
www.allitebooks.com

http://www.allitebooks.org

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

D
ow

nloaded by [H
acettepe U

niversity 85.240.126.137] at [05/04/16]. C
opyright ©

 M
cG

raw
-H

ill G
lobal E

ducation H
oldings, L

L
C

. N
ot to be redistributed or m

odified in any w
ay w

ithout perm
ission.

www.allitebooks.com

http://www.OraclePressBooks.com
http://www.allitebooks.org

®

Java® EE Applications
on Oracle Java Cloud
Develop, Deploy, Monitor, and
Manage Your Java Cloud Applications

Harshad Oak

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system,
but they may not be reproduced for publication.

ISBN: 978-0-07-181716-5

MHID: 0-07-181716-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-181715-8,
MHID: 0-07-181715-8.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their respective
owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its
affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained
in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense
the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee
that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill
Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under
no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

To the two men who shaped me:

My father, Achyut (Baba), my pillar of strength,
who against great odds ensured that I had a happy

upbringing and the gumption to rise.

Gandhi, who helped me realize the power
of love, truth, and nonviolence.

www.allitebooks.com

http://www.allitebooks.org

About the Author
Harshad Oak is the founder of IndicThreads and Rightrix Solutions.
IndicThreads.com is an online developer magazine and hosts some of the
most reputable technology conferences in India on topics such as Java,
cloud computing, software quality, and mobile software. Before starting
his own venture, Harshad was part of i-flex Solutions and Cognizant
Technology Solutions.

In addition to this work, he has authored Oracle JDeveloper 10g: Empowering
J2EE Development and Pro Jakarta Commons, and co-authored J2EE 1.4
Bible. Harshad has spoken at conferences in India, the United States, Sri
Lanka, Thailand, and China. He has been working to build active Java
communities in India and has organized as well as spoken at many Java user
group meetings. Additionally, Harshad teaches Enterprise Java to Master’s
candidates in Computer Science at Symbiosis University, India. Harshad has
been recognized as an Oracle ACE Director and a Java Champion for his
contributions to the technology and the community.

Harshad writes about technology on IndicThreads.com and its social
streams. He writes about social and other matters at HarshadOak.com and on
twitter @HarshadOak. He can be reached at harshad@rightrix.com.

About the Technical Editors
Markus Eisele is a software architect, developer, and consultant. He
works daily with customers and projects dealing with Enterprise-level Java
and infrastructures, including the Java platform and various web-related
technologies on a variety of platforms using products from different vendors.
An expert in Java EE servers, Markus is an Oracle ACE Director, a Java
Champion, and a member of the Java EE 7 expert group, and is a frequent
speaker at industry conferences. Follow him on Twitter (@myfear) or read his
blog (http://blog.eisele.net).

Arun Gupta is Director of Developer Advocacy at Red Hat and focuses on
JBoss middleware. He was a founding member of the Java EE team at Sun
Microsystems. At Oracle, Arun led a cross-functional team to drive the global
launch of the Java EE 7 platform. After authoring approximately 1,400 blogs
at blogs.oracle.com/arungupta on different Java technologies, he continues to
promote Red Hat technologies and products at blog.arungupta.me. Arun has
extensive speaking experience in 35+ countries on myriad topics.

http://blog.eisele.net
http://www.IndicThreads.com
http://www.IndicThreads.com
http://www.HarshadOak.com
http://www.oracle.com/arungupta

v

Contents at a Glance

1 Java EE and Cloud Computing . 1

2 The Oracle Java Cloud. 25

3 Build and Deploy with NetBeans. 49

4 Servlets, Filters, and Listeners . 65

5 JavaServer Pages, JSTL, and Expression Language 97

6 JavaServer Faces . 127

7 Enterprise JavaBeans (Session Beans). 151

8 Web Services . 179

9 Persistence Using the Oracle Database Cloud Service. 203

A Java EE Technologies and JSRs . 233

B Application Servers Compatible with Java EE 5, 6, and 7. 243

C Supported and Unsupported Technologies, Services, and APIs 247

 Index . 253

This page intentionally left blank

vii

Contents

Foreword . xiii
Acknowledgments . xvii
Introduction . xix

1 Java EE and Cloud Computing . 1
Java Editions . 2
Java EE Applications . 3
Application Servers . 4

Open Source vs. Commercial . 4
Reference Implementation . 6

API and Technology Specification . 7
Java Community Process (JCP) and Java EE 8
Java EE Compatible . 9

Profiles . 10
Web Profile . 10

Cloud Computing . 11
Going Around in Circles . 11
What Is Cloud Computing? . 12
Why Cloud Computing? . 14
Concerns About Cloud Computing 15
Private, Public, and Hybrid Clouds 16
Cloud as a Leveler . 16

Java EE on the Cloud . 16
Competing Technologies: Alternatives

to Java on the Cloud . 17

viii Java EE Applications on Oracle Java Cloud

Standards and Java EE 7 . 19
Java EE Vendors and Alternatives . 19

Summary . 24

2 The Oracle Java Cloud . 25
Oracle’s Cloud Foray . 26
Oracle Cloud Constituents . 26

SaaS . 27
IaaS . 27
PaaS . 27

Java Cloud . 28
Pricing . 28
Trial Signup . 32
My Services . 32

IDE Integration . 35
Oracle Java Cloud Service SDK . 36

Users and Roles . 41
Summary . 47

3 Build and Deploy with NetBeans . 49
Development IDE . 50

Why NetBeans? . 50
Building with Java EE Technologies . 51
First NetBeans Project . 51
What Happened? . 55

Files and Directories Generated . 58
The Cloud Deployment . 59
Clean and Build, Verify . 60

Web Application Structure . 60
Directories . 61

Packaging the Application . 62
We Are at WAR . 62

Summary . 63

4 Servlets, Filters, and Listeners . 65
Servlets . 66

Servlet Interface . 67
HttpServlet . 67
Servlet One . 68
Servlet Class . 72

Contents ix

HttpServletRequest . 73
HttpServletResponse . 73
web.xml . 73
weblogic.xml . 75

Sharing Data . 75
Session Management . 79

HttpSession . 79
RequestDispatcher . 80

WebLogic-Specific Servlet Capabilities on OJC 82
Filters . 83
Listeners . 86
View Java Logs . 91
Summary . 95

5 JavaServer Pages, JSTL, and Expression Language 97
The Origin of JSP . 98
JSP on the Oracle Java Cloud . 99
JSP Internals . 100

JSP Lifecycle . 100
Servlet Code . 101
JSP Directives . 105
JSP Declaration . 107
JSP Scriptlets . 107
JSP Expressions . 108
Implicit Objects . 109
JSP Comments . 110

Tags and Expressions . 111
Custom Tags . 112
Expression Language . 113
JSTL Libraries . 114
Using Tags in a JSP . 120

Summary . 126

6 JavaServer Faces . 127
From JSP to Struts to JSF . 128
JSF on the Oracle Java Cloud . 129
Facelets . 129
JSF Managed Beans . 134
Validation . 142
Ajax . 145

x Java EE Applications on Oracle Java Cloud

Templates . 146
Summary . 150

7 Enterprise JavaBeans (Session Beans) . 151
Containers . 152
EJB in OJC . 153
Why EJB? . 153
Session Beans . 154

Stateless . 155
Stateful . 155

Interfaces: Local or Remote . 155
Developing an Enterprise Application with EJBs 157

New Session Bean . 159
Inject the Session Bean into the Servlet 163
Package and Run from NetBeans . 164
Deploy Using the Java Cloud Services Control 164

Lifecycle of a Session Bean . 169
Transaction Management . 171

Rollback and Exception Handling 176
Summary . 177

8 Web Services . 179
Developing a SOAP Web Service . 181

WSDL . 186
Web Service Client . 187

RESTful Web Services Using JAX-RS API 194
Building RESTful Web Services on the OJC 195
JAX-RS 1.1 Fix . 196
Modify the REST Resource . 197
RESTful Web Service Client . 199

Summary . 202

9 Persistence Using the Oracle Database Cloud Service 203
Persistence on the Oracle Cloud . 204
Oracle Database Cloud Service . 204

Explore Database Cloud . 205
Oracle Apex . 210
Java Cloud: Database Cloud Integration 211

JPA . 212
Persistence Providers . 213
Entity . 213

Contents xi

Developing an Entity Application 214
Add Entity from a Servlet . 219
Find and Update Entity . 222
Java Persistence Query Language 223
CRUD JSF for Entity . 229

Summary . 232

A Java EE Technologies and JSRs . 233
Java Platform, Enterprise Edition 5 (Java EE 5) JSR 244 234
Java Platform, Enterprise Edition 6 (Java EE 6) JSR 316 235

Java Platform, Enterprise Edition 6
(Java EE 6) Web Profile . 237

Java Platform, Enterprise Edition 7 (Java EE 7) JSR 342 238
Java Platform, Enterprise Edition 7

(Java EE 7) Web Profile . 241

B Application Servers Compatible with Java EE 5, 6, and 7 243
Java EE 5–Compatible Implementations 244
Java EE 6 Full Platform–Compatible Implementations 245

Java EE 6 Web Profile–Compatible Implementations 245
Java EE 7 Full Platform–Compatible Implementations 246

Java EE 7 Web Profile–Compatible Implementations 246

C Supported and Unsupported Technologies, Services, and APIs . . . 247
Technologies and Services Supported . 248

Java EE 5 and 6 Specifications Supported 248
Public WebLogic Server 10.3.6

APIs and Capabilities Supported 249
Unsupported Features and APIs . 250

Unsupported WebLogic Server 10.3.6
APIs and Capabilities . 251

Whitelist Violations . 252

 Index . 253

This page intentionally left blank

xiii

Foreword

The move to the cloud has become a seemingly overwhelming direction
in which companies and technologists are finding themselves driven
in the ongoing effort to achieve better economies of scale and a faster

pace of business innovation in using enterprise technology.
This has been clearly illustrated by the rapid rise and adoption of Software

as a Service and Infrastructure as a Service, but has been unusually light or
limited for the application software infrastructure—enterprise-scale databases
and enterprise-scale middleware—itself. This has not been for the lack of trying,
but it simply represents a really hard problem that is only now being solved.

The emergence of Oracle Java Cloud Service and its capabilities is a
major step forward in this journey to enterprise-class cloud infrastructure. It
represents part of a major strategic investment from Oracle to bring to market
the industry’s first Platform as a Service offering that combines enterprise-
class middleware, Oracle WebLogic Server, and an enterprise-class database,
Oracle Database, into a highly productive, simple, easy-to-use application
development and deployment environment that is proven for large-scale,
mission-critical application deployments.

Given my role in the development and project management of Oracle
WebLogic Server, Oracle Coherence, and Oracle Java Cloud Services, and
given the opportunity by Harshad Oak, the author of this book, I wanted to
share my perspective of how this investment is proceeding, in hopes that it
frames how you read and understand this book.

It starts frankly in the “middle” of all infrastructures—the application server.
In that space, Oracle offers Oracle WebLogic Server, our Java server for building
custom and bespoke Java EE applications and for hosting third-party Java
applications. It is complemented by Oracle Coherence, our in-memory grid
for scaling out infrastructures within and across data centers.

xiv Java EE Applications on Oracle Java Cloud

Over the last five to six years, my team has made a huge investment to
continue the technical journey of evolving Oracle WebLogic Server and
Oracle Coherence to operate in large-scale environments of hundreds to, in
many cases, thousands of servers. We have focused on hard problems such as
scalability, reliability, availability, and performance, complemented by large-
scale administrative and management investments.

The cloud has brought a new set of unique challenges to solve:
management through restful interfaces (solved by JAX-RS APIs available for
managing WebLogic Server), elastic scalability (solved by dynamic clusters
in WebLogic Server and Coherence), self-service provisioning (now available
in the Oracle Java Cloud Service!), advances in security concerns (addressed
by ongoing investment in new security features in WebLogic Server and
lockdown guides to deploying it securely), and, more recently, a focus on
solving multitenancy issues in conjunction with Oracle Database 12c and its
recent support for multitenancy.

But it wasn’t enough to evolve the infrastructure of WebLogic Server to
be more enterprise and cloud ready. Oracle went to the next step and made
Oracle WebLogic Server and Oracle Database available in the Oracle Cloud
at http://cloud.oracle.com. The family of Java services built around Oracle
WebLogic Server is called Oracle Java Cloud Services and for the Database,
the Oracle Database Cloud Services.

At the time of this book’s publication, Oracle has one Java Cloud Service,
formally named Oracle Java Cloud Service – SaaS Extension. This is the first
service in middleware that Oracle has made available and is focused on
enabling customers to build and deploy applications rather than having to
understand how to manage and operate Oracle WebLogic Server.

Java Cloud Service – SaaS Extension is a remarkably easy and complete
Java service and is the focus of this book. It is sometimes simply called Java
Cloud Service and, more recently, I have heard people colloquially refer to it
as JCS-SX. On its release several years ago, it broke new ground by offering a
true enterprise-class version of WebLogic Server that was uniquely integrated
out-of-the-box with the Oracle Database.

“SaaS Extension” refers to a characteristic of that service, which is the
ability to extend the Oracle SaaS applications that are offered in Oracle
Cloud, as well as for pure custom development of Java applications. All
lifecycle activities—patching, backup, and restore—are taken care of by
Oracle in Oracle Datacenters, and your focus as a developer or application

http://cloud.oracle.com

Foreword xv

manager is primarily to deploy and run your application. Simple! And Harshad
will show you how.

Coming in calendar year 2014, Java Cloud Service – SaaS Extension will
be added to several other Java Services that are geared even more toward
custom application development to put far more control in the hands of the
operators of the underlying Oracle WebLogic Server and Oracle Coherence.
These new offerings are formally named Java Cloud Service – Virtual Image
and Java Cloud Service (with no additional descriptor suffix).

These services together are referred to as Oracle Java Cloud Services and,
as noted earlier, form the basis of moving all Oracle Fusion Middleware into
the Oracle Cloud. This is a massive investment by Oracle, with many other
services coming focused in areas such as messaging, document management,
developer productivity, business process management, and much, much
more. It is one of the most exciting times in middleware for Oracle in the last
10 years.

In summary, I would like to say it is my distinct pleasure to write this
foreword to Harshad Oak’s book on Oracle Java Cloud Services with a focus
on Oracle Java Cloud Service – SaaS Extension. Harshad has been a long-time
leading Oracle expert driving the understanding of key Oracle technologies
and how customers can achieve the most success using them.

Oracle has mobilized to drive its entire software portfolio into the cloud,
and getting the foundational middleware and database into the cloud was the
first step to enable the rapid rollout of new innovative cloud services on that
foundation. Harshad was one of the first people who understood this service
was more than a trial balloon for Oracle.

I hope you enjoy this book as much as I did. As in the mid-to-late ’90s
when everything seemed new with the start of the Internet, we technologists
are once again in a very exciting time of change as world-class enterprise
software for running real transactional workloads has finally arrived in the
cloud. Enjoy!

~ Mike Lehmann
Vice President Product Management

Oracle WebLogic Server, Oracle Coherence, and Oracle Java Cloud Services

This page intentionally left blank

xvii

Acknowledgments

This book has been a wonderful journey, where so many have chipped
in to make it a reality.

I would like to thank Markus Eisele and Arun Gupta for their
insightful reviews. Thank you Brandi Shailer and Amanda Russell for ensuring
that the book stayed on track and in line with the best publishing standards.
Thanks to Bart Reed, Janet Walden, Kritika Kaushik, and Tanya Punj for their
vital role in shaping the book’s content.

Thank you Mike Lehmann for your thoughtful foreword and your inputs
throughout the book’s writing. Thank you Diby Malakar and Anand Kothari
for your help with information and access at Oracle.

This book would have been impossible without the support of my family.
It’s quite amazing that my father (Baba), wife (Sangeeta), sister (Charu), and
even my in-laws somehow always seem to have faith in me, regardless of the
little I do and the lot that I don’t do. Thank you!

Sangeeta in particular has to tolerate a lot of my pondering and at times
groaning about a million different things. But like some spiritual guru, she
always seems to have a succinct one-liner that addresses my concern and
drives me forward. Thank you!

Thanks to my five-year-old son, Tej. Tej means brilliance/radiance in
Marathi, and Tej has lit up our lives in every sense of the word. He competed
with the book for attention and invariably won, but was perceptive enough to
let go of his catch and allow me to write. Thank you, Tej.

This page intentionally left blank

xix

Introduction

Java EE and the cloud are arguably the two most important technologies
today when it comes to building software for enterprises. In this book,
you will understand what makes both these technologies tick and how
you can leverage them to build and deploy applications on one of the

key players in the Java Cloud space: the Oracle Java Cloud Service. You will
not only learn to build with Java EE, but also to look at the nuances and the
characteristics of the Oracle Java Cloud.

With this book you will get a holistic understanding of Java EE and cloud
computing and their role in modern software development.

■ Understand how you can go about building and deploying
applications using Java EE technologies such as Servlets, JSP, JSF, EJB,
and JPA, with an awareness of the cloud platform, its merits, and its
limitations.

■ Use the Oracle Java Cloud along with the Oracle Database Cloud to
fulfill the persistence requirement of your application.

■ See how you need to adapt your software development process for
the constraints of the cloud as well as the mixed environment offered
by the Oracle Java Cloud.

■ Learn how to utilize the NetBeans IDE to streamline your cloud
development.

Chapter 1: Java EE and Cloud Computing In this chapter, you will get a
sound understanding of Java EE and cloud computing, their origins, and their
current standing. You will see the benefits and drawbacks of choosing Java EE

xx Java EE Applications on Oracle Java Cloud

on the cloud, as compared to traditional Java EE implementations. You will
also review the solutions provided by various Java PaaS (Platform as a Service)
cloud vendors as well as other competing technologies.

Chapter 2: The Oracle Java Cloud In this chapter, you will look at the
specifics of Oracle’s cloud. You will review the Oracle SaaS, IaaS, and PaaS
offerings and then dive into the finer details, such as the pricing, features,
and restrictions of Oracle Java Cloud Service. You will also see how you can
integrate NetBeans, Eclipse, and JDeveloper IDEs with the Oracle Java Cloud.

Chapter 3: Build and Deploy with NetBeans In this chapter, you will start
building your first Java EE cloud application using the NetBeans IDE. You
will understand the structure of a Java EE web application and how you can
package a Java EE application.

Chapter 4: Servlets, Filters, and Listeners In this chapter, you will look at
Servlets, the configuration of Servlet-based Java EE applications, sharing data,
session management, filters, and listeners. You will then deploy applications
to the Oracle Java Cloud and see how you can monitor your application and
access the Java logs on the Oracle Java Cloud.

Chapter 5: JavaServer Pages, JSTL, and Expression Language In this
chapter, you will learn about JavaServer Pages (JSP), JSTL, and Expression
Language and how together they can help you generate powerful web pages
using streamlined, efficient coding and increase developer productivity.

Chapter 6: JavaServer Faces In this chapter, you will explore JavaServer Faces
(JSF), which is the preferred web technology for Java EE applications today. You
will see how JSF offers a neat and feature-rich way of building server-side web
applications with a UI component model, event handling, validation framework,
structured page navigation, and internationalization. You will also see how to
use templates for a consistent look and styling for your JSF applications. You will
build and deploy JSF applications on the Oracle Java Cloud and see your full-
featured JSF application work fine on the cloud.

Chapter 7: Enterprise JavaBeans (Session Beans) In this chapter, you
will look at Enterprise JavaBeans and how it can get your business logic
code running efficiently, accurately, and securely. You will build enterprise

Introduction xxi

applications that include multiple EJBs and web applications, all packed
together into one application. You will use the rich functionality of stateless
and stateful session beans and also see how to get the container to manage
transactions in your application.

Chapter 8: Web Services In this chapter, you will look at the need for and
the benefits of using SOAP and RESTful web services. You will learn how to
get around some of the constraints while running web services on a cloud
environment such as the Oracle Java Cloud. You will then build web services
using both SOAP and REST and deploy them on the Oracle Java Cloud Service.

Chapter 9: Persistence Using the Oracle Database Cloud Service In this
chapter, you will explore the Oracle Database Cloud and use the Java
Persistence API to persist data to your database on the Oracle Database
Cloud Service. You will use the Java Persistence API to create tables as well
as retrieve, update, and delete data. Oracle is best known for its database,
and you will see how the Oracle Database Cloud puts all that power and
capability at your disposal from within your Oracle Java Cloud Service
applications.

In addition to the chapters, there are three appendixes:

■ Appendix A provides a listing of all Java EE 5, 6, and 7 technologies
and their corresponding Java Specification Requests (JSRs).

■ Appendix B lists application servers compatible with Java EE 5, 6,
and 7.

■ Appendix C lists the technologies supported on the Oracle Java
Cloud Service as well relevant technologies and APIs that are
explicitly not supported.

Intended Audience
This book is suitable for the following readers:

■ Developers looking to learn Java EE and cloud computing

■ Developers looking to build and deploy Java EE applications on the
Oracle Java Cloud

xxii Java EE Applications on Oracle Java Cloud

■ Users of Oracle Middleware technologies looking to build
applications with Java EE on the Oracle Java Cloud

■ Business users, technical managers, or consultants who need an
introduction to Java EE, Java Cloud, and the Oracle Java Cloud
Service

No prior knowledge of Java EE or cloud computing is assumed. You only
need to be familiar with Java programming. Everything you need to know to
pick up Java EE and Java cloud computing is contained in this book.

NOTE
The data center name, identity domain, and
service names shown in screenshots are based
on Oracle data center setups and may vary in
screenshots throughout the book. These values
should have no direct impact on your usage. Your
trial setup will have different values anyway, based
on the data you enter in your trial signup form.

Retrieving the Examples
The NetBeans projects for each chapter can be downloaded from the Oracle
Press website at www.OraclePressBooks.com. The files are contained in
a ZIP file. Once you’ve downloaded the ZIP file, you need to extract its
contents. This will create a directory named Oracle_Java_Cloud_Book that
contains the subdirectories for each chapter.

http://www.OraclePressBooks.com

CHAPTER
1

Java EE and Cloud
Computing

2 Java EE Applications on Oracle Java Cloud

This book looks at Java Enterprise Edition (Java EE) and cloud
computing and how you can best get them working for you on the
Oracle Java Cloud Service. In each chapter, we review the various

aspects of Java EE and then walk through how to get those pieces up and
running on the Oracle Java Cloud Service. This initial chapter provides
background on both Java EE and cloud computing. We survey the benefits
and drawbacks of choosing Java EE on the cloud, as compared to traditional
Java EE implementations on private servers. We then review solutions
provided by various Java PaaS (Platform as a Service) cloud vendors and
discuss some of the competing technologies.

Java Editions
Java has been around for a long time. Considering the pace at which
technologies tend to get outdated, Java’s 18-year journey has been most
remarkable and highlights the capabilities and the staying power of the
technology.

Java 1.0 was released in 1995, and back then, Java had no such thing as
an enterprise edition. Only in 1999 was the idea of Java editions (Java SE and
Java EE) introduced. Fast-forward to today, and we have three editions of Java:

■ Java Standard Edition (Java SE) Most Java beginners tend to think of
Java SE as Java. However, Java SE as such is a software development
platform that provides the Java language, the Java Virtual Machine
(JVM), and development and deployment tools for building Java
applications.

■ Java Enterprise Edition (Java EE) Java EE is what we encounter the
most in this book. It was first introduced in 1999 as J2EE (or Java 2
Platform, Enterprise Edition). J2EE’s mission was to enable enterprises to
build highly available, secure, reliable, scalable, multitier, distributed
applications. Each subsequent version has sought to enhance these
capabilities. The Enterprise Edition continued to be known as J2EE
until J2EE 1.4, released in 2003. However, the naming convention was
changed in 2006, so what would have been J2EE 1.5 became Java EE 5.
Java EE 6 was released in December 2009, and Java EE 7 in June 2013.

■ Java Micro Edition (Java ME) Java ME was the edition created
to address the need for a slimmer version of Java that would work
well on the hardware constraints of devices such as mobile phones.

Chapter 1: Java EE and Cloud Computing 3

Although most people tend to think of the micro edition as the
mobile edition, in reality, the micro edition is used not just for
mobile phones, but for all kinds of devices, such as television sets,
printers, smartcards, and more. Java ME provides an API and a small-
footprint Java Virtual Machine (JVM) for running Java applications.

NOTE
Oracle has announced that their longer-term
strategy is to converge Java ME and Java SE and
provide a modularized solution. The project
that aims to design and implement the standard
module system is known as Project Jigsaw
and is expected to be part of Java 9. Although
modularization with Java 9 is still some way
away, Java SE 8 has introduced compact profiles.
Compact profiles are three subset profiles of the
full Java SE 8 specification that could be used by
applications that do not require the full platform.

Java EE Applications
Although the official definitions may differ, for all practical purposes, Java
EE is the Java platform for building web and distributed applications. It is
essentially a set of libraries that provide most of the core functionality you
would require while building your application, which in most cases, is a
web-based application. Although you will often hear these applications
referred to as “enterprise applications,” do not let “enterprise” scare you
away from building a Java EE application. The “enterprise” in EE is simply
meant to denote an application that offers some mix of security, reliability,
speed, scalability, distribution, transaction, and portability. In an age when
mainstream applications were standalone, desktop based, and isolated, the
denotation of “enterprise” made sense. However, today, almost all software
is meant to be online, social, scalable, and, in a sense, “enterprise.”

As shown in Figure 1-1, Java EE sits on top of the basic Java platform (Java SE).
Because most developers begin learning Java with Java SE, it is important to note
that all the things learned with Java SE will continue to be true with Java EE.

You will build Java EE applications using your knowledge of the Java language
and your understanding of the libraries provided by Java EE. While building

4 Java EE Applications on Oracle Java Cloud

these applications, you also need to adhere to certain rules and conventions
defined by Java SE and Java EE. With the help of a Java EE application server
to work its magic, your application will be up and running in no time.

Application Servers
The application server is the workhorse of Java EE. This is the software that
implements Java EE and runs a Java EE application that has been developed,
as specified by Java EE, and has been deployed on the application server.
Application servers have to stick to the Java EE specification to be Java EE
compatible. We will talk more about “specification” and “compatible” later
in this chapter, but for the time being, you can proceed with the common
English meaning of both terms.

Application servers come in all shapes and sizes and are provided by
various vendors, both commercial and open source.

Open Source vs. Commercial
Although many Java EE application servers charge top dollar, there are
also many open-source Java EE application servers. If you are wondering
why someone would pay for a commercial version, the answer lies in the
additional features, tools, and services that come with the paid version.
Paid versions provide one or more add-ons, such as Control Dashboard,
24x7 Support, Priority Bug Fixes and Patches, Additional Caching, and
Performance Tuning.

You can certainly get all the standard Java EE functionality with an open-
source server, but in the case where you need that little bit extra for your

FIGURE 1-1. Java EE

Java Enterprise Edition (EE)

Java Standard Edition (SE)

Operating System

Hardware

Chapter 1: Java EE and Cloud Computing 5

enterprise applications, you can opt for the commercial versions. GlassFish,
Apache Geronimo, Apache TomEE, Caucho Resin, and JBoss (now WildFly)
are some of the popular open-source application servers. With many open-
source servers, you find that the same vendor also offers a paid commercial
version with add-ons.

Oracle WebLogic, SAP NetWeaver, and IBM WebSphere are popular
commercial application servers. The commercial servers often come at a
significant cost and are also often customized for specific business needs or
even bundled as part of other commercial products.

Oracle WebLogic is Oracle’s commercial application server product and
the one that runs on Oracle Java Cloud.

NOTE
The open-source servers are freely available
for download and use. However, even most
commercial servers, such as Oracle WebLogic,
offer a trial/developer license that will enable you
to download and use the server. Oracle introduced
an OTN Free Developer License for WebLogic in
2012, which makes it even easier for developers to
try out WebLogic.

Application servers vary primarily on the following factors:

■ Licensing Software licenses are a vast topic. There are many kinds
of commercial licenses and many kinds of open-source licenses, so
there are times when a server might fulfill all the requirements of
an organization and yet not be considered for adoption because of
some license terms and conditions.

■ Support services Many server vendors, especially those offering
commercial variants of open-source servers, rely on support services
for their revenues. The quality of the support services is often a
crucial factor when deciding which server to adopt.

■ Cost Application server costs vary drastically. Also, you find that
each vendor has its own way of pricing a server. Costs can vary
based on many factors, such as number of server instances, number
of processors, number of users, and more.

6 Java EE Applications on Oracle Java Cloud

■ Ease of use Although some servers are easy to install, use, and
manage, with some servers, just getting them up and running might
be a tough task.

■ Reporting and management features The richness of the
administration UI and its reporting capability vary a lot across
servers. Whereas some servers will give you fancy charts, graphs,
and timelines, others will have you digging through log files.

■ Standalone/bundled Application servers are often bundled as part
of a larger software suite. For example, if a company buys a certain
Oracle application suite, they also get WebLogic bundled with it
because it is the foundation for all their products.

■ Disk and memory requirements Some servers seem to do a much
better job at managing disk and memory requirements. These differences
are, at times, only visible when a server is tested with large loads.

■ Performance As with memory management, some servers are
simply better at performance. You will find vendors claiming that
their server is the fastest based on the results of certain benchmark
tests. For example, in 2012, Oracle announced that WebLogic had
set a world record for two processor results with an industry-standard
benchmark designed to measure the performance of application
servers. These results tend to be used to pitch a product as a faster
alternative and a better buy for customers.

■ Backward compatibility Although the Java EE specification itself
provides for backward compatibility, some vendors go beyond Java
EE backward-compatibility requirements and, at times, even support
seemingly outdated technologies. This, however, can be an important
feature for companies with legacy software setups but still wanting to
migrate to newer versions of the application server.

Let’s now look at an application server that is, in a sense, a first among
equals: the reference implementation application server.

Reference Implementation
The reference implementation is a definitive implementation of a specification
and is developed concurrently with the specification. The reference

Chapter 1: Java EE and Cloud Computing 7

implementation for Java EE is the GlassFish Server Open Source Edition, which
is available for download at www.glassfish.org.

Because the Java EE reference implementation is developed alongside the
specification, it not only shows that the specification can be implemented,
but also makes the implementation available as soon as the final specification
is released. So although GlassFish 3 was the production version for Java
EE 6, GlassFish 4 was being developed while the Java EE 7 specification
was being finalized. The day Java EE 7 released, GlassFish 4, the reference
implementation, was readily available for developers to try out Java EE 7.

Once the final specification is released, most vendors release their own
implementations of the latest version of Java EE. Because these implementations
have historically taken up to a year or two, developers looking to try out the
latest technologies often opt for GlassFish. GlassFish has grown rapidly over the
past few years and is today a popular application server that is used in many
production applications.

We will now take a closer look at how the Java Community Process (JCP)
works, how a specification is finalized, and what it takes for a server to get
certified for a Java EE specification. This process is one of the key factors that
makes Java EE stand out from competing technologies (both open source
and commercial).

API and Technology Specification
Java EE isn’t one big block of code or a single technology, but a collection
of technologies brought together under the banner of Java EE. Java EE is
commonly thought of as an end-to-end technology platform that comes
with numerous features and the software providing those features. In reality,
however, Java EE is simply a set of specifications about things that need
to be done and how they need to be done. Although Java EE is all about
building software, the Java EE specification, as such, does not include any
code. The specification only provides rules, instructions, and guidelines on
which the code is to be written.

You can even think of Java EE specifications as a set of PDF files available
for download on the Java Community Process (JCP) website (http://jcp.org).

Having said that, the specification is released along with a reference
implementation (RI) and the Technology Compatibility Kit (TCK). The RI
is a code implementation that proves the specification can actually be
implemented. The TCK consists of tests to check the implementation.

http://www.glassfish.org
http://jcp.org

8 Java EE Applications on Oracle Java Cloud

Java Community Process (JCP) and Java EE
Java EE, like all Java technologies, is driven by the JCP. Rather than having one
organization make all the decisions, the JCP process involves the developer
community and industry in the development of Java specifications. An Expert
Group, consisting of members of various companies (such as Oracle, Red
Hat, IBM, and SAP) and independent Java EE experts, is elected to manage
each new iteration of the Java EE specification. This Expert Group is charged
with inviting suggestions from other developers and drafting the specification
for a Java Specification Request (JSR). Each version of the specification has
a corresponding JSR to which you can refer for complete information about
the specification.

For example, JSR 316 is the umbrella JSR for Java EE 6; it lists a high-
level view of Java EE 6 and documents the technologies that comprise the
specification. JSR 342 covers Java EE 7, whereas JSR 244 covers Java EE 5.
All Java EE 5, 6, and 7 technologies and JSRs are listed in Appendix A for
reference.

The executive committee is responsible for approving the final specification.
The vendor companies usually compete on the actual implementation of that
specification.

If you download JSR 316 or 342, all you get is a PDF file. How a company
implements the specifications of that PDF makes all the difference in the
marketplace. As long as the developer develops as per the specification, his
code should work fine on all the Java EE–compatible implementations.

So if Java EE is just a PDF file, where is the code? Where is the
implementation? You will remember from the previous section that the
application server actually implements the specification. So the application
server is where the implementation code is. The server vendors are responsible
for writing the code to implement the specification.

NOTE
Although there are specific JSRs for the various
Java EE versions, please note that one JSR does
not provide the specifications for all Java EE
technologies. The Java EE JSR refers to various other
JSRs for details on the various technologies in Java
EE. Do check out the JCP FAQ at https://jcp.org/
en/introduction/faq for more about the journey of
the JSR from proposal stage to the final release.

https://jcp.org/en/introduction/faq
https://jcp.org/en/introduction/faq

Chapter 1: Java EE and Cloud Computing 9

Java EE Compatible
The implementation of the Java EE specification is considered compatible
only if it clears the compatibility tests for Java EE that are part of the Java EE
Compatibility Test Suite (CTS).

All JSRs need to provide the following:

■ The specification

■ The reference implementation of the specification

■ The Technology Compatibility Kit (TCK)

The fact that all certified Java EE servers will run your Java EE application
is one of the key features of Java EE. It brings portability to the platform and
drastically reduces vendor lock-in, both vital features for large enterprises.
Portability here means the option of migrating to a different application server
or a different vendor if required.

However, for a customer to be assured of this portability, all the application
servers that claim to be Java EE compatible need to have passed a definite
set of compatibility tests. Therefore, Oracle supplies a comprehensive Java
EE Compatibility Test Suite (CTS) to Java EE licensees. Only if a server passes
the tests in the CTS is it certified as Java EE compatible. This certification for a
certain version is a guarantee to the end customer that a server supports Java
EE as mandated by the specification for which it has been certified.

NOTE
All Java EE–compatible application servers (that
is, all application servers that fulfill the Java EE
licensing and compatibility testing procedure) are
listed on the “Java EE Compatibility” page on the
Oracle Technology Network (OTN) website at
http://j.mp/JavaEE-Compatibility.

I would like to reiterate that although the various Java EE server vendors agree
on the specifications, they are free to innovate on the actual implementation,
as long as it does not interfere with the specified behavior.

http://j.mp/JavaEE-Compatibility

10 Java EE Applications on Oracle Java Cloud

NOTE
Oracle Java Cloud Service is not certified for
any particular version of Java EE, but supports a
mix of Java EE 5 and Java EE 6 technologies that
Oracle determined was appropriate for enterprise
customers.

Refer to Appendix B for a list of implementations compatible with
Java EE 5, 6, and 7.

Profiles
Until Java EE 5, you had no choice but to go with a full-blown Java EE
application server, which had support for all the technologies that have
made it to Java EE over a decade or so. However, the Java community saw
that although most Java EE applications were using only a subset of the
technologies, they still had to lug the baggage of all Java EE technologies.

So in Java EE 6, the idea of profiles was introduced. Profiles enabled the
creation of smaller Java EE subsets based on requirement. Although it was
expected that many profiles would emerge, considering the support and
maintenance implications, Java EE 6 and Java EE 7 have only one profile, the
Web Profile. So with Java EE 6 and Java EE 7, you can choose the full Java EE
server or the slimmer Java EE Web Profile Server.

Web Profile
The Web Profile specification lists only 15 technologies as required
components. This naturally leads to a slimmer application server that packs
more than enough punch for most web applications. The Web Profile
excludes several technologies from the full Java EE specification. However,
with Enterprise Java Beans (EJBs), the Web Profile introduces a trimmed-
down version called EJB Lite. Download size is not a definite indicator of the
difference between versions. However, it is worth noting that the full Java EE
(English, Windows) version of GlassFish 3.1.2.2 is 53MB, whereas the Web
Profile (English, Windows) version is merely 33MB.

Refer to Appendix A for list of Web Profile technologies in Java EE 6 and 7.

Chapter 1: Java EE and Cloud Computing 11

Cloud Computing
There has been immense buzz around cloud computing over the past few
years. As seen in Figure 1-2, a Google Trends search for “cloud computing”
reveals that cloud computing first gained popularity in 2009 and was at its
peak in 2010/2011. By 2012/2013, we see the trend maturing past buzz and
into real products, action, and adoption.

It’s fair to say that most software developers have at least taken a cursory
look at cloud computing. However, the number of actual cloud users is
still small, so let’s quickly review the fundamental ideas underlying cloud
computing.

Going Around in Circles
Someone building software in the 1980s and then checking back today
might be amused to see the fuss about cloud computing. To him, the cloud
was always the most obvious way to go; he would have heard of it as time-
sharing, client/server architecture, or thin clients. Even ideas such as hosted
services, utility computing, and grid computing from a few years back were
closely aligned with what we now know as cloud computing. In each case,
you have minimal data and processing on the device at the user’s end and

FIGURE 1-2. Cloud computing on Google Trends

G

2009 2011 2013

F

E
D C

B

A

12 Java EE Applications on Oracle Java Cloud

most of the heavy lifting being done on remote hardware that is far more
powerful and capable. The computing power and data were supplied to the
user’s device on demand.

So what’s different with cloud computing? The primary difference is the
universal Internet connectivity. Whereas in the past, networks were limited
to a campus or an area, today, each of us can access information from any
corner of the globe. Hosting my data or my application server on some
remote corner of the planet and relying on Internet connectivity for access
was previously impossible; not so with cloud computing.

Cloud computing is also possible today because data centers are highly
scalable and because of virtualization. Virtualization, as the name suggests, is
primarily about creating virtual machines (VMs) that don’t run on the actual
hardware but instead run on top of the operating system that’s actually talking
to the hardware. So a single hardware box that has a Linux operating system
can have many VMs running on it—some running Windows, some running
other flavors of Linux, and more. Each of these VMs could be used by one or
many different users.

What Is Cloud Computing?
Cloud computing, in layman terms, stands for renting computing power and
data storage capability as per your requirements at a certain point in time.
You could be renting hardware, foundation software platforms running on
that hardware, or full-fledged software applications.

As core business needs and developer roles evolve, business owners want to
avoid buying expensive hardware, software developers want to avoid worrying
about setting up and maintaining a software platform, and users want to avoid
building software all together; they just want to use it. So business owners,
developers, and users would all much rather rent what they need and then
customize it, instead of setting up and managing the infrastructure.

These benefits have led to different types of cloud computing, where,
in each type, you rent a different set of software or hardware. The most
prominent types of cloud computing are IaaS, PaaS, and SaaS.

IaaS
Infrastructure as a Service (IaaS), also at times referred to as “Hardware as
a Service,” got the ball rolling for cloud computing. Around 2009, when
we first started hearing the term “cloud computing,” most of the talk was

Chapter 1: Java EE and Cloud Computing 13

about IaaS and, to a large extent, fueled by Amazon successfully renting
out capacity via its Elastic Compute Cloud (EC2) service. EC2 lets you rent
virtual computers on which you can install, deploy, and run software.

With IaaS, the vendor just provides the hardware, and the user is
responsible for setting up the software platforms as required. Although this
provides great flexibility to the user, it also necessitates that the IaaS user has
the expertise on board to set up and manage the rented hardware.

PaaS
Although just renting hardware might suffice at times, developers often don’t
just want the hardware, but also the basic software platform, installed and
running. This brings great value to software teams because they now only
need to focus on building their software application and don’t have to worry
about the hardware or even the basic software platform setup. Enter Platform
as a Service (PaaS).

NOTE
Usually, software developers and network
administrators are distinct teams. Not having to
worry about the hardware setup and management
means that developers are well placed to run the
show on their own.

If a software team was looking to build a Java, .NET, or PHP application,
wouldn’t it be much easier if they got the hardware along with the operating
system, as well as the Java/PHP/.NET software platform preinstalled and set
up? How about also having an application server running, optimized, and
highly scalable?

Whereas the first wave of cloud computing was around IaaS, the next was
around PaaS. PaaS, however, is a much trickier space than IaaS, primarily
because the PaaS vendor has to provide for the hundreds of ways in which
software gets built. Many PaaS vendors, in an attempt to streamline and
secure the software being built on their service, have defined strict dos and
don’ts as well as the capabilities they can and cannot support. Having such a
policy in place can be both a feature and a limitation. It is a feature because
you can be sure that other users with whom you are sharing the platform are
not free to do whatever they want and jeopardize your setup. However, it’s
also a major limitation because you have to build your application as per the
rules set by the PaaS provider.

14 Java EE Applications on Oracle Java Cloud

PaaS adoption should grow over time, as one would expect organizations
to look to delegate the hardware setup and management but continue to want
a say on the software that is built and run on the hardware.

SaaS
The term “Software as a Service (SaaS)” has actually been around longer
than the term “cloud computing.” I recall discussing SaaS in 2006, when
cloud computing was unheard of. The meaning still stays pretty much the
same, just that it is now thought of as a type of cloud computing.

If your business is using an online third-party service for accounting, email,
invoicing, online campaigns, and email marketing, it is utilizing SaaS. SaaS is
where you don’t bother renting the hardware or even the software platform
on which to build your application. You directly rent the actual software
application you need. You pay based on your expected usage, or in some
cases, you pay as you go. SaaS is especially popular with startups because
it significantly reduces their startup and running cost, while still giving the
fledgling business all the flexibility it requires.

As shown in Figure 1-3, a SaaS offering builds over the capabilities of
a PaaS, which in turn runs over the IaaS. For this book, we will mostly be
working with PaaS.

Why Cloud Computing?
The top reasons for the interest and adoption of cloud computing are

■ Technology Setting up and maintaining your own hardware and
software can be an extremely expensive and tedious affair. Most
would much rather have someone else do it.

FIGURE 1-3. The “as a Service” (aaS) types

SaaS
Email, Accounting, HR, CRM Users

Developers

Network
Administrators

PaaS
Database, App Server

laaS
Storage, Disk, Virtual Machine

Chapter 1: Java EE and Cloud Computing 15

■ People Most business owners would like to minimize/avoid the
expense and effort of inducting, training, and retaining additional
personnel.

■ Non-core Running and maintaining hardware and software is
not a core business for most enterprises. Given the choice, most
enterprises would rather focus on their core business and rent
computing power from a large, reliable provider.

■ Scale as required You can rent capacity if and when it is required,
and get to scale up and, just as importantly, scale down if required.

■ Pay as you go Businesses need not provision expensive resources to
provide for possible future demand.

Concerns About Cloud Computing
The primary concerns with cloud computing are

■ Security Most surveys show security as businesses’ primary
concern with cloud computing. Many businesses are uncomfortable
putting sensitive data on shared cloud environments.

■ Availability If the Amazon Cloud goes down, it takes with it a horde of
websites and services. An Amazon outage in October 2012 took down
many popular websites such as Reddit, Foursquare, and Pinterest.

■ Connectivity issues Although Internet connectivity has greatly
improved over the past few years, it is still unreliable in most
developing countries.

■ Lock-in and dependence on vendor A few large cloud vendors hold a
bulk of the cloud market share, and as yet there is little standardization
on cloud services, so you can easily get locked into a vendor.

■ Rigid Using a cloud service significantly limits the flexibility you
enjoy if you were to run your own hardware and software. Most
cloud vendors define fairly strict rules of operation to which users
must adhere. You even need to build your applications with these
limitations in mind.

■ Legal The cloud comes with its own set of legal implications based
on locations and jurisdictions. This is a major factor, especially for
large enterprises with sensitive data.

16 Java EE Applications on Oracle Java Cloud

Private, Public, and Hybrid Clouds
Although the cloud is usually thought of as a public, shared setup, such a
setup might not work in cases where there are serious security implications
or where the applications would not work in a shared environment.

In such cases, you can opt for private clouds, which work on pretty much
the same lines as public clouds, but with exclusive access for a particular
organization, with the consumers being the various business units within the
organization. Private clouds are usually run in an internal data center or “on
premises.” However, that need not always be the case. A hybrid cloud is one
that uses a mix of public and private clouds.

An important aspect of the cloud that often gets ignored is the cloud’s
great ability to provide a level playing field for software development
companies and developers.

Cloud as a Leveler
Today, we see that by using various cloud services, small software companies
can build and run enterprise-grade Java EE software that is as fast, secure,
and reliable as any application built by the mega software companies.
Similarly, the cloud expertise of a solo developer or someone working in a
three-member company is pretty much the same as a developer in a mega
corporation and working in a team of hundreds. This is an important reason
for developers to look at adopting the cloud. The cloud has drastically leveled
the playing field for software companies and developers.

Now that we have had a look at Java EE and the cloud, let’s consider how
Java EE is placed as a cloud platform and how it compares with some of the
alternatives.

Java EE on the Cloud
Java EE has been the mainstay of server-side software development for over
a decade and still today is one of the most widely used software platforms.
It is arguably even the most prominent software platform on the cloud.
So although there are no cloud-centric specifications or standards in the
current Java EE version to date, many vendors are already offering robust
Java EE solutions on the cloud. Today’s Java Cloud offers a number of service
options, opening the doors wide for Java EE application development,
deployment, and use.

Chapter 1: Java EE and Cloud Computing 17

Until recently, Java EE applications were thought of as applications that
enterprises built and ran on their own dedicated server infrastructure. If a
company built a Java EE application, it was presumed that the company would
also set up the requisite hardware infrastructure and the teams to manage and
monitor that setup. It was some time before the idea of shared hosting, which
has been popular for a while with technologies such as PHP, was considered
suitable for Java’s enterprise nature and demands.

We talked earlier of the benefits and drawbacks of cloud computing. You
will find that most of the concerns with the cloud are features of a dedicated
private Java EE setup, and vice versa.

Apart from the pros and cons for enterprises, one of the major issues
with dedicated Java EE servers was that smaller businesses stayed away from
Java EE because they did not want to set up and manage their own server
infrastructure.

However, in almost all cases, enterprises used to run their Java on
dedicated servers and hardly ever on a shared/cloud environment. Prior to the
cloud wave, few web hosting providers bothered to offer decent shared Java
hosting or cloud-like solutions for Java.

Once it was apparent that even enterprises were looking to go along the
cloud path and spend big in the process, Java started being featured in every
new hosting/cloud solution. Within no time, Java became one of the most
widely used and supported languages on the cloud.

Java’s foray into the cloud has changed Java EE for good, as well as Java
EE’s perception among the developer community. Developers, architects,
and customers of all sizes are today increasingly looking to leverage Java
on the cloud.

Competing Technologies:
Alternatives to Java on the Cloud
Java EE is just one of the many technologies you can use to build software.
Considering that technology is just a means to an end, whenever a new
project is initiated, developers have a choice of which technologies to use.
Multiple technology platforms can enable a developer to build all kinds of
software: Java, .NET, Ruby, Python, and PHP would figure to be at the top of
the list of software platforms.

Although a number of Java EE hosting and Java PaaS solutions are available
today, that number pales in comparison to the number of cloud/hosted

18 Java EE Applications on Oracle Java Cloud

solutions for other web technologies. PHP, .NET, Python, and Ruby all
continue to enjoy good traction among the developer community.

PaaS-like PHP hosting solutions have been around for quite some time—
it’s just that they weren’t called PaaS back then. PHP works well even within a
shared hosting setup, so a PHP app running on a fairly cheap, shared hosting
solution has been the mainstay of web applications over the past decade.
In comparison, Java has always struggled with shared hosting. Few hosting
providers offered Java on a shared environment, and even those few usually
offered a tightly sandboxed Tomcat instance that hardly ever worked out for
real applications. Most hosting providers asked you to switch to a dedicated
server as soon as you uttered the word Java or Java EE.

Oddly, back then, hardly anyone seemed bothered by Java’s absence
from the shared hosting space. Only because the cloud triggered a surge
in enterprises looking at shared cloud environments have we seen the
emergence of many Java PaaS solutions.

Not Just Java and .NET for the Enterprise
The Java platform has often scored over the likes of PHP, Python, and
Ruby because Java was thought of as “enterprise ready,” unlike many other
technologies. However, with many large players now offering PaaS solutions
for PHP, Python, and other technologies, we now see technologies around
PHP, Python, and Ruby, as well as other JVM languages, offering much stiffer
competition to conventional Java EE for the enterprise.

Whereas earlier, “enterprise software development” was primarily a two-
horse race between Java EE and .NET, today we see many other technologies
being considered. This is, to a large extent, due to the availability of
enterprise-grade PaaS solutions for these other technologies.

Although each platform has its pros and cons, here are a few things that
especially work in favor of Java EE on the cloud:

■ Java EE was always meant for robust, scalable, distributed, multitier
applications, precisely the things that you expect from a cloud
application. This makes Java EE a great fit for the cloud.

■ Java EE is already a mature platform on the cloud. You have many
vendors, lots of choices, and all kinds of pricing models at your
disposal.

Chapter 1: Java EE and Cloud Computing 19

■ The talent pool of Java EE developers is immense. Getting these
developers to use Java EE on the cloud is a lot easier than building an
entirely new skill set.

■ The Java EE community is vibrant and Java EE technology continues
to get better and easier to use with every new version. Therefore, Java
EE on the cloud is arguably the safest long-term choice on the cloud.

Standards and Java EE 7
Although Java EE is supported by several cloud vendors, we find that most
such vendors are either supporting bits and pieces of Java EE or have built
their own APIs that developers need to conform to. There have been some
attempts at Java Cloud standardization, but so far, no clear standards have
emerged for Java on the cloud.

Java EE 7 was initially meant to bring to life the long-awaited Java Cloud
standardization. However in August 2012, 10 months before Java EE 7 was
released, one of the specification leads for Java EE 7, wrote in her Java EE 7
Roadmap blog (https://blogs.oracle.com/theaquarium/entry/java_ee_7_roadmap)
that it was felt that “providing standardized PaaS-based programming and
multitenancy would delay the release of Java EE 7.” PaaS enablement and
multitenancy support was moved out of Java EE 7 and is now targeted for
Java EE 8.

Although there is no official Java EE Cloud standard being released soon,
it is important to note that most Java Cloud vendors are presently looking to
support standard Java EE applications.

Java EE Vendors and Alternatives
Although Amazon is credited for largely initiating the cloud computing
wave, Amazon was primarily an IaaS vendor. Google App Engine (GAE) was
the first PaaS solution that received widespread interest and attention. GAE
opened with Python support, but introduced Java about a year later, in April
2009. We have been in a constant Java PaaS race since, with many vendors,
new and old, offering Java PaaS products.

The Java Cloud vendor space is one that keeps changing rapidly, as most
of the major software companies have either launched a cloud solution or
are looking to do so. As of today, the prominent players in the Java Cloud

https://blogs.oracle.com/theaquarium/entry/java_ee_7_roadmap

20 Java EE Applications on Oracle Java Cloud

space are Amazon Elastic Beanstalk, Google App Engine, Jelastic, CloudBees,
OpenShift from Red Hat, and the Oracle Java Cloud Service.

Many of the PaaS providers run a Tomcat server, and some use Jetty and
GlassFish. The Oracle Java Cloud runs on Oracle WebLogic Server release
10.3.6, which is the latest version in the WebLogic Server 11g line.

Some of these vendors also offer IaaS solutions where you can install your
own Java EE server. However, here we are only looking at their PaaS offerings.

Amazon Elastic Beanstalk Beanstalk is Amazon’s PaaS offering. It supports
applications built in Java, PHP, Python, Ruby, Node.js, and .NET. There is
no additional charge for Elastic Beanstalk, and you only need to pay for
the Amazon Web Services (AWS) resources needed to store and run your
applications. Beanstalk deploys applications to the Apache Tomcat server
and therefore only supports those Java EE technologies that are supported on
Tomcat.
http://aws.amazon.com/elasticbeanstalk/

Google App Engine Google App Engine has only partial Java EE support
and uses its own customized server and data store. If one intends to use
Google App Engine, some vendor-specific learning is essential.
https://developers.google.com/appengine/docs/java/

Jelastic Jelastic began as the “Java Elastic Cloud.” It no longer claims to
be the “Java Elastic Cloud,” as it now supports both Java and PHP. Jelastic
supports multiple Java EE servers (Tomcat, TomEE, GlassFish, and Jetty), as
well as multiple SQL and NoSQL databases. Its postives are its Java focus
and that it does not require you to use its proprietary APIs and technologies.
http://jelastic.com/

CloudBees CloudBees claims to be the Java PaaS company that supports
the entire application lifecycle, from development through production. It
provides for source control repositories and Maven repositories, as well as
continuous-build servers managed by Jenkins. It supports Tomcat, JBoss,
GlassFish, WildFly, and Jetty application servers and supports many JVM
languages and frameworks.
http://cloudbees.com/

http://aws.amazon.com/elasticbeanstalk/
http://jelastic.com/
http://cloudbees.com/
https://developers.google.com/appengine/docs/java/

Chapter 1: Java EE and Cloud Computing 21

OpenShift OpenShift is the PaaS from Red Hat. It supports Java, Ruby,
Node.js, Python, PHP, and Perl. It supports multiple Java EE application servers
(JBoss AS 7.1, WildFly 8, JBoss EAP6, Tomcat, and GlassFish) and MySQL,
MongoDB, and PostgreSQL databases. OpenShift’s support for a wide range
of languages, servers, frameworks, and databases, is its major positive.
https://www.openshift.com/get-started/java

Oracle Java Cloud Although this entire book is about OJC, here’s a quick
description: OJC is a Java PaaS service that runs the Oracle WebLogic server,
which is an integral part of Oracle’s Fusion Middleware range and its Oracle
Cloud Application Foundation. OJC supports a mix of Java EE 5 and 6 features.
The WebLogic server, the standards support, the Oracle Database, support for
Oracle frameworks such as ADF, and ease of use are some of its highlights.
https://cloud.oracle.com/mycloud/f?p=service:java:0a f

Although these are the prominent players in the Java PaaS space, other
notable mentions would be Heroku from Salesforce.com and Cloud Foundry
from GoPivotal (formerly VMware). Already, a wide range and depth to the
Java PaaS offerings is available. These offerings vary on multiple factors, so a
close examination of multiple vendors is usually needed before one can pick
the right Java PaaS for their requirement.

NOTE
The WebLogic server is integral to Oracle’s
Fusion Middleware range and its Oracle Cloud
Application Foundation, and is the server used on
the Oracle Java Cloud Service.

Tens of factors go into why one would choose one PaaS over another. The
following are the top considerations (in no particular order) and how the Oracle
Java Cloud (OJC) performs on each one. There’s a fair bit of overlap between
the features that these cloud services offer, but the key points to consider from a
purely software development platform point of view are as follows:

■ Pricing and billing Costs and pricing strategies vary widely across
vendors. Some charge based on fine-grained usage details, whereas
others provide duration-based subscriptions. You need to evaluate if you
would like to go with subscriptions or with a “pay-as-you-go” model.

http://www.openshift.com/get-started/java
https://cloud.oracle.com/mycloud/f?p=service:java:0af
http://www.Salesforce.com

22 Java EE Applications on Oracle Java Cloud

OJC: Offers a monthly subscription currently starting at $249 for a
single WebLogic server instance. It does not offer a “pay-as-you-go”
option. OJC offers three broad editions, each of which come with
a definitive set of resources. You pick your edition and pay a flat
monthly rental for the same.

■ Supported features and technologies Are the supported technologies
and features in line with your requirements? Is your chosen framework
officially supported by the cloud vendor? Which version is supported?
Is the vendor supporting standards, or do you have to write custom,
vendor-specific code? Many vendors support only subsets of Java
EE, and in some cases, require you to use and adopt their custom
technology/API. If you intend to develop a pure Java EE application,
check whether the vendor supports Full Java EE/Java EE Web Profile.
OJC: Java EE standards support is one of the primary pitches for
OJC. It currently supports most of Java EE 5 and many of Java EE 6’s
capabilities, but isn’t yet fully Java EE 6 or even Java EE 6 Web Profile
compatible. Its support for the Oracle ADF framework is a plus for
those with existing ADF deployments and development setups.

■ Flexibility Many vendors insist that you develop in a certain way
using certain APIs. This isn’t always possible or easy to execute
unless you have a team adept at developing as per that cloud
vendor’s requirements.
OJC: The OJC relies on Java EE standards and does not insist on you
using any non-Java EE or Oracle-specific APIs, unless you wish to
leverage any features specific to WebLogic or Oracle’s cloud.

■ Vendor standing Considering that you are putting your application
and data on the vendor’s hardware, you want to be confident with
the vendor’s credentials and ability to be up and running, say, 10
years from now.
OJC: Oracle rates highly on this count. The Java Cloud Service
should be around for a long time.

■ Tooling and ease of use Many cloud vendors have rich web-based
UIs, and some even provide integration with popular integrated
development environments (IDEs). Ease of use is quite important

Chapter 1: Java EE and Cloud Computing 23

because some cloud services can be rather confusing and, at times,
even intimidating.
OJC: The OJC has a decent browser-based UI and supports integration
with popular IDEs, including JDeveloper, NetBeans, and Eclipse.

■ Database support Most cloud vendors support at least one RDBMS
and NoSQL data store. You need to check if it’s the one you prefer.
OJC: The OJC supports the Oracle RDBMS, but there’s no NoSQL
database as of now. However, considering most other vendors are
offering a NoSQL option and Oracle has a NoSQL database, it
should only be a matter of time before Oracle NoSQL is available on
the Oracle Cloud.

■ Open/closed: vendor lock-in Is the vendor offering a closed stack
that would lock you in? Would it be possible for you to migrate to
a new server if the need arises, or are you getting locked in to a
particular vendor?
OJC: OJC fares well on this count because of its emphasis on Java EE
standards-based development. Migrating from the Oracle Cloud to a
dedicated server or another PaaS vendor should be possible.

■ Java friendly Whereas some vendors are focused Java Cloud
players, there are others that support many different technologies. This
does seem to affect the features, the documentation, and the overall
priority areas for that service.
OJC: Being a purely Java Cloud service, OJC is certainly Java friendly.
The UI, features, and capabilities all seem to be built with a Java
developer in mind.

■ Skill building How difficult would it be to build a team capable of
developing and deploying for a PaaS?
OJC: Again, due to OJC’s focus on Java EE standards, it is much easier
to build a team for OJC than for other PaaS solutions, which require
skill building on a vendor-specific technology.

Apart from the software platform issue, there are, of course, other
non-software issues such as support, service level agreements (SLAs), and
server locations that need to be considered.

24 Java EE Applications on Oracle Java Cloud

Summary
In this chapter, we had a look at the basics and origins of Java EE and cloud
computing. We discussed the various kinds of cloud services and why Java
EE is a great fit for a cloud environment. We took a look at some of the
prominent Java Cloud vendors today, as well as the things to consider while
picking a Java Cloud.

We also looked at Java EE in more detail, reviewing JSRs, the various
application servers, and the Java EE profiles. We followed this up with a
discussion on Java EE PaaS and how the Oracle Java Cloud fares on some of
the key parameters for a PaaS, concluding with a look at PaaS alternatives on
other technologies.

Let’s now take off into the Oracle Java Cloud, set up our Java Cloud instance,
and start looking at the nuts and bolts of Oracle’s Java Cloud offering.

CHAPTER
2

The Oracle Java Cloud

26 Java EE Applications on Oracle Java Cloud

This chapter provides the specifics of Oracle’s Cloud offering. We
will briefly review the Oracle SaaS, IaaS, and PaaS, then dive into
the specifics of pricing and features and restrictions of Oracle Java

Cloud (OJC). We will also look at how you can create users and roles so
as to best manage your Oracle Cloud. This chapter will also show how
to integrate NetBeans, Eclipse, and JDeveloper IDEs with the Oracle Java
Cloud so you’ll be ready to start development in the next chapter.

Oracle’s Cloud Foray
In the early days of the term “cloud computing,” when the hype was
just starting, Oracle founder Larry Ellison famously said, “[The Cloud] is
databases and operating systems and memory and microprocessors and the
Internet” and “all the Cloud is, is computers in a network.”

Ellison sure had a point. SaaS (Software as a Service) had been around for
years, and the cloud as such was nothing new in the technology sense. What
was perhaps new was the software development paradigm being spun around
the idea of cheap, pay-per-use hardware and software. Another remarkable
aspect of the cloud was the stickiness of the term “cloud.” For reasons no one
is perhaps sure of, the term “cloud” worked. So soon we had marketing gurus
from every other company leveraging the term “cloud” to sell their wares.
Whereas “grid” and “virtualization” had their brief moments in the limelight,
“cloud” made it big time in quick time. Even the mainstream media was
talking about the cloud in no time.

Since 2011 we have seen a big cloud push from Oracle. The Oracle Cloud
was announced at Oracle OpenWorld 2011, and we have since seen a vast
range of cloud solutions being announced and delivered by Oracle. In 2013,
Oracle went a step further and even announced dedicated Oracle CloudWorld
events across many cities worldwide.

Oracle Cloud Constituents
Oracle defines its cloud as “a broad set of industry-standards based,
integrated services that provide customers with subscription-based access
to Oracle Platform Services, Application Services, and Social Services, all

Chapter 2: The Oracle Java Cloud 27

completely managed, hosted, and supported by Oracle” (https://cloud.oracle
.com/mycloud/f?p=service:faq:0#q2). The Oracle Cloud today offers a wide
range of cloud solutions in the SaaS, IaaS, and PaaS domains.

SaaS
From day one, the Oracle Cloud has been projected more as a solution
provider than a hardware and software rental place. Much of Oracle’s focus
has been on providing SaaS solutions around verticals such as Enterprise
Resource Planning (ERP), Planning and Budgeting, Financial Reporting, Human
Capital Management (HCM), Talent Management, Sales and Marketing, and
Customer Support. Oracle has a popular product in each segment, and the first
cloud push from Oracle was around making these products available as SaaS
solutions on the cloud. Apart from the traditional Oracle products, there’s also
the Oracle Social Network (OSN) on the cloud. The OSN was announced at
OpenWorld 2012 and tries to bring social interactions to the enterprise while
being tightly integrated with the other Oracle solutions.

IaaS
In January 2013, Oracle also announced Infrastructure as a Service (IaaS)
solutions. However, Oracle IaaS is focused on on-premises deployment,
rather than being a commodity cloud like Amazon. Oracle IaaS offers
customers a monthly rental option to access preconfigured application
servers to be deployed in on-premises customer data centers.

PaaS
The Oracle Cloud also offers a wide range of PaaS solutions, some of which
are already in General Availability, while others are still in Beta/Preview. One
in General Availability, is the Java PaaS, the focus of this book. Other PaaS
include Oracle Developer Cloud Service, which offers Project Configuration,
Source Control, Defect Tracking, Continuous Build Integration, and Document
Collaboration, as well as the Oracle Storage Cloud and the Oracle Messaging
Cloud. All of Oracle’s PaaS services are meant to be tightly integrated and
collaborate with each other. Last but not least is the Oracle Database Cloud,
which is an integral part of the Oracle Java Cloud offering. We’ll use the
Database Cloud in the chapter dealing with persistence.

https://cloud.oracle.com/mycloud/f?p=service:faq:0#q2
https://cloud.oracle.com/mycloud/f?p=service:faq:0#q2

28 Java EE Applications on Oracle Java Cloud

Java Cloud
A simplistic explanation of the Oracle Java Cloud is that it’s Oracle’s WebLogic
Server integrated with the Oracle Database. So developing and deploying on
the Java Cloud is akin to developing and deploying on WebLogic and using
an Oracle Database for persistence. However, although the latest versions of
WebLogic support all Java EE 6 features, the Java Cloud supports a mix of Java
EE 5, Java EE 6, and Oracle WebLogic Server capabilities. For a detailed list of
technologies supported by Java Cloud, refer to Appendix B.

NOTE
Oracle has recently introduced “Oracle WebLogic
as a Service,” which is still in preview mode.
Although both the Java Cloud Service and
WebLogic as a Service run the WebLogic Server,
the primary differentiating factor of “Oracle
WebLogic as a Service” is that it offers full
administrative and operational control.

Although Java Cloud supports a mixture of features and capabilities,
it is important to note that the Java Cloud supports almost all of the most
commonly used Java EE technologies. Although it might not support the
latest versions of each, there is support for Servlets, JavaServer Pages (JSP),
JavaServer Faces (JSF), Enterprise JavaBeans (EJB), Java Persistence API (JPA),
Java API for Restful Web Services (JAX-RS), and Java API for XML Web
Services (JAX-WS), as well as popular technologies such as ADF.

Another thing to note is that the Java Cloud supports Java SE 6 APIs. Refer
to Appendix C for a detailed list of technologies that would trigger a whitelist
violation and stop your application from being deployed.

NOTE
A whitelist is a list of those technologies and APIs
that fulfill the technical and security requirements
of a software/service and have been approved
to run on it.

Pricing
Now that you understand the history and position of Oracle Java Cloud,
what does it take to get started? Oracle offers three broad editions of cloud
subscription; you pick your edition and pay a flat monthly rental.

Chapter 2: The Oracle Java Cloud 29

The Java Cloud prices at the time of writing range from 249 USD per
month for a single WebLogic Server instance to 1,499 USD for four WebLogic
Server instances. Any of the WebLogic server instances can be a deployment
target for your Java EE applications. You can also choose to run multiple Java
EE applications on the same WebLogic instance. Considering that multiple
Java EE applications can run fine on a single WebLogic server instance, in
most cases, the deciding factor for which OJC edition to buy will be based on
the memory, storage, and data transfer available in each edition.

A WebLogic Server instance here means a configured instance that’s ready
to host any applications and resources. You do not have to perform any of the
tasks involved in setting up and configuring the WebLogic Server instance.

Also note that one physical hardware box could be running multiple
instances of WebLogic, or even one instance could be running over multiple
physical boxes. However, the point of the cloud is that it should not matter
what the hardware is on which your instance is running. Most cloud vendors
do not share or give users any control over what hardware is running
underneath their cloud setup.

As seen in Figure 2-1, the user does not gain any further fine-grained
control over the setup at the higher price point. Although downsizing is not

FIGURE 2-1. Java Cloud pricing

30 Java EE Applications on Oracle Java Cloud

allowed, users do have the choice to upsize from a lower edition to a higher
edition at any point in time.

NOTE
Oracle Java Cloud Service does not expose details
on the underlying operating system, middleware,
and JVM configurations to its users.

It is important to note that Oracle Java Cloud Service requires the Oracle
Database Cloud. The Java Cloud trial we use in this book comes with a trial
of the Database Cloud. However, for your real-world enterprise deployments,
you will also need to purchase the appropriate Database Cloud edition. You
have the choice to mix and match your Java and Database Clouds. You can
choose to have a single WebLogic server instance running with the 50GB
database edition.

NOTE
Oracle is expected to launch additional versions
—Basic, Customer Managed Database Cloud,
and Premium Managed Database—of the
Database Cloud. However, all of these are still in
the preview/concept stage. Only the Managed
Schema version that’s discussed in this section is
available for use with the Java Cloud.

As seen in Figure 2-2, you can choose from a 5GB edition at 175 USD per
month to a 50GB edition at 2,000 USD per month. Thus, the per month costs
for Oracle Java Cloud Service range from 424 USD (Java S1 + Database S5) to
3,499 USD (Java S4 + Database S50).

As with OJC, you can upsize from a lower edition of the Database Cloud
to a higher edition at any point in time, but you cannot downsize.

NOTE
Although the Oracle Database Cloud is a must
have for OJC today, one would expect that to
change eventually as customers ask for database
and NoSQL alternatives.

Chapter 2: The Oracle Java Cloud 31

FIGURE 2-2. Database Cloud pricing

32 Java EE Applications on Oracle Java Cloud

Trial Signup
You don’t have to invest another 400 USD to try out the Oracle Java Cloud
with this book. Oracle offers a free 30-day trial of the Java Cloud, which
will serve very well for this book. Click the Try It button on the Java Cloud
page at https://cloud.oracle.com/ to initiate the trial signup process. With
one Oracle WebLogic Server instance, 1.5GB RAM Java Heap, adequate file
storage, 5GB of data transfer, unlimited users and applications, along with
one schema (Oracle Database 11g Release 2), 1GB of storage, and 6GB data
transfer, you get a pretty rich trial setup for your Java Cloud.

If you already have an Oracle account, you’ll need to sign in. Otherwise,
you need to sign up for an Oracle account. You will need to fill out a few
forms, and then your request will be put in “pending” status until it is fulfilled.
Note that trial approvals are not immediate and are based on availability and
the number of requests being served at that moment.

Once your setup is complete, Oracle will send an email to the account on
file with your trial approval and login credentials for the trial setup.

The email will provide service details for the Java Cloud Service, Database
Cloud Service, Account Administration URL, and Identity Domain Details. You
are provided temporary passwords that you are expected to reset on first login.

My Services
The “My Services” page is like a dashboard for your Oracle Java Cloud.
You can either bookmark the “MyServices Administration URL,” which will
be in the form https://myservices.<datacenter>.cloud.oracle.com/mycloud/
f?p=my_services in the approval email, or head over to https://cloud.oracle
.com/, log in with your Oracle Single Sign On ID, and access My Services.
In both cases, you will see a screen that includes the box shown in Figure 2-3.
Note that the URL for the My Services page changes based on the data center
associated with it.

Click the link for the Java service and you will get an overview page as
shown in Figure 2-4, showing the current service status as well as information
about start date, end date, sftp, and more. In the left panel you will find
sections titled Overview, Administration, Metrics, and Associations.

NOTE
Curiously, as of the time of this writing, the link only
works if opened in the same tab and does not work
if you attempt opening it in a new tab/window.

https://cloud.oracle.com/
https://cloud.oracle.com/
https://cloud.oracle.com/

Chapter 2: The Oracle Java Cloud 33

FIGURE 2-3. My Services

FIGURE 2-4. Java Cloud Service Dashboard

34 Java EE Applications on Oracle Java Cloud

Click Administration in the left panel and you will get a screen as shown
in Figure 2-5, where you have a button to lock the service, if you so desire.

Click Metrics in the left panel and you will be presented with information
such as CPU usage, memory usage, number of applications, and more, as
shown in Figure 2-6.

Click Associated Services and you will see any other Oracle Cloud services
that have been associated with your Oracle Java Cloud setup. For the trial setup,
you would only see your database service listed, as shown in Figure 2-7.

The Java Console button on the top right of Figure 2-4 takes you to the
Java Cloud Services Control. We will see more of the Java Cloud Services
Control in Chapter 4.

Now that you have your cloud trial up and running, let’s integrate it with a
popular Java IDE so as to further ease and speed up your use of the Java Cloud.

FIGURE 2-5. Lock/Unlock Service

FIGURE 2-6. Usage Metrics

Chapter 2: The Oracle Java Cloud 35

IDE Integration
Most Java developers today use some integrated development environment
(IDE) for development. Some of the popular Java IDEs are NetBeans, Eclipse,
JDeveloper, and IntelliJ IDEA. Although you can choose from a number of
available Java development tools, we will use Oracle’s officially supported tools
for demonstration in this book: NetBeans IDE, Oracle JDeveloper, and OEPE.

Oracle currently offers Oracle Java Cloud integration for NetBeans,
JDeveloper, and Eclipse:

■ NetBeans IDE NetBeans has been around for over a decade and
was the flagship Java development tool of Sun Microsystems (later
acquired by Oracle). NetBeans continues to thrive under Oracle and
is usually the first to support new technologies in Java SE and Java EE.
NetBeans’ vast feature set and ready to use out of the box state, in
my opinion, make it a great choice for beginners as well as advanced
Java developers.

■ Oracle JDeveloper JDeveloper was Oracle’s Java IDE prior to the
Sun acquisition. In recent years, JDeveloper has moved into a niche as
the chosen Java IDE for Oracle developers. It is no longer as popular
in pure Java circles, but is the primary Java tool for Oracle application
developers. JDeveloper may rarely be a leading topic at a Java-centered
conference, but is almost always present at an Oracle conference.

■ Oracle Enterprise Pack for Eclipse (OEPE) Eclipse has remarkable
traction in all kinds of programming, not just Java. Today, numerous
companies are shipping products and development tools built
on Eclipse. Naturally, there are thousands of developers who are

FIGURE 2-7. Associated Services

36 Java EE Applications on Oracle Java Cloud

most comfortable with the Eclipse IDE. Oracle Enterprise Pack for
Eclipse is the Eclipse-based Oracle development tool that these
developers wanted.

Which IDE is the best? Developers are passionate about their IDE, and
each has its merits. In fairness to these leading IDE options, we’ll show Java
Cloud integration in each one. The integration is quite similar on all IDEs,
so none of the three enjoy any edge in regard to the Java Cloud, and you
can choose to use whichever you find best for your needs. Before the IDE
integrations, you first need to get the Oracle Java Cloud Service SDK.

Oracle Java Cloud Service SDK
Download the Oracle Java Cloud Service SDK, which is freely available for
download on the Oracle Technology Network website. Note that the SDK
can be used independently of any IDE.

The SDK contains the following tools:

■ A command-line interface for interacting with your Oracle Java
Cloud Service instances.

■ A whitelist tool for checking your application’s cloud deployment
readiness.

■ Ant tasks and Maven plugins for interacting with your Oracle Java
Cloud Service instances.

■ There’s no installation process for the SDK; you simply need to
download and unzip the file onto your machine.

NetBeans
Download and install the NetBeans IDE from www.netbeans.org. Ensure
that you either download the Java EE Bundle or the All Bundle. Next,
install the Oracle Cloud Plugin for NetBeans. Start NetBeans, then choose
Tools | Plugins. In the Plugin Manager, select the Available Plugins tab and
search for “Oracle Cloud.” You should see an Oracle Cloud plugin with the
category marked as “Java EE.” Select the plugin and install it.

Now choose Tools | Cloud Providers, followed by clicking the Add Cloud
button. Select Oracle Cloud on the next screen, and you will see a screen
like the one shown in Figure 2-8. Enter your credentials and provide the path to
the Oracle Cloud SDK you extracted earlier. You will now see “Oracle Cloud
Remote” listed in Cloud Resources, as shown in Figure 2-9. Click Finish.

http://www.netbeans.org

Chapter 2: The Oracle Java Cloud 37

FIGURE 2-8. Add Cloud Provider

FIGURE 2-9. Available Cloud Resources

38 Java EE Applications on Oracle Java Cloud

“Oracle Cloud” will now appear under the Cloud node in the Services
window in NetBeans, and “Oracle Cloud Remote” will be listed under the
Servers node, as shown in Figure 2-10. If you don’t see Oracle Cloud Remote,
click Refresh.

The green arrow beside Oracle Cloud Remote indicates that the server is
running. Considering we are using a cloud server, this will always be green.
If a local GlassFish server were also running, there would be a similar green
arrow beside the GlassFish listing as well.

JDeveloper
Download the latest version of JDeveloper from the OTN. The Studio
Edition will support Java EE. Start JDeveloper, followed by selecting View |
Application Server Navigator. You should see an IntegratedWebLogicServer
instance in the navigator, as shown in Figure 2-11. This represents the
WebLogic server instance that comes bundled with the JDeveloper IDE.

To add the Oracle Java Cloud Application Server, right-click Application
Servers and select New Application Server to get a screen like the one shown
in Figure 2-12.

Note that “New” and “New Application Server” offer different functionality.
On this screen, select Standalone Server. On the next screen, select Oracle
Cloud as the Connection Type, followed by entering your Oracle Cloud
credentials, which naturally are the same across all IDEs.

Once you are done, you will see a second server in the Application Server
Navigator. You can now deploy any of your applications to your server on the
Oracle Java Cloud.

FIGURE 2-10. NetBeans services

Chapter 2: The Oracle Java Cloud 39

Eclipse
Download the Oracle Enterprise Pack for Eclipse from OTN at www.oracle
.com/technetwork/developer-tools/eclipse/. Installation is as straightforward
as extracting the zip file. Start Eclipse. You will see a Servers window if you
have the Web or Java EE perspective enabled. If this is not enabled by default,
you might have to manually open the Servers window. You can also edit
servers by selecting Window | Preferences | Server | Runtime Environments.

FIGURE 2-11. JDeveloper Application Server Navigator

FIGURE 2-12. Create Application Server Connection screen

http://www.oracle.com/technetwork/developer-tools/eclipse/
http://www.oracle.com/technetwork/developer-tools/eclipse/

40 Java EE Applications on Oracle Java Cloud

In the Servers window, right-click and select New | Server. Here, enter
your Oracle Java Cloud credentials, as shown in Figure 2-13.

You will also have to point to the Oracle Java Cloud SDK and the Java
Runtime Environment. In case you point to JRE 7, you will get the following alert:

Cloud applications must be developed with Java 6 or earlier. The selected
version is “1.7.”

In this case, download and install JRE 6 and point to the JRE 6 directory.
If your connection is successful, the Servers window will get updated, as
shown in Figure 2-14.

As with NetBeans, you will find that Eclipse also shows a green arrow
beside a running server, which in this case is the Oracle Java Cloud.

You now have your Oracle Java Cloud set up and integrated with NetBeans,
JDeveloper, and Eclipse.

Having the Oracle Java Cloud available as a server integrated with your IDE
is also good fun, because unlike a local server, the cloud server is always readily
available to you without any need to install, manage, or stop, start, wait....

FIGURE 2-13. Eclipse’s New Server window

Chapter 2: The Oracle Java Cloud 41

Maven and Ant
Maven (http://maven.apache.org/) and Ant (http://ant.apache.org/) are widely
used for their project management and build capabilities. Whereas Ant is the
old and trusted workhorse build tool, Maven is the relatively newer tool that
boasts impressive project management capabilities in addition to its build
capabilities.

OJC offers rich integration with both tools via the Cloud SDK. The Maven
plugin maven-javacloud.jar and the Ant plugin ant-javacloud.jar can be found
in the lib directory of the SDK. With the Maven plugin, commands for the
Java Cloud are exposed as Maven goals. Also, there’s an Ant task available in
the Ant plugin for most of the command-line commands.

If the command is “install,” the Maven goal is com.oracle.cloud:javacloud
:install, whereas the Ant task is <javacloud:install/>.

The Maven and Ant plugins make it possible for you to integrate any
project with the Oracle Java Cloud merely by making a few changes to the
Maven or Ant configuration.

Users and Roles
Every Oracle Cloud Service belongs to an Identity Domain that controls the
user authentication and authorization for that service. You can share the
same identity store among multiple Oracle Cloud Services by placing them
in the same Identity Domain.

Click the Users link on the top right of the page, as seen in Figure 2-3 and
you will get a screen as shown in Figure 2-15, listing the names, user names,
and email for the users in the system. You can use the search box as well as the
Show and Sort By drop downs to fetch particular users or type of users.

FIGURE 2-14. Eclipse’s Servers window

http://maven.apache.org/
http://ant.apache.org/

42 Java EE Applications on Oracle Java Cloud

Some not-so-obvious functionality on this screen is that if you click or
hover your mouse over the user’s name, you get a small popup showing the
roles assigned to that user, as shown in Figure 2-16. Also clicking the icon
on the extreme right of the listing gets you the option to modify the user’s
information, reset the password, manage the roles assigned to that user, and to
remove the user, as shown in Figure 2-17. The Remove option is disabled for
the user with the Identity Domain Administrator role.

FIGURE 2-15. Users

FIGURE 2-16. User Roles

Chapter 2: The Oracle Java Cloud 43

The user that you used to log in to the Oracle Cloud will also be the
Identity Domain Administrator by default. However, you can add and modify
users and roles as required.

To add a new user, click the Add button shown in Figure 2-16. You will get
a popup as shown in Figure 2-18 where you can add the new user and select
the role for that user.

FIGURE 2-17. Modify User Information

FIGURE 2-18. Add User

44 Java EE Applications on Oracle Java Cloud

Click the Roles tab and, as shown in Figure 2-19, you would see the
six roles (Identity Domain Administrator, Java_Administrators, Java_Users,
Database Administrator, Database Developer, and Database User) that are
available by default.

The roles listed here show that the Identity Domain is used by multiple
Oracle Cloud Services, Java, and Database Cloud Services in our case. So it’s
best to think of Identity Domain management as something independent of
any particular Oracle Cloud Service but something that floats above them all.

NOTE
The Identity Domain Administrator need not be an
administrator for the Java or Database Service.

You can use the Batch Assign Role button to upload a comma-separated
values (CSV) file and assign roles to all the users listed in the CSV file,
as shown in Figure 2-20. Note that the user accounts need to already exist
for this to work.

FIGURE 2-19. Roles

Chapter 2: The Oracle Java Cloud 45

To add a new role, click the Custom Roles tab, followed by clicking the
Add button and entering the role information in the Add Role Information
popup, as shown in Figure 2-21.

Click the SFTP Users tab to access SFTP user list. Reset Password is the
only functionality available for SFTP users, as shown in Figure 2-22.

You can click the Identity Self Service tab to access the forms to change
password and challenge questions, as shown in Figure 2-23.

FIGURE 2-20. Batch Assign Roles

FIGURE 2-21. Add Custom Role

46 Java EE Applications on Oracle Java Cloud

FIGURE 2-22. SFTP Users

FIGURE 2-23. Identity Self Service

Chapter 2: The Oracle Java Cloud 47

NOTE
OJC (even the trial setup) does not restrict
the number of users or applications deployed.
Therefore, it technically supports unlimited users
and applications.

Summary
In this chapter, we looked at Oracle’s journey into the cloud, followed by
specifics on OJC’s pricing, features, and trial. We next looked at using the
SDK and integrating OJC with an IDE. We closed with a look at the identity
management capabilities of Oracle Cloud.

You now have your Oracle Java Cloud ready, set up, and integrated.
So let’s get going with our Java EE development and start deploying on our
Oracle Java Cloud setup.

CHAPTER
3

Build and Deploy
with NetBeans

50 Java EE Applications on Oracle Java Cloud

Now that we have a fair idea of what Java EE and the Oracle Java
Cloud (OJC) have to offer, let’s dive in and start building our first
Java EE application. We will first select an IDE, and then set up and

deploy a basic application to the OJC.

Development IDE
You can build a Java EE application with as little as a text editor, but it is
much easier if you choose an IDE. The NetBeans, Eclipse, and JDeveloper
IDEs make this even easier because of the natural integration OJC offers
with these three Oracle-supported tools. The use of an IDE here will make
it easier for you to quickly and easily replicate what’s being shown in the
book. Before beginning our first application, select and set up the IDE of
your choice. For the purposes of this book, we’ll build and deploy using
the NetBeans IDE, but any IDE you’ve chosen to use is fine.

Why NetBeans?
NetBeans was chosen as the primary IDE for this book because of its solid
reputation, ease of use, and OJC integration. NetBeans is free and Java EE
ready “out of the box.”

NetBeans is available with dual licenses—Common Development and
Distribution License (CDDL) and GNU General Public License (GPL) v2 with
Classpath Exception. You can check the licensing FAQ at http://wiki.netbeans
.org/NetBeansUserFAQ#License_and_Legal_Questions for details. However,
here are the primary takeaways:

■ You can use it for commercial work.

■ There are no license costs.

■ You do not need to open source your code.

NetBeans is also great for the beginner.

http://wiki.netbeans.org/NetBeansUserFAQ#License_and_Legal_Questions
http://wiki.netbeans.org/NetBeansUserFAQ#License_and_Legal_Questions

Chapter 3: Build and Deploy with NetBeans 51

NOTE
Although we are choosing a specific IDE (here,
NetBeans) in this book, we will always build
applications adhering to the Java EE specification
and not write any IDE-specific code.

Building with Java EE Technologies
Let’s now start building an application with NetBeans and deploy it on OJC.
To begin with, let’s focus on building an application and not worry about the
micro-level details of each Java EE technology. We will spend future chapters
going into more detail on Java EE technologies. For now, it’s important to get
a view of the whole picture.

TIP
The projects in this book have been written to
provide hands-on training. It is important that you
try things out firsthand and build your applications
alongside the book chapters to gain the full value
of these lessons.

NetBeans can be installed on all operating systems that support Java.
Therefore, it will install and run the same on Windows, Linux, and Mac OS X
systems. We have looked at installing the NetBeans IDE in Chapter 2.

Note that installing even the full version does not mean that all features
will be activated right away and start taking up resources. NetBeans has a
neat Feature On Demand capability that will enable a technology only when
you actually use it.

Therefore, you are likely to get the activation screen when you first start
using different technologies in NetBeans.

First NetBeans Project
Once you have NetBeans running, select File | New Project. On this screen,
select Java Web | Web Application. Name the project Ch3WebApplication1.
You do not need to change anything else on this screen. However, do note
the text in the Project Location field, so as to be aware of where exactly the
project files are being stored on your machine. Click Next.

52 Java EE Applications on Oracle Java Cloud

As shown in Figure 3-1, select Oracle Cloud Remote as your server. The
thing to note here is that because OJC as yet does not support Java EE 6,
NetBeans will force you to use Java EE 5 so as to prevent you from writing any
code that OJC might not be capable of running. NetBeans also recommends
that you set the source level to 1.5, as this will stop you from using features
from later versions of Java. Also, when the project is compiled, all classes are
created with the source level set to 1.5.

TIP
Applications on OJC can use Java SE 6 APIs, so
if you intend to use source features in JDK 6, go
over to Project Properties | Sources and change the
code level to JDK 6. Refer to Appendix C for the
list of supported APIs.

OJC’s support for Java language and Java EE technology features is meant
to be updated as newer versions of Java EE and WebLogic are released.

As mentioned earlier, you can change the source level to JDK 6. But
because of the backward compatibility in Java and Java EE, even your
Java EE 5 application with Java 5 code will work fine on OJC.

FIGURE 3-1. Select Oracle Cloud Remote as your server in the Server and
Settings section.

Chapter 3: Build and Deploy with NetBeans 53

NOTE
Java dropped the Java versioning of 1.5, 1.6,
and so on, in favor of Java 5, Java 6, and so on.
Therefore, the reference to Java 1.5 here might
seem confusing. Please note that 1.5.0 (or 1.5)
continues to be used in places that are visible
only to developers, or where the version number
is parsed by programs, but 1.5.0 refers to exactly
the same platform and products numbered 5.0.
Therefore, the 1.5 version here is the same Java 5
you might be more familiar with.

Click the Next button seen in Figure 3-1. NetBeans will show a screen
like the one in Figure 3-2, asking if you would like to use any additional web
frameworks in your project. It lists JavaServer Faces (JSF), Spring Web MVC,
Struts, and Hibernate. The JSF framework is part of Java EE, and we will
look at it in Chapter 6. The other three are popular third-party, open-source
frameworks, but are not part of the Java EE specification as such.

Do not select any of the frameworks. Click Finish. The project should now
get created, and the Projects window will show a file structure like in Figure 3-3.

FIGURE 3-2. Additional web frameworks

54 Java EE Applications on Oracle Java Cloud

Here are a few things to note:

■ An index.jsp file is generated by NetBeans. NetBeans does this for
all web applications. Although this is a JavaServer Page, you will find
that it is pretty much the same as HTML in this case. We will look at
JSPs in Chapter 5.

■ You see the libraries (JAR files) on the Oracle Cloud that are available
to your project. Expand Oracle Cloud Remote in the listing and
you will find javaee5.jar and libraries required for persistence.
Persistence, in most cases, means to talk to a database. We will be
using these libraries in Chapter 9.

■ Although we set the source level to 1.5, you can still use the JDK 1.7
on your machine without needing to install JDK 1.5. NetBeans will
ensure that you only use 1.5 language features and not use the
syntax and features of the later releases.

■ Because OJC runs on the WebLogic server, a WebLogic configuration
file named weblogic.xml file is also generated.

FIGURE 3-3. The file structure in the Projects window

Chapter 3: Build and Deploy with NetBeans 55

If you expect to go through many more steps before you can deploy
and run this application on the cloud, you are in for a surprise.
All you need to do is right-click the project name and click Run.
NetBeans will then compile, package, and deploy your web
application on OJC. It will actually go one step further by opening
your default browser and pointing you to the index.jsp file in your
web application. However, you must sign in to OJC before you can
access the page.

■ Because you are deploying to a cloud server, you will also require
an Internet connection. Also, NetBeans should not be blocked by
a proxy or a firewall. Once you complete the login, you should
see a Hello World page running from OJC, as shown in Figure 3-4.
Congratulations! You built and deployed a Java EE application on the
cloud. You are a Cloud Java EE developer!

What Happened?
Now let’s look at exactly what happened so you feel that you’ve earned
the title of Cloud Java EE developer. First, let’s look at all the work NetBeans
did in the background. The easiest way to do this is to go through the
NetBeans logs.

TIP
If you can’t see the logs because you closed the
log window in NetBeans, reset your NetBeans
windows by clicking Windows | Reset Windows.

FIGURE 3-4. The index.jsp from your application deployed on OJC

56 Java EE Applications on Oracle Java Cloud

In NetBeans, you should see your logs in two tabs. The first tab, titled
Ch3WebApplication1 (run), lists the actions performed to create the required
directories, to compile the code, to package the code, and finally, to deploy
the code to OJC. The second tab, Oracle Cloud Remote Deployment, lists the
actions performed on OJC. It would be well worth your time to go through
these logs. In Listing 3-1, I have trimmed some of the verbose bits, but the
logs will give you a sense of what exactly is happening in the background.

Listing 3-1: Ch3WebApplication1 (Run) Log

ant -f <NPDP>\\Ch3WebApplication1
-Djsp.includes=<NPDP>\\Ch3WebApplication1\\build\\web\\index.jsp
-DforceRedeploy=false -Dclient.urlPart=/index.jsp
-Ddirectory.deployment.supported=false
-Djavac.jsp.includes=org/apache/jsp/index_jsp.java
-Dnb.wait.for.caches=true run
init:
deps-module-jar:
deps-ear-jar:
deps-jar:
Created dir: <NPDP>\Ch3WebApplication1\build\web\WEB-INF\classes
Created dir: <NPDP>\Ch3WebApplication1\build\web\META-INF
Copying 1 file to <NPDP>\Ch3WebApplication1\build\web\META-INF
Copying 3 files to <NPDP>\Ch3WebApplication1\build\web
library-inclusion-in-archive:
library-inclusion-in-manifest:
Created dir: <NPDP>\Ch3WebApplication1\build\empty
compile:
compile-jsps:
Created dir: <NPDP>\Ch3WebApplication1\build\generated\src
Created dir: <NPDP>\Ch3WebApplication1\build\generated\classes
Compiling 1 source file to
<NPDP>\Ch3WebApplication1\build\generated\classes
warning: [options] bootstrap class path not set
in conjunction with -source 1.5
1 warning
Created dir: <NPDP>\Ch3WebApplication1\dist
Building jar: <NPDP>\Ch3WebApplication1\dist\Ch3WebApplication1.war
Distributing
<NPDP>\Ch3WebApplication1\dist\Ch3WebApplication1.war
 to [cloud-deployment]
Uploading...
Deploying...

Chapter 3: Build and Deploy with NetBeans 57

For the sake of brevity, I have replaced <NPDP> in all places where the
NetBeans Projects Directory Path appeared in the log. The log in Listing 3-2
shows the various actions performed by NetBeans to build, package, upload,
and deploy the application to OJC.

Listing 3-2: Oracle Cloud Remote Deployment Log

Uploading...
Deploying....
==================== Log file: virusscan====================
<TIME> CDT: Starting action "Virus Scan"
<TIME> CDT: Virus Scan started
<TIME> CDT: --
<TIME> CDT: File Scanned: "Ch3WebApplication1.war".
<TIME> CDT: File Size: "2197".
<TIME> CDT: File Status: "CLEAN".
<TIME> CDT: ---
<TIME> CDT: Virus scan passed.
<TIME> CDT: "Virus Scan" complete: status SUCCESS
==================== Log file: whitelist==========================
<TIME> CDT: Starting action "API Whitelist"
<TIME> CDT: API Whitelist started
<TIME> CDT: WARNING - There are 3 warnings(s)
found for Ch3WebApplication1.war.
...
<TIME> CDT: INFO - Whitelist validation has completed
 with 0 error(s) and 3 warning(s).
<TIME> CDT: Whitelist validation passed.
<TIME> CDT: "API Whitelist" complete: status SUCCESS

==================== Log file: deploy=====================
<TIME> CDT: Starting action "Deploy Application"
<TIME> CDT: Deploy Application started
<TIME> CDT: [Deployer:149194]Operation 'deploy'
on application 'Ch3WebApplication1' has succeeded on 'm0'
<TIME> CDT: WL action state: completed
<TIME> CDT: Application deployment succeeded.
<TIME> CDT: "Deploy Application" complete: status SUCCESS

The long timestamp text in the log entry has been replaced with <TIME>.
This log is the one returned by OJC and lists actions being performed entirely
on the cloud. NetBeans’ role is limited to creating, uploading, and deploying
the .war file for the application, after which it is up to OJC to scan, verify, and
deploy the application. It usually takes a minute or so for the application to be
up and running on OJC in the case of a successful deployment.

58 Java EE Applications on Oracle Java Cloud

Files and Directories Generated
The Ch3WebApplication1 (run) log will show that NetBeans has created
several directories, followed by building a Ch3WebApplication1.war file that
is uploaded and deployed to the cloud. We will talk more about WAR files
in the “We Are at WAR” section later in this chapter.

Figure 3-3 showed how NetBeans organizes your project files. However,
this can be confusing because the way files are organized in NetBeans is
meant to ease development—it does not quite map to the actual directory
structure on your computer. To better understand this, open Windows
Explorer or a similar tool on your operating system and look at the directory
structure created. It should be identical to the one shown in Figure 3-5.

Although you can get this same view within NetBeans in the Files window,
it’s often easier to understand NetBeans’ work when you can relate it to your
familiar OS directories. It is important to have a clear understanding of what
NetBeans is doing in the background; otherwise, it can seem like NetBeans is
performing some magic to make your application go.

Directories such as WEB-INF are created as required by the Java EE
specification. However, others (such as build, src, and dist) are only created as
per common developer conventions—for example, keeping source files in the
src directory, build files in the build directory, and the distribution .war files

FIGURE 3-5. Project directories

Chapter 3: Build and Deploy with NetBeans 59

in the dist directory. The nbproject directory is for NetBeans configuration
information and scripts.

The Cloud Deployment
The second log file, Oracle Cloud Remote Deployment, provides insights
into what exactly happens once NetBeans uploads your application to OJC.
The first section is marked “virus-scan.” Once the virus scan is cleared,
next is the “whitelist.” A whitelist is a list of those technologies and APIs
that fulfill the technical and security requirements of a software/service and
have been approved to run on it. The whitelist log in Listing 3-2 shows three
warnings and zero errors.

You will find that the warnings are more recommendations for changes in
the XML. You would get these warnings with all IDEs because none of them,
by default, generate the XML expected.

Because there are no errors in the whitelist scan, OJC moves to the next
task of deploying the application. Only after this log says

"Deploy Application" complete: status SUCCESS

is the application actually deployed. The last line in the log says

Deployment was successful. Application is being opened at https://
java-trialaftx.java.us1.oraclecloudapps.com/Ch3WebApplication1

followed by your default browser opening. The actual URL would vary in
each case based on the Identity Domain and which data center is linked
to your account. In this example, trialaftx is the Identity Domain and us1
represents the U.S. data center. Therefore, the format is

https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>
.oraclecloudapps.com/<ApplicationName>

The first warning displayed in the log is

Recommended child element "login-config" missing under element.
If you want to make your application public, you can have empty
<login-config/> in your web.xml. If you need authentication then
you must have <login-config> and its child <auth-method> element
in web.xml. Without this element(<login-config>), users may be
challenged by SSO.

60 Java EE Applications on Oracle Java Cloud

You need not worry about what a web.xml file is at this point in time, but
if you do not want the Single Sign On (SSO) page to come up, just add the
<login-config/> tag to the web.xml file.

NOTE
OJC will force you to sign in for every web
application that does not have the <login-config>
tag in the web.xml file. This is true for all web
applications that NetBeans creates for us in
this book.

You will find that the other two warnings also talk of missing XML tags.
Whitelist warnings are not showstoppers, however. As long as you don’t get
any errors, your application will deploy. However, in most cases, it would be
wise to heed to these warnings from OJC and make the necessary changes.

Clean and Build, Verify
Let’s look at a couple of useful features in NetBeans and their integration with
OJC. If you right-click the project name in the Projects window, you will see
a context menu that provides many options, including the following:

■ Clean and Build NetBeans will delete any previously compiled files,
build outputs, and then recompile and package your application.

■ Verify If you wish to verify your application against the OJC
whitelist, you need not upload and verify it online. You can click
Verify and use the Cloud SDK on your machine to verify your
application against the whitelist.

■ The other IDEs (Eclipse and JDeveloper) offer similar capability;
however, the placement and naming of these options is a bit different.

■ Let’s now delve further into the structure of the web application.

Web Application Structure
Java EE is focused on structures, standards, and conventions. There is almost
always a definitive way of doing things, and if you comply with that way,
the Java EE platform software will do most of the heavy lifting for you. This

Chapter 3: Build and Deploy with NetBeans 61

is especially important when building an application. If you are building a
Java EE application, for the application server to do its magic, you need to
follow the standards, part of which is placing your files in a certain place
and packaging your application in a certain way.

Directories
Figure 3-5 showed the directory structure for our application, whereas
Figure 3-6 shows the key files and directories in a Java EE application.
Note that this is not an exhaustive list. Only the most important files and
directories are highlighted here.

As shown in Figure 3-6, the WEB-INF directory is at the root of the
application, along with your HTML, XHTML, JSP, and other files. However,
whereas these files are publicly available, WEB-INF is a special private
directory, and the server will ensure that the contents of that directory cannot
be accessed directly. So although you are able to access an HTML file placed
at the root with a URL, such as example.com/apage.html, you cannot use
example.com/WEB-INF/apage.html if you were to place that same HTML file
within the WEB-INF directory.

Within the WEB-INF directory is the web.xml file, which is the web
deployment descriptor that holds all the configuration information for the
web application.

NOTE
OJC runs a mix of Java EE 5 and 6 technologies.
Whereas web.xml is optional in EE 6, this file is
mandatory with EE 5 and, therefore, is always
required while deploying applications to OJC.

FIGURE 3-6. Key files and directories in a web application

WEB-INF

web-xml classes lib

HTML, XHTML,
JSP, JavaScript

http://www.example.com/
http://www.example.com/

62 Java EE Applications on Oracle Java Cloud

The classes directory is where your Java classes should be placed. Create
a directory structure within the classes directory based on your Java package
names. The class file for com.example.User.java will be at /WEB-INF/classes/
com/example/User.class.

The lib directory is where any libraries (your own or third party) should
be placed. The libraries are JAR files that the application server will load to
make available to the application. Now that we have looked at the directory
structure for a web application, let’s move on to how your Java EE application
is packaged.

Packaging the Application
If you have a local Java EE application server running on your machine,
you usually have the option of just copying your application to a certain
directory, and the server will deploy the application. However, with cloud
providers such as OJC, you are expected to package your application in the
standard Java EE format and upload the packaged file to the server.

We Are at WAR
Throughout the earlier logs, you may have noticed references to the
Ch3WebApplication1.war file. The Java EE web application you created
has been packaged into that file by NetBeans. In all probability, you would
have encountered Java Archives (JAR) files earlier with Java development,
but if the JAR file contains a web application, you should name the file as
a .war file. Here, WAR stands for “web archive,” and it is essentially a JAR
file but with the file extension set to .war, so as to convey that it is a web
application. All Java EE–compatible application servers (either local or on
the cloud) will have an option to deploy a WAR file. There’s another kind of
JAR file, known as an Enterprise Archive (EAR) file, that we will encounter
later in the book.

TIP
JAR, WAR, and EAR are all built with the ZIP file
format. Therefore, you can open, compress, and
extract these files using any ZIP software you
already might have installed.

Chapter 3: Build and Deploy with NetBeans 63

In the Ch3WebApplication1 (run) log, you will see the following lines:

Created dir: ...\Ch3WebApplication1\dist
Building jar: ...Ch3WebApplication1\dist\Ch3WebApplication1.war

As briefly mentioned earlier, the dist directory that NetBeans has created is
not mandated by the Java EE specification, but it is convention to name your
directory with the distribution files as dist. If you open the dist directory, you
will find the file Ch3WebApplication1.war.

Note that this Ch3WebApplication1.war file is the only file that NetBeans
actually uploaded to OJC and deployed on the cloud. You can open this
WAR file using a Java JAR tool and even with a ZIP tool such as WinZip or
7-Zip. Take a look at exactly what has been uploaded. Irrespective of which
developer tool or IDE you use and how the tool displays the files in the UI,
the WAR file will always be in the structure dictated by the specification.

When you open this file, you will find it to be as per the structure shown
in Figure 3-5. The lib directory is missing only because our application isn’t
using any additional libraries and does not require a lib directory.

Notice that in our application, we have a web.xml file and a weblogic.xml
file. The web.xml file is the web deployment descriptor and has all the
configuration information specific to our web application. The weblogic.xml
file is the runtime deployment descriptor and is used for WebLogic-specific
configuration parameters.

In Chapter 7, we will look at packaging a WAR file along with a JAR file.
This is achieved using a second kind of Java EE application packaging known
as an EAR (Enterprise Archive) file, as we’ll discuss in detail.

Summary
In this chapter, we developed an application using NetBeans and then
deployed it to OJC. We also had a look at the structure of a Java EE web
application and how you package a Java EE application. In the next chapter,
we will take our application further and add functionality to it using Servlets
technology.

CHAPTER
4

Servlets, Filters,
and Listeners

66 Java EE Applications on Oracle Java Cloud

In the previous chapter, we created a basic web application using
NetBeans and discussed the structure and packaging of a Java EE
application. In this chapter, we’ll look at Servlets, a Java EE technology

that has been integral to Java EE application building from day one. We’ll
also look at the key files for Servlet-based Java EE applications, sharing data,
session management, filters, and listeners. Finally, we’ll deploy applications
using these features onto the Oracle Java Cloud (OJC).

Servlets
Servlets have been around since the late 1990s and, amazingly enough,
continue to be a key foundation technology even today. In a sense, the Java
EE story began with Servlets. Java Servlet Development Kit was a precursor
to Java 2 Platform, Enterprise Edition (J2EE) that was introduced in 1999
(http://oracle.com.edgesuite.net/timeline/java/). Servlets were launched at
a time when Java itself was pretty new and Java applets were still cool and
widely used.

Servlets back then were aimed at leveraging the power of Java to help
developers extend the functionality of a web server. I distinctly remember
that, while I was preparing for campus placements during my master’s degree,
the standard answer for “What is a Servlet?” was “It’s an applet that runs
on the server.” No one quite knew what that meant, but Servlets was still a
buzzing technology, and this answer did help many of us land good jobs.

Servlets today are anything but “applets on the server.” Applets themselves
have faded out of the Java mainstream. The basic structure and code for
Servlets have not changed much over the years. However, Servlets today are
more a foundation technology that most other Java EE technologies either
utilize or build over. The Oracle Java Cloud (OJC) supports the Servlet 2.5
specification.

In previous chapters, we have talked of application servers, where the
server receives a request for a resource and sends back a response in reply.
What if you wanted this same request/response process to do more and
to have the smarts to perform action X if some condition Y was fulfilled?
Enter Servlets, which give you the ability to generate dynamic content while
leveraging the many Java libraries and features.

http://oracle.com.edgesuite.net/timeline/java/

Chapter 4: Servlets, Filters, and Listeners 67

Servlet Interface
A Servlet is an implementation of the javax.servlet.Servlet interface. The
Servlet interface defines lifecycle methods to initialize a Servlet, process
requests, and destroy a Servlet. However, the usual way to use the Servlet
interface is not by directly implementing the interface, but by subclassing an
abstract implementation of the Servlet interface.

It could either be javax.servlet.GenericServlet or javax.servlet.http.HttpServlet,
which extends GenericServlet. Both GenericServlet and HttpServlet are abstract
classes that simplify writing Servlets because they provide a basic framework
for your Servlet, as well as provide implementations of the Servlet lifecycle
methods. Because these are abstract classes, the Servlet developer needs to
extend them and override at least one method.

Therefore, instead of having to write your class as

public class YourServlet implements Servlet

and then be forced to implement all the methods in the interface, you have
the simpler option of either

public class YourServlet extends HttpServlet

or

public class YourServlet extends GenericServlet

HttpServlet
Whereas GenericServlet is protocol independent, HttpServlet is meant
specifically for use over the HTTP and HTTPS protocols and is the one that’s
commonly used.

If you are building a web application, you would be talking over HTTP
and have to use HttpServlet, which provides methods for the various HTTP
request methods. So, there’s a doGet method to handle GET requests, a
doPost method to handle POST requests, and so on. The other methods
in HttpServlet meant specifically to handle the various HTTP methods are
doDelete, doGet, doHead, doOptions, doPut, and doTrace.

68 Java EE Applications on Oracle Java Cloud

TIP
HTTP request methods (GET, POST, OPTIONS,
PUT, DELETE, TRACE, and CONNECT) are part of
the HTTP specification (www.w3.org/Protocols/
rfc2616/rfc2616.html) and are just as relevant
across technologies. HttpServlet only facilitates
handling of the various HTTP requests by
providing corresponding methods for each, which
are automatically called by the server based on the
type of HTTP method request.

GET and POST are the most commonly used HTTP requests. GET is used
to request a resource. So every time you enter a URL in your browser, you
are essentially firing a GET request. POST is mostly used for HTML form
submissions. The other HTTP request methods are rarely used. So in most
cases, your Servlet will override the doGet and the doPost methods from
HttpServlet.

TIP
Leveraging HTTP request methods in your
application has had a rebirth of sorts due to the
RESTful way of building distributed applications.
REST stands for Representational State Transfer, but
that usually only adds to the confusion. We will
look at REST in Chapter 8.

Servlet One
Let’s build our first Servlet using NetBeans and then deploy and run it on
OJC. Note that the way in which the Servlet will be packaged in a WAR file
and deployed to the cloud is similar to what was discussed in the previous
chapter. Here are the steps to follow:

1. Start up NetBeans.

2. Select File | New Project.

3. On the resulting screen, select Java Web | Web Application.

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Chapter 4: Servlets, Filters, and Listeners 69

4. Name the project Ch4Servlet1. As in the previous chapter, make sure
you select Oracle Cloud Remote as your server.

5. Click Finish.

Select the project Ch4Servlet1 in the Projects window. You can now
either select File | New File from the menu bar or right-click and select New |
Servlet from the context menu. You should now see the New Servlet window,
as shown in Figure 4-1.

Here, enter servlets for the package name and Hello for the class name.
Click Next. On the next screen, shown in Figure 4-2, note that you are providing
the Servlet a name that can be distinct from the class name and a URL pattern
that can be used to access the Servlet.

NOTE
Although NetBeans, by default, will use the class
name as the Servlet name and the URL pattern,
that need not be the case. You can very well have
a Servlet whose class name is A, Servlet name is B,
and URL pattern to access the Servlet is C.

FIGURE 4-1. New Servlet window

70 Java EE Applications on Oracle Java Cloud

It is a good practice to not tie your class name with the Servlet name and
the URL patterns. The URL patterns are representative of the application flow
and functionality, whereas the class and Servlet names depend on how you
organize your code.

You even have the option of declaring multiple Servlet names, all of which
point to the same class. Therefore, you can have one class with multiple Servlet
names declared, where each Servlet name can have multiple URL patterns.

Now change the Servlet Name field to HelloServletName and the URL
Pattern(s) field to /HelloUrl, /MyServlet, as shown in Figure 4-2, so as to
make the difference in the names and their usage obvious. Note that we have
specified two URL patterns for the Servlet, telling the server to run our Servlet
whenever it gets a request with the URL pattern /HelloUrl as well as /MyServlet.
Multiple URL patterns are useful because you often want to access the same
Servlet functionality through different flows in your application.

You can use the asterisk (*) wildcard in the URL pattern so as to map a
wide range of URL patterns to a servlet. Thus, you can have the URL pattern
*.abc, which will mean that all requests in the form <anything>.abc will be
directed to the Servlet. Or you can have the URL pattern /abc/*, which will
direct all requests in the form /abc/<anything> to the Servlet.

FIGURE 4-2. Configuring the Servlet

Chapter 4: Servlets, Filters, and Listeners 71

This capability is commonly used where you want a central Servlet/
framework to manage your application. You will see this capability being used
in Chapter 6.

TIP
The * wildcard here is not used as liberally as you
might have seen with regular expressions. This
wildcard can be placed either at the start of the
URL pattern or before or after the slash (/). You
cannot end a URL pattern with a slash. Therefore,
you do not have the tens of usage combinations
for this wildcard that the usage in regular
expressions might offer.

Click Finish. NetBeans now opens two files for you: the Servlet Java class
named Hello.java and the web.xml file.

Now right-click anywhere within the Servlet file Hello.java and click Run
File. You could also get the same Run option by right-clicking the Hello.java
listing in the NetBeans Projects window. You will see the window shown in
Figure 4-3, which asks for the Servlet execution URI. You need not change
this; however, as you can see in the example shown in the figure, you can use
this screen to pass additional query parameters to your Servlet. Click OK.

Now, the same steps as discussed in the previous chapter will be repeated,
as can be seen from the log. The NetBeans Output window will show two
tabs: one with a log of the steps being carried out on your machine and the
second (the Oracle Cloud Remote Deployment log) listing what’s being sent
to OJC and the response. The logs application will state the details of the
packaging and deployment on OJC. Next, your default web browser will open
up and point to your Servlet, as shown in Figure 4-4.

FIGURE 4-3. Selecting a Servlet execution URI

72 Java EE Applications on Oracle Java Cloud

Servlet Class
Now that we have deployed the Servlet to the OJC, let’s discuss the actual
Servlet code and its capabilities. Our Servlet class extends the HttpServlet
class and overrides the methods doGet and doPost. You will find that
NetBeans has added a method, processRequest, that is being called from
both doGet and doPost. Note that processRequest is not something dictated
by the Java EE standard; NetBeans introduces this method so as to avoid
duplicating code in doGet and doPost.

If you look at the code in the processRequest, you will find that most
of it is generating static HTML through out.println method calls. These
out.println calls are made on a PrintWriter object and generate the HTML
for the entire page.

We also set the context type (via setContentType) for the response by
specifying the Multipurpose Internet Mail Extensions (MIME) type of the content.
The default is text/plain, but because we want an HTML web page, we
set it to text/html. Other commonly used MIME types are text/xml, image/
jpeg, and application/pdf. A web search should easily get you a list of
additional MIME types. We have also set the character encoding to UTF-8 in
the same method call. You could have also achieved this via a separate call to
setCharacterEncoding.

The content type and the character encoding are vital information for the
recipient of the Servlet response (which in most cases is a web browser) to be
able to process/display the Servlet response correctly.

The only dynamic functionality in this Servlet is the call to request
.getContextPath(). This method call returns the content path for our application.
You will find the context path stated in the weblogic.xml configuration file.
You can edit the value in the .xml file and run your application with a different

FIGURE 4-4. Servlet running in the browser

Chapter 4: Servlets, Filters, and Listeners 73

context root. Note that the application content root is not dependent on the
name of your project or the name of the WAR file.

Let’s now take a closer look at HttpServletRequest and
HttpServletResponse, the two objects that bring in most of the power and
functionality in a Servlet, followed by a look at the role of the configuration
.xml files.

HttpServletRequest
Your Servlet can know everything there is to know about the request via an
object of HttpServletRequest. Note that HttpServletRequest is an interface.
The Servlet container creates an implementation of HttpServletRequest with
loads of information about the request and then passes it to the Servlet.
Through the HttpServletRequest methods, we can retrieve information such
as the request path, host, port, request protocol, request parameters, cookies,
request URI, and more. Some of these methods are inherited from its super
interface ServletRequest.

HttpServletResponse
You can work with the response you are sending from your Servlet using an
object of HttpServletResponse. Again, HttpServletResponse is an interface, and it
is the Servlet container that creates an implementation of HttpServletResponse.
In the code, you have already seen how you can use the HttpServletResponse
object to set the content type and get a PrintWriter to generate the output.
You can also use HttpServletResponse to redirect, add a cookie, add headers,
encode the URL, set the locale, and more. Methods such as setLocale and
setCharacterEncoding, which are not specific to HTTP, are inherited from
its super interface ServletResponse. HttpServletResponse adds HTTP-specific
functionality methods such as addCookie, encodeURL, and others.

Let’s now look at the configuration XML files you need to set up for your
application on OJC.

web.xml
The web.xml file is the web deployment descriptor—the file where you state
the configuration and deployment information for your application. Double-
click web.xml in the Projects window. NetBeans, by default, will open the

74 Java EE Applications on Oracle Java Cloud

GUI tool for editing the XML. Click the Source tab and you will find XML, as
shown in Listing 4-1.

Listing 4-1: web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>HelloServletName</servlet-name>
 <servlet-class>servlets.Hello</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>HelloServletName</servlet-name>
 <url-pattern>/HelloUrl</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>HelloServletName</servlet-name>
 <url-pattern>/MyServlet</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

First up is the <servlet> tag, where the Servlet name and class are stated.
This is followed by <servlet-mapping>, where you find the URL patterns we
provided to the NetBeans wizard while creating our Servlet. Do note that the
<servlet-name> tag is what correlates the two tags. Therefore, if you were to
change <servlet-name> in the <servlet> tag, you would have to update it in
the <servlet-mapping> tag as well.

The <session-timeout> tag is used to define the timeout duration for
a session. We will talk more about sessions in the “Session Management”
section later in this chapter. Lastly, the <welcome-file-list> tag states the
welcome page for your application. In the case of our current application, if
you run the project instead of the individual Servlet, your browser will point
to https://.../Ch4Servlet1/, which will actually invoke https://.../Ch4Servlet1/
index.jsp, because index.jsp is the welcome file stated in web.xml.

https://.../Ch4Servlet1/
https://.../Ch4Servlet1/index.jsp
https://.../Ch4Servlet1/index.jsp

Chapter 4: Servlets, Filters, and Listeners 75

You can have multiple welcome files declared, and the server will look for
them in the order in which they are declared. If no welcome file is specified,
the server will look for index.html or index.jsp, in that order.

weblogic.xml
The weblogic.xml file is a WebLogic-specific deployment descriptor XML file
that contains the WebLogic-specific configuration for an application. If an
application does not contain a weblogic.xml deployment descriptor, WebLogic
uses the default values for the many WebLogic deployment descriptor
elements. Each of these elements provides some additional WebLogic-specific
configuration capability for your application. Because we do not intend to take
up any WebLogic configuration here and plan to stay clear of using any server-
specific features/configuration, you do not need to add the file here.

You can try removing the weblogic.xml file from your project, and then right-
click your project and select Verify. The whitelist tool will issue the warning

Recommended resource “WEB-INF/weblogic.xml” missing

but this is not an error and your application will continue to work. OJC does
not require you to use any WebLogic features or APIs or expect you to have
any WebLogic-specific configuration files in your application.

Sharing Data
Now that we have had a close look at the structure of a Servlet and the various
elements that get it working, let’s move on to a very commonly required
functionality in a web application—that of sharing some data between different
components in the application. You can achieve this data sharing by using
attributes. The three types of attributes available in a Servlet are ServletContext,
HttpSession, and ServletRequest, as shown in Figure 4-5. Here, ServletRequest
has the smallest scope, whereas ServletContext is the widest.

The attributes in the ServletRequest scope are accessible for the duration
of the current request. So once a request is completed, all the ServletRequest
attributes are lost. The HttpSession attributes are accessible as long as the
session is active. We will have a closer look at sessions in a later section, but
for the time being, a session can be thought of as the same user accessing
multiple Servlets or pages from your application. The ServletContext scope is

76 Java EE Applications on Oracle Java Cloud

the largest scope, and ServletContext attributes are accessible as long as your
application is running.

Based on the need, you can use the getAttribute and setAttribute methods
of ServletContext, HttpSession, or ServletRequest. In each case, you name
the attribute and pass an object of java.lang.Object as the attribute value. As
you will have realized, java.lang.Object essentially means any object. You can
remove the object by calling the removeAttribute method.

Let’s try this out by creating a new web project named Ch4Attributes.
Along similar lines as the previous examples, select Oracle Cloud Remote
as the server for the new web project you create in NetBeans. In this new
project, create two Servlets named SetAttributes and GetAttributes. Now, edit
the processRequest method in SetAttributes, as shown in Listing 4-2

Listing 4-2: The processRequest Method in the SetAttributes Servlet

protected void processRequest(HttpServletRequest request
 , HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<h1>Set Attributes</h1>");
 request.setAttribute("Request Attribute", "REQ");
 request.getSession()
 .setAttribute("Session Attribute", "SES");
 getServletContext()
 .setAttribute("ServletContext Attribute", "CON");

FIGURE 4-5. Attribute scopes

ServletContext HttpSession ServletRequest

Chapter 4: Servlets, Filters, and Listeners 77

 } finally {
 out.close();
 }
}

Next, edit the processRequest method in GetAttributes, as shown in
Listing 4-3.

Listing 4-3: The processRequest Method in the GetAttributes Servlet

protected void processRequest(HttpServletRequest request
 , HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<h1>Get Attributes</h1>");
 out.println("<h1> Request Attribute Value = "
 + request.getAttribute("Request Attribute")
 + "</h1>");

 out.println("<h1> Session Attribute Value = "
 + request.getSession()
 .getAttribute("Session Attribute")
 + "</h1>");

 out.println("<h1> ServletContext Attribute Value = "
 + getServletContext()
 .getAttribute("ServletContext Attribute")
 + "</h1>");
 } finally {
 out.close();
 }
}

Note that both methods omit all the basic HTML tags such as <html> and
<body> so as to cut down on the code and clutter and to make the code easier
to understand. Removing these tags is not proper web programming technique;
however, all modern browsers will display the web content even without these
basic tags. For the purpose of this example, removing these tags helps us focus
on the essentials of the code without the clutter of numerous tags.

78 Java EE Applications on Oracle Java Cloud

Now, run the SetAttributes Servlet so that the various attribute values
get set. Next, run the GetAttributes Servlet. You will see the page shown
in Figure 4-6. You can see that the request attribute value is null, the
session attribute value SES is displayed, and so is the ServletContext
attribute value CON.

The reason for this is that the request to GetAttributes is distinct from the
request to SetAttributes, so the request attributes set in the SetAttributes Servlet
are not available to the GetAttributes Servlet. However, the HttpSession and
ServletContext attributes are available because this is still the same session and
the same application.

Note that to get this result, both Servlets need to be invoked from the same
browser, and cookies should not be disabled on the browser in order for the
session attribute values to be retained and visible. The next section talks about
the role of cookies in session management.

Now copy the URL for GetAttributes and try running it in another browser.
In other words, if your default browser is Firefox, try it in Chrome or Internet
Explorer. You will find that only the Servlet Context Attribute value will still be
displayed and that both the request attribute and session attribute values will
be null. This is because although you are still running the same application,
the session has changed.

FIGURE 4-6. The Get attributes displayed

Chapter 4: Servlets, Filters, and Listeners 79

Session Management
One of the most common capabilities in a web application is tracking
the user across multiple pages and providing a login functionality so as to
provide user-specific pages and content. Unfortunately, the HTTP protocol
has no capability to recall state, so it is up to the web application to save
and manage state and be able to figure out that it is the same user accessing
multiple pages. Considering that this is a commonly required feature for
a web application, most web development platforms provide session
management capability out of the box. HttpSession in Java EE provides the
session management capability required.

HttpSession
The server creates an implementation of the HttpSession interface, which
helps us track a user across multiple pages and also store information about
the user. As seen in Listing 4-1 and Listing 4-2, you get the HttpSession
object by calling the getSession method of the HttpServletRequest, which
will return the current session for that request. If there is no such session, it
will create a new session.

In the previous example, we looked at how you can use the session to add
and retrieve attributes. But how is it that the server knows that it is the same
session and the same user coming back? The answer lies in something called
the session ID, which is a unique identifier that gets passed back and forth
between the client and the server.

The default mode to achieve this is by using browser cookies. So when
you accessed the SetAttributes Servlet, a cookie with a unique identifier was
set on your browser. Next, when you accessed GetAttributes Servlet, the
server figured that you were the same user because this request had the same
unique identifier in the browser cookie as had been set when you accessed
SetAttributes. Once it figured that this was part of the same session, the
session attribute value was made available to the GetAttributes Servlet. Open
up your browser’s privacy setting, and you will find a cookie there with the
URL for OJC and a cookie name of JSESSIONID. Note that for the browser,
this JSESSIONID cookie is no different from other cookies. The JSESSIONID is
simply a text value that’s the unique identifier (session ID).

The only requisite for session management by the application server is
that the unique identifier (session ID) keeps being sent back. Very rarely are

80 Java EE Applications on Oracle Java Cloud

cookies disabled on browsers, but if they are, you now have to find a way to
send the unique identifier in each request. Your choices are as follows:

■ Encode the URL using the response.encodeURL method. The
encodeURL method adds the session ID in the URL when it finds
that cookies have been disabled. Therefore, if not via a cookie, the
ID continues to be sent back to the server as a request parameter.

■ Pass the session ID as a hidden form field. This way, when a user
submits a form, the session ID is also sent to the server as a hidden
form field.

As long the session ID is going back and forth, you will be able to leverage
the capabilities of HttpSession. Note that because attributes are taking up
memory on your server—especially with the HttpSession and ServletContext
attributes, which stay in memory for a long time—you need to use attributes
with caution.

TIP
Most modern web development frameworks will
default to using cookies, but have a fallback option
of using encodeURL or hidden form fields in case
cookies are disabled. Cookies being disabled is not
as much a concern if you are using a framework as
compared to custom-building your application.

RequestDispatcher
In the earlier example, regardless of what you do, the request attribute is
always null, because the request to SetAttributes and GetAttributes is always
distinct. So is there a way in which Servlets can collaborate and share data
using request attributes? Can you forward a request to another Servlet or
include the output of one Servlet into the output of another?

The RequestDispatcher can get us the desired result. As the name suggests,
the RequestDispatcher will dispatch a request to another resource in your
application. Add the lines in Listing 4-4 at the end of the try block in the
processRequest method in the SetAttributes Servlet.

Chapter 4: Servlets, Filters, and Listeners 81

Listing 4-4: RequestDispatcher

RequestDispatcher rd1 = request.getRequestDispatcher("GetAttribu
tes");
//RequestDispatcher rd = getServletContext().
getRequestDispatcher("/GetAttributes");
if (rd1 != null) {
 //rd1.forward(request, response);
 rd1.include(request, response);
}

The first two lines in the code show the two ways in which you can get
the RequestDispatcher. The difference between the two methods is that
whereas the getRequestDispatcher of the ServletRequest takes a relative path,
the getRequestDispatcher method of ServletContext takes an absolute path
and therefore begins with a slash.

Next, we check for null. After that is a commented call to forward and
next to include. As the names suggest, forward will forward the request to the
GetAttributes Servlet, whereas include will include the output of GetAttributes
in the output generated by SetAttributes. Upon running the updated code,
you will get the page shown in Figure 4-7. The first line is the output of the
SetAttributes Servlet, whereas the rest is generated by the GetAttributes Servlet.

FIGURE 4-7. A request dispatched to Get attributes

82 Java EE Applications on Oracle Java Cloud

Thus, we can use the RequestDispatcher for multiple Servlets to collaborate,
delegate, and share. We can create a real web application using many such
Servlets working together. That’s actually what Java EE web applications in the
earlier days of enterprise Java looked like.

WebLogic-Specific Servlet Capabilities on OJC
The Oracle Java Cloud supports several WebLogic-specific APIs, one of
which is the weblogic.servlet.annotation.* package. This package provides
the WLFilter, WLInitParam, and the WLServlet annotation, which can enable
you to use annotations to provide metadata right within the Servlet class,
eliminating the need to declare the servlets in the web.xml descriptor we
looked at earlier.

The support for WebLogic APIs is useful and something to be aware
of if you are looking to move existing WebLogic applications to the cloud.
However, I would not recommend using these WebLogic-specific APIs for
new applications. These annotations are not part of the Java EE specification,
so not only would they lock your application into WebLogic, but similar
annotations offering the same features have been introduced in the newer
versions of Java EE and the Servlet API.

Supported public WebLogic Server 10.3.6 APIs are listed here:

■ weblogic.logging.*

■ weblogic.jsp.*

■ weblogic.cache.*

■ weblogic.application.*

■ weblogic.i18n.*

■ weblogic.i18ntools.*

■ weblogic.jndi.*

■ weblogic.jws.*

■ weblogic.servlet.*

■ weblogic.transaction.*

Chapter 4: Servlets, Filters, and Listeners 83

Unless there’s a pressing need for it, you would not want to use vendor-
specific code in your Java EE application. We have discussed the reasons in
Chapter 1.

Let’s now look at filters and listeners, whose capabilities are often required
for well-rounded Java EE applications. Filters and listeners can be used within
all the Java EE web applications we build in the book, regardless of whether
or not we use Servlets.

Filters
When you think of the word “filter,” you tend to think of passing something
(say, water) through a filter, removing the impurities and getting pure filtered
water. However, a filter in Java EE is capable of doing much more with
the request and the response. It can a) filter out things from the request, b)
edit/add to the request or simply log the contents of the request, c) filter
the response, or d) edit/add to the response or simply log the contents of
the response. Therefore, a filter is more of a request pre-processor and a
response post-processor.

Filters are usually used where multiple servlets and any other Java EE web
components require some common functionality, such as authentication,
logging, and encryption. It makes sense to have one or more filters working
together in a chain delivering the expected functionality for the Java Servlets
or other Java EE components.

Let’s add a simple filter to the Ch4Servlet1 project we created earlier in
this chapter. Right-click Ch4Servlet1 and select New | Other. On this screen,
select the Web category and the Filter file type. Click Next. On the next
screen, specify the filter name as LogFilter and the package as filters. Click
Next. You should now get a Configure Filter Deployment screen, as shown in
Figure 4-8. Note the filter mapping here says that the filter LogFilter applies to
/*. As with URL patterns discussed earlier in the chapter, * here is a wildcard,
so /* means that the filter will apply to all requests. Click Next.

Click Next, and you will get a screen where you can set configuration
values at filter initialization. We do not need to set these here, so click Finish.
NetBeans will now generate LogFilter.java. The web.xml file for the project
would also now have the addition shown in Listing 4-5.

84 Java EE Applications on Oracle Java Cloud

Listing 4-5: Filter Tags in web.xml

 <filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>filters.LogFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

You will notice that these tags are similar to the Servlet tags in Listing 4-1. In
both cases, you declare a Servlet/filter and then map it to a URL pattern.

The LogFilter.java code generated by NetBeans is feature rich; however,
it is also rather intimidating for beginners. Therefore, Listing 4-6 shows my
simplified, cleaned-up version.

FIGURE 4-8. The Configure Filter Deployment screen’s filter mappings

Chapter 4: Servlets, Filters, and Listeners 85

Listing 4-6: LogFilter.java

package filters;

import java.io.*;
import java.util.logging.*;
import javax.servlet.Filter;
import javax.servlet.*;

public class LogFilter implements Filter {

 private final static Logger LOGGER
 = Logger.getLogger(LogFilter.class.getName());

 public void doFilter(ServletRequest request
 , ServletResponse response, FilterChain chain)
 throws IOException, ServletException {

 long timeRequest = new java.util.Date().getTime();

 LOGGER.log(Level.INFO, "Request Protocol: {0}"
 , request.getProtocol());
 LOGGER.log(Level.INFO, "Request Received At:{0}"
 , new java.util.Date());

 chain.doFilter(request, response);

 long timeResponse = new java.util.Date().getTime();

 LOGGER.log(Level.INFO
 , "Response Sent In : {0} milliseconds"
 , timeResponse - timeRequest);
 }

 public void init(FilterConfig fc) throws ServletException {
 }

 public void destroy() {
 }
}

The LogFilter class implements the Filter interface and therefore has to
implement the methods in the interface. The doFilter method is what the
server will call when a request matches the filter mapping we have declared.

In this code we are using the Java Logging API to log information about the
request and the response.

86 Java EE Applications on Oracle Java Cloud

Filters cannot be directly run by the user, but are meant to get invoked
automatically whenever the filter mapping applies. Therefore, in our case, we
won’t try to run LogFilter but rather run Hello.java. When we send a request
to the Servlet that we created earlier with Hello.java, the following should
happen:

1. The request will get pre-processed by LogFilter.

2. It will then be processed by the Hello.java Servlet, which will
generate a response.

3. The Servlet response will again go through the filter, where it can be
processed again.

The output after the filter’s post-processing is what will be sent back to
the client.

The following log output, generated by LogFilter, shows the results of these
three steps:

Request Protocol: HTTP/1.1
Request Received At:<Date Time>
Response Sent In : 2 milliseconds

Because viewing the logs is something useful throughout the application,
and not just in Servlets or filters, we will see how and where you can view
logs on OJC in “View Java Logs,” later in the chapter. You can quickly jump
over to that section now and then return when you’re done.

In this example, we looked at a single filter; however, you can very well
create a series/chain of filters. The filters are executed in the order in which
they are declared in the web.xml file.

Listeners
Java EE provides the capability for you to track key events in your application
using event listeners. The methods in these listeners are called by the server
whenever the corresponding lifecycle event occurs.

When you add a listener to your application, you need to a) write a class
that implements the appropriate listener interface and b) declare the listener in
the web deployment listener. Listeners are generally used in cases where you
want to execute some actions or load some data/configuration on application

Chapter 4: Servlets, Filters, and Listeners 87

startup, or to open and close database connections on occurrence of an event
and to perform any actions on the application being shut down.

The listener interfaces are as follows:

Listener Description

javax.servlet.ServletContextListener Notified when
ServletContext is
created and when the
ServletContext is destroyed.

javax.servlet.ServletContextAttributeListener Notified when the
ServletContext attribute
changes, new attributes are
added, or existing attributes
are removed or replaced.

javax.servlet.http.HttpSessionListener Notified when session
lifecycle changes such as
creation, invalidation, and
timeout occur.

javax.servlet.http.HttpSessionAttributeListener Notified when the
HttpSession attribute
changes, new attributes
are added, or existing
attributes are removed or
replaced.

javax.servlet.ServletRequestListener Notified when a
ServletRequest is initialized
or destroyed.

javax.servlet.ServletRequestAttributeListener Notified when the
ServletRequest attribute
changes, new attributes
are added, or existing
attributes are removed or
replaced.

You can choose to have a separate class for each listener implementation
or a single class implementing multiple listeners. Each interface we implement
will force us to implement the event-handling methods in that interface. These

88 Java EE Applications on Oracle Java Cloud

method implementations we provide are the ones that would be called by the
server on occurrence of the corresponding event.

Let’s add a listener class to the Ch4Attributes project we created earlier.
The attributes being set in the project will lead to the corresponding listeners
being triggered.

Right-click Ch4Servlet1 in the Projects window. Then click New | Other
and select the Web category and Web Application Listener file type. In the
next screen, shown in Figure 4-9, add WebListener in the Class Name field
and listeners in the Package field.

Select all the interfaces under Interfaces to Implement. This way, we will
have one class that implements six listeners. We will update the code to log
the call to each method, as shown in Listing 4-7.

FIGURE 4-9. New web application listener

Chapter 4: Servlets, Filters, and Listeners 89

Listing 4-7: WebListener

package listeners;

import java.util.logging.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WebListener implements ServletContextListener
, ServletContextAttributeListener, HttpSessionListener
, HttpSessionAttributeListener, ServletRequestListener
, ServletRequestAttributeListener {

 private final static Logger LOGGER =
 Logger.getLogger(WebListener.class.getName());

 public void contextInitialized(ServletContextEvent sce) {
 LOGGER.log(Level.INFO, "contextInitialized: {0}"
 , sce.getServletContext());
 }

 public void contextDestroyed(ServletContextEvent sce) {
 LOGGER.log(Level.INFO, "contextDestroyed: {0}"
 , sce.getServletContext());
 }

 public void attributeAdded(ServletContextAttributeEvent scae){
 LOGGER.log(Level.INFO, "attributeAdded: {0}"
 , scae.getName());
 }

 public void attributeRemoved
 (ServletContextAttributeEvent scae) {
 LOGGER.log(Level.INFO, "attributeRemoved: {0}"
 , scae.getName());
 }

 public void attributeReplaced
 (ServletContextAttributeEvent scae) {
 LOGGER.log(Level.INFO, "attributeReplaced: {0}"
 , scae.getName());
 }

 public void sessionCreated(HttpSessionEvent hse) {
 LOGGER.log(Level.INFO, "sessionCreated: {0}"
 , hse.getSession());
 }

 public void sessionDestroyed(HttpSessionEvent hse) {
 LOGGER.log(Level.INFO, "sessionDestroyed: {0}"

90 Java EE Applications on Oracle Java Cloud

 , hse.getSession());
 }

 public void attributeAdded(HttpSessionBindingEvent hsbe) {
 LOGGER.log(Level.INFO, "attributeAdded: {0}"
 , hsbe.getName());
 }

 public void attributeRemoved(HttpSessionBindingEvent hsbe) {
 LOGGER.log(Level.INFO, "attributeRemoved: {0}"
 , hsbe.getName());
 }

 public void attributeReplaced(HttpSessionBindingEvent hsbe) {
 LOGGER.log(Level.INFO, "attributeReplaced: {0}"
 , hsbe.getName());
 }

 public void requestDestroyed(ServletRequestEvent sre) {
 LOGGER.log(Level.INFO, "requestDestroyed: {0}"
 , sre.getServletRequest());
 }

 public void requestInitialized(ServletRequestEvent sre) {
 LOGGER.log(Level.INFO, "requestInitialized: {0}"
 , sre.getServletRequest());
 }

 public void attributeAdded
 (ServletRequestAttributeEvent srae) {
 LOGGER.log(Level.INFO
 , "ServletRequest attributeAdded: {0}"
 , srae.getName());
 }

 public void attributeRemoved
 (ServletRequestAttributeEvent srae) {
 LOGGER.log(Level.INFO
 , "ServletRequest attributeRemoved: {0}"
 , srae.getName());
 }

 public void attributeReplaced
 (ServletRequestAttributeEvent srae) {
 LOGGER.log(Level.INFO
 , "ServletRequest attributeReplaced: {0}"
 , srae.getName());
 }
}

Chapter 4: Servlets, Filters, and Listeners 91

Apart from the code in the listener class, one other thing that needs to
be done is to tell the server that this is the listener class whose methods it is
supposed to call. Therefore, the listener tag is added to the web.xml file. If
you open the web.xml file, you will find that a new xml block, as shown in
Listing 4-8, has been added to the file.

Listing 4-8: Listener Tags in web.xml

 <listener>
 <description>
 ServletContextListener,
 ServletContextAttributeListener, HttpSessionListener,
 HttpSessionAttributeListener, RequestListener,
 RequestAttributeListener
 </description>
 <listener-class>listeners.WebListener</listener-class>
 </listener>

The value of the <listener-class> is what’s important for the server. The
description tag can be safely edited to any text you prefer. You do not need
to tell the server which listeners you are implementing because the server can
figure that out based on the interfaces your class has implemented.

Now, run the SetAttributes Servlet we created earlier in the chapter.
Although the Servlet will run exactly the same way as earlier, the log will now
show the output logged by the various listeners that were triggered by the
actions in the SetAttributes Servlet.

View Java Logs
It is likely that while trying out the applications in this chapter, you didn’t
get the desired results and are wondering what went wrong. Also, in the
examples for filters and listeners, we need to look at the application logs to
be able to understand the functioning.

Checking the application and the server logs is a simple task with a local
setup or a dedicated server. However, on the cloud, where you don’t even
know exactly what the infrastructure is that’s running your application, your
access to the logs is limited to what access the cloud vendor provides.

You can access the OJC logs in multiple ways. Let’s first look at the
accessing the logs from the Java Cloud Services Control.

92 Java EE Applications on Oracle Java Cloud

The Java Cloud Service Jobs log is shown in Figure 4-10. This log shows
the steps followed during the deployment, the whitelist validation, and the
virus scan, as well as whether any errors or warnings occurred. You can click
the drop-down list highlighted in Figure 4-10 to select which log you wish to
view. On the right is the option to auto-refresh the log every few minutes. The
default setting is Manual.

If you view the Java Cloud Service Jobs log, you realize that these are
the same log entries you see in the Oracle Cloud log from within NetBeans,
or for that matter, any IDE. We took a close look at these log entries in the
previous chapter.

The second log is the one that’s useful once you have your application
running. This is the one that has the entries logged from the application.
To access this log, click View Log Messages in the Performance Summary,
as shown in Figure 4-11. You will now get a search screen where you can
choose exactly which log messages you wish to view.

FIGURE 4-10. Java Cloud Service Job logs

Chapter 4: Servlets, Filters, and Listeners 93

You can specify a date range or select the exact date duration and then
select the kind of message types you wish to view. You will get a screen like
the one shown in Figure 4-12.

TIP
This log shows the messages you have logged
using Java’s built-in Logging API, Log4J, and System
logs. “System log” here refers to the System.out
.print kind of logging that developers often use,
but it is not recommended. Using Java’s built-in
Logging API, as used in the examples in this
chapter, is what I would recommend.

You can export the log messages to a .txt, .csv, or .xml file by choosing that
option after clicking the Export Messages to File button shown in the figure.

FIGURE 4-11. View Log Messages in the Performance Summary

94 Java EE Applications on Oracle Java Cloud

TIP
A delay may occur before the messages appear in
the log. You might have to wait for a while or click
the Search button again.

You also have the choice of using the Oracle Cloud SDK or the Ant and
Maven plugins to access the logs. To access the logs using the SDK, you
can execute the command query-service-logs from the command prompt.
The command requires you to pass the arguments user, serviceinstance,
identitydomain, and datacenter:

FIGURE 4-12. The Log Messages screen

Chapter 4: Servlets, Filters, and Listeners 95

java -jar javacloud.jar query-service-logs -user username
 -serviceinstance java -identitydomain yourindentitydomain
 -datacenter yourdatacenter

The query-service-logs method takes many arguments, so you can
customize the output to get precisely the log messages you desire. You can
either refer to the SDK documentation for the entire list of arguments or just
fire the command

java -jar javacloud.jar query-service-logs -help

and all the arguments will be listed on-screen.
You can also access the logs from within NetBeans. As shown in Figure 4-13,

open the Services window, right-click Oracle Cloud that’s listed under the
Cloud category, and select View Jobs and Logs.

You will notice that the logs window has two tabs within it. One tab shows
the log for the jobs executed and the other tab shows your WebLogic instance
log. It’s better to access the instance log as shown in Figure 4-12, as you get a
tabular display that you can sort, filter, and export to a file if required.

Summary
In this chapter, we looked at Servlets, sharing data, session management,
filters, and listeners. We also looked at how to access your application logs
on OJC. In the next chapter, we will look at JavaServer Pages as we move
toward producing more feature-rich web applications for the browser.

FIGURE 4-13. Oracle Cloud Jobs and Logs

CHAPTER
5

JavaServer Pages, JSTL,
and Expression Language

98 Java EE Applications on Oracle Java Cloud

In the previous chapter, we built applications using Servlets, filters, and
listeners and deployed them on the Oracle Java Cloud Service. You
likely noticed that building applications using Servlets can be rather

tedious and involves a lot of Java coding, even when what is being generated
is static HTML code. To address this issue, JavaServer Pages (JSP) emerged.
JSP lets you embed snippets of Java code into your HTML. The functionality
is similar to Servlets, but JSP drastically reduced the amount of Java code
that has to be written, leading to more streamlined, efficient coding and
increased developer productivity. Although JSPs can be used to generate any
text-based format, it is most commonly used for HTML.

The Origin of JSP
Like Servlets, JSP has been around from the early days of enterprise Java.
Version 1.0 was released in 1999, and JSP (version 2.3) is very much a
part of Java EE 7. JSP also continues to be used in all kinds of applications,
including those deployed on the cloud.

Even when JavaServer Faces (JSF) was introduced as a framework
for building component-based user interfaces, JSP continued to be the
view technology for JSF. Only with JSF 2.0 was JSP deprecated as a view
technology for JSF and replaced by Facelets. “View technology” here refers to
that part of the JSF framework that is responsible for generating the view for
an application. We will take a closer look at JSF in the next chapter. So the
point to note is that JSP is very much around. It has not been deprecated as
a whole, but only as the view technology for JSF 2.0 and above.

TIP
Deprecation is meant to indicate to developers
that a technology is still available but the creators
suggest that you avoid using it. This is usually
because that technology might be removed/
replaced in a future version.

JSP enhancements have been sluggish over the past few years. However,
JSP is very much an integral part of almost all Java EE applications built over

Chapter 5: JavaServer Pages, JSTL, and Expression Language 99

the past decade and continues to be widely used even today, despite most
books and blogs recommending JSF over JSP. This is not only because JSP
is easy to use and good for rapid development, but also because JSP skills
are easy to find. Also, many developers used to building with JSP find that it
serves them very well and are not that keen on switching.

What’s more, JSP, with its simple request-response model, is often a good-
enough backend for applications and even JavaScript clients that only require
that basic functionality. The newer JSF comes with more complex lifecycle
management by the web container, which can seem like overkill in some cases.

Due to backward compatibility, even the latest JSP versions support usage
syntax from the early days of JSP. In many cases, this means there are multiple
ways to do the same thing. In this chapter, we will mostly look at the newer
and more elegant ways, using tag libraries and expression language.

JSP on the Oracle Java Cloud
The Oracle Java Cloud currently supports JSP version 2.1, which is the version
included in Java EE 5. JSP version 2.1 was a significant release because it
introduced a unified expression language for JSP and JSF. OJC does not
impose any JSP-specific restrictions or limitations. A widget marked Servlets
and JSPs on the Java Cloud Services Control page, shown in Figure 5-1, shows
the number of active sessions, the average request processing time for Servlets
and JSPs in the past five minutes, and the number of requests per minute in the
past five minutes.

TIP
All “per minute” statistics shown on the Java
Cloud Service Control are “per minute”
in the last five minutes.

Although the values in Figure 5-1 are for your entire Java Cloud instance,
you can see values for a particular application in the Applications table and
also on the Java Cloud Control page for that application. Although we will look
at what custom tags are later in the chapter, this is a good place to note that
OJC also supports custom WebLogic Server–specific tags in weblogic.jsp.*.

100 Java EE Applications on Oracle Java Cloud

JSP Internals
A JSP is text document—in most cases, an HTML file—that has some
JSP-specific tags and at times some Java code in it. The recommended file
extension is .jsp. A JSP file can be either in XML form, such that it can be
parsed and used by any XML parser, or in a standard syntax, which is less
verbose but is not well-formed XML.

JSP in XML form never quite caught on with developers; writing a JSP with
standard syntax was just simpler. Unless there’s a need to parse the JSP using
APIs for XML, most developers tend to use the standard syntax. We will be
using the standard syntax for the code in this chapter; however, we will look
at the corresponding XML tags as well.

JSP Lifecycle
The key to understanding a JSP is in understanding Servlets, because when
one runs a JSP, what actually runs is a Servlet. When the server receives the
first request for the JSP, it translates the JSP into a Servlet class, followed by
compiling that class. After that, on every request, the server runs the Servlet

FIGURE 5-1. The Servlets and JSPs widget under Performance Summary

Chapter 5: JavaServer Pages, JSTL, and Expression Language 101

class until it finds that the JSP file has been updated, in which case it will
again translate and compile the new JSP.

The biggest performance hit from a JSP page is at the time when it is being
compiled, so it is a best practice to precompile your JSPs so that your Servlet
is in place when the first request from a user is received. Although there are
multiple ways to precompile your JSPs, the easiest way, in our case, is to add
the <precompile>true</precompile> tag within the <jsp-descriptor> tag in the
weblogic.xml configuration file of the application so that the XML is as shown
in Listing 5-1.

Listing 5-1: Precompile JSP

<jsp-descriptor>
 <precompile>true</precompile>
</jsp-descriptor>

Servlet Code
The best way to understand the working of a JSP is to look at the JSP page
and analyze and understand the corresponding Servlet generated. Let’s
begin by creating a new web application named Ch5JavaServerPages1 in
NetBeans along exactly the same lines as the applications we created in the
previous chapter. As in the previous cases, follow these steps:

1. Select Oracle Cloud as the server on the Server and Setting screen.

2. Do not choose any framework on the Frameworks screen.

NetBeans, by default, creates an index.jsp file, as shown in Listing 5-2, in
every web application that it generates.

Listing 5-2: NetBeans-Generated index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>JSP Page</title>

102 Java EE Applications on Oracle Java Cloud

 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

You will notice that except for the first line, which begins with <%@, this
JSP is exactly the same as an HTML file.

TIP
You can rename any plain .html file as .jsp and it
would work just the same, as long as the HTML
does not include any tags or characters that have a
special meaning in JSP.

NetBeans has a useful feature where you can simply right-click a JSP file
and click View Servlet, as shown in Figure 5-2. This shows the translated
Servlet code for a JSP after it has been run at least once. However, because
we have configured our project to run on the Oracle Cloud, the View Servlet
option does not work even after you run the JSP and it gets deployed on
the Oracle Cloud. This is because the process of translating the JSP is being
carried out on the WebLogic Server running on the cloud, to which we only
have limited access. There’s currently no way in which we can look at the
actual Servlet being generated on the WebLogic Server on OJC.

For the sake of understanding the JSP, a workaround is available. Instead of
using the WebLogic on the cloud, you could install a local WebLogic server
or use the GlassFish server that’s bundled with NetBeans.

Right-click the .jsp file in the Projects window and select the

option Compile File. NetBeans will now create an src directory at

FIGURE 5-2. The View Servlet option

Chapter 5: JavaServer Pages, JSTL, and Expression Language 103

<NetBeansProjectsDirectory>\Ch5JavaServerPages1\build\generated\,
where <NetBeansProjectsDirectory> is the location for your NetBeans
projects on your machine.

You will find the directory creation line listed in the log in the output
window. Within the generated directory, if you are using GlassFish, you will
find an \org\apache\jsp directory hierarchy within which you will find the file
index_jsp.java, shown in Listing 5-3.

TIP
It's okay even if you do not have a local server
installed or are unable to get the Compile option
working. Just take a look at Listing 5-3 because it
shows the syntax and conveys the core point about
how JSPs are translated to Servlets.

Listing 5-3: Translated Servlet for index.jsp

package org.apache.jsp;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
public final class index_jsp extends org.apache.jasper.runtime.
HttpJspBase
 implements org.apache.jasper.runtime.JspSourceDependent {
 private static final JspFactory _jspxFactory = JspFactory.
getDefaultFactory();
 private static java.util.List<String> _jspx_dependants;
 private org.glassfish.jsp.api.ResourceInjector _jspx_
resourceInjector;
 public java.util.List<String> getDependants() {
 return _jspx_dependants;
 }
public void _jspService(HttpServletRequest request,
HttpServletResponse response)
 throws java.io.IOException, ServletException {
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;

104 Java EE Applications on Oracle Java Cloud

 PageContext _jspx_page_context = null;
 try {
 response.setContentType("text/html;charset=UTF-8");
 pageContext = _jspxFactory.getPageContext(this, request,
response,
 null, true, 8192, true);
 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;
 _jspx_resourceInjector = (org.glassfish.jsp.api.
ResourceInjector) application.getAttribute("com.sun.appserv.jsp.
resource.injector");
 out.write("\n");
 out.write("<!DOCTYPE html>\n");
 out.write("<html>\n");
 out.write(" <head>\n");
 out.write(" <meta http-equiv=\"Content-Type\"
content=\"text/html; charset=UTF-8\">\n");
 out.write(" <title>JSP Page</title>\n");
 out.write(" </head>\n");
 out.write(" <body>\n");
 out.write(" <h1>Hello World!</h1>\n");
 out.write(" </body>\n");
 out.write("</html>\n");
 } catch (Throwable t) {
 if (!(t instanceof SkipPageException)){
 out = _jspx_out;
 if (out != null && out.getBufferSize() != 0)
 out.clearBuffer();
 if (_jspx_page_context != null) _jspx_page_context.
handlePageException(t);
 else throw new ServletException(t);
 }
 } finally {
 _jspxFactory.releasePageContext(_jspx_page_context);
 }
 }
}

The JSP-translated Servlet is not identical on all servers; the class and
package name depend on which servlet-jsp container is being used by the
server. Because GlassFish uses a derivative of Apache Tomcat, the package
name org.apache.jsp is being used.

Chapter 5: JavaServer Pages, JSTL, and Expression Language 105

In the Servlet code, note the instance variables created and where
the HTML code ends up. This class is very much a Servlet, but it extends
org.apache.jasper.runtime.HttpJspBase in this case, which in turn extends
HttpServlet, which we discussed in the previous chapter. So all the things
we discussed in the previous chapter for Servlets work exactly the same way
for a JSP; you just need to be aware and understand where your JSP code is
appearing in the Servlet.

You can open this code file in NetBeans (or any code editor); we will
keep coming back to it to see how the changes we make to the JSP are being
reflected in the Servlet.

Let’s now look at the various JSP elements that provide dynamic content
generation and also the ability to write Java code as required.

JSP Directives
Directives provide page information to the JSP engine, affecting the translated
Servlet code. The three types of directives are page, include, and taglib.

Page Directive
The page directive provides information about the page. The first line in
Listing 5-2 is a page directive that says that the content generated by the
page is HTML and the encoding is UTF-8:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

In Listing 5-3, you will notice that this directive gets translated to the line

response.setContentType("text/html;charset=UTF-8");

The page directive supports many attributes apart from contentType and
pageEncoding. You can press CTRL-SPACE in NetBeans and you will get a popup
showing the directive attributes (see Figure 5-3).

TIP
NetBeans provides autocomplete capability even
for JSP attributes where you either have a true/
false option or you have to choose from a set
list of choices. CTRL-SPACE is what gets you the
autocomplete options.

106 Java EE Applications on Oracle Java Cloud

Include Directive
The include directive is used to include a file at JSP translation time so that
the contents of the two files are merged into the generated Servlet:

<%@ include file="footer.html" %>

Be careful while using the include directive and merging JSP files because
it can lead to surprising errors in certain cases, such as when the same variable
names are used in multiple files.

Taglib Directive
The taglib directive conveys that a tag library is being used in the JSP. The
usage syntax is as follows:

<%@ taglib prefix="test" uri="taglib.tld" %>

We will discuss tag libraries in a separate section later in the chapter. For
now, just note that to use a tag library, we use the tag library directive.

JSP Directives as XML
In the previous sections, we have looked at the shorter syntax for directives;
however, if you need to use well-formed XML, the XML syntax for JSP
directives is

<jsp:directive.___ attribute= "value" />

FIGURE 5-3. Directive attributes

Chapter 5: JavaServer Pages, JSTL, and Expression Language 107

Replace the ___ with page, include, or taglib, based on which directive you
wish to use.

JSP Declaration
JSP declarations are used to declare variables and methods in a JSP, which
you could utilize in the rest of the page. Let’s first add a declaration and see
where it ends up in the translated Servlet code (see Listing 5-4).

Listing 5-4: JSP Declaration

<%! int count = 0;%>
<%!
String welcomeMsg(String name){
 return "Welcome " + name;
}
%>

Because no output is being generated by this block of code, where you
place the code in the JSP is immaterial. Now, again, right-click and choose
Compile File and have a look at the generated Servlet code. You will find
that count is an instance variable and welcomeMsg is a new method in the
Servlet. This is where any variable and methods you add to a JSP end up.

JSP Scriptlets
JSP scriptlets are Java code fragments embedded in the JSP page. Scriptlets are
arguably the most used and abused feature of JSP. If used judiciously, scriptlets
can save a lot of time and effort, but if used too much, the JSP can end up
being a nightmare for anyone except the person who wrote the code. Java code
snippets all over the JSP make debugging and maintaining the JSP a tough task.

Let’s add the scriptlet in Listing 5-5 to index.jsp. Note that you will need
to add this within the HTML body tags for the output to be displayed in
the browser. Also note that we already declared a count variable in the
declaration, so we are adding a second count variable in a scriptlet here.

Listing 5-5: JSP Scriptlet

<% int count = 0;%>
<h1>Count In Declaration = <% out.print(this.count);%></h1>
<h1>Count In Scriptlet = <% out.print(count);%></h1>
<% this.count++;%>
<% count++;%>

108 Java EE Applications on Oracle Java Cloud

Again, run the index.jsp file and you will get a screen like the one shown
in Figure 5-4, where the count is 0 for the declaration and the scriptlet.

The curious part is where you refresh the page in the browser. You will
find that the count for the declaration keeps rising while the count for the
scriptlet stays zero throughout, despite the scriptlet in Listing 5-5 explicitly
incrementing both count variables.

The answer to this mystery again lies in the Servlet code. You will find
that all the code in the scriptlets has been translated into corresponding Java
code in the _jspService method. So whereas the count variable in the JSP
declaration became an instance variable, the count variable in the scriptlet
is a local variable in the _jspService method. Every time you refresh your
page, the same Servlet instance is being accessed, so the value keeps getting
incremented. However, in the case of the local variable count, the int count
= 0 line is part of the _jspService method and will get executed for each
request. So the local variable count keeps getting reset to zero.

JSP Expressions
JSP expressions are in the form

<%= An Expression %>

and provide a shortcut to print values in the output. Therefore, the line <%
out.print(count);%> in Listing 5-5 could be replaced with <%= count %>

FIGURE 5-4. Declaration and scriptlet count

Chapter 5: JavaServer Pages, JSTL, and Expression Language 109

and get you the same output. Add the line to the JSP, and in the translated
Servlet code, you will find that all you state in the expression essentially
goes into an out.print in the Servlet code.

Implicit Objects
Scriplets and expressions are powerful and useful because code in the
scriptlet ends up in the _jspService method and has access to not only the
HttpServletRequest and HttpServletResponse objects, but also to the other
objects such as Session and ServletContext that you will find declared at
the top of the _jspService method. These are known as JSP implicit objects
because instead of the developer having to go to the trouble of creating
them, the JSP in its translated Servlet code creates them and makes them
available to the developer for use.

We looked at using attributes and sharing data as well session management
in the previous chapter. If you wish to achieve the same in a JSP, you will save
some time and effort because you do not have to create the requisite objects,
but can directly use the implicit objects.

The following table lists the various implicit objects, the class/interface to
which they refer, and their common usage.

Object Class/Interface Usage

application (interface
javax.servlet
.ServletContext)

Refers to the web
application’s
environment.

Used to get
ServletContext
attributes and
information.

session (interface javax
.servlet.http.HttpSession)

Refers to the user’s
session.

Used to retrieve
session information.

request (interface
javax.servlet.http
.HttpServletRequest)

Refers to the current
request to the page.

Used to retrieve query
parameters, request
parameters, and
attributes.

response (interface
javax.servlet.http
.HttpServletResponse)

Refers to the
response to be sent.

Used to set header
information, set
response content type,
redirect responses, and
add cookies.

(continued)

110 Java EE Applications on Oracle Java Cloud

Object Class/Interface Usage

out (class javax.servlet
.jsp.JspWriter)

Refers to the output
stream for the page.

Used to output content
for the response.

page (class java.lang
.Object)

Refers to the page’s
Servlet instance.

Used to refer to the
instance of the Servlet
generated for that
JSP. It’s the same as
using this.

pageContext (class javax
.servlet.jsp.PageContext)

Refers to the page’s
environment.

Used to get and set
attributes in different
scopes because it
holds references to
other implicit objects.

config (interface javax
.servlet.ServletConfig)

Refers to
the Servlet’s
configuration.

Used to get
initialization
parameters.

exception (class java.lang
.Throwable)

Refers to the
exception occurred.

Used for error handling
to generate the
appropriate response.
It contains any
exception thrown by
previous page.

JSP Comments
Comments are used throughout programming as a best practice to
communicate your ideas or as an approach to addressing a particular issue
within the code. In JSP, you have three choices for how you want to use
comments—JSP Comment, Java Comment, and HTML Comment
(see Listing 5-6).

Listing 5-6: JSP Comments

<%-- JSP Comment --%>
<% //Java Comment %>
<!-- HTML Comment -->

The difference between these three is that the JSP Comment appears only
in the JSP and not even in the translated Servlet code. The Java Comment

Chapter 5: JavaServer Pages, JSTL, and Expression Language 111

appears in the JSP and the Servlet code, whereas HTML Comment is the only
one that will make it to the response (usually HTML) and can be viewed if the
user selects View Source in the web browser.

None of the styles of comments will affect the output of the JSP page, but
understanding where the comments appear is vital for you to be able to use
the right kind of comment at the right place. If the comment is meant only
for the JSP developers, you should use the <%-- JSP Comment --%> style of
commenting. The <!-- HTML Comment --> style should be used only if you
want the comment to appear in the HTML response. Although it’s true that
the <!-- HTML Comment --> comments are visible only if someone checks
the source in the browser, you would still be moving a lot of unnecessary data
to the client and also reveal developer-specific information.

The <% //Java Comment %> comment type is the one that Java developers
are comfortable with and often end up using. However, it has no real benefit
over the JSP Comment, because including the comment in the translated
Servlet usually does not serve much purpose. So in most cases, JSP Comment
will be the one to use.

In this section, we looked at the working of the JSP, the basic syntax, and
usage of directives, scriptlets, expressions, and comments. Let’s now look at
how you can use tags to make your JSPs fast to build and easy to maintain.

Tags and Expressions
We have so far seen how you can use scripting in a JSP to add dynamic
content to HTML. However, the problem with JSP scripting wasn’t with JSPs as
such, but in the way it was being used by web developers. Developers created
large and complex JSPs using procedural code and a ton of functionality
packed into them. So within no time, the page became difficult to manage
and interpret for anyone but the original developer. Also, the idea of JSP was
to separate HTML and Java, but that wasn’t being achieved because most JSP
files ended up having Java all over the place.

To tackle this, custom tags (and later the JSP Standard Tag Library, or JSTL)
and expressions were introduced. Custom tags provide a way to build your
own tag outright. JSTL, as the name suggests, is a standard set of tags with
commonly required functionality. The expression language provides a way to
achieve complex functionality without the need to write Java code.

JSTL combined with expression language can ensure that your JSP pages
are feature-rich and yet clean and easy to understand and maintain.

112 Java EE Applications on Oracle Java Cloud

Custom Tags
With custom tags, you can create new tags that have the meaning and
functionality you desire. For example, using a <p> tag in HTML leads to
a new paragraph being created because the browser knows that’s what is
intended wherever it sees a <p> tag in the HTML.

Similarly, with custom tags, you can use a tag named a2z in your JSP, and
then tell the server that it is to print the alphabet from A to Z wherever it sees
that tag.

Creating your own custom tags is possible, and many did attempt doing
so in the early days of custom tags. However, with JSTL and many other
third-party tag libraries available, most developers now prefer to use tried-
and-tested tags from these libraries instead of creating their own tags. In most
cases, it’s best to stick to JSTL.

Although we will not get into the specifics of building a new custom tag
from scratch, do note that building a new tag involves the following steps:

1. Writing the code for the functionality that the tag is supposed to
provide, also known as the tag handler.

2. Writing the description for what that tags are supposed to achieve,
also known as the tag library descriptor (TLD).

3. Packaging the tags into a JAR file, which is the tag library.

4. To use a tag in a JSP, you need a taglib directive to convey which tag
and prefix you wish to use. You will see this in action in examples
later in the chapter.

OJC supports custom WebLogic Server–specific tags at weblogic.jsp.*. These
tags have been around before BEA was acquired by Oracle. As mentioned
in the previous chapter, as much as possible, you do not want to use server-
specific tags and limit the portability of your application. However, the tag
support will be useful for those looking to move a WebLogic deployment to
the cloud.

Before we get into the specifics of JSTL and expressions, Listing 5-7 shows
a simple example to whet your appetite.

Chapter 5: JavaServer Pages, JSTL, and Expression Language 113

Listing 5-7: JSTL and Expressions

<c:forEach var="i" begin="1" end="5">
 <p>Item <c:out value="${i}"/></p>
 </c:forEach>

Can you figure out what we have achieved with the code in Listing 5-7?
We have used a tag called foreach to iterate over a list from 1 to 5. We hold
each value in the variable i and then print out the current value using the out
tag. And within the out tag, we use the expression ${i}.

So, as you can see, we have packed quite a lot of functionality into an
easy-to-understand-and-maintain format that’s free of any Java code. Let’s
look at expressions followed by JSTL and then try using them together to
deliver greater functionality in our JSPs.

Expression Language
The unified expression language introduced in JSP 2.1 provides a common
expression language for JSP and JSF. With the expression language, you
can write simple expressions to access content from beans and perform
arithmetic and logical operations.

Expressions are in the form ${expression} in case of immediate evaluation
of the expression, which is what you would use with JSP. However, with
frameworks such as JSF where deferred evaluation is required, the $ in the
expression is replaced by a # sign and the expression is in the form #{}. With
deferred evaluation, the framework can evaluate the expression at different
stages in the lifecycle of the page. We will be using only immediate evaluation
expressions in this chapter, but in Chapter 6 on JSF, you will see using both
kinds of expressions.

The expression language also introduced additional implicit objects, listed
in the following table, that you can use within an expression to access key
data related to the page and the application.

Object Function

param Maps the request parameter name to a value

paramValues Maps all request parameter names to an array of all
request parameter values

header Maps the request header name to a value

(continued)

114 Java EE Applications on Oracle Java Cloud

Object Function

headerValues Maps all request header names to an array of all request
header values

cookie Maps the cookie name to a cookie

initParam Maps the context initialization parameter name to a value

In the previous chapter, you saw the various scopes that can be used for
sharing data. Here are the implicit objects that provide access to the scoped
variables:

■ pageScope

■ requestScope

■ sessionScope

■ applicationScope

The implicit objects can be used in expressions, which can be used within
JSTL tags or on their own.

JSTL Libraries
JSR 52 for JSTL states the following: “The original expert group that designed
the JavaServer Pages 1.0 and JavaServer Pages 1.1 specifications wanted to
include a list of standard tags as part of those specifications. Unfortunately,
time pressures and the dangers of standardizing on not fully understood
functionality forced the removal of any but a few very basic standard tags
from these specifications.”

So by the time the JSTL was introduced, JSPs packed with Java code had
become the norm. Tag libraries were being developed—some open source,
some proprietary—but there was no standardization happening. So if you
were to use a tag, you were forced to also ship the tag library JAR file along
with your application.

It was by this time quite obvious as to the kind of things that developers
were looking to achieve in their JSP pages. Therefore, the expert group for
JSR 52 came up with commonly used functionality that warranted having
a standard tag.

Chapter 5: JavaServer Pages, JSTL, and Expression Language 115

JSTL has multiple tag libraries, each with a unique URI and consisting of
many different tags:

■ Core http://java.sun.com/jsp/jstl/core

■ XML http://java.sun.com/jsp/jstl/xml

■ Formatting http://java.sun.com/jsp/jstl/fmt

■ SQL http://java.sun.com/jsp/jstl/sql

■ Functions http://java.sun.com/jsp/jstl/functions

Taglib Directive
Before we use any of the tag libraries, we need to first use a taglib directive
to state which libraries we are using and their prefix. The prefix and the URI
are important so as to avoid any conflict between tags with the same name
but in different libraries.

The taglib directives for the JSTL tag libraries are shown in Listing 5-8.

Listing 5-8: JSTL Taglib Directives

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>
<%@ taglib prefix="fn"
 uri="http://java.sun.com/jsp/jstl/functions" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

TIP
Note that the prefixes used are per convention, but
you can change the prefix being used. Also, the
URI is only being used here as a unique identifier
for the library. It does not suggest that page has to
communicate with that URI and retrieve anything.

Core Tag Library
The core tag library consists of the tags you would need to use most often.
It provides functionality for setting variables, running a loop, and producing
output when a logical condition is fulfilled.

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

116 Java EE Applications on Oracle Java Cloud

The directive for the core tag library is

<%@ taglib prefix="c" uri="#http://java.sun.com/jsp#/jstl/core" %>

The tags in the library are listed in the following table:

Tag Function

<c:out> Evaluates an expression and outputs the result of the
evaluation to the current JspWriter object

<c:set> Sets the value of a scoped variable or a property of a
target object

<c:remove> Removes a scoped variable

<c:catch> Catches a java.lang.Throwable thrown by any of its
nested actions

<c:if> Evaluates its body content if the expression specified with
the test attribute is true

<c:choose> Provides the context for mutually exclusive conditional
execution

<c:when> Represents an alternative within a <c:choose> action

<c:otherwise> Represents the last alternative within a <c:choose> action

<c:forEach> Repeats its nested body content over a collection of
objects, or repeats it a fixed number of times

<c:forTokens> Iterates over tokens, separated by the supplied delimiters

<c:import> Imports the content of a URL-based resource

<c:url> Builds a URL with the proper rewriting rules applied

<c:redirect> Sends an HTTP redirect to the client

<c:param> Adds request parameters to a URL

Source: http://jcp.org/en/jsr/detail?id=052

XML Tag Library
The XML tag library is useful for working with XML. The directive for the
XML tag library is

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

http://jcp.org/en/jsr/detail?id=052

Chapter 5: JavaServer Pages, JSTL, and Expression Language 117

You can parse, transform XML, and control flow using the tags listed in the
following table:

Tag Function

<x:parse> Parses an XML document.

<x:out> Evaluates an XPath expression and outputs the result of
the evaluation to the current JspWriter object.

<x:set> Evaluates an XPath expression and stores the result in
a scoped variable.

<x:if> Evaluates the XPath expression specified in the select
attribute and renders its body content if the expression
evaluates to true.

<x:choose> Provides the context for mutually exclusive conditional
execution.

<x:when> Represents an alternative within an <x:choose> action.

<x:otherwise> Represents the last alternative within an <x:choose>
action.

<x:forEach> Evaluates the given XPath expression and repeats its
nested body content over the result, setting the context
node to each element in the iteration.

<x:transform> Applies an XSLT stylesheet transformation to an XML
document.

<x:param> Sets transformation parameters. Nested action of
<x:transform>.

Source: http://jcp.org/en/jsr/detail?id=052

Formatting Tag Library
Formatting tags are used to format text, dates, time, and numbers as well as
for internationalization. The directive for the formatting library is

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

and the tags are listed in the following table.

http://jcp.org/en/jsr/detail?id=052

118 Java EE Applications on Oracle Java Cloud

Tag Function

<fmt:setLocale> Stores the specified locale in the javax.servlet
.jsp.jstl.fmt.locale configuration variable

<fmt:bundle> Creates an i18n localization context to be used
by its body content

<fmt:setBundle> Creates an i18n localization context and stores
it in the scoped variable or the javax.servlet
.jsp.jstl.fmt.localization context-configuration
variable

<fmt:message> Looks up a localized message in a resource
bundle

<fmt:param> Supplies a single parameter for parametric
replacement

<fmt:requestEncoding> Sets the request’s character encoding

SQL Tag Library
The SQL tag library contains tags for interacting with databases. Most
applications tend to avoid talking to the database directly from a JSP and
instead have a Java layer in between using Servlets or technologies such as
managed beans or EJBs, which we will look at later in Chapters 6 and 7.
However, if you are building a small application and need to talk to a
database from a JSP, it can be easily achieved using the SQL tags.

The directive for the SQL tag library is

<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>

and the tags are as follows:

Tag Function

<sql:query> Queries a database.

<sql:update> Executes a SQL INSERT, UPDATE, or DELETE
statement.

<sql:transaction> Establishes a transaction context for <sql:query>
and <sql:update> subtags.

<sql:setDataSource> Exports a data source either as a scoped variable
or as the data source configuration variable
(javax.servlet.jsp.jstl.sql.dataSource).

Chapter 5: JavaServer Pages, JSTL, and Expression Language 119

Tag Function

<sql:param> Sets the values of parameter markers (“?”) in a SQL
statement. It’s a subtag of SQLExecutionTag actions
such as <sql:query> and <sql:update>.

<sql:dateParam> Sets the values of parameter markers (“?”) in a SQL
statement for values of type java.util.Date.

Functions Tag Library
This library includes handy string-related manipulation and check functions.
Note that these are not tags, but functions that can be used in expressions or in
expressions within tag attributes. The directive for the Functions tag library is

<%@ taglib prefix="fn"
 uri="http://java.sun.com/jsp/jstl/functions" %>

and the tags are as follows:

Tag Function

fn:contains Tests whether a string contains the specified
substring

fn:containsIgnoreCase Tests whether a string contains the specified
substring in a case-insensitive way

fn:endsWith Tests whether a string ends with the specified
suffix

fn:escapeXml Escapes characters that could be interpreted as
XML markup

fn:indexOf Returns the index within a string of the first
occurrence of a specified substring

fn:join Joins all elements of an array into a string

fn:length Returns the number of items in a collection, or
the number of characters in a string

fn:replace Returns a string resulting from replacing all
occurrences of a string with another string

fn:split Splits a string into an array of substrings

fn:startsWith Tests whether a string starts with the
specified prefix

(continued)

120 Java EE Applications on Oracle Java Cloud

Tag Function

fn:substring Returns a subset of a string

fn:substringAfter Returns a subset of a string following a
specific substring

fn:substringBefore Returns a subset of a string before
a specific substring

fn:toLowerCase Converts all the characters of a string
to lowercase

fn:toUpperCase Converts all the characters of a string
to uppercase

fn:trim Removes whitespace from both ends of a string

Using Tags in a JSP
Now that we have looked at the various tags, let’s look at how to use them in
a JSP. To use JSTL in our application, we need to refer to the JSTL library in the
weblogic.xml file, as shown in Listing 5-9. You will find the exact specification
and implementation version listed in the Libraries widget on the Cloud Services
Control, as shown in Figure 5-5. The shared Libraries widget lists the various

FIGURE 5-5. Shared Libraries - JSTL

Chapter 5: JavaServer Pages, JSTL, and Expression Language 121

libraries available to you. You can add a new library using the Deploy New
button. OJC will check the library for compliance with Oracle standards
before it is made available to your application. We do not need to add the
JSTL library in our case, as JSTL 1.2 is already deployed and available.

I have dragged the Libraries widget to the left of the page for the sake of
the Figure 5-5 screen capture, however by default you will find it on the right
of the page.

Listing 5-9: Refer to the JSTL library

<library-ref>
 <library-name>jstl</library-name>
 <specification-version>1.2</specification-version>
 <implementation-version>1.2.0.1</implementation-version>
 <exact-match>false</exact-match>
</library-ref>

Next, create a new JSP named jstl1.jsp. In this JSP, add the code shown in
Listing 5-10.

Listing 5-10: Using Expressions with JSTL Tags Set, Choose When

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>

 <%--Expression Language With JSTL--%>

 <%--Set a request attribute--%>
 <c:set var="amount" scope="request" value="500" />

 <%--Multiple ways to access the attribute--%>

 Amount = ${requestScope.amount}
 Amount = ${requestScope["amount"]}

122 Java EE Applications on Oracle Java Cloud

 Amount = ${amount}

 <%--Choose When --%>

 <c:choose>
 <c:when test="${requestScope.amount < 1000 }">
 <p>Access Restricted!</p>
 <p>Your amount was
 <fmt:formatNumber minFractionDigits="2"
 value="${amount}"/>
 </p>
 </c:when>
 <c:otherwise>
 <p>Welcome!</p>
 </c:otherwise>
 </c:choose>
 </body>
</html>

Although the taglib directives (first two lines) will work fine, regardless of
where you place them in the JSP, it is recommended that you place them at
the top of the JSP, below the page directive. The rest of the non-HTML code
goes into the <body> tag because we want to get the output displayed in the
browser. Now, run the JSP and you will get the output shown in Figure 5-6.

In this example, we are setting a request attribute named amount with
the value 500. Note that here we are benefiting from the automatic type
conversion capability of JSTL. We are passing 500 as a string but later working
with it as if it is an integer.

FIGURE 5-6. Output using JSTL and expressions

Chapter 5: JavaServer Pages, JSTL, and Expression Language 123

Next, we see how we can access the amount attribute in multiple ways
provided by the expression. In the case where we just say ${amount}, the
server will look for the amount variable from the narrowest scope to the
widest. Therefore, if there’s a possibility that you might have attributes with
the same name in multiple scopes, you should always state the scope as well.

Next, we use the <choose> tag, which contains the <when> tag, where
we test whether the amount is less than 1000. If it is less than 1000, we use
the formatting tag and format the number such that we have at least two digits
after the decimal.

Now let’s try out another example, where we deal with a commonly
required use case of iterating over many items. These items that we wish to
iterate over could be a list of inputs from a user or, at times, a list of items
retrieved from a database. Create a new JSP called Jstl2.jsp. In this JSP, add the
code shown in Listing 5-11.

Listing 5-11: JSTL forEach

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib prefix="fn"
 uri="http://java.sun.com/jsp/jstl/functions" %>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib prefix="fn"
 uri="http://java.sun.com/jsp/jstl/functions" %>
 <h1>List Technologies</h1>
 <c:forEach items="${paramValues.tech}" var="technology">
 <p>
 <c:if test="${fn:containsIgnoreCase(technology,'java')}">
 *
 </c:if>
 ${technology}
 </p>
 </c:forEach>
 </body>
</html>

124 Java EE Applications on Oracle Java Cloud

Run the JSP. You will initially not get the desired output because we are
not passing any parameters to the JSP. Modify the query string in the browser
to the following:

/Ch5JavaServerPages1/jstl2.jsp?tech=Java&tech=PHP&tech=Ruby

By doing this, we are simulating the submission of three values from a
check box. You should now get the output shown in Figure 5-7.

Note that we are using the implicit object paramValues mentioned in the
“Expression Language” section, earlier in the chapter. Let’s create another
JSP, called Jstl3.jsp, to see how you can further leverage expressions and the
implicit objects provided (see Listing 5-12).

Listing 5-12: Expressions and Implicit Objects

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
 <%--Expression Language Usage--%>
 <p>Cookie = ${cookie.JSESSIONID.value}</p>
 <p>Host = ${header.host}</p>

 <p>2 + 3 = ${ 2 + 3 }</p>

FIGURE 5-7. Output using JSTL forEach

Chapter 5: JavaServer Pages, JSTL, and Expression Language 125

 <p>Mod 10/4 = ${ 10 mod 4 }</p>
 <p>Mod 10/4 = ${ 10 % 4 }</p>

 <p>10/5 = ${ 10 div 5 }</p>
 <p>10/5 = ${ 10/5 }</p>

 <p>10 is greater than or equal to 5 = ${ 10 ge 5 }</p>
 <p>10 is greater than or equal to 5 = ${ 10 >= 5 }</p>

 <p>z > a = ${'z' > 'a'}</p>
 <p>Example param exists = ${!empty param.Example}</p>
 </body>
</html>

Upon running the JSP, you will get the output shown in Figure 5-8. As you
can see, a lot can be achieved using expressions. Note that because we are
only using expressions and no tags, the taglib directive is not required in
this case. Also, note that the values for cookie and host will vary based
on your setup.

FIGURE 5-8. Output using various expressions

126 Java EE Applications on Oracle Java Cloud

In these examples, we have looked at commonly encountered scenarios—
how you can produce dynamic content in a JSP using JSTL and expression
language (EL) and without writing any Java code. The key to using JSTL and EL
well is to be aware of all the tags we have covered, to understand the range of
expressions possible, and to use them as and when appropriate.

Going through all the many tags would not be appropriate here, but do
note that the format is pretty much the same in all cases—most tags have
multiple attributes to provide for various possibilities, and these attributes in
many cases accept expressions to make the tags even more capable.

Summary
JSP has been around for a long time and yet continues to be a good, quick
option for building Java EE applications. Using JSP, along with JSTL and EL,
enables you to build rich applications while still having clean code. JSP
skills are easily available, and JSP continues to be an important part of even
the latest versions of Java EE. OJC runs your JSP files as well as any local
server, and there are no JSP-specific restrictions on your development.

Do not discount JSP and take up the more complex frameworks only
because JSP is no longer fashionable. If you don’t find the tags you need in
the libraries we’ve discussed here, explore some of the many open-source tag
libraries available for niche requirements.

In the next chapter, we will look at JavaServer Faces (JSF), which is a
feature-rich web framework and the framework of choice for most new Java
EE web applications.

CHAPTER
6

JavaServer Faces

128 Java EE Applications on Oracle Java Cloud

In the previous chapter, we looked at JavaServer Pages (JSP), which
continues to be a popular technology for building web applications, but
suffers from some major drawbacks of being rather unstructured, prone

to chaotic coding, and difficult to maintain. So in this chapter, we will look
at JavaServer Faces (JSF), which is the preferred web technology for Java EE
applications today. It offers a neat and feature-rich way of building server-
side web applications. The key capabilities of JSF are the UI component
model, event handling, validation framework, structured page navigation,
and internationalization.

From JSP to Struts to JSF
With JSP, we think of a web page as a collection of scripts, tags, and HTML;
however, with JSF we think of a web page as a set of components placed
on a page. We tweak and customize the working of each component.
The components, in most cases, are tied to backend Java code that further
enhances their capability.

JSF is a framework for building web applications, so it goes beyond just
a web page view and looks at how an entire application should be designed
and managed. It provides a definite structure and development paradigm for
building a web application. So whereas JSP is a view technology, JSF is much
more than that.

Until JSF version 2.0, JSP was the view technology for JSF. JSF 2.0 and later
use Facelets as the primary view technology; however, JSP continues to be
supported and used.

Having said that, the origins of JSF lie not just in the limitations of JSP, but
also in a popular web framework from the early 2000s named Struts. Although
Struts is still around (http://struts.apache.org/), it is no longer as popular.

Struts provided an open-source framework for building web applications
based on the Model-View-Controller (MVC) design paradigm. MVC is a
design pattern where the Model represents the business logic, the View the
page, and the Controller the application navigation. Struts was tailor-made
for HTTP web applications and provided rich capabilities for common web
functionality such as request response handling and form submissions. The
decoupling of the Controller and the View brought in great value for web
applications, which at the time were getting too large and complex to manage
using just JSPs.

http://struts.apache.org/

Chapter 6: JavaServer Faces 129

Java EE has always excelled at adopting good ideas. The Struts creator,
Craig McClanahan, was also the co-specification lead for JSF 1.0. Therefore,
JSF’s backend code and the navigation-handling capability are pretty similar
to those of Struts. The Facelets UI component part of JSF has adopted ideas
from frameworks such as Apache Tapestry and Tiles. Earlier, Tiles was part of
Struts, but is now a separate project known as Apache Tiles.

JSF on the Oracle Java Cloud
As mentioned in previous chapters, OJC supports a mix of Java EE 5 and Java
EE 6 technologies, so even in the case of JSF, OJC supports JSF release 1.2
as well as release 2.0, which was introduced in Java EE 6. The support for
JSF 2.0 is important because Facelets, the preferred view technology for JSF
today, was introduced only in JSF 2.0. “View technology” here essentially
means the code that generates the web page view. Having said that, JSP
continues to be supported even with the latest JSF versions, but Facelets is
the recommended view technology. If you are building a new application,
it’s best to avoid JSP and use Facelets instead.

Another important change with JSF 2.0 was the support for annotations.
So until JSF 1.x, all the configuration was in a configuration file named faces-
config.xml; however, with version 2.0 you can use annotations. We could not
use annotations in Chapter 4 on Servlets because the Servlet version supported
on OJC does not support annotations. However, because OJC supports JSF 2.0,
which supports annotations, we can use annotations in this chapter.

TIP
An annotation is metadata that has no
direct effect on the operation of the code but is
used for configuration or to provide additional
information to the compiler or other development/
deployment tools.

Facelets
Facelets are a part of the JSF specification. It provides a page declaration
language and templating capability, and is suited for building component-
based pages. Facelets bring in performance improvement along with the
option for developers to easily plug in new components as required.

130 Java EE Applications on Oracle Java Cloud

Facelets’ component-based model has also given vendors the option to
ship component libraries that can be easily plugged in to any application.
There are many such free, open-source, and commercial component libraries
available. The creators of those libraries usually just ship a .jar file with their
bunch of components built as per the Facelets and JSF norms.

The component-based model of Facelets has also led to the creation of
tools that can efficiently add and edit components. Facelets also provides tag
libraries in addition to the JSTL we discussed in the previous chapter.

From the look of it, Facelets vary from JSPs due to the use of XHTML
and the different tags and components used. However, Facelets also support
expression language capabilities beyond JSP. So in the previous chapter,
we only looked at expressions that are evaluated immediately using the ${}
syntax. However, with JSF and Facelets, we can also leverage the deferred
evaluation capability using the #{} syntax so that expressions are evaluated
only at an appropriate point in the lifecycle of a component.

Let’s now build a JSF application and try to better understand JSF with
reference to our sample application.

Select Java Web | Web Application to create a new project in NetBeans.
Name the project Ch6JSF1. Along similar lines to projects in previous
chapters, use the Oracle Cloud Remote server. In the next step, shown in
Figure 6-1, select JavaServer Faces in the list of frameworks. You now need
to set the server library for your JSF application. Because we will be running
the application on OJC, our library options are limited to JSF 2.0 and JSF 1.2,
which are listed in the Server Library drop-down. Select JSF 2.0.

Next, click the Configuration tab. As shown in Figure 6-2, the JSF Servlet
URL Pattern field is set to /faces/*. This means that all requests received by
your web application that match the URL pattern /faces/* will be handled
by the JSF framework. Here, * is the wildcard character, which implies that
you can have Servlets and JSPs like the ones in the previous chapter running
alongside JSF. If the request URL does not match /faces/*, the JSF framework
will not get involved and your Servlet/JSP can work independently.

Next, we need to select the preferred page language. The choices here
are Facelets and JSP. In case you only see the JSP option (no Facelets), check
whether you have selected JSF 2.0 in the Server Library drop-down, as shown
in Figure 6-1. Select Facelets.

Next, select the Components tab. You will see the screen shown in
Figure 6-3. Listed are popular JSF suites (PrimeFaces, ICEFaces, and RichFaces)
that bring in their own set of rich components. Although JSF itself has many

Chapter 6: JavaServer Faces 131

FIGURE 6-1. Selecting the JSF library

FIGURE 6-2. The Configuration tab

132 Java EE Applications on Oracle Java Cloud

components included, using one of these suites is an easy way to jazz up
your application with more capability and impressive UIs. Besides the ones
listed here, many other third-party component libraries, both open source and
commercial, are available. Do not select any of the suites. Click Finish.

The project will be created, and NetBeans will also create an index.xhtml
file. Before we add functionality, let’s look at the JSF-specific configuration
that has been included in the application. Open the web.xml file and you will
find the XML shown in Listing 6-1.

Listing 6-1: web.xml

<context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
</context-param>
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>
 javax.faces.webapp.FacesServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

First up is the parameter javax.faces.PROJECT_STAGE, which is set to
Development, but can also take the value Production, SystemTest, or UnitTest.
Based on this value, the JSF implementation can optimize its behavior, as well as

FIGURE 6-3. JSF component suites

Chapter 6: JavaServer Faces 133

modify the verbosity of development-time diagnostics, error messages, and
debugging information.

Next, notice that the value we set in Figure 6-2 has led to a new Servlet
being declared, with all /faces/* requests being mapped to it. Note that /faces/*
is the pattern we provided in the wizard. We could have very well used some
other pattern.

Now let’s look at the index.xhtml file, which has the code shown in
Listing 6-2.

Listing 6-2: index.xhtml

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets
 </h:body>
</html>

Although this is a bare-bones .xhtml file, it still has enough in it for us to
discuss the foundation of a Facelets-based .xhtml file.

XHTML is HTML that is also XML. Therefore, all the hacks and shortcuts
you can get away with in an HTML file will not work in XHTML. XHTML
brings in the following conditions: doctype is a must; all elements have to be
nested, closed, and in lowercase; the document must have one root element;
all attributes must be in lowercase; attributes must be quoted; and more.
Apart from leading to nice, readable code, the other important benefit is that
XHTML can be parsed using an XML parser, which is an important capability
if you want tools and editors to use and modify the file.

TIP
One of the most common HTML tag issues
involves the
 tag. For it to be valid,
well-formed XML, the tag has to be

 and not
.

134 Java EE Applications on Oracle Java Cloud

Next, you will find that apart from the xmlns="http://www.w3.org/1999/
xhtml namespace declaration, there’s also xmlns:h="http://java.sun.com/jsf/
html", which is the namespace declaration for all the tags we are using with
the prefix h. Therefore, the tags h:head and h:body are not part of the basic
XHTML, but rather, a part of the additional tag library introduced by Facelets.
Although the h:head and h:body tags here only generate the corresponding
<head> and <body> tags, we have the choice of using the various attributes
of these tags to get them to do more than generate just the HTML tags.

CAUTION
JSF 2.2 introduced new namespaces that start with
http://xmlns.jcp.org instead of http://java.sun.com.
Therefore, a lot of the tools, as well as many
new online samples, use the new namespace.
However, note that OJC supports JSF 2.0 and
the http://java.sun.com namespaces.

The tag libraries supported by Facelets in JSF 2.0 are listed here:

Tag Library URI Prefix

Facelets http://java.sun.com/jsf/facelets ui:

HTML http://java.sun.com/jsf/html h:

Core http://java.sun.com/jsf/core f:

Composite http://java.sun.com/jsf/composite composite:

JSTL Core http://java.sun.com/jsp/jstl/core c:

JSTL Functions http://java.sun.com/jsp/jstl/functions fn:

We looked at some of the JSTL tags in Chapter 5, and will look at some of
the key tags in the other libraries in later examples in this chapter.

JSF Managed Beans
JSF managed beans are Plain Old Java Objects (POJOs) that are managed
by JSF. All that it takes to make a Java class a managed bean is to add the
annotation @ManagedBean to the code or the appropriate XML configuration.

The managed bean is usually used to process HTML form values and
is the place where you add Java code you want bound to UI components.

http://xmlns.jcp.org
http://java.sun.com
http://java.sun.com
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/composite
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions

Chapter 6: JavaServer Faces 135

The managed bean at times even includes the actual business logic of the
application; however, moving the business logic code to a dedicated business
logic class or an EJB is considered to be a better practice.

TIP
The term managed bean was once used almost
exclusively for JSF managed beans. However,
with newer specifications such as Contexts and
Dependency Injection (CDI), the term lately tends
to be used for any Java class that is being managed
by the server, and is no longer a JSF-specific usage.
You can read more about CDI managed beans
at http://docs.oracle.com/javaee/6/tutorial/doc/
gjfzi.html. CDI is not supported on OJC, so any
managed bean usage in this chapter refers to
JSF managed beans.

So let’s add a managed bean to our application with a single String property,
yourname. We will then bind this property in the bean to a text box in the UI
.xhtml file.

To add a managed bean, right-click the project in the Projects window and
then select New | Other | JavaServer Faces | JSF Managed Bean. You will get
the screen shown in Figure 6-4. The class is WelcomeBean, and the package
is managedbeans.

You should now have WelcomeBean.java open up in your editor window.
You can either manually add the code for the yourname property or use the
NetBeans wizard. To add using NetBeans, right-click within the class body
in the code editor and select Insert Code | Add Property. Name the property
yourname and set the type as String. You can have NetBeans generate Javadoc
comments by checking the Generate Javadoc box. Uncheck the box to keep
the code brief. Click OK. You should now have the code shown in Listing 6-3.

Listing 6-3: WelcomeBean

package managedbeans;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

http://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html

136 Java EE Applications on Oracle Java Cloud

@ManagedBean(name = "welcome")
@RequestScoped
public class WelcomeBean {
 private String yourname;
 public WelcomeBean(){
 }
 public String getYourname() {
 return yourname;
 }
 public void setYourname(String yourname) {
 this.yourname = yourname;
 }

FIGURE 6-4. The new JSF managed bean

Chapter 6: JavaServer Faces 137

Although the Java code is pretty simple, the things to note are the
annotations @ManagedBean(name = "welcome") and @RequestScoped.

Now that we have our bean ready, let’s add a text box to our .xhtml and
bind it to the property yourname in the bean. The index.xhtml file is shown in
Listing 6-4.

Listing 6-4: Form in index.xhtml

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Welcome JSF</title>
 </h:head>
 <h:body>
 <h:form>
 <h:inputText label="Name" id="yourname"
 value="#{welcome.yourname}" >
 </h:inputText>
 <h:commandButton action="welcomepage" value="Go!"/>
 </h:form>
 </h:body>
</html>

Note that an enclosing HTML form is required for your button to work and
submit the value entered in the text box.

In this code, the inputText tag generates a text box and the command
button generates a submit button with the text “Go!” However, what’s special
about this code is the value attribute that is being bound to the property in
the managed bean. The most obvious benefit of this binding is that it would
be the framework’s job to call the getter and setter methods as and when the
property value is to be fetched or processed. The developer is freed of the
mundane task of fetching request parameters.

Note that we are using #{ in the expression, which means that it’s a deferred
evaluation. Therefore, the JSF framework can decide when the expressions are
evaluated at appropriate points in the lifecycle of a component. JSF mostly uses
deferred evaluation expressions.

138 Java EE Applications on Oracle Java Cloud

Within the expression #{welcome.yourname}, welcome is the name of the
managed bean, as stated in the @ManagedBean annotation in Listing 6-3, and
yourname is the property. The yourname property value will get set based
on what’s being entered. Note that we have written our accessor methods
(get and set methods, also known as “getter-setter methods”) in Listing 6-3 as
per the JavaBeans specification, and they are also being invoked as specified.
Therefore, the setYourName method is invoked by the JSF implementation to
set the yourname value, and the getYourName method is invoked to get the
yourname value.

Next, you can see that the action attribute in the h:commandButton tag
has the value welcomepage, which currently has no meaning within the JSF
application. Therefore, create a new JSF page named welcomepage.xhtml.
Right-click the project and select New | JSF Page. In the next screen, shown in
Figure 6-5, select the Facelets option and click Finish. Now update the page
as shown in Listing 6-5.

FIGURE 6-5. The new JSF page

Chapter 6: JavaServer Faces 139

Listing 6-5: Welcome Page

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">

 <h:head>
 <title>Welcome Page</title>
 </h:head>
 <h:body>
 Welcome #{welcome.yourname}
 </h:body>
</html>

Next, right-click and run the index.xhtml file. Along similar lines to all
applications in previous chapters, the project will get packaged and deployed
on OJC, and upon accessing the page from your browser, you will get the
page shown in Figure 6-6.

Enter some text in the text box and either press ENTER or click the Go!
button. JSF will take you to the welcomepage.xhtml page, where you will see
the message “Welcome <the value you entered>.” So what has happened
here is that the yourname value was set in the WelcomeBean property when
you submitted the form, and we retrieved the value from the bean in the
welcomepage.xhtml page. Considering how often you need to accept and
process form submissions in a web application, JSF’s form-handling capability
is especially useful.

With form submissions, it is often the case that you need to decide page
flow based on the values submitted. In Listing 6-6, we check the value of
yourname and return welcomepage if it is java and notwelcomepage if it is
anything else.

FIGURE 6-6. index.xhtml in the browser

140 Java EE Applications on Oracle Java Cloud

Listing 6-6: The checkedWelcome Method in WelcomeBean

public String checkedWelcome() {
 if (yourname.equalsIgnoreCase("java")) {
 return "welcomepage";
 } else {
 return "notwelcomepage";
 }
}

Next we need to edit the command button tag in index.xhtml as follows:

<h:commandButton action="#{welcome.checkedWelcome}" value="Go!"/>

Also, add a new JSF page named notwelcomepage.xhtml to handle the else
condition. Keep the page exactly the same as the welcomepage in Listing 6-5;
just change the word Welcome to NotWelcome, except in the expression where
we are referring to the managed bean.

Again, run index.xhtml. You will find that based on whether you enter
the word java in the text box, you are forwarded to either welcomepage
or notwelcomepage. We have so far hard-coded the page-names, which is
neither advisable nor feasible in real applications. Therefore, we will now
enhance the navigation capability by introducing the JSF Faces Configuration
file (faces-config.xml), which is a configuration file that can be used to define
page-navigation rules and configure beans.

TIP
JSF, by default, looks for a configuration file named
faces-config.xml in the WEB-INF directory, but you
can use a different name or split the configuration
into multiple files. You just need to add a context
parameter named javax.faces.CONFIG_FILES in
your web.xml.

To add a faces-config.xml file, right-click the project and select New | Other |
JavaServer Faces | JSF Faces Configuration. The faces-config.xml file will be
created in the WEB-INF directory. We will now utilize a neat NetBeans tool
that facilitates creating the navigation rules. Note that the tool only generates the
requisite XML; we are not doing anything NetBeans specific.

In the faces-config.xml editor window, click the PageFlow tab. Our
three xhtml pages are shown in three boxes. Click and drag the dot on the

Chapter 6: JavaServer Faces 141

right of the index.xhtml box and drag it to welcomepage.xhtml and then to
notwelcomepage.xhtml. You will get the screen shown in Figure 6-7.

NetBeans, by default, will name the page-flows case1 and case2, respectively.
We will update them to the more relevant names welcome and notwelcome,
respectively. Now click the Source tab, and you will see that the visual editor
has generated the XML shown in Listing 6-7.

Listing 6-7: faces-config.xml

<?xml version='1.0' encoding='UTF-8'?>
<faces-config version="2.1"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
"http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd">
 <navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>welcome</from-outcome>
 <to-view-id>/welcomepage.xhtml</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>notwelcome</from-outcome>
 <to-view-id>/notwelcomepage.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

FIGURE 6-7. JSF Faces Configuration visual editor

142 Java EE Applications on Oracle Java Cloud

Now that we have defined the navigation case welcome from index.xhtml
to welcomepage.xhtml and navigation case notwelcome from index.xhtml to
notwelcomepage.xhtml, let’s go back to the managed bean and edit the code
as shown in Listing 6-8.

Listing 6-8: Updated checkedWelcome for Navigation Cases

public String checkedWelcome() {
 if (yourname.equals("java")) {
 return "welcome";
 } else {
 return "notwelcome";
 }
}

Now, based on the value of the text box input, we can decide the navigation
of our application. We have kept our navigation flexible by declaring it in an
XML file and not hard-coding it into our code.

Validation
Validating user input is one of the most common tasks in a web application.
Prior to JSF, you either had to write the validation code or plug in a separate
validation framework. However, with JSF’s rich validation capability, you can
easily validate user input and generate messages accordingly. JSF provides
multiple validators along with the validator tags in the JSF core tag library.
The tags are detailed in the following table:

Tag Function

validateLength Checks whether the length is within range.

validateLongRange Checks whether the value is within range. The
value should be numeric or a string that can be
converted to the type long.

validateDoubleRange Checks whether the value is within range. The
value should be numeric or a string that can be
converted to floating-point.

validateRegEx Checks the value against a regular expression
from java.util.regex.

Chapter 6: JavaServer Faces 143

Tag Function

validateRequired Checks that the value is not empty. Used to mark
a form field as required.

validateBean Used to register a separate bean validator.

Let’s go back to our code and validate the name input in the text box in
index.xhtml. For that, we need to first declare the core tag library usage in the
html tag, as shown in Listing 6-9.

Listing 6-9: Tag Library Declaration

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">

Next, we edit the h:inputText tag, as shown in Listing 6-10.

Listing 6-10: Validate Length

<h:inputText label="Name" id="yourname"
 value="#{welcome.yourname}" >
 <f:validateLength maximum="10" />
 <f:validateRequired/>
</h:inputText>

TIP
Use CTRL-SPACE in the NetBeans editor for tag
autocomplete and documentation.

The field is a required field, with a maximum length of 10. Now run
index.xhtml, followed by entering any length of text greater than 10. You
will get a screen similar to the one in Figure 6-8. We currently do not have
any element on the page that is meant to handle and display the validation
messages. Therefore, by default, the messages appear in red and at the
bottom of the page, the javax.faces.PROJECT_STAGE value in web.xml is set
to Development. We discussed javax.faces.PROJECT_STAGE values earlier in
this chapter.

144 Java EE Applications on Oracle Java Cloud

TIP
Take note of the benefit of using a deferred
evaluation expression in the form #{}. Even though
there’s a validation error that leads to a postback
and the same page being reloaded, the value that
was entered is not lost.

You can control the positioning of all the validation messages in one go by
placing the tag <h:messages /> in your page, or you can provide a particular
position and style for validation messages for individual fields using the
<h:message /> tag. Edit the code as shown in Listing 6-11.

Listing 6-11: Validation Messages

<h:messages />
<h:form>
 <h:inputText label="Name" id="yourname"
 value="#{welcome.yourname}" >
 <f:validateLength maximum="10" />
 <f:validateRequired/>
 </h:inputText>
 <h:commandButton action="#{welcome.checkedWelcome}"
 value="Go!"/>
</h:form>
<h:message for="yourname" style="color:blue" />

In this case, we are using both options: <h:messages /> will show all validation
messages, whereas <h:message /> will show the validation messages for the
yourname text field in the color blue.

FIGURE 6-8. Validation message

Chapter 6: JavaServer Faces 145

Ajax
Ajax was all the rage a few years back and has now become the norm
for most rich UI applications. A plethora of third-party Ajax frameworks
are available; however, JSF comes with built-in support for the basic Ajax
functionality.

Let’s look at a simple example where you use Ajax to refresh the time
upon a click and avoid a page reload. In order to do this, first create a new JSF
named ajaxtime.xhtml, as shown in Listing 6-12.

Listing 6-12: Ajax Time

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Ajax Time</title>
 </h:head>
 <h:body>
 <p>Time: <h:outputText value="#{welcome.time}"
 id="timetext" /></p>
 <p>
 <h:link value="Refresh Time" >
 <f:ajax render="timetext"/>
 </h:link>
 </p>
 </h:body>
</html>

Here, we are getting the value of the property time using the expression
#{welcome.time}, which will lead to a call to getTime in the managed bean
WelcomeBean. Add the property and the method as shown in Listing 6-13.

Listing 6-13: The getTime Method in the Managed Bean

private String time;
public String getTime() {
 return new java.util.Date().toString();
}

146 Java EE Applications on Oracle Java Cloud

The <f:ajax> usage in Listing 6-12 conveys that on the link being clicked,
we want the component with ID timetext to be rendered. Therefore, the
whole page will not reload, but only that one component will get rendered
again. As we are getting the time property in the component with ID timetext,
the new time value will get updated on every click of the link, as shown in
Figure 6-9.

Templates
Most web applications tend to follow a consistent look and feel across
the site. For example, there’s usually a constant header and footer and at
times even a sidebar present on all pages. The Facelets tags in JSF provide
templating capability that enables you to use a page as the template for
other pages in the application.

To add a new template to our project, right-click the project and select
New | Other | JavaServer Faces | Facelets Template. Select the layout with
a header and a left sidebar, as shown in Figure 6-10. NetBeans will not only
create the newTemplate.xhtml file, but will also create a resources directory
with a couple of .css files within.

The code generated by NetBeans includes the CSS using standard HTML
tags. However, because “resources” under the root of your web application
is a special directory for JSF, where it expects all your web resources
files such as CSS, images, and JavaScript to be stored, we can use the tag
<h:outputStylesheet> to refer to the CSS and the tag <h:outputScript>
to refer to any JavaScript. We can even create subdirectories within the
resources directory for various themes for our application, and even create
subdirectories for versions of a theme. Our modified code for the template is
shown in Listing 6-14.

FIGURE 6-9. Ajax time

Chapter 6: JavaServer Faces 147

Listing 6-14: Template

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />
 <h:outputStylesheet name="css/default.css"/>
 <h:outputStylesheet name="css/cssLayout.css"/>
 <title>Facelets Template</title>

FIGURE 6-10. Template layout styles

148 Java EE Applications on Oracle Java Cloud

 </h:head>
 <h:body>
 <div id="top" class="top">
 <ui:insert name="top">Top Content</ui:insert>
 </div>
 <div>
 <div id="left">
 <ui:insert name="left">Left Content</ui:insert>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Main Content</ui:insert>
 </div>
 </div>
 </h:body>
</html>

Next, add a client for the template we created by right-clicking the project
and selecting New | Other | JavaServer Faces | Facelets Template Client. In
the template selection field, select the newTemplate.xhtml file we created, as
shown in Listing 6-15.

Listing 6-15: newTemplateClient.xhtml

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
 <body>
 <ui:composition template="./newTemplate.xhtml">
 <ui:define name="top">
 top
 </ui:define>
 <ui:define name="left">
 left
 </ui:define>
 <ui:define name="content">
 content
 </ui:define>
 </ui:composition>
 </body>
</html>

Run newTemplateClient.xhtml, and you will get the page shown in
Figure 6-11. As expected, the page layout and styling are as per the template,
whereas the text is from the client.

Chapter 6: JavaServer Faces 149

You can try creating a consistent, template-based look and feel for all
examples in this chapter by converting the earlier JSF pages into template
client pages. Although the code for the functionality would remain the same,
the layout and the look and feel would be that of the template. Therefore, our
Ajax example in Listing 6-12 could be modified as shown in Listing 6-16 by
creating a new template client file called ajaxTimeTemplateClient.xhtml.

Listing 6-16: Ajax Time Using the Facelets Template

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <body>
 <ui:composition template="./newTemplate.xhtml">
 <ui:define name="top">
 Ajax With JSF
 </ui:define>
 <ui:define name="left">
 <h:link value="Refresh Time" >
 <f:ajax render="timetext"/>
 </h:link>
 </ui:define>
 <ui:define name="content">
 Time : <h:outputText value="#{welcome.time}"
id="timetext" />
 </ui:define>
 </ui:composition>
 </body>
</html>

FIGURE 6-11. Template client page

150 Java EE Applications on Oracle Java Cloud

Summary
In this chapter, we built and deployed JSF applications on OJC. The fact
that OJC supports JSF 2.0 from Java EE 6 gives us access to a wide range
of features as well as ease of use using annotations. We used several JSF
Facelets components, validated inputs, bound UI components to a managed
bean, and managed application navigation in a declarative way. We then
used a template to create a consistent look and styling for our application.
As you will have noticed, running our JSF application on OJC did not limit
the scope or capability of our JSF application in any way. In the next chapter,
we will venture into Enterprise JavaBeans (EJBs) and use them with JSF.

CHAPTER
7

Enterprise JavaBeans
(Session Beans)

152 Java EE Applications on Oracle Java Cloud

We have looked at using various Java EE technologies to handle the
HTTP and the web part of the application. However, arguably,
the most critical component of any software is the functioning of

the actual business logic. In this chapter, we look at Enterprise JavaBeans,
a technology whose primary aim is running business logic code efficiently,
accurately, and securely.

Enterprise JavaBeans (EJB) was perhaps the technology that truly marked
the arrival of Java EE (or J2EE as it was known as back then) to the software
development world. There was tremendous buzz around EJB at the dawn of
the twenty-first century. EJB was expected to deliver almost magical results
and, as such, was the most prized skill on the job market. Although it did
deliver on some of its promise, it was also extremely complex and tedious for
developers to work with. Hardly any developer could confidently say they
understood EJB inside out. Fortunately, EJB has been greatly simplified over
the years.

Containers
EJBs run in a specialized part of the application server known as the EJB
container. Whereas all the examples in the previous chapters used the
web container part of the application server, in this chapter, we use the EJB
container and then the web and EJB containers working together.

Many of the commonly used application servers such as WebLogic, GlassFish,
WebSphere, Geronimo, and JBoss include both an EJB container and a web
container. There are, however, application servers that do not include an EJB
container, so you’ll want to be mindful of this when choosing a server.

If an application server is listed in the Java EE Full Platform Compatible
section on the Java EE Compatibility page, found at

www.oracle.com/technetwork/java/javaee/overview/compatibility-
jsp-136984.html

it will have both an EJB container and a web container. If a server is not
listed on the Java EE Compatibility page, refer to the server documentation
for EJB support.

http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

Chapter 7: Enterprise JavaBeans (Session Beans) 153

EJB in OJC
The Oracle Java Cloud runs WebLogic server, and WebLogic includes an EJB
container and a web container. However, before we start building EJBs for
OJC, we need to be aware of the exact specifications supported and what
you can and cannot do with EJBs in OJC.

OJC supports the EJB 2.1 and EJB 3.0 specifications. The focus of EJB 3.0
was on simplifying EJBs for developers, with the key feature being the
introduction of annotations as an option for XML deployment descriptor files.
Therefore, EJB 3.0 was a significant improvement over 2.1 and will be the
version we use in this chapter.

Until EJB 3.0, persistence using Entity Beans was an integral part of EJBs.
However, with EJB 3.0, persistence was moved out to Java Persistence API
(JPA). (We will look further at JPA in Chapter 9 on persistence.) Although
OJC supports EJB 2.1, do note that EJB 2.1 Entity Beans, which dealt with
persistence, are not supported. For persistence on OJC, we use JPA.

OJC only supports local EJB invocations and not remote invocations. As
such, you can invoke an EJB only from within the same deployment archive or
within a deployment archive that is deployed to the same Java Cloud Service
instance. This is an important point to remember while using OJC for EJBs.
Therefore, if you find the need at all to call a remote EJB, you would have to
look at alternatives such as web services. This could also be a challenge if you
are looking to migrate existing EJB-based applications that use remote EJBs.

There are two types of beans—session beans and message-driven beans.
OJC does not support any Java Message Service (JMS) services, so to utilize
message-driven beans, we need to use the Oracle Messaging Cloud along
with OJC. OJC will otherwise mark any application with JMS dependencies
as a whitelist violation.

TIP
Appendix C contains a detailed list of all
technologies supported and not supported on OJC.

Why EJB?
EJBs in 3.x and later are pretty much Plain Old Java Objects (POJOs) with a
few annotations that tell the EJB container to provide EJB-specific services
and capabilities. However, one of the first questions to arise is why use EJB
at all and not just use simple Java classes?

154 Java EE Applications on Oracle Java Cloud

The reason to use EJB lies entirely in the capabilities of the EJB container.
Your code as such is nothing very different, complex, or more capable. It is
the container that is supposed to weave in its magic and provide additional
capabilities that are of value to an enterprise application. Those additional
capabilities are

■ Scalability EJBs are a good option if you expect an application to
have to scale to tens of thousands of users. EJBs include pooling and
other features for optimum management of available resources.

■ Distributed environment EJBs are built to run over a distributed
environment. Their transition to the cloud is seamless, and they
perform just as well in a distributed environment.

■ State management Session beans include a stateful option you can
utilize to manage state in your application. If you wish to hold data
over multiple invocations or share data for a user, this is possible
using stateful beans.

■ Transaction management Transaction management is of great
importance in enterprise applications. Instead of coding the
transaction management, it is much more efficient to use EJBs’
annotation-based transaction management to ensure your transaction
works as expected with the least amount of frustration.

■ Reusable services EJBs containing business logic are great for use
across multiple applications and for sharing as web services. Code
and functionality reuse is easily possible with EJBs.

Session Beans
Session beans are business logic classes. A real-world application might
have tens of session beans, each dealing with a subset of the application’s
business logic and functionality. EJB 3.0 includes two types of session beans:
stateless and stateful.

NOTE
A third type, the singleton session bean, has been
introduced in EJB 3.1 (not yet supported on
OJC). As the word singleton suggests, this kind of
session bean gets instantiated once per application
and only that one instance exists throughout the
lifecycle of the application.

Chapter 7: Enterprise JavaBeans (Session Beans) 155

Stateless
A stateless session bean is one that retains any specific information only for
the duration of an invocation. Once the method call is done, none of the
client-specific state is retained.

This means you cannot rely on instance variables to store and retrieve
information. Even repeated calls to a bean using the same reference might
get you a new object each time. This is because stateless session beans rely
on object pooling so as to achieve optimum performance, and on each
invocation, you could very well get a different object from the pool. How
this object pool is managed is up to the EJB container, but most application
servers will let you tweak the parameters a bit. However, with OJC being
a PaaS environment, you do not get such fine-grained access to pooling
configuration for the server.

However, the pooled-stateless approach leads to optimum utilization
of memory and significant performance gains. So the rule of thumb is that
unless there’s a strong case to recall data/state across invocations, you use
stateless beans.

Stateful
A stateful session bean will maintain state information for the duration of the
client-bean session. Stateful beans are used in cases where maintaining state
is required for the bean and client interaction to be executed, or when you
wish to hold some client information across multiple method invocations—
the classic example is the shopping cart, where a shopper keeps adding and
removing objects from the same cart.

Whereas you cannot rely on instance variables in the case of stateless
beans, you can use instance variables with stateful beans, because the same
instance will be used each time as long as the session is active.

We will look at the stages in the life of a session bean in the section
“Lifecycle of a Session Bean.”

Interfaces: Local or Remote
Client code can access a session bean using the business interface provided.
The business interface for a session bean is like any other Java interface.
You only need to add the requisite annotations to mark the interface as
a business interface for your session bean.

156 Java EE Applications on Oracle Java Cloud

NOTE
EJB 3.1 introduced a no-interface view option,
by which all the public methods of the session
bean are exposed to local clients. In the case
of no-interface, you need not provide a local
interface and state which methods you wish to
expose. Although no-interface does simplify things,
system architects often prefer having the interfaces
in place. The no-interface option is part of EJB 3.1
and therefore is not currently available in OJC.

The reasons for using an interface with session beans are no different from
why you would use an interface with any Java classes. A key consideration is
that you can change the session bean without affecting the client code. The
types of business interfaces are the local interface and the remote interface.
A session bean can have both a local and a remote interface.

Remote access is required where you want the bean to be accessed by
remote clients that are not running in the same application server. However,
remote calls involve significant overhead due to the marshaling and unmarshaling
of data over the wire, network latency, and the actual transportation over
the network.

Local access is a good choice when you have tightly coupled functionality
for which it would make sense to have the beans running on the same
application server. Remote access is used when you are looking to build a
system that could have bits of functionality divided over multiple servers,
machines, or even locations.

For many years, EJB only had a remote access option, so each call to an
EJB would have to be a remote call. It now seems rather strange that until EJB
2.0, EJB did not have a local access option. These days, local access seems to
be the more prevalent use.

There isn’t much difference in the actual code of the local and remote
interfaces. Local interfaces are marked with the annotation @Local, whereas
remote interfaces are marked by the @Remote annotation.

As mentioned earlier, OJC only supports local EJB invocations, so the client
code invoking an EJB application’s interface must be either within the same
deployment archive as the EJB implementation code itself or within a deployment
archive that is deployed to the same Java Cloud Service instance. Let’s now
create an application with a session bean and delve further into its working.

Chapter 7: Enterprise JavaBeans (Session Beans) 157

Developing an Enterprise
Application with EJBs
We have been working with web applications that are packaged into WAR
files. However, in cases where your application has more than just the web
application, you have an EAR file (enterprise archive). This is the file in
which you are to package your enterprise applications, which can contain
one or more EJB modules and web applications.

The EJB module is packaged into a JAR file (Java archive). The web application
is packaged into a WAR file (web archive). The entire enterprise application,
including the JAR and WAR files, is packaged into an EAR file (enterprise
archive). Note that all three types of files have the same format as a regular
JAR file in Java. The compression is the same as a ZIP file, so all the files can
be opened and viewed with any common zip/unzip tool.

To create our enterprise application, start NetBeans, select New Project,
and then select Java EE | Enterprise Application, as shown in Figure 7-1.

FIGURE 7-1. A new enterprise application

158 Java EE Applications on Oracle Java Cloud

Click Next. Name the project Ch7Enterprise1. Click Next. As shown
in Figure 7-2, the wizard will now ask you if you would like to create
an EJB module and a web application module. Leave the default names
(Ch7Enterprise1-ejb for the EJB module and Ch7Enterprise1-war for the web
application module), as shown in Figure 7-2. Ensure that you have selected
Oracle Cloud as your server and then click Finish.

NetBeans will now create the projects shown in Figure 7-3. There’s the
enterprise application project, including the two modules, along with the EJB
project and the web application project.

FIGURE 7-2. Web and EJB modules

FIGURE 7-3. Ch7Enterprise1 projects

Chapter 7: Enterprise JavaBeans (Session Beans) 159

Right-click Ch7Enterprise1 and select Clean and Build. The
Output log will show that a new Ch7Enterprise1.ear file is created at
<YourNetBeansProjectsDirectory>\Ch7Enterprise1\dist\Ch7Enterprise1.ear.

Open the file using any zip/unzip tool, and you will see that the file
includes the WAR file for the web application, the JAR file for the EJB
application, and a couple of configuration XML files.

Our project is currently empty, so let’s add a session bean to our EJB module.

New Session Bean
Right-click Ch7Enterprise1-ejb and select New | Enterprise JavaBeans |
Session Bean. Name the bean AuthenticateSessionBean and the package
beans, as shown in Figure 7-4. Under Create Interface, the Local check box
will be checked by default so that NetBeans will create the appropriate

FIGURE 7-4. The new session bean AuthenticateSessionBean

160 Java EE Applications on Oracle Java Cloud

interface along with the bean class. As mentioned earlier, only local access
is permitted in OJC, so creating the remote interface would not serve much
purpose. Note that the Stateless session type is selected by default, which we
will use for this example.

NetBeans will now generate the AuthenticateSessionBean class, shown in
Listing 7-1, which implements the local interface AuthenticateSessionBeanLocal,
shown in Listing 7-2.

Listing 7-1: AuthenticateSessionBean

package beans;
import javax.ejb.Stateless;
@Stateless
public class AuthenticateSessionBean
 implements AuthenticateSessionBeanLocal {
}

Listing 7-2: AuthenticateSessionBeanLocal

package beans;
import javax.ejb.Local;

@Local
public interface AuthenticateSessionBeanLocal {
}

The only thing special about these classes is the annotation @Local in the
interface, which marks the interface as a local interface, and the annotation
@Stateless in the session bean, which conveys that the bean is a stateless
session bean.

Let’s add a simplistic authentication method to our bean. Right-click in
the bean code and select Insert Code | Add Business Method, as shown in
Figure 7-5.

In the Add Business Method screen, shown in Figure 7-6, give the method
the name auth, and name the String parameters username and password. For
the return type, enter boolean. Note that Use in Interface (Local) is selected,
so this new method will automatically get added to the interface as well.

Now edit AuthenticateSessionBean as shown in Listing 7-3, such that the
method will return true if the username is java and the password is cloud.
(Hardcoded, programmatic authentication is not ideal and is only used as a
simple demonstration of business logic in a session bean.)

Chapter 7: Enterprise JavaBeans (Session Beans) 161

FIGURE 7-5. Insert Code | Add Business Method

FIGURE 7-6. The Add Business Method screen

162 Java EE Applications on Oracle Java Cloud

Listing 7-3: AuthenticateSessionBean

package beans;
import javax.ejb.Stateless;

@Stateless
public class AuthenticateSessionBean
 implements AuthenticateSessionBeanLocal {

 @Override
 public boolean auth(String username, String password) {
 return (username.equals("java")
 && password.equals("cloud"));
 }
}

Now let’s create a new Servlet and then access and use this session bean
from the Servlet. Right-click Ch7Enterprise1-war and select New | Servlet.
Name the Servlet LoginServlet and the package servlets with the URL pattern
/LoginServlet.

Now within the Servlet code, right-click in the class body and then
click Insert Code. You will see the options listed in Figure 7-7. Click Call
Enterprise Bean.

FIGURE 7-7. Insert Code | Call Enterprise Bean

Chapter 7: Enterprise JavaBeans (Session Beans) 163

In the screen displayed, select the session bean we have created in this
chapter. You will find that the lines shown in Listing 7-4 are added to the Servlet.

Listing 7-4: Dependency Injection of a Session Bean Instance

@EJB
private AuthenticateSessionBeanLocal authenticateSessionBean;

The @EJB annotation here is a manifestation of dependency injection, a
concept that has rapidly grown in popularity and adoption in a fairly short
period of time.

Inject the Session Bean into the Servlet
Dependency injection in the context of Java EE is when a component is
provided its dependencies by the container. Therefore, the annotation tells
the container what kind of object to inject, and the container does all the
hard work to create the instance and inject it into the component.

Those new to dependency injection are usually flummoxed when they
see methods being called on an object without there being any object
initialization code in place. The reason why this works and does not throw a
NullPointerException, like many would expect, is that the relevant object has
been injected by the container and therefore isn’t null.

The advent of dependency injection was wonderful news for Java EE
because it led to smarter application servers that no longer had to be told
obvious information, but could figure out and get mundane tasks done based
on simple annotations in the code.

In our Servlet example, the @EJB annotation is a request for an injection of
the EJB instance into the Servlet. There’s no code in the Servlet to look up or
actually instantiate the EJB; the annotation is merely a request to the container
to do the required task. The @EJB annotation can be provided additional
information via parameters such as beanInterface, beanName, description,
mappedName, and name.

Once the EJB is injected into the Servlet, we can use it in the processRequest
method, as shown in Listing 7-5.

Listing 7-5: Access Injected Session Bean in the Servlet

@EJB
private AuthenticateSessionBeanLocal authenticateSessionBean;

protected void processRequest(HttpServletRequest request
 , HttpServletResponse response)
 throws ServletException, IOException {

164 Java EE Applications on Oracle Java Cloud

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<h1>Auth -> "
 + authenticateSessionBean.auth("java", "cloud")
 + "</h1>");
 } finally {
 out.close();
 }
}

Here, we call the auth method in the injected bean instance and print the
output received. Note that we can even inject an EJB into another local EJB
using the same dependency injection technique we used for the Servlet.

Package and Run from NetBeans
Considering that we are now working with an enterprise application that
includes a web application module and an EJB module, directly running
the Servlet from the web application will not work. We need to deploy
the enterprise application. We can do that by right-clicking the enterprise
application and selecting Deploy. Because NetBeans is aware of the Java EE
modules in the enterprise application, NetBeans will build the web and the
EJB module projects, followed by packing them up together in an EAR file.

Deploy Using the Java Cloud Services Control
To deploy using the Java Cloud Services Control, log in using your credentials
at http://cloud.oracle.com. In the Applications widget, which is located at
the top right of the page by default, you will find the Deploy New button,
as shown in Figure 7-8. The other buttons are grayed out if no application is
listed or if none of the listed applications is selected.

FIGURE 7-8. The Deploy New button

http://cloud.oracle.com

Chapter 7: Enterprise JavaBeans (Session Beans) 165

You will now get the screen shown in Figure 7-9. Here, you can name
the application and provide the relevant application archive (that is, the JAR,
WAR, or EAR file for the application).

To get the EAR for our enterprise application, right-click the Ch7Enterprise1
project in NetBeans and select the Clean and Build option, which will delete
any previously compiled files and other build outputs. It will then recompile
the application—in this case, both the web application module and the EJB
module that are part of our enterprise application. The entire application is
then packed into an EAR file.

While we’re on the topic of building an application, note that upon right-
clicking the project, you get three build options: Build, Clean and Build,
and Clean. Running Clean and Build is a good safeguard against outdated
compiled files. However, for large projects, Clean and Build can take much
longer than Build.

Before you deploy using the Java Cloud Services Control website, it’s a
good idea to first run the Verify tool to check for any whitelist violations. It’s
much easier to catch and deal with whitelist violations using the Verify tool
than having a failed deployment on the cloud, going through the log, and
discovering the whitelist violation. To verify, right-click the project and click
Verify. A new White List Tool log window will open up and list any warnings
and errors in the application. Warnings are not show-stoppers; however, if
you get an error, your application will not get deployed.

Coming back to the Ch7Enterprise1 application, select the EAR file and
click the Deploy button shown in Figure 7-9. You will get an Uploading
Archive prompt and then be redirected to the main screen for the Java Cloud
Services Control, where you will get an alert like the one shown in Figure 7-10.

FIGURE 7-9. The Deploy Application screen for uploading the archive

166 Java EE Applications on Oracle Java Cloud

For more information about the deployment process, you need to head
over to the Java Cloud Service Jobs widget, which is, by default, at the bottom
of the page. As shown in Figure 7-11, select the last job ID, which is our
deployment job. Depending on the size of your application, it might take a
while for the deployment to complete and the logs to be available.

Figuring out how to view the log is somewhat unintuitive. Click View Java
Cloud Service Job Logs. In the drop-down that appears, as shown in Figure 7-12,
you can choose to view the log for the Virus Scan, Application Whitelist
Validation, WLS Compile, Cloud Compile, or Deploy Application. Click any
one of these options, and your browser will pop up a window to view/save
the log file.

If you select the Deploy Application log and the application deployment
has succeeded, you will get a log like the one in Listing 7-6. The WLS Compile
option will get you the WebLogic Application Compilation logs that will list
the WebLogic libraries being referred to and their versions, along with some
WebLogic-specific compilation information. The Cloud Compile option will
get you the Cloud Application Compilation logs, which will list how OJC is
detecting, injecting, and assembling your application for deployment. If all has
gone well, both these logs should end with the status SUCCESS.

FIGURE 7-10. Alert

FIGURE 7-11. View the job log

Chapter 7: Enterprise JavaBeans (Session Beans) 167

Listing 7-6: Deploy Application Log

2014-07-05 00:31:27 CDT: Starting action "Deploy Application"
2014-07-05 00:31:27 CDT: Deploy Application started
2014-07-05 00:31:28 CDT: [Deployer:149034]An exception occurred for
task [Deployer:149026]deploy application Ch7Enterprise1 on c1.: .
2014-07-05 00:31:28 CDT: WL action state: completed
2014-07-05 00:31:28 CDT: Application deployment succeeded.
2014-07-05 00:31:28 CDT: "Deploy Application" complete: status SUCCESS

Once the application is deployed (which can take a few minutes), click the
link in the Applications widget on the Java Cloud Services Control, and you
will get the page shown in Figure 7-13.

As you can see, apart from some information about the application, you
can also delete, redeploy, start, and stop the application. Click the application
name and you will get a screen like the one shown in Figure 7-14, which
provides further information about the application.

FIGURE 7-12. View/save the log file

FIGURE 7-13. Ch7Enterprise1 application listing

168 Java EE Applications on Oracle Java Cloud

Click the URL listed in the Application URLs widget (it’s https://java-trialaftx
.java.us1.oraclecloudapps.com/Ch7Enterprise1-war for my trial). This will display
the index.jsp page with “Hello World.” To access the Servlet, change the URL
to the URL pattern for the Servlet https://java-trialaftx.java.us1.oraclecloudapps
.com/Ch7Enterprise1-war/LoginServlet. You will get the output shown in
Figure 7-15.

This shows that the session bean was injected and accessed by the Servlet
and we got the desired output.

FIGURE 7-14. Application summary

FIGURE 7-15. Run the Servlet

https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war
https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war
https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war/LoginServlet
https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war/LoginServlet

Chapter 7: Enterprise JavaBeans (Session Beans) 169

The code to create and use a stateful session bean is the same as that for
a stateless bean, except for the @Stateful annotation. However, the difference
is in the working of the bean. For example, if you were to use a stateful bean
for a shopping cart, you could have the bean injected into a Servlet, as shown
in Listing 7-7, and if you keep adding items to a collection instance variable,
the state will be maintained and you will keep getting the same object back
each time. If you were to use a stateless bean, you could very well get a
different instance of the bean for all three method calls. To continue using our
shopping cart analogy, it would be as though each time you wanted to add
something to your cart, you found that the earlier contents of your cart had
been lost or you found unexpected items in your cart that you never added.

Listing 7-7: Stateful Session Bean

shopBean.add("phone");
shopBean.add("laptop");
shopBean.add("tv");

In our example, we used a web application and a single EJB, but in most
real-world applications using EJB, you would have many EJB modules in
the enterprise application, with the EJBs generally being used from various
segments of the web application.

Lifecycle of a Session Bean
All EJBs are managed by the EJB container; however, it is important to know
the lifecycle of any EJB, the stages it goes through, and the things you can
and cannot do at each stage.

The lifecycle of a stateless session bean is fairly simple:

1. The bean is created by the container. Any dependencies are injected
by the container. Any PostConstruct callbacks are made. The bean is
now ready.

2. Before the bean instance is destroyed, the container makes any
PreDestroy callbacks. The bean instance is removed and is later
garbage-collected.

The PostConstruct callback is useful if you wish to perform any actions
before the bean starts responding to client requests. The PreDestroy callback is
useful if you wish to perform any cleanup actions before the bean is destroyed.

170 Java EE Applications on Oracle Java Cloud

All you need to use a callback is to mark a method with the annotation
@PostConstruct or @PreDestroy. As shown in Listing 7-8, you can choose
any method name, but the method signature must return a void and take
no arguments. The reason for this is that the method is being called by the
EJBContainer on the occurrence of a lifecycle event, so there isn’t a possibility
of the user passing a parameter or getting a return value.

Listing 7-8: Callback Methods

@PostConstruct
public void initialize() {
 // Code to initialize resources
}

@PreDestroy
public void release() {
 //Code to release resources
}

Stateless session beans also utilize a pooling capability, where all instances
of the stateless session beans are equivalent and the container can pick
objects from the pool and return them back to the pool as required.

The lifecycle of a stateful session bean involves a couple more steps:

1. The bean is created by the container. Any dependencies are injected
by the container. Any PostConstruct callbacks are made. The bean is
now ready.

2. Based on the usage of a bean and the available resources, the EJB
container may at times decide to passivate a bean by moving it from
memory to secondary storage. Before passivating, the EJB container
will make any PrePassivate callbacks.

3. If a client calls a method on a passivated bean, the EJB container
will activate the bean. On activation, the container will make any
@PostActivate callbacks. The bean is now ready.

4. Before the bean instance is destroyed, the container makes any
PreDestroy callbacks. The bean instance is removed and is later
garbage-collected.

Chapter 7: Enterprise JavaBeans (Session Beans) 171

Transaction Management
Transaction management is the assurance that either the entire transaction
with all the intermediate steps will execute or nothing will get executed.
Imagine that you are transferring money from one bank account to another
account. This involves two steps:

1. Withdraw money from one account.

2. Deposit money to another account.

You want either the entire transaction to get executed or nothing at all.
In other words, you never want a scenario where money is withdrawn from
one account, but it never gets deposited into the other account.

Although you can manually write the code for transaction management,
container-managed transactions using annotations are just so much easier
and cleaner to write and maintain. You annotate methods that are party to a
transaction, and the EJB container will do the rest.

Let’s add a stateless session bean to our enterprise application. This bean
will transfer money in a transaction-safe manner. We could add this bean to
the existing EJB module, but let’s instead create a new EJB Module project so
as to highlight how an enterprise application can have multiple EJB modules
working together.

Select New Project | Java EE | EJB Module. Name the project
Ch7EJBMoneyTransfer and click Next. In the next screen, shown in
Figure 7-16, add the project to the enterprise application Ch7Enterprise1

FIGURE 7-16. The new EJB module

172 Java EE Applications on Oracle Java Cloud

and select the Oracle Cloud Remote Server. Click Finish. Our enterprise
application now has two EJB modules and one web application module.

Right-click the Ch7EJBMoneyTransfer project that appears in the Projects
window and select New | Session Bean. As shown in Figure 7-17, name the
bean MoneyTransferBean, name the package beans, select Stateless as the
session type, and select Local as the interface type. Click Finish.

Two files, MoneyTransferBean.java and the local interface
MoneyTransferBeanLocal.java, will get created. Now modify the
bean MoneyTransferBean as shown in Listing 7-9, and modify
MoneyTransferBeanLocal.java as shown in Listing 7-10.

Listing 7-9: MoneyTransferBean

package beans;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;

FIGURE 7-17. The new MoneyTransferBean session bean

Chapter 7: Enterprise JavaBeans (Session Beans) 173

import javax.ejb.TransactionAttributeType;

@Stateless
public class MoneyTransferBean implements MoneyTransferBeanLocal {

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void moveMoney() {
 //Amount withdrawn from A
 pullMoneyFromA();

 //If something fails here, the transaction is rolled back
 //and A's amount will be restored.
 depositInB();
 }

 @TransactionAttribute(TransactionAttributeType.MANDATORY)
 public void pullMoneyFromA() {
 //Perform actions to pull money from A
 //Update database record for A - Reduce account balance
 }

 @TransactionAttribute(TransactionAttributeType.MANDATORY)
 public void depositInB() {
 //Perform actions to deposit money into B
 //Update database record for B – Increase account balance
 }
}

Listing 7-10: MoneyTransferBeanLocal

package beans;
import javax.ejb.Local;

@Local
public interface MoneyTransferBeanLocal {
 void moveMoney();
}

Here, we have introduced a public method, moveMoney, to the bean
and declared it in the local interface. This method uses two other methods,
pullMoneyFromA and depositInB, to transfer money from A to B. The
annotations are the key to this transaction. Note the use of the REQUIRES_NEW
and MANDATORY attributes. REQUIRES_NEW tells the container that it
needs to create a new transaction, and MANDATORY tells the container that

174 Java EE Applications on Oracle Java Cloud

the method will throw an exception if it is not part of a transaction. Therefore,
in this case, moveMoney will create a new transaction that pullMoneyFromA
and depositInB will join in. The whole thing will get executed as one single
transaction. Therefore, if pullMoneyFromA succeeds but depositInB fails, even
pullMoneyFromA will be rolled back.

The other transaction attributes and their behaviors are detailed in the
following table, which explains how a method with the stated attribute will
work if it is called by a method with a transaction (second column) or called
by a method without a transaction (third column).

Attribute Transaction Exists
Transaction Does
Not Exist

NOT_SUPPORTED Suspends transaction No transaction

SUPPORTS Uses transaction No transaction

REQUIRED Uses transaction Starts new transaction

REQUIRES_NEW Suspends transaction and
starts new transaction

Starts new transaction

MANDATORY Uses transaction Exception

NEVER Exception No transaction

Now let’s create a new Servlet from which we will call the moveMoney
method in the bean. Right-click the Ch7Enterprise1-war project and select
New | Servlet. Name the Servlet MoneyTransferServlet, the package
servlets, and the URL pattern /MoneyTransferServlet. Now modify
MoneyTransferServlet as shown in Listing 7-11. In this code, we inject an
instance of the MoneyTransferBean into the Servlet and then add a call to the
moveMoney method in the processRequest method.

Listing 7-11: MoneyTransferServlet

@EJB
private MoneyTransferBeanLocal moneyTransferBean;

protected void processRequest(HttpServletRequest request
 , HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {

Chapter 7: Enterprise JavaBeans (Session Beans) 175

 moneyTransferBean.moveMoney();
 out.println("<h1>Money Transferred From A to B</h1>");
 } finally {
 out.close();
 }
}

NetBeans will auto-add the dependency on the Ch7EJBMoneyTransfer
to the project properties if you use the Call Enterprise Bean wizard to inject
the EJB. However, if you directly add the code to the Servlet, you will have
to add Ch7EJBMoneyTransfer to project libraries. You can get to the project
properties either by right-clicking the project name in the Project window and
selecting Properties, or from the File | Project Properties menu. If you do not
see the library listed, add it as shown in Figure 7-18.

Clean and build the Ch7Enterprise1 project and redeploy the application
using the Java Cloud Service Control. The Redeploy button is shown in
Figure 7-13 and can also be found in the drop-down on the Application

FIGURE 7-18. Project libraries

176 Java EE Applications on Oracle Java Cloud

Summary page in Figure 7-14. Upon redeploying the EAR file, we can
access the Servlet at https://java-trialaftx.java.us1.oraclecloudapps.com/
Ch7Enterprise1-war/MoneyTransferServlet and will get the output shown in
Figure 7-19. This example shows the ease of container-managed transactions
and the significant value added to any EJB-based application.

Rollback and Exception Handling
The previous example shows a scenario where everything works well, but
what if something goes wrong and you get an exception. Here, we can
categorize exceptions into system exceptions and application exceptions.

Application exceptions are exceptions specific to your application (for
example, insufficient funds in account or inadequate user rights). These
exceptions denote a business problem in the application and not a system
issue. In these cases, the transaction is not rolled back by default. Therefore,
in cases where we want an application exception to trigger a rollback, we
need to use an annotation, as shown in Listing 7-12. Here, we state rollback
= true to convey that we want the transaction to be rolled back when the
exception is thrown.

Listing 7-12: ApplicationException Rollback

@ApplicationException (rollback = true)
public class InsufficientFundsException extends Exception {
...
}

System exceptions include java.lang.RuntimeException, java.rmi
.RemoteException, and their subclasses. The transaction will get rolled back
in the case of any system exception. For example, NullPointerException is one

FIGURE 7-19. MoneyTransferServlet output

https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war/MoneyTransferServlet
https://java-trialaftx.java.us1.oraclecloudapps.com/Ch7Enterprise1-war/MoneyTransferServlet

Chapter 7: Enterprise JavaBeans (Session Beans) 177

of the most common exceptions encountered. Because NullPointerException
is a RuntimeException, the transaction will get rolled back. You can tell the
container to not roll back the transaction, even in the case of a run-time
exception, by using the ApplicationException annotation and setting the
rollback element value to false, as shown in Listing 7-13.

Listing 7-13: Do Not Roll Back RuntimeException

@ApplicationException(rollback = false)
public class CreateException extends RuntimeException {
 //...
}

Summary
In this chapter, we looked at building enterprise applications that include
multiple EJBs and web applications, all packed together into one application.
We saw the rich functionality offered by stateless and stateful session beans
and also how container-managed transactions are a great asset to have
while building any application that relies on transactions. EJBs are critical
for enterprise application development, and with the greatly simplified EJB
development over the past few years, EJBs are certainly something to look at
while building your enterprise applications for the cloud. The rich EJB support
is also a major plus for OJC because not all cloud vendors offer the same
level of support for EJB.

CHAPTER
8

Web Services

180 Java EE Applications on Oracle Java Cloud

Web services are the chosen mode for communication over disparate
technologies. The W3C group on Web Services Architecture
defines a web service as a software system designed to support

interoperable machine-to-machine interaction over a network. Because a web
service is software that is meant to have all-encompassing reach, it relies on
the HTTP protocol, a standard supported across technologies and locations.
Web services also rely on XML, which again is a technology that is supported
across technologies. Although the underlying idea of communication across
platforms is the same, two types of web services are in use:

■ Web services that rely on XML messages as per the Simple Object
Access Protocol (SOAP) standard

■ Web services that use Representational State Transfer (RESTful)
and leverage the HTTP methods GET, POST, PUT, and others for
communication

We will look at developing and deploying both types of web services on OJC.

NOTE
OJC supports a mix of Java EE 5 and Java EE 6
technologies. Even with web services, OJC supports
Java API for XML-based Web Services (JAX-WS)–
based SOAP-XML web services from Java EE
5, as well as Java API for RESTful Web Services
(JAX-RS) from Java EE 6. OJC supports JAX-WS
version 2.1 and JAX-RS version 1.1. OJC does not
support Java API for XML-based RPC (JAX-RPC)–
based web services. JAX-WS was the successor
to JAX-RPC, so OJC recommends converting any
JAX-RPC web services to JAX-WS. OJC supports
JAX-WS and JAX-RS annotations as well as Jersey
1.9 annotations, Jersey being the reference
implementation of JAX-RS. Let’s begin by building
web services examples with SOAP and JAX-WS.

In Chapter 7, we discussed that because OJC restricts remote access to
your bean, you can use web services as an alternative. Because web services
rely on basic HTTP, you can expose functionality in your EJB beyond the
boundaries of OJC. You could have remote clients calling your bean with
SOAP-based or RESTful web services.

Chapter 8: Web Services 181

Developing a SOAP Web Service
The first wave of web services was built around the SOAP standard, which
uses XML extensively for defining the web service as well as for the actual
communication. Except for the actual business logic code, which we will
write in Java, the rest of the web service is XML. Therefore, the web service
operations are defined in an XML-based Web Services Definition Language
(WSDL) file. The communication between the web service and the web
service client will be in XML, as per the SOAP standard.

Let’s build two web applications—one SOAP web service application
and one web service client application—and then analyze the code to better
understand how they work. We begin by creating a new web application
by selecting File | New Project | Java Web | Web Application. Name the
application Ch8SoapWebService, and ensure that the server selected is
Oracle Cloud Remote. Now, right-click the project and select New, or select
File | New File, and then select Web Services | Web Service. Click Next. You
should now get a screen like the one shown in Figure 8-1. Name the web
service DateTimeService and the package ws. Click Finish.

FIGURE 8-1. Creating a new web service

182 Java EE Applications on Oracle Java Cloud

NetBeans may now pop up an alert, as shown in Figure 8-2. As mentioned
earlier, OJC supports standard web services deployment with JAX-WS, so we
do not need the sun-jaxws.xml file. Click No.

The DateTimeService.java file should have now been created, as shown in
Listing 8-1.

Listing 8-1: DateTimeService

package ws;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

@WebService(serviceName = "DateTimeService")
public class DateTimeService {

 @WebMethod(operationName = "hello")
 public String hello(@WebParam(name = "name") String txt) {
 return "Hello " + txt + " !";
 }
}

Note that this is the only file that the wizard has created. The annotations
in the class convey the necessary information, and the application server does
the rest. The @WebService annotation conveys that the class implements a
web service. The @WebMethod annotation says that the method is a web
service method that is to be exposed to web service clients.

FIGURE 8-2. An alert about creating sun-jaxws.xml

Chapter 8: Web Services 183

NetBeans, by default, creates a hello method. We now want to add
another method that will return the date and time, the functionality that our
web service is meant to provide. You could write the code directly with the
necessary annotation, along the same lines as the hello method. However,
NetBeans offers a simpler way. Click the Design tab and you will get the
screen shown in Figure 8-3.

Now click the Add Operation button to get the screen shown in Figure 8-4.
Name the method fetchDateTime and then click OK.

Switch back to Source view and you will find that a new method,
fetchDateTime, has been added to the class DateTimeService. Modify the method
as shown in Listing 8-2, and you now have the web service, ready for use.

FIGURE 8-3. Web service design view

184 Java EE Applications on Oracle Java Cloud

Listing 8-2: The fetchDateTime Method

@WebMethod(operationName = "fetchDateTime")
public String fetchDateTime() {
 return new java.util.Date().toString();
}

In this method, we instantiate a new object of java.util.Date and then
return a String representation of the object. Our web service is now ready
to start serving web service clients. However, before we begin building the
client, we can choose to run the web service, not just as a Java class, but even
as an EJB, as discussed in the previous chapter.

You can convert your Java class web service into an EJB web service by
simply adding the @Stateless annotation to the code. Your code is shown

FIGURE 8-4. The Add Operation screen

Chapter 8: Web Services 185

in Listing 8-3. To highlight the usage of the annotation parameters and how
they are distinct from the class name or method name, tweak the parameter
values as shown in Listing 8-3, changing the serviceName parameter to
DateTimeServiceWS and the operationName parameters to helloOp and
fetchDateTimeOp.

Listing 8-3: DateTimeService

package ws;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

@Stateless
@WebService(serviceName = "DateTimeServiceWS")
public class DateTimeService {

 @WebMethod(operationName = "helloOp")
 public String hello(@WebParam(name = "name") String txt) {
 return "Hello " + txt + " !";
 }

 @WebMethod(operationName = "fetchDateTimeOp")
 public String fetchDateTime() {
 return new java.util.Date().toString();
 }
}

We need to remove the login requirement in this case. Unlike the
examples in previous chapters, the web services will usually not be used
(consumed) via a browser, but rather by another piece of code. So as to
keep our web service public and accessible, and to avoid adding any login
functionality to the web service client code, we will edit the web.xml file to
add an empty login-config tag, as shown in Listing 8-4.

Listing 8-4: web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

186 Java EE Applications on Oracle Java Cloud

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <login-config></login-config>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Now that our web service is in place, let’s deploy it to OJC. Right-click
the project and select Deploy. As with previous applications in this book,
NetBeans will build and deploy the application to OJC.

Once the application is deployed, you can access the web service page
at https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>
.oraclecloudapps.com/Ch8SoapWebService/DateTimeServiceWS. You will
see a screen like the one shown in Figure 8-5. Note that the URL as well as
the service name is DateTimeServiceWS, as stated in the annotation, and not
DateTimeService, which is the Java class name.

WSDL
In Figure 8-5, https://java-trialaftx.java.us1.oraclecloudapps.com/
Ch8SoapWebService/DateTimeServiceWS?wsdl is a link to a dynamically
generated WSDL file. WSDL stands for Web Services Description Language

FIGURE 8-5. The web service information page

https://java-trialaftx.java.us1.oraclecloudapps.com/Ch8SoapWebService/DateTimeServiceWS?wsdl
https://java-trialaftx.java.us1.oraclecloudapps.com/Ch8SoapWebService/DateTimeServiceWS?wsdl
http://www.oraclecloudapps.com/

Chapter 8: Web Services 187

and is a standard format used to describe a web service. It states the name
of the service, the operation, parameters, the data structures, and the output.
The WSDL definition is useful to web service clients to know how to access
a web service and what operations it performs. WSDL is often pronounced
as wizdul.

Click the link, and you will get a WSDL file. The WSDL is not included
here because it would take up multiple pages, and most of the XML tags
are self-explanatory anyway. You will find the service name, soap address,
and the operations declared in the XML. Do note the xsd:schema tag
with the schema location URL, which will be in the following format:
https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>
.oraclecloudapps.com/Ch8SoapWebService/DateTimeServiceWS?xsd=1.

Note that both the schema and the WSDL begin with the line “Published
by JAX-WS RI at http://jax-ws.dev.java.net. RI’s version is Oracle JAX-WS 2.1.5,”
which tells us that these files are generated by JAX-WS 2.1.5 running on the
WebLogic server on OJC.

NOTE
You could have generated the WSDL, and even
modified it, by right-clicking the web service in
NetBeans and selecting Generate and Copy WSDL.
However, unless there’s a strong case for modifying
WSDL, it’s easiest to just put in the annotations and
have the WSDL generated by the server.

Web Service Client
Now that our web service is up and running, let’s create a second web
application that will act as the web service client. We could have created
the web service client in the same application, but it will be closer to a real
implementation to build the client in a separate application.

We begin by creating a new web application named
Ch8SoapWebServiceClient. As in previous cases, ensure that you select the
Oracle Cloud server. Right-click the Ch8SoapWebServiceClient project and
select New | Web Services | Web Service Client.

http://jax-ws.dev.java.net

188 Java EE Applications on Oracle Java Cloud

As shown in Figure 8-6, select the WSDL URL radio button and provide
the URL to the WSDL for the web service. Name the package wsclient and
click Finish. You will now get the popups shown in Figures 8-7 and 8-8. Click
Yes for both.

CAUTION
You are likely to get an “Unable to connect”
popup if you take too long to accept the popups
shown in Figures 8-7 and 8-8. The log will show
“Error: An I/O error occurred. Connection reset.”
In such a case, just repeat the web service client
creation steps.

FIGURE 8-6. Creating a new web service client

Chapter 8: Web Services 189

NetBeans will now create the necessary directories and then run the
wsimport tool, which parses the WSDL and generates the appropriate
JAX-WS code. As shown in Figure 8-9, a new directory is listed under the
Ch8SoapWebServiceClient project in NetBeans.

Now let’s create a Servlet in the project and use the web service
client code generated. Although we are using a Servlet here, this could

FIGURE 8-7. Accept the website certificate.

190 Java EE Applications on Oracle Java Cloud

very well be a JSP, a managed bean, an EJB, or any other class. Right-
click Ch8SoapWebServiceClient and create a new Servlet named
DateTimeClientServlet in the package servlets. Now, right-click in the Servlet
and select Insert Code | Call Web Service Operation. Because we already
have the JAX-WS-generated client code in place, you will get a screen like the
one shown in Figure 8-10.

FIGURE 8-8. The website is certified by an unknown authority.

Chapter 8: Web Services 191

FIGURE 8-9. A new project listed in the Projects view

FIGURE 8-10. Selecting the web service operation

192 Java EE Applications on Oracle Java Cloud

Select fetchDateTime and click OK. NetBeans will now add the code
shown in Listing 8-5 to your Servlet class.

Listing 8-5: Web Service Client Code in Servlet

@WebServiceRef(wsdlLocation = "WEB-INF/wsdl/java-trialaftx.java.
us1.oraclecloudapps.com/Ch8SoapWebService
/DateTimeService.wsdl")
private DateTimeServiceWS service;

private String fetchDateTimeOp() {
 wsclient.DateTimeService port
 = service.getDateTimeServicePort();
 return port.fetchDateTime ();
}

Note that the annotation @WebServiceRef refers to a local WSDL file,
which means that NetBeans has created a local copy of the WSDL file.
Although a local copy is good for fast and easy access, it could also mean that
the local and remote copies could get out of sync. To remedy this, you can
always right-click the Web Service listing in the Web Service References, as
shown in Figure 8-9, and select Refresh. This will invoke a popup screen as
shown in Figure 8-11. Select Yes, and NetBeans will get the latest WSDL and
regenerate the Java code accordingly.

FIGURE 8-11. Refreshing the WSDL

Chapter 8: Web Services 193

Now, all we need to do to use the web service—that is, to send it a SOAP
XML message and get back a SOAP XML message—is to add a line to our
Servlet to call the fetchDateTime method inserted in the Servlet. Therefore,
update the process request method as shown in Listing 8-6.

Listing 8-6: Servlet Web Service Client Code

protected void processRequest(HttpServletRequest request
, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<h1>Date - Time Is -> "
 + fetchDateTime () + "</h1>");
 } finally {
 out.close();
 }
}

Now run the Servlet. NetBeans will package the project into a WAR file
and deploy to OJC. Note that along with our Servlet, the WSDL, as well as
the classes for the JAX-WS-generated web service’s client code, are packaged
into the WAR. The Servlet output is shown in Figure 8-12. What’s happening
underneath is that a SOAP XML message is sent to our DateTimeService web
service in the application Ch8SoapWebService. This web service responds
with a SOAP XML message containing the current server date and time.

In this example, we created an EJB-based web service and used the WSDL
to generate the web service client. Note that because of the platform and
technology independence of web services, our web service can be accessed

FIGURE 8-12. The web service client Servlet in a browser

194 Java EE Applications on Oracle Java Cloud

from another platform using another technology. Similarly, our web service
client can utilize a web service developed in another technology by referring
to the WSDL and communicating using SOAP XML messages.

RESTful Web Services
Using JAX-RS API
RESTful web services are often referred to as “lightweight” web services
because, unlike SOAP, which requires a lot of XML going back and forth,
REST is a much simpler and more straightforward way of developing web
services. As compared to SOAP web services, there’s hardly any overhead
with REST. Also, consuming RESTful web services is as simple as accessing
a URL. The primary limitation of REST involves support for the web services
security standards that have evolved over the past decade.

The OJC support for RESTful web services uses the JAX-RS API. Jersey is
the reference implementation of JAX-RS and is the implementation used
on the OJC.

The key to the REST way of building applications is to access data
and functionality of resources with standard HTTP methods using unique
identifiers, which in most cases, are web URLs. Therefore, if you want to
get the data for employee number 22, you could do something as simple as
firing an HTTP GET request to the URL in the form <WebApplicationPath>/
resources/employee/22/. In response, you could get information about
employee number 22 in a format such as HTML, XML, Text, JSON, or PDF,
among others. Using RESTful web services is often the preferred mode
lately because calling a URL seems so much simpler and more intuitive than
exchanging XML-based SOAP messages.

The usual CRUD (Create-Read-Update-Delete) is covered by the HTTP
methods PUT, GET, POST, and DELETE. Annotations convey which method
will handle which HTTP method and also the path for that method.

NOTE
A simple example of a RESTful web service
is the Google REST API. Enter http://ajax
.googleapis.com/ajax/services/search/
web?v=1.0&q=Oracle%20Java%20Cloud in your
browser, and you get the response in the JSON
format. In the URL, change web to news, video, or
images to use the different Google search services.

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Oracle%20Java%20Cloud
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Oracle%20Java%20Cloud
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Oracle%20Java%20Cloud

Chapter 8: Web Services 195

Building RESTful Web Services on the OJC
Let’s begin building our RESTful web service application by creating a new
web application project named Ch8RestWebService in NetBeans with
Oracle Cloud selected as the server. Right-click the project and select New
| Web Services | RESTful Web Services From Patterns. Click Next. NetBeans
now provides multiple patterns for creating the resource. Choose Simple
Root Resource and click Next.

Set the package name to rest, name the path employees, and name the
class EmployeeWS. Then, select the MIME type text/html and name the
representation class java.lang.String, as shown in Figure 8-13.

NetBeans will create ApplicationConfig.java, which extends javax.ws.rs
.core.Application to create our JAX-RS application. ApplicationConfig includes
the @javax.ws.rs.ApplicationPath annotation, which declares the path as
“webresources.” Also, the addRestResourceClasses method adds all REST
resources to a collection.

FIGURE 8-13. Creating a new RESTful web service

196 Java EE Applications on Oracle Java Cloud

NetBeans also creates EmployeeWS.java, which has the code for our
resource. Also, note the modifications to the web.xml file. You will find that
a new Servlet and mapping are created, as shown in Listing 8-7.

Listing 8-7: web.xml

<login-config></login-config>
<servlet>
 <servlet-name>ServletAdaptor</servlet-name>
 <servlet-class>
 org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>rest.ApplicationConfig</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>ServletAdaptor</servlet-name>
 <url-pattern>/webresources/*</url-pattern>
</servlet-mapping>

JAX-RS 1.1 Fix
The addition to the web.xml file is as per JAX-RS 2.x, whereas OJC supports
JAX-RS 1.1. Therefore, we need to replace org.glassfish.jersey.servlet
.ServletContainer with com.sun.jersey.spi.container.servlet.ServletContainer
because that was the class name until Jersey 2.0 was moved to GlassFish.

Right-click the project and select Properties. In the Libraries section,
shown in Figure 8-14, you will find Jersey 2.0 and JAX-RS 2.0, both of which
are not supported by OJC.

Remove these libraries and replace them with the Jersey 1.x JAR file.
You need to download the JAR file for Jersey 1.x from https://jersey.java.net/
download.html. The latest JAR file for Jersey 1.x at the time of this writing was
jersey-bundle-1.18.

NOTE
You can quickly verify that our application
follows the OJC specifications and complies
with the white list by right-clicking the project
and selecting Verify.

https://jersey.java.net/download.html
https://jersey.java.net/download.html

Chapter 8: Web Services 197

Modify the REST Resource
Now let’s look at EmployeeWS.java and modify it as appropriate. The first
thing you’ll note is the @Path annotation value employees, so based on
the path in ApplicationConfig and EmployeeWS, we will be accessing
this resource with the path /webresources/employees/. Next is the @GET
annotation, which marks a method as the one to respond to HTTP GET
requests. Similarly, the methods annotated with @PUT, @POST, @HEAD,
and @DELETE handle the HTTP requests of the same name. Thus, CRUD
(Create-Read-Update-Delete) is covered by PUT, GET, POST, and DELETE,
respectively. Also, note the annotations @Produces and @Consumes, which
define the MIME type produced and consumed by those methods.

FIGURE 8-14. A view of the project libraries

198 Java EE Applications on Oracle Java Cloud

Let’s now modify our code as shown in Listing 8-8, such that the GET
methods accept parameters and return the appropriate data.

Listing 8-8: EmployeeWS

package rest;

import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.PathParam;
import javax.ws.rs.Consumes;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("employees")
public class EmployeeWS {

 @Context
 private UriInfo context;

 public EmployeeWS() {
 }

 @GET
 @Produces(MediaType.APPLICATION_XML)
 public String getHtml() {
 return "<employees><employee>Employee Data</employee>
 </employees>";
 }

 @PUT
 @Consumes("MediaType.TEXT_HTml")
 public void putHtml(String content) {
 }

 @GET
 @Path("/1")
 @Produces(MediaType.TEXT_HTML)
 public String getEmployeeOne() {
 return "<h1>EMP ONE</h1>";
 }

 @GET

Chapter 8: Web Services 199

 @Path("/{name}")
 @Produces("MediaType.TEXT_PLAIN")
 public String getEmployeeByName
 (@PathParam("name") String name) {
 return "<h1>Got Data For Employee: " + name + " </h1>";
 }

}

We have modified the @Produces annotation to use MediaType constants
instead of the string MIME types, and we have modified the getHtml method
to produce XML. We have also introduced two new GET methods—one that
takes the path /1 and returns data for employee one, and one that accepts a
parameter that we process in the code and generates the output accordingly.

Note that for the method getEmployeeByName, we have generated
HTML tags, but the @Produces annotation says MediaType.TEXT_PLAIN.
Therefore, the browser will not process the HTML, but instead will show the
tags as plain text. These various methods show the flexibility of RESTful web
services to accept varying input and generate variable output. Exposing some
functionality as a RESTful web service is as simple as adding the method and
marking it with the necessary annotations.

NetBeans lists the RESTful Web Services shown in Figure 8-15. It also
provides the option to right-click the listing and select Test Resource URI.
However, as of this writing, NetBeans generates the URI presuming a local
server and was not able to produce the correct URI for OJC.

Right-click the project and select Deploy. Once the project is deployed,
you can access our RESTful web services directly from the browser. Enter
the URL https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>.
oraclecloudapps.com/Ch8RestWebService/webresources/employees/Example,
and you get the output shown in Figure 8-16.

Accessing the web service from the browser is simple enough, so let’s also
look at accessing it programmatically from your Java code.

RESTful Web Service Client
Calling a RESTful web service is as simple as making an HTTP request. You
can use an HTTP library such as HttpClient from Apache HttpComponents,
or you can use the client library functionality in JAX-RS/Jersey. NetBeans
has a wizard to auto-generate the RESTful Java client; however, the code

https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>.oraclecloudapps.com/Ch8RestWebService/webresources/employees/Example
https://<CloudServiceName>-<IdentityDomain>.java.<DataCenter>.oraclecloudapps.com/Ch8RestWebService/webresources/employees/Example

200 Java EE Applications on Oracle Java Cloud

generated is as per JAX-RS 2.0, so we will not be using it here. The code for
JAX-RS 1.1 is simple enough.

We could create a new project in NetBeans for our client, but we would
then have to again follow the steps mentioned earlier in the “JAX-RS 1.1 Fix”
section. Instead, let’s create the client code in the Ch8RestWebService project

FIGURE 8-15. RESTful Web Services listing in NetBeans

FIGURE 8-16. Output generated by getEmployeeByName

Chapter 8: Web Services 201

itself. For that, create a new Servlet named RestClientServlet in the package
servlets. Modify the code as shown in Listing 8-9.

Listing 8-9: RESTful Client

protected void processRequest(HttpServletRequest request
 , HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 Client c = Client.create();
 WebResource r = c.resource
 ("https://java-trialaftx.java.us1.oraclecloudapps.com/"
 + "Ch8RestWebService/webresources/");
 out.println("RESTful WS Output: "
 + r.path("employees").path("1")
 .accept(MediaType.TEXT_HTML)
 .get(String.class).toString());
 } finally {
 out.close();
 }
}

You will also need to add the import statements for com.sun.jersey.api
.client.Client, com.sun.jersey.api.client.WebResource, and javax.ws.rs.core
.MediaType. Run the Servlet and you will get the output shown in Figure 8-17.

The client code accesses the web service and fetches data for employee one.

FIGURE 8-17. RestClientServlet output

202 Java EE Applications on Oracle Java Cloud

Summary
In this chapter, we looked at building web services with SOAP and REST and
deploying them on OJC. We also looked at how to get around some of the
limitations of OJC when it comes to web services.

CHAPTER
9

Persistence Using
the Oracle Database

Cloud Service

204 Java EE Applications on Oracle Java Cloud

We have so far looked at various Java EE technologies, such as
JSP, JSF, and EJB; however, the key missing element is the ability
to persist data. Most applications need the capability to store

and retrieve data from a persistent store, so Java and Java EE provide a
set of standards and tools for persistence. In this chapter, we look at Java
Persistence and the persistence capabilities of the Oracle Cloud.

Persistence on the Oracle Cloud
When most people think of Oracle, they think of the Oracle Database.
So naturally, a major focus area of the Oracle Cloud is around the Oracle
Database Cloud. The Oracle Java Cloud uses the Oracle Database Cloud to
provide the persistence capabilities required for Java EE applications. The
Oracle Java Cloud currently does not support any database other than the
Oracle Database Cloud, which is based on Oracle Database 11g Release 2,
Enterprise Edition.

That you can only use the Oracle Database is certainly something to
consider while adopting OJC; however, many enterprises already use Oracle
Database extensively and are comfortable with committing to the Oracle
Database even on the cloud.

Oracle Database Cloud Service
Oracle Database Cloud Service is not an Oracle Database installation
on a remote server that you can tweak endlessly. It is very much a PaaS
offering, where you get a database instance to use but with restrictions and
abstractions. The benefit is that you do not have to bother about installing,
configuring, patching, or managing the database.

The Oracle Database Cloud Service runs on Oracle Exadata hardware and
therefore benefits from the Exadata features and optimizations. It uses schema
isolation for multitenancy, and all data is encrypted while being stored on disk.

You cannot just connect to a Database Cloud Service with SQL*Net or
add it as a connection in any other remote tool or IDE. Even to upload data
for Oracle Database Cloud, you need to send the data loads to a Secure
FTP server, where they are scanned for viruses before the data in the files is
loaded into the Database Cloud Service.

Chapter 9: Persistence Using the Oracle Database Cloud Service 205

The Oracle Database Cloud Service provides Oracle Application Express
(Apex), which is a database-centric development tool that is installed on all
editions of the Oracle Database and also on the Oracle Database Cloud.
Apex serves as the dashboard for the Oracle Database Cloud.

Explore Database Cloud
A trial of the Oracle Database Cloud is included in the trial for the Oracle Java
Cloud. Therefore, no additional forms need to be filled out and no approval is
required. Do note that this is true only for the trial period for commercial use;
the Java Cloud Service and the Database Cloud Service need to be bought
separately. To access the Oracle Database Cloud, on the services page that
you encounter upon login to the Oracle Cloud, click the Database Service
link shown in Figure 9-1. You will get to a screen, as shown in Figure 9-2,
showing the current service status as well as information about start date, end
date, SFTP, and more. In the left panel, you will find sections titled Overview,
Administration, Exports, Metrics, and Associations.

FIGURE 9-1. Launching the Oracle Cloud Services

206 Java EE Applications on Oracle Java Cloud

Click Administration in the left panel and you will get a screen as shown
in Figure 9-3, where you have a button to lock the service, if you so desire.
You can also enable application archiving, so that Oracle Application Express
applications can be archived to tables in your database schema. Note that
this feature is specific to Apex applications and not relevant to the Java EE
applications that we have built.

FIGURE 9-2. Oracle Database Cloud Service overview

Chapter 9: Persistence Using the Oracle Database Cloud Service 207

Click Exports in the left panel and you will get a screen as shown in
Figure 9-4. Click the Export button and you will get a popup as shown in
Figure 9-5. You can choose if you want to export just the data structure or
include the data as well. Click Create Data Export. The exported content will
be available via SFTP for two days.

FIGURE 9-3. Application Archiving - Lock/Unlock Service

208 Java EE Applications on Oracle Java Cloud

FIGURE 9-5. Create Data Export

Click Metrics in the left panel and you will be presented usage information
such as Storage Used in MBs and percentage, as shown in Figure 9-6.

Click Associated Services and you will see any other Oracle Cloud
services that have been associated with your Oracle Database Cloud setup.
For the trial setup, you would only see your Java Cloud Service listed, as
shown in Figure 9-7.

The Open Service Console button on the top right of Figure 9-2 takes you
to Oracle Application Express, as shown in Figure 9-8.

You will see the main icons, as well as a tabbed menu at the top of the
screen to access the various features and to administer your Database Cloud.

FIGURE 9-4. Export Data and Data Structure

Chapter 9: Persistence Using the Oracle Database Cloud Service 209

FIGURE 9-6. Metrics - Usage

FIGURE 9-7. Associated Services

FIGURE 9-8. Oracle Application Express

210 Java EE Applications on Oracle Java Cloud

Oracle Apex
Oracle Application Express (Apex) is your primary tool for working with
the Database Cloud. As shown in Figure 9-8, Apex has four major sections:

■ Application Builder The Application Builder provides a browser-
based development environment with wizards and tools to build
data-centric applications with relative ease. It also comes with
packaged applications and the ability to import applications.

■ SQL Workshop The SQL Workshop provides a bunch of tools to
manage your data. The SQL Workshop, as shown in Figure 9-9, is
what we would use most while using the Oracle Database Cloud
along with OJC. Of special note are the utilities, shown in Figure 9-10,
and the ability to expose data in the form of RESTful services.

■ Team Development Team Development provides the ability to track
features, to-do tasks, milestones, and bugs. It also helps manage the
application development lifecycle.

■ Administration Administration provides the ability to manage users
and groups, monitor activity and utilization, and manage the service.

FIGURE 9-9. SQL Workshop

Chapter 9: Persistence Using the Oracle Database Cloud Service 211

NOTE
Your data source in the Oracle Database Cloud
cannot be accessed directly from a remote DB tool
on your desktop. Therefore, we also cannot just add
the cloud DB as a service in NetBeans. However,
you can use SFTP with SQL Developer, Oracle’s
integrated development environment (IDE) for
SQL, to upload data to the Database Cloud.

Java Cloud: Database Cloud Integration
The Oracle Database Cloud instance is available as a JDBC data source
to all applications deployed on OJC. As shown in Figure 9-11, the
“javatrial2364db” JNDI location listed under Data Sources in the Java Cloud
Services Control is the only data source available to OJC. You cannot add

FIGURE 9-10. SQL Workshop’s utilities

212 Java EE Applications on Oracle Java Cloud

a new data source or customize any of the data source settings. Therefore,
all applications on OJC that require the data source need to refer to the
same JNDI name. Note that this name varies across installations, so the JNDI
name for your data source will not be the same as that seen in the figure or
referred to in the text.

NOTE
A common question is whether it is possible
to add a third-party database or a remote data
source to OJC. As of now, you cannot do so.
You would have to use the data source for the
Oracle Database Cloud.

The Oracle Database Cloud Service supports JPA 2.0 and JDBC 4.0 APIs.
Note that OJC supports the JPA 2.0 specification that is part of Java EE 6.

NOTE
OJC supports EJB 2.1, excluding entity beans.
So although you can use EJB 2.1 on OJC, you
cannot use the entity beans Container-Managed
Persistence (CMP) from EJB 2.x.

JPA
Java Persistence API (JPA) is the API for persistence and object/relational
mapping (ORM). The origins of JPA lie in the popularity of the Hibernate
object/relational framework. In Chapter 6, we talked about how Apache

FIGURE 9-11. Oracle Java Cloud data sources

Chapter 9: Persistence Using the Oracle Database Cloud Service 213

Struts was so popular that it had become the de facto standard for Java web
frameworks; similarly for object/relational mapping, there was Hibernate.

Hibernate offered Java developers the option to stick to developing
with Java, while the framework took care of mapping the Java objects to
the corresponding database tables. Java developers loved it and flocked to
Hibernate by the thousands. Even though object/relational mapping wasn’t
a new idea, as such, Hibernate clicked big time as Java developers found it
a much easier and better alternative to writing Java Database Connectivity
(JDBC) code and firing SQL queries along with all the exception handling
required. Also, working with Java objects seems like the more intuitive thing
to do for Java developers.

Java, due to its emphasis on collaboration and standardization, is great
at adopting a good idea and building a standard around it. So JPA became
the specification for managing data between Java objects and relational
databases.

NOTE
JPA is not a “Java EE–only” specification, but it
works for Java EE and Java SE. Java developers need
to write their Java class and annotations as per the
JPA specification. They need not bother with the
actual mapping to the database because the JPA
implementation will take care of it on their behalf.

Persistence Providers
As with all Java specifications, JPA states how you need to write your classes
and how the persistence is to be managed. However, JPA does not include
any actual implementation. Therefore, it is up to various persistence providers
to build the JPA implementations. As always, the beauty of a specification
with multiple implementations is that if you code as per the specification, you
can later switch your JPA implementation if required. Hibernate, OpenJPA,
and EclipseLink are some of the popular implementations of JPA.

Entity
Entities are Plain Old Java Objects (POJOs) that represent tables in the
database. So to add a new row, you create a new instance of the entity class
and persist it. Similarly, to update a row, you can get the appropriate row as

214 Java EE Applications on Oracle Java Cloud

an entity instance, update it, and persist it. Let’s now build an application
with an entity named “Device,” which maps to a database table of the same
name. We will use the table to record some information about multiple
devices. We will also look at how we can use this entity from a Servlet,
as well as perform CRUD applications using JSF.

Developing an Entity Application
First, create a new web application project named Ch9JPA1 in NetBeans.
Ensure that you choose Oracle Cloud as the server. Next, right-click the project
and select New File | Persistence | Entity Class. As shown in Figure 9-12, name
the class Device and the package entities. Note that the primary key is Long,
by default. Keep the Create Persistence Unit box checked. Click Next.

Next, as shown in Figure 9-13, the wizard will ask for more information
on the persistence provider and the database. EclipseLink (JPA 2.0) is selected

FIGURE 9-12. Creating a new entity class

Chapter 9: Persistence Using the Oracle Database Cloud Service 215

as the persistence provider by default. We will use it because that’s the one
supported by OJC out of the box. You can select another JPA 2.0 provider such
as Hibernate from the drop-down. However, in that case, you would have to
provide the library files as well, because OJC won’t have them set up otherwise.

The data source name is “database,” as shown in Figure 9-13. The Table
Generation Strategy option gives us the choice to create a new table, to drop
the earlier table and then create a new one, or not to attempt to create the
table. Select the Create option because we want the table to be created based
on the properties in our entity class. Click Finish.

You should now have an entity class in place.

NOTE
OJC supports Java SE 6 APIs as long as the usage
passes the whitelist check. Therefore, considering
the caution shown in Figure 9-9, you could change
the source level in File | Project Properties | Sources
to JDK 6. However, the example in this chapter will
work fine even without the change.

FIGURE 9-13. Entity provider and database

216 Java EE Applications on Oracle Java Cloud

NOTE
Appendix C lists the technologies and APIs
supported by OJC.

You will now see a new file called persistence.xml listed under Configuration
Files in NetBeans. This file has been created by NetBeans based on our inputs
in Figure 9-13. Open persistence.xml, and in the source view, you will see the
XML shown in Listing 9-1.

Listing 9-1: persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/
persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="Ch9JPA1PU" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <jta-data-source>javatrial2364db</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.ddl-generation"
 value="create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

You can try clicking the Design tab and changing the persistence provider
and some properties so as to better understand the usage of this configuration
file. To repeat, JTA data source name “javatrial2364db” refers to the JNDI
name shown previously in Figure 9-11. This name could be different for your
installation.

The Device.java file created for the entity class has the id property and
some annotations and default implementations of the toString, hashcode,
and equals method. You will note that the id property has the annotation
@GeneratedValue(strategy = GenerationType.AUTO), which
specifies the generation strategies for the primary key value. AUTO, here,
indicates that the persistence provider should pick an appropriate strategy
for the particular database. The other options are IDENTITY, SEQUENCE,
and TABLE. You will find that for the Oracle Database on the cloud, the

Chapter 9: Persistence Using the Oracle Database Cloud Service 217

persistence provider (EclipseLink) creates a table called SEQUENCE, which is
used for generating the primary key.

Let’s now modify the entity class to add a few properties, which will become
columns in our table. You can write the code yourself or autogenerate it by
right-clicking and selecting Insert Code. Add the properties “String name” and
“int cost”, along with the corresponding getter and setter methods, so that
your entity class appears as shown in Listing 9-2. Adding suitable constructors
is also a good idea.

Listing 9-2: Device.java

package entities;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Device implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @Column(name = "DEVICENAME")
 private String name;
 private int cost;

 public Device(String name, int cost) {
 this.name = name;
 this.cost = cost;
 }

 public Device() {
 }

 public Long getId() {
 return id;
 }

218 Java EE Applications on Oracle Java Cloud

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getCost() {
 return cost;
 }

 public void setCost(int cost) {
 this.cost = cost;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case
 the id fields are not set
 if (!(object instanceof Device)) {
 return false;
 }
 Device other = (Device) object;
 if ((this.id == null && other.id != null)
 || (this.id != null && !this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "entities.Device[id=" + id + "]";
 }
}

Chapter 9: Persistence Using the Oracle Database Cloud Service 219

We want the persistence provider to create a table called DEVICE that
maps to the objects of our Device entity class. By default, the persistence
provider will name the columns the same as the property names in the entity
class. However, we can use the @Column annotation to provide different
column names.

Add Entity from a Servlet
Let’s look at how we can programmatically add a new device to the table
from a Servlet. For that, first add a new Servlet named DeviceServlet in the
package servlets to our Ch9JPA1 project. To work with entities, we use the
EntityManager API. Using the EntityManager, we can create and remove
entity instances as well as find and query them, as required.

To use the EntityManager, right-click in the Servlet code and select Insert
Code | Use Entity Manager. This will lead to code for injecting an EntityManager
and adding a UserTransaction to the class. A “persist” method will also be added
to the class. Although the EntityManager is what we will use to work with our
entities, the UserTransaction is required because there is no built-in transaction
support in Servlets. Therefore, we have to programmatically start and stop the
transaction as shown in the persist method. Transaction support here is a must
because without the transaction “begin” and “commit” code, the persist method
of EntityManager will throw javax.persistence.TransactionRequiredException.

Adding a new device to the table using our Device entity is as simple
as creating a new instance of Device and then calling the persist method
in the Servlet, as shown in Listing 9-3. We also need to add an import
entities.Device; statement for the Servlet class to compile.

Listing 9-3: DeviceServlet

@PersistenceContext(unitName = "Ch9JPA1PU")
private EntityManager em;
@Resource
private javax.transaction.UserTransaction utx;

protected void processRequest(HttpServletRequest request
, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 persist(new Device ("Android", 100));

220 Java EE Applications on Oracle Java Cloud

 persist(new Device ("iPhone", 200));
 out.println("Added devices to the table");
 } finally {
 out.close();
 }
}

public void persist (Object object) {
 try {
 utx.begin();
 em.persist(object);
 utx.commit();
 } catch (Exception e) {
 Logger.getLogger(getClass().getName())
 .log(Level.SEVERE, "exception caught", e);
 throw new RuntimeException(e);
 }
}

The name Ch9JPA1PU refers to the persistence unit, as declared in the
persistence.xml file. The EntityManager instance gets injected into the Servlet.
We call the persist method in the Servlet. This method starts the transaction
using the UserTransaction utx object injected; it then calls the EntityManager
persist and finally commits the transaction.

NOTE
The transaction management code in this example
is required because Servlets lack any built-in
transaction management capability. You could
instead use EJBs to interact with the entities,
and the transactions could be managed by the
EJB based on the annotation values you specify.
Refer to Chapter 7 for EJBs and EJB transaction
management.

Now run DeviceServlet. To check the tables that are created and the data
entered, head over to the SQL Workshop | Object Browser on the Oracle
Database Cloud. As shown in Figure 9-14, two new tables (DEVICE and
SEQUENCE) are created. The other tables are used by the sample application
on Oracle Database Cloud and are not related to our application. For the

Chapter 9: Persistence Using the Oracle Database Cloud Service 221

DEVICE table, note that the column name is as specified in the annotation.
So it’s DEVICENAME and not the property name NAME. The SEQUENCE
table will be used to autogenerate the primary key.

NOTE
NetBeans would have added the EclipseLink
library to your project libraries. EclipseLink is the
default JPA library on OJC, so it is not required
to be bundled with our project. Therefore,
you can remove that library for the project.
Removing unnecessary libraries also leads
to much faster deploys.

Click the Data tab for the DEVICE table and, as shown in Figure 9-15, you
will see the two devices we added from the Servlet. Now that we have some
data in the table, let’s look at querying and retrieving that data.

FIGURE 9-14. Tables in the SQL Workshop’s Object Browser

222 Java EE Applications on Oracle Java Cloud

NOTE
Now that our Device table has been created as
desired, you can edit the persistence.xml file by
removing the property eclipselink.ddl-generation
because you no longer want EclipseLink to attempt
the creation of the tables. Changing the Table
Generation Strategy to “None” in the persistence
.xml editor should get you the same result, but I
faced some issues with NetBeans where the XML
wasn’t getting updated. Therefore, you might have
to manually delete the property from the XML.

Find and Update Entity
All entities can be found/retrieved using the class name and the primary key.
Updating an entity is as simple as updating the value in the entity object and
persisting the updated object. We will later look at using queries for bulk
updates, but where you need to update a single entity, updating the value in
the object is the easiest way to go about it.

FIGURE 9-15. The Data tab for the DEVICE table

Chapter 9: Persistence Using the Oracle Database Cloud Service 223

Let’s add the method shown in Listing 9-4 to our Servlet, which will first
find an object, update it, and then persist the updated object.

Listing 9-4: Find and Update Device

public void findAndUpdateDevice(Long primaryKey) {
 try {
 utx.begin();
 Device foundDevice
 = em.find(Device.class, primaryKey);
 if (foundDevice != null) {
 foundDevice.setCost(2000);
 em.persist(foundDevice);
 }
 utx.commit();
 } catch (Exception e) {
 Logger.getLogger(getClass().getName())
 .log(Level.SEVERE, "exception caught", e);
 throw new RuntimeException(e);
 }
}

Note that this method is similar to the persist method in Listing 9-3.
As with adding a new entity, even while updating the entity, we need a
transaction for the EntityManager to not throw an exception when we call its
persist method.

In the line Device foundDevice = em.find(Device.class, 2L),
we state that the class is Device.class and that the primary key is 2. Note that
we state it as “2L” so as to convey that it is a Long. Without the L, it will be
treated as an integer and thus lead to an exception. Once we find the device,
we update the cost and persist the updated object. However just being able
to find using the EntityManager won’t suffice for most applications; therefore,
you need a powerful querying mechanism such as the Java Persistence Query
Language (JPQL).

Java Persistence Query Language
The JPQL is a SQL-like query language that lets you write portable queries
without worrying about the underlying data store. You can perform SELECT,
UPDATE, or DELETE queries, similar to SQL. You can declare JPQL queries
using annotations in the Entity class, or you can use the createQuery method

224 Java EE Applications on Oracle Java Cloud

of EntityManager to state the query in the code itself. Declaring your queries
as annotations is usually the easier, cleaner way to go about it.

SELECT NamedQuery
Let’s look at an example where we declare one SELECT query as an
annotation and a second one in the code.

In the Device.java Entity class, add an import statement for javax.persistence
.NamedQuery and the NamedQuery annotation so that the top of the class is
as shown in Listing 9-5.

Listing 9-5: NamedQuery

import javax.persistence.NamedQuery;

@Entity
@NamedQuery(name = "Device.findPricey"
, query = "SELECT d FROM Device d WHERE d.cost > :cost")

public class Device implements Serializable {

…

Here, we declare a query with the name Device.findPricey, which is
meant to find all devices whose price is greater than the “cost” parameter we
will be passing. The syntax is pretty similar to SQL except for “:cost” (which
we use to pass the cost parameter). Next, we add the new method shown in
Listing 9-6 and call it from the processRequest method in the DeviceServlet
class, with 100 as the cost parameter. Add import statements for javax
.persistence.Query and java.util.List.

Listing 9-6: Select Using a NamedQuery

private void findPriceyDevices(PrintWriter out, int cost) {
 //Select NamedQuery
 Query q = em.createNamedQuery("DeviceC.findPricey");
 out.println("<h2>* Listing all devices with
 cost greater than 100</h2>");

 List<Device> priceDevices
 = em.createNamedQuery("Device.findPricey")
 .setParameter("cost", cost)
 .getResultList();
 for (Device d : priceDevices) {
 out.println("<h4>Device Name:"

Chapter 9: Persistence Using the Oracle Database Cloud Service 225

 + d.getName() + "</h4>");
 }
}

In Listing 9-5, we created the NamedQuery DeviceC.findPricey using an
annotation in the Entity class. In Listing 9-6, we use the same name to refer to
the NamedQuery. Next, we set the cost parameter and get the devices as a list.

SELECT Query
Let’s now look at how you can fire a query without having declared it as an
annotation in the entity. Add the new method shown in Listing 9-7 to the
DeviceServlet class and call the method from the processRequest method,
passing the value A% as the pattern to match.

Listing 9-7: Select Query

private void deviceNameLike(PrintWriter out, String pattern) {
 //Select Query
 out.println
 ("<h2>* Listing all devices with names starting with A</h2>");

 List<Device> nameDevices = em.createQuery
 ("SELECT d FROM Device d WHERE d.name LIKE :devname")
 .setParameter("devname", pattern)
 .getResultList();

 for (Device d : nameDevices) {
 out.println("<h4>Device Name:" + d.getName() + "</h4>");
 }
}

Here we create the query in the code and get all devices whose name
begins with A.

NOTE
Although the column name is DEVICENAME, as
declared by us using an annotation in Device.java,
we refer to the property name in the
SELECT query.

226 Java EE Applications on Oracle Java Cloud

UPDATE and DELETE Query
Earlier in this chapter, in the “Find and Update Entity” section, we looked
at how to update the table by updating the entity object. Although that’s an
easy way to update a single record, it is not an efficient way when you want
to update multiple records. You would much rather run an UPDATE query
than iterate over many entities and update each one.

Let’s add a few named queries to the Device entity class—one to raise
the cost of all devices with a certain name and the second to delete all
devices with a certain name. With multiple named queries, you can use the
@NamedQueries annotation, as shown in Listing 9-8. You need to add an
import statement for javax.persistence.NamedQueries.

Listing 9-8: Update Delete Queries

@Entity
@NamedQueries ({
 @NamedQuery(name = "Device.findPricey"
 , query = "SELECT d FROM Device d WHERE d.cost > :cost"),
 @NamedQuery(name = "Device.hikePrice"
 , query = "UPDATE Device d SET d.cost
 = d.cost+100 WHERE d.name = ?1"),
 @NamedQuery(name = "Device.deleteBasedOnName"
 , query = "DELETE FROM Device d WHERE d.name = :devname")
})
public class Device implements Serializable {
...

Note that for the UPDATE query, we pass a parameter based on position,
whereas for DELETE, we have named the parameter.

Now we need to add code to our servlet to run the UPDATE and DELETE
queries. We add a deleteDeviceByName method to delete a device and
an updateDevicePrice method to update a device, as shown in Listing 9-9.
Because UPDATE and DELETE queries need to run as part of a transaction,
it’s best to also create an updateDeleteInTxn method, as shown in Listing 9-9,
and pass the query to be executed. We will call the deleteDeviceByName and
updateDevicePrice methods from the processRequest method.

Listing 9-9: Execute Update Delete

private void deleteDeviceByName(PrintWriter out, String name) {
 //DELETE namedQuery
 Query deleteQuery =
 em.createNamedQuery("Device.deleteBasedOnName")

Chapter 9: Persistence Using the Oracle Database Cloud Service 227

 .setParameter("devname", name);
 out.println("<h4>Deleted: " + updateDeleteInTxn(deleteQuery)
 + " </h4");
}

private void updateDevicePrice(PrintWriter out, String name) {
 //Update namedQuery
 Query updateQuery = em.createNamedQuery("Device.hikePrice")
 .setParameter(1, name);
 out.println("<h4>Updated: " + updateDeleteInTxn(updateQuery)
 + " </h4");

}

public int updateDeleteInTxn(Query q) {
 try {
 utx.begin();
 int count = q.executeUpdate();
 utx.commit();
 return count;
 } catch (Exception e) {
 Logger.getLogger(getClass().getName()).log(Level.SEVERE
 , "exception caught", e);
 throw new RuntimeException(e);
 }
}

We utilize the various methods by calling them from the processRequest
method, as shown in Listing 9-10.

Listing 9-10: processRequest

protected void processRequest(HttpServletRequest request
, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 persist(new Device("Android", 100));
 persist(new Device ("iPhone", 200));
 out.println("Added devices to the table");
 // Find Devices priced over 100
 findPriceyDevices(out, 100);

 //Find Devices where name begins with A
 deviceNameLike(out, "A%");

228 Java EE Applications on Oracle Java Cloud

 //Update iPhone price
 updateDevicePrice(out, "iPhone");

 //Delete Android devices
 deleteDeviceByName(out, "Android");

 //Find & Update cost of device with the primary key 2
 findAndUpdateDevice(2L);

 } finally {
 out.close();
 }
}

Now run the DeviceServlet, and you should get the output shown in
Figure 9-16.

Visit the SQL Workshop | Object Browser on the Database Cloud to check
whether your data has been created and updated as expected. In this example,
we have looked at creating an entity as well as selecting, updating, and deleting
it, as required, using the various JPA features as well as JPQL queries.

FIGURE 9-16. DeviceServlet output

Chapter 9: Persistence Using the Oracle Database Cloud Service 229

NOTE
We created the tables using the entity; however,
you could just as well take the reverse approach
and create your entity using the table. NetBeans,
as well as many other IDEs, have neat wizards to
autogenerate entities from tables.We won’t get into
the micro details of the JPQL syntax here. Although
most of it is quite similar to SQL, I recommend
that you refer to the detailed JPQL syntax listing
at http://docs.oracle.com/javaee/6/tutorial/doc/
bnbuf.html for more information.

CRUD JSF for Entity
A large majority of applications provide Create-Read-Update Delete (CRUD)
functionality for data. Now that we have an entity in place that maps to a
table, let’s use a neat NetBeans feature to create a JSF CRUD application for
our entity. Although the created application can be used as is, it can also
serve as a good base for you to modify depending on the requirements of
your application.

To generate the JSF CRUD application, right-click the Ch9JPA1 project and
select New | Other | Persistence | JSF Pages from Entity Classes. You will get
the screen shown in Figure 9-17.

FIGURE 9-17. The New JSF Pages from Entity Classes screen

http://docs.oracle.com/javaee/6/tutorial/doc/bnbuf.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnbuf.html

230 Java EE Applications on Oracle Java Cloud

FIGURE 9-18. Generating JSF pages and classes

Add the Device entity and click Next. On the next screen, shown in
Figure 9-18, set the JPA controller package to jpacontroller and the JSF classes
package to jsfclasses. Click Next.

As shown in Figure 9-19, NetBeans will now ask you for the server library
to use. JSF 2.0 will be selected by default because that’s the version supported
by OJC. You need not change this, so click Finish.

NetBeans will generate multiple classes and JSF .xhtml files. It will
also create the managed bean jsfclasses.DeviceController and modify the
weblogic.xml file to add a library reference to JSF 2.0. You will find a few
other classes generated as well as a new device directory in Web Pages. We
will not get into the nitty-gritty of the autogenerated app here, but these are
essentially classes to get the basic CRUD application going.

Chapter 9: Persistence Using the Oracle Database Cloud Service 231

Now run the index.xhtml file that has been generated, and you will get
a screen with the link Show All Device Items. Click the link and you get the
screen shown in Figure 9-20, with all the basic CRUD functionality in place.

We looked at JSF earlier in the book, so try to analyze the code generated
because it will enhance your understanding of JSF.

FIGURE 9-19. The JSF library selection

232 Java EE Applications on Oracle Java Cloud

Summary
In this chapter, we looked at the Oracle Database Cloud and then used the
Java Persistence API to create tables as well as retrieve, update, and delete
data. Oracle is best known for its database, and the Database Cloud puts all
that power and capability at your disposal from the Oracle Java Cloud.

FIGURE 9-20. The JSF CRUD application created from the entity ClassPages

APPENDIX
A

Java EE Technologies
and JSRs

234 Java EE Applications on Oracle Java Cloud

This appendix provides a listing of all Java EE 5, 6, and 7 technologies
and their corresponding Java Specification Requests (JSRs). Also listed
are the Web Profile technologies for Java EE 6 and 7. Web Profile is

discussed in Chapter 1. You will find the detailed documents for each JSR at
https://jcp.org/en/jsr/detail?id=<JSR-Number>.

The Oracle Java Cloud Service runs on Oracle WebLogic Server and
runs a mix of Java EE 5 and Java EE 6 technologies. So although not all the
technologies listed are supported by the Oracle Java Cloud Service, the
information in this appendix is important for an understanding of Java EE and
its evolution over versions 5, 6, and 7.

You will find a list of technologies supported on the Oracle Java Cloud
Service in Appendix C and a discussion about Oracle Java Cloud support for
various technologies in Chapter 2.

Java Platform, Enterprise Edition 5
(Java EE 5) JSR 244
J2EE 1.4 was the version prior to Java EE 5. Although J2EE 1.4 was popular,
it also got a lot of flak for being complex and difficult to use. So based on
the feedback from developers, Java EE 5 was a major effort at simplification
across all enterprise Java technologies. The “2” in the version name was
dropped, and the version jumped from J2EE 1.4 to Java EE 5.

Java EE 5 introduced annotations, looked to cut down on XML configuration,
and made XML optional wherever possible. Java EE 5 also introduced
dependency injection, which reduced the need to look up and create resources
and led to more concise, easy-to-understand code.

The Java Persistence API (JPA) was another important addition to Java EE 5.
JPA standardized object relational mapping for managing relational data using
Plain Old Java Objects (POJOs).

The following is a listing of the various APIs in Java EE 5, broadly classified
into technologies that deal with Web Services, Web Applications, Enterprise
Applications, and Management and Security.

Web Services Technologies
Implementing Enterprise Web Services JSR 109

Java API for XML-Based Web Services (JAX-WS) 2.0 JSR 224

Appendix A: Java EE Technologies and JSRs 235

Java API for XML-Based RPC (JAX-RPC) 1.1 JSR 101

Java Architecture for XML Binding (JAXB) 2.0 JSR 222

SOAP with Attachments API for Java (SAAJ) JSR 67

Streaming API for XML JSR 173

Web Service Metadata for the Java Platform JSR 181

Web Application Technologies
JavaServer Faces 1.2 JSR 252

JavaServer Pages 2.1 JSR 245

JavaServer Pages Standard Tag Library JSR 52

Java Servlet 2.5 JSR 154

Enterprise Application Technologies
Common Annotations for the Java Platform JSR 250

Enterprise JavaBeans 3.0 JSR 220

J2EE Connector Architecture 1.5 JSR 112

JavaBeans Activation Framework (JAF) 1.1 JSR 925

JavaMail JSR 919

Java Message Service API JSR 914

Java Persistence API JSR 220

Java Transaction API (JTA) JSR 907

Management and Security Technologies
J2EE Application Deployment JSR 88

J2EE Management JSR 77

Java Authorization Contract for Containers JSR 115

Java Platform, Enterprise Edition 6
(Java EE 6) JSR 316
Java EE 6 was focused on continuing the simplification of the platform
with extensive use of annotations to add functionality to Plain Old Java
Objects (POJOs).

236 Java EE Applications on Oracle Java Cloud

Java EE 6 also introduced application-specific forms of the Java EE platform
known as Profiles, the first being the lightweight Web Profile, which included
a subset of Java EE 6 technologies, targeted at building web applications.
Therefore, developers could now choose to use the Web Profile or the
Full Platform.

Java EE 6 also introduced Contexts and Dependency Injection (CDI), which
took dependency injection further by giving developers the choice to inject an
instance based on the context for that injection.

Considering the growing popularity of RESTful web services, Java EE 6 also
introduced the Java API for RESTful Web Services (JAX-RS).

The following is a listing of the various APIs in Java EE 6, broadly classified
into technologies that deal with Web Services, Web Applications, Enterprise
Applications, Management and Security, and Java SE technologies of relevance
to Java EE.

Web Services Technologies
Java API for RESTful Web Services (JAX-RS) 1.1 JSR 311

Implementing Enterprise Web Services 1.3 JSR 109

Java API for XML-Based Web Services (JAX-WS) 2.2 JSR 224

Java Architecture for XML Binding (JAXB) 2.2 JSR 222

Web Services Metadata for the Java Platform JSR 181

Java API for XML-Based RPC (JAX-RPC) 1.1 JSR 101

Java APIs for XML Messaging 1.3 JSR 67

Java API for XML Registries (JAXR) 1.0 JSR 93

Web Application Technologies
Java Servlet 3.0 JSR 315 (Included in Web Profile)

JavaServer Faces 2.0 JSR 314 (Included in Web Profile)

JavaServer Pages 2.2/Expression
Language 2.2

JSR 245 (Included in Web Profile)

Standard Tag Library for JavaServer
Pages (JSTL) 1.2

JSR 52 (Included in Web Profile)

Debugging Support for Other
Languages 1.0

JSR 45 (Included in Web Profile)

Appendix A: Java EE Technologies and JSRs 237

Enterprise Application Technologies
Contexts and Dependency
Injection for Java (Web Beans 1.0)

JSR 299 (Included in Web Profile)

Dependency Injection for Java 1.0 JSR 330 (Included in Web Profile)

Bean Validation 1.0 JSR 303 (Included in Web Profile)

Enterprise JavaBeans 3.1 (includes
Interceptors 1.1)

JSR 318 (EJB 3.1 Lite and
Interceptors 1.1 is included
in Web Profile)

Java EE Connector Architecture 1.6 JSR 322

Java Persistence 2.0 JSR 317 (Included in Web Profile)

Common Annotations for the Java
Platform 1.1

JSR 250

Java Message Service API 1.1 JSR 914

Java Transaction API (JTA) 1.1 JSR 907 (Included in Web Profile)

JavaMail 1.4 JSR 919

Management and Security Technologies
Java Authentication Service Provider Interface for Containers JSR 196

Java Authorization Contract for Containers 1.3 JSR 115

Java EE Application Deployment 1.2 JSR 88

J2EE Management 1.1 JSR 77

Java EE–Related Specs in Java SE
Java API for XML Processing (JAXP) 1.3 JSR 206

Java Database Connectivity 4.0 JSR 221

Java Management Extensions (JMX) 2.0 JSR 255

JavaBeans Activation Framework (JAF) 1.1 JSR 925

Streaming API for XML (StAX) 1.0 JSR 173

Java Platform, Enterprise Edition 6
(Java EE 6) Web Profile
This specification lists the technologies that need to be supported by Web
Profile products. However, Web Profile products may choose to support

238 Java EE Applications on Oracle Java Cloud

some of the technologies present in the full Java EE platform and not listed in
“Required Components” for Web Profile.

Required Components:

■ Servlet 3.0

■ JavaServer Pages (JSP) 2.2

■ Expression Language (EL) 2.2

■ Debugging Support for Other Languages (JSR-45) 1.0

■ Standard Tag Library for JavaServer Pages (JSTL) 1.2

■ JavaServer Faces (JSF) 2.0

■ Common Annotations for the Java Platform (JSR-250) 1.1

■ Enterprise JavaBeans (EJB) 3.1 Lite

■ Java Transaction API (JTA) 1.1

■ Java Persistence API (JPA) 2.0

■ Bean Validation 1.0

■ Managed Beans 1.0

■ Interceptors 1.1

■ Contexts and Dependency Injection for the Java EE Platform 1.0

■ Dependency Injection for Java 1.0

Java Platform, Enterprise Edition 7
(Java EE 7) JSR 342
Java EE 7 introduced the Java API for WebSocket, which offers a lightweight,
full-duplex communication channel for use in applications that require
real-time updates and frequent exchange of data. WebSocket, along with
HTML5, looks to deliver a rich and interactive user experience.

Appendix A: Java EE Technologies and JSRs 239

CDI, which was introduced in Java EE 6, has become an even more
integral part of Java EE 7. Considering the widespread use of JSON for data
exchange, Java EE 7 introduced the Java API for JSON Processing, which can
be used to parse and generate JSON. Java EE 7 also introduced APIs for Batch
Applications and Concurrency Utilities. It includes updated versions of the
JMS and the JAX-RS APIs.

Considering the widespread use of RESTful web services, the Web Profile
has been updated in Java EE 7 to include the JAX-RS API.

The following is a listing of the various APIs in Java EE 7, broadly classified
into technologies that deal with Web Applications, Enterprise Applications,
Web Services, Management and Security, and Java SE technologies of
relevance to Java EE.

Web Application Technologies
Java API for WebSocket JSR 356 (Included in Web Profile)

Java API for JSON Processing JSR 353 (Included in Web Profile)

Java Servlet 3.1 JSR 340 (Included in Web Profile)

JavaServer Faces 2.2 JSR 344 (Included in Web Profile)

Expression Language 3.0 JSR 341 (Included in Web Profile)

JavaServer Pages 2.3 JSR 245 (Included in Web Profile)

Standard Tag Library for
JavaServer Pages (JSTL) 1.2

JSR 52 (Included in Web Profile)

Enterprise Application Technologies
Batch Applications for the Java
Platform

JSR 352

Concurrency Utilities for Java EE 1.0 JSR 236

Contexts and Dependency Injection
for Java 1.1

JSR 346 (Included in Web Profile)

Dependency Injection for Java 1.0 JSR 330 (Included in Web Profile)

Bean Validation 1.1 JSR 349 (Included in Web Profile)

240 Java EE Applications on Oracle Java Cloud

Enterprise JavaBeans 3.2 JSR 345 (Included in Web Profile)

Interceptors 1.2 JSR 318 (Included in Web Profile)

Java EE Connector Architecture 1.7 JSR 322

Java Persistence 2.1 JSR 338 (Included in Web Profile)

Common Annotations for the Java
Platform 1.2

JSR 250 (Included in Web Profile)

Java Message Service API 2.0 JSR 343

Java Transaction API (JTA) 1.2 JSR 907 (Included in Web Profile)

JavaMail 1.5 JSR 919

Web Services Technologies
Java API for RESTful Web Services (JAX-RS) 2.0 JSR 339 (Included in

Web Profile)

Implementing Enterprise Web Services 1.3 JSR 109

Java API for XML-Based Web Services
(JAX-WS) 2.2

JSR 224

Web Services Metadata for the Java Platform JSR 181

Java API for XML-Based RPC
(JAX-RPC) 1.1 (Optional)

JSR 101

Java APIs for XML Messaging 1.3 JSR 67

Java API for XML Registries (JAXR) 1.0 JSR 93

Management and Security Technologies
Java Authentication Service Provider Interface
for Containers 1.1

JSR 196

Java Authorization Contract for Containers 1.5 JSR 115

Java EE Application Deployment 1.2 (Optional) JSR 88

J2EE Management 1.1 JSR 77

Debugging Support for Other Languages 1.0 JSR 45 (Included in
Web Profile)

Appendix A: Java EE Technologies and JSRs 241

Java EE–Related Specs in Java SE
Java Architecture for XML Binding (JAXB) 2.2 JSR 222

Java API for XML Processing (JAXP) 1.3 JSR 206

Java Database Connectivity 4.0 JSR 221

Java Management Extensions (JMX) 2.0 JSR 003

JavaBeans Activation Framework (JAF) 1.1 JSR 925

Streaming API for XML (StAX) 1.0 JSR 173

Java Platform, Enterprise Edition 7
(Java EE 7) Web Profile
The Web Profile specification lists the technologies that need to be
supported by Web Profile products. However, Web Profile products may
choose to support some of the technologies present in the full Java EE
platform and not listed in “Required Components” for Web Profile.

Required Components:

■ Servlet 3.1

■ JavaServer Pages (JSP) 2.2

■ Expression Language (EL) 3.0

■ Debugging Support for Other Languages (JSR-45) 1.0

■ Standard Tag Library for JavaServer Pages (JSTL) 1.2

■ JavaServer Faces (JSF) 2.2

■ Java API for RESTful Web Services (JAX-RS) 2.0

■ Common Annotations for the Java Platform (JSR-250) 1.1

■ Enterprise JavaBeans (EJB) 3.2 Lite

■ Java Transaction API (JTA) 1.2

■ Java Persistence API (JPA) 2.1

■ Bean Validation 1.1

■ Managed Beans 1.0

242 Java EE Applications on Oracle Java Cloud

■ Interceptors 1.1

■ Contexts and Dependency Injection for the Java EE Platform 1.1

■ Dependency Injection for Java 1.0

Sources
www.oracle.com/technetwork/java/javaee/tech/

javaee6technologies-1955512.html
www.oracle.com/technetwork/java/javaee/tech/index.html

http://www.oracle.com/technetwork/java/javaee/tech/javaee6technologies-1955512.html
http://www.oracle.com/technetwork/java/javaee/tech/javaee6technologies-1955512.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

APPENDIX
B

Application Servers
Compatible with Java EE

5, 6, and 7

244 Java EE Applications on Oracle Java Cloud

Java EE compatibility is discussed in detail in Chapter 1. Basically, a Java
EE implementation (application server) is considered Java EE compatible
only if it passes the tests in the Java EE Compatibility Test Suite (CTS). Do
note that the CTS is meant to be used by Java EE licensees looking to

build Java EE–compatible application servers and not by Java EE application
developers.

The Oracle Java Cloud Service runs Oracle WebLogic Application Server,
so you won’t need to evaluate and pick from all available servers. However,
for understanding Java EE, it’s important to be aware of the many other
application servers and the different versions of Java EE supported by each
server. This list is also useful to compare the various cloud vendors, because,
as discussed in Chapter 1, most vendors support one or more of the servers
listed. The Java EE 7 implementations list is likely to grow as more vendors
support the latest Java EE version.

Java EE 5–Compatible
Implementations

■ Apache Geronimo-2.1.4

■ Apusic Application Server (v5.0)

■ Fujitsu Interstage Application Server Enterprise Edition 9.2

■ GlassFish Application Server v2

■ IBM WASCE 2.0

■ IBM WebSphere Application Server v7

■ JBoss Application Server 5.0

■ JBoss Enterprise Application Platform 5

■ NEC WebOTX 8.1

■ Oracle Application Server 11

■ Oracle WebLogic Server 10g R3

■ OW2 JOnAS 5.1

Appendix B: Application Servers Compatible with Java EE 5, 6, and 7 245

■ SAP NetWeaver 7.1

■ Sun GlassFish Enterprise Server 9.1

■ TmaxSoft JEUS 6

■ TongWeb Application Server 5.0

Java EE 6 Full Platform–Compatible
Implementations

■ Apache Geronimo 3.0-beta-1

■ Fujitsu Interstage Application Server powered by Windows Azure

■ Fujitsu Interstage Application Server v10.1

■ Hitachi uCosminexus Application Server v9.0

■ IBM WebSphere Application Server 8.x

■ IBM WebSphere Application Server Community Edition 3.0

■ JBoss Application Server 7.x

■ JBoss Enterprise Application Platform 6

■ NEC WebOTX Application Server v9.x

■ Oracle GlassFish Server 3.x

■ Oracle WebLogic Server 12.1.1

■ TMAX JEUS 7

Java EE 6 Web Profile–Compatible
Implementations

■ Apache Geronimo 3.0-beta-1

■ Apache TomEE 1.0

■ Caucho Resin 4.0.17

246 Java EE Applications on Oracle Java Cloud

■ IBM WebSphere Application Server Version 8.5.5 (Liberty Profile)

■ JBoss Application Server 7.x

■ JBoss Enterprise Application Platform 6

■ JOnAS

■ Oracle GlassFish Server 3.x

■ SAP NetWeaver Cloud

Java EE 7 Full Platform–Compatible
Implementations

■ GlassFish Server Open Source Edition 4.0

■ TMAX JEUS 8

■ Wildfly 8.0.0

Java EE 7 Web Profile–Compatible
Implementations

■ GlassFish Server Open Source Edition 4.0 Web Profile

■ Wildfly 8.0.0 Web Profile

Source
www.oracle.com/technetwork/java/ javaee/overview/compatibility-

jsp-136984.html

http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

APPENDIX
C

Supported and
Unsupported Technologies,

Services, and APIs

248 Java EE Applications on Oracle Java Cloud

Technologies and Services Supported
The Java Cloud Service supports the deployment of the following types of
applications:

■ Web Application Archive (WAR) and Enterprise Archive (EAR)
deployments.

■ Web applications: Applications using Servlet 2.5, JavaServer Pages
(JSP) 2.1, and JavaServer Faces (JSF) release 1.2 and release 2.0.

■ Web Services applications: Applications using Java API for XML Web
Services (JAX-WS) 2.1–based web services. Applications providing
REST-based APIs through Java API for RESTful Web Services
(JAX-RS) 1.1 and Jersey 1.9 annotations are supported.

■ Enterprise Java Beans (EJB) containers: Applications using EJB 2.1 and
EJB 3.0 specifications. Only local EJB invocations are supported.
EJB 2.x Entity Beans are not supported.

■ JDBC services: Applications using Java Persistence API (JPA) 2.0
specifications and JPA persistence.xml elements with EclipseLink
2.1.3–specific extensions.

■ Direct use of Java Database Connectivity (JDBC) 4.0 APIs.

■ Use of Oracle Database 11g–compatible SQL statements.

■ Java Platform Standard Edition (SE) 1.6 APIs: Applications can use
the set of Java SE 1.6 public APIs as long as they pass the Java Cloud
Service whitelist tool and their use is in line with Java EE best practices.

■ ADF 11.1.1.6 applications.

Java EE 5 and 6 Specifications Supported
The following is a list of Java EE 5 and 6 specifications that are supported on
the Oracle Java Cloud:

■ JavaServer Pages Standard Tag Library (JSTL) 1.2

■ Java Database Connectivity (JDBC) 4.0

■ Java Persistence API 2.0

■ Web Services Metadata for the Java Platform 2.0

Appendix C: Technologies, Services, and APIs 249

■ Java Naming and Directory Interface Specification (JNDI) 1.2

■ Java Transaction API (JTA) 1.1

■ Streaming API for XML (StAX) 1.0

■ SOAP with Attachments API for Java (SAAJ) 1.3

■ JavaBeans Activation Framework Specification (JAF) 1.1

■ Java API for XML Processing (JAXP) 1.3

■ Java Management Extensions (JMX) 1.2
JMX is only supported for exposure of MBeans within a deployment
archive and access to these MBeans from the deployment archive itself
or other archives deployed to the same Java Cloud Service instance.

■ Java API for XML-based Web Services (JAX-WS) 2.1

■ Java API for RESTful Web Services (JAX-RS) 1.1

■ Java Architecture for XML Binding (JAXB) 2.0

Public WebLogic Server 10.3.6
APIs and Capabilities Supported
The Oracle Java Cloud supports WebLogic server–specific APIs and
capabilities that are included in the following packages:

■ weblogic.logging.*

■ weblogic.jsp.*

■ weblogic.cache.*

■ weblogic.application.*

■ weblogic.i18n.*

■ weblogic.i18ntools.*

■ weblogic.jndi.*

■ weblogic.jws.*

■ weblogic.servlet.*

■ weblogic.transaction.*

250 Java EE Applications on Oracle Java Cloud

Unsupported Features and APIs
Oracle Java Cloud does not support the features and APIs listed here. In
most cases, the reason for this is a) constraints due to a common-shared
environment, b) Oracle’s Cloud products strategy, or c) security concerns.

■ Any API deprecated in WebLogic Server release 10.3.6 or lower.

■ Any API deprecated in ADF release 11.1.1.6 or lower.

■ Direct JAR deployment.

■ WebLogic Server shared libraries, deployments, and references, except
for references to libraries predefined in Java Cloud Service, as described
in “Understanding On-Premise and Java Cloud Service Portability.”

■ Java EE Connector Architecture (JCA) Container—RAR deployments.

■ Java Message Service (JMS) services. Any application that has JMS
dependencies, including the use of WebLogic Server application-
scoped JMS modules.

■ JAX-RPC-based web services.

■ Applications exposing or invoking asynchronous web services.

■ Use of WS-* specifications other than WS-Security (through OWSM
policies).

■ Remote invocations with a transport protocol other than HTTPS
(including plain-text HTTP).

■ Coherence applications managed or used through WebLogic Server
ActiveCache.

■ Direct use of any JRF API components other than ADF. For example, the
direct use of Oracle Platform Security Services (OPSS) and ODL APIs.

■ Direct use of Oracle JDBC Driver APIs.

■ Use of SQL statements specific to a database instance other than
Oracle Database 11g (11.2).

■ JavaMail API specification.

■ Direct modification of the Java command-line parameters, including
for the specification of system properties.

Appendix C: Technologies, Services, and APIs 251

■ Application-scoped JDBC modules.

■ Run-time OWSM policy attachments.

■ Setting of operating system environment variables, Java system
properties, and JVM/Server command-line parameters.

■ File system access by deployed applications.

■ EJB 2.x Entity Beans.

■ ADF features: Desktop Integration, mBeans, seeded customizations
or cross-session personalization (MDS), Mobile, Active Data
Services, Data Controls for BI, Essbase, BAM, JMX, and Business
Components services, interfaces (web services), and events.

■ Application deployment archives that have a size of more than 95MB.

Unsupported WebLogic Server 10.3.6
APIs and Capabilities
WebLogic Server 10.3.6 APIs and capabilites that are not supported on
Oracle Java Cloud. In some cases, the APIs are quite old, from the days prior
to WebLogic being an Oracle product. Also, it’s a best practice to avoid
using vendor-/server-specific APIs.

■ weblogic.wtc.*

■ com.bea.logging

■ com.bea.httppubsub

■ com.bea.security.*

■ commonj.*

■ weblogic.apache.*

■ weblogic.webservice.*

■ weblogic.cluster.*

■ weblogic.connector.*

■ weblogic.deploy.*

■ weblogic.management.*

252 Java EE Applications on Oracle Java Cloud

■ weblogic.rmi.*

■ weblogic.security.*

■ weblogic.time.*

■ weblogic.uddi.*

■ weblogic.workarea.*

■ weblogic.xml.*

■ .NET and C APIs for JMS

Whitelist Violations
You will encounter whitelist violations when an application uses
functionality from any of the following:

Java SE Java nonblocking IO
Java Networking
Executing a new process
Direct SQL connection
Java media
Java Mail
Java Compiler
Java RMI
Java Native Interface (JNI)
Java Desktop accessibility
JDK Log Management. (You can use JDK loggers to log messages.)
CORBA API (org.omg.*)
Overriding Java Security Manager

Java EE Remote EJB
Java Messaging Service
Remote JMX Management

Sources
http://docs.oracle.com/cloud/CSJSU/feat_implement.htm#CSJSU7149
http://docs.oracle.com/cloud/CSJSU/dev_app.htm#BCEEFEBF

http://docs.oracle.com/cloud/CSJSU/feat_implement.htm#CSJSU7149
http://docs.oracle.com/cloud/CSJSU/dev_app.htm#BCEEFEBF

253

Open Service Console accessing, 208
overview of, 210–211

APIs (application programming interfaces)
EntityManager, 219–220, 223
Google REST, 194
in Java. See Java APIs
not supported by OJC, 251–252
supported by OJC, 248–249
WebLogic, 82–83
WebLogic Server 10.3.6, 249, 251–252

App Engine, 19–20
Application Archiving, 207
Application Builder, 210
application programming interfaces (APIs). See

APIs (application programming interfaces)
application servers

compatibility of, generally, 244
Java EE 5 and, 244–245
Java EE 6, Full Platform and, 245
Java EE 6, Web Profile and, 245–246
Java EE 7, Full Platform and, 246
Java EE 7, Web Profile and, 246
in Java EE, generally, 4–6
sources for, 246

applications. See also web applications
in Apex, 205–206, 208, 210–211
APIs in. See APIs (application programming

interfaces)
building with NetBeans. See NetBeans
deploying, 165–167
developing with Enterprise Java Beans.

See Enterprise Java Beans (EJBs)
exceptions in, 176
in Java EE, generally, 3–4
servers for. See application servers
web. See web applications

archives
Application Archiving, 207
EAR files for, 62–63, 157, 165
JAR files for, 62–63, 157–159, 165
WAR files for, 62–63, 157–159, 165

Associated Services, 34–35, 209

Symbols

#{} expressions, 130, 145–146
${} expressions, 113
* (asterisk) wildcards, 70–71

A

absolute paths, 81
access injected session beans, 163–164
Add Business Method, 161
Add Operation screens, 184
Administration, 210
Ajax, 145–146, 149
Amazon

Cloud, 15, 19
Elastic Beanstalk, 20

amount attributes, 122–123
@ annotations

@Consumes, 197
@EJB, 163
@Local, 156, 160
@ManagedBean, 134, 137–138
@Path, 197
@PostConstruct, 169–170
@PreDestroy, 169–170
@Produces, 197–199
@Remote, 156
@Stateless, 160, 184
@WebMethod, 182
@WebService, 182
@WebServiceRef, 192
in JavaServer Faces, generally, 129
in JavaServer Pages, generally, 102

Ant, 41
Apache

HttpComponents, 199
Struts, 53, 128–129, 212–213
Tiles, 129

Apex (Oracle Application Express)
introduction to, 205–206

Index

254 Java EE Applications on Oracle Java Cloud

PaaS in, 13–14
private, 16
public, 16
SaaS in, 14
Services Control in. See Java Cloud

Services Control
standards and, 19
technologies for, 17–19

Cloud Remote. See Oracle Cloud Remote
CloudBees, 20
CloudWorld events, 26
CMP (Container-Managed Persistence), 212
comma-separated values (CSV) files, 44
comments, in JavaServer Pages, 110–111
commercial Java EE application servers, 4–6
Common Development and Distribution Licenses

(CDDLs), 50
compatibility

of application servers, 244–246
of Enterprise Java Beans, 152
with Java EE, 9–10
testing, 9

Compatibility Test Suite (CTS), 9
Compile option, 166
connectivity issues, 15
Container-Managed Persistence (CMP), 212
containers, in Enterprise Java Beans, 152
Contexts and Dependency Injection (CDI), 135
cookie values, 125
core tag libraries, 115–116, 142–143
costs of application servers, 5
count variables, 107–108
CRUD (Create-Read-Update-Delete), 194, 197,

229–232
CSS (Cascading Style Sheets), 146
CSV (comma-separated values) files, 44
CTS (Compatibility Test Suite), 9
custom tags, 112–113

D

data
datacenter, 94–95
exporting, 208
in Java Persistence API, 221–222
sharing, 75–78

databases
in cloud computing. See Oracle Database

Cloud
Java Database Connectivity for, 213
Provider and Database screens for, 215
support for, 23

DateTimeClientServlet, 190
DateTimeService, 181–186
declarations, 107
DELETE queries, 226–229
dependency injection, 163
deployment

Deploy Application for, 165–167
descriptors, 73–75
logs, 57
NetBeans for, 49–50, 59–60

asterisk (*) wildcards, 70–71
attributes

amount, 122–123
of directives, 105–106
MANDATORY, 173
REQUIRES_NEW, 173
in Servlets, 76–81, 91
in transaction management, 174
value, 137

auth method, 160
AuthenticateSessionBean, 159–163
autocomplete capability, 105
availability, in cloud computing, 15

B

backward compatibility, 6
beans

beans packages, 159, 172
in Enterprise Java Beans. See Enterprise

Java Beans (EJBs)
in NetBeans. See NetBeans
for sessions. See session beans

Beanstalk, 20
billing, 21
boolean, 160
browser cookies, 79–80
Build option, 165
bundled application servers, 6

C

Call Enterprise Bean, 162
callback methods, 169–170
Cascading Style Sheets (CSS), 146
CDDLs (Common Development and Distribution

Licenses), 50
CDI (Contexts and Dependency

Injection), 135
certification, 9, 187
chapter projects. See projects
checkedWelcome method, 140–142
classes directories, 62
Clean and Build option, 60, 165
Clean option, 165
clients. See web service clients
cloud computing

benefits of, 14–15
Cloud Compile option in, 166
CloudBees in, 20
concerns about, 15
databases in. See Oracle Database Cloud
definition of, 12
hybrid, 16
IaaS in, 12–13
Java EE and, generally, 1–2, 11–19, 24
Java EE vendors and alternatives in, 19–23
as leveler, 16
OJC for. See Oracle Java Cloud (OJC)
Oracle Cloud Remote in, 51, 54–57, 59–60
Oracle Messaging Cloud in, 153

Index 255

running, 164
session bean lifecycles in, 169–170
session beans in, generally, 154–155
session beans in Servlets in, 163–164
stateful session beans in, 155
stateless session beans in, 155
summary of, 177
transaction management in, 171–176
web services in, 184, 193

entities
adding from Servlets, 219–222
application development for, 214–219
CRUD JSF for, 229–232
entities package, 214
finding/updating, 222–223
introduction to, 213–214
managing, 219–220, 223

Entity Beans, 153
EntityManager API, 219–220, 223
event listeners, 65–66, 86–91
Exadata, 204
exception handling, 176–177
execution URIs, 71
Export Data, 208
expression language (EL), 113–114, 126
expressions

implicit objects and, 124–125
in JavaServer Pages, 108–109, 111
JSP Standard Tag Library for, 121–122

Extensible HTML (XHTML). See XHTML
(Extensible HTML)

Extensible Markup Language (XML). See XML
(Extensible Markup Language)

F

Facelets. See also JavaServer Faces (JSF), 129–134
faces-config.xml files, 140–141
false, 177
Feature On Demand, 51
fetchDateTime method, 183–184, 192–193
file generation, 58–59
file structures, 53–54, 58
filters, 65–66
filters packages, 83–86
Find and Update Device, 222–223
flexibility, of Oracle Java Cloud, 22
foreach tags, 113, 123–124
formatting tag library, 117–118
frameworks, in NetBeans, 53–54
Free Developer License, 5
functions tag library, 119–120

G

GAE (Google App Engine), 19–20
GenericServlet, 67
GET requests

in HttpServlet, 67–68
in RESTful web services, 194, 197–199
in web services, generally, 180

Oracle Cloud Remote Deployment for, 59
Redeploy buttons for, 175

depositing money, 171, 173–174
deprecation, 98
Device class, 214
DEVICE tables, 221–222
Device.java, 216–219
DeviceServlet, 219–220, 228
directives

include, 106
page, 105–106
taglib, 106
XML for, 106–107

directories
class, 62
library, 62
in NetBeans, 58–59, 61–62
WEB-INF, 61–62, 140
web service clients in, 189, 191

disk requirements, 6
distributed environments, 154
doctype, 133

E

EAR (enterprise archive) files
Enterprise Java Beans and, 157, 165
NetBeans and, 62–63

ease of use, 6, 22–23
EC2 (Elastic Compute Cloud), 13
Eclipse, 39–41
EclipseLink, 213–215, 221
EL (expression language), 113–114, 126
Elastic Beanstalk, 20
Elastic Compute Cloud (EC2), 13
Ellison, Larry, 26
else condition, 140
employees, 195, 197
EmployeeWS, 195–198
enterprise application technologies

in Java EE 5, 235
in Java EE 6, 237
in Java EE 7, 239–240

enterprise archive (EAR) files. See EAR
(enterprise archive) files

Enterprise Edition (Java EE). See Java EE
(Enterprise Edition)

Enterprise Java Beans (EJBs)
benefits of, 153–154
containers in, 152
developing applications with, generally,

157–159
exception handling in, 176–177
introduction to, 10, 151–152
JAR/EAR/WAR files in, 157, 159
Java Cloud Services Control and, 164–169
local/remote interfaces in, 155–156
NetBeans and, 164
new session beans in, 159–163
in Oracle Java Cloud, 153
packaging, 164
rollbacks in, 176–177

256 Java EE Applications on Oracle Java Cloud

Identity Domains
introduction to, 41–42
in Java Cloud Services Control, 94–95
in NetBeans, 59

Identity Self Service, 46
IDEs (integrated development environments)

autogenerating entities in, 229
ease of use, 22–23
NetBeans as, 50–51
Oracle Database Cloud and, 204
Oracle Java Cloud and, 35–36

implicit objects, 109–110
include directives, 106
index.jsp files

JSP scriptlets and, 107–108
NetBeans generating, 54–55, 101–104

index.xhtml files
in CRUD JSF, 231
in JavaServer Faces, 132–133, 137–139, 143

Infrastructure as a Service (IaaS). See IaaS
(Infrastructure as a Service)

injection of session beans, 163–164
integrated development environments (IDEs). See

IDEs (integrated development environments)
interfaces

application programming. See APIs
(application programming interfaces)

JNDI, 211–212, 216
in Servlets, 67
in session beans, 155–156

internals, 100

J

JAR (Java archive) files
Enterprise Java Beans and, 157, 159, 165
NetBeans and, 62–63

Java. See also specific implementations
compatibility with, generally, 23
editions of, generally, 2–3
Enterprise Edition of. See Java EE (Enterprise

Edition)
java in text boxes, 140
java.lang.String, 195
logs in, 91–95

Java APIs. See also APIs (application programming
interfaces)

in Java EE, 6–7
in Java SE, 28
for persistence. See Java Persistence API (JPA)
for RESTful Web Services. See JAX-RS (Java

API for RESTful Web Services)
for XML Web Services. See JAX-WS (Java API

for XML Web Services)
Java Cloud. See Oracle Java Cloud (OJC)
Java Cloud Service Jobs, 166–167
Java Cloud Services Control

Enterprise Java Beans and, 164–169
introduction to, 34
Libraries widget in, 120–121
logs in, 91–94

GetAttributes Servlets
processRequest method in, 77
RequestDispatcher and, 80–81
running, 78
session IDs and, 79–80

getEmployeeByName, 199–200
getTime method, in Ajax, 145–146
GlassFish

compatibility of, 244
EJB containers in, 152
Jersey and, 196
in NetBeans, 102–104
as open-source application server, generally, 5
Open Source Edition, 7
Oracle Cloud Remote and, 38
PaaS providers using, 20–21
Web Profile version of, 10

GNU General Public License (GPL) v2, 50
Google

App Engine (GAE), 19–20
REST API, 194
Trends, 11

GPL (GNU General Public License) v2, 50

H

h prefix, 134
HaaS (Hardware as a Service), 12–13
Hibernate, 53, 212–213, 215
history

of JavaServer Faces, 128
of JavaServer Pages, 98–99
of Oracle Java Cloud, 26

host values, 125
HTML (HyperText Markup Language). See also

XHTML (Extensible HTML)
Comment, 110–111
in Facelets, 133–134
in JavaServer Pages, 98, 100–105
in NetBeans, 61
in RESTful web services, 199

HTTP (HyperText Transfer Protocol)
HttpClient, 199
HttpComponents, 199
HttpServlet, 67–68, 72–73
HttpServletRequest, 73
HttpServletResponse, 73
HttpSession, 75–76, 79–80

hybrid clouds, 16
HyperText Markup Language (HTML). See HTML

(HyperText Markup Language)
HyperText Transfer Protocol (HTTP). See HTTP

(HyperText Transfer Protocol)

I

IaaS (Infrastructure as a Service)
in cloud computing, generally, 12–14
Java EE vendors and, 19–20
in Oracle Java Cloud, 26–27

Index 257

Java EE 7 and, 241
Java EE applications and, 3–4
whitelist violations and, 252

Java Virtual Machine (JVM), 3
JavaServer Faces (JSF)

Ajax and, 145–146
CRUD applications in, 229–232
Facelets in, 129–134
history of, 128
introduction to, 128
JavaServer Pages and, 98–99, 128
jsfclasses, 230
managed beans in, 134–142
NetBeans and, 53
on Oracle Java Cloud, 129
Struts and, 128–129
summary of, 150
templates in, 146–149
validation in, 142–144

JavaServer Pages (JSP)
comments in, 110–111
core tag library in, 115–116
custom tags in, 112–113
declarations in, 107
directives in, 105–107
expression language in, 113–114
expressions in, 108–109, 111
formatting tag library in, 117–118
functions tag library in, 119–120
implicit objects in, 109–110
include directive in, 106
internals in, 100
introduction to, 98
JavaServer Faces and, 128
JSP Comment, 110–111
JSTL libraries in, 114–120
lifecycle of, 100–101
NetBeans and, 54–55
on Oracle Java Cloud, 99–100
origin of, 98–99
page directive in, 105–106
scriptlets in, 107–108
Servlets and, generally, 99–100
Servlets code in, 101–105
SQL tag library in, 118–119
Standard Tag Library and. See JSTL

(JSP Standard Tag Library)
Struts and, 128–129
summary of, 126
taglib directives in, 106, 115
tags in, generally, 111–113
tags in, libraries of, 114–120
tags in, using, 120–126
versions of, 99
XML for directives in, 106–107
XML tag library in, 116–117

JAX-RS (Java API for RESTful Web Services)
introduction to, 194
version 1.1, fixing, 196–197, 199–200

JAX-WS (Java API for XML Web Services)
introduction to, 180
SOAP and, 182
web service clients and, 187, 190

Java Comment, 110–111
Java Community Process (JCP), 7–8
Java Database Connectivity (JDBC), 213
Java EE (Enterprise Edition). See also specific versions

APIs in, 6–7
application servers and, 4–6, 244–246
applications in, generally, 3–4
building applications in, generally, 51
cloud computing and. See cloud computing
commercial application servers in, 4–6
compatibility with, 9–10, 244–246
history of, 2–3
Java Community Process and, 8
open source application servers in, 4–6
profiles in, 10
reference implementation in, 6–7
sources for, 242
specifications supported, 7, 248–249
technologies for, 7, 233–242
vendors and alternatives, 19–23
Web Profile in. See Web Profile

Java EE (Enterprise Edition) 5
implementations compatible with, 244–245
JSR 244 and, 8
specifications supported in, 248–249
technologies for, 234–235

Java EE (Enterprise Edition) 6
Full Platform version of, 245
implementations compatible with, 245–246
JSR 316 and, 8, 235–237
specifications supported in, 248–249
technologies for, 236–237
Web Profile version of, 237–238, 245–246

Java EE (Enterprise Edition) 7
Full Platform version of, 246
implementations compatible with, 246
introduction to, 19
JSR 342 and, 8, 238–241
technologies for, 239–241
Web Profile version of, 241–242

Java Elastic Cloud (Jelastic), 20
Java Micro Edition (Java ME), 2–3
Java Naming and Directory Interface (JNDI),

211–212, 216
Java Persistence API (JPA)

adding entities from Servlets in, 219–222
entities in, generally, 213–214
entity application development in, 214–219
finding/updating entities in, 222–223
introduction to, 153, 212–213
jpacontroller packages, 230
persistence providers in, 213

Java Persistence Query Language (JPQL)
CRUD JSF for entities in, 229–232
introduction to, 223–224
SELECT NamedQuery in, 224–225
SELECT queries in, 225–226
UPDATE and DELETE queries in, 226–229

Java Specification Requests (JSRs). See JSRs (Java
Specification Requests)

Java Standard Edition (Java SE)
APIs in, 28
introduction to, 2

258 Java EE Applications on Oracle Java Cloud

in NetBeans, 55–59
Oracle Java Cloud, 91–95
query-service-logs, 94–95
(run), 56
system, 93

M

managed beans, 134–142, 145–146
management technologies

in Java EE 5, 235
in Java EE 6, 237
in Java EE 7, 240

MANDATORY attribute, 173
Maven, 41
McClanahan, Craig, 129
memory requirements, 6
message-driven beans, 153
Messaging Cloud, 153
Metrics, 34, 209
Micro Edition of Java, 2–3
MIME (Multipurpose Internet Mail Extensions), 72
Model-View-Controller (MVC), 128
MoneyTransferBean, 172–173
MoneyTransferServlet, 174–176
Multipurpose Internet Mail Extensions (MIME), 72
MVC (Model-View-Controller), 128
My Services, 32–35

N

NamedQuery, 224–225
navigation, 140–141
.NET, 17–18
NetBeans

autocomplete capability in, 105
building applications with, generally, 49–51
Clean and Build in, 60
cloud deployment in, 59–60
directories generated in, 58–59
directories in, 61–62
EAR files and, 62–63
EclipseLink in, 221
Enterprise Java Beans and, 157–160, 164
entity applications in, 214–216
Facelet Templates and, 146
files generated in, 58–59
first project in, building, 51–55
first project in, reviewing, 55–57
IDEs in, 35, 50–51
JAR files and, 62–63
JavaServer Faces and, generally, 132, 135
JavaServer Pages and, 101–105
JSF CRUD applications in, 230
JSF managed beans and, 141
Oracle Java Cloud and, 36–38
packaging applications in, 62
RESTful web service clients in, 199–200
RESTful web services in, 196, 199
Servlets in, 68–75
summary of, 63

JCP (Java Community Process), 7–8
JDBC (Java Database Connectivity), 213
JDeveloper, 35, 38–39
Jelastic (Java Elastic Cloud), 20
Jersey, 194, 196
JNDI (Java Naming and Directory Interface),

211–212, 216
JPA (Java Persistence API). See Java Persistence

API (JPA)
JPQL (Java Persistence Query Language). See Java

Persistence Query Language (JPQL)
JSESSIONID, 79
JSF (JavaServer Faces). See JavaServer Faces (JSF)
JSP (JavaServer Pages). See JavaServer Pages (JSP)
JSP Standard Tag Library (JSTL). See JSTL (JSP

Standard Tag Library)
JSRs (Java Specification Requests)

introduction to, 8–9
JSR 244, 234–235
JSR 316, 235–237
JSR 342, 238–241
overview of, 233–234
sources for, 242

JSTL (JSP Standard Tag Library)
custom tags vs., 112
introduction to, 111
in JavaServer Pages, 114–120
in weblogic.xml files, 120

JVM (Java Virtual Machine), 3

L

legal issues, 15
length validation, 143
leveler, cloud as, 16
libraries

of core tags, 115–116
directories of, 62
of formatting tags, 117–118
of functions tags, 119–120
JSTL, 114–120
of projects in EJB, 175
of SQL tags, 118–119
of tags in JavaServer Faces, 131, 134
of validator tags, 142–143
of XML tags, 116–117

licensing, 5, 50
lifecycle

CloudBees and, 20
of JavaServer Pages, 100–101
in Servlet interfaces, 67
of session bean, 169–170

listeners, 65–66
listeners packages, 86–91
local interfaces, 155–156
local WSDL files, 192
lock-ins, 15, 23
Lock/Unlock Service, 34, 207
LoginServlet, 162
logs

in Java Cloud Services Control, 91–94
LogFilter, 83–86

Index 259

Java EE vendors and, 19–20
JavaServer Faces on, 129
JavaServer Pages on, 99–100
JDeveloper and, 38–39
Maven and, 41
My Services in, 32–35
NetBeans and, 36–38, 52, 54–57
Oracle Database Cloud and, 211–212
Oracle WebLogic on, 5
PaaS in, 27
pricing of, 28–31
roles in, 41–47
SaaS in, 27
Service SDK in, 36–41
Servlets and. See Servlets
standards and, 19
subscriptions to, 22
summary of, 47
supported technologies/services/APIs in,

248–249
trial signup for, 32
unsupported technologies/services/APIs in,

250–252
users of, 41–47
web services supported by, 180
WebLogic server-specific APIs and, 249

Oracle JDeveloper, 35, 38–39
Oracle Messaging Cloud, 153
Oracle OpenWorld events, 26–27
Oracle Social Network (OSN), 26
Oracle Technology Network (OTN), 5, 9
Oracle WebLogic

APIs in, generally, 82–83
Oracle Java Cloud and, 5, 28–29
Server 10.3.6 APIs, 249, 251–252
Servlets and, 82–83

OSN (Oracle Social Network), 26
OTN (Oracle Technology Network), 5, 9
out tags, 113

P

PaaS (Platform as a Service)
benefits of, 23
definition of, 13–14
Java vendors and, 2, 19–21
in Oracle Java Cloud, 27
PHP hosting and, 18

packaging applications, 62, 164
page directives, 105–106
password, 160
pay as you go, 15
people, in cloud computing, 15
per minute statistics, 99
performance

of application servers, 6
in Java Cloud Services Control, 93
of JavaServer Pages, 100
of Servlets, 99–100

persistence
introduction to, 203–204
Java API for. See Java Persistence API (JPA)

Verify in, 60
WAR files and, 62–63
web application structures in, 60–62
web service clients in, 192–193
web services and, 182–183, 189

New Entity Class screens, 214
New Web Application screens, 52–53
no-interface view option, 156
non-core businesses, 15
NotWelcome, 140
NullPointerException, 176

O

OEPE (Oracle Enterprise Pack for Eclipse), 35–36
open/closed vendor lock-ins, 23
Open Service Console, 208
open source Java EE application servers, 4–6
OpenShift, 21
OpenWorld events, 26–27
Oracle accounts, 32
Oracle Application Express (Apex)

introduction to, 205–206
Open Service Console accessing, 208
overview of, 210–211

Oracle Cloud Remote
Deployment, 59
NetBeans and, 51, 54–57
Oracle Java Cloud and, 38

Oracle CloudWorld events, 26
Oracle Database Cloud

Apex and, 210–211
entities in, adding from Servlets, 219–222
entities in, CRUD JSF for, 229–232
entities in, finding/updating, 222–223
entities in, generally, 213–214
entity application development in, 214–219
exploring, 205–209
and Java Persistence API, generally, 212–213
Java Persistence Query Language (JPQL),

223–229
Oracle Java Cloud and, 28, 30, 205–206,

211–212
overview of, 204–205
persistence on, 203–204
persistence providers in, 213
SELECT NamedQuery in, 224–225
SELECT queries in, 225–226
summary of, 232
UPDATE and DELETE queries in, 226–229

Oracle Enterprise Pack for Eclipse (OEPE), 35–36
Oracle Exadata, 204
Oracle Java Cloud (OJC)

Ant and, 41
certification of, 10
constituents of, 26–27
Eclipse and, 39–41
Enterprise Java Beans in, 153
history behind, 26
IaaS in, 27
IDE integration in, 35–36
introduction to, 1, 21, 26–28

260 Java EE Applications on Oracle Java Cloud

relative paths, 81
remote interfaces, 155–156
reports, 6
Representational State Transfer (REST). See also

RESTful web services, 68, 197–199
RequestDispatcher, 80–82
REQUIRES_NEW attribute, 173
REST (Representational State Transfer), 68, 197–199
RESTful web services

clients in, 199–201
introduction to, 194
modifying REST resources for, 197–199
on Oracle Java Cloud, 195–196
rest packages, 195
RestClientServlet, 201

RI (reference implementation), 6–7, 9
rigidity, 15
roles, 41–47
rollbacks, 176–177
Ruby, 17–18
(run) logs, 56
running Enterprise Java Beans, 164
RuntimeException, 177

S

SaaS (Software as a Service), 14, 26–27
scalability, 15, 154
scriptlets, 107–108
Secure File Transfer Protocol (SFTP), 46, 211
security

in cloud computing, generally, 15
in Java EE 5, 235
in Java EE 6, 237
in Java EE 7, 240

SELECT NamedQuery, 224–225
SELECT queries, 225–226
Server and Settings sections, 52
Service SDK (Software Developer Kit)

Ant in, 41
Eclipse in, 39–41
introduction to, 36
JDeveloper in, 38–39
Maven in, 41
NetBeans in, 36–38
in Oracle Java Cloud, 36–41

serviceinstance, 94–95
Servlets

building, 68–75
class, 72–73
code for, 101–105
DateTimeClientServlet, 190
GetAttributes. See GetAttributes Servlets
HttpServlet, 67–68, 73
HttpServletRequest and, 73
HttpServletResponse and, 73
HttpSession and, 79–80
injecting session beans into, 163–164
interfaces in, 67
introduction to, 65–66
JavaServer Pages and, 99–105
LoginServlet, 162

persistence (Cont.)
JPQL for. See Java Persistence Query

Language (JPQL)
on Oracle Database Cloud,

generally, 204
providers, 213
.xml files, 216, 222

PHP (PHP Hypertext Preprocessor), 17–18
Plain Old Java Objects (POJOs)

Enterprise Java Beans as, 153
entities as, 213
JSF managed beans as, 134

Platform as a Service (PaaS). See PaaS (Platform as
a Service)

portability, 9
POST requests

in HttpServlet, 67–68
in RESTful web services, 194, 197
in web services, generally, 180

PostConstruct callbacks, 169–170
precompiling JSPs, 101
PreDestroy callbacks, 169–170
prefixes, 134
pricing, 21, 28–31
private clouds, 16
processRequest method, 76–77, 227–228
profiles. See also Web Profile, 10
Projects

libraries of, 175
view, 190
windows, 53–54

projects
Ch3WebApplication1, 51–59, 62–63
Ch4Servlet1, 69–75, 88–91
Ch5JavaServerPages1, 101–105
Ch6JSF1, 130–134
Ch7EJBMoneyTransfer, 171–176
Ch7Enterprise1, 158–163, 165–168
Ch8RestWebService, 195–201
Ch8SoapWebService, 181–186
Ch8SoapWebServiceClient, 187–194
Ch9JPA1, 214–219, 229–232
Ch9JPA1PU, 220

Provider and Database screens, 215
public clouds, 16
Public WebLogic Server 10.3.6 APIs, 249
PUT requests

as HTTP request method, 68
in RESTful web services, 194, 197
in web services, generally, 180

Python, 17–18

Q

query-service-logs, 94–95

R

Redeploy buttons, 175
reference implementation (RI), 6–7, 9
refreshing WSDL, 192

Index 261

T

Table Generation Strategy, 215, 222
tag handlers, 112
tag library descriptors (TLDs), 112
taglib directives, 106, 115
tags

core, 115–116
formatting, 117–118
functions, 119–120
in JavaServer Faces, 134
in JavaServer Pages, generally, 111–113
in JavaServer Pages, using, 120–126
JSTL libraries of, 114–120
SQL, 118–119
validator, 142–143
XML, 116–117

TCK (Technology Compatibility Kit), 7, 9
Team Development, 210
technologies

for cloud computing, generally,
14, 17–19

enterprise application, 235, 237,
239–240

management, 235, 237, 240
in Oracle Java Cloud, 22
specifications for, 7
unsupported, 250–252
view, 98, 128–129
web application, 235, 236, 239
web services, 234–235, 236, 240

Technology Compatibility Kit (TCK), 7, 9
templates, 146–149
text/html MIME type, 195
Tiles, 129
time

in Ajax, 145–146
DateTimeClientServlet, 190
DateTimeService, 181–186
fetchDateTime method, 183–184,

192–193
RuntimeException, 177

TLDs (tag library descriptors), 112
tooling, 22–23
transaction management

in Enterprise Java Beans, 154, 171–176
persistence and, 219–220

Trends, 11
trial signups, 32

U

unique identifiers (session IDs), 79–80
unsupported technologies/services/APIs,

250–252
UPDATE and DELETE queries, 226–229
URL patterns, 70
usage metrics, 34, 209
user, 94–95
username, 160
users, in Oracle Java Cloud, 41–47

MoneyTransferServlet, 174–176
RequestDispatcher and, 80–82
RESTful web service clients in, 201
servlets packages, 162, 174, 219
session management and, 79–80
SetAttributes. See SetAttributes Servlets
sharing data and, 75–78
summary of, 95
web service clients in, 189–193
WebLogic-specific APIs and, 82–83
weblogic.xml files and, 75
web.xml files and, 73–75

session beans
creating new, 159–163
injecting into Servlets, 163–164
interfaces in, 155–156
introduction to, 154
lifecycles of, 169–170
stateful, 155
stateless, 155

session management, 73, 79–80
SetAttributes Servlets

listeners and, 91
processRequest method in, 76
RequestDispatcher and, 80–81
running, 78
session IDs and, 78–80

SFTP (Secure File Transfer Protocol), 46, 211
shared libraries, 120
sharing data, 75–78
Single Sign On (SSO), 60
singleton session beans, 154
skill building, 23
SOAP (Simple Object Access Protocol)

development of, generally, 181–186
web service clients in, 187–194
web services in, 194
WSDL for, 186–187

Software as a Service (SaaS), 14, 26–27
Software Developer Kit (Service SDK). See Service

SDK (Software Developer Kit)
specifications. See also JSRs (Java Specification

Requests)
backward compatibility in, 6
reference implementation of, 6–7
supported by Java EE, 7, 9, 248–249

Spring Web MVC, 53
SQL tag library, 118–119
SQL Workshop, 210–211, 221, 228
SSO (Single Sign On), 60
standalone application servers, 6
standards, 19
state management, 154
stateful session beans, 155, 169–170
stateless session beans, 155, 169–170
Struts, 53, 128–129, 212–213
support services, 5
supported features in OJC, 22
supported specifications, 7, 9, 248–249
supported technologies. See technologies
supported web services, 180
system logs, 93

262 Java EE Applications on Oracle Java Cloud

technologies for, in Java EE 6, 236
technologies for, in Java EE 7, 240
WSDL, 186–187

Web Services Architecture group, 180
Web Services Description Language (WSDL). See

WSDL (Web Services Description Language)
WebListener, 83, 88–91
WebLogic. See Oracle WebLogic
WebLogic Server 10.3.6 APIs, 249, 251–252
weblogic.xml files, 63, 75
web.xml files

filter tags in, 84
in JavaServer Faces, 132
listener tags in, 91
in NetBeans, 60–63
in RESTful web services, 196
Servlets and, 73–75
in web services, generally, 185–186

Welcome pages, 139–141
WelcomeBean, 135–140
welcomeMsg, 107
whitelists

definition of, 28
scanning, 59
violations of, 165, 196, 252

withdrawing money, 171
wizdul, 185–186
World Wide Web Consortium (W3C), 180
ws packages, 181
wsclient packages, 187
WSDL (Web Services Description Language)

web service clients in, 189–193
web services in, 181, 186–187, 194

X

XHTML (Extensible HTML). See also index.xhtml
files

in Ajax, 145
in Facelets, 130–134
in NetBeans, 61
in templates, 146–148
welcomepage in, 138–139

XML (Extensible Markup Language)
Facelets and, 133
JavaServer Pages and, 100–101
JAX-WS for web services in, 180–182,

187–190
JSP directives as, 106–107
in NetBeans, 59–60
tag library, 116–117
web files in. See web.xml files
Web Services, 180–182, 187–190
weblogic files in. See weblogic.xml files

Z

ZIP files, 62–63, 157

V

validation, 142–144
value attributes, 137
vendors

dependence on, 15
lock-ins by, 23
PaaS, 2, 19–23
standing of, 22

Verify tool
in NetBeans, 60
for Oracle Java Cloud specifications, 196
for whitelist violations, 165, 196

view technologies, 98, 128–129
virtual machines (VMs), 12
virus scans, 59

W

W3C (World Wide Web Consortium), 180
WAR (web archive) files

Enterprise Java Beans and, 157, 159, 165
NetBeans and, 62–63

web applications. See also applications
APIs for. See APIs (application programming

interfaces)
building with NetBeans. See NetBeans
developing with EJBs. See Enterprise Java

Beans (EJBs)
screens for, 52–53
structures of, 60–62
technologies for, in Java EE 5, 235
technologies for, in Java EE 6, 236
technologies for, in Java EE 7, 239

web archive (WAR) files. See WAR (web archive)
files

WEB-INF directories, 61–62, 140
Web Profile

introduction to, 10
in Java EE 6, 237–238, 245–246
in Java EE 7, 241–242, 246

web service clients. See also web services
RESTful, 199–201
SOAP, 187–194
WSDL, 189–193

Web Service References, 191–192
web services

clients in. See web service clients
introduction to, 179–180
JAX-RS API for, fixing v.1.1, 196–197
JAX-RS API for, generally, 194
RESTful, building on OJC, 195–196
RESTful, clients in, 199–201
RESTful, generally, 194
RESTful, modifying REST resource for,

197–199
SOAP, 181–186, 194
summary of, 202
technologies for, in Java EE 5, 234–235

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Join the Largest
Tech Community

in the World
Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your professional network through
the Oracle ACE Program

Publish your technical articles – and
get paid to share your expertise

Join the Oracle Technology Network
Membership is free. Visit oracle.com/technetwork

@OracleOTN facebook.com/OracleTechnologyNetwork

http://www.oracle.com/technetwork
http://www.facebook.com/OracleTechnologyNetwork

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

oracleaces

@oracleace

blogs.oracle.com/oracleace B

http://www.oracle.com/technetwork/oracleace
http://www.oracle.com/oracleace
http://www.oracle.com/technetwork/oracleace

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

	Cover
	Title Page
	Copyright
	Contents
	Foreword
	Acknowledgments
	Introduction
	1 Java EE and Cloud Computing
	Java Editions
	Java EE Applications
	Application Servers
	Open Source vs. Commercial
	Reference Implementation

	API and Technology Specification
	Java Community Process (JCP) and Java EE
	Java EE Compatible

	Profiles
	Web Profile

	Cloud Computing
	Going Around in Circles
	What Is Cloud Computing?
	Why Cloud Computing?
	Concerns About Cloud Computing
	Private, Public, and Hybrid Clouds
	Cloud as a Leveler

	Java EE on the Cloud
	Competing Technologies: Alternatives to Java on the Cloud
	Standards and Java EE 7
	Java EE Vendors and Alternatives

	Summary

	2 The Oracle Java Cloud
	Oracle’s Cloud Foray
	Oracle Cloud Constituents
	SaaS
	IaaS
	PaaS

	Java Cloud
	Pricing
	Trial Signup
	My Services

	IDE Integration
	Oracle Java Cloud Service SDK

	Users and Roles
	Summary

	3 Build and Deploy with NetBeans
	Development IDE
	Why NetBeans?

	Building with Java EE Technologies
	First NetBeans Project
	What Happened?
	Files and Directories Generated
	The Cloud Deployment
	Clean and Build, Verify

	Web Application Structure
	Directories

	Packaging the Application
	We Are at WAR

	Summary

	4 Servlets, Filters, and Listeners
	Servlets
	Servlet Interface
	HttpServlet
	Servlet One
	Servlet Class
	HttpServletRequest
	HttpServletResponse
	web.xml
	weblogic.xml

	Sharing Data
	Session Management
	HttpSession

	RequestDispatcher
	WebLogic-Specific Servlet Capabilities on OJC

	Filters
	Listeners
	View Java Logs
	Summary

	5 JavaServer Pages, JSTL, and Expression Language
	The Origin of JSP
	JSP on the Oracle Java Cloud
	JSP Internals
	JSP Lifecycle
	Servlet Code
	JSP Directives
	JSP Declaration
	JSP Scriptlets
	JSP Expressions
	Implicit Objects
	JSP Comments

	Tags and Expressions
	Custom Tags
	Expression Language
	JSTL Libraries
	Using Tags in a JSP

	Summary

	6 JavaServer Faces
	From JSP to Struts to JSF
	JSF on the Oracle Java Cloud
	Facelets
	JSF Managed Beans
	Validation
	Ajax
	Templates
	Summary

	7 Enterprise JavaBeans (Session Beans)
	Containers
	EJB in OJC
	Why EJB?
	Session Beans
	Stateless
	Stateful

	Interfaces: Local or Remote
	Developing an Enterprise Application with EJBs
	New Session Bean
	Inject the Session Bean into the Servlet
	Package and Run from NetBeans
	Deploy Using the Java Cloud Services Control

	Lifecycle of a Session Bean
	Transaction Management
	Rollback and Exception Handling

	Summary

	8 Web Services
	Developing a SOAP Web Service
	WSDL
	Web Service Client

	RESTful Web Services Using JAX-RS API
	Building RESTful Web Services on the OJC
	JAX-RS 1.1 Fix
	Modify the REST Resource
	RESTful Web Service Client

	Summary

	9 Persistence Using the Oracle Database Cloud Service
	Persistence on the Oracle Cloud
	Oracle Database Cloud Service
	Explore Database Cloud
	Oracle Apex
	Java Cloud: Database Cloud Integration

	JPA
	Persistence Providers
	Entity
	Developing an Entity Application
	Add Entity from a Servlet
	Find and Update Entity
	Java Persistence Query Language
	CRUD JSF for Entity

	Summary

	A: Java EE Technologies and JSRs
	Java Platform, Enterprise Edition 5 (Java EE 5) JSR 244
	Platform, Enterprise Edition 6 (Java EE 6) JSR 316
	Java Platform, Enterprise Edition 6 (Java EE 6) Web Profile

	Java Platform, Enterprise Edition 7 (Java EE 7) JSR 342
	Java Platform, Enterprise Edition 7 (Java EE 7) Web Profile

	B: Application Servers Compatible with Java EE 5, 6, and 7
	Java EE 5–Compatible Implementations
	Java EE 6 Full Platform–Compatible Implementations
	Java EE 6 Web Profile–Compatible Implementations

	Java EE 7 Full Platform–Compatible Implementations
	Java EE 7 Web Profile–Compatible Implementations

	C: Supported and Unsupported Technologies, Services, and APIs
	Technologies and Services Supported
	Java EE 5 and 6 Specifications Supported
	Public WebLogic Server 10.3.6 APIs and Capabilities Supported

	Unsupported Features and APIs
	Unsupported WebLogic Server 10.3.6 APIs and Capabilities

	Whitelist Violations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

