-box active-slide="slides.currentSlide"
 on-slide-changed="slideChanged(index)">
 <ion-slide class="center">
 <div class="row">
 <div class="col">
 <h1>Beautiful App</h1>
 <div class="center-image">
 <i class="icon ion-ionic"></i>
 </div>
 <p>Flat design with easy navigation.</p>
 </div>
 </div>
 </ion-slide>
 <ion-slide class="center">
 <div class="row">
 <div class="col">
 <h1>Useful Content</h1>
 <div class="center-image">
 <i class="icon ion-ios-paper"></i>
 </div>
 <p>Daily update content for your needs.</p>
 </div>
 </div>
 </ion-slide>
 <ion-slide class="center">
 <div class="row">

App Theme Customization

142

 <div class="col">
 <h1>Lowest Price</h1>
 <div class="center-image">
 <i class="icon ion-social-usd"></i>
 </div>
 <p>Beat all competitor offerings.</p>
 </div>
 </div>
 </ion-slide>
 </ion-slide-box>
 </ion-content>
 <ion-footer-bar align-title="center" class="bar-balanced
 darker-balanced" ui-sref="app" ng-if="slides.currentSlide
 == 2">
 Get Started
 </ion-footer-bar>
</ion-nav-view>

Your intro screen is actually very simple. It has a header bar and content area.
Within the content area, you will use <ion-slide-box> to display the sliders.

8.	 To create the logic as regards whether to show the intro screen, you have to write
this component when the app runs. Edit app.js in the following way:
var app = angular.module('starter', ['ionic',
'ngStorage']);

app.run(function($ionicPlatform, $rootScope, $state,
$localStorage) {
 $ionicPlatform.ready(function() {
 $rootScope.$storage = $localStorage.$default({
 seenIntro: false
 });

 if ($rootScope.$storage.seenIntro) {
 event.preventDefault();
 $state.go('app');
 }
 });
});

Chapter 6

143

ngStorage is the key here because it allows you to detect $rootScope.$storage.
seenIntro even when the app restarts.

9.	 Next, you need to set up the routing for the app, as follows:
.config(function($stateProvider, $urlRouterProvider) {

 $stateProvider

 .state('intro', {
 url: "/",
 templateUrl: "templates/intro.html",
 controller: 'IntroCtrl'
 })

 .state('app', {
 url: "/app",
 templateUrl: "templates/app.html"
 });

 $urlRouterProvider.otherwise('/');
})

As mentioned earlier, intro.html is your intro template with route /, while app.
html is the main app route /app.

10.	 There is no need to handle anything for the app controller, but you need to do a
custom title and create a slideChanged() function, as follows:
.controller('IntroCtrl', function($scope, $rootScope) {
 $scope.slides = {
 currentSlide: 0
 };
 $scope.title = '<i class="icon ion-android-home"></i>';

 $scope.slideChanged = function(index) {
 $scope.slideIndex = index;
 if (index == 2)
 $rootScope.$storage.seenIntro = true;
 };
});

App Theme Customization

144

When the user is on the last slide (when the index is 2), you set
$rootScope.$storage.seenIntro to true, which indicates
that the user has seen the entire intro screen.

11.	 Now, the critical part is to update the ionic.app.scss file under ./scss to
apply proper styling for the introductory screen. Let's start with the button in the
last screen:
$balanced-darker: darken($balanced, 10%) !default;

.darker-balanced {
 background: $balanced-darker !important;
}

Basically, $balanced-darker is a darker color, which is created using the
$balanced variable in Ionic.

12.	 Since the entire intro template has a .intro class, you can style all the child
elements independently, as follows:
.intro, .intro .scroll-content {
 background-color: $balanced!important;
}

.intro .scroll, .intro .slider {
 height: 100%!important;
 background-color: $balanced;
}

.intro .center {
 display: -webkit-box;
 display: -moz-box;
 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;
 -webkit-box-direction: normal;
 -moz-box-direction: normal;
 -webkit-box-orient: horizontal;
 -moz-box-orient: horizontal;
 -webkit-flex-direction: row;
 -ms-flex-direction: row;
 flex-direction: row;

Chapter 6

145

 -webkit-flex-wrap: nowrap;
 -ms-flex-wrap: nowrap;
 flex-wrap: nowrap;
 -webkit-box-pack: center;
 -moz-box-pack: center;
 -webkit-justify-content: center;
 -ms-flex-pack: center;
 justify-content: center;
 -webkit-align-content: stretch;
 -ms-flex-line-pack: stretch;
 align-content: stretch;
 -webkit-box-align: center;
 -moz-box-align: center;
 -webkit-align-items: center;
 -ms-flex-align: center;
 align-items: center;
}

.intro .center-image {
 text-align:center;
}

.intro .center-image i {
 font-size: 200px;
 color: white;
}

.intro h1, .intro p {
 color: white;
 text-align: center;
 padding: 20px 0 20px 0;
}

.intro h1 {
 font-weight: bold;
}

13.	 It's time to test the app in the browser:
$ ionic serve

App Theme Customization

146

14.	 If you go to the last screen, the button will show up. In addition to this, the back
button to the top left will only be shown when there is a slide before the current
one that you can go to:

How it works...
This app has several moving parts that you have to connect together:

ff A Local Storage's seenIntro variable will be checked each time the app starts.
Since run() will be executed first, you have to place the check logic there. The
$localStorage.$default() function is used to set the default value if the
variable doesn't exist yet.

ff The view-title does not take HTML code. So, you have to place a scope variable
at to update.

ff It's important to keep track of the current slide when the slide is changed by using
active-slide="slides.currentSlide". Once the slide is changed it will
trigger an event, which can be assigned to a directive called on-slide-changed.

ff In order to show or hide the Back button, you just need to check whether the current
slide index is greater than zero by using ng-if="slides.currentSlide > 0".

ff In your footer, it's basically a button that can be used to go to the app state and
only show whether the current slide index is two: <ion-footer-bar align-
title="center" class="bar-balanced darker-balanced" ui-
sref="app" ng-if="slides.currentSlide == 2">.

Chapter 6

147

It's good practice to not change Ionic classes directly, but create a parent class for the
page. In this case, you created an intro class so that you can modify everything in that
page specifically. The Ionic slider does not stretch vertically by default. That's why you need
to apply its height as 100%.

All the other elements within a specific slide can be customized as you wish. Normally, it's
good enough to keep things simple, with a header text as your value proposition and an
image and a short one-liner to explain the idea.

149

7
Extending Ionic with

Your Own Components

In this chapter, we will cover the following tasks related to creating custom directives
and filters:

ff Creating a scroll progress bar directive

ff Creating a custom filter

ff Animating an app using requestAnimationFrame with event binding

Introduction
Although Ionic has many out-of-the-box components, you may want to start customizing the
existing components or create your own. There are many scenarios where you just cannot
fit the default components in your specific use cases. Here are some of the examples of the
scenarios:

ff Custom input fields

ff The formatting of data with your specific requirements

ff The binding of your own UI component with Ionic events

ff The creation of animation based on stateful events

Alternatively, you can reuse the AngularJS Bootstrap module and just change its CSS to
create a consistent look and feel. Since you can leverage web technologies, creating new
components in Ionic is very simple. It's the same process as building new directives and
filters for the AngularJS Single-Page Application. If you are unfamiliar with this, you can
start with the following sections and go through some simple examples.

Extending Ionic with Your Own Components

150

You will learn the following in this chapter:

ff How to create custom directives and filters

ff How to look for Ionic events and bind them to create stateful animation

Creating a scroll progress bar directive
Progress bars are very useful, as they indicate the amount of task that is completed. It gives
users a great experience in terms of what to expect (or how long the process should take to
finish). In content websites such as blogs, you may have observed that the progress bar is also
used to show how much the users have read. In this recipe, you will create a custom directive
to show the reading progress. The concept is very simple. This directive basically checks
against the scroll position of <ion-content> in order to adjust the bar (div) length.

The following is the screenshot of the app:

There are 100 items in the list. As you scroll, the bar at the top will move from left to right to
indicate the percentage of reading completed.

Chapter 7

151

Getting ready
This app example can work either in a browser or physical device.

How to do it...
Here are the instructions to create a scroll progressive bar directive:

1.	 Create a new app using a blank template and go into the folder:
$ ionic start ScrollProgress blank

$ cd ScrollProgress

2.	 Set up the Sass dependencies for the custom progress bar div, as follows:
$ ionic setup sass

3.	 Open the index.html file and replace the <body> tag with the following:
<body ng-app="starter" ng-controller="MyCtrl">

 <ion-header-bar class="bar-positive">
 <h1 class="title">Reading List</h1>
 <scroll-progress></scroll-progress>
 </ion-header-bar>

 <ion-content>
 <ion-list>
 <ion-item ng-repeat="item in items">
 Item {{ item.id }}
 </ion-item>
 </ion-list>
 </ion-content>

</body>

There is nothing special about the view structure. What you have here is just
a header bar and a list of items. However, there is a new scroll-progress
directive to indicate the scroll progress of the list.

4.	 Open app.js to edit it with the following code:
var app = angular.module('starter', ['ionic']);

app.controller('MyCtrl', function($scope, $ionicScrollDelegate) {

 $scope.items = [];

Extending Ionic with Your Own Components

152

 for (var i=1; i<=100; i++) {
 $scope.items.push({ id: i });
 }

});

Again, to simplify the unimportant part, this MyCtrl controller will just populate the
list with 100 items.

5.	 To create the custom scroll progress directive, you need to add the following code:
app.directive('scrollProgress',
function($ionicScrollDelegate) {
 return {
 template: '<div class="progress"
 style=\'{{percentage}}\'></div>',
 link: function (scope, element, attrs) {
 scope.percentage = '0%';

 ionic.DomUtil.ready(function() {
 var windowHeight = $ionicScrollDelegate.
 _instances[0].element.clientHeight,
 scrollHeight = $ionicScrollDelegate.
 _instances[0].element.querySelector(
 'div.scroll').clientHeight,
 delta = scrollHeight - windowHeight;

 $ionicScrollDelegate._instances[0].
 $element.bind('scroll', function(e) {
 var scrollPosition = $ionicScrollDelegate.
 getScrollPosition().top;
 scope.percentage = 'width:
 ' + (scrollPosition / delta * 100) + '%';
 scope.$digest();
 });
 });
 }
 };
});

This custom directive will use $ionicScrollDelegate, which is a standard
out-of-the-box delegate from Ionic that is used to get and set the position of
the scroller.

Chapter 7

153

6.	 Finally, just add the styling for the progress class in ionic.app.scss, as follows:
.progress {
 height: 3px;
 background: darken(#33cd5f, 70%);
 position:absolute;
 left: 0;
 bottom: 0;
}

How it works...
The progress bar is just a div element with the width as a percentage. It must be a part of
the header, as it is positioned between the header and the main content.

It's important to understand how Ionic structures its content and scroll element.
In order to access the information of these elements, you need to work through
$ionicScrollDelegate. There are four variables that can be used to calculate the
percentage:

var windowHeight = $ionicScrollDelegate.
_instances[0].element.clientHeight,
 scrollHeight = $ionicScrollDelegate._instances[0]
 .element.querySelector('div.scroll').clientHeight,
 delta = scrollHeight - windowHeight;

This also can be used:

var scrollPosition =
$ionicScrollDelegate.getScrollPosition().top;

The windowHeight variable is the height of the device screen or the visible content area.
The scrollHeight variable is the real height of the scrollable element (div.scroll).
So, when you scroll, this element will change its top position to simulate the scrolling effect.
The delta variable is used to calculate the percentage. By default, you will see the first
screen. So, you need to subtract the height of the screen to get your starting point. The
scrollPosition variable is the top position of div.scroll, and this variable is
updated every time the binding to the scroll event is triggered.

One tricky part that you should be aware of is the difference between element and
$element. Here's the element part:

$ionicScrollDelegate._instances[0].element

Extending Ionic with Your Own Components

154

Here's the $element part:

$ionicScrollDelegate._instances[0].$element

This is an undocumented area, which requires you to carefully inspect in the console before
using. Eventually, any <ion-content> directive will create a $ionicScrollDelegate._
instances[0] instance in its delegate. You can look at the values of this object to find out
the difference between element and $element:

Basically, the element property is the actual DOM element, while $element is an AngularJS
version (or JQLite) of this. You can use element to get the DOM properties such as height
and width. However, the scroll binding is only available in $element, as it is a specific
functionality of Ionic.

Chapter 7

155

When you create a custom directive, you can insert your own template within that directive,
as follows:

template: '<div class="progress" style=\'{{percentage}}\'></div>'

In this case, the percentage variable will be interpolated into the style attribute of this
div element.

Whenever you are interacting with the out-of-the-box elements of Ionic, you need to make sure
that they are rendered completely by putting your code within the ionic.DomUtil.ready
event. In addition to this, the bind() function will not trigger the AngularJS scope digest
cycle. That's why you need to call scope.$digest() manually within the scroll binding. This
is the only way AngularJS knows how to look for changes and update the view with your new
percentage value.

See also
For more information about creating a custom directive, check out the AngularJS documentation
for directives by visiting https://docs.angularjs.org/guide/directive.

Creating a custom filter
Filters are a feature of AngularJS and not specific to Ionic. The main reason you might want
to use a filter is when you just need the data to be displayed in a different format in the view.
You don't want to change the actual value in the controller or factory. This makes things very
convenient because you don't have to decide upon a specific format within the controller
code while leaving the flexibility in the view component.

Here is the list of some out-of-the-box filters (from https://docs.angularjs.org/api/
ng/filter):

ff currency

ff number

ff date

ff json

ff lowercase

ff uppercase

ff limitTo

ff orderBy

https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/api/ng/filter
https://docs.angularjs.org/api/ng/filter

Extending Ionic with Your Own Components

156

In this recipe, you will learn how to add more filters using the angular-filter module
as well as create a custom filter. The following is the screenshot of the app:

Getting ready
There is no need to test in a physical device because the AngularJS filter will work just fine in
a web browser.

How to do it...
Here are the instructions to create a custom filter:

1.	 Create a new app using the blank template and go into the respective folder:
$ ionic start Filter blank

$ cd Filter

2.	 You need to install angular-filter so that you can use it in one of the examples:
$ bower install angular-filter --save

3.	 Open the index.html file and include the dependency, as follows:
<script src="lib/angular-filter/dist/
angular-filter.js"></script>

Chapter 7

157

4.	 Then, replace the <body> tag with the following:
<body ng-app="starter" ng-controller="MainCtrl">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Filter</h1>
 </ion-header-bar>
 <ion-content>
 <div class="list">
 <div class="item item-divider">
 Use $filter in controller
 </div>
 <label class="item item-input">
 <input type="text" placeholder="Type anything
 lowercase here" ng-model="data.lowercase">
 </label>
 <label class="item">
 {{ data.uppercase }}
 </label>
 <div class="item item-divider">
 Use angular-filter in interpolation
 </div>
 <label class="item">
 Max of [1,2,3,4,7,8,9] = {{ numberArray | max }}
 </label>
 <div class="item item-divider">
 Create custom filter
 </div>
 <label class="item" ng-repeat="item in
 countryCodes">
 {{ item }} <i class="icon ion-ios-arrow-
 thin-right"></i> {{ item | languageName }}
 </label>
 </div>
 </ion-content>
 </ion-pane>
</body>

The app will have three sections:

ff How to tighten the input model in real time with a filter from the controller

ff How to use the angular-filter module

ff How to set up your own custom filter

Extending Ionic with Your Own Components

158

5.	 Open app.js and edit it with the following code:
var app = angular.module('starter', ['ionic',
'angular.filter']);

app.controller('MainCtrl', function($scope, $filter) {
 $scope.data = {
 lowercase: '',
 uppercase: 'Resulted Upper Case'
 }

 $scope.$watch('data.lowercase', function(newVal,
 oldVal) {
 if (newVal != oldVal)
 $scope.data.uppercase = $filter('ucfirst')(newVal);
 });

 $scope.numberArray = [1,2,3,4,7,8,9];
 $scope.countryCodes = ["IN", "MX", "US", "GB", "FR"];
});

This code is used to set up your controller with some data so that it can be used
in the filters.

6.	 Next, create a custom filter, as follows:
app.filter('languageName', function() {
 var codes = {
 "BR": "Brazil",
 "CA": "Canada",
 "CN": "China",
 "FR": "France",
 "DE": "Germany",
 "IN": "India",
 "IL": "Israel",
 "IT": "Italy",
 "MX": "Mexico",
 "US": "United States"
 }

 return function(input) {
 var output = codes[input] ? codes[input] : "Unknown";
 return output;
 }
});

Chapter 7

159

This is a very simple, hardcoded example that demonstrates how to create a filter.
The goal is to perform a conversion from the input value to the output value.

7.	 There is no need to customize any CSS. So, you can run and test the filter in
the browser.

How it works...
You can use the AngularJS filter in the view or as a function in the controller or factory. It's
considered a utility that simply converts or transforms any value to a desired value. There
is no limitation on how you want to structure the filter.

In the first example of using $filter in the controller, you just use $scope.$watch on
the input model and convert it in real time, as follows:

$scope.$watch('data.lowercase', function(newVal, oldVal) {
 if (newVal != oldVal)
 $scope.data.uppercase = $filter('ucfirst')(newVal);
});

You must declare $filter as a dependency for that controller.

The second example illustrates how a filter is used directly in the view without an interference
of controller or factory:

{{ numberArray | max }}

AngularJS automatically detects the | sign and turns the value that is in front of it to an input.
The max function will use it for conversion.

Finally, your last example is used to add the languageName filter. It's basically just a function
that returns another function in the following format:

 return function(input) {
 var output = codes[input] ? codes[input] : "Unknown";
 return output;
 }

The value of the output will be what AngularJS renders in the view.

See also
ff To understand more about the AngularJS filter, you can check out the official

documentation at https://docs.angularjs.org/api/ng/filter/filter.

ff Angular-filter has a wide range of filters to choose from. You can get a full list
at https://github.com/a8m/angular-filter.

https://docs.angularjs.org/api/ng/filter/filter
https://github.com/a8m/angular-filter

Extending Ionic with Your Own Components

160

Animating an app using
requestAnimationFrame with event binding

Animation is always a tricky part when it comes to mobile app development. The main reason
behind this is that you really have to know how JavaScript or CSS animation works. Otherwise,
if you use external libraries, you will run into performance problems such as jerky movements.
In addition to this, there are many ways that can be used to bind an animation stage with a
native touch event of the device. So, it always takes a little extra effort to get a good result.

In this recipe, you will learn how to:

ff Detect a scroll event

ff Bind the scroll position on pull down in order to slightly zoom the image

ff The image zoom has exact ration is the scroll bounce

This example is similar to many apps with a profile page such as a Twitter iOS app. The
top image can be the user's profile picture. The following is a screenshot of the app that
you will build:

Getting ready
You can test this in a web browser. However, it's recommended that you use a physical device
to test the animation performance, especially during fast scroll movements.

Chapter 7

161

How to do it...
Here are the instructions to animate an app using requestAnimationFrame with
event binding:

1.	 Create a new app using the blank template and go into the respective folder:
$ ionic start ZoomOnScroll blank

$ cd ZoomOnScroll

2.	 You need to set up the Sass dependencies, as follows:
$ ionic setup sass

3.	 Open the index.html file and replace the <body> tag with the following:
<body ng-app="starter" ng-controller="MyCtrl">

 <ion-header-bar class="bar-positive">
 <h1 class="title">My Photo Profile</h1>
 </ion-header-bar>

 <ion-content class="top-image" zoom-on-scroll>
 <ion-list>
 <ion-item ng-repeat="item in items">
 Item {{ item.id }}
 </ion-item>
 </ion-list>
 </ion-content>

</body>

There is no image element in this code, because the image is actually a part of
the <ion-content> background.

4.	 Open ionic.app.scss placed under scss and add the following code:
.top-image {
 padding-top: 150px!important;
}

.scroll-content {
 background-image: url('../img/sample.jpg');
 background-size: 100%;
 background-repeat: no-repeat;
}

Extending Ionic with Your Own Components

162

This will ensure that the content has 150 px of free space at the top, which will
show the sample.jpg image.

5.	 Open app.js to edit with the following code:
var app = angular.module('starter', ['ionic']);

app.controller('MyCtrl', function($scope, $ionicScrollDelegate) {

 $scope.items = [];
 for (var i=1; i<=100; i++) {
 $scope.items.push({ id: i });
 }

});

6.	 To handle the animation interaction, you need to create the zoomOnScroll
directive, which will be placed in <ion-content>:
app.directive('zoomOnScroll', function($ionicScrollDelegate) {
 return {
 link: function (scope, element, attrs) {
 ionic.DomUtil.ready(function() {

 var scrollContent =
 document.querySelector('.scroll-content'),
 windowHeight = $ionicScrollDelegate.
 _instances[0].element.clientHeight;
 windowWidth = $ionicScrollDelegate._
 instances[0].element.clientWidth;

 $ionicScrollDelegate.
 _instances[0].$element.bind('scroll', function(e) {

 function callback() {
 var scrollPosition = $ionicScrollDelegate.
 getScrollPosition().top,
 zoom = (-(scrollPosition*2 /
 windowHeight) + 1) * 100,
 offset = (windowWidth * ((zoom -
 100) / 100)) / 2;

 if (zoom > 100) {
 scrollContent.style['background-size']
 = zoom + '%';
 scrollContent.style['background-
 position-x'] = -offset + 'px';

Chapter 7

163

 }
 }

 ionic.DomUtil.requestAnimationFrame(callback);

 });
 });
 }
 };
});

While you can use the regular method for animation or even a
timeout event, in this case, it's better to use ionic.DomUtil.
requestAnimationFrame() for improved performance.
More on this will be discussed later.

7.	 Test run the app in the browser, as follows:
$ ionic serve

8.	 Alternatively, you can perform a test run of the app in an iOS device when the
phone is connected via a USB, as follows:
$ ionic run –device

9.	 When you drag or pull down the list, the image will expand to zoom, as shown
in the following screenshot (without distortion):

Extending Ionic with Your Own Components

164

How it works...
Before explaining in depth, it's good to know about several limitations of this example.
Some of these limitations are as follows:

ff The code assumes that your top image is 150 px in height. This is just an arbitrary
number and can be changed.

ff The actual image size is 1280 x 853. So, if you want to swap out with other images,
please consider testing the ratio properly (to avoid white space or missing corners).

ff The image URL is fixed in the CSS. To have dynamic images (such as per user profile),
you should populate the CSS background-image property properly from the
AngularJS code.

ff There is a potential performance impact for low-end Android devices. It's highly
recommended that you build using Crosswalk for a better animation performance.

Let's start by taking a look at the zoomOnScroll directive. You should only start
processing the DOM events when Ionic finishes its rendering:

ionic.DomUtil.ready()

Otherwise, you may get a strange bug when the binding sometimes happens and sometimes
it does not.

There are some undocumented features of Ionic regarding <ion-content>. First, when you
create a content area, it will insert a div element with the scroll-content class. That's
why you should grab it in order to animate its background CSS properties, as follows:

var scrollContent = document.querySelector('.scroll-content')

Another area is the use of $ionicScrollDelegate._instances[0].$element to create
a scroll binding. This scroll binding isn't available if you use a normal DOM element object.

To understand the scroll event and the data that you can get from it, you can output the
variables from within the callback() function, as follows:

console.log(scrollPosition);
console.log(zoom);
console.log(offset);

Chapter 7

165

What you will see is something like the following when the list content is pulled or
dragged down:

The top position actually can be a negative number when it goes beyond the topmost position
of the content area:

scrollPosition = $ionicScrollDelegate.getScrollPosition().top

That's where you take advantage of this feature to calculate the zoom ratio, which is the
second line:

zoom = (-(scrollPosition*2 / windowHeight) + 1) * 100

The zoom value is just a percentage number to zoom the background image using the
background-size CSS property. You can generate this ratio any way you like using the
scrollPosition value. In this case, it is two times the amount of scrolling (to avoid
seeing a white space area below the image).

Extending Ionic with Your Own Components

166

However, this is not enough to complete this visual effect. You should also make sure that the
zoomed image is at the center all the time. To do this, calculate the offset position, as follows:

offset = (windowWidth * ((zoom - 100) / 100)) / 2

This means that if the image is wider than the device's width, it should reposition the image to
the left so that it stays in the middle.

Once all the required values are set, you just have to change the CSS properties of the
scrollContent object, as follows:

scrollContent.style['background-size'] = zoom + '%';
scrollContent.style['background-position-x'] = -offset + 'px';

To improve the animation performance, you must use requestAnimationFrame, as follows:

ionic.DomUtil.requestAnimationFrame(callback);

Ionic has abstracted the requestAnimationFrame function based on
the native window.requestAnimationFrame() function. This feature
works nicely with the browser rendering engine. In each second, the browser
repaints the view approximately 60 times.

By calling requestAnimationFrame, you basically tell the browser to execute the
callback() function before the next repaint. This is a great way to get into alignment with
the rendering engine to make sure that you don't miss any frame. You may ask why people
can't use the setInterval() method to manually inject the rendering code 60 times per
second. It's simple to clarify that setInterval() does not obey the exact completion of
the execution to ensure that it's executed 60 times per second.

There are always some short delays when you use setInterval(), and the 60 frames
may run for over more than one second. For smooth animation, it's critical to understand
this concept.

There's more...
The difference between the animation performances when using pure CSS transitions versus
JavaScript has been an ongoing debate. However, with proper implementation of JavaScript,
it has been tested and proven that JavaScript can make faster animation with a higher frame
per second. An article, which can be viewed by visiting http://davidwalsh.name/css-
js-animation, depicts some very useful facts.

Monitoring the frame rate in animation is extremely important. In general, the CSS transition
is good for stateless and simple UI animation. JavaScript animation should be used when the
animation is triggered by JavaScript and there is a granular transition process between state A
and B. The example in this section is a good use of requestAnimationFrame because it's
hard to predict the exact animation for the scrolling inputs from the device.

http://davidwalsh.name/css-js-animation
http://davidwalsh.name/css-js-animation

Chapter 7

167

This example app is simple enough to help you just animate by changing the background-
size and background-position-x properties. There are many high-performance animation
engines in the market that can help you perform complex animation scenarios. You can check
out Greensock (http://www.greensock.com) and Velocity.js (http://velocityjs.org/)
to find out more.

http://www.greensock.com
http://velocityjs.org/

169

8
User Registration and

Authentication

In this chapter, we will cover the following tasks related to user management:

ff Configuring a Facebook app with the Firebase authentication

ff Configuring a Twitter app with the Firebase authentication

ff Configuring a Google+ project with the Firebase authentication

ff Creating an Ionic social authentication project for Facebook using $firebaseAuth

ff Creating a LinkedIn app and configuring the authentication in Auth0

ff Integrating Auth0's LinkedIn authentication in an Ionic project

User Registration and Authentication

170

Introduction
In this chapter, we will create three sample authentication apps:

ff Social Authentication (Facebook, Twitter, and Google+) using Firebase

ff Social Authentication (LinkedIn) using Auth0 and Firebase

Depending on the app, you may not need to use all of these authentication methods. For
example, it would make more sense to use a LinkedIn authentication for an app focusing
on a working professional to narrow down the audiences who fit the user profile of the app.
Firebase supports many types of authentication with the exception of LinkedIn. Therefore, the
LinkedIn authentication app will use a combination of Auth0 and Firebase.

Chapter 8

171

The list of authentications supported in Firebase includes the following:

ff Email and password

ff Facebook

ff Twitter

ff GitHub

ff Google

ff Anonymous

ff Custom

If you have your own authentication server where you maintain your own user database, you
still can use the custom authentication of Firebase to create a custom token. You will see
more details when you go through the LinkedIn authentication example, where Auth0 will
ask Firebase for a custom token because Auth0 works with LinkedIn directly to authenticate
users. You can use Auth0 for other authentication methods as well. It's really up to your app
architecture. However, this chapter will try to simplify the authentication concept as much as
possible. The sample apps will use Firebase as much as possible as a backend mechanism.

Configuring a Facebook app with Firebase
authentication

Most of the time, your users already have a social media account somewhere. It's more
convenient for them to log into your app using the same social account instead of filling out
the same information again. Firebase provides an authentication feature to reduce the need
to build a Facebook authentication module in AngularJS from scratch. As an app developer,
you receive several benefits. The following are some of the advantages:

ff An easier login option for users

ff An increased registration conversion rate

ff More information about users with their Facebook accounts

ff Faster time to market as you don't have to build your own authentication mechanism

Getting ready
You need to have a Facebook account to log in and create a developer app. The account
must be verified using a phone number or credit card number. You must make sure that
there is a way to verify your account. A Google Voice phone number will not be allowed.
Facebook will ask for account verification when you create the app. Hence, you don't
have to do this up front.

User Registration and Authentication

172

How to do it...
In order for Firebase to authenticate users via the Facebook login, you have to create and
configure the Facebook app to allow authentication and callback, as follows:

1.	 Log in to your Facebook account.

2.	 Navigate to https://developers.facebook.com.

3.	 Select Add a New App under the My Apps menu:

4.	 Select the Website button because we will be using JavaScript:

https://developers.facebook.com

Chapter 8

173

5.	 Provide the name of your app and click on the Create New Facebook App ID button.
In this example, let's call it the ionic_firebase_test app:

6.	 Choose any category that you want from the drop-down menu and click on Create
App ID:

7.	 If you have not verified your Facebook account, at this step, Facebook will ask
for verification. You can either add a phone number or credit card number to
pass this step:

User Registration and Authentication

174

8.	 After the verification, go to the Settings menu in the left panel.

9.	 Click on the Advanced tab and change your app restrictions or security as needed
for your app:

10.	 Under OAuth Settings, fill in the Valid OAuth redirect URIs input box with your own
URL using the https://auth.firebase.com/v2/<YOUR-FIREBASE>/auth/
facebook/callback format. So, if your Firebase app's name is ionicebook, it will
look like what is shown in the following screenshot:

11.	 Scroll down to the end of the page and click on the Save Changes button.

This is the basic app configuration that you need to do for Facebook. Now, you will
have to modify Firebase to enable the Facebook authentication, as follows:

12.	 While still in the same Facebook app screen, click on the Basic tab and select the
Show button to reveal the App Secret string:

Chapter 8

175

13.	 Copy both the App ID and the App Secret string because you need to import them
to Firebase.

14.	 Log in to your Firebase account and select your app (for example, ionicebook).

15.	 Click on the Login & Auth menu, which looks like this:

16.	 Click on the Facebook tab.

17.	 Provide the same Facebook App ID and App Secret string that you copied earlier:

18.	 Check off the Enable Facebook Authentication checkbox, and everything will be
saved automatically.

How it works...
Firebase makes it very easy for you to work with the Facebook authentication because it takes
care of server communication and builds in an API within AngularFire. You will explore the
code in detail in the next section.

User Registration and Authentication

176

The authentication mechanism only needs the following three pieces of information:

ff The Firebase Callback URL, so that Facebook knows how it should handle the redirect

ff The Facebook App ID

ff The Facebook Secret ID

You can trigger an authentication in the frontend simply by calling $authWithOAuthPopup.

There's more...
Firebase has a very good documentation on authentication that uses either an email and a
password, or social accounts. Just visit https://www.firebase.com/docs/web/guide/
user-auth.html for more information.

If you want to go ahead and dive into the code, Firebase also provides an interactive demo,
which is hosted on http://jsfiddle.net/firebase/a221m6pb/.

Configuring a Twitter app with Firebase
authentication

To authenticate using Twitter, Firebase also requires API Key and API Secret from your Twitter
app. Firebase will take care of the communication and return the user object.

Getting ready
This is a straightforward process if you have already gone through the Facebook integration.
It's similar to Twitter.

How to do it...
Here are the instructions to set up your Twitter app:

1.	 Log in to your Twitter account.

2.	 Navigate to https://apps.twitter.com.

https://www.firebase.com/docs/web/guide/user-auth.html
https://www.firebase.com/docs/web/guide/user-auth.html
http://jsfiddle.net/firebase/a221m6pb/
https://apps.twitter.com

Chapter 8

177

3.	 Click on the Create New App button:

Provide the application details. You can fill in anything for description and website as
Twitter will not check for a test app. Let's name the app as ionic_firebase_test.
The most important field here is the Callback URL, as it must be in the https://
auth.firebase.com/v2/<YOUR-FIREBASE>/auth/twitter/callback
format. Since the Firebase app name is ionicebook, the callback URL will be
https://auth.firebase.com/v2/ionicebook/auth/twitter/callback,
as shown in the following screenshot:

https://auth.firebase.com/v2/ionicebook/auth/twitter/callback

User Registration and Authentication

178

4.	 Check off the Allow this application to be used to Sign in with Twitter checkbox.

5.	 Check off the Yes, I agree checkbox for Developer Agreement:

6.	 Click on the Create your Twitter application button.

7.	 Navigate to the Keys and Access Tokens tab:

8.	 Under Application Settings, copy the API Key and API Secret:

You will need to provide Firebase the Twitter API Key and API Secret. Here are
the steps:

Chapter 8

179

9.	 Log in to your Firebase account and select your app (for example, ionicebook).

10.	 Click on the Login & Auth menu.

11.	 Click on the Twitter tab.

12.	 Provide the same Twitter API Key and API Secret that you copied earlier:

13.	 Check off the Enable Twitter Authentication checkbox, and everything will be saved
automatically.

14.	 Don't close the Firebase tab or browser window, as you will be required to come back
to provide information for the Google authentication later.

How it works...
The steps that we went through are used to set up the Twitter app correctly. If you already
have an existing Twitter app, you can just use the API Key and API Secret from this app
instead. As you have already seen, configuring on the side of Firebase to enable the Twitter
authentication only takes two parameters. That's it.

Configuring a Google+ project with Firebase
authentication

Google has a very comprehensive list of cloud services. Also, it's a good idea to include Google
as your authentication mechanism due to a large number of users. In addition, Firebase is a
Google company. Therefore, in the future, this process can be a lot simpler
and you may have access to additional features.

Getting ready
If you don't already have a Google test account, you should create one.

User Registration and Authentication

180

How to do it...
Here are the instructions that are required to set up your Google+:

1.	 Navigate to https://console.developers.google.com.

2.	 Log in to your Google account.

3.	 Click on the Create Project button, as Google calls it a project rather than an app:

4.	 Fill in the name as IonicFirebaseTest, since Google does not allow the usage
of a hyphen or an underscore:

https://console.developers.google.com

Chapter 8

181

5.	 Navigate to APIs & auth | APIs from the menu to the left:

6.	 Under OAuth, click on the Create new Client ID button:

User Registration and Authentication

182

7.	 Provide the client ID details. Make sure that web application is checked, as we use
JavaScript for the app. The Authorized JavaScript origins text box should have
https://auth.firebase.com. The Authorized redirect URIs text box will have
https://auth.firebase.com/v2/ionicebook/auth/google/callback, as
the Firebase app name is ionicebook:

8.	 Click on the Create Client ID button to save the settings.

9.	 Under Client ID for web application, copy the client ID and client secret, which is
used for Firebase:

Chapter 8

183

Similarly, you will need to provide Firebase the Google client ID and client secret. The following
are the steps that are required to accomplish this:

1.	 Log in to your Firebase account and select your app (for example, ionicebook).

2.	 Click on the Login & Auth menu.

3.	 Select the Google tab.

4.	 Provide the same Google client ID and client secret that you copied earlier:

5.	 Check off the Enable Google Authentication checkbox, and everything will be saved
automatically.

How it works...
There is no difference in terms of how Google, Facebook, and Twitter work for the OAuth
authentication. However, note that the redirect or callback URLs for each method are a bit
different. This is because Firebase has a different backend mechanism to handle each
authentication endpoints.

Creating an Ionic social authentication
project for Facebook using $firebaseAuth

So far, you have been just configuring the apps. This recipe will explain how easy it is to
write the code to authenticate a user via Facebook, Twitter, or Google. You will go through an
example app to set up a login button. The user will click on login to authenticate via his or her
social network. Then, the app will display the basic profile information, including the user's
picture. Finally, the user can click on logout to end the session.

User Registration and Authentication

184

Getting ready
The only thing that you need here is the Ionic CLI to perform the steps.

How to do it...
The following instructions are used to code for the Facebook authentication:

1.	 Create a blank Ionic app (for example, SocialAuth), as follows:
$ ionic start SocialAuth blank

2.	 Go to the project folder:
$ cd SocialAuth

3.	 For authentication to work on a physical device, it will need two Cordova plugins,
InAppBrowser and Cookies. The reason is that the authentication popup window
will show in another browser window. Also, for Firebase to work, it needs native
cookie support in the app. Type the following two command lines in your app folder:
$ cordova plugin add org.apache.cordova.inappbrowser

$ cordova plugin add https://github.com/bez4pieci/Phonegap-
Cookies-Plugin.git

4.	 Open the index.html file under /www to edit the main template.

5.	 Install the Firebase and AngularFire modules:
$ sudo bower install angularfire –save –-allow-root

6.	 Add the Firebase and AngularFire modules:
<!-- Firebase -->
<script src="lib/firebase/firebase.js"></script>

<!-- AngularFire -->
<script src="lib/angularfire/dist/angularfire.js"></script>

7.	 Under <body ng-app="starter">, replace with the following code because you
will show four buttons—Facebook, Twitter, Google, and Logout. Then, after logging
in, the UI will display some basic user profile in the user object:
<ion-pane>
 <ion-header-bar class="bar-stable">

Chapter 8

185

 <h1 class="title">Ionic and Firebase Social Login</h1>
 </ion-header-bar>

 <ion-content ng-controller="LoginCtrl">
 <!-- Buttons -->
 <button class="button button-full button-positive"
 ng-click="login(providerConf[0])">Login with
 Facebook</button>
 <button class="button button-full button-positive"
 ng-click="login(providerConf[1])">Login with
 Twitter</button>
 <button class="button button-full button-positive"
 ng-click="login(providerConf[2])">Login with
 Google</button>
 <button class="button button-full button-outline
 button-assertive" ng-click="logout()">Logout</button>

 <!-- Logged-in user text -->
 <div class="card" ng-hide="user">
 <div class="item item-text-wrap">User not
 logged in</div>
 <!-- <div class="item item-text-wrap"
 ng-bind="user.uid"></div> -->
 </div>
 <div class="list" ng-show="user">

 <h2>{{ user.name }}</h2>
 <p>{{ user.uid }}</p>
 <p>{{ user.email }}</p>

 </div>
 </ion-content>
</ion-pane>

8.	 Open app.js under /www/js to edit it.

9.	 Make sure that you include firebase in the module:
var app = angular.module("starter", ["ionic", "firebase"]);

10.	 Keep app.run() the same, as that will not change for this project. However,
delete all the other boilerplate if it exists. You will create the Auth factory and the
LoginCtrl controller.

User Registration and Authentication

186

11.	 Add the Auth factory as follows because you will need to call login() and
logout() and get the user profile data via onAuth(). Calling Firebase() with
your Firebase URL will create a reference object for you to work with:
// create a custom Auth factory to handle $firebaseAuth
app.factory('Auth', function($firebaseAuth, $timeout){
 var ref = new
 Firebase('https://ionicebook.firebaseio.com');
 var auth = $firebaseAuth(ref);

 return {
 // helper method to login with multiple providers
 login: function (provider, options) {
 var result;
 if (options)
 result = auth.$authWithOAuthPopup(
 provider, {scope: options});
 else
 result = auth.$authWithOAuthPopup(provider);
 return result;
 },
 // wrapping the unauth function
 logout: function () {
 auth.$unauth();
 },
 // wrap the $onAuth function with $timeout so it
 processes
 // in the digest loop.
 onAuth: function (callback) {
 auth.$onAuth(function(authData) {
 $timeout(function() {
 callback(authData);
 });
 });
 }
 };
});

12.	 Create the LoginCtrl controller with some initial values in $scope, as follows:
app.controller("LoginCtrl", function($scope, Auth) {
 // Initially set no user to be logged in
 $scope.user = null;

Chapter 8

187

 // Assign permission request per provider
 $scope.providerConf = [
 {
 name: "facebook",
 options: "email,user_likes,
 publish_actions,user_about_me,read_stream"
 },
 {
 name: "twitter"
 // Twitter has no permission object so
 we don't have to pass the options string
 },
 {
 name: "google",
 options: "profile,email,openid"
 },
];
});

13.	 Within the LoginCtrl controller, add the login() function to $scope so that the
frontend can access it. This is done so that the three login buttons just pass the
proper provider string to trigger the login via Firebase:
// Calls $authWithOAuthPopup on $firebaseAuth
// This will be processed by the InAppBrowser
 plugin on mobile
// We can add the user to $scope here or in the $onAuth fn
$scope.login = function scopeLogin(providerObj) {

 Auth.login(providerObj.name, providerObj.options)
 .then(function(authData){
 console.log('We are logged in ' +
 providerObj.name + ' !', authData);
 })
 .catch(function(error) {
 console.error(error);
 });
};

14.	 Assign the logout() function straight from the factory. This is also for the logout
button to call:
// Logs a user out
$scope.logout = Auth.logout;

User Registration and Authentication

188

15.	 Finally, you need to customize the user object based on whether it's a Facebook,
Twitter, or Google login. The main reason behind this is that each method returns its
own social network profile object. You want a uniform way in order to render the user
profile correctly in the template:
// detect changes in authentication state
// when a user logs in, set them to $scope
Auth.onAuth(function(authData) {
 $scope.user = authData;
 console.log(authData);
 if ($scope.user) {
 switch ($scope.user.provider) {
 case "facebook":
 $scope.user.avatar = authData.facebook
 .cachedUserProfile.picture.data.url;
 $scope.user.name = authData.facebook.displayName;
 $scope.user.email = authData.facebook.email;
 break;
 case "twitter":
 $scope.user.avatar = authData.twitter
 .cachedUserProfile.profile_image_url;
 $scope.user.name = authData.twitter.displayName;
 $scope.user.email = authData.twitter
 .cachedUserProfile.description;
 break;
 case "google":
 $scope.user.avatar = authData
 .google.cachedUserProfile.picture;
 $scope.user.name = authData.google.displayName;
 $scope.user.email = authData.google.email;
 break;
 }
 }
});

16.	 Go back to the console and test in your browser. Make sure that you run the following
command line in your project folder and not the /www folder:
$ ionic serve

Chapter 8

189

17.	 You should be able to see the login screen, as shown in the following screenshot:

User Registration and Authentication

190

18.	 When you click on the Facebook button and log in, you should be able to see your
avatar, name, and email:

19.	 Take a look at the console and see more details of the user object. You can expand
on the app and use any data that you like.

Note that for production deployment, you may want to remove all the console.log()
outputs because it's not a good idea to reveal information to the end users (if they decided to
turn on the debug functionality in a browser):

How it works...
The key for the social login to work is calling $authWithOAuthPopup. You can pass a provider
string (such as "facebook", "twitter", and "google") for this and indicate which social
network you want to use. Firebase will take care of the entire login process and return the
user's profile data in an authData object. You can do anything you want with this object.

In the preceding example, the code will take some important fields (email, avatar, ID, and
name) and assign them to the $scope.user object. This is how Angular detects and updates
the template on the frontend. Each social network has its own object structure. That's why you
have to detect it via switch ($scope.user.provider) {} (or if-else) and properly get the
value from the authData object.

Chapter 8

191

There's more...
For testing and development, you can request for any permission. However, if you want to
publish the Facebook app in production, you need to go through a review process. This may
take a few days. For more information on this, visit https://developers.facebook.com/
docs/facebook-login/permissions/v2.5, the Facebook developer website.

Creating a LinkedIn app and configuring
authentication in Auth0

Firebase does not support LinkedIn natively, but it does allow the creation of a custom token.
This method is used mainly when the authentication mechanism is actually performed
somewhere else, either on your own server or another SaaS provider. In this case, you
will be using Auth0 to provide the LinkedIn authentication. You could have performed the
Facebook, Twitter, or Google authentication via Auth0 as well. However, it's recommended to
use Firebase as much as possible as it's simpler to use. This is not only due to cost-related
reasons, but also for the reduction of the number of integration points and code complexity.

Getting ready
Account registration is required for Auth0, Firebase, and LinkedIn in order to perform the
steps in this recipe.

How to do it...
You need to configure your app in Auth0 first by performing the following steps:

1.	 Sign up for an Auth0 account and navigate to https://manage.auth0.com/.

2.	 You will see the dashboard first, but there is nothing there yet because there is no
app defined. To create an app, click on the New App/API button:

https://developers.facebook.com/docs/facebook-login/permissions/v2.5
https://developers.facebook.com/docs/facebook-login/permissions/v2.5
https://manage.auth0.com/

User Registration and Authentication

192

3.	 Give the app a name, as follows:

4.	 You can ignore the first Quick Start tab because it's better to learn through specific
details inside the app. Select the Setting tab and fill out the form. Let's assume that
we used ionicebook as the domain name when creating the account. The callback
URL will be https://ionicebook.auth0.com/mobile and Allowed Origins
(CORS) will have the value file://*, http://localhost:8100/. The reason
behind this is that you have to tell Auth0 that it is OK to get the REST calls from
these URLs. If you run the app in your physical device, it will call from a file system
(file://). If you run the URL via a browser from a local server (ionic serve), it
will be http://localhost:8100/:

Chapter 8

193

5.	 Navigate to the Addons tab:

6.	 Select the Firebase icon:

7.	 A dialog will appear for you to provide the Firebase Secret. If you don't have that
ready, go to the Firebase app and navigate to the Secrets tab:

8.	 Click on the Show button below the input box and then copy the whole secret string,
as shown in the following screenshot:

User Registration and Authentication

194

9.	 Go back to the Auth0 app and paste to the LinkedIn add-on:

10.	 Click on Save.

That's it as regards to configuring Auth0 and Firebase. However, you still need to connect to
LinkedIn. Before changing anything in Auth0, you must get the LinkedIn API and Secret Key to
provide to Auth0. The following are the steps that are required to set up a LinkedIn app:

1.	 Create a LinkedIn account if you don't already have one and log in.

2.	 Navigate to https://www.linkedin.com/developer/apps.

3.	 Click on the Create Application button:

https://www.linkedin.com/developer/apps

Chapter 8

195

4.	 Fill out the form as shown in the following screenshot. The most important part
is that you need to have Website URL as either http://localhost:8100, or
whatever URL you will be using to test the app. You can change this later once
it's in production:

5.	 Make sure that you check off Terms of Use and click on the Submit button.

6.	 Navigate to the Authentication menu to the left. It should be available on the
first page.

User Registration and Authentication

196

7.	 Copy the client ID and client Secret. You will use those for the Auth0 inputs:

8.	 Make sure that you check off the permission that you want to acquire from the users.
In this example, let's check off all the checkboxes so that you can see what LinkedIn
returns in the authentication:

9.	 In order for the authentication process to know the callback, you need to provide that
information in the OAuth inputs. It will be your Auth0 URL, with the trailing /login/
callback instance in the URL:

Chapter 8

197

10.	 Navigate to the Settings tab from the menu to the left and ensure that
Application Status is Development. You will need to switch this to Live when
you go into production:

11.	 Navigate to the JavaScript tab and make sure that Valid SDK Domains is
http://localhost:8100/ or whatever local URL for development:

12.	 Click on the Update button to finish configuring your LinkedIn app.

At this point, you have completed setting up Auth0, connecting it to Firebase and creating your
own LinkedIn app. However, there is one more thing that is required to complete the process,
and that thing is the connection of the Auth0 and LinkedIn app. Otherwise, Auth0 will not
know where to send the data to. This can be done in a few simple steps:

1.	 Navigate to the Auth0 app and browse to Connections | Social from the menu
to the left:

User Registration and Authentication

198

2.	 Click on the Linkedin icon:

3.	 Fill in the API Key and Secret Key that you copied earlier from the LinkedIn app.
Make sure that you check off the attributes and permissions that you want. In this
example, you can check off all of them to review the kind of data that will be returned
from LinkedIn:

Chapter 8

199

4.	 Navigate to the Apps tab in the menu at the top:

5.	 Make sure that your Auth0 app (such as Linkedin Login) is checked off with the
green toggle button.

6.	 Click on Save.

How it works...
So far, you have not written a single line of code. This is because Auth0 and Firebase will take
care of the backend data exchange so that the user will be authenticated via LinkedIn. In the
next section, you will take a look at how simple it is to actually authenticate a user and get the
returned user object.

User Registration and Authentication

200

The way it works in this setup is as follows:

1.	 Auth0 acts as a trigger to call the LinkedIn API to exchange user data.

2.	 Once LinkedIn says, "Okay, this user is authenticated", Firebase will get the object
and store it in the memory. At the same time, Auth0 will ask Firebase to create a
custom token to pass data to Firebase.

3.	 Firebase will then agree to authenticate on its own backend and allow the user to get
data from the Firebase database.

4.	 Ionic will act as the frontend entirely and only render the data, as returned from the
APIs. You will explore more possibilities in this area later on.

There's more...
Auth0 made it easy by providing you with a wizard depending on how you build the app
(for instance, by using an add-on or a third-party plugin). You can download the seed project
from Auth0. However, you need to be aware that the app tends to have more boilerplate
than the most basic code, which will be discussed in the next recipe. The seed project has a
full-blown navigation with routes and templates. You will explore more about those topics in
other chapters.

In case you want to use the seed project, the following are the steps:

1.	 Go to your app page and under the Quick Start tab, let's select Hybrid Mobile App
because Auth0 has specific steps defined for Ionic and Firebase already:

Chapter 8

201

2.	 Next, select Ionic in the SDK list:

3.	 Select Firebase under 3rd Party API:

4.	 Click on the Download A Seed Project button:

It will be useful to know where the Auth0 app is being authorized within the test user LinkedIn
account. During testing and development, you may have to manually remove this authorization
once in awhile. The reason behind this is that there may be some cache or bugs. Removing
the authentication in the test user will let you start from scratch.

User Registration and Authentication

202

The following is the process that provides the details of how to do this:

1.	 Log in as a LinkedIn test user (not the LinkedIn account that has the app, even
though it can be the same).

2.	 In the top-right menu, navigate to Privacy & Settings:

3.	 Navigate to Groups, Companies & Applications from the menu to the left:

4.	 Click on the View your applications link:

Chapter 8

203

5.	 If you have been testing the app, you will see the app name in the list. All you need to
do is to check off the app name and click on Remove:

6.	 After removing the app, the clean list should not have your Auth0 app
name any more. Your list could look different from the one shown in the following
screenshot, depending on the other apps that you have authorized in the past:

User Registration and Authentication

204

Integrating Auth0's LinkedIn authentication
in an Ionic project

Once you have set up Auth0, Firebase, and LinkedIn, the boilerplate code that is needed to
authenticate a user is very simple. This is the beauty of using Auth0 for this process. In this
recipe, you will learn how to go through an app development that is similar to that of the app
that you created earlier for Twitter, Facebook, and Google. Basically, a user will click on Login
to make an authentication dialog pop up. After being authenticated, the app will show the
profile photo, name, unique ID, and email address.

Getting ready
You can start from scratch by creating a blank Ionic app. It's faster to make a copy of the
previous Firebase app and change a few lines of code.

How to do it...
You only need to write code in two files, index.html and app.js:

1.	 You need to download the required modules from Auth0. All of them are located in
Auth0's auth0-ionic example. Navigate to https://github.com/auth0/
auth0-ionic/tree/master/examples/firebase-sample/www/lib
and download auth0-lock, auth0-angular, angular-jwt, firebase, and
angularfire.

2.	 Include these modules in index.html. It will look like this:
 <script src="lib/auth0-lock/build/
 auth0-lock.js"></script>
 <!-- ionic/angularjs js -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>

 <script src="lib/auth0-angular/build/
 auth0-angular.js"></script>
 <script src="lib/angular-jwt/dist/
 angular-jwt.js"></script>
 <script src="lib/firebase/firebase.js"></script>
 <script src="lib/angularfire/dist/
 angularfire.js"></script>

https://github.com/auth0/auth0-ionic/tree/master/examples/firebase-sample/www/lib
https://github.com/auth0/auth0-ionic/tree/master/examples/firebase-sample/www/lib

Chapter 8

205

3.	 Just like in the social authentication app using Firebase, you will need a Login and
Logout button and a place to display some basic user profile. Just change the HTML
under the <body> tag to the following:
<ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Linkedin Authentication</h1>
 </ion-header-bar>

 <ion-content ng-controller="LoginCtrl">
 <!-- Buttons -->
 <button class="button button-full button-positive"
 ng-click="login()">Login with Linkedin</button>
 <button class="button button-full button-outline
 button-assertive" ng-click="logout()">Logout</button>

 <!-- Logged-in profile text -->
 <div class="card" ng-hide="profile">
 <div class="item item-text-wrap">User not
 logged in</div>
 </div>
 <div class="list" ng-show="profile">

 <h2>{{ profile.name }}</h2>
 <p>{{ profile.user_id }}</p>
 <p>{{ profile.email }}</p>

 </div>
 </ion-content>
</ion-pane>

4.	 Open and edit /www/js/app.js.

5.	 You need a global variable to keep track of the session data. This is just
for simplicity, as the best practice is to keep this in local storage or a cookie within
$scope. More information on this will be discussed later.
var LINKEDIN = {};

User Registration and Authentication

206

6.	 Your app must include the modules that we downloaded earlier:
var app = angular.module('starter', [
 'ionic',
 'auth0',
 'angular-jwt',
 'firebase'
]);

7.	 There is no change within app.run(). So, let's leave it as is.

8.	 Unlike Firebase login, Auth0 requires some configuration in your AngularJS app. First,
it initializes authProvider with your Auth0 information. Note that the clientID
variable is the same client ID string from your Auth0 app. Then, you need to tell
Auth0 to send the authentication token string each time an API is called to Firebase.
That's why you set up the function in jwtInterceptorProvider and push it to
$httpProvider:
app.config(function(authProvider, jwtInterceptorProvider,
$httpProvider) {
 // Configure Auth0
 authProvider.init({
 domain: 'ionicebook.auth0.com',
 clientID: 'eVuc9hYlogywlBFmSA89QuO2bif6oC3J',
 loginState: 'login'
 });

 jwtInterceptorProvider.tokenGetter = function(store,
 jwtHelper, auth) {
 var idToken = LINKEDIN.token;
 var refreshToken = LINKEDIN.refreshToken;
 if (!idToken || !refreshToken) {
 return null;
 }
 if (jwtHelper.isTokenExpired(idToken)) {
 return auth.refreshIdToken(refreshToken).
 then(function(idToken) {
 LINKEDIN.token = idToken;
 return idToken;
 });
 } else {
 return idToken;
 }
 }

Chapter 8

207

 $httpProvider.interceptors.push('jwtInterceptor');
});

9.	 You need to write the code for the LoginCtrl controller. This will have two
functions: login() and logout(), as follows:
app.controller('LoginCtrl', function($scope, $rootScope,
auth) {
 $scope.login = function() {
 auth.signin({
 closable: false,
 // This asks for the refresh token
 // So that the user never has to log in again
 authParams: {
 scope: 'openid offline_access'
 }
 }, function(profile, idToken, accessToken, state,
 refreshToken) {
 LINKEDIN.profile = profile;
 $scope.profile = profile;
 console.log('profile:');
 console.log(profile);
 LINKEDIN.token = idToken;
 LINKEDIN.refreshToken = refreshToken;
 auth.getToken({
 api: 'firebase'
 }).then(function(delegation) {
 console.log('delegation:');
 console.log(delegation);
 }, function(error) {
 console.log("There was an error logging in",
 error);
 })
 }, function(error) {
 console.log("There was an error logging in", error);
 });
 }

 $scope.logout = function() {
 auth.signout();
 LINKEDIN = {};
 $scope.profile = undefined;
 }
});

User Registration and Authentication

208

10.	 There are many lines with console.log(). The goal is to output the entire object
so that you can inspect its data. After saving both the files, you can test these on the
browser, as follows:
$ ionic serve

11.	 Authenticate via the LinkedIn test user's account and open the browser console. You
should be able to inspect the profile object and the delegation object that is passed
to Firebase:

How it works...
Note that the login modal is not from the current code. It was a ready-to-use template
from Auth0 when you included auth0-lock.js. You don't have to use this template, but
it's convenient for the purpose of this recipe. The signin() function does the majority
of the work to authenticate the user and return the profile object. Then, you will need to
use the getToken() function to encapsulate the data in a JSON object so that it can be
given to Firebase. Later, we will also define how Firebase uses this information to create
a custom token using authWithCustomToken() as well. The basic mechanism is that
Firebase will receive all the profile data and use the information to properly decide upon
the user permission using the security rule of Firebase. For example, your app only allows
authenticated users to have access to their own data. Therefore, you need to map the email
address to userId and ensure that userId is the same as ownerId.

See also
This recipe does not cover local storage, because when the app is closed and the user comes
back, they can still be authenticated automatically without having to log in to LinkedIn again.
You will learn more about local storage using JavaScript and Cordova plugin in the later
chapters of this book.

209

9
Saving and Loading

Data Using Firebase

In this chapter, we will cover the following tasks related to persistent data operations
using Firebase:

ff Saving array data to Firebase

ff Rendering a large Firebase data set using collection-repeat

ff Saving form data to Firebase

Introduction
You will learn how to send and receive data between Ionic and a backend server, which is
Firebase in our case. As an app developer, you will want to spend more time on building a
solution for your customers than building a backend server with a database on your own.
Firebase can act as a real-time database so that your app data can be synchronized between
the database, frontend model objects, and the view layer (that is, what users actually see).
This three-way binding is powerful because it simplifies many complex implementation
scenarios such as the following:

ff Chatting or messaging when there are multiple users sending and receiving data
ff Saving a multistep form's data
ff A real-time collaboration app that requires you to save a complex dataset
ff A real-time data feed for a social networking app

The key benefits of Firebase as a backend database is that you can ensure that there is a
very low latency between saving data to the server and receiving an acknowledgement. This
is very critical in mobile app development, where the response time is critical to ensure a
good user experience.

Saving and Loading Data Using Firebase

210

All the examples in this chapter will use AngularFire because it already has all the API operations
provided for objects and arrays such as add, remove, save, and get. More information about
the AngularFire API can be found at https://www.firebase.com/docs/web/libraries/
angular/api.html.

If you have used AngularFire before the release of version 1.0, there have been some changes
in the API implementation. Firebase has made the migration guide available at https://
www.firebase.com/docs/web/libraries/angular/migration-guides.html.

Saving array data to Firebase
Sending and saving data to the Firebase backend server is as simple as calling the $add()
function. Firebase automatically handles all the REST operations so that you don't have to call
via the $http services or create your own. From a frontend developer's perspective, you can
treat your data as a typical JavaScript object.

In this recipe, you will learn how to make connections to Firebase by creating a reference object
and adding data into the object in the array format. Firebase treats an array like an object. The
only difference is that each array's item will have an integer key. Here's an example:

// When we send this
['a', 'b', 'c', 'd', 'e']
// Firebase stores this
{0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'}

Getting ready
You should log in to your Firebase dashboard ahead of time and navigate to the Data tab.
The code will create a node called items to store data. You need to make sure that there
is no existing items node, in case you created one before.

How to do it...
Here are the instructions for adding 100 items in the items array stored in Firebase:

1. Create a blank Ionic app (such as firebase-ionic) and change the directory
to that folder:
$ ionic start firebase-ionic blank

2. Edit index.html to make sure that Firebase and AngularFire (below ionic.
bundle.js) are included:
 <script src="lib/firebase/firebase-v2.2.4.js"></script>
 <script src="lib/firebase/
 angularfire-v1.1.1.min.js"></script>

https://www.firebase.com/docs/web/libraries/angular/api.html
https://www.firebase.com/docs/web/libraries/angular/api.html
https://www.firebase.com/docs/web/libraries/angular/migration-guides.html
https://www.firebase.com/docs/web/libraries/angular/migration-guides.html

Chapter 9

211

You may wish to confirm with Firebase documentation for the latest
versions and compatibility between Firebase and AngularFire. This
example uses Firebase v2.2.4 and AngularFire v1.1.1 because they
were the latest releases.

3. Open app.js to edit it. You may want to delete its entire contents because you will
rewrite most of it.

4. Create two variables: app for the starter app and ref for the Firebase reference:
var app = angular.module('starter', ['ionic', 'firebase']);
var ref = new
Firebase('https://ionicebook.firebaseio.com/items/');

The items node does not need to exist in your Firebase application prior to
creating a JavaScript reference to it. Firebase will automatically create it in
the backend. If you want to create any node to store data, all you need to do
is append the name in the URL. You should replace ionicebook with your
own Firebase account.

5. Create the app.run() function as follows:
app.run(function($ionicPlatform, $firebaseArray,
$timeout) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this
 to show the accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {

cordova.plugins.Keyboard.
hideKeyboardAccessoryBar(true);

 }
 if(window.StatusBar) {

StatusBar.styleDefault();
 }

 });

 // $firebaseArray is new in 1.0.0
 // Instructions to migrate from previous version:
 // https://www.firebase.com/docs/web/
 libraries/angular/migration-guides.html
 var items = $firebaseArray(ref);

 // Wait for items array to load from server
 items.$loaded().then(function(data) {

Saving and Loading Data Using Firebase

212

 console.log('Number of items = ' + data.length);

 // If there is no data, then add 100 items to the array
 if (data.length == 0) {

for (var i=0; i<100; i++) {
data.$add({

name: "Item " + i,
$priority: i // Priority is used to ensure
they are displayed in order

});
}

 }
 })
});

6. Go to the command line and run the app using ionic serve.

7. Navigate back to the Data tab of Firebase.

8. You should be able to see 100 records inserted in the items node, as shown in
the following screenshot:

How it works...
So far, you have not done anything in the Ionic interface. The preceding code only
inserts 100 records in the items node in Firebase. This operation must happen within
items.$loaded().then() because you have to ensure that Firebase finished its initialization
of the connection. Then, for each record, you loop through a simple for loop and call $add().
The code also adds $priority in the JSON object. This is optional, because you want the data
to be displayed properly in order later on. You can have any key and value in this JSON object.

Chapter 9

213

Rendering a large Firebase data set using
collection-repeat

When your app grows, the size of the database also grows. Typically, there are many ways to
handle large datasets such as paging, caching, and filtering. However, there is a very useful
feature in Ionic that allows you to repeat through a large list of items without sacrificing
performance. Ionic's collection-repeat is similar to AngularJs' ng-repeat. The main
difference is its rendering mechanism. Most of the time, the app does not need to render
thousands of items at once. So, collection-repeat accesses only a subset of the data
and binds it to the current page, where it is visible to the user.

Getting ready
You will continue to work on the previous app. There are some modifications in index.html
and app.js.

How to do it...
Here is how you can retrieve data and add, edit, and delete items:

1.	 Open index.html to edit it.

2.	 Insert the following code within <body>:
<ion-pane ng-controller="ItemCtrl">
 <ion-header-bar class="bar-calm item-input-inset">
 <label class="item-input-wrapper">
 <i class="icon ion-plus placeholder-icon"></i>
 <input type="text" placeholder="Insert New Item"
 ng-model="newItem">
 </label>
 <button class="button button-positive"
 ng-click="add(newItem); newItem='';">
 Add
 </button>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item class="item item-avatar"
 collection-repeat="item in items">

 <h2>{{ item.name }}</h2>
 <p>Description for {{ item.name }}</p>

Saving and Loading Data Using Firebase

214

 <ion-option-button class="button-dark"
 ng-click="edit(item)">
 Edit
 </ion-option-button>
 <ion-option-button class="button-assertive"
 ng-click="delete(item)">
 Delete
 </ion-option-button>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-pane>

You will write some code in app.js to handle ItemCtrl later. The preceding
code is very simple, as it will perform the following functions:

�� It can render all the items in a list.

�� If you swipe left, it shows the Edit and Delete buttons. This can be
done via <ion-option-button>. You should always use it within
the <ion-list> and <ion-item> hierarchy because that is how
Ionic structures the directives.

�� The top header bar will have an input box and an Add button to add
new records.

3.	 When a user edits an entry, there will be a modal popup with an input box to
change the value of that entry. You need a template for the content of this Ionic
modal. So, insert the following code after <ion-pane>:
<script type="text/ng-template" id="edit.html">
 <ion-modal-view>
 <ion-header-bar>
 <h1 class="title">Edit Item</h1>
 </ion-header-bar>
 <ion-content>
 <div class="list">
 <label class="item item-input">
 Name
 <input type="text" ng-model="editedItem.name">
 </label>
 </div>
 <button class="button button-full
 button-positive" ng-click="save()">
 Save
 </button>
 <button class="button button-full
 button-stable" ng-click="close()">

Chapter 9

215

 Cancel
 </button>
 </ion-content>
 </ion-modal-view>
</script>

You can place the template code anywhere, either inside a <script> tag or in a
separate HTML file, which needs to be linked either via a router or an Ionic modal
delegate. This modal has wired the editedItem.name model to the input box.
When a user clicks on the Save button, it will call the save() function to send
data to Firebase.

4.	 Now, let's work on app.js to create the logic in your ItemCtrl:
app.controller('ItemCtrl', function($scope,
$firebaseArray, $ionicModal, $ionicListDelegate) {

 $scope.items = $firebaseArray(ref);
 $scope.editedItem = {};

 $scope.items.$loaded().then(function(data) {
 // Start the priority value which is lower
 than previous
 // The lower the value, the higher it is
 appearing on the list
 $scope.newPriority = (data.length > 0)
 ? data[0].$priority - 1 : -1;
 console.log("Items have been loaded:");
 console.log(data);
 });

 // Load template for modal to edit an item
 $ionicModal.fromTemplateUrl('edit.html', {
 scope: $scope,
 animation: 'slide-in-up'
 }).then(function(modal) {
 $scope.modal = modal;
 });
});

You need to load the Firebase data again to $scope.items so that the view has
access to the array. After the data is loaded, $scope.newPriority is assigned with
a value that is smaller than the latest priority value in the zero index of the array. The
$ionicModal.fromTemplateUrl() function is also called to load the template
in the memory. Then, the entire modal directive is assigned to the $scope.modal
object. This will allow you to programmatically show and hide the modal later.

Saving and Loading Data Using Firebase

216

5.	 Also, within ItemCtrl, you need to add those functions to handle interactions
from the view layer:
$scope.add = function(val) {
 if (!val || val.length === 0 || !val.trim()) {
 alert("Your value is invalid");
 } else {
 $scope.items.$add({
 name: val,
 $priority: $scope.newPriority
 });
 $scope.newPriority--;
 }
};

$scope.edit = function(item) {
 $scope.editedItem = item;
 $scope.modal.show();
};

$scope.save = function() {
 $scope.items.$save($scope.editedItem);
 $scope.modal.hide();
 $ionicListDelegate.closeOptionButtons();
};

$scope.close = function() {
 $scope.modal.hide();
 $ionicListDelegate.closeOptionButtons();
};

$scope.delete = function(item) {
 $scope.items.$remove(item);
 $ionicListDelegate.closeOptionButtons();
};

Deleting a record is very simple; you just have to call $scope.items.$remove().
You can pass an index of the record or the record itself, which is an object reference.
You can add a record by calling $scope.items.$add() and passing the record
content. AngularFire will take care of the entire REST API operation. The edit()
function here is actually used to just show the modal and assign the item object
to $scope.editedItem.

Chapter 9

217

The reason behind this assignment is that the modal needs to know which
record it is dealing with. So, it's best to make a separate reference and have
it available for the modal. Once the user edits the content of this record,
$scope.items.$save() will take care of the save operation.

6.	 Go back to the command line to run the app via ionic serve.

7.	 You should be able to see the following in the browser:

8.	 Open the browser console to take a look at the array object's output. This is just done
so that you understand what is returned to the browser.

Saving and Loading Data Using Firebase

218

9.	 Navigate to the Elements tab of the console. If you scroll down, note that the <ion-
item> content is actually being updated dynamically. This is the result of using
collection-repeat, as it only keeps one page of records in the DOM. When you
scroll down, collection-repeat will update the <ion-item> tag instead. This
allows infinite scrolling without you realizing that you are going through the content
page by page.

How it works...
The app created in the preceding recipe can be very complicated if you build your own
backend and frontend code to achieve the same scrolling performance. The key here is to
assign $firebaseArray() to some object within $scope so that you can perform data
operations while allowing the function to bind data at the view level. There is no need to
create another ItemViewModel instance, especially for situations such as when you need
to just handle the synchronization between frontend data and the view model.

It's best to use collection-repeat whenever possible in your Ionic app. The data in
collection-repeat must be an array, which is similar to how ng-repeat works. You
cannot use one-time binding (::model), because collection-repeat needs to update
the model for each item in the list. You don't need to worry about the number of items in the
list as well as the height of the item on the screen. Also, it's a good practice to cache images
if is used for collection-repeat.

There's more...
For more information about collection-repeat, visit http://ionicframework.com/
docs/api/directive/collectionRepeat/.

Saving form data to Firebase
This recipe will cover another example of using Firebase as a persistent storage layer for
your app. A very common use case that you will see in every app is the ability to have users
fill out a form and save data to the server. Sometimes, there is more than one form in the
entire process. A good example is a multistep shopping cart checkout app.

http://ionicframework.com/docs/api/directive/collectionRepeat/
http://ionicframework.com/docs/api/directive/collectionRepeat/

Chapter 9

219

You will create an app that will:

ff Have three screens with a form per screen

ff Allow a user to either swipe or click on the Back and Next buttons to navigate
horizontally to each screen

ff Let a user submit the form and save it to Firebase

Getting ready
You can close the previous app from your editor because this example will start with a brand
new app.

How to do it...
Here are the steps:

1.	 Let's start with a blank Ionic app (such as firebase-ionic-form) and include
firebase-v2.2.4.js and angularfire-v1.1.1.min.js in the index.html
header, as follows:
$ ionic start firebase-ionic-form blank

2.	 Structure the index.html file in such a way that it has a header and a body area
with a slide box. But first, you need to assign a controller and a full-screen class so
that the form can take the entire space of the device screen:
<body ng-app="starter" ng-controller="FormCtrl"
class="full-screen">
Open /www/css/style.css to add some custom styles
.full-screen {
 position: fixed;
}

body > div.has-header.full-screen {
 height: 100%;
}

.slider {
 height: 100%;
}

By default, Ionic's slider will only expand as far as the inner content goes. So,
if your content only takes half of the space, Ionic's slider won't expand all the
way to the bottom. This means that users cannot swipe if they touch the second
half of the screen, because Ionic's slider cannot detect a touch event outside its
own covered area.

Saving and Loading Data Using Firebase

220

3.	 Add the header within the <body> tag, as follows:
<div class="bar bar-header">
 <button class="button" ng-if="data.currentSlide > 0"
 ng-click="data.currentSlide = data.currentSlide – 1">
 <i class="icon ion-chevron-left"></i>
 Back
 </button>
 <h1 class="title">Step {{ data.currentSlide + 1 }}</h1>
 <button class="button button-positive"
 ng-if="data.currentSlide < 2" ng-click="data.currentSlide
 = data.currentSlide + 1">
 Next
 <i class="icon ion-chevron-right"></i>
 </button>
 <button class="button button-positive"
 ng-if="data.currentSlide == 2" ng-disabled="data.
 completed" ng-click="submit()">
 Purchase
 </button>
</div>

There is a lot going on in this header. But for the most part, the user will see a
Back and Next button. The Purchase button only appears when you are on the
last slide (which is slide 2) of the slider. The slide box will bind to this data.
currentSlide variable so that you can get the current value or assign a value
to it in order to programmatically change the slide.

4.	 Insert the following ion-slide-box code:
<div class="has-header full-screen">
 <ion-slide-box active-slide="data.currentSlide">
 <ion-slide>
 <div class="list">
 <label class="item item-input">
 First
 <input type="text" ng-model="formData.first">
 </label>
 <label class="item item-input">
 Last
 <input type="text" ng-model="formData.last">
 </label>
 <label class="item item-input">
 Email
 <input type="email" ng-model="formData.email">
 </label>
 </div>
 </ion-slide>

Chapter 9

221

 <ion-slide>
 <div class="list">
 <label class="item item-input">
 <input type="text" pattern="\d*"
 placeholder="Card Number" ng-model="formData.cc">
 </label>
 <label class="item item-input">
 <input type="text" pattern="\d*" placeholder
 ="CVC" maxlength="4" ng-model="formData.cvc">
 </label>
 <label class="item item-input">
 <input type="text" pattern="\d*" placeholder
 ="Expiration" maxlength="4"
 ng-model="formData.exp">
 </label>
 </div>
 </ion-slide>
 <ion-slide>
 <ul class="list">
 <li class="item item-input item-select">
 <div class="input-label">
 LCD TV
 </div>
 <select ng-model="formData.model">
 <option value="60-in" selected>60
 Inches</option>
 <option value="65-in">65 Inches</option>
 <option value="70-in">70 Inches</option>
 </select>

 <li class="item item-toggle">
 Extended Warranty
 <label class="toggle toggle-assertive">
 <input type="checkbox"
 ng-model="formData.warranty">
 <div class="track">
 <div class="handle"></div>
 </div>
 </label>

 <h4 class="balanced" ng-if="data.completed">Your
 purchase has been completed!</h4>
 </ion-slide>
 </ion-slide-box>
</div>

Saving and Loading Data Using Firebase

222

You must declare active-slide="data.currentSlide" in order for the slide
box directive to know the variable on which to perform two-way binding. The structure
of a slide box is similar to <select> and <option> in HTML. You basically start
the group with <ion-slide-box>, and for each box, you just need to put the
HTML content inside <ion-slide>.

The rest of the code comprises just regular form elements such as select,
text, and number inputs. Bind each input with a model such as formData.
first (that is, first name) or formData.email (that is, email).

5.	 Open app.js to edit it. You may want to delete the entire content and insert the
following in it:
var app = angular.module('starter', ['ionic', 'firebase']);

app.run(function($ionicPlatform, $firebaseArray,
$timeout) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this
 to show the accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.
 hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 });
});

app.controller('FormCtrl', function($scope,
$firebaseArray) {
 var ref = new Firebase('https://ionicebook.firebaseio
 .com/transactions/');
 $scope.transactions = $firebaseArray(ref);
 $scope.formData = {};
 $scope.data = {
 completed: false,
 currentSlide: 0

Chapter 9

223

 };

 // If user changes slide, make notification disappear
 $scope.$watch('data.currentSlide',
 function(newVal, oldVal) {
 if ((newVal < 2) && (oldVal == 2))
 $scope.data.completed = false;
 })

 $scope.submit = function() {
 // Check if the form is "dirty" or not as user
 must fill out something
 if (angular.equals({}, $scope.formData)) {
 alert("Your form is empty");
 } else {
 // Add the entire $scope.formData object to
 Firebase and reset it
 $scope.transactions.$add($scope.formData).
 then(function(res) {
 $scope.formData = {};
 $scope.data.completed = true;
 // Mark "completed" to show the notification
 in view
 });
 }
 };
});

Your FormCtrl controller is very simple in this case. In a real-world application,
there are more steps to validate the form data. For example, the customer name
must be alphabetical in nature and a credit card's expiration date must be valid.
However, this section will not delve into validation. The focus here is to explain how to
just send data to Firebase by calling the $scope.transactions.$add() function.

6.	 Run the app and fill out some fake data in the form, as follows:

Saving and Loading Data Using Firebase

224

7.	 Click on Purchase, and you will see the Your purchase has been completed!
confirmation text. This means that the app has successfully sent the data to
Firebase and all the form models are reset:

8.	 To confirm that the data existed in Firebase, go to your Firebase app and look at the
transactions node. You will see a JSON, like the following screenshot:

This means that all the form data has been saved successfully to your Firebase app.

How it works...
The simple example in the preceding section helps demonstrate a few key concepts.
These concepts are as follows:

ff You can have multiple forms using any method such as a slide box or another route
in a Single-Page Application structure. You can save data to Firebase in the last step
using one simple call to $add().

ff By default, Ionic's slide box does not cover the entire screen. You may want to
modify some styles to change this behavior.

ff Form data is just a JSON model. You can bind each value to an input box.

Chapter 9

225

ff The active-slide option of <ion-slide-box> is the two-way data binding. So,
you can get the current slide or change it to make the slide box jump to a particular
slide.

ff There are many ways that can be used to detect the state of your form: empty,
valid, invalid, submitted, and so on. The preceding example does not go deep
into validation but just provides a few easy paths to check the state using the data.
currentSlide or data.completed variables.

In addition to this, note the use of the $scope.$watch('data.currentSlide',
function(newVal, oldVal) in the controller. Since the app provides users with two ways
to navigate each slide (either click on the Back and Next button, or swipe), you need to actually
bind data to the live value of the slide number. So, if the user navigates away from the last slide
(which is slide 2), you basically tell the view to hide the notification text. By default, the text does
not appear until after the submit() function is called.

227

10
Finalizing Your Apps for

Different Platforms

In this chapter, we will cover the following tasks related to building and publishing apps:

ff Building and publishing an app for iOS

ff Building and publishing an app for Android

ff Using PhoneGap Build for cross-platform applications

Introduction
In the past, it used to be very cumbersome to build and successfully publish an app. However,
there is much documentation and many unofficial instructions on the Internet today that can
pretty much address any problem that you may run into. In addition, Ionic also comes with
its own CLI to assist in this process. This chapter will guide you through the app building and
publishing steps at a high level. You will learn how to:

ff Build an iOS and Android app via the Ionic CLI

ff Publish an iOS app using Xcode via iTunes Connect

ff Build a Windows Phone app using PhoneGap Build

The purpose of this chapter is to provide ideas on what to look for and some gotchas. Apple,
Google, and Microsoft are constantly updating their platforms and processes. So, the steps
may not look exactly the same over time.

Finalizing Your Apps for Different Platforms

228

Building and publishing an app for iOS
Publishing on the App Store can be a frustrating process if you are not well prepared upfront.
In this recipe, we will go through the steps that are required to properly configure everything in
the Apple Developer Center, iTunes Connect, and a local Xcode project.

Getting ready
You must register for the Apple Developer Program in order to access https://developer.
apple.com and https://itunesconnect.apple.com because these websites will
require an approved account.

In addition to this, the instructions in the subsequent recipes use the latest version of the
following components:

ff Mac OS X Yosemite 10.10.4

ff Xcode 6.4

ff Ionic CLI 1.6.4

ff Cordova 5.1.1

How to do it...
Here are the instructions to build and publish an app for iOS:

1.	 Make sure that you are in the app folder and build for the iOS platform:
$ ionic build ios

2.	 Go to the ios folder /platforms and open the .xcodeproj file in Xcode:

https://developer.apple.com
https://developer.apple.com
https://itunesconnect.apple.com

Chapter 10

229

3.	 Go through the General tab to make sure that you have the correct information
for everything, especially the information related to Bundle Identifier and version.
Change and save this as needed:

4.	 Visit the Apple Developer website and click on Certificates, Identifiers & Profiles:

Finalizing Your Apps for Different Platforms

230

5.	 For an iOS app, you just have to go through the steps on the website and fill out the
necessary information:

The important part that you need to do correctly here is, going to
Identifiers | App IDs because it must match your Bundle Identifier in Xcode.

6.	 Visit iTunes Connect and select the My Apps button:

7.	 Select the Plus (+) icon and click on New iOS App:

Chapter 10

231

8.	 Fill out the form and make sure that you select the right Bundle Identifier for
your app:

There are several additional steps that require you to provide information about the
app such as screenshot, icon, address, and so on. If you just want to test the app, you
can just provide some placeholder information initially and come back to edit it later.

That's it when it comes to preparing your Developer and iTunes Connect account.

9.	 Now, open Xcode and select iOS Device as the archive target. Otherwise, the Archive
feature will not be turned on. You will need to archive your app before you can submit
it to the App Store.

Finalizing Your Apps for Different Platforms

232

10.	 Navigate to Product | Archive in the menu at the top:

11.	 After the archive process is completed, select Submit to App Store to finish the
publishing process.

12.	 At first, the app may take an hour to appear in iTunes Connect. However, subsequent
submissions will happen faster. You should look for the build in the iOS App 1.0
Prepare for Submission menu in iTunes Connect. Then select the build version
(which is 0.0.1 in this case) and click on the Done button.:

iTunes Connect has a very nice integration with TestFlight to test your app.
You can switch this feature on and off. Note that for each publication, you have
to change the version number in Xcode so that it won't conflict with the existing
version in iTunes Connect.

13.	 To publish the app, select Submit for Beta App Review. You may want to go through
other tabs such as Pricing and In-App Purchases to configure your own requirements.

Chapter 10

233

How it works...
This recipe obviously does not cover every bit of detail in the publishing process. In general,
you just need to make sure that your app is locally tested thoroughly in a physical device
(either via USB or TestFlight) before submitting it to the App Store.

If for some reason the Archive feature doesn't build, you can manually go to the local Xcode
folder to delete the specific temporarily archived app to clear the cache, as follows:

~/Library/Developer/Xcode/Archives

See also
TestFlight is a separate subject in itself. The benefit of TestFlight is that you don't need your
app to be approved by Apple in order to install the app on a physical device for internal
testing and development. You can find out more about TestFlight at https://developer.
apple.com/library/prerelease/ios/documentation/LanguagesUtilities/
Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html.

Building and publishing an app for Android
Building and publishing an Android app is a little more straightforward than iOS because
you just interface with the command line to build an .apk file and upload it to Google Play
Developer Console. The Ionic Framework documentation also has a great instruction page
for this, which can be viewed by visiting http://ionicframework.com/docs/guide/
publishing.html.

Getting ready
The requirement is to have your Google Developer account ready and log in to https://
play.google.com/apps/publish. Your local environment should also have the right
SDK as well as the keytool, jarsigner, and zipalign command line for that specific version.

How to do it...
Here are the instructions to build and publish an app for Android:

1.	 Go to your app folder and build the release for Android:
$ ionic build --release android

https://developer.apple.com/library/prerelease/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
https://developer.apple.com/library/prerelease/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
https://developer.apple.com/library/prerelease/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
http://ionicframework.com/docs/guide/publishing.html
http://ionicframework.com/docs/guide/publishing.html
https://play.google.com/apps/publish
https://play.google.com/apps/publish

Finalizing Your Apps for Different Platforms

234

2.	 You will see android-release-unsigned.apk in the apk folder under /
platforms/android/build/outputs. Go to this folder in the Terminal:

3.	 If you're creating this app for the first time, you must have a keystore file. This file is
used to identify your app for publishing. If you lose it, you cannot update your app
later on. To create a keystore, type the following command line and make sure that
it's the same keytool version of the SDK:
$ keytool -genkey -v -keystore my-release-key.keystore -alias
alias_name -keyalg RSA -keysize 2048 -validity 10000

4.	 Once you fill out the information in the command line, make a copy of this file
and keep it somewhere safe because you will need it later.

5.	 The next step is to use this file to sign your app so that it will create a new .apk
file that Google Play allows users to install:
$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
my-release-key.keystore HelloWorld-release-unsigned.apk alias_name

Chapter 10

235

6.	 To prepare for the final .apk file before upload, you must package it using
zipalign, as follows:
$ zipalign -v 4 HelloWorld-release-unsigned.apk HelloWorld.apk

You must use the correct version of zipalign tool based on the Android
SDK version. For Mac users, if you picked SDK v22, the zipalign path
will be very likely at /Users/[YOUR USERNAME]/Library/
Android/sdk/build-tools/22.0.1/.

7.	 Log in to the Google Developer Console and select Add new application:

8.	 Fill out as much information for your app as possible using the menu to the left:

Finalizing Your Apps for Different Platforms

236

9.	 Now, you are ready to upload the .apk file. First perform a Beta test:

10.	 Once you are done with Beta testing, you can follow the Developer Console
instructions to push the app to Production.

How it works...
This recipe does not cover other Android marketplaces such as Amazon Appstore because
each of them has different processes. However, the common idea is that you need to
completely build the unsigned version of .apk, sign it using an existing or new keystore
file, and finally zipalign to prepare for upload.

Using PhoneGap Build for cross-platform
applications

Adobe PhoneGap Build is a very useful product that provides build-as-a-service in the
cloud. If you are having trouble building an app locally in your computer, you can upload
the entire Ionic project to PhoneGap Build, and it will build the app for Apple, Android,
and Windows Phone automatically.

Getting ready
Go to https://build.phonegap.com and register for a free account. You will be able to
build one private app for free. For additional private apps, there is a monthly fee associated
with the account.

https://build.phonegap.com

Chapter 10

237

How to do it...
Here are the instructions to use PhoneGap Build for cross-platform applications:

1.	 Zip the entire /www folder and replace cordova.js with phonegap.js in
index.html, as described in http://docs.build.phonegap.com/en_US/
introduction_getting_started.md.html#Getting%20Started%20
with%20Build.

2.	 You may have to edit config.xml to ensure that all the plugins are included.
Detailed changes are available in PhoneGap documentation, which can be viewed
by visiting http://docs.build.phonegap.com/en_US/configuring_
plugins.md.html#Plugins.

3.	 Select Upload a .zip file under the private tab:

4.	 Upload the ZIP file of the www folder.

5.	 Make sure that you upload an appropriate key for each platform. For a Windows
Phone, upload the publisher ID file.

6.	 After this, you just build the app and download the completed build file for
each platform.

How it works...
In a nutshell, PhoneGap Build is a convenient way of building apps when you are only familiar
with one platform during the development process but you want your app to be built quickly
for other platforms. Under the hood, PhoneGap Build has its own environment to automate
the process for each user. However, the user still has to own the responsibility of providing a
key file to sign the app. PhoneGap Build just helps you attach the key to your app.

http://docs.build.phonegap.com/en_US/introduction_getting_started.md.html#Getting%20Started%20with%20Build
http://docs.build.phonegap.com/en_US/introduction_getting_started.md.html#Getting%20Started%20with%20Build
http://docs.build.phonegap.com/en_US/introduction_getting_started.md.html#Getting%20Started%20with%20Build
http://docs.build.phonegap.com/en_US/configuring_plugins.md.html#Plugins
http://docs.build.phonegap.com/en_US/configuring_plugins.md.html#Plugins

Finalizing Your Apps for Different Platforms

238

See also
A common issue that people face when using PhoneGap Build is a failure to build. You
may want to refer to their documentation to troubleshoot. This documentation is available
at http://docs.build.phonegap.com/en_US/support_failed-builds.
md.html#Failed%20Builds.

http://docs.build.phonegap.com/en_US/support_failed-builds.md.html#Failed%20Builds
http://docs.build.phonegap.com/en_US/support_failed-builds.md.html#Failed%20Builds

239

Index
Symbol
$scope.$digest() function 92

A
addUser() function 117
AngularFire API

reference 210
AngularJS

controller 5
directive 5
filter 6
service 6

app
animating, requestAnimationFrame using with

event binding 160-167
building, for Android 233-236
building, for iOS 228-232
publishing, for Android 233-236
publishing, for iOS 228-232

array data
saving, to Firebase 210-212

B
blank template

Ionic, setting up with 5

C
communication, between various components

controller to directive 126
directive to factory 126
enabling, events used 126-134

factory to factory 126
state to view and/or controller 126
view to controller 126
view to view 126

contact
adding 74-80
picking 73-81

Cordova
URL 57

Cordova Google Maps plugin
features 93
reference 81

Cordova Video Player plugin
URL 68

CSS3 filters
URL 64

custom filter
creating 155-159

D
development environment

setting up 2-4
device camera

used, for capturing photo 58-63
drag events

detecting, with gesture coordinate 120-125

E
email

composing with attachment, from app 68-72
examples

copying, from Ionic Codepen Demos 11, 12

240

F
Facebook app

configuring, with Firebase
authentication 171-175

Filterous
URL 63

Firebase
array data, saving to 210-212
form data, saving to 218-224
large dataset, rendering with

collection-repeat 213-218
Firebase authentication

for configuring Facebook app 171-175
for configuring Google+ project 179-183
for configuring Twitter app 176-179

G
Genymotion for Android

for viewing HelloWorld app 20-27
getGroupsAll() function 117
getGroupsByUserId() function 117
Google Maps

adding, with geocoding support 81-94
Google+ project

configuring, with Firebase
authentication 179-183

gotoMyLocation() function 92
Greensock

URL 167

H
HelloWorld app

creating, via CLI 4-6
creating, via Ionic Creator 7-10
folder structure, customizing 31
viewing, Genymotion for Android used 20-27
viewing, Ionic View used 27-30
viewing, iOS Simulator used 16
viewing, web browser used 13-16
viewing, Xcode for iOS used 17-19

I
Instagram plugin

URL 63
introduction screen

creating, with custom header 139-147
Ionic

advantages 2
standard templates 4

Ionic CLI
reference 5

Ionic Codepen Demos
about 11
examples, copying from 11, 12
URL 11

Ionic Creator
HelloWorld app, creating with 7-10
reference 7

Ionic social authentication project
creating for Facebook,

$firebaseAuth used 183-190
Ionic View

about 27
benefits 30
for viewing HelloWorld app 27-30

L
LinkedIn app

authentication, configuring in Auth0 191-203
creating, in Auth0 191

Linkedin authentication, in Auth0
integrating, in Ionic project 204-208

Local Storage
to-do app, creating for 96-102

M
Media Capture plugin

URL 67
multistep form

creating, with validation 42-54

241

N
ngCordova

URL 57
Node.js

URL 2

O
out-of-the-box filters

reference 155

P
Package Control

about 3
URL 3

PhoneGap Build
about 236
URL 236
using, for cross-platform

applications 236-238
working 237

photo
capturing, device camera used 58-63

Plugin Manager 3
progress bars 150
promise 116

S
scroll progress bar directive

creating 150-152
working 153, 154

setCenterLocation() function 92
sidemenu template

app, creating with 5

social networking app
creating, with SQLite 103-118

standard templates
about 4
blank 4
sidemenu 4
tabs 4

Sublime Text
about 3
URL 3

T
tab interface

creating, with nested views 34-41
themes

customizing, for specific platforms 136-138
to-do app

creating with ngStorage,
for Local Storage 96-103

Twitter app
configuring, with Firebase

authentication 176-179

U
updateGroupByUserId() function 117

V
Velocity.js

URL 167
video

capturing 64-67
playback, allowing 64-67

Videogular
URL 68

Thank you for buying
Ionic Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Kendo UI [Video]
ISBN: 978-1-78398-946-1 Duration: 01:30 hours

Tap into the full power of the Kendo UI framework and
its widgets with this clear and concise guide

1.	 Make the most of MVVM, Kendo UI, and Bootstrap
to build a fully functional blogging application.

2.	 Configure the most popular Kendo UI widgets
to improve the functionality of your app.

3.	 Put Telerik's backend services to work and
store your data safely for when you need it.

Kendo UI Cookbook
ISBN: 978-1-78398-000-0 Paperback: 250 pages

Over 50 recipes to help you rapidly build rich and
dynamic user interfaces for web and mobile platforms

1.	 Create rich interfaces for the Web using the Kendo
UI application framework and various sets of
widgets that come packaged in the library.

2.	 Build web applications for the mobile platform
by providing a native look and feel on iOS, Android,
Blackberry, and Windows Phone, without having
to worry about maintaining separate codebases
for each platform.

3.	 Leverage HTML5-based DataViz widgets in the
Kendo UI library to build charts and dashboards.

Please check www.PacktPub.com for information on our titles

Learning Kendo UI Web
Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add exciting
features to your web pages without being a
JavaScript expert

1.	 Learn from clear and specific examples on
how to utilize the full range of the Kendo
UI tool set for the web.

2.	 Add powerful tools to your website
supported by a familiar and trusted
name in innovative technology.

3.	 Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert.

Sencha Touch Cookbook,
Second Edition
ISBN: 978-1-78216-918-5 Paperback: 418 pages

Over 100 hands-on recipes to help you understand
the complete Sencha Touch framework and solve
your day-to-day problems

1.	 Learn every aspect of creating, building,
packaging, and running a Sencha
Touch application.

2.	 Integrate your applications with different
data sources and present them differently
using list, data view, charts, and so on.

3.	 Package your application with or without
Cordova/PhoneGap and run them on a desktop,
emulator, and a real mobile device.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Our First App with Ionic
	Introduction
	Setting up a development environment
	Creating a HelloWorld app via CLI
	Creating a HelloWorld app via Ionic Creator
	Copying examples from Ionic Codepen Demos
	Viewing the app using your web browser
	Viewing the app using iOS Simulator
	Viewing the app using Xcode for iOS
	Viewing the app using Genymotion for Android
	Viewing the app using Ionic View
	Customizing the app folder structure

	Chapter 2: Managing States and Navigation
	Introduction
	Creating a tab interface with nested views
	Creating a multistep form with validation

	Chapter 3: Adding Device Features Support
	Introduction
	Taking a photo using the device camera
	Capturing video and allowing playback
	Composing an email with an attachment from an app
	Picking and adding a contact
	Adding Google Maps with geocoding support

	Chapter 4: Offline Data Storage
	Introduction
	Creating a to-do app using ngStorage for Local Storage
	Creating a social networking app using SQLite

	Chapter 5: Handling Gestures and Events
	Introduction
	Detecting drag events with a gesture coordinate
	Communication between a view, controller, and directive using events

	Chapter 6: App Theme Customization
	Introduction
	Customizing themes for specific platforms
	Creating an introduction screen with a custom header

	Chapter 7: Extending Ionic with Your Own Components
	Introduction
	Creating a scroll progress bar directive
	Creating a custom filter
	Animating an app using requestAnimationFrame with event binding

	Chapter 8: User Registration and Authentication
	Introduction
	Configuring a Facebook app with Firebase authentication
	Configuring a Twitter app with Firebase authentication
	Configuring a Google+ project with Firebase authentication
	Creating an Ionic social authentication project for Facebook using $firebaseAuth
	Creating a LinkedIn app and configuring authentication in Auth0
	Integrating Auth0's Linkedin authentication in an Ionic project

	Chapter 9: Saving and Loading Data Using Firebase
	Introduction
	Saving array data to Firebase
	Rendering a large Firebase dataset using collection-repeat
	Saving form data to Firebase

	Chapter 10: Finalizing Your Apps for Different Platforms
	Introduction
	Building and publishing an app for iOS
	Building and publishing an app for Android
	Using PhoneGap Build for cross-platform applications

	Index

