
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

kindle:embed:0005?mime=image/jpg
http://www.allitebooks.org

Table	of	Contents
Introduction

Who	This	Book	Is	For
What	This	Book	Covers
How	This	Book	Is	Structured
What	You	Need	to	Use	This	Book
How	To	Read	This	Book
Conventions
Source	Code
Errata
P2P.Wrox.Com

Lesson	1	Introducing	Java
Why	Learn	Java?
Setting	the	Goals
The	Life	Cycle	of	a	Java	Program
JDK	and	JRE
Downloading	and	Installing	Java	SE

Installing	JDK	8	for	MAC	OS
Installing	JDK	8	in	Windows

Your	First	Java	Program:	Hello	World
Compiling	and	Running	Hello	World

Try	It
Lesson	Requirements
Step-by-Step

Lesson	2	Eclipse	IDE
Introducing	Eclipse	IDE
Downloading	and	Installing	Eclipse
Creating	Hello	Project	in	Eclipse
Creating	the	HelloWorld	Class	in	Eclipse
Java	Packages
Completing	Code	Generation
Additional	Materials
Try	It

Lesson	Requirements
Step-by-Step

Lesson	3	Object-Oriented	Programming	with	Java

www.allitebooks.com

http://www.allitebooks.org

Classes	and	Objects
Variables	and	Data	Types

Declaring	Variables
Final	Variables
Primitive	Data	Types

Variable	Scope
Wrappers,	Autoboxing,	and	Unboxing
Program	Comments

First	Useful	Program
Conditional	Statement	if
switch	Statement
Inheritance
Method	Overriding

Additional	Materials
Try	It

Lesson	Requirements
Hints
Step-by-Step

Lesson	4	Class	Methods	and	Constructors
Method	Arguments
Method	Overloading
Constructors
The	Keyword	super
The	Keyword	this
Passing	by	Value	or	by	Reference
Variable	Scopes
The	Keyword	static
Try	It

Lesson	Requirements
Step-by-Step

Lesson	5	Java	Syntax:	Bits	and	Pieces
Arrays

More	About	Strings	
Loops
Debugging	Java	Programs
More	About	if	and	switch	Statements

www.allitebooks.com

http://www.allitebooks.org

The	Flavors	of	if	Statements
Command-Line	Arguments
Try	It

Lesson	Requirements
Step-by-Step

Lesson	6	Packages,	Interfaces,	and	Encapsulation
Java	Packages
Encapsulation

Access	Levels
The	Keyword	final

final	Variables
final	Methods
final	Classes

Interfaces
Marker	Interfaces
Default	Methods	in	Interfaces
Static	Methods	in	Interfaces

Casting
Try	It

Lesson	Requirements
Step-by-Step

Lesson	7	Programming	with	Abstract	Classes	and	Interfaces
Abstract	Classes

Assignment
Solution	with	an	Abstract	Class

Polymorphism
Making	the	Interface	Solution	Polymorphic

Interfaces	Versus	Abstract	Classes
Try	It

Lesson	Requirements
Step-by-Step

Lesson	8	Introducing	the	GUI	with	Swing
Swing	Basics
Layout	Managers

A	Simple	Calculator	with	FlowLayout
A	Brief	Introduction	to	Layout	Managers

www.allitebooks.com

http://www.allitebooks.org

FlowLayout
GridLayout
BorderLayout
Combining	Layout	Managers
BoxLayout
GridBagLayout
CardLayout
Containers	with	Absolute	Layout
More	About	Swing	Widgets

Swing	GUI	Builders
Try	It

Lesson	Requirements
Step-by-Step

Lesson	9	Event	Handling	in	Swing	GUI
Introduction	to	Event	Listeners
Teaching	the	Calculator	to	Calculate

Registering	Components	with	ActionListener
Finding	the	Source	of	an	Event
How	to	Pass	Data	Between	Objects

Design	Pattern	Model-View-Controller
More	Swing	Listeners
How	to	use	Adapters
Inner	Classes

Anonymous	Inner	Classes
Try	It

Lesson	Requirements
Step-by-Step

Lesson	10	Error	Handling
Stack	Trace
Java	Exceptions
Exception	Hierarchy
Try/Catch	Blocks
Using	the	throws	Clause
Using	the	finally	Clause

Try-With-Resources
The	throw	Keyword

www.allitebooks.com

http://www.allitebooks.org

Creating	Your	Own	Exceptions
Try	It

Lesson	Requirements
Step-by-Step

Lesson	11	Introduction	to	Collections
Arrays	Revisited
Collection	Interfaces	From	java.util
Dynamic	Arrays	with	ArrayList
Classes	Hashtable	and	Hashmap

Class	Properties
Classes	Enumeration	and	Iterator
Class	LinkedList
Class	BitSet
Choosing	the	Right	Collection
Try	It

Lesson	Requirements
Step-by-Step

Lesson	12	Introduction	to	Generics
Generics	with	Classes
Declaring	Generics
Wildcards
Creating	Custom	Parameterized	Classes
Bounded	Type	Parameters
Generic	Methods
Try	It

Lesson	Requirements
Step-by-Step

Lesson	13	Lambda	Expressions	and	Functional	Style	Programming
Imperative	vs	Functional	Style
What’s	Lambda	Expression	

Functional	Interfaces
Methods	Versus	Functions	

Passing	Functions	to	Methods	
Iterating	Collections	with	forEach()	
Lambdas	Versus	Inheritance	and	Polymorphism

Eliminating	Inheritance	

www.allitebooks.com

http://www.allitebooks.org

Interfaces	Function	and	BiFunction
Try	It

Lesson	Requirements
Step-by-Step

Lesson	14	Working	with	I/O	Streams
Byte	Streams
Buffered	Streams
Character	Streams
Bringing	Together	GUI	and	I/O	Streams
Data	Streams
Utility	Classes	for	Working	with	Files

The	Class	File
NIO.2:	Using	Files,	Path,	and	Paths

What	NIO	Is	About
Try	It

Lesson	Requirements
Step-by-Step

Lesson	15	Java	Serialization
The	Class	ObjectOutputStream
The	Class	ObjectInputStream
The	Interface	Externalizable
Class	Versioning
Serializing	into	Byte	Arrays
Try	It

Lesson	Requirements
Step-by-Step

Lesson	16	Network	Programming	Basics
Reading	Data	from	the	Internet
Connecting	Through	HTTP	Proxy	Servers
How	to	Download	Files	from	the	Internet

Specifying	Command-Line	Parameters	for	FileDownload
The	Stock	Quote	Program
Socket	Programming

Why	Use	Sockets?
The	Stock	Quote	Server	with	Sockets

Try	It

www.allitebooks.com

http://www.allitebooks.org

Lesson	Requirements
Hints
Step-by-Step

Lesson	17	Concurrency	and	Multithreading
The	Class	Thread
The	Interface	Runnable

Eliminating	Inheritance
Sleeping	Threads
How	to	Kill	a	Thread
Thread	Priorities
Thread	Synchronization	and	Race	Conditions
Thread	States
Wait	and	Notify

Closures	in	Java	
Joining	Threads
Goodies	From	java.util.concurrent

ReentrantLock	Versus	Synchronized
Executor	Framework
A	Brief	Review	of	Concurrent	Collections

Swingworker	Thread
Try	It

Lesson	Requirements
Step-by-Step

Lesson	18	Introduction	to	GUI	with	JavaFX
JavaFX	Application	Basics

Using	the	E(fx)clipse	Plug-in
Layouts

A	Sample	Application	with	the	HBox	Layout
A	Sample	Application	with	the	GridPane	Layout
Skinning	with	CSS
Event	Handling
Properties	and	Binding
Try	It

Lesson	Requirements
Step-by-Step

Lesson	19	Developing	JavaFX	Calculator	and	Tic-Tac-Toe	

www.allitebooks.com

http://www.allitebooks.org

Designing	a	Calculator	with	Scene	Builder
Designing	the	Calculator	GUI	with	Scene	Builder
Handling	Events	in	the	Controller	Class

Recognizing	the	Source	of	the	Event
Passing	Data	from	View	to	Controller	and	Back

Programming	Tic-Tac-Toe
The	Game	Strategy
Designing	Tic-Tac-Toe	GUI	with	FXML	and	CSS
Implementing	Game	Strategy	in	Tic-Tac-Toe	Controller
Handling	the	Tic-Tac-Toe	Menu	Play
Tic-Tac-Toe:	What	to	Try	Next

JavaFX	on	the	Web	and	Mobile	Devices
Try	It

Lesson	Requirements
Step-by-Step

Lesson	20	Stream	API
Stream	Basics

Intermediate	and	Terminal	Operations
Parallel	Versus	Sequential	Processing

Sorting	Collections	and	Streams		
Sorting	Java	Collections
Sorting	Streams

Other	Stream	Sources
Creating	Finite	Size	Streams
Creating	Infinite-Size	Streams

Short-Circuit	Operations
Try	It

Lesson	Requirements
Step-by-Step

Lesson	21	Working	with	Relational	DBMS	Using	JDBC
JDBC	Driver	Types
Installing	Derby	DB	and	Creating	a	Database
Sample	JDBC	Program
Processing	Result	Sets
The	PreparedStatement	Class
The	CallableStatement	Class

www.allitebooks.com

http://www.allitebooks.org

The	ResultSetMetaData	Class
Scrollable	Result	Sets	and	Rowset
Transactional	Updates
Connection	Pools	and	DataSource
Try	It

Lesson	Requirements
Hint
Step-by-Step

Lesson	22	Rendering	Tabular	Data	in	the	GUI
JTable	and	the	MVC	Paradigm
The	Model

Mandatory	Callbacks	of	Table	Models
Optional	Callbacks	of	Table	Models

Introduction	to	Renderers
Summary
Try	It

Lesson	Requirements
Step-by-Step

Lesson	23	Annotations	and	Reflection
Javadoc	Annotations
Java	Annotations	Basics

@Override
@Deprecated
@Inherited
@FunctionalInterface
@Documented

Custom	Annotations
Reflection
Run-Time	Annotation	Processing
Summary
Try	It

Lesson	Requirements
Step-by-Step

Lesson	24	Remote	Method	Invocation
Developing	Applications	with	RMI
Defining	Remote	Interfaces

Implementing	Remote	Interfaces
Registering	Remote	Objects
Writing	RMI	Clients
Security	Considerations
Finding	Remote	Objects
Try	It

Lesson	Requirements
Hints
Step-by-Step

Lesson	25	Java	EE	7	Overview
The	Big	Picture

JCP,	JSR,	and	Other	Acronyms
Tiers	of	Java	EE	Applications
Containers	Versus	Application	Servers

Profiles	and	Pruning
Why	Java	EE?
Try	It

Lesson	Requirements
Step-by-Step

Lesson	26	Programming	with	Servlets
The	Big	Picture
The	Thin	Client
How	to	Write	a	Servlet
How	to	Deploy	a	Servlet
Configuring	Glassfish	in	Eclipse	IDE
How	to	Create	a	Servlet	in	Eclipse

Deploying	a	Web	Application	as	WAR
Browser-Servlet	Data	Flow
HTTP	Get	and	Post	Requests
Session	Tracking

Cookies
URL	Rewriting
Server-Side	HttpSession

Filters
Asynchronous	Servlets
Try	It

Lesson	Requirements
Step-by-Step

Lesson	27	JavaServer	Pages
Embedding	Java	Code	into	HTML
Implicit	JSP	Objects
Overview	of	the	JSP	Tags

Directives
Declarations
Expressions

Scriptlets
Comments
Standard	Actions

Error	Pages
Java	Beans

Using	JavaBeans	in	JSP
How	Long	Does	a	Bean	Live?

Loading	JSP	from	Servlets
Tag	Libraries
JSTL
Try	It

Lesson	Requirements
Step-by-Step

Lesson	28	Developing	Web	Applications	with	WebSockets
HTTP	Drawbacks

HTTP	Hacks	for	Server-Side	Data	Push
Client-Server	Communication	with	Websockets

Web	Browser	as	a	WebSocket	Client	
Communication	with	the	Server	Using	WebSockets
Sending	Messages
Receiving	Messages	Using	@OnMessage

Encoders	and	Decoders
Publishing	to	All	Clients
Try	It

Lesson	Requirements
Step-by-Step

Lesson	29	Introducing	JNDI

Naming	and	Directory	Services
Using	the	Class	InitialContext	

Getting	a	Reference	to	InitialContext
Injecting	JNDI	Resources

Administering	JNDI	Objects	in	Glassfish
Datasource	and	JNDI
Lightweight	Directory	Access	Protocol
Try	It

Lesson	Requirements
Step-by-Step

Lesson	30	Introducing	JMS	and	MOM
Messaging	Concepts	and	Terminology
Two	Modes	of	Message	Delivery
Introducing	OpenMQ	MOM
JMS	API	Overview

Types	of	Messages
How	to	Send	a	Message	Directly	to	MOM
How	to	Receive	a	Message	Directly	from	MOM
How	to	Publish	a	Message
How	to	Subscribe	for	a	Topic
Message	Acknowledgments	and	Transactions	Support
Message	Selectors

Sending	Messages	from	Java	EE	Containers	
Administering	JMS	Objects	in	GlassFish

Try	It
Lesson	Requirements
Hints
Step-by-Step

Lesson	31	Introduction	to	Enterprise	JavaBeans
Who	Needs	EJB	Containers?
Types	of	EJBs
Stateless	Session	Beans

The	Bean
The	Client’s	View
Asynchronous	Methods	and	Concurrency

Stateful	Session	Beans

Singleton	Beans
Deploying	EJB
Message-Driven	Beans
EJB	and	Transactions	
Timer	Service
Summary
Try	It

Lesson	Requirements
Hint
Step-by-Step

Lesson	32	Overview	of	the	Java	Persistence	API
The	Big	Picture
Mapping	Objects	to	Database	Tables
Querying	Entities

JPQL
Criteria	API

Entity	Manager
Bean	Validation
Try	It

Lesson	Requirements
Step-by-Step

Lesson	33	Working	with	RESTful	Web	Services
The	Soap	Web	Services
The	RESTful	Web	Services
Working	with	JSON-Formatted	Data	

Reading	JSON	with	the	Streaming	API
Writing	JSON	with	the	Streaming	API
Writing	JSON	with	the	Object	Model	API

The	RESTful	Stock	Server
Creating	the	Application
Creating	the	Java	Bean	Stock
Creating	the	Endpoint	StockService
Creating	RESTFful	Clients

Contexts	and	Dependency	Injection
Try	It

Lesson	Requirements

Hints
Step-by-Step

Lesson	34	Java	Logging	API
Java	Logging	API

Hello	World	with	the	Java	Logging	API
Using	Handlers	and	Setting	Log	Levels
Formatters	and	Filters

Logging	Frameworks
Try	It

Lesson	Requirements
Step-by-Step

Lesson	35	Introduction	to	Unit	Testing	with	JUnit	Framework
Introduction	to	JUnit

Installing	JUnit
Changing	the	Default	Directory	Structure	in	Eclipse
Your	First	JUnit	Test	Case	
JUnit	Annotations
Applying	Annotations	for	Testing	Tax	
Test	Suites
JUnit	Test	Runners

Try	It
Lesson	Requirements
Step-by-Step

Lesson	36	Build	Automation	with	Gradle
Hello	World	in	Ant	
Hello	World	in	Maven
Gradle	Basics

Hello	World	in	Gradle
Changing	Gradle	Conventions
Managing	Dependencies	with	Gradle

Repositories
Dependencies	and	Configurations

Using	Gradle	in	Eclipse	IDE
Gradle	Eclipse	Plug-ins
Eclipse	IDE	and	Gradle

Try	It

Lesson	Requirements
Step-by-Step

Lesson	37	Java	Technical	Interviews
Getting	the	Interview
Doing	Well	at	the	Interview
Considering	the	Offer
Interviewing	Enterprise	Developers
To	Get	or	Not	to	Get	Certified?
Technical	Questions	and	Answers
Epilogue
End	User	License	Agreement

List	of	Illustrations
Figure	1-1:	Checking	the	Java	version	in	MAC	OS

Figure	1-2:	Java	location	is	added	to	the	Path	variable	in	Windows

Figure	1-3:	Checking	the	Java	version	in	Windows

Figure	1-4:	Compiling	and	running	HelloWorld

Figure	2-1:	The	Java	EE	perspective	in	Eclipse	IDE	workbench

Figure	2-2:	The	Java	perspective	in	Eclipse	IDE	workbench

Figure	2-3:	Creating	a	Java	project	in	Eclipse	(step	1)

Figure	2-4:	Creating	a	Java	project	in	Eclipse	(step	2)

Figure	2-5:	The	project	Hello	is	created

Figure	2-6:	Creating	a	HelloWorld	class	in	Eclipse

Figure	2-7:	The	auto-generated	code	of	the	HelloWorld	class

Figure	2-8:	The	output	of	the	program	is	shown	in	the	Console	view

Figure	2-9:	Ctrl-Space	shows	context-sensitive	proposals	and	help

Figure	3-1:	Instantiating	two	Car	objects	

Figure	4-1:	JavaDoc	for	the	PrintStream	class

Figure	5-1:	Debugger	paused	at	the	breakpoint

Figure	5-2:	The	Debug	View	tab

Figure	5-3:	A	snapshot	of	a	Debug	perspective	

Figure	8-1:	HelloWorld	on	Windows	(left)	and	Mac	OS	(right)

Figure	8-2:	Running	the	SimpleCalculator	class

Figure	8-3:	Resizing	the	window	of	SimpleCalculator

Figure	8-4:	Running	the	SimpleCalculatorGrid

Figure	8-5:	Resizing	SimpleCalculatorGrid

Figure	8-6:	The	Windows	7	Calculator

Figure	8-7:	Calculator	with	combined	layouts

Figure	8-8:	GridBagConstraints	in	Calculator

Figure	8-9:	Tab	folder	as	a	card	layout	example

Figure	9-1:	A	message	box	with	JOptionPane

Figure	9-2:	MVC	in	Calculator

Figure	9-3:	GUI	event	loop

Figure	9-4:	The	Calculator	GUI

Figure	10-1:	Figure	10.1.	Sample	Exceptions	hierarchy	with	custom	exception

Figure	11-1:	Figure	11-1.	Core	Collection	Interfaces	

Figure	12-1:	Figure	12-1.	The	bike	store	class	hierarchy

Figure	12-2:	Figure	12-2.	A	signature	of	a	generic	method	

Figure	13-1:	Parts	of	a	lambda	expression

Figure	13-2:	Figure	13-2.	Extending	Person	and	implementing	Payable

Figure	14-1:	Running	the	TaxGuiFile	program

Figure	16-1:	Figure	16-1.	The	Apple’s	stock	in	November	of	2014

Figure	18-1:	Adding	the	location	of	the	E(fx)clipse	plug-in

Figure	18-2:	Selecting	the	plug-in’s	components	for	installation

Figure	18-3:	The	newly	generated	JavaFX	project

Figure	18-4:	Running	the	HBoxSample

Figure	18-5:	The	Sign	In	window

Figure	18-6:	The	styled	Sign	In	window

Figure	18-7:	The	Sign	In	window	with	event	handlers

Figure	18-8:	Binding	in	action

Figure	19-1:	The	calculator

Figure	19-2:	Configuring	a	new	JavaFX	project	in	Eclipse	

Figure	19-3:	The	generated	project	Lesson19

Figure	19-4:	Calculator.fxml	in	Scene	Builder

Figure	19-5:	The	TextField	control	is	placed	in	the	TOP	area

Figure	19-6:	Adding	the	GridPane	to	the	CENTER.

Figure	19-7:	The	4x6	GridPane	under	the	TextField

Figure	19-8:	Setting	Hgap,	Vgap,	and	Padding	properties	of	the	GridPane

Figure	19-9:	The	button	MC	added	to	the	top	left	grid	cell

Figure	19-10:	All	buttons	in	the	grid

Figure	19-11:	The	Calculator	view	after	entering	the	number	159.23

Figure	19-12:	The	BorderPane	layout	with	the	menu	bar	and	the	3x3	grid

Figure	19-13:	TicTacToe	with	the	menu	bar	and	the	empty	grid

Figure	19-14:	TicTacToe	with	the	focus	border	on	the	first	button

Figure	19-15:	TicTacToe	without	the	focus	border	on	the	first	button

Figure	19-16:	The	game	after	the	three	clicks	on	the	buttons

Figure	19-17:	TicTacToe	with	the	styled	button	labels

Figure	19-18:	Highlighting	the	winning	combination	with	gradient	colors

Figure	22-1:	Running	MyFrame	with	no	column	titles

Figure	22-2:	Running	MyFrame	with	column	titles

Figure	22-3:	Running	MyFrame	with	custom	price	renderer

Figure	24-1

Figure	25-1:	Architecting	Java	EE	applications

Figure	25-2:	Starting	GlassFish	from	the	Terminal	window	in	Mac	OS

Figure	25-3:	The	GlassFish	admin	console

Figure	26-1:	A	sample	client-servlet	data	flow

Figure	26-2:	Switching	to	Java	EE	perspective	in	Eclipse

Figure	26-3:	Configuring	a	new	server	in	Eclipse

Figure	26-4:	Download	server	adapters

Figure	26-5:	Installing	GlassFish	Tools	for	Luna	from	Eclipse	Marketplace

Figure	26-6:	Configuring	GlassFish	in	Eclipse

Figure	26-7:	Three	servers	configured	in	Eclipse

Figure	26-8:	Dynamic	Web	Project	Structure

Figure	26-9:	Changing	the	URL	mapping	for	a	servlet

Figure	26-10:	Running	the	servlet	in	Eclipse	internal	browser

Figure	26-11:	Changing	the	presentation	of	a	web	page	from	the	servlet

Figure	26-12:	Opening	ShoppingCart.html	deployed	on	the	server

Figure	26-13:	The	web	page	after	adding	four	books	to	the	shopping	cart

Figure	27-1:	Viewing	the	page	as	you’re	adding	tags

Figure	27-2:	Runninng	index.jsp	in	an	Eclipse	internal	browser

Figure	27-3:	Running	MyCalculator.jsp

Figure	27-4:	Running	GetPriceQuote.html

Figure	28-1:	Monitoring	AJAX	requests	in	the	Chrome	browser

Figure	28-2:	Monitoring	WebSocket	frames

Figure	28-3:	The	handshake	HTTP	headers

Figure	28-4:	Encoders	and	decoders	in	the	message	exchange

Figure	28-5:	Testing	decodersdemo.html

Figure	28-6:	Three	web	clients	get	current	time	published	by	a	WebSocket	endpoint

www.allitebooks.com

http://www.allitebooks.org

Figure	29-1:	GlassFish	Administration	Console

Figure	29-2:	JDBC	connection	pools	in	GlassFish

Figure	29-3:	DerbyPool	is	configured	to	have	from	8	to	32	connections

Figure	29-4:	Additional	Properties	of	the	connection	pool

Figure	30-1:	Brokerage	company	communicates	with	a	stock	exchange	via	MOM	

Figure	30-2:	P2P	messaging

Figure	30-3:	Pub/sub	messaging

Figure	30-4:	Open	MQ	console	with	newly	created	StockBroker

Figure	30-5:	Configuring	a	destination	in	Open	MQ

Figure	30-6:	Bringing	together	JMS,	Java	EE	,	and	MOM	

Figure	30-7:	JMS	Physical	Destinations	in	GlassFish

Figure	30-8:	Mapping	JNDI	name	to	a	physical	queue

Figure	30-9:	Configuring	JMS	connection	factory

Figure	30-10:	Java	EE	message	sender	and	a	standalone	receiver

Figure	31-1:	Running	the	servlet,	an	EJB	client

Figure	31-2:	Creating	an	EJB	with	a	business	interface

Figure	32-1:	A	fragment	of	the	JPA	project	configuration	window

Figure	32-2:	Newly	generated	Eclipse	JPA	project	with	EclipseLink	support

Figure	32-3:	The	Data	Source	Explorer	View

Figure	32-4:	Configuring	new	connection	profile

Figure	32-5:	Verifying	that	the	table	Employee	exists

Figure	32-6:	Sampling	the	data	from	a	table

Figure	32-7:	Generating	an	entity	from	the	existing	table

Figure	33-1:	Parsing	the	URI	with	annotations

Figure	33-2:	Getting	the	stock/IBM	resource	using	Postman	REST	Client

Figure	33-3:	Added	new	stock	using	the	POST	request

Figure	35-1:	New	Eclipse	project	with	modified	directory	structure

Figure	35-2:	Creating	a	new	JUnit	Test	Case	in	Eclipse

Figure	35-3:	The	first	test	failed:	Not	yet	implemented

Figure	35-4:	Creating	a	test	suite	in	Eclipse

Figure	35-5:	Running	a	test	suite	in	Eclipse

Figure	35-6:	Running	TaxCommandLineRunner	in	Mac	OS

Figure	35-7:	Invoking	org.junit.runner.JUnitCore	directly

Figure	36-1:	Ant	view	in	Eclipse	IDE	

Figure	36-2:	Maven-generated	project

Figure	36-3:	The	target	directory	after	running	the	phase	package

Figure	36-4:	Running	the	Gradle	build	command	the	first	time	

Figure	36-5:	Running	Gradle	build	again

Figure	36-6:	The	Hello	World	project	after	running	the	Gradle	build	task	

Figure	36-7:	Running	the	build	after	changing	Gradle’s	defaults

Figure	36-8:	Running	Gradle	results	in	an	exception

Figure	36-9:	Derby	Client	at	Maven	Central

Figure	36-10:	Running	Gradle	dependencies	shows	available	configurations

Figure	36-11:	Gradle’s	run	task	downloads	dependency	derbyclient-10.11.1.1.jar

Figure	36-12:	The	content	of	the	derbySample.jar

Figure	36-13:	Getting	employees	from	Derby	DB	database	

Figure	36-14:	Gradle-generated	project	in	Eclipse

Figure	36-15:	Gradle	Tasks	View	in	Eclipse	IDE

Introduction
Thank	you	for	considering	learning	Java	with	the	second	edition	of	my	book.	This	book
may	look	thick,	but	it’s	rather	thin	given	the	number	of	topics	covered,	and	it	comes	with
well-produced	and	helpful	videos.	

I	like	this	24-Hour	Trainer	series	from	Wiley	Publishing.	This	is	not	to	say	that	you	can
learn	the	software	covered	in	these	books	within	24	hours.

It’s	about	having	a	trainer	that’s	with	you	24	hours	a	day.	Each	book	in	this	series,	which
is	accompanied	by	a	set	of	videos,	contains	a	minimum	of	theory	to	get	you	started	on	a
subject	that	is	new	to	you.

This	book	comes	with	more	than	six	hours	of	Java	programming	screencasts	that
demonstrate	modern	concepts,	techniques,	and	technologies	in	a	way	that	facilitates
learning	and	promotes	a	better	understanding	of	the	development	process.

Software	developers	are	often	categorized	into	junior,	mid-level,	and	senior	developers.	If
you	master	all	the	materials	of	this	book,	rest	assured	that	you	will	have	achieved	the
technical	skills	of	a	mid-level	Java	developer.		I	often	run	technical	interviews	for	the
company	I	work	for,	and	I	would	be	happy	if	a	candidate	for	a	mid-level	position	could
demonstrate	an	understanding	of	all	the	topics	covered	in	this	book.		

Who	This	Book	Is	For
This	book	is	for	anyone	who	wants	to	learn	how	to	program	with	the	Java	language.	No
previous	programming	experience	is	expected.

This	tutorial	can	be	used	by	Java	developers	looking	for	simple	working	examples	that
use	certain	features	of	the	language.

Accomplished	Java	developers	can	also	use	this	book	as	a	refresher	while	preparing
for	a	technical	job	interview.

This	tutorial	can	be	used	by	university	students	who	are	interested	in	learning	from	a
practitioner	who	has	spent	25-plus	years	developing	enterprise	software	for	a	living.

University	professors	should	appreciate	the	fact	that	each	lesson	ends	with	a	Try	It
section—a	prepared	assignment	for	each	lesson.	Solutions	to	these	assignments	are
provided	as	well.

This	book	is	a	tutorial,	but	not	in	an	academic	sense.	It’s	written	by	a	practitioner	and	is
for	practitioners.

What	This	Book	Covers
To	be	called	a	Java	developer,	a	person	has	to	know	not	only	the	core	syntax	of	this
programming	language,	but	also	the	set	of	server-side	technologies	called	Java	EE
(Enterprise	Edition).	This	book	covers	both.	At	the	time	of	this	writing,	the	latest	version
of	core	Java	is	8	and	the	latest	release	of	Java	EE	is	7.	These	are	the	versions	covered	in
this	book.

Java	is	a	general-purpose	language—you	can	program	applications	that	run	independently
on	the	user’s	computer,	and	applications	that	connect	to	remote	servers.	You	can	program
applications	that	run	exclusively	on	the	server.	You	can	use	Java	for	writing	applications
for	mobile	phones	and	programming	games.	We	live	in	the	Internet	of	Things	(IoT)	era,
and	Java	can	be	embedded	into	sensors	inside	cars	or	in	household	appliances.

The	bulk	of	this	book	covers	Java	programming	syntax	and	techniques	that	can	be	used	on
both	users’	computers	and	the	servers.	Nine	lessons	are	dedicated	to	Java	EE	technologies
used	for	Java	programs	that	run	on	servers.	The	final	lesson	is	dedicated	to	the	process	of
getting	prepared	for	Java	technical	job	interviews	for	those	who	are	interested	in	applying
for	a	job	as	a	Java	software	developer.

How	This	Book	Is	Structured
This	book	is	a	tutorial.	Each	lesson	walks	you	through	how	to	use	certain	elements	and
techniques	of	the	Java	language	or	gives	an	introduction	to	the	server-side	Java	EE
technologies.	The	Try	It	sections	serve	as	continuations	of	materials	explained	in	the
lessons.	The	screencasts	that	come	with	the	book	usually	illustrate	how	to	complete	the
assignments	from	Try	It	sections.

You	can	choose	to	read	the	lesson	and	then	try	to	run	the	examples	and	work	on	the	lesson
assignment,	or	you	can	read	the	lesson,	watch	the	video,	and	then	try	to	do	the	assignment
on	your	own.

The	lessons	are	short	and	to	the	point.	The	goal	is	to	explain	the	material	quickly	so	you
can	start	applying	it	hands-on	as	soon	as	possible.	Some	readers	may	feel	that	more
explanation	of	certain	subjects	are	required;	you	are	encouraged	to	do	some	extra	research.
There	are	lots	and	lots	of	online	materials	available	on	any	Java-related	subject,	but	the
coverage	of	the	material	given	in	this	book	definitely	helps	in	understanding	what	to	focus
on	and	what	to	look	for.

What	You	Need	to	Use	This	Book
To	run	the	examples	and	complete	the	assignments	from	this	book,	you	do	not	need	to
purchase	any	software—freely	available	software	is	used	here.	Installing	Java
Development	Kit	and	Eclipse	Integrated	Development	Environment	(IDE)	is	explained	in
the	first	two	lessons,	and	this	is	all	you	need	to	get	started.	In	Lesson	21	you	download	an
open	source	database	management	system	called	Derby	DB.	In	Lesson	25	you	install	Java
Application	Server	GlassFish,	which	is	used	for	explanation	of	the	Java	EE	(server-side)
technologies	covered	in	Lesson	25	through	Lesson	33.	Finally,	in	Lesson	36	you	install
Gradle—the	modern	build-automation	tool	used	by	professional	Java	developers.
Whenever	you	need	to	download	certain	software,	detailed	instructions	are	given	in	the
book	and/or	in	the	screencasts.

From	the	hardware	perspective,	you	can	use	either	a	PC	running	Windows	or	one	of	the
Apple	computers	running	Mac	OS	X.	Linux	fans	are	also	able	to	run	all	book	samples.
You	should	have	at	least	2GB	of	RAM	on	your	computer	to	run	all	code	examples	from
this	book,	but	adding	more	memory	can	make	your	Java	compiler	and	Eclipse	IDE	work
faster.

How	To	Read	This	Book
This	book	is	a	tutorial,	and	I	assume	in	each	lesson	that	you	are	already	familiar	with	the
materials	from	the	lessons	that	came	before	it.	If	you	are	new	to	Java,	I	highly	recommend
that	you	read	this	book	sequentially.	Typically,	I	give	you	just	a	little	theory,	followed	by
the	working	code	that	you	can	either	read	or	use	for	trying	the	concept	in	a	hands-on
mode.	

Each	lesson	except	the	last	one	has	a	corresponding	video	screencast	that	shows	you	how
to	work	on	the	assignment	from	the	Try	It	section	of	the	lesson,	run	code	samples,	or
simply	install	and	configure	some	software.	Ideally,	you	should	try	to	do	all	the
assignments	from	the	Try	It	sections	on	your	own	and	use	the	videos	only	if	you	get	stuck
or	don’t	understand	the	instructions.	But	if	you	prefer	to	learn	by	following	the	instructor,
just	watch	the	video	first	and	then	try	to	repeat	the	same	actions	on	your	own.	Whatever
works	is	fine.

Java	is	a	multiplatform	language,	and	programs	written	for	Microsoft	Windows,	say,
should	work	the	same	way	in	Mac	OS	X	or	on	Linux	computers.	I’m	using	a	Mac,	but	I
also	have	special	software	that	enables	me	to	run	Microsoft	Windows.	In	this	book	I	use
the	open-source	Eclipse	Integrated	Development	Environment,	which	exists	on	all	major
platforms	and	looks	pretty	much	the	same	on	each.	So	regardless	of	your	preferred
operating	system,	you’ll	be	able	to	run	all	the	code	samples	from	this	book.

Conventions
To	help	you	get	the	most	from	the	text	and	keep	track	of	what’s	happening,	I’ve	used	a
number	of	conventions	throughout	the	book.

NOTE			Notes,	tips,	hints,	tricks,	and	asides	to	the	current	discussion	are	offset	and
placed	in	italic	like	this.

TIP			References	like	this	one	point	you	to	the	URL	to	watch	the	instructional	video
that	accompanies	a	given	lesson.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	filenames,	URLs,	and	code	within	the	text	like	so:	persistence.properties.

We	present	code	like	the	following:

We	use	a	monofont	type	with	no	highlighting	for	most	code	examples.

www.allitebooks.com

http://www.allitebooks.org

Source	Code
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in	all	the
code	manually	or	to	use	the	source	code	files	that	accompany	the	book.	All	of	the	source
code	used	in	this	book	is	available	for	download	on	the	book’s	page	at	www.wrox.com.

When	you’re	at	the	site,	simply	click	the	Download	Code	link	on	the	book’s	detail	page	to
obtain	all	the	source	code	for	the	book.

After	you	download	the	code,	just	decompress	it	with	your	favorite	compression	tool.
Alternatively,	you	can	go	to	the	main	Wrox	code	download	page	at
www.wrox.com/dynamic/books/download.aspx	to	see	the	code	available	for	this	book	and
all	other	Wrox	books.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

Errata
Wiley	Publishing	and	Wrox	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text
or	in	the	code.	However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in
one	of	our	books,	like	a	spelling	mistake	or	faulty	piece	of	code,	we	would	be	very
grateful	for	your	feedback.	By	sending	in	errata	you	may	save	another	reader	hours	of
frustration,	and	at	the	same	time	you	will	be	helping	us	provide	even	higher	quality
information.

To	find	the	errata	page	for	this	book,	go	to	www.wrox.com	and	locate	the	title	using	the
Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click	the	Book	Errata
link.	On	this	page	you	can	view	all	errata	that	has	been	submitted	for	this	book	and	posted
by	Wrox	editors.	A	complete	book	list	including	links	to	each	book’s	errata	is	also
available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don’t	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us	the
error	you	have	found.	We’ll	check	the	information	and,	if	appropriate,	post	a	message	to
the	book’s	errata	page	and	fix	the	problem	in	subsequent	editions	of	the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

P2P.Wrox.Com
For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums	are	a
web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and	related
technologies	and	interact	with	other	readers	and	technology	users.	The	forums	offer	a
subscription	feature	to	e-mail	you	topics	of	interest	of	your	choosing	when	new	posts	are
made	to	the	forums.	Wrox	authors,	editors,	other	industry	experts,	and	your	fellow	readers
are	present	on	these	forums.

At	p2p.wrox.com	you	will	find	a	number	of	different	forums	that	will	help	you	not	only	as
you	read	this	book,	but	also	as	you	develop	your	own	applications.	To	join	the	forums,	just
follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join	as	well	as	any	optional	information	you
wish	to	provide	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your	account	and
complete	the	joining	process.

TIP			You	can	read	messages	in	the	forums	without	joining	P2P	but	in	order	to	post
your	own	messages,	you	must	join.

After	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users	post.	You
can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new	messages	from	a
particular	forum	e-mailed	to	you,	click	the	Subscribe	to	this	Forum	icon	by	the	forum
name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs	for
answers	to	questions	about	how	the	forum	software	works	as	well	as	many	common
questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	the	FAQ	link	on	any
P2P	page.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

Lesson	1
Introducing	Java
During	the	last	two	decades	Java	has	maintained	its	status	as	one	of	the	most	popular
programming	languages	for	everything	from	programming	games	to	creating	mission-
critical	applications,	such	as	those	for	trading	on	Wall	Street	or	controlling	Mars	rovers.
For	the	current	popularity	chart	see	the	Tiobe	Index
at	http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.	In	this	lesson	you
are	introduced	to	some	of	the	very	basic	Java	terms.	You	also	download	and	install	the
Java	Development	Kit	(JDK)	and	compile	your	first	program.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Why	Learn	Java?
The	Java	programming	language	was	originally	created	in	1995	by	James	Gosling	from
Sun	Microsystems	(acquired	by	Oracle	Corporation	in	2010).	The	goal	was	to	provide	a
simpler	and	platform-independent	alternative	to	C++.	Java	programs	run	inside	the	Java
Virtual	Machine	(JVM),	which	is	the	same	on	every	platform	from	the	application
programmer’s	perspective.	You	find	out	what	platform	independence	means	a	little	later,
in	the	section	“The	Life	Cycle	of	a	Java	Program”.	For	now,	let’s	look	at	some	of	the
reasons	why	Java	can	be	your	language	of	choice.

Java	is	a	general-purpose	programming	language	that’s	used	in	all	industries	for	almost
any	type	of	application.	If	you	master	it,	your	chances	of	getting	employed	as	a	software
developer	will	be	higher	than	if	you	specialize	in	some	domain-specific	programming
languages.

There	are	more	than	nine	million	professional	Java	developers	in	the	world,	and	the
majority	of	them	are	ready	to	share	their	knowledge	by	posting	blogs	and	articles	or
simply	answering	technical	questions	online.	If	you	get	stuck	solving	some	problem	in
Java,	the	chances	are	very	high	that	you’ll	find	the	solution	on	the	Internet.

Because	the	pool	of	Java	developers	is	huge,	project	managers	of	large	and	small
corporations	like	to	use	Java	for	the	development	of	new	projects—if	you	decide	to	leave
the	project	for	whatever	reason,	it’s	not	too	difficult	to	find	another	Java	programmer	to
replace	you.	This	would	not	be	the	case	if	the	project	were	being	developed	in	a	powerful,
but	less	popular	language,	such	as	Scala.	At	this	point	you	may	ask,	“Does	that	also	mean
that	my	Java	skills	will	be	easily	replaceable?”	It	depends	on	you.	To	improve	your	value
and	employability,	you	need	to	master	not	only	the	syntax	of	the	language	but	also	the
right	set	of	Java-related	technologies	that	are	in	demand	(you	learn	them	in	this	book	in
the	Java	EE	section).

Not	only	is	Java	open-source,	but	there	are	thousands	and	thousands	of	open-source
projects	being	developed	in	Java.	Joining	one	of	these	projects	is	the	best	way	to	get
familiar	with	the	process	of	project	development	and	secure	your	very	first	job	without
having	any	prior	real-world	experience	as	a	programmer.

The	Java	language	is	object-oriented	(OO),	which	enables	you	to	easily	relate	program
constructs	to	objects	from	the	real	world	(more	on	this	in	Chapter	3-Chapter	7).	On	the
other	hand,	recently	added	lambda	expressions	(see	Chapter	14)	allow	you	to	program	in
Java	in	a	functional	style.

The	IT	world	is	changing	and	people	often	use	more	than	one	language	in	the	same
project.	Java	is	not	the	only	language	that	runs	in	JVM.	Such	languages	as	Scala,	Groovy,
Clojure,	JavaScript	and	others	also	run	on	JVM.	So	being	familiar	with	the	JVM	opens	the
doors	to	being	a	polyglot	programmer	within	the	same	operating	environment.

The	server-side	applications	that	are	deployed	in	the	JVM	scale	well.	The	processing	of
thousands	of	users	requests	can	be	arranged	in	parallel	by	splitting	the	job	between	rather
inexpensive	servers	in	a	cluster.

Java	as	a	development	platform	has	many	advantages	over	other	environments,	which
makes	it	the	right	choice	for	many	projects,	and	you’ll	have	a	chance	to	see	this	for

yourself	while	reading	this	book,	watching	the	screencasts	from	the	accompanying	DVD,
and	deploying	all	code	samples	from	the	book	on	your	computer.

Setting	the	Goals
The	goal	of	this	rather	slim	tutorial	is	to	give	you	just	enough	information	about	most	of
the	Java	language	elements,	techniques,	and	technologies	that	are	currently	being	used	in
the	real	world.	The	first	25	lessons	of	the	book	are	about	the	Java	Standard	Edition,
whereas	the	remaining	part	is	about	Java	Enterprise	Edition—it	covers	server-side	Java
technologies,	and	this	is	where	Java	shines	in	the	enterprise	world.

The	brevity	of	some	of	the	lessons	may	make	you	wonder	if	it’s	even	possible	to	explain	a
subject	in	just	10	pages	when	there	are	whole	books	devoted	for	the	same	topic.	My
approach	is	to	cover	just	enough	for	you	to	understand	the	concept,	important	terms,	and
best	practices.	Prerecorded	screencasts	on	the	DVD	help	you	to	repeat	the	techniques
explained	in	the	lesson	on	your	own.

There	are	plenty	of	additional	materials	online	that	help	you	to	study	any	specific	topic
more	deeply.	But	you’ll	get	a	working	and	practical	knowledge	about	Java	just	by	using
the	materials	included	with	this	book.

The	goal	of	this	book	is	not	just	to	get	you	familiar	with	the	syntax	of	the	Java	language,
but	to	give	you	practical	Java	skills	that	will	enable	you	to	develop	business	applications
either	on	your	own	or	by	working	as	a	team	member	in	a	larger-scale	project.

The	Life	Cycle	of	a	Java	Program
There	are	different	types	of	programming	languages.	In	some	of	them	you	write	the	text	of
the	program	(aka	the	source	code)	and	can	execute	this	program	right	away.	These	are
interpreted	languages	(for	example,	JavaScript).

	But	Java	requires	the	source	code	of	your	program	to	be	compiled	first.	It	gets	converted
to	a	bytecode	that	is	run	by	Java	Virtual	Machine,	which	may	turn	some	of	it	into	a
platform-specific	machine	code	using	the	so-called	Just-In-Time	(JIT)	compiler.

Not	only	will	the	program	be	checked	for	syntax	errors	by	a	Java	compiler,	but	other
libraries	of	Java	code	can	be	added	(linked)	to	your	program	after	the	compilation	is
complete	(deployment	stage).	There	are	plenty	of	readily	available	libraries	of	reusable
components,	and	a	vast	majority	of	them	are	free	of	charge.

In	this	lesson	you	start	with	writing	a	very	basic	Java	program	that	outputs	the	words
“Hello	World”	on	your	computer’s	monitor.

Technically	you	can	write	the	source	code	of	your	Java	program	in	any	plain	text	editor
that	you	prefer	(Notepad,	TextEdit,	Sublime	Text,	vi,	and	so	on),	but	to	compile	your
program	you	need	additional	tools	and	code	libraries	that	are	included	in	the	Java
Development	Kit	(JDK).

JDK	and	JRE
If	you	are	planning	to	use	a	specific	computer	to	develop	Java	programs,	you	need	to
download	and	install	JDK.	If	you	are	planning	to	use	this	computer	only	to	run	Java
programs	that	were	compiled	somewhere	else,	you	just	need	the	Java	Runtime
Environment	(JRE).

If	you	have	JDK	installed	on	your	machine,	it	includes	JRE.

Java’s	platform	independence	comes	from	the	fact	that	your	Java	program	doesn’t	know
under	which	operating	system	(OS)	or	on	which	hardware	it’s	being	executed.	It	operates
inside	the	pre-installed	JRE.

You	need	to	get	familiar	with	two	more	terms:	Java	SE	(Standard	Edition)	and	Java	EE
(Enterprise	Edition).	The	latter	includes	the	server-side	tools	and	libraries	that	you	get
familiar	with	starting	in	Chapter	25.

www.allitebooks.com

http://www.allitebooks.org

Downloading	and	Installing	Java	SE
Start	with	downloading	the	latest	version	of	the	JDK	SE	Development	Kit,	which	at	the
time	of	this	writing	is	Java	SE	8.	Download	and	install	JDK	for	your	platform	from
Oracle’s	Java	SE	Downloads	site:	http://goo.gl/X68FzJ.	In	some	literature	you	see
references	like	JDK	1.8,	which	is	the	same	as	JDK	8.	The	number	8	is	followed	by	the
letter	u	and	a	number.	For	example,	JDK	8u5	means	that	Oracle	has	released	an	update
number	5	for	JDK	8.

Installing	JDK	8	for	MAC	OS
Download	the	dmg	file	marked	as	MAC	OS	X	x64.	Running	this	program	on	a	Mac	OS	X
computer	installs	Java	in	/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk.	MAC	OS	X	is
my	platform	of	choice,	but	Java	works	practically	the	same	on	all	platforms,	and	all	the
book	examples	work	under	Windows	and	Linux	as	well.

Open	the	Terminal	window	and	enter	java	–version.	You	should	see	an	output	similar	to
this	one:

Figure	1-1:	Checking	the	Java	version	in	MAC	OS

Installing	JDK	8	in	Windows
Select	and	download	the	Windows	x86	executable	file,	which	is	a	Java	version	for	32-bit
computers.	This	version	is	perfectly	fine	to	start	working	with	Java.	Run	this	file,	click	the
Next	button	two	or	three	times,	and	then	click	Close.	In	about	a	minute	the	installation	is
complete.	By	default	JDK	is	installed	in	the	directory	named	something	like	c:\Program
Files\Java\jdk1.8.0_05.	This	is	the	place	where	both	JDK	and	JRE	are	installed.

Now	you	need	to	add	the	bin	folder	from	your	java	installation	directory	to	the
environment	variable	PATH	of	your	Windows	OS.	Click	Start,	Control	Panel	and	search
for	the	environment	variables.	Click	the	Edit	the	System	Environment	Variables	link	and
press	the	Environment	Variables	button.	Edit	the	system	variable	PATH	(if	you	don’t	have
one,	create	it)	to	include	the	path	to	c:\Program	Files\Java\jdk1.8.0_05\bin	unless	you	have
it	in	a	different	location.	Don’t	forget	to	add	a	semicolon	as	a	separator	as	in	Figure	1-2.

http://goo.gl/X68FzJ

Figure	1-2:	Java	location	is	added	to	the	Path	variable	in	Windows

If	you	have	previous	versions	of	the	JDK	installed	on	your	computer,	each	of	them	is
located	in	its	own	directory,	and	they	don’t	conflict	with	each	other.

To	ensure	that	you’ll	be	working	with	the	freshly	installed	Java,	open	a	command	window
(in	Windows	7	just	click	the	Start	button	and	in	the	search	box	enter	command	cmd)	and
enter	java	-version	in	the	command	window.	Figure	1-3	shows	the	confirmation	that	I	have
Java	1.8.0_05.

Figure	1-3:	Checking	the	Java	version	in	Windows

If	you	still	don’t	see	the	proper	version,	reopen	the	command	window.	Congratulations!
Your	JDK	and	JRE	are	installed.

Your	First	Java	Program:	Hello	World
Historically,	the	first	program	you	write	while	learning	a	new	programming	language	is
the	program	Hello	World.	If	you	can	write	a	program	that	outputs	Hello	World	on	your
monitor,	it	proves	that	you	have	properly	installed	the	compiler	and	the	run	time
environment,	and	your	program	doesn’t	have	syntax	errors.

To	start	writing	a	Java	program	you	could	use	any	plain	text	editor,	such	as	Notepad,
TextEdit,	or	Sublime	Text	.	The	file	that	contains	the	Java	code	must	be	saved	in	a	file
with	its	name	ending	in	.java.

Enter	the	following	code	in	the	text	editor.

Listing	1-1:	HelloWorld.java

public	class	HelloWorld	{
			public	static	void	main(String[]	args){
												System.out.println("Hello	World!!!!!");
			}
}

Create	a	directory,	c:\PracticalJava\Lesson1,	and	save	the	program	you	just	created	in	the
file	HelloWorld.java	(if	you	use	Notepad,	select	All	Files	in	the	Save	as	Type	drop-down
to	avoid	auto-attachment	of	the	.txt	suffix).

Keep	in	mind	that	Java	is	a	case-sensitive	language,	which	means	that	if	you	named	the
program	HelloWorld	with	a	capital	H	and	a	capital	W,	don’t	try	to	start	the	program
helloworld.	Your	first	dozen	syntax	errors	will	probably	be	caused	by	improper
capitalization.

What	follows	is	a	really	short	explanation	of	some	of	the	terms	and	language	elements
used	in	the	HelloWorld	program.	You’ll	get	more	comfortable	with	them	after	mastering
the	first	several	lessons	in	this	book.

The	first	program	contains	a	class,	HelloWorld.	Give	the	Java	class	and	its	file	the	same
name.	(There	could	be	exceptions	to	this	rule,	but	not	in	this	simple	program.)	While
writing	Java	programs,	you	create	classes,	which	often	represent	objects	from	real	life.
You	learn	more	about	classes	in	Chapter	3.

The	class	HelloWorld	contains	a	method,	main().	Methods	in	Java	classes	represent
functions	(actions)	that	a	class	could	perform.	A	Java	class	may	have	several	methods,	but
if	one	of	them	is	called	main()	and	has	the	same	method	signature	(the	declaration	line)	as
in	our	class,	this	makes	this	Java	class	executable.	If	a	class	doesn’t	have	a	method	main(),
it	can	be	used	from	other	classes,	but	you	can’t	run	it	as	a	program.	Here	is	the	method
signature	(similar	to	a	title)	of	the	method	main():

public	static	void	main(String[]	args)

This	method	signature	includes	the	access	level	(public),	instructions	on	usage	(static),
return	value	type	(void),	name	of	the	method	(main),	and	argument	list	(String[]	args).

The	keyword	public	means	that	the	method	main()	can	be	accessed	by	any	other	Java
class.

The	keyword	static	means	that	you	don’t	have	to	create	an	instance	of	this	class	to	use
this	method.

The	keyword	void	means	that	the	method	main()	doesn’t	return	any	value	to	the
calling	program.

The	keyword	String[]	args	tells	you	that	this	method	will	receive	an	array	of	strings	as
the	argument	(you	can	pass	external	data	to	this	method	from	a	command	line).

The	main()	method	is	the	starting	point	of	your	program.	You	can	write	a	program	in	Java
SE	that	consists	of	more	than	one	class,	but	at	least	one	of	them	has	the	method	main.	A
Java	class	can	have	more	than	one	method.	For	example,	a	class	Employee	can	have	the
methods	updateAddress(),	raiseSalary(),	changeName(),	and	so	on.

The	body	of	the	method	main()	contains	the	following	line:

System.out.println("Hello	World!!!!!");

The	preceding	println()	method	is	used	to	print	data	on	the	system	console	(command
window).	Java’s	method	names	are	always	followed	by	parentheses.

System	here	represents	another	Java	class.

The	dot	notation,	as	in	System.out,	means	that	the	variable	out	is	defined	inside	the	class
System.

out.println()	tells	you	that	there	is	an	object	represented	by	a	variable	called	out	and	it	has
a	method	called	println().

You	will	be	using	this	dot	notation	to	refer	to	class	methods	or	variables.

All	these	explanations	may	sound	too	short	and	inadequate,	and	they	really	are.	Bear	with
me;	I	go	into	greater	detail	in	subsequent	chapters.

Compiling	and	Running	Hello	World
The	program	HelloWorld	is	written,	and	now	you	need	to	compile	this	program.	Java
compiler	is	a	program	that	will	convert	your	source	code	into	so-called	bytecode	that	JRE
understands.	The	javac	compiler	is	a	part	of	the	JDK,	so	open	a	command	window	on	your
PC	or	Terminal	on	MAC,	change	the	current	directory	to	c:\PracticalJava\Lesson1,	and	try
to	compile	the	following	program:

cd	PracticalJava\Lesson1
	javac	HelloWorld.java

Even	though	there	is	no	program	javac	in	the	Chapter	1	directory,	your	OS	found	it	in	the
bin	directory	of	your	Java	install.	MAC	OS	knows	where	the	bin	directory	is	located.	In

Windows	OS	you’ve	added	it	to	the	PATH	environment	variable.

You	won’t	see	any	confirmation	of	a	successful	compilation;	just	type	dir	on	Windows	(or
ls	on	MAC	OS)	to	confirm	that	a	new	file	named	HelloWorld.class	has	been	created.	This
proves	that	your	program	has	been	successfully	compiled.

If	the	program	has	syntax	errors,	the	compiler	prints	error	messages.	In	this	case,	fix	the
errors,	and	recompile	the	program	again.	You	may	need	to	do	it	more	than	once	until	the
file	HelloWorld.class	is	successfully	created.

Now	run	the	program	by	typing	the	following	command:

java	HelloWorld

Note	that	this	time	you	didn’t	use	the	javac	program,	but	java,	which	starts	the	Java	run
time	and	loads	the	HelloWorld	program	into	the	Java	Virtual	Machine	(JVM).	The	words
“Hello	World”	are	displayed	in	the	command	window.	Figure	1-4	is	a	screenshot	that
shows	how	in	MAC	OS	looks	the	compilation	command	(javac	HelloWorld.java),	the
content	of	the	Chapter	1	folder	(ls)	after	the	compilation—the	dir	in	Windows	is	an
equivalent	to	ls,	how	to	run	the	program	(java	HelloWorld),	and	the	output	of	the
HelloWorld	program	(Hello	World!!!!!).

Figure	1-4:	Compiling	and	running	HelloWorld

Try	It
In	this	lesson	your	goal	is	to	write	your	first	Java	program	that	outputs	the	words	“Hello
World.”	After	this	goal	is	achieved,	add	more	lines	to	this	program	to	print	your	address.

Lesson	Requirements
For	this	lesson	download	and	install	the	current	version	of	JDK	as	explained	in	the	section
Downloading	and	Installing	Java	SE.

Step-by-Step
1.	 Open	a	plain	text	editor	of	your	choice	and	enter	the	text	of	the	Hello	World	program.

Keep	in	mind	that	Java	is	case	sensitive.

2.	 Save	the	program	in	the	file	HelloWorld.java.

3.	 Compile	the	program	in	the	command	window	using	the	command	javac
HelloWorld.java.

4.	 Run	the	program	by	using	the	command	java	HelloWorld.

TIP			Please	select	the	videos	for	Lesson	1	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	2
Eclipse	IDE
Your	first	Java	program	was	written	in	a	plain	text	editor	and	compiled	from	a	command
window,	but	this	is	not	a	productive	way	of	developing	software.	Professional
programmers	use	an	Integrated	Development	Environment	(IDE),	which	includes	an
editor,	a	compiler,	context-sensitive	help,	a	debugger,	and	a	lot	more	(you	become	familiar
with	these	features	later	in	this	lesson).	There	are	several	popular	Java	IDEs,	such	as
Eclipse,	IntelliJ	IDEA,	and	NetBeans.

Eclipse	is	by	far	the	most	widely	used	IDE,	and	I	use	it	for	compiling	and	running	most	of
the	examples	in	this	book.	But	switching	from	one	IDE	to	another	is	a	pretty	simple
process,	and	if	you	see	that	in	some	areas	one	IDE	makes	you	more	productive	than	the
other,	just	use	the	best	one	for	the	job.	As	a	matter	of	fact,	I	prefer	IntelliJ	IDEA	IDE,	but
this	doesn’t	stop	me	from	enjoying	Java	development	in	Eclipse,	too.

Introducing	Eclipse	IDE
Eclipse	IDE	is	an	open-source	product	that	was	originally	created	with	a	substantial	code
donation	by	IBM	to	the	Java	community,	and	from	that	moment	Eclipse	was	a
community-driven	product.	It	started	as	an	IDE	for	developing	Java	programs,	but	today
it’s	a	development	platform	used	for	building	thousands	of	tools	and	plug-ins.	Some
people	are	using	its	Rich	Client	Platform	(RCP)	API	to	develop	user	interfaces	(UIs)	for
applications.	With	Eclipse	you	can	easily	generate	and	deploy	web	applications,	start	and
stop	servers,	use	it	as	a	Database	admin	tool,	and	a	lot	more.	Some	use	its	plug-ins	for
developing	reports.	Visit	the	Downloads	page	at	www.eclipse.org/downloads	to	see	some
of	the	Eclipse-based	products	available.

Besides	being	an	IDE,	Eclipse	supports	plug-in	development,	and	each	developer	can	add
only	those	plug-ins	that	he	or	she	is	interested	in.	For	example,	there	is	a	plug-in	to	display
UML	diagrams,	another	offers	a	reporting	system,	and	there	are	plug-ins	for	developing
applications	in	C,	JavaScript,	Apache	Flex,	and	other	languages.

http://www.eclipse.org/downloads

Downloading	and	Installing	Eclipse
There	are	different	versions	of	Eclipse	IDE,	and	this	book	uses	Eclipse	IDE	for	Java	EE
Developers.	Each	version	of	Eclipse	IDE	has	a	name.	At	the	time	of	this	writing,	the
current	version	is	called	Luna,	and	you	should	download	it	from
http://www.eclipse.org/downloads.

The	installation	of	Eclipse	IDE	comes	down	to	a	simple	unzipping	of	the	downloaded	file
into	a	disk	drive	of	your	choice.	Depending	on	your	OS,	you	find	either	the	file
Eclipse.exe	or	Eclipse.app	in	the	Eclipse	folder	—	just	run	this	program.	You	immediately
see	a	pop-up	window	asking	you	to	select	a	workspace,	which	is	a	directory	on	your	hard
disk	where	one	or	more	of	your	projects	is	going	to	be	stored.

Eclipse	for	Java	EE	IDE	starts	with	showing	the	Welcome	panel;	just	close	it	by	clicking
the	little	x	on	the	Welcome	tab.	Figure	2-1	is	a	snapshot	of	the	workbench	of	the	freshly
installed	Eclipse	IDE.

Figure	2-1:	The	Java	EE	perspective	in	Eclipse	IDE	workbench

In	Eclipse	you	start	with	creating	a	project.	In	the	real	world,	the	source	code	of	a	decent-
sized	application	can	consist	of	several	Eclipse	projects.

For	code	samples	of	this	book,	I	selected	the	following	workspace	directory:
practicalJava/workspace.

To	be	precise,	in	Figure	2-1	you	are	looking	at	Java	EE	perspective	(note	the	Java	EE	tab
at	the	top),	which	is	a	collection	of	default	views	that	are	opened	for	Java	EE	developers.
On	the	left	you	see	a	Project	Explorer	view;	creating	a	Hello	project	is	your	next	task.	The
area	in	the	middle	is	reserved	for	the	code	editor	view.	You	start	entering	Java	code	in
there	after	creating	your	first	Java	class.	The	Outline	view	is	on	the	right;	you’ll	see	the
names	of	your	classes,	methods,	and	variables	(see	Chapter	3)	there.

www.allitebooks.com

http://www.eclipse.org/downloads
http://www.allitebooks.org

There	are	many	other	views	that	you	can	open	and	close	by	yourself	by	selecting
Window	→	Show	View.	These	include	Console,	Search,	Problems,	Servers,	and	others.	If
you	don’t	see	some	of	these	menu	items,	find	them	in	Windows	→	Show	View	→	Other.

Because	you	are	just	starting	to	learn	the	language,	there	is	no	need	to	work	in	the	Java	EE
perspective;	you	can	get	by	in	the	Java	perspective.	Click	the	little	icon	with	the	plus	sign
on	the	toolbar	by	the	Java	EE	tab	and	select	Java	perspective.	You’ll	see	a	slightly
different	set	of	views	with	the	Package	Explorer	and	Hierarchy	views	on	the	left,	Task	List
on	the	right,	and	the	Problems,	Javadoc,	and	Declaration	tabs	at	the	bottom,	as	shown	in
Figure	2-2.

Figure	2-2:	The	Java	perspective	in	Eclipse	IDE	workbench

Creating	Hello	Project	in	Eclipse
In	Chapter	1	you	simply	created	the	class	HelloWorld,	but	in	Eclipse	you	have	to	create
the	project	first.	Select	File	→	New	→	Java	Project	and	enter	Hello	as	the	name	of	the
project	in	the	pop-up	window,	as	shown	in	Figure	2-3.

You	can	select	the	version	of	the	JRE	you	want	to	work	with.	In	Chapter	1	I’ve	installed
the	JDK	and	JRE	of	version	1.8,	but	you	may	have	more	than	one	version	of	JRE,	and
Eclipse	can	compile	the	code	that	will	run	in	another	version	of	JRE.	This	might	be	useful
if	some	of	your	projects	have	to	run	with	the	older	versions	of	JRE.	Typically	enterprises
don’t	rush	to	install	the	newest	version	of	Java	because	it	requires	substantial	investments
of	time	and	resources	to	ensure	that	their	production	applications	are	not	broken	in	the
new	version	of	JRE.	Eclipse	allows	you	to	select	for	your	projects	any	of	the	installed
versions	of	JRE.

Figure	2-3:	Creating	a	Java	project	in	Eclipse	(step	1)

After	you	click	Next,	you’re	asked	to	specify	the	folders	where	the	source	code	and
compiled	Java	classes	of	the	Hello	project	should	be	created	(see	Figure	2-4).	By	default,
Eclipse	creates	a	Hello	folder	for	this	project	with	a	bin	subfolder	for	compiled	classes	and
an	src	subfolder	for	the	source	code.	In	Chapter	1	both	HelloWorld.java	and
HelloWorld.class	were	sitting	in	the	same	folder,	which	is	OK	for	a	one-class	project,	but
the	good	practice	is	to	keep	.java	and	.class	files	in	separate	folders.

Don’t	change	the	name	of	the	output	directory;	just	click	Finish	on	that	window.	In	Figure
2-5	you	see	a	new	project,	Hello,	in	the	Package	Explorer	view	of	Eclipse.	This	project
has	an	empty	folder	named	src—you	will	save	the	source	code	of	HelloWorld.java	there.	

Figure	2-4:	Creating	a	Java	project	in	Eclipse	(step	2)

Figure	2-5:	The	project	Hello	is	created

The	JRE	folder	contains	all	required	Java	1.8	libraries	supporting	the	JVM	where
HelloWorld	will	run.	These	library	files	have	.jar	extension	in	their	names.	Java	SDK
comes	with	a	jar	utility	that	allows	you	to	create	a	file	archive	that	contains	one	or	more
compiled	classes.	Although	the	JRE	folder	contains	classes	created	by	developers	of	the
JRE	itself,	most	real-world	applications	consist	of	groups	of	files	(packages)	located	in
one	or	more	jars.

It	doesn’t	make	much	sense	to	put	the	only	HelloWorld	class	inside	the	jar,	but	as	your
sample	applications	grow,	you	find	out	how	to	group	and	compress	files	in	jars.

Creating	the	HelloWorld	Class	in	Eclipse
Your	Hello	project	will	contain	one	Java	class:	HelloWorld	from	Chapter	1.	Select	File	→
New	→	Class	and	enter	HelloWorld	in	the	Name	field	in	the	pop-up	window	shown	in
Figure	2-6.

Then	enter	com.practicaljava.lesson2	in	the	Package	field.	The	package	name	is	a	new
addition	to	the	previous	version	of	HelloWorld	from	Chapter	1.

Figure	2-6:	Creating	a	HelloWorld	class	in	Eclipse

Java	Packages
Packages	in	Java	are	used	to	better	organize	multi-file	projects	and	for	data	protection.	It’s
not	unusual	for	a	project	to	have	several	hundreds	of	Java	classes.	Keeping	them	all	in	one
directory	is	never	a	good	idea.	Consequently,	the	files	will	be	located	in	various	directories
and	subdirectories	(also	known	as	packages).

What	are	the	naming	conventions	for	packages?	Java	developers	use	reverse-domain	name
conventions.	Let’s	say	you	work	on	a	project	called	Sales	for	a	company	called	Acme,
which	has	an	Internet	site	at	acme.com.	Every	package	name	will	start	with	the	reverse
URL	of	the	company,	followed	by	the	project	name:	com.acme.sales.

Accordingly,	all	Java	classes	that	belong	to	this	package	are	stored	in	the	following
directory	structure:	com/acme/sales.

If	some	of	the	Java	classes	are	specific	to	domestic	sales,	whereas	others	are	used	in
international	sales	at	Acme,	you	can	create	two	more	subdirectories:
com/acme/sales/domestic	and	com/acme/sales/international.

Whereas	directory	names	are	separated	by	a	forward	slash	or	backslash,	the	corresponding
Java	package	names	are	separated	with	periods.	Java	has	a	special	keyword	package,	and
its	declaration	has	to	be	the	first	line	of	the	class	(program	comments	don’t	count).	For
example:

package	com.acme.sales.domestic;

Let’s	assume	that	you	work	for	a	company	called	Practical	Java	on	the	project	named
Chapter	2;	the	name	of	the	package	will	be	com.practicaljava.lesson2,	which	is	exactly
what	I’ve	entered	in	the	Package	field	shown	in	Figure	2-6.

Besides	being	used	for	better	organization	of	Java	classes,	packages	help	in	controlling
data	access.	You	learn	about	this	feature	in	the	section	access_levels	in
programming_with_abstract_classes_and_in.

Completing	Code	Generation
From	Figure	2-6	you	may	have	noticed	that	I	also	checked	off	the	box	asking	Eclipse	to
generate	the	main	method	for	me.

Click	Finish,	and	in	no	time	Eclipse	generates	the	initial	code	for	the	class	HelloWorld,	as
shown	in	Figure	2-7.

Figure	2-7:	The	auto-generated	code	of	the	HelloWorld	class

The	generated	code	is	shown	in	Eclipse’s	editor	view.	It	starts	with	the	package	statement,
and	the	class	declaration	with	the	method	name	goes	next.	The	line	that	starts	with	two
slashes	is	a	single-line	comment.	Programmers	use	comments	to	describe	code	fragments
in	a	free	form	to	explain	to	author’s	intentions	to	whoever	will	read	the	code.	Comments
are	ignored	by	the	compiler.

Place	the	cursor	under	the	TODO	comment,	type	sysout,	and	then	press	Ctrl+Space;
Eclipse	turns	this	abbreviation	into	System.out.println();.	From	the	first	seconds	of	coding
Eclipse	makes	you	more	productive!	Eclipse	IDE	has	lots	of	useful	hot	key	combinations
that	will	allow	you	to	do	less	manual	typing.

Just	add	“Hello	World!!!!!”	between	parentheses	and	save	the	code	by	pressing	the	little
diskette	image	on	the	toolbar	or	using	the	Ctrl+S	key	combination.

By	default,	saving	the	code	results	in	an	invocation	of	the	Java	compiler.	If	you	didn’t
make	any	syntax	errors,	Eclipse	creates	HelloWorld.class	in	the	bin	directory	of	the	Hello
project.	In	case	of	compilation	errors,	Eclipse	puts	a	little	red	round	bullet	in	front	of
problematic	lines.

Now	you	can	run	the	program	by	pressing	the	round	green	Play	button	on	the	toolbar.	The
output	of	the	program	is	shown	in	the	Console	view	panel	in	the	lower	part	of	the	Eclipse
workbench,	as	in	Figure	2-8.

Figure	2-8:	The	output	of	the	program	is	shown	in	the	Console	view

As	you	type,	Eclipse	displays	context-sensitive	help	suggesting	a	selection	of	possible
values,	which	minimizes	guesswork	and	typing	errors.	You	can	try	to	bring	up	the	context-
sensitive	help	by	pressing	Ctrl+Space.	In	some	cases,	Eclipse	won’t	have	any	suggestions,
but	sometimes	it	becomes	pretty	helpful.	For	example,	place	the	cursor	after	the	dot
behind	the	System	and	press	Ctrl+Space.	You	see	a	list	of	method	names	available	inside
the	class	System.	Selecting	out	from	this	list	displays	the	content	of	online	Help	for	this
object.

Figure	2-9:	Ctrl-Space	shows	context-sensitive	proposals	and	help

In	Chapter	3I	explain	how	to	use	the	debugger	of	Eclipse	IDE.	In	Chapter	25	I	show	you
how	to	start	Java	servers	from	Eclipse.	In	Chapter	26	you	use	Eclipse	IDE	for	creating
web	projects.	The	format	of	this	book	doesn’t	have	space	for	more	detailed	coverage	of	all
the	features	of	Eclipse.	The	next	section	contains	additional	online	resources	that	can	help
you	in	getting	more	comfortable	with	Eclipse.

www.allitebooks.com

http://www.allitebooks.org

Additional	Materials
The	Eclipse	IDE	Documentation	web	page	at	http://www.eclipse.org/documentation/
contains	comprehensive	Eclipse	documentation.	Select	the	latest	version	of	Eclipse	there
and	follow	the	Getting	Started	section	under	the	Workbench	User	Guide.

I	can	also	recommend	to	you	the	online	Eclipse	IDE	Tutorial	by	Lars	Vogel.	It’s	available
at	http://www.vogella.com/tutorials/Eclipse/article.html.	Lars	Vogel	has	also	published	a
list	of	useful	Eclipse	shortcuts	that	will	increase	your	productivity.	It’s	available	at
http://www.vogella.com/tutorials/EclipseShortcuts/article.html.

You	can	also	watch	Eclipse	IDE	Tutorial	on	Youtube	produced	by	luv2code.	It’s	available
at	http://bit.ly/1uTYOR2.		

http://www.eclipse.org/documentation/
http://www.vogella.com/tutorials/Eclipse/article.html
http://www.vogella.com/tutorials/EclipseShortcuts/article.html
http://bit.ly/1uTYOR2

Try	It
In	this	lesson	your	first	task	is	to	write,	compile,	and	run	HelloWorld	in	Eclipse	IDE.

The	second	task	is	to	create	the	new	Eclipse	project	named	Sale	containing	one	Java	class
FriendsAndFamily.	This	class	should	also	have	the	method	main().	Include	inside	the
method	main()	several	System.out.println()	lines	that	announce	that	your	favorite	store
runs	a	30%	off	sale	on	selected	products.	Output	the	names	of	the	products	that	go	on	sale.

Now	your	Eclipse	project	contains	two	classes	with	the	main()	method.	Which	program
will	run	when	you	press	the	green	button?	Click	the	class	you	want	to	run,	and	then	press
the	green	button.	If	no	class	is	selected,	the	class	that	was	run	the	last	time	you	pressed	the
green	button	will	run	again.

Lesson	Requirements
For	this	lesson,	download	and	install	the	current	version	of	Eclipse	IDE	for	Java	EE
Developers	from	www.eclipse.org/downloads.

Step-by-Step
1.	 Create	the	Hello	project	in	Eclipse	IDE.

2.	 Create	a	new	Java	class,	HelloWorld,	with	the	method	main(),	as	described	earlier.

3.	 Compile	the	program	by	clicking	Save.

4.	 Run	the	program	by	clicking	the	green	button	in	the	Eclipse	toolbar.

Repeat	the	steps	for	the	second	task,	but	this	time	your	program	will	have	several	lines	of
code	invoking	println().

TIP			Please	select	the	videos	for	Lesson	2	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.eclipse.org/downloads
http://www.wrox.com/go/javaprog24hr2e

Lesson	3
Object-Oriented	Programming	with	Java
Starting	with	this	lesson,	you	study	various	elements	of	the	Java	language	with	brief
descriptions	to	get	you	started	with	programming	in	the	shortest	possible	time.	But	you	are
certainly	encouraged	to	refer	to	the	extensive	Java	SE	documentation	that’s	available
online	at	http://docs.oracle.com/javase/8/.

http://docs.oracle.com/javase/8/

Classes	and	Objects
Java	is	an	object-oriented	language,	which	means	that	it	has	constructs	to	represent	objects
from	the	real	world.	Each	Java	program	has	at	least	one	class	that	knows	how	to	do	certain
things	or	how	to	represent	some	type	of	object.	For	example,	the	simplest	class,
HelloWorld,	knows	how	to	greet	the	world.

Classes	in	Java	may	have	methods	and	fields	(also	known	as	attributes).	Methods
represent	actions	or	functions	that	a	class	can	perform.	Up	until	Java	8,	every	function	had
to	be	represented	as	a	method	of	some	class.	Lambda	expressions
(see	working_with_streams)	give	more	freedom	to	functions,	but	for	now	the	focus	is	on
the	Java	foundation	—	classes,	methods,	and	fields.

Let’s	create	and	discuss	a	class	named	Car.	This	class	will	have	methods,	describing	what
this	type	of	vehicle	can	do,	such	as	start	the	engine,	shut	it	down,	accelerate,	brake,	lock
the	doors,	and	so	on.

This	class	will	also	have	some	fields:	body	color,	number	of	doors,	sticker	price,	and	so
on.

Listing	3-1:	Class	Car

class	Car{
				String	color;
				int	numberOfDoors;
				void	startEngine()	{
							//	Some	code	goes	here
				}
				void	stopEngine()	{
									int	tempCounter=0;
						//	Some	code	goes	here
				}
}

In	some	code	samples	you’ll	see	the	comments,	“Some	code	goes	here.”	I	do	this	to	avoid
distracting	you	from	something	that	is	not	relevant	to	the	subject	of	discussion.	At	this
point,	you	couldn’t	care	less	about	the	algorithm	of	starting	the	engine.	You’re	getting
familiar	with	the	structure	of	a	Java	class.

Car	represents	common	features	for	many	different	cars:	All	cars	have	such	attributes	as
color	and	number	of	doors,	and	all	of	them	perform	similar	actions.	You	can	be	more
specific	and	create	another	Java	class	called	JamesBondCar.	It’s	still	a	car,	but	with	some
attributes	specific	to	the	model	created	for	James	Bond	(see	Listing	3-2).	You	can	say	that
the	class	JamesBondCar	is	a	subclass	of	Car,	or,	using	Java	syntax,	JamesBondCar
extends	Car.

Listing	3-2:	Class	JamesBondCar

class	JamesBondCar	extends	Car{
				int	currentSubmergeDepth;
				boolean	isGunOnBoard=true;
				final	String	MANUFACTURER;
				void	submerge()	{
								currentSubmergeDepth	=	50;
							//	Some	code	goes	here
				}
				void	surface()	{
						//	Some	code	goes	here
				}
}

As	you	can	guess	from	the	method	names,	the	James	Bond’s	car	not	only	drives,	but	it	can
go	under	water	and	then	resurface.	But	even	after	defining	all	the	attributes	and	methods
for	the	class	JamesBondCar,	you	can’t	“drive	it,”	even	on	the	computer	screen.	A	Java
class	is	like	a	blueprint	in	construction	or	engineering;	until	you	build	real	objects	based
on	this	blueprint,	you	can’t	use	them.

Creating	objects,	also	known	as	instances,	based	on	classes	is	the	equivalent	of	building
real	cars	based	on	blueprints.	To	create	an	instance	of	a	class	means	to	create	the	object	in
the	computer’s	memory	based	on	the	class	definition.

To	instantiate	a	class	(to	put	a	car	on	the	road),	you	declare	a	variable	of	this	class’s	type,
and	use	the	new	operator	for	each	new	instance	of	the	car:

JamesBondCar	car1	=	new	JamesBondCar();
JamesBondCar	car2	=	new	JamesBondCar();

Now	the	variables	car1	and	car2	can	be	used	to	refer	to	the	first	and	second	instance	of	the
JamesBondCar,	respectively.	To	be	precise,	declaring	the	variables	pointing	at	the
instances	is	needed	if	you	are	planning	to	refer	to	these	instances	in	the	program.	The
variables	car1	and	car2	become	your	access	points	to	the	corresponding	instance	of	a	Car,
as	Figure	3-1	depicts.

Figure	3-1:	Instantiating	two	Car	objects	

The	statement	new	JamesBondCar()	creates	the	instance	of	this	class	in	heap	memory.	In
the	real	world,	you	can	create	many	cars	based	on	the	same	specification.	Even	though
they	all	represent	the	same	class,	they	may	have	different	values	in	their	attributes	—	some
of	them	are	red	and	some	yellow,	some	of	them	have	two	doors	whereas	others	have	four,
and	so	on.

Variables	and	Data	Types
Some	values	representing	an	object	can	change	over	the	program’s	lifetime	(variables)	and
some	remain	the	same	(constants).	This	section	sheds	more	light	on	the	use	of	both	types.

Declaring	Variables
Java	is	a	statically	typed	language:	A	program	variable	must	be	declared	(given	a	name
and	a	data	type)	first,	and	then	you	can	assign	them	values	either	at	the	time	of	declaration
or	later	on	in	one	of	the	class	methods.	For	example,	the	variable	isGunOnBoard	has	been
initialized	during	its	declaration	in	Listing	3-2,	and	currentSubmergeDepth	got	its	value	in
the	method	submerge().

The	class	Car	from	Listing	3-1	defines	a	variable	color	of	type	String,	which	is	used	to
represent	text	values;	for	example,	“Red,”	“Blue,”	and	so	on.

Final	Variables
To	store	the	value	that	never	changes,	you	need	to	declare	a	final	variable	(or	constant);
just	add	the	keyword	final	to	the	declaration	line,	as	in	Listing	3-2:

final	String	MANUFACTURER	=	"J.B.	Limited";

Java	developers	usually	name	final	variables	in	upper	case.	If	you	are	wondering	how	Java
developers	agree	on	naming	conventions,	check	out	one	of	the	coding	standards	guides.
For	example,	Google	publishes	coding	standards	at	https://code.google.com/p/google-
styleguide/	for	various	languages.

The	value	of	a	constant	can	be	assigned	only	once,	and	because	you	are	creating	an
instance	of	a	specific	car,	its	manufacturer	is	known	and	can’t	change	during	the	life	span
of	this	object.	Declare	a	final	variable	and	initialize	it	right	away,	as	shown	earlier.

Primitive	Data	Types
When	you’re	declaring	a	class,	you	create	a	new	data	type	and	can	declare	variables	of	this
type	as	you	saw	above	with	the	class	Car.	But	these	are	not	a	simple	data	type	as	they	can
include	fields	and	methods	describing	the	object	of	this	type.	On	the	other	hand,	Java	has
predefined	data	types	for	storing	simple	values,	such	as	an	integer	number	or	a	character.

There	are	eight	primitive	data	types	in	Java:	four	are	for	integer	values;	two	are	for	values
with	a	decimal	point;	one	is	for	storing	single	characters;	and	one	is	for	boolean	data	that
allows	only	either	true	or	false	as	a	value.	Following	are	some	examples	of	variable
declarations	and	initializations:

int	chairs	=	12;
char	grade	=	'A’;
boolean	cancelJob	=	false;
double	nationalIncome	=	23863494965745.78;
float	hourlyRate	=	12.50f;			//	add	an	f	at	the	end	of
																													//float	literals

https://code.google.com/p/google-styleguide/

long	totalCars	=	4637283648392l;	//	add	an	l	at	the	end
																																			//	of	long	literals

The	last	two	literals	in	the	preceding	list	end	with	the	letters	f	and	l	to	indicate	that	you
want	to	store	these	data	as	float	and	long	data	types	correspondingly.	The	double	data	type
fits	most	of	the	needs	in	non-integer	calculations.

Each	primitive	data	type	occupies	a	certain	amount	of	memory	and	has	a	range	of	values
that	it	can	store.	The	following	table	summarizes	some	characteristics	of	the	Java	data
types.

Primitive
Type

Size Min	Value Max	Value Wrapper
Class

byte 8
bits

-128 127 Byte

short 16
bits

-32,768 32,767 Short

int 32
bits

-2,147,483,648 2,147,483,647 Integer

long 64
bits

-9,223,372,036,854,775,808 9,223,372,036,854,775,807 Long

float 32
bits

Single-precision	floating
point;	see	Java	language
specification	at
http://bit.ly/9nlwjh

Single-precision	floating
point;	see	Java	language
specification	at
http://bit.ly/9nlwjh

Float

double 64
bits

Double-precision	floating
point;	see	Java	language
specification	at
http://bit.ly/9nlwjh

Double-precision	floating
point;	see	Java	language
specification	at
http://bit.ly/9nlwjh

Double

char 16
bits

Unicode	0 Unicode	2	in	a	power	of	16
value

Character

boolean - false	(not	a	min) true	(not	a	max) Boolean

Have	you	noticed	that	the	char	data	type	uses	two	bytes	of	memory	to	store	the	data?	This
enables	you	to	store	character	sets	that	have	a	lot	more	symbols	than	traditional	alphabets
because	a	single	byte	can	only	represent	up	to	256	different	characters,	whereas	two	bytes
can	represent	65,536	characters.

If	you	need	to	store	very	large	numbers,	Java	has	a	class	BigDecimal,	but	it’s	not	a
primitive	data	type.

http://bit.ly/9nlwjh
http://bit.ly/9nlwjh
http://bit.ly/9nlwjh
http://bit.ly/9nlwjh

Variable	Scope
If	you	declare	a	variable	inside	any	method	or	a	code	block	surrounded	with	curly	braces,
the	variable	has	a	local	scope	(for	example,	tempCounter	in	Listing	3-1	is	local).	This
means	that	it’s	only	visible	for	the	code	within	the	method	stopEngine().	A	local	variable
is	accessible	within	the	method	only	after	the	variable	is	declared,	and	only	within	the
block	in	which	it	is	declared.	For	instance,	a	variable	declared	inside	a	for	loop	is	not
accessible	outside	the	for	loop	even	within	the	same	method.

When	the	method	completes	its	execution,	all	local	primitive	variables	are	automatically
removed	from	stack	memory.	If	a	variable	was	pointing	to	an	instance	of	an	object	(for
example,	car1	on	Figure	3-1),	the	corresponding	object	instance	is	removed	from	heap
memory	by	Java’s	Garbage	Collector	(GC),	but	it	won’t	happen	immediately.	Periodically
GC	walks	around	the	heap	memory	and	removes	all	objects	that	have	no	reference
variables.

If	a	variable	has	to	be	accessible	from	more	than	one	class	method,	declare	it	on	a	class
level.	Listing	3-1	shows	the	class	Car,	where	color	and	numberOfDoors	are	class	or
member	variables.	These	variables	remain	“alive”	while	the	instance	of	the	Car	object
exists	in	memory.	They	can	be	shared	and	reused	by	all	methods	within	the	class,	and	they
can	even	be	visible	from	external	classes	(read	about	access	levels	in	Chapter	7).	There	are
some	differences	in	passing	primitive	variables	and	those	that	point	at	object	instances.
Read	the	section	Passing	by	Value	or	by	Reference	in	the	next	chapter.	

NOTE			If	a	variable	is	declared	with	a	static	qualifier	(see	Chapter	4)	it	will	be
shared	by	all	instances	of	the	class.	Instance	variables	(without	static)	store	different
values	in	each	object	instance.

www.allitebooks.com

http://www.allitebooks.org

Wrappers,	Autoboxing,	and	Unboxing
All	primitive	data	types	have	corresponding	wrapper	classes	that	contain	useful	methods
dealing	with	respective	data	types.	The	wrapper	classes	serve	two	purposes:

1.	 They	contain	a	number	of	useful	functions	for	manipulation	with	their	primitive
counterparts.	For	example,	the	class	Integer	offers	such	useful	methods	as	conversion
of	a	String	into	an	int,	or	turning	an	int	into	a	float,	and	more.	The	Integer	class	also
enables	you	to	set	the	minimum	and	maximum	values	for	the	number	in	question.

2.	 Some	Java	collections	can’t	store	primitives	(such	as	ArrayList),	so	primitives	have	to
be	wrapped	into	objects.	For	example:

ArrayList	myLotteryNumbers	=	new	ArrayList();
myLotteryNumbers.add(new	Integer(6));
myLotteryNumbers.add(new	Integer(15));

Java	has	a	feature	called	autoboxing,	which	spares	you	from	explicitly	creating	a	new
instance	for	every	primitive	as	in	the	preceding	code	snippet.	You	can	simply	write
myLotteryNumbers.add(6);	and	the	primitive	value	6	is	automatically		wrapped	into	an
instance	of	the	Integer	class.

On	the	same	note,	the	next	line	is	also	valid:

int	luckyNumber=	myLotteryNumber.get(23);

Even	though	get(23)	returns	the	value	of	the	24th	element	(the	numbering	in	the	Java
collections	starts	with	zero)	as	an	Integer	object,	that	object	is	automatically	converted
into	a	primitive.	This	is	called	unboxing.

Program	Comments
While	writing	code	in	Java,	you	should	add	comments,	which	is	the	text	that	explains	what
the	program	does.	Programs	are	being	read	a	lot	more	often	than	they	are	being	written.	At
some	point,	other	software	developers	will	read	and	try	to	understand	your	code.	Be	nice
and	make	their	jobs	easier.	A	typical	software	developer	doesn’t	like	writing	comments
(regardless	of	what	programming	language	he	or	she	uses).

I	suggest	you	use	a	simple	technique:	Write	comments	first	and	then	write	the	code.	By
the	time	your	program	is	written	it	already	has	a	comment.	You	can	write	comments	pretty
much	everywhere	—	before	or	inside	the	class,	or	inside	the	methods.

In	Java	you	can	use	three	types	of	comments:

Block	comments	contain	more	than	one	line	of	text	located	between	the	symbols	/*
and	*/.	For	example:

/*	This	method	will	calculate	the	cost	of	shipping,	handling,
					and	all	applicable	taxes
*/

The	compiler	ignores	the	text	in	comments	and	you	can	write	whatever	you	want.

If	you	want	to	write	a	short	comment	that	fits	on	a	single	line,	start	this	line	with	two
forward	slashes	(//).	You	can	also	place	comments	with	two	forward	slashes	at	the	end
of	the	line.

For	example:

//	Calculate	the	cost	of	shipping
			int	cost	=	calcShippingCost();		//	results	depends	on	country

Some	comments	start	with	/**	and	end	with	*/.	These	are	used	by	a	special	utility,
javadoc,	that	can	automatically	extract	the	text	from	these	comments	and	create
program	documentation.	Javadoc	also	allows	the	use	of	special	annotations	(for
example,	@param,	@return,	@see)	that	allow	producing	professional-looking	program
documentation.	To	get	a	feeling	for	what	javadoc	can	generate,	read	Oracle’s
whitepaper	on	writing	javadoc	comments	at	http://goo.gl/imDMU.

First	Useful	Program
It’s	time	to	write	a	program	that	does	something	more	useful	than	print	“Hello	World.”
This	program	emulates	the	calculation	of	state	tax.	The	goal	is	to	show	you	how	Java
classes	communicate,	how	methods	are	called,	and	how	variables	can	be	used.

First	you	need	to	decide	what	Java	class(es)	you	need	to	write	for	the	task	at	hand.	Then
think	about	the	attributes	(class	variables)	and	methods	(behavior)	these	classes	should
have.

Declaring	a	Tax	Class	

http://goo.gl/imDMU

Because	you	are	planning	to	calculate	tax,	it	doesn’t	take	a	rocket	scientist	to	figure	out
that	you	need	to	define	a	class	called	Tax.	Start	with	the	class	name	and	curly	braces	—
this	is	the	simplest	class	you	can	create:

class	Tax{
}

What	data	does	this	class	need	to	perform	tax	calculations?	You	definitely	need	to	know
the	gross	income	of	a	person	for	the	tax	year.	Gross	income	is	a	good	candidate	for	an
attribute	of	this	class.	Attributes	in	Java	are	represented	by	variables.	Pick	one	of	the
numeric	data	types.	Gross	income	is	not	always	an	integer	number,	so	use	the	double	data
type,	as	it’s	a	number	with	a	decimal	point.	You	could	use	float	instead,	but	using	double
enables	you	to	be	ready	to	process	larger	incomes,	too:

class	Tax{
						double	grossIncome;
}

You	also	need	to	know	what	state	the	person	lives	in;	taxation	rules	vary	by	state.	These
are	a	few	of	the	abbreviations	for	the	states	in	the	USA:	NY,	NJ,	CT.	Use	the	data	type
String	for	storing	text	data:

class	Tax{
							double	grossIncome;
							String	state;
	}

Add	one	more	attribute	for	dependents	of	the	taxable	person.	Integer	works	just	fine	here
—	a	person	can’t	have	two-and-a-half	dependents:

class	Tax{
							double	grossIncome;
							String	state;
							int		dependents;
	}

Adding	a	Method	to	the	Tax	Class

Variables	store	data,	and	methods	perform	actions.	It’s	time	for	actions.	The	first	method,
calcTax(),	calculates	the	state	tax	based	on	the	values	of	gross	income,	number	of
dependents,	and	state:

Listing	3-3:	Class	Tax

class	Tax{
										double	grossIncome;
										String	state;
										int	dependents;
										public	double	calcTax()	{
													return	234.55;
										}
}

The	calcTax()	method	signature	tells	the	following:

Any	external	class	can	access	this	method	(public).

This	method	returns	a	value	of	type	double.

The	name	of	the	method	is	calcTax.

The	empty	parentheses	after	the	method	name	mean	that	it	does	not	have	any	arguments,
or,	in	other	words,	it	does	not	need	any	values	from	outside	Tax	to	perform	calculations.
As	a	matter	of	fact,	this	version	of	calcTax()	doesn’t	even	use	the	values	from	class
variables	for	tax	calculation.	It	just	always	returns	a	hard-coded	tax	value	of	234.55.

How	do	you	decide	if	a	method	should	return	a	value?	If	your	method	performs	some
calculations	and	has	to	give	a	value	back	to	a	calling	program,	it	has	to	return	a	value.	If	a
method	directly	modifies	the	class	variables	or	simply	outputs	data	somewhere	(monitor,
disk,	server)	it	may	not	need	to	return	any	values.	You	still	need	to	declare	a	“no	return”	in
a	method	signature	by	using	a	special	keyword,	void:

public	void	printAnnualTaxReturn()	{
				//Code	goes	here
}

With	the	Java	return	statement,	a	method	can	return	data	contained	in	a	variable	to	a
calling	program,	for	example:

return	calculatedTax;

Keep	in	mind	that	if	you	declare	a	return	type	in	the	method	signature	but	forget	to	include
the	return	statement	in	the	body	of	the	method,	the	Java	compiler	will	give	you	an	error.

Declaring	Another	Class:	TestTax

Tax	will	know	how	to	calculate	tax,	but	in	a	real-world	application	you’ll	have	many
classes	that	represent	the	various	workflows	of	this	process.	For	example,	you	may	need	to
create	a	class	called	Customer.	Depending	on	the	type	of	employment	or	income,
accountants	use	many	different	forms	to	file	taxes,	and	each	form	can	be	represented	by	a

separate	class:	Form1040,	Form1099,	and	so	on.

Each	of	these	classes	represents	some	entity,	but	none	of	them	is	an	executable	program;
that	is,	none	of	them	will	have	the	method	main().	You	need	to	create	one	more	class	to
start	the	application	and	instantiate	other	classes	as	needed.	I’m	calling	this	class	TestTax.
The	class	TestTax	should	be	able	to	perform	the	following	actions:

Create	an	instance	of	the	class	Tax.

Assign	the	customer’s	data	(gross	income,	state,	dependents)	to	the	class	variables	of
the	class	Tax.

Call	the	method	calcTax().

Print	the	result	on	the	screen.

The	class	TestTax	is	stored	in	a	separate	file	named	TestTax.java.

Listing	3-4:	Class	TestTax

class	TestTax{
					public	static	void	main(String[]	args){
												Tax			t	=	new	Tax();	//	creating	an	instance
												//	assigning	the	values	to	class	members
												t.grossIncome=	50000;
												t.dependents=	2;
												t.state=	"NJ”;
												double	yourTax	=	t.calcTax();	//calculating	tax
											//	Printing	the	result
											System.out.println("Your	tax	is	”	+	yourTax);
					}
	}

In	the	preceding	code	you’ve	declared	a	variable,	t,	of	type	Tax.	The	method	main()	is	an
entry	point	to	the	tax-calculation	program.	This	method	creates	an	instance	of	the	class
Tax,	and	the	variable	t	points	to	a	place	in	your	computer’s	memory	where	the	Tax	object
was	created.	From	now	on,	if	you	want	to	refer	to	this	object	use	the	variable	t.	Take
another	look	at	Figure	3-1,	which	shows	a	similar	situation	to	what	you	have	here.

The	following	three	lines	assign	values	to	the	fields	of	the	object	Tax:

t.grossIncome=	50000;
t.dependents=	2;
t.state=	"NJ”;

After	that	you	can	calculate	tax	on	your	object	represented	by	t	by	calling	the	method
calcTax(),	and	the	result	returned	by	this	method	will	be	assigned	to	the	variable	yourTax.
The	method	calcTax()	still	returns	the	hard-coded	value,	but	you	fix	this	in	the	“Try	It”
section	of	this	lesson.	The	last	line	just	displays	the	result	on	the	system	console.

At	this	point	you	already	have	two	classes	communicating	with	each	other	(TestTax	and
Tax).	The	class	TextTax	creates	an	instance	of	Tax,	initializes	its	variables,	and	calls	its
method	calcTax(),	which	returns	the	value	back	to	the	class	TextTax.

Conditional	Statement	if
In	the	real	life	we	make	decisions	all	the	time:	“If	she	says	this	I’ll	answer	with	that,
otherwise	I’ll	do	something	else.”	Java	has	an	if	statement	that	determines	whether	some
condition	is	true	or	false.	Based	on	the	answer	to	this	question	the	execution	of	your
program	will	be	routed.

In	the	following	code	snippet,	if	the	condition	expression	(totalOrderPrice	>	100)
evaluates	to	true	then	the	code	between	the	first	curly	braces	is	executed;	otherwise	the
code	after	the	else	statement	takes	place:

if	(totalOrderPrice	>	100){
									System.out.println("You’ll	get	a	20%	discount”);
}
else{
									System.out.println("Order	books	for	more	than	a”	+
																												"	$100	to	get	a	20%	discount”);
}

Because	this	code	sample	has	only	one	statement	to	execute	in	the	if	and	else	clauses,
using	curly	braces	is	not	a	must,	but	they	make	the	code	more	readable	and	prevent	you
from	introducing	hard-to-find	bugs	if,	later	on,	you	need	to	add	more	code	in	an	if
statement.

switch	Statement
The	switch	statement	is	an	alternative	to	if.	The	case	label	in	the	switch	condition
(taxCode)	is	evaluated	and	the	program	goes	to	one	of	the	following	case	clauses:

int	taxCode=someObject.getTaxCode(grossIncome);
switch	(taxCode){
			case	0:
					System.out.println("Tax	Exempt”);
					break;
			case	1:
					System.out.println("Low	Tax	Bracket”);
					break;
			case	2:
					System.out.println("High	Tax	Bracket”);
					break;
			default:
					System.out.println("Wrong	Tax	Bracket”);
}
//	Some	other	code	goes	here

The	preceding	code	invokes	only	one	of	the	println()	methods	and	continues	with	the
execution	with	the	other	code	below	the	closing	curly	brace,	if	any.	Do	not	forget	to	put
the	break	at	the	end	of	each	case	statement	so	the	program	jumps	out	of	the	switch
statement	after	processing	a	case;	otherwise	the	code	“falls-through”	and	prints	more	than
one	line	even	though	a	taxCode	can	have	only	one	value.	For	example,	the	following	code
prints	both	“Tax	Exempt”	and	“Low	Tax	Bracket”	even	if	the	value	of	the	taxCode	is	zero:

switch	(taxCode){
			case	0:
					System.out.println("Tax	Exempt”);
			case	1:
					System.out.println("Low	Tax	Bracket”);
					break;
			case	2:
					System.out.println("High	Tax	Bracket”);
					break;
			default:
					System.out.println("Wrong	Tax	Bracket”);
}

Starting	from	Java	7	you	can	use	String	values	in	the	case	expression:

switch	(yourState){
			case	"NY”:
					System.out.println("Taxing	by	NY	law”);
					break;
			case	"CA”:
					System.out.println("Taxing	by	CA	law”);
					break;
			case	"FL”:
					System.out.println("Taxing	by	FL	law”);
					break;
			default:
					System.out.println("Wrong	state”);
}

Inheritance
In	object-oriented	languages,	the	term	inheritance	means	an	ability	to	define	a	new	class
based	on	an	existing	one	(not	from	scratch).

Imagine	that	the	class	Tax	calculates	tax	properly	in	all	states	except	New	Jersey,	which
has	introduced	new	educational	tax	deductions.	If	you	have	a	kid	in	college,	this	makes
you	eligible	for	an	additional	$500	deduction	from	your	taxes.	In	this	case	you	have	to
either	change	the	method	calcTax()	in	the	class	Tax	to	introduce	a	special	case	for	New
Jersey,	or	create	another	class	based	on	Tax,	and	add	this	new	functionality	there.

Every	person	inherits	some	features	from	his	or	her	parents.	A	similar	mechanism	exists	in

Java.	The	special	keyword	extends	is	used	to	indicate	that	one	class	has	been	inherited
from	another:

class	NJTax	extends	Tax{
}

The	class	NJTax	has	all	the	features	of	the	class	Tax,	plus	you	can	add	new	attributes	and
methods	to	it.	In	such	a	setup,	the	class	Tax	is	called	a	superclass,	and	NJTax	is	called	a
subclass.	You	can	also	use	the	terms	ancestor	and	descendent,	respectively.	This	new	class
has	access	to	all	variables	and	methods	of	its	superclass,	unless	those	have	a	private	or
package	access	level,	which	is	discussed	in	Chapter	5.

	Let’s	extend	the	behavior	of	the	class	Tax	in	NJTax.	The	latter	has	a	method	called
adjustForStudents():

Listing	3-5:	Class	NJTax

class	NJTax	extends	Tax{
				double	adjustForStudents	(double	stateTax){
							double	adjustedTax	=	stateTax	-	500;
							return	adjustedTax;
				}
}

To	use	this	new	method,	the	TestTax	class	should	instantiate	NJTax	rather	than	Tax	as	it
did	in	Listing	3-4:

NJTax	t=	new	NJTax();

Now	you	can	call	methods	defined	in	the	class	Tax	as	well	as	those	from	NJTax	using	the
reference	variable	t;	for	example:

NJTax	t=	new	NJTax();
double	yourTax	=	t.calcTax();
double	totalTax	=	t.adjustForStudents(yourTax);

I’ve	added	a	new	functionality	to	the	tax-calculation	program	without	changing	the	code
of	the	class	Tax.	The	preceding	code	fragment	also	shows	how	you	can	pass	a	result	of
processing	from	one	method	to	another.	The	value	of	the	variable	yourTax	was	calculated
by	calcTax()	and	then	passed	to	the	method	adjustForStudents()	as	an	argument.

Method	Overriding
Yet	another	important	term	in	object-oriented	programming	is	method	overriding.	Imagine
class	Tax	with	20	methods.	Most	of	them	work	fine	for	all	states,	but	there	is	one	method
that	is	not	valid	for	New	Jersey.	Instead	of	modifying	this	method	in	the	superclass,	you
could	create	another	method	in	the	subclass	with	the	same	name	and	argument	list	(also

known	as	signature).	If	a	subclass	has	that	method	with	the	same	signature,	it	overrides
(suppresses)	the	corresponding	method	of	its	ancestor.

Method	overriding	comes	in	handy	in	the	following	situations:

The	source	code	of	the	superclass	is	not	available,	but	you	still	need	to	change	its
functionality.

The	original	version	of	the	method	is	still	valid	in	some	cases	and	you	want	to	keep	it
intact.

You	use	method	overriding	to	enable	polymorphism,	which	will	be	explained	in
Chapter	7.

You	have	a	chance	to	try	method	overriding	in	the	“Try	It”	section.	In	Chapter	4	you	read
about	method	overloading,	which	is	a	completely	different	animal.

Additional	Materials
Java	Garbage	Collector	Basics
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

www.allitebooks.com

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.allitebooks.org

Try	It
In	this	section,	you	create	in	Eclipse	the	tax-calculation	application	described	in	this
lesson,	and	then	modify	it	to	replace	the	hard-coded	value	returned	by	the	method
calcTax()	with	some	calculations.	After	this	is	done,	you	subclass	the	class	Tax	and
override	calcTax().

Lesson	Requirements
For	this	lesson	you	must	have	Eclipse	IDE	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson3.zip.

Hints
This	lesson	has	only	brief	introductions	to	basic	Java	language	constructs.	The	online	Java
tutorial	may	be	handy	while	completing	this	and	future	assignments.	It’s	available	at
http://download.oracle.com/javase/tutorial/java/index.html.

Step-by-Step
1.	 In	Eclipse,	create	a	new	project	named	Lesson3.

2.	 Create	a	new	Tax	class	(File→New→Class).	Enter	the	code	shown	in	Listing	3-3.

3.	 Create	another	class,	TestTax,	and	input	the	code	from	Listing	3-4.

4.	 Save	both	classes	and	run	TestTax	(right-click	and	select	Run	As→Java	Application).
The	console	view	should	display	“Your	tax	is	$234.55.”

5.	 Replace	the	return	of	a	hard-coded	value	with	some	tax	calculations.	Let’s	say	that	if
the	gross	income	was	less	than	$30,000	you	deduct	5%	for	state	tax.	If	it’s	greater	than
$30,000	you	deduct	6%.	Modify	the	code	of	the	method	calcTax	as	follows.	Run	the
program	several	times,	modifying	the	values	of	the	class	variables	of	the	class	Tax.
Make	sure	that	the	tax	value	on	the	console	is	properly	calculated:

public	double	calcTax()	{
						double	stateTax=0;
						if	(grossIncome	<	30000)	{
								stateTax=grossIncome*0.05;
						}
						else{
								stateTax=	grossIncome*0.06;
						}
								return	stateTax;
}

6.	 Create	the	NJTax	class	shown	in	Listing	3-5.

http://www.wrox.com/go/javaprog24hr2e
http://download.oracle.com/javase/tutorial/java/index.html

7.	 Change	the	functionality	of	calcTax()	by	overriding	it	in	NJTax.	The	new	version	of
calcTax()	should	lower	the	tax	by	$500	before	returning	the	value.

8.	 Modify	the	code	of	the	TestTax	class	to	instantiate	NJTax	instead	of	Tax.	Observe	that
the	$500	deduction	is	properly	calculated.

To	get	the	sample	database	files,	you	can	download	Chapter	3	from	the	book’s	website	at
www.wrox.com/go/javaprog24hr2e.

TIP			Please	select	the	videos	for	Lesson	3	online	at
www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	4
Class	Methods	and	Constructors
Methods	contain	code	for	actions	or	functions	a	class	can	perform.	Although	you	started
working	with	methods	in	previous	lessons,	in	this	lesson	you	find	out	how	to	work	with
them	in	detail.	You	also	get	familiar	with	a	special	type	of	method	called	a	constructor.

Method	Arguments
Each	class	method	performs	some	functionality,	such	as	calculating	tax,	placing	an	order,
or	starting	the	car.	If	a	method	requires	some	external	data	to	perform	its	function,	such
data	can	be	provided	in	the	form	of	arguments	or	parameters,	as	in	the	method
adjustForStudents()	shown	in	Listing	3-5,	which	has	one	argument:	stateTax.

In	the	method	signature,	you	need	to	declare	the	data	type	and	the	name	of	each	argument.
For	example,	the	following	method	has	three	arguments:	two	of	them	are	the	int	data	type
and	one	is	String:

int	calcLoanPayment(int	amount,	int	numberOfMonths,	String	state){
			//	Your	code	goes	here
}

When	you	call	(or	invoke)	a	method,	the	Java	run	time	tries	to	find	the	method	that	has
been	declared	with	the	specified	signature.	For	example,	if	you	try	to	call	the	preceding
method	like	this:

calcLoanPayment(20000,	60);

the	Java	compiler	will	give	you	an	error	complaining	that	no	calcLoanPayment()	function
has	been	found	that	expects	just	two	arguments.

Method	Overloading
If	you	want	to	allow	the	calling	of	a	method	with	different	numbers	of	arguments,	you
need	to	create	multiple	versions	of	this	method.	For	example,	you	can	create	a	method	that
will		use	the	state	of	New	York	as	default	to	spare	developers	from	providing	the	state	as
an	argument.	If	most	of	the	loan	calculation	is	done	for	New	Yorkers,	such	a	method	may
be	a	good	idea.	So	in	addition	to	the	method	calcLoanPayment()	with	three	arguments,
you	create	another	one	with	just	two	arguments.	To	avoid	code	duplication,	only	the
method	with	three	arguments	implements	the	logic	calculating	payments.	The	method	with
two	arguments	simply	calls	it,	adding	“NY”	as	the	third	argument.

int	calcLoanPayment(int	amount,	int	numberOfMonths){
			calcLoanPayment(amount,	12,	“NY”);
}

Method	overloading	means	having	a	class	with	more	than	one	method	that	has	the	same
name	but	different	argument	lists.	A	method	can	be	overloaded	not	only	in	the	same	class
but	also	in	a	descendant.	For	example,	the	class	LoanCalulator	can	have	the	method
calcLoanPayment()	defined	with	three	arguments,	while	its	descendant	MyLoanCalculator
may	have	a	two-argument	version	of	calcLoanPayment().

Why	overload	methods	in	your	classes?	To	provide	programmers	who	use	these	classes
with	a	more	flexible	application	program	interface	(API).	Coming	back	to	the	loan-
calculation	example,	programmers	now	have	a	choice	of	calling	either	a	three-	or	two-
argument	version	of	this	method.

In	Chapter	1	you	used	the	method	println()	declared	in	the	class	PrintStream	(see	Figure	4-
1	or	its	description	at	http://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html).
The	function	println()	has	been	overloaded	there	to	give	Java	developers	the	freedom	to
call	“the	same”	method	with	different	types	of	arguments.	In	reality	they	are	calling
different	methods	with	the	same	name.

http://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html

Figure	4-1:	JavaDoc	for	the	PrintStream	class

Constructors
When	a	program	creates	an	instance	of	a	class,	Java	invokes	the	class’s	constructor	—	a
special	method	that	is	called	only	once	when	the	instance	is	being	built	with	the	operator
new:

Tax	t	=	new	Tax();

	Empty	parentheses	in	the	preceding	code	snippet	mean	that	this	code	calls	a	no-argument
constructor	on	the	class	Tax.	If	you	didn’t	declare	a	constructor	on	a	class,	Java	creates	a
no-argument	constructor	for	you.

Constructors	have	the	following	characteristics:

They	are	called	when	the	class	is	being	instantiated.

They	must	have	the	same	name	as	the	class	they’re	in.

They	can’t	return	a	value	and	you	don’t	specify	the	keyword	void	as	a	return	type.

Typically	constructors	have	very	little	code.	There	you	just	assign	initial	values	to	class
variables.	In	the	next	code	snippet,	a	three-argument	constructor	is	defined:

Listing	4-1:	Class	Tax	with	constructor

class	Tax	{
				double	grossIncome;	//	class	variables
				String	state;
				int	dependents;
				//	Constructor
				Tax	(double	gi,	String	st,	int	depen){
						//	Initializing	class	variables
							grossIncome	=	gi;
							state	=	st;
							dependents=depen;
				}
}

Creating	an	instance	of	this	class	can	look	like	this:

Tax	t	=	new	Tax(65000,”NJ”,3);

Note	the	difference	in	the	initialization	of	the	class	variables:	Here	you	pass	the	values
during	the	class	instantiation	via	the	constructor’s	arguments,	whereas	in	Listing	3-4	it
took	four	lines	of	code	to	create	an	instance	of	Tax	and	then	initialize	the	variables.	But	in
the	preceding	code	snippet	you	killed	two	birds	with	one	stone:	instantiated	Tax	and
initialized	its	variables	via	class	constructor.

Note	that	after	defining	a	constructor	with	arguments,	the	rule	of	automatic	creation	of	a

default	no-argument	constructor	does	not	apply	anymore.	If	you	need	a	class	to	have	more
than	one	constructor,	and	one	of	the	constructors	with	no	arguments,	you	have	to	explicitly
write	a	no-argument	constructor.

The	preceding	code	snippet	declares	the	variable	t	that	points	at	an	instance	of	the	object
Tax	in	memory.	To	refer	to	any	specific	field	or	call	a	method	on	this	instance,	you	need	to
use	dot-notation	—	the	name	of	the	reference	variable	followed	by	a	dot	and	the	name	of
the	field	or	a	method.	For	example:

public	static	void	main(){
...
Tax	t	=	new	Tax(65000,”NJ”,3);
t.dependents	=	4;	//	changing	the	number	of	dependents	from	3	to	4…

The	Keyword	super
If	a	method	is	overridden	in	a	subclass,	there	are	two	versions	of	the	method	with	the	same
signature.	If	you	just	call	a	method	by	name;	for	example,	calcTax()	in	the	class	NJTax
from	Chapter	3,	the	JVM	calls	the	overridden	version	of	the	method.	Once	in	a	while	you
may	need	to	call	the	ancestor’s	version	of	a	method.	The	keyword	super	enables	you	to
explicitly	call	the	method	or	a	constructor	from	the	ancestor’s	class.	For	example,	to	call
the	ancestor’s	method	calcTax(),	you	just	write	super.calcTax();	in	the	descendant:

If	one	class	is	inherited	from	another,	each	of	them	may	have	its	own	constructor
explicitly	defined.	As	opposed	to	regular	class	methods,	a	constructor	of	a	subclass	cannot
override	the	constructor	of	a	superclass;	they	even	have	different	names.	But	sometimes
you	may	need	to	add	into	the	subclass’s	constructor	some	functionality	that	has	to	be
called	after	the	ancestor’s	constructor	code.	To	avoid	code	duplication,	just	add	the
explicit	call	to	the	constructor	of	a	superclass	followed	by	additional	code	you	want	to	run
during	instantiation	of	the	descendant	(see	Listing	4-2).	Invocation	of	the	constructor	of
the	superclass	must	be	the	first	line	in	the	constructor.

Listing	4-2:	Calling	the	constructor	of	the	ancestor

class	SmallerTax	extends	Tax{
				//	Constructor
				SmallerTax	(double	gi,	String	st,	int	depen){
							super(gi,st,depen);
							//	Adding	code	specific	to	descendant’s	constructor
							System.out.println("Applying	special	tax	rates	for	my	friends.”);
				}
}

www.allitebooks.com

http://www.allitebooks.org

The	Keyword	this
The	keyword	this	is	useful	when	you	need	to	refer	to	the	instance	of	the	class	from	its
method.	Review	the	code	of	the	constructor	from	Listing	4-1.	The	names	of	the
constructor’s	arguments	were	different	from	the	names	of	the	class	variables.	But	the	code
in	Listing	4-3	shows	how	you	can	use	the	same	variable	names,	both	in	the	arguments	and
in	the	class	variables.	Besides	pointing	at	the	current	object,	the	keyword	this	helps	to
resolve	name	conflicts.	To	instruct	JVM	to	use	the	instance	variable	grossIncome,	use	the
following	syntax:

this.grossIncome	=	50000;

If	there	were	only	one	grossIncome	variable	in	the	class	Tax,	you	could	simply	omit	the
this	prefix.	But	in	Listing	4-3	the	absence	of	the	this	keyword	would	lead	to	ambiguity,
and	the	instance	variable	would	never	be	initialized.

Listing	4-3:	Resolving	name	conflicts	with	the	this	keyword

class	Tax	{
				double	grossIncome;	//	class	member	variables
				String	state;
				int	dependents;
				//	Constructor
				Tax	(double	grossIncome,	String	state,	int	dependents){
							this.grossIncome	=	grossIncome;
							this.state	=	state;
							this.dependents=dependents;
				}
}

Consider	a	class	called	SomeOtherClass	with	a	method	defined	as	verifyTax(Tax	t).	As
you	can	see,	it	expects	an	instance	of	the	Tax	object	as	an	argument.	Listing	4-4	shows
how	you	can	call	it	from	the	class	Tax	using	the	keyword	this	to	pass	a	reference	to	the
current	instance	of	the	object	Tax.

Listing	4-4:	Calling	a	method	using	the	keyword	this	as	an	argument

class	Tax	{
					void	verifyTax(){
								SomeOtherClass	s	=	new	SomeOtherClass();
								s.verifyTax(this);
					}
}

Here’s	another	use	case:	A	class	has	several	overloaded	constructors	with	different
numbers	of	arguments.	As	with	method	overloading,	the	overloaded	constructors	give
more	choices	in	instantiation	objects	and	helps	avoid	code	duplication.	You	can	use	the
this()	notation	to	call	a	specific	version	of	the	constructor.	In	Listing	4-5	the	second
constructor	invokes	the	first	one.

Listing	4-5:	Calling	an	overloaded	constructor	with	the	keyword	this

class	Tax	{
				double	grossIncome;	//	class	member	variables
				String	state;
				int	dependents;
				//	First	Constructor
				Tax	(double	grossIncome,	String	state,	int	dependents){
							this.grossIncome	=	grossIncome;	//	instance	variable	initialization
							this.state	=	state;
							this.dependents=dependents;
				}
			//	Second	Constructor
				Tax	(double	grossIncome,	int	dependents){
							this(grossIncome,	"NY”,	dependents);					}
}

Passing	by	Value	or	by	Reference
Calling	a	method	with	arguments	enables	you	to	pass	some	required	data	to	the	method.
The	question	is	how	JVM	passes	these	values	to	the	method.	Does	it	create	a	copy	of	a
variable	in	a	calling	program	and	give	it	to	the	method?

The	primitive	values	are	passed	by	value	(meaning	that	an	extra	copy	is	created	in	memory
for	each	variable).	If	you	create	an	instance	of	Tax,	as	in	Listing	4-6,	there	will	be	two
copies	of	grossIncome	and	two	copies	of	the	variable	dependents	—	one	in	TestTax	and
the	other	one	in	Tax.	But	objects	are	passed	by	reference.	The	following	code	creates	only
one	copy	of	“NJ”	in	memory.	In	Java,	String	objects	have	special	rules	of	treatment,	which
are	discussed	in	Chapter	5,	but	the	rule	still	holds:	Non-primitives	are	passed	by	reference.

Listing	4-6:	The	TestTax	class

class	TestTax{
					public	static	void	main(String[]	args){
												double	grossIncome;	//	local	variables
												String	state;
												int	dependents;
												grossIncome=	50000;
												dependents=	2;
												state=	"NJ”;
												Tax			t	=	new	Tax(grossIncome,	state,	dependents);
												double	yourTax	=	t.calcTax();	//calculating	tax
											//	Printing	the	result
											System.out.println("Your	tax	is	”	+	yourTax);
					}
	}

In	the	preceding	example,	if	you’ll	be	changing	the	value	of	grossIncome	or	dependents	in
the	constructor	of	the	class	Tax,	it	won’t	affect	the	values	in	the	corresponding	variables	of
the	class	TestTax	because	there	will	be	two	copies	of	these	primitives.

Now	consider	another	example.	I’m	declaring	another	variable	of	type	Tax	and		assigning
the	value	of	t	to	it:

Tax			t2	=	t;

The	variable	t	is	pointing	to	an	instance	of	the	object	Tax	in	memory.	In	other	words,	the
variable	t	holds	the	reference	(the	address	in	memory)	to	an	object.	The	code	line	above
does	not	create	another	copy	of	the	Tax	object	in	memory,	but	copies	its	address	to	the
variable	t2.	You	still	have	a	single	instance	of	the	Tax	object,	but	now	you	have	two
reference	variables	—		t	and	t2	—	pointing	at	it.	Until	both	of	these	variables	go	out	of
scope	(something	that’s	explained	in	the	next	section),	the	object	Tax	is	not	removed	from
memory.

As	I	mentioned	before,	the	process	of	removal	of	unused	objects	from	memory	is	called
garbage	collection.	JVM	runs	GC	automatically.

Here’s	another	example	of	passing	by	reference:	The	code	in	Listing	4-5	does	not	create	a
copy	of	the	object	Tax	just	to	pass	it	to	the	method	verifyTax().	A	copy	of	just	the
reference	variable	pointing	at	the	Tax	instance	can	be	created	inside	the	method
SomeOtherClass.verifyTax(),	pointing	at	the	one	and	only	instance	of	the	class	Tax.

This	means	that	if	the	code	in	SomeOtherClass	is	changing	some	properties	of	the	Tax
instance,	the	changes	are	applied	to	the	only	copy	of	the	Tax	instance	and	are	visible	from
both	Tax	and	SomeOtherClass.

Variable	Scopes
Variable	scope	defines	how	long	the	variable	lives	and	remains	usable.	If	you	declared	the
variable	inside	a	method,	it’s	a	local	variable	that	goes	out	of	scope	(becomes	unavailable)
as	soon	as	the	method	finishes	its	execution.	For	example,	variables	t,	grossIncome,
dependents,	and	state	from	Listing	4-6	are	local.

If	a	variable	is	defined	inside	any	block	of	code	between	curly	braces	located	inside	the
method,	the	scope	of	the	variable	is	limited	to	the	code	within	this	block.	In	the	following
code	fragment	the	variable	taxCredit	has	a	block	scope	and	is	visible	only	inside	the	code
for	the	case	when	grossIncome	<	30000.

public	double	calcTax()	{
						double	stateTax=0;
						if	(grossIncome	<	30000)	{
								int	taxCredit	=	300;
								stateTax=grossIncome*0.05	-	taxCredit;
						}
						else{
								stateTax=	grossIncome*0.06;
						}
								return	stateTax;
}

If	variables	have	been	declared	outside	the	method	(such	as	grossIncome,	dependents,	and
state	in	Listing	4-1)	they	are	class	variables	and	can	be	used	by	any	method	of	this	class.
On	the	other	hand,	the	variables	grossIncome,	dependents,	and	state	in	Listing	4-1	are	also
instance	variables	and	store	instance-specific	data.

You	can	create	more	than	one	instance	of	the	class	Tax,	and	each	instance	can	have
different	values	in	its	instance	variables.	For	example,	the	following	lines	of	code		create
two	instances	of	Tax,	with	different	values	for	grossIncome,	dependents,	and	state	(these
instance	variables	are	initialized	in	the	constructor):

Tax			t1	=	new	Tax(50000,	"NY”,	3);
Tax			t2	=	new	Tax(65000,	"TX”,	4);

The	Keyword	static
Java	has	a	special	keyword,	static,	that	indicates	that	the	class	variable	is	shared	by	all
instances	of	the	same	class.	If	the	class	Tax	has	the	declaration	static	double	grossIncome;
then	this	variable’s	value	is	shared	by	all	instances	of	the	class	Tax,	which	doesn’t	make
sense	in	the	tax	calculation	scenarios.

Besides,	after	the	creation	of	two	instances	(t1	and	t2),	as	in	the	preceding	code,	the	first
value	of	the	variable	(50000)	is	overwritten	with	the	second	one	(65000).

But,	if	you	introduce	in	Tax	a	class	variable	to	count	the	number	of	its	instances	(think	the
number	of	customers	whose	taxes	have	been	calculated),	such	a	variable	has	to	be
declared	as	static,	so	its	only	version	can	be	incremented	by	each	instance	on	creation,	as
in	Listing	4-7.

Listing	4-7:	The	Tax	class	with	the	keyword	static

class	Tax	{
				double	grossIncome;	//	class	member	variables
				String	state;
				int	dependents;
				static	int	customerCounter;
				//	Constructor
				Tax	(double	gi,	String	st,	int	depen){
							grossIncome	=	gi;	//	member	variable	initialization
							state	=	st;
							dependents=depen;
							customerCounter++;			//	increment	the	counter	by	one
				}
}

You	can	also	declare	methods	with	the	static	qualifier.	Such	methods	can	be	called	without
the	need	to	instantiate	the	class	first.	This	is	usually	done	for	utility	methods	that	don’t	use
any	instance	variables,	but	do	get	input	via	the	argument	and	return	the	result.

The	following	function	converts	Fahrenheit	to	Celsius	and	returns	the	result:

class	WeatherReport{
						static	double	convertToCelsius(double	far){
											return	((far	-	32)	*	5	/	9);
				}
}

You	can	call	this	function	from	another	class	without	the	need	to	instantiate
WeatherReport	first:

double	centigrees=WeatherReport.convertToCelsius(98.7);

Note	that	because	you	never	instantiated	the	class	WeatherReport,	there	is	no	reference
variable	to	any	object.	You	just	use	the	name	of	the	class	followed	by	dot	and	the	method
name.

Java	8	introduced	static	methods	in	interfaces,	which	is	covered	in	Lesson	6.

Try	It
In	this	section	you	create	yet	another	version	of	the	Tax	class	with	a	three-argument
constructor	and	add	a	utility	function	to	convert	the	tax	value	from	dollars	to	euros,
assuming	the	dollar-to-euro	conversion	rate	is	1.25.

Lesson	Requirements
For	this	lesson	you	should	have	Eclipse	IDE	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson4.zip.

Step-by-Step
1.	 In	Eclipse	IDE,	create	a	new	project	named	Lesson4.

2.	 Create	a	new	class	called	Tax	(File	→	New	→	Class).	Enter	the	code	shown	in	Listing
4-7.

3.	 Add	the	following	statement	as	the	last	line	of	the	constructor	of	the	class	Tax:

System.out.println("Preparing	the	tax	data	for	customer	#”	+
customerCounter);

4.	 Add	the	method	calcTax()	to	the	class	Tax	and	calculate	tax	by	multiplying	the	gross
income	by	0.33	and	deducting	the	number	of	dependents	multiplied	by	one	hundred:

return	(grossIncome*0.33	-	dependents*100);

5.	 Add	the	static	function	to	Tax	to	convert	the	calculated	tax	to	euros,	applying	the
currency-conversion	rate	of	1.25.

public	static	void	convertToEuros(double	taxInDollars){
				System.out.println("Tax	in	Euros:	"	+	taxInDollars/1.25);
}

6.	 Create	a	TestTax	class	and	input	the	code	from	Listing	4-6.	Add	to	this	class’s	main()
method	a	line	to	create	another	instance	of	the	class	Tax:

Tax			t2	=	new	Tax(65000,	"TX”,	4);

Calculate	the	tax	using	the	second	instance	of	the	class	Tax:

double	hisTax	=	t2.calcTax();

7.	 Call	the	method	convertToEuros()	twice	to	convert	the	currency,	passing	the	calculated
tax	from	t	and	t2	as	an	argument.

http://www.wrox.com/go/javaprog24hr2e

8.	 Run	the	class	TestTax	(right-click	and	select	Run	As	→	Java	Application).	The
Console	view	should	display	the	two	“Preparing	the	tax…”	messages	followed	by	the
two	messages	with	the	calculated	tax	in	Euros	as	follows:

Preparing	the	tax	data	for	customer	#1

Preparing	the	tax	data	for	customer	#2

Tax	in	Euros:	13040.0

Tax	in	Euros:	16840.0

To	get	the	sample	files,	download	the	content	of	the	Chapter	4	folder	from	the	book’s
website	at	www.wrox.com/go/javaprog24hr2e.

TIP			Please	select	the	videos	for	Lesson	4	online
at	www.wrox.com/go/javaprog24hr2e.You	will	also	be	able	to	download	the	code	and
resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	5
Java	Syntax:	Bits	and	Pieces
This	tutorial	didn’t	start	with	detailed	coverage	of	basic	constructs	of	the	Java	language
such	as	the	syntax	of	if	statements,	loops,	and	the	like.	You	started	learning	Java
programming	with	getting	used	to	object-oriented	terms	and	constructs	of	the	language.
This	lesson	is	a	grab	bag	of	basic	language	elements,	terms,	and	data	structures.	You	also
find	out	how	to	debug	Java	programs	in	Eclipse	IDE	and	how	to	pass	parameters	to	a
program	started	from	a	command	line.

Arrays
An	array	is	data	storage	that’s	used	to	store	multiple	values	of	the	same	type.	Let’s	say
your	program	has	to	store	names	of	20	different	girls,	such	as	Masha,	Matilda,	Rosa,	and
so	on.	Instead	of	declaring	20	different	String	variables,	you	can	declare	one	String	array
with	the	capacity	to	store	20	elements:

String	[]		friends	=	new	String	[20];	//	Declare	and	instantiate	array
friends[0]	=	"Masha";																	//Initialize	the	first	element
friends[1]	=	"Matilda";															//Initialize	the	second	element
friends[2]	=	"Rosa";
//	Keep	initializing	other	elements	of	the	array	here
friends[19]	=	"Natasha";															//Initialize	the	last	element

The	first	element	of	an	array	in	Java	always	has	an	index	of	0.	Arrays	in	Java	are	zero-
based.	While	declaring	an	array	you	can	place	brackets	either	after	the	data	type	or	after
the	variable	name.	Both	of	the	following	declarations	are	correct:

String	friends[];
String[]	friends;

You	must	know	the		size	of	the	array	before	assigning	values	to	its	elements.	If	you	want
to	be	able	to	dynamically	change	the	size	of	an	array	during	run	time,	consider	other	Java
collection	classes	from	the	package	java.util,	such	as	Vector	and	ArrayList.	Besides	arrays,
Java	has	lots	of	collection	classes	that	can	store	multiple	related	values;	for
example,	HashMap,	List,	and	LinkedList.	You	have	a	chance	to	see	their	use	in	the	code
samples	accompanying	this	book.	Listing	5-1	contains	sample	code	that	partially
populates	an	array.

Listing	5-1:	Populating	a	simple	array

public	class	Girlfriends1	{
	public	static	void	main(String[]	args)	{
				String	[]	friends	=	new	String	[20];	//	Declare	and	instantiate	array
				friends[0]	=	"Masha";													//Initialize	the	first	element
				friends[1]	=	"Matilda";											//Initialize	the	second	element
				friends[2]	=	"Rosa";
				//	...
				friends[18]	=	"Hillary";
				friends[19]	=	"Natasha";
				System.out.println("The	third	girl's	name	is	"	+	friends[2]);
				System.out.println("The	twentieth	girl's	name	is	"	+	friends[19]);
	}
}

An	array	has	a	property	length	that	“knows”	the	number	of	elements	in	the	array.	The	next
line	shows	how	you	can	get	this	number:

int	totalElements	=	friends.length;

If	you	know	all	the	values	that	will	be	stored	in	the	array	at	the	time	of	its	declaration,	you
can	declare	and	initialize	an	array	at	the	same	time.	The	following	line	declares,
instantiates,	and	populates	an	array	of	four	elements:

String	[]		friends	=	{"Masha",	"Matilda",	"Rosa",	"Sharon"};

Our	array	friends	is	not	as	practical	as	a	contacts	list	in	your	phone,	though	—	it	does	not
store	girls’	phone	numbers.	Luckily,	Java	supports	multidimensional	arrays.	For	example,
to	create	a	two-dimensional	array	(names	and	phone	numbers),	declare	it	with	two	sets	of
square	brackets:

String	friends	[][]	=	new	String	[20][2];
friends[0][0]	=	"Masha";
friends[0][1]	=	"732	111-2222";
friends[1][0]	=	"Matilda";
friends[1][1]	=	"718	111-2222";
...
friends[19][0]	=	"Sharon";
friends[19][1]	=	"212	111-2222"

More	About	Strings	
Strings	are	special	objects	in	Java.	They	are	stored	in	a	pool	of	strings	for	reusability.	They
are	immutable;	you	can’t	change	the	value	of	a	String	that	has	been	initialized.	However,
this	doesn’t	mean	that	you	can’t	create	new	Strings	based	on	the	existing	one.	Consider	the
following	code	sample:

String	bestFriend	=	"Mary";				
bestFriend	=	bestFriend	+	"	Smith";
String	greeting	=	"Hello	"	+	bestFriend;

The	first	line	creates	an	entry	in	the	pool	of	strings	with	the	value	of	“Mary.”	The	second
line	doesn’t	modify	the	first	one	but	creates	a	new	entry	with	the	value	“Mary	Smith.”	The
third	line	creates	yet	another	entry	in	the	pool	with	the	value	“Hello	Mary	Smith.”

A	program	can	consist	of	hundreds	classes,	and	if	any	other	class	will	need	a	String	with
any	of	these	three	values,	they’ll	be	taken	from	the	pool.

If	your	program	needs	to	do	lots	of	manipulations	with	strings,	consider	using	a	class
StringBuffer,	which	is	mutable.	For	example:

StringBuffer	sbf	=	new	StringBuffer();
sbf.append("Mary");
sbf.append("	Smith");

String	fullName	=	sbf.toString();		//	Converting	back	to	String

Another	way	to	create	a	mutable	object	for	storing	textual	data	is	the	class	StringBuilder.
It’s	based	on	arrays	and	has	capacity.	For	example,	you	can	allocate	memory	for	50
characters	and	fill	10	of	them	as	follows:

StringBuilder	sbld	=	new	StringBuilder(50);
sbld.append("Mary");
sbld.append("	Smith");
String	fullName	=	sbld.toString();	//	Converting	back	to	String

StringBuilder	has	lots	of	convenient	methods,	such	as	methods	that	insert	characters	into	a
certain	position	in	a	character	sequence	or	remove	one	or	more	characters.	Refer	to
Oracle’s	tutorial	at	http://docs.oracle.com/javase/tutorial/java/data/buffers.html	for	more
examples.

Have	you	noticed	that	although	String	is	an	object	(not	a	primitive),	I	have	not	used	the
new	operator	to	instantiate	these	objects?	You	can	instantiate	strings	as	regular	objects,
too.	For	example:

String	friend1=new	String("Mary");
String	friend2=new	String("Joe");
String	friend3=new	String("Mary");

Now,	I’d	like	to	bring	your	attention	to	String	comparison.	Revisit	the	beginning	of
Lesson	3,	and	take	another	look	at	the	diagram	illustrating	two	instances	of	the	car.	The
variables	car1	and	car2	point	at	different	memory	addresses.	On	the	same	note,	the
variables	friend1,	friend2,	and	friend3	point	at	three	different	memory	locations,	and	the
values	stored	in	these	variables	are	the	addresses	of	two	different	objects.	Hence,	even
though	the	name	of	the	first	and	third	friend	are	the	same,	comparing	friend1	and
friend3	returns	false.	You	can	test	it	by	trying	the	following	line	of	code:

System.out.println("Is	friend1==friend3?	"	+	(friend1==friend3));

The	==	Operator
Note	the	double	equal	sign	in	the	code	above.	You	are	comparing	the	variables	for
equality	and	not	assigning	one	value	to	another.

But	if	you’d	like	to	compare	values	of	the	strings	(not	the	memory	addresses),	use	the
equals()	method.	The	following	code	prints	the	sentence	that	ends	with	true:

System.out.println("Is	friend1.equals(friend3)?	"	+	
																																								(friend1.equals(friend3)));	

http://docs.oracle.com/javase/tutorial/java/data/buffers.html

Loops
Loops	are	used	to	repeat	the	same	action	multiple	times.	When	you	know	in	advance	how
many	times	you	want	to	repeat	an	action,	use	the	for	loop.	Try	printing	the	names	from	the
one-dimensional	array	friends.

int		totalElements	=	friends.length;
for	(int	i=0;	i	<	totalElements;i++){
			System.out.println("I	love	"	+	friends[i]);
}

	The	preceding	code	reads	“Print	the	value	of	the	element	i	from	the	array	friends	starting
from	i=0	and	incrementing	i	by	one	(i++)	until	i	reaches	the	value	equal	to	the	value	of
totalElements.”	Listing	5-2	adds	a	for	loop	to	the	program	shown	in	Listing	5-1.

Listing	5-2:	Looping	through	the	array

public	class	Girlfriends2	{
							public	static	void	main(String[]	args)	{
														String	[]	friends	=	new	String	[20];
														friends[0]	=	"Masha";
														friends[1]	=	"Matilda";
														friends[2]	=	"Rosa";
														friends[18]	=	"Hillary";
														friends[19]	=	"Natasha";
														int		totalElements	=	friends.length;
														int	i;
														for	(i=0;	i<totalElements;i++){
																	System.out.println("I	love	"	+	friends[i]);
														}
							}
}

Because	the	friends	array	has	been	declared	with	a	size	of	20,	the	Java	run	time	has
allocated	memory	for	20	elements.	But	the	code	in	Listing	5-2	has	populated	only	five	of
the	20	elements	of	the	array,	which	explains	why	the	output	of	this	program	looks	as
follows:

I	love	Masha
I	love	Matilda
I	love	Rosa
I	love	null
I	love	null
I	love	null
I	love	null

I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	null
I	love	Hillary
I	love	Natasha

The	keyword	null	represents	an	absence	of	any	value	in	an	object.	Even	though	the	size	of
this	array	is	20,	only	five	elements	were	initialized.

There’s	another	syntax	of	the	for	loop,	known	as	the	for-each	loop.	You	simply	declare	a
variable	of	the	same	type	as	the	objects	stored	in	an	array	and	specify	the	array	to	iterate.
The	following	code	snippet	declares	the	variable	girl,	and	the	colon	means	“in.”	Read	this
loop’s	condition	expression	as	“for	each	element	in	friends.”	This	syntax	allows	you	to	not
worry	about	checking	the	size	of	the	array,	and	there	is	no	need	to	increment	any	loop
variable	either.	This	is	an	elegant	and	short	loop	notation:

for	(String	girl:	friends){
				System.out.println("I	love	"	+	girl);
}

Looping	through	collections	with	forEach()
Java	8	introduced	a	new	way	of	looping	through	data	collection	with	the	method
forEach().	You	see	it	in	action	in	Lesson	13.	Just	keep	in	mind	that	for-each	loops	and
the	forEach()	method	are	different	animals.	

You	can	rewrite	the	program	in	Listing	5-2	using	the	while	loop,	which	is	used	when	you
do	not	know	the	exact	size	of	the	array	but	do	know	the	condition	of	exit	from	the	loop.
Use	the	keyword	while:

int		totalElements	=	friends.length;
int	i=0;
while	(i<totalElements){
			System.out.println("I	love	"	+	friends[i]);
							i++;				//	the	same	as	i=i+1;
}

Just	think	of	a	program	that	reads	and	processes	the	records	from	a	database	(see

Chapter	21).	When	you	write	a	Java	program,	you	don’t	know	how	many	elements	the
database	has,	and	even	if	you	do	know,	this	number	can	change	in	the	future,	so	it’s	better
to	use	loops	with	the	exit	condition	than	to	use	a	hard-coded	number	of	repetitions.

Use	the	keyword	break	to	prematurely	jump	out	of	the	loop	on	the	line	below	the	ending
curly	brace.	For	example,	if	you	want	to	find	the	first	null	element	in	the	friends	array,
write	the	following:

while	(i<totalElements){
							if	(friends[i]==null){
										System.out.println("The	element	"	+	(i+1)	+	"	is	null");
										break;
							}
						System.out.println("I	love	"	+	friends[i]);
						i++;
}		//	closing	curly	brace	for	the	loop

The	if	statement	in	the	preceding	code	checks	the	value	of	each	element	of	the	array,	and
as	soon	as	it	finds	null,	the	loop	prints	the	message	about	it,	stops	the	iteration	process,
and	goes	to	the	line	below	the	closing	curly	brace	of	the	loop,	if	any.

The	keyword	continue	enables	you	to	force	the	loop	to	return	to	its	first	line	and	retest	the
loop	exit	condition.	The	following	code	snippet	prints	only	those	values	from	the	array
that	are	not	null:

while	(i<totalElements){
				if	(friends[i]==null){
								i++;
								continue;
				}
				System.out.println("I	love	"	+	friends[i]);
				i++;
																				}
				System.out.println("The	iteration	is	over");

The	preceding	code	uses	an	if	statement,	which	allows	you	to	check	a	certain	condition
and	redirect	the	program	to	execute	or	skip	a	portion	of	the	code.	In	this	case,	if	the	loop
runs	into	a	null	value,	it	increments	by	one	the	value	of	the	variable	i	and	goes	to	the
beginning	of	the	while	loop,	skipping	the	rest	of	the	code	within	the	loop	body.	(Later	in
this	lesson	there’s	a	section	explaining	the	syntax	of	the	various	if	statements	in	greater
detail.)	The	complete	code	of	the	program,	illustrating	a	while	loop	with	a	continue
statement,	is	shown	in	Listing	5-3.

Listing	5-3:	While	loop	with	continue	statement

public	class	WhileLoopDemo	{
							public	static	void	main(String[]	args)	{
														String	[]	friends	=	new	String	[20];
														friends[0]	=	"Masha";
														friends[1]	=	"Matilda";
														friends[2]	=	"Rosa";
														friends[18]	=	"Hillary";
														friends[19]	=	"Natasha";
														int		totalElements	=	friends.length;
														int	i=0;
														while	(i<totalElements){
																							if	(friends[i]==null){
																																	i++;
																																	continue;
																								}
																								System.out.println("I	love	"	+	friends[i]);
																								i++;
																								}
																								System.out.println("The	iteration	is	over");
							}
}

The	output	of	the	WhileLoopDemo	program	is	shown	here:

I	love	Masha
I	love	Matilda
I	love	Rosa
I	love	Hillary
I	love	Natasha
The	iteration	is	over

There	is	a	rarely	used	do-while	version	of	the	while	loop.	It	starts	with	the	do	keyword
followed	by	the	body	of	the	loop	in	curly	braces,	and	the	while	condition	comes	last.	Such
loop	syntax	guarantees	that	the	code	written	in	the	body	of	the	loop	will	be	executed	at
least	once,	because	the	loop	condition	will	be	tested	only	after	the	first	pass	into	the	loop.
In	the	following	loop,	at	the	very	minimum	the	statements	about	reading	the	element	zero
of	array	friends	will	be	printed	for	each	element	of	the	array	even	if	every	one	of	them	is
null:

do	{
			System.out.println("Reading	the	element"	+	i	+"	of	array	friends");
				if	(friends[i]==null){
							i++;

							continue;
				}
				System.out.println("I	love	"	+	friends[i]);
				i++;
																					
}	while	(i<totalElements);

The	worst	thing	that	can	happen	in	any	loop	is	a	programmer’s	mistake	in	the	loop	exit
condition	that	always	evaluates	the	loop	condition	as	true.	In	programming	this	is	known
as	an	infinite	loop.	To	get	a	better	feeling	for	what	this	term	means,	comment	out	the	line
that	increments	the	value	of	the	variable	i	inside	the	if	statement	in	the	do-while	sample,
and	your	program	will	never	end	unless	you	forcefully	stop	it	or	your	computer	runs	out	of
power.	The	reason	is	clear:	If	the	program	enters	the	code	block	that	just	has	the	statement
continue,	the	value	of	the	variable	i	will	never	increase	and	the	loop	execution	condition
i<totalElements	will	hold	true	forever.

Debugging	Java	Programs
In	programmer’s	lingo,	a	bug	is	an	error	in	a	program	that	causes	the	program	to	work	in
an	unexpected	way.	Don’t	confuse	a	bug	with	a	syntax	error	in	the	code.	The	latter	will	be
caught	by	the	Java	compiler	before	you	even	start	the	program,	while	bugs	are	your	run-
time	enemies.	To	debug	a	program	is	to	identify	and	fix	the	run-time	errors	in	code.

The	simplest	way	to	debug	a	program	is	to	print	the	value	of	the	“suspicious	variables”
with	System.out.println()	or	the	like.	You	may	think	that	a	certain	variable	will	get	a
particular	value	during	the	execution,	but	you	might	be	wrong,	and	printing	its	value	from
the	running	program	may	reveal	why	your	code	produces	unexpected	results.

Logging	API
Java	also	comes	with	a	logging	application	program	interface	(API)	—
seehttp://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html	—	that
allows	you	to	log	the	run-time	values	in	a	file	or	other	destination.	Logging	is	out	of
the	scope	of	this	book,	but	you	can	find	Logger	and	other	supporting	classes	in	the
Java	package	java.util.logging.

You’ll	find	daily	use	for	the	debugger	that	comes	with	your	IDE.

Even	though	Chapter	2	was	dedicated	to	Eclipse	IDE,	explaining	debugging	back	then
would	have	been	a	bit	premature	because	it	didn’t	have	much	Java	code	to	debug.	Now
you’re	ready	to	learn	how	the	Eclipse	debugger	can	help	you.

Let’s	see	how	the	while	loop	from	Listing	5-3	works	by	running	the	WhileLoopDemo
program	with	the	Eclipse	debugger.	First,	download		Lesson5.zip	from	this	book’s	website
and	import	it	into	Eclipse.		Open	the	source	code	of	the	class	WhileLoopDemo	and	set	a
breakpoint	on	the	line	of	code	where	you	want	the	program	to	pause	execution	so	you	can
start	watching	the	program	internals.	

	I’d	like	to	pause	this	program	right	before	it	enters	the	while	loop,	so	set	the	breakpoint
on	the	following	line:

while	(i<totalElements){...}

Double-click	the	blue	vertical	bar	located	at	the	left	side	of	the	Editor	view	—	you	should
see	an	image	of	a	little	bullet	there.	This	line	becomes	a	breakpoint,	and	if	the	program
runs	into	the	code	with	the	set	breakpoint,	Eclipse	IDE	switches	to	Debug	perspective	and
pauses	the	program,	highlighting	the	line	that’s	about	to	execute.

To	run	WhileLoopDemo	in	the	debugger,	right-click	the	name	of	this	program	in	Package
Explorer	and	select	the	Debug	As	Java	Application	menu	option.

On	the	first	run	you	will	see	a	warning	that	Eclipse	wants	to	switch	to	the	Debug
perspective;	agree	with	this.	Figure	5-1	shows	how	the	Debug	perspective	looks	when	the
program	reaches	the	breakpoint.

Note	the	little	arrow	in	the	Editor	view	next	to	the	bullet;	it	shows	you	the	line	of	code	that

http://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html

will	be	executed	next.	The	Variables	view	shows	you	the	values	of	the	program	variables
at	this	moment.	The	variable	i	is	equal	to	0;	the	value	of	totalElements	is	20.	If	you	click
the	little	plus	sign	by	the	variable	friends,	you	see	the	contents	of	this	array.

Figure	5-1:	Debugger	paused	at	the	breakpoint

Now	try	to	execute	this	program	step	by	step,	watching	how	the	value	of	the	variable	i
changes.	You	control	program	execution	by	clicking	the	buttons	in	the	toolbar	for	the
Debug	view	(see	Figure	5-2).

Figure	5-2:	The	Debug	View	tab

The	green	play	button	means	“Continue	executing	the	program	until	it	ends	or	hits	another
breakpoint.”	The	red	square	button	stops	the	debugging	process.	The	first	curvy	yellow
arrow	(Step	Into)	is	used	if	the	code	has	been	paused	on	a	line	that	calls	a	method,	and
you’d	like	to	debug	the	code	of	the	method	being	called.	The	second	curvy	arrow	(Step
Over)	allows	you	to	execute	the	current	line	without	stepping	into	any	methods	that	may
be	called	in	this	line	of	code.

	There	are	other	and	less	frequently	used	buttons	on	this	toolbar,	which	you	can	study	on
your	own;	for	now,	enter	the	loop	by	clicking	the	Step	Over	button.	Keep	clicking	this
button	and	observe	that	the	program	doesn’t	enter	the	if	statement,	which	is	correct	—	the
first	element	of	the	friends	array	is	not	null.	Then	if	prints	“I	love	Masha”	in	the	console
view,	increments	the	value	of	the	variable	i	to	1	(see	the	Variables	view	in	Figure	5-3),	and
returns	to	the	loop	condition	to	check	whether	the	value	of	i	is	still	less	than	the	value	of
totalElements.

Figure	5-3:	A	snapshot	of	a	Debug	perspective	

Keep	clicking	the	Step	Over	button,	and	expand	the	variable	friends	in	the	Variables	view
to	see	its	elements	in	order	to	better	understand	why	the	program	skips	or	enters	the	if
statement	in	the	loop.	Note	the	moment	when	the	program	exits	the	loop	and	prints	the
message	“The	iteration	is	over.”	After	spending	some	time	debugging	the	program,	you
should	appreciate	the	value	of	the	Eclipse	Debugger.	In	my	opinion,	the	best	way	to	learn
a	new	programming	language	is	to	run	someone	else’s	code	through	a	good	debugger.	The
program	may	be	bug-free,	but	running	the	program	through	the	debugger	helps	you	to
better	understand	the	program’s	flow.

More	About	if	and	switch	Statements
If	you	need	to	change	the	execution	of	the	program	based	on	a	certain	condition	then	you
can	use	either	if	or	switch	statements,	which	were	introduced	in	Chapter	3.	In	this	section
you	see	more	flavors	of	the	conditional	statements.

The	Flavors	of	if	Statements
In	Listing	5-3	you	saw	one	version	of	the	if	statement:

if	(friends[i]==null){
				i++;
				continue;
}

The	curly	braces	must	be	used	in	the	if	statement	to	specify	a	block	of	code	that	has	to	be
executed	if	the	condition	is	true.	Even	though	the	curly	braces	are	not	required	if	there’s
only	one	statement	in	the	code	block,	using	the	braces	is	considered	a	good	practice.	They
make	the	program	more	understandable	for	other	people	who	may	need	to	read	your	code
(or	for	yourself	six	months	from	now):

if	(friends[i]==null){
				System.out.println("I	found	an	array	element	with	null	value");
}
//	Some	other	code	goes	here

The	code	below	the	closing	curly	brace	is	always	executed,	which	may	not	be	desirable.	In
this	case	use	the	if-else	syntax:

if	(friends[i]==null){
				System.out.println("I	found	an	array	element	with	null	value");
}	else{
				//	Some	other	code	goes	here
}

In	the	preceding	code	snippet,	the	“some	other	code”	is	executed	only	if	the	current
element	of	the	array	is	not	null	(or,	as	it’s	put	it	in	Java,	friends[i]!=null).	You	can	write	an
if	statement	with	multiple	else	clauses.	For	example,	the	following	code	prints	only	one
love	confession:

if	(friends[i]==null){
				System.out.println("I	found	an	array	element	with	null	value");
}	else	if	(friends[i]	==	"Natasha"){
				System.out.println("I	love	my	wife	so	much!");
}	else	if	(friends[i]	==	"Masha"){
				System.out.println("I	fell	in	love	with	Masha	when	I	was	in	the	8th	grade.");
}	else{

				System.out.println("I	used	to	love	"	+	friends[i]	+	"	at	some	point.");
}

Using	conditional	statements	can	be	a	lot	more	complex	than	comparing	two	values.	You
can	build	expressions	using	boolean	AND,	OR,	and	NOT	operators.	The	AND	operation
is	represented	as	&&,	like	this:

if	(age<20	&&	gender=="male")	{
						//	do	something	only	for	males	under	20	years	old
}

For	the	OR	condition	use	||;	for	example:

if	(age	<	30	||	yearsInArmy	>	0)	{
				//	do	something	with	people	younger	than	30	or	those	who	served
				//	in	the	army	regardless	of	their	age
}

For	the	NOT	condition	(aka	negation)	use	the	!	sign:

boolean	hasBachelorDegree;
//	Read	the	person	record	and	assign	the	value	true	or	false
//	to	the	variable	hasBachelorDegree
if	(!hasBachelorDegree)	{
						//	do	something	with	people	without	bachelor	degree
}

The	negation	symbol	can	be	placed	either	in	front	of	a	boolean	variable,	as	in	the
preceding	code	snippet,	or	in	front	of	the	expression	that	returns	boolean.	The	next	code
example	shows	how	to	use	negation.	Note	that	the	comparison	expression	was	placed
inside	the	parentheses;	otherwise	the	Java	compiler	would	assume	that	you’re	trying	to
negate	a	String	value	called	friends[i],	which	is	not	allowed.

if	(!(friends[i]=="Hillary")){
							System.out.println("Still	looking	for	Hillary.");
}

Imagine	a	situation	in	which	you	need	to	assign	a	value	to	a	variable,	but	the	value
depends	on	the	result	of	a	certain	condition.	To	assign	the	variable	in	a	verbose	way	you
can	use	a	regular	if	statement	and	test	some	condition,	writing	one	assignment	operator	for
a	result	of	true,	and	another	in	the	else	section	for	a	result	of	false.	But	if	you	use	a	special
construct	called	a	conditional	operator	(?),	the	same	task	can	be	done	more	simply.

The	conditional	operator	consists	of	the	following	parts:	an	expression	that	returns
boolean,	a	question	mark,	an	expression	that	returns	some	value	if	the	first	expression
evaluates	to	true,	a	colon,	and	an	expression	that	returns	a	value	to	be	used	if	the	first
expression	returns	false.	It	sounds	complicated,	but	it’s	not.	The	following	code	sample
shows	how	to	assign	a	$3,000	bonus	if	a	person’s	salary	is	greater	than	$90,000,	and	only

$2,000	otherwise:

float	salary;
//	Retrieve	the	salary	of	the	person	from	some	data	source	here
int	bonus	=	salary	>	90000	?	3000	:	2000;

Command-Line	Arguments
In	Chapter	1	you	learned	how	to	start	a	Java	program	from	a	command	line.	After
development	in	Eclipse	or	another	IDE	is	done,	Java	programs	are	deployed	in	production
and	will	be	started	from	a	command	line	—	usually	you	get	an	icon	to	click	that	runs	a
command	to	start	a	program,	but	under	the	hood	the	operating	system	executes	a
command	that	starts	your	program.	You	can’t	expect	an	accountant	to	have	Eclipse
installed	to	run	a	tax	calculation	program,	right?	For	example,	to	run	the	TestTax	program
(see	Lesson	4)	from	the	command	window	you	need	to	open	a	command	(or	Terminal)
window,	change	the	directory	to	Lesson4	in	your	Eclipse	workspace,	and	enter	the
following:

java	TestTax

You	can	run	as	standalone	programs	only	those	Java	classes	that	have	the	method	main,
which	takes	a	String	array	as	an	argument.	This	array	is	the	means	of	passing	some	data
from	the	command	line	to	your	program	during	start-up.	For	example,	you	can	pass	gross
income,	state,	and	number	of	dependents	to	TestTax	by	starting	it	from	the	command	line
as	follows:

java	TestTax	50000	NJ	2

The	method	main(String[]	args)	of	the	class	TestTax	receives	this	data	as	a	String	array
that	I	decided	to	call	args.	This	array	is	automatically	created	by	JVM,	and	it’s	large
enough	to	accommodate	all	the	arguments	entered	from	the	command	line.	This	array	will
be	populated	as	follows:

args[0]	=	"50000";
args[1]	=	"NJ";
args[2]	=	"2";

Command-line	arguments	are	always	being	passed	to	a	program	as	String	arrays.	It’s	the
responsibility	of	the	programmer	to	convert	the	data	to	the	appropriate	data	type.	The
wrapper	Java	classes	that	were	introduced	in	Chapter	3	can	come	in	handy.	For	example,
the	wrapper	class	Double	has	the	function	parseDouble	to	convert	String	to	double:

double	grossIncome	=	Double.parseDouble(args[0]);

Review	the	code	of	the	TestTax	program	from	Listing	4-6,	which	has	hard-coded	values	of
gross	income,	state,	and	number	of	dependents.	By	using	command-line	arguments	you
can	make	the	program	more	generic	and	use	for	more	people	—	not	only	those	from	New
Jersey	who	have	two	dependents	and	an	annual	income	of	$50,000.

You’ll	work	on	this	assignment	in	the	Try	It	section.

Try	It
Your	assignment	is	to	introduce	command-line	arguments	into	the	program	from	Listing
4-6.

Lesson	Requirements
For	this	lesson	you	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in		Lesson5.zip.

Step-by-Step
1.	 In	Eclipse	IDE,	copy	the	TestTax	class	from	the	Lesson4	project	to	the	src	folder	of	the

project	Lesson5.	Also,	copy	the	Tax	class	from	the	project	Chapter	3	that	has	an	if
statement	in	the	calcTax()	method.

2.	 Remove	the	three	lines	that	initialize	grossIncome,	state,	and	dependents	with	hard-
coded	values.

3.	 Add	the	following	code	fragment	to	ensure	that	the	program	has	been	started	with
three	arguments.	If	it	has	not,	print	the	error	message	and	exit	the	program.

if	(args.length	!=	3){
						System.out.println("Sample	usage	of	the	program:"	+
																														"		java	TestTax	50000	NJ	2");
						System.exit(0);
}

4.	 Add	the	following	statements	to	the	method	main()	to	get	the	values	passed	from	the
command	line,	convert	them	to	appropriate	data	types,	and	initialize	the	variables
grossIncome,	state,	and	dependents:

double	grossIncome	=	Double.parseDouble(args[0]);
String	state	=	args[1];
int	dependents	=	Integer.parseInt(args[2]);

5.	 Even	though	there	is	a	way	to	specify	command-line	arguments	in	Eclipse,	I	want	you
to	leave	the	IDE	and	do	the	rest	in	the	command-line	window.	Right-click	the	Lesson5
project	in	Eclipse	IDE	and	select	the	Properties	menu	item	(note	the	location	of	the
compiled	classes	of	your	project	—	in	my	case	it	was
c:\practicalJava\workspace\Lesson5\bin).

6.	 Open	the	command	window	and	change	the	directory	to	the	one	that	contains	the	file
TestTax.class.

7.	 Run	your	program	several	times,	specifying	different	values	for	the	command-line
arguments.	The	program	should	print	different	values	for	the	calculated	tax.

http://www.wrox.com/go/javaprog24hr2e

TIP			Please	select	the	videos	for	Lesson	5	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	6
Packages,	Interfaces,	and	Encapsulation
A	programming	language	is	considered	object-oriented	if	it	supports	inheritance,
encapsulation,	and	polymorphism.	You	know	by	now	that	Java	supports	inheritance,
which	lets	you	design	a	class	by	deriving	it	from	an	existing	one.	This	feature	allows	you
to	reuse	existing	code	without	copy-pasting	code	fragments	from	other	classes.	The	class
NJTax	from	Listing	3-5	was	designed	this	way.

In	Chapter	6	and	Chapter	7	you	learn	what	encapsulation	means,	and	continue	studying
coding	techniques	and	best	practices.	Although	this	lesson	shows	you	several	short	code
examples	illustrating	certain	programming	topics,	the	next	one	brings	all	the	pieces	you’ve
learned	so	far	together	in	one	larger	application.

Java	Packages
A	decent	size	project	can	have	hundreds	of	Java	classes,	and	you	need	to	organize	them	in
packages	(think	file	directories).	This	will	allow	you	to	categorize	files,	control	access	to
your	classes	(see	the	section	“Access	Levels”	later	in	this	chapter),	and	avoid	potential
naming	conflicts:	If	both	you	and	your	colleague	coincidentally	decide	to	name	a	class
Util,	this	won’t	be	a	problem	as	long	as	these	classes	are	located	in	different	packages.

Sometimes	you’ll	be	using	third-party	libraries	of	Java	classes	written	in	a	different
department	or	even	outside	your	firm.	To	minimize	the	chances	that	package	names	will
be	the	same,	it’s	common	to	use	so-called	reverse	domain	name	notation.	For	example,	if
you	work	for	a	company	called	Acme,	which	has	the	website	acme.com,	you	can	prefix	all
package	names	with	com.acme.	To	place	a	Java	class	in	a	certain	package,	add	the
package	statement	at	the	beginning	of	the	class	(it	must	be	the	first	non-comment
statement	in	the	class).	For	example,	if	the	class	Tax	has	been	developed	for	the
accounting	department,	you	can	declare	it	as	follows:

package	com.acme.accounting;
class	Tax	{
		//	the	code	goes	here
}

If	you	declare	the	class	Tax	as	shown	in	the	preceding	code,	the	file	Tax.java	must	be
stored	in	the	corresponding	directory	tree:

com
			acme
					accounting

Java	classes	are	also	organized	into	packages,	and	the	fully	qualified	name	of	a	class
consists	of	the	package	name	followed	by	the	class	name.	For	example,	the	full	name	of
the	Java	class	Double	is	java.lang.Double,	where	java.lang	is	the	package	name.	As	a
matter	of	fact,	java.lang	is	the	only	package	name	that	you	don’t	have	to	explicitly
mention	in	your	code	in	order	for	its	classes	to	be	found,	unless	all	classes	are	located	in
the	same	package.

The	program	documentation	on	all	Java	8	packages	is	available	at
http://download.oracle.com/javase/8/docs/api/.

Let’s	say	your	Tax	class	needs	to	connect	to	some	URL	with	the	help	of	the	class	URL
located	in	the	java.net	package.	You	can	write	code	containing	the	fully	qualified	name	of
this	second	class:

java.net.URL	myURL	=	new	java.net.URL	("http://www.acme.com");

But	instead	of	using	this	rather	long	notation,	include	the	import	statement	right	above	the
class	declaration,	and	then	use	just	the	name	of	the	class:

import	java.net.URL;

http://download.oracle.com/javase/8/docs/api/

class	Tax{
			URL	myURL	=	new	URL("http://www.acme.com");
			...
}

If	you	need	to	import	several	classes	from	the	same	package,	use	the	wild	card	(*)	in	the
import	statement	rather	then	listing	each	of	the	classes	on	a	separate	line:

import	java.net.*;

But	using	the	wild	card	makes	your	program	less	readable.	The	preceding	code	sample
makes	it	not	clear	which	specific	classes	from	the	java.net	package	are	used	in	the
program.	Don’t	be	lazy	and	list	import	statements	for	each	class	separately.	It	doesn’t
affect	the	size	of	the	compiled	code,	but	it	will	make	your	program	easier	to	understand	to
whomever	reads	it	in	the	future	(even	you,	by	the	way).	

Encapsulation
Encapsulation	is	the	ability	to	hide	and	protect	data	stored	in	Java	objects.	You	may	ask,
“Who	are	the	bad	guys	who	want	to	illegally	access	my	data?”	It’s	not	about	bad	guys.
When	a	developer	creates	a	Java	class,	he	or	she	plans	for	a	certain	use	pattern	of	this	code
by	other	classes.	For	example,	the	variable	grossIncome	should	not	be	modified	directly;
instead,	it	should	be	modified	via	a	method	that	performs	some	validation	procedures	to
ensure	that	the	value	to	be	assigned	meets	application-specific	rules.

A	Java	developer	may	decide	to	“hide”	15	out	of	20	variables,	say,	so	other	classes	can’t
access	them.	Imagine	how	many	parts	exist	in	a	car	and	how	many	functions	those	parts
can	perform.	Does	the	driver	need	to	know	about	all	of	them?	Of	course	not.	The	driver
needs	to	know	how	to	start	and	stop	the	car,	signal	turns,	open	the	windows,	turn	on	the
wipers,	and	do	a	few	dozen	other	simple	operations,	which	in	programming	jargon	can	be
called	the	car’s	public	interface.	Java	has	special	keywords	to	control	which	elements	of
your	programs	should	be	made	public,	and	which	should	not.

Access	Levels
Java	classes,	methods,	and	member	variables	can	have	public,	private,	protected,	and
package	access	levels;	for	example:

public	class	Tax	{
			private	double	grossIncome;
			private	String	state;
			private	int	dependents;
			protected	double	calcTax(){
						//	the	method	code	goes	here
			}
}

The	keyword	public	means	that	this	element	(a	class,	a	method,	or	a	variable)	can	be
accessed	from	any	other	Java	class.	The	keyword	protected	makes	the	element	“visible”
not	only	in	the	current	class	but	also	to	its	subclasses,	even	if	they	are	located	in	different
packages.

The	keyword	private	is	the	most	restrictive	one,	as	it	makes	a	member	variable	or	a
method	accessible	only	inside	this	class.	For	example,	our	class	Tax	may	need	some
additional	methods	that	could	be	internally	called	from	the	method	calcTax().	The	users	of
the	class	Tax	do	not	need	to	know	about	these	methods,	and	they	should	be	declared	as
private.

If	you	do	not	specify	any	access	level,	the	default	is	package	(it’s	not	a	keyword),	which
means	that	only	classes	located	in	the	same	package	will	have	access	to	this	method	or
variable.	Java	classes	should	expose	only	the	methods	that	outsiders	have	to	know,	such	as
calcTax().

If	you	are	not	sure	which	access	level	to	give	to	methods	or	variables,	just	make	them	all
private;	as	you’re	doing	later	development,	if	some	other	class	needs	to	access	them,	you

can	always	change	the	access	level	to	be	less	restrictive.	This	will	protect	all	the	internals
of	your	application	from	misuse.	Think	of	it	this	way:	“I	want	to	sell	my	class	Tax	to
various	accounting	firms	across	the	country.	If	their	software	developers	integrate	my
class	with	their	existing	systems,	what	are	the	methods	that	they	must	know	about	to	be
able	to	calculate	tax?”	If	car	designers	did	not	ask	themselves	similar	questions,	drivers
would	need	to	press	dozens	of	buttons	just	to	start	the	engine.

The	Keyword	final
The	keyword	final	can	have	different	meanings	depending	on	the	context.	It’s	explained	in
the	next	sections.

final	Variables
You	can	use	the	keyword	final	while	declaring	variables,	methods,	and	classes.	A	final
variable	becomes	a	constant	(see	Chapter	3)	that	can	be	initialized	only	once	and	can’t
change	its	value	during	the	run	time.	Some	people	may	argue	that	a	constant	and	a
variable	that	can	get	initialized	only	once	are	not	the	same	thing,	but	the	fact	that	you	can’t
change	their	values	makes	them	very	similar.

Even	though	you	can	declare	constants	inside	a	method,	it’s	more	common	to	declare	them
on	the	class	level	so	they	can	be	reused	by	several	methods	of	the	same	class:	

final	int	BOILING_TEMP	=	212;	//	in	Fahrenheit

final	Methods
If	you	declare	a	class	method	with	a	final	keyword,	this	method	can’t	be	overridden	if
someone	decides	to	extend	the	class.	At	the	moment	it	may	seem	obvious	to	you	that	a
particular	method	will	never	ever	need	to	be	overridden.	What	are	the	chances	that	the
formula	to	convert	Fahrenheit	to	Celsius	will	be	changed	any	time	soon?

static	final	double	convertToCelsius(double	far){
											return	((far	-	32)	*	5	/	9);
}

But	in	many	cases	developers	create	reusable	libraries	of	Java	classes,	finalizing
functionality	that’s	not	written	in	stone.	Although	it	may	seem	to	you	that	a	particular
method	will	never	need	to	be	overridden,	you	might	not	have	predicted	all	use	patterns	of
this	class.	If	this	happens,	some	other	developer	will	have	to	jump	through	hoops	to	create
another	version	of	your	method	in	a	subclass.

Many	years	ago	the	Java	compiler	optimized	(inlined)	final	methods.	It	doesn’t	do	that
anymore	—	all	methods	are	optimized	by	the	Hotspot	JVM.	Just	think	twice	before
making	a	method	final

final	Classes
If	you	declare	a	class	as	final,	no	one	will	be	able	to	subclass	it.	For	example,	the	class
String	has	been	created	as	immutable	and	therefore	was	declared	as	final	(see
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html).	If	a	class	is	declared	as
final,	all	its	methods	become	implicitly	final.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

final	in	Exception	handling
There	is	one	more	use	of	the	final	keyword.	You	can	use	it	in	the	error-handling
blocks	(try-catch).	You	see	an	example	of	using	finally	in	Lesson	10	covering	error
handling

Interfaces
There	are	different	approaches	to	how	to	start	designing	a	class.	Most	people	start	with
thinking	over	the	behavior	it	should	support.	For	example,	an	employee	should	get	paid;
hence	the	class	Employee		should	implement	Payable	interface.	The	name	Payable	is	an
arbitrary	one.	What	represents	payable	behavior?	Let’s	say	that	you	want	to	implement	it
in	a	method	with	a	signature	boolean	increasePay(int	percent).

Of	course,	you	can	just	add	such	a	method	straight	to	the	class	Employee	and	implement
business	logic	right	there.	The	other	choice	is	to	just	declare	this	method	in	a	separate
entity	called	an	interface,	and	then	have	your	class	implement	this	interface:

class	Employee	implements	Payable{
			//	the	implementation	goes	here
}

Listing	6-1	shows	an	interface	with	one	method	declaration.

You	should	have	a	reason	for	declaring	some	methods	separately	from	the	class	that	will
implement	them,	and	you	see	these	reasons	in	the	next	lesson	when	you	learn	about
polymorphism.	For	now,	just	get	familiar	with	the	syntax	of	defining	and	using	interfaces.
Interfaces	before	Java	8	didn’t	allow	for	any	method	implementations	—	just	declarations.
Let’s	start	with	the	case	when	an	interface	has	only	declared	behavior.

When	a	class	declares	that	it	implements	a	certain	interface,	it	guarantees	to	provide
implementation	for	all	methods	declared	in	this	interface.	And	a	class	can	implement	more
than	one	interface:	just	separate	their	names	with	commas.

Let’s	say	there	are	two	types	of	workers	in	your	organization	—	employees	and
contractors	—	and	that	you	create	the	classes	Employee	and	Contractor	to	implement
functionalities	that	reflect	specifics	of	these	different	groups.	Each	person	is	entitled	to	a
pay	raise,	though	for	employees	this	means	a	salary	increase	and	for	contractors	it’s	an
increase	of	an	hourly	or	daily	rate.

Instead	of	creating	two	different	methods	in	these	classes	(for	example,	increateSalary()
and	increaseRate()),	it’s	better	to	define	an	interface	called,	say,	Payable	that	contains	the
declaration	of	the	method	increasePay(),	and	to	have	both	classes	implement	it,	as	in
Listing	6-1,	Listing	6-2,	and	Listing	6-3.	Every	method	declared	in	the	interface
automatically	becomes	public.

Listing	6-1:	Payable	interface

public	interface	Payable	{
							boolean	increasePay(int	percent);
}

Listing	6-2:	Class	Employee

public	class	Employee	implements	Payable	{
							public	boolean	increasePay(int	percent)	{
														//	implement	salary	raise	here
							}
}

Listing	6-3:	Class	Contractor

public	class	Contractor	implements	Payable	{
							public	boolean	increasePay(int	percent)	{
														//	implement	hourly	rate	increase	here
							}
}

Because	both	Employee	and	Contractor	contain	the	clause	implements	Payable,	you	must
implement	the	increasePay()	method	in	each	of	the	classes,	or	your	code	won’t	compile.
Creating	classes	with	common	interfaces	leads	to	a	cleaner	design	of	your	application	and
makes	the	code	more	readable.	But	what’s	more	important	is	that,	with	the	help	of
interfaces,	you	can	introduce	polymorphic	behavior	to	your	program,	which	is	illustrated
in	Chapter	7.

Besides	method	signatures,	Java	interfaces	can	contain	declarations	of	final	variables.	For
example,	you	can	create	a	final	variable	in	the	Payable	interface	for	the	maximum
percentage	of	a	pay	increase	(all	variables	declared	in	the	interface	automatically	become
public	static	final):

int	INCREASE_CAP	=	20;

Because	both	the	Employee	and	Contractor	classes	implement	Payable,	they	can	both	(or
just	the	Contractor)	include	if	statements	in	the	implementation	of	increasePay()	to	ensure
that	the	provided	percentage	increase	is	less	than	INCREASE_CAP.	If	the	cap	changes	in
the	future,	you	need	to	change	it	in	only	one	place	—	the	Payable	interface.	Moreover,	if	a
new	type	of	worker	is	introduced	later	(for	example,	ForeignContractor),	the
implementation	of		increasePay()	may	be	completely	different.

Some	software	developers	create	Java	interfaces	that	contain	only	final	variables	storing
important	application	constants.	Implementing	such	interfaces	will	make	these	constants
available	in	the	class	that	implements	the	interface(s).	Not	everyone	approves	of	such
usage	of	interfaces	because	it	can	create	a	messy	situation	when	a	class	that	implements
interfaces	with	static	constants	exposes	a	new	set	of	public	APIs	(those	final	variables)
rather	than	just	using	these	values	internally.	The	code	readability	suffers,	too;	it’s	not
immediately	clear	where	a	certain	variable	was	declared,	especially	if	there	are	several

layers	of	inheritance,	where	classes	implement	multiple	interfaces.	You	can	read	more
about	this	Constant	Interface	Antipattern	at	http://goo.gl/WBQm9d.

Marker	Interfaces
Marker	interfaces	are	those	that	don’t	have	any	methods	declared.	One	example	of	such
an	interface	is	Serializable,	which	is	covered	in	Chapter	15.	You	don’t	need	to	write	any
implementation	of	these	interfaces;	the	Java	compiler	takes	care	of	this	for	you.	Objects	of
a	class	that	implement	a	marker	interface	support	a	certain	functionality.	For	example,	if	a
class	implements	Serializable,	JVM	is	able	to	serialize	it	—	turn	it	into	a	string	of	bytes
(in	the	server’s	JVM)	in	such	a	way	that	the	string	can	be	sent	to	another	JVM	(on	the
client’s	machine),	which	will	be	able	to	re-create	the	instance	of	the	object,	or	de-serialize
it.	Marker	interfaces	are	used	internally	by	the	Java	compiler	to	generate	the	byte	code	that
will	implement	the	functionality	required	by	such	interfaces.

Also,	Java	has	an	operator	instanceof	(see	the	next	section)	that	can	check	during	the	run
time	whether	an	object	is	of	a	certain	type.	You	can	use	the	operator	instanceof,	as	shown
in	the	following	code,	to	check	whether	the	object	implements	a	marker	interface,	or	any
other	type	of	interface	for	that	matter:

if	(receivedFromServerObj	instanceof	Serializable)	{
				//	do	something
}

This	may	look	strange	—	is	it	an	instance	of	an	interface?	The	proper	way	to	read	it	is	if
the	variable	receivedFromServerObj	points	to	the	object	that	prompts	Serializable	to	do
something.	

Default	Methods	in	Interfaces
A	new	keyword,	default,	was	introduced	in	Java	SE	8.	Now	you	can	provide	a	default
method	implementation	in	interfaces,	too.	For	example,	you	can	create	an	interface
Payable	with	default	implementation	of	the	method	increasePay():

public	interface	Payable	{
				default	boolean	increasePay(int	percent){
								System.out.println(
										"The	default	code	implementing	pay	increase	goes	here");
								return	true;
				};
}

Now,	if	a	class	that	implements	Payable	doesn’t	have	its	own	implementation	of	the
increasePay()	then	the	default	method	implementation	is	used.	The	compiler	will	not
complain.	Default	methods	are	also		known	as	defender	methods.

http://goo.gl/WBQm9d

Compiler	Compliance	Level	in	Eclipse	IDE
If	the	preceding	code	doesn’t	compile	in	your	Eclipse	IDE,	most	likely	your	project	is
set	to	support	syntax	that’s	older	than	Java	8.	To	fix	it,	right-click	the	project	name,
select	the	Project	Properties	menu,	and	then	select	Java	Compiler.	Make	sure	that	the
JDK	Compliance	is	set	to	support	Java	1.8.	

You	need	to	handle	default	methods	with	care	as	sometimes	you	might	run	into	the	name
conflicts.	Consider	the	following	situation:

package	defendermethods;
class	Employee	extends	Person	implements	Payable,	Promotionable{
			public	static	void	main(String[]	args){
							Employee	emp	=	new	Employee();
							emp.increasePay(10);
			}
}

What	if	there	is	the	method	increasePay()	in	the	class	Person	and	in	the
interfaces	Payable	and	Promotionable?	How	is	such	a	conflict	resolved?	If	a	program
creates	an	instance	of	the	class	Employee	and	invokes	the	method	increasePay()	on	it,
which	version	of	this	method	is	invoked?

If	a	method	with	the	same	signature	exists	in	the	ancestor	class	and	the	interface,	the	one
in	the	class	is	invoked.	If	the	defender	methods	with	the	same	signature	exists	only	in	the
interfaces	Payable	and	Promotionable,	the	compiler	complains	with	the	following	error:

Duplicate	default	methods	named	increasePay	with	the	parameters	(int)	and	(int)	are
inherited	from	the	types	Promotionable	and	Payable	Employee.java

Static	Methods	in	Interfaces
As	of	Java	8,	you	are	allowed	to	include	static	methods	in	interfaces.	For	example:

public	interface	Payable	{
				default	boolean	increasePay(int	percent){
								System.out.println(
										"The	default	code	implementing	pay	increase	goes	here");
								return	true;
				};
				
				static	double	checkThePayIncreaseLimit(){
								//	do	something
								return	12345.00;
				}
}

If	a	static	method	is	declared	in	a	class,	it’s	invoked	by	using	a	class	name	followed	by	the
dot	and	the	method	name,	as	shown	in	Lesson	4:	WeatherReport.convertToCelsius(98.7).	

Accordingly,	if	a	static	method	was	declared	in	the	interface,	a	class	can	invoke	it	using
the	interface	name.	For	example,	this	is	how	you	could	do	it	from	our	class	Employee:

double	limit	=	Payable.checkThePayIncreaseLimit();

Casting
All	Java	classes	form	an	inheritance	tree	with	the	class	Object	on	top	of	the	hierarchy	—
all	Java	classes	are	direct	or	indirect	descendants	of	Object.	When	you	eclare	a	non-
primitive	variable,	you	are	allowed	to	use	either	the	exact	data	type	of	this	variable	or	one
of	its	ancestor	data	types.	For	example,	if	the	class	NJTax	extends	Tax,	each	of	the
following	lines	is	correct:

NJTax	myTax1			=	new	NJTax();
Tax	myTax2					=	new	NJTax();		//	upcasting
Object	myTax3		=	new	NJTax();		//	upcasting

Java	is	smart	enough	to	automatically	cast	an	instance	of	the	class	to	its	ancestor.	When
the	variable	has	a	more	generic	type	than	an	instance	of	the	object,	it’s	called	upcasting.
Let’s	say	the	class	Object	has	10	methods	and	class	variables	defined,	the	class	Tax	(an
implicit	subclass	of	Object)	adds	five	more	methods	and	variables	(making	15),	and
NJTax	adds	another	two	(totaling	17).	The	variable	myTax1	has	access	to	all	17	methods
and	variables,	myTax2	sees	only	15,	and	myTax3	just	10.	Why	not	always	use	exact	types
in	variable	declarations?

Say	you	need	to	write	a	program	that	will	process	data	about	workers	of	a	certain
company.	Some	of	them	are	full-time	employees	and	some	are	contractors,	but	you’d	like
to	read	their	data	from	some	data	source	and	store	them	in	the	same	array.	Arrays	can	store
only	objects	of	the	same	type,	remember?	Because	Java	can	automatically	upcast	the
objects,	you	can	create	a	class	called	Person	with	two	subclasses,	Employee	and
Contractor,	and	then	read	the	records	from	a	database.	Based	on	the	employment	type	you
can	then	create	an	appropriate	object	instance	and	put	it	into	an	array	of	type	Person:

Person	workers[]	=	new	Person	[20];
workers[0]	=	new	Employee("Yakov",	"Fain");
workers[1]	=	new	Employee("Mary",	"Lou");
workers[2]	=	new	Contractor("Bill",	"Shaw");
...

Of	course,	you	could’ve	created	two	separate	arrays,	one	for	employees	and	one	for
contractors,	but	I’m	laying	the	foundation	here	for	explaining	polymorphism	—	a
powerful	concept	in	object-oriented	languages.	You	see	a	concrete	example	of
polymorphism	in	Chapter	7.

At	some	point	you	need	to	process	the	data	from	the	array	workers.	In	a	loop	you	can	test
the	data	type	of	the	current	element	of	the	array	with	the	operator	instanceof,	downcast	the
object	(it	can’t	be	done	automatically)	to	Employee	or	Contractor,	and	process	it
accordingly:

for	(int	i;	i<20;	i++){
					Employee	currentEmployee;
					Contractor	currentContractor;
					if	(workers[i]	instanceof	Employee){

										currentEmployee	=	(Employee)	workers[i];
										//	do	some	employee	processing	here
					}	else	if	(workers[i]	instanceof	Contractor){
										currentContractor	=	(Contractor)	workers[i];
										//	do	some	contractor	processing	here
					}
}

Placing	a	data	type	in	parentheses	in	front	of	another	object	means	that	you	want	to
downcast	this	object	to	the	specified	type.	You	can	downcast	an	object	only	to	one	of	its
descendant	data	types.	Even	though	the	preceding	code	has	correct	syntax,	it	doesn’t
represent	the	best	practice	for	processing	similar	objects.	In	the	next	lesson	you	see	how	to
use	polymorphism	in	a	more	generic	way.

If	a	class	implements	an	interface,	you	can	cast	its	instance	to	this	interface.	Say	that	a
class	called	Employee	implements	Payable,	Insurable,	and	Pensionable	interfaces:

class	Employee	extends	Person	implements	
																																	Payable,	Insurable,	Pensionable	{
//	implementation	of	all	interfaces	goes	here
}

Assume	you	have	an	array	of	workers	of	type	Person.	If	you	are	interested	only	in	the
Insurable	behavior	of	employees,	there	is	no	need	to	cast	each	element	of	this	array	to	the
type	Employee.	Just	cast	them	to	the	Insurable	type,	as	shown	in	the	following	code
fragment.	However,	keep	in	mind	that	if	you	do	so,	the	variable	currentEmployee	exposes
access	only	to	those	methods	that	were	declared	in	the	Insurable	interface:

Insurable	currentEmployee;
if	(workers[i]	instanceof	Insurable){
		currentEmployee	=	(Insurable)	workers[i];
		//	do	some	insurance-specific	processing	here
}

Try	It
The	goal	of	this	assignment	is	to	start	using	packages,	protect	data	using	private	variables,
and	define	first	interfaces.	You	create	a	simple	program	that	will	increase	pay,	which	is
implemented	differently	for	employees	and	contractors.	After	completing	this	assignment
you’ll	have	working	but	not	perfect	code.	What	can	be	improved	is	explained	in
Chapter	7.

Lesson	Requirements
For	this	lesson	you	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in		Lesson6.zip.

Step-by-Step
1.	 In	the	Eclipse	IDE,	create	a	new	project	called	Lesson6.

2.	 Create	the	Payable	interface	as	per	Listing	6-1	in	the	package
com.practicaljava.lesson6	—	you	can	enter	the	name	of	the	package	in	the	Eclipse
New	Java	Class	window.	Declare	a	final	variable	there:

int	INCREASE_CAP	=	20;

3.	 Create	a	class	called	Person:

package	com.practicaljava.lesson6;
public	class	Person	{
							private	String	name;
							public	Person(String	name){
														this.name=name;
							}
							public	String	getName(){
														return	"Person's	name	is	"	+	name;
							}
}

4.	 Create	the	classes	Employee	and	Contractor	in	the	package	com.practicaljava.lesson6.
Each	class	should	extend	Person	and	implement	Payable.	While	creating	a	new	class,
click	the	Add	button	in	Eclipse	to	automatically	include	the	Payable	interface	in
declarations	of	the	classes	Employee	and	Contractor.

5.	 Check	your	filesystem	to	ensure	that	the	files	were	created	in	your	workspace	in	the
directory	com/practicaljava/lesson6.

6.	 Create	a	class	called	TestPayIncrease	with	a	method	called	main().	Don’t	specify	any
package;	this	class	will	be	created	in	a	different	directory.

http://www.wrox.com/go/javaprog24hr2e

7.	 Try	to	create	an	instance	of	the	class	Employee	in	the	method	main()	of
TestPayIncrease:

Employee	myEmployee	=	new	Employee();

You’ll	get	an	error:	Employee	can’t	be	resolved	to	a	type.	No	wonder	—	it’s	located	in
a	different	package.	Move	the	mouse	over	Employee	and	Eclipse	will	offer	you	a	fix.
Add	an	import	statement:

import	com.practicaljava.lesson6.Employee;

Select	this	fix	and	later	add	the	import	statement	for	all	required	classes.

8.	 In	the	main()	method	of	the	class	TestPayIncrease,	create	an	array	of	employees	and
contractors	and	call	the	function	increasePay()	for	each	element	of	the	array:

public	static	void	main(String[]	args)	{
								Person	workers[]	=	new	Person[3];
													workers[0]	=	new	Employee("John");
													workers[1]	=	new	Contractor("Mary");
													workers[2]	=	new	Employee("Steve");
																			Employee	currentEmployee;
																			Contractor	currentContractor;
														for	(Person	p:	workers){
																		if	(p	instanceof	Employee){
																							currentEmployee	=	(Employee)	p;
																							currentEmployee.increasePay(30);
																		}else	if	(p	instanceof	Contractor){
																						currentContractor	=	(Contractor)	p;
																						currentContractor.increasePay(30);
																		}
													}
}

9.	 Implement	the	increasePay()	method	in	Employee	—	don’t	put	any	restrictions	on	pay
increases.	Here’s	the	body	of	increasePay():

System.out.println("Increasing	salary	by	"	+	percent	+	"%.	"+	
																																																			getName());
return	true;

10.	 Implement	the	increasePay()	method	in	the	class	Contractor.	If	the	percentage	of	the
increase	is	less	than	INCREASE_CAP,	print	a	message	similar	to	the	one	in	the
preceding	code.	Otherwise,	print	a	message	explaining	that	you	can’t	increase	a
contractor’s	rate	by	more	than	20	percent.

11.	 Run	the	TestPayIncrease	program.	It	should	produce	output	similar	to	the	following:

Increasing	salary	by	30%.	Person's	name	is	John
Sorry,	can't	increase	hourly	rate	by	more	than	20%.	Person's	name	is	Mary
Increasing	salary	by	30%.	Person's	name	is	Steve

	

TIP			Please	select	the	videos	for	Lesson	6	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	7
Programming	with	Abstract	Classes	and	Interfaces
In	this	lesson	you	learn	about	abstract	classes,	and	then	you	build	a	complete	application
that	illustrates	how	to	design	and	implement	programs	with	abstract	classes	and	interfaces.
You	also	learn	about	the	notion	of	polymorphism.

Abstract	Classes
If	a	class	is	declared	abstract	it	can’t	be	instantiated.	The	keyword	abstract	has	to	be
placed	in	the	declaration	of	a	class.	The	abstract	class	may	have	abstract	method(s).	The
question	is,	“Who	needs	a	class	that	can’t	be	instantiated?”

It’s	easiest	to	answer	this	question	by	showing	you	how	to	use	abstract	classes	while
designing	an	application.	Previous	lessons	ended	with	assignments,	but	this	lesson	starts
with	one.

Assignment
A	company	has	employees	and	contractors.	Design	the	classes	without	using	interfaces	to
represent	the	people	who	work	for	this	company.	The	classes	should	have	the	following
methods:

changeAddress()
promote()
giveDayOff()
increasePay()

A	one-time	promotion	means	giving	one	day	off	and	raising	the	salary	by	a	specified
percentage.	The	method	increasePay()	should	raise	the	yearly	salary	for	employees	and
increase	the	hourly	rate	for	contractors.

Solution	with	an	Abstract	Class
Classes	Employee	and	Contractor	should	have	some	common	functionality,	but	because
increasePay()	has	to	be	implemented	differently	for	Employee	and	Contractor,	let’s
declare	a	superclass	Person	for	them	with	an	abstract	(not	implemented)	method
increasePay().		The	class	Person	also	has	three	concrete	(implemented)	methods.	The	fact
that	the	abstract	class	Person	cannot	be	instantiated	forces	you,	the	developer,	to
implement	abstract	methods	in	its	subclasses.

Start	by	redesigning	the	class	Person	from	the	“Try	It”	section	of	Listing	7-1).

This	is	a	different	approach	from	the	one	in	Chapter	6,	which	used	interfaces.	In	this	case
some	methods	are	implemented	in	the	superclass	and	some	are	not.	As	per	the
assignment,	this	solution	won’t	be	using	any	interfaces.

Listing	7-1:	Abstract	class	Person

package	com.practicaljava.lesson7;
public	abstract	class	Person	{
							private	String	name;
							private	String	address;
							int	INCREASE_CAP	=	20;	//	cap	on	pay	increase
							public	Person(String	name){
														this.name=name;
							}
							public	String	getName(){
														return	"Person's	name	is	"	+	name;
							}
							public	void	changeAddress(String	address){
											this.address	=	address;
											System.out.println("New	address	is"	+	address);
							}
							private	void	giveDayOff(){
														System.out.println("Giving	a	day	off	to	"	+	name);
							}
							public	void	promote(int	percent){
																	System.out.println("	Promoting	a	worker…");
																	giveDayOff();
																	//calling	an	abstract	method
																	increasePay(percent);
							}
							//	an	abstract	method	to	be	implemented	in	subclasses
							public	abstract	boolean	increasePay(int	percent);
}

The	method	increasePay()	is	abstract,	and	the	author	of	the	class	Person	doesn’t	have	to
know	the	specifics	of	implementing	raising	pay.	The	subclasses	may	even	be	programmed
by	other	developers.	But	the	author	of	Person	can	write	code	that	even	invokes
	increasePay(),	as	in	the	method	promote().	This	is	allowed	because	by	the	time	the
concrete	class	is	instantiated,	the	method	increasePay()	will	definitely	have	been
implemented.	For	simplicity,	I	didn’t	write	any	code	that	looks	like	an	actual	increase	of
pay	—	this	is	irrelevant	for	understanding	the	concept	of	abstract	classes.

The	next	step	is	to	create	the	subclasses	Employee	and	Contractor,	implementing	the
method	increasePay()	in	two	different	ways,	as	shown	in	Listing	7-2	and	Listing	7-3.

Listing	7-2:	Class	Employee

package	com.practicaljava.lesson7;
public	class	Employee	extends	Person{
							public	Employee(String	name){
														super(name);
							}
							public	boolean	increasePay(int	percent)	{
														System.out.println("Increasing	salary	by	"	+
																					percent	+	"%.	"+	getName());
														return	true;
							}
}

Listing	7-3:	Class	Contractor

package	com.practicaljava.lesson7;
public	class	Contractor	extends	Person	{
							public	Contractor(String	name){
														super(name);
							}
							public	boolean	increasePay(int	percent)	{
														if(percent	<	INCREASE_CAP){
																	System.out.println("Increasing	hourly	rate	by	"	+
																																					percent	+	"%.	"+	getName());
																return	true;
													}	else	{
																System.out.println("Sorry,	can't	increase	hourly	rate	by	more
																							than	"	+	INCREASE_CAP	+	"%.	"+	getName());
																return	false;
													}
							}
}

Programmers	writing	subclasses	are	forced	to	write	an	implementation	of	increasePay()
according	to	its	signature,	declared	in	the	abstract	class.	If	they	declare	a	method
increasing	pay	that	has	a	different	name	or	argument	list,	their	classes	remain	abstract.	So
they	don’t	have	a	choice	and	have	to	play	by	the	rules	dictated	in	the	abstract	class.

The	class	TestPayIncrease	in	Listing	7-4	shows	how	to	use	the	classes	Employee	and
Contractor	for	promoting	workers.

Listing	7-4:	Class	TestPayincrease

import	com.practicaljava.lesson7.Person;
import	com.practicaljava.lesson7.Contractor;
import	com.practicaljava.lesson7.Employee;
public	class	TestPayIncrease	{
						public	static	void	main(String[]	args)	{
								Person	workers[]	=	new	Person[3];
														workers[0]	=	new	Employee("John");
														workers[1]	=	new	Contractor("Mary");
														workers[2]	=	new	Employee("Steve");
														for	(Person	p:	workers){
																								p.promote(30);
														}
								}
}

Compare	the	code	of	the	preceding	class		TestPayIncrease	with	the	one	from	the	“Try	It”
section	of	Chapter	6.	Which	one	do	you	like	better?	I	like	this	version	better;	it	exhibits
polymorphic	behavior,	explained	next.

Polymorphism
Polymorphism	is	easier	to	understand	through	an	example.	Let’s	look	at	the	classes
Person,	Employee,	and	Contractor	from	a	different	angle.	The	code	in	Listing	7-
4	populates	an	array,	mixing	up	the	instances	of	the	classes	Employee	and	Contractor	with
hard-coded	names.	In	real	life,	the	data	about	workers	usually	comes	from	an	external	data
source.	For	example,	a	program	could	get	a	person’s	work	status	from	the	database	and
instantiate	an	appropriate	concrete	class.	The	earlier	class	TestPayIncrease	gives	an
additional	vacation	day	and	attempts	to	increase	the	salary	or	hourly	rate	of	every	worker
by	30	percent.

Note	that	even	though	the	loop	variable	p	is	of	its	ancestor’s	type	Person	in	Listing	7-4,	at
every	iteration	it	actually	points	at	either	an	Employee	or	a	Contractor	instance.	The	actual
object	type	will	be	evaluated	only	during	the	run	time.	This	feature	of	object-oriented
languages	is	called	run-time	binding	or	late	binding.

The	output	of	the	class	TestPayIncrease	looks	like	the	following:

Promoting	a	worker…
Giving	a	day	off	to	John
Increasing	salary	by	30%.	Person's	name	is	John
	Promoting	a	worker…
Giving	a	day	off	to	Mary
Sorry,	can't	increase	hourly	rate	by	more	than	20%.	Person's	name	
is	Mary
	Promoting	a	worker…
Giving	a	day	off	to	Steve
Increasing	salary	by	30%.	Person's	name	is	Steve

Both	classes,	Employee	and	Contractor,	were	inherited	from	the	same	base	class,	Person.
Instead	of	having	different	methods	for	increasing	the	worker’s	compensation	based	on	the
worker’s	type,	you	give	a	polymorphic	behavior	to	the	method	increasePay(),	which
applies	different	business	logic	depending	on	the	type	of	the	object.

You’re	calling	the	same	method,	promote(),	on	every	object	from	the	array	workers,	but
because	the	actual	object	type	is	evaluated	during	run	time,	the	pay	is	raised	properly
according	to	this	particular	object’s	implementation	of	the	method	increasePay().	This	is
polymorphism	in	action.

The	for	loop	in	the	class	TestPayIncrease	remains	the	same	even	if	you	add	some	other
types	of	workers	inherited	from	the	class	Person.	For	example,	to	add	a	new	category	of
worker	—	a	foreign	contractor	—	you	have	to	create	a	class	called	ForeignContractor
derived	from	the	class	Person	and	implement	yet	another	version	of	the	method
increasePay()	there.	The	class	TestPayIncrease		keeps	evaluating	the	actual	type	of
Person’s	descendants	during	run	time	and	calls	the	proper	implementation	of	the	method
increasePay().

Polymorphism	enables	you	to	avoid	using	switch	or	if	statements	with	the	rather	slow
operator	instanceof,	which	you	used	in	Chapter	6.	Would	you	agree	that	even	though

TestPayIncrease	from	Lesson	6	is	producing	the	same	results,	its	code	looks	pretty	ugly
compared	to	this	version	of	this	class?	The	code	in	the	Lesson	6	version
of	TestPayIncrease	works	more	slowly	than	the	polymorphic	version,	and	its	if	statement
will	have	to	be	modified	every	time	a	new	type	of	worker	is	added.

Making	the	Interface	Solution	Polymorphic
After	discussing	the	abstract	class	version	of	the	assignment’s	solution,	it’s	time	to	modify
its	interface	version	from	Chapter	6	with	the	polymorphic	solution.	Note	that	the	array
workers	has	been	declared	of	type	Payable	.	It	is	populated	by	objects	of	types	Employee
and	Contractor,	which	implement	the	Payable	interface.

You’ve	eliminated	not	only	the	need	of	using	instanceof,	but	even	the	casting	to	Payable	is
not	required.	The	array	is	of	type	Payable,	and	you	use	only	the	behavior	defined	in
Payable	(that	is,	the	increasePay()	method)	without	worrying	too	much	about	whether	the
current	worker	is	an	employee	or	a	contractor	(see	Listing	7-5).

Listing	7-5:	Class	TestPayincreasePoly

//	For	reusing	the	interface	version	of	Employee	and	Contractor
//	let's	keep	this	sample	in	the	code	for	Lesson	6
import	com.practicaljava.lesson6.*;
public	class	TestPayInceasePoly	{
				public	static	void	main(String[]	args)	{
								Payable	workers[]	=	new	Payable[3];
								workers[0]	=	new	Employee("John");
								workers[1]	=	new	Contractor("Mary");
								workers[2]	=	new	Employee("Steve");
								
												for	(Payable	p:	workers){
																						p.increasePay(30);
													}
								}
}

Note	that	the	variable	p	can	“see”	only	the	methods	declared	in	Payable.	The	variable	p
could	not	be	used	to	invoke	any	methods	from	Person	regardless	of	the	fact	that	both
Employee	and	Contractor	are	inherited	from	this	class.	

What	can	go	wrong	during	the	execution	of	the	code	from	Listing	7-5?	What	if	a
developer	creates	a	class	called	ForeignContractor	without	implementing	the	Payable
interface,	and	by	mistake	tries	to	add	its	instance	to	the	array	workers?	You	get	a	compile-
time	error	“Cannot	convert	from	ForeignContractor	to	Payable.”		Compiler	errors	are	easy
to	fix.	In	the	“Try	It”	section	you	purposely	create	a	situation	that	causes	a	run-time
casting	error.

Interfaces	Versus	Abstract	Classes
The	next	question	is,	“When	should	you	use	interfaces	and	when	should	you	use	abstract
classes?”	If	two	or	more	classes	have	lots	of	common	functionality,	but	some	methods
should	be	implemented	differently,	you	can	create	a	common	abstract	ancestor	and	as
many	subclasses	inheriting	this	common	behavior	as	needed.	Declare	those	methods
abstract	so	subclasses	implement	them	differently,	and	implement	these	methods	in
subclasses.	

If	several	classes	don’t	have	common	functionality	but	need	to	exhibit	some	common
behavior,	do	not	create	a	common	ancestor;	have	them	implement	an	interface	that
declares	the	required	behavior.	This	scenario	was	not	presented	in	the	“Interfaces”	section
of	Chapter	6,	but	it’s	going	to	be	a	part	of	the	hands-on	exercise	in	the	“Try	It”	section	of
this	lesson.

Interfaces	and	abstract	classes	are	similar	in	that	they	ensure	that	required	methods	are
implemented	according	to	required	method	signatures.	But	they	differ	in	how	the	program
is	designed.	Whereas	abstract	classes	require	you	to	provide	a	common	ancestor	for	the
classes,	interfaces	don’t.

Interfaces	could	be	your	only	option	if	a	class	already	has	an	ancestor	that	cannot	be
changed.	Java	doesn’t	support	multiple	inheritance;	a	class	can	have	only	one	ancestor.
For	example,	to	write	Java	applets	you	must	inherit	your	class	from	the	class	Applet,	or,	in
the	case	of	Swing	applets,	from	JApplet.	Using	your	own	abstract	ancestor	here	is	not	an
option.

Although	using	abstract	classes,	interfaces,	and	polymorphism	is	not	a	must,	it	certainly
improves	the	design	of	Java	code	by	making	it	more	readable	and	understandable	to	others
who	may	need	to	work	on	programs	written	by	you.	In	general,	it’s	a	good	habit	to	think
over	the	behavior	of	the	classes	you’re	about	to	write	and	list	it	in	separate	interfaces.	

In	Lesson	11	I	give	you	another	reason	for	using	interfaces	in	the	note	titled
“Programming	to	Interfaces“.

Try	It
In	the	first	part	of	the	assignment	your	goal	is	to	break	the	code	from	Listing	7-5	to
produce	the	run-time	error	ClassCastException.	You	create	a	situation	when	the	array
workers	will	be	of	type	Person,	which	can	store	any	Person	or	its	descendants.	Then,	you
purposely	add	its	subclass	that	doesn’t	implement	Payable,	but	will	try	to	cast	it	to	Payable
anyway	to	generate	a	run-time	exception.	In	the	second	part	of	the	assignment	you	need	to
rewrite	the	assignment	from	Chapter	6	to	keep	the	Payable	interface	but	remove	the
common	ancestor	Person.

Lesson	Requirements
For	this	lesson	you	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in		Lesson6.zip
and	in	Lesson7.zip.

Step-by-Step

Part	1

1.	 In	Eclipse,	open	the	project	Lesson6	—	yes,	the	one	you’ve	imported	in	the	previous
lesson.

2.	 Create	a	new	class	called	ForeignContractor,	as	shown	in	the	following	code.	Note	that
this	class	doesn’t	implement	the	Payable	interface:

package	com.practicaljava.lesson6;
public	class	ForeignContractor	extends	Person	{
							public	ForeignContractor(String	name){
														super(name);
							}
							public	boolean	increasePay(int	percent)	{
														System.out.println("I'm	just	a	foreign	worker");
														return	true;
							}
}

3.	 Create	the	class	TestPayIncreasePolyError,	adding	an	instance	of	the
ForeignContractor	class.	Note	that	you’re	casting	every	element	of	the	array	to
Payable:

import	com.practicaljava.lesson6.*;
public	class	TestPayIncreasePolyError	{
			public	static	void	main(String[]	args)	{
							Person	workers[]	=	new	Person[3];

http://www.wrox.com/go/javaprog24hr2e

							workers[0]	=	new	Employee("John");
							workers[1]	=	new	Contractor("Mary");
							workers[2]	=	new	ForeignContractor("Boris");
														for	(Person	p:	workers){
																								((Payable)p).increasePay(30);
														}
							}
}

4.	 Run	the	program	TestPayIncreasePolyError.	Observe	the	output	in	the	console	view.
You	get	the	run-time	error	java.lang.ClassCastException	on	the	third	element	of	the
array.	Note	the	number	14	—	this	is	the	line	number	of	TestPayIncreasePolyError
program,	which	casts	each	object	to	the	Payable	interface:

Increasing	salary	by	30%.	Person's	name	is	John
Sorry,	can't	increase	hourly	rate	by	more	than	20%.	Person's	name	is	Mary
Exception	in	thread	"main"	java.lang.ClassCastException:
com.practicaljava.lesson6.ForeignContractor	cannot	be	cast	to
com.practicaljava.lesson6.Payable
									at	TestPayInceasePolyError.main(TestPayInceasePolyError.java:14)

5.	 Modify	the	code	of	TestPayIncreasePolyError,	changing	the	type	of	the	array	from
Person	to	Payable	and	changing	the	type	of	the	loop	variable	accordingly:

Payable	workers[]	=	new	Payable	[3];
workers[0]	=	new	Employee("John");
workers[1]	=	new	Contractor("Mary");
workers[2]	=	new	ForeignContractor("Boris");
							for	(Payable	p:	workers){
																	p.increasePay(30);
							}

6.	 Observe	that	now	you	are	getting	a	Java	compiler	error	preventing	you	from	even
adding	to	the	array	the	instance	of	ForeignContractor	because	it	doesn’t	implement
Payable.	Predicting	and	preventing	run-time	errors	is	a	very	important	task	for	every
software	developer,	and	this	subject	is	covered	in	detail	in	Chapter	10.

Part	2

1.	 Open	the	the	project	Lesson7	in	Eclipse,	select	the	menu	File		→		New		→		Package,
and	create	the	new	package	com.practicaljava.lesson7.tryit.

2.	 Using	Ctrl+C/Ctrl+V	copy	the	Payable	interface	from	Eclipse	project	Lesson6	to	the
package	com.practicaljava.lesson7.tryit.	Change	the	package	name	to	be
com.practicaljava.lesson7.tryit.

3.	 In	the	same	package	create	the	class	Employee	as	follows:

package	com.practicaljava.lesson7.tryit;

public	class	Employee	implements	Payable{
							private	String	name;
							public	Employee(String	name){
														this.name=name;
							}
							public	boolean	increasePay(int	percent)	{
									System.out.println("Increasing	salary	by	"	+	percent
													+	"%:	"	+	name);
									return	true;
							}
}

4.	 In	the	same	package	create	the	class	Contractor	as	follows:

package	com.practicaljava.lesson7.tryit;
public	class	Contractor	implements	Payable	{
							private	String	name;
							public	Contractor(String	name){
														this.name=name;
							}
							public	boolean	increasePay(int	percent)	{
									if(percent	<	Payable.INCREASE_CAP){
											System.out.println("Increasing	hourly	rate	by	"	+
																										percent	+	"%.	");
											return	true;
									}	else	{
												System.out.println(
												"Sorry,can't	increase	hourly	rate	by	more	than	"	
																+	Payable.INCREASE_CAP	+	"%:	"	+	name);
												return	false;
									}
							}
}							

5.	 Create	a	class	called	TestPayIncreaseInterface:

public	class	TestPayIncreaseInterface	{
						public	static	void	main(String[]	args)	{
								Payable	workers[]	=	new	Payable	[3];
														workers[0]	=	new	Employee("John");
														workers[1]	=	new	Contractor("Mary");
														workers[2]	=	new	Employee("Steve");
																					for	(Payable	p:	workers){
																														((Payable)p).increasePay(30);
																					}
														}
}

6.	 Run	this	program.	It	should	produce	the	following	output:

Increasing	salary	by	30%:	John
Sorry,	can't	increase	hourly	rate	by	more	than	20%:	Mary
Increasing	salary	by	30%:	Steve

Note	that	neither	Employee	nor	Contractor	extends	Person	any	longer.	Both	classes	are
free	to	extend	any	other	classes	now,	but	on	the	other	hand,	each	of	them	has	to	declare	the
variable	name	and	the	method	getName(),	which	was	done	once	in	the
class	Person	before.

TIP			Please	select	the	videos	for	Lesson	7	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	8
Introducing	the	GUI	with	Swing
These	days	people	are	accustomed	to	working	with	applications	that	have	rich	user
interfaces.	JavaFX	is	Oracle’s	newest	platform	for	development	of	such	applications.
Lessons	11	and	12	introduce	you	to	JavaFX.	JavaFX	is	a	layer	on	top	of	Java	Swing	—	a
library	of	components,	which	for	many	years	was	used	for	building	graphic	user	interfaces
(GUIs)	for	desktop	applications,	as	well	as	a	web	program	called	applets	(GUI	programs
running	inside	the	web	browser’s	Java	run-time	plug-in).

Today	Java	applets	are	rarely	used,	which	is	the	reason	why	I	decided	not	to	include
chapters	about	applets	in	this	edition	of	the	book.	Instead,	I’ve	added	coverage	of	the	more
modern	JavaFX	framework.	In	this	and	the	following	lesson	you	learn	the	principles	of
building	GUIs	while	developing	a	simple	desktop	calculator	using	the	Java	Swing	library.

NOTE			Eclipse	Foundation	offers	another	library	of	UI	components	called	the
Standard	Widget	Toolkit	(SWT),	available	at	https://wiki.eclipse.org/SWT,	which	is
outside	of	the	scope	of	this	book.

https://wiki.eclipse.org/SWT

Swing	Basics
Originally	Java	offered	a	pretty	basic	library	of	UI-related	classes	called	the	Abstract
Windowing	Toolkit	(AWT).	A	couple	of	years	later	a	new	widget	toolkit	called	Swing	was
introduced.	Swing	offers	a	lighter	set	of	UI	components	while	keeping	the	main	idea	intact
—	to	keep	UI	development	independent	of	the	end	user’s	operating	system.	Run	the	same
program	on	Windows	and	on	Mac	OS,	and	GUI	components	look	native	to	the
corresponding	operating	system	(OS)	(see	Figure	8-1).	You	can	also	create	a	Swing	GUI
application	with	a	cross-platform	look	and	feel	(see	Nimbus	at
http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/nimbus.html).	

Today	developers	are	trying	to	create	UIs	that	appear	to	be	native	to	the	OS,	whether	that
is	Windows,	Mac	OS,	iOS,	or	Android.	Eventually	the	market	share	of	Swing-based	UIs
may	diminish,	but	at	the	time	of	this	writing	it’s	still	widely	used	by	enterprises,	and
skilled	Swing	developers	remain	in	demand.

Swing	offers	you	everything	you	need	to	build	UIs	in	Java:	There	are	controls	to	represent
buttons,	drop-down	menus,	grids,	scrollbars,	trees,	tab	folders,	and	so	on.	Typically	you
create	UIs	by	combining	controls	into	containers	(for	example,	JPanel		or	JFrame)	that
support	various	layouts	that	enable	controls	to	be	arranged	as	you	or	a	graphic	designer
envision.	In	this	lesson	you	use	some	of	the	Swing	components	while	creating	a	UI	for	a
simple	desktop	calculator.

A	complete	discussion	of	the	Swing	library	is	out	of	the	scope	of	this	book,	but	there	are
plenty	of	books	and	technical	articles	covering	this	subject.	The	official	online	Swing
tutorial	is	located	at	http://bit.ly/1o7JeuE.

Swing	classes	are	located	in	the	javax.swing	package,	and	the	process	of	creating	a	UI
comes	down	to	extending	some	of	these	classes	to	display	the	UI	and	respond	to	various
user-	and	system-generated	events.	You	create	a	top-level	window	with	a	title	and	border
by	instantiating	the	class	JFrame,	as	in	Listing	8-1.

http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/nimbus.html
http://bit.ly/1o7JeuE

Listing	8-1:	An	empty	descendant	of	JFrame

import	javax.swing.JFrame;
import	javax.swing.JButton;
public	class	HelloWorld	extends	JFrame	{
		public	static	void	main(String[]	args)	{				
				JFrame	myWindow	=	new	HelloWorld();
				
				//	Creating	and	adding	a	button	to	the	container	
				JButton	myButton	=	new	JButton	("Click	me");				
				myWindow.add(myButton);	
				myWindow.setSize(200,300);				
				myWindow.setTitle("Hello	World");				
				myWindow.setVisible(true);
			}
}

The	class	HelloWorld	creates	and	adds	a	button	to	the	container,	sets	the	size	and	title	of
the	window,	and	makes	it	visible.	JFrame	is	an	example	of	a	container	that	can	hold	UI
controls,	which	must	be	instantiated	first	and	then	added	to	the	container.	Run	this
program,	and	it	shows	a	small	window	that	looks	like	Figure	8-1	(the	left	image	shows	the
Windows	OS	version,	and	the	right	one	was	taken	from	Mac	OS).

The	code	in	Figure	8-1	doesn’t	specify	the	size	of	the	button,	where	to	put	it,	or	whether
there	should	be	space	between	the	components	and	the	borders.	Without	layout
instructions,	the	entire	empty	space	in	Figure	8-1	will	be	occupied	by	one	huge	button.

Figure	8-1:	HelloWorld	on	Windows	(left)	and	Mac	OS	(right)

Default	Close	Operation
Run	the	earlier	HelloWorldprogram	and	try	to	click	the	window’s	Close	button.	It
doesn’t	work.	The	JRE	sent	an	event	to	close	the	window,	but	the	program	didn’t	have
event-handling	code	for	this.You	find	out	how	to	add	it	in	the	next	lesson,	but
meanwhile	you	can	make	the	window	close	by	adding	the	following	line	to
HelloWorld.java:	

myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Usually	JFrame	includes	some	nested	containers	where	you	place	controls	such	as
JButton,	JTable,	and	JList.	Java	Swing	comes	with	layout	managers	that	help	you	arrange
all	these	controls	appropriately.	For	example,	a	sample	coding	process	for	creating	a
JFrame	containing	JPanel	can	go	like	this:

1.	 Create	a	JPanel.

2.	 Assign	a	layout	manager	to	it.

3.	 Instantiate	some	Swing	controls	and	add	them	to	the	panel.

4.	 Add	the	panel	to	the	top-level	container—JFrame—by	calling	the	setContentPane()
method.

5.	 Set	the	frame’s	size	and	make	it	visible.

You	can	assign	different	layout	managers	to	your	containers	to	create	very	sophisticated
windows.	But	displaying	a	window	with	properly	laid-out	components	is	only	half	of	the
job	because	these	controls	should	know	how	to	respond	to	various	events,	such	as	a	click
on	a	button.	This	lesson	covers	the	basics	of	displaying	UI	components;	Lesson	9	is	about
writing	code	for	responding	to	events.

Layout	Managers
The	simplest	layout	manager	is	FlowLayout,	which	allocates	all	components	being	added
to	the	container	horizontally.	When	there’s	no	room	for	the	next	component,	FlowLayout
uses	the	next	row,	and	the	process	repeats.

A	Simple	Calculator	with	FlowLayout
The	best	way	to	learn	layout	management	is	by	trying	to	use	it	in	practice.	You’re	going	to
create	a	UI	for	a	simple	calculator	that	can	accept	two	numbers	and	display	the	result.
Create	a	new	Eclipse	project	called	Lesson8	and	a	new	class	called	SimpleCalculator	with
the	following	code:

Listing	8-2:	Calculator	with	FlowLayout

public	class	SimpleCalculator	{
	public	static	void	main(String[]	args)	{
		//	Create	a	panel
							JPanel	windowContent=	new	JPanel();
		//	Set	a	layout	manager	for	this	panel
							FlowLayout	fl	=	new	FlowLayout();
							windowContent.setLayout(fl);
		//	Create	controls	in	memory
							JLabel	label1	=	new	JLabel("Number	1:");
							JTextField	field1	=	new	JTextField(10);
							JLabel	label2	=	new	JLabel("Number	2:");
							JTextField	field2	=	new	JTextField(10);
							JLabel	label3	=	new	JLabel("Sum:");
							JTextField	result	=	new	JTextField(10);
							JButton	go	=	new	JButton("Add");
		//	Add	controls	to	the	panel
							windowContent.add(label1);
							windowContent.add(field1);
							windowContent.add(label2);
							windowContent.add(field2);
							windowContent.add(label3);
							windowContent.add(result);
							windowContent.add(go);
		//	Create	the	frame	and	add	the	panel	to	it
		JFrame	frame	=	new	JFrame("My	First	Calculator");
		//	Add	the	panel	to	the	top-level	container
		frame.setContentPane(windowContent);
		frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);	
		//	set	the	size	and	make	the	window	visible
		frame.setSize(400,100);
		frame.setVisible(true);
	}
}

Compile	and	run	this	program,	and	it	displays	the	window	shown	in	Figure	8-2.

This	may	not	be	the	best-looking	calculator,	but	it	demonstrates	the	use	of	FlowLayout.	In
the	next	section	you	make	it	look	better	with	the	help	of	more	suitable	layout	managers.

Figure	8-2:	Running	the	SimpleCalculator	class

Grab	the	corner	of	the	window	and	make	it	wider.	You	see	how	FlowLayout	starts
reallocating	controls,	trying	to	fill	the	new	area.	If	you	make	the	window	wide	enough,	all
the	components	fit	in	one	row,	as	in	Figure	8-3.

Figure	8-3:	Resizing	the	window	of	SimpleCalculator

Even	though	you	can	enforce	exact	coordinates	and	sizes	for	each	window	component,
Swing	has	layout	managers	that	can	maintain	relative	positions	for	all	controls	without
assigning	strict	positions	to	them.	Layout	managers	ensure	that	the	content	of	a	container
looks	nice	regardless	of	the	current	window	size.	The	FlowLayout	is	not	about	looking
nice,	though.	It’s	about	showing	all	visual	components	based	on	the	current	container’s
width.

A	Brief	Introduction	to	Layout	Managers
Swing	offers	the	following	layout	managers:

FlowLayout

GridLayout

BoxLayout

BorderLayout

CardLayout

GridBagLayout

To	use	any	layout	manager,	instantiate	it	first	and	then	assign	this	instance	to	a	container
via	setLayout(),	as	you	did	with	the	class	SimpleCalculator	in	Listing	8-2.

FlowLayout
This	layout	arranges	components	in	a	container	row	by	row.	For	example,	labels,	text
fields,	and	buttons	are	added	to	the	first	imaginary	row	until	there	is	no	room	left	in	this
row.

When	the	current	row	is	filled,	the	rest	of	the	components	go	to	the	next	row,	and	so	on.
Components	can	be	added	to	the	container	from	left	to	right	or	from	right	to	left	according
to	the	container’s	componentOrientation	property.	If	a	user	changes	the	size	of	the
window,	this	layout	manager	reflows	the	components,	which	changes	the	GUI	as
illustrated	in	Figure	8-2.	Indeed,	FlowLayout	is	not	the	best	choice	for	the	calculator.	Let’s
try	something	different.

GridLayout
The	class	java.awt.GridLayout	enables	you	to	arrange	components	as	rows	and	columns	in
a	grid.	You’ll	be	adding	components	to	imaginary	cells	of	this	grid.	If	the	container	gets

resized,	grid	cells	may	become	larger	or	smaller,	but	the	relative	positions	of	the
components	inside	the	container	remain	the	same.

So	far	your	calculator	has	seven	components:	three	labels,	three	text	fields,	and	a	button.
You	may	arrange	them	as	a	grid	of	four	rows	and	two	columns	(one	cell	stays	empty)	by
creating	an	instance	of	GridLayout	like	this:

GridLayout	gr	=	new	GridLayout(4,2);

You	can	also	assign	some	horizontal	and	vertical	spaces	of,	for	example,	five	pixels,
between	the	cells:

GridLayout	gr	=	new	GridLayout(4,2,5,5);

Replace	FlowLayout	with	GridLayout	in	Listing	8-2	and	the	calculator	looks	a	little
prettier.	Create	and	compile	a	new	class	called	SimpleCalculatorGrid	(see	Listing	8-3).

Listing	8-3:	Calculator	with	GridLayout

import	javax.swing.*;
import	java.awt.GridLayout;
public	class	SimpleCalculatorGrid	{
public	static	void	main(String[]	args)	{
						JPanel	windowContent=	new	JPanel();
						//	Set	the	layout	manager	for	the	panel
						GridLayout	gl	=	new	GridLayout(4,2);
						windowContent.setLayout(gl);
						JLabel	label1	=	new	JLabel("Number	1:");
						JTextField	field1	=	new	JTextField(10);
						JLabel	label2	=	new	JLabel("Number	2:");
						JTextField	field2	=	new	JTextField(10);
						JLabel	label3	=	new	JLabel("Sum:");
						JTextField	result	=	new	JTextField(10);
						JButton	go	=	new	JButton("Add");
//	Add	controls	to	the	panel
						windowContent.add(label1);
						windowContent.add(field1);
						windowContent.add(label2);
						windowContent.add(field2);
						windowContent.add(label3);
						windowContent.add(result);
						windowContent.add(go);
	//	Create	the	frame	and	add	the	panel	to	it
						JFrame	frame	=	new	JFrame("My	First	Grid	Calculator");
						frame.setContentPane(windowContent);
						frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);	
//	set	the	size	and	display	the	window
						frame.setSize(400,100);
						frame.setVisible(true);
	}
}

Run	the	program	SimpleCalculatorGrid	to	see	a	calculator	that	looks	a	little	better	than
before	(see	Figure	8-4).

Figure	8-4:	Running	the	SimpleCalculatorGrid

Try	to	resize	this	window;	controls	grow	with	the	window,	as	shown	in	Figure	8-5,	but
their	relative	positions	won’t	change.	Note	that	with	GridLayout	all	cells	of	the	grid	have

the	same	width	and	height.

Figure	8-5:	Resizing	SimpleCalculatorGrid

BorderLayout
The	layout	manager	java.awt.BorderLayout	divides	a	container	into	South,	West,	North,
East,	and	Center	areas.	The	North	area	stays	on	top	of	the	window,	South	at	the	bottom,
West	on	the	left,	and	East	on	the	right.	For	example,	in	the	calculator	shown	in	Figure	8-6,
a	text	field	that	displays	numbers	is	located	in	the	North	area,	and	the	panel	p2	is	in	the
West.

Figure	8-6:	The	Windows	7	Calculator

You	can	use	the	following	code	to	create	a	BorderLayout	and	place	a	text	field	there:

BorderLayout	bl	=	new	BorderLayout();
this.setLayoutManager(bl);
JTextField		txtDisplay	=	new	JTextField(20);
this.add(BorderLayout.NORTH,	txtDisplay);

You	are	not	required	to	have	window	controls	in	all	five	areas.	If	you	need	only	North,
Center,	and	South	areas,	the	Center	area	becomes	wider	because	you	are	not	going	to	use
the	East	and	West	areas.	I	use	a	BorderLayout	later	in	this	lesson	in	the	next	version	of	the
calculator:	Calculator.java.

BorderLayout	is	a	default	layout	manager	for	content	panes.

Combining	Layout	Managers
Do	you	think	that	GridLayout	will	enable	you	to	design	a	calculator	that	looks	like	the	one
that	comes	with	Microsoft	Windows,	shown	in	Figure	8-6?	Unfortunately,	it	won’t,

because	cells	have	different	sizes	there	—	the	text	field	is	wider	than	the	buttons.	You	can,
however,	combine	layout	managers	by	using	panels	that	have	their	own	layout	managers.
You	can	create	such	a	calculator	by	using	GridBagLayout,	which	is	explained	later.	In	the
meantime,	you	can	create	a	simpler	version	of	it	by	combining	layout	managers	you	know.
The	end	result	looks	like	Figure	8-7.

Figure	8-7:	Calculator	with	combined	layouts

Create	a	new	class,	Calculator,	as	per	Listing	8-4,	and	run	the	program.	Read	the	program
comments;	you	should	be	able	to	understand	how	the	code	works	by	reading	the
comments,	shouldn’t	you?	Running	this	program	shows	the	calculator,	as	shown	in	Figure
8-7.

Listing	8-4:	Calculator	with	combined	layouts

import	javax.swing.*;
import	java.awt.GridLayout;
import	java.awt.BorderLayout;
public	class	Calculator	{
				//	Declare	all	calculator's	components.
							JPanel	windowContent;
							JTextField	displayField;
							JButton	button0;
							JButton	button1;
							JButton	button2;
							JButton	button3;
							JButton	button4;
							JButton	button5;
							JButton	button6;
							JButton	button7;
							JButton	button8;
							JButton	button9;
							JButton	buttonPoint;
							JButton	buttonEqual;

							JPanel	p1;
							//	Constructor	creates	the	components
							//	and	adds	them	to	the	frame	using	combination	of
							//	Borderlayout	and	Gridlayout
			Calculator(){
										windowContent=	new	JPanel();
									//	Set	the	layout	manager	for	this	panel
											BorderLayout	bl	=	new	BorderLayout();
											windowContent.setLayout(bl);
									//	Create	the	display	field	and	place	it	in	the
									//	North	area	of	the	window
											displayField	=	new	JTextField(30);
											windowContent.add("North",displayField);
							//	Create	buttons	using	constructor	of	the
							//	class	JButton	that	takes	the	label	of	the
							//	button	as	a	parameter
											button0=new	JButton("0");
											button1=new	JButton("1");
											button2=new	JButton("2");
											button3=new	JButton("3");
											button4=new	JButton("4");
											button5=new	JButton("5");
											button6=new	JButton("6");
											button7=new	JButton("7");
											button8=new	JButton("8");
											button9=new	JButton("9");
											buttonPoint	=	new	JButton(".");
											buttonEqual=new	JButton("=");
										//	Create	the	panel	with	the	GridLayout	with	12	buttons	-
										//10	numeric	ones,	period,	and	the	equal	sign
																		p1	=	new	JPanel();
																		GridLayout	gl	=new	GridLayout(4,3);
																		p1.setLayout(gl);
										//		Add	window	controls	to	the	panel	p1
																		p1.add(button1);
																		p1.add(button2);
																		p1.add(button3);
																		p1.add(button4);
																		p1.add(button5);
																		p1.add(button6);
																		p1.add(button7);
																		p1.add(button8);
																		p1.add(button9);
																		p1.add(button0);
																		p1.add(buttonPoint);
																		p1.add(buttonEqual);

									//	Add	the	panel	p1	to	the	center	of	the	window
																	windowContent.add("Center",p1);
									//Create	the	frame	and	set	its	content	pane
																JFrame	frame	=	new	JFrame("Calculator");
																frame.setContentPane(windowContent);
									//	Set	the	size	of	the	window	big	enough	
									//	to	accommodate	all	controls
																		frame.pack();
													//	Display	the	window
													frame.setVisible(true);
													frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
						}
						public	static	void	main(String[]	args)	{
										Calculator	calc	=	new	Calculator();
						}
}

BoxLayout
The	class	javax.swing.BoxLayout	allows	multiple	window	components	to	be	laid	out
either	horizontally	(along	the	x	axis)	or	vertically	(along	the	y	axis).	Unlike	with	the
FlowLayout	manager,	when	the	window	with	the	BoxLayout	is	resized,	its	controls	do	not
wrap.	And	unlike	with	GridLayout,	with	BoxLayout,	window	controls	can	have	different
sizes.

The	next	two	lines	of	code	assign	BoxLayout	with	vertical	alignment	to	JPanel.	To	make
this	code	shorter,	I	have	not	declared	a	variable	to	store	a	reference	to	the	object
BoxLayout,	but	rather	create	an	instance	of	this	object	and	immediately	pass	it	to	the
method	setLayout()	as	an	argument.

JPanel	p1=	new	JPanel();
setLayout(new	BoxLayout(p1,	BoxLayout.Y_AXIS));

If	you	just	add	several	buttons	to	the	panel	p1,	they	all	display	one	under	another.

You	can	use	combinations	of	various	containers	implementing	horizontal	or	vertical
BoxLayout	to	build	a	fairly	sophisticated	UI.	Think	of	a	front	page	of	a	game	that	has	to
have	several	items	next	to	each	other	on	the	top	of	the	window,	some	controls	located
vertically	on	the	left	sidebar,	and	the	rest	of	the	window’s	real	estate	allocated	for	the	main
battlefield.	You	can	use	BorderLayout	having	a	panel	with	a	horizontal	BoxLayout	on	the
North,	and	a	panel	with	vertical	BoxLayout	on	the	West.

The	next	section	shows	you	a	sophisticated	yet	more	verbose	GridBagLayout,	but	you
should	always	try	to	see	if	the	BoxLayout	can	do	the	job	and	use	it,	if	possible.

GridBagLayout
In	this	section	you	are	familiarized	with	yet	another	way	of	designing	the	calculator	by

using	the	java.awt.GridBagLayout	layout	manager	instead	of	combining	panels	with
different	layouts.	GridBagLayout	is	an	advanced	grid	that	allows	the	creation	of	cells	of
different	sizes.	GridBagLayout	works	in	combination	with	another	class	called
GridBagConstraints.

Constraints	are	just	attributes	of	a	cell,	and	you	have	to	set	them	for	each	cell	separately.
All	constraints	for	a	cell	have	to	be	set	before	you	place	a	component	in	the	cell.	For
example,	one	of	the	constraint’s	attributes	is	called	gridwidth	(see	Figure	8-8).	It	enables
you	to	make	a	cell	as	wide	as	several	other	cells.	The	display	field	in	the	example	is	as
wide	as	five	other	cells.	The	top-left	cell	has	the	coordinates	0,0.	

Figure	8-8:	GridBagConstraints	in	Calculator

When	working	with	the	grid	layout	you	should	create	an	instance	of	the	constraint	object
first,	and	set	the	values	to	its	properties.	Then	you	can	add	a	UI	component	to	the	cell	with
specified	coordinates	in	your	container.	After	that	you	repeat	the	procedure:	populate	the
same	instance	of	GridBagConstraints	with	properties	of	another	cell	and	add	it	to	the
container	and	so	on.

The	code	sample	in	Listing	8-5	is	heavily	sprinkled	with	comments	to	help	you	understand
how	to	use	GridBagLayout.	While	working	on	this	lesson’s	assignment	you’ll	be	using
this	code.

Listing	8-5:	Creating	constraints	for	GridBagLayout

//	Set	the	GridBagLayout	for	the	window's	content	pane
	GridBagLayout	gb	=	new	GridBagLayout();
	this.setLayout(gb);
//	Create	an	instance	of	the	GridBagConstraints
//	You'll	have	to	repeat	these	lines	for	each	component
//	that	you'd	like	to	add	to	the	grid	cell
	GridBagConstraints	constr	=	new	GridBagConstraints();
//setting	constraints	for	the	Calculator's	displayField:
//	x	coordinate	in	the	grid
	constr.gridx=0;
//	y	coordinate	in	the	grid
	constr.gridy=0;
//	this	cell	has	the	same	height	as	other	cells
	constr.gridheight	=1;
//	this	cell	is	as	wide	as	5	other	ones
	constr.gridwidth=	5;
//	fill	all	space	in	the	cell
	constr.fill=	constr.BOTH;
//	proportion	of	horizontal	space	taken	by	this
//	component
	constr.weightx	=	1.0;
//	proportion	of	vertical	space	taken	by	this	component
	constr.weighty	=	1.0;
//	position	of	the	component	within	the	cell
	constr.anchor=constr.CENTER;
	displayField	=	new	JTextField();
//	set	constraints	for	this	field
	gb.setConstraints(displayField,constr);
//	add	the	text	field	to	the	window
	windowContent.add(displayField);

CardLayout
Think	of	a	deck	of	cards	lying	on	top	of	each	other	—	only	the	top	card	is	visible.	You	can
use	the	java.awt.CardLayout	manager	to	create	a	component	that	shows	one	panel	at	a
time,	such	as	the	tabbed	folder	in	Figure	8-9.

Figure	8-9:	Tab	folder	as	a	card	layout	example

When	the	user	clicks	a	tab,	the	content	of	the	window	changes.	In	fact,	all	the	panels
needed	for	this	screen	are	already	preloaded	and	lie	on	top	of	each	other.	When	the	user

clicks	a	tab,	the	program	just	brings	this	“card”	to	the	top	and	makes	the	other
“cards”	invisible.	The	tabbed	folder	here	was	used	for	illustration;	the	Swing	library
includes	a	ready-to-go	component	for	windows	with	tabs,	called	JTabbedPane.

Containers	with	Absolute	Layout
If	you	want	a	container’s	content	to	look	the	same	regardless	of	the	user’s	window	size,
set	the	x	and	y	coordinates,	width,	and	height	(the	bounds)	of	each	component	while
adding	them	to	the	window.	Your	class	has	to	explicitly	state	that	it	won’t	use	any	layout
manager	by	passing	null	to	setLayout():

windowContent.setLayout(null);

The	next	code	snippet	shows	how	you	can	set	a	button’s	width	to	40	pixels	and	its	height
to	20,	and	place	the	button	so	its	top-left	corner	is	100	pixels	to	the	right	of	and	200	pixels
down	from	the	top-left	corner	of	the	window:

JButton	myButton	=	new	Button("New	Game");
myButton.setBounds(100,200,40,20);

More	About	Swing	Widgets
It’s	not	possible	to	describe	all	the	Swing	components	in	a	short	lesson.	Use	the	Swing
online	tutorial	mentioned	in	the	beginning		of	this	lesson	to	get	more	information.	Here’s	a
list	of	all	the	Swing	widgets:

JButton JScrollBar
JLabel JSlider
JCheckBox JProgressBar
JRadioButton JComboBox
JToggleButton JList
JScrollPane JTabbedPane
JSpinner JTable
JTextField JToolTip
JTextArea JTree
JPasswordField JViewPort
JFormattedTextField ImageIcon
JEditorPane 	

You	can	also	create	menus	(JMenu	and	JPopupMenu),	pop-up	windows,	and	frames	inside
other	frames	(JInternalFrame),	and	you	can	use	the	standard-looking	windows
(JFileChooser,	JColorChooser,	and	JOptionPane).

Java	used	to	come	with	an	excellent	demo	application,	SwingSet3,	that	showed	all	the
available	Swing	components	in	action.	Now	it’s	available	online	at

https://swingset3.java.net.	Check	it	out.

https://swingset3.java.net

Swing	GUI	Builders
Java	developers	use	various	tools	to	speed	the	process	of	designing	UIs.	See	what’s
available	for	the	IDE	that	you	use.	For	example,	there	is	design	tool	for	Eclipse	called
WindowBuilder	that	simplifies	creation	of	GUI	without	writing	too	much	code.	You	can
find	it	at	the	following	URL:	http://www.eclipse.org/windowbuilder.

Matisse	was	originally	developed	for	the	NetBeans	IDE,	and	you	can	find	it	here:
http://netbeans.org/kb/trails/matisse.html.

Finally,	consider	yet	another	Eclipse	plug-in,	called	Jigloo	GUI	Builder
(http://marketplace.eclipse.org/content/jigloo-swtswing-gui-builder).	You	can	definitely
find	a	tool	that	will	substantially	speed	up	your	design	of	UIs	with	the	Java	Swing	library.

http://www.eclipse.org/windowbuilder
http://netbeans.org/kb/trails/matisse.html
http://marketplace.eclipse.org/content/jigloo-swtswing-gui-builder

Try	It
Your	task	for	today	is	to	create	another	version	of	the	calculator	in	Figure	8-8,	using	only
one	layout:	GridBagLayout.

Lesson	Requirements
For	this	lesson	you	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson8.zip.

Step-by-Step
This	assignment	comes	down	to	creating	appropriate	constraints	for	each	UI	component
shown	in	Listing	8-5	for	each	UI	component	needed	for	the	calculator.

TIP			Please	select	the	videos	for	Lesson	8	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	9
Event	Handling	in	Swing	GUI
Java	Swing,	like	any	other	UI	library,	is	event-driven.	When	a	user	interacts	with	a	GUI
program	(such	as	by	clicking	a	button	or	pressing	a	key)	a	Java	Swing	program	receives
an	event	that	can	initiate	an	appropriate	reaction.

If	you	wrote	the	code	to	react	to	a	particular	event,	this	code	will	be	invoked.	If	you
haven’t	written	such	code,	the	event	will	be	fired	anyway,	but	the	program	won’t	respond
to	it.	In	this	lesson	you	learn	how	to	handle	events	in	Java	GUI	programs.

Introduction	to	Event	Listeners
I’m	sure	you’ve	tried	to	click	the	buttons	of	the	calculator	from		Chapter	8,	but	they	were
not	ready	to	respond	to	your	actions	yet.	Swing	widgets	can	process	various	events,	or	in
the	programmers’	jargon	can	listen	to	events.	To	listen	to	events,	a	program	has	to	register
window	components	with	Java	classes	called	listeners.

You	should	have	components	listen	only	to	the	events	they	are	interested	in.	For	example,
when	a	person	clicks	a	button,	it’s	not	important	where	exactly	the	mouse	pointer	is	as
long	as	it	is	on	the	button’s	surface.	That’s	why	you	do	not	need	to	register	the	button	with
MouseMotionListener.	On	the	other	hand,	this	listener	comes	in	handy	for	all	kinds	of
drawing	programs.

To	process	button	clicks,	Swing	provides	ActionListener.	All	listeners	are	declared	Java
interfaces	and	their	methods	have	to	be	implemented	in	an	object	that	listens	to	events.

This	is	how	Java	documentation	describes	the	ActionListener	interface:

This	is	the	listener	interference	for	receiving	action	events.	The	class	that	is	interested
in	processing	an	action	event	implements	this	interface,	and	the	object	created	with
that	class	is	registered	with	a	component,	using	the	component’s	addActionListener()
method.	When	the	action	event	occurs,	that	object’s	actionPerformed()	method	is
invoked.

This	interface		ActionListener	is	defined	in	the	java.awt.event	package,	as	presented	in
Listing	9-1.	It	declares	only	one	method.

Listing	9-1:	ActionListener	Interface

public	interface	ActionListener	extends	EventListener
		void	actionPerformed(ActionEvent	e);
}

NOTE			Starting	from	Java	8,	interfaces	that	declare	a	single	method	are	called
functional	interfaces.	You	learn	more	about	them	in	Lesson	15.

The	actionPerformed()	method	is	invoked	by	the	JVM	if	the	action	happened.	Let’s	use
this	listener	in	the	calculator	you	created	in	Chapter	8.

Teaching	the	Calculator	to	Calculate
The	calculator’s	buttons	should	register	themselves	with	a	class	that	implements
ActionListener,	which	means	that	its	method	actionPerform()	contains	the	calculation
logic.	Even	though	you	can	implement	ActionListener	in	the	Calculator	class	itself,	for
better	readability	and	code	maintainability	it’s	best	to	separate	the	code	defining	the	UI
from	the	code	containing	processing	logic.	Let’s	start	writing	a	separate	class,
CalculatorEngine:

import	java.awt.event.ActionListener;
public	class	CalculatorEngine	implements	ActionListener	{
		
}

The	preceding	class	won’t	compile;	Java	gives	an	error	message	stating	that	the	class	must
implement	the	method	actionPerformed(ActionEvent	e).		You	remember	the	rules	for
interfaces,	right?	The	interface	ActionListener	declares	a	single	method
actionPerformed(),	which	makes	it	a	functional	interface,	as	discussed	in	Listing	9-2	fixes
this	error.

Listing	9-2:	First	implementation	of	ActionListener	interface

import	java.awt.event.ActionListener;
import	java.awt.event.ActionEvent;
public	class	CalculatorEngine	implements	ActionListener	{
			public	void	actionPerformed(ActionEvent	e){
							//	An	empty	method	body
			}
}

Even	though	the	actionPerformed()	method	doesn’t	contain	any	code	yet,	it’s	considered
implemented	in	Listing	9-2	(the	curly	braces	make	the	compiler	happy).	JVM	calls	this
method	on	the	class	that’s	registered	as	an	event	listener	and	implements	the
ActionListener	interface	whenever	the	user	clicks	the	button.

The	next	version	of	CalulatorEngine	(see	Listing	9-3)	will	display	a	message	box	from	the
method	actionPerformed().	You	can	display	any	messages	using	the	Swing	class
JOptionPane	and	its	method	showConfirmDialog().

Listing	9-3:	This	class	displays	a	message	box

import	java.awt.event.ActionListener;
import	java.awt.event.ActionEvent;
import	javax.swing.JOptionPane;
public	class	CalculatorEngineMsg	implements	ActionListener	{
			public	void	actionPerformed(ActionEvent	e){
							JOptionPane.showConfirmDialog(null,
															"Something	happened…",
															"Just	a	test",
															JOptionPane.PLAIN_MESSAGE);
			}
}

If	you	register	the	class	CalculatorEngineMsg	from	Listing	9-3	as	a	listener	for	the	class
Calculator	from	Listing	8-4,	it	displays	the	message	box	shown	in	Figure	9-1	when	the
user	clicks	inside	the	calculator	window.

Figure	9-1:	A	message	box	with	JOptionPane

The	class	JOptionPane	declares	several	overloaded	methods	named
showConfirmDialog()	—	I	used	the	version	with	four	arguments	in	Listing	9-3.	The	first
argument	is	null,	which	means	that	this	message	box	does	not	have	a	parent	window.	The
second	argument	contains	the	title	of	the	message	box.	The	third	contains	the	message
itself,	and	the	fourth	argument	allows	you	to	select	a	button(s)	to	be	included	in	the	box;
PLAIN_MESSAGE	means	that	it	only	needs	the	OK	button.

Registering	Components	with	ActionListener
Which	program	invokes	the	code	in	the	method	actionPerformed()	shown	in	Listing	9-
3	and	when?	Register	the	calculator’s	buttons	with	the	class	CalculatorEngine,	and	Java
run	time	obediently	invokes	this	class’s	method	actionPerformed()	every	time	any	button
is	clicked.

Callback	Methods
The	methods	that	are	not	called	by	the	Java	run	time	on	your	application	code	are
often	referred	to	as	callback	methods.

Add	the	following	two	lines	at	the	end	of	the	constructor	of	the	class	Calculator	(Listing	8-
4),	and	one	button	(zero)	starts	responding	to	clicks	with	the	box	from	Figure	9-1:

CalculatorEngine	calcEngine	=	new	CalculatorEngine();
button0.addActionListener(calcEngine);

The	other	calculator	buttons	remain	silent	because	they	have	not	been	registered	with	the
action	listener	yet.	Keep	adding	similar	lines	to	bring	all	the	buttons	to	life:

button1.addActionListener(calcEngine);
button2.addActionListener(calcEngine);
button3.addActionListener(calcEngine);
button4.addActionListener(calcEngine);

Finding	the	Source	of	an	Event
The	next	step	is	to	make	the	listener	a	little	smarter:	It	has	to	display	message	boxes	with
different	text,	depending	on	which	button	was	pressed.	When	an	action	event	happens,
Java	run	time	calls	the	method	actionPerformed(ActionEvent)	on	your	listener	class,	and
this	method	provides	valuable	information	about	the	event	in	the	argument	ActionEvent.
In	particular,	the	method	getSource()	in	the	object	ActionEvent	supplied	to
actionPerformed()	in	Listing	9-3	tells	you	what	object	caused	this	method	invocation.

But	according	to	Java	documentation	for	the	class	ActionEvent,	the	method	getSource()
returns	an	instance	of	type	Object,	which	is	a	superclass	of	all	Java	classes,	including
window	components.	Since	buttons	in	your	calculator	can	be	the	only	reason	for	an	action
event,	cast	the	returned	Object	to	the	type	JButton:

JButton	clickedButton	=	(JButton)	evt.getSource();

Only	after	performing	casting	from	Object	to	JButton	can	you	call	methods	that	JButton
supports;	for	example,	getText(),	which	returns	the	button’s	label,	as	shown	in	Listing	9-4.
If	you	press	the	button	labeled	5,	you	see	a	message	box	that	reads,	“You	pressed	5.”

Listing	9-4:	Getting	the	label	of	the	clicked	button

import	java.awt.event.ActionListener;
import	java.awt.event.ActionEvent;
import	javax.swing.JOptionPane;
import	javax.swing.JButton;
public	class	CalculatorEngine	implements	ActionListener	{
			public	void	actionPerformed(ActionEvent	e){
							//	Get	the	source	object	of	this	action
							JButton	clickedButton=(JButton)	e.getSource();
							//	Get	the	button's	label
							String	clickedButtonLabel	=	clickedButton.getText();
							//	Concatenate	the	button's	label
							//	to	the	text	of	the	message	box
							JOptionPane.showConfirmDialog(null,
															"You	pressed	"	+	clickedButtonLabel,
															"Just	a	test",
															JOptionPane.PLAIN_MESSAGE);
			}
}

What	if	the	window	events	are	produced	not	only	by	buttons,	but	by	some	other
components	as	well?	Then	don’t	cast	every	object	that	has	arrived	with	ActionEvent	to
JButton.	Use	the	operator	called	instanceof	to	perform	the	proper	casting.	The	next
example	first	determines	what	type	of	object	caused	the	event,	and	then	performs	casting
to	either	JButton	or	JTextField:

public	void	actionPerformed(ActionEvent	evt){
			JTextField	myDisplayField=null;
			JButton	clickedButton=null;
			Object	eventSource	=	evt.getSource();
			if	(eventSource	instanceof	JButton){
							clickedButton	=	(JButton)	eventSource;
			}	else	if	(eventSource	instanceof	JTextField){
							myDisplayField	=	(JTextField)eventSource;
			}
}

Consider	the	buttons	that	perform	arithmetic	operations.	Our	calculator	has	to	execute
different	code	for	each	button:

public	void	actionPerformed(ActionEvent	e){
					Object	src	=	e.getSource();
					if	(src	==	buttonPlus){
								//	Call	the	method	that	adds	numbers	here

					}	else	if	(src	==	buttonMinus){
							//	Call	the	method	that	subtracts	numbers	here	
					}else	if	(src	==	buttonDivide){
						//	Call	the	method	that	divides	numbers	here
					}	else	if	(src	==	buttonMultiply){
					//	Call	the	method	that	multiplies	numbers	here
					}
}

How	to	Pass	Data	Between	Objects
When	you	click	a	numeric	button	on	the	real	calculator,	it	does	not	show	a	message	box,
but	rather	displays	the	number	in	the	text	field	on	top.	Here’s	a	new	challenge:	You	need
to	be	able	to	reach	the	attribute	displayField	from	the	object	Calculator	from	the	method
actionPerformed()	defined	in	another	class	—	CalculatorEngine.	In	other	words,	two
objects	need	to	communicate.	There	are	different	ways	of	arranging	this;	for	instance,	in
the	class	CalculatorEngine	you	can	declare	a	private	variable	to	store	a	reference	to	the
instance	of	the	object	Calculator.

The	next	version	of	the	class	CalculatorEngine	declares	a	one-argument	constructor,
which	takes	an	argument	of	type	Calculator.

JVM	executes	the	constructor	of	the	CalculatorEngine	class	during	instantiation	of	this
class	in	memory.	The	Calculator	object	instantiates	CalculatorEngine	and	passes	to	the
engine’s	constructor	a	reference	to	itself	(note	this):

CalculatorEngine	calcEngine	=	new	CalculatorEngine	(this);

The	reference	this	contains	the	location	of	the	calculator’s	instance	in	memory.	The
engine’s	constructor	can	store	the	value	from	the	variable	this	in	its	own	variable,	say
parent,	and	eventually	use	it	from	the	method	actionPerformed()	to	access	the	calculator’s
display	field.

Attention,	Bad	Practice!

The	variable	parent	in	the	following	code	listing	serves	as	a	bridge	from	the	object
CalculatorEngine	to	Calculator.	And	the	easy	way	to	access	Calculator’s	displayField
from	CalculatorEngine	is	this:

parent.displayField.getText();
...
parent.displayField.setText(dispFieldText	+	clickedButtonLabel);

These	two	lines	were	taken	from	the	code	sample	in	Listing	9-5.	This	code	works,	but	it
violates	one	of	the	principles	of	object-oriented	programming:	encapsulation.	The	problem
is	that	code	from	CalculatorEngine	has	direct	knowledge	of	the	internals	of	another	object:
Calculator.	The	engine	“knows”	that	there	is	a	field	called	displayField		in	Calculator,	and
the	preceding	code	gets	and	sets	its	value	directly.	

Listing	9-5:	Bad	execution	of	object	communication

import	java.awt.event.ActionListener;
import	java.awt.event.ActionEvent;
import	javax.swing.JButton;
public	class	CalculatorEngine	implements	ActionListener	{
	Calculator	parent;	//	a	reference	to	the	Calculator
	//	Constructor	stores	the	reference	to	the
	//	Calculator	window	in	the	member	variable	parent
	CalculatorEngine(Calculator	parent){
			this.parent	=	parent;
	}
	public	void	actionPerformed(ActionEvent	e){
			//	Get	the	source	of	this	action
			JButton	clickedButton	=	(JButton)	e.getSource();
			//	Get	the	existing	text	from	the	Calculator's
			//	display	field.	Reaching	inside	another	object	is	bad.
			String	dispFieldText	=	parent.displayField.getText();
			//	Get	the	button's	label
			String	clickedButtonLabel	=	clickedButton.getText();
			parent.displayField.setText(dispFieldText	+
																																			clickedButtonLabel);
	}
}

Imagine	that	for	whatever	reason	you	decide	to	use	in	Calculator	something	other
than	the	JTextField	widget	to	display	the	results	of	calculations.	That	other	widget
may	not	even	have	such	application	programming	interfaces	(APIs)
as	setText()	and	getText().	Now	you	need	to	modify	not	only	the	Calculator	class	but
also	the	code	of	the	CalculatorEngine	to	replace	the	part	that	displays	or	reads
the	displayField.	This	is	not	the	right	way	to	design	interactions	between	objects.	

A	Better	Solution	with	a	Public	API

If	Calculator	needs	to	communicate	with	other	objects,	it	should	expose	a	public	API	to
get	or	set	data	but	hide	details	about	its	internals.	The	class	Calculator	from	Listing	8-4
declares	widgets	without	using	any	access-level	qualifiers,	so	default	package	access	level
is	applied.	Hide	these	user	interface	(UI)	components,	as	shown	in	the	following	code	by
using	the	keyword	private:

private	JPanel	windowContent;
private	JTextField	displayField;
private	JButton	button0;
private	JButton	button1;
...

Now	CalculatorEngine	isn’t	able	to	access	displayField	directly	as	it	did	in	Listing	9-5.
Defining	public	getter	and	setter	methods	in	Calculator	allows	outsiders	to	access
displayField	without	knowing	it	exists.	Listing	9-6	demonstrates	how	a	small	change	can
protect	data	and	enforce	encapsulation.

Listing	9-6:	Adding	a	public	API	to	Calculator

public	class	Calculator{
				private	JTextField	displayField;
				public	void	setDisplayValue(String	val){
								displayField.setText(val);
				}
				public	String	getDisplayValue()	{
								return	displayField.getText();
				}
				//	The	rest	of	the	code	goes	here
}

Now	if	you	decide	to	replace	the	JTextField	widget	with	another	one,	only	the	methods
setDisplayValue()	and	getDisplayValue()	need	a	change;	the	code	of	CalculatorEngine
don’t	need	to	be	touched.	Listing	9-7	shows	the	proper	way	to	access	Calculator	from	the
CalculatorEngine.

Listing	9-7:	Using	a	public	API	of	Calculator

import	java.awt.event.ActionListener;
import	java.awt.event.ActionEvent;
import	javax.swing.JButton;
public	class	CalculatorEngine	implements	ActionListener	{
	Calculator	parent;	//	a	reference	to	the	Calculator
		//	Constructor	stores	the	reference	to	the
		//	Calculator	window	in	the	member	variable	parent
	CalculatorEngine(Calculator	parent){
			this.parent	=	parent;
	}
	public	void	actionPerformed(ActionEvent	e){
			//	Get	the	source	of	this	action
			JButton	clickedButton	=		(JButton)	e.getSource();
			//	Get	the	existing	text	from	the	Calculator's
			//	display	field.	Reaching	inside	another	object	is	bad.
			String	dispFieldText	=	parent.getDisplayValue();
			//	Get	the	button's	label
			String	clickedButtonLabel	=	clickedButton.getText();
			parent.setDisplayValue(dispFieldText	+
																																			clickedButtonLabel);
	}
}

Design	Pattern	Model-View-Controller
Software	engineers	often	have	to	implement	similar	architectural	solutions	in	their
projects.	Over	the	years	a	number	of	design	patterns	were	published	online	and	in	books.
One	of	such	architectural	patterns	is	model-view-controller	(MVC).	The	main	idea	of
MVC	is	that	you	should	separate	code	that	deals	with	UI	(view),	stores	the	application
data	(model),	and	triggers	the	changes	of	the	views	and	data	(controller).	The
implementation	of	MVC	may	vary	depending	on	the	application,	but	the	principle	remains
the	same.	

Even	in	such	a	simple	application	as	your	calculator,	you	can	start	separating	the	code.	For
example,	the	Calculator	class	represents	view,	is	responsible	only	for	the	UI,	and	has	no
application	logic.	

The	event	listener	CalculatorEngine	plays	the	role	of	the	controller.	It	serves	as	a	trigger	to
engage	the	application	logic	when	the	user	clicks	on	the	button	or	updates	the	view	when
the	result	has	been	calculated.

You	don’t	have	the	model	layer	here	as	you	don’t	store	any	data.	But	if	you	need	to
implement	a	calculator	that	remembers	the	history	of	calculations,	you	could	create	a	class
CalculationsHistory	that	would	serve	as	a	model	in	MVC,	as	shown	in	Figure	9-2.

Figure	9-2:	MVC	in	Calculator

Design	patterns	became	a	part	of	the	software	developer’s	jargon.	If	one	programmer	says,
“We	need	to	implement	MVC	here,”	both	know	what	this	is	all	about.

I	keep	bringing	your	attention	to	various	design	patterns	in	the	future	chapters	of	this
book.	Meanwhile	you	can	refer	to	the	online	resource	Computer	Science	Design	Patterns.		

http://en.wikibooks.org/wiki/Computer_Science_Design_Patterns

More	Swing	Listeners
JDK	comes	with	a	number	of	event	listeners

located	in	the	package	java.awt.event.	Here	are	some	of	them:

FocusListener	is	notified	when	a	widget	gains	or	loses	focus	(for	example,	we	say	that
a	text	field	has	focus	if	it	has	a	blinking	cursor).

ItemListener	reacts	to	the	selection	of	items	from	a	list	or	a	drop-down	box.

KeyListener	responds	to	user	keypresses.

MouseListener	responds	to	mouse	clicks	or	the	cursor	hovering	over	a	widget.

MouseMotionListener	tells	you	if	the	mouse	is	being	moved	or	dragged.	To	drag
means	to	move	the	mouse	while	holding	its	left	button	down.

WindowListener	gives	you	a	chance	to	catch	the	moments	when	the	user	opens,
closes,	minimizes,	or	activates	the	window.

Table	9-1	shows	the	names	of	selected	listener	interfaces	and	the	methods	declared	in
these	interfaces.	For	example,	FocusListener	declares	two	methods:	focusGained()	and
focusLost().	This	means	that	even	if	your	class	is	interested	only	in	knowing	when	a
particular	field	gains	focus,	you	also	must	include	the	empty	method	focusLost().	Java
provides	special	adapter	classes	for	most	of	the	event	listeners	to	spare	you	from	having
to	manually	code	empty	methods	enforced	by	listener	interfaces.

http://docs.oracle.com/javase/tutorial/uiswing/events/api.html

Table	9-1:	Selected	Swing	Listeners

Interface Methods	to	Implement

FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

ItemListener itemStateChanged(ItemEvent)

KeyListener keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

MouseMotionListener mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

WindowListener windowActivated(WindowEvent)
windowClosed(WindowEvent)
windowClosing(WindowEvent)
windowDeactivated(WindowEvent)
windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

Java	run	time	has	to	take	care	of	multiple	things:	update	the	content	of	the	screen,	apply
processing	logic	and	data,	and	react	to	events.	

Multiple	events	can	be	happening	at	the	same	time,	and	Java	run	time	constantly	runs	a
GUI	event	loop,	placing	these	events	in	the	event	queue,	as	shown	in	Figure	9-3.

Figure	9-3:	GUI	event	loop

The	code	that	updates	the	GUI	should	be	processed	by	a	special	worker	thread

(SwingWorker),	which	we’ll	discuss	in	Lesson	17.

How	to	use	Adapters
Swing	adapters	are	classes	with	implemented	empty	functions	required	by	listener
interfaces.	Let’s	say	you	need	to	display	a	warning	message	and	save	some	data	on	the
disk	when	the	user	closes	the	window.	According	to	table_9-1,	a	class	that	implements	the
WindowListener	interface	has	to	include	seven	methods.	This	means	that	you’ll	have	to
write	the	code	that	saves	the	data	in	the	method	windowClosing()	and	also	include	six
empty	methods.

The	package	java.awt.event	includes	a	number	of	adapter	classes	that	implement
corresponding	listener	interfaces,	such	as	KeyAdapter	and	WindowAdapter.	Instead	of
implementing	WindowListener	in	a	class	that	handles	the	window’s	events,	just	extend	a
class	from	WindowAdapter	and	override	only	the	methods	you	are	interested	in;	for
example,	the	method	windowClosing():

class	MyWindowEventProcessor	extends	java.awt.event.WindowsAdapter	{
		public	void	windowClosing(WindowEvent	e)	{
				//	your	code	that	saves	the	data	goes	here.
		}
}

The	rest	is	easy:	Register	the	class	MyWindowEventProcessor	as	an	event	listener	in	your
GUI	class	(for	example,	Calculator),	as	shown	in	Listing	9-8.

You	can	register	multiple	listeners	by	using	adapters	in	Calculator.	For	example,	to	allow
the	user	to	enter	a	number	by	pressing	numeric	keys,	create	a	class	based	on	KeyAdapter,
instantiate	it,	and	register	it	with	Calculator,	too.

Listing	9-8:	Registering	an	adapter-based	listener

MyWindowEventProcessor	myWindowListener	=	new	MyWindowEventProcessor();
addWindowListener(myWindowListener);

You	can	achieve	the	same	result	using	anonymous	inner	classes,	as	explained	in	the	next
section.

Inner	Classes
A	class	declared	inside	another	one	is	called	an	inner	class.	Listing	9-9	shows	an	example
of	the	class	TaxOptimizer	declared	inside	the	class	Tax.	The	class	TaxOptimizer	is	a
member	inner	class	and	has	access	to	all	variables	of	the	class	Tax.	Placing	one	class
inside	another	is	just	a	way	of	saying	that	the	classes	belong	together.	After	compilation,
the	class	Tax	file	produces	two	output	files:	Tax.class	and	Tax$TaxOptimizer.class.	

Listing	9-9:	Tax	class	including	an	inner	Taxoptimizer	class

class	Tax{
				double	grossIncome;
				int	dependents;
		double	calcStateTax(){
								TaxOptimizer	tOpt	=	new	TaxOptimizer();
								return	tOpt.optimize(grossIncome,	dependents);
		}
						TaxOptimizer	getTaxOptimizer(){
										return	new	TaxOptimizer();
						}
						class	TaxOptimizer{
							int	taxCode;
								void	setTaxCode(int	tCode){
														taxCode=tCode;
							}
							int	optimize(double	grossIncome,	int	dep){
									//	Some	optimization	code	goes	here
												return	0;
							}
	}
}

An	inner	class	defined	as	static	can	access	only	static	variables	of	the	outer	class.	The
inner	class	can	even	be	defined	inside	a	method	of	an	outer	class.	In	this	case	this	local
inner	class	is	available	only	when	the	outer	method	is	called,	and	it	can	access	only	static
variables	of	the	top-level	class.

The	method	getTaxOptimizer()	in	Listing	9-9	returns	an	instance	of	the	inner	class	if
external	classes	need	it.	For	example,	if	the	class	TestTax	needs	to	access	the	method
setTaxCode()	from	the	inner	class,	it	could	do	so	as	follows:

Tax	t	=	new	Tax(2,	"NY",	50000);
Tax.TaxOptimizer	tOptimizer	=	t.getTaxOptimizer();
tOptimizer.setTaxCode(12345);

Here’s	another	syntax	producing	the	same	result:

Tax	t	=	new	Tax(2,	"NY",	50000);
Tax.TaxOptimizer	tOptimizer	=	t.new	TaxOptimizer();
tOptimizer.setTaxCode(12345);

Anonymous	Inner	Classes
If	an	inner	class	does	not	have	a	name,	it’s	called	anonymous.	The	use	of	anonymous	inner
classes	is	pretty	easy	to	understand	in	examples	of	implementing	Swing	adapters.	You’ve
learned	by	now	that	using	adapters	is	a	three-step	process:	Extend	the	adapter	class,
instantiate	it,	and	register	it	as	an	event	listener	(see	Listing	9-8).	With	anonymous	inner
classes	you	can	perform	all	three	steps	in	one	shot,	as	in	Listing	9-10.

Listing	9-10:	Using	an	anonymous	class	as	adapter

this.addWindowListener(new	WindowAdapter()	{
											public	void	windowClosing(WindowEvent	e)	{
																		System.exit(0);
										}
							}
);

Imagine	that	this	code	is	placed	in	the	Calculator	class.	The	method	addWindowListener()
requires	a	subclass	of	WindowAdapter,	and	the	section	in	bold	in	Listing	9-10
demonstrates	the	syntax	of	declaring	an	anonymous	class	that	extends	WindowAdapter
and	overrides	the	method	windowClosing().

The	new	operator	instantiates	the	adapter,	and	because	this	is	done	inside	the	parentheses
of	the	method	addWindowListener()	the	newly	created	object	is	used	as	its	argument.	This
adapter’s	implementation	doesn’t	have	a	name,	and	we	don’t	need	to	know	its	name	in	this
context,	do	we?	The	instance	of	the	adapter	was	created	and	registered	as	an	event	listener,
and	this	is	all	that	matters.

Lambda	Expressions	as	an	Alternative	to	Inner	Classes
For	many	years	anonymous	inner	classes	were	used	as	method	(function)	wrappers
because	Java	did	not	allow	a	function	to	pass	as	an	argument	to	a	method.	Java	8
introduced	lambda	expressions	that	in	many	cases	eliminate	the	need	to	use
anonymous	inner	classes.	You	read	about	lambda	expressions	in	Lesson	13.	

Try	It
The	goal	of	this	lesson	is	to	complete	the	code	of	the	calculator.	It	has	to	look	as	in	Figure
9-2	and	implement	the	functionality	of	all	the	buttons.

Figure	9-4:	The	Calculator	GUI

Lesson	Requirements
For	this	lesson	you	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson9.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project	called	Lesson9	and	copy	the	Calculator	from	Listing	8-

4).

2.	 Create	all	missing	UI	components	—	use	Figure	9-4	as	a	prototype.

3.	 Create	the	event	listener	CalculatorEngine	—	all	event	processing	and	calculations
should	be	performed	there.

4.	 From	Calculator,	pass	to	the	CalculatorEngine	engine	a	reference	to	itself.

5.	 Register	with	CalculatorEngine	all	GUI	components	that	can	generate	events.

6.	 Implement	the	code	for	the	following	scenario:

a.	 The	user	enters	all	the	digits	of	the	first	number.

b.	 If	the	user	hits	one	of	the	action	buttons	(+,	-,	/,	or	*),	this	indicates	that	the	first
number	has	been	entered.	Store	this	number	and	selected	action	in	class	variables
(declare	them	first)	and	erase	the	number	from	the	display	text	field.	You	need	to
convert	the	String	value	to	double	with	the	help	of	class	Double.

c.	 The	user	enters	the	second	number	and	clicks	the	=	button.

d.	 Convert	the	String	value	from	the	text	field	into	a	numeric	type	double	so	it	is	able
to	store	numbers	with	a	decimal	point.	Perform	the	selected	action	using	this	value
and	the	number	stored	in	the	numeric	variable	from	Step	b.

e.	 Display	the	result	in	the	display	field	and	store	this	value	in	the	variable	that	was
used	in	Step	b,	for	future	calculations.

f.	 Run	the	calculator.	If	it	works,	show	it	to	your	friends.

TIP			Please	select	the	videos	for	Lesson	9	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	10
Error	Handling
Fixing	the	compiler’s	errors	becomes	trivial	as	you	become	more	comfortable	with	the
Java	syntax.	But	you	also	should	ensure	that	your	programs	handle	runtime	errors	that
may	happen	regardless	of	your	proficiency	with	the	language	itself.

Let’s	say	you	have	a	Java	program	that	reads	customers’	data	from	a	file	deployed	in
production.	What’s	going	to	happen	if	this	file	gets	corrupted?	Will	the	program	crash
with	a	scary	geeky	error	message,	or	will	it	stay	alive,	displaying	a	user-friendly	message
such	as,	“There	seems	to	be	a	problem	with	the	file	Customers.	Please	make	sure	that	the
file	is	not	corrupted”?	Error	processing	in	the	Java	world	is	called	exception	handling,
which	is	the	subject	of	this	lesson.	An	exception	is	a	runtime	error	that	may	stop	the
execution	of	your	program.

Stack	Trace
When	a	Java	application	is	running,	the	JVM	performs	a	number	of	internal	and
application-specific	method	calls.	If	a	runtime	error	occurs	that’s	not	handled	by	the
program,	the	program	prints	a	stack	trace,	which	reflects	in	the	call	stack	the	sequence	of
unfortunate	events	that	caused	this	error.	A	stack	trace	helps	software	developers	follow
the	workflow	of	the	program	that	led	to	the	error.

To	illustrate	what	a	stack	trace	may	look	like,	consider	the	program	shown	in	Listing	10-1,
which	deliberately	divides	by	zero.

Listing	10-1:	Generating	stack	trace	by	dividing	by	zero

1	public	class	TestStackTrace{
2				TestStackTrace()
3				{
4								divideByZero();
5				}
6
7				int	divideByZero()
8				{
9							return	25/0;
10			}
11
12				public	static	void	main(String[]	args)
13				{
14											new	TestStackTrace();
15				}
16	}

Listing	10-2	depicts	the	output	of	this	program,	which	has	traced	what	happened	in	the
program	stack	before	the	error	occurred.	Read	the	output	from	the	last	line	upward.	It
shows	that	the	program	was	executing	the	methods	main(),	init()	for	the	constructor,	and
divideByZero().	The	line	numbers	14,	4,	and	9,	respectively,	indicate	where	in	the
program	these	methods	were	called.	After	that	the	ArithmeticExceptionwas	thrown—the
code	in	line	9	tried	to	divide	by	zero.	Turning	the	line	numbers	on	in	the	Eclipse	IDE	helps
you	locate	problematic	code.

Listing	10-2:	Sample	stack	trace

c:\temp>java	TestStackTrace
					Exception	in	thread	"main"
					java.lang.ArithmeticException:	/	by	zero
								at	TestStackTrace.divideByZero(TestStackTrace.java:9)
								at	TestStackTrace.<init>(TestStackTrace.java:4)
								at	TestStackTrace.main(TestStackTrace.java:14)

Executing	any	Java	program	means	running	multiple	threads,	as	explained	in
introduction_to_multi-threading,	and	the	stack	trace	output	reflects	what	was	happening	in
the	main	thread	of	the	simple	TestStackTrace	program.

Java	Exceptions
In	many	programming	languages,	error	processing	depends	on	the	programmer’s	good
will	and	experience.	Java	forces	a	programmer	to	include	the	error-handling	code	for
certain	errors;	otherwise	the	programs	won’t	even	compile.

Say	you	need	to	write	a	piece	of	code	that	reads	a	file	containing	data	about	customers.	It’s
easy	to	foresee	that	unless	the	code	includes	error	handling	there	is	a	chance	that	one	day
you’ll	see	a	stack	trace	instead	of	a	customer	list.

The	creators	of	Java	didn’t	want	to	allow	this	code	to	fail	just	because	some	programmers
are	too	lazy	to	include	error-handling	code.	Java	forces	you	to	place	such	code	inside	a
try/catch	block,	as	in	Listing	10-3.	Whenever	you	read	or	write	files	you	have	to	process
input/output	(I/O)	errors.

Listing	10-3:	Catching	I/O	errors

try	{
				fileCustomer.read();	//	the	file	may	be	corrupted	or	missing
}
catch	(IOException	ioe)	{
				System.out.println(
										"There	seems	to	be	a	problem	with	the	file	customers.");
}

Read	the	code	from	Listing	10-3	as	follows:	“Try	to	execute	fileCustomer.read(),	and	if	an
error	occurs,	jump	into	the	catch	section	and	execute	the	code	from	there.”	IOException	is
a	class	that	contains	information	about	input/output	errors.

In	the	case	of	an	I/O	error,	the	method	read()	throws	an	exception	(for	more	details	on
reading	files	refer	to	Chapter	14).	The	catch	block	catches	this	error	and	processes	it.	The
program	doesn’t	terminate,	and	this	exception	is	considered	handled.	If	the	method	read()
finishes	successfully,	the	code	in	the	section	catch	isn’t	executed.

Exception	Hierarchy
Errors	in	Java	are	represented	as	classes	that	can	be	divided	into	two	major	types:	those
that	were	caused	by	bad	programming	and	those	that	were	thrown	because	of	some	other
external	condition.	For	example,	if	a	program	declares	a	variable	of	type	Tax,	but	this
object	was	never	instantiated,	any	attempts	to	call	the	(non-static)	method	calcTax()	result
in	NullPointerException:

Tax	tax;
tax.calcTax();

This	situation	could	have	been	predicted	and	properly	handled	by	the	programmer.

If	a	runtime	error	can	be	handled	programmatically,	the	exception	is	called	checked.	The
method	reads()	from	Listing	10-3	throws	an	exception	and	the	JVM	tries	to	find	the	code
that	handles	this	error.	Such	an	exception	can	be	anticipated	and	recovered	from	without
the	need	to	change	the	code.	While	the	program	remains	operational,	the	user	can	find	the
missing	file	containing	the	list	of	customers	and	try	again	to	populate	the	GUI	with	this
list.

All	exceptions	are	subclasses	of	Throwable,	which	has	two	immediate	descendants:	Error
and	Exception.

Subclasses	of	the	class	Error		are	fatal	errors	and	are	called	unchecked	exceptions,	and	are
not	required	to	be	caught.	You	don’t	have	to	put	them	in	try/catch	blocks	as	there	is	not
much	you	can	do	if,	say,	the	JVM	runs	out	of	memory	and	crashes.

Subclasses	of	Exception	(excluding	RuntimeException)	are	called	checked	exceptions	and
have	to	be	handled	in	your	code.		

You	can	declare	and	throw	your	own	application-specific	exception;	for
example,	LoveFailedException	or	ShipmentCreationException.

Figure	10-1:	Figure	10.1.	Sample	Exceptions	hierarchy	with	custom	exception

How	is	a	programmer	supposed	to	know	in	advance	if	some	Java	method	may	throw	a
particular	exception	and	that	the	try/catch	block	should	therefore	be	used?	No	need	to
memorize	anything.	If	a	method	throws	an	exception,	the	Java	compiler	prints	an	error
message	similar	to	this	one:

"Tax.java":		unreported	exception:	java.io.IOException;	must	be	
caught	or	declared	to	be	thrown	at	line	57

If	you	see	a	message	like	this,	find	the	description	of	the	class	method	being	invoked	or
search	for	the	documentation	for	the	exception	itself.	For	example,	here’s	the	description
of	the	java.io.IOException.	Add	the	appropriate	try/catch	block	to	handle	this	exception,
as	explained	in	the	following	section.

http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html

Try/Catch	Blocks
There	are	five	Java	keywords	that	can	be	used	for	exception	handling:	try,	catch,	finally,
throw,	and	throws.	One	try	block	can	have	multiple	catch	blocks,	to	provide	handling	for
more	than	one	type	of	error.	For	example,	when	a	program	tries	to	read	a	file,	the	file	may
not	be	there—you	must	catch	the	FileNotFoundException.	If	the	file	is	there,	but	the	code
tries	to	read	past	the	end	of	file,	the	catch	clause	for	EOFException	is	necessary.	Listing
10-4	illustrates	a	multi-catch	block.

Listing	10-4:	One	try	with	multiple	catch	statements

public	void	getCustomers()	{
			try	{
							fileCustomers.read();
			}	catch(FileNotFoundException	fileEx)	{
							System.out.println("Cannot	find	file	Customers");
			}	catch(EOFException	eof)	{
							System.out.println("Done	with	file	read");
			}	catch(IOException	ioe)	{
							System.out.println("Problem	reading	file:	"	+
																																										ioe.getMessage());
			}
}

The	order	of	the	catch	statements	may	be	important	if	the	exceptions	being	caught	belong
to	the	same	inheritance	branch.	For	example,	the	class	EOFException	is	a	subclass	of	the
more	generic	IOException,	and	you	have	to	put	the	catch	block	for	the	subclass	first.	If
you	place	the	catch	block	for	IOException	before	the	one	for	EOFException,	the	latter
block	will	never	be	reached—the	end-of-file	errors	will	be	intercepted	by	the	IOException
catch	block.

Starting	from	Java	7	you	can	catch	multiple	exceptions	in	one	catch	block.	For	example,
the	preceding	code	may	be	rewritten	as	follows:

public	void	getCustomers()	{
			try	{
							fileCustomers.read();		//	may	throw	an	error
			}	catch(FileNotFoundException	|	EOFException	|	IOException	ioe)	{
					System.out.println("Problem	reading	file"	+	ioe.getMessage());
			}	catch	(Exception	ex)	{
					System.out.println("Exception	in	getCustomers:"	+	
																										ex.getMessage());
			}
}

A	catch	block	receives	an	instance	of	the	Exception	object	that	contains	a	short

explanation	of	a	problem,	and	the	method	getMessage()	of	the	Exception	object	returns
this	info.	If	the	description	of	an	error	returned	by	getMessage()	is	not	clear	enough,	try
the	method	Exception.toString()	instead.

If	you	need	more	detailed	information	about	the	exception,	use	the	method
printStackTrace()	on	the	received	Exception	object	(see	Listing	10-6).	It	prints	all	internal
method	calls	that	led	to	this	exception,	as	described	in	the	section	“Stack	Trace”	earlier	in
this	lesson.

Using	the	throws	Clause
In	some	cases	it	makes	more	sense	to	handle	an	exception	not	in	the	method	where	it
happened,	but	in	the	calling	one.	Let’s	use	the	same	example	of	code	that	reads	a	file.
Because	the	method	read()	may	throw	an	IOException,	you	should	either	handle	it	or
declare	that	the	calling	method	may	throw	it.	The	latter	is	done	in	Listing	10-5.

Listing	10-5:	Using	the	throws	clause

public	class	CustomerList	{
				public	void	getAllCustomers()	throws	IOException	{
								//	Some	other	code	goes	here
								//	Don't	use	try/catch	if	you	are	not	handling	
								//	exceptions	here
								file.read();
				}
				public	static	void	main(String[]	args)	{
								System.out.println("Customer	List");
								//	Some	other	code	goes	here
								try	{
												//	Since	getAllCustomers()	declared	an	exception,
												//	either	handle	it	over	here,	or	rethrow	it
												//	(see	the	throw	keyword	explanation	below)
												getAllCustomers();
								}	catch(IOException	ioe)	{
												System.out.println("Customer	List	is	not	available");
								}
				}
}

In	Listing	10-5	IOException	has	been	propagated	from	the	method	getAllCustomers()	to
the	main()	method,	and	it	has	been	handled	there.

Using	the	finally	Clause
The	code	can	exit	the	try/catch	block	in	several	ways:

The	code	inside	the	try	block	successfully	ends	and	the	program	continues.

The	code	inside	the	try	block	runs	into	a	return	statement	and	the	program	control
returns	to	the	calling	method.

The	code	inside	the	try	block	throws	an	exception	and	control	goes	to	the	catch	block.

As	you	can	see,	in	some	cases	only	the	code	from	the	try	block	works;	in	some	cases	part
of	the	code	from	the	try	block	and	all	the	code	in	catch	is	invoked.	If	there	is	a	piece	of
code	that	must	be	executed	regardless	of	the	success	or	failure	of	the	code	in	the	try	block,
put	it	under	the	finally	clause.

Listing	10-6:	Using	the	finally	clause

try	{
				file.read();
				//	file.close();			don't	close	files	inside	try	block
}
catch(Exception	e)	{
				e.printStackTrace();
}
finally	{
				try	{
								file.close();
				}	catch(IOException	ioe)	{
								ioe.printStackTrace();
				}
}

The	code	in	Listing	10-6	will	try	to	close	the	file	regardless	of	the	success	of	the	read
operation	because	the	close()	function	is	called	in	the	finally	block.	If	you	had	placed
the	close()	function	inside	the	try	block,	then	when	an	exception	was	thrown,	the	next
code	to	execute	would	be	in	the	catch	block,		skipping	the	close()	operation,	which
would	result	in	resource	leak,	the	object	referred	by	the	file	variable	would	get	stuck
in	memory	for	some	time.		As	a	summary,	you	should	always	use	the	finally	clause
for	the	release	of	system	resources.	To	minimize	the	programmer’s	errors	with
unclosed	resources	Java	introduced	try-with-resources.

Using	printStackTrace
In	some	of	the	code	snippets	I	invoke	the	method	printStackTrace()	just	to	make	the
code	samples	short.	But	the	printStackTrace()	is	a	slow	operation	and	it’s	better	to
extract	the	error	message	from	the	exception	object	rather	than	printing	the	entire
stack	trace	that	led	to	the	error.

Try-With-Resources
Starting	from	Java	7	you	can	simplify	the	code	in	try/catch	blocks	by	using	try-with-
resources	syntax,	which	directs	Java	run	time	to	automatically	close	resources	without
using	the	finally	clause.	You	just	need	to	open	the	resources	in	the	parentheses	right	after
the	try	keyword,	and	they’re	automatically	closed.	The	next	code	fragment	illustrates	try-
with-resources.	The	object	InputStream	(explained	in	Lesson	17)	is	closed	automatically
without	the	need	to	use	finally.		

InputStream	myFileInputStream	=	null;
try	(myFileInputStream	=	new	FileInputStream(“customers.txt”);)	{
				//	the	code	that	reads	data	from	customers.txt	goes	here
}	catch	(Exception	e)	{
				e.printStackTrace();
}

The	AutoClosable	Interface
The	automatic	closing	works	only	if	the	resource	implements
java.lang.AutoCloseable	or	java.io.Closeable	interface,	which	is	the	case	with
FileInputStream.	If	you	want	to	create	your	classes	that	automatically	close	some
resources,	have	them	implement	one	of	these	interfaces.	

If	you	are	not	planning	to	handle	exceptions	in	the	current	method,	they	will	be
propagated	to	the	calling	method.	In	this	case	you	can	use	the	finally	clause	without	the
catch	clause	where	it	would	be	mandatory	otherwise:

public	void	myMethod()	throws	IOException	{
				try	{
								//	If	an	exception	occurs	the	method	calling	this	one	
								//	will	deal	with	it
								file.read();
				}	finally	{
								file.close();
				}
}

http://docs.oracle.com/javase/8/docs/api/java/io/FileInputStream.html

The	throw	Keyword
If	an	exception	has	occurred	in	a	method,	you	may	want	to	do	one	of	the	following:

1.	 Catch	the	exception.	

2.	 Do	some	partial	error	processing	(such	as	error	logging).

3.	 Throw	the	exception	to	the	calling	method	for	further	processing.

4.	 Just	make	the	user	aware	of	the	problem.

In	some	cases	you	may	want	to	catch	an	exception	and	handle	it	by	throwing	another
exception	(with	modified	error	information)	to	the	calling	method.

The	throw	statement	is	used	to	throw	Java	exception	objects.	The	object	that	a	program
throws	must	be	Throwable.	This	means	that	you	can	throw	only	subclasses	of	the
Throwable	class	and	that	all	Java	exceptions	are	its	subclasses:

public	class	CustomerList	{
				public	void	getAllCustomers()	throws	Exception	{
				//	some	other	code	can	go	here
				try	{
								file.read();	//	this	line	may	throw	an	exception
				}	catch	(IOException	ioe)	{
								//	Log	this	error	here,	and	rethrow	another	exception
								//	with	a	custom	error	description
								throw	new	Exception	("Customer	List	is	not	available"+
																																										ioe.getMessage());
								}
				}
				public	static	void	main(String[]	args){
								System.out.println("Customer	List");
								//	some	other	code	can	go	here
								try	{
												//	Since	the	getAllCustomers()	declares	an	exception,
												//	you	should	either	handle.	Rethrowing	is	also	an		
												//	option	unless	you	are	in	the	main()	method	already.
												getAllCustomers();
								}
								catch(Exception	e)	{
												System.out.println(e.getMessage());
								}
				}
}

Creating	Your	Own	Exceptions
You	can	also	create	exceptions	customized	to	fit	their	business	applications.	Just	create	a
class	that’s	a	subclass	of	one	of	the	classes	from	the	Throwable	hierarchy.

Let’s	say	you	are	in	business	of	selling	bikes	and	need	to	validate	a	customer’s	order.	You
can	create	a	new	class,	TooManyBikesException,	and	throw	it	if	someone	tries	to	order
more	bikes	than	can	fit	into	the	store’s	truck.	The	class	BikeOrder	shown	in	Listing	10-
7	highlights	this	idea.

Listing	10-7:	Creating	and	throwing	your	own	exceptions

public	class	TooManyBikesException	extends	Exception	{
				TooManyBikesException	(String	msgText){
								super(msgText);
				}
}
public	class	BikeOrder	{
				...
				public	static	void	validateOrder(String	bikeModel,
																						int	quantity)	throws	TooManyBikesException	{
								//	perform	some	data	validation,	and	if	the	entered
								//	the	quantity	or	model	is	invalid,	do	the	following:
								throw	new	TooManyBikesException("Cannot	ship"	+
										quantity	+	"bikes	of	the	model"	+	bikeModel	+);
				}
}
public	class	OrderWindow	extends	JFrame	{
				...
				public	void	actionPerformed(ActionEvent	e)	{
				//	the	user	clicked	on	the	"Validate	Order"	button
				try	{
								bikeOrder.validateOrder("Model-123",	50);
								//	the	next	line	will	be	skipped	in	case	of	exception
								txtResult.setText("Order	is	valid");
								}	catch(TooManyBikesException	e)	{
												txtResult.setText(e.getMessage());
								}
				}
}

TooManyBikesException	shown	in	Listing	10-8	has	a	unique	name,	and	the	text	includes
some	information	specific	to	the	shipping	business.	But	another	way	to	provide
application-specific	information	is	to	declare	one	or	more	additional	variables	in	the
custom	exception.	These	variables	can	store	multiple	pieces	of	data	that	describe	the

erroneous	situation.

Listing	10-8:	A	custom	exception	with	an	extra	property

public	class	TooManyBikesException	extends	Exception{
				//	Declare	an	application-specific	property
				ShippingErrorInfo	shippingErrorInfo;
				TooManyBikesException(String	msgText,
																									ShippingErrorInfo	shippingErrorInfo)	{
								super(msgText);
								this.shippingErrorInfo	=	shippingErrorInfo;
				}
}

Listing	10-8	illustrates	the	code	that	adds	an	application-specific	object,
ShippingErrorInfo,	to	the	custom	exception	class	TooManyBikesException.	An
application	can	prepare	the	object	describing	a	shipping	error	and	pass	it	as	an	argument	to
the	constructor	of	the	exception.	The	latter	stores	it	in	the	class	variable	shippingInfo,	and
whatever	method	catches	this	exception	can	extract	the	ShippingErrorInfo	object	and	act
accordingly.

In	distributed	Java	EE	applications,	an	exception	can	travel	through	several	tiers	(such	as
JMS,	EJB,	Servlet,	Swing	client),	and	not	only	does	having	a	custom	property	inside	the
exception	object	ensure	that	the	valuable	information	isn’t	lost,	but	each	tier	can	add	more
specifics	to	this	custom	property,	which	helps	in	tracing	the	error.

There	is	also	a	class	called	RemoteException,	with	a	field	called	detail,	that’s	used	for
reporting	communication	errors.	You	can	extend	this	class	to	make	remote	exceptions
more	descriptive.	This	subject	may	be	more	appropriate	for	lessons	25	through	35	about
the	server-side	technologies,	but	because	this	is	the	lesson	dedicated	to	exceptions,	I
mentioned	it	here.

Handling	programming	errors	is	a	must.	Unfortunately	I’ve	seen	how	some	of	the	Java
developers	were	quietly	ignoring	errors.	Literally,	they	would	write	an	empty	catch	clause.
This	is	the	worst	thing	that	could	be	done.	It’s	like	a	time	bomb	that	will	definitely	blow
the	program	up	one	day,	and	finding	such	bombs	is	usually	a	time-consuming	process.
Don’t	cut	corners;	exception	handling	should	be	taken	very	seriously.	For	more	details	on
Java	exceptions	refer	to	Oracle’s	tutorial	at	http://bit.ly/1nO3wIO.

http://bit.ly/1nO3wIO

Try	It
Create	a	Swing	application	for	placing	bike	orders.	It	has	to	have	a	drop-down	list
(JComboBox)	containing	several	bike	models,	JTextField	for	entering	quantity,	and
JButton	for	validating	the	order.

Make	up	several	combinations	of	bike	models	and	quantities	that	throw	an	exception.	Use
the	code	snippets	from	Listing	10-7	as	examples.	The	validation	should	start	when	the	user
clicks	the	button	to	validate	the	order.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson10.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project	called	Lesson10.

2.	 Learn	how	to	work	with	JComboBox	at	the	following	tutorial:	http://bit.ly/1qfPjbs	.

3.	 Process	events	and	revalidate	the	order	whenever	the	user	selects	a	new	bike	model	or
changes	the	quantity	of	the	order.

4.	 Throw	and	handle	TooManyBikesException	if	the	order	can’t	be	shipped.

TIP			Please	select	the	videos	for	Lesson	10	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://bit.ly/1qfPjbs
http://www.wrox.com/go/javaprog24hr2e

Lesson	11
Introduction	to	Collections
So	far	you’ve	been	introduced	to	only	one	way	of	storing	a	collection	of	objects—with
Java	arrays,	which	are	good	for	storage	but	fall	short	when	you	need	to	dynamically
add,	remove,	or	traverse	the	data.	There	are	a	number	of	classes	and	interfaces	in	the
package	java.util	that	are	quite	handy	when	multiple	instances	of	some	objects
(collections)	have	to	be	co-located	in	memory.	This	lesson	introduces	you	to	several	of
them.

You	can	find	more	collections	in	the	java.util.concurrent	package,	but	you	review	those	in
digging_deeper_into_concurrent_execution	after	you	become	familiar	with	the	concept	of
multithreading.	Together,	the	collection	classes	and	interfaces	located	in	java.util	and
java.util.concurrent	are	often	called		Java	Collection	Framework.

Collection	classes	implement	different	interfaces,	and	several	are	covered	in	this	lesson.
The	image	in	Figure	11-1	is	taken	from	Oracle	Java	documentation.	It	depicts	the	top-level
core	collection	interfaces.

Figure	11-1:	Figure	11-1.	Core	Collection	Interfaces	

Java	8	introduced	substantial	improvements	in	collection	data	manipulation,	and	I
highlight	these	changes	in	this	lesson	as	well	as	in	Lesson	20.		

http://bit.ly/1kV9EAh

Arrays	Revisited
Java	collection	classes	enable	the	storing	of	primitives	or	object	references	in	one	place	in
memory.	You	were	introduced	to	arrays	in	Chapter	5:	Arrays	let	you	store	and	access	a
group	of	variables	of	the	same	type.	Let’s	go	over	the	steps	you	follow	to	declare	and
populate	an	array.

First,	declare	a	variable	of	the	type	that	matches	the	types	of	the	objects	(or	primitives)
that	will	be	stored	in	the	array,	and	reserve	enough	memory	to	accommodate	all	objects.
For	example,	to	reserve	memory	enough	for	storing	10	instances	of	class	Customer	you
can	declare	a	variable	customers,	as	follows:

Customer	customers[]	=	new	Customers[10];

At	this	point	you’ve	allocated	enough	space	for	the	storage	of	10	memory	references,	not
for	the	actual	objects.	Next,	create	instances	of	the	objects	and	store	their	references	in	the
array.	

Customer[]	customers	=	new	Customer[10];
customers[0]	=	new	Customer("David","Lee");
customers[1]	=	new	Customer("Ringo","Starr");
					...
customers[9]	=	new	Customer("Lucy","Mann");

Now	give	a	15	percent	discount	to	all	customers	who	spent	more	than	$500	in	the	online
store:

for	(Customer	c:	customers){
		if	(c.getTotalCharges()	>	500){
						c.setDiscount(15);
		}
}

Note	the	use	of	the	for-each	loop	here.	It	safely	iterates	through	this	array	without	trying	to
access	elements	beyond	its	boundaries.	If	a	programmer	forgot	to	check	the	size	of	the
array	(remember,	if	an	array	has	n	elements	then	the	last	element’s	index	is	n	-	1)	and	tried
to	access,	say,	the	eleventh	element	like	customers[10].setDiscount(15),	Java	would	throw
a	runtime	ArrayIndexOutOfBoundsException.

Collection	Interfaces	From	java.util
A	typical	collection	class	implements	several	interfaces,	which	represent	a	well-designed
hierarchy.	For	example,	ArrayList	implements	the	List	interface,	which	extends
Collection.	For	allowing	a	program	to	iterate	over	the	collection	without	worrying	about
specific	implementation	of	a	particular	collection.	The	interface	Collection	extends
Iterable,	so	the	application	code	can	request	a	reference	to	the	Iterator	object	and	simply
ask	for	the	next	element	in	the	collection.	You’ll	see	an	example	of	using	Iterator	later	in
this	chapter.					

You	can	use	a	for-each	loop	with	classes	that	implement	Iterable,	and	this	would	be
external	(a.k.a.	imperative)	iteration	of	a	collection.	But	Java	8	has	introduced	a	new	and
preferable	way	of	iterating	collections	with	Iterable.forEach()	method,	which	would	be	an
internal	iteration.	I’ll	explain	why	internal	iteration	is	better	in	Lesson	13.

The	List	interface	is	used	by	the	ordered	collections	like		ArrayList	and	LinkedList.	It
allows	duplicate	elements.	For	example,	the	following	code	snippet	will	create	two
elements	in	ArrayList:

myArrayList.add("Mary");
myArrayList.add("Mary");

The	Set	interface	is	implemented	by	collections	that	don’t	allow	duplicate	elements—for
example,	HashSet	and	SortedSet.	For	example,	the	following	code	snippet	creates	one
element	in	HashSet.	The	second	line	finds	out	that	Mary	already	exists,	doesn’t	change	it,
and	returns	false:

myHashSet.add("Mary");
myHashSet.add("Mary");	//	Returns	false

The	Map	interface	is	for	storing	key/value	pairs.	A	map	can’t	contain	duplicate	keys,	and
each	key	can	be	mapped	to	only	one	value	(object).	You	see	some	relevant	code	examples
later	in	this	lesson.

The	Queue	interface	is	mainly	for	collections	that	require	first-in-first-out	(FIFO)
operation	(so-called	priority	queues	are	the	exception).	Every	new	element	is	added	to	the
tail	of	the	queue	and	the	elements	are	retrieved	from	the	head	of	the	queue.	You	can
restrict	the	size	of	the	queue	if	need	be.	LinkedList	is	one	of	the	classes	that	implement	the
Queue	interface.

Now	let’s	look	at	some	of	the	classes	that	implement	these	interfaces.

Dynamic	Arrays	with	ArrayList
Arrays	offer	the	fastest	access	to	the	collection	of	data,	but	you	have	to	know	in	advance
the	number	of	elements	to	be	stored	there.	Luckily	Java	has	classes	that	don’t	have	this
restriction,	and	you	can	add	more	elements	to	a	collection	during	the	run	time	if	needed.
This	lesson	shows	you	several	collection	classes	starting	from		ArrayList	.

Internally	this	collection	uses	an	array	for	storage,	but	when	you	keep	adding	elements	to
	ArrayList,	it	increases	(by	small	increments)	the	size	of	the	underlying	array.
Correspondingly,	as	elements	are	deleted,	this	collection	shrinks	in	size.	You	can	store
duplicate	objects	in	ArrayList.

ArrayList	implements	the	List	interface	and	can	store	only	objects;	primitives	are	not
allowed.	Having	said	this,	keep	in	mind	that	Java	supports	autoboxing	(see	Chapter	3),	and
if	you	try	to	add	a	primitive	to	a	collection,	it	is	automatically	converted	into	the
corresponding	wrapper	object.	You	have	to	pay	a	price	for	this	convenience;	ArrayList	is	a
little	slower	than	the	array	as	it	needs	to	do	internal	copying	from	one	array	to	another	to
change	the	collection’s	size.

To	create	and	populate	an	ArrayList	object	you	should	first	instantiate	it,	and	then	you	add
instances	of	other	objects	to	the	ArrayList	by	calling	the	method	add(),	as	in	Listing	11-1.

Listing	11-1:	Populating	ArrayList

ArrayList	customers	=	new	ArrayList();
Customer	customer1	=	new	Customer("David","Lee");
customers.add(customer1);
Customer	customer2	=	new	Customer("Ringo","Starr");
customers.add(customer2);

The	method	add()	doesn’t	copy	the	instance	of	the	object	into	the	customers
collection,	it	just	stores	the	memory	address	of	the	object	being	added.	The	element
numbering	in	ArrayList	starts	with	0.	If	you	know	that	an	ArrayList	will	store,	say,	20
objects,	instantiate	it	with	the	constructor	that	allocates	the	right	amount	of	memory
on	creation:

ArrayList	customers	=	new	ArrayList(20);

You	can	still	add	more	than	20	elements,	but	JVM	allocates	additional	memory	as	needed.
The	method	get()	is	used	to	extract	a	particular	element	from	ArrayList.	Because
ArrayList	is	generic	storage	for	any	type	of	object,	the	method	get()	returns	elements	as
Object	data	types.	It’s	the	responsibility	of	the	programmer	to	provide	proper	casting,	such
as	the	following:

Customer	theBestCustomer	=		(Customer)	customers.get(1);

To	illustrate	a	possible	runtime	error	that	will	occur	if	the	casting	was	not	properly	done,

add	an	object	of	another	type	to	your	customers	collection	from	Listing	11-1:

Order	order	=	new	Order(123,	500,	"IBM");
customers.add(order);

The	Java	compiler	does	not	complain	because	ArrayList	can	store	any	objects.	At	this
point	you	have	the	elements	in	customers—two	customers	and	one	order.	The	following
code	throws	the	IllegalCastException	on	the	third	iteration	of	the	loop:

int	totalElem	=	customers.size();	//	number	of	elements
for	(int	i	=	0;	i	<	totalElem;	i++){
		Customer	currentCustomer	=	(Customer)	customers.get(i);
		currentCustomer.doSomething();
}

Listing	11-2	shows	how	the	operator	instanceof	helps	you	avoid	this	exception.	But	before
using	instanceof,	see	if	you	can	come	up	with	a	more	elegant	solution,	as	you	learned	to
do	in	the	section	“Polymorphism”	in	Chapter	7.	In	Lesson	12	you’ll	learn	how	to	use
generics,	which	allow	to	remove	the	need	of	using	instanceof	and	in	particular	control
during	the	compilation	time	which	objects	can	be	added	to	a	collection.

Listing	11-2:	ArrayList	and	instanceof

ArrayList	customers	=	new	ArrayList(3);
//	The	code	to	populate	customers	with	instances	of	
//	Customer	and	Order	objects	is	omitted	for	brevity
int	totalElem	=	customers.size();
//	Iterate	through	the	list	customers	and	do	something	with	each
//	element	of	this	collection
for	(int	i=0;	i<totalElem;i++){
		Object	currentElement	=	customers.get(i);
		if	(currentElement	instanceof	Customer){
				Customer	currentCustomer=	(Customer)customers.get(i);
				currentCustomer.doSomething();
		}
		else	if	(currentElement	instanceof	Order){
				Order	currentOrder	=	(Order)	customers.get(i);
				currentOrder.doSomething();
		}
}

In	the	section	Programming	to	Interfaces	I’ll	show	you	what	has	to	be	changed	in	the
declaration	of	the	variable	customers.	

ArrayList	and	Concurrent	Access
In	Lesson	17	you	learn	about	concurrent	access	to	the	data	from	multiple	threads.	If
the	data	is	stored	in	an	ArrayList,	you	may	run	into	concurrency	issues	(race
condition).	To	prevent	this	from	happening,	you	can	turn	on	synchronization	by
invoking	the	method	Collections.synchronizedList()	on	an	ArrayList	object.	

Programming	to	Interfaces
In	this	section	code	samples	start	with	declaring	a	variable	of	type	ArrayList;	for
example:

ArrayList	customers	=	new	ArrayList(3);

While	this	code	is	correct,		there	a	better	way	of	declaring	the	variable	customers:

List	customers	=	new	ArrayList(3);

You	can	read	the	first	example	as	follows:	“I	want	to	declare	a	variable	customers	that
will	have	all	access	to	all	API	offered	by	the	class	ArrayList.”	The	second	version
means	the	following:	“I	want	to	declare	a	variable	customers	that	has	a	behavior
declared	in	the	List	interface”.

The	first	example	declares	a	variable	of	a	specific	implementation—		ArrayList—of
the	List	interface.

ArrayList	implements	several	interfaces	besides	List,	which	means	that	it	has	more
methods	that	the	List	defines.	But	if	you	read	the	documentation	on	the	List	interface,
you’ll	see	that	among	others	it	includes	the	methods	as	add(),	get(),	and	size(),	which
are	the	only	ones	used	with	our	collection	customers.	If	this	is	all	we	need,	declaring	a
variable	customers	of	type	List	gives	us	more	flexibility.	If	later	we	decide	to	switch
to	a	different	implementation	of	the	List	(e.g.,	LinkedList	instead	of	ArrayList)	we
won’t	need	to	change	the	type	of	the	variable	customers.

You	may	say	that	changing	a	variable	declaration	from	ArrayList	to	LinkedList	it’s
not	a	big	deal—it’s	still	the	same	line	of	code.	But	it	may	be	a	bigger	deal	if,	say,	your
program	needs	to	pass	the	object	referred	by	customers	to	another	object’s	method
that	also	was	declared	with	the	argument	of	type	ArrayList.	Now	we	need	to	make
changes	in	two	places.	In	large	projects	such	a	refactoring	may	become	a	time-
consuming	process.

If	you	just	need	a	behavior	defined	in	a	particular	interface,	declare	the	variable	of
this	interface	type	rather	than	of	a	concrete	implementation	of	this	interface.

http://docs.oracle.com/javase/8/docs/api/java/util/List.html

Classes	Hashtable	and	Hashmap
The	classes	Hashtable	and	HashMap	implement	the	Map	interface	and	stores	key/value
pairs.	These	classes	offer	a	convenient	way	of	storing	and	accessing	the	elements	of	a
collection	by	key.	You	can	assign	a	key	to	an	instance	of	some	Java	object	and	use	it	as	a
reference.	Let’s	say	you	need	to	store	instances	of	the	classes	Customer,	Order,	and
Portfolio	in	the	same	collection.	The	code	snippet	from	Listing	11-3	creates	these
instances	first,	and	then	puts	them	in	the	collection	under	some	identifiers	(keys).

Listing	11-3:	Hashtable	for	key/value	pairs

Customer	customer	=	new	Customer("David",	"Lee");
Order	order	=	new	Order(123,	500,	"IBM");
Portfolio	portfolio	=	new	Portfolio(123);
Map	data	=	new	Hashtable();		//	programming	to	interfaces
data.put("Customer",	customer);
data.put("Order",order);
data.put("Portfolio",	portfolio);

The	values	in	double	quotes	represent	keys	by	which	the	objects	could	be	retrieved.	In	this
example	the	keys	are	represented	by	the	Java	class	String,	but	you	can	use	any	objects	as
keys.	The	keys	are	selected	based	on	the	application	needs;	for	example,	the	code	in
Listing	11-3	could	be	written	in	some	order	management	application.

If	you	have	an	idea	of	how	many	elements	you	are	planning	to	store	in	a	Hashtable,	use
the	constructor	with	the	capacity	argument:

Hashtable	data	=	new	Hashtable(10);	//	10-element	capacity

The	method	get()	provides	access	to	these	objects	via	the	key.	You	need	to	either	perform
the	proper	casting	as	shown	in	the	following	code	or	use	generics	(explained	in
Chapter	12):

Order	myOrder	=	(Order)	data.get("Order");

The	method	size()	returns	the	number	of	elements	in	the	Hashtable:

int	totalElem	=	data.size();

Methods	containsKey()	and	containsValue()	help	you	to	find	out	if	the	collection	contains
a	specific	key	or	value.	

The	class	HashMap	is	similar	to	Hashtable,	but	it	allows	null	as	a	key	or	value	and	is	not
synchronized	(explained	in	Lesson	19).	If	you	are	writing	code	that	doesn’t	need	to	access
the	same	element	concurrently	without	using	multithreading,	use	HashMap	because	it
performs	faster	than	Hashtable.	If	you	do	need	concurrent	access,	the	other	alternative	to
Hashtable	is	ConcurrentHashMap.

To	speed	up	the	table	lookup,	both	HashMap	and	Hashtable	index	the	data	by	applying	a
hash	function	that	(based	on	the	contents	of	the	object)	generates	a	hash	code,	one	number
that	represents	a	large	object.	There’s	a	slight	chance	that	two	different	objects	will
generate	the	same	hash	code,	but	the	same	object	always	produces	the	same	hash	code.
You	can	read	more	about	hash	functions	in	Wikipedia
at	http://en.wikipedia.org/wiki/Hash_function.

The	java.util.Collections	class
The	class	java.util.Collections	consists	of	useful	static	methods	that	work	with
collection	classes;	for	example,	sort(),	reverse(),	swap(),	and	more.	

Class	Properties
Pretty	often	a	desktop	application	offers	you	a	way	to	specify	and	store	user	preferences
such	as	fonts	and	colors.	This	is	a	use	case	in	which	storage	of	key/value	pairs	is	exactly
what’s	needed.	You	can	store	such	preferences	locally	or	on	remote	servers.	In	Chapter	14
you	find	out	how	to	work	with	files	and	other	I/O	streams,	but	from	a	data	structure
perspective	you’ll	be	dealing	with	a	collection	of	key/value	pairs,	such	as	color=red,
font=verdana.

Windows-based	applications	often	store	some	configurable	parameters	in	the	.ini	files.	In
general,	Java	applications	store	their	properties	in	plain	text	files,	XML	files,	database
tables,	and	others.

In	this	section	you	see	some	code	fragments	illustrating	how	the	Java	class	Properties,
which	extends	Hashtable,	can	be	used	to	manipulate	with	properties	using	key/value	pairs.
The	class	Properties	has	one	restriction	that	Hashtable	does	not.	For	example,	if	you’d
need	to	write	a	program	that	sends	e-mails,	you	can	store	the	URL	of	the	mail	server	and
from/to	addresses	from	the	mailman.properties	file,	which	has	the	following	contents:

SmtpServer=mail.xyz.com
to=abc@xyz.com
cc=mary@xyz.com
from=yakov@xyz.com

To	load	this	file	into	the	Properties	object,	just	define	an	input	I/O	stream	on	this	file	(see
Listing	11-4.	After	the	file	has	been	loaded	into	the	Properties	object,	each	individual
property	can	be	obtained	with	the	method	getProperty().

http://en.wikipedia.org/wiki/Hash_function

Listing	11-4:	Reading	file	mailman.properties	into	the	Properties	object

Properties	properties=new	Properties();
FileInputStream	in	=null;
try{
		in	=	new	FileInputStream	("mailman.properties");
		properties.load(in);
}catch(Exception	e){...}
finally{...	in.close();...}
String	from	=	properties.getPropery("from");
String	mailServer=properties.getProperty("SmtpServer");
...

Java	does	not	have	global	variables,	but	as	a	workaround	you	can	make	these	properties
available	to	any	object	in	your	application	by	turning	them	into	system	properties
available	from	any	class	in	your	application:

System.setProperties(properties);

Keep	in	mind	that	the	preceding	line	also	replaces	the	existing	system	properties,	which
you	may	or	may	not	want	to	do.	Now	you	can	get	these	values	from	any	other	class	in
your	application;	for	example:

String	mailServer	=	System.getProperty("SmtpServer");

If	you	decide	to	store	properties	in	XML	files,	the	class	Properties	offers	you	the	method
loadFromXML()	to	read	properties	and	the	method	storeToXML()	to	store	them	in	a
simple	XML	format.

You	see	a	practical	example	of	using	the	Properties	class	in	Lesson	29	while	learning
about	Java	Naming	and	Directory	Interface	(JNDI).

Classes	Enumeration	and	Iterator
In	general,	enumerations	are	sets	of	items	that	are	related	to	each	other.	For	example,
shipment	options	or	ice	cream	flavors—such	enumerations	are	supported	by	the	Java
keyword	enum	(see	Chapter	17).	But	because	we	are	talking	about	collections,	the
meaning	of	the	term	enumeration	is	somewhat	different.	If	a	collection	object	implements
the	interface	Enumeration,	you	can	traverse	its	elements	sequentially,	without	even
knowing	the	total	number.	You	just	need	to	obtain	the	enumeration	of	all	elements	and	use
the	methods	hasMoreElements()	and	nextElement().	For	example,	to	process	all	elements
of	ArrayListcustomers	you	can	do	the	following:

Enumeration	enumCustomers	=	Collections.enumeration(customers);
while(enumCustomer.hasMoreElements()){	
		Customer	currentCustomer	=	(Customer)enumCustomer.nextElement());	
		currentCustomer.doSomething();	
}

You	can	also	obtain	the	enumeration	of	a	Hashtable’s	keys	or	elements.	For	example:

Hashtable	customerData	=	new	Hashtable();
//	Get	the	keys
Enumeration	enumKeys	=	customerData.keys();
while(enumKeys.hasMoreElements()){
		//	do	some	keys	processing
}
//	Get	the	elements
Enumeration	enumElements	=	customerData.elements();
//	do	some	customer	objects	processing

The		Iterator	interface	is	Enumeration	on	steroids.	It	also	offers	a	standard	way	to	process
elements	of	a	collection	sequentially.	The	main	difference	between	the	two	is	that
Enumeration	is	a	read-only	means	of	traversing	a	collection,	whereas	Iterator	has	a
method	called	remove()	that	enables	you	to	delete	unwanted	elements	of	the	collection.
Enumeration	is	considered	a	legacy	interface,	and	you	should	use	Iterator.	For	example,
you	can	iterate	through	the	ArrayList	customers	as	follows:

Iterator	iCust	=	customers.iterator();
while	(iCust.hasNext()){
			System.out.println(iCust.next())
}

Class	LinkedList
Java	collection	classes	differ	in	how	you	can	retrieve	and	insert	objects.	If	you	need	to
work	with	a	sequential	list	of	objects	and	often	insert	(remove)	the	object	into	(from)	the
list,	the	data	structure	called	linked	list	can	fit	the	bill.

Linked	lists	store	elements	so	that	each	contains	a	reference	to	the	next	one.	Doubly	linked
lists	also	contain	a	reference	to	both	the	next	and	the	previous	elements.	Java	includes	the
the	doubly	linked	class	LinkedList,	which	enable	you	to	create	the	data	structures	known
as	queues	(first-in-first-out	or	FIFO)	and	stacks	(last-in-first-out	or	LIFO).

Insertion	of	a	new	object	inside	the	list	comes	down	to	a	simple	update	of	two	references:
The	previous	element	of	the	list	has	to	be	pointed	to	the	newly	inserted	object,	which	has
to	include	a	reference	to	the	next	element,	if	any.	Compare	this	to	the	complexity	of	lots	of
memory	allocations	and	objects	moving	in	memory	to	increase	the	size	of	an	ArrayList,
and	you’ll	appreciate	the	value	that	linked	lists	bring	to	the	table.	On	the	other	hand,
collections	that	use	arrays	for	the	underlying	data	storage	offer	random	access	to	the	data
elements,	whereas	linked	lists	can	be	processed	only	sequentially.

You	can	navigate	through	the	list	using	the	class	ListIterator,	which	supports	going
through	the	list	in	both	directions	via	its	methods	next()	and	previous().	Listing	11-5
shows	you	an	example,	in	which	a	standby	passenger	list	is	created	at	the	boarding	gate	of
some	airline	company.

Listing	11-5:	LinkedList	example

import	java.util.LinkedList;
import	java.util.ListIterator;
public	class	TestLinkedList	{
	public	static	void	main(String[]	args)	{	
			LinkedList	passengerList	=	new	LinkedList();	
			passengerList.add("Alex	Smith");	
			passengerList.add("Mary	Lou");	
			passengerList.add("Sim	Monk");
			ListIterator	iterator	=	passengerList.listIterator();
			System.out.println(iterator.next());	
			System.out.println(iterator.next());
			System.out.println(iterator.next());
		}
}

The	code	in	Listing	11-5	iterates	and	prints	all	the	objects	from	the	list	using
ListIterator	interface,	which	allows	a	program	to	traverse	the	list	in	both	directions.	

You	might	be	wondering	how	the	println()	method	knows	how	to	print	an	object	returned
by	the	iterator.	It	tries	to	find	the	method	toString()	defined	on	the	object	and	call	it.	In	our
example	the	object	is	a	string	itself,	but	in	a	real-world	situation	you	might	need	to	print

objects,	and	defining	the	toString()	method	is	the	right	way	to	do	so.

If	you	use	add()	or	remove()	while	iterating	through	the	list,	the	new	element	is	either
inserted	or	removed	at	the	iterator’s	current	position.

Class	BitSet
The	class	BitSet	stores	a	sequence	of	bits.	It’s	a	pretty	efficient	class	when	you	need	to
pass	to	a	program	a	number	of	flags	that	indicate	certain	conditions.	Think	of	a	financial
trading	application	that	must	be	extremely	fast.	One	way	to	improve	the	performance	is	to
represent	the	maximum	amount	of	information	in	a	minimal	number	of	bytes.	

Another	use	case	for	BitSet	are	programs	that	send	signals	with	information	about	the
state	of	a	certain	device	or	as	sensor.	For	example,	some	vending	machines	have	smart
chips	that	can	automatically	dial	their	owner’s	phone	number	and	send	a	signal	containing
status	information.	Sending	a	set	of	flags	(bits	that	are	set	to	1	or	0)	instead	of	text	or
numbers	is	the	most	economical	way	to	do	this.

The	BitSet	class	does	not	have	a	size	limit	and	can	grow	as	needed.	Depending	on	which
bit	is	set	(for	example,	has	the	value	of	1)	the	class	could	indicate	the	following:

Bit	0:	The	coin	box	is	empty.

Bit	1:	The	coin	box	is	half	full.

Bit	2:	The	coin	box	is	full.

Bit	3:	The	coin	box	has	been	removed.

Bit	4:	The	Coca-Cola	row	is	empty.

One	instance	of	a	BitSet	object	carries	multiple	parameters	describing	its	status.	The
program	that	receives	this	signal	could	print	a	nice	report,	and	the	owner	of	this	remote
machine	could	decide	if	he	or	she	needs	to	send	a	technician	to	look	at	the	machine.

The	Java	class	BitSet	is	nothing	more	than	a	collection	of	bits.	The	following	code
prepares	a	signal	indicating	that	the	coin	box	is	full	and	there	are	no	Coca-Cola	bottles
left:

import	java.util.BitSet;
class	VendingMachineSender	{
			public	static	void	main(String	args[]){
							BitSet	report	=	new	BitSet();
							report.set(2);			//	box	is	full
							report.set(4);			//	no	Coca-Cola
			}
}

When	the	phone	call	comes	in,	the	callback	method	phoneRinging()	is	invoked	and	the
signal	can	be	decoded	like	this:

import	java.util.BitSet;
class	VendingMachineListener	{
			public	void	phoneRinging(BitSet	signal)
						int	size	=	signal.size();
						for	(int	i=0;i<size;i++){
										if	(signal.get(i)){

												switch	(i){
															case	0:
																	System.out.println("Box	is	empty");
																	break;
															case	1:
																	System.out.println("Box	is	half	full");
																	break;
															case	2:
																	System.out.println("Box	is	full");
																	break;
															//	more	cases	come	here
												}
									}
						}
			}
}

Internet	of	Things
The	Internet	Of	Things	(IoT)	is	a	buzzword	that’s	used	to	describe	Internet
applications	that	deal	with	small,	sensor-like	devices,	which	have	a	limited	amount	of
memory	and	processing	power.	Consider	using	the	class	BitSet	if	you	need	to
program	sensors.	

Choosing	the	Right	Collection
Java	has	dozens	of	collection	classes	and	interfaces.	In	this	lesson	I’ve	shown	just	a	few	of
them.	But	which	collection	is	the	right	one	for	your	needs?	Below	are	some	of	the
considerations	that	may	help	you	to	choose	one.

If	you	need	to	access	data	by	index,	consider	using	ArrayList.	

If	you	need	to	often	insert	or	remove	data	in/from	a	collection,	a	LinkedList	should	be
a	good	choice

If	you	need	a	collection	that	doesn’t	allow	duplicate	elements,	use	one	of	the
collections	that	implements	Set	interface.	For	fast	access	use		HashSet.	For	sorted	set
use	TreeSet.

For	storing	key/value	pairs	use	a	collection	that	implements	the	Map
interface;	e.g.	HashMap	or	HashTable.

If	you	need	a	collection	for	a	fast	search	that	remains	fast	regardless	of	the	size	of	the
data	set	use	HashSet.

These	recommendations	are	applicable	for	cases	when	there	is	no	need	to	access	data
concurrently	by	multiple	threads	(see	Lesson	17).	Java	has	many	concurrent
collections	located	in	the	package	java.util.concurrent,	and	these	collections	have	to	be
used	for	concurrent	data	access.	Oracle’s	Collections	tutorial	and	Java	API	on	collection
classes	is	a	good	resource	for	finding	the	right	collection	for	your	application.	

The	Big	O	Notation
In	computing	there	is	something	called	Big	O	notation,	which	describes	how	the	time
to	do	a	certain	thing	grows	when	the	size	of	the	input	data	grows.	The	Big	O	notation
is	represented	as	O(n).	The	higher	value	of	n	represents	greater	dependency	of	the
task	from	the	data	size.	Hence	O(1)	means	that	the	speed	of	a	task	doesn’t	depend	on
the	collection	size.	The	article	on	Performance	of	Java	Collections	includes	Big	O
notations	for	various	Java	collections	and	operations.	

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch11.xhtml#introduction_to_multi-threading
http://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html
http://docs.oracle.com/javase/tutorial/collections/
http://en.wikipedia.org/wiki/Big_O_notation
http://infotechgems.blogspot.com/2011/11/java-collections-performance-time.html

Try	It
Modify	the	LinkedList	example	from	Listing	11-5	to	add	an	arbitrary	object,	say,	the	VIP
customer	after	the	very	first	element	of	the	list.	You	must	do	this	while	iterating	through
the	list.	When	the	program	is	ready	it	should	print	the	following:

Alex	Smith
VIP	Customer
Mary	Lou
Sim	Monk

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson11.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project	called	Lesson11.

2.	 After	the	first	call	to	iterator.next()	add	the	following	line:	iterator.add(“VIP
Customer”);

3.	 Run	the	program	and	observe	that	it	doesn’t	print	“VIP	Customer.”	This	happens
because	the	iterator	is	already	positioned	after	the	newly	inserted	object.

4.	 Add	the	line	iterator.previous()	right	after	the	“VIP	Customer”	to	move	the	iterator	one
element	back.

5.	 Add	one	more	print	statement	(otherwise	the	program	won’t	reach	Sim	Monk).
Compile	and	run	the	program.	It	prints	all	four	elements	as	requested.

6.	 Now	break	the	code	by	changing	the	line	that	you	added	in	Step	2	to
passengerList.add(“VIP	Customer”);.	

7.	 Run	the	program.	It	prints	the	first	element	of	the	linked	list	and	then	produces	a
runtime	exception:

	Alex	Smith
	Exception	in	thread	"main"	
						java.util.ConcurrentModificationException
						at	java.util.LinkedList$ListItr.checkForComodification(
																LinkedList.java:761)
						at	java.util.LinkedList$ListItr.next(LinkedList.java:696)
						at	TestLinkedList.main(TestLinkedList.java:20)

The	reason	for	this	concurrent	modification	exception	is	that	one	thread	of	execution	was

http://www.wrox.com/go/javaprog24hr2e

iterating	through	a	collection,	and	at	the	same	time	another	thread	was	trying	to	modify
the	underlying	collection	in	an	unsafe	way.	The	concept	of	threads	is	introduced	in
Chapter	17.

TIP			Please	select	the	videos	for	Lesson	11	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	12
Introduction	to	Generics
In	the	previous	lesson	you	saw	an	example	of	a	collection	that	stores	objects	of	different
types	(see	Listing	11-2).	During	the	run	time,	that	program	would	test	the	actual	type	of
each	object	and	cast	it	to	an	appropriate	type—Customer	or	Order.	If	some	code	adds	an
element	of	another	(unexpected)	data	type,	this	will	result	in	a	casting	error,
ClassCastException.	Instead	of	leaving	it	until	run	time,	it	would	be	nice	if	during	the
compilation	the	compiler	would	prevent	using	unexpected	types	with	collection,	objects,
or	even	method	arguments	and	return	types.	

Java	supports	generics,	which	enable	you	to	use	parameterized	data	types—you	can
declare	an	object,	collection,	or	method	without	specifying	a	concrete	data	type,	shifting
the	definition	of	concrete	types	to	the	code	that	will	use	these	objects,	collections,	or
methods.	In	other	words,	a	generic	type	is	one	that	can	work	with	parameterized	data
types.	

Parameterized	Classes
Not	only	Java	methods	can	accept	parameters	(also	known	as	arguments),	but	classes
can	have	them	as	well.	I’ll	show	you	how	to	do	it	in	the	section	on	custom
parameterized	classes.

By	using	generic	notation,	you	get	help	from	Java	compiler,	which	does	not	allow	you	to
use	objects	of	the	“wrong”	types	that	don’t	match	the	declaration.	In	other	words,	you	can
catch	improper	data	types	earlier,	during	the	compilation	phase.	This	concept	is	easier	to
explain	by	examples,	and	so	we’ll	get	right	into	it.

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch12.xhtml#custom_parameterized_classes

Generics	with	Classes
Consider	the	ArrayList	from	Listing	11-2,	which	is	a	kitchen	sink–like	storage	that	can
hold	pretty	much	any	object.	But	if	you	add	the	parameterized	type	Customer	in	angle
brackets	(ArrayList<Customer>)	to	the	declaration	of	the	customers	collection	(see	Listing
12-1),	any	attempt	to	place	an	Order	object	there	generates	the	following	compiler	error:

The	method	add(Customer)	in	the	type	ArrayList<Customer>	is	not	
applicable	for	the	arguments	(Order).

Think	of	it	this	way:	ArrayList	can	be	used	to	store	any	objects,	and	using	generics
enables	you	to	put	a	constraint	on	the	types	of	objects	allowed	in	a	specific	instance	of
ArrayList.	This	is	an	example	of	a	parameterized	class,	which	is	just	one	use	for	generics.

Listing	12-1:	Using	generics	in	the	collection

import	java.util.List;
import	java.util.ArrayList;	
public	class	TestGenericCollection	{
							public	static	void	main(String[]	args)	{
											List<Customer>	customers	=	new	ArrayList<>();
											Customer	customer1	=	new	Customer("David","Lee");
											customers.add(customer1);
											Customer	customer2	=	new	Customer("Ringo","Starr");
											customers.add(customer2);
											
											Order	order	=	new	Order();
											customers.add(order);	//	Compiler	error
							}
}

Getting	an	error	during	compilation	is	better	than	getting	runtime	cast	exceptions.	Note	the
empty	angle	brackets	in	the	preceding	example.	Those	are	called	the	diamond	operator—
you	don’t	need	to	repeat	<Customer>	on	the	right	because	this	type	has	been	specified
already	on	the	left.	As	a	refresher,	I’ve	been	using	the	List	interface	to	declare	the	variable
customers	as	explained	in	the	previous	lesson	in	the	section	“Programming	to	Interfaces.”	

What	makes	the	ArrayList	class	capable	of	rejecting	the	unwanted	data	types?	Open	the
source	code	of	the	ArrayList	itself	(pressing	F3	in	Eclipse	shows	the	source	code	of	any
class	or	interface,	if	available).	It	starts	as	follows:

public	class	ArrayList<E>	extends	AbstractList<E>
				implements	List<E>,	RandomAccess,	Cloneable,	Serializable

This	magic	<E>	after	the	class	name	tells	the	Java	compiler	that	this	class	can	use	some
types	of	elements,	but	which	ones	remains	unknown	until	a	concrete	instance	of	ArrayList

is	created.	In	Listing	12-1,	the	type	parameter	<Customer>	replaces	<E>	during
compilation,	and	the	compiler	ensures	that	the	code	stores	only	instances	of
Customer	objects	in	the	collection	customers	.

Type	Erasure
I’d	like	to	stress	that	this	<E>	notation	is	used	only	during	the	declaration	of	the	type.
The	code	in	Listing	12-1	does	not	include	<E>.	The	compiler
replaces	<E>	with	Customer	and	erases	the	parameterized	data	type	in	the	byte	code.
This	process	is	known	as	type	erasure;	it’s	primarily	done	for	compatibility	with	code
written	in	older	versions	of	Java	that	didn’t	have	generics.	The	generated	byte	code	is
the	same	with	parameterized	and	with	raw	data	types.

Now	you	can	simplify	the	code	from	Listing	11-2	by	removing	casting	(see	Listing	12-2).
Why?	Because	with	generics,	when	the	compiler	sees	a	specific	type,	it	automatically
generates	the	bytecode,	which	performs	casting	internally!	That’s	why	you	don’t	even
need	to	cast	the	data	returned	by	the	method	get(i)	from	Object	to	Customer	any	longer.
Besides,	you’re	guaranteed	that	the	collection	customers	will	have	only	Customer
instances.	Java	compiler	has	the	ability	to	look	at	the	method	invocation	and	properly
guess	the	type	of	the	argument.	It’s	called	type	inference.	It’s	used	not	only	with	generics,
but	with	lambda	expressions	as	well,	which	will	be	covered	in	Lesson	13.

Listing	12-2:	Iterating	through	customers	without	casting

List<Customer>	customers	=	new	ArrayList<>();
//	The	code	to	populate	customers	is	omitted	for	brevity
//	Iterate	through	the	list	customers	and	do	something	with	each
//	element	of	this	collection.	No	casting	required.
for	(Customer	customer:	customers){
				customer.doSomething();
}

Raw	Types
Using	the	parameterized	ArrayList	in	this	example	is	not	a	must.	You	can	still	write
the	following:

List	customers	=	new	ArrayList();

The	compiler	gives	you	a	warning	that	ArrayList	is	a	raw	type	and	should	be
parameterized.	This	basically	means	that	compiler	won’t	help	you	if	you	add	to	this
collection	an	object	of	a	type	that	might	blow	up	in	some	other	place	in	the	program.
While	using	raw	types	is	not	an	error,	it	should	be	avoided.

http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html

Declaring	Generics
If	you’ll	be	creating	your	own	class	for	storing	objects,	you	can	use	any	letter(s)	in	angle
brackets	to	declare	that	your	class	will	use	parameterized	types.	You	can	use	any	letters	to
represent	parameterized	types,	but	traditionally	developers	use	<E>	for	element,		<T>	for
type,	<K>	for	keys,	<V>	for	value,	and	so	on.	The	letter	is	replaced	by	a	concrete	type
during	concrete	variable	declaration.	Open	the	source	code	of	the	Java	class	Hashtable,
and	you	see	<K,V>,	which	stands	for	key	and	value:

public	class	Hashtable<K,V>	extends	Dictionary<K,V>
				implements	Map<K,V>,	Cloneable,	Serializable	

Again,	what	types	are	used	for	storing	keys	and	values	is	decided	when	the	Hashtable	is
being	declared.	You	can	use	a	parameterized	type	for	declaring	variables	wherever	you
can	use	regular	data	types.	Listing	12-3	shows	a	fragment	from	the	source	code	of	the
interface	java.util.List.	This	interface	declaration	uses	<E>	as	a	data	type.

Listing	12-3:	Fragment	from	java.util.List	interface

package	java.util;
public	interface	List<E>	extends	Collection<E>	{
				Iterator<E>	iterator();
				<T>	T[]	toArray(T[]	a);
				boolean	add(E	e);
				boolean	containsAll(Collection<?>	c);
				boolean	addAll(Collection<?	extends	E>	c);
				boolean	addAll(int	index,	Collection<?	extends	E>	c);
				boolean	removeAll(Collection<?>	c);
				E	set(int	index,	E	element);
				void	add(int	index,	E	element);
				ListIterator<E>	listIterator();
				ListIterator<E>	listIterator(int	index);
				List<E>	subList(int	fromIndex,	int	toIndex);
}

Wildcards
Listing	12-3	contains	question	marks	that	represent	unknown	types.	It’s	easier	to	explain
them	with	an	example.	Let’s	turn	the	for	loop	from	Listing	12-2	into	a	method.	In	Eclipse,
highlight	the	code	of	the	for	loop,	right-click,	and	select	Refactor	→	Extract	Method.	In
the	pop-up	window	enter	the	method	name	processCustomers	and	click	OK.

Listing	12-4:	Refactored	class	TestGenericCollection

import	java.util.ArrayList;
import	java.util.Hashtable;
import	java.util.List;
public	class	TestGenericCollection	{
							public	static	void	main(String[]	args)	{
									List<Customer>	customers	=	new	ArrayList<Customer>();
									Customer	customer1	=	new	Customer("David","Lee");
									customers.add(customer1);
									Customer	customer2	=	new	Customer("Ringo","Starr");
									customers.add(customer2);
									Order	order	=	new	Order();
									//customers.add(order);	//	Compiler	error
									//	Iterate	through	the	list	customers	and	do	something	
									//	with	each	element	of	this	collection.	
									//	No	casting	required.
									processData(customers);
							}
							private	static	void	processData(List<Customer>	customers){
														for	(Customer	customer:	customers){
																				customer.doSomething();
														}
							}
}

What	if	you	want	to	make	the	method	processData()	more	generic	and	useful	not	only	for
a	collection	of	Customer	objects	but	for	others,	too?	Without	generics	you’d	be	using
instanceof	and	writing	something	similar	to	Listing	12-5.

Listing	12-5:	Back	to	casting

private	static	void	processData(ArrayList	data)	{
				for	(Object	object:	data){
							if(object	instanceof	Customer){												
										((Customer)	object).doSomething();
							}	
				}
}

But	now,	armed	with	the	new	knowledge,	you	can	try	to	change	the	signature	of	the
method	processData()	to	the	following:

private	static	void	processData(List<Object>	data){
		//	do	something	with	data
}

Unfortunately,	this	solution	won’t	work,	because	there	is	no	such	thing	as	inheritance	of
parameterized	types.	In	other	words,	even	though	the	class	Customer	is	a	subclass	of
Object,	such	inheritance	does	not	apply	to	parameters	<Customer>	and	<Object>.	This	is
when	the	question	mark	that	represents	an	unknown	type	becomes	handy.	The	next	step	in
making	processData()	more	generic	is	to	change	the	method	signature	like	so:

private	static	void	processData(List<?>	data){
			//	do	something	with	data
}

Using	such	a	method	signature	is	different	from	simply	declaring	the	method	argument
data	of	type	List,	which	would	require	casting,	as	in	Listing	12-5.	With	the	wildcard
notation	you	state,	“At	this	point	the	type	of	data	is	not	known,	but	whenever	some	code
uses	the	method	processData()	it’ll	be	known	and	properly	compiled	so	casting	won’t	be
needed.”

The	next	challenge	you	face	is	to	compile	the	code	calling	the	method	doSomething()	on
the	objects	of	unknown	types.

Creating	Custom	Parameterized	Classes
Let’s	consider	an	example	with	the	bike	store	from	the	“Try	It”	section	for	Lesson	10.
That	online	store	has	a	truck	that’s	used	to	deliver	bikes	and,	say,	spare	wheels	for
customers.	We	want	to	allow	only	bikes	and	wheels	to	be	loaded	into	the	truck;	people	are
not	allowed	there.	Consider	the	class	hierarchy	in	Figure	12-1:

An	object	of	type	Truck	can	contain	instances	of	Product.	The	object	Ferry	can	contain
Truck	instances.	The	classes	Product,	Bike,	Wheel,	and	Person	don’t	implement	any
business	logic	in	this	small	application	as	it’s	irrelevant	for	understanding		generic	types.
But	the	fact	that	Product	is	a	superclass	of	Bike	and	Model	is	important.	The
parameterized	class	Truck	can	look	as	follows:

public	class	Truck<T>	{
				
				private	List<T>	products	=	new	ArrayList<>();
				
				//	load	the	product	on	the	truck
				public	void	add	(T	t){
								products.add(t);
				}
				
				//	Return	products	loaded	on	the	truck
				public	List<T>	getProducts(){
								return	products;
				}
}

Figure	12-1:	Figure	12-1.	The	bike	store	class	hierarchy

This	declaration	uses	a	parameter	of	type	T	that’s	unknown	at	this	point	yet.	You	specify	a
concrete	type	when	you	create	a	program	that	instantiates	Truck;	for	example:

public	class	TestGenericType	{
				public	static	void	main(String[]	args)	{
								Truck<Product>	shipment	=	new	Truck<>();
								
								Bike	bike	=	new	Bike();

								Wheel	wheel	=	new	Wheel();
								Person	person	=	new	Person();
								
								shipment.add(bike);								
								shipment.add(wheel);								
					//	shipment.add(person);	//	Compiler	error																	
				}
}

The	variable	shipment	points	at	the	instance	of	the	Truck	that	allows	adding	only	the
objects	of	type	Product	or	its	subclasses.	Because	Person	is	not	a	Product,	the	compiler
won’t	let	you	add	it	to	the	Truck	load.

Bounded	Type	Parameters
Bounded	type	parameters	enable	you	to	specify	generic	types	with	restrictions	related	to
class	inheritance	hierarchies.	Let’s	continue	using	the	same	example	of	a	bike	store.
Although		Product	is	a	superclass	of	a	Bike,		ArrayList<Product>	is	not	a	superclass	of
ArrayList<Bike>.		Hence,	if	there	is	a	method	that	expects	ArrayList<Product>	as	an
argument,	you	can’t	provide	ArrayList<Bike>		instead.	With	generics,	you	should	use	the
keyword	extends	to	specify	the	upper	bound	of	allowed	types	in	the	inheritance	hierarchy.
In	this	case	it	would	be		ArrayList<?	extends	Product>.	This	means	that	only	ArrayList
containing	object	of	Product	type	and	its	subclasses	are	allowed.	The	question	mark	is	a
wildcard	here.	

To	illustrate	this,	let’s	change	the	rules	in	our	bike	store:	You	can’t	mix	bikes	and	wheels
in	the	same	truck.	Also,	you	want	to	be	able	to	load	trucks	on	a	ferry.	The	class	Ferry
looks	like	the	following:

public	class	Ferry	{
		public	void	loadTruck(Truck<?	extends	Product>	truck){	}
				
		public	void	unloadToDock(List<?	extends	Product>	ferryTrucks,	
																											List<?	super	Product>	dockTrucks){
								
						for	(Product	product:	ferryTrucks){
										dockTrucks.add(product);
						}								
		}
}

The	method	loadTruck()	declares	the	argument	with	the	upper	bounded	wildcard—only
the	trucks	with	Product	and	its	subclasses	can	be	loaded	to	the	ferry.	The	class
TestGenericBounded	creates	one	truck	loaded	with	two	bikes,	and	another	one	loaded	with
three	wheels.	Then	it	loads	both	trucks	on	the	ferry.

public	class	TestGenericBounded	{
				public	static	void	main(String[]	args)	{
								Ferry	ferry	=	new	Ferry();
								
								//	Load	a	truck	with	two	bikes	
								Truck<Bike>	bikes	=	new	Truck<>();
								bikes.add(new	Bike());
								bikes.add(new	Bike());
								
								//	Load	a	truck	with	three	wheels	
								Truck<Wheel>	wheels	=	new	Truck<>();
								wheels.add(new	Wheel());
								wheels.add(new	Wheel());
								wheels.add(new	Wheel());

								
								//	Load	two	trucks	on	the	ferry
								ferry.loadTruck(bikes);
								ferry.loadTruck(wheels);																							
				}
}

If	the	ferry’s	loadTruck()	method	would	be	declared	as	loadTruck(Truck<Product>	truck),
you	wouldn’t	be	able	to	load	either	the	truck	with	bikes	or	the	one	with	wheels.	

The	class	Ferry	also	has	the	method	unloadToDock()	that	illustrates	lower	bounded
wildcards	by	using	the	keyword	super.

public	void	unloadToDock(List<?	extends	Product>	ferryTrucks,	
																									List<?	super	Product>	dockTrucks){
			for	(Product	product	:	ferryTrucks){
							dockTrucks.add(product);
			}
}

Note	the	super	keyword	here.	You	are	copying	the	data	from	a	collection	that	can	contain
any	subclasses	of	Product	into	another	one.	Revisit	the	class	hierarchy	diagram	and	think
of	a	standard	Java	upcasting.	The	destination	collection	can	be	of	a	type	of	any	class	that
the	Product	extends	from	(for	example,	of	type	Object).	Moreover,	you	may	introduce	yet
another	class	located	between	Object	and	Product	in	the	inheritance	hierarchy—this	won’t
break	the	code.	The	keyword	super	means	exactly	this;	the	destination	collection	can	hold
any	types	as	long	as	they	are	superclasses	of	Product.		

There	is	a	simple	in-out	rule	that	may	help	you	to	figure	out	if	you	need	to	use	extends	or
super	keywords.	If	you’re	creating	a	parameterized	class	to	read	data	from	it,	use	extends.
If	you	are	planning	to	put	or	copy	data	into	a	parameterized	class,	use	super.

Generic	Methods
While	declaring	a	method	you	can	either	predefine	data	types	for	its	arguments	and	return
values	or	use	generics.	For	example,	the	method	toArray()	from	Listing	12-3	starts	with	a
declaration	of	a	new	parameterized	type	(<T>	in	that	case),	which	has	to	be	placed	in
angle	brackets	right	before	the	return	type	in	the	method	signature.	The	very	fact	that	a
method	declares	a	new	type	makes	it	generic.	The	following	declaration	of	the	toArray()
method	takes	an	array	of	objects	of	type	T	and	returns	an	array	of	T	objects:

<T>	T[]	toArray(T[]	a);

Figure	12-2	explains	the	above	line	in	greater	details.	

Figure	12-2:	Figure	12-2.	A	signature	of	a	generic	method	

If	you	have	an	ArrayList	of	integers,	you	can	declare	and	convert	it	to	an	array	as	follows:

List<Integer>	myNumericList	=	new	ArrayList<>();
...
Integer	myNumericArray[]	=	new	Integer[myNumericList.size()];
myNumericArray	=	myNumericList.toArray();

If	you	need	to	use	the	same	method	toArray()	with	a	list	of	customers,	the	data	type	<T>
magically	transforms	(by	compiler)	into	the	Customer	type:

List<Customer>	myCustomerList	=	new	ArrayList<Customer>();
...
Customer	myCustomerArray[]	=	new	Customer[myCustomerList.size()];
myCustomerArray	=	myCustomerList.toArray();

As	in	examples	from	the	???	section,	you	are	allowed	to	put	constraints	on	the	type.	For
example,	you	can	restrict	the	toArray()	method	to	work	only	with	types	that	implement	the
Comparable	interface:

<T	extends	Comparable>	T[]	toArray(T[]	a);

Try	It
Create	a	simple	program	that	uses	generics	with	the	class	RetiredEmployee	(which
extends	the	class	Employee)	from	Listing	7-2.	Write	a	generic	method	that	accepts	a
collection	of	RetiredEmployee	objects	and	copies	it	into	a	collection	of	Employee	objects.
Use	the	method	unloadToDock()	from	class	Ferry	as	an	example.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson12.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project	called	Lesson12.

2.	 Create	classes	Employee	and	then	RetiredEmployee	that	extends	Employee.

3.	 Create	an	executable	Java	class,	TestGenericMethod,	that	accepts	a	List	of
RetiredEmployee	objects	and	copies	it	into	a	List	of	Employee	objects.	This	method
should	print	on	the	system	console	the	name	of	each	Employee	from	the	resulting
collection.

4.	 Run	the	TestGenericMethod	program	and	observe	the	printed	names.

TIP			Please	select	the	videos	for	Lesson	12	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	13
Lambda	Expressions	and	Functional	Style	Programming
Presenting	materials	of	this	chapter	is	somewhat	challenging.	From	the	beginning	of	this
book	you’ve	gotten	to	know	that	Java	is	an	object-oriented	language	(as	opposed	to	a
functional	language).	You’ve	learned	that	to	start	any	program	you’ll	need	to	define
classes	with	attributes	and	methods,	instantiate	them	as	objects,	and	invoke	methods	(think
functions)	on	these	instances.	If	a	method	is	declared	as	static,	you	can	invoke	it	without
the	need	to	instantiate	a	class,	but	still	you	were	defining	the	class	first	and	then	a	static
method	inside	of	it.	For	example,	to	process	a	click	on	a	Swing	JButton,	you	would	need
to	implement	and	instantiate	a	listener	class	containing	just	one	method
actionPerformed().

Now	I	need	to	tell	you	that	the	object-oriented	approach	may	have	some	drawbacks,	and
there	is	a	large	group	of	functional	programming	languages	in	which	you	don’t	need	to
wrap	functionality	inside	classes.	Proponents	of	functional	languages	say	(and	rightly	so)
that	creating	objects	with	fields	that	can	be	changed	(mutated)	by	the	methods’	code	may
be	error	prone	and	more	difficult	to	debug.	They	prefer	thinking	in	terms	of	functions	that
don’t	depend	on	the	external	context.

A	function	takes	the	values	from	the	outside	world	in	the	form	of	arguments,	apply	some
application	logic	and	returns	the	result.	A	function	doesn’t	change	any	external	values
(including	those	that	were	provided	as	arguments).	A	function	can	take	a	single	value	(or	a
data	collection)	and	produce	another	value,	but	doesn’t	modify	the	input.	So	no	matter
how	many	times	you’ll	be	invoking	any	given	function	with	the	same	input,	the	returned
value	will	be	the	same.			

In	languages	such	as	Haskell,	JavaScript,	Scala,	Closure,	and	Ruby,	functions	are	treated
as	first-class	citizens,	and	they	don’t	require	you	to	write	and	instantiate	classes.	In
functional	languages,	you	can	do	the	following:

Assign	a	function	to	a	variable.

Pass	a	function	as	an	argument	to	another	function.

Define	a	function	inside	another	function.

Return	a	function	from	another	function.

For	example,	this	is	how	you	can	create	a	function	that	returns	another	function,	in
JavaScript:

function	()	{
				var	taxDeduction	=	500;
				return	function	(income)	{
							//	Implement	calculating	tax	using	taxDeduction	here
							//	...
							return	calculatedTax;
				}
}

http://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Functional_languages

Java	8	introduced	lambda	expressions	(from	Lambda	Calculus),	which		are	anonymous
functions.	Since	the	lambda	expression	has	no	name,	it	can	be	assigned	as	a	value	to	a
named	variable.		

With	lambda	expressions,	object-oriented	Java	(as	well	as	C#)	allows	programing	in	a
mixed	style.	When	you	need	an	object	with	state,	declare	a	class	and	instantiate	it.	If	you
just	need	to	implement	some	algorithm	define	a	lambda	expression.		

In	this	lesson	you	find	out	how	to	make	your	Java	code	more	concise	with	lambda
expressions.	Java	8	blends	functional	into	object-oriented	style	by	representing	a	Function
as	a	an	object	in	the	Java	type	system.	Also,	the	interfaces	that	declare	just	one	abstract
method	(functional	interfaces)	now	can	be	implemented	without	the	need	to	create	an
object	just	to	contain	this	method.	

http://en.wikipedia.org/wiki/Lambda_calculus

Imperative	vs	Functional	Style
Java	is	not	a	functional	programming	language,	but	even	without	lambda	expressions	it
allows	writing	programs	with	elements	of	functional	style.	I’ll	show	you	a	quick	example
illustrating	the	concept	of	imperative	vs	functional	styles	of	programming.	The	following
class	ImperativeVsFunctional	creates	a	collection	winners	and	populates	it	with	names.
Then	it	tries	to	find	if	this	collection	contains	the	winner	named	“Ringo”	using	two
different	styles	-	imperative	and	then	functional.	

public	class	ImperativeVsFunctional	{
	public	static	void	main(String[]	args)	{
								
			List<String>	winners	=	new	ArrayList<>();
								
			winners.add("Mary");
			winners.add("Ringo");
			winners.add("Joe");
			winners.add("Paul");
			
			//	Imperative	style									
			boolean	gotRingo	=	false;
			for	(String	winner:	winners){
				if	("Ringo".equals(winner)){
						gotRingo	=	true;
						System.out.println("Imperative	style.	Ringo	won?"	
																																														+	gotRingo);
							break;
				}
			}				
			
			//	Functional	style					
			System.out.println("Functional	style.	Ringo	won?"	
																																						+	winners.contains("Ringo"));
	}	
}

Running	this	program	will	produce	the	following	output:

Imperative	style.	Ringo	won?	true
Functional	style.	Ringo	won?	true

In	imperative	style	the	program	dictates	what	has	to	be	done:	create	a	flag,	then	in	a	for-
loop	check	the	value	of	each	element	and	if	Ringo	is	found,	change	the	value	of	the	flag	to
true	and	break	out	of	the	loop.	In	this	case	we	assume	that	ArrayList	is	just	a	storage	of	the
winner’s	names.	

In	functional	style,	we	don’t	dictate	how	to	search	for	Ringo,	and	just	call	the	method

contains().	No	external	loops,	no	mutable	flags,	a	no	breaks.	It’s	short,	concise,	and	easy	to
understand.	How	the	method	contains()	is	implemented	in	the	current	version	of	Java?	It’s
an	internal	business	of	the	ArrayList.	It	very	well	can	be	that	either	in	this	or	in	the	future
version	of	Java	the	method	contains()	will	split	the	collection	(especially	the	large	one)
into	smaller	chunks	and	will	do	a	parallel	search	for	Ringo	if	the	computer	has	multiple
processors,	while	the	imperative	version	will	always	process	this	collection	sequentially.

This	example	uses	a	function	that	already	exists	in	the	collection.	But	with	lambda
expressions	you	can	define	your	own	functions	and	give	it	for	the	execution	to	a	class	or	a
collection.	And	again,	depending	on	what	your	lambda	does,	the	Java	run	time	may	decide
to	execute	it	in	parallel.	

You’ll	see	some	examples	comparing	imperative	and	functional	styles	of	programming	in
the	section	“Iterating	Collections	with	foreach”	later	in	this	chapter.	With	imperative	style
we	tell	Java	how	to	do	things,	but	with	functional	we	tell	Java	what	we	want	to
do.	In	Lesson	20	on	Stream	API	you’ll	see	more	examples	of	writing	code	in	declarative
and	functional	style.	Let’s	learn	the	syntax	of	the	lambda	expressions	now.

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch13.xhtml#foreach

What’s	Lambda	Expression	
A	lambda	expression	is	an	anonymous	function	that	you	can

Assign	to	a	variable.

Pass	as	an	argument	to	another	function.

Return	from	a	method.

If	in	earlier	versions	of	Java	only	objects	and	primitives	could	represent	values,	as	of	Java
8,	functions	can	be	values	as	well.	In	Lesson	9	you	learned	about	anonymous	inner
classes	served	as	wrapper	for	methods.	Lambda	expressions	can	eliminate	the	need	for
such	wrappers.	For	example,	consider	the	following	lambda	expression	(let’s	call	them
lambdas	for	brevity):

(int	a,	int	b)	->	a	+	b;

Assume	that	there	is	an	interface	that	declares	a	single	abstract	method	that	takes	two	int
arguments	and	returns	an	int	value.	The	lambda	in	the	preceding	code	is	an	anonymous
function	that	takes	two	int	arguments	a	and	b.	The	arguments	are	placed	inside	the
parentheses	similarly	to	Java	methods.	Actually,	if	lambda	expression	has	only	one
argument	then	even	those	parentheses	are	not	needed.	On	the	right	side	of	the	->	sign
(a.k.a.	arrow	token)	you	see	the	body	of	the	lambda	expression.	In	this	case	it’s	just	a	one-
liner	that	calculates	and	returns	the	sum	of	arguments.	If	the	body	of	lambda	is	a	single-
line	expression	as	in	the	preceding	example,	there	is	no	need	to	write	a	return	statement.
The	result	of	the	lambda	expression	is	returned	implicitly.

While	the	syntax	of	a	lambda	expression	may	look	unusual,	it’s	pretty	easy	to	understand.
Just	take	a	regular	Java	method	declaration,	remove	everything	to	the	left	of	the	opening
paren,	and	add	the	->	sign	after	the	closing	paren.	So	if	you	wanted	to	rewrite	the	above
lambda	expression	as	a	Java	method,	it	could	look	like	this:	

public	int	addNumbers(int	a,	int	b){
	return	a	+	b;
}

Figure	13-1:	Parts	of	a	lambda	expression

In	lambda	expressions,	specifying	argument	types	is	optional.	Lambdas	support	inferred
data	types;	the	Java	compiler	properly	“guesses”	the	types	based	on	the	context	of	your
code.	So	our	lambda	expression	can	be	rewritten	as	follows:

(a,	b)	->	a	+	b;

If	the	lambda	expression	consists	of	several	lines	of	code,	you	need	to	put	the	code	inside
the	curly	braces	and	add	an	explicit	return	statement.	You	can	pass	lambda	expressions	to
a	method	to	be	applied	there.	You’ll	see	the	example	of	using	apply()	in	the	section	titled
“Interfaces	Function	and	BiFunction.”	The	Java	8	lambdas	can	represent	single-method
interfaces	in	a	concise	way,	which	is	discussed	next.

Functional	Interfaces
A	Java	interface	can	declare	any	number	of	methods,	but	to	be	implemented	as	lambdas,
the	interface	has	to	declare	a	single	non-implemented	method.	Such	interfaces	are	called
functional	interfaces.	Technically,	functional	interfaces	can	have	more	than	one	method;
some	of	them	can	be	static,	some	of	them	can	be	implemented	as	default	methods—these
don’t	count.	The	important	part	is	that	there	is	only	one	abstract	method	that	has	to	be
implemented.

Consider	the	ActionListener	interface	that	you	used	in	Lesson	9	to	process	button	clicks:

public	interface	ActionListener	extends	EventListener	{
				public	void	actionPerformed(ActionEvent	actionEvent);
}

The	old	way	of	implementing	such	an	interface	with	an	anonymous	inner	class	could	look
like	this:

myButton.addActionListener(new	ActionListener()	{
				public	void	actionPerformed(ActionEvent	actionEvent)	{
								someTextField.setText("Someone	clicked	on	the	button");
				}
});

Because		ActionListener	defines	a	single	method	actionPerformed()	it	can	be	called
functional	interface.	Hence	it	can	be	represented	in	a	concise	form	with	a	lambda
expression:

myButton.addActionListener(actionEvent	->	{
				someTextField.setText("Someone	clicked	on	the	button);
});

It	is	a	lot	simpler	to	write	and	read,	isn’t	it?	No	need	to	declare	and	instantiate	anonymous
classes.	This	lambda	expression	has	one	argument	represented	by	the	variable
actionEvent	(you	could	name	it	anything	and	no	data	type	is	needed).	The	method
actionPerformed()	is	a	callback,	and	Java	run	time	would	pass	the	instance	of	ActionEvent
to	it.	But	because	it	is	a	single	method	interface,	the	compiler	is	smart	enough	to	figure	out
the	type	of	the	argument	so	you	don’t	even	need	to	declare	it.	Because	any	functional
interface	has	a	single	method,	it	is	easy	for	the	compiler	to	figure	out	its	name,	so	you	just
can	write	a	lambda	expression	as	its	implementation.

Method	References

In	some	cases	your	lambda	expression	just	calls	a	predefined	method.	Java	8	introduces
method	references	that	can	be	used	instead	of	lambda	expressions.	The	new	syntax
introduces		a	double	colon	operator	::,	and	you	can	write	something	like	this:

myObject::myMethod

There	is	no	parentheses	after	the	method	name	and	you	can’t	specify	the	arguments	in
method	references.	So	this	syntax	applies	to	the	cases	when	either	the	method	has	no
arguments	or	the	compiler	can	“figure	out”	what	such	method	expects	as	an	argument.	For
example,	the	following	method	has	no	arguments	and	can	be	invoked	using	method
reference	syntax:

public	void	myMethod(){
				System.out.println("Hello	from	myMethod");
}

The	case	with	inferred	arguments,	which	the	compiler	figures	out,	can	be	illustrated	by	the
event	listener	callback	methods.	The	following	class		MethodReferenceSample	uses
method	reference	syntax	in	addActionListener().	The	compiler	figures	out	that	the
processButtonClick()	method	expects	the	argument	of	the	type	ActionEvent.

public	class	MethodReferenceSample	extends	JFrame	{
			public	void	processButtonClick(ActionEvent	actionEvent){
						System.out.println("Someone	clicked	on	the	button");
			}
			
			public	static	void	main(String	args[]){
							MethodReferenceSample	mrs	=	new	MethodReferenceSample();
							JButton	myButton	=	new	JButton("Click	me");
							mrs.add(myButton);
							
							myButton.addActionListener(mrs::processButtonClick);
															
							mrs.pack();	
							mrs.setVisible(true);						
							mrs.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);	
			}
}

Eclipse	Luna	and	Lambdas
Eclipse	Luna	(as	well	as	NetBeans	and	IntelliJ	IDEA)	offers	help	in	converting
anonymous	inner	classes	that	implement	functional	interfaces	into	lambda
expressions.	Highlight	the	anonymous	class	creation	(starting	with	new),	and	select
the	Quick	Fix	option	by	pressing	Ctrl+1	(or	Cmd+1	on	Mac).	Eclipse	opens	a	menu.
Select	the	Convert	to	Lamba	Expression	option	to	turn	the	anonymous	inner	class	into
a	lambda	expression.

Annotation	@FunctionalInterface
In	Lesson	23	you’ll	be	learning	about	Java	annotations,	which	are	metadata	about
Java	code.	Some	annotation	affect	the	process	of	compilation	while	other	instruct
Java	run	time	to	do	certain	things	with	the	code.	Java	8	introduces	a	new	annotation
that	you	can	use	for	explicitly	marking	your	interfaces	as	functional	like	this:

@FunctionalInterface
public	interface	Payable	{
			boolean	increasePay(int	percent);
}

					Using	the	annotation	@FunctionalInterface	is	optional.	It	just	shows	your	intention	to
implement	this	interface	as	a	lambda	expression.	People	who	read	your	code	may
appreciate	this	hint.	In	the	section	“Passing	Functions	to	Methods”	I’ll	show	you	an
example	of	using	this	annotation.		

Methods	Versus	Functions	
The	difference	between	methods	and	functions	is	that	functions	are	not	attached	to	any
class	instance.	You	can	say	that	static	methods	are	also	not	attached	to	the	instances,	but
static	methods	have	to	be	declared	inside	a	class	or	an	interface,	whereas	functions	don’t.

You	can	try	using	lambdas	just	to	simplify	your	code	in	places	where	you	need	to
implement	functional	interfaces	while	maintaining	an	object-oriented	style	of
programming.	The	code	sample	of	replacing	anonymous	an	inner	class	implementing
ActionListener	is	an	illustration	of	such	simplification.

On	the	other	hand,	you	may	start	experimenting	with	a	functional	style	of	programming,
where	a	function	just	gets	some	input,	applies	its	business	logic,	and	returns	the	results.	A
function	doesn’t	know	anything	about	the	context	it	operates	in	unless	it	was	given	to	it	as
an	argument.	A	function	doesn’t	belong	to	any	object	hence	it	cannot	rely	on	the	fact	that
certain	external	values	can	be	used	in	performing	its	action.	A	function	does	not	change
the	state	of	any	object.

The	following	example	of	the	class	Tax	is	written	in	object-oriented	style.	After	the	object
of	type	Tax	is	instantiated,	its	fields	grossIncome	and	the	method	calcTax()	are	not
functions,	as	it	expects	to	get	some	values	from	class	variable	grossIncome	that
modifies	federalTax.		It’s	a	situation	with	mutable	state.	

class	Tax{			
				double	grossIncome;
				double	federalTax;
				public	void	calcTax()	{
								if	(grossIncome	<	30000)	{
										federalTax=grossIncome*0.05;
								}
								else{
										federalTax=	grossIncome*0.06;
								}
		}	
}

In	the	object-oriented	world	it’s	perfectly	fine,	because	an	object	is	the	center	of	the
universe	there.	To	eliminate	mutable	attributes		(grossIncome	and	federalTtate),	change
the	definition	of	this	class	to:

class	TaxNoState{			
	public	static	double	calcTax(double	grossIncome)	{
								double	federalTax=0;
								if	(grossIncome	<	30000)	{
										federalTax=grossIncome*0.05;
								}
								else{
										federalTax=	grossIncome*0.06;

								}
										return	federalTax;
		}		
}

in	TaxNoState	the	method		calculateStateTax()	gets	the	required	values	via	its	arguments.
It’s	still	a	method	since	it	lives	inside	the	class,	but	is	closer	to	being	a	function.	After
applying	business	logic	calculateStateTax()	returns	the	calculated	federalTax.	Returns	to
whom?	It’s	none	of	the	function’s	business.	Note	that	I’ve	used	the	keyword	static	in	the
method	declaration	to	remove	any	attachments	to	specific	instances	of	the	class
TaxNoState.	After	all,	the	tax	calculation	should	be	done	the	same	way	for	Mary	and	Joe	if
they	have	the	same	income.

In	the	class	TaxNoState	we	removed	class	variables	and	used	the	method	arguments
instead.	The	question	is	why	the	tax	calculation	logic	that	doesn’t	use	any	class	fields	have
to	live	inside	class	method?	Can	you	provide	the	code	to	calculate	the	tax	from
outside?	Prior	to	Java	8,	primitives	or	objects	were	the	only	values	that	you	could	pass	to	a
method.	But	now	you	can	also	pass	lambda	expressions	as	method	arguments,	and	I’ll
give	you	an	example	of	this	in	the	next	section.		

Passing	Functions	to	Methods	
In	functional	programming,	you	can	pass	a	function	as	an	argument	to	another	function	(or
a	function	can	return	a	function).	Such	outer	functions	are	called	higher-order	functions.

This	section	shows	you	how	to	pass	a	function	to	a	Java	method.	We’ll	create	a	class	with
three	fields:	name,	grossIncome,	and	state	to	represent	a	customer	of	some	accounting
office.	This	class	will	have	a	method	applyTaxCalculationFunction(),	but	the	code	of	this
function	will	be	provided	to	this	method	as	an	argument.	Here’s	the	code	of	the	class
Customer:

public	class	Customer{
			public	String	name;				
			public	double	grossIncome;				
			
			public	void	applyTaxCalcFunction(TaxFunction	taxFunc)	{
					
						double	calculatedTax	=	taxFunc.calcTax(grossIncome);	
						System.out.println("The	calculated	tax	for	"	+	name	+	
																																							"	is	"+	calculatedTax);
					
			}
}

The	argument	of	the	method	applyTaxCalcFunction()	is	an	implementation	of	the
functional	interface	TaxFunction,	which	is	shown	here:

@FunctionalInterface

public	interface	TaxFunction	{
				double	calcTax(double	grossIncome);
}

The	implementation	of	this	interface	is	provided	by	lambda	expressions	defined	in	the
class	TestTaxLambda.	This	class	creates	two	customer	instances	and	invokes	the
method	applyTaxCalculationFunction()	providing	the	lambda	to	execute.	The	customer’s
method	applyTaxCalculationFunction()	receives	the	implementation	of	this	interface	and
invokes	its	method	calcTax().	Here’s	the	code	of	the	class	TestTaxLambda:

public	class	TestTaxLambda	{
				public	static	void	main(String[]	args)	{
								
								//	Define	one	function	as	a	lambda	expression
								//	and	store	it	in	a	variable
								TaxFunction	taxFunction	=	(double	grossIncome)	->	{
												
												double	federalTax=0;
												if	(grossIncome	<	30000)	{
														federalTax=grossIncome*0.05;
												}
												else{
														federalTax=	grossIncome*0.06;
												}
												return	federalTax;
								};
				
								//	Define	another	function	as	a	lambda	expression
								//	for	calculating	tax	for	mafia	members
								TaxFunction	taxFunctionMafia	=	(double	grossIncome)	->	{
												
												double	stateTax=0;
												if	(grossIncome	<	30000)	{
														stateTax=grossIncome*0.01;
												}
												else{
														stateTax=	grossIncome*0.02;
												}
												return	stateTax;				
								};
								Customer	customer1	=	new	Customer();
								customer1.name	=	"Mary	Lou";
								customer1.grossIncome=50000;
								customer1.applyTaxCalcFunction(taxFunction);
								Customer	customer2	=	new	Customer();
								customer2.name	=	"Al	Capone";

								customer2.grossIncome=25000;
								customer2.applyTaxCalcFunction(taxFunctionMafia);
				}
}

The	implementation	of	two	different	algorithms	of	tax	calculation	is	stored	in		lambda
expressions	is	stored	in	the	variable	taxFunction	and	taxFunctionMafia.		If	you
run	TestTaxLambda,	you	see	the	following	output	on	the	console:

The	calculated	tax	for	Mary	Lou	is	3000.0
The	calculated	tax	for	Al	Capone	is	250.0

Lambda	expressions	spare	you	from	needing	to	wrap	a	function	inside	a	class.	The	big
question	is	what’s	better:	providing	the	tax	calculation	function	inside	the	class	Customer
or	passing	it	from	outside.	There	is	no	general	answer	for	this.	Just	know	that	if	the
business	rules	of	your	application	require	you	to	apply	a	the	same	or	different	pieces	of	a
functionality	to	different	objects,	lambda	expressions	allow	you	to	do	this.

Java	8	lambdas	still	have	some	restrictions,	and	you	can	pass	it	to	a	method	that	expects	a
lambda	that	implements	an	interface	of	a	specified	type	(TaxFunction	in	this	case).	In
functional	languages	like	JavaScript,	you	can	attach	an	arbitrary	function	to	any	object	and
execute	in	the	context	of	that	object	with	functions	call()	or	apply().		You	see	the	Java
version	of	apply()	in	the	last	section	of	this	lesson.	

Iterating	Collections	with	forEach()	
In	the	previous	lesson	you	iterated	a	collection	of	objects	by	writing	a	loop.	To	perform
some	actions	on	each	object	of	a	collection	you	can	implement	these	actions	in	the	method
doSomething()	that’s	called	in	the	loop	body:

List<Customer>	customers	=	new	ArrayList<>();	
//	The	code	to	populate	customers	is	omitted	for	brevity	
//	Iterate	through	the	list	customers	and	do	something	with	each	
//	element	of	this	collection.	
for	(Customer	customer	:	customers){	
					customer.doSomething();	
}

This	is	an	imperative	way	of	programming,	you	say,	“I	want		get	every	element	of	the
collection	sequentially	and	do	something	with	it.”	But	there	is	a	functional	approach	to
this	task,	“Hey,	collection,	I’ll	give	you	a	function	to	perform	on	each	of	your	elements.
Please	figure	out	the	best	way	to	do	it.”	

You	may	say,	“What	do	you	mean	by	the	best	way?	Does	collection	know	better	than	me
how	to	process	its	elements?”	Yes,	it	does.	Starting	with	Java	8,	collection	became	smarter
and	can	parallelize	execution,	especially	on	multiprocessor	computers.	For	example,	it
may	internally	split	the	collection	in	half	and	apply	doSomething()	in	parallel	for	each
half,	and	then	it	merges	the	results	back.	So	you’d	better	give	your	function	to	a	collection;
there	is	a	chance	the	processing	will	finish	faster.	

I’ll	show	you	the	implementation	of	both	imperative	and	functional	styles	in	the
class	TestCollectionsForEach	below.	It’ll	iterate	through	the	collection	of	workers
represented	by	the	instances	of	the	class	Person,	which	has	a	boolean	variable
workerStatus	to	store	the	employment	:	E	means	employee,	and	C	means	contractor.	

public	class	Person	{
				private	String	name;
				private	char	workerStatus;		//	'E'	or	'C'
				public	Person	(String	name,	char	workerStatus){
								this.name	=	name;
								this.workerStatus	=	workerStatus;
				}
				
				public	String	getName()	{
								return	name;
				}
				
				public	char	getWorkerStatus()	{
								return	workerStatus;
				}
}

The	program	TestCollectionsForEach	creates	an	array	of	Person	instances	and	then	turns	it
into	a	List	with	Arrays.asList().	After	that	it	iterates		through	the	list	using	two	different
techniques:	imperative	and	functional.

public	class	TestCollectionsForEach	{
				
		public	static	void	main(String[]	args)	{
								Person	workers[]	=	new	Person[3];
								workers[0]	=	new	Person("John",	'E');
								workers[1]	=	new	Person("Mary",	'C');
								workers[2]	=	new	Person("Steve",	'E');				
								
								List<Person>	workersList	=	Arrays.asList(workers);
								
								//	Imperative	loop
								System.out.println("1.	Running	imperative	loop");
								for	(Person	person	:	workersList){
										if	('E'	==	person.getWorkerStatus()){
												System.out.println(person.getName()	+	"	is	employee");
										}	else	if	('C'	==	person.getWorkerStatus()){
												System.out.println(person.getName()	+	"	is	contractor");
										}
								}
								
								//	Functional	loop
								System.out.println("2.	Running	functional	loop");
								workersList.forEach(person	->	{
										if	('E'	==	person.getWorkerStatus())	{
												System.out.println(person.getName()	+	"	is	employee");
										}	else	if	('C'==pers.getWorkerStatus()){
												System.out.println(person.getName()	+	"	is	contractor");
										}
								});	
		}
}

The	output	of	this	program	is	shown	here:

1.	Running	imperative	loop
John	is	employee
Mary	is	contractor
Steve	is	employee
2.	Running	functional	loop
John	is	employee
Mary	is	contractor
Steve	is	employee

The	output	is	the	same	from	both	loops.	In	the	functional	loop	you’re	passing	a	lambda
expression	to	the	forEach()	method	of	the	collection.		

In	Lesson	20	you	learn	about	the	new	Stream	API,	and	you	see	there	how	to	specifically
request	parallel	processing.

I’d	like	to	bring	your	attention	to	the	variable	person	in	the	argument	to	the	forEach()
method.	I’ve	never	declared	this	variable,	so	what	its	type?	It’s	yet	another	example	of
the	type	inference.	Java	is	smart	enough	to	see	that	the	lambda	expression	is	being	applied
to	the	collection	of	the	class	Person	(see,	generics	are	helpful!).	Hence	the	variable	person
will	be	typed	as		Person.	You	can	name	this	variable	anything	you	want;	the		Java
compiler	will	figure	out	its	inferred	type.

Lambdas	Versus	Inheritance	and	Polymorphism
Lambda	expressions	promote	a	functional	style	of	programming.	In	previous	lessons
you’ve	learned	about	the	object-oriented	style	and	its	major	concepts:	inheritance,	which
can	be	implemented	as	polymorphism	or	composition.	This	section	shows	you	how	to
take	the	example	from	the	section	“Making	the	Interface	Solution	Polymorphic”	from
Lesson	7	where	you	processed	a	collection	of	employees	and	contractors	in	polymorphic
ways	and	rewrite	it	using	composition	with	lambdas.

Inheritance	vs	Composition
To	create	a	class	that	can	reuse	features	of	another	class	you	can	use	either	inheritance
or	composition	as	a	design	technique.	In	case	of	inheritance	you	can	simply	create	a
ClassB	that	extends	ClassA	and	use	the	ancestor’s	elements	from	a	descendent	class.
The	following	example	demonstrates	inheritance,	where	the	ClassB	invokes	in
constructor	a	method	doSomething()	declared	in	its	ancestor:

ClassA	{
	public	void	doSomething(){
	}
}
ClassB	extends	ClassA{
			ClassB(){
						doSomething();
			}
}

In	case	of	composition,	you	don’t	need	to	inherit	from	ClassA,	but	just
instantiate	(and	hold	a	reference)	ClassA	in	ClassB:

ClassA	{
	public	void	doSomething(){
	}
}
ClassB{
			ClassB(){
						ClassA	classA	=	new	classA();
						classA.doSomething();
			}
}

For	pros	and	cons	of	inheritance	vs	composition,	read	the	JavaWorld	article
“Inheritance	versus	Composition:	Which	one	Should	You	Choose?”

In	that	Lesson	7	example	you	used	the	Payable	interface	to	increase	pay	for	employees
and	contractors.	First,	refresh	your	memory	about	that	application.	Figure	13-2	shows	the

http://www.javaworld.com/article/2076814/core-java/inheritance-versus-composition--which-one-should-you-choose-.html

class	diagram	of	that	application	(in	UML	notation	arrows	mean	extends,	and	dashed
arrows	means	implements):

Figure	13-2:	Figure	13-2.	Extending	Person	and	implementing	Payable

The	code	of	the	superclass	Person	is	shown	next:

public	class	Person	{
				private	String	name;
				
				public	Person(String	name){
								this.name	=	name;
				}
				public	String	getName(){
								return	"Person's	name	is	"	+	name;	
				}
}

This	is	the	Payable	interface:

public	interface	Payable	{
				int	INCREASE_CAP	=	20;	
				boolean	increasePay(int	percent);
}

Classes	Employee	and	Contractor	had	different	implementations	of	the		Payable	interface.
This	is	what	Employee	looked	like:

public	class	Employee	extends	Person	implements	Payable	{
				public	Employee(String	name){
								super(name);
				}
				public	boolean	increasePay(int	percent)	{
						System.out.println("Increasing	salary	by	"	+	percent	+	"%.	"+	
																																																				getName());	
						return	true;
				}
}

The	class	Contractor	looked	as	follows:

http://en.wikipedia.org/wiki/Class_diagram

public	class	Contractor	extends	Person	implements	Payable	{
				
				public	Contractor(String	name){
								super(name);
				}
				public	boolean	increasePay(int	percent)	{
								if(percent	<	Payable.INCREASE_CAP){
												System.out.println("Increasing	hourly	rate	by	"	+	
																																								percent	+	"%.	"+	getName());
												return	true;
								}	else	{
												System.out.println(
													"Sorry,	can't	increase	hourly	rate	by	more	than	"	+	
														Payable.INCREASE_CAP	+	"%.	"+	getName());
												return	false;
								}
				}
}

The	program	TestPayIncreasePoly	demonstrated	the	polymorphic	behavior	of	Employee
and	Contractor	objects.	

public	class	TestPayInceasePoly	{
				public	static	void	main(String[]	args)	{
								Payable	workers[]	=	new	Payable[3];
								workers[0]	=	new	Employee("John");
								workers[1]	=	new	Contractor("Mary");
								workers[2]	=	new	Employee("Steve");								
												for	(Payable	p:	workers){
																p.increasePay(30);
													}
								}
}

Eliminating	Inheritance	
The	only	difference	between	Contractor	and	Employee	was	the	implementation	of
the	increasePay()	method,	extracting	the	implementation	of	this	method	into	a	lambda
expression.	This	enables	you	to	get	rid	of	the	classes	Employee	and	Contractor	and	simply
pass	the	proper	function	to	the	class	Person.	To	be	able	to	distinguish	contractors	and
employees	you	use	the	version	of	the	class	Person	from	the	section	“Iterating	collection
with	forEach()	Method.”	But	this	time	add	a	method	validatePayIncrease()	that	takes	the
lambda	expression	as	one	parameter	and	the	amount	of	pay	increase	as	another.	This	is	the
new	version	of	the	class	Person:

public	class	Person	{
				

				private	String	name;
				private	char	workerStatus;		//	'E'	or	'C'
				public	Person	(String	name,	char	workerStatus){
								this.name	=	name;
								this.workerStatus	=	workerStatus;
				}
				
				public	String	getName(){
								return	name;
				}
				
				public	char	getWorkerStatus(){
								return	workerStatus;
				}
				
				public	boolean	validatePayIncrease(Payable	increaseFunction,	
																																																				int	percent)	{
													
									boolean	isIncreaseValid	=	
																	increaseFunction.increasePay(percent);	
														
									System.out.println("	Increasing	pay	for	"	+	name	+	
											"	is	"	+	(isIncreaseValid?	"valid.":	"not	valid."));
									return	isIncreaseValid;
				}
}

The	Payable	interface	remains	the	same,	and	its	implementation	will	be	represented	by
two	lambda	expressions—one	for	employees	and	another	one	for	contractors,	as	shown	in
the	program	TestPayIncreaseLambda:

public	class	TestPayIncreaseLambda	{
				
		public	static	void	main(String[]	args)	{
								Person	workers[]	=	new	Person[3];
								workers[0]	=	new	Person("John",	'E');
								workers[1]	=	new	Person("Mary",	'C');
								workers[2]	=	new	Person("Steve",	'E');								
							//	Lambda	expression	for	increasing	Employee's	pay
							Payable	increaseRulesEmployee	=	(int	percent)	->	{
																return	true;
							};
							
								//	Lambda	expression	for	increasing	Contractor's	pay							
								Payable	increaseRulesContractor	=	(int	percent)	->	{
												if(percent	>	Payable.INCREASE_CAP){

														System.out.print(
															"	Sorry,	can't	increase	hourly	rate	by	more	than	"	+	
																									Payable.INCREASE_CAP	+	"%.	");	
														return	false;
												}	else	{				
														return	true;
												}
							};				
							
							for	(Person	p:	workers){
											if	('E'==p.getWorkerStatus()){
															//	Validate	30%	increase	for	every	worker
															p.validatePayIncrease(increaseRulesEmployee,	30);	
											}	else	if	('C'==p.getWorkerStatus()){
															p.validatePayIncrease(increaseRulesContractor,	30);
											}
							}
		}
}

Running	this	program	produces	the	same	output	as	the	version	with	class	inheritance	and
polymorphism:

Increasing	pay	for	John	is	valid.
Sorry,	can't	increase	hourly	rate	by	more	than	20%.		
Increasing	pay	for	Mary	is	not	valid.
Increasing	pay	for	Steve	is	valid.

The	result	is	the	same,	so	what	have	you	achieved?	Using	lambdas	made	it	possible	to
remove	two	classes:	Contractor	and	Employee.	This	is	good.	But	it	seems	that	by
removing	these	classes	you’ve	lost	the	strict	contract	enforcement	to	implement	the
Payable	interface.	Actually,	though,	you	didn’t!	Using	the	Payable	type	is	still	enforced
but	in	a	different	way;	now	it’s	a	type	of	the	argument	in	the	method
validatePayIncrease().	If	a	new	type	of	a	worker	will	be	introduced	(for	example,	foreign
workers),	you	just	need	to	add	another	lambda	expression	to	the	class
TestPayIncreaseLambda	that	implements	business	rules	for	foreign	workers.	

Closures	with	Lambdas
The	“Closures	in	Java”	section	in	Lesson	17	demonstrates	an	important	concept	of
functional	programming:	closures.

Interfaces	Function	and	BiFunction
On	the	other	hand,	even	the	interface		Payable	can	be	eliminated	from	the	increase	pay
example.	Revisit	the	class	Person	from	the	section	“Eliminating	Inheritance.”	It	has	a

method	validatePayIncrease	where	the	first	argument	is	strictly	typed	as	Payable.	But	Java
8	allows	passing	any	arbitrary	function	to	a	method	as	an	argument.	There	is	a	new
package	java.util.function	that	has	a	number	of	useful	interfaces	for	those	who	like
functional	programming.	For	example,	the	interface	Function	has	the	following
declaration:

@FunctionalInterface	
public	interface	Function<T,	R>

As	you	see,	it	uses	generics.	This	interface	has	two	parameters:	T	for	type	and	R	for	the
type	of	the	return	value	of	the	method	apply()	declared	in	the	interface	Function.	Using
T	for	type	and	R	for	the	type	of	the	return	value	became	idiomatic	in	Java,	so	you	should
also	use	these	letters	in	your	code.	You	can	pass	the	code	of	such	a	function	to	a	class
method	and	apply	this	function	to	a	provided	argument.

The	interface	BiFunction	declares	two	arguments	(T	and	U)	and	a	return	value	(R):

@FunctionalInterface	
public	interface	BiFunction<T,	U,	R>

Accordingly,	the	BiFunction	interface	declares	a	method		R	apply(T,	U).	Let’s	see	if	you
can	use	it	in	the	increase	pay	example,	which	is	built	using	the	techniques	you’ve	learned
in	this	lesson.

First,	take	a	look	at	the	new	version	of	the	class	Person.	Note	the	change	in	the	arguments
of	the	method	validateIncreasePay():	

public	class	Person	{
				
				private	String	name;
				private	char	workerStatus;		//	'E'	or	'C'
				public	Person	(String	name,	char	workerStatus){
								this.name	=	name;
								this.workerStatus=workerStatus;
				}
				
				public	String	getName(){
								return	name;
				}
				
				public	char	getWorkerStatus(){
								return	workerStatus;
				}
				
				public	boolean	validateIncreasePay(
								BiFunction<Person,	Integer,	Boolean>	func
,	int	percent)	{
								

http://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

								boolean	isIncreaseValid	=	func.apply(this,	percent);
								System.out.println("	Increasing	pay	is	"	+	
																		(isIncreaseValid?	"valid.":	"not	valid."));
								return	isIncreaseValid;
				}
}

The	method	validateIncreasePay()	has	two	arguments:	a	BiFunction	for	the	function	to
apply	and	a	proposed	increase	pay	percent	to	validate.	In	turn,	BiFunction	declares	two
arguments—one	of	type	Person	and	the	other	of	type	Integer—and	a	Boolean	return	type.
When	actual	implementation	of	BiFunction	is	passed	to	the	method	validateIncreasePay(),
it	invokes	it	using	the	method	apply().	The	keyword	this	represents	the	current	instance	of
a	Person,	and	percent	is	the	proposed	increased	amount.

Once	again,	the	term	higher	order	function	is	a	function	(or	method)	that	either	takes	a
function	as	an	argument	or	returns	a	function.	In	other	words,	higher	order	functions	work
on	other	functions.

The	program	TestPayIncreaseFunctionInterface,	which	declares	the	lambdas	for
contractors	and	employees	and	validates	a	list	of	workers,	is	shown	here:

public	class	TestPayIncreaseFunctionInterface{
				
	public	static	void	main(String[]	args)	{
						
						final	int	INCREASE_CAP	=	20;		//	cap	for	pay	increase	in	%	
						
						int	proposedIncrease	=	30;		//	percent
		
								Person	workers[]	=	new	Person[3];
								workers[0]	=	new	Person("John",	'E');
								workers[1]	=	new	Person("Mary",	'C');
								workers[2]	=	new	Person("Steve",	'E');								
								List<Person>	workersList	=	Arrays.asList(workers);
							//	Define	functions	with	2	args	Person	and	percent	
							//	that	returns	Boolean	
								
								//	Lambda	expression	for	increasing	Employee's	pay				
				BiFunction	<Person,	Integer,	Boolean>	increaseRulesEmployee	=
										(pers,percent)	->	{
														System.out.print("	Increasing	pay	for	"	+	
																																					pers.getName()	+	"	is	valid");
													return	true;	//	allow	any	increases	for	employees
										};
							
							//	Lambda	expression	for	increasing	Contractor's	pay	
				BiFunction	<Person,	Integer,	Boolean>	increaseRulesContractor	=

							(pers,percent)	->	{
											if(percent	>	INCREASE_CAP){
														System.out.print(
																"	Sorry,	can't	increase	hourly	rate	by	more	than	"	+
																									INCREASE_CAP	+	"%.	for	"	+	pers.getName());
																return	false;
											}	else	{				
															return	true;
											}
							};
							
							//	Validate	pay	increase
								workersList.forEach(pers	->	{
														if	('E'==pers.getWorkerStatus()){
																pers.validateIncreasePay(increaseRulesEmployee,
																																																proposedIncrease);
														}	else	if	('C'==pers.getWorkerStatus()){
																		pers.validateIncreasePay(increaseRulesContractor,
																																																proposedIncrease);
														}
							});							
	}
}

In	the	previous	section	you	stored	lambdas	in	the	variables	of	type	Payable,	but	in	this
version	it’s	stored	as	a	BiFunction;	for	example:

BiFunction	<Person,	Integer,	Boolean>	increaseRulesEmployee	

The	Payable	interface	is	gone.	I	just	moved	the	final	variable	INCREASE_CAPin	the
class	TestPayIncreaseFunctionInterface.	In	the	beginning	of	this	lesson	we	designed	the
increase	pay	application	using	four	classes	and	one	interface.	Now	we	have	just	two
classes	and	the	code	became	shorter.

The	goal	of	this	lesson	was	to	explain	the	concept	of	lambdas	and	show	some	practical	use
cases	where	they	can	simplify	your	code.	I	didn’t	want	to	repeat	all	syntax	details	of
lambdas.	Please	visit	Oracle’s	tutorial	on	lambda	expressions	(http://goo.gl/xS3ejB)	for
further	studying	of	this	subject.

http://goo.gl/xS3ejB

Try	It
The	goal	of	this	lesson	is	to	add	another	lambda	expression	to	the	class
TestPayIncreaseLambda	to	process	pay	increases	for	foreign	workers.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson13.zip.

Step-by-Step
1.	 Import	into	Eclipse	the	project	Lesson13	from	the	file	Lesson13.zip.	Review	the	code

of	all	examples	from	this	lesson.

2.	 Introduce	the	new	type	of	workers:	a	foreign	worker.

3.	 Come	up	with	some	business	logic	for	increasing	rate	for	foreigners.

4.	 Create	a	new	lambda	expression	implementing	these	rules	and	assign	it	to	the
variable	Payable	increaseRulesForeigner.	

5.	 Add	an	instance	of	the	foreign	worker	(worker	status	'F')	to	the	array	workers.	

6.	 Modify	the	for	loop	in	the	class	TestPayIncreaseLambda	to	process	pay	increase	for
foreigners.

7.	 Extra	challenge:	Modify	the	class	Person	to	remove	the	workerStatus	attribute.	Add	a
second	parameter	to	its	constructor—a	lambda	expression—so	you	can	pass	the	rules
of	increasing	pay	during	instantiation	of	a	worker.	

TIP			Please	select	the	videos	for	Lesson	13	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	14
Working	with	I/O	Streams
Most	programs	work	with	some	kind	of	data,	which	could	be	stored	in	a	local	database,	on
a	remote	computer,	or	in	a	file	located	on	your	disk.	Java	has	a	concept	of	working	with
streams	of	data.	You	can	say	that	a	Java	program	reads	sequences	of	bytes	from	an	input
stream	(or	writes	into	an	output	stream)	byte	after	byte,	character	after	character,	primitive
after	primitive.	Accordingly,	Java	defines	various	types	of	classes	supporting	streams;	for
example,	InputStream	or	OutputStream.	There	are	classes	specifically	meant	for	reading
character	streams	such	as	Reader	and	Writer.		DataInputStream	and	DataOutputStream
can	read	and	write	Java	primitives,	and	to	work	with	files	you	may	consider	such	classes
as	FileInputStream	and	FileReader.

Classes	that	work	with	streams	are	located	in	two	packages:	java.io	and	java.nio.	Classes
from	the	former	implement	blocking	input/output	(I/O):	When	bytes	are	being	read/written
by	a	process,	they	become	unavailable	for	other	threads	of	execution.	The	latter	package
offers	non-blocking	I/O	with	improved	performance.	Most	of	this	chapter	covers	the
fundamentals	of	I/O,	but	at	the	end	I’ll	show	you	how	to	work	with	files	using	classes
from	the	package	java.nio.

Before	deciding	which	Java	class	to	use	for	I/O	in	each	particular	case,	you	need	to
understand	what	kind	of	data	is	coming	from	(or	going	to)	the	stream	in	question.	No
matter	what	you	select,	your	code	needs	to	perform	three	operations:

1.	 Open	a	stream	that	points	at	a	specific	data	source:	a	file,	a	socket,	a	URL,	and	so	on.

2.	 Read	or	write	data	from/to	this	stream.

3.	 Close	the	stream.

If	a	Java	program	uses	third-party	programs,	such	as	database	management	systems
(DBMS),	you	won’t	need	to	program	streams	directly—the	database	drivers	or	object-
relational	mapping	framework	is	all	you	need.	But	in	this	lesson	you	see	examples	of
performing	I/O	operations	with	different	streams.

Byte	Streams
A	program	can	read	or	write	any	file	one	byte	at	a	time	with	the	help	of	one	of	the
subclasses	of	InputStream	or	OutputStream,	respectively.	The	following	example	in
Listing	14-1	shows	how	to	use	the	class	FileInputStream	to	read	a	file	named	abc.dat.	This
code	snippet	reads	and	prints	each	byte’s	value:

Listing	14-1:	Using	FileInputStream

	try	(FileInputStream	myFile	=	new	FileInputStream(“abc.dat”)){																					
boolean	eof	=	false;									while	(!eof)	{													int	byteValue	=	myFile.read();												
System.out.print(byteValue	+	”	“);													if	(byteValue		==	-1)																	eof	=	true;		
						}							}	catch	(IOException	ioe)	{																System.out.println(“Could	not	read
file:	”	+																																																	ioe.toString());							}						}

Because	the	code	in	Listing	14-1	doesn’t	specify	the	directory	where	abc.dat	is	located,	the
program	tries	to	find	this	file	in	the	current	directory,	which	is	the	root	directory	of	the
Eclipse	project	(if	you	use	Eclipse).	At	any	given	time	you	can	easily	find	out	the	current
directory	programmatically	by	calling	the	method	System.getProperty("user.dir").

The	output	of	this	program	will	be	a	sequence	of	numbers,	which	represents	the	codes	of
the	characters	located	in	the	file.	For	example,	if	abc.dat	contains	the	text	“This	is	a	test
file,”	the	output	on	the	system	console	will	look	like	this:

84	104	105	115	32	105	115	32	97	32	116	101	115	116	32	102	105	108	101	-1

When	you	are	reading	with	FileInputStream,	the	end	of	the	file	is	represented	by	a
negative	one,	and	this	is	how	you	know	when	to	stop.	The	code	in	Listing	14-1	checks	for
-1	and	sets	the	boolean	variable	eof	to	false	to	finish	the	loop.	

Note	that	the	above	example	automatically	closes	streams	by	using	try-with-resources,	as
explained	in	Lesson	10.	This	code	will	work	starting	from	Java	7.

The	code	fragment	in	Listing	14-2	writes	into	a	file	called	xyz.dat	using	the	class
FileOutputStream.

Listing	14-2:	Using	FileOutputStream

//	byte	values	are	represented	by	integers	from	0	to	255
		int	somedata[]=	{56,230,123,43,11,37};
		try	(FileOutputStream	myFile=	new	FileOutputStream("xyz.dat");){
					for	(int	i	=	0;	i	<somedata.length;	i++){
								file.write(somedata[i]);
					}
		}	catch	(IOException	ioe)	{
					System.out.println("Could	not	write	to	a	file:	"	+	
																																																		ioe.toString());
		}	

Buffered	Streams
The	code	in	the	previous	section	was	reading	and	writing	one	byte	at	a	time.	In	general,
disk	access	is	much	slower	than	the	processing	performed	in	memory;	that’s	why	it’s	not	a
good	idea	to	access	the	disk	a	thousand	times	to	read	a	file	of	1,000	bytes.	To	minimize
the	number	of	times	the	disk	is	accessed,	Java	provides	buffers,	which	serve	as	reservoirs
of	data.

The	class	BufferedInputStream	works	as	a	middleman	between	FileInputStream	and	the
file	itself.	It	reads	a	big	chunk	of	bytes	from	a	file	into	memory	in	one	shot,	and	the
FileInputStream	object	then	reads	single	bytes	from	there,	which	is	memory-to-memory
operations.	BufferedOutputStream	works	similarly	with	the	class	FileOutputStream.	The
main	idea	here	is	to	minimize	disk	access.

Buffered	streams	are	not	changing	the	type	of	the	original	streams—they	just	make
reading	more	efficient.	Think	of	it	this	way:	A	program	performs	stream	chaining	(or
stream	piping)	to	connect	streams,	just	as	pipes	are	connected	in	plumbing.	Listing	14-3
shows	an	example	in	which	a	file	is	read	so	the	data	from	FileInputStream	fills
BufferedInputStream	before	processing.

Listing	14-3:	Chaining	FileInputStream	with	BufferedInputStream

try	(FileInputStream	myFile	=	new		FileInputStream("abc.dat");
					BufferedInputStream	buff	=	new	BufferedInputStream(myFile);){
					
												boolean	eof	=	false;
												while	(!eof)	{
																int	byteValue	=	buff.read();
																System.out.print(byteValue	+	"	");
																if	(byteValue		==	-1)
																				eof	=	true;
											}
								}	catch	(IOException	ioe)	{	
												ioe.printStackTrace();
								}
}

While	reading	a	stream	with	the	help	of	BufferedInputStream,	watch	for	the	end-of-file
character	to	know	that	all	the	bytes	have	been	read	from	the	buffer.	The
class	BufferedOutputStream	is	for	writing,	and	you’d	need	to	call	its	method	write().

The	default	buffer	size	is	8Kb,	but	you	can	control	it	using	a	two-argument	constructor	of
the	BufferedInputStream	or	BufferedOutputStream.	For	example,	to	set	the	buffer	size	to
5,000	bytes,	instantiate	the	buffered	stream	as	follows:

BufferedInputStream	buff	=	new	BufferedInputStream(myFile,	5000);

Character	Streams
The	text	in	Java	is	represented	as	a	set	of	char	values	(two-byte	characters),	which	are
based	on	the	Unicode	Standard.	The	Java	classes	FileReader	and	FileWriter	were
specifically	created	to	work	with	text	files,	but	they	work	only	with	default	character
encoding	and	don’t	handle	localization	properly.

The	recommended	way	is	to	pipe	the	class	InputStreamReader	with	specified	encoding
and	the	FileInputStream.	The	class	InputStreamReader	reads	bytes	and	decodes	them	into
characters	using	a	specified	CharSet.	Each	JVM	has	a	default	charset,	which	can	be
specified	during	the	JVM	start-up	and	depends	on	the	locale.	Some	of	the	standard
charsets	are	US-ASCII,	UTF-8,	and	UTF-16.

Listing	14-4	reads	bytes	from	a	text	file	and	converts	them	from	UTF-8	encoding	into
Unicode	to	return	results	as	a	String.	For	efficiency,	the	reading	is	piped	with	the
BufferReader,	which	reads	text	from	the	stream	buffering	characters.	Note	that	this	code
uses	mutable	StringBuffer	that	usually	works	faster	than	String	when	it	comes	to
performing	text	manipulations.	Using	a	mutable	StringBuffer	was	a	recommended	way	to
concatenate	strings.	That’s	why	I	decided	to	illustrate	its	use.

If	you’ll	be	concatenating	regular	String	values,	Java	compiler	will	optimize	this	code
anyway	and	will	replace	String	concatenation	with	yet	another	helper	class	StringBuilder.
You	can	also	manually	use	StringBuilder	instead	of	StringBuffer,	as	shown	in	Lesson	16.	

Listing	14-4:	Reading	text	files

StringBuffer	buffer	=	new	StringBuffer();
				try	(
							FileInputStream	myFile	=	new	FileInputStream("abc.txt");
							InputStreamReader	inputStreamReader	=
																		new	InputStreamReader(myFile,	"UTF8"
);
						Reader	reader	=	new	BufferedReader(inputStreamReader);){
						int	ch;	//	the	code	of	one	character
						while	((ch	=	reader.read())	>	-1)	{
													buffer.append((char)ch);
						}
						buffer.toString();
				}	catch	(IOException	e)	{
										e.printStackTrace();
				}

For	writing	characters	to	a	file,	pipe	FileOutputStream	and	OutputStreamWriter.	For
efficiency,	use	BufferedWriter;	for	example:

try	(FileOutputStream	myFile	=	new	FileOutputStream("abc.txt");	
					Writer	out	=	new	BufferedWriter(

																									new	OutputStreamWriter(myFile,	"UTF8"));)	{
		
		String	myAddress	=	"123	Broadway,	New	York,	NY	10011";
		out.write(myAddress);
}	catch(IOException	e){
							e.printStackTrace();
}

Bringing	Together	GUI	and	I/O	Streams
Listing	14-5	shows	yet	another	version	of	the	tax	calculation	program.	This	time	I’ve
added	a	text	file,	states.txt,	that	includes	states	that	will	be	used	to	populate	a	drop-down
box,	chStates.	My	file	is	located	in	the	root	directory	of	the	Eclipse	project	Lesson14,	and
it	looks	like	this:

New	York
New	Jersey
Florida
California

The	program	in	Listing	14-5	requires	a	class,	Tax,	that	you	can	borrow	from	Lesson
4	class_methods_and_constructors.	Make	sure	that	it	has	the	method	calcTax().

Listing	14-5:	Bringing	together	Swing	and	streams

public	class	TaxGuiFile	extends	JFrame	{
				JLabel	lblGrIncome;
				JTextField	txtGrossIncome	=	new	JTextField(15);
				JLabel	lblDependents=new	JLabel("Number	of	Dependents:");
				JTextField	txtDependents	=	new	JTextField(2);
				JLabel	lblState	=	new	JLabel("State:	");
				
				//Define	a	data	model	for	the	ComboBox	chState
				Vector<String>	states	=	new	Vector<>(50);	
				
				//Create	a	combobox	to	get	data	from	the	model	
				JComboBox	chState	=	new	JComboBox(states);
				JLabel	lblTax	=	new	JLabel("State	Tax:	");
				JTextField	txtStateTax	=	new	JTextField(10);
				JButton	bGo	=	new	JButton("Go");
				JButton	bReset	=	new	JButton("Reset");
				
				TaxGuiFile()	{
								lblGrIncome	=	new	JLabel("Gross	Income:	");
								GridLayout	gr	=	new	GridLayout(5,2,1,1);
								setLayout(gr);

								add(lblGrIncome);
								add(txtGrossIncome);
								add(lblDependents);
								add(txtDependents);
								add(lblState);
								add(chState);
								add(lblTax);
								add(txtStateTax);
								add(bGo);
								add(bReset);
								//	Populate	states	from	a	file
								populateStates();
								
								chState.setSelectedIndex(0);
								txtStateTax.setEditable(false);
								
							//	The	Button	Go	processing	using	lambda	expression			
							bGo.addActionListener(evt	->	{
								try{
									int	grossInc=Integer.parseInt(txtGrossIncome.getText());
									int	dependents=Integer.parseInt(txtDependents.getText());
									String	state	=	(String)chState.getSelectedItem();
									Tax	tax=new	Tax(grossInc,	state,dependents);
									String	sTax	=Double.toString(tax.calcTax());
									txtStateTax.setText(sTax);
								}catch(NumberFormatException	e){
											txtStateTax.setText("Non-Numeric	Data");
								}catch	(Exception	e){
											txtStateTax.setText(e.getMessage());
								}
							});
								
							//	The	Button	Reset	processing	using	lambda	expression
							bReset.addActionListener(evt	->{												
												txtGrossIncome.setText("");
												txtDependents.setText("");
												chState.setSelectedIndex(0);
												txtStateTax.setText("");
							});	
				//	Define,	instantiate	and	register	a	WindowAdapter
				//	to	process	windowClosing	Event	of	this	frame
				this.addWindowListener(new	WindowAdapter()	{
								public	void	windowClosing(WindowEvent	e)	{
												System.exit(0);
								}});
				}

			//	The	code	below	will	read	the	file	states.txt	and		
			//	populate	the	drop-down	chStates

				private	void	populateStates(){
						
								states.add("Select	State");
					
								try	(FileInputStream	myFile	=	
																											new	FileInputStream("states.txt");
																InputStreamReader	inputStreamReader=
																											new	InputStreamReader(myFile,	"UTF8");
																BufferedReader	reader	=		
																							new	BufferedReader(inputStreamReader);){
											
												String	stateName;
												while	((stateName	=	reader.readLine())	!=	null){
																states.add(stateName);
												}
													
											}catch	(IOException	ioe){
															txtStateTax.setText("Can't	read	states.txt:	"	+	
																																														ioe.getMessage());
											}
				}
				public	static	void	main(String	args[]){
							TaxGuiFile	taxFrame	=	new	TaxGuiFile();
							taxFrame.setSize(400,150);
							taxFrame.setVisible(true);
				}
}

The	code	in	Listing	14-5	reads	the	content	of	the	file	states.txt	and	populates	a	collection
—a	Vector	with	states.	The	Vector	collection	(it’s	like	ArrayList	but	synchronized)	plays
the	role	of	a	data	model	for	the	combo	box	states.	I	used	a	constructor	of	JComboBox	that
takes	a	data	model	as	an	argument.	This	Swing	component	knows	how	to	display	the
content	of	its	data	model.

This	is	an	example	of	the	implementation	of	the	MVC	(model-view-controller)	design
pattern,	which	promotes	the	separation	of	data	and	user	interface	(UI).	JComboBox	plays
the	role	of	a	view,	the	Vector	is	a	model,	and	the	user	works	as	a	controller	when	she
selects	a	particular	state	and	the	view	has	to	be	updated.

Note	that	the	TaxGuiFile	class	doesn’t	implement	the		ActionListener	interface.	The	click
event	handling	for	the	Go	and	Reset	buttons	is	implemented	using	lambda	expressions.	

The	output	of	the	program	from	Listing	14-5	is	shown	in	Figure	14-1.	

Splitting	GUI	and	Processing
In	a	larger	application	it	would	make	sense	to	separate	the	class	TaxGuiFile	into	two:
one	would	be	only	creating	GUI	components,	and	the	other	would	read	the	data	from
files	or	other	data	sources.	I	illustrated	this	in	Lesson	9	for	the	calculator	program	that
had	two	classes:	Calculator	and	CalculatorEngine.	

Figure	14-1:	Running	the	TaxGuiFile	program

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch14.xhtml#ActionListener

Data	Streams
If	you	are	expecting	to	work	with	a	stream	of	known	data	primitives	(for	example,	two
integers,	three	floats,	and	a	double)	use	either	DataInputStream	for	reading	or
DataOutputStream	for	writing.	A	method,	readInt(),	of	DataInputStream	reads	the	whole
integer	number	(four	bytes)	at	once,	and	readLong()	gets	you	a	long	number	(eight	bytes).

The	class		DataInputStream	is	yet	another	“pipe”	that	can	be	connected	to	another	stream.
Listing	14-6	has	an	example	of	how	you	can	“build	a	pipe”	from	the	following	pieces:

FileInputStream	→	BufferedInputStream	→	DataInputStream

Listing	14-6:	Using	DataInputStream

try	(FileInputStream	myFile	=	new	FileInputStream("myData.dat");	
					BufferedInputStream	buff	=	new	BufferedInputStream(myFile);	
					DataInputStream	data	=	new	DataInputStream(buff);)	{
					int	num1	=	data.readInt();
					int	num2	=	data.readInt();
					float	num2	=	data.readFloat();
					float	num3	=	data.readFloat();
					float	num4	=	data.readFloat();
					double	num5	=	data.readDouble();
}	catch	(IOException	ioe)	{
				ioe.printStackTrace();
}

In	this	example,	FileInputStream	opens	the	file		myData.dat	for	reading,
BufferedInputStream	makes	the	read	more	efficient,	and	DataInputStream	extracts	from
the	buffer	two	integers,	three	floats,	and	a	double.	The	assumption	here	is	that	the
file	myData.dat	contains	exactly	these	data	types,	and	they’re	in	the	specified	order.	Such
a	file	could	have	been	created	with	the	help	of	DataOutputStream,	which	allows	you	to
write	primitive	Java	data	types	to	a	stream	in	a	portable	way.	It	has	a	variety	of	methods	to
choose	from:	writeInt(),	writeByte(),	writeFloat(),	and	so	on.

Utility	Classes	for	Working	with	Files
Often	you	need	to	do		some	operations	with	files	that	do	not	always	include	reading	or
writing	into	files.	For	example,	you	may	need	to	check	for	the	existence	of	a	file	or
rename	it	programmatically.	Java	includes	utility	classes	File,	Files,	and	Path	that	can
become	handy.	

The	Class	File
The	class	java.io.File	enables	you	to	rename	or	delete	a	file,	perform	an	existence	check,
create	a	directory,	check	the	file	size,	and	more.	If	you	need	this	functionality,	start	by
creating	an	instance	of	this	class:

File	myFile	=	new	File("abc.txt");

This	line	does	not	create	a	file;	it	just	creates	in	memory	an	instance	of	the	class	File	that’s
ready	to	perform	its	action	on	the	file	named	abc.txt.	If	you	want	to	create	a	physical	file,
use	the	method	createNewFile()	defined	in	the	class	File.	Here’s	the	list	of	some	methods
of	the	class	File:

createNewFile():	Creates	a	new,	empty	file	named	according	to	the	file	name	used
during	the	file	instantiation.	Creates	a	new	file	only	if	a	file	with	this	name	does	not
exist.

delete():	Deletes	a	file	or	directory.

renameTo():	Renames	a	file.

length():	Returns	the	length	of	the	file	in	bytes.

exists():	Tests	whether	the	file	with	the	specified	name	exists.

list():	Returns	an	array	of	strings	containing	a	file	and	directory.

lastModified():	Returns	the	time	that	the	file	was	last	modified.

mkDir():	Creates	a	directory.

The	next	code	fragment	checks	for	the	existence	of	the	file	customers.txt.bak,	deletes	it	if
it	is	found,	and	then	renames	the	file	customers.txt	to	customers.txt.bak:

File	file	=	new	File("customers.txt");
File	backup	=	new	File("customers.txt.bak");
if	(backup.exists()){
							backup.delete();
}
file.renameTo(backup);

NIO.2:	Using	Files,	Path,	and	Paths
Java	7	introduced	a	number	of	new	classes	and	interfaces	for	more	efficient	work	with
files	and	directories	often	referred	as	NIO.2.			

http://docs.oracle.com/javase/tutorial/essential/io/fileio.html

The	interface	Path	is	a	programmatic	representation	of	the	full	path	to	the	file,	a	directory,
or	a	URI.	While	the	full	path	to	the	file	is	represented	differently	in	Windows	and	Unix
OS,	each	of	the	file	systems	is	a	hierarchical	tree	of	directories,	subdirectories,	and	files
that	start	from	some	root	node	(e.g.,	c:\	in	Windows	or	/	in	Unix).	

The	path	can	be	absolute	that	starts	from	the	root	directory	on	the	drive	like
/Users/yfain11/practicalJava/workspace/Lesson14/states.bak	and	relative	that	starts	with
the	directory	where	the	application	was	launched	from;	e.g.,	Lesson14/states.bak.	A	file
can	also	be	represented	by	a	so-called	symbolic	link,	that	looks	like	a	file	but	is	actually	a
reference	to	a	different	file	in	a	different	branch	of	the	files	hierarchy.	If	you	want	to	write
a	program	that	can	be	launched	from	any	directory	and	work	with	a	certain	file,	consider
using	absolute	path.	If	your	application	is	deployed	in	a	way	that	a	file	will	always	be
located	in	the	same	place	relative	to	the	location	of	the	main	application,	use	relative	path.

The	interface	Path	allows	you	to	programmatically	represent	a	full	path	according	to	the
underlying	OS	being	used.	First	your	program	should	create	a	Path	object,	and	then	work
with	files	or	directories	located	there.

The	class	java.nio.file.Files	is	similar	to	java.io.File	in	that	it	contains	static	methods	that
operate	on	files	and	directories.	Most	of	these	methods	delegate	the	processing	to	the
underlying	operating	system	(OS)	file	system.	In	addition	to	functionality	of	the	class	File,
the	class	Files	can	walk	directory	trees,	check	a	file’s	attributes	(e.g.,	read/write	access),
understand	if	a	file	is	a	symbolic	link,	and	work	with	streams.	Using	the	class	Files	you
can	copy,	move,	and	delete	files,	too.

You	can	get	a	file	path	by	using	the	method	Paths.get().	The	following	class	TestFilesPaths
checks	if	the	file	states.txt	exists,	then	checks	its	size,	outputs	its	absolute	path,	and	creates
a	backup	copy	of	this	file	named	states.bak.

public	class	TestFilesPaths	{
		public	static	void	main(String[]	args)	{
				//	Get	the	path	to	the	file	states.txt	located	in	dir
				//	this	program	was	launched	from				
				Path	sourceFilePath	=	Paths.get("states.txt");
				
				//	Will	copy	the	source	file	to	this	destination	
				Path	destFilePath	=	Paths.get("states.bak");
				
				if	(Files.exists(sourceFilePath)){
						System.out.println("The	file		"	+	sourceFilePath	+	"	exists");
						System.out.println("The	absolute	path	is	"	+	
																																			sourceFilePath.toAbsolutePath());
								try{
											//	Check	the	file	size	(in	bytes)
											System.out.println("It's	size	is	"	+	
																																						Files.size(sourceFilePath));
								
											//	Copy	the	file	from	states.txt	to	states.bak

http://en.wikipedia.org/wiki/Uniform_resource_identifier

											Files.copy(sourceFilePath,	destFilePath,	
																														StandardCopyOption.REPLACE_EXISTING);
											System.out.println(
																		"Copy	completed.	The	backup	file	is	at	"	+	
																																			destFilePath.toAbsolutePath());	
								
								}	catch(IOException	ioe){
												ioe.printStackTrace();
								}				
				}
		}
}

The	output	of	the	program	TestFilesPaths	looks	as	follows:

The	file	states.txt	exists
The	absolute	path	is	
/Users/yfain11/practicalJava/workspace/Lesson14/states.txt
It's	size	is	41
Copy	completed.	The	backup	file	is	at
/Users/yfain11/practicalJava/workspace/Lesson14/states.bak

Copy	Options
In	the	class	TestFilesPaths	I	was	using	the
option	StandardCopyOption.REPLACE_EXISTING	to	replace	the	destination	file	if
it	exists.	Now	let’s	make	a	little	experiment.	The	class	Files	has	an	overloaded	version
of	the	method	copy	that	takes	only	two	parameters:	the	source	and	the	destination.	If
you’ll	remove	the	parameter	StandardCopyOption.REPLACE_EXISTING,	the
program	will	work	fine	as	long	as	the	output	file	doesn’t	exist	in	the	specified
destination.	So	if	you’ll	run	TestFilesPaths	more	than	once,	the	method	copy()	will
generate	an	exception,	which	on	my	computer	looks	as	follows:

java.nio.file.FileAlreadyExistsException:	states.bak
				at	sun.nio.fs.UnixCopyFile.copy(UnixCopyFile.java:551)
				at	sun.nio.fs.UnixFileSystemProvider.copy(UnixFileSystemProvider.java:253)
				at	java.nio.file.Files.copy(Files.java:1274)
				at	TestFilesPaths.main(TestFilesPaths.java:29)

I’m	using	a	computer	with	MAC	OS,	which	is	Unix	based.	Read	the	exception
message:	The	Java	runtime	properly	figured	out	the	type	of	my	OS		and,	under	the
hood,	engaged	Unix-specific	classes	that	implement	file	copying.	If	you’ll	do	the
same	experiment	in	Window,	the	exception	stack	trace	will	look	different.

As	a	matter	of	fact,	you	can	specify	more	than	one	copy	option	while	invoking	copy()
or	move().		The	option	COPY_ATTRIBUTES	will	set	the	same	security	attributes	on
the	destination	files.	The	option	ATOMIC_MOVE	will	ensure	that	the	copy	or	move
operation	will	roll	back	in	case	of	failure.

The	class	Files	can	also	open	input	and	output	streams	and	read/write	into	them.	You	can
find	the	complete	list	of	all	methods	of	the	class	Files	in	the	Java	documentation
at	http://goo.gl/LBhZYF.

http://goo.gl/LBhZYF

What	NIO	Is	About
In	this	lesson	you’ve	learned	how	to	work	with	I/O	streams	using	small	files.	The	real-
world	applications,	sometimes,	need	to	process	files	that	are	hundreds	of	megabytes	in
size.	While	the	file	is	being	read,	the	main	program	may	need	to	perform	other
application-specific	functions.	I’ll	give	you	an	example	from	the	GUI-related
programming.	Imagine	that	the	TaxGuiFile	program	has	to	read	not	a	small	but	a	large
file,	which	takes	20	seconds.	The	GUI	will	become	non-responsive	for	20	seconds	if
you’ll	be	using	blocking	I/O	in	a	wrong	way.	In	Lesson	17	you’ll	be	learning	about
concurrent	processing	and	multi-threading.	You	should	run	a	long-running	code	in	a
separate	thread	of	execution,	so	the	main	thread	that’s	responsible	for	the	communication
with	GUI	will	remain	operational.	In	particular,	I’ll	explain	what	SwingWorker	thread	is
for	in	Lesson	17	and	how	to	avoid	“frozen	screens”	in	JavaFX	applications	in	Lesson	19.

Blocking	I/O	may	become	a	bottleneck	in	your	application,	if	you	need	to	come	up	with	a
scalable	solution	that	reads/writes	large	amounts	of	data.	Yes,	you	can	use	blocking	I/O	in
a	separate	thread	of	execution.	But	a	better	alternative	is	to	use	non-blocking	I/O	that	was
first	introduced	in	Java	1.4,	and	improved	in	Java	7.	The	non-blocking	mode	of	Java	NIO
allows	to	create	channels	so	a	thread	can	read	(or	write)	only	the	data	that’s	currently
available.	The	thread	doesn’t	wait	till	all	the	data	is	available	and	can	continue	processing
some	other	tasks.	Working	with	NIO	channels	is	not	covered	in	this	book.	Please	refer	to
Oracle	documentation.	

I’ll	show	you	just	a	couple	of	examples	of	using	the	class	java.nio.Files	for	working	with
text	files.	This	helper	class	consists	of	multiple	static	methods	that	can	help	you	with
various	file	operations.	For	the	complete	list	of	available	operations	refer	to	the	javadoc	on
Files.

Reading	a	file	with	the	class	Files	is	even	easier	than	with	the	classes	from	the	java.io
package	.	For	example,	to	read	the	file	states.txt	that	I	used	in	the	TestGuiFile	class	can	be
done	as	follows:

public	class	TestBufferedReaderNio	{
				public	static	void	main(String[]	args){
								Path	statesFile	=	Paths.get("states.txt");
								try	(BufferedReader	reader	=	
																Files.newBufferedReader(statesFile,	
																																										StandardCharsets.UTF_8)){
												String	stateName;
												while	((stateName	=	reader.readLine())	!=	null){
																System.out.println("Got	the	state	"	+	stateName);
												}
												
								}	catch	(IOException	ioe){
												System.out.println("Error	while	reading	states.txt:	"	+
																																																ioe.getMessage());
								}
				}

http://docs.oracle.com/javase/tutorial/essential/io/file.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

}

The	class	TestBufferedReaderNio	uses	the	method		newBufferedReader()	that	spares	you
from	manually	creating	an	input	stream.	

If	you	want	to	read	all	lines	from	a	file	into	a	Java	collection	it	can	be	easily	done	with	the
method	readAllLines()	from	the	class	Files.	

public	class	TestReadAllNio	{
				public	static	void	main(String[]	args){
								Path	statesFile	=	Paths.get("states.txt");
								try	{
												//	Populate	the	collection
												List<String>	states	=	Files.readAllLines(statesFile,	
																																												StandardCharsets.UTF_8);
											
												//	Print	state	names
												states.forEach(System.out::println);	
												
								}	catch	(IOException	ioe){
												System.out.println("Error	while	reading	states.txt:	"	
																																															+	ioe.getMessage());
								}
				}
}

Writing	into	a	text	file	is	simple,	too:

Path	myOutputFile	=	Paths.get("someOutputFile.txt");	
try	(BufferedWriter	writer	=	Files.newBufferedWrite(myOutputFile,	
													StandardCharsets.UTF_8,	StandardOpenOption.CREATE))	{
				writer.write("Whatever	you	want	to	write");
}

The	enumeration	StandardOpenOption	allows	you	to	specify	how	you	want	to	open	the
file;	e.g.,	append	to	an	existing	file,	create	a	new	file	if	none	exists,	et	al.	See	the	javadoc
for	details.		

Another	interesting	feature	of	NIO	is	the	ability	to	perform	input/output	operations
asynchronously,	which	may	substantially	increase	the	scalability	of	your	application.		If
you’ll	need	to	work	with	large	amounts	of	data,	research	asynchronous	classes	and
interfaces	located	in	the	package	java.nio.channels.	For	more	detailed	coverage	of	NIO	get
the	book	titled	“The	Well-Grounded	Java	Developer”	published	by	Manning	in	2012.	

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html

Try	It
Write	a	program	that	will	read	a	.zip	archive	file	and	print	on	the	system	console	the	list	of
files	included	in	the	zip	archive.	Do	a	little	research	about	the	class
java.util.zip.ZipInputStream	and	use	it	together	with	FileInputStream.	Read	about	the
class	ZipEntry,	too.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson14.zip	folder	in	the	download.

Step-by-Step
1.	 Create	a	new	Eclipse	project	called	Lesson14.

2.	 Copy	any	.zip	file	into	its	root	directory.

3.	 Open	FileInputStream	and	connect	it	with	ZipInputStream.

4.	 Write	a	loop	that	uses	the	method	getNextEntry()	from	ZipInputStream.	This	method
reads	the	ZipEntry,	if	any,	and	positions	the	stream	at	the	beginning	of	the	entry	data.

5.	 Call	the	function	getName()	on	each	ZipEntry	instance	found.

6.	 Print	the	entry	name	on	the	system	console.

7.	 Close	the	entry	inside	the	loop.

8.	 Run	the	program	and	observe	that	it	properly	prints	the	filenames	from	the	selected
.zip	file.

9.	 If	you	want	to	learn	how	to	create	.zip	files	from	Java,	read	about	the	class
	ZipOutputStream.

TIP			Please	select	the	videos	for	Lesson	14	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	15
Java	Serialization
Imagine	a	building	that,	with	a	push	of	a	button,	can	be	turned	into	a	pile	of	construction
materials	and	the	possessions	of	its	residents.	Push	another	button	and	the	building	is	re-
created	in	its	original	form	in	a	different	location.	This	is	what	Java	serialization	is	about.
By	“pushing	the	serialize	button”	you	turn	an	instance	of	an	object	into	a	pile	of	bytes,	and
“pushing	the	deserialize	button”	magically	re-creates	the	object.

Wikipedia	defines	the	term	serialization	as

the	process	of	translating	data	structures	or	object	state	into	a	format	that	can	be
stored	(for	example,	in	a	file	or	memory	buffer,	or	transmitted	across	a	network
connection	link)	and	reconstructed	later	in	the	same	or	another	computer
environment.	When	the	resulting	series	of	bits	is	reread	according	to	the	serialization
format,	it	can	be	used	to	create	a	semantically	identical	clone	of	the	original	object	…
This	process	of	serializing	an	object	is	also	called	deflating	or	marshalling	an	object.
The	opposite	operation,	extracting	a	data	structure	from	a	series	of	bytes,	is
deserialization	(which	is	also	called	inflating	or	unmarshalling).

In	Chapter	14	you	became	familiar	with	streams	that	deal	with	single	bytes,	characters,
Java	primitives,	and	text.	Now	you	see	why	and	how	to	write	objects	into	streams,	or	how
to	serialize	Java	objects.

Consider	the	following	scenario:	ClassA	creates	an	instance	of	the	object	Employee,
which	has	the	fields	firstName,	lastName,	address,	hireDate,	salary,	and	so	on.	The	values
of	these	fields	(that	is,	the	object’s	state)	have	to	be	saved	in	a	stream.	Later,		ClassB,
which	needs	these	data,	somehow	has	to	re-create	the	instance	of	the	object	Employee	in
memory.	The	instances	of	ClassA	and	ClassB	may	live	in	two	different	Java	Virtual
Machines	(JVMs)	running	on	different	computers.

Sure	enough,	your	program	can	memorize	the	order	of	the	fields	and	their	data	types	of
firstName,	lastName,	address,	hireDate,	and	salary,	and	loop	through	the	fields	performing
the	output	with	DataOutputStream.	The	program	that	reads	this	stream	needs	to	know	the
fields’	order	and	their	types.	

Here’s	another	use	case:	Your	application	has	a	Preferences	menu	where	the	user	can
select	fonts,	colors,	and	user	interface	(UI)	controls	that	should	be	displayed	on	the
opening	view.	To	support	such	functionality,	the	Preferences	panel	creates	an	instance	of	a
class,	UserPreferences,	with	50	configurable	properties	(some	of	which	are	of	custom	data
types)	that	have	to	be	saved	in	a	local	file.	On	the	next	start	of	the	application,	the
previously	saved	data	should	be	read	from	this	file	with	the	re-creation	of	the
UserPreferences	object.

Writing	a	manual	procedure	that	uses,	say,	DataOutputStream	on	each	primitive	property
and	then	recursively	performs	the	same	operation	for	each	non-primitive	type	is	tedious.
Besides,	this	code	would	need	to	be	changed	each	time	the	properties	of	class
UserPreferences	change.

You	can	achieve	the	same	result	in	a	more	elegant	way,	not	one	property	at	a	time,	but	one

object	at	a	time,	with	the	help	of	such	streams	as	ObjectOutputStream	and
ObjectInputStream.	This	process	is	known	as	Java	serialization,	which	enables	you	to
save	objects	in	a	stream	in	one	shot.	

NOTE			This	lesson	discusses	only	core	Java	serialization.	But	the	process	of
converting	an	instance	of	Java	into	XML,	JSON,	or	another	text	format	is	also
referred	to	as	serialization.	You	see	an	example	of	serialization	into	JSON	and	XML
formats	in	Lesson	33	on	RESTFul	Web	Services.	

ClassA	serializes	the	object	Employee,	and	ClassB	deserializes	(reconstructs)	this	object.
To	support	this	mode,	the	class	Employee	has	to	be	serializable—that	is,	it	has	to
implement	the	Serializable	interface,	as	shown	in	Listing	15-1.

Listing	15-1:	Serializable	class	Employee

class	Employee	implements	java.io.Serializable{
					String	lName;
					String	fName;
					double	salary;
}

The	interface	Serializable	does	not	define	any	methods,	so	the	class	Employee	has	nothing
to	implement.	If	an	interface	doesn’t	declare	any	methods	it’s	called	a	marker	interface.
The	marker	interfaces	are	just	affecting	the	way	compiler	generates	the	bytecode.

Two	use	cases	described	in	this	section	represent	the	main	uses	for	Java	serialization:
distribution	of	the	Java	objects	between	different	JVMs	and	object	persistence	for	future
reuse.	Often	serialization	is	implemented	internally	by	various	Java	frameworks	to	pass
objects	between	tiers	of	a	distributed	application	that	runs	on	multiple	servers	and	client
computers.

Some	Java	frameworks	use	serialization	to	load	or	unload	objects	to	free	the	JVM’s
memory	(these	are	known	as	passivation	and	activation	of	objects,	respectively).	Later	in
the	book	you	learn	about	RMI	and	EJB,	which	use	serialization	a	lot.	But	even	in	regular
business	application	development	you	may	need	to	serialize	and	deserialize	application-
specific	objects.	This	process	comes	down	to	reading	from	and	writing	into	streams,
namely	java.io.ObjectInputStream	and	java.io.ObjectOutputStream,	respectively.

The	Class	ObjectOutputStream
To	serialize	an	object	perform	the	following	actions:

1.	 Open	an	output	stream.

2.	 Chain	it	with	ObjectOutputStream.

3.	 Call	the	method	writeObject(),	providing	the	instance	of	a	Serializable	object	as	an
argument.

4.	 Close	the	stream.

Listing	15-2	shows	a	code	sample	that	serializes	an	instance	of	the	Employee	object	into
the	file	c:\practicalJava\BestEmployee.ser.	This	code	first	opens	FileOutputStream	and
then	chains	it	with	ObjectOutputStream.	The	method	writeObject()	performs	the
serialization	of	the	Employee	instance	in	one	shot.

Listing	15-2:	Serializing	an	Employee	object	into	a	file

class	ClassA	{
	
		public	static	void	main(String	args[]){
				
				Employee	emp	=	new	Employee();
				emp.lName	=	"John";
				emp.fName	=	"Smith";	
				emp.salary	=	50000;
							
				try	(FileOutputStream	fOut	=	
																							new	FileOutputStream("BestEmployee.ser");
									ObjectOutputStream	oOut	=	
																																new	ObjectOutputStream(fOut);){			
					oOut.writeObject(emp);		//serializing	employee
			}	catch	(IOException	ioe){
						ioe.printStackTrace();
			}		
			System.out.println(
					"Employee	object	has	been	serialized	into	BestEmployee.ser");
		}	
}

All	Java	primitive	data	types	are	serializable.	All	member	variables	of	the	serializable
class	must	be	either	Java	primitives	or	reference	variables	pointing	to	objects	that	are	also
serializable.	The	class	Employee	from	Listing	15-1	contains	only	serializable	data	types.
But	if	a	class	has	fields	of	custom	data	types,	each	of	them	has	to	be	serializable.	The
Employee	class	from	Listing	15-3	can	be	serialized	only	if	the	class	PromotionHistory
(and	all	data	types	it	uses)	was	declared	with	implements	Serializable.

Listing	15-3:	Class	Employee	with	custom	data	types

class	Employee	implements	java.io.Serializable{
					String	lName;
					String	fName;
					double	salary;
					PromotionHistory	promos;	//	A	custom	data	type
}

If	you	do	not	want	to	serialize	some	sensitive	information,	such	as	salary,	declare	this
variable	using	the	keyword	transient.	If	you	declare	the	field	salary	of	the	class	Employee
with	the	transient	qualifier,	its	value	won’t	be	serialized.	The	serialized	set	of	bytes	will
still	contain	the	transient	field,	but	it’s	not	going	to	be		the	actual	value;	such	a	field	will
have	a	default	value	for	its	type.	

transient	double	salary;

Typically,	you	declare	a	variable	as	transient	if	it	contains	some	sensitive	information	or	if
its	value	is	useless	in	the	destination	stream.	Suppose	a	Java	class	that	runs	on	the	server
has	database	connectivity	variables.	If	such	a	class	gets	serialized	to	the	client’s	machine,
sending	database	credentials	may	be	not	only	useless,	but	unsafe.	Therefore,	such
variables	have	to	be	declared	as	transient.	One	more	reason	to	use	the	transient	keyword	is
to	serialize	an	object	that	includes	fields	of	non-serializable	types.

The	Class	ObjectInputStream
To	deserialize	an	object	perform	the	following	steps:

1.	 Open	an	input	stream.

2.	 Chain	it	with	the	ObjectInputStream.

3.	 Call	the	method	readObject()	and	cast	the	returned	object	to	the	class	that	is	being
deserialized.

4.	 Close	the	stream.

Listing	15-4	shows	a	code	sample	that	reads	the	previously	serialized	file
BestEmployee.ser.	This	code	opens	a	FileInputStream	that	points	at	BestEmployee.ser	and
then	chains	the	FileInputStream	with	ObjectInputStream.	The	method	readObject()
resurrects	the	instance	of	the	Employee	object	in	memory.

Listing	15-4:	Deserializing	Employee	from	file

import	java.io.*;
class	ClassB	{
	
		public	static	void	main(String	args[]){
							
				try	(FileInputStream	fIn	=	
																		new		FileInputStream("BestEmployee.ser");
									ObjectInputStream	oIn	=	new	ObjectInputStream(fIn);){
													
									Employee	bestEmp=(Employee)oIn.readObject();
					
			}catch	(ClassNotFoundException	cnf){
							cnf.printStackTrace();
			}	catch	(IOException	ioe){
					ioe.printStackTrace();
			}
			
			System.out.println(
																			"The	Employee		object	has	been	deserialized.");
		}	
}

Note	that	the	class	that	deserializes	an	object	has	to	have	access	to	its	declaration	or	the
ClassNotFoundException	is	thrown.	During	the	process	of	deserialization	all	transient
variables	are	initialized	with	the	default	values	for	their	type.	For	example,	int	variables
have	a	value	of	0.

Keep	in	mind	that	class	variables	with	longer	names	produce	larger	footprints	when	the

object	is	serialized.	In	time-critical	applications	this	may	be	important.	Imagine	a	Wall
Street	trading	system	in	which	each	order	is	presented	as	an	object,	TradeOrder,	with	50
fields,	and	you	need	to	send	1,000	of	these	objects	over	the	network	using	serialization.
Simply	shortening	each	field	name	by	one	character	can	reduce	the	network	traffic	by
almost	50	KB!	You	find	out	how	to	open	the	network	streams	in	Chapter	16.

The	Interface	Externalizable
Continuing	with	the	example	of	the	trade	order,	the	knowledge	of	the	values	of	all	50
fields	from	the	class	TradeOrder	may	be	required	to	support	certain	functionality	of	the
application,	but	when	the	program	has	to	send	a	buy	or	sell	request	to	the	stock	exchange,
only	ten	fields	may	be	needed.

This	raises	a	question—can	the	process	of	serialization	be	customized	so	only	some	of	the
object	fields	are	serialized?

The	method	writeObject()	of	ObjectOutputStream	sends	all	the	object’s	fields	into	a
stream.	But	if	you	want	to	have	more	control	over	what	is	being	serialized	and	decrease
the	footprint	of	your	object,	implement	the	Externalizable	interface,	which	is	a	subclass	of
Serializable.

This	interface	defines	two	methods:	readExternal()	and	writeExternal().	These	methods
have	to	be	written	by	you	to	implement	serialization	of	only	the	selected	fields.	Listing	15-
5	shows	a	fragment	of	a	class,	Employee2,	that	implements	Externalizable.	It	has	several
fields,	but	in	a	certain	scenario	only	id	and	salary	have	to	be	serialized.

Listing	15-5:	Externalizable	version	of	Employee

class	Employee2	implements	java.io.Externalizable	{
							String	lName;
							String	fName;
							String	address;
							Date	hireDate;
							int	id;
							double	salary;
			public	void	writeExternal(ObjectOutput	stream)
																															throws	java.io.IOException	{
				//	Serializing	only	the	salary	and	id
				stream.writeDouble(salary);
				stream.writeInt(id);
			}
			public	void	readExternal(ObjectInput	stream)
																															throws	java.io.IOException	{
					salary	=	stream.readDouble();	//	Order	of	reads	must	be	the
																																			//	same	as	the	order	of	writes
					id	=	stream.readInt();
			}
}

Note	that	each	property	of	the	class	is	individually	serialized	and	the	methods
writeExternal()	and	readExternal()	must	write	and	read	properties,	respectively,	in	the
same	order.	The	class	EmpProcessor	from	Listing	15-6	shows	how	to	externalize	the

object	Employee2.

Listing	15-6:	Externalizing	an	Employee	object

import	java.io.*;
import	java.util.Date;
public	class	ClassAExt	{
		public	static	void	main(String[]	args)	{
						Employee2	emp	=	new	Employee2();
						emp.fName	=	"John";
						emp.lName	=	"Smith";
						emp.salary	=	50000;
						emp.address	=	"12	main	street";
						emp.hireDate	=	new	Date();
						emp.id=123;
						
						try	(FileOutputStream	fOut=	
																		new	FileOutputStream("NewEmployee2.ser");
												ObjectOutputStream	oOut	=	
																		new	ObjectOutputStream(fOut);){	
							
										emp.writeExternal(oOut);	//externalizing	employee
										System.out.println(
												"An	employee	is	externalized	into	NewEmployee2.ser");
						}catch(IOException	ioe){
										ioe.printStackTrace();						
						}		
	}
}

You	had	to	write	a	little	more	code	to	implement	the	Externalizable	interface	than	to
implement	the	Serializable	interface,	but	the	size	of	the	file	NewEmployee2.ser	will	be
substantially	smaller.	First	of	all,	you	serialized	the	values	of	only	two	properties,	and	files
created	with	the	Externalizable	interface	contain	only	data,	whereas	files	created	with
Serializable	also	contain	class	metadata	that	includes	properties’	names.	The	ClassBExt	in
Listing	15-7	shows	you	how	to	re-create	in	memory	the	externalized	object	Employee2.

Listing	15-7:	Re-creating	the	externalized	object

public	class	ClassBExt	{
		public	static	void	main(String[]	args)	{
						
						try	(FileInputStream	fIn=	
																						new	FileInputStream("NewEmployee2.ser");
											ObjectInputStream	oIn	=	new	ObjectInputStream(fIn);){
										Employee2	emp	=	new	Employee2();
										emp.readExternal(oIn);
										
										System.out.println("Deserialized	employee	with	id	"	
																																																					+	emp.id);	
										//	format	the	output	as	dollars
										System.out.printf("salary	=	$%7.2f",	emp.salary);	
						}catch	(IOException	ioe){
										ioe.printStackTrace();
						}
						
		}
}

Class	Versioning
Imagine	that	a	program,	ClassA,	serializes	the	Employee	object	from	Listing	15-1	into	a
file	on	Mary’s	computer.	Two	days	later	Mary	starts	another	program,	ClassB,	that	offers	a
download	of	its	new	version	with	long-awaited	features.	After	upgrade,	ClassB	starts
generating	errors,	which	are	caused	by	the	fact	that	the	new	upgrade	includes	a	modified
version	of	the	class	Employee	that	now	has	one	property	with	a	different	data	type	than
what	exists	in	memory.	The	upgrade	also	includes	one	new	property	that	wasn’t	in	the
previous	version	of	the	Employee	object.

Now	the	deserialization	process	tries	to	ignore	the	new	property	but	fails	because	of	the
mismatched	property	types	between	the	serialized	and	in-memory	versions	of	Employee.
Serialization	may	also	fail	because	of	a	change	in	the	inheritance	tree	of	Employee.

During	serialization,	JVM	automatically	calculates	a	special	value:	the	serial	version
unique	ID,	which	is	based	on	the	properties	of	the	serializable	object,	the	class	name,	the
implemented	interfaces,	and	the	signatures	of	non-private	methods.	If	you	are	curious	to
see	how	this	number	looks	for	your	class,	run	the	program	serialver	(it’s	located	in	the	bin
directory	of	your	Java	install),	providing	the	name	of	your	class	as	a	command-line
argument.

But	if	your	class	explicitly	defines	and	initializes	a	static	final	variable	called
serialVersionUID,	Java	uses	your	value	instead	of	trying	to	generate	one.	For	example:

public	static	final	serialVersionUID	=	123;

Now,	if	you	keep	the	value	of	this	variable	in	the	new	version	of	Employee	the	same	as	in
the	old	one,	you	have	some	freedom	to	add	more	methods	to	this	class,	and	JVM	assumes
that	both	classes	have	the	same	version.	If	a	new	version	has	added	a	public	field,	the
deserialization	process	ignores	it.	If	a	new	version	has	removed	a	field,	the	deserialized
version	still	has	it	initialized	with	a	default	value.	But	if	you	change	the	data	type	for	the
public	field,	the	deserialization	process	fails	anyway.

Serializing	into	Byte	Arrays
You	can	also	serialize	objects	into	an	in-memory	array	of	bytes—byte[].	This	can	be	the
easiest	way	of	creating	a	sort	of	memory	blob	that	can	be	exchanged	among	different
virtual	machines	(VMs).

The	syntax	of	such	serialization	is	pretty	straightforward.	Let’s	assume	that	you	have	a
class	called	XYZ	that	implements	Serializable	and	contains	all	the	elements	of	your	report
in	the	proper	format.	To	prepare	a	byte	array	from	it,	write	the	code	in	Listing	15-8.

Listing	15-8:	Turning	an	object	into	an	array	of	bytes

XYZ	myXyz	=	new	XYZ();
//	Code	to	assign	values	to	the	fields	of	myXyz	goes	here
//...
ByteArrayOutputStream	baOut	=	new	ByteArrayOutputStream(5000);
ObjectOutputStream	oOut	=	new	ObjectOutputStream(
																															new	BufferedOutputStream(baOut));
//Here	comes	the	serialization	part
oOut.writeObject(myXyz);
oOut.flush();
//	create	a	byte	array	from	the	stream
byte[]	xyzAsByteArray	=	baOut.toByteArray();
oOut.close();

Another	convenient	use	for	serializing	into	a	byte	array	is	object	cloning,	which	is	the
creation	of	an	exact	copy	of	an	object	instance.	Even	though	the	class	Object,	the	root	of
all	classes,	includes	the	method	clone(),	it	works	only	with	objects	that	implement	another
marker	interface	Cloneable;	otherwise	the	cloning	fails.	Things	may	get	more	complicated
when	an	object	contains	instances	of	other	objects:	You	need	to	program	a	deep	copy	of
the	object.

Serialization	into	a	byte	array	with	immediate	deserialization	creates	a	deep	copy	of	the
object	in	no	time.	After	executing	the	code	from	Listing	15-9	you	get	two	identical	objects
in	memory.	The	variable	bestEmployee	points	at	one	of	them,	and	the	variable
cloneOfBestEmployee	points	at	another.

Listing	15-9:	Object	cloning	with	serialization

Employee	bestEmployee	=	new	Employee();
//Serialize	into	byte	array
ByteArrayOutputStream	baOut	=	new	ByteArrayOutputStream();
ObjectOutputStream	oOut	=	new	ObjectOutputStream(baOut);
oos.writeObject(bestEmployee);
//Deserialize	from	byte	array	to	clone	the	object
ByteArrayInputStream	baIn	=	
																				new	ByteArrayInputStream(baOut.toByteArray());
ObjectInputStream	oIn	=	new	ObjectInputStream(baIn);
Employee	cloneOfBestEmployee	=	(Employee)	oin.readObject();

Try	It
Create	a	Java	Swing	program	called	MyCustomizableGUI	that	enables	the	user	to	specify
her	preferences,	such	as	background	color,	font	family,	and	size.	Pick	any	GUI
components	that	have	these	attributes.	Selected	values	should	be	assigned	to	fields	of	the
serializable	class	UserPreferences	and	be	serialized	into	the	file	preferences.ser.	Each	time
MyCustomizableGUI	is	started	it	should	determine	if	the	file	preferences.ser	exists.	If	the
file	does	exist,	MyCustomizableGUI	should	deserialize	it	and	apply	previously	saved
preferences	to	the	GUI.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson15.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project	and	name	it	Lesson15.

2.	 Create	an	executable	Swing	class	called	MyCustomizableGUI	with	a	text	field	and	a
User	Preferences	button.

3.	 Program	the	button	to	open	a	new	window	Preferences	(based	on	JDialog)	that	has
three	drop-down	menus	(JComboBox),	a	Save	button,	and	a	Cancel	button.	The	first
drop-down	menu	enables	the	user	to	select	a	color,	the	second	a	font,	and	the	third	a
font	size.

4.	 Create	a	serializable	class,	UserPreferences,	that	remembers	the	user’s	selections.
When	the	user	has	made	her	choices,	the	Save	button	has	to	serialize	the	instance	of
UserPreferences	into	a	file	named	preferences.ser.

5.	 Each	time	MyCustomizableGUI	starts	it	has	to	determine	if	the	file	preferences.ser
exists,	deserialize	it	if	so,	and	apply	the	appropriate	color	as	the	background	color	of
the	window	MyCustomizableGUI.	The	font	preferences	should	be	applied	to	the	text
field.

6.	 Run	the	program	to	ensure	that	you	can	change	and	save	the	preferences	and	that	they
are	properly	applied	to	the	GUI.

TIP			Please	select	the	videos	for	Lesson	15	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	16
Network	Programming	Basics
Computers	connected	to	a	network	can	communicate	with	each	other	only	if	they	agree	on
the	rules	of	communication,	called	protocols,	that	define	how	to	request	the	data,	if	the
data	should	be	sent	in	pieces,	how	to	acknowledge	received	data,	if	the	connection
between	two	computers	should	remain	open,	and	so	on.	TCP/IP,	UDP/IP,	FTP,	HTTP,	and
WebSocket	are	some	examples	of	network	protocols.

Local	area	network	(LAN)	refers	to	a	computer	network	connecting	devices	in	a	small	area
—for	example,	the	same	office	or	house,	or	a	rack.	Interconnected	computers	located
farther	apart	or	that	belong	to	different	companies	are	part	of	a	wide	area	network	(WAN).
The	Internet	consists	of	millions	of	networks	and	individual	devices.	Connected	networks
that	belong	to	the	same	organization	are	referred	to	as	an	intranet.	For	security	reasons
intranets	are	shielded	from	the	rest	of	the	world	by	special	software	called	firewalls.	This
lesson	introduces	networking	using	HTTP	protocol	and	sockets.

The	World	Wide	Web	(WWW)	uses	uniform	resource	locators	(URLs)	to	identify	online
resources.	For	example,	the	following	URL	says	that	there	is	(or	will	be	generated	on	the
fly)	a	document	called	training.html	located	at	the	remote	host	known	as	mycompany.com,
and	that	the	program	should	use	the	HTTP	protocol	to	request	this	document.	It	also	states
that	this	request	has	to	be	sent	via	port	80.

http://www.mycompany.com:80/training.html

The	hostname	must	be	unique,	and	it	is	automatically	converted	to	the	Internet	Protocol
(IP)	address	of	the	physical	server	by	your	Internet	service	provider	(ISP),	which	is	also
known	as	your	hosting	company.	The	IP	address	is	a	group	of	four	numbers	(IPv4)—for
example	122.65.98.11—or	up	to	eight	hexadecimal	numbers	(IPv6)—such	as
2001:cdba:0000:0000:0000:0000:3257:9652	.	Most	of	the	individuals	connected	to	the
Internet	are	getting	dynamic	(not	permanent)	IP	addresses	assigned	to	their	computers,	but
for	an	extra	fee	you	can	request	a	static	IP	address	that	can	be	assigned	to	any	server
located	in	your	basement,	office,	or	garage.	In	enterprises,	network	computers	usually	get
static	(permanent)	IP	addresses.	For	individual	use,	it’s	sufficient	to	have	a	dynamically
assigned	IP	address	as	long	as	your	ISP	can	find	your	server	by	resolving	a	domain	name
to	the	current	IP	address.

Finding	a	resource	online	is	somewhat	similar	to	finding	a	person	by	his	or	her	address.
The	role	of	an	IP	address	is	similar	to	the	role	of	a	street	number	of	a	building,	and	a	port
plays	the	role	of	an	apartment	number	in	that	building.	Many	people	can	live	in	the	same
building,	just	as	many	programs	can	run	on	the	same	server.	A	port	is	simply	a	unique
number	assigned	to	a	server	program	running	on	the	computer.

Multiple	Java	technologies	exist	for	providing	data	exchange	among	computers	in	a
network.	Java	provides	classes	for	network	programming	in	the	package	java.net.	This
lesson	shows	you	how	to	read	data	from	the	Internet	using	the	class	URL	as	well	as	direct
socket-to-socket	programming.	Starting	with	Lesson	25	you	become	familiar	with	other
technologies	that	you	can	use	over	the	network:	Java	Servlets,	RMI,	EJB,	Web	Services,

and	JMS.

Reading	Data	from	the	Internet
You	learned	in	Chapter	14	that	to	read	local	file	streams,	a	program	has	to	know	the	file’s
location—for	example,	c:\practice\training.html.	The	same	holds	true	for	reading	remote
files—the	only	difference	is	that	you	open	the	stream	over	the	network.	Consider	reading
remote	data	using	HTTP	protocol.	Java	has	a	class,	java.net.URL,	that	helps	you	connect
to	a	remote	computer	on	the	Internet	and	get	access	to	a	resource	there,	provided	that	it’s
not	protected	from	the	public.	First,	create	an	instance	of	the	URL	of	your	resource:

try{
		URL	xyz	=	new	URL("http://www.xyz.com:80/training.html");
				...
}
catch(MalformedURLException	murle){
						murle.printStackTrace();
}

The	MalformedURLException	is	thrown	if	an	invalid	URL	has	been	specified—for
example,	if	you	typed	htp	instead	of	http	or	included	extra	spaces.	If	the
MalformedURLException	is	thrown,	it	does	not	indicate	that	the	remote	machine	has
problems;	just	check	“the	spelling”	of	your	URL.

Creation	of	the	URL	object	does	not	establish	a	connection	with	the	remote	computer;	you
still	need	to	open	a	stream	and	read	it.	Perform	the	following	steps	to	read	a	file	from	the
Internet	via	HTTP	connection:

1.	 Create	an	instance	of	the	class	URL.

2.	 Create	an	instance	of	the	URLConnection	class	and	open	a	connection	using	the	URL
from	Step	1.

3.	 Get	a	reference	to	the	input	stream	of	this	object	by	calling	the	method
URLConnection.getInputStream().

4.	 Read	the	data	from	the	stream.	Use	a	buffered	reader	to	speed	up	the	reading	process.

While	using	streams	over	the	networks	you’ll	have	to	handle	possible	I/O	exceptions	the
way	you	did	while	reading	the	local	files.	The	server	you	are	trying	to	connect	to	has	to	be
up	and	running,	and,	if	you’re	using	HTTP-based	protocols,	a	special	software—a	web
server—has	to	be	“listening	to”	the	specified	port	on	the	server.	By	default,	web	servers
are	listening	to	all	HTTP	requests	on	port	80	and	to	secure	HTTPS	requests	directed	to
port	443.

The	program	in	Listing	16-1	reads	the	content	of	the	existing	or	generated	file	index.html
from	google.com	and	prints	its	content	on	the	system	console.	To	test	this	program	your
computer	has	to	be	connected	to	the	Internet.	

Listing	16-1:	Reading	the	content	of	the	home	page	at	google.com

public	class	WebSiteReader	{
		public	static	void	main(String	args[]){
							String	nextLine;
							URL	url	=	null;
							URLConnection	urlConn	=	null;
							try
							{
									//	Assume	index.html	is	a	default	home	page	name
										url		=	new	URL("http://www.google.com");
										urlConn	=	url.openConnection();
							}	catch(IOException	e){
											System.out.println("Can't	connect	to	the	provided	URL:"	+
																																															e.toString());
							}	
							
							try(InputStreamReader	inStream	=	new	InputStreamReader(
													urlConn.getInputStream(),	"UTF8");
												BufferedReader	buff		=	new	BufferedReader(inStream);){
					
						//	Read	and	print	the	content	of	the	Google's	home	page
								while	(true){
													nextLine	=buff.readLine();		
													if	(nextLine	!=null){
																System.out.println(nextLine);	
													}
													else{
															break;
													}	
									}
							}	catch(IOException		ioe){
						System.out.println("Can't	read	from	the	Internet:	"+
																																										ioe.toString());	
					}
	}
}

The	code	in	Listing	16-1	creates	an	instance	of	the	class	URL,	then	gets	a	reference	to	an
instance	of	URLConnection	to	open	a	connection	with	the	stream,	and,	finally,	opens
InputStreamReader,	which	is	chained	with	BufferedReader.	Run	this	program	and	you	see
the	output	shown	in	Listing	16-2.

Listing	16-2:	The	fragment	of	console	output	shown	after	google.com	is	read

<!doctype	html><html	itemscope=""	itemtype="http://schema.org/WebPage"
lang="en">
<head><meta	content="Search	the	world's	information,	
including	webpages,	images,	videos	and	more.	Google	has	many	special	
features	to	help	you	find	exactly	what	you're	looking	for."	
name="description"><meta	content="noodp"	name="robots">
<meta	content="/images/google_favicon_128.png"	itemprop="image">
<title>Google</title><script>(function(){
window.google={kEI:"kJLGU6f4DJSqyAT6l4K4DA",getEI:function(a){
for(var	c;a&&(!a.getAttribute||!(c=a.getAttribute("eid")));)
a=a.parentNode;return	c||google.kEI},https:function()
{return"https:"==window.location.protocol},
kEXPI:"4791,25657,4000116,4007661,4008142,4009033,4009641,
...
</script></div></body></html>

The	class	WebSiteReader	explicitly	creates	the	object	URLConnection.	Strictly	speaking,
you	could	achieve	the	same	result	by	using	only	the	class	URL:

URL	url	=	new	URL("http://www.google.com");
InputStream	in	=	url.openStream();
BufferedReader	buff=	new	BufferedReader(new	InputStreamReader(in));

The	reason	you	may	consider	using	the	URLConnection	class	is	that	it	could	give	you
some	additional	control	over	the	I/O	process.	For	example,	by	calling	its	method
setDoOutput(true)	you	specify	that	this	Java	program	is	intended	to	write	to	the	remote
URL,	too.	In	the	case	of	HTTP	connections,	this	will	also	implicitly	set	the	type	of	request
to	POST	(see	Chapter	26).	The	method	useCaches()	of	URLConnection	also	allows	you	to
specify	whether	the	protocol	can	use	a	cached	object	or	should	always	request	a	fresh	copy
of	the	document	at	a	specified	URL.	In	general,	if	you	are	planning	to	write	Java	programs
that	will	only	use	the	HTTP	protocol,	use	the	class	HttpURLConnection,	which	supports
HTTP-specific	features,	such	as	processing	header	fields,	getting	HTTP	response	codes,
setting	request	properties,	and	so	on.

Connecting	Through	HTTP	Proxy	Servers
For	security	reasons,	most	enterprises	use	firewalls	(see
http://en.wikipedia.org/wiki/Firewall_%28computing%29)	to	block	unauthorized	access	to
their	internal	networks.	As	a	result	their	employees	can’t	directly	reach	the	outside	Internet
world	(or	even	some	internal	servers),	but	go	through	HTTP	proxy	servers.	Check	the
settings	of	your	Internet	browser	to	see	if	you	are	also	sitting	behind	a	firewall,	and	find
out	the	hostname	and	port	number	of	the	proxy	server	if	you	are.	Usually,	web	browsers
store	proxy	parameters	under	the	Advanced	tabs	of	their	Settings	or	Preferences	menus.

If	your	browser	has	downloaded	a	page	containing	a	Java	applet,	the	latter	knows	the
parameters	of	the	proxy	servers	and	can	make	requests	to	the	remote	servers	through	the
firewall.	But	a	regular	Java	application	should	specify	networking	properties
	http.proxyHost	and	http.proxyPort		to	“drill	a	hole”	in	the	firewall.	For	example,	if	the
name	of	your	proxy	server	is	proxy.mycompany.com	and	it	runs	on	port	8080,	the
following	two	lines	should	be	added	to	the	Java	application	that	needs	to	connect	to	the
Internet:

System.setProperty("http.proxyHost","http://proxy.mycompany.com");
System.setProperty("http.proxyPort",	8080);

If	you	do	not	want	to	hardcode	these	values,	pass	them	to	your	program	from	the
command	line:

java	-Dhttp.proxyHost=http://proxy.mycompany.com
Dhttp.proxyPort=8080	WebSiteReader

The	other	option	for	programmatically	specifying	proxy	parameters	is	to	do	it	via	the	class
java.net.Proxy.	The	code	for	the	same	proxy	server	parameter	would	look	like	this	(you
can	replace	the	name	of	the	server	with	an	IP	address):

Proxy	myProxy	=	new	Proxy(Proxy.Type.HTTP,
								new	InetSocketAddress	("http://proxy.mycompany.com",	8080));
url		=	new	URL("http://www.google.com/index.html");
urlConn	=	url.openConnection(myProxy);

http://en.wikipedia.org/wiki/Firewall_%28computing%29
http://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html

How	to	Download	Files	from	the	Internet
Combine	the	class	URL	with	the	writing	files	techniques	and	you	should	be	able	to
download	practically	any	unprotected	file	(such	as	images,	music,	and	binary	files)	from
the	Internet.	The	trick	is	in	opening	the	file	stream	properly.	Listing	16-3	shows	the	code
of	a	Java	class,	FileDownload,	which	gets	the	URL	and	the	destination	(local)	filename	as
command-line	arguments,	connects	to	this	resource,	and	downloads	it	into	a	local	file.

Listing	16-3:	Downloading	an	arbitrary	file	from	the	Internet

class	FileDownload{
		public	static	void	main(String	args[]){
			if	(args.length!=2){
					System.out.println(
				"Proper	Usage:java	FileDownload	SourceFileURL	OutputFileName");
					System.out.println(
					"For	example:	"	+	
								"java	FileDownload	http://myflex.org/yf/nyc.jpg	nyc.jpg");
					System.exit(-1);
			}
				URLConnection	fileStream=null;
				try{
								URL	remoteFile=new	URL(args[0]);
								fileStream=remoteFile.openConnection();
				}	catch	(IOException	ioe){
						ioe.printStackTrace();
				}
			try(FileOutputStream	fOut=new	FileOutputStream(args[1]);
								InputStream	in	=	fileStream.getInputStream();){
				//	Read	a	remote	file	and	save	it	in	the	local	one
				int	data;
				System.out.println("Starting	the	download	from	"	+	args[0]);
				while((data=in.read())!=-1){
									fOut.write(data);
				}		
				System.out.println("Finished	downloading	the	file	"+args[1]);
		}	catch	(Exception	e){
					e.printStackTrace();
		}	
	}
}

Specifying	Command-Line	Parameters	for	FileDownload
Note	how	this	FileDownload	program	starts	by	checking	the	number	of	provided

command	parameters:	If	the	number	is	anything	but	two,	the	program	prints	an	error
message	and	quits.	Here’s	an	example	of	how	you	can	run	this	program	from	the
command	line	to	download	a	photo	of	New	York	City	that	I	made	in	July	of	2014.

java	FileDownload	http://myflex.org/yf/nyc.jpg	nyc.jpg

If	you	prefer	to	run	this	program	from	Eclipse,	select	the	Run	Configurations	menu	(use
the	drop-down	menu	with	the	green	button	on	the	toolbar),	select	FileDownload	as	the
main	class,	and	enter	http://myflex.org/yf/nyc.jpg	nyc.jpg		in	the	Program	Arguments	box
(it’s	under	the	Arguments	tab).	The	file	will	be	downloaded	in	your	project	directory,	and
you	can	see	it	in	Eclipse	by	selecting	Refresh	on	the	project.	

http://myflex.org/yf/nyc.jpg nyc.jpg

The	Stock	Quote	Program
This	section	shows	you	how	to	write	a	program	that	can	read	stock	market	price	quotes
from	the	Internet.	There	are	many	Internet	sites	providing	such	quotes;	the	Internet	portal
Yahoo!	is	one	of	them.

Visit	http://finance.yahoo.com,	enter	the	symbol	of	any	stock	(AAPL	for	example),	and
press	the	Search	Finance	button.	You	see	the	pricing	information	about	Apple,	Inc.—a
fragment	of	this	web	page	is	shown	in	Figure	16-1.

The	URL	that	can	be	used	to	get	to	this	page	directly	is	http://finance.yahoo.com/q?
s=AAPL	.	

Right-click	this	web	page	and	select	View	Page	Source	(or	similar)	from	the	pop-up	menu
to	see	the	HTML	contents	of	this	page;	you	see	lots	of	HTML	tags,	and	the	information
about	AAPL	is	buried	somewhere	deep	inside.	The	class	WebSiteReader	that	you	used
earlier	in	this	lesson	reads	the	content	of	the	Google	home	page.	Modify	the	line	in	the
class	WebSiteReader	from	Listing	16-1	to	have	it	print	the	content	of	the	Apple’s	price
quote	page	on	the	system	console:

url	=	new	URL("http://finance.yahoo.com/q?s=AAPL");

You	can	also	store	the	whole	page	in	a	Java	String	variable	instead	of	printing	the	lines	on
the	console.	In	the	following	code	snippet	I	use	the	class	StringBuilder	that’s	a	more
efficient	way	of	concatenating	strings	than	the	immutable	class	String	itself.	Just	modify
the	while	loop	in	Listing	16-1:

//	Create	an	instance	of	StringBuilder	with	initial	capacity	~10Kb
StringBuilder	sb	=	new	StringBuilder(10000);		
String	theWholePage;
String	txt;
while	(txt	=buff.readLine()	!=	null){
					sb.add(txt);
	}
theWholePage=sb.toString()

http://finance.yahoo.com
http://http://finance.yahoo.com/q?s=AAPL

Figure	16-1:	Figure	16-1.	The	Apple’s	stock	in	November	of	2014

If	you	add	some	smart	tokenizing	(splitting	into	parts	based	on	the	specified	tokens	as	in
Listing	16-4)	of	theWholePage	to	get	rid	of	all	HTML	tags	and	everything	but	a	fragment
around	(AAPL),	you	can	create	your	own	little	Stock	Quote	program.	Although	this
approach	is	useful	to	sharpen	your	parsing	skills,	it	may	not	be	the	best	solution,	especially
if	Yahoo!	changes	the	presentation	of	the	stock	symbol	on	this	page	(e.g.,	removes
parentheses).	That’s	why	the	example	uses	another	URL	that	provides	stock	quotes	in	a
cleaner	comma-separated	values	(CSV)	format.	Here’s	the	URL	that	should	be	used	for	the
symbol	AAPL:

http://quote.yahoo.com/d/quotes.csv?s=AAPL&f=sl1d1t1c1ohgv&e=.csv

This	URL	produces	a	string	that	includes	the	stock	symbol,	last	trade,	date	and	time	of	the
price	quote,	earning	per	share	(EPS),	opening	price,	day’s	range,	and	volume.	

"AAPL",108.60,"11/4/2014","4:00pm",-0.80,109.45,109.49,107.72,414989

Now	the	task	of	tokenizing	the	entire	web	page	comes	down	to	parsing	this	short	CSV
line.	The	StockQuote	class	from	Listing	16-4	does	exactly	this:	It	accepts	the	stock	symbol
from	the	command	line,	gets	the	data	from	Yahoo!,	tokenizes	the	received	CSV	line,	and
prints	the	price	quote	on	the	console.

Listing	16-4:	Retrieving	and	printing	stock	quotes

public	class	StockQuote	{
				

							static	void	printStockQuote(String	symbol){
							String	csvString;
							URL	url	=	null;
							URLConnection	urlConn	=	null;
							try{
											url		=	new														
															URL("http://quote.yahoo.com/d/quotes.csv?s="
																			+	symbol	+	"&f=sl1d1t1c1ohgv&e=.csv");
											urlConn	=	url.openConnection();
							}	catch(IOException	ioe){
											ioe.printStackTrace();
							}
							
							try(InputStreamReader	inStream	=	
															new	InputStreamReader(urlConn.getInputStream());
											BufferedReader	buff		=	new	BufferedReader(inStream);){
								//	get	the	quote	as	a	csv	string
								csvString	=buff.readLine();		
								//	parse	the	csv	string
								StringTokenizer	tokenizer=new	StringTokenizer(csvString,	",");
								String	ticker	=	tokenizer.nextToken();
								String	price		=	tokenizer.nextToken();
								String	tradeDate	=	tokenizer.nextToken();		
								String	tradeTime	=	tokenizer.nextToken();		
								System.out.println("Symbol:	"	+	ticker	+	
												"	Price:	"	+	price	+	"	Date:	"		+	tradeDate	
												+	"	Time:	"	+	tradeTime);
					}	catch(MalformedURLException	e){
									System.out.println("Please	check	the	spelling	of	"	
																														+	"the	URL:	"	+	e.toString());
					}	catch(IOException		e1){
						System.out.println("Can't	read	from	the	Internet:	"	+	
																																											e1.toString());	
					}
			}	
		public	static	void	main(String	args[]){
							if	(args.length==0){
										System.out.println("Sample	Usage:	java	StockQuote	IBM");
										System.exit(0);
							}	
							
							printStockQuote(args[0]);
		}
}

If	you’ve	gone	through	all	the	previous	lessons	in	this	book,	reading	and	understanding	the
code	in	Listing	16-4	should	be	a	piece	of	cake	for	you.	Test	the	StockQuote	program.
Enter	AAPL	or	another	stock	symbol	as	an	argument	in	the	Run	Configurations	window
of	Eclipse,	or	run	it	from	a	command	window	as	follows:

java	StockQuote	AAPL

Running	StockQuote	can	produce	something	similar	to	this:

Symbol:	"AAPL"	Price:	108.60	Date:	"11/4/2014"	Time:	"4:00pm"

Socket	Programming
Java-based	technologies	offer	many	options	for	network	communications,	and	one	of	the
technologies	to	consider	is	sockets.	A	socket	is	one	endpoint	in	the	communication	link.	In
this	section	you	learn	how	to	use	the	Java	classes	Socket	and	ServerSocket	from	the
package	java.net.	Many	communication	protocols	in	IP	networking	are	based	on	sockets.
For	example,	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	maintains	a
socket	connection	for	the	whole	period	of	communication,	whereas	User	Datagram
Protocol	(UDP)	is	a	connectionless	protocol,	which	sends	data	in	small	chunks	called
datagrams.

The	socket	address	is	a	pair:	IP	address	and	port.	When	a	Java	program	creates	an	instance
of	the	ServerSocket	class,	this	instance	becomes	a	server	that	just	runs	in	memory	and
listens	on	the	specified	port	for	other	program	requests.	The	following	lines	create	a	server
that	is	listening	to	port	3000:

ServerSocket		serverSocket	=	new	ServerSocket(3000);
client	=	serverSocket.accept();

The	client	program	should	create	a	client	socket—an	instance	of	the	class	Socket—
pointing	at	the	computer/port	on	which	the	ServerSocket	is	running.	The	client	program
can	connect	to	the	server	using	hostnames	or	IP	addresses,	too;	for	example:

clientSocket	=	new	Socket("124.67.98,101",	3000);
clientSocket	=	new	Socket("localhost",	3000);
clientSocket	=	new	Socket("127.0.0.1",	3000);

While	deciding	which	port	number	to	use	for	the	ServerSocket,	avoid	using	port	numbers
below	1024	to	avoid	conflicts	with	other	system	programs.	For	example,	port	80	is
typically	used	by	HTTP	servers;	port	443	is	reserved	for	HTTPS;	port	21	is	typically	used
for	FTP	communications;	port	389	is	for	LDAP	servers,	and	so	on.	After	creating	a	socket-
based	connection,	both	client	and	server	should	obtain	references	to	its	input/output
streams	and	use	them	for	data	exchange.

Why	Use	Sockets?
Why	even	use	manual	socket	programming	if	you	can	easily	establish	inter-computer
communication	with,	say,	HTTP	(it	uses	sockets	internally),	start	one	of	many	open-source
or	commercial	web	servers,	and	have	clients	connect	to	the	server	as	shown	in	the
preceding	sample	programs	in	this	lesson?	Because	a	socket	connection	has	a	lot	less
overhead	than	any	standard	protocol.	

You	can	create	your	own	very	compact	protocol	that	will	allow	you	to	send	only	the	data
you	need,	with	no	or	minimal	headers.	Socket	communication	provides	a	duplex	byte
stream,	whereon	the	data	travels	simultaneously	in	both	directions,	unlike	protocols	based
on	the	request-response	model.	Think	of	financial	trading	systems:	Speed	is	the	king	there,
and	the	ability	to	send	data	up	and	down	at	the	same	time	saves	milliseconds,	which
makes	a	difference.

http://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

Compare	with	Hypertext	Transfer	Protocol	(HTTP),	which	is	used	for	request-response
based	communications	and	adds	a	couple	of	hundreds	milliseconds	of	overhead	to	your
data	in	the	form	of	the	HTTP	request	and	response	headers.	To	lower	this	overhead,	a
WebSocket	protocol	has	been	created	and	standardized.	WebSocket	protocol	is	not
covered	in	this	book.	

If	you	design	your	application	to	use	sockets,	the	live	connection	is	maintained	for	each
user	connected	to	ServerSocket.	If	your	program	has	to	maintain	several	thousand
concurrent	connections	it	requires	more	powerful	servers	than	programs	using	the	request-
response	system,	with	which	a	connection	is	maintained	only	during	the	time	of	the
client’s	request.

The	Stock	Quote	Server	with	Sockets
Let’s	build	a	socket-based	client/server	application	that	emulates	both	a	server	providing
fake	price	quotes	for	requested	stocks	and	a	client	consuming	this	data.	The
StockQuoteServer	class	is	our	socket	server	that	listens	to	requests	on	port	3000	(see
Listing	16-5).	

Listing	16-5:	The	server	generating	stock	quotes

public	class	StockQuoteServer	{
	public	static	void	main(java.lang.String[]	args)	{
			ServerSocket	serverSocket	=	null;
			Socket	client	=	null;
			BufferedReader	inbound	=	null;
			OutputStream	outbound	=	null;
			try
					{
					//	Create	a	server	socket
					serverSocket	=	new	ServerSocket(3000);
						System.out.println("Waiting	for	a	quote	request…");
					while	(true)
					{
							//	Wait	for	a		request
									client	=	serverSocket.accept();
									//	Get	the	streams
							inbound=new	BufferedReader(new
													InputStreamReader(client.getInputStream()));							
										outbound	=	client.getOutputStream();
									
												String	symbol	=	inbound.readLine();
									//Generate	a	random	stock	price
									String	price=	(new		
																				Double(Math.random()*100)).toString();
										outbound.write(("\n	The	price	of	"+symbol+
																														"	is	"	+	price	+	"\n").getBytes());

http://en.wikipedia.org/wiki/WebSocket

		
								System.out.println("Request	for	"	+	symbol	+	
																		"	has	been	processed	-	the	price	of	"	+	symbol+
																									"	is	"	+	price	+	"\n");				
								outbound.write("End\n".getBytes());
				}
			}
			catch	(IOException	ioe)	{
				System.out.println("Error	in	Server:	"	+	ioe);
		}		finally{
						try{
										inbound.close();
										outbound.close();			
								}catch(Exception	e){
										System.out.println(
										"StockQuoteServer:	can't	close	streams"	+	e.getMessage());
								}
				}		
		}
	}

The	method	accept()	of	the	SocketServer	class	is	the	one	that	puts	this	program	into	a	wait
mode.	As	soon	as	it	starts	you	see	the	message	“Waiting	for	a	quote	request…”	on	the
system	console,	and	nothing	else	happens	until	the	request	comes	in	from	the	client.
Creating	a	SocketServer	instance	binds	it	to	the	specified	port,	but	if	this	port	is	already	in
use	by	another	process	you	get	a	BindException.		

The	client	programs	run	in	separate	Java	Virtual	Machines	(JVMs).	When	a	client
connects	to	the	server’s	socket,	our	class	StockQuoteServer	gets	references	to	its	I/O
streams	and	sends	randomly	generated	quotes	for	the	requested	stock.	In	the	real	world
this	server	would	have	to	be	connected	to	another	server	providing	real-time	market	data,
but	for	the	purposes	of	this	example,	generating	random	numbers	as	“price	quotes”	will
suffice.

The	client	program	shown	in	Listing	16-6	has	to	be	started	with	a	command-line
parameter	such	as	AAPL,	IBM,	MSFT,	and	so	on	to	produce	a	price	quote.	Because	you
might	not	have	access	to	two	connected	computers,	you	can	start	the	Client	program	on
the	same	one,	but	it’ll	be	running	in	a	separate	JVM.	

Listing	16-6:	The	client	sending	requests	for	stock	quotes

public	class	Client	{
public	static	void	main(java.lang.String[]	args)	{
	if	(args.length==0){
			System.out.println("Usage:	java	Client	Symbol");
										System.exit(-1);
	}	
		Socket	clientSocket	=	null;
		try{
							//	Open	a	client	socket	connection
								clientSocket	=	new	Socket("localhost",	3000);
								System.out.println("Client:	"	+	clientSocket);
				}catch	(UnknownHostException	uhe){
								System.out.println("UnknownHostException:	"	+	uhe);
				}	catch	(IOException	ioe){
							System.err.println("IOException:	"	+	ioe);
			}				
					
			try	(OutputStream	outbound	=	clientSocket.getOutputStream();
								BufferedReader	inbound	=	new		BufferedReader(new	
								InputStreamReader(clientSocket.getInputStream()));){
					
							//	Send	stock	symbol	to	the	server
				outbound.write((args[0]+"\n").getBytes());
				String	quote;
				while	(true){
											quote	=	inbound.readLine();
											if	(quote.length()	==	0)	continue;
											
											if	(quote.equals("End")){
															break;				
												}
											System.out.println("Got	the	quote	for	"	+	args[0]+":"	+
																																																												quote);
					}
			}catch	(IOException	ioe){
							ioe.printStackTrace();
				}
	}
}

Have	you	noticed	that	StockQuoteServer	appends	the	word	“End”	to	indicate	that	the	price
quote	has	ended?	This	is	an	example	of	a	very	simple	custom-made	networking	protocol.	I

just	came	up	with	this	rule—the	word	“End”	indicates	the	end	of	data.	While	working
with	sockets	it’s	your	responsibility	to	decide	on	the	data	format	being	sent	from	client	to
server	and	back.

Non-Blocking	Sockets
I	used	simple	blocking	sockets	in	the	Stock	Server	example.	The	stock	server	calls	the
method	accept(),	which	blocks	on	the	socket,	which	may	create	a	bottleneck	in	a
multi-client	application.	The	package	java.nio.channels	includes	a	number	of	classes
and	interfaces	that	support	asynchronous	work	with	data	in	general	and	non-blocking
sockets	in	particular.

In	real-world	applications	with	multiple	clients,	consider	learning	and	using
nonblocking	sockets,	which	are	implemented	in	classes	SocketChannel	and
ServerSocketChannel	.	Instead	of	invoking	SocketServer.accept(),	you’ll	need	to	open
the	socket	channel,	bind	it	to	a	particular	port,	and	call	accept(),	which	can	be
listening	to	the	client’s	connection		either	in	blocking	or	in	non-blocking	mode.	To
place	the	channel	in	a	non-blocking	mode	invoke	configureBlocking(false)	on	the
channel.	

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html

Try	It
The	goal	of	this	exercise	is	to	test	the	socket	communication	in	action,	even	if	you	have
only	one	computer.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in		Lesson16.zip.

Hints
In	this	exercise	you	use	two	separate	command	windows	to	run	the	socket	client	and	the
server.	Eclipse	IDE	enables	you	to	have	more	than	one	Console	view.	Find	a	little	icon
that	looks	like	a	monitor	in	the	Console	view	toolbar	and	click	the	little	triangle	next	to	it
to	switch	between	console	views	while	running	more	than	one	application.

Step-by-Step

java	sockets.StockQuoteServer
java	sockets.Client	IBM

1.	 Import	Eclipse	project	from	Lesson16.zip	accompanying	the	book.

2.	 Even	though	you	can	run	both	programs	from	Eclipse,	it’s	easier	to	observe	the	entire
process	if	you	run	them	from	separate	command	windows.	Open	two	command
windows	and	imagine	that	they	belong	to	different	computers.

3.	 In	each	command	window,	go	to	the	bin	directory	located	in	the	Lesson16	directory
under	Eclipse	workspace.	In	one	of	the	command	windows	start	the	StockQuoteServer
and	in	the	other	start	the	Client.	Note	that	these	classes	are	located	in	the	package
named	socket.

4.	 In	each	command	window,	go	to	the	bin	directory	located	in	the	Lesson16	directory
under	Eclipse	workspace.	In	one	of	the	command	windows	start	the	StockQuoteServer
and	in	the	other	start	the	Client.	Note	that	these	classes	are	located	in	the	package
named	socket.

5.	 Observe	that	the	server	generates	prices,	and	that	both	client	and	server	print	the	same
price	on	the	respective	console.	By	starting	client	and	server	in	different	command
windows	you	are	starting	two	separate	JVMs,	emulating	network	communication
between	computers.

6.	 Open	a	couple	more	command	windows	and	start	the	Client	program	in	them,
providing	different	stock	symbols	as	arguments.	Observe	that	the	same	server	can
handle	multiple	clients’	requests.	If	you	have	access	to	a	real	network	in	which	each
computer	has	Java	runtime	installed,	run	the	client	and	server	programs	on	different

http://www.wrox.com/go/javaprog24hr2e

computers—just	replace	the	localhost	in	the	class	Client	with	the	network	name	or	IP
address	of	the	server’s	computer.

TIP			Please	select	the	videos	for	Lesson	16	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	17
Concurrency	and	Multithreading
Developing	Java	applications	that	implement	concurrent	processing	gives	you	an	amazing
power	and	flexibility	when	it	comes	to	building	highly	available,	scalable,	and	responsive
applications	capable	of	processing	thousands	of	concurrent	requests	of	various	types.

Up	until	now	you’ve	been	creating	Java	programs	that	were	executing	code	sequentially.
But	the	main	power	of	Java	lies	in	its	ability	to	do	things	in	parallel,	or,	as	they	say,	to	run
multiple	threads	of	execution.	As	always,	going	through	a	practical	use	case	is	the	best
way	to	understand	this	feature.

Let’s	discuss	a	program	that	should	display	market	news	and	information	about	the	user’s
stock	portfolio	in	the	same	window.	While	the	market	news	feed	is	coming	from	a	remote
computer,	stock	portfolio	data	are	retrieved	from	the	database	and	may	be	located	on	the
local	server	of	your	organization.

Suppose	it	takes	three	seconds	to	get	the	market	news	and	only	one	second	to	get	the
portfolio	data.	If	you	run	these	two	tasks	sequentially	(one	after	another),	you	need	four
seconds	to	complete	the	job.

But	market	news	doesn’t	depend	on	your	portfolio	data,	and	these	two	tasks	can	run	in
parallel.	They	run	on	different	computers	and	use	different	processors.	If	you	can
implement	parallel	processing,	the	total	time	should	be	less	than	four	seconds	(close	to
three	seconds	in	the	use	case—the	time	it	takes	for	the	longer	task	to	complete).

A	Java	program	can	start	multiple	threads	of	execution	that	will	run	in	parallel.	Even	if
you	have	only	one	processor	in	your	computer,	it	still	could	be	a	good	idea	to	run	some
tasks	in	parallel.	Think	of	a	web	browser	that	allows	you	to	download	a	file	and	perform
page	browsing	at	the	same	time.	Web	browsers	maintain	several	connections	to	any
website,	and	can	download	multiple	resources	(text,	images,	videos,	music)	at	the	same
time.	Any	web	browser	works	in	a	multithreaded	mode.

If	these	jobs	ran	sequentially,	the	browser’s	window	would	be	frozen	until	the	download
was	complete.	On	a	multiprocessor	computer,	parallel	threads	can	run	on	different	CPUs.
On	a	single-processor	computer,	threads	take	turns	getting	“slices”	of	the	processor’s	time.
Because	switching	CPU	cycles	between	threads	happens	fast,	a	user	won’t	notice	the	tiny
delays	in	each	thread’s	execution,	and	browsing	feels	smooth.

In	many	cases,	especially	on	the	disappearing	single-CPU	computers,	the	benefit	of	many
threads	comes	about	because	there’s	a	lot	of	idle	time	in	most	operations.	In	particular,	if
an	operation	is	I/O	bound	instead	of	CPU	bound	then	using	multiple	threads	helps	take
advantage	of	those	otherwise	unused	blocks	of	time.

People	also	can	work	in	a	multithreaded	mode.	For	example,	they	can	drink	coffee	while
talking	on	a	cell	phone	and	driving	a	car.	

The	Class	Thread
If	class	A	needs	to	initiate	some	parallel	executions	in	classes	B	and	C,	the	latter	two	must
declare	multithreading	support	from	the	get-go.	Each	of	the	classes	B	and	C	must	either	be
inherited	from	the	Java	class	Thread	or	implement	one	of	the	following	interfaces:
Runnable	or	Callable	(the	latter	is	covered	in	Callable).	If	a	class	is	inherited	from	the
class	Thread	then	it	has	to	override	the	method	run().

The	first	version	of	the	market-portfolio	example	has	three	classes	(see	Listing	17-1,
Listing	17-2,	and	Listing	17-3).	Two	of	them	are	subclasses	of	the	class	Thread
(MarketNews	and	Portfolio),	and	the	third	(TestThreads)	is	just	a	testing	program	that
instantiates	them	and	starts	the	execution	of	some	code	in	each	of	them.	You	must	initiate
the	code	that	has	to	work	as	a	thread	in	the	method	run().

Listing	17-1:	Class	MarketNews

public	class	MarketNews	extends	Thread	{
	public	MarketNews	(String	threadName)	{
								super(threadName);	//	name	your	thread
				}
	public	void	run()	{
					System.out.println("The	stock	market	is	improving!");
				}
}

Listing	17-2:	Class	Portfolio

public	class	Portfolio	extends	Thread	{
				public	Portfolio	(String	threadName)	{
								super(threadName);
				}
				public	void	run()	{
							System.out.println("You	have	500	shares	of	IBM");
					}
}

Listing	17-3:	Class	TestThreads	starts	MarketNews	and	Portfolio

public	class	TestThreads	{
			public	static	void	main(String	args[]){
						MarketNews	mn	=	new	MarketNews("Market	News");
						mn.start();
						Portfolio	p	=	new	Portfolio("Portfolio	data");
						p.start();
						System.out.println("TestThreads	is	finished");
			}
}

The	method	main()	in	Listing	17-3	instantiates	each	thread,	passing	the	name	for	the
thread	as	a	constructor	argument	and	then	calls	its	start()	method	declared	in	its	ancestor.
Each	thread	itself	invokes	internally	the	code	written	by	you	in	the	method	run().	After
calling	mn.start(),	the	program	TestThread	does	not	wait	for	its	completion	but
immediately	executes	the	lines	that	follow,	creating	and	starting	the	thread	Portfolio.	Even
if	the	code	in	the	MarketNews.run()	is	lengthy	and	takes	several	seconds	to	execute,	the
Portfolio	thread	starts	immediately.

If	you	run	the	TestThread	program	it	prints	the	output	from	threads	MarketNews	and
Portfolio	almost	simultaneously—there	is	no	lengthy	and	time-consuming	code	in	their
run()	methods.	A	bit	later,	in	the	section	“Sleeping	Threads”,	you	see	how	to	emulate	a
lengthy	execution.	The	output	of	the	TestThread	program	can	vary—it	all	depends	on
which	thread	finishes	first.

The	Interface	Runnable
The	second	way	to	create	threads	is	to	implement	a	Runnable	interface,	which	is	a
functional	interface	with	a	single	method	run().	In	this	case,	your	class	also	has	to	have
business	logic	in	the	method	run().		First,	you	see	an	old-fashioned	version	of	creating	a
thread	with	Runnable,	and	then	more	concise	version	with	lambda	expressions.

The	second	version	of	our	market-portfolio	example	(Listing	17-4,	Listing	17-5,	and
Listing	17-6)	also	has	three	classes	(you	eliminate	two	of	them	shortly),	but	MarketNews2
and	Portfolio2	are	not	inherited	from	the	class	Thread—they	implement	the	Runnable
interface.

In	environments	before	Java	8,	creation	of	a	thread	iis	a	two-step	process:	create	an
instance	of	a	class	that	implements	Runnable		and	then	give	it	as	an	argument	to	the
constructor	of	the	class	Thread	during	instantiation.

Listing	17-4:	Class	MarketNews2

public	class	MarketNews2	implements	Runnable	{
					public	void	run()	{
								System.out.println("The	stock	market	is	improving!");
					}
}

Listing	17-5:	Class	Portfolio2

public	class	Portfolio2	implements	Runnable	{
				public	void	run()	{
							System.out.println("You	have	500	shares	of	IBM	");
					}
}

Listing	17-6:	Class	TestThreads2

public	class	TestThreads2	{
				public	static	void	main(String	args[]){
					MarketNews2	mn2	=	new	MarketNews2();
					//	passing	Runnable	object	to	a	constructor
					Thread	mn	=	new	Thread(mn2,"Market	News");
					mn.start();
					Runnable	port2	=	new	Portfolio2();
					//	passing	Runnable	object	to	a	constructor
					Thread	p	=	new	Thread(port2,	"Portfolio	Data");
					p.start();
					System.out.println("TestThreads2	is	finished");
				}
}

Run	this	program,	and	you	see	an	output	similar	to	this	one:

The	stock	market	is	improving!
TestThreads2	is	finished
You	have	500	shares	of	IBM

The	main	thread	finished	earlier	than	the	portfolio	one!

Note	that	I’ve	declared	the	variable	port2	in	Listing	17-6	to	not	be	of	type	Portfolio2;
instead	it	is	type	Runnable.	I	did	it	for	illustration	purposes	and	to	reiterate	the	fact	that	an
interface	is	also	a	data	type	that	can	be	used	in	variable	declarations.		It	takes	three	lines	of
code	in	Listing	17-6	to	instantiate	and	start	a	thread.	The	Runnable	interface	provides	a
more	flexible	way	to	use	threads	because	it	allows	a	class	to	be	inherited	from	any	other
class,	while	having	all	the	features	of	a	thread.	

Eliminating	Inheritance
In	Lesson	13	in	the	Eliminating	Inheritance	section	I	demonstrated	how	an	inheritance
hierarchy	can	be	simplified	by	introducing	lambda	expressions.	Let’s	do	it	again.	The
classes	Portfolio2	and	MarketNews2	differ	only	in	the	implementation	of	the	method
run()of	the	functional	interface.	You	can	easily	get	rid	of	both	of	these	classes	by
providing	implementation	of	the	functional	interface	Runnable	(the	method	run())with
lambda	expressions	directly	to	the	constructors	of	the	Thread	objects.

public	class	TestThreads2Lambda	{
				public	static	void	main(String	args[]){
					
					Thread	mn	=	new	Thread(()->	System.out.println(
																			"The	stock	market	is	improving!"),"Market	News");
					mn.start();

									
					Thread	p	=	new	Thread(()	->	System.out.println(
																			"You	have	500	shares	of	IBM"),"Portfolio	Data");
					p.start();
					System.out.println("TestThreads2Lambda	is	finished");
				}
}

The	classes	MarketNews2	and	Portfolio2	are	not	needed	any	longer!	This	example	is	very
simplistic	because	both	implementations	of	run()	just	print	a	simple	message.	You	can	also
pass	a	multiline	lambda	expression;	just	don’t	forget	to	declare	the	expression	in	curly
braces.	The	next	section	includes	an	example.

Sleeping	Threads
One	of	the	ways	to	make	the	processor	available	to	other	threads	is	by	using	Thread’s
method	sleep(),	which	enables	you	to	specify	in	milliseconds	(and	nanoseconds)	how	long
the	thread	has	to	sleep.	The	next	program	demonstrates	sleeping	threads.	The	class
TestThreads3Lambdas	declares	two	lambda	expressions	to	process	market	data	and
portfolio	threads.	The	function	for	market	news	puts	itself	to	sleep	for	a	thousand
milliseconds	(one	second)	after	each	output	of	the	message	about	market	improvements.

When	the	market	news	thread	goes	to	sleep,	the	portfolio	gets	the	CPU	and	prints	its
message	and	then	goes	to	sleep	for	700	milliseconds	on	each	loop	iteration.	Every	second
the	market	news	thread	wakes	up	and	does	its	job.	The	portfolio	thread	has	shorter	sleep
periods.

The	program	TestThreads3Lambda	generates	mixed	console	output	about	the	market	and
portfolio	from	both	threads—the	threads	are	taking	turns	even	on	the	single-processor
machine.

Listing	17-7:	Class	TestThreads3Lambda

public	class	TestThreads3Lambda	{
		public	static	void	main(String	args[]){
								
				//	Lambda	expression	for	Market	News
						Runnable	mn	=	()	->	{
									try{
										for	(int	i=0;	i<10;i++){
											Thread.sleep	(1000);		//	sleep	for	1	second
											System.out.println("The	market	is	improving	"	+	i);
										}	
								}catch(InterruptedException	e){
											System.out.println(Thread.currentThread().getName()	
																																												+	e.toString());
								}		
					};	
			
					Thread	marketNews	=	new	Thread(mn,	"Market	News");
					marketNews.start();
					
					//	Lambda	expression	for	Portfolio
					Runnable	port	=	()	->{
									try{
														for	(int	i=0;	i<10;i++){
															Thread.sleep	(700);			//	Sleep	for	700	milliseconds
															System.out.println("You	have	"	+	(500	+	i)	+		
																																														"	shares	of	IBM");
														}
												}catch(InterruptedException	e){
														System.out.println(Thread.currentThread().getName()	
																																																+	e.toString());
												}			
					};
					
				Thread	portfolio	=	new	Thread(port,"Portfolio	data");
				portfolio.start();
					
				System.out.println(
										"The	main	method	of	TestThreads3Lambda	is	finished");
		}
}

If	you	need	to	“wake	up”	a	sleeping	thread	before	its	sleeping	time	is	up,	use	the	method

interrupt().	Just	add	mn.interrupt()	to	the	class	TestThreads3Lambda	right	after	starting	the
market	news	thread.	This	triggers	InterruptedException,	and	the	market	news	thread	will
wake	up	and	continue	its	execution	from	the	operator	located	below	the	sleep()	method
call.	The	class	Thread	has	a	method	interrupted()	that	returns	true	if	the	current	thread	has
been	interrupted.	The	output	of	the	program	TestThreads3Lambda	can	look	as	follows:

The	main	method	of	TestThreads3Lambda	is	finished
You	have	500	shares	of	IBM
The	market	is	improving	0
You	have	501	shares	of	IBM
The	market	is	improving	1
You	have	502	shares	of	IBM
You	have	503	shares	of	IBM
The	market	is	improving	2
You	have	504	shares	of	IBM
The	market	is	improving	3
You	have	505	shares	of	IBM
You	have	506	shares	of	IBM
The	market	is	improving	4
You	have	507	shares	of	IBM
The	market	is	improving	5
You	have	508	shares	of	IBM
The	market	is	improving	6
You	have	509	shares	of	IBM
The	market	is	improving	7
The	market	is	improving	8
The	market	is	improving	9

These	days	it’s	hard	to	find	a	single-CPU	server	machine.	Most	of	the	readers	of	this	book
have	personal	computers	with	dual-core	CPUs,	which	have	two	processors	in	the	same
chip.	Modern	JVMs	use	multiple	cores	for	multithreaded	applications,	but	you	shouldn’t
assume	that	your	program	will	run	twice	as	fast	on	such	hardware.	JVM	optimization	is	a
complex	subject	and	is	out	of	the	scope	of	this	tutorial.	You	may	boost	the	performance	of
your	system	by	increasing	the	number	of	threads	running	in	parallel,	but	you	should	define
the	right	ratio	between	the	number	of	threads	and	the	number	of	processors	(see	Amdahl’s
Law	at	http://en.wikipedia.org/wiki/Amdahl's_law)	during	the	performance-tuning	phase
of	application	development.

http://en.wikipedia.org/wiki/Amdahl's_law

How	to	Kill	a	Thread
The	class	Thread	has	a	method,	stop(),	that	was	supposed	to	know	how	to	kill	the	current
thread.	But	it	was	deprecated	many	years	ago	because	it	could	bring	some	of	the	objects	in
your	program	into	an	inconsistent	state	caused	by	improper	unlocking	of	the	object
instances.

There	are	different	approaches	to	killing	threads.	One	of	them	involves	creating	your	own
method	on	the	thread,	say	stopMe(),	in	which	you	set	your	own	boolean	variable,	say
stopMe,	to	false	and	test	its	value	periodically	inside	the	thread’s	method	run().	If
application	code	changes	the	value	of	stopMe	to	true,	just	exit	the	code	execution	in	the
method	run().	In	Listing	17-8,	the	loop	in	the	method	run		initializes	the	value	of	the
variable	stopMe	with	the	reference	to	the	current	thread	and	then	runs	the	infinite	loop
testing	if	the	value	of	stopMe	is	still	the	same.		As	soon	as	it	is	changed	(set	to	null	in	this
case),	the	processing	in	the	PortfolioVolatile	stops.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.xhtml#stop--

Listing	17-8:	Killing	a	thread

class	KillTheThread{
		public	static	void	main(String	args[]){
									
					PortfolioVolatile	p	=new	PortfolioVolatile("Portfolio	data");
					p.start();
					//	Some	code	implementation	business	logic	goes	here
					int	i=0;
					do	{
								System.out.println("	i=	"	+	i++);	
					}while	(i<100);		
					
					//	and	now	it's	time	to	kill	the	thread
					p.stopMe();
		}
}
class	PortfolioVolatile	extends	Thread{
private	volatile	Thread	stopMe;
				public	PortfolioVolatile	(String	threadName)	{
										super(threadName);		
				}
				
				public	void	stopMe()	{
								stopMe	=	null;
				}
				public	void	run()	{
								stopMe	=	Thread.currentThread();
								
								while	(stopMe	==	Thread.currentThread())	{
									//Do	some	portfolio	processing	here	
									System.out.println("The	Portfolio	thread	is	running");	
								}
							System.out.println("The	Portfolio	thread	was	killed");
		}
}		

Running	the	program	KillTheThread	produces	the	console	output	that	can	end	as	follows:

The	Portfolio	thread	is	running
	i=	97
	i=	98
	i=	99
The	Portfolio	thread	is	running

The	Portfolio	thread	was	killed

The	variable	stopMe	has	been	declared	with	a	volatile	keyword,	which	warns	the	Java
compiler	that	another	thread	can	modify	it,	and	that	this	variable	shouldn’t	be	cached	in
the	CPU’s	registers,	so	all	threads	must	always	see	its	fresh	value.	The	class
PortfolioVolatile	could	be	written	differently—the	variable	stopMe	could	be	declared	as
boolean.

Not	every	thread	can	be	killed	using	the	code	shown	in	Listing	17-8.	What	if	a	thread	is
not	doing	any	processing	at	the	moment,	but	is	waiting	for	the	user’s	input?	Call	the
method	interrupt()	on	such	a	thread.	Killing	a	thread	by	interrupting	it	may	be	the	only
technique	you	need	to	use	in	such	cases.

If	you	need	to	kill	a	thread	that’s	busy	doing	some	blocking	I/O	operations	and	the
preceding	methods	of	killing	such	a	thread	don’t	work,	try	closing	I/O	streams.	This
causes	IOException	during	the	current	read/write	operation	and	the	thread	will	be	over.

If	you’d	like	to	read	more	comprehensive	coverage	of	this	subject,	see	Dr.	Heinz	Kabutz
the	Java	Specialist’s	newsletter	Issue	#56,	available	at
www.javaspecialists.co.za/archive/Issue056.html.

http://www.javaspecialists.co.za/archive/Issue056.html

Thread	Priorities
Single-processor	computers	use	a	special	scheduling	algorithm	that	allocates	processor
time	slices	to	the	running	threads	based	on	their	priorities.	If	Thread1	is	using	the
processor	and	the	higher-priority	Thread2	wakes	up,	Thread1	is	pushed	aside	and	Thread2
gets	the	CPU.	It	is	said	that	Thread2	preempts	Thread1.

The	class	Thread	has	a	method,	setPriority(),	that	allows	you	to	control	its	priority.	There
are	10	different	priorities,	which	are	final	integer	variables	defined	in	the	class	Thread.
Some	of	them	are	named	constants	MIN_PRIORITY,	NORM_PRIORITY,	and
MAX_PRIORITY.	Here’s	an	example	of	their	usage:

Thread	myThread	=	new	Thread("Portfolio");
myThread.setPriority(Thread.NORM_PRIORITY	+	1);

If	two	threads	with	the	same	priority	need	the	processor,	it’ll	be	given	to	one	of	them	using
an	algorithm	specific	to	the	computer’s	operating	system.

Thread	Synchronization	and	Race	Conditions
During	the	design	stage	of	a	multithreaded	application’s	development,	you	should
consider	the	possibility	of	a	so-called	race	condition,	which	happens	when	multiple
threads	need	to	modify	the	same	program	resource	at	the	same	time	(concurrently).	The
classic	example	is	when	a	husband	and	wife	are	trying	to	withdraw	cash	from	different
ATMs	at	the	same	time.

Suppose	the	balance	on	their	joint	account	is	$120.	If	a	Thread	class	is	responsible	for	the
validation	as	well	as	update	of	the	balance	of	their	bank	account,	there	is	a	slight	chance
that	if	the	validation	starts	at	the	same	time	it’ll	approve	withdrawal	of	$100	for	the
husband	and	$50	for	the	wife	because	the	each	of	the	validated	amounts	is	less	than	the
total.	A	moment	later	the	husband’s	thread	withdraws	$100,	and	a	split	second	later	the
wife’s	thread	attempts	to	withdraw	$50—it	was	validated,	right?	Unless	these	two
processes	were	synchronized	the	couple	would	be	able	to	withdraw	a	total	of	$150,
leaving	a	negative	balance	in	their	account.	This	is	an	example	of	a	race	condition.

A	special	keyword,	synchronized,	prevents	race	conditions	from	happening.	This	keyword
places	a	lock	on	an	object	instance	(the	monitor)	to	make	sure	that	only	one	thread	at	a
time	has	access	to	the	synchronized	code.	The	code	in	Listing	17-9	locks	the	entire
method	withdrawCash()	so	no	other	thread	gets	access	to	the	specified	portion	of	code
until	the	current	(locking)	thread	has	finished	its	execution	of	withdrawCash().	In	this
example,	both	validation	and	balance	update	can	be	performed	by	only	one	thread	at	a
time.

Listing	17-9:	Declaring	a	synchronized	method

class	ATMProcessor	extends	Thread{
			
	synchronized	withdrawCash(int	accountID,	int	amount){
				//	Some	thread-safe	code	goes	here,	i.e.,	reading	from
				//	a	file	or	a	database
				//			...
			boolean	allowTransaction	=	validateWithdrawal(accountID,
																																																			amount);
			if	(allowTransaction){
					updateBalance(accountID,	amount,	"Withdraw");
			}
			else	{
				System.out.println("Not	enough	money	on	the	account");
			}
		}
}

The	locks	should	be	placed	for	the	shortest	possible	time	to	avoid	slowing	down	the
program:	That’s	why	synchronizing	short	blocks	of	code	is	preferable	to	synchronizing

whole	methods.	Listing	17-10	shows	how	to	synchronize	only	the	portion	of	the	code	that
may	actually	cause	the	race	condition,	rather	then	locking	the	entire	method
withdrawCash().

Listing	17-10:	Declaring	a	synchronized	block

class	ATMProcessor	extends	Thread{
		...
	withdrawCash(int	accountID,	int	amount){
				//	Some	thread-safe	code	goes	here,	i.e.,	reading	from
				//	a	file	or	a	database
		...
	synchronized(this)	{
			boolean	allowTransaction=validateWithdrawal(accountID,	amount);
			if	(allowTransaction){
						updateBalance(accountID,	amount,	"Withdraw");
			}
			else	{
						System.out.println("Not	enough	money	on	the	account");
			}
		}
	}
}

When	a	synchronized	block	is	executed,	the	section	of	the	code	in	parentheses	is	locked
and	can’t	be	used	by	any	other	thread	until	the	lock	is	released.	Listing	17-10	locks	the
current	instance	of	the	class	ATMProcessor	(represented	by	the	this	key-word)	only	for	the
duration	of	the	validateWithdrawal()	and	updateBalance()	methods,	which	is	a	shorter
period	of	time	than	locking	withdrawCash()	would	take.

Although	synchronized	is	a	Java	keyword,	there	is	a	more	efficient	API	for	locking	the
code.	It’s	called	reentrantLock(),	and	you	see	it	later	in	this	lesson.

Thread	States
A	thread	goes	through	various	states	during	its	life	span.	The	class	Thread	has	a	method,
getState(),	that	returns	one	of	the	values	defined	in	the	enumeration	Thread.State.

BLOCKED:	Thread	state	for	a	thread	that	is	blocked	and	waiting	to	enter	or	reenter	a
synchronized	method	or	block	of	code

NEW:	Thread	state	for	a	thread	that	has	been	instantiated	but	not	started	yet

RUNNABLE:	Thread	state	for	a	runnable	thread

TERMINATED:	Thread	state	for	a	terminated	thread

TIMED_WAITING:	Thread	state	for	a	waiting	thread	with	a	specified	waiting	time

WAITING:	Thread	state	for	a	waiting	thread

The	class	Thread	has	a	method,	isAlive(),	that	can	help	you	to	find	out	the	status	of	the
thread.	If	it	returns	true,	the	thread	has	been	started	and	hasn’t	died	yet.	If	it	returns	false,
the	thread	is	either	new	or	already	dead.

Wait	and	Notify
The	class	Object	also	has	some	methods	relevant	to	threads:	wait(),	notify(),	and
notifyAll().	The	method	notify()	allows	one	waiting	thread	to	notify	another	about	some
important	event.	Accordingly,	notifyAll()	sends	notification	to	all	waiting
threads.	Because	every	Java	class	is	inherited	from	the	class	Object,	these	methods	can	be
called	on	any	object.	There	is	one	more	important	rule:	Both	the	wait	and	notification
must	be	done	in	a	synchronized	block	holding	the	lock	on	the	same	object.	

Let’s	revisit	our	class	TestThreads3Lambda,	which	spawns	the	threads	for	market	news
and	portfolio.	It	has	the	following	line	at	the	end	of	the	main()	method:

System.out.println("The	main	method	TestThreads3	is	finished");

Run	the	program	TestThreads3Lambda,	and	it	prints	something	like	this:

The	main	method	of	TestThreads3Lambda	is	finished
You	have	500	shares	of	IBM
The	market	is	improving	0
You	have	501	shares	of	IBM
The	market	is	improving	1…

Note	that	the	method	main()	did	not	wait	for	the	portfolio	and	market	news	threads’
completion!		The	next	code	sample	shows	you	how	one	thread	can	wait	for	a	notification
from	another	using	wait().		To	simplify	the	understanding	of	the	example	I’m	using	just
two	threads:	the	main	thread	and	the	market	news	one.	The	new	class	is	called
TestLambdaWaitNotify.	I	want	to	kill	two	birds	with	one	stone	and	explain	an	interesting
use	case	for	lambdas,	too.		To	make	the	main()	method	wait	for	notifications,	it	can
include	the	following	code	fragment:

TestLambdaWaitNotify	thisInstance	=	new	TestLambdaWaitNotify();					
synchronized	(thisInstance)	{
		try{
															thisInstance.wait(20000);		//	wait	for	up	to	20	sec
		}	catch	(InterruptedException	e){	
															e.printStackTrace();
		}
}
					
System.out.println(
													"The	main	method	of	TestLambdaWaitNotify	is	finished");

The	method	call	wait(20000)	means	“wait	for	up	to	20	seconds.”	The	last	println	statement
is	executed	either	after	20	seconds	or	when	the	main	thread	receives	notification	of	some
important	event,	whichever	comes	first.	Calling	wait()	without	the	argument	would	make
the	program	wait	for	the	notification	until	it	arrives.	Examples	of	important	events	are	a
price	drop	on	the	auction	for	items	you’re	interested	in,	the	reopening	of	the	airport	after

freezing	rain,	and	the	execution	of	your	order	to	purchase	100	shares	of	IBM	stock.	

The	difference	between	sleep()	and	wait()	is	that	calling	sleep(20000)	puts	a	thread	into	a
not-runnable	state	for	exactly	20	seconds,	although	wait(20000)	might	mean	that	it	will
come	back	to	a	runnable	state	earlier.	

Note	that	in	the	preceding	example	the	main	thread	placed	a	lock	on	the	instance	of	its
own	object—	thisInstance.	The	other	thread	has	to	receive	a	reference	to	the	same	object
to	send	the	notification.	If	you	were	writing	code	in	traditional	object-oriented	style,	you
could	create	a	separate	class	implementing	Runnable	with	a	constructor	that	gets	a
reference	to	the	parent	thread	for	further	notifications	as	shown	here:

Listing	17-11:	Notification	example

class	MarketNews	implements	Runnable	{
	Object	parent;	
		
		MarketNews(Object	whoToNotify){
						parent=whoToNotify;	
		}
		public	void	run(){	
				//	Do	some	lengthy	processing	here	
		
				synchronized(parent){
					parent.notify();	//	send	notification	to	the	waiting	thread
				}	
		}	
}

But	I’d	like	to	implement	Runnable	using	a	lambda	expression	and	illustrate	an	interesting
concept	called	closures.

Closures	in	Java	
In	functional	languages	like	JavaScript,	a	closure	is	a	nested	function	that	knows	the
context	where	it	was	declared.	In	other	words,	during	the	invocation	the	nested	function
has	access	to	variables	from	the	outer	one	even	though	they	were	never	declared	inside	the
nested	function.	It’s	easier	to	explain	this	concept	by	example,	and	I	will	implement	the
market	news	thread	not	as	a	separate	class,	but	as	a	lambda	expression:

	Runnable	mNews	=()	->	{
					//	Do	something	
					//	But	who	to	notify????	
};

This	lambda	gets	the	object	of	the	inferred	type	Runnable,	but	how	to	pass	it	to	yet	another
object,	which	is	the	reference	to	the	parent	thread	to	send	notification	to?	You	create	an

“outer	function”—a	method	that	takes	a	reference	to	the	parent	thread	as	an	argument:

private	Runnable	getMktNewsRunnable(
			Object	whoToNotify){	
					return	()	->	{	
								//	Do	something	
								whoToNotify.notify();
					};	
}

This	is	an	example	of	a	method	returning	a	lambda	expression	so	the	following	statement
is	valid:

Runnable	mktNewsRunnable	=	getMktNewsRunnable(this);

The	value	of	the	variable	is	just	the	code	returned	by	the	method
getMktNewsRunnable().		It’s	important	to	notice	that	this	code	just	uses	the	variable
whoToNotify	from	the	outer	method	even	though	it	was	not	declared	inside	the	lambda
expression!	So	the	inner	function	“remembers”	that	when	it	was	created,	there	was
someone	in	the	neighborhood	named	whoToNotify.	This	is	the	essence	of	the	concept	of
closures,	which	remember	the	context	they	were	declared	in.	

The	variables	from	outer	scope	are	inferred	to	be	final	and	are	immutable;	you	can’t
modify	them.	Even	though	I	never	declared	the	variable	whoToNotify	as	final,	it	is	final.

Following	is	the	complete	version	of	the	class	TestLambdaWaitNotify	that	creates	a	thread
using	lambda	and	gets	notification	when	that	thread	is	done	with	the	processing.

public	class	TestLambdaWaitNotify	{
		private	static	Runnable	getMktNewsRunnable(Object	whoToNotify){
				//	returning	a	closure		
				return		()	->	{
									try{
											for	(int	i=0;	i<10;i++){
												Thread.sleep	(1000);		//	sleep	for	1	second
												System.out.println("The	market	is	improving	"	+	i);
											}	
										
											synchronized(whoToNotify){
														whoToNotify.notify();	//	send	notification	to	parent
											}
								}catch(InterruptedException	e){
											System.out.println(Thread.currentThread().getName()	
																																												+	e.toString());
								}		
				};				
		}

				
		public	static	void	main(String	args[]){
								
					TestLambdaWaitNotify	thisInstance	=	new	TestLambdaWaitNotify();
					
					Runnable	mktNewsRunnable	=	getMktNewsRunnable(thisInstance);
					Thread	marketNews	=	new	Thread(mktNewsRunnable,"");
					marketNews.start();
			
					
					synchronized	(thisInstance)	{
											try{
															thisInstance.wait(20000);		//	wait	for	up	to	20	sec
											}	catch	(InterruptedException	e){	
															e.printStackTrace();
											}
									}
					
								System.out.println(
												"The	main	method	of	TestLambdaWaitNotify	is	finished");
		}
}

Now	the	message	that	the	main	method	is	finished	is	printed	after	the	loop	inside	the
market	news	ends.	Hopefully	it	takes	less	than	20	seconds.	You	can	remove	this	time
interval	and	just	call	wait()	to	ensure	that	even	on	the	slow	computers	the	main	thread
waits	for	as	long	as	needed.

Joining	Threads
Now	let’s	consider	a	scenario	in	which	you	need	to	start	multiple	threads	and	continue
program	execution	only	when	all	threads	are	complete.	You	may	have	several	threads	that
need	to	wait	for	each	other’s	completion.	The	Thread	class	has	a	method,	join(),	that	you
can	use	in	this	case.

Revisit	the	TestThreads3Lambda	program	shown	in	Listing	17-7.	If	you	want	to	make
sure	that	the	main	method	(the	main	thread)	is	waiting	until	the	other	two	threads	are
finished,	you	can	use	the	method	join().	The	following	code	snippet	shows	the	class
TestThreads3LambdaJoin	that	links	together	three	threads:	main,	portfolio,	and	market
news.

Listing	17-12:	Joining	threads

public	class	TestThreads3LambdaJoin	{
		public	static	void	main(String	args[]){
								
				//	Lambda	expression	for	Market	News
						Runnable	mn	=	()	->	{
									try{
										for	(int	i=0;	i<10;i++){
											Thread.sleep	(1000);		//	sleep	for	1	second
											System.out.println("The	market	is	improving	"	+	i);
										}	
								}catch(InterruptedException	e){
											System.out.println(Thread.currentThread().getName()	
																																												+	e.toString());
								}		
					};	
			
					
					//	Lambda	expression	for	Portfolio
					Runnable	port	=	()	->{
									try{
														for	(int	i=0;	i<10;i++){
															Thread.sleep	(700);			//	Sleep	for	700	milliseconds	
															System.out.println("You	have	"	+		(500	+	i)	+		
																																														"	shares	of	IBM");
														}
												}catch(InterruptedException	e){
														System.out.println(Thread.currentThread().getName()	
																																																+	e.toString());
												}			
					};
					

					Thread	marketNews	=	new	Thread(mn,	"Market	News");
					Thread	portfolio	=	new	Thread(port,"Portfolio	data");
					marketNews.start();
					portfolio.start();
					
					try{
								marketNews.join();
								portfolio.join();
					}catch	(InterruptedException	e){
								e.printStackTrace();
					}
							
					System.out.println(
									"The	main	method	of	TestThreads3LambdaJoin	is	finished");
		}
}

Running	the	class	TestThreads3LambdaJoin	prints	the	outputs	of	market	news	and
portfolio	first,	and	only	after	the	message	that	the	main	method	is	finished.	The	main
thread	waits	for	the	other	two	by	joining	them.

Goodies	From	java.util.concurrent
The	package	java.util.concurrent	has	lots	of	goodies	that	make	thread	programming	a	lot
more	robust	and	flexible,	and	most	importantly	that	increase	the	performance	of
multithreaded	applications.	This	section	highlights	some	of	the	must-know	techniques,
classes,	and	interfaces	from	this	package.	For	detailed	coverage	of	this	subject	get	the
book	Java	Concurrency	in	Practice	by	Brian	Goetz	et	al.	(Addison-Wesley,	2006).

ReentrantLock	Versus	Synchronized
The	package	java.util.concurrent.locks	includes	the	class	ReentrantLock,	which	can	be
used	as	a	replacement	for	the	synchronized	keyword.	Using	it	gives	you	more	flexibility,
and	it	can	be	used	across	methods.		The	idea	is	to	place	a	lock	(invoke	lock())	before	the
section	of	your	program	that	may	cause	a	race	condition,	and	to	remove	the	lock
afterward.	The	next	code	snippet	is	a	revision	of	the	code	shown	earlier	in	Listing	17-10:

private	Lock	accountLock	=	new	ReentrantLock();
witdrawCash(int	accountID,	int	amount){
				//	Some	thread-safe	code	goes	here,	e.g.	reading	from
				//	a	file	or	a	database
			accountLock.lock();	//	place	a	lock	here
			try{
				if	(allowTransaction){
						updateBalance(accountID,	amount,	“Withdraw”);
				}	else	{
						System.out.println(“Not	enough	money	on	the	account”);
				}
			}finally	{
					accountLock.unlock();	//allow	other	threads	to	update	balance
		}
}

Note	that	the	lock	has	to	be	removed	in	the	finally	section	to	ensure	that	unlocking	always
gets	executed,	even	if	there	is	an	exception	thrown	from	the	try	block.	When	the	code	is
unlocked	it	can	be	given	to	one	of	the	waiting	threads.	The	class	ReentrantLock	has	an
overloaded	constructor	with	a	boolean	argument—if	you	specify	true	while	creating	the
lock,	the	control	is	given	to	the	longest-waiting	thread.

There	is	another	useful	class,	Condition,	that	can	be	associated	with	the	lock.	This	object
enables	a	locked	block	of	code	to	suspend	its	execution	until	other	threads	notify	the
current	one	that	some	condition	has	become	true—for	example,	the	bank	account	has
enough	funds	now	for	you	to	make	a	withdrawal.

If	you	don’t	need	the	flexibility	offered	by	the	ReentrantLock/Condition	combo,	just	use
the	synchronized	keyword	with	notify()/notifyAll()	methods	to	control	thread	locking.	Or,
even	better,	see	if	using	one	of	the	concurrent	collections	(reviewed	in	the	section	“A	Brief
Review	of	Concurrent	Collections”)	can	take	care	of	all	your	locking	needs	so	you	don’t
need	to	create	explicit	locks	in	your	code.

Executor	Framework
Creating	threads	by	subclassing	Thread	or	implementing	Runnable	works,	but	there	are
certain	shortcomings	to	these	approaches.	First,	the	method	run()	cannot	return	a	value.
Second,	an	application	may	spawn	so	many	threads	that	it	can	take	up	all	the	system
resources,	and	if	this	happens	the	application	will	stop	functioning.	In	other	words,	you
need	to	be	able	to	control	the	number	of	threads	allowed	for	each	application.

You	can	overcome	the	first	shortcoming	by	using	the	Callable	interface,	and	the	second
one	by	using	classes	from	the	Executor	framework.	The	Executors	class	spawns	the
threads	from	Runnable	objects,	ExecutorService	knows	how	to	create	Callable	threads,
and	ScheduledExecutorService	allows	you	to	schedule	threads	for	future	execution.

The	utility	class	Executors	has	static	methods	that	enable	you	to	create	an	appropriate
executor.	In	particular,	its	method	newFixedThreadPool()	creates	a	pool	of	threads	of	a
specified	size.	For	example,	Executors.newFixedThreadPool(5)	gives	you	an	instance	of
ExecutorService	that	automatically	supports	a	pool	of	not	more	than	five	threads.	If	all
five	threads	are	busy	when	a	request	to	create	a	new	thread	comes	in,	that	request	waits
until	one	of	the	running	threads	completes.	Using	thread	pools	ensures	that	you	can
control	system	resources	better.

If	you	need	a	thread	to	return	some	data	on	completion,	create	a	class	that	implements	the
Callable	interface	and	defines	a	method	call()	that	plays	the	same	role	as	run()	in
Runnable.	In	this	case	you	need	to	create	threads	differently;	the	class	Thread	doesn’t	take
a	Callable	object	as	an	argument.	The	class	Executors	comes	to	the	rescue:	it	offers	a
number	of	static	methods	that		create	a	thread	from	your	Callable	class	and	return	the
result	of	its	execution	packaged	inside	the	special	object	implementing	the	interface
Future.

The	method	call()	is	defined	with	a	parameterized	value	(remember	generics?):

public	interface	Callable	<V>{
			V	call()	throws	Exception;
}

Accordingly,	if	some	method	needs	to	create	a	thread	using	Callable,	the	code	should
instantiate	the	Callable	thread	with	a	specific	data	type	in	place	of	<V>.	For	example,	the
thread	Portfolio	may	return	an	Integer	as	a	result	of	some	processing	in	its	call()	method:

public	class	Portfolio	implements	Callable<Integer>{
			public	Integer	call()	{
						//	Perform	some	actions
						return	someInteger;
			}
}
public	class	MarketData	implements	Callable<Integer>{
			public	Integer	call()	{
						//	Perform	some	actions
						return	someInteger;

			}
}

One	way	to	create	a	Future	object	is	by	submitting	an	instance	of	the	Callable	thread	to	the
Executor.	Call	the	function	get()	on	the	Future	instance,	and	it	blocks	on	the	thread	until
its	call()	method	returns	the	result:

//Threads’	results	can	be	stored	in	the	collection	of	Futures
List<Future<Integer>>	threadResults=	
																																new	ArrayList<Future<Integer>>();
//	Submit	Callables	for	execution
threadResults.add(myExecutorService.submit(new	Portfolio()));
threadResults.add(myExecutorService.submit(new	MarketData()));
for	(Future<Integer>	future	:	threadResults)	{
							future.get();
}

Calling	methods	get()	on	several	instances	of	the	Future	objects	is	equivalent	to	joining
threads.

The	process	of	spawning	threads	using	Executors,	Callable,	and	Future	may	go	like	this:

1.	 Declare	and	instantiate	a	class	that	implements	the	Callable	interface,	and	program	the
business	logic	in	its	method	call().	Alternatively,	you	can	use	a	lambda	expression
because	Callable	is	a	functional	interface.

2.	 Create	an	instance	of	the	Future	object.

3.	 Create	an	instance	of	an	ExecutorService	using	Executors.newFixedThreadPool().

4.	 Call	the	function	submit()	on	the	ExecutorService,	providing	an	instance	of	the
Callable	object	(or	lambda	expression)	as	an	argument.

5.	 Call	the	function	get()	on	the	Future	object	from	Step	2.	This	function		waits	until	the
thread	returns	the	result	(or	throws	an	exception).

6.	 Accept	the	result	of	the	thread	execution	into	a	variable	of	the	data	type	used	in	Step	1.

7.	 Call	the	function	shutdown()	on	the	ExecutorService	from	Step	3.

The	following	class	TestCallableThreads	creates	a	collection	of	Future	objects—one	per
thread.	Executors	creates	a	pool	of	two	threads,	and	each	thread	is	submitted	for
execution.	The	method	get()	waits	for	the	completion	of	each	thread,	and	the	result	of	each
call()	method	is	stored	in	the	collection	results.	Lambda	expressions	implement	Callable.

Listing	17-13:	Spawning	threads	with	the	Executor	framework

	public	class	TestCallableThreads	{		
			
		public	static	void	main(String[]	args)			
																	throws	InterruptedException,	ExecutionException	{

							
				//	Lambda	expression	for	Market	News
			Callable<Integer>	mn	=	()	->	{
						for	(int	i=0;	i<10;i++){
							Thread.sleep	(1000);		//	sleep	for	1	second
							System.out.println("The	market	is	improving	"	+	i);
						}	
							//	Just	return	some	number	to	illustrate	return
							return	12345;									
			};	
					
					//	Lambda	expression	for	Portfolio
			Callable<Integer>	port	=	()	->{
										for	(int	i=0;	i<10;i++){
											Thread.sleep	(700);				//	Sleep	for	700	milliseconds	
											System.out.println("You	have	"	+		(500	+	i)	+		
																																										"	shares	of	IBM");
										}	
					
							//	Just	return	some	number
							return	10;
			};
												
			//A	placeholder	for	Future	objects
				List<Future<Integer>>	futures	=			
					new	ArrayList<Future<Integer>>();		
			
				//	A	placeholder	for	results	returned	by	threads
				List<Integer>	results	=	new	ArrayList<Integer>();
			
			final	ExecutorService	service	=			
					Executors.newFixedThreadPool(2);		
					
			try	{		
					futures.add(service.submit(port));		
					futures.add(service.submit(mn));	
	
					for	(Future<Integer>	future	:	futures)	{		
						results.add(future.get());		
					}		
			}	finally	{		
						service.shutdown();		
			}	
			
			for	(Integer	res:	results){
						System.out.println("\nGot	the	result:	"	+	res);

			}
		}		
	}		

The	output	of	this	program	is	shown	next.	But	if	you	change	the	number	of	threads	in	the
pool	from	two	to	one,	the	program		first	prints	all	messages	from	the	portfolio	thread	and
only	after	that	prints	all	messages	from	the	market	news.

You	have	500	shares	of	IBM
The	market	is	improving	0
You	have	501	shares	of	IBM
The	market	is	improving	1
You	have	502	shares	of	IBM
You	have	503	shares	of	IBM
The	market	is	improving	2
You	have	504	shares	of	IBM
The	market	is	improving	3
The	market	is	improving	4
Got	the	result:	10
Got	the	result:	12345

A	Brief	Review	of	Concurrent	Collections
The	package	java.util.concurrent	offers	a	number	of	data	structures	that	simplify
programming	with	threads.	This	section	briefly	names	some	of	them.

Queues

The	concept	of	a	queue	(First	In	First	Out	or	FIFO)	fits	well	in	any	process	that	involves
asynchronous	intra-object	communications.	Instead	of	object	A	trying	to	place	a	direct
lock	on	object	B,	the	former	(also	known	as	the	producer)	can	place	some	data	objects	in	a
queue,	and	the	latter	(also	known	as	the	consumer)		retrieves	(dequeues)	them	from	the
queue	asynchronously.	Most	importantly,	the	queues	from	the	java.util.concurrent	package
are	thread-safe,	which	means	that	you	can	add	an	object	to	a	queue	without	worrying
about	race	conditions.

If	the	queue	is	blocking,	the	thread	also	blocks	while	trying	to	add	an	object	to	a	full	queue
or	remove	an	object	from	an	empty	one.	The	following	classes	implement	the
BlockingQueue	interface:	LinkedBlockingQueue,	ArrayBlockingQueue,
SynchronousQueue,	PriorityBlockingQueue,	and	DelayQueue.	To	add	an	object	to	a	queue
you	can	use	such	methods	as	add(),	put(),	and	offer().	To	retrieve	an	object	from	a	queue
use	poll(),	remove(),	take(),	or	peek().

Unbound	queues	don’t	place	limitations	on	the	number	of	elements.
ConcurrentLinkedQueue	is	an	example	of	such	a	queue.

Java	has	introduced	a	Deque	interface	for	inserting	and	removing	elements	from	both	ends
of	the	queue.	The	class	LinkedBlockingDeque	is	a	concurrent	implementation	of	this

interface.

Collections

Using	concurrent	collections	is	a	recommended	way	of	creating	thread-safe	data
structures.	Such	collections	include	ConcurrentHashMap,	ConcurrentSkipListMap,
ConcurrentSkipListSet,	CopyOnWriteArrayList,	and	CopyOnWriteArraySet.	Java
documentation	describes	when	to	use	each	of	these	collections.	For	example,	a
CopyOnWriteArrayList	is	preferable	to	a	synchronized	ArrayList	when	the	expected
number	of	reads	and	traversals	is	much	greater	than	the	number	of	updates	to	a	list.	These
collections	were	written	to	minimize	the	time	during	which	data	is	locked.

The	utility	class	java.util.Collections	has	a	number	of	static	methods	that	create	thread-
safe	collections.	Their	method	names	start	with	the	word	synchronized.	For	example,
synchronizedList()	takes	a	regular	List	(such	as	ArrayList)	as	an	argument	and	makes	it
thread-safe.	You	can	read	more	about	Java	Collections	Framework	in	Oracle
documentation	at	http://goo.gl/yknUje.

Finding	a	ready-to-use	synchronized	collection	is	better	than	writing	synchronized	blocks
on	your	own.	The	chances	are	slim	that	you’ll	write	more	efficient	synchronization	code
than	already	exists	in	Java.

http://goo.gl/yknUje

Swingworker	Thread
Any	Java	Swing	application	spawns	a	number	of	threads.	At	the	very	minimum	it	runs	the
main	application	thread,	the	second	thread	captures	system	events,	and	the	third	one
communicates	with	the	graphical	user	interface	(GUI).	The	application	itself	may	spawn
additional	threads.	But	if	more	than	one	thread	needs	to	update	the	user	interface	(UI)
components,	the	changes	may	not	be	rendered	properly,	because	Swing	components	were
not	made	thread-safe	to	minimize	the	number	of	locks	that	hurt	performance.

To	avoid	this	problem,	UI	updates	shouldn’t	be	made	directly,	but	rather	submitted	to	an
event	dispatch	thread.	Swing	uses	a	single-threaded	model,	which	means	that	all	UI
updates	are	rendered	via	a	single	thread.

Suppose	your	GUI	application	is	written	with	Java	Swing,	and	a	click	on	JButton	initiates
some	server-side	data	request	that	takes	about	10	seconds	to	complete.	You	should	never
execute	long	requests	in	the	event	dispatch	thread.	If	you	do,	then	the	UI	will	become
frozen,	as	no	updates	can	be	made	until	the	long	running	process	releases	the	lock	on	the
thread.	Therefore,	you	need	to	start	a	separate	thread	for	such	a	long	process,	and	when	it
finishes,	the	program	has	to	modify	the	GUI	via	the	event	dispatch	thread.

For	example,	if	the	result	of	a	button	click	has	to	update	a	JTextField,	you	may	create	a
new	thread	in	the	button’s	actionPerformed()	method	and,	from	within	the	run()	method	of
this	thread,	update	the	text	field.	This	will	work	most	of	the	time,	if	there	are	no	conflicts
with	other	threads	running	in	your	application.

All	UI-related	Swing	events	(such	as	button	clicks	and	window	repaints)	are	placed	in	a
special	queue,	and	the	object	java.awt.EventQueue	retrieves	them	from	this	queue.	You
should	direct	modification	of	the	UI	(the	JTextField	in	our	example)	to	this	queue.

In	the	older	version	of	Java,	to	ensure	that	all	application-specific	data	would	modify	the
GUI	via	this	queue,	developers	used	the	method	invokeLater()	to	ensure	that	UI	changes
were	placed	in	the	EventQueue:

SwingUtilities.invokeLater(
			new	Runnable(){
				public	void	run(){
						//	Do	some	processing	here
						//...	and	then	update	the	UI
						myTextField.setText(someData);
				}
			}
);

You	may	use	lambda	to	make	the	preceding	code	shorter.	The	class
javax.swing.SwingWorker	gives	you	a	cleaner	(though	not	necessarily	simpler)	means	of
dealing	with	the	event	dispatch	thread.	This	thread	class	implements	Runnable	and	Future,
and	so	can	be	submitted	to	the	Executor	for	execution	and	return	a	result.

Let’s	say	a	Swing	application	needs	to	make	a	request	to	the	server	to	get	the	market	news
information,	which	may	take	a	couple	of	seconds.	So	that	the	UI	isn’t	frozen	for	these

seconds,	this	request	has	to	be	performed	in	a	background	thread,	and	when	the	result	is
ready	the	UI	has	to	be	updated.	To	arrange	this,	create	a	subclass	of	SwingWorker	and
override	its	doInBackground()	method,	then	instantiate	it	and	call	its	execute()	method,	as
in	Listing	17-14.

Listing	17-14:	Basic	use	of	SwingWorker

class	MarketNewsWorker	extends	SwingWorker	<List<String>,	String>{
			@Override	public	List<String>	doInBackground(){
							//	Make	a	request	to	the	server	and	return	a	result,
							//	i.e.,	a	list	of	Strings
						return	myListOfTextData;
		}
					//	method	method	overrides	go	here

	}
class	TestMarketNews{
					...
					public	static	void	main(String[]	args){
										new	MarketNewsWorker().execute();
					}
}

This	code	gives	you	a	high-level	picture,	but	there	is	more	to	executing	the	thread	with
SwingWorker.	First,	you	probably	noticed	the	unknown	syntax	element	@Override,	which
is	Java	annotation	stating	that	the	method	doInBackground()	is	being	overridden.	Adding
the	@Override	annotation	is	not	required	here;	it’s	just	an	example	of	an	annotation.	You
learn	about	annotations	in	Chapter	23.

Second,	the	class	MarketNewsWorker	uses	generics	and	has	two	parameters,
<List<String>	and	String>.	The	reason	for	this	is	that	the	overridden	method
doInBackground()	might	call	the	SwingWorker’s	process()	method,	and	will	call	its	done()
method	on	completion;	this	is	where	the	UI	is	being	updated.	Two	parameters	indicate
what	types	of	data	will	be	returned	by	doInBackground()	and	given	to	process()
respectively.

Why	might	you	consider	calling	the	method	process()	during	your	thread	execution?	You
might	do	it	to	support	some	kind	of	progress	meter	or	other	means	of	reporting	the
progress	of	long-running	processes.	If,	for	example,	a	long-running	thread	is	reading	a
large	file	or	performing	some	lengthy	calculations,	you	might	want	to	calculate	the
percentage	of	completion	and	report	it	to	the	calling	Swing	application.

You	are	not	allowed	to	call	the	process()	method	directly,	but	have	to	call	a	method	called
publish(),	which	internally	calls		process().	Override	process()	to	add	some	messages	to
the	log	file	or	update	the	progress	meter.	The	code	to	display	the	result	of	the	calculations
on	the	UI	should	be	written	in	the	method	done().

Listing	17-15	shows	you	a	typical	way	to	program	with	SwingWorker.	I	left	out	the	details
on	purpose	so	you’d	have	something	to	do	for	this	lesson’s	homework.

Listing	17-15:	A	typical	way	to	use	SwingWorker

class	MarketNewsWorker	extends	SwingWorker	<List<String>,	String>{
			@Override	public	List<String>	doInBackground(){
						//	Make	a	request	to	the	server	and	return	a	result,
						//	i.e.,	a	list	of	Strings
						for	(String	news:	someNewsCollection){
												//process	each	news	and	report	the	progress
												//	...
									publish("Processed	the	news	"	+	news);	//this	calls	process()
						}
						return	myListOfTextData;
		}
			@Override	protected	void	process(String	progressMessage){
							//	display	the	progress	information	here
			}
			@Override	protected	void	done(){
							//	modify	UI	components	here	by	calling	get()
							//	Future’s	get()	gives	you	the	result	of
							//	the	thread	execution
			}
}
class	TestMarketNews{
					
					public	static	void	main(String[]	args){
										new	MarketNewsWorker().execute();
					}
}

You	just	completed	a	rather	long	and	advanced	lesson	of	this	book.	The	subject	definitely
requires	more	research	and	practice.	Some	good	content	to	read	next	is	the	lesson	on
concurrency	in	Oracle’s	Java	tutorial,	which	is
at	http://docs.oracle.com/javase/tutorial/essential/concurrency.	As	always,	trying	it	hands-
on	will	deepen	your	understanding.

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Try	It
Create	a	Swing	application	with	the	GUI	that	consists	of	two	JTextArea	controls	and	one
JButton	with	the	label	“Get	the	News.”	Prepare	two	text	files	with	some	text	information
(the	news),	and	write	the	code	that	reads	them	to	the	left	and	right	text	areas	respectively.
File	reading	has	to	be	implemented	concurrently	using	two	SwingWorker	threads.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	atwww.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson17.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project.

2.	 Create	a	class	called	NewsReader	as	a	subclass	of	SwingWorker.	This	class	should
have	a	constructor	that	takes	one	argument	of	type	File,	and	another	of	type	JTextArea
(the	content	of	the	file	should	be	displayed	there).

3.	 Prepare	two	text	files	with	some	news	in	each.

4.	 Create	a	Swing	application	with	two	text	areas	and	a	button.

5.	 On	the	click	of	the	button	instantiate	two	NewsReader	threads.	Each	thread	should	get
an	instance	of	the	File	object	pointing	to	the	corresponding	news	file	and	the
corresponding	text	area.

6.	 Override	the	NewsReader’s	methods	doInBackground()	and	done()	to	read	the	files
and	populate	the	Swing	view.

7.	 Test	this	program.

8.	 This	step	is	optional.	Override	the	method	process()	and	make	sure	that	it	updates	the
view	with	progress	information	about	the	reading	process.	The	progress	should	be
displayed	as	a	percentage:	The	percentage	formula	is
progressToDisplay=readBytes/FileSize*100.	Use	the	Swing	class	JProgressBar	for
displaying	the	progress	bar.

TIP			Please	select	the	videos	for	Lesson	17	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	18
Introduction	to	GUI	with	JavaFX
JavaFX	was	created	to	compete	with	formerly	popular	Rich	Internet	Application	(RIA)
frameworks,	such	as	Adobe	Flex	and	Microsoft	Silverlight.	In	reality	JavaFX	never
became	competitive	in	the	RIA	space,	but	it	presents	a	better	and	more	modern	alternative
for	Swing	when	it	comes	to	developing	a	graphical	user	interface	(GUI)	in	Java.	Whereas
Swing	was	built	on	top	of	the	old	AWT	library,	JavaFX	is	not.	Also,	while	JavaFX	is
bundled	with	Java	SE	8,	it’s	not	a	part	of	it.

With	JavaFX	you	can	develop	the	GUI	either	in	Java	or	use	a	mix	of	FXML	and	Java.	The
FXML	is	an	XML-based	markup	language	that	enables	you	to	define	GUI	components	in
a	declarative	way.	The	sources	of	such	GUI	definitions	would	be	stored	in	a	text	files	with
the	extension	.fxml,	which	represent	a	view	in	the	Model	View	Controller	(MVC)
architecture.	The	business	code	and	access	to	data	would	be	still	written	in	Java	using	a
rich	library	of	JavaFX	components.	Using	FXML	for	GUI	promotes	the	clean	separation
of	the	code	between	the	MVC	layers.	JavaFX	offers	a	design	tool	called	Scene	Builder
that	allows	designing	the	GUI	by	dragging	the	GUI	components	from	a	toolbar	onto	the
window’s	real	estate.

In	this	lesson	you’ll	learn	how	to	program	JavaFX	application	in	Java.		In	Lesson	19
you’ll	see	how	to	use	Scene	Builder	to	make	a	GUI	design	process	a	lot	more	enjoyable
and	simple	by	using	FXML.

You	can	find	JavaFX	documentation	at	the	following	Oracle
website:		http://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

In	this	lesson	you	discover	the	basics	of	creating	GUI	with	JavaFX	8.		In	the	next	lesson
you	create	a	tic-tac-toe	game	with	JavaFX	.

http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

JavaFX	Application	Basics
JavaFX	uses	theater	terminology.	To	create	an	application,	you	instantiate	a	stage	object
first.	Pretend	that	you’re	a	play	director	and	need	to	set	up	one	or	more	scenes	(think
views).		The	backbone	of	each	scene	is	a	scene	graph—a	hierarchical	tree	of	GUI	nodes
(think	GUI	containers	and	components).		Each	node	can	be	styled	using	the	Cascading
Style	Sheet	(CSS)	file.	You	can	also	apply	effects	and	transitions	to	nodes.	You	can	assign
event	handlers	to	nodes	if	need	be.	On	the	top	of	the	scene	graph	you	create	a	root	node.

JavaFX	classes	are	located	in	the	packages	javafx.stage	and	javafx.scene.	The	main	class
of	a	JavaFX	application	extends	Application	and	has	the	following	structure:

public	class	Main	extends	Application	{
				public	void	start(Stage	primaryStage)	{
								//	Create	your	stage	and	scenes	here
				}
				
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

The	JavaFX	framework	calls	the	Application	’s	methods	launch(),		init()	,	and	then		start().
The	method	init()	is	called	on	the	launcher	thread,	and	is	the	right	place	to	create	all
required	GUI	components.	The	start()	method	is	the	main	entry	point	to	the	JavaFX
application.	The	start()	method	is	called	on	the	application	thread	and	is	the	right	place	for
creating	objects	to	be	placed	on	the	first	scene	of	the	stage,	which	plays	a	similar	role	as
JFrame	or	JDialog	in	Swing.

Embedding	Swing	in	JavaFX
Swing	and	the	Java	FX	application	run	on	different	threads.	To	reuse	existing	Swing
components	inside	JavaFX	applications,	use	the	class	SwingNode.

Using	the	E(fx)clipse	Plug-in
Modern	IDE	speed	up	JavaFX	programming	by	providing	code	generators,	embedded
Scene	Builder	and	good	support	of	FXML.	The	best	IDE	for	developing	JavaFX
application	is	NetBeans.	IntelliJ	IDEA	goes	next.	Since	we	use	Eclipse	IDE	in	this	book,
we’ll	need	to	install	an	Eclipse	plug-in	called	E(fx)clipse.

Open	the	Eclipse	menu	Help	→	Install	New	Software.	Click	the	Add	button	and	include
the	following	URL	in	the	location	field	to	get	the	latest
version:	http://download.eclipse.org/efxclipse/updates-nightly/site	as	shown	in	Figure	18-
1.
	

http://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.htm#A1106328
https://netbeans.org/features/java-on-client/javafx.html
http://blog.jetbrains.com/idea/2014/11/intellij-idea-14-is-released/
https://www.eclipse.org/efxclipse/index.html
http://download.eclipse.org/efxclipse/updates-nightly/site/

Figure	18-1:	Adding	the	location	of	the	E(fx)clipse	plug-in

	Click	OK,	and	check	all	components	as	shown	in	Figure	18-2.

Figure	18-2:	Selecting	the	plug-in’s	components	for	installation

Complete	the	install	by	clicking	Next	and	then	clicking	Finish.	Eclipse	restarts	and	you’re
ready	to	create	JavaFX	projects.

Create	a	new	HelloFX	project.	Select	File→New→Other→JavaFX→JavaFX	Project	and
give	your	project	a	name	HelloFX.	You	see	a	new	project	with	content	like	that	shown	in
Figure	18-3.

Figure	18-3:	The	newly	generated	JavaFX	project

This	project	has	auto-generated	a	Main	class	that	launches	the	application;	it	also	auto-
generated	the	empty	file	application.css,	where	you	can	add	styles.	The	generated	class
Main	looks	like	this:

public	class	Main	extends	Application	{
				@Override
				public	void	start(Stage	primaryStage)	{
								try	{
												BorderPane	root	=	new	BorderPane();
												Scene	scene	=	new	Scene(root,400,400);
												scene.getStylesheets().add(getClass()
																	.getResource("application.css").toExternalForm());
												primaryStage.setScene(scene);
												primaryStage.show();
								}	catch(Exception	e)	{
												e.printStackTrace();
								}
				}
				
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}	

Run	the	Main	program,	and	a	window	with	no	title	and	no	content	opens.	This	windows
has	a	width	and	height	of	400	pixels.	The	reference	to	the	stage	is	given	by	the
Application	to	the	method	start()	as	an	argument.	After	that	the	code	assigns	the
BorderPane	layout	(see	the	Layouts	section)	to	the	root	node	and	creates	a	400	x	400
scene	with	this	empty	node.	The	auto-generated	file	application.css	is	empty,	but	if	it	had
some	styles	defined,	the	scene	would	be	styled	accordingly.

In	the	next	section	you	modify	this	code	to	use	JavaFX	layouts.	

Layouts
Similarly	to	Java	Swing	layout	managers	(see	Lesson	9),	JavaFX	has	layouts	that	help
with	arranging	GUI	controls	on	the	scene	and	keeping	the	arrangement	for	different	stage
sizes.	In	addition	to	using	the	built-in	layouts,	you	can	customize	the	positioning	of	the
nodes	on	the	scene	using	CSS.

This	section	includes	only	two	code	samples	of	using	layouts,	and	it	assumes	that	you’ve
mastered	Lessons	8	and	9	and	understand	the	concept.		Refer	to	the	product
documentation	to	see	how	other	layouts	work.

	JavaFX	has	the	following	layout	container	classes	(layout	panes):

HBox

VBox

FlowPane

GridPane

BorderPane

StackPane

TilePane

AnchorPane

The	HBox	class	(the	horizontal	box)	places	controls	in	a	row	next	to	each	other.	The
vertical	box	VBox	places	controls	vertically.	The	FlowPane	places	the	nodes	in	a	row	and
then	wraps	to	the	next	row	if	there	is	no	room	in	the	current	one.

The	GridPane	is	similar	to	Swing’s	GridBagLayout	described	in	Lesson	8.	It	enables	you
to	arrange	user	interface	(UI)	controls	in	rows	and	columns	and	assign	constraints	to	each
cell.

The	BorderPane	can	split	the	scene	into	as	many	as	five	regions,	similar	to	Swing’s
BorderLayout,	but	in	JavaFX	these	areas	are	called	left,	top,	right,	bottom,	and	center.	

The	TilePane	layout	is	similar	to	the	FlowPane,	but	it	places	each	node	in	a	cell	of	the
same	size	(like	tiles	on	the	wall).	Say,	you	need	to	display	several	images	in	a	tile	layout.
Adding	the	ImageView	nodes	to	the	TilePane	shows	them	as	tiles	next	to	each	other.	

The	StackPane	layout	is	similar	to	the	Swing’s	CardLayout.	Only	one	child	node	is	shown
at	a	time	covering	the	other	nodes.

The	AnchorPane	enables	you	to	anchor	nodes	at	the	left,	top,	right,	and	bottom	of	the
scene.	Imagine	a	music	player	application	with	the	Rewind	button	on	the	left	and	the	Fast
Forward	button	on	the	right.	Say	you	want	to	ensure	that	the	Rewind	button	always
remains	20	pixels	away	from	the	left	border	of	the	window	and	10	pixels	from	the	bottom.
You	want	to	maintain	this	positioning	even	if	the	user	resizes	the	window.	For	that	you	can
use	the	leftAnchor	and	bottomAnchor	properties.	For	example,

AnchorPane.setLeftAnchor(rewindBtn,	20);
AnchorPane.setBottomAnchor(rewindBtn,	10);

http://docs.oracle.com/javafx/2/layout/jfxpub-layout.htm

Each	of	these	layouts	can	be	configured	in	terms	of	alignments,	padding,	margins	and
other	properties.

Typically	you’ll	be	going	through	the	following	steps	with	any	layout:

1.	Create	instances	of	child	nodes	to	be	used	within	the	layout	container.

2.	Create	an	instance	of	the	selected	layout	class	(for	example,	HBox).	This	instance
serves	as	a	container	and	a	layout	manager	for	all	child	nodes	that	you	add	to	it.

3.	Add	the	child	nodes	to	the	container	using	either	the	add()	or	addAll()	method.

4.	If	this	layout	instance	needs	to	be	used	inside	another	layout	(for	example,	an	HBox	can
be	placed	inside	the	BorderPane),	add	the	instance	created	in	Step	1	to	the	parent	container
by	using	the	method	add().

Let’s	see	how	it	works	using	the	HBox	example.

A	Sample	Application	with	the	HBox	Layout
Say	you	need	to	ask	the	user	to	enter	his	or	her	e-mail	and	send	it	to	some	Java	code	that
knows	how	to	process	it.	This	example	use	sthe	following	JavaFX	components:	Label,
Button,	and	TextField,	which	are	located	in	the	javafx.scene.control	package.

With	the	help	of	the	E(fx)clipse	plug-in,	create	a	new	JavaFX	Main	class	HBoxSample
(use	File→New→Other→JavaFX→Classes).	It	creates	the	following	class:

public	class	HBoxSample	extends	Application	{
				public	void	start(Stage	primaryStage)	{				
				}
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

Now	you	need	to	create	instances	of	Label,	TextField,	and	Button	set	their	properties,	and
add	them	to	the	instance	of	HBox.	Add	the	following	code	to	the	start()	method:

Label	emailLbl	=	new	Label("Email:");
								
TextField	emailTxt	=	new	TextField();
emailTxt.setPrefColumnCount(20);
emailTxt.setPromptText("Your	email");					
								
Button	submitBtn	=	new	Button("Submit");
								
HBox	emailBox	=	new	HBox(5);		//	spacing	between	children	5	px
emailBox.setPadding(new	Insets(3));		//	space	around	HBox
emailBox.getChildren().addAll(emailLbl,	emailTxt,	submitBtn);
								
Scene	scene	=	new	Scene(emailBox,750,100);

primaryStage.setScene(scene);
primaryStage.show();

Run	the	HBoxSample	program,	and	you	see	a	window	similar	to	the	one	shown	in	Figure
18-4.

Figure	18-4:	Running	the	HBoxSample

The	prompt	“Your	email”	is	not	shown	in	the	text	field	because	it	has	focus,	but	as	soon	as
this	control	loses	focus	you	see	it.

Make	a	small	change	to	this	program	by	replacing	instantiation	of	the	HBox	with	VBox,
and	these	components	will	be	laid	out	vertically	one	under	another	(you	need	to	increase
the	height	of	the	scene	to	see	all	three	components).	

A	Sample	Application	with	the	GridPane	Layout
GridPane	divides	the	selected	scene	area	into	rows	and	columns	and	places	nodes	into	the
grid	cells.	Cells	don’t	have	to	be	of	the	same	size—nodes	can	span.	If	the	screen	size
changes,	the	content	doesn’t	wrap	and	maintains	the	grid.	

Before	placing	the	node	into	a	cell,	you	have	to	specify	grid	constraints,	such	as	rowIndex
and	columnIndex	(the	coordinate	of	the	cell,	which	starts	with	0,0).	The	rowSpan	and
columnSpan	allow	to	make	the	cell	as	wide	(or	as	tall)	as	several	other	cells.	The	GridPane
documentation	describes	lots	of	various	constraints	that	can	define	the	behavior	of	each
cell’s	content	if	the	windows	are	resized.	This	section	shows	you	a	basic	example	that	uses
some	of	the	constraints.

This	example	creates	a	login	window	where	the	user	can	enter	the	ID	and	password,	and
then	press	the	Sign	In	button.	The	scene	uses	the	GridPane	layout.	The	first	row	contains	a
Label	and	TextField	for	the	user	ID;	the	second	row	has	a	setup	for	the	password;	and	the
third	row	of	the	grid	has	one	button	(Sign	In)	that	should	span	two	columns.	Figure	18-5
below	shows	how	the	window	should	look.

Figure	18-5:	The	Sign	In	window

Following	is	the	code	of	the	class	GridPaneSample	that	rendered	this	window:

public	class	GridPaneSample	extends	Application	{
				public	void	start(Stage	primaryStage)	{
								
								final	int	TWO_COLUMN_SPAN	=	2;	
								
								Label	userIdLbl	=	new	Label("User	ID:");
								TextField	userIdTxt	=	new	TextField();
								Label	userPwdLbl	=	new	Label("Password:");
								PasswordField	userPwdTxt	=	new	PasswordField();
								GridPane	root	=	new	GridPane();
								root.setVgap(20);
								root.setPadding(new	Insets(10));
								root.setAlignment(Pos.CENTER);
								
								//	Using	static	methods	for	setting	node	constraints	
								GridPane.setConstraints(userIdLbl,	0,	0);
								GridPane.setConstraints(userIdTxt,	1,	0);
								GridPane.setConstraints(userPwdLbl,	0,	1);
								GridPane.setConstraints(userPwdTxt,	1,	1);

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/GridPane.html

								root.getChildren().addAll(userIdLbl,	userIdTxt,	
																																		userPwdLbl,	userPwdTxt);
								
								Button	signInBtn	=	new	Button	("Sign	In");
								
								//	Allow	the	button	to	be	wider	overriding	preferred	width							
								signInBtn.setPrefWidth(Double.MAX_VALUE);
	
								//	using	instance	method	for	directly	adding	the	node
								root.add(signInBtn,0,2,TWO_COLUMN_SPAN,1);	
				
								Scene	scene	=	new	Scene(root,250,150);
								primaryStage.setScene(scene);
								primaryStage.show();
				}
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

The	code	creates	two	instances	of	the	Label	,	one		TextField	and	one	PasswordField,	to
mark	entered	characters.	I	could	have	created	the	instance	of	the	Button	too,	but	decided	to
do	it	a	bit	later	to	demonstrate	a	different	way	of	setting	constraints.

Then	the	code	calls	a	static	method	setConstraints()	on	the	class	GridPane	to	allocate	the
GUI	controls	to	the	appropriate	cells.	The	coordinates	of	the	top-left	cell	are	(0,0).	The
label	User	ID	goes	there.	The	next	cell	to	the	right	has	the	coordinates	(1,0).	Note	that	the
column’s	number	goes	first.	The	label	Password	goes	to	the	cell	(0,1),	and	the	text	field	for
the	password	is	placed	in	the	cell	(1,1).

Note	that	the	width	of	the	second	column	is	noticeably	wider	than	the	first	one.	The	width
of	the	column	is	automatically	determined	to	accommodate	the	widest	node.	The	same
applies	to	the	height	of	the	rows.

After	that	the	code	creates	an	instance	of	a	Button	and	sets	its	preferred	width	to	large.
Without	setting	the	width,	I	was	not	able	to	specify	that	this	button	should	span	two
columns.		To	demonstrate	a	different	syntax	of	setting	constraints,	I’ve	placed	the	button
to	the	cell	(0,2)	using	the	GridPane	instance	method	add().	The	third	and	fourth	arguments
are	for	specifying	the	row	and	column	spans.	My	button’s	cell	is	twice	as	wide	as	regular
cells	of	this	grid.	

The	examples	in	the	next	sections	further	modify	the	class	GridPaneSample	to
demonstrate	event	handling	and	skinning.	

Skinning	with	CSS
Using	CSS	became	a	de	facto	standard	way	of	styling	UI	in	web	applications.	This	process
is	known	as	skinning.	You	can	apply	different	skins	on	the	same	GUI	components	to
change	the	look	of	the	UI.		Applying	the	skin	comes	down	to	loading	the	CSS	file	into
your	JavaFX	application.	Even	though	you	can	style	JavaFX	GUI	components
programmatically	(for	example,	using	setFont()	or	setFill())	separating	styling	from
programming	allows	professional	web	designers	to	take	care	of	the	look	and	feel	while
software	developers	implement	application	logic.	Besides,	changing	the	style	doesn’t
require	recompilation	and	redeployment	of	your	application.		

Covering	CSS	is	out	of	scope	of	this	book,	but	you	can	get	familiar	with	the	CSS	syntax
by	going	through	the	CSS	specification	(JavaFX	supports	CSS	2.1)	or	by	reading	a	CSS
books.	This	section	shows	you	a	simple	example	of	how	the	look	of	the	GUI	can	be
changed	without	the	need	to	modify	the	Java	code.	Keep	in	mind,	though,	that	JavaFX
style	names	are	similar,	but	they’re	not	the	same	as	those	defined	in	the	CSS	specification.
JavaFX	styles	start	with	the	prefix	fx-.

You	can	create	CSS	selectors	to	style	a	specific	GUI	component,	a	type	of	components
(for	example,	all	labels),	or	create	a	reusable	style	that	can	be	applied	programmatically	to
selected	components.	

To	style	a	specific	component,	the	component	has	to	have	a	unique	ID,	which	can	be	set	in
your	Java	code	using	the	method	setId().		For	example,	if	a	button	has	an	ID	of	
submitBtn,	you	can	add	the	following	section	to	the	CSS	file	to	make	its	background	color
red	(you	can	find	the	names	of	the	main	CSS	colors	online)	:

#submitBtn{
				-fx-background-color:	red;
}

In	CSS,	the	ID	type	selectors	start	with	the	#	sign.	To	make	the	style	in	the	preceding	code
work,	your	Java	code	should	have	something	like	this:

Button	signInBtn	=	new	Button	("Sign	In");
signInBtn.setId("submitBtn");		

If	you	want	to	apply	a	style	to	several	components	of	the	same	type,	you	need	to	define	a
type	selector.	For	example,	to	make	the	text	of	all	Label	components	red,	you	can	define
the	following	CSS	type	selector:

.label{
		-fx-text-fill:	red;
}			

Note	that	CSS	type	selectors	start	with	the	dot.	To	create	a	CSS	class	selector	that	can	be
applied	to	any	component,	define	under	the	selector	under	an	arbitrary	name	and	apply	it
programmatically	to	the	components	of	your	choice.		For	example,	you	can	specify	the
following	class	selector:

http://www.w3.org/TR/CSS21/
http://www.w3schools.com/cssref/css_colornames.asp

.bluelabel{
			-fx-text-fill:	blue;
			-fx-font-weight:	bold;
			-fx-font-family:verdana;
			-fx-font-style:italic;
}

This	class	selector	defines	rules	that	displays	the	text	of	the	label	in	blue	bold	verdana	font
in	italic	style.	To	apply	this	class	selector	to	a	specific	label,		your	Java	code	should	have
something	like	this:

Label	userPwdLbl	=	new	Label("Password:");
userPwdLbl.getStyleClass().add("bluelabel");

For	this	particular	label,	the	style	bluelabel	overrides	the	type	selector	that	may	have	been
applied	to	all	other	labels	on	stage.

You	may	ask,	“How	am	I	supposed	to	know	which	style	properties	are	available	for	a
given	JavaFX	component?”	For	styles	that	are	supported	by	JavaFX,	refer	to	the	online
document	titled	“JavaFX	CSS	Reference	Guide.”	

It’s	time	to	find	out	how	to	apply	all	these	styling	techniques	to	the	GridPaneSample	from
the	previous	section.	I	named	the	new	version	of	this	class	GridPaneSampleCSS,	and	its
code	is	shown	next.		I’ve	added	only	three	lines	to	the	GridPaneSample	code,	which	are
shown	in	bold.	

public	class	GridPaneSampleCSS	extends	Application	{
				public	void	start(Stage	primaryStage)	{
								
								final	int	TWO_COLUMN_SPAN	=	2;	
								
								Label	userIdLbl	=	new	Label("User	ID:");
								TextField	userIdTxt	=	new	TextField();
								Label	userPwdLbl	=	new	Label("Password:");
								userPwdLbl.getStyleClass().add("bluelabel");
								PasswordField	userPwdTxt	=	new	PasswordField();
								GridPane	root	=	new	GridPane();
								root.setVgap(20);
								root.setPadding(new	Insets(10));
								root.setAlignment(Pos.CENTER);
								
								//	Using	static	methods	for	setting	node	constraints	
								GridPane.setConstraints(userIdLbl,	0,	0);
								GridPane.setConstraints(userIdTxt,	1,	0);
								GridPane.setConstraints(userPwdLbl,	0,	1);
								GridPane.setConstraints(userPwdTxt,	1,	1);
								root.getChildren().addAll(userIdLbl,	userIdTxt,	
																																		userPwdLbl,	userPwdTxt);

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

								
								Button	signInBtn	=	new	Button	("Sign	In");
								signInBtn.setId("submitBtn");		//	used	in	CSS
								
								//	Allow	the	button	to	be	wider	overriding	preferred	width
								signInBtn.setPrefWidth(Double.MAX_VALUE);
								//	using	instance	method	for	directly	adding	the	node
								root.add(signInBtn,0,2,TWO_COLUMN_SPAN,1);	
								
								Scene	scene	=	new	Scene(root,250,180);
								scene.getStylesheets().add(getClass()
																		.getResource("application.css").toExternalForm());
								primaryStage.setScene(scene);
								primaryStage.show();
				}
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

This	application	loads	the	application.css	file	with	the	following	content:

#submitBtn{
				-fx-background-color:	lightskyblue;
				-fx-font-family:verdana;
				-fx-font-size:20;
				-fx-font-weight:	bold;
				-fx-stroke:navy;
				-fx-font-style:italic;
				-fx-border-radius:	20;
				-fx-background-radius:	20;
				-fx-padding:	5;
}
.label{
				-fx-text-fill:	red;
}				
.bluelabel{
			-fx-text-fill:	blue;
			-fx-font-weight:	bold;
			-fx-font-family:verdana;
			-fx-font-style:italic;
}

First,	it	defines	the	style	for	the	JavaFX	component	with	the	ID	submitBtn.	Then	it	defines
a	rule	that	all	labels	should	be	red.	There	is	no	need	to	write	any	JavaFX	code	to	apply
these	styles.	There	is	also	a	class	selector	named	bluelabel,	which	can	be	applied

selectively.	Note	that	you	need	to	add	a	-fx-		prefix	to	the	standard	CSS	properties	for
them	to	be	recognizable	by	JavaFX	applications.		Running	the	program
GridPanelSampleCSS	produces	the	output	shown	in	Figure	18-6.

Figure	18-6:	The	styled	Sign	In	window

For	further	details	of	skinning	the	JavaFX	GUI,	read	Oracle’s	online	tutorial	“Skinning
JavaFX	Applications	with	CSS.”	

http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm

Event	Handling
Similarly	to	the	Swing	framework	events	covered	in	Lesson	9,	JavaFX	applications	are
also	event-driven.	In	JavaFX,	an	event	object	is	represented	by	the	instance	of	the	class
javafx.event.Event.		There	are	different	ways	of	handling	events.	Depending	on	how	you
structured	your	application,	you	can	assign	event	handlers	either	in	Java	or	in	FXML.
Lesson	19	shows	you	how	to	hook	up	event	handlers	to	GUI	components	declared	in
FXML.	But	if	your	program	is	written	in	purely	in	Java,	you’ll	be	assigning	event	handlers
	in	Java	as	well.	But	in	any	case,	the	code	that	handles	events	will	be	always	written	in
Java.	

Before	writing	event	handlers	for	your	application	you	need	to	decide	which	events	are
important	and	have	to	be	handled	in	your	application.	For	example,	there	is	no	need	to
write	and	event	handler	for	the	label	from	the	Sign	In	application.	But	we	do	need	to
handle	the	Sign	In	and	Cancel	button	click	events.	If	the	user	ID	would	be	represented	by
an	email,	we	would	need	to	intercept	and	handle	the	moment	when	the	text	field	loses
focus.	In	this	lesson	I’ll	only	show	you	how	to	handle	the	button	clicks.		For	detailed
coverage	of	handling	JavaFX	events	read	the	Oracle	tutorial.	

You	can	handle	events	using	one	of	the	following	techniques:

Create	an	instance	of	an	anonymous	class	overriding	its	handle()	callback	method.
Pass	it	to	the	the	event	handler	for	a	specific	event.	

Use	lambda	expressions.

Use	Java	method	references.	

This	example	creates	yet	another	version	of	the	Sign	In	window,	but	this	time	the	window
has	the	Sign	In	and	Cancel	buttons	as	well	as	the	Forgot	Password	hyperlink.		Each	of
these	controls	use	a	different	way	of	handling	the	click	event.	The	new	Sign	In	window
will	look	like	the	one	in	Figure	18-7.

Figure	18-7:	The	Sign	In	window	with	event	handlers

The	event	handler	for	the	Sign	In	button	is	implemented	using	an	anonymous	inner	class.
The	event	handler	for	the	Cancel	button	is	implemented	using	a	lambda	expression.
Finally,	I	implement	the	click	handler	for	the	Forgot	Password	hyperlink	using	a	method
reference.	The	code	of	the	class	GridPaneSampleEvents	is	shown	next.

public	class	GridPaneSampleEvents	extends	Application	{
				public	void	start(Stage	primaryStage)	{

http://docs.oracle.com/javafx/2/events/jfxpub-events.htm

								
								Label	userIdLbl	=	new	Label("User	ID:");
								TextField	userIdTxt	=	new	TextField();
								Label	userPwdLbl	=	new	Label("Password:");
								PasswordField	userPwdTxt	=	new	PasswordField();
								Button	signInBtn	=	new	Button	("Sign	In");
								Button	cancelBtn	=	new	Button	("Cancel");
								Hyperlink	forgotPwdLink	=	new	Hyperlink("Forgot	password");
								GridPane	root	=	new	GridPane();
								root.setVgap(20);
								root.setPadding(new	Insets(10));
								root.setAlignment(Pos.CENTER);
								
								//	Using	static	methods	for	setting	node	constraints	
								GridPane.setConstraints(userIdLbl,	0,	0);
								GridPane.setConstraints(userIdTxt,	1,	0);
								GridPane.setConstraints(userPwdLbl,	0,	1);
								GridPane.setConstraints(userPwdTxt,	1,	1);
								GridPane.setConstraints(signInBtn,	0,	2);
								//Cancel	button:	span	1,	right	aligned
								GridPane.setConstraints(cancelBtn,	1,2,	1,	1,	HPos.RIGHT,
																																																						VPos.CENTER);
								GridPane.setConstraints(forgotPwdLink,	0,	3,2,1);
								root.getChildren().addAll(userIdLbl,	userIdTxt,	userPwdLbl,	
																				userPwdTxt,signInBtn,	cancelBtn,	forgotPwdLink);
												
								//	Event	handlers

								//1.	Anonymous	class	
								signInBtn.setOnAction(new	EventHandler<ActionEvent>(){
												public	void	handle(ActionEvent	evt){
														System.out.println(
																						"Anonymous	class	handler.	Sign	in	clicked.");
												}
								});
								
								//	lambda	expression
								cancelBtn.setOnAction(evt	->	
												System.out.println("Lambda	handler.	Cancel	clicked.")
);
								
								//	method	reference
								forgotPwdLink.setOnAction(this::forgotPwdHandler);
								
								//	Show	the	window
								Scene	scene	=	new	Scene(root,250,200);

								primaryStage.setScene(scene);
								primaryStage.show();
				}
				
				private	void	forgotPwdHandler(ActionEvent	evt){
								System.out.println(
														"Method	reference	handler.	Forgot	password	clicked");
				}
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

If	you	run	this	program,	and	click	Sign	In,	Cancel,	or	Forgot	Password,	the	console	output
shows	the	following:

Anonymous	class	handler.	Sign	in	clicked.
Lambda	handler.	Cancel	clicked.
Method	reference	handler.	Forgot	password	clicked.

Although	each	of	the	event	handlers	works	the	same,	I	prefer	the	lambda	expression
version	because	it’s	concise	and	is	easy	to	read.	Each	of	the	JavaFX	GUI	controls	has	a	set
of	setOnXXX()	methods	(for	example,	setOnAction()	and	setOnMouseMoved())	that
should	be	called	for	the	events	you’re	interested	in	handling.

Properties	and	Binding
Although	Java	developers	casually	use	the	words	properties	referring	to	class	attributes,
JavaFX	properties	are	more	than	just	class	attributes.	JavaFX	defines	an	interface
javafx.beans.property.Property,	which	has	a	very	useful	functionality	enabling	you	to
bind	the	GUI	components	(the	view)	with	properties	of	the	Java	classes		(the	model)	and
automate	notifications	of	the	GUI	components	when	the	value	in	the	model	changes	or
vice	versa.	

Imagine	that	you’re	developing	a	financial	application	that	receives	notification	from	the
server	about	the	stock	price	changes.	When	a	Java	object	receives	a	new	price,	you	need	to
modify	the	content	of	the	corresponding	GUI	component.	With	JavaFX	you	can	simply
bind	a	property	price	of	a	Java	class	to	the	property	of,	say,	a	Label	component.	No	more
coding	is	required.	As	soon	as	the	price	value	changes,	the	Label	is	automatically	updated.
	JavaFX	properties	greatly	simplify	the	process	of	synchronization	of	the	data	and	the
GUI.

Existing	implementations	of	the	Property	interface	serve	as	wrappers	to	Java	attributes
adding	the	change	notification	functionality.	The	interface	Property	declares	the	following
methods:	bind(),		unbind(),		bindBidirectional()	,		unbindBidirctional(),	and	isBound().
Can	you	bind	any	value	to		a	JavaFX	property?	No—the	value	has	to	be	of
an	ObservableValue	type.	

Observer	Design	Pattern
In	software	development	there	is	a	design	pattern	called	Observer.	It’s	used	to
implement	scenarios	when	one	object	(the	observer)	wants	to	watch	changes	in	other
object(s)	(the	observables).	For	example,	if		a	Twitter	user	(the	observable)	posts	a
tweet,	all	of	his	followers		(observers)	are	notified.	You	can	read	more	about	this	and
other	design	patterns	at	http://www.javacamp.org/designPattern.

JavaFX	property	classes	are	located	in	the	package	javafx.beans.property.	For	each
property	type	there	are	two	classes:	read-only	and	read-write.	For	example,	if	you	need	to
work	with	a	String	property,	use	either	SimpleStringProperty	or	ReadOnlyStringWrapper.
Both	of	these	implement	the	StringProperty	interface.	Similarly	named	classes	exist	for
other	data	types	and	some	collections	too.

As	you	always	do	in	this	book,	you	can	learn	by	coding.	This	time	you’re	going	to	modify
the	GridPaneSampleEvents	class	from	the	previous	section	by	placing	an	additional	Label
component	at	the	bottom	of	the	Sign	In	window.	It’ll	display	the	messages	about	the
events	as	the	user	clicks	the	buttons	and	the	hyperlink.	Initially	this	label	does	not	have
any	text:

Label	messageLbl	=	new	Label();

JavaFX	properties	are	observables.	Hence	you	can	add	a	listener	(observer)	to	the	property
to	be	notified	when	the	property	value	changes.	But	it’s	much	easier	to	simply	use	a
property	in	a	binding	expressions.	You	bind	this	label	to	the	string	property,	and	as	soon	as

http://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm
http://www.javacamp.org/designPattern/

the	value	of	this		property	changes,	the	label	component	messageLbl	displays	this	value.

private	StringProperty	message	=	new	SimpleStringProperty();
messageLbl.textProperty().bind(message);

In	the	previous	section,	the	class	GridePaneSampleEvents	was	just	printing	messages	on
the	system	console	when	the	user	clicked	the	buttons	or	the	hyperlink.	The	new	class
GridPaneSampleBinding	modifies	the	property	message	instead,	for	example:

cancelBtn.setOnAction(evt	->	
			message.set("Cancel	clicked.")
);

The	click	on	the	cancelBtn	changes	the	value	of	the	the	message	property,	which	was
bound	to	the	text	property	of	messageLbl;	the	GUI	changes	automatically!		Figure	18-8
below	shows	how	the	Sign	In	window	will	look	like	after	the	user	has	pressed	the	Cancel
button.

Figure	18-8:	Binding	in	action

	The	complete	code	of	the	GridPaneSampleBinding	class	is	shown	here:

public	class	GridPaneSampleBinding	extends	Application	{
				//Declaring	a	JavaFX	property
				private	StringProperty	message	=	new	SimpleStringProperty();
				
				public	void	start(Stage	primaryStage)	{
								
								Label	userIdLbl	=	new	Label("User	ID:");
								TextField	userIdTxt	=	new	TextField();
								Label	userPwdLbl	=	new	Label("Password:");
								PasswordField	userPwdTxt	=	new	PasswordField();
								Button	signInBtn	=	new	Button	("Sign	In");
								Button	cancelBtn	=	new	Button	("Cancel");
								Hyperlink	forgotPwdLink	=	new	Hyperlink("Forgot	password");
								
								//	A	label	to	display	messages	using	binding
								Label	messageLbl	=	new	Label();

								//	binding	the	StringProperty	to	a	GUI	component
								messageLbl.textProperty().bind(message);
								
								GridPane	root	=	new	GridPane();
								root.setVgap(20);
								root.setPadding(new	Insets(10));
								root.setAlignment(Pos.CENTER);
								
								//	Using	static	methods	for	setting	node	constraints	
								GridPane.setConstraints(userIdLbl,	0,	0);
								GridPane.setConstraints(userIdTxt,	1,	0);
								GridPane.setConstraints(userPwdLbl,	0,	1);
								GridPane.setConstraints(userPwdTxt,	1,	1);
								GridPane.setConstraints(signInBtn,	0,	2);
								
								//Cancel	button:	span	1,	right	aligned
								GridPane.setConstraints(cancelBtn,	1,2,	1,	1,	
																																						HPos.RIGHT,	VPos.CENTER);
								GridPane.setConstraints(forgotPwdLink,	0,	3,2,1);
								
								//	Message	label:	span	2
								GridPane.setConstraints(messageLbl,	0,4,2,1);
								root.getChildren().addAll(userIdLbl,	userIdTxt,	userPwdLbl,
								userPwdTxt,signInBtn,	cancelBtn,	forgotPwdLink,	messageLbl);
								
								//	event	handlers
								//1.	Anonymous	class	
								signInBtn.setOnAction(new	EventHandler<ActionEvent>(){
												public	void	handle(ActionEvent	evt){
																		message.set("Sign	in	clicked.");			
												}
								});
								
								//	lambda	expression
								cancelBtn.setOnAction(evt	->	
											message.set("Cancel	clicked.")
);
								
								//	method	reference
								forgotPwdLink.setOnAction(this::forgotPwdHandler);
								
								//	Show	the	window
								Scene	scene	=	new	Scene(root,250,220);
								primaryStage.setScene(scene);
								primaryStage.show();
				}

				
				private	void	forgotPwdHandler(ActionEvent	evt){
								message.set("Forgot	password	clicked");
				}
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

The	binding	can	be	bidirectional.	If	the	value	of	the	GUI	component	changes,	it	can
change	the	value	of	the	underlying	model	(remember	MVC?),	and	if	the	value	of	the
model	changes	then	the	GUI	is	updated,	too.		If	you	want	to	stop	binding	at	any	time,	use
the	method	unbind()—for	example:

messageLbl.textProperty().unbind();

I	tried	to	fit	as	much	information	as	possible	in	this	introductory	lesson	so	you	can	start
working	on	the	assignment.		In	Lesson	19	you	apply	all	these	techniques	while	developing
a	game.

Try	It
Re-create	the	the	calculator	from	Chapter	8	as	a	JavaFX	application.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	samples	from	this	lesson	from	the	book’s	web
page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson18.zip.

Step-by-Step
1.	 Create	a	new	JavaFX	project	in	Eclipse.

2.	 Create	a	class	Calculator	that	extends	Application	(you	can	rename	the	Main	class).

3.	 Using	JavaFX	layouts,	re-create	the	Calculator	GUI.

4.	 Create	the	class	CalculatorController	that	implements	EventHandler	to	process	clicks
on	the	buttons	with	digits.

5.	 Use	JavaFX	binding	between	the	display	field	of	the	Calculator	and	a	String	property
of	the	CalculatorController	to	display	the	entered	number

6.	 Implement	at	least	one	operation	(e.g.,	addition)	and	display	the	result	using	binding.
See	Try	It	section	of	Lesson	19	for	a	sample	implementation	of	calculator’s
functionality.	

TIP			Please	select	the	videos	for	Lesson	18	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	19
Developing	JavaFX	Calculator	and	Tic-Tac-Toe	
Now	that	you’re	familiar	with	the	basics	of	JavaFX,	it’s	time	to	write	some	practical
applications.	In	this	lesson	you	program	the	calculator	and	the	game	of	Tic-Tac-Toe.	In
Lesson	18	you	wrote	the	application	in	Java,	but	this	time	you	create	the	graphical	user
interface	(GUI)	part	with	a	declarative	language—FXML.	The	application	logic	and	event
handling	remain	in	Java.

In	this	lesson	you	get	familiar	with	Scene	Builder—a	design	tool	that	enables	you	to	create
a	GUI	by	dragging	and	dropping	components	(buttons,	text	fields,	labels,	and	so	on)	right
onto	the	content	panel	(the	center	area	of	Scene	Builder	as	shown	in	Figure	19-4).	While
you	design	the	view	with	Scene	Builder	it	generates	a	file	with	the	name	extension	.fxml,
which	contains	XML-like	tags	with	attributes	that	reflect	your	design.	

You	also	see	how	to	dynamically	change	the	styling	of	components	using	cascading	style
sheets	(CSS).

Designing	a	Calculator	with	Scene	Builder
I	assume	that	you	already	have	the	Efxclipse	plug-in	installed	as	described	in	Lesson	18.
Now	you	need	to	download	and	install	Scene	Builder	from	Oracle	at	http://bit.ly/1rnw1S5.
	

An	Alternative	Site	for	Scene	Builder	Downloads
Starting	from	Java	8	update	40	Oracle	stopped	offering	installer	for	Scene	Builder.
You	can	download	a	build	of	Scene	Builder	8,	based	off	of	the	latest	sources	from
OpenJFX	from	Gluon.

If	you’ve	completed	the	assignment	from	the	Try	It	section	of	Lesson	18	you	should	have
a	program	that	shows	the	GUI	of	a	calculator	that	might	look	similar	to	the	one	shown	in
Figure	19-1.

Figure	19-1:	The	calculator

Now	you	find	out	how	this	calculator	can	be	created	using	Scene	Builder.	You	still	start
with	creating	a	JavaFX	project	in	Eclipse	by	selecting	menus	File	→	New	→	Other	→
JavaFX.

I’m	naming	this	project	Lesson19.	During		creation	of	this	project	I	specify	the	package
name	mycalculator,	the	language	FXML,	and	the	file	name	Calculator,	and	the
controller		name	CalculatorController	as	shown	in	Figure	19-2.

http://bit.ly/1rnw1S5
http://gluonhq.com/products/downloads/

Figure	19-2:	Configuring	a	new	JavaFX	project	in	Eclipse	

Clicking	the	Finish	button	creates	a	new	Eclipse	project	that	includes	two	Java	classes
—Main	and	CalculatorController—the	FXML	file	Calculator.fxml	shown	on	Figure	19-3,
and	the	CSS	file	called	application.css.	

Figure	19-3:	The	generated	project	Lesson19

Note	that	the	<BorderPane>	contains	the	attribute	fx:controller	with	the	name	of	the	class
that	plays	the	role	of	the	controller	in	your	MVC-based	application.	

The	file	Calculator.fxml	(shown	in	Figure	19-3)	contains	the	calculator’s	GUI	represented
by	XML-like	tags.			In	particular,	the	tag	<BorderPane>		corresponds	to	the
JavaFX	BorderLayout	container.	

The	Main	class	launches	the	application.	In	Lesson	18	you	had	to	write	the	Java
application	manually,	but	now	it	is	generated	by	the	E(fx)clipse	plug-in	as	shown	here:		

package	mycalculator;
import	javafx.application.Application;
import	javafx.stage.Stage;
import	javafx.scene.Scene;
import	javafx.scene.layout.BorderPane;
import	javafx.fxml.FXMLLoader;
public	class	Main	extends	Application	{	
		@Override	public	void	start(Stage	primaryStage)	{	
					try	{	
							BorderPane	root	=	(BorderPane)FXMLLoader.load(getClass()
																														.getResource("Calculator.fxml"));	
							Scene	scene	=	new	Scene(root,400,400);	
							scene.getStylesheets().add(getClass()
																	.getResource("application.css").toExternalForm());	
							primaryStage.setScene(scene);	
							primaryStage.show();	
				}	catch(Exception	e)	{	
										e.printStackTrace();	
				}	
		}	
		
		public	static	void	main(String[]	args)	{	
						launch(args);	}
}

There	is	a	new	for	you	element	in	this	code—the	annotation	@Override,	which	indicates
that	the	method	start()	overrides	its	superclass’s	version.	I	explain	annotations	in	Lesson
23.	In	the	next	section	you	see	how	to	design	the	GUI	in	Scene	Builder,	which	saves	it	in
the	.fxml	file.	Your	Main	class	loads	it	using	the	class	FXMLLoader	and	creates	a	Java
object	in	memory	according	to	FXML	content.	

The	generated	project	includes	an	empty	file	application.css	,	which	is		the	right	place	for
customizing	the	look	of	the	GUI	with	CSS.	

According	to	the	MVC	design	pattern,	the	class	CalculatorController	is	the	place	where
you	program	event	handler	methods	in	Java.	It’s	empty	at	this	point.	You	separate	the
creation	of	the	GUI	in	a	declarative	language	(FXML)	from	the	application	logic	written
in	Java.		

Designing	the	Calculator	GUI	with	Scene	Builder
The	content		of	the	file	Calculator.fxml	is	generated	by	Scene	Builder.	Right-click	its
name	and	use	the	menu	Open	→	Other	→	Scene	Builder.	It	looks	like	Figure	19-4.

The	middle	section	is	called	Content	Panel.	From	the	left	panel,	you	drag	and	drop	the
GUI	controls	and	containers	onto	the	Content	Panel.	At	the	bottom	left	you	see	the
hierarchy	of	GUI	components,	which,	at	this	point,	includes	nothing	but	the	BorderPane.
Now	place	a	TextField	in	the	TOP	area	of	the	BorderPane	and

the	GridPane	with	Button	controls	in	the	CENTER.

Open	the	Controls	panel	on	the	left,	select	a	TextField,	and	drop	it	on	the	insert	TOP	line
in	the	Hierarchy	panel.	Scene	Builder	looks	like	Figure	19-5.

After	Saving	(Ctrl+S)	the	current	design,	open	the	Calculator.fxml	file	in	Eclipse.	You	see
that	Scene	Builder	has	generated	the	<top>	tag	inside	<BorderPane>:

<BorderPane	xmlns:fx="http://javafx.com/fxml/1"	
													xmlns="http://javafx.com/javafx/8"	
													fx:controller="mycalculator.CalculatorController">
			<top>
						<TextField	BorderPane.alignment="CENTER"	/>
			</top>
</BorderPane>

Now	select	GridPane	in	the	Containers	panel	on	the	left	and	drag	and	drop	it	on	the	insert
CENTER	line	in	the	Hierarchy	panel.	The	Scene	Builder	looks	like	Figure	19-6.

Figure	19-4:	Calculator.fxml	in	Scene	Builder

Figure	19-5:	The	TextField	control	is	placed	in	the	TOP	area

Figure	19-6:	Adding	the	GridPane	to	the	CENTER.

After	saving	the	design,	the	Calculator.fxml	file	includes	new	content:

<BorderPane	xmlns:fx="http://javafx.com/fxml/1"	
							xmlns="http://javafx.com/javafx/8"	

							fx:controller="mycalculator.CalculatorController">
			<top>
						<TextField	BorderPane.alignment="CENTER"	/>
			</top>
			<center>
						<GridPane	BorderPane.alignment="CENTER">
								<columnConstraints>
										<ColumnConstraints	hgrow="SOMETIMES"	minWidth="10.0"	
																																																prefWidth="100.0"	/>
										<ColumnConstraints	hgrow="SOMETIMES"	minWidth="10.0"	
																																																prefWidth="100.0"	/>
								</columnConstraints>
								<rowConstraints>
										<RowConstraints	minHeight="10.0"	prefHeight="30.0"	
																																																vgrow="SOMETIMES"	/>
										<RowConstraints	minHeight="10.0"	prefHeight="30.0"	
																																																vgrow="SOMETIMES"	/>
										<RowConstraints	minHeight="10.0"	prefHeight="30.0"	
																																																vgrow="SOMETIMES"	/>
								</rowConstraints>
						</GridPane>
			</center>
</BorderPane>

In	the	GridPaneSample	class	in	Lesson	18	you	specify	all	the	attributes	of	the	GridPane	by
invoking	methods	in	the	Java	classes,	but	now	they	are	represented	by	the	FXML	tag
attributes.	By	default,	a	GridPane	container	is	initially	created	with	two	columns	and	three
rows,	hence	you	see	two	tags	<ColumnConstraints>	and	three	tags	<RowConstraints>.

The	little	tabs	labeled	with	numbers	in	Figure	19-6	correspond	to	the	row	and	column
numbers	of	the	grid.	But	the	calculator	shown	in	Figure	19-1	has	four	columns	and	six
columns	filled	with	buttons.	To	add	more	rows	and	columns	you	need	to	right-click	the
grid	and	keep	selecting	the	GridPane	|	Add	Rows	Below	or	Add	Column	After	until	you
see	a	4x6	grid	as	shown	in	Figure	19-7.		

After	saving	the	design,	the	Calculator.fxml	file	includes	the	FXML	tags	for	a	4x6	grid.
Next,	in	Scene	Builder	you	add	the	padding	of	10	pixels	to	have	some	space	between	the
grid	and	the	border	of	the	window	and	the	horizontal	and	vertical	gap	to	have	space
between	the	cells	of	the	grid.	This	is	done	by	filling	the	values	of	Padding,	Hgap,	and
Vgap	in	the	GridPane	Properties	panel	on	the	right	as	shown	on	Figure	19-8.

Figure	19-7:	The	4x6	GridPane	under	the	TextField

Figure	19-8:	Setting	Hgap,	Vgap,	and	Padding	properties	of	the	GridPane

The	next	step	is	to	add	buttons	into	the	grid	cells.	Drag	and	drop	a	Button	from	the
Controls	panels	on	the	left	into	the	top	left	cell	of	the	grid	as	shown	in	Figure	19-9.		Drag
the	button’s	right	border	to	make	it	larger.	Set	the	Margin	property	to	5	for	each	side	of	the
button;	this	is	the	distance	between	the	button	and	cell	borders.	Finally,	change	the	text	on
the	button	to	read	MC	to	match	the	top	left	button	from	Figure	19-1.	Figure	19-9	shows
how	the	Scene	Builder’s	window	should	look	now.

Figure	19-9:	The	button	MC	added	to	the	top	left	grid	cell

After	saving	this	design	in	Calculator.fxml,		a	new	section	<children>	is	inside	the
<GridPane>.	It	has	just	one	button	for	now:

	<children>
			<Button	mnemonicParsing="false"	prefHeight="26.0"	
																																								prefWidth="99.0"	text="MC">
						<GridPane.margin>
									<Insets	bottom="5.0"	left="5.0"	right="5.0"	top="5.0"	/>
						</GridPane.margin>
		</Button>
</children>

There	is	no	indication	of	the	cell	(0,0)	because	zeros	are	the	default	values
for	GridPane.columnIndex	andGridPane.rowIndex	properties.	Now	you	need	to	replicate
this	button	in	other	cells.	You	can	use	multiple	Ctrl+C/Ctrl+V	keystrokes	and	then
drag/drop	the	buttons	into	other	cells.	Set	the	proper	text	for	each	button.	While	doing	this,
watch	how	the	content	of	the	Calculator.fxml	changes	as	you	add	more	buttons.	I	find	it
faster	to	copy	and	paste	the	code	directly	in	the	FXML	file	than	use	Scene	Builder	for
mass	duplication.	

Note	that	in	Figure	19-1	the	button	located	in	the	cell	(0,5)	spans	two	columns,	and	the
button	with	coordinates	(3,4)	spans	two	rows.	For	these	buttons	you	need	to	enter	2	as	the
row	(or	column)	span,	and	select	MAX_VALUE	as	maximum	width	(or	height)	using	the
Properties	panel	on	the	right.	After	all	this	done,	the	Scene	Builder’s	window	should	look
like	Figure	19-10.

Figure	19-10:	All	buttons	in	the	grid

Run	the	Main	class	and	you	see	the	calculator	that	looks	like	Figure	19-1.	

This	concludes	a	very	brief	introduction	to	Scene	Builder.	If	you	invest	more	time	into
mastering	this	tool,	your	productivity	in	developing	GUI	applications	will	increase.	Refer
to	Scene	Builder	User	Guide	for	more	details.

https://docs.oracle.com/javase/8/scene-builder-2/user-guide/

Handling	Events	in	the	Controller	Class
As	per	MVC	design	pattern,	you’ve	created	the	view	Calculator.fxml.	Now	you	can	write
a	controller	and	hook	it	up	to	the	view.		When	the	file	Calculator.fxml	was	initially
generated,	it	included	the	name	of	the	controller	that	will	be	handling	events	of	all
components	located	in	the	root	container:

<BorderPane	xmlns="http://javafx.com/javafx/8"	
							xmlns:fx="http://javafx.com/fxml/1"	
							fx:controller="mycalculator.CalculatorController">

You	add	the	event	handler	method	to	the	class	CalculatorController	and		link	the	GUI
components	to	the	corresponding	event	handlers.	Initially	the	generated
class	CalculatorController	is	empty.	Add	a	simple	event	handler	method
buttonClickHandler():

package	mycalculator;
import	javafx.event.ActionEvent;
public	class	CalculatorController	{
				
		public	void	buttonClickHandler(ActionEvent	evt){
				System.out.println("Hello	from	controller!");
		}			
}

If	you	remember,	the	class	GridPaneSampleEvents	from	Lesson	18	invoked	the	method
setOnAction()	on	the	Button	objects	to	assign	the	event	handlers	to	button	clicks.	But	if
you	develop	the	GUI	in	FXML,	there	are	no	Java	objects	there.	Instead,	you	use	the
<Button>	property	onAction	to	assign	the	controller’s	buttonClickHandler()	as	the	event
handler	for	the	calculator’s	buttons.	The	following	snippet	is	for	the	button	with	the	label
1.

<Button	prefHeight="37.0"	prefWidth="132.0"
						text="1"	onAction="#buttonClickHandler"	GridPane.rowIndex="4">
				<GridPane.margin>
							<Insets	bottom="5.0"	left="5.0"	right="5.0"	top="5.0"	/>
				</GridPane.margin>
</Button>

The	root	container	knows	its	controller,	and	the	children	of	the	container	know	the	name
of	controller’s	method	that	handles	events.	In	the	calculator’s	example	I	have	just	one
event	handler	for	all	buttons,	and	I	copy	and	paste	onAction="#buttonClickHandler"	to
each	of	button.	Alternatively,	I	could	assign	one	event	handler	for	the	digit	buttons	and
another	for	the	buttons	that	perform	operations.

Now	running	the	Main	class	and	clicking	on	any	button	prints	the	message	“Hello	from
controller”	on	the	console,	which	is	not	exactly	what	the	calculator	should	do.	But	at	least

this	proves	that	controller	receives	events	from	the	view.	The	next	step	is	to	enable	the
controller	to	send	data	back	to	the	view.

Basically,	there	are	two	use	cases	for	clicking	the	calculator’s	buttons:

1.	The	user	clicked	the	digit	button,	and	the	event	handler	should	get	the	current	value
from	the	TextField	control,	concatenate	the	label	of	the	clicked	button,	and	set	the
TextField	to	the	new	value.

2.	The	user	clicked	the	operation	button,	and	the	event	handler	has	to	recognize	the
selected	operation	and	apply	the	appropriate	business	logic.

You	fully	implement	all	calculator’s	logic	as	an	assignment	in	the	Try	It	section	of	this
lesson,	but	I	explain	you	how	to	recognize	which	button	has	been	clicked	and	how	to	send
the	data	from	controller	to	view.

Recognizing	the	Source	of	the	Event
Each	JavaFX	event	is	inherited	from	javafx.event.Event,	which	has	such	fields	as	source
and	target.	The	source	stores	a	reference	to	the	object	where	the	event	initially	occurred.
The	target	defines	the	object	where	the	event	is	handled.	If	the	user	clicks	the	component
and	the	program	is	inside	the	event	handler	for	this	component,	both	source	and	target
point	at	the	same	object.	

But	each	event	travels	through	the	container(s),	where	the	component	is	located.	This	is	a
capturing	phase.	Then	the	event	reaches	the	target,	the	event	handler	processes	it,	and	then
event	bubbles	up	back	to	the	root	container.	But	the	container(s)	may	also	have	event
handlers,	so	while	the	event	travels	to	the	target,	it	may	be	processed	by	the	container’s
handler,	in	which	case	the	target	doesn’t	have	the	same	value	as	the	source.

For	example,	JavaFX	has	KeyEvent,	which	the	run	time	provides	to	the	keyboard	event
handlers.	If	your	calculator	has	a	keyboard	event	handler	on	the	BorderPane	and	on	the
nested	TextField,	and	the	user	clicked	the	key	while	the	focus	was	in	the	TextField,	the
container’s	event	handler	receives	the	KeyEvent	object	where	the	target	points	at	the
TextField,	while	the	source	points	at	the	BorderPane.	By	the	time	the	event	object	reaches
the	event	handler	of	the	TextField,	the	KeyEvent	has	both	source	and	target	pointing	at	the
TextField.

In	your	calculator	you	don’t	process	container’s	events,	hence	both	the	source	and	the
target	point	at	the	clicked	button.		So	checking	the	value	of	the	ActionEvent.source	gives
you	the	reference	to	the	specific	button,	and	by	calling	the	getText()	method	on	the	button
you	can	find	out	its	label	and	act	accordingly.	The	following	version	of	the	calculator
recognizes	and	prints	the	label	of	the	clicked	button	on	the	console.

package	mycalculator;
import	javafx.event.ActionEvent;
import	javafx.scene.control.Button;
public	class	CalculatorController	{
				
		public	void	buttonClickHandler(ActionEvent	evt){
					

https://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html

				Button	clickedButton	=	(Button)	evt.getTarget();
				System.out.println("You	clicked	on	"	+	clickedButton.getText());
		}				
}

	Now	let’s	separate	the	processing	of	the	operation	and	digit	buttons	using	the	switch
statement.	All	digits	and	the	period	button	should	simply	change	the	content	of	the
calculator’s	TextField.		The	private	method	processDigit()	should	do	it.	All	operation
buttons	should	apply	the	application	logic	based	on	the	selected	operation.	The	private
method	processOperation()	should	take	care	of	that.

public	class	CalculatorController	{
				
		public	void	buttonClickHandler(ActionEvent	evt){
					
				Button	clickedButton	=	(Button)	evt.getTarget();
				String	buttonLabel	=	clickedButton.getText();
				
				//	Tell	apart	digits	from	operations
				switch(buttonLabel){
						case	"0":	case	"1":	case	"2":	case	"3":	case	"4":	case	"5":
						case	"6":	case	"7":	case	"8":	case	"9":	case	"10":	case	".":
									processDigit(buttonLabel);
									break;
					default:
									processOperation(buttonLabel);
				}
		}				
		
		private	void	processDigit(String	buttonLabel){	
						System.out.println("You	clicked	on	"	+	buttonLabel);								
		}
		
		private	void	processOperation(String	buttonLabel){
						System.out.println("You	selected	operation	"	+	buttonLabel);
		}
}

Run	the	Main	class	now,	and	you	see	that	system	console	properly	recognizes	the	clicked
button	and	invokes	either	the	method	processDigit()	or	processOperation().

Passing	Data	from	View	to	Controller	and	Back
How	can	the	controller	class	access	GUI	components	that	were	declared	in	FXML?	If	you
create	both	GUI	and	controller	as	Java	classes,	you	write	the	code	passing	a		GUI	object	to
the	controller	as	you	did	with	Calculator	and	CalclulatorEngine	in	Lesson	9	in	the	section
“How	to	Pass	Data	Between	Objects.”		But	when	the	GUI	is	declared	in	FXML,	you	don’t

instantiate	the	GUI—FXMLLoader	does.	

For	such	cases,	JavaFX	offers	a	simple	solution:	assign	an	ID	to	a	component	in	the
FXML	file	and	the	variable	with	the	same	name	annotated	with	@FXML	in	the	controller
class.	This	ensures	that	the	Java	variable	is	linked	with	the	GUI	component.		You	read
about	Java	annotations	in	Lesson	23.	For	now,	just	trust	me	that	the	@FXML	annotation
magically	injects	the	GUI	component’s	reference	into	the	controller’s	variable.	As	a	matter
of	fact,	why	just	trust	me	if	you	can	easily	see	it	in	action?

First,	add	the	fx:id	attribute	to	the	<TextField>	tag	of	your	calculator	in	Calculator.fxml.		I
decided	to	name	this	ID	displayField.

<top>
			<TextField	fx:id="displayField"	BorderPane.alignment="CENTER"	/>
</top>

Accordingly,	declare	a	variable	displayField	in	the	CalculatorController	class	as	follows:	

@FXML	
private	TextField	displayField;

Now	you	can	use	the	variable	displayField	knowing	that	it	always	has	the	same	value	as
the	GUI	component	having	the	same	ID.	The	next	version	of		CalculatorController	uses
this	variable	in	the	method	processDigit().	First	it	gets	the	current	value	of	the	displayField
via	getText(),	then	attaches	the	selected	digit	to	it,	and	puts	it	back	into	the
variable	displayField	using	the	setText()	method.	

package	mycalculator;
import	javafx.event.ActionEvent;
import	javafx.fxml.FXML;
import	javafx.scene.control.Button;
import	javafx.scene.control.TextField;
public	class	CalculatorController	{
				
		@FXML																							
		private	TextField	displayField;		
				
		public	void	buttonClickHandler(ActionEvent	evt){
					
				Button	clickedButton	=	(Button)	evt.getTarget();
				String	buttonLabel	=	clickedButton.getText();
				
				//	Tell	apart	digits	from	operations
				switch(buttonLabel){
						case	"0":	case	"1":	case	"2":	case	"3":	case	"4":	case	"5":
						case	"6":	case	"7":	case	"8":	case	"9":	case	"10":	case	".":		
									processDigit(buttonLabel);
									break;

					default:
									processOperation(buttonLabel);
				}
		}				
		
		private	void	processDigit(String	buttonLabel){	
						
						displayField.setText(displayField.getText()	+	buttonLabel);
		}
		
		private	void	processOperation(String	buttonLabel){
						System.out.println("You	selected	operation	"	+	buttonLabel);
		}
}

In	Lesson	3	I	mention	that	if	you	forget	to	write	the	break	statement	in	a	case	clause,	the
code	falls	through.	In	the	method	processDigit()	I	do	this	on	purpose	to	avoid
writing	processDigit()	and	break	for	each	clause.	Figure	19-11	shows	a	screenshot	of	the
running	calculator	after	I	clicked	the	buttons	1,5,9,.,2,	and	3.

The	processDigit()	method	illustrated	the	process	of	passing	data	from	GUI	to	controller
and	back.	In	the	Try	It	section	you	need	to	implement	the		processOperation()	method	to
complete	the	calculator.

The	@FXML	Annotation
You	can	annotate	fields	and	methods	that	return	void	with	the	@FXML	annotation.	If
you	add	to	the	controller	class	the	method	initialize()	annotated
with	@FXML,	FXMLLoader	.	Java	runtime	invokes	this	method	after	all	GUI
components	are	constructed.	In	particular,	this	can	be	useful	if	you	want	to	use
binding	and	want	to	make	sure	that	all	GUI	components	are	already	constructed.

@FXML	public	void	initialize()	{
		myComponent1.textProperty().bind(myComponent2);	
}

Figure	19-11:	The	Calculator	view	after	entering	the	number	159.23

Programming	Tic-Tac-Toe
Now	that	you	are	familiar	with	the	basics	of	creating	a	GUI	with	FXML	and	Scene
Builder,	this	section	shows	you	how	easy	it	is	to	program	a	tic-tac-toe	game.	

The	Game	Strategy
Every	game	implements	some	algorithm—a	set	of	rules	or	a	strategy	that	has	to	be	applied
depending	on	the	player’s	actions.	You	need	to	come	up	with	a	simple	algorithm	for	the
tic-tac-toe	game.

If	you	aren’t	familiar	with	tic-tac-toe,	or	if	it	has	a	different	name	in	your	part	of	the
world,	read	the	Wikipedia	article	about	this	game.	For	the	version	of	the	popular	game	that
you’re	building,	implement	the	following	strategy:

The	game	is	played	by	two	players	on	a	two-dimensional	3x3	board.

Two	players	can	play	this	game.	One	plays	with	the	symbol	X,	and	the	other	uses	the
symbol	O.

The	winner	must	have	a	full	row,	column,	or	diagonal	of	Xs	or	Os.

After	each	move,	the	program	has	to	check	whether	there	is	a	winner.

The	winning	combination	has	to	be	highlighted.

After	the	winner	is	found	or	there	is	no	empty	square	left	the	players	may	select
Actions	→	Play	to	play	again.

In	a	new	game	the	first	player	plays	with	Xs.

Designing	Tic-Tac-Toe	GUI	with	FXML	and	CSS
Create	new	JavaFX	project	titled	TicTacToe.	Select	the	language	FXML,	specify	the
package	name	tictactoe,	the		class	name	TicTacToe	and	the	controller’s	name	as
	TicTacToeController.	In	the	generated	Main	class	make	two	changes:	set	the	scene	size	to
300	by	320	pixels	and	disable	stage	resizing.

public	class	Main	extends	Application	{
				@Override
				public	void	start(Stage	primaryStage)	{
								try	{
												BorderPane	root	=	(BorderPane)FXMLLoader.load(getClass()
																														.getResource("TicTacToe.fxml"));
												Scene	scene	=	new	Scene(root,300,320);
												scene.getStylesheets().add(getClass()
																.getResource("application.css").toExternalForm());
												primaryStage.setScene(scene);
												primaryStage.setResizable(false);
												primaryStage.show();
								}	catch(Exception	e)	{
												e.printStackTrace();

http://en.wikipedia.org/wiki/Tic-tac-toe

								}
				}
				
				public	static	void	main(String[]	args)	{
								launch(args);
				}
}

Your	tic-tac-toe	game	is	going	to	have	a	menu	bar	in	the	Top	area	of	the	BorderPane,	and
in	the		Center	you	add	a	GridPane	having	three	rows	and	three	columns.

JavaFX	menus	are	created	as	a	hierarchy.	A	Menu	component	can	contain	one	or	more
MenuItem’s	and	other	Menu	components.	You	can	also	create	a	MenuBar	or	a
ContextMenu	that	includes	one	or	more	Menu	components.	I’m	just	explaining	how	to
create	a	menu	for	the	tic-tac-toe	application,	but	you	can	read	more	about	JavaFX	menus
by	visiting	the	Oracle	tutorial	on	this	subject.	

In	Scene	Builder,	drop	the	MenuBar	component	from	the	Controls	panel	onto	the	line	that
reads	“Insert	TOP”		in	the	BorderPane	at	the	bottom	left	panel.

Expand	the	MenuBar	in	the	Hierarchy	panel.	It	has	the	default	menus	named	File,	Edit,
and	Help.	There	is	nothing	to	edit	in	tic-tac-toe,	so	right-click	Edit	and	select
Delete.	Rename	the	File	menu	as	Actions	using	the	Properties	panel	of	Scene	Builder.	The
Menu	File	was	created	with	the	MenuItem	Close,	which	you	should	rename	as	Quit.

Drop	a	MenuItem	onto	the	menu	Actions.	Scene	Builder	automatically	creates	the	menu
item	Unspecified	Action.	Rename	it	as	Play.	

The	Menu	Help	was	originally	created	with	the	MenuItem	About.	Drop	another	MenuItem
component	onto	the	menu	Help.	Scene	Builder	by	default	creates	the	menu	item
Unspecified	Action.	Rename	it	as	How	to	Play.

Now	drop	a	GridPane	from	the	Containers	panel	onto	the	center	of	the	BorderPane	and
add	a	column	to	change	the	grid	dimensions	to	be	3x3.	

Change	the	preferred	height	of	each	row	to	100	by	selecting	each	row	and	entering	100	in
the	Pref	Height	field	on	the	right	panel	named	Layout:	RowConstraints.	Your	Scene
Builder’s	window	should	look	like	Figure	19-12.

https://docs.oracle.com/javafx/2/ui_controls/menu_controls.htm

Figure	19-12:	The	BorderPane	layout	with	the	menu	bar	and	the	3x3	grid

If	you	run	the	Main	class,	it	opens	the	window	with	the	menu	bar	on	top	as	shown	in
Figure	19-13.

Figure	19-13:	TicTacToe	with	the	menu	bar	and	the	empty	grid

Now	you	need	to	add	nine	buttons	to	the	grid	as	youdid	for	the	calculator	earlier	in	this
lesson.	Each	button	should	occupy	the	entire	cell.	Buttons	should	have	no	labels;	you	set
them	programmatically	to	X	or	O	during	the	game	play.

Open	the	generated	file	TicTacToe.fxml	in	Eclipse	and	simplify	it.	Remove	rows	and

columns	constraints	and	add	nine	buttons	with	preferred	width	and	height	of	100	to	the
GridPane	so	it	looks	like	the	following	snippet:

<?xml	version="1.0"	encoding="UTF-8"?>
<?import	java.lang.*?>
<?import	javafx.scene.control.*?>
<?import	javafx.scene.layout.*?>
<?import	javafx.scene.layout.BorderPane?>
<BorderPane	xmlns="http://javafx.com/javafx/8"	
												xmlns:fx="http://javafx.com/fxml/1"	
												fx:controller="tictactoe.TicTacToeController">
			<top>
						<MenuBar	BorderPane.alignment="CENTER">
								<menus>
										<Menu	text="Actions">
												<items>
														<MenuItem	text="Play"	/>
														<MenuItem	text="Quit"	/>
												</items>
										</Menu>
										<Menu	text="Help">
												<items>
														<MenuItem	text="About"	/>
														<MenuItem	text="How	to	play"	/>
												</items>
										</Menu>
								</menus>
						</MenuBar>
			</top>
			<center>
						<GridPane	fx:id	="gameBoard"	BorderPane.alignment="CENTER">
									<children>
										<Button	fx:id="b1"	prefHeight="100.0"	prefWidth="100.0"	/>
										<Button	fx:id="b2"	prefHeight="100.0"	prefWidth="100.0"	
																														GridPane.columnIndex="1"	/>
										<Button	fx:id="b3"	prefHeight="100.0"	prefWidth="100.0"	
																														GridPane.columnIndex="2"	/>
										<Button	fx:id="b4"	prefHeight="100.0"	prefWidth="100.0"
																														GridPane.rowIndex="1"	/>
										<Button	fx:id="b5"	prefHeight="100.0"	prefWidth="100.0"
																			GridPane.columnIndex="1"	GridPane.rowIndex="1"	/>
										<Button	fx:id="b6"	prefHeight="100.0"	prefWidth="100.0"
																			GridPane.columnIndex="2"	GridPane.rowIndex="1"	/>
										<Button	fx:id="b7"	prefHeight="100.0"	prefWidth="100.0"
																														GridPane.rowIndex="2"	/>
										<Button	fx:id="b8"	prefHeight="100.0"	prefWidth="100.0"

																			GridPane.columnIndex="1"	GridPane.rowIndex="2"	/>
										<Button	fx:id="b9"	prefHeight="100.0"	prefWidth="100.0"	
																			GridPane.columnIndex="2"	GridPane.rowIndex="2"	/>
									</children>
						</GridPane>
			</center>
</BorderPane>

Run	the	Main	class,	and	you	see	the	tic-tac-toe	board	with	the	menu	on	top	as	shown	in
Figure	19-14.	Note	that	the	first	button	has	a	focus	rendered	as	a	blue	border.

Figure	19-14:	TicTacToe	with	the	focus	border	on	the	first	button

To	remove	the	focus	border	you	need	to	change	the	attributes	of	the	buttons	in	the
generated	empty	application.css	file.	Theoretically,	the	style	attribute	-fx-focus-color:
transparent;	should	do	the	trick,	but	in	programming	not	everything	works	by	the
book.		Here’s	the	style	that	removes	the	focus	border:

.button{
				-fx-focus-color:	transparent;
				-fx-background-insets:	-1,	0,	1,	1;
}

The	class	Main	loads	the	file	application.css	and	applies	its	styles	to	the	matching
components	on	stage.	(See	Figure	19-15.)

Figure	19-15:	TicTacToe	without	the	focus	border	on	the	first	button

The	GUI	is	ready.	Now	program	the	application	logic	in	the	controller	class.	There	are	two
players	in	this	game.	The	first	one	places	Xs	on	the	blank	buttons	and	the	other	one	uses
Os.		Hence,	you	need	to	keep	track	of	the	player’s	number.	When	the	player	clicks	the
button,	the	event	handler	should	place	the	appropriate	label	on	the	button.	The	code	of	the
TicTacToeController	takes	care	of	this	functionality:

public	class	TicTacToeController	{
			private	boolean	isFirstPlayer	=	true;
			
			public	void	buttonClickHandler(ActionEvent	evt){
									
								Button	clickedButton	=	(Button)	evt.getTarget();
								String	buttonLabel	=	clickedButton.getText();
								
								if	("".equals(buttonLabel)	&&	isFirstPlayer){
												clickedButton.setText("X");
												isFirstPlayer	=	false;
								}	else	if("".equals(buttonLabel)	&&	!isFirstPlayer){
												clickedButton.setText("O");
												isFirstPlayer	=	true;
								}
			}								
}

Add	onAction="#buttonClickHandler"	to	each	Button	tag	in	the	TicTacToe.fxml	and	run
the	Main	program.	Start	clicking	empty	squares,	and	the	program	takes	turns	in	placing
the	Xs	and	Os	on	them	as	shown	in	Figure	19-16.

Figure	19-16:	The	game	after	the	three	clicks	on	the	buttons

Increase	the	size	of	the	letters	X	and	O	by	adding	font	style	attributes	to	the	application.css
file	to	make	it	looks	like	this:

.button{
				-fx-focus-color:	transparent;
				-fx-background-insets:	-1,	0,	1,	1;
				-fx-font-weight:	bold;
				-fx-font-size:	36;
				-fx-text-fill:	blue;	
}

Now	the	tic-tac-toe	window	shows	large	and	bold	Xs	and	Os	in	blue,	as	shown	in	Figure
19-17.

Figure	19-17:	TicTacToe	with	the	styled	button	labels

Styling	with	Scene	Builder
All	JavaFX	components	are	pre-styled,	and	the	combination	of	the	styles	is	called
a	theme.

The	default	theme	of	all	JavaFX	components	is	called	caspian.	By	defining	your	own
CSS	rules	you	can	override	the	defaults.	Scene	Builder	includes	the	View	→	Show
CSS	Analyzer	menu	to	enable	you	to	see	the	default	styles	of	your	GUI	components.
If	you’re	interested	in	learning	more	about	styling	with	Scene	Builder,	watch	the
video	titled	“In-Depth	Layout	and	Styling	with	the	JavaFX	Scene	Builder“.

Both	the	FXML	and	CSS	files	of	the	tic-tac-toe	game	are	ready	and	the
class	TicTacToeController	knows	how	to	properly	set	the	buttons’	labels	for	the	first	and
second	players.

Now’s	the	time	to	write	some	Java	code	in	the	controller	to	implement	the	game	rules.

Implementing	Game	Strategy	in	Tic-Tac-Toe	Controller
It’s	time	to	implement	the	game	rules	in	the	TicTacToeController	class.	On	each	button
click	you	need	to	check	whether	there	is	a	winner.	If	there	is,	the	program	should	highlight
the	winning	combination.

You’re	going	to	write	a	method	find3InARow(),	which	checks	each	row,	column,	and
diagonal	on	the	board	to	see	if	they	have	the	same	labels.	The	method	find3InARow()	is
invoked	from	the	method	buttonClickHandler().	If	the	winning	combination	is	found,	the
program	invokes	the	method	highlightWinningCombo()	to	show	the	winning	combination
in	a	different	style.	

To	compare	the	labels	of	the	buttons	you	need	to	have	references	to	their	Button	objects,
which	you	get	using	the	injection	mechanism	offered	by	the	@FXML	annotation.	You	also
need	to	have	a	reference	to	the	GridPane,	which	is	a	container	for	all	buttons.	You	see	its
use	in	the	section	“Handling	the	Tic-Tac-Toe	Menu	Play.”

			@FXML	Button	b1;	
			@FXML	Button	b2;
			@FXML	Button	b3;
			@FXML	Button	b4;
			@FXML	Button	b5;
			@FXML	Button	b6;
			@FXML	Button	b7;
			@FXML	Button	b8;
			@FXML	Button	b9;			
			@FXML	GridPane	gameBoard;

The	code	of	the	method	find3InARow()	is	shown	next	and	is	self-explanatory:

private	boolean	find3InARow(){

https://www.youtube.com/watch?v=7Nu3_5doZK4

							//Row	1
							if	(""!=b1.getText()	&&	b1.getText()	==	b2.getText()	
											&&	b2.getText()	==	b3.getText()){
											highlightWinningCombo(b1,b2,b3);
											return	true;
							}
							//Row	2
							if	(""!=b4.getText()	&&	b4.getText()	==	b5.getText()	
											&&	b5.getText()	==	b6.getText()){
											highlightWinningCombo(b4,b5,b6);
											return	true;
							}
							//Row	3
							if	(""!=b7.getText()	&&	b7.getText()	==	b8.getText()	
											&&	b8.getText()	==	b9.getText()){
											highlightWinningCombo(b7,b8,b9);
											return	true;
							}
							//Column	1
							if	(""!=b1.getText()	&&	b1.getText()	==	b4.getText()	
											&&	b4.getText()	==	b7.getText()){
											highlightWinningCombo(b1,b4,b7);
											return	true;
							}
							//Column	2
							if	(""!=b2.getText()	&&	b2.getText()	==	b5.getText()	
											&&	b5.getText()	==	b8.getText()){
											highlightWinningCombo(b2,b5,b8);
											return	true;
							}
							//Column	3
							if	(""!=b3.getText()	&&	b3.getText()	==	b6.getText()	
											&&	b6.getText()	==	b9.getText()){
											highlightWinningCombo(b3,b6,b9);
											return	true;
							}
							//Diagonal	1
							if	(""!=b1.getText()	&&	b1.getText()	==	b5.getText()	
											&&	b5.getText()	==	b9.getText()){
											highlightWinningCombo(b1,b5,b9);
											return	true;
							}
							//Diagonal	2
							if	(""!=b3.getText()	&&	b3.getText()	==	b5.getText()	
											&&	b5.getText()	==	b7.getText()){
											highlightWinningCombo(b3,b5,b7);

											return	true;
							}							
							return	false;
			}

To	highlight	the	winning	combination	you	need	to	dynamically	change	the	styles	of	the
winning	buttons	by	invoking	the	method	setStyle()	on	them.	I	want	to	change	the
background	to	a	gradient	color	and	the	color	of	the	button	labels	to	red.	You	can	read
about	gradients	in	the	JavaFX	CSS	Reference	and	find	the	popular	CSS	color	names	there,
too.	The	first	version	of	the	method	highlightWinningCombo()	may	look	as	follows:

private	void	highlightWinningCombo(Button	first,	Button	second,	
																																																				Button	third){
		first.setStyle("-fx-background-color:
							radial-gradient(radius	100%,	white,	lightyellow,	lawngreen);
																		-fx-text-fill:	red;");
		second.setStyle("-fx-background-color:
							radial-gradient(radius	100%,	white,	lightyellow,	lawngreen);
																		-fx-text-fill:	red;");
		third.setStyle("-fx-background-color:
							radial-gradient(radius	100%,	white,	lightyellow,	lawngreen);
																		-fx-text-fill:	red;");
}

Figure	19-18	shows	how	the	winning	combination	may	look.

Figure	19-18:	Highlighting	the	winning	combination	with	gradient	colors

Changing	the	styles	of	the	buttons	works,	but	I	don’t	like	the	fact	that	the	CSS	styles	are
hardcoded	in	the	Java	code.	The	better	way	is	to	define	a	class	selector	in	the	CSS	file	and
apply	it	when	needed.	Add	the	following	CSS	class	selector	to	the	file	application.css:

.winning-button	{
		-fx-background-color:	
							radial-gradient(radius	100%,	white,	lightyellow,	lawngreen);

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.xhtml#typecolor

		-fx-text-fill:	red;
}

Now	the	method	highlightWinningCombo()	can	apply	this	style	to	the	button	by	adding
the	style	winning-button	as	needed.	The	better	version	of	highlightWinningCombo()	looks
like	this:

private	void	highlightWinningCombo(Button	first,	Button	second,	
																																																					Button	third){
		first.getStyleClass().add("winning-button");
		second.getStyleClass().add("winning-button");
		third.getStyleClass().add("winning-button");
}

Now	if	you	(or	the	graphic	designer)	decide	to	change	the	style	of	the	winning	button,
there	is	no		need	to	modify	Java	code	and	recompile	the	program.	Modifying	the	content
of	the	file	application.css	in	any	plain	text	editor	is	all	that’s	needed.

Handling	the	Tic-Tac-Toe	Menu	Play
The	good	news	is	that	clicks	on	menu	items	are	processed	the	same	way	as	clicks	on
buttons.	You	just	implement	the	menu	Play	so	the	users	can	start	a	new	game	when	either
a	winning	combination	is	found	or	there	is	no	winner	at	all.

In	the	file	TicTacToe.fxml,	assign	an	event	handler	for	the	menu	Play,	like	so:

<MenuItem	text="Play"	onAction="#menuClickHandler"/>

When	the	user	clicks	the	Play	menu	item,		the	controller	needs	to	reset	the	labels	of	all	the
buttons	and	remove	styling	from	the	winning	buttons.	The	most	concise		way	to	do	it	is	to
get	a	hold	of	all	children	of	GridPane	and	call		forEach()	passing	a	short	lambda
expression	to	it.	This	is	what	the	method	menuClickHandler()	looks	like:

			public	void	menuClickHandler(ActionEvent	evt){
								MenuItem	clickedMenu	=	(MenuItem)	evt.getTarget();
								String	menuLabel	=	clickedMenu.getText();
								
								if	("Play".equals(menuLabel)){
												ObservableList<Node>	buttons	=	
																					gameBoard.getChildren();
												
												buttons.forEach(btn	->	{
																((Button)	btn).setText("");		
																btn.getStyleClass().remove("winning-button");
												});
												isFirstPlayer	=	true;		//	new	game	starts	with	X
								}
			}

The	package	javafx.collections	contains	classes	and	interfaces	or	JavaFX	Collection	API,
which	is	an	extension	of	Java	Collections	Framework,	and	you	can	find	the	description	of
all	of	them	in	Oracle	documentation.		Your	method	menuClickHandler()	uses	one	of	these
interfaces:	ObservableList	.		This	collection	was	created	to	listen	to	the	events	that	may
happen	to	its	elements,	but	I	use	it	to	store	references	to	children	of	the	GridPane.

The	method	getChildren()	returns	a	collection	of	Node	instances	(each	Button	is	a
descendant	of	Node).	Then	you”erase”	the	label	of	each	button	and	remove	that	fancy
style	of	winning	buttons.	Finally	youreset	the	value	of	isFirstPlayer	so	the	first	move
places	X	on	the	clicked	button.	That’s	all	there	is	to	it.		Play	the	game!

Tic-Tac-Toe:	What	to	Try	Next
Your	tic-tac-toe	game	is	ready.	Of	course,	there	are	things	that	can	be	improved	to	make
this	game	more	of	a	commercial	grade.	For	example,	you	can	remove	all	event	handlers	by
calling	removeEventHandler()	on	all	buttons	when	the	winner	is	found.	You	may	consider
offering	the	user	to	set	the	dimensions	of	the	playing	board	rather	than	using	a	3x3	board.
In	this	case,	I	recommend	you	create	the	GUI	in	Java	and	dynamically	create	arrays	of
buttons	based	on	the	user’s	selection.	You	may	add	the	Save	History	feature,	too.	

You	can	add	an	option	to	play	against	the	computer	instead	of	having	a	second	player.	In
that	case,	you	may	need	to	get		familiar	with	the	Minimax,	a	decision	rule	algorithm	from
Game	Theory.	This	YouTube	video	will	help	you	to	see	how	it	can	be	applied	to	the	tic-
tac-toe	game.	

https://docs.oracle.com/javase/8/javafx/collections-tutorial/collections.htm
https://docs.oracle.com/javase/8/javafx/api/javafx/collections/package-summary.html
https://www.youtube.com/watch?v=3sbGRBjsf0o

JavaFX	on	the	Web	and	Mobile	Devices
JavaFX	applications	can	run	inside	web	browsers	provided	the	user’s	computer	has
JavaFX	run	time	installed.	There	is	a	Deployment	Kit	to	auto-detect	whether	the	user	has
such	a	run	time	and	install	it	if	necessary.	Unfortunately	the	detection	and	installation
process	is	not	a	simple	one,	so	using	JavaFX	application	inside	web	browsers	is	not	a	good
idea	for	consumer-oriented	applications.	It’s	possible	in	controlled	environments,	such	as
inside	an	organization	where	the	required	Java	run	time	can	be	installed	on	the	user’s
desktops.

If	you’re	wondering	whether	it’s	possible	to	use	JavaFX	for	writing	applications	for
smartphones,	Oracle	doesn’t	offer	the	JavaFX	libraries	for	mobile	platforms,	but	it’s
possible.

To	develop	JavaFX	applications	for	iOS,	you	need	to	install	and	learn	some	additional
software,	namely	RoboVM,	which	is	a	software	development	kit	(SDK)	for	converting
Java	bytecode	into	the	native	device	code	as	if	it	was	written	in	the	C	programming
language.	

There	is	also	a	community	site	called	JavaFXPorts,	where	people	offer	solutions	for
deployment	of	JavaFX	applications	on	iOS	and	Android	devices.	

http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm
http://www.robovm.com/
http://javafxports.org/page/home

Try	It
The	goal	of	the	next	assignment	is	to	implement	the	application	logic	for	the	operation
buttons	in	the	Calculator	project	created	earlier	in	this	lesson.	By	the	time	the	user	clicks
one	of	the	operation	buttons,	the	displayField	variable	in	CalculatorController	already	has
some	value.		I’ve	written	the	step-by-step	instructions	for	implementing	only	the	plus
operation,	and	you	need	to	implement	other	operations	similarly.		

Lesson	Requirements
You	should	have	Eclipse	with	the	E(fx)clipse	plug-in	installed.	

NOTE			You	can	download	the	code	and	resources	for	this	Try	It	from	the	book’s	web
page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson19.zip.

Step-by-Step
As	you	see,	I	use	the	wrapper	class	Double	to	convert	String	into	a	numeric	value	before
using	it	in	the	addition.		

1.	 Import	the	Eclipse	project	Lesson19.

2.	 Run	the	Main	class	from	the	mycalculator	package	to	see	that	clicks	on	digit	buttons
are	properly	shown	in	the	display	field.

3.	 To	perform	an	operation	on	two	numbers	you	need	to	know	their	values	and	the
selected	operation.	The	calculator’s	display	field	shows	only	one	number	at	a	time,	so
you	need	to	store	the	first	entered	value	in	a	program	variable.	You	may	also	store	the
result	of	the	performed	operation	in	a	separate	variable.	Keep	in	mind	that	the	value	in
the	display	field	is	represented	by	a	string	of	characters.		Declare	the	following	fields
in	the	CalculatorContoller	class:

private	String	previousValue=””;			private	String	currentValue=””;			private	double
result;

4.	 Write	a	method	to	add	two	numbers.	Initially,	if	the	user	enters	the	first	number	and
clicks	on	the	plus	button,	you	just	need	to	store	the	entered	value	in	previousValue	and
clean	the	display	field	so	the	user	can	enter	the	second	one.	If	the	user	clicks	the
plus		button	and	the	previousValue	is	not	empty,	sum	the	current	and	previous	values
and	display	the	result.	The	first	version	of	the	method	may	look	as	follows:

private	void	addNumbers(){							if	(””.equals(previousValue)){											previousValue
=	displayField.getText();											displayField.setText(””);																}	else{										
currentValue	=	displayField.getText();												result	=
Double.parseDouble(previousValue)	+																				
Double.parseDouble(currentValue);												displayField.setText(””	+	result);									}			}

5.	 	The	controller	should	call	the	method	addNumbers()	if	the	user	clicked	one	of	the
buttons:	plus	or	equal.		You	may	also	need	to	remember	the	last	operation	being
performed.	Hence,	add	the	following	variable	declaration:

http://www.wrox.com/go/javaprog24hr2e

private	String	lastOperation;	Modify	the		method	processOperation()	in
CalculatorController	to	look	like	this:

private	void	processOperation(String	buttonLabel){							switch	(buttonLabel)	{								
case	“+”:															lastOperation	=	“+”;															addNumbers();															break;												
		case	“=”:															processOperation(lastOperation);		//	recursion							}																}	The
term	recursion		describes	a	situation	when	a	function	or	a	method	calls	itself.
	Recursion	helps	avoiding	code	duplication.	Because	you	want	to	repeat	the	same
actions	if	the	user	clicks	the	plus	or	equal	button,	using	recursion	makes	sense.

6.	 Run	the	Main	class,	and	you	should	be	able	to	enter	and	add	two	numbers.	But	to
support	a	scenario	when	the	user	wants	to	perform	several	consecutive	additions,	you
need	to	add	a	little	more	code	to	catch	the	moment	if	the	user	continues	clicking	a	digit
right	after	the	operation	has	been	performed.	In	this	case	you	need	to	store	the	result
value	in	the	variable	previousValue,	and	clean	the	display	field	so	the	user	can	enter
the	next	number	to	add.	
		

7.	 Implement	other	operations	similarly	to	addition.	Add	input	validation:	Don’t	allow
the	user	to	enter	more	than	one	period	in	the	number.	Don’t	allow	division	by	zero.

8.	 Compare	the	FXML	implementation	of	the	calculator’s	GUI	with	the	Java	version
from	Try	It	section	from	Lesson	18	.

TIP			Please	select	the	videos	for	Lesson	19	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://en.wikipedia.org/wiki/Recursion_(computer_science)
http://www.wrox.com/go/javaprog24hr2e

Lesson	20
Stream	API
In	this	lesson	you’ll	learn	how	to	work	with	the	new	Stream	application	programming
interface	(API)	introduced	in	Java	8	(not	to	be	confused	with	I/O	Streams).	Stream	API
enables	you	to	write	data	processing	in	a	simpler	and	more	understandable	way.		Most	of
the	examples	in	this	chapter	illustrate	iterating	and	manipulating	data	from	Java
collections,	but	you	should	know	from	the	very	start	that	the	Stream	API	is	not	just
another	type	of	a	data	collection.	It’s	an	abstraction	over	a	bunch	of	data	that	your	program
needs	to	process.	

The	data	can	come	from	a	collection,	from	some	function	that	generates	data,	or	from	an
I/O	stream.	Using	the	Stream	API	and	lambda	expressions,	you	can	write	simple-to-read
and	efficient	iterators	that	will	result	in	a	subset	of	the	incoming	data	or	some	kind	of	a
data	aggregation.

All	new	classes	and	interfaces	supporting	the	Stream	API	are	located	in	the	package
java.util.stream,	and	the	Stream	interface	is	the	main	player	there.	Some	old	classes	(for
example,	BufferedReader)	located	in	other	packages	now	include	new	methods	returning
the	reference	to	its	data	as	a	Stream.

http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

Stream	Basics
A	stream	is	an	abstraction	that	represents	zero	or	more	values.	Think	of	it	as	a	fancy
iterator	that	enables	you	to	declare	one	or	more	operations	on	the	data	and	then	perform
these	operations	in	one	pass.	But	whereas	a	regular	Java	Iterator	works	sequentially,
streams	can	also	be	processed	in	parallel.	

Let’s	start	with	a	simple	example.	This	chapter	uses	a	collection	of	beers	to	make	working
with	stream	API	more	fun.	The	class	Beer	is	shown	here:

public	class	Beer	{	
		public	String	name;	
		public	String	country;	
		public	float	price;	
		
		Beer(String	name,	String	country,float	price){	
							this.name=name;
							this.country=country;	
							this.price=price;	}	
		
		public	String	toString(){	
												return	"Name:	"	+	name	+	",	price:	"	+	price;	
		}
}

Say	you	have	a	collection	named	beers	that	can	be	populated	by	the	method	loadCellar().
	Now	you	want	to	create	another	collection	that	includes	only	American	beers.	This	is	how
you	can	do	it	using	the	Stream	API:

List<Beer>	beers	=	loadCellar();	//	populating	beer	collection
List<Beer>	americanBeers	=	new	ArrayList<>();
americanBeers	=	beers.stream()	
																					.filter(brr	->	"USA".equals(brr.country))
																					.collect(Collectors.toList());								

Calling	the	method	stream()	sets	the	beers	collection	as	a	source	of	the	stream.	Then	your
code	filters	out	only	the	beer	objects	where	country	is	not	the	United	States.	Finally,	the
code	invokes	the	method	collect()	to	place	filtered	beers	into	another	list:	americanBeers.	
In	this	example	I’ve	chained	only	two	operations—filter	and	collect.	But	you	can	specify	a
lot	more,	including	map,	reduce,	find,	sort,	and	match.

Note	that	I’ve	used	a	lambda	expression	to	specify	the	filter	criteria.	Another	interesting
thing	to	note	in	the	preceding	code	is	type	inference;	the	variable	brr	was	never	declared.	
Because	I’ve	used	generics	in	declaring	the	beers	collection,	the	Java	compiler	knows	that
it	stores	objects	of	the		Beer	type,	and	if	we’re	using	lambdas	to	process	these	objects,
	Beer	is	assumed	as	the	argument	type.	

Intermediate	and	Terminal	Operations

There	are	two	types	of	operations	that	you	can	apply	to	a
stream:	intermediate	and	terminal.	You	can	specify	multiple	intermediate	operations	and
only	one	terminal	at	the	end.	In	the	example,		filter()	is	an	intermediate	operation
and	collect()		is	a	terminal	operation.	

Each	intermediate	operation	declares	what	you	want	to	do	with	the	stream	data	before
applying	the	terminal	operation,	which	produces	a	concrete	result,	for	example	sum	or
average,	print	some	output,	or	a	new	collection	(as	in	the	case	of	this	example).

How	can	you	say	that	a	particular	operation	is	intermediate	or	terminal?	Intermediate
operations	always	return	a	Stream,	whereas	terminal	ones	return	anything	but
a	Stream	(including	void).	As	a	matter	of	fact,	stream	operations	can	be	chained	into	a
pipeline	because	each	intermediate	operation	returns	a	Stream.	

Lazy	Operations

Intermediate	operations	don’t	even	try	to	read	data	until	the	terminal	operation	is	invoked.
The	whole	idea	of	using	intermediate	operations	is	to	express	your	intentions	in	a
declarative	form.	Consider	the	following	code	snippet:

OptionalDouble	averagePrice	=	beers.stream()
																.filter(brr	->	"USA".equals(brr.country))
																.mapToDouble(brrr	->	brrr.price)
																.average();		

I	explain	you	this	code	a	bit	later,	but	it	reveals	the	intentions:	“We	want	to	filter	out	non-
American	beers	and	then	apply	the	map	operation	to	extract	the	beer	price.	Finally	we
calculate	an	average	beer	price.”	Neither	filter()	nor	mapToDouble()	is	invoked	until	the
average()	method	is	called	(I	prove	it	to	you	in	the	next	code	sample).	But	knowing
upfront	what	are	you	planning	to	do	with	the	data	allows	Java	to	create	the	most	efficient
plan	for	executing	this	code.	By	lazy	execution	I	mean	that	mapToDouble()	isn’t
performed	on	the	beers	that	are	not	produced	in	the	United	States.	

Before	giving	you	the	proof	that	intermediate	operations	are	not	being	called	until	the
terminal	operation	is	invoked,	you	should	have	an	understanding	of	what	the	terms
filter,	map,	and	reduce	mean.	Assuming	that	you	know	the	basics	of	working	with
relational	databases,	the	explanations	use	the	analogy	of	SQL	statements.	

Filter:	Select	the	object	that	meet	certain	criteria.	It’s	like	using	select	*	with	a		where
clause	in	the	SQL	statement.		The	size	of	the	resulting	collection	can	be	smaller	than
the	original,	but	the	resulting	objects	include	all	attributes	(think	columns).	

Map:	Select	only	a	subset	of	properties	of	the	objects	without	filtering.	It’s	like
selecting	specific	columns	in	the	SQL	query	without	the	where	clause,	for	example
	select	price	from	beers.		Map	creates	a	new	stream	as	a	result	of	applying	the
specified	function	to	each	stream	element.	The	size	of	the	resulting	stream	is	the	same
as	the	original.

Reduce:	Aggregate	the	data.	The	relevant	SQL	examples	would	be		select	count(*)	or
select	sum(price)	.

Now	let’s	look	at	the	proof	that	intermediate	operations	don’t	access	the	data.	In	the	class
LazyStreamsDemo		I’m	not	going	to	chain	the	operations	on	the	stream:	

public	class	LazyStreamsDemo	{
				//	Populate	beer	collection
				static	List<Beer>	loadCellar(){
						List<Beer>	beerStock	=	new	ArrayList<>();
						beerStock.add(new	Beer("Stella",	"Belgium",	7.75f));
						beerStock.add(new	Beer("Sam	Adams",	"USA",	7.00f));
						beerStock.add(new	Beer("Obolon",	"Ukraine",	4.00f));
						beerStock.add(new	Beer("Bud	Light",	"USA",	5.00f));
						beerStock.add(new	Beer("Yuengling",	"USA",	5.50f));
						beerStock.add(new	Beer("Leffe	Blonde",	"Belgium",	8.75f));
						beerStock.add(new	Beer("Chimay	Blue",	"Belgium",	10.00f));
						beerStock.add(new	Beer("Brooklyn	Lager",	"USA",	8.25f));
						return	beerStock;
				}
				public	static	void	main(String[]	args)	{
				List<Beer>	beers	=	loadCellar();	
				//	First	intermediate	operation
				Stream<Beer>	americanBeers	=	beers.stream()
																	.filter(brrsssss	->	{
																					System.out.println("Inside	filter:	"	+
																																												brrsssss.country);
																					return	"USA".equals(brrsssss.country);
																	});
				//	Second	intermediate	operation
				DoubleStream	americanBeerPrices	=	americanBeers
																			.mapToDouble(brrr	->	{
																						System.out.println("Inside	mapToDouble:	"
																														+	brrr.name	+	":	"	+	brrr.price);
																					return	brrr.price	;
																	});
				//	Commented	out	terminal	operation
				//System.out.println("The	average	American	beer	price	is	$"+
				//							americanBeerPrices.average().getAsDouble());
				}
}

The	preceding	program	creates	a	stream	from	the	beers	collection	and	then	applies	two
intermediate	operations:	filter()	and	mapToDouble().	The	first	one	filters	out	non-
American	beers,	and	the	second	performs	the	map	operation	to	keep	only	the	beer	price,
ignoring	beer’s	other	fields.	The	LazyStreamsDemo	class	has	a	terminal	operation	that’s
supposed	to	calculate	an	average	price	of		American	beers,	but	I	commented	it	out	on
purpose.	

Note	that	each	intermediate	operation	has	a	println()	statement.	If	you	run	the	program

LazyStreamsDemo	as	is,		you	don’t	see	any	outputs	on	the	system	console.	The
intermediate	operations	are	not	invoked	on	a	stream	until	the	terminal	operation	is
specified!	The	intermediate	operations	just	declare	your	intentions.	Now	uncomment	the
last	two	lines	in	LazyStreamsDemo	and	rerun	it.	This	time	you	see	plenty	of	output:

Inside	filter:	Belgium
Inside	filter:	USA
Inside	mapToDouble:	Sam	Adams:	7.0
Inside	filter:	UkraineInside	filter:	USA
Inside	mapToDouble:	Bud	Light:	5.0
Inside	filter:	USA
Inside	mapToDouble:	Yuengling:	5.5
Inside	filter:	Belgium
Inside	filter:	BelgiumInside	filter:	USA
Inside	mapToDouble:	Brooklyn	Lager:	8.25
The	average	American	beer	price	is	$6.4375

The	mapToDouble()	operation	worked	only	for	the	American	beers.		Note	that
mapToDouble()	returns	a	stream	of	type	DoubleStream.	It’s	a	special	type	of	a	stream	that
works	on	primitive	double	values.	We	use	it	to	calculate	the	average	value	of		double	beer
prices.		There	are	also	IntegerStream	and	LongStream	to	work	with	int	and	long	data
types,	respectively.	

To	summarize,	treat	intermediate	operations	as	a	laundry	list	of	required	actions	that	are
performed	along	with	a	terminal	operation	in	one	pass.	Neither	intermediate	nor	terminal
operations	can’t	modify	the	source	data.	Streams	are	immutable.

Parallel	Versus	Sequential	Processing
A	party	of	ten	walk	into	an	Octoberfest	tent.	They	are	seated	at	a	table,	and	the	waiter
stops	by.	One	of	the	guys	say,	“Please	bring	us	ten	mugs	of	Leffe	Blonde,	and	do	it	as
follows:	go	to	the	bar,	fill	the	first	mug	and	bring	it	here;		then	return	and	do	the	same	with
the	second	one.	Repeat	ten	times.”		The	waiter	politely	replies,	“Please	don’t	tell	me	how
to	bring	your	beer.”		He	went	to	the	bar	that	had	ten	beer	dispensers,	filled	all	ten	in
parallel,	and	brought	them	all	at	the	same	time.	The	waiter	optimized	the	process.	He	just
needed	the	customers	to	tell	him	what	to	do	but	not	how	to	do	it.

Parallel	processing	rules!		I’ve	already	mentioned	this	while	describing	iterating
collections	with	the		forEach()	method	in	Lesson	13.	The	same	applies	to	streams.	When
you	invoke	the	method	stream()	on	a	data	source,	there	is	a	chance	that	the		data
processing	will	be	optimized	and	performed	in	parallel;	the	Java	runtime	may	internally
split	the	data	into	chunks,	perform	the	operations	in	parallel,	and	reconstruct	the	result.

If	you	want	to	make	sure	that	the	processing	is	performed	in	parallel,	use	the	method
parallelStream()	on	your	data,	which	may	internally	create	multiple	threads	for	processing
the	stream’s	data.		Java	7	introduced	the	Fork/Join	framework	for	implementing
parallelism,	but	it	was	not	simple	to	code.	In	Java	8	the	Fork/Join	routine	is	hidden	from
application	developers	inside	the	stream	implementation.

However,	there	is	no	guarantee	that	your	application	code	will	perform	faster	with
parallelStream().	You	need	to	benchmark	your	code	by	comparing	the	speed
of	parallelStream()	versus	the	speed	of		stream().	The	results	depends	on	your	application
code	as	well	as	on	the	Java	internals	for	your	data	source.	Even	the	Java	documentation
states	that	parallelStream()	returns	a	possibly	parallel	stream.	

When	to	Use	Parallel	Streams
If	you’re	interested	in	deeper	understanding	of	when	to	use	parallel	streams,	read	the
online	article	“When	to	use	Parallel	Streams”	written	by	a	group	of	Java	experts	led
by	Dr.	Doug	Lea.		

http://docs.oracle.com/javase/8/docs/api/java/util/Collection.xhtml#stream--
http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

Sorting	Collections	and	Streams		
Sometimes	you	need	to	sort	data	values	in	ascending	or	descending	order.		Hence	the	Java
runtime	needs	to	be	able	to	compare	values.	It’s	a	simple	task	for	primitive	data	types:		3	is
greater	than	2,	and	27	is	less	than	28.	But	how	do	you	compare	complex	data	types	such	as
objects?		What	does	it	mean	to	sort	the	collection	of	Beer	objects?	Which	of	the	Beer	’s
properties	should	be	compared	to	place	beers	in	a	sorted	order:	prices,	names,	countries,	or
a	combinations	of	these	attributes?

A	programmer	needs	to	specify	the	rules	for	object	comparison—for	example,	sort	beers
by	price	in	an	ascending	order.	Let’s	see	how	to	specify	sorting	rules	for	general	Java
collections	first	and	then	how	to	sort	streams.

Sorting	Java	Collections
A	collection	can	consist	of	multiple	objects,	but	you	just	need	to	know	how	to	compare
two	objects	to	place	them	in	a	certain	order.	Then	the	method	sort()	on	your	collection
compares	each	pair	of	objects.		On	rare	occasions,	people	need	to	apply	different	sorting
algorithms,	and	most	likely	invoking	the	method	sort()	is	all	you	need.	Java	interfaces
Comparable	and	Comparator	enable	you	to	specify	the	comparison	rules.	

Using	the	Comparable	Interface

If	a	class	implements	the	Comparable	interface,	a	program	can	compare	the	current
instance	of	an	object	with	another	object	of	the	same	type.		You	need	to	add	implements
Comparable	to	the	class	declaration	and	implement	the	method	compareTo()	there.		See
how	the	Beer	class	may	look	if	we	want	to	be	able	to	compare	beers	by	price.

public	class	Beer	implements	Comparable<Beer>{
				public	String	name;
				public	String	country;
				public	float	price;
				Beer(String	name,	String	country,float	price){
								this.name=name;
								this.country=country;
								this.price=price;
				}
				public	int	compareTo(Beer	otherBeer)	{
								
								if	(this.price	>	otherBeer.price){
												return	1;			//	This	beer	is	"larger"	than	the	other	
								}	else	if	(this.price	<	otherBeer.price)	{
												return	-1;		//	This	beer	is	"smaller"	than	the	other
								}	else	{
												return	0;			//	The	beers	are	"equal"
								}				
				}
				

				public	String	toString(){
								return	"Name:	"	+	name	+	",	price:	"	+	price;
				}
}

The	method	compareTo()	takes	one	argument—the	object	to	be	compared	with.	If
according	to	our	rule	this	beer	value	is	“larger”	than	the	other,	the	method	compareTo()
must	return	1.	If	this	beer	value	is	“smaller”,	then	it	returns	a	-1.	If	values	are	“equal,”	
compareTo()	returns	zero.	The	current	example	compares	prices.

We’re	going	to	reuse	the	same	beer	collection	used	earlier	in	this	lesson.	The	following
code	snippet	uses	the	class	java.util.Collections	and	shows	you	how	you	can	sort	it	by
prices:

List<Beer>	beers	=	loadCellar();		//	populate	beer	collection
								
Collections.sort(beers);									
beers.forEach(System.out::println);

Here’s	the	expected	output:

Name:	Obolon,	price:	4.0
Name:	Bud	Light,	price:	5.0
Name:	Yuengling,	price:	5.5
Name:	Sam	Adams,	price:	7.0
Name:	Stella,	price:	7.75
Name:	Brooklyn	Lager,	price:	8.25
Name:	Leffe	Blonde,	price:	8.75
Name:	Chimay	Blue,	price:	10.0

Comparable	interface	can	sort	objects	by	a	single	attribute	only,	which	limits	its	use.	If
you’d	want	to	sort	beers	by	names	and	prices,	you	need	to	consider	another	solution	using
the	Comparator	interface.		

Using	the	Comparator	Interface

You	can	use	the	class	that	implements	the	Comparator	interface	to	specify	the	rules	for
comparison	of	any	two	objects	of	a	certain	type.		For	example,	you	can	have	the	class	Beer
that	doesn’t	implement	any	interfaces	and	separately	the	class	PriceComparator	that
implements	the	Comparator	interface	and	has	the	rules	for	comparing	prices.		As	of	Java
8,	you	don’t	even	need	to	create	a	separate	class	with	comparison	rules;	you	can	use
lambdas	instead.	And	yes,	Comparator	is	a	functional	interface	with	only	one	abstract
method:	compare().			

	Let’s	see	a	couple	of	examples	of		sorting	beers	by	one	or	more	attributes	using	the
Comparator	interface	and	lambda	expressions.	These	examples	use	the	original	class	Beer
that	doesn’t	implement	any	interfaces:

public	class	Beer	{

				public	String	name;
				public	String	country;
				public	float	price;
				Beer(String	name,	String	country,float	price){
								this.name=name;
								this.country=country;
								this.price=price;
				}
				public	String	toString(){
								return	"Name:	"	+	name	+	",	price:	"	+	price;
				}
}

The	class	Comparator	has	a	method	comparing(),	which	takes	a	lambda	expression	that
extracts	the	attribute	that	needs	to	be	used	for		comparison—for	example,	price:	

List<Beer>	beers	=	loadCellar();		//	load	the	beer	collection
System.out.println("===	Sorting	by	ascending	price");								
beers.sort(Comparator.comparing(beer	->	beer.price));	
beers.forEach(System.out::println);

Running	this	code	against	your	beer	collection	properly	sorts	the	beers	by	ascending	price.
It	prints	the	following:

===	Sorting	by	ascending	price
Name:	Obolon,	price:	4.0
Name:	Bud	Light,	price:	5.0
Name:	Yuengling,	price:	5.5
Name:	Sam	Adams,	price:	7.0
Name:	Stella,	price:	7.75
Name:	Brooklyn	Lager,	price:	8.25
Name:	Leffe	Blonde,	price:	8.75
Name:	Chimay	Blue,	price:	10.0

The	method	reversed()	allows	sorting	in	descending	order,	for	example:

Comparator<Beer>	priceComparator	=	
																							Comparator.comparing(beer	->	beer.price);
System.out.println("===	Sorting	by	descending	price");
beers.sort(priceComparator.reversed());
beers.forEach(System.out::println);

The	following	is	the	output	of	the	preceding	code	snippet:

===	Sorting	by	descending	price
Name:	Chimay	Blue,	price:	10.0
Name:	Leffe	Blonde,	price:	8.75

Name:	Brooklyn	Lager,	price:	8.25
Name:	Stella,	price:	7.75
Name:	Sam	Adams,	price:	7.0
Name:	Yuengling,	price:	5.5
Name:	Bud	Light,	price:	5.0
Name:	Obolon,	price:	4.0

If	you	want	to	sort	by	multiple	fields	you	should	use	method	chaining	with	one	or	more
invocations	of	thenComparing().	The	following	code	shows	how	you	can	sort	beers	by
name	and	price:

System.out.println("===	Sorting	by	name	and	price");
beers.sort(Comparator.comparing((Beer	beer)	->	beer.name)
																.thenComparing(beer	->	beer.price));
beers.forEach(System.out::println);

The	method	comparing()	expects	to	get	a	method	extractor	as	an	argument.	The	method
extractor	(a	getter)	returns	a	field	that	should	be	used	for	comparison.	The	preceding	code
snippet	uses	lambda	expressions	instead	of	method	extractors,	which	requires	you	to
specify	the	type	in	case	of	method	chaining.	That’s	why	this	example	uses	explicit	casting
(Beer	beer).	

If	I	had	getters	in	the	Beer	class,	I	could	have	used	method	references	and	casting
wouldn’t	be	required:

beers.sort(Comparator.comparing(Beer::getName)
																.thenComparing(Beer::getPrice));

Mutable	Collections
Using	Collections.sort()	with	both	Comparable	and	Comparator	interfaces	modifies
(re-orders)	the	original	data	collection.	Hence	a	collection	is	mutable.	This	is	not	the
case	when		sorting	streams,	which	is	explained	next.

Sorting	Streams
Now	that	you	are	familiar	with	the	basics	of	general	sorting	of	data	collections,	it’s	time	to
see	how	you	can	use	Stream	API	for	sorting	any	data	sources.	As	a	reminder,	when	you
work	with	streams,	the	original	data	source	stays	immutable—no	changes	are	made	to	the
data	source.	To	store	the	sorted	data	in	another	collection	or	an	array	you	need	to	use	the
terminal	operation	collect().

The	method	sorted	works	together	with	Comparator,	and	to	sort	your	beer	collection	by
price	just	write	something	like	this:

beers.stream()
								.sorted(Comparator.comparing(b	->	b.price))

								.forEach(System.out::println);

Sorting	by	multiple	fields	is	done	similarly	to	the	code	sample	from	the	section	on
Comparator.		The	next	example	shows	you	how	to	sort	beers	by	country	and	price.
Slightly	modify	the	method	toString()	from	Beer	to	print	the	country	too:

public	String	toString(){
			return	"Country:	"	+	country	+		
																"	Name:	"	+	name	+	",	price:	"	+	price;
}

This	is	how	sorting	by	beer	country	and	price	can	look	like:

	beers.stream()
							.sorted(Comparator.comparing((Beer	b)	->	b.country)
																									.thenComparing(b	->	b.price))
							.forEach(System.out::println);

Running	this	code	snippet	produces	the	following	output:

Country:	Belgium	Name:	Stella,	price:	7.75
Country:	Belgium	Name:	Leffe	Blonde,	price:	8.75
Country:	Belgium	Name:	Chimay	Blue,	price:	10.0
Country:	USA	Name:	Bud	Light,	price:	5.0
Country:	USA	Name:	Yuengling,	price:	5.5
Country:	USA	Name:	Sam	Adams,	price:	7.0
Country:	USA	Name:	Brooklyn	Lager,	price:	8.25
Country:	Ukraine	Name:	Obolon,	price:	4.0

To	store	the	result	of	the	stream	sorting	in	a	new	List	collection,	you	need	to	add	a
terminal	operation:

List<Beer>	sortedBeers	=	beers.stream()
								.sorted(Comparator.comparing(b	->	b.price))
								.collect(Collectors.toList());

Now	you	have	two	collections.	The	original		(beers)	collection	is	unsorted	and	the	new
one	(sortedBeers)	is	sorted.

Parallel	Streams	and	Sorting
If	you	decide	to	use	parallelStream(),			the	method	forEach()	can’t	be	used	with	the
sorted	data.	Per	Oracle	documentation,	“For	parallel	stream	pipelines,	this	operation
does	not	guarantee	to	respect	the	encounter	order	of	the	stream,	as	doing	so	would
sacrifice	the	benefit	of	parallelism.”	You	need	to	use	the	forEachOrdered()	method
instead.

http://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.xhtml#forEach-java.util.function.IntConsumer-

Other	Stream	Sources
So	far,	all	the	code	samples	in	this	chapter	use	a	collection	of	objects	as	a	stream’s	data
source.	But	this	doesn’t	have	to	be	the	case.	You	can	process	both	finite	and	infinite	data
sources	with	the	Stream	API.	

Creating	Finite	Size	Streams
You	can	take	a	bunch	of	arbitrary	values	and	turn	them	into	a	stream	using
the	Stream.of()	method.	For	example,	the	following	code	snippet	creates	and	prints	a
stream	of	strings	of	a	finite	size:

Stream<String>	beerNames	=	Stream.of("Leffe	Blonde",
																																					"Chimay	Blue","Sam	Adams");
beerNames.forEach(System.out::println);

The	method	builder()	is	yet	another	way	of	creating	finite	size	streams.	The	following
code	snippet	creates	a	stream	of	three	long	primitives	and	finds	the	maximum	value.
Because		max()	returns	the		OptionalLong	type	(it	may	or	may	not	have	a	value),	I	call
the	getAsLong()	to	get	the	primitive	long.	After	running	this	code,		maxValue	is	equal	to
21.

			long	maxValue	=	LongStream.builder()																				.add(10)																				.add(21)							
												.add(15)																				.build()																				.max().getAsLong();

Creating	Infinite-Size	Streams
Although	data	collections	have	finite	size,	you	can	use	the	Stream	API	for	working	with
infinite	streams	of	data.	

	

Generating	Stream	Data

The	method	Stream.generate()		can	take	a	lambda	expression	that	generates	values	by
some	arbitrary	algorithm.		This	lambda	has	to	be	an	implementation	of	the	functional
interface		java.util.function.Supplier	.	Implementing	a	Supplier	comes	down	to	writing	a
function	that	returns	some	result.	

The	following	class	StreamOfDates	uses	the	class	LocalDateTime,	which	is	a	part	of	the
new	Java	8	Date	and	Time	API	located	in	the	package	java.time.	The	supplier	repeatedly
sleeps	for		a	second	(1000	millisec)	and	then	queries	the	system	time	using	the
method	now().		The	method	Stream.generate()	generates	an	infinite	stream	that	is	feeding
the	stream	with	the	current	time	about	every	second.	

import	java.time.LocalDateTime;
import	java.util.function.Supplier;
import	java.util.stream.Stream;
public	class	StreamOfDates	{
			

http://docs.oracle.com/javase/tutorial/datetime/
http://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

		public	static	void	main(String[]	args){
				
					//	Implementing	a	Supplier	interface
				Supplier<LocalDateTime>	myStopWatch	=	()	->	{	
											try{
															Thread.sleep(1000);
											}	catch	(InterruptedException	e){
															e.printStackTrace();
											}
											return	LocalDateTime.now();	//	get	the	current	time
											};
								
					//	Generating	a	stream	using	lambda	expression
		
					Stream<LocalDateTime>	timeStream	=	
																																			Stream.generate(myStopWatch);
											
					timeStream.forEach(System.out::println);										
			}
}

Running	this	program	starts	producing	an	output	that	never	stops	and	looks	like	this
(without	ellipses):

2014-09-18T17:41:36.017
2014-09-18T17:41:37.026
2014-09-18T17:41:38.027
2014-09-18T17:41:39.028
2014-09-18T17:41:40.028
2014-09-18T17:41:41.029
2014-09-18T17:41:42.029
2014-09-18T17:41:43.030
2014-09-18T17:41:44.031
2014-09-18T17:41:45.033…

You	see	how	to	stop	an	infinite	stream	in	the	section	Short-Circuit	Operations.	

Yet	another	way	of	generating	the	infinite	stream	is	the	method	iterate(),	which	requires	a
rule	for	generating	the	next	data	value.	

LongStream	evenNumbers	=	LongStream.iterate(0,	num	->	num+2);
evenNumbers.forEach(System.out::println);

The	preceding	code	prints	even	numbers,	but	because	they	are	being	generated	extremely
fast,	you	might	need	to	limit	the	number	of	generated	values	(see	the	section	Short-Circuit
Operations)	to	see	the	expected	results.

Using	Stream	API	with	I/O	Streams

As	of	Java	8,	some	of	the	classes	used	for	processing		I/O	streams	include	new	methods
that	allow	data	processing	with	the	Stream	API.	For	example,	the
class	java.io.BufferedReader	has	a	new	method	lines()	that	returns	a	Stream,	the	elements
of	which	are	lines	read	from	this	BufferedReaderobject.	As	with	other	data	sources,
the	Stream	is	lazily	populated—that	is,	read	only	occurs	during	the	terminal	operation.		

You	can	see	it	in	action	by	rewriting	the	class	WebSiteReader	from	Lesson	16.	That	class
was	reading	and	printing	the	content	of	the	web	page	www.google.com.	The	new	version
of	this	class	is	called	WebSiteReaderStream.

public	class	WebSiteReaderStream	{
		public	static	void	main(String	args[]){
							String	nextLine;
							URL	url	=	null;
							URLConnection	urlConn	=	null;
							try
							{
									//	Assume	index.html	is	a	default	home	page	name		
										url		=	new	URL("http://www.google.com");
										urlConn	=	url.openConnection();
							}	catch(IOException	e){
											System.out.println(
																				"Can't	connect	to	the	provided	URL:"	+	
																																															e.toString());
							}	
							
							try(InputStreamReader	inStream	=	new	InputStreamReader(
															urlConn.getInputStream(),	"UTF8");
															BufferedReader	buff		=	
																													new	BufferedReader(inStream);){			
					
						//	Read	and	print	the	content	of	the	Google	home	page
						//	using	Stream	API							
											
									buff.lines()
															.forEach(System.out::println);		
										
							}	catch(IOException		e1){
						System.out.println("Can't	read	from	the	Internet:	"+	
																																										e1.toString());	
					}
	}
}

Not	only	does	the	reading	part	of	the	stream	becomes	simpler—just	call	the	lines()—but

http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.xhtml#method.summary
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

you	can	now	add	some	intermediate	operations	to	perform	some	filtering	as	the	data	is
coming	in.	For	example,	you	can	create	a	matching	pattern	using	regular	expressions	(not
covered	in	this	book)	and	read	only	those	data	that	match	this	pattern.	You	can	research
this	further	by	finding	examples	that	use	the	Java	class	Matcher.	

http://docs.oracle.com/javase/tutorial/essential/regex/
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html

Short-Circuit	Operations
In	some	cases	you	want	to	stop	stream	processing	prematurely.	Say	you	want	to	show	only
the	first	five	elements	from	the	stream.	Short-circuit	operations	serve	this	purpose.		Revisit
the	example	that	prints	even	numbers.	With	it	you	generated	an	infinite	stream	of	even
numbers.	To	print	only	the	first	five	numbers	you	use	the	short-circuit	operation	limit():

LongStream	evenNumbers	=	LongStream
																				.iterate(0,	num	->	num+2)
																				.limit(5);
												
evenNumbers.forEach(System.out::println);

This	code	prints	the	following	five	numbers:

0
2
4
6
8

Another	short-circuit	method	is	the		findFirst()	element	of	the	stream.	This	method	returns
an	object	of	type	Optional,	which	was	introduced	in	Java	8.		It	allows	avoiding
NullPointerException	if	the	requested	object	is	not	found.	If	the	requested	value	is	not
found,	the	method	findFirst()	returns	an	empty	Optional	object.	The	next	code	sample
prints	the	first	element	from	the	beers	collection:

Optional<Beer>	firstBeer	=	beers.stream()
																	.findFirst();
														
System.out.println("The	first	beer	in	collection:	"	+	
														firstBeer.orElse(new	Beer("No	name","No	country",0)));

Running	this	code	against	your	collection	of	beers	prints	the	following:

The	first	beer	in	collection:	Name:	Stella,	price:	7.75

If	your	collection	is	empty,	the	println()	method	uses	the	code	from	the	orElse()	method.
An	attempt	to	simply	print	firstBeer	from	an	empty	collection	would
output	Optional.empty.	

Some	other	short-circuit	methods	on	the	class	Stream	are	skip(),		findAny(),	allMatch(),
noneMatch(),	and	anyMatch().	

Try	It
In	the	following	assignments	you	need	to	use	method	references	while	working	with
streams.	You	also	try	using	short-circuit	operations.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson20.zip.

Step-by-Step
In	this	exercise	you	need	to	use	static	method	references	with	streams.		

1.	 Import	the	project	Lesson20	into	the	Eclipse	IDE.

2.	 In	the	class	StreamOfDates,	add	a	static	method	titled	myStopWatchFunction()	and
move	the	code	from	the	lambda	expression	myStopWatch	there.	This	is	how	the
lambda	expression	myStopWatch	was	originally	implemented:

	Supplier<LocalDateTime>	myStopWatch	=	()	->	{													try{															
Thread.sleep(1000);												}	catch	(InterruptedException	e){															
e.printStackTrace();												}												return	LocalDateTime.now();	//	get	the	current
time												};

3.	 Remove	the	declaration	of	the	lambda	expression	Supplier	myStopWatch	from	the
class.

4.	 The	existing	invocation	of	the	method	generate()	looks	like	this:

Stream.generate(myStopWatch)

Replace	the	argument	of	the	method	generate()	with	the	method	reference
	StreamOfDates::myStopWatchFunction.			

5.	 Run	the	program.	It	should	start	printing	the	infinite	messages	with	the	current	time.

6.	 Add	the	short-circuit	operation	limit()	so	the	program	stops	after	printing	the	current
time	five	times.

7.	 Are	limit()	and	findFirst()	intermediate	or	terminal	operations?

8.	 Modify	the	class	Beer	to	include	getters	and	change	the	Comparator	code	sample	that
use	to	use	method	references	instead	of	lambda	expressions.

TIP			Please	select	the	videos	for	Lesson	20	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	21
Working	with	Relational	DBMS	Using	JDBC
Business	applications	usually	store	data	in	the	databases.	In	most	of	the	enterprise
applications,	Relational	Database	Management	Systems	(RDBMSes)	are	used	as	data
storage.	They	store	the	data	records	in	tables.	Each	record	(such	as	that	of	an	employee)	is
represented	by	a	table	row,	which	consists	of	one	or	more	columns	or	record	fields	(for
example,	name,	address,	hire	date).	RDBMSes	understand	the	SQL	language.

The	most	popular	RDBMSes	are	Oracle,	DB2,	Sybase,	Microsoft	SQL	Server,	and
MySQL	Server.	This	lesson	uses	Apache	Derby	DB	(also	known	as	Java
DB),	which	is	included	with	Java	SE	for	Windows,	or	you	can	separately	install	it	on	a
Mac	or	Linux	machine.

NoSQL	Database	Management	Systems
Some	database	management	systems	are	not	relational—they	don’t	store	data	as	rows
and	columns.	Such	database	management	systems	are	known	as	NoSQL	databases
(for	example,	MongoDB,	Cassandra,	Couchbase,	and	so	on).	This	book	doesn’t	cover
NoSQL	databases.	Refer	to	http://nosql-database.org	for	further	information.	

Java	includes	two	packages	that	contain	classes	required	for	work	with	DBMSes:	java.sql
and	javax.sql.	The	former	contains	commonly	used	classes	such	as	Connection,	Statement,
and	ResultSet.	The	latter	is	used	for	supporting	database	connectivity	on	the	server	side,
containing	classes	such	as	DataSource	and	RowSet.

The	JDBC	API	is	not	DBMS-specific—if	you	write	a	program	that	uses	JDBC	classes	to
retrieve/update	data	in	Oracle,	you’ll	be	using	the	same	classes	to	work	with	MySQL
Server	or	DB2.	You	just	need	the	JDBC	drivers	from	the	corresponding	DBMS	vendor;
the	drivers	hide	their	database	specifics	behind	the	same	public	JDBC	API.

JDBC	drivers	either	pass	SQL	statements	from	Java	to	a	DBMS	for	execution	or	simply
execute	a	program	stored	inside	a	DBMS	(called	a	stored	procedure).	If	some	data	has
been	retrieved	as	the	result	of	these	actions,	your	Java	program	will	handle	it	by	making
appropriate	calls	to	the	JDBC	API.	Over	the	past	15	years	the	JDBC	specification	has
been	evolving	and,	at	the	time	of	this	writing,	most	drivers	comply	with	JDBC	version	4.1.

In	this	lesson,	all	communications	with	the	DBMS	are	made	by	supplying	SQL	statements
to	the	JDBC	API.	There	is	an	alternative	way	of	working	with	data	by	using	Java
Persistence	API	(JPA),	which	is	covered	in	Lesson	32.	Some	people	prefer	using	object-
relational	mapping	(ORM)	frameworks,	such	as	Hibernate,	or	those	that	reduce	mundane
JDBC	programming	like	MyBatis;	these	frameworks	are	not	covered	in	this	book.	

http://db.apache.org/derby/
http://nosql-database.org
http://download.oracle.com/otndocs/jcp/jdbc-4_1-mrel-spec/index.html
http://mybatis.github.io/mybatis-3/

JDBC	Driver	Types
A	JDBC	driver	plays	the	role	of	the	middleman	between	a	Java	program	and	a	DBMS.
Drivers	are	available	from	database	vendors,	from	Oracle,	and	from	third-party	vendors	of
Java	application	servers.

There	are	four	general	types	of	JDBC	drivers:

A	Type	1	driver	is	a	JDBC-ODBC	bridge	that	enables	Java	programs	to	work	with	the
database	using	ODBC	drivers	from	Microsoft.	The	drawbacks	of	ODBC	drivers	are
that	they	are	slower	than	the	others,	must	be	installed	and	configured	on	each	user’s
machine,	and	work	only	on	Windows	machines.	The	Type	1	JDBC	driver	has	rarely
been	used	lately,	and	Oracle	has	removed	it	as	of	Java	8	run	time.

A	Type	2	driver	consists	of	Java	classes	that	work	in	conjunction	with	the	non-Java
native	drivers	provided	by	the	DBMS	vendor.	These	drivers	work	much	faster	than
Type	1,	but	they	also	require	installation	and	configuration	on	the	machine	on	which
Java	programs	run.

A	Type	3	driver	is	called	a	middleware	driver	and	can	be	provided	by	vendors	of
application	servers.	It	consists	of	two	parts:	The	client	portion	performs	a	DBMS-
independent	SQL	call,	which	is	then	translated	to	a	specific	DBMS	protocol	by	the
server	portion	of	the	driver.

A	Type	4	driver	is	a	pure	Java	driver,	which	usually	comes	as	a	.jar	file	and	performs
direct	calls	to	the	database	server.	It	does	not	need	any	configuration	on	the	client’s
machine,	other	than	including	the	name	of	the	main	driver’s	class	in	your	Java	code.
That’s	why	it’s	also	known	as	the	thin	driver.	For	example,	Java	applets	can	be
packaged	with	this	type	of	driver,	which	can	be	automatically	downloaded	to	the
user’s	machine	along	with	the	applets	themselves.

For	simplicity,	this	lesson	uses	JDBC	drivers	of	Type	4,	but	many	production	systems	can
deploy	Type	3	drivers	to	provide	better	performance.

Installing	Derby	DB	and	Creating	a	Database
Derby	DB	(also	known	as	JavaDB)	is		a	small	DBMS	that	you	wouldn’t	use	for	serious
production	systems,	but	it’s	great	for	learning	JDBC	or	to	use	for	many	small	systems.	If
you’re	using	Windows	OS,		it’s	already	installed	with	Java	SDK		in	the	folder	that	looks
similar	to	this	one:		c:\Program	Files\Java\jdk1.8.0_25\db.		The	numbers	reflect	the	major
and	minor	versions	of	Java.

Modify	your	system	variable	PATH	so	it	starts	with	the	following:	c:\Program
Files\Java\jdk1.8.0_25\db\bin;

If	you	work	in	something	other	than	Windows	OS,		download	and	install	Derby	DB
from	http://db.apache.org/derby.	Derby	DB	is	well-documented	and	if	you	haven’t	had	a
chance	to	work	with	relational	DBMSes,	download	and	read	the	“Getting	Started	with
Derby”	manual.	The	installation	of	Derby	DB	comes	down	to	downloading	and	unzipping
one	file.	At	the	time	of	this	writing	the	filename	is		db-derby-10.10.2.0-bin.zip.	Unzip	it
and	rename	the	folder	as	derby.	

The	configuration	process	is	also	simple;	read	the	steps	required	for	your	operating	system
at	the	Swinburne	University	web	page	at	http://goo.gl/Q5a01N.	You	need	to	set	the
DERBY_HOME	environment	variable	to	point	to	your	Derby	DB	installation	directory.
For	example,	I’ve	unzipped	Derby	into	my	root	directory	on	my	Mac	OS	computer	and
added	the	following	two	lines	to	the	file	.bash_profile:

export	PATH=~/derby/bin:$PATH
export	DERBY_HOME=~/derby

To	insure	that	your	Derby	DB	is	properly	installed,	open	a	Command	or	Terminal	window
and	enter	the	command	sysinfo.	You	should	see	an	output	describing	the	Derby	DB
install.	

Derby	DB	has	an	interactive	command-line	utility	called	ij	that	you	can	use	to	create
databases	and	tables	and	populate	them	with	data,	among	other	actions.	I	show	you	how	to
create	a	sample	database	and	a	table	to	store	data	about	employees.

First	open	a	Command	or	Terminal	window	and	issue	the	command
startNetworkServer.exe	(or	startNetworkServer	if	you	use		Mac	OS).

The	Derby	DB	server	starts	by	displaying	the	message	similar	to	this	one:

Apache	Derby	Network	Server	-	10.10.2.0	-	(1582446)	started	and	ready	to
accept	connections	on	port	1527

Open	another	command	window	and	start	ij—you’ll	see	the	ij>	prompt.	Now	try
connecting	to	the	database	Lesson21	by	issuing	the	following	command:

connect	'jdbc:derby://localhost:1527/Lesson21;create=true';

This	command	tries	to	connect	to	the	database	Lesson21	and	creates	it	if	no	such	database
is	found.	The	next	ij	command	creates	a	database	table—Employee—to	store	records	that

http://db.apache.org/derby
http://goo.gl/Q5a01N
http://goo.gl/Q5a01N

consist	of	three	fields:	EMPNO,	ENAME,	and	JOB_TITLE.	The	first	field	is	stored	as	an
integer,	and	the	other	two	as	simple	text	(varchar)	allowing	50	and	150	characters
respectively.

CREATE	TABLE	Employee	(
				EMPNO	int	NOT	NULL,
				ENAME	varchar	(50)	NOT	NULL,
				JOB_TITLE	varchar	(150)	NOT	NULL
);

Finally,	to	populate	the	table	with	some	data,	issue	the	INSERT	command	in	ij:

INSERT	INTO	Employee	values	(7369,'John	Smith',	'Clerk'),	(7499,
'Joe	Allen','Salesman'),	(7521,'Mary	Lou','Director');

If	you	want	to	ensure	that	the	records	were	successfully	created	in	the	database,	in	the	ij
utility	issue	the	SELECT	SQL	statement	to	retrieve	the	data:

Select	*	from	Employee;

You	see	the	data	about	the	three	employees	that	were	added	by	the	INSERT	SQL
command.	If	you	are	not	familiar	with	the	syntax	of	SQL,	refer	to	the	tutorial	at	
http://www.sqlcourse.com.

http://www.sqlcourse.com

Sample	JDBC	Program
In	this	section	you	see	the	steps	that	you	can	perform	to	retrieve	the	data	in	any	Java
program	that	works	with	a	relational	database	using	JDBC.	A	sample	program	
implements	all	of	these	steps	to	display	the	list	of	employees	from	the	database	table
Employee.

1.	 Load	the	JDBC	driver	using	the	method	forName()	of	the	Java	class	Class.	You	have
to	find	out	the	name	of	the	class	to	load	from	the	JDBC	driver’s	documentation.	In	the
case	of	JavaDB,	you	can	skip	this	step.	If	you	work	with	Oracle	DBMSes,	you	can
load	a	Type	4	JDBC	driver	with	the	following	Java	statement:

Class.forName("oracle.jdbc.driver.OracleDriver");

2.	 Get	the	database	connection	to	the	database	Lesson21	by	calling

DriverManager.getConnection(url,	user,	password);

In	the	case	of	Derby	DB,	you	don’t	have	to	supply	the	user	and	the	password;	simply
provide	the	URL	of	your	database,	for	example:

DriverManager.getConnection("jdbc:derby:Lesson21");

3.	 Create	an	instance	of	the	Java	class	Statement:

Connection.createStatement();

As	an	alternative,	you	can	create	PreparedStatement	or	CallableStatement,	which	are
explained	later	in	this	lesson	in	the	“The	PreparedStatement	Class”	and	“The
CallableStatement	Class”	sections.

4.	 To	run		SQL	Select	queries,	your	program	can	include	a	statement	similar	to	this	one:

Statement.executeQuery("Select	*	from	Employee");

For	SQL	queries,	which	produce	more	than	one	result,	you	can	use	the	method
execute()	of	the	class	Statement.

For	Insert,	Update,	and	Delete	SQL	statement,	use	the	method	updateQuery().	For
example:

String	myInsertStmt	=	"INSERT	INTO	Employee	values	"	+	
																						"(1234,'John	Bush',	'Clerk')";
Statement.updateQuery(myInsertStmt);

5.	 To	process	a	received	data	loop	through	the	ResultSet	object,	use	the	following:

while	(ResultSet.next())	{
			//	get	the	values	from	each	column	here

}

6.	 Free	system	resources	by	closing	the	ResultSet,	Statement,	and	Connection	objects.

All	these	steps	are	implemented	in	the	class	EmployeeList,	shown	in	Listing	21-1,	which
prints	the	records	from	the	table	Employee.	Even	though	you	don’t	need	to	explicitly	load
the	driver	for	Derby	DB	with	Class.forName(),	the	location	of	the	driver	class	has	to	be
known	to	your	program,	otherwise	you’ll	get	a	“No	suitable	driver”	error.	Either	add
derbyclient.jar	located	in	the	lib	directory	in	your	Derby	installation	to	the	CLASSPATH
system	variable,	or	just	add	it	as	an	external	.jar	to	your	Eclipse	project	(see	the	project
menu	Properties	→	Java	Build	Panel	→	Add	External	JARs).

Listing	21-1:	The	EmployeeList	program

class	EmployeeList	{
		public	static	void	main(String	argv[])	{
			
			String	sqlQuery	=	"SELECT	*	from	Employee";	
			//	Open	autocloseable	Connection,	Statement	and	get	the	result	set
			try	(Connection	conn	=	DriverManager.getConnection(
																							"jdbc:derby://localhost:1527/Lesson21");
								Statement	stmt	=	conn.createStatement();	
								ResultSet	rs	=	stmt.executeQuery(sqlQuery);)	{		
						//	Process	each	column	in	the	result	set	and	print	the	data
						while	(rs.next()){	
									int	empNo	=	rs.getInt("EMPNO");
									String	eName	=	rs.getString("ENAME");
									String	job	=	rs.getString("JOB_TITLE");
									System.out.println(""+	empNo	+	",	"	+	eName	+	",	"	+	job);	
						}
			}	catch(SQLException	se)	{
						System.out.println	("SQLError:	"	+	se.getMessage	()
											+	"	code:	"	+	se.getErrorCode	());
			}	catch(Exception	e)	{
						System.out.println(e.getMessage());	
						e.printStackTrace();	
			}	
}
}

The	output	of	the	EmployeeList	program	looks	like	this:

7369,	John	Smith,	CLERK
7499,	Joe	Allen,	SALESMAN
7521,	Mary	Lou,	Director

When	you	execute	any	SQL	statements,	always	include	error-handling	code.	Catching	the
SQLException	is	the	right	way	to	get	the	error	message.	Note	that	the	code	in	Listing	21-1
calls	the	method	getErrorCode()	to	extract	the	database-specific	error	code	from	the
SQLException	object.

Processing	Result	Sets
Let’s	take	a	closer	look	at	the	code	in	Listing	21-1.	After	rs	=
stmt.executeQuery(sqlQuery),	the	cursor	rs	is	positioned	before	the	very	first	record	(row)
of	the	result	set	in	memory,	if	any.	Each	row	contains	as	many	fields	(columns)	as	were
specified	in	the	SQL	Select	statement.	Each	of	the	values	is	extracted	by	an	appropriate
method	based	on	the	data	type	of	the	field.	The	names	of	these	methods	are	self-
explanatory:	rs.getString(),	rs.getInt(),	and	so	on.	If	you	know	the	name	of	a	column	from
the	result,	use	it	as	a	method	argument:

int	empNo	=	rs.getInt("EMPNO");
String	eName	=	rs.getString("ENAME");

If	you	don’t	know	the	column	names,	specify	the	relative	position	of	the	column	(they
start	with	1)	from	the	result	set:

int	empNo	=	rs.getInt(1);
String	eName	=	rs.getString(2);

You	can	also	query	the	database	table	to	figure	our	the	column	names	and	their	types	with
the	help	of	the	class	ResultSetMetaData	explained	later	in	this	lesson.	JDBC	drivers
automatically	convert	the	data	from	the	database	types	to	the	corresponding	Java	types:
For	example,	Derby’s	varchar	becomes	Java’sString.

The	class	EmployeeList	just	prints	the	retrieved	data	in	a	loop.	You	can	also	place	the
result	set	data	in	a	Java	collection	object	for	further	processing.	The	ResultSet	object	holds
the	database	connection	and	is	not	serializable.	That’s	why	common	practice	for
programming	server-side	operations	with	DBMSes	is	to	create	a	class	representing	a	row
from	the	result	set	and	populate,	say,	an	ArrayList	or	other	Java	collection	with	its
instances.	

Listing	21-2	shows	an	example	of	such	a	class,	which	can	represent	one	employee	record.
Classes	that	hold	only	the	value	of	some	data	are	often	called	value	objects.	Because	in
distributed	applications	such	objects	may	need	to	be	transferred	between	different
computers,	they	are	also	known	as	Data	Transfer	Objects	(DTOs).

Listing	21-2:	The	EmployeeDTO

class	EmployeeDTO{
		//private	properties
		private	int	empNo;
		private	String	eName;
		private	String	jobTitle;
		//setters
		public	void	setEmpNo(int	val){empNo=val;}
		public	void	setEName(String	val){eName=val;}
		public	void	setJobTitle(String	val){jobTitle=val;}
		//	getters
		public	int	getEmpNo(){return	empNo;}
		public	String	getEName(){return	eName;}
		public	String	getJobTitle(){return	jobTitle;}
}

EmployeeDTO	declares	private	variables	to	store	the	data	but	access	to	this	data	is
performed	via	public	setters	and	getters,	the	methods	that	allow	external	code	to	set	and
get	the	appropriate	values.	This	technique	can	be	useful	when	some	application-specific
logic	has	to	be	applied	at	the	moment	when	some	code	needs	to	get	or	modify	the
properties	of	the	class	EmployeeDTO.

For	example,	you	can	place	some	authorization	code	inside	the	setter	to	ensure	that	the
external	object	has	enough	permissions	to	change	the	property	jobTitle.	If	the	business
logic	of	obtaining	such	authorization	changes	in	the	future,	you	need	to	modify	only	the
code	inside	the	setter,	but	the	external	code	remains	unchanged.

The	next	code	snippet	shows	how	to	prepare	a	collection	of	EmployeeDTO	objects	while
processing	the	result	set	retrieved	by	the	SQL	Select	statement.

	//	Create	an	object	for	collection	of	employees
	ArrayList<EmployeeDTO>	employees	=	new	ArrayList<>();
	//	Process	ResultSet	and	populate	the	collection
	while	(rs.next()){
		EmployeeDTO	currentEmp	=	new	EmployeeDTO();
		currentEmp.setEmpNo(rs.getInt("EMPNO"));
		currentEmp.setEName(rs.getString("ENAME"));
		currentEmp.setJobTitle(rs.getString("JOB_TITLE"));
		employees.add(currentEmp);
	}

If	this	code	is	deployed	on	the	server’s	JVM	and	you	need	to	send	the	data	to	another
computer	that	runs,	say,	a	Swing	client,	you	can	consider	applying	Java	serialization	here
for	sending	a	collection	of	employees	to	the	front.		But	make	sure	that	the	class
EmployeeDTO	implements	the	Serializable	interface.	In	case	of	a	web	client,	consider

serializing	the	EmployeeDTO	into	JSON	data	format	discussed	in	Lesson	33.

The	PreparedStatement	Class
Listing	21-1	uses	the	class	Statement	to	create	an	object	capable	of	executing	SQL.	But
this	is	not	the	only	way	to	supply	SQL	to	the	JDBC	API.	The	class	PreparedStatement	is	a
subclass	of	Statement,	but	it	pre-compiles	the	SQL	statement	before	executing	it.

With	PreparedStatement	you	can	create	SQL	with	parameters	that	are	dynamically	passed
by	the	program.	Suppose	you	need	to	execute	the	query	“SELECT	*	from	EMP	WHERE
empno=...”	multiple	times,	providing	the	empno	values	from	the	array	empNumbers[].	If
you	use	the	class	Statement	as	in	the	following	code	snippet,	the	variable	sqlQuery	has	to
be	modified	and	pre-compiled	on	each	iteration	of	the	loop:

for	(int	i=0;i<empNumbers.length;	i++){
		sqlQuery="SELECT	*	from	Employee	WHERE	empno="	+	employees[i];
		stmt.executeQuery(sqlQuery);
}

The	class	PreparedStatement	offers	a	more	efficient	solution:

PreparedStatement	stmt=conn.prepareStatement(
																							"	SELECT	*	from	Employee	WHERE	empno=?");
for	(int	i=0;i<employees.length;	i++){
		//	pass	the	array's	value	that	substitutes	the	question	mark
		stmt.setInt(1,employees[i]);
		stmt.executeQuery();
}

In	this	case,	the	SQL	statement	is	compiled	only	once	and	parameters	are	provided	by	the
appropriate	setXXX()	method	depending	on	the	data	type.	The	SQL	statement	may	have
several	parameters	(question	marks),	and	the	first	argument	of	the	setter	enables	you	to
specify	each	parameter’s	number.	For	example:

PreparedStatement	stmt=conn.prepareStatement(
						"SELECT	*	from	Employee	WHERE	empno=?	and	ename=?");
for	(int	i=0;i<empNumbers.length;	i++){
		stmt.setInt(1,empNumbers[i];)
		stmt.setString(2,empNames[i];)
		stmt.executeQuery();
}

If	you	need	to	pass	a	NULL	value	as	a	parameter,	use	the	method	setNull().

The	CallableStatement	Class
This	class	extends	PreparedStatement	and	is	used	for	executing	database	stored	procedures
from	Java.	Let’s	say	there	is	a	stored	procedure	entitled	changeEmpTitle	that	takes	two
parameters:	empno	and	title.	Here’s	the	code	to	execute	this	stored	procedure:

CallableStatement	stmt	=	conn.prepareCall("{call	changeEmpTitle(?,?)}");
stmt.setInt(1,7566);
stmt.setString	(2,"Salesman");
stmt.executeUpdate();

If	a	stored	procedure	returns	some	values	using	output	parameters,	each	of	the	OUT	data
types	has	to	be	registered	before	the	statement	is	executed.	The	next	code	snippet	shows
you	an	example	of	executing	a	stored	procedure	that	has	two	parameters:	The	first	is	an
input	parameter,	and	the	second	is	an	output	parameter	by	which	the	stored	procedure	can
return	the	result	of	its	execution	to	the	Java	program:

CallableStatement	stmt	=	conn.prepareCall(
																	("{call	getEmpTitle(?,?)	}");
stmt.setInt(1,	7566);
stmt.registerOutParameter(2,java.sql.Types.VARCHAR);
stmt.executeQuery();
String	title=stmt.getString(2);

The	ResultSetMetaData	Class
JDBC	enables	you	to	process	result	sets	when	the	number	of	returned	values	is	unknown.
Imagine	that	you	need	to	write	a	program	that	can	accept	any	SQL	Select	statement,
execute	it,	and	display	the	retrieved	data.	With	the	class	ResultSetMetaData,	you	can
dynamically	find	out	how	many	columns	there	are	in	the	result	set,	as	well	as	their	names
and	data	types.	The	following	code	fragment	gets	the	number	of	the	database	table
columns	in	the	result	set	and	for	each	of	them	identifies	and	prints	the	column	name	and
type:

String	sqlQuery	=	"select	*	from	Employee";
ResultSet	rs	=	stmt.executeQuery(query);
ResultSetMetaData	rsMeta	=	rs.getMetaData();
int	colCount	=	rsMeta.getColumnCount();
for	(int	i	=	1;	i	<=	colCount;	i++)	{
		System.out.println(
						"	Column	name:	"	+	rsMeta.getColumnName(i)	+
						"	Column	type:	"	+	rsMeta.getColumnTypeName(i));
}

This	simple	but	powerful	technique	is	used	internally	by	ORM	frameworks	that	can
“magically”	generate	database	models	and	automatically	generate	Java	classes
representing	database	entities.

Listing	21-3	shows	a	Java	program	called	ShowAnyData	that	prints	a	result	set	based	on
any	SQL	Select	statement	passed	from	the	command	line.	For	example,	it	can	be	started	as
follows:

java	ShowAnyData	"Select	*	from	Employee"

Listing	21-3:	Using	ResultSetMetaData

class	ShowAnyData	{
		public	static	void	main(String	args[])	{
			if	(args.length==0){
					System.out.println(
						"Usage:	java	ShowAnyData	SQLSelectStatement");
					System.out.println(
						"For	example:	java	ShowAnyData	\"Select	*	from	Employee\"");
					System.exit(1);
			}
			try	(Connection	conn	=	DriverManager.getConnection(
																										"jdbc:derby://localhost:1527/Lesson21");
								Statement	stmt	=	conn.createStatement();	
								ResultSet	rs	=	stmt.executeQuery(args[0]);)	{				
				//	Find	out	the	number	of	columns,	their	names	
				//	and	display	the	data
				ResultSetMetaData	rsMeta	=	rs.getMetaData();
				int	colCount	=	rsMeta.getColumnCount();
					for	(int	i	=	1;	i	<=	colCount;	i++)		{
						System.out.print(rsMeta.getColumnName(i)	+	"	");	
				}
				System.out.println();
			
				while	(rs.next()){	
							for	(int	i	=	1;	i	<=	colCount;	i++)		{
									System.out.print(rs.getString(i)	+	"	");	
							}
							System.out.print("\n");			//	new	line	character
				}
			}	catch(SQLException	se)	{
						System.out.println	("SQLError:	"	+	se.getMessage	()
											+	"	code:	"	+	se.getErrorCode	());
			}	catch(Exception	e)	{	
						e.printStackTrace();	
			}	
	}
}

The	output	of	the	ShowAnyData	program	is	the	same	as	that	of	EmployeeList	shown	in
Listing	21-1.	But	the	ShowAnyData	program	can	execute	any	SQL	SELECT	statement	as
long	as	you	are	specifying	valid	database	and	table(s)	names.	Note	that	the	code	in
ShowAnyData	first	ensures	that	you	have	passed	the	command-line	argument.	If	you	run
this	program	from	a	command	line,	don’t	forget	to	include	the	SQL	statement	in	double

quotes.	In	Eclipse	you	can	specify	a	command-line	argument	by	selecting	the	Arguments
tab	in	the	Run	Configuration	panel.

Scrollable	Result	Sets	and	Rowset
In	all	the	preceding	examples,	the	code	traversed	the	result	set	using	the	method	next(),
which	moves	the	cursor	only	forward.	Another	option	is	to	create	a	scrollable	result	set	so
the	cursor	can	be	moved	back	and	forth	if	need	be.	There	is	a	two-argument	version	of	the
method	createStatement().	The	first	argument	specifies	the	type	of	scrolling
(TYPE_FORWARD_ONLY,	TYPE_SCROLL_INSENSITIVE,	or
TYPE_SCROLL_SENSITIVE)	and	the	second	makes	the	result	set	updateable	or	read-
only	(CONCUR_READ_ONLY	or	CONCUR_UPDATABLE).	For	example,

Statement	stmt	=	con.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,	ResultSet.CONCUR_READ_ONLY);
ResultSet	rs	=	stmt.executeQuery("SELECT	*	from	Employee");

The	TYPE_FORWARD_ONLY	parameter	allows	only	forward	movement	of	the	cursor.
The	difference	between	TYPE_SCROLL_INSENSITIVE	and
TYPE_SCROLL_SENSITIVE	is	in	whether	scrolling	reflects	changes	that	have	been
made	to	the	result	set.	The	next	example	sets	the	cursor	at	the	end	of	the	result	set	and
moves	the	cursor	backward:

rs.afterLast();
while	(rs.previous()){
	int	empNo	=	rs.getInt("EMPNO");
	String	eName	=	rs.getString("ENAME");
	String	job	=	rs.getString("JOB_TITLE");
	System.out.println(""+	empNo	+	",	"	+	eName	+	",	"	+	job);
}

You	can	also	move	the	cursor	to	a	specific	row	by	using	the	following	self-explanatory
methods:

rs.absolute(25);	//	moves	the	cursor	to	the	25th	row
rs.relative(-4);	//	moves	the	cursor	to	the	21st	row
rs.first();
rs.last();
rs.beforeFirst();

If	the	result	set	is	updatable	(CONCUR_UPDATABLE)	then	you	can	modify	the
underlying	database	table	while	scrolling.	For	example,	the	following	statements	update
the	job	title	of	the	employee	based	on	the	current	cursor’s	position:

rs.updateString("JOB_TITLE","Manager");
rs.updateRow();

Scrollable	result	sets	enable	you	to	traverse	the	result	set	in	both	directions,	but	they	have
a	drawback:	They	hold	the	database	connection,	which	may	be	required	by	another	thread
or	program.	The	package	javax.sql	includes	the	interface	RowSet,	which	is	inherited

from	ResultSet.	RowSet	gets	the	data	from	the	database,	then	disconnects,	but	still	allows
Java	to	work	with	the	data.	The	package	javax.sql.rowset	has	several	concrete	classes	that
implement	RowSet,	such	as	CachedRowSet,	FilteredRowSet,	and	WebRowSet.	The	latter
can	turn	RowSet	into	an	XML	stream	to	be	sent	to	another	tier	in	the	distributed
application.

Transactional	Updates
Transaction	is	a	logical	unit	of	work.	Sometimes	several	database	modifications	have	to	be
processed	as	one	transaction,	and	if	one	of	the	updates	fails,	the	whole	transaction	has	to
be	rolled	back.	These	database	operations	have	to	be	explicitly	committed	(finalized)	in
case	of	success.	If	you	set	the	auto-commit	parameter	on	the	database	connection	to	false,
the	database	transaction	is	not	committed	until	the	code	explicitly	calls	the	method
commit(),	as	in	the	following	example:

try{
		conn.setAutoCommit(false);
		Statement	stmt	=	con.createStatement();
		stmt.addBatch("insert	into	Orders	"	+
														"values(123,	'Buy','IBM',200)");
		stmt.addBatch("insert	into	OrderDetail	"	+
														"values('JSmith',	'Broker131',	'05/20/02')");
		stmt.executeBatch();
		conn.commit();	//	Transaction	succeded
}catch(SQLException	e){
		conn.rollback();	//	Transaction	failed
		e.printStackTrace();
}

In	the	preceding	code	snippet,	two	Insert	statements	have	to	be	executed	as	one
transaction,	and	if	any	of	them	fails,	an	exceptionis	thrown	and	the	method	rollback()
undoes	all	the	changes,	including	those	that	succeeded.

Connection	Pools	and	DataSource
Up	until	now	you’ve	been	running	all	sample	Java	programs	on	your	own	computer.	But
imagine	a	distributed	application	in	which	multiple	clients	make	requests	to	the	same
server,	which	has	to	process	their	SQL	queries.	Because	obtaining	a	connection	to	the
database	is	a	slow	process,	it	would	be	very	inefficient	to	start	every	SQL	request	by
obtaining	a	database	connection	and	disconnecting	after	the	request	is	complete.	Such
applications	should	reuse	the	same	opened	connection	for	multiple	requests.

The	package	javax.sql	includes	the	interface	DataSource,	which	is	an	alternative	to
DriverManager.	Vendors	of	JDBC	drivers	for	servers	implement	this	interface,	and	a
DataSource	is	typically	preconfigured	for	a	certain	number	of	connections	(the	connection
pool).	It	is	published	in	a	directory	using	the	JNDI	interface.	In	such	a	setup,	all	clients’
requests	get	their	database	connections	from	this	DataSource	object,	eliminating	the	need
to	open	and	close	a	new	connection	for	each	request.		The		DataSource	objects
are	typically	used	on	the	server	side	bound	to	JNDI.	But	you	can	create	an	instance	of	a
DataSource	in	any	Java	application.	Chapter	29	provides	an	example	of	working	with
DataSource	objects.

Try	It
In	this	assignment	you	modify	the	class	Portfolio	from	Chapter	21,	which	was	just	printing
some	hard-coded	statements.	Now	you	create	and	populate	the	database	table	Portfolio
and	then	read	and	display	the	data	from	there.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson21.zip.

Hint
Obtaining	a	database	connection	is	a	slow	operation,	and	doing	it	from	inside	the	method
run()	every	time	you	start	a	new	thread	is	not	the	best	solution.	Consider	creating	a
database	connection	up	front	and	passing	it	to	the	thread	before	starting	it.

Step-by-Step
1.	 In	the	database	Lesson21	create	the	table	Portfolio	using	the	following	SQL	statement:

create	table	Portfolio(
id	INTEGER	NOT	NULL,
symbol	VARCHAR(10)	NOT	NULL,
quantity	INTEGER	NOT	NULL,
price	NUMERIC	NOT	NULL,	PRIMARY	KEY	(id)
);

2.	 Populate	the	table	Portfolio	with	three	records,	for	stocks	traded	under	the	symbols
IBM,	AMZN,	and	AAPL	respectively:

insert	into	Portfolio	values	(1,'IBM',500,105.50),
	(2,'AMZN',1000,15.25),(3,'AAPL',2000,272.50);

3.	 Create	a	new	Eclipse	project.

4.	 Create	a	class	called	Portfolio	that	is	similar	to	the	one	shown	in	Listing	17-5	from
Lesson	17:	

public	class	Portfolio	implements	Runnable	{
				public	void	run()	{
							System.out.println("You	have	500	shares	of	IBM	");
					}
}

http://www.wrox.com/go/javaprog24hr2e

5.	 	Modify	the	code	of	Portfolio:		instead	of	just	printing	“You	have	500	shares	of	IBM,”
have	it	connect	to	the	database,	select	all	the	data	from	the	table	Portfolio,	and	print
the	symbol,	quantity,	and	total	value.	Calculate	the	total	value	by	multiplying	price	by
quantity.

6.	 Create	a	testing	class	called	ShowMyPortfolio	that	instantiates	and	starts	the	thread
Portfolio.

7.	 Test	this	program.

TIP			Please	select	the	videos	for	Lesson	21	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	22
Rendering	Tabular	Data	in	the	GUI
This	lesson	shows	you	how	to	display	tabular	data	on	the	graphical	user	interface	(GUI).
Data	grids	and	spreadheet-like	data	are	very	popular	in	the	enterprise	applications.	Most	of
this	lesson	is	dedicated	to	working	with	a	powerful	Swing	component	called	JTable.	This
user	interface	(UI)	component	enables	you	to	present	data	in	a	grid	with	rows	and
columns.	After	learning	the	basics	of	working	with	JTable,	you	see	how	to	display	tabular
data	using	the	JavaFX	TableView	control.	In	the	“Try	It”	section	you	apply	these	new
skills	to	display	the	portfolio	data	that,	as	of	Chapter	21,	is	stored	in	the	database.

In	other	words,	you	build	a	client-server	application,	where	the	Java	GUI	is	a	client	and
the	RDBMS	is	a	server.	Such	architecture	was	pretty	popular	in	the	mid-1990s.	Rich
clients	were	developed	in	Visual	Basic,	PowerBuilder,	Delphi,	Java,	or	C++,	and	they
connected	directly	to	database	servers	such	as	Oracle,	DB2,	Sybase,	Microsoft	SQL
Server,	and	Informix.

In	the	late	’90s,	thin	clients	(plain-looking	HTML-based	web	pages	with	almost	no	code
implementing	business	logic)	became	the	trend.	These	days	applications	with	rich	UIs	are
coming	back,	but	typically	you’ll	be	using	an	application	server	as	a	middleman	between
the	client	and	the	data	storage.	I	describe	such	middlemen	starting	in	Chapter	25,	but	your
UI	skills	need	to	include	the	ability	to	program	data	grids.

JTable	and	the	MVC	Paradigm
The	Swing	class	JTable	is	a	powerful	UI	component	created	for	displaying	tabular	data
like	a	spreadsheet.	The	data	is	represented	as	rows	and	columns;	that’s	why	the	JTable
component	is	often	used	to	display	data	from	relational	databases,	which	store	data
similarly.	JTable	was	designed	according	to	the	MVC	design	pattern	introduced	in	Lesson
9.		The	components	responsible	for	presentation	(or	the	view)	are	separated	from
components	that	store	data	(or	the	model)	for	that	presentation.	

JTable	is	responsible	for	the	visible	portion	of	the	grid	(the	V	part	of	MVC),	but	the	data
has	to	be	stored	in	a	different	Java	class	that	implements	the	TableModel	interface	(the	M
part).	Any	other	UI	component	can	play	the	role	of	the	controller	(the	C	part)	and	initiate
some	actions	that	will	move	the	data	from	model	to	view	or	vice	versa.	For	example,	a
click	on	the	JButton	can	initiate	the	population	of	the	table	model	from	the	database	and
display	the	data	in	JTable.

The	Model
Swing	includes	the	classes	DefaultTableModel	and	AbstractTableModel,	which	implement
the	TableModel	interface	and	have	methods	to	notify	a	JTable	when	the	data	is	changing.

A	programmer	usually	creates	a	model	as	a	subclass	of	AbstractTableModel,	and	this	class
has	to	contain	the	data	in	some	collection,	for	example	ArrayList.	When	JTable	needs	to
be	populated,	it	requests	the	data	from	a	class	that	implements	TableModel,	invoking	such
callback	methods	as	getColumnCount()	and	getValueAt().	When	a	Swing	program	creates
an	instance	of	JTable,	it	has	to	assign	to	it	a	corresponding	table	model	class.	Listing	22-1
shows	how	the	class	MyTableModel	(created	by	you)	is	given	to	the	constructor	of	JTable.

Typically,	the	UI	class	that	creates	JTable	defines	one	or	more	event	listeners	that	are
notified	of	any	changes	in	the	table’s	data.	The	incomplete	class	MyFrame	in	Listing	22-1
implements	the	TableModelListener	interface	that	defines	just	one	method
—tableChanged().	This	method	should	contain	the	code	performing	data	modifications—
for	example,	code	to	save	the	data	in	the	database.

Listing	22-1:	A	window	with	JTable

public	class	MyFrame	extends	JFrame	implements	TableModelListener{
		private	MyTableModel	myTableModel;
		private	JTable	myTable;
		MyFrame	(String	winTitle){
		super(winTitle);
		myTableModel	=	new	MyTableModel();
		myTable	=	new	JTable(myTableModel);
		//Add	the	JTable	to	frame	and	enable	scrolling
		add(new	JScrollPane(myTable));
		//	Register	an	event	listener
		myTableModel.addTableModelListener(this);
}
public	void	tableChanged(TableModelEvent	e)	{
		//	Code	to	process	data	changes	goes	here
}
public	static	void	main(String	args[]){
		MyFrame	myFrame	=	new	MyFrame("My	Test	Window");
		myFrame.pack();
		myFrame.setVisible(true);
}
		class	MyTableModel	extends	AbstractTableModel	{
				//	The	data	for	JTable	should	be	here
		}
}

In	very	simple	cases	you	can	create	a	JTable	without	declaring	a	table	model	class	(JTable

has	a	no-argument	constructor),	but	Java	internally	uses	its	DefaultTableModel	class
anyway.	My	sample	class	MyFrame,	though,	uses	the	data	model	that’s	a	subclass	of	the
AbstractTableModel.

Note	that	the	class	MyTableModel	is	an	inner	class	declared	inside	the	class	MyFrame.
Having	a	model	as	an	inner	class	is	not	a	must,	but	if	the	data	model	is	used	with	only	one
specific	JTable,		it	can	be	created	in	the	inner	class.

The	code	in	Listing	22-1	is	not	complete;	it	doesn’t	include	any	data	yet,	and	the	table
model	must	include	the	mandatory	callbacks	described	in	the	next	section.

Mandatory	Callbacks	of	Table	Models
The		class	that	implements	the	TableModel	interface	and	feeds	data	to	JTable	must	include
at	least	three	callback	methods:	getColumnCount(),	getRowCount(),	and	getValueAt().	To
populate	the	table,	the	Java	run	time	needs	to	know	the	number	of	columns,	number	of
rows,	and	the	value	for	each	cell	(an	intersection	of	the	row	and	a	column).

The	method	getColumnCount()	must	return	an	integer	value—the	number	of	columns	in
this	JTable.	This	method	is	called	once	by	the	Java	run	time	for	a	JTable	instance.	For
example,	if	you	are	planning	to	display	orders,	each	of	which	consists	of	four	fields—
order	ID,	stock	symbol,	quantity,	and	price—just	put	one	line	in	the	method
getColumnCount():

return	4;

The	callback	method	getRowCount()	must	return	an	integer;	it	will	also	be	called	only
once.	The	data	has	to	be	placed	into	an	array	or	a	data	collection	(for	example,	an
ArrayList)	before	it	appears	on	the	screen,	and	the	code	for	this	method	could	look	like
this	assuming	that	myData	is	prepopulated	with	data:

return	myData.size();	//myData	is	an	ArrayList	in	this	sample

The	method	getValueAt(int	row,	int	col)	returns	an	Object	and	is	called	once	for	each	cell
of	JTable.	You	have	to	write	the	code	that	returns	the	value	for	the	requested	row	and
column.

Let’s	say	you	have	a	class	called	Order,	as	shown	in	Listing	22-2,	and	you	want	to	store
instances	of	this	class	in	ArrayList	myData.	

Listing	22-2:	The	Order	class

public	class	Order	{
	private	int	orderID;
	private	String	stockSymbol;
	private	int	quantity;
	private	float	price;
				public	Order(int	id,	String	stockSymbol,	int	quantity,	
																	float	price){
											orderID=id;
											this.stockSymbol=stockSymbol;
											this.quantity=quantity;
											this.price=price;
				}
}

Whenever	the	callback	getValueAt(int	row,	int	col)	is	called	on	the	model,	you	have	to
return	the	cell	value	based	on	the	given	row	and	column.	The	inner	class	MyTableModel
from	Listing	22-3	includes	the	method	getValueAt()	working	with	myData,	which	is	an
ArrayList	of	Order	objects.

Listing	22-3:	The	JFrame	window	with	implemented	table	model

public	class	MyFrame	extends	JFrame	implements	TableModelListener{
	MyTableModel	myTableModel;
	JTable	myTable;
		MyFrame	(String	winTitle){
				super(winTitle);
				myTableModel	=	new	MyTableModel();
				myTable	=	new	JTable(myTableModel);
				//Add	the	JTable	to	frame	and	enable	scrolling
				add(new	JScrollPane(myTable));
			//	Register	an	event	listener
			myTableModel.addTableModelListener(this);
		}
		public	void	tableChanged(TableModelEvent	e)	{
			//	Code	to	process	data	changes	goes	here
	}
public	static	void	main(String	args[]){
	MyFrame	myFrame	=	new	MyFrame("My	Test	Window");
	myFrame.pack();
	myFrame.setVisible(true);
}
//	Inner	class	for	data	model

class	MyTableModel	extends	AbstractTableModel	{
		ArrayList<Order>	myData	=	new	ArrayList<>();
		MyTableModel(){
						myData.add(new	Order(1,"IBM",	100,	135.5f));
						myData.add(new	Order(2,"AAPL",	300,	290.12f));
						myData.add(new	Order(3,"MOT",	2000,	8.32f));
						myData.add(new	Order(4,"ORCL",	500,	27.8f));
		}
		public	int	getColumnCount()	{
				return	4;
		}
		public	int	getRowCount()	{
				return	myData.size();
		}
		public	Object	getValueAt(int	row,	int	col)	{
						switch	(col)	{
								case	0:			//	col	1
										return	myData.get(row).orderID;
								case	1:			//	col	2
														return	myData.get(row).stockSymbol;
								case	2:			//	col	3
														return	myData.get(row).quantity;
								case	3:			//	col	4
														return	myData.get(row).price;
								default:
										return	"";
						}
		}
	}
}

Note	the	use	of	generics	in	the	declaration	of	the	myData	collection.	Another	Java	feature
not	to	be	missed	here	is	autoboxing;	the	primitive	Order	fields	int	and	float	are
automatically	converted	into	the	corresponding	wrapper	objects	Integer	and	Float.

Running	the	program	from	Listing	22-3		displays	the	window	shown	in	Figure	22-1	(I	ran
it	on	Mac	OS).	

Figure	22-1:	Running	MyFrame	with	no	column	titles

Optional	Callbacks	of	Table	Models

The	JTable	shown	in	Figure	22-1	doesn’t	show	the	proper	titles	of	the	columns;	the	auto-
generated	A,	B,	C,	and	D	don’t	count.	You	can	fix	this	easily	by	overriding	the
getColumnName()	method	in	the	table	model	class.	This	callback,	if	present,	is	called
(once	for	each	column)	to	render	the	column	titles.	Add	the	following	code	to	the	class
MyTableModel	and	the	window	looks	as	it	does	in	Figure	22-2.

	String[]	orderColNames	=	
																				{	"Order	ID",	"Symbol",	"Quantity",	"Price"};
public	String	getColumnName(int	col)	{
					return	orderColNames[col];
	}

Figure	22-2:	Running	MyFrame	with	column	titles

If	you	want	to	make	some	of	the	columns	or	cells	editable,	just	override	the
isCellEditable()	method	and	return	true	from	this	callback	for	the	editable	columns.	Here’s
how	to	make	the	third	column	(the	column	numbers	are	zero	based)	of	your	JTable
editable:

public	boolean	isCellEditable(int	row,	int	col)	{
		if	(col	==2){
						return	true;
		}	else	{
				return	false;
		}
}

If	your	table	has	editable	columns	you	need	to	override	the	method	setValueAt(Object
value,	int	row,	int	col)	and	include	the	code	that	copies	the	data	from	the	UI	component
—JTable—to	the	appropriate	field	in	its	model	objects.	This	method	is	called
automatically	when	the	user	changes	the	value	in	a	table	cell	and	moves	the	cursor	out	of
that	cell	by	pressing	the	Enter	or	Tab	key	or	by	clicking	a	different	cell.

The	following	method,	setValueAt(),	takes	the	modified	order	quantity	and	sets	the	new
value	for	the	quantity	field	in	the	appropriate	Order	in	the	model.	By	default,	all	the	data
shown	in	JTable’s	cells	have	the	String	data	type,	and	it’s	your	responsibility	to	do	proper
casting.

public	void	setValueAt(Object	value,	int	row,	int	col){
		if	(col==	2){
			myData.get(row).quantity=(Integer.valueOf(value.toString()));
		}

		//Notify	listeners	about	the	data	change
			TableModelEvent	event	=	new	TableModelEvent(this,	row,	row,	col);
			fireTableChanged(event);
}

The	fireTableChanged()	method	has	been	placed	in	the	setValueAt()	method	to	notify	any
listener(s)	that	want	to	know	about	the	data	changes.	For	example,	if	the	quantity	on	any
order	has	been	changed	and	has	gone	over	a	certain	threshold,	the	application	may	need	to
immediately	perform	some	actions	to	report	this	to	some	authority.

Review	the	code	in	Listing	22-3.	The	class	MyFrame	implements	TableModelListener,	so
the	method	tableChanged()	is	invoked	as	a	result	of	the	fireTableChanged()	method	call.
Add	the	following	line	to	the	tableChanged()	method:

System.out.println("Someone	modified	the	data	in	JTable!");

Now	run	the	program	and	modify	the	quantity	in	any	row	of	JTable.	The	message	is
printed	on	the	system	console.	But	JVM	fires	an	event	with	a	payload—TableModelEvent
—that	carries	useful	information	about	what	exactly	has	changed	in	the	table	model.

Implementing	TableModelListener	with	Lambda	Expression
Instead	of	writing	that	the	class	implements	TableModelListener	and	implementing
the	method	tableChanged(),	you	can	just	use	a	lambda	expression:

myTableModel.addTableModelListener(e	->	
System.out.println("Someone	changed	the	data	in	JTable!"))

TableModelEvent	has	several	constructors;	I’ve	chosen	the	one	that	takes	modified	rows
and	columns	as	arguments.	For	example,	if	you	change	the	quantity	in	the	last	row,	as
shown	in	Figure	22-2,	the	method	tableChanged()	receives	an	instance	of
TableModelEvent	that	encapsulates	the	reference	to	the	entire	model	encapsulating	the
following	values	describing	the	change:

column=2				//		the	third	column
firstRow=3		//		starting	from	the	row	#4
lastRow=3			//		ending	with	the	row	#4

Based	on	this	information	you	can	implement	any	further	processing	required	by	the
functional	specification	of	your	application.	If	you	need	to	apply	the	UI	changes	to	the
database,	the	method	tableChanged()	can	be	the	right	place	to	use	the	JDBC	API	or	other
communication	with	the	server-side	code	to	persist	the	changes.

There	are	several	functions	with	names	that	start	with	the	word	fire.	For	example,	to	apply
each	cell’s	change	to	the	database,	call	the	method	fireTableCellUpdated().	To	apply	all
changes	at	once,	call	the	method	fireTableDataChanged().	Refer	to	the	documentation	of
the	class	AbstractTableModel	to	decide	which	method	fits	your	needs.

Introduction	to	Renderers
The	process	of	transferring	data	from	the	table	model	to	the	JTable	view	is		performed	by
cell	renderers.	Accordingly,	when	the	user	is	modifying	the	content	of	the	cell,	the	cell
editor	is	cengaged.	By	default,	the	content	of	each	cell	in	a	JTable	is	rendered	using	one	of
three	default	renderers,	based	on	the	type	of	data	in	the	column.	Boolean	values	are
rendered	as	checkboxes,	javax.swing.Icon	is	rendered	as	an	image,	and	any	other	object	is
rendered	as	a	string	of	characters.

To	change	the	default	rendering	(for	example,	if	you	don’t	want	to	see	checkboxes	for
Boolean	values)	you	can	either	override	the	callback	getColumnClass()	or	define	a	custom
cell	renderer.	The	latter	option	gives	you	a	lot	more	flexibility.	For	example,	you	may
need	to	display	a	photo	of	a	person	and	his	or	her	name	in	each	cell.	Or	you	may	need	to
show	cell	values	that	meet	certain	criteria	in	a	different	color.	To	do	something	like	one	of
these,	you	need	to	create	a	custom	renderer.

The	UI	portion	of	each	column	is	represented	by	the	class	TableColumn,	which	has	a
property,	cellRenderer,	of	type	TableCellRenderer,	which	defines	the	only	method:
getTableCellRendererComponent().	This	method	prepares	the	content	for	each	column’s
cells	of	JTable	and	returns	an	instance	of	the	Component	class	to	be	used	for	the	cell
rendering.	This	process	uses	DefaultTableCellRenderer	unless	you	create	a	custom
renderer.	Custom	renderers	give	you	full	control	over	how	the	cell	is	displayed.

The	class	DefaultTableCellRenderer	extends	JLabel	and	is	Swing’s	implementation	of	the
TableCellRenderer	interface.	Let’s	look	at	an	example	that	formats	the	text	in	the	Price
column	shown	in	Figure	22-2	to	be	right-justified	and	to	display	in	red	all	prices	greater
than	$100.

First	the	code	fragment	from	Listing	22-4	gets	a	reference	to	the	fourth	column	of	JTable
(remember,	column	numbering	is	zero-based).	Then	it	needs	to	call	the	method
setCellRenderer()	on	this	column,	provided	that	the	custom	renderer	class	was	defined	and
instantiated.	But	you	can	define,	instantiate,	and	set	the	custom	renderer	in	one	shot	by
using	the	mechanism	of	anonymous	inner	classes.

The	anonymous	inner	class	in	Listing	22-4	extends	the	class	DefaultTableCellRenderer
and	overrides	the	callback	method	getTableCellRendererComponent().	The	latter	sets	the
cell	value	to	be	right-justified	and	to	be	red	if	it	is	greater	than	100.	At	the	end,	the	method
getTableCellRendererComponent()	returns	a	JLabel	object	to	be	rendered	in	the	current
cell	of	JTable.

Listing	22-4:	Custom	rendering	of	the	Price	value

//Assign	custom	cell	renderer	to	the	Price	column
//	Get	the	reference	to	the	fourth	column	-	Price
TableColumn	column	=	myTable.getColumnModel().getColumn(3);
//	Create	a	new	cell	renderer	as	an	anonymous	inner
//	class	and	assign	it	to	the	column	price
column.setCellRenderer(
						new	DefaultTableCellRenderer(){
		public	Component	getTableCellRendererComponent(
											JTable	table,	Object	value,	boolean	isSelected,
																					boolean	hasFocus,	int	row,	int	col)	{
							JLabel	label	=	(JLabel)	super.getTableCellRendererComponent(
													table,	value,	isSelected,	hasFocus,	row,	col);
					//	right-align	the	price	value
					label.setHorizontalAlignment(JLabel.RIGHT);
					//	display	stocks	that	cost	more	than	$100	in	red
					if	(((Float)	value)>100){
								label.setForeground(Color.RED);
					}	else{
											label.setForeground(Color.BLACK);
					}
					return	label;
				}	//	end	of	getTableCellRendererComponent
			}		//	end	of	new	DefaultTableCellRenderer
);				//	end	of	setCellRenderer

Add	this	code	fragment	at	the	end	of	the	constructor	in	the	class	MyFrame	from	Listing
22-3	and	run	the	application.	The	screen	shows	the	text	in	the	Price	column	right-justified
and	the	first	two	prices	printed	in	red	(see	Figure	22-3).

Figure	22-3:	Running	MyFrame	with	custom	price	renderer

Summary
This	lesson	was	a	high-level	overview	of	the	JTable	component,	which	is	probably	the
most	advanced	UI	component	that	deserves	serious	study	if	you	are	planning	to	develop
Java	Swing	applications.	You	can	continue	studying	all	the	features	of	JTable	by	following
the	section	“How	to	Use	Tables”	in	the	online	Oracle	tutorial.

http://docs.oracle.com/javase/tutorial/uiswing/components/table.html

Try	It
Create	a	Portfolio	application	that	displays	your	portfolio	data	that’s	stored	in	the	database
table.	You	need	to	use	the	database	and	the	Portfolio	table	you	created	in	the	“Try	It”
section	of	Chapter	21.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson22.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project.	Copy	there	the	classes	MyFrame	and	Order	from	the

accompanying	book	code	samples	for	Lesson	22.	Compile	and	run	the	program	to
ensure	that	it	displays	hard-coded	portfolio	data,	as	shown	in	Figure	22-2.

2.	 Replace	the	hard-coded	table	model	ArrayCollection	myData	with	the	JDBC	code	to
connect	to	the	database	Lesson21	created	in	the	Try	It	section	of	Lesson	21.	Use	the
records	from	the	database	table	Portfolio	to	populate	orders.
Don’t	forget	to	add	the	file	derbyclient.jar	to	the	Java	Build	Path	of	your	project.

3.	 Run	the	appropriate	SQL	Select	statement,	and	populate	the	myData	collection	with
data	received	from	the	database.

4.	 Run		the	MyFrame	program.	The	data	should	be	displayed	in	the	GUI.

TIP			Please	select	the	videos	for	Lesson	22	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	23
Annotations	and	Reflection
In	general,	metadata	is	data	about	your	data.	In	the	context	of	DBMSes,	metadata	can	be
information	describing	the	way	you	store	data,	such	as	the	table	and	field	names	or
primary	keys.	Program	code	metadata	is	data	about	your	code.	Any	Java	class	has	its
metadata	embedded,	and	you	can	write	a	program	that	“asks”	another	class,	“What
methods	do	you	have?”	or	similar	questions	about	class	fields,	constructors,	and	ancestors.

You	can	use	annotations	to	include	metadata	about	your	code.	There	are	a	number	of
predefined	annotations	(for	example,	@Override	and	@SuppressWarning).	The	Java
annotation	model	enables	you	to	add	custom	metadata	anywhere	in	your	code.	You	can
apply	custom	annotations	to	a	class,	a	method,	or	a	variable—just	specify
allowed	targets	when	the	annotation	is	being	defined.	Java	annotations	start	with
the	@	sign	and	may	optionally	have	one	or	more	parameters.	Some	of	the	annotations	are
built	into	Java	SE	and	are	used	by	the	javac	compiler,	but	most	of	them	are	consumed	by
some	kind	of	processing	program	or	tool.

The	subject	of	Java	reflection	doesn’t	require	the	use	of	annotations;	reflection	is	used
widely	in	various	areas	of	Java	development.	But	because	this	subject	has	to	be	covered
before	you	can	proceed	with	annotation	processing,	I	decided	to	cover	both	topics	in	the
same	lesson.

Javadoc	Annotations
If	you’ve	ever	looked	at	the	source	code	of	any	Java	class,	you	can	easily	identify
Javadoc-style	comments	for	classes,	interfaces,	variables,	and	methods.	These	comments
may	include	specially	formatted	words	called	tags.	These	tags	are	special	annotations.
They	also	start	with	the	@	sign	and	help	the	Javadoc	tool	to	generate	the	online
documentation	with	the	standardized	look	and	feel.	

In	Eclipse	you	can	select	any	Java	class	and	press	F3	to	open	the	source	code	of	this	class.
Because	the	previous	lesson	was	about	working	with	JTable,	open	the	source	code	of	this
class.	In	the	top	part	of	the	code	you	find	a	description	similar	to	the	one	that	follows	(I
removed	a	large	portion	of	the	text	for	brevity):

/**
	*	The	<code>JTable</code>	is	used	to	display	and	edit	regular	
	*	two-dimensional	tables	of	cells.
	*	To	enable	sorting	and	filtering	of	rows,	use	a
	*	{@code	RowSorter}.
	*		*	As	for	all	<code>JComponent</code>	classes,	you	can	use
	*	{@link	InputMap}	and	{@link	ActionMap}	to	associate	an
	*	{@link	Action}	object	with	a	{@link	KeyStroke}	and	execute	the
	*	action	under	specified	conditions.
	*	<p>
	*	Warning:	Swing	is	not	thread	safe.	For	more
	*	information	see	<a
	*	href="package-summary.html#threading">Swing's	Threading
	*	Policy.
	*	<p>
	*
	*	@version	1.292	05/30/08
	*	@author	Philip	Milne
	*	@author	Shannon	Hickey	(printing	support)
	*	@see	javax.swing.table.DefaultTableModel
	*	@see	javax.swing.table.TableRowSorter
	*/

The	special	words	marked	with	an	@	sign	are	Javadoc	metadata	describing	links,	version,
author,	and	related	classes	to	see	in	Java	documentation.	If	you	run	the	source	code	of	this
class	through	the	Javadoc	utility,	the	utility	generates	HTML	output	that	can	be	opened	by
any	web	browser.	It’s	a	good	practice	to	include	Javadoc	comments	in	your	classes.

Javadoc	acts	as	a	processing	tool	that	extracts	from	the	source	code	all	comment	blocks
that	start	with	/**	and	end	with	*/.	It	then	formats	this	text	using	HTML	tags	and
embedded	annotations	to	generate	program	documentation.	The	preceding	text	is	an
example	of	the	use	of	specific	tags	that	are	predefined	and	understood	by	Javadoc.	This
was	an	example	of	metadata	that	are	understood	by	just	one	utility:	Javadoc.

But	Java	allows	you	to	declare	your	own	custom	annotations	and	define	your	own

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

processing	rules	that	route	the	execution	of	your	program	and	produce	configuration	files,
additional	code,	deployment	descriptors,	and	more.	No	matter	what	your	goals,	when	you
create	annotations	you	also	need	to	create	or	use	an	annotation	processor	to	get	the
expected	output.

Starting	from	Lesson	26	you	learn	about	annotations	defined	by	the	creators	of	Java	EE
technologies.	In	this	lesson	you	become	familiar	with	Java	SE	annotations,	which	you	will
eventually	use	in	your	projects.

Java	Annotations	Basics
There	are	about	a	dozen	predefined	annotations	already	included	with	Java	SE.	You	can
find	them,	along	with	their	supporting	classes,	in	the	packages	java.lang,
java.lang.annotation,	and	javax.annotation.	You	can	get	familiar	with	the	content	of	these
packages	in	the	latest	online	documentation	on	the	Java	SE	API,	which	at	the	time	of	this
writing	is	located	at	http://goo.gl/sVZ8bI.

Some	of	these	annotations	are	used	by	the	compiler	(@Override,	@SuppressWarning,
@Deprecated,	@Target,	@Retention,	@Documented,	and	@Inherited);	some	are	used	by
the	Java	SE	run	time	or	third-party	run	times	and	indicate	methods	that	have	to	be	invoked
in	a	certain	order	(@PostConstruct,	@PreDestroy),	or	mark	code	that	was	generated	by
third-party	tools	(@Generated).	I’m	not	going	to	repeat	a	detailed	description	of	how	to
use	each	of	these	annotations,	but	I	am	going	to	give	you	selected	examples	to	help	you
get	started	with	annotations.

@Override
In	the	“Try	It”	section	of	Chapter	3	you	overrode	the	method	public	double	calcTax()	in
the	class	NJTax.	The	method	signature	of	calcTax()	was	the	same	in	both	NJTax	and	its
superclass	Tax.	Now	deliberately	add	an	argument	to	calcTax()	in	NJTax,	as	if	you	had
done	so	by	accident.	The	code	compiles	with	no	errors.	But	you	could	have	done	this	by
mistake,	and	instead	of	overriding	the	method	as	planned,	you’ve	overloaded	it.	This
doesn’t	happen	if	you	use	the	annotation	@Override	whenever	you	are	planning	to
override	a	method:

@Override	public	double	calcTax(String	something)

Now	the	compiler	complains	with	the	following	error:

The	method	calcTax(String)	of	type	NJTax	must	override	or	implement	a	supertype	
method

The	annotation	@Override	signals	the	compiler	that	overriding	is	expected,	and	that	it	has
to	fail	if	an	override	does	not	occur.	This	annotation	indicates	your	intentions	and	helps
other	people	who	may	be	reading	your	code	in	the	future.	

@SuppressWarning

The	compiler	can	generate	warning	messages	that	don’t	stop	your	program	from	running
but	that	do	indicate	potential	problems.	In	some	cases,	though,	you	want	to	suppress	some
or	all	warnings	so	the	output	of	the	project	build	looks	clean.	For	example,–Xlint:none
disables	all	warnings,	whereas		-Xlint:fallthrough	instructs	the	compiler	to	warn	you	if	you
forget	to	add	the	break	statement	to	the	switch	statement	(see	Chapter	5).	In	Eclipse	IDE,
to	set	the	compiler’s	options	you	right-click	the	project	and	select	Properties	→	Java
Compiler	→	Errors/Warnings	→	Potential	Programming	Problems.

But	what	if	you	want	to	omit	the	break	keyword	in	the	switch	statement	on	purpose?	You
still	want	to	be	warned	in	all	other	cases	about	a	missing	break,	but	not	in	this	particular

http://goo.gl/sVZ8bI

method.	This	is	where	the	@SupressWarnings	annotation	becomes	quite	handy,	and
Listing	23-1	illustrates	it.	To	see	this	example	at	work,	turn	on	the	compiler’s	option	that
warns	you	about	the	switch	case	fall-throughs.

Listing	23-1:	Custom	rendering	of	the	Price	value

package	com.practicaljava.lesson24;
public	class	SuppressWarningDemo	{
						@SuppressWarnings("fallthrough")
						public	static	void	main(String[]	args)	{
								int	salaryBand=3;
								int	bonus;
							//	Retrieve	the	salary	band	of	the	person	from	some	
							//	data	source	here
												switch(salaryBand){
													case	1:
																		bonus=1000;
																		System.out.println("Giving	bonus	"	+	bonus);
																		break;
													case	2:
																		bonus=2000;
																		System.out.println("Giving	bonus	"	+	bonus);
																		break;
													case	3:
																		bonus=6000;
																		System.out.println("Giving	bonus	"	+	bonus);
													case	4:
																		bonus=10000;
																		System.out.println("Giving	bonus	"	+	bonus);
																		break;
													default:
																		//	wrong	salary	band
																		System.out.println("Invalid	salary	band");
												}
						}
}

Note	that	the	break	keyword	is	missing	in	the	case	3	section.	In	this	code	it’s	done	on
purpose:	All	employees	in	salaryBand	3	are	entitled	to	two	bonuses—$6,000	in	addition	to
$10,000.	The	compiler’s	annotation	@SuppressWarnings(“fallthrough”)	suppresses
compiler	warnings	only	for	this	method.	In	all	other	classes	or	methods	that	may	have
switch	statements,	the	warning	is	generated.

@Deprecated

If	you	are	developing	classes	that	are	going	to	be	used	by	someone	else,	mark	as
@Deprecated	any	classes	or	methods	that	may	be	removed	in	future	versions	of	your
code.	Other	developers	will	still	be	able	to	use	this	code,	but	they’ll	be	warned	that
switching	to	newer	versions	is	highly	recommended.

@Inherited
This	annotation	simply	means	that	the	annotation	has	to	be	inherited	by	descendants	of	the
class	in	which	it	is	used.	The	next	section	includes	an	example	of	its	use.

@FunctionalInterface
An	informative	annotation	type	used	to	indicate	that	an	interface	type	declaration	is
intended	to	be	a	functional	interface.	If	you’ll	ever	be	defining	interfaces	with	a	single
abstract	method,	you	may	optionally	mark	such	an	interface	with
@FunctionalInterface	just	to	hint	that	this	interface	can	be	implemented	as	a	lambda
expression.	

@Documented
If	you	want	an	annotation	to	be	included	in	the	Javadoc	utility,	mark	it	as	@Documented.
The	next	section	includes	an	example	of	this	annotation.	

Custom	Annotations
Creating	your	own	annotations	is	more	interesting	than	using	core	Java	or	third-party
annotations.	First	of	all,	you	have	to	decide	what	you	need	an	annotation	for	and	what
properties	it	should	have.	Then	you	need	to	specify	the	allowed	targets	for	this	annotation
(for	example,	class,	method,	or	variable).	Finally,	you	have	to	define	your	retention	policy:
how	long	and	where	this	annotation	will	live.	Let’s	go	through	an	example	to	illustrate	all
these	steps.

Suppose	you	need	to	create	an	annotation	that	allows	the	user	to	mark	class	methods	with
a	SQL	statement	to	be	executed	during	the	run	time.	These	classes	are	loaded	dynamically.
The	goal	is	to	declare	your	own	annotation	to	be	used	by	other	Java	classes	and	to	write
the	annotation	processor	that	reads	these	Java	classes,	identifies	and	parses	annotations
and	the	values	of	their	parameters,	if	any,	and	does	whatever	is	required	accordingly.
Usually	creators	of	object-relational	mapping	(ORM)	frameworks	of	code	generators	need
to	implement	such	tasks.	

Declaring	annotations	is	very	similar	to	declaring	interfaces,	but	don’t	forget	to	add	the	@
sign	at	the	beginning.	I’m	naming	my	annotation	MyJDBCExecutor:

public	@interface	MyJDBCExecutor{
}

If	metadata	is	data	about	data,	then	meta-annotations	are	annotations	about	annotations.
This	is	not	as	confusing	as	it	sounds.	To	specify	where	you	can	use	this	newborn
annotation,	define	the	meta-annotation	@Target.	The	enumeration	ElementType	defines
possible	target	values:	METHOD,	TYPE,	CONSTRUCTOR,	FIELD,	PARAMETER,
PACKAGE,	LOCAL_VARIABLE,	TYPE_PARAMETER,	TYPE_USE,	and
ANNOTATION_TYPE.	If	you	don’t	use	@Target,	the	annotation	can	be	used	anywhere.
For	example,	this	is	how	you	can	allow	use	of	the	annotation	only	with	methods	and
constructors:

import	java.lang.annotation.*;
@Inherited
@Documented
@Target({	ElementType.METHOD,	ElementType.CONSTRUCTOR	})
@Retention(RetentionPolicy.SOURCE)
public	@interface	MyJDBCExecutor	{
}

Starting	from	Java	8	you	can	create	custom	annotations	that	can	be	used	anywhere	where
you	can	declare	a	type,	for	example:

@MyAnnotation	String	employeePhone;

The	retention	policy	in	the	preceding	code	snippet	is	set	to	SOURCE,	which	means	that
this	annotation	will	be	used	for	processing	only	during	the	compilation	of	your	program.
The	other	two	allowed	values	for	retention	policy	are	RUNTIME	and	CLASS.

Annotations	with	the	CLASS	retention	policy	stay	in	the	compiled	class,	but	are	not
loaded	during	run	time.	The	CLASS	retention	policy	is	used	by	default	if	a	retention
policy	is	not	explicitly	specified.

Annotations	with	the	RUNTIME	retention	policy	have	to	be	processed	by	a	custom
processing	tool	(someone	has	to	write	it)	when	the	compiled	code	is	running.

Annotations	may	have	parameters.	Say	you	want	to	add	a	single	parameter	that	will	allow
you	to	specify	an	SQL	statement	to	be	processed.	Your	annotation		MyJDBCExecutor	has
to	be	declared	as	follows:

@Target({	ElementType.METHOD,	ElementType.CONSTRUCTOR	})
@Retention(RetentionPolicy.SOURCE)
public	@interface	MyJDBCExecutor	{
			String	value();
}

A	sample	Java	class,	HRBrowser,	may	use	this	annotation	like	this:

class	HRBrowser{
		@MyJDBCExecutor	(value="Select	*	from	Employee")
		public	List	getEmployees(){
					//	add	calls	to	some	JDBC	executing	engine	here
		}
}

If	the	annotation	has	only	one	parameter	named	value,	the	“value=”	part	in	the	preceding
code	snippet	is	not	required.	But	I’d	like	this	annotation	to	have	three	parameters:	SQL	to
execute,	transactional	support,	and	a	notification	flag	to	inform	other	users	of	the
application	about	any	database	modifications.	Add	more	parameters	to	your	annotation:

@Target({	ElementType.METHOD})
@Retention(RetentionPolicy.SOURCE)
public	@interface	MyJDBCExecutor	{
									String	sqlStatement();
									boolean	transactionRequired()	default	false;
									boolean	notifyOnUpdates()	default	false;
}

You’ve	replaced	the	parameter	value	with	a	more	meaningful	sqlStatement,	and	added	two
more:	transactionRequired	and	notifyOnUpdates.	The	latter	has	two	default	values.	If	a
Java	class	doesn’t	need	to	support	transactions	and	notify	other	applications	about	updates,
why	force	software	developers	to	provide	values	for	these	parameters?

If	you	don’t	specify	default	values	then	the	Java	compiler	generates	compilation	errors	if
the	values	for	transactionRequired	and	notifyOnUpdates	are	missing	in	classes	that	use
@MyJDBCExecutor.	The	following	code	is	an	example	of	a	class,	HRBrowser,	with	the
method	getEmployees()	that’s	annotated	with	@MyJDBCExecutor	having	only
a	sqlStatement	parameter;	no	other	actions	are	needed	here:

class	HRBrowser{
		@MyJDBCExecutor	(sqlStatement="Select	*	from	Employee")
		public	List<Employee>	getEmployees(){
						//	The	code	to	get	the	the	data	from	DBMS	goes	here,
						//	result	set	goes	in	ArrayList	myEmployeeList,
						//	which	is	returned	to	the	caller	of	getEmployees()
						//	...
						return	myEmployeeList;
		}
}

The	code	sample	in	Listing	23-2	adds	the	method	updateData()	and	uses	all	three
annotation	parameters.

Listing	23-2:	Using	the	annotation	MyJDBCExecutor

class	HRBrowser{
	@MyJDBCExecutor	(sqlStatement="Select	*	from	Employee")
	public	List<Employee>	getEmployees(){
								//	Generate	the	code	to	get	the	the	data	from	DBMS,
								//	place	them	in	ArrayList	and	return	them	to	the
								//	caller	of	my	getEmployees
											...
															return	myEmployeeList;
	}
	@MyJDBCExecutor	(sqlStatement="Update	Employee	set	bonus=1000",
																		transactionRequired=true,
																		notifyOnUpdates=true)
	public	void	updateData(){
			//	JDBC	code	to	perform	transactional	updates	and
			//	notifications	goes	here
	}
}

Annotations	and	Code	Generation
I	was	involved	in	the	development	of	an	open-source	code	generator	called	Clear
Data	Builder	(CDB)	.	The	CDB	allows	the	user	to	write	a	simple	Java	class	that	has
an	abstract	method	annotated	with	an	SQL	statement	and	several	other	parameters,
and	within	seconds	to	generate	complete	code	for	the	functional	application	that	has
JavaScript	on	the	client	side	talking	to	Java	at	the	server,	which	is	accessing	data
stored	in	any	relational	DBMS	via	JDBC.	In	this	project	we	used	only	the	annotations
with	the	SOURCE	retention	policy,	and,	before	compiling,	classes	would	generate
additional	code	according	to	specified	annotations.

If	CDB	would	be	processing	the	annotation	@MyJDBCExecutor,	it	would	engage
additional	tools	and	generate	and	compile	all	JDBC	code	for	the	methods
getEmployees()	and	updateData()	automatically.

For	the	annotations	with	the	RUNTIME	retention	policy	you	should	know	how	to	write	an
annotation	processor,	however,	as	it	has	to	“extract”	the	values	from	the	annotations
during	run	time,	and,	based	on	those	values,	engage	the	appropriate	code.	But	there	is	one
Java	feature,	reflection,	that	you	must	understand	before	you	can	write	your	own
annotation-processing	class.

Reflection
Reflection	enables	you	to	find	out	about	the	internals	of	a	Java	class	(its	methods,
constructors,	and	fields)	during	the	run	time,	and	to	invoke	the	discovered	methods	or
access	public	member	variables.	A	special	class	called	Class	can	load	the	class	in	memory,
and	then	you	can	explore	the	content	of	the	class	by	using	classes	from	the	package
java.lang.reflect.	Consider	the	classes	Person	and	Employee	in	the	following	code.

Listing	23-3:	Class	Employee	extends	Person

abstract	public	class	Person	{
		abstract	public	void	raiseSalary();
}
public	class	Employee	extends	Person{
	public	void	raiseSalary()	{
			System.out.println("Raising	salary	for	Employee…");
		}
}

The	ReflectionSample	class	in	Listing	23-4	loads	the	class	Employee,	prints	its	method
signatures,	and	finds	its	superclass	and	methods.	The	process	of	querying	an	object	about
its	content	during	run	time	is	called	introspection.

Listing	23-4:	Introspecting	Employee

import	java.lang.reflect.*;
public	class	ReflectionSample	{
		public	static	void	main(String	args[])	{
					try	{
							Class	c	=	Class.forName("Employee");
							Method	methods[]	=	c.getDeclaredMethods();
							System.out.println("The	Employee	methods:");
							for	(int	i	=	0;	i	<	methods.length;	i++){
												System.out.println("***	Method	Signature:"	+
																																				methods[i].toString());
							}
							Class	superClass	=	c.getSuperclass();
							System.out.println("The	name	of	the	superclass	is	"
																																			+	superClass.getName());
							Method	superMethods[]	=	superClass.getDeclaredMethods();
							System.out.println("The	superclass	has:");
							for	(int	i	=	0;	i	<	superMethods.length;	i++){
												System.out.println("***	Method	Signature:"	+
																															superMethods[i].toString());
												System.out.println("						Return	type:	"	+
																superMethods[i].getReturnType().getName());
							}
					}	catch	(Exception	e)	{
											e.printStackTrace();
					}
		}
}

Here’s	the	output	of	the	program	ReflectionSample:

The	Employee	methods:
***	Method	Signature:public	void	Employee.raiseSalary()
The	name	of	the	superclass	is	Person
The	superclass	has:
***	Method	Signature:public	abstract	void	Person.raiseSalary()
						Return	type:	void

Some	other	useful	methods	of	the	class	Class	are	getInterfaces(),	getConstructors(),
getFields(),	and	isAnnotationPresent().	The	following	code	snippet	shows	how	to	get	the
names,	types,	and	values	of	the	public	member	variables	of	the	loaded	class:

Class	c	=	Class.forName("Employee");
Field[]	fields	=	c.getFields();

for	(int	i	=	0;	i	<	fields.length;	i++)	{
			String	name	=	fields[i].getName();
			String	type	=	fields[i].getType().getName();
			System.out.println("Creating	an	instance	of	Employee");
			Object	obj	=	c.newInstance();
			Object	value	=	fields[i].get(obj);
			System.out.println("Field	Name:	"	+	name	+	",	Type:	"
																	+	type	+	"	Value:	"	+	value.toString());
}

The	process	of	reflection	uses	introspection	to	find	out	during	run	time	what	the	methods
(or	properties)	are,	but	it	also	can	call	these	methods	(or	modify	these	properties).	The
method	invoke()	lets	you	call	methods	that	were	discovered	during	run	time:

Class	c=	Class.forName("Employee");
Method	raiseSalary	=	c.getMethod("raiseSalary",	null);
raiseSalary.invoke(c.newInstance(),null);

Note	that	the	method	forName()	loads	the	class	and	the	newInstance()	creates	an	instance
of	Employee.	The	first	argument	of	the	method	invoke()	represents	an	instance	of	the
object	Employee,	and	null	means	that	this	method	doesn’t	have	arguments.	With
reflection,	the	arguments	are	supplied	as	an	array	of	objects.	You	can	find	out	what	the
method	arguments	are	by	calling	the	method	Method.getParameterTypes(),	or	create	and
populate	them	on	your	own.	Add	the	following	method	to	the	class	Employee:

public	void	changeAddress(String	newAddress)	{
				System.out.println("The	new	address	is	"+	newAddress);
}

Note	the	public	qualifier:	It’s	needed	for	proper	introspection.	Otherwise	the
NoSuchMethodException	is	thrown	by	the	following	code	snippet.	The	ReflectionSample
class	can	invoke	changeAddress()	as	follows:

Class	c=	Class.forName("Employee");
Class	parameterTypes[]=	new	Class[]	{String.class};
Method	myMethod	=	c.getMethod("changeAddress",	parameterTypes);
Object	arguments[]	=	new	Object[1];
arguments[0]	=	"250	Broadway";
myMethod.invoke(c.newInstance(),arguments);

Reflection	helps	in	building	dynamic	component-based	applications	that	can	load	different
classes	based	on	certain	business	logic	and	invoke	this	logic	during	run	time.	Many	third-
party	Java	frameworks	read	configuration	files	and	then	instantiate	and	use	required
objects.

Run-Time	Annotation	Processing
The	author	of	a	custom	run-time	annotation	usually	gives	it	to	other	developers	along	with
the	processing	tool.	Developers	add	the	annotation	to	their	classes	and	compile	them,	and
the	processing	tool	consumes	these	classes	during	run	time.	To	illustrate	the	concept	I
reuse	the	code	example	from	Listing	23-2,	but	this	time	imagine	that	@MyJDBCExecutor
becomes	the	annotation	with	the	RUNTIME	retention	policy	and	that	there	is	no	need	to
generate	additional	source	code	for	the	compilation	time.	Suppose	this	annotation	is	being
used	in	HRBrowser,	and	another	class	has	to	analyze	the	annotation	parameters	and	route
the	execution	accordingly.

Now	I’ll	write	the	annotation	processor	class	called	MyJDBCAnnotationProcessor,	and
the	class	HRBrowser	in	Listing	23-2	can	serve	as	a	command-line	argument	to	that
processor:

c:/>java	MyJDBCAnnotationProcessor	HRBrowser

The	class	MyJDBCAnnotationProcessor	has	to	load	the	class	HRBrowser,	introspect	its
content,	find	the	annotations	and	their	values,	and	process	them	accordingly.	I’ll	show	you
how	to	write	such	a	processor,	or	rather	its	annotation-discovery	part.

Listing	23-5	shows	MyJDBCAnnotationProcessor,	which	starts	by	loading	another	class,
whose	name	was	supplied	in	the	command	line.	After	that	it	introspects	the	loaded	class
and	places	all	references	to	its	method	definitions	into	an	array	called	methods.	Finally,	it
loops	through	this	array,	and	for	each	method	that	has	annotations	it	finds	and	prints	the
values	of	the	parameters	sqlStatement,	notifyOnUpdates,	and	transactionRequired.

Listing	23-5:	MyJDBCAnnotationProcessor

import	java.lang.reflect.*;
import	com.practicaljava.lesson24.MyJDBCExecutor;
public	class	MyJDBCAnnotationProcessor	{
	public	static	void	main(String[]	args)	{
		//	TODO	add	a	check	for	the	number	of	command	line	arguments
			//	has	to	be	the	name	of	the	class	to	load.
			String	classWithAnnotation	=	args[0];
					try	{
								//Load	provided	on	the	command	line	class
							Class	loadedClass	=	Class.forName(classWithAnnotation);
							//	Get	references	to	class	methods
							Method[]	methods	=	loadedClass.getMethods();
							//Check	every	method	of	the	class.If	the	annotation	is	present,
							//print	the	values	of	its	parameters
								for	(Method	m:	methods){
									if	(m.isAnnotationPresent(MyJDBCExecutor.class)){
																			MyJDBCExecutor	jdbcAnnotation	=
																														m.getAnnotation(MyJDBCExecutor.class);
											System.out.println("Method:	"	+	m.getName()	+
													".	Parameters	of	MyJDBCExecutor	are:	"	+
													"sqlStatement="+	jdbcAnnotation.sqlStatement()	+
													",	notifyOnUpdates="+	jdbcAnnotation.notifyOnUpdates()	+
													",	transactionRequired="+	
													jdbcAnnotation.transactionRequired());
								}
						}
			}catch	(ClassNotFoundException	e)	{
																		e.printStackTrace();
			}
	}
}

After	running	this	processor	with	the	class	HRBrowser,	the	former	correctly	identifies	the
annotated	methods	and	prints	the	values	of	their	parameters:

Method:	getEmployees.	Parameters	of	MyJDBCExecutor	are:	sqlStatement=Select	*	from
Employee,	notifyOnUpdates=false,	transactionRequired=false
Method:	updateData.	Parameters	of	MyJDBCExecutor	are:	sqlStatement=Update	
Employee	set
bonus=1000,	notifyOnUpdates=true,	transactionRequired=true

If	a	class	may	have	several	annotations,	the	annotation	processor	would	need	to	start	by
getting	all	annotations	of	the	loaded	class	using	loadedClass.getAnnotations().	It	would

then	process	these	annotations	in	a	loop.

Summary
In	real-world	applications	you	wouldn’t	simply	be	printing	the	values	of	the	annotation
parameters,	but	rather	would	be	executing	different	branches	of	your	code	based	on	these
values.	This	is	the	point	of	run-time	annotation	processing.	You	may	ask,	“OK,	now	I
know	the	annotations	and	their	values,	so	what	do	I	do	with	them?”	The	big	idea	is	that
you’ve	written	a	generic	processor	that	can	work	with	any	classes	that	include	your
annotations.	It’s	a	pretty	powerful	mechanism	for	all	software	developers	who	are	creating
tools	for	other	people	to	use.

You’ll	probably	be	using	annotations	and	run-time	processors	written	by	other	people
rather	than	ones	you	write	yourself.	You’ll	see	lots	of	examples	of	using	annotations
starting	from	Chapter	26,	while	learning	about	Java	EE	development.	But	now	that	you
know	what’s	going	on	under	the	hood	in	annotation	processors,	learning	about	Java	EE
annotation	will	be	a	lot	easier.

The	reflection	mechanism	allows	you	to	find	out	the	members	of	any	class	during	the	run
time.	This	nice	feature	should	be	used	sparingly	because	such	discovery	would	require
additional	processing	time.			

Try	It
Create	a	class-level	run-time	annotation	called	@DBParams	that	enables	you	to	specify
the	name	of	the	database,	the	user	ID,	and	the	password.	Write	a	processor	for	this
annotation.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson23.zip.

Step-by-Step
1.	 Create	a	new	Eclipse	project.

2.	 Declare	there	the	annotation	DBParams	with	the	retention	policy	RUNTIME	targeted
to	TYPE.

3.	 Define	three	parameters	in	this	annotation:	dbName,	uid,	and	password.

4.	 Create	the	class	MyDBWorker	and	annotate	it	with	@DBParms	populated	with	some
initial	values.

5.	 Write	an	annotation	processor	class	called	DBParamProcessor	to	find	and	print	the
annotation	values	in	the	class	MyDBWorker.

6.	 Run	and	test	DBParamProcessor.

TIP			Please	select	the	videos	for	Lesson	23	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	24
Remote	Method	Invocation
	So	far	most	of	the	Java	programs	in	this	tutorial	have	been	running	in	a	single	Java	virtual
machine	(JVM).	There	were	two	exceptions:	In	Lesson	16	in	the	section	on	“Socket
Programming”	you	used	two	JVMs,	and	your	JDBC	programs	from	Chapter	21
communicated	with	another	JVM	running	a	database	server.	The	application	running	on
the	user’s	computer	isn’t	always	allowed	to	access	remote	data	directly—that’s	one	of	the
reasons	distributed	Java	applications	came	into	the	picture.	(The	word	distributed	means
having	parts	of	the	applications	running	on	several	computers.)	The	other	reason	was	to
provide	a	centralized	server	catering	to	multiple	lightweight	clients.

There	are	lots	of	ways	to	create	Java	distributed	applications	that	run	on	more	than	one
JVM,	and	Remote	Method	Invocation	(RMI)	is	one	of	them	even	though	it’s	seldom	used
these	days.	For	example,	a	client	Java	application	(JVM1)	connects	to	a	server	Java
application	(JVM2),	which	connects	to	the	DBMS	that	runs	on	a	third	computer.	The
client	application	knows	nothing	about	the	DBMS;	it	gets	the	data,	an	ArrayList	(or	other
data	collection)	of	Employee	objects,	from	the	server’s	application	that	runs	in	JVM2.
RMI	uses	object	serialization	for	the	data	exchange	between	JVM1	and	JVM2.

But	unlike	with	socket	programming,	where	the	client	simply	connects	to	a	port	on	the
server,	with	RMI	one	Java	class	can	invoke	methods	on	Java	objects	that	live	in	another
(remote)	JVM.	Although	from	a	syntax	perspective	it	looks	as	if	the	caller	and	the	server’s
class	are	located	in	the	same	JVM,	they	may	be	thousands	of	miles	away.	The	RMI	client
won’t	have	a	copy	of	the	server-side	method;	it	just	has	the	method’s	local	representative
—a	proxy,	or,	using	the	RMI	terminology,	a	stub.

Any	RMI	application	consists	of	an	RMI	server,	a	client,	and	the	registry	(a	naming
service).	These	three	components	could	run	on	three	different	JVMs	running	on	different
networked	computers.	The	RMI	server	creates	Java	objects	that	implement	business	logic,
registers	them	with	the	naming	service,	and	waits	for	remote	clients	to	invoke	the	server’s
methods.

A	client	application	gets	a	reference	to	a	remote	server	object	or	objects	from	the	registry
and	then	invokes	methods	on	this	remote	object.	RMI	uses	the	transport	layer	that	hides
the	communications	between	the	client’s	stub	and	the	server-side	Java	objects,	and	even
though	the	methods	are	called	in	the	client’s	JVM,	they	are	executed	on	the	server’s.	All
RMI	supporting	classes	and	the	registry	tool	are	included	with	the	Java	SE.

Developing	Applications	with	RMI
This	lesson	is	written	as	an	illustration	of	a	sample	RMI	application	with	a	minimum
theory.	For	a	more	detailed	description	of	RMI,	refer	to	Oracle’s	online	tutorial	on	the
subject.

Writing	distributed	RMI	applications	involves	the	following	steps:

1.	 Declaring	the	remote	interface.

2.	 Implementing	the	remote	interface.

3.	 Writing	a	Java	client	that	connects	to	the	remote	server	and	calls	remote	methods.

4.	 Starting	the	registry	and	registering	the	RMI	server	with	it.	The	server	associates
(binds)	its	services	with	the	registry	names.

5.	 Starting	the	server	and	the	client	applications.	The	client	looks	up	services	by	names
and	invokes	them.

Let’s	perform	each	of	these	steps	by	developing	the	RMI	version	of	the	Stock	Quotes
Server	(see	its	version	with	sockets	in	socket	programming),	which	provides	a	client	with
price	quotes	for	a	specified	stock.	Some	of	the	preceding	steps	could	be	combined—for
example,	creating	a	registry	and	binding	a	service	to	it.	The	package	java.rmi	contains	all
RMI	supporting	classes	used	in	the	following	code	samples.	

Defining	Remote	Interfaces
The	Java	classes	that	you	are	planning	to	deploy	on	the	server	side	have	to	implement
remote	interfaces,	which	declare	business	method(s)	to	be	invoked	remotely	by	RMI
clients.	The	client’s	code	looks	as	if	it’s	calling	local	methods,	but	these	calls	are
redirected	to	a	remote	server	via	the	RMI	protocol.	Following	are	the	rules	for	creating
remote	interfaces:

The	remote	interface	must	declare	public	methods	to	allow	clients	to	perform	remote
method	invocation.

The	remote	interface	must	extend	java.rmi.Remote.

Each	method	must	declare	java.rmi.RemoteException.

If	method	arguments	are	not	primitives,	they	should	be	serializable	objects	to	be	able
to	travel	across	the	network.

In	RMI,	development	of	a	the	server-side	layer	starts	with	answering	the	question,	“What
business	methods	have	to	be	exposed	to	the	client	applications	and	what	should	their
signatures	be?”	When	you	know	the	answer,	define	remote	interfaces	that	declare	those
methods	and	classes	that	implement	them.	Let’s	see	how	to	apply	this	rule	for	the	server
that	can	serve	stock	prices.	

Listing	24-1	shows	the	code	of	the	StockServer	remote	interface	that	will	be	implemented
on	the	server	but	also	must	exist	on	the	client	side.	This	interface	declares	two	business
methods:	getQuote()	and	getNasdaqSymbols().	The	first	method	generates	a	random	price
quote	for	the	specified	symbol,	and	the	second	returns	the	list	of	valid	stock	symbols.

http://docs.oracle.com/javase/tutorial/rmi/

Listing	24-1:	StockServer	interface

public	interface	StockServer	extends	Remote	{
		public	String	getQuote(String	symbol)	throws	RemoteException;
		public	List<String>	getNasdaqSymbols()throws	RemoteException;
}

In	RMI,	class	definitions	are	dynamically	loaded	from	one	JVM	to	another.
Implementation	of	the	classes	resided	on	the	server	side	may	change—for	example,	new
methods	may	be	introduced	to	the	implementation	of	the	class.	But	the	client	sees	the
stubs	with	only	the	methods	defined	in	the	interface	that	extends	Remote.	In	our	example,
to	make	more	server-side	methods	available	to	the	RMI	client,	you’d	need	to	add	them	to
the	StockServer	interface	and	make	this	new	version	available	on	both	the	client	and	the
server.

Implementing	Remote	Interfaces
Although	the	remote	interface	just	declares	the	methods,	you	need	to	create	a	class	that
runs	on	the	server	side	and	provides	implementation	for	those	methods.	There	is	a	special
requirement	to	export	such	a	class	to	the	Java	RMI	runtime	to	enable	the	class	to	receive
remote	calls.	This	is	somewhat	similar	to	binding	to	a	port	in	the	case	of	ServerSocket	(see
Listing	16-5),	but	in	the	case	of	Java	RMI,	the	server	also	creates	a	stub—a	dummy	class
(for	the	client	side)	that	contains	proxies	of	each	implemented	method	from	remote
interfaces.

One	RMI	client	communicates	to	one	server.	It’s	known	as	unicast	as	opposed	to	multicast
(one	to	many)	or	broadcast	(one	to	all).	The	easiest	way	to	export	an	RMI	server	instance
is	by	extending	it	from	java.rmi.server.UnicastRemoteObject,	as	in	Listing	24-2.	If	your
server	has	to	be	extended	from	another	class	you	can	explicitly	export	the	server	object	by
calling	UnicastRemoteObject.export().

Listing	24-2	shows	an	implementation	of	the	class	StockServerImpl,	which	processes	the
client’s	requests.	This	class	generates	random	price	quotes	for	the	stocks	located	in
ArrayList	nasdaqSymbols.

Listing	24-2:	StockServerimpl	class

public	class	StockServerImpl	extends	UnicastRemoteObject	
																													implements	StockServer	{
		private	String	price=null;
		private	ArrayList<String>	nasdaqSymbols	=	new	ArrayList<>();
		public	StockServerImpl()	throws	RemoteException	{
				super();
					//	Define	some	hard-coded	NASDAQ	symbols
					nasdaqSymbols.add("AAPL");
					nasdaqSymbols.add("MSFT");
					nasdaqSymbols.add("YHOO");
					nasdaqSymbols.add("AMZN");
		}
		public	String	getQuote(String	symbol)
																										throws	RemoteException	{
				if(nasdaqSymbols.indexOf(symbol.toUpperCase())	!=	-1)	{
								//	Generate	a	random	price	for	valid	symbols
								price	=	(new	Double(Math.random()*100)).toString();
				}
				return	price;
		}
		public	ArrayList<String>	getNasdaqSymbols()
																																			throws	RemoteException	{
				return	nasdaqSymbols;
		}
}

Registering	Remote	Objects
To	make	a	remote	object	available	to	clients,	you	need	to	bind	it	to	some	name	in	a
registry,	a	naming	service	that	knows	where	exactly	in	the	network	your	RMI	server
StockServerImpl	is	running.	This	allows	Java	clients	to	look	up	the	object	on	the	host
machine	by	name.

Listing	24-3	depicts	the	code	that	binds	the	instance	of	StockServerImpl	to	port	1099	on
the	host	machine,	which	is	the	local	computer	in	my	example.	To	the	rest	of	the	world	this
server	is	known	as	QuoteService.

Listing	24-3:	Creating	registry,	starting	the	server,	and	binding	it	to	a	registry

public	class	StartServer	{
		public	static	void	main	(String	args[])	{
			try	{
				//	Create	the	registry	on	port	1099
				LocateRegistry.createRegistry(1099);
				//	Instantiate	the	StockServerInmpl	and	bind	it	
				//	to	the	registry	under	the	name	QuoteService
						StockServerImpl	ssi	=	new	StockServerImpl();
						Naming.rebind("rmi://localhost:1099/QuoteService",ssi);
				}catch	(MalformedURLException	e1){
									System.out.println(e1.getMessage());
				}catch(RemoteException	ex)	{
										ex.printStackTrace();
				}
		}
}

There	are	two	methods	in	the	class	java.rmi.Naming	that	can	bind	an	object	in	the	registry.
The	method	bind()	binds	an	RMI	server	to	a	name.	It	throws	AlreadyBoundException	if
the	binding	already	exists.	The	method	rebind()	replaces	any	possibly	existing	binding
with	the	new	one.	In	addition	to	binding	a	server	to	a	name,	this	also	ensures	that	the
clients	requesting	such	services	as	getQuotes()	or	getNasdaqSymbols()	receive	their	stubs
—the	local	proxies	of	the	remote	methods.

The	registry	must	be	up	and	running	by	the	time	you	start	the	program	in	Listing	24-3.
One	way	to	start	the	registry	is	by	entering	start	rmiregistry	in	the	Windows	command
window	or	rmiregistry	in	Mac	OS.	Instead	of	starting	the	registry	manually,	you	can	start
it	from	within	the	StartServer	program	itself	by	calling	the	following	method:

LocateRegistry.createRegistry(1099);

If	you	know	that	another	process	has	already	pre-created	the	registry,	just	get	its	reference
and	bind	the	server	to	it.	The	getRegistry()	method	can	be	called	without	arguments	if	the
RMI	registry	runs	on	the	default	port	1099.	If	this	is	not	the	case,	specify	the	port	number
(5048	in	the	following	example).	The	variable	registry	in	the	following	code	fragment	is	a
stub	to	the	remote	object	StockServerImpl:

StockServerImpl	ssi	=	new	StockServerImpl();
Registry	registry	=	LocateRegistry.getRegistry(5048);
registry.bind("QuoteService",	ssi);

Writing	RMI	Clients
The	client	program,	running	anywhere	on	the	Internet,	performs	a	lookup	in	the	registry

on	the	host	machine	(using	the	host	machine’s	domain	name	or	IP	address)	and	obtains	a
reference	to	the	remote	object.	Listing	24-4	shows	a	sample	client	program.	Notice	the
casting	to	the	StockServer	type	of	the	data	returned	by	the	method	lookup().

Even	though	the	class	StockServerImpl	has	been	bound	to	the	name	QuoteService,
because	this	class	implements	the	StockServer	interface	you	can	cast	the	returned	object	to
it.	The	variable	myServer	sees	only	the	methods	defined	in	this	interface,	while	the	class
StockServerImpl	may	have	other	public	methods,	too.

Listing	24-4:	RMI	client

public	class	Client	{
		public	static	void	main	(String	args[])	{
			if	(args.length	==	0)	{
					System.out.println(
																	"\n	Sample	usage:	java	client.Client	AAPL");
					System.exit(0);
			}
			try	{
								StockServer	myServer	=	(StockServer)
								Naming.lookup("rmi://localhost:1099/QuoteService");
						String	price	=	myServer.getQuote(args[0]);
							if		(price	!=	null){
									System.out.println("The	price	of	"	+	args[0]	+
																												"	is:	$"	+	price);
							}
							else{
										System.out.println("Invalid	Nasdaq	symbol.	"	+
													"Please	use	one	of	these:"	+
													myServer.getNasdaqSymbols().toString());
						}
		}	catch	(MalformedURLException	exMF)	{
							System.out.println(exMF.getMessage());
		}	catch	(NotBoundException	exNB)	{	
							System.out.println(exNB.getMessage());
		}	catch	(RemoteException	exRE)	{
							System.out.println(exRE.getMessage());
				}
		}
}

Multiple	clients	can	connect	to	the	same	RMI	server,	but	each	client/server
communication	is	done	over	the	separate	socket	connection.	This	is	done	internally,	so	the
application	programmer	doesn’t	need	to	explicitly	program	sockets.	If	you	remember,	in
Lesson	16	we	had	to	invent	a	simple	communication	protocol	in	the	example	on	socket

connection.	RMI	uses	its	own	proprietary	protocol	called	JRMP,	hence	it	can	be	used	only
in	Java-to-Java	communications.

	

Security	Considerations
Can	any	RMI	client	restrict	the	actions	that	remotely	loaded	code	can	perform	on	the	local
computer?	Can	the	server	restrict	access?	You	can	specify	a	security	policy	file	containing
access	restrictions.	For	example,	in	the	code	in	Listing	24-3	and	Listing	24-4	you	can	start
the	main()	method	with	the	following	code:

if	(System.getSecurityManager()	==	null)	{
							System.setSecurityManager(new	RMISecurityManager());
	}

The	class	java.rmi.RMISecurityManager	extends	the	class	java.lang.SecurityManager	and
provides	a	security	context	under	which	the	RMI	application	executes.	In	RMI	clients,	the
goal	is	to	prevent	remotely	loaded	stub	code	from	downloading	unsecured	code	via	remote
method	invocation.

The	RMI	client	uses	a	file	in	which	security	policies	are	defined.	You	can	use	the	default
security	file,	java.policy,	located	in	your	JDK	or	JRE	installation	directory	under
lib/security.	The	default	policy	file	gives	all	permissions	to	the	code,	but	you	can	create
your	own	file	and	supply	it	either	via	the	command-line	parameter	or	in	the	code	before
the	security	manager	is	set:

System.setProperty("java.security.policy",	"mypolicyfile");

For	a	more	detailed	description	of	security	policy	files,	refer	to	the	documentation	at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html.

Java	applets	can	also	serve	as	RMI	clients,	but	they	don’t	need	RMI	security	managers.
The	only	restriction	on	them	is	that	they	can	connect	only	to	the	RMI	server	running	on
the	same	host	on	which	they	were	deployed.

Finding	Remote	Objects
RMI	clients	find	remote	services	by	using	a	naming	or	directory	service.	A	naming	service
runs	on	a	known	host	and	port	number.	The	subject	of	naming	and	directory	services	is
covered	in	more	detail	in	Chapter	29.

By	now	you	know	that	an	RMI	server	can	start	its	own	registry	that	offers	naming	services
for	RMI	clients.	The	behavior	of	the	registry	is	defined	by	the	interface
java.rmi.registry.Registry,	and	you	saw	an	example	of	binding	to	the	registry	in	the	section
“Registering	Remote	Objects”.

By	default,	the	RMI	registry	runs	on	port	1099,	unless	another	port	number	is	specified.
When	the	client	wants	to	invoke	methods	on	a	remote	object	it	obtains	a	reference	to	that
object	by	looking	up	the	name.	The	lookup	returns	to	the	client	a	remote	reference,	also

http://en.wikipedia.org/wiki/Java_Remote_Method_Protocol
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

known	as	a	stub.

The	method	lookup()	takes	the	object	name’s	URL	as	an	argument	in	the	following
format:

rmi://<host_name>[:<name_service_port>]/<service_name>

host_name	stands	for	the	name	of	a	computer	on	the	local	area	network	(LAN),	or	the
name	of	a	domain	name	system	(DNS)	on	the	Internet.	name_service_port	has	to	be
specified	only	if	the	naming	service	is	running	on	a	port	other	than	the	default.
service_name	stands	for	the	name	of	the	remote	object	that	should	be	bound	to	the
registry.

Figure	24-1	illustrates	the	architecture	of	an	RMI	application.	In	the	“Try	It,”	section	you
implement	this	architecture	for	the	sample	stock	quote	service.

Figure	24-1

Try	It
In	this	exercise	your	goal	is	to	start	and	test	all	the	parts	of	the	distributed	Stock	Server
application,	and	you	run	all	these	parts	on	the	same	computer.	The	StartServer	program
creates	a	registry	and	binds	the	StockServerImpl	under	the	name	QuoteService.	To
emulate	multiple	computers	you	start	the	client	from	a	command	window.	If	everything	is
done	properly	you	should	be	able	to	start	the	RMI	client	with	one	of	the	stock	symbols
known	to	the	server,	and	get	a	price	quote	back.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	file
Lesson24.zip.

Hints
There	is	an	RMI	plug-in	for	the	Eclipse	RMI	that	may	be	handy	for	developing	RMI-
based	distributed	applications.	It	contains	a	useful	utility	called	RMI	Spy	that	shows	all
outgoing	and	incoming	method	calls,	and	measures	execution	times.	Another	useful	utility
in	this	plug-in	is	Registry	Inspector,	which	displays	information	about	objects	in	the
registry.	The	RMI	plug-in	is	available	from	www.genady.net/rmi/index.html.

Step-by-Step
1.	 Import	the	Eclipse	project	called	Lesson24.	It	has	two	packages:	client	and	server.

2.	 Rebuild	the	project	(use	the	menu	Project	→	Clean).	Note	the	location	of	the	Eclipse
workspace;	you	need	it	because	you	run	all	code	samples	from	command	windows.
Make	sure	that	after	importing	the	project	it	points	at	the	JRE	that’s	installed	on	your
compute	(right-click	on	the	project	name	and	use	the	menu	Properties	→	Java	Build
Path).

3.	 Run	the	program	StartServer	to	start	and	register	StockServer	with	the	registry	(note
the	creation	of	registry	with	LocateRegistry).	After	you	enter	a	command	similar	to
the	one	shown	below,	the	server	starts	and	binds	to	the	registry,	printing	the	following
message	in	the	Eclipse	console:

<QuoteService>	server	is	ready.

The	server	stays	up	and	running	waiting	for	requests	from	the	clients.

4.	 You	can	run	the	client	from	Eclipse,	too,	but	to	better	illustrate	the	fact	that	you	use
different	JVMs,	run	the	client	from	a	command	window.	Open	a	command	(or
Terminal)	window	and	go	to	the	bin	directory	of	the	project	Lesson24	in	your	Eclipse
workspace.	On	my	computer	I	did	it	as	follows:

http://www.wrox.com/go/javaprog24hr2e

cd	/Users/yfain11/practicalJava/workspace/Lesson24/bin

5.	 Run	the	Client	program	located	in	the	client	package,	passing	the	stock	symbol	as	a
command-line	argument,	and	the	Client	connects	to	your	“remote”	server	and	receives
the	price	quote—for	example:

java	client.Client	AAPL

On	my	computer	the	output	looked	as	follows:

The	price	of	AAPL	is:	$91.85776369781252

6.	 Open	several	command	windows	and	run	the	client	program	in	each	of	them,
emulating	multiple	clients	sending	requests	to	the	same	server.

7.	 Add	the	following	statement	to	the	method	getQuote()	of	StockServerImpl	class	and
note	how	the	server	reports	each	quote	request	in	the	Eclipse	console:

System.out.println("Got	the	price	quote	request	for	"	+
																																																symbol);

TIP			Please	select	the	videos	for	Lesson	24	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	25
Java	EE	7	Overview
Starting	from	this	lesson	you’ll	be	learning	about	Java	Enterprise	Edition	(Java	EE,
formerly	J2EE),	which	is	a	powerful,	mature,	and	widely	used	platform	for	development
of	distributed	applications.	The	word	enterprise	doesn’t	imply	that	it	is	meant	only	for
large-scale	applications.	Java	EE	components	are	used	for	the	development	of	everything
from	an	application	for	a	local	pizza	parlor’s	website	running	on	a	five-hundred-dollar
computer	to	a	super-powerful	Wall	Street	trading	application	that	runs	on	a	cluster	of
hundreds	of	interconnected	servers.

This	lesson	is	an	overview	of	the	Java	EE	architecture,	concepts,	components,	and	terms
that	will	be	covered	in	detail	in	the	remaining	lessons	of	this	book.	The	goal	of	these
lessons	is	to	give	you	an	understanding	of	how	to	approach	the	development	of	Java	EE
applications	by	showing	you	how	to	build	small	applications	rather	than	making	you	read
the	1,000-page	manuscript	that	would	otherwise	be	required	for	detailed	coverage	of	this
subject.

There	are	an	abundance	of	online	materials	and	books	published	on	the	subject	of	Java
EE,	and	when	you	figure	out	which	components	are	a	good	fit	for	your	project,	finding
materials	on	the	selected	topic	will	not	be	difficult	at	all.	My	task	is	to	help	you	in	making
that	decision	and	getting	you	started	in	the	quickest	possible	way.	Oracle’s	white	paper
“Introduction	to	Java	Platform	Enterprise	Edition	7”		is	a	good	complement	for	this
lesson.	If	you	start	browsing	the	Internet	trying	to	find	more	information	on	Java	EE,	you
can	easily	get	confused	by	trying	to	compare	the	features	of	different	versions	of	Java	EE
components.	I	highly	recommend	that	you	stay	focused	on	the	features	of	Java	EE	7,
which	is	the	most	current	platform	and	the	easiest	to	use.	It	was	released	in	2013.

http://www.oracle.com/technetwork/java/javaee/javaee7-whitepaper-1956203.pdf

The	Big	Picture
Go	to	your	favorite	online	job	search	engine	and	search	for	job	listings	with	the	keyword
Java.	You’ll	find	thousands	of	job	descriptions,	but	recruiters	are	looking	for	software
developers	that	know	more	than	just	the	Core	Java	that	was	covered	in	the	first	24	lessons
of	this	book.	Here’s	an	example	of	one	of	the	job	ads:

Title:	Java	Software	Developer

Skills:	Java,	JMS,	Spring,	Websphere	MQ,	EJB,	Servlets,	JDK,	JUnit,	Oracle,	SQL

The	candidate	should	know:

Core	Java

Have	expertise	in	EJB	and	Servlets

Have	experience	with	RESTFulWeb	Services	and	JAX-RS

JDBC	(Oracle)	and	JPA	

JUnit

SQL

Eclipse	IDE

Spring	Framework

WebSphere	Application	Server	

JMS	and	WebSphere	MQ	

How	many	items	from	this	list	of	skills	did	you	recognize?	You	know	Core	Java	(also
known	as	Java	SE),	JDBC,	Eclipse,	and	hopefully	SQL.	After	studying	the	remaining
lessons	you’ll	understand	what	most	of	the	other	skills	are,	why	they	are	required,	and
how	they	all	fit	together.	You’ll	also	have	technical	knowledge	of	many	of	the	buzzwords
listed	there.

JCP,	JSR,	and	Other	Acronyms
The	Java	community	is	accustomed	to	using	lots	of	acronyms.	Initially	these	acronyms
might	sound	intimidating	and	confusing,	but	with	a	little	effort	they	will	make	perfect
sense	and	explain	the	way	the	Java	ecosystem	lives	and	functions.

Each	version	of	Java	EE	includes	a	set	of	specifications	for	various	technologies,	such	as
Servlets,	JavaServer	Pages	(JSP),	Enterprise	Java	Beans	(EJB),	and	Java	Messaging
Service	(JMS).	Each	of	these	specifications	has	been	defined	by	an	organization	called	the
Java	Community	Process	(JCP).	If	a	person	or	a	group	of	people	decides	to	propose	a
specification	for	some	future	technology,	it	creates	a	Java	Specification	Request	(JSR)	and
forms	a	group	of	experts	to	work	on	this	specification.	JSRs	are	numbered.	For	example,
the	specification	for	Servlets	3.1	is	described	in	JSR	340.

If	you	decide	to	get	familiar	with	any	specific	JSR,	visit	the	website	http://jcp.org.	Both
Java	EE	and	Java	SE	implement	multiple	JSRs.	In	other	words,	Java	EE	is	based	on
standards.	If	you’d	like	to	see	which	JSRs	are	included	in	Java	EE	7,

http://jcp.org

visit	http://en.wikipedia.org/wiki/Java_EE_version_history#Java_EE_7_.28June_12.2C_2013.29
This	book	doesn’t	cover	all	of	the	JSRs,	but	it	explains	some	of	the	main	ones.	Most
importantly,	this	book	tries	to	show	you	how	to	architect	Java	applications	that	use	the
Java	EE	7	platform.		

Tiers	of	Java	EE	Applications
A	typical	distributed	Java	application	can	be	divided	into	three	or	four	logical	tiers.	(If	the
application	is	getting	data	directly	from	a	DBMS,	as	described	in	Chapter	21,	it	has	a	two-
tier	client-server	architecture,	and	Java	EE	components	are	not	needed.)	Figure	25-1
shows	selected	technologies	and	some	of	the	ways	of	building	a	distributed	application
that	includes	Java	EE	tiers	or	layers.

Figure	25-1:	Architecting	Java	EE	applications

Full	Java	EE	Diagram
To	see	the	full	Java	EE	diagram,	see	the	“Profiles”	section	in	the	document	titled	Java
Platform,	Enterprise	Edition	(Java	EE)	Specification,	v7.

The		client	tier	can	be	implemented	on	a	user’s	desktop,	notebook,	mobile	phone,	or	any
other	device	that	has	embedded	JRE	or	can	connect	with	Java	on	the	web	server.
Applications	that	interconnect	multiple	devices	are	known	as	Internet	of	Things	(IoT);
they	can	utilize	small	sensors	with	embedded	Java	and	servers	that	use	Java	EE
technologies.	You	can	create	a	client	as	an	independent	Java	application,	an	applet,	or	a
thin	client	(an	HTML/JavaScript	file	running	in	a	web	browser).	The	word	thin	refers	to
the	fact	that	no	business	processing	(except	the	input	validation)	is	being	done	on	the
client	side,	so	the	server	has	to	work	hard	processing	all	application	logic	for	all	clients,
and	Java	EE	shines	on	the	server	side.

If	you’re	building	a	web	application,	the	web	tier	(also	known	as	the	presentation	tier)
comes	into	the	picture.	You	have	your	choice	of	JSP,	JavaServer	Face	(JSF),	Servlets,	or
Web	Services.	These	components	are	responsible	for	the	look	of	your	thin	client.	Java
Swing	and	JavaFX	are	often	used	as	fat	clients	working	with	the	server-side	applications.
The	word	fat	here	refers	to	the	fact	that	the	client	can	contain	some	business	logic,	which
lowers	the	load	on	the	server.	Any	non-graphical	user	interface	(GUI)	Java	application	can

http://en.wikipedia.org/wiki/Java_EE_version_history#Java_EE_7_.28June_12.2C_2013.29
http://download.oracle.com/otn-pub/jcp/java_ee-7-fr-eval-spec/JavaEE_Platform_Spec.pdf
http://en.wikipedia.org/wiki/Internet_of_Things

be	a	client	of	the	server-side	application	created	with	the	help	of	one	or	more	Java	EE
technologies.

The	business	logic	of	your	application	is	deployed	in	the	business	tier,	which	is
represented	by	EJBs	in	the	Java	EE	world.	In	the	past	EJBs	were	pretty	heavy	components
and	third-party	frameworks	such	as	Spring	became	a	popular	alternative	for	implementing
the	business	tier.	But	Java	EE	regains	its	market	share	in	this	department	because	it’s	a
light	POJO-	and	annotation-based	technology	that	incorporates	the	best	features	of	the
third-party	framework.	POJO	stands	for	plain	old	Java	object—a	Java	class	that	can	be
written	any	way	you	want	and	doesn’t	have	to	extend	any	framework	class	or	implement
mandatory	interfaces.

This	term	is	easily	understood	by	people	who	witnessed	the	evolution	of	EJBs	that	started
with	Java	classes	that	had	to	be	written	and	deployed	in	a	certain	convoluted	way	and
accompanied	by	heavy	XML	configuration	files.	Things	changed	drastically,	and	now
EJBs	have	turned	into	POJOs	marked	with	annotations.	If	for	some	reason	you	skipped
Chapter	23	on	annotations,	you	should	go	back	and	study	it;	otherwise	you	won’t
understand	most	of	the	remaining	material	in	this	book.

While	drawing	the	diagram	for	Figure	25-1,	I	moved	the	Web	Services	box	a	couple	of
times	between	the	tiers.	On	one	hand,	Web	Services	(see	Chapter	33)	are	based	on	web
communication	protocols;	on	the	other	hand	they	can	serve	as	a	façade	that	hides
anything,	including	an	entire	legacy	application	written	in	COBOL	or	other	languages	on
mainframes.	In	the	real	world,	Web	Services	span	all	server-side	tiers	and	could	even	be
placed	in	a	separate	box	in	the	data	tier.

Using	DBMSes	remains	the	most	popular	way	to	store	data	in	enterprise	Java	EE
applications,	but	it’s	not	the	only	way.	The	data	can	be	served	by	an	external	web	service
or	arrive	as	a	real-time	feed	from	some	messaging	infrastructure.	MOM	stands	for
message-oriented	middleware,	and	you	find	out	what	it	is	in	Chapter	30.

Without	some	practical	example,	all	these	new	buzzwords	may	not	make	much	sense	to
you.	You	see	examples	in	the	upcoming	lessons,	but	for	now,	I’m	just	briefly	discussing
several	(not	all)	ways	or	re-architecting	of	the	Stock	Market	application	that	you’ve	seen
already	implemented	with	sockets	and	RMI.

Have	a	JavaFX	client	to	connect	to	StockQuoteServlet,	which	creates	what	is	known
as	a	session	EJB	called	StockMarketQuote,	which	connects	to	external	stock	exchange
software	and	requests	a	price	quote	on	the	specified	symbol(s).	This	session	bean	has	a
timer	that	updates	and	sends	to	the	client	the	price	quotes	every	second.

Do	as	described	in	the	previous	bullet,	but	replace	the	JavaFX	application	with	a	thin
HTML	client.

The	same	as	before,	but	replace	the	Servlet	with	a	JSP.

The	same	as	before,	but	replace	the	JSP	with	a	JSF.

The	same	as	above,	but	replace	JSF	with	RESTFul	Web	Service.

The	same	as	above,	but	replace	HTTP	with	WebSocket	protocol.

The	same	as	before,	but	replace	the	Web	Service	with	a	session	EJB	that	interacts	with

a	message-driven	bean	(MDB)	that	subscribes	via	MOM	to	the	external	stock
exchange	application	that	sends	back	new	prices	only	when	they	change.

The	same	as	before,	but	add	another	session	bean	that	will	process	every	price	quote
received	by	MDB	and	apply	a	modeling	algorithm,	and	on	certain	conditions	send	a
message	to	buy	or	sell	a	specific	number	of	shares	of	the	suggested	stock	to	a	third-
party	trading	system	via	a	call	to	a	Web	Service.

I	can	keep	going.	As	you	can	see,	there	are	many	ways	to	design	a	distributed	Java	EE
application.	This	is	what	Java	architects	do	for	a	living.

Containers	Versus	Application	Servers
Java	EE	tiers	are	implemented	in	containers.	Containers	contain	Java	objects.	In	the	Java
EE	world	containers	not	only	contain,	but	also	control	the	birth,	life,	and	death	of	Java
components.	For	example,	you	don’t	need	to	use	the	new	operator	to	create	a	new	instance
of	an	EJB;	the	container	creates	a	pool	of	them	based	on	configuration
parameters.	Basically,	a	container	is	an	area	inside	JVM	that	can	support	a	life	cycle	of
certain	types	of	Java	objects,	such	as	servlet,	EJB,	and	so	on.	The	word	container	applies
to	clients	too;	for	example,	Java	SE	run	time	serves	as	a	container	for	Java	client
applications.	

Containers	perform	useful	functions,	and	one	of	them	is	thread	safety.	It’s	great	that
multiple	clients	can	connect	and	make	requests	to	the	same	server,	but	can	you	be	sure	that
a	thread	initiated	by	Mary	won’t	interfere	with	John’s	thread?	An	EJB	container
implements	a	single-threaded	model	ensuring	that	each	client’s	request	operates	in	a
dedicated	thread.	Containers	may	offer	transactional	support	with	Java	Transaction	API
(JTA)	and	persist	data	for	you	with	Java	Persistence	API	(JPA).

In	the	first	few	lessons	I	used	a	blueprint	analogy	to	explain	the	relationship	between	Java
classes	and	objects.	I’m	using	this	analogy	again,	but	this	time	I’m	explaining	the
relationship	between	the	Java	EE	specification	and	application	servers.	The	Java	EE	is	a
specification,	and	when	its	release	is	published,	vendors	who	want	to	implement	it	in	their
software	products	create	application	servers	that	support	this	specification.

Multiple	vendors	offer	their	versions	of	a	Java	EE	application	server.	The	question	is	what
version	of	the	Java	EE	specification	they	support.	Currently	four	application	servers—
GlassFish	(Oracle),	WildFly	(Red	Hat),	WebLogic	(Oracle),	and	Tmax	JEUS	(TMaxSoft)
—support	Java	EE	7.		To	see	the	latest	list	of	servers	that	support	Java	EE	7	visit	the	Java
EE	Compatibility	web	page.

Java	EE	application	servers	have	to	support	multiple	containers;	for	example,	a	Servlet
container	and	an	EJB	container.	Some	vendors	prefer	to	create	products	supporting	only
certain	technologies	defined	in	the	Java	EE	specification.	For	example,	Tomcat	(Apache
Foundation),	Jetty	(Eclipse	Foundation),	and	Resin	(Caucho)	offer	support	for	selected
technologies	(such	as	Servlets	and	JSP),	which	makes	them	suitable	for	implementing	web
applications,	but	if	you	are	planning	to	create	web	applications	based	on	one	of	these
products,	you	need	to	figure	out	what	other	tools	or	frameworks	are	needed	to	support
transactions,	the	business	tier,	data	persistence,	and	more.	TomEE	(Apache	Foundation)
supports	Servlets,	JSP,	EJB,	and	other	Java	EE	technologies.

http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

This	book	uses	GlassFish	4.1	from	Oracle,	which	is	fully	compliant	with	Java	EE	7.	I	have
selected	the	most	widely	used	technologies	in	Java	EE	development	today.	In	particular
you’ll	be	learning	about	the	following:

Java	Servlets	(JSR	340)

JavaServer	Pages	(JSR	245)

Enterprise	Java	Beans	(JSR	345)

Java	Persistence	API	(JSR	338)

Context	and	Dependency	Injection	(JSR	346)

Java	Message	Service	(JSR	343)

Java	API	for	RESTFul	Web	Services	(JSR	339)

Java	API	for	JSON	Processing	(JSR	353)

Java	API	for	WebSocket	(JSR	356)

You	may	feel	overwhelmed	with	all	these	terms,	but	I	try	to	explain	them	in	easy-to-
understand	language.

Profiles	and	Pruning
Although	Java	EE	offers	a	full	stack	of	server	technologies,	most	of	the	real-world
applications	don’t	need	all	of	them.	In	the	past,	to	get	Java	EE	certified,	a	vendor	of	an
application	server	had	to	implement	all	JSRs	that	were	listed	in	the	Java	EE	specification.
But	most	of	the	applications	don’t	use	all	technologies	included	in	the	full	Java	EE
specification.	This	is	how	that	concept	of	a	profile	came	about.	A	profile	is	a
preconfigured	subset	of	Java	technologies	geared	toward	solving	a	specific	type	of
application.	Currently,	besides	the	full	profile,	there	is	the	Web	Profile,	which	is	designed
specifically	for	the	development	of	web	applications.	The	Web	Profile	defines	required
components	(for	example,	Servlets,	JSF,	JSP,	CDI,	EJB	Lite,	JPA,	JTA),	but	vendors	may
include	technologies	from	the	full	Java	EE	specification,	too.	In	the	future,	new	profiles
may	be	created	to	address	specific	needs	of	developers.

Java	SE	Profiles
Java	SE	8	also	has	profiles.	So-called	compact	profiles	were	introduced	to	offer
configurable	lightweight	run-times	for	small	devices	with	embedded	Java.	

Pruning	is	a	way	to	reduce	the	size	of	the	Java	EE	platform.	The	pruning	process	starts
with	marking	in	JavaDoc	the	technologies	that	are	candidates	for	removal.	Then,	based	on
the	reaction	of	the	Java	community,	they	will	be	either	removed	from	the	future
specifications	or	not.	It’s	up	to	the	application	server	vendor	to	define	the	process	of
removal,	but	it’s	done	carefully	so	the	existing	application	won’t	break.	Some	of	the
technologies	(such	as	JAXR	1.0)	are	optional	for	implementation	in	Java	EE	7	servers.

https://jcp.org/en/jsr/detail?id=342
https://java.net/downloads/javaee-spec/WebProfile.pdf
https://blogs.oracle.com/jtc/entry/a_first_look_at_compact

Why	Java	EE?
You	may	say,	“I	want	my	RMI-based	stock	server	application	back.	Why	make	things	so
complex?”	The	reason	is	that	a	single	instance	of	UnicastRemoteObject	in	your	RMI
StockServer	may	need	to	process	tens	of	thousands	of	concurrent	user	requests.	Because
of	this	you’ll	need	to	write	code	ensuring	that	such	concurrent	processing	is	thread	safe.

Servlet	and	EJB	containers	are	scalable,	and	they	take	care	of	all	multithreading	issues,
enabling	you	to	write	application	code	as	if	the	application	were	the	only	user!	This	alone
should	be	a	good	reason	for	using	the	Java	EE	stack	as	opposed	to	RMI.	Without	going
into	a	detailed	comparison	between	RMI	and	other	Java	EE	technologies,	I’ll	just	add	that
if	you	need	to	deploy	your	StockServer	application	on	the	web,	corporate	firewalls	may
not	allow	clients	to	open	certain	ports	and	use	the	JRMP	communication	protocol	required
by	RMI.

Java	EE	and	Multithreading
One	of	the	major	changes	in	Java	EE	7	compared	to	previous	versions	is	that	you	are
allowed	to	introduce	multiple	threads	in	your	application	code	that	run	inside	Java	EE
containers.	It	was	not	allowed	before—only	the	container	could	create	and	manage
threads.	Now	with	the	help	of	such	classes	as		ManagedExecutorService	and
	ManagedThreadFactory	you	can	create	threads	from	your	code,	too.				

Java	EE	is	a	very	robust,	reliable,	and	scalable	platform	and	you	will	appreciate	what	its
container	will	do	for	your	code.	This	section	mentions	a	couple	of	concepts.

If	you	want	Java	EE	containers	to	help	you,	help	them	by	providing	configuration
parameters	(annotations)	that	specify	how	many	instances	of	the	same	session	bean
StockMarketQuote	you	want	pre-created	for	you	by	the	EJB	container.	Each	of	these
session	beans	may	be	“rented”	from	a	pool	to	the	client’s	request,	and	then	put	back.	How
many	beans	do	you	need?	I	don’t	know.	It	depends	on	the	load	on	your	system—the
number	of	concurrent	(simultaneous)	requests	for	price	quotes	that	have	to	be	supported
by	your	system.

Java	EE	implements	dependency	injection.	An	object	doesn’t	have	to	reach	out	to	get	the
resources	it	needs	because	the	container	can	inject	its	resources	(and	your	code	can	inject
application	objects)	into	your	object	using	annotations.	You	see	examples	of	CDI	later	in
the	book.

WebSocket	protocol	allows	you	to	switch	from	the	request-response-based
communications	typical	in	web	applications	to	a	simultaneous	two-way	data	exchange
between	the	client	and	server.	The	server	can	initiate	data	push	without	waiting	for	the
client	requests.	Consequently,	creating	real-time	web	applications	becomes	a	lot	easier.

JSON	stands	for	JavaScript	Object	Notation.	JSON	became	a	de	facto	standard	data
format	used	in	data	communication	between	web	browsers	and	servers.	Java	EE	7	defines
a	standard	way	of	generating	and	parsing	JSON	data.

Interceptors	offer	a	mechanism	by	which	containers	can	intercept	methods	invoked	on

your	session	beans.	When	the	call	is	intercepted,	you	can	specify	additional	code	to	be
called	before	or	after	the	method	is	executed.	For	example,	imagine	that	you	need	to	add
logging	before	certain	methods	are	called.	Adding	interceptors	is	an	easy	way	to	do	this.

Messaging	allows	you	to	introduce	asynchronous	processing	into	the	business	workflow
of	your	application.	Instead	of	making	direct	requests	to	business	objects	of	your
application,	your	code	can	place	messages	into	queues	maintained	by	special	servers—
Message-Oriented	Middleware	(MOM).	

Starting	in	Lesson	26	you	have	a	chance	to	apply	these	concepts	and	features.	Oracle
published	a	complete	Java	EE	7	Tutorial	that	covers	each	and	every	technology	in	detail.
The	tutorial	uses	GlassFish	server,	and	this	book	uses	it,	too.

Java	EE	Code	Samples
More	than	200	code	samples	illustrating	various	Java	EE	7	technologies	are	available
at	https://github.com/javaee-samples/javaee7-samples.

http://docs.oracle.com/javaee/7/tutorial/doc/
https://glassfish.java.net/
https://github.com/javaee-samples/javaee7-samples

Try	It
This	lesson	was	a	high-level	overview	of	the	Java	EE	7	platform.	The	hands-on	exercises
starting	in	the	next	lesson	require	that	you	have	an	application	server	installed,	and
installing	the	GlassFish	server	is	your	next	assignment.

Lesson	Requirements
You	should	have	Java	installed.

Step-by-Step
One	instance	of	the	GlassFish	server	may	run	several	domains,	and	domain1	is	the	default.
The	command	to	stop	a	domain	looks	similar,	but	instead	of	using	the	command	start-
domain	use	stop-domain.	

1.	 Download	GlassFish	Server	Open	Source	Edition.	At	the	time	of	this	writing	the	latest
version,	GlassFish	4.1,	is	available	at	the	following	URL:
https://glassfish.java.net/download.html.

2.	 Download	and	unzip	the	file	titled	Java	EE	Full	Platform.

3.	 In	the	command	(or	Terminal)	window	switch	to	the	directory	glassfish4/bin.	If	you
use	Mac	OS,	start	the	server	using	the	following	command:

./asadmin	start-domain	domain1	

Windows	users	start	the	server	using	the	following	command:

asadmin.bat	start-domain	domain1	

On	my	computer	after	starting	GlassFish	the	Terminal	window	looked	like	Figure	25-
2.

Figure	25-2:	Starting	GlassFish	from	the	Terminal	window	in	Mac	OS

4.	 By	default	GlassFish	Server	runs	on	port	8080	and	the	port	for	server	administration	is
4848.	Open	your	web	browser	and	enter	http://localhost:8080—you	should	see	the
GlassFish	welcome	page.

5.	 Open	the	GlassFish	administration	console	by	entering	in	your	browser
http://localhost:4848.	The	web	browser	should	display	the	window	shown	in	Figure
25-3.

https://glassfish.java.net/download.html
http://localhost:8080
http://localhost:4848

Figure	25-3:	The	GlassFish	admin	console

6.	 Download	the	Oracle	GlassFish	Server	Quick	Start	Guide	from
https://glassfish.java.net/docs/4.0/quick-start-guide.pdf	for	a	description	of	the
administrative	commands	for	working	with	the	GlassFish	server.	

TIP			Please	select	the	videos	for	Lesson	25	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

https://glassfish.java.net/docs/4.0/quick-start-guide.pdf
http://www.wrox.com/go/javaprog24hr2e

Lesson	26
Programming	with	Servlets
Web	applications	can	serve	static	or	dynamic	content.	Some	examples	of	static	content	are
text	files	with	HTML	markup,	images,	and	video.	Dynamic	content	is	formed	on	the	fly.
Think	of	a	web	application	that	enables	you	to	browse	the	inventory	of	an	online	store.
The	content	you	see	on	your	screen	is	being	created	based	on	your	queries—in	other
words,	dynamically.

In	the	Java	EE	world,	web	content	can	be	served	by	a	program	running	in	a	container	with
deployed	servlets,	Java	Server	Pages	(JSP),	JavaServer	Faces	(JSF),	or	a	third-party
framework.	You	can	also	create	a	web	application	by	implementing	a	SOAP	or	RESTful
Web	Service.	You	can	also	create	a	web	application	based	on	a	Plain	Old	Java	Object
(POJO)	utilizing	WebSocket	protocol.	Servlets,	JSP,	and	JSF	not	only	return	the	data,	but
also	present	it	as	formatted	HTML	pages,	hence	the	term	presentation	layer	(refer	to
Figure	25-1).	Web	Services	or	WebSocket-based	applications,	on	the	other	hand,	return
just	the	data	(see	Chapter	33).

A	servlet	is	a	Java	class	written	by	certain	rules	and	deployed	in	a	Java	EE–compliant
servlet	container	of	your	choice.	The	client	program	can	be	a	lightweight
HTML/JavaScript,	a	heavyweight	applet,	or	a	Swing	or	JavaFX	program.	This	lesson	uses
the	most	popular	means	of	web	communication:	Web	browsers	talk	to	servlets	using
HTTP,	which	stands	for	Hypertext	Transfer	Protocol.

All	examples	in	this	lesson	work	in	any	servlet	container	supporting	the	Servlet	3.1
specification.	The	lesson	uses	a	full	application	server	GlassFish,	which	may	be	an
overkill	if	your	application	only	needs	the	servlet	support.	If	you	want	to	experiment	with
a	lightweight	servlet	container,	consider	using	Apache	Tomcat	or	Jetty.	But	every	Java	EE
application	server	comes	with	a	servlet	container,	and	because	you	are	going	to	study
several	Java	EE	technologies,	installing	a	full	featured	Java	EE	application	server	covers
you	for	all	upcoming	lessons.

http://tomcat.apache.org/
http://www.eclipse.org/jetty/

The	Big	Picture
Figure	26-1	depicts	a	web	browser	making	HTTP	requests	to	the	servlet
named	MyServlet	and	receiving	HTTP	responses	that	MyServlet	sends	back.

Figure	26-1:	A	sample	client-servlet	data	flow

Before	you	even	learn	how	to	create	and	deploy	servlets,	take	a	look	at	the	components
and	the	workflow	of	an	imaginary	online	store,	www.MyBooks.com,	which	is	developed
and	deployed	with	Java	servlets.

The	client’s	machine	just	needs	a	web	browser.	The	bookstore	consists	of	a	number	of
HTML	web	pages	for	interacting	with	users.	The	web	browser	sends	the	user	requests
to	the	server	with	the	name	MyBooks.com	in	the	form	of	an	HttpRequest	object.

The	computer	that	hosts	MyBooks.com	has	to	run	some	web	server	software,	usually
on	port	80.	For	secure	communication	with	HTTPS	(HyperText	Transfer	Protocol
Secure)	the	default	port	is	443.	These	two	ports	are	usually	open	on	any	web	server,
otherwise	external	clients	wouldn’t	even	be	able	to	make	any	requests	to	the	resources
deployed	under	such	a	server.

The	web	server	“listens	to”	the	users’	requests.	If	a	web	server	receives	a	simple
request	for	static	HTML	content	(such	as	a	file	or	an	image),	the	web	server		processes
the	request	without	needing	to	engage	any	additional	software,	and	it	sends	back
HttpResponse	with	the	requested	static	content	inside.

The	website	MyBooks.com	also	runs	a	servlet	container	with	deployed	servlet(s).	If
the	web	server	receives	a	user	request	to	find	books	based	on	some	search	criteria,	it
creates	and	passes	HttpServletRequest	to	the	appropriate	servlet	(for	example,
FindBooksServlet),	which	should	be	deployed	and	running	in	the	servlet	container.
The	next	section	shows	sample	HTML	containing	a	form	that	explicitly	lists
FindBooksServlet	by	name.

The	servlet	invokes	the	Java	code	that	performs	the	search	and	creates	(on	the	fly)	the
HTML	page	listing	the	found	books	that	meet	the	requested	search	criteria,	and	sends
it	to	the	web	server	wrapped	in	HttpServletResponse.	

The	web	server	extracts	the	content	from	HttpServletResponse,	wraps	it	inside	the
HttpResponse	object,	and	sends	it	back	to	the	user’s	web	browser.

The	user’s	browser	displays	the	received	page	without	knowing	if	it	was	a	static

HTML	page	or	a	freshly	baked	one.

The	user’s	web	browsers	don’t	need	to	know	which	server-side	technology	has	been	used
to	prepare	dynamic	content.	It	could	be	Java,	.NET,	Python,	PHP,	and	so	on.	The	browser
just	knows	that	to	send	data	to	the	server	using	HTTP	protocol,	the	data	has	to	be	placed
inside	HttpRequest.	Web	browsers	also	know	how	to	display	content	arriving	from	the
server	in	a	form	of	HttpResponse.	All	other	magic	that’s	happening	on	the	server	is	of	no
interest	to	the	web	browsers.

The	Thin	Client
Let’s	start	with	creating	a	simple	HTTP	page	that	can	serve	as	a	client	for	a	Java	servlet.
Listing	26-1	shows	a	simple	HTML	file	with	a	form	containing	a	text	input	field	and	a
Submit	button,	which	users	can	use	to	find	a	book	by	its	title.

Listing	26-1:	HTML	that	gives	the	404	error

<html>
			<head>
				<title>Find	a	book</title>
			</head>
			<body>
					Enter	a	word	from	the	book	title:
					<form	action=http://www.MyBooks.com/servlet/FindBooksServlet	
																																																	method=Get>
							<input	type=Text	name=booktitle>
							<input	type=Submit	value="Search">
				</form>
			</body>
</html>

In	any	plain	text	editor,	create	a	file	called	BookSearch.html	containing	the	HTML	from
Listing	26-1.	Open	this	file	in	a	web	browser	(File	→	Open),	enter	any	text	in	the	input
field,	and	press	Search.	You	get	an	error	message	because	there	is	neither	a	server	behind
the	URL	www.MyBooks.com	nor	a	servlet	called	FindBooksServlet	at	this	address.	This
was	just	an	illustration	of	what	the	thinnest	client	could	look	like.

Clients	communicate	with	servlets	using	HTTP	protocol,	and	when	no	requested	network
resource	is	found,	the	HttpResponse	object	comes	back	with	an	error.	If	the	server
responds,	but	the	requested	resource	(the	FindBooksServlet)	is	not	there,	the	error	code
404	is	returned.	If	the	server	doesn’t	respond,	the	web	client	shows	an	appropriate	error
code.	If	the	client	successfully	receives	the	requested	resource	from	the	specified	URL,	the
HTTP	status	code	is	anywhere	in	the	range	from	200	to	300.	The	HTTP	may	also	return
304,	which	indicates	that	the	browser	found	in	its	cache	an	unchanged	local	copy	of	the
requested	resource,	so	there	was	no	need	to	send	a	request	to	the	web	server.	The	list	of	all
possible	HTTP	status	codes	is	available	at	www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

How	to	Write	a	Servlet
To	create	a	servlet,	write	a	class	that	extends	from	HttpServlet	and	annotate	it	with	the
@WebServlet	annotation.	The	class	HttpServlet	extends	GenericServlet,	which	defines	the
method	service().	The	method	service()	receives	the	client’s	response	and	directs	it	to	one
of	the	methods	of	your	class	that’s	a	descendant	of	HttpServlet.	Typically	you	have	to
override	the	methods	doGet()	and/or	doPost().	Which	one	to	override?	This	depends	on
the	client’s	request	method.	If	the	client	uses	the	HTTP	request	with	the	method	Post,
override	doPost(),	if	the	client	uses	the		Get		request	(see	Listing	26-1),	override	the
callback	doGet(),	as	shown	in	your_first_servlet.

Listing	26-2:	Your	first	servlet

@WebServlet(urlPatterns="/books",	name="FindBooksServlet")
public	class	FindBooksServlet	extends	HttpServlet	{
		@Override
		public	void	doGet(HttpServletRequest	request,
											HttpServletResponse	response)	throws	ServletException	{
									
									//	The	code	processing	the	request	goes	here
									//	The	resulting	Web	page	will	be	sent	back	via	the
									//	I/O	stream	that	response	variable	contains
									PrintWriter	out	=	response.getWriter();
									out.println("Hello	from	FindBooks");
			}
}

All	the	classes	that	support	servlets	are	located	in	the	package	javax.servlet		and	are
packaged	in	a	JAR	file,	the	location	of	which	should	be	listed	in	the	CLASSPATH
environment	variable.	The	javax.servlet	package	is	not	included	with	Java	SE—you	need
to	either	have	Java	EE	7	SDK	installed	or	read	the	documentation	of	the	servlet	container
of	your	choice	to	know	where	they	are	located.	GlassFish	4	comes	with	Java	EE	7	files,	so
no	separate	download	is	needed.

If	you	properly	deploy	FindBooksServlet	on	Listing	26-1	gets	as	a	response	a	web	page
containing	the	text	“Hello	from	FindBooks.”	

http://www.oracle.com/technetwork/java/javaee/downloads/index.html

How	to	Deploy	a	Servlet
The	annotation	@WebServlet	is	where	you	specify	servlet	deployment	parameters.	Prior
to	Java	EE	6	you	needed	to	specify	deployment	parameters	in	the	web.xml	file,	but	now
that’s	optional.	FindBooksServlet	uses	the	deployment	parameters	urlPatterns	and	name.
The	former	is	used	to	match	one	of	the	servlets	deployed	on	the	server	to	the	URL.	The
value	/books	means	that	whenever	the	client	sends	a	request	containing	the	pattern	books
in	its	URL,	the	request	has	to	be	redirected	to	the	FindBooksServlet	.	For	example,	the
servlet	container	forwards	the	request	http://localhost:8080/books	to	the
FindBooksServlet.

Each	web	server	and	servlet	container	has	a	directory	known	as	a	document	root.	It	is	used
not	only	for	servlet-based	websites	but	also	for	the	deployment	of	static	HTML	files.	For
example,	if	you	put	the	HTML	file	TermsAndConditions.html	in	the	subfolder	legal	of	the
document	root	of	the	server	MyBooks.com,	users	would	need	to	direct	their	web	browsers
to	www.mybooks.com/legal/TermsAndConditions.html.

You	can	read	the	documentation	for	the	server	of	your	choice	to	find	out	the	location	of
the	document	root	directory.	In	the	GlassFish	application	server,	the	default	document	root
is	the	directory	/glassfish/domains/domain1/docroot.	In	Apache	Tomcat	it’s	the	directory
webapps.	If	you	are	planning	to	create	a	servlet,	its	deployment	directory	is	also	located	in
the	document	root,	but	it’s	in	the	subdirectories	WEB-INF	and	META-INF.

WEB-INF	has	the	subdirectories	classes	and	lib	and	might	contain	the	optional	file
web.xml.	It	may	be	needed	to	configure	filters;	otherwise		you	can	specify	all	deployment
parameters	using	Java	annotations.	But	if	you	use	both	annotations	and	web.xml,	the
values	in	this	file	override	the	corresponding	values	in	the	annotations.	This	allows
changing	deployment	parameters	without	requiring	recompilation	of	the	servlets.	The
WEB-INF	directory	also	may	have	some	container-specific	files.	

The	directory	META-INF	may	have	files	containing	metadata	about	this	web	application,
like	manifest.mf	or	other	data	specific	to	a	third-party	framework	or	application	server
content.	For	example,	Apache	Tomcat	uses	a	file	called	context.xml	where	you	may
specify	the	information	about	JDBC	drivers.	

This	is	what	the	directory	structure	of	the	application	deployed	in	the	document	root
directory	can	look	like:

document	root	dir
					WEB-INF
						classes
							com
									practicaljava
											lesson26
													FindBooksServlet.class
						lib
META-INF
				manifest.mf

http://localhost:8080/books

The	class	com.practicaljava.lesson26.FindBooksServlet	was	compiled	into	the	directory
classes.	If	you	have	some	third-party	JAR	files,	add	them	to	the	lib	directory.

When	your	web	application	is	complete,	most	likely	it’ll	consist	of	multiple	files,	and
typically	the	entire	directory	structure	is	deployed	as	one	compressed	file	with	the
extension	.war,	which	stands	for	web	archive.	Such	files	can	be	created	manually,	by	your
Integrated	Development	Environment	(IDE)	plug-ins,	or	by	one	of	the	build	tools	such	as
Ant,	Maven,	or	Gradle.	Later	in	this	lesson	you	see	how	to	create	a	war	file	with	Eclipse
for	Java	EE	Developers.	Lesson	36	is	about	automating	builds	with	Gradle,	and	you’ll	see
how	to	automate	creation	of	the	.war	files.

Configuring	Glassfish	in	Eclipse	IDE
In	the	“Try	It”	section	in	Lesson	25	you	started	and	stopped	GlassFish	Server	from	a
command	window.	However,	it’s	a	lot	more	convenient	to	develop	and	deploy	web
applications	when	you	don’t	need	to	leave	the	IDE.	Eclipse	for	Java	EE	is	a	good	fit	for
the	development	of	web	projects.		It	supports	a	variety	of	Java	EE	application	servers.	In
this	section	you	configure	GlassFish	Server	so	you	can	do	all	the	work	inside	Eclipse.

Using	Other	IDEs
NetBeans	IDE	and	IntelliJ	IDEA	also	offer	good	support	for	Java	EE	developers.

If	your	GlassFish	instance	is	still	running,	stop	it	from	the	command	line.	In	Eclipse,
switch	to	Java	EE	perspective	by	pressing	the	Java	EE	button	on	the	top-right	corner	of
the	toolbar,	as	shown	in	Figure	26-2.

Figure	26-2:	Switching	to	Java	EE	perspective	in	Eclipse

If	you	don’t	see	this	button,	use	the	Eclipse	menu	Window		→		Open	Perspective		→	
Other		→		Java	EE.		Go	to	the	Servers	view	and	click	the	link	to	add	a	new	server,	as
shown	in	Figure	26-3.

Figure	26-3:	Configuring	a	new	server	in	Eclipse

You	see	a	new	pop-up	window	with	several	server	adapters,	but	to	add	GlassFish	to	the
list	click	the	Download	Additional	Server	Adapters	link	(see	Figure	26-4).

Figure	26-4:	Download	server	adapters

Eclipse	searches	for	available	server	adapters.	If	you	see	GlassFish	Tools	in	the	menu,
install	them.	If	not,	you	need	to	install	the	tools	by	selecting	Help		→	Marketplace	in
Eclipse.	In	the	marketplace	window	enter	GlassFish	in	the	Find	field.	Select	GlassFish
Tools	for	Luna	and	install	them	(make	sure	that	during	install	Oracle	Java	EE	tools	are
also	selected).	(See	Figure	26-5.)

Figure	26-5:	Installing	GlassFish	Tools	for	Luna	from	Eclipse	Marketplace

Now	go	back	to	the	Servers	view	and	click	the	link	to	create	new	server.	Select	GlassFish
4	from	the	list	(see	Figure	26-6)	and	complete	the	configuration	.

Figure	26-6:	Configuring	GlassFish	in	Eclipse

The	next	pop-up	asks	you	about	a	default	JRE	(I	use	1.8)	and	where	GlassFish	Server
should	be	located.	According	to	my	installation	I	specified
/Users/yfain11/glassfish4/glassfish	and	pressed	Next.	Accept	the	default	parameters	for
domain1,	don’t	enter	any	passwords	for	admin	in	the	next	window,	and	press	Finish.
Eclipse	starts	GlassFish,	and	the	Eclipse	console	should	look	similar	to	a	command
window	shown	in	the	“Try	It”	section	of	Lesson	25.

You	may	configure	several	Java	EE	servers	of	the	same	or	different	vendors	in	Eclipse
IDE.	For	example,	I	have	Apache	Tomcat	8,	WildFly	8.1,	and	GlassFish	4.1	configured	in
my	Eclipse,	as	shown	in	Figure	26-7.

Figure	26-7:	Three	servers	configured	in	Eclipse

Starting	and	Stopping	Servers	in	Eclipse
To	start	or	stop	the	configured	server	from	Eclipse,	visit	the	Servers	view,	right-click
the	server	name,	and	select	Start	or	Stop	from	the	pop-up	menu.	If	you	want	to	debug
the	server-side	code,	select	Debug	instead	of	Start.	

How	to	Create	a	Servlet	in	Eclipse
Open	File	→	New	→	Other	→	Web	and	select	the	Create	Dynamic	Web	Project	option.	In
the	pop-up	window,	name	the	project	Lesson26.	Because	you	are	going	to	deploy	the
servlet	under	GlassFish	Server,	make	sure	that	GlassFish	is	selected	in	the	Target	Runtime
combobox.	Click	Finish,	and	a	new	Eclipse	project	is	created.	It	doesn’t	have	the	same
structure	as	the	projects	you’ve	been	creating	so	far.	It	has	a	subfolder	called	WebContent
that	contains	the	WEB-INF	and	META-INF	directories	that	will	be	used	for	deployment	in
the	servlet	container	of	your	choice.	(See	Figure	26-8.)

Figure	26-8:	Dynamic	Web	Project	Structure

Right-click	the	project	name,	select	New→Servlet,	and	then	specify
com.practicaljava.lesson26	as	the	name	of	the	package	and	FindBooksServlet	as	the	class
name.	Click	Next	and	edit	the	URL	mapping	field	to	be	/books	(see	Figure	26-9;	I’ll
explain	it	shortly).

Figure	26-9:	Changing	the	URL	mapping	for	a	servlet

Click	Next	again.	The	next	window	asks	you	which	method	stubs	you’d	like	to	have	auto-
generated;	keep	the	default	doGet()	and	doPost().	Finally,	click	Finish,	and	Eclipse

generates	the	code	shown	in	Listing	26-3	(I	just	removed	some	comments).

Listing	26-3:	Generated	FindBooks	servlet

package	com.practicaljava.lesson26;
import	java.io.IOException;
import	javax.servlet.ServletException;
import	javax.servlet.annotation.WebServlet;
import	javax.servlet.http.;
import	javax.servlet.http.HttpServletRequest;
import	javax.servlet.http.HttpServletResponse;
@WebServlet(urlPatterns	=	{"/books"})
public	class	FindBooksServlet	extends	HttpServlet	{
						private	static	final	long	serialVersionUID	=	1L;
				public	FindBooks()	{
								super();
				}
						protected	void	doGet(HttpServletRequest	request,
									HttpServletResponse	response)	throws	ServletException,
																																																					IOException{
												//	TODO	Auto-generated	method	stub
						}
						protected	void	doPost(HttpServletRequest	request,
									HttpServletResponse	response)	throws	ServletException,	
																																																					IOException{
												//	TODO	Auto-generated	method	stub
						}
}

I	explain	the	servlet’s	data	flow	in	the	section	“Browser-Servlet	Data	Flow.”	Meanwhile
let’s	see	the	servlet	FindBooksServlet	in	action.	Add	the	following	two	lines	in	the	doGet()
method	to	get	access	to	the	output	stream	and	send	the	message	“Hello	from	FindBooks”:

PrintWriter	out	=	response.getWriter();
out.println("Hello	from	FindBooks");

Don’t	forget	to	add	the	import	statement	for	PrintWriter.	The	final	step	is	to	deploy	the
servlet	under	GlassFish	Server.	Open	the	Servers	view,	right-click	the	server,	and	select
Add	and	Remove	from	the	pop-up	menu.	Select	the	project	Lesson26	in	the	left	panel	and
add	it	to	the	right	one.	Click	Finish.

The	servlet	deployment	is	finished.	Now	right-click	the	class	name		FindBooksServlet	in
the	Eclipse	project,	select	Run	on	Server	→	GlassFish,	and	click	Finish.	If	the	server	was
not	running,	Eclipse	first	starts	the	server	and	then	forms	the	URL	to	access	the	servlet
FindBooks.	Eclipse	runs	its	internal	web	browser	and	displays	the	message	shown	in
Figure	26-10.

Figure	26-10:	Running	the	servlet	in	Eclipse	internal	browser

You	can	copy	this	URL	into	any	other	web	browser	on	your	computer;	the	response	will
be	the	same.	Starting	the	server	from	inside	Eclipse	doesn’t	change	the	fact	that	it	listens
to	the	port	8080,	and	any	client	can	request	and	deploy	servlets	via	this	port.		

Please	note	that	the	URL	ends	with	/books	and	not	FindBooksServlet.	Take	another	look
at	Figure	26-8.	You’ve	changed	the	URL	mapping	instructing	the	servlet	container	to	route
all	HTTP	requests	that	include	/books	to	the	servlet	FindBooksServlet.		Eclipse	has
generated	the	proper	annotation	in	the	servlet’s	class	that	may	look	similar	to	this	one:

@WebServlet(urlPatterns	=	{"/books"})	
public	class	FindBooksServlet	extends	HttpServlet

Servlets	belong	to	the	presentation	layer,	so	let’s	change	the	web	page	presentation	a	little
bit.	Replacing	the	code	of	the	doGet()	method	with	following	three	lines	shows	the	output
on	yellow	background	and	in	the	header	<H2>	style:

PrintWriter	out	=	response.getWriter();
out.println("<html><body	bgcolor=yellow>");
out.println("<h2>Hello	from	FindBooks</h2>");

The	browser	renders	this	HTML	page,	as	shown	in	Figure	26-11.

Figure	26-11:	Changing	the	presentation	of	a	web	page	from	the	servlet

Having	HTML	markup	embedded	inside	servlets	has	some	drawbacks	though.	You	need
to	recompile	the	Java	code	every	time	the	presentation	changes.	There	are	more
drawbacks	in	having	HTML	embedded	in	Java,	which	are	covered	at	the	beginning	of	the
next	lesson.		

Hot	Deployment
When	you	modify	the	code	of	a	Java	servlet	or	other	application	class,	the	server
might	need	to	be	restarted	or	the	servlet	might	need	to	be	redeployed.	This	depends
on	the	hot	deployment	(without	the	server	restart)	capabilities	of	a	specific	server	you
use.	If	you	want	to	automate	redeployments	of	your	server-side	Java	code,	consider
using	a	third-party	tool	JRebel,	which	automatically	reloads	all	your	Java
modifications	in	the	server.

Deploying	a	Web	Application	as	WAR
A	real-world	web	application	may	consist	of	multiple	files,	and	it	would	be	easier	if	all	of
them	are	placed	into	a	single	archive	file	and	deployed	by	placing	such	a	file	in	the
document	root	directory	of	your	servlet	container.	Usually	you	create	build	scripts	that	that
compile	all	required	files,	archive	them	in	a	WAR	file,	and	copy	this	file	into	the
deployment	directory.	You	get	familiar	with	a	build	tool	called	Gradle	in	Lesson	36.

But	if	you	want	to	quickly	create	a	WAR	file	by	Eclipse	means,	just	right-click	the	project
name	and	select	the	menu	Export		→		Web	→		WAR	file.

In	a	couple	of	seconds	you	have	Lesson26.war,	a	file	that	you	can	deploy	in	any	Java	EE–
compliant	container.	Seasoned	software	developers	wouldn’t	like	this	way	of	building
WARs;	they	would	argue	that	creating	build	scripts	up	front	is	the	right	thing	to	do.
Because	you’re	just	making	your	first	steps	in	the	server-side	development,	though,	using
convenient	features	offered	by	IDE	is	justifiable.	

http://zeroturnaround.com/software/jrebel/

Browser-Servlet	Data	Flow
One	servlet	can	serve	multiple	users,	so	let’s	review	the	entire	process	of	client-servlet
communication.	Regular	Java	Servlets	run	in	a	container,	which	automatically	spawns	a
new	thread	for	every	client’s	request	without	requiring	you	to	do	any	thread
programming.	This	sounds	great	and	can	work	fine	if	the	number	of	users	is	limited.	Later
in	the	section	on	asynchronous	servlets	you	see	a	more	scalable	way	of	reusing	threads,
but	for	now	you	can	concentrate	on	a	traditional	single-thread	model—one	thread	per	user.

A	web	page	may	include	an	HTML	form,	a	link,	or	a	JavaScript	code	that	can	sendan
HTTP	request	(for	example,		Get		or		Post)	to	the	web	server.	When	the	very	first	user’s
request	hits	the	FindBooksServlet	,	the	container	check	whether	this	servlet	is	up	and
running.	If	not,	the	container	loads	and	instantiates	it	and	calls	the	servlet’s	method	init().
Even	if	you	didn’t	override	this	method,	it	exists	in	the	superclass	HttpServlet.

Servlet	Life	Cycle	Events
If	you’d	like	to	perform	some	actions	when	the	servlet	is	initialized	or	about	to	be
destroyed,	use	ServletContextListener	to	intercept	these	events.

Then	the	container	calls	the	method	service()	on	your	servlet’s	superclass,	which	redirects
the	request	to	doGet(),	doPost(),	or	similar	doXXX(),	passing	the	arguments
HttpServletRequest	and	HttpServletResponse.	Your	code	can	get	the	data	that	came	from
the	web	page	by	calling	the	method	getParameter()	on	the	HttpServletRequest	object
supplied	by	the	servlet	container	to	doGet(),	doPost()	and	so	on.

After	you	get	the	parameter(s),	process	it	in	the	business	layer,	which	can	be	implemented
either	as	POJOs	talking	to	some	data	store	or	as	an	EJB.	Return	the	result	to	the	client	by
getting	the	reference	to	the	PrintWriter	object;	it	knows	how	to	send	text	data	to	the	user.
For	non-textual	results,	use	the	class	OutputStream	instead	of	PrintWriter.	Don’t	forget	to
set	the	content	type	(the	MIME	type)	by	calling	setContentType().	For	example,	if	you	are
sending	an	object	containing	PDF	content	and	want	the	browser	to	automatically	open
Acrobat	Reader,	call	the	function	response.setContentType(“application/pdf”);.

The	servlet	container	controls	when	the	servlet	is	loaded,	and	when	its	init(),	service(),	and
destroy()	methods	are	called.	The	method	destroy()	is	called	when	a	server	administrator
decides	to	unload	the	servlet,	the	server	is	shutting	down,	or	the	server	needs	to	free	some
memory.

If	the	HTTP	client	sent	some	data	to	the	servlet,	it	can	get	them	by	calling	getParameter()
on	the	HttpServletRequest	object.	The	following	code	gets	the	name	of	the	book	entered
by	the	user	in	a	field	named	booktitle	and	responds	with	the	price	of	$65:

public	void	doGet(HttpServletRequest	req,	HttpServletResponse	res)
																				throws	ServletException,	IOException	{
	String	title	=	req.getParameter("booktitle");
	PrintWriter	out	=	res.getWriter();
	res.setContentType("text/html");

http://en.wikipedia.org/wiki/MIME

	out.println("<html><body>");
	out.println("<h2>the	book	"+title+"	costs	only	$65");
	out.println("</body></html>");
}

HTTP	Get	and	Post	Requests
HTTP	specification		defines	several	methods	for	data	exchange	on	the	web,	but	with
servlets	the		Get	and	Post	methods	were	the	most	widely	used	ones.	(In	Lesson	33	you	see
the	use	of	other	HTTP	methods.)	If	you	don’t	specify	the	method,	Get	is	used	by	default.
Because	I’ve	used	the		method=Get	in	the	tag	<form>	in	Listing	26-1	,	the	servlet
container	invokes	the	method		doGet()	on		FindBooksServlet	.	With	Get,	the	web	browser
appends	the	values	entered	in	the	form	to	the	end	of	the	URL	after	the	question	mark.	For
example,	if	the	user	enters	the	word	Apollo	as	a	book	title,	the	URL	may	look	like	this:

http://www.mybooks.com?booktitle=Apollo

If	a	form	(or	a	script)	submits	multiple	values,	the	URL	includes	several	key/value	pairs
separated	by	the	&	symbol	after	the	question	mark:

http://www.mybooks.com?booktitle=Apollo&author=Smith

With	Get	it’s	easy	to	copy	and	paste	or	bookmark	the	URL	with	parameters.	On	the	other
hand,	with	Get	the	data	is	not	protected;	you	can	see	it	in	clear	text.

The	method	Post	is	typically	used	to	send	data	to	the	server.	It	also	may	be	used	for
sending	the	binary	data	(for	example,	uploading	an	image)	to	the	server.	Of	course,	the
log-in	forms	shouldn’t	use	Get	because	you	don’t	want	the	user’s	ID	and	password	to	be
shown	in	the	URL.	To	process	Post	requests,	servlets	have	to	override	the	method
doPost().	It’s	common	to	use	Get	for	data	retrieval	and	Post	for	sending	data	to	the	server.

Session	Tracking
HTTP	is	a	stateless	protocol.	If	a	user	retrieves	a	web	page	with	a	list	of	books	from	the
FindBooksServlet	(or	any	other	server-side	program)	and	then	goes	to	another	web	page,
this	second	page	does	not	know	what	was	shown	or	selected	on	the	first	one.	To	preserve
data	to	more	than	one	web	page,	session	tracking	has	to	be	implemented.

A	session	is	a	logical	task,	which	the	user	is	trying	to	complete	by	visiting	a	website.	For
example,	the	process	of	buying	a	book	may	involve	several	steps:	book	selection,	input	of
billing	and	shipping	information,	and	so	on.	These	steps	combined	are	an	example	of	a
session.	When	a	purchase	order	is	placed,	the	session	is	over.

The	session	information	can	be	stored	either	on	the	client	or	on	the	server	side.	On	the
client	side	the	user’s	session	data	can	be	stored	using	cookies	(explained	in	the	next
section)	or	URL	rewriting—this	information	is	being	sent	back	and	forth	from	the	client	to
the	server	as	a	part	of	the	URL.

The	server-side	alternative	for	storing	session	data	is	a	session	tracking	application
programming	interface	(API)	that	offers	a	number	of	methods	defined	in	the
interface	HttpSession.	In	this	case	the	session	data	is	stored	only	on	the	server,	but	the
client	gets	only	a	session	ID	to	identify	a	series	of	HTTP	requests	made	by	the	same
user.	To	create	a	session	on	the	server,	call	the	method	on	the	HttpServletRequest
object		getSession(true),	which	means	“get	a	reference	to	an	existing	session,	or	create	the
new	one.”	Calling	this	method	without	an	argument	gives	you	either	a	reference	to	the
existing	session	or	null.	The	next	sections	provide	more	details	about	session	tracking.			

Cookies
A	cookie	is	a	small	piece	of	data	that	your	servlet	can	send	to	the	web	client	to	be	stored	as
a	file	on	the	user’s	computer.	On	every	subsequent	request	from	that	client,	the	browser
checks	the	local	non-expired	cookies	(domain	specific)	and	sends	them	to	the	server,
uniquely	associating	the	request	with	a	given	session.	The	cookies	are	persistent,	but	the
user	may	disable	them	by	selecting	the	appropriate	setting	in	his	web	browser.	Here’s	how
the	servlet	can	send	a	business-related	Cookie	to	the	client:

Cookie	myCookie	=	new	Cookie("bookName",
																																"Java	Programming	24-hour	trainer");
//	Set	the	lifetime	of	the	cookie	for	24	hours
myCookie.setMaxAge(60*60*24);
response.addCookie(myCookie);

This	is	how	a	servlet	can	retrieve	a	client’s	cookies	that	arrive	with	HttpServletRequest:

Cookie[]	cookies	=	request.getCookies();

if	(cookies	!=	null){
	//	Get	each	cookie	(a	name/value	pair)
	for	(i=0;	i	<	cookies.length;	i++){
			Cookie	currentCookie	=	cookie[i];

			String	name	=	currentCookie.getName();
			String	value	=	currentCookie.getValue();
	}
}

Even	though	you	can	store	multiple	cookies	on	the	client,	as	in	the	preceding	code,	it’s	not
a	good	idea	to	send	the	application	data	back	and	forth	over	the	network.	Typically	the
session	data	is	stored	in	the	HttpSession	object	described	later	in	the	section	Server-Side
HttpSession.

Other	cookies
Besides	the	cookies	that	your	servlet	creates	and	sends	to	the	web	browser,	search
analytics	engines	may	send	their	own	cookies,	too.	

HTML	5	Web	Storage
HTML	5	supports	web	storage	(local	storage)	that	allows	storage	of	key	value	pairs
on	the	user’s	disk	drive,	but	as	opposed	to	cookies,	these	data	always	stay	on	the
client	side.	

URL	Rewriting
If	a	client	disables	cookies,	the	URL	rewriting	may	be	used	for	keeping	track	of	the	user’s
session.	In	this	case	the	session	ID	and	other	required	session	data	are	attached	to	the	URL
string	and	are	being	sent	back	and	forth	with	each	client/server	communication.	If	you’ve
noticed	something	such	as	jsessionid=12345	in	the	URL	string	of	any	website,	it	means
that	URL	rewriting	is	being	used.

Session	ID	and	Security
OWASP	stands	for	Open	Source	Web	Application	Security	Project.	It	publishes	a
document	titled	”Top	10	Security	Risks.”		One	of	the	top	10	risks	is	broken
authentication	and	session	management.	Hackers	can	hijack	a	session	ID	presenting
themselves	as	legitimate	users.

Some	applications	configure	the	servers	to	switch	from	cookies	to	URL	re-writing	for
delivering	the	session	ID	to	allow	the	users	who	turned	off	the	cookies	to	still	use
their	application.	Such	configuration	results	in	attaching	the	session	ID	to	the	URL,
which	makes	hijacking	the	session	easier.	It’s	recommended	to	add	a
section	<session-config>	to	the	web.xml	of	your	Java	EE	application	server	that
includes	the	element	<tracking-mode>COOKIE</tracking-mode>	so	that	only
cookies	can	be	used	for	storing	session	IDs.	This	doesn’t	guarantee	that	the	user’s
session	ID	won’t	be	stolen,	but	will	definitely	lower	the	risk.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Server-Side	HttpSession
You	should	keep	the	data	that	belong	to	a	user’s	session	(such	as	the	shopping	cart)	inside
the	HttpSession	object	in	the	servlet	container,	which	creates	one	such	object	per	client.
The	servlet	can	store	there	any	Serializable	objects.	The	following	line	creates	a	session
object	(or	finds	a	previously	created	one):

HttpSession	mySession	=	request.getSession(true);

The	getSession(true)	call	means	“find	this	client’s	session	object	or	create	a	new	one	if	not
found.”	For	example,	a	shopping	process	usually	consists	of	a	number	of	subsequent
servlet	calls	(list	an	inventory,	add	an	item	to	the	shopping	cart,	enter	shipping
information,	and	so	on).	The	method	call	getSession(true)	should	be	used	in	the	very	first
servlet	request	that	opens	the	business	process	qualified	for	a	session	opening.	At	this
moment	the	application	server	generates	a	unique	session	ID	(available	by	calling
session.getId())	and	sends	it	to	the	user’s	web	browser	using	either	a	special	cookie
JSESSIONID	or	uses	URL	rewriting.	When	the	browser	sends	an	HTTP	request	to	the
server,	the	session	ID	is	located	in	the	request’s	header	so	the	servlet	container	can	find	the
matching	session	object.

The	call	getSession(false)	means	“find	my	session	object,”	assuming	that	it	has	been
created	in	the	previous	steps	of	the	session.	If	this	call	returns	null,	the	session	object	has
been	timed	out	or	destroyed	and	you	might	want	to	display	a	message	saying	that	the
session	has	expired,	and	the	user	has	to	start	the	process	from	scratch.

I’ll	illustrate	the	concept	of	using	Httpsession	object	by	showing	you	an	example,	which
includes	an	HTML	page	and	a	servlet.	The	HTML	page	has	a	form	where	you	can	enter	a
book	title	and	a	price	to	be	added	to	your	shopping	cart	on	the	server.	Each	time	you	add	a
book,	the	servlet	returns	a	new	HTML	page	that	lists	the	content	of	the	shopping	cart	and
the	form	to	add	more	books.

The	initial	file	ShoppingCart.html	is	located	in	the	document	root	directory	of	the	project
Lesson26.	In	the	Eclipse	Dynamic	Web	Project,	the	document	root	is	represented	by	the
directory	WebContent.	Here’s	the	content	of	ShoppingCart.html:

<html>
			<head>
				<title>Add	a	book	to	shopping	cart</title>
			</head>
			<body>
					Add	the	book	title	and	price	to	the	shopping	cart:
					<form	action=shoppingcart	method=Get>
							<input	type=Text	name=booktitle>
							<input	type=Text	name=price>
							<input	type=Submit	value="Add	to	shopping	cart">
				</form>
			</body>
</html>

Because	this	file	is	deployed	in	the	same	web	application	(that	is,	Lesson26)	as	the	servlet,
the	form’s	action	parameter	doesn’t	include	the	complete	URL	of	the	servlet;	the	pattern
—shopingcart—is	all	you	need,	assuming	that	the	servlet	is	annotated	with
@WerServlet("/shoppingcart").		In	Eclipse,	you	right-click	the	file	ShoppingCart.html	and
select	the	Run	on	Server.	The	following	URL	is	constructed	(see	Figure	26-12):

http://localhost:8080/Lesson26/ShoppingCart.html

Figure	26-12:	Opening	ShoppingCart.html	deployed	on	the	server

Don’t	enter	the	book	title	and	the	price	just	yet;	the	servlet	is	not	ready.	Before	showing
you	the	code	of	the	servlet,	let’s	agree	that	each	shopping	cart	item	will	be	represented	as
an	instance	of	the	following	class	Book:

class	Book	implements	Serializable	{
			String	title;
			double	price;
}

Note	that	the	class	Book	implements	Serializable	because	you’re	planning	to	keep	it	in	the
HttpSession	object.	

Next	comes	the	ShoppingCartServlet		class	that	has	the	URL	mapping		/shoppingcart;	the
web	browser’s	request	tries	to	find	the	server-side	object	that	goes	by	the	name
shoppingcart.		The	doGet()	method	starts	with	printing	the	browser’s	cookies	on	the
system	console.	I	just	want	you	to	see	that	the	value	of	the	cookie	JSESSIONID	remains
the	same	with	each	request	made	from	the	same	browser.		After	that,	the	code	works	with
the	session	object;	the	program	comments	give	you	some	more	explanations:

@WebServlet("/shoppingcart")
public	class	ShoppingCartServlet	extends	HttpServlet	{
				protected	void	doGet(HttpServletRequest	request,	
																			HttpServletResponse	response)	
																				throws	ServletException,	IOException	{
								Cookie[]	cookies	=	request.getCookies();
								
								for	(int	i=0;	i	<	cookies.length;	i++){
														Cookie	currentCookie	=	cookies[i];
														String	name	=	currentCookie.getName();
														String	value	=	currentCookie.getValue();
														
														System.out.println("Received	the	cookie	"	
																																											+	name	+	"="	+	value);
												}

								
								//	Get	or	create	a	session	object
								HttpSession	session	=	request.getSession(true);
								
								//	Try	to	get	the	shopping	cart
								ArrayList<Book>	myShoppingCart=(ArrayList<Book>)	
																									session.getAttribute("shoppingCart");
								if	(myShoppingCart	==	null){	
											//	This	is	the	first	call	–	instantiate	the	shopping	cart
											myShoppingCart	=	new	ArrayList<>();
								}
								//	create	an	instance	of	a	book	object	for	received	params
								Book	selectedBook	=	new	Book();
								selectedBook.title=request.getParameter("booktitle");
								selectedBook.price	=	Double.parseDouble(
																																				request.getParameter("price"));
								//	Add	the	book	to	our	shopping	cart
								myShoppingCart.add(selectedBook);
								//	Put	the	shopping	cart	back	into	the	session	object
								session.setAttribute("shoppingCart",	myShoppingCart);
								
								//	Prepare	the	Web	page	and	send	it	to	the	browser
								PrintWriter	out	=	response.getWriter();
								//	Add	the	content	of	the	shopping	cart	to	the	Web	page
								out.println("<body>Your	shopping	cart	content:");
								myShoppingCart.forEach(book	->	
														out.printf("
Title:	%s,	price:	%.2f",		
																										book.title,	book.price)			
);
								
								//Add	the	HTML	form	to	the	Web	page	
								out.println("<p>Add	another	book	to	the	shopping	cart:");
								out.println("<form	action=shoppingcart	method=Get>");
								out.println("<input	type=Text	name=booktitle>");
								out.println("<input	type=Text	name=price>");
								out.println(
																"<input	type=Submit	value='Add	to	shopping	cart'>");
								out.println("</form>");
								out.println("</body>");								
				}
}

The	very	first	time	the	servlet	tries	to	get	the	shopping	cart	(represented	by	an		ArrayList)
	from	the	session	object,	it	won’t	be	there,	so	the	new	instance	of	the	ArrayList<Book>	is
created.	Then	the	code	gets	the	values	of	parameters	booktitle	and	price	(received	from	the
web	page),	creates	a	new	Book	instance,	adds	it	to	myShoppingCart	collection,	and	places

it	in	the	HttpSession	instance	for	storage.

This	code	loops	through	the	myShoppingCart	collection	using	forEach()	and	a	lambda
expression	just	to	send	the	content	of	the	shopping	cart	with	HTML	to	the	web	page.
	Finally,	the	servlet	sends	to	the	browser	the	same	HTML	form	so	the	user	can	continue
adding	new	books	to	the	shopping	cart.	Figure	26-13	shows	how	my	browser	looks	after
adding	several	books	to	the	shopping	cart.

Figure	26-13:	The	web	page	after	adding	four	books	to	the	shopping	cart

The	ShoppingCartServlet	doesn’t	have	code	to	close	the	session.	But	you	could	add	a
Place	Order	to	the	Web	Page	button,	and	the	corresponding	method	placeOrder()	in	the
servlet,	which	could	close	the	session	by	making	the	following	call:

session.invalidate();

The	simplest	way	of	adding	a	Place	Order	button	to	ShoppingCart.html	is	to	add	yet
another	button	of	Submit	type	to	the	form:

<input	type=Submit	name=placeorder	value="Place	Order">

And	in	the	doGet()	method,	check	whether	the	user	clicked	on	the	button.	If	yes,
invalidate	the	session.

if	(request.getParameter("placeorder")	!=	null)	{	
			session.invalidate();	
}

If	the	session	has	not	been	invalidated	explicitly,	the	application	server	does	it
automatically	after	a	specific	period	(timeout).	You	can	set	the	timeout	programmatically
by	calling	the	method	setMaxInactiveInterval()	on	the	HttpSession	object,	or	you	can
make	it	configurable	in	the	external	file	web.xml.	If	the	user	closes	the	browser,	the	cookie
associated	with	the	session	is	destroyed	and	the	session	is	closed.

Session	Life	Cycle	Events
If	you’d	like	to	perform	some	actions	when	the	HTTP	session	is	created,	invalidated,
or	timed	out,	use	HttpSessionListener.	To	intercept	adding	or	removing	an	attribute	to
a	session,	use	HttpSessionAttributeListener.

Filters
Even	after	a	servlet	is	deployed,	you	still	can	change	the	way	it	processes	requests	and
responses	without	modifying	the	servlet’s	code.	You	can	create	filters,	which	are	the	Java
classes	that	can	be	configured	to	process	HTTP	requests	before	they	are	passed	to	the
servlet	or	when	the	servlet	is	about	to	return	the	response	to	the	client.	Filters	are	good	for
adding	such	functionality	as	authentication,	logging,	encryption,	data	compression,	image
conversion,	and	so	on.	Filters	can	even	block	request	and	response	objects	from	passing
any	further.		

None	of	these	actions	depend	on	the	business	logic	implemented	by	servlets.	Besides,	you
can	create	one	filter	(such	as	to	authenticate	the	user)	and	apply	it	to	multiple	servlets
deployed	in	the	servlet	container.	What	if	you	need	to	compress	and	encrypt	the	data
before	sending	them	to	the	client?	Write	two	separate	filters	and	chain	them	so	both	are
applied	to	the	same	servlet.	Filter	classes	are	deployed	in	the	WEB-INF/classes	directory
—in	the	same	place	where	other	compiled	classes	reside.

To	create	a	filter,	write	a	class	that	implements	the	interface	Filter	annotated	with
@WebFilter.	There	are	three	methods	in	this	interface:	doFilter(),	init(),	and	destroy().		To
allow	filter	chaining,	you	need	to	implement	the	FilterChain	interface.	The	following	code
is	a	sample	of	a	filter	class	to	be	used	with	two	servlets:	FindBooksServlet	and
ShoppingCartServlet:

@WebFilter(servletNames={"/FindBooksServlet","
																										/ShoppingCartServlet"})
public	class	MyAuthenticationFilter	implements	Filter	{
						FilterConfig	config;
						@Override
						public	void	doFilter(ServletRequest	request,	
																		ServletResponse	response,	FilterChain	chain)
																												throws	IOException,	ServletException	{
						//	user	authentication	code	goes	here
						//Call	the	next	filter,	if	need	be
						chain.doFilter(request,	response);
					}
					@Override
					public	void	init(FilterConfig	filterConfig)	
																												throws	ServletException	{
								this.config	=	filterConfig;
					}
					@Override
					public	void	destroy()	{
							//	Clean	up	system	resources	here
					}
}

The	container	gives	the	filter	both	request	and	response	objects.	You	can	check	passed
parameters	by	the	client	(such	as	by	checking	ID/password),	perform	authentication,	and,

if	the	user	is	not	valid,	call	response.getWriter()	and	send	the	user	the	message	“You	don’t
belong	here”	without	even	passing	control	to	the	servlet.

The	method	destroy()	is	called	once	before	the	container	removes	the	filter;	if	the	filter	has
created	some	resources	such	as	Database	Management	System	(DBMS)	connections,	close
them	in	the	destroy()	method.

The	method	init()	is	invoked	on	the	filter	object	only	once	during	its	instantiation.	The	the
servlet	container	gives	to	the	init()	method	the	instance	of	the	FilterConfig	object,	which
gives	you	access	to	the	servlet	context	and	initialization	parameters	if	these	are	specified
in	the	@WebFilter	annotation	(or	in	the	file	web.xml);	for	example:

@WebFilter(servletNames={"/FindBooksServlet",	
																									"/ShoppingCartServlet"},
											initParams={@WebInitParam(name="community",	
																																							value="adults")})

To	assign	several	filters	to	the	same	servlet,	configure	them	in	the	web.xml	file	in	the	the
order	you	want	them	to	be	chained.	So	when	you	call	chain.doFilter(),	the	container	knows
which	filter	to	invoke	next.

Asynchronous	Servlets
It’s	great	that	servlets	automatically	create	and	allocate	a	separate	thread	for	each	user’s
request,	but	each	thread	takes	up	system	resources	(both	memory	bytes	and	CPU	cycles),
and	after	a	certain	number	of	concurrent	requests	the	server	simply	stops	responding.
Imagine	if	thousands	of	users	simultaneously	hit	the	FindBooksServlet	that	has	to	perform
a	three-second	long	DBMS	search	for	each	request.	During	these	three	seconds,	the
container	is	idling,	but	it	holds	the	lock	on	each	thread,	doing	nothing	but	waiting	for	the
result	of	the	DBMS	query	(running	on	another	server!).	

Is	hard	to	say	how	many	simultaneous	blocking	threads	a	specific	servlet	container	can
process	in	a	timely	manner;	it	all	depends	on	the	business	application	and	the	server
hardware/software.	Consider	running	load	tests	of	your	application	with	JMeter	or	similar
software	to	get	the	real	numbers	for	your	hardware/software	combination.	I’ve	seen	a
situation	when	a	server	started	failing	after	just	one	of	thousands	of	concurrent	requests.	

The	idea	of	asynchronous	servlets	is	to	minimize	the	time	of	thread	locking	by	reusing
threads	in	the	servlet	container.	If	User	A	makes	a	request	that	takes	three	seconds	on	a
DBMS	server,	his	servlet	container’s	thread	is	given	to	the	request	of	User	B,	and	when
User	A’s	result	comes	back	from	the	DBMS,	the	container	allocates	this	(or	another)
thread	to	return	the	result	to	User	A.		This	architecture	can	substantially	increase	the
number	of	concurrent	requests	that	can	be	processed	on	the	same	server.

Java	EE	7	includes	Servlets	3.1,	which	supports	asynchronous	processing.	In	doGet()	or
doPost()	you	can	instantiate	the	object	AsyncContext,	which	creates	an	asynchronous
worker	thread	and	doesn’t	lock	the	client’s	thread	while	preserving	the	client’s	request	and
response	objects.	For	example,	the	following	servlet	emulates	a	three-second	blocking
process,	which	runs	in	a	separate	thread:

@WebServlet(urlPatterns	=	{"/booksasync"},	asyncSupported=true)
public	class	FindBooksAsyncServlet	extends	HttpServlet	{
				protected	void	doGet(HttpServletRequest	request,	
																									HttpServletResponse	response)	
													throws	ServletException,	IOException{
				//	Don't	send	response	when	doGet	ends
				AsyncContext	aContext	=	request.startAsync();				
						//Provide	Runnable	implementation	to	start	method
						aContext.start(()	->{
								
								//	a	blocking	operation	goes	here
								try{
												String	title	=	aContext.getRequest()
																																			.getParameter("booktitle");
												PrintWriter	out;
												try	{
																//	Emulate	a	3-second	process
																Thread.currentThread().sleep(3000);		
																HttpServletResponse	resp	=	

http://jmeter.apache.org/

																					(HttpServletResponse)	aContext.getResponse();
																out	=	resp.getWriter();
																out.println("Hello	from	Async	FindBooks");
												}	catch	(IOException	e)	{
																e.printStackTrace();
												}
								}catch(InterruptedException	e){
												e.printStackTrace();
								}finally{
												aContext.complete();	//	close	the	response	obj									
								}
						});
				}
}

For	simplicity,	I	used	sleep()	on	a	Thread	in	this	example	just	to	emulate	a	long-running
process.	But	keep	in	mind	that	in	a	real-world	you	should	create	threads	in	Java	EE
containers	by	using	such	classes	as	ManagedExecutorService,	ManagedThreadFactory.		

To	catch	some	important	events	in	the	life	cycle	of	asynchronous	servlets,	you	can	add
AsyncListener	on	AsyncContext	and	provide	callbacks	onComplete(),	onError(),	and
onTimeout().

Try	It
Write	a	simple	HTML	client	with	one	text	input	field	that	has	a	Submit	button.	The	user
enters	the	stock	symbol	for	which	she	wants	to	get	a	price	quote.	Generate	a	random	quote
and	return	a	web	page	with	the	quote.	Reuse	the	code	from	StockServerImpl	from	Listing
24-2	to	generate	the	price	quotes.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson26.zip.

Step-by-Step
1.	 In	the	Eclipse	project	Lesson26	create	an	HTML	client	similar	to	the	one	from

html_that_gives_404	to	allow	the	user	to	enter	the	stock	symbol.	Name	it	tryit.html.

2.	 Create	a	servlet	called	StockServerServlet	that	takes	one	parameter,	the	stock	symbol,
and	instantiates	a	class	called	StockQuoteGenerator	that	should	have	the	code	similar
to	Listing	24-2.	You	don’t	use	RMI	here,	and	there’s	no	need	to	implement	Remote
interface.

3.	 Pass	the	stock	symbol	received	from	the	client	to	StockQuoteGenerator	and	get	the
price.

4.	 Return	the	dynamically	created	HTML	page	to	the	client	via	the	response	object.

5.	 Test	the	servlet	in	the	Eclipse	IDE:	right-click	on	the	HTML	file	and	select	Run	As		→
Run	on	Server.	Enter	the	stock	symbol	and	get	the	price	quote.

6.	 Undeploy	the	Lesson26	project	from	GlassFish	in	Eclipse	because	you’ll	need	to
deploy	this	application	directly	in	GlassFish.	Stop	GlassFish	in	Eclipse.

7.	 	Export	the	project	Lesson26	into	a		Lesson26.war	file.	Deploy	this	web	application	in
GlassFish	by	copying	it	into	the	directory	glassfish/domains/domain1/autodeploy	of
your	GlassFish	Server,	installed	in	Chapter	25.

8.	 Start	GlassFish	Server	from	the	command	line,	as	described	in	the	“Try	It”	section	of
Lesson	25.

9.	 Open	the	following	URL	in	your	web
browser:	http://localhost:8080/Lesson26/tryit.html.	you	should	see	the	same	Web	page
as	in	Step	5	above.	Test	this	Web	application		by	entering	various	stock	symbols.	You
should	be	getting	price	quotes.

TIP			Please	select	the	videos	for	Lesson	26	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://localhost:8080/Lesson26/tryit.html
http://www.wrox.com/go/javaprog24hr2e

Lesson	27
JavaServer	Pages
The	JavaServer	Pages	(JSP)	technology	was	created	as	a	next	step	in	servlet	evolution.
JSP	2.3	is	part	of	the	Java	EE	7	specification,	and	with	JSP	you	can	do	everything	that	you
can	do	with	servlets,	but	more	easily.	In	early	Java	EE	specifications	JSP	was	the	only
standardized	web	framework.	But	starting	from	Java	EE	4	yet	another	web	framework	was
introduced:		JavaServlet	Faces	(JSF).	While	JSF	has	more	features	than	JSP,	I	still	see	a	lot
more	enterprise	applications	that	use	JSP,	so	this	edition	of	the	book	covers	JSP	but	not
JSF.	Now	let’s	see	why	using	servlets	is	not	enough	for	developing	of	the	presentation	tier
for	all	Java	EE	web	applications.

Let’s	say	you’ve	created	and	deployed	a	servlet,	which	displays	“Hello	World.”	The
servlet	gets	a	hold	of	the	output	stream	of	the	response	object	and	executes	the	following
line	of	code:

out.println("<html><body>Hello	World	</body></html>");

Now	imagine	that	you	run	a	software	company	that	employs	Alex,	an	expensive	Java
developer,	and	Matilda,	a	junior	web	designer	who	doesn’t	know	Java	but	does	know
HTML.	What	if	you	need	to	change	the	layout	of	this	HTML	page,	such	as	by	adding
several	empty	lines	on	top?	It’s	not	a	big	problem—Alex	can	modify	the	preceding	line	of
code,	recompile	it,	and	redeploy	the	servlet.	But	for	making	small	changes	in	the	HTML-
based	user	interface	(UI)	it’s	more	cost-efficient	to	use	Matilda.	This	is	where	JSP
becomes	very	handy.	Ask	Matilda	to	create	the	following	text	file,	HelloWorld.jsp:

<html>
	<body>
			Hello	World
	</body>
</html>

Place	this	file	into	the	document	root	directory	(see	Chapter	26)	in	your	servlet	container
running	at,	say,	MyBooks.com.	Now	the	users	can	access	this	JSP	by	entering	the
following	URL	in	their	web	browsers:

http://www.MyBooks.com/HelloWorld.jsp

Upon	the	first	request	to	this	page,	the	JSP	container	(all	servlet	containers	support	JSP,
too)	automatically	generates,	compiles,	and	deploys	a	servlet	based	on	the	content	of	the
file	HelloWorld.jsp.	All	subsequent	calls	to	this	JSP	will	be	processed	a	lot	faster	because
the	servlet	HelloWorld	will	already	be	deployed,	loaded	in	memory,	and	running.	As	a
matter	of	fact,	JSP,	as	well	as	servlets,	can	be	preloaded	so	that	even	the	first	user’s	request
is	responsive.	You	might	think	that	you	could	make	a	simple	web	page	by	creating
HelloWorld.html	without	all	this	extra	code	generation.	This	is	true,	as	long	as	your	page
is	static	and	does	not	use	any	external	dynamically	changed	data.	Remember	that	HTML
is	not	a	programming	language	but	a	markup	language—it	can’t	even	add	two	and	two,

but	JSP	can	(see	MyCalculator.jsp	in	Listing	27-1).

Embedding	Java	Code	into	HTML
JSP	defines	tags	that	enable	you	to	embed	Java	code	into	an	HTML	page.	When	the
servlet	is	automatically	generated	behind	the	scenes,	this	Java	code	will	also	be	included
and	executed	as	part	of	this	servlet.	JSP	tags	are	included	in	angle	brackets:	for	example,
the	<%=...%>	tag	displays	the	value	of	the	variable	or	expression:	<%=2+2%>.	During	the
servlet	generation	process	performed	by	the	JSP	engine,	these	tags	are	replaced	with	the
regular	Java	code.	For	example,	the	tag	<%=2+2%>	is	automatically	replaced	by	a	JSP
container	with	the	following	Java	statement:

out.println(2+2);

Listing	27-1	shows	the	content	of	the	two-plus-two	calculator	called	MyCalculator.jsp.

	is	an	HTML	tag	for	inserting	line	breaks.	Note	that	Alex,	the	programmer,	had	to
write	only	the	expression	inside	the	JSP	tag;	the	rest	was	done	by	Matilda.	Consider	this
task	separation	an	example	of	the	designer-developer	workflow.

Listing	27-1:	MyCalculator.jsp

<html>
<body>
			HTML	created	by	Matilda	goes	here…
			

			You	may	not	know	that	2	+	2	is	<%=	2	+	2%>
			

			More	HTML	created	by	Matilda	goes	here…
	</body>
</html>

Deploying	any	JSP	is	a	simple	matter	of	copying	the	JSP	file	into	the	document	root
directory	of	your	JSP	container.	Of	course,	if	your	JSPs	are	part	of	a	multifile	project,
most	likely	you’ll	be	deploying	them	in	a	war	file,	as	described	in	Chapter	26.

As	described	in	Lesson	26,	create	a	Dynamic	Web	Project	in	Eclipse	and	name	it
Lesson27.	Right-click	the	WebContent	directory	(the	document	root)	and	create	a	new	JSP
file	named	index.jsp	by	selecting	the	menu	File	→	New	→	Other	→	Web	→	JSP	file.

While	creating	the	project	make	sure	that	GlassFish	server	is	selected	as	the	Target	run
time.	Eclipse	generates	a	file	with	the	following	content:

<%@	page	language="java"	contentType="text/html;	charset=UTF-8"
				pageEncoding="UTF-8"%>
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"	
																											"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">
<title>Insert	title	here</title>
</head>
<body>
</body>
</html>

Add	the	following	line	in	the	<body>	section	of	this	file:

<h1>Hello	World</h1>

The	tag	<h1>	formats	the	text	as	a	header,	and	Eclipse	shows	you	how	the	future	web	page
will	be	rendered	(see	the	top	portion	on	Figure	27-1).

Figure	27-1:	Viewing	the	page	as	you’re	adding	tags

Right-click	the	name	index.jsp	and	select	Run	on	Server.	If	the	GlassFish	server	is	not
running	Eclipse	launches	it	and	deploys	the	Lesson27	project,	and	you	see	the	Hello
World	web	page	in	the	internal	Eclipse	web	browser,	as	shown	in	Figure	27-2.

Figure	27-2:	Runninng	index.jsp	in	an	Eclipse	internal	browser

Enter	the	same	URL	in	your	web	browser,	and	you	see	the	same	result.	The	server	is	up
and	running	on	port	8080,	and	the	application	is	deployed,	so	it’s	irrelevant	which	web
browser	you	use	as	a	client	as	long	as	it	supports	HTTP	protocol.

Now	test	a	JSP	expression.	Make	a	copy	of	index.jsp	named	MyCalculator.jsp	in	the
project	Lesson27	(Ctrl+C/Ctrl+V)	and	replace	the	content	in	the	<body>	part	with	the
content	from	the	<body>	section	from	Listing	27-1.	Run	MyCalculator.jsp	and	you	see	the
web	page	in	Eclipse,	as	shown	in	Figure	27-3.

The	expression	<%2+2%>	has	been	precompiled	and	replaced	with	4.	A	JSP	is	nothing
more	than	a	servlet	that	is	automatically	generated	from	a	file	containing	valid	HTML	and
JSP	tags.

Figure	27-3:	Running	MyCalculator.jsp

If	you	need	to	change	the	appearance	of	the	page	(colors,	fonts,	data	allocation)	without
changing	the	expression	(2+2),	Matilda	can	do	it	easily!	After	the	changes	are	applied,
the	JSP	is	automatically	regenerated	into	a	new	servlet	and	redeployed.	Usually	you	do
not	even	have	to	restart	the	server.	The	only	exceptions	are	preloaded	JSPs	that	are
configured	to	be	initialized	on	server	startup.	Any	business	logic	changes	inside	the	JSP

tags	will	be	programmed	by	Alex.

Implicit	JSP	Objects
Because	JSPs	are	built	on	top	of	servlets,	the	main	concepts	remain	the	same.	Following	is
the	list	of	predefined	variables	that	you	can	use	in	JSP	pages.	These	variables	are
initialized	by	the	JSP	container,	and	you	can	use	them	without	explicit	declarations.

request	has	the	same	use	as	HttpServletRequest.

response	has	the	same	use	as	HttpServletResponse.

out	represents	the	output	write	stream	JspWriter.	This	variable	points	at	the	same
object	as	HttpServletResponse.getWriter()	in	servlets.	For	example,	simplest	JSP	that
returns	a	result	from	a	Java	class	called	CurrencyConverter	might	look	like	this:

<html>
		<body>
					<%	out.println(CurrencyConverter.getDollarRate());	%>
		</body>
</html>

session	represents	an	instance	of	the	user’s	HTTPSession	object.

exception	represents	an	instance	of	the	Throwable	object	and	contains	error
information.	This	variable	is	available	only	from	the	JSP	error	page	(described	later	in
the	section	“Error	Pages”).

page	represents	the	instance	of	the	JSP’s	servlet.

pageContext	represents	the	JSP	context	and	is	used	with	Tag	Libraries	(described	later
in	this	lesson	in	the	section	of	that	name).

application	provides	access	to	web	context.	Its	use	is	similar	to	that	of	ServletContext.

config	provides	initialization	information	used	by	the	JSP	container.	Its	use	is	similar
to	that	of	the	class	ServletConfig.

Overview	of	the	JSP	Tags
Each	JSP	tag	starts	and	ends	with	an	angle	bracket	and	can	be	included	in	any	HTML	file,
but	you	need	to	save	your	JSPs	in	.jsp	files	for	proper	identification	and	processing	by	JSP
containers.	This	section	is	a	brief	overview	of	JSP	tags.	For	more	detailed	coverage	refer
to	the	JSP	documentation	at	http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html.

Directives
Directives	do	not	generate	screen	output,	but	instruct	the	JSP	container	about	the	rules	that
have	to	be	applied	to	the	JSP.	Some	of	the	JSP	directives	are	page,	include,	attribute,	and
taglib.

Page	directives	start	with	<%@	page	and	are	only	in	effect	within	the	current	page.
Directives	are	used	with	such	attributes	as	import,	extends,	session,	errorPage,
contentType,	and	some	others.	For	example,	to	import	the	java.io	package	use	this
directive:

<%@	page	import="java.io.*"	%>

Include	directives	to	allow	the	inclusion	of	any	text	from	a	file	or	any	code	from	another
JSP,	at	the	time	when	the	page	is	compiled	into	a	servlet,	as	in	the	following	example:

<%@	jsp:include	page="calcBankRates.jsp"	%>
<%@	include	file="bankRates.txt"	%>

To	use	a	third-party	library	of	custom	tags	you	need	to	specify	where	this	library	is
located,	as	in	the	following	example:

<%@	taglib	uri="my_taglib.tld"	prefix="test"	%>

The	attribute	directive	enables	you	to	define	attributes	of	custom	tags,	like	this:

<%@	attribute	name="corporate_logo_file_name"	%>

Declarations
Declarations	are	used	to	declare	variables	before	they	are	used.	You	can	declare	a	variable
salary	like	this:

<%!	double	salary;	%>

The	variable	salary	is	visible	only	inside	this	page.	You	can	declare	Java	methods	in	the
JSP	page	the	same	way:

<%!	private	void	myMethod(){
								...
	}%>

http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html

The	code	contained	in	the	declaration	block	turns	into	the	Java	code	in	the	generated
servlet.

Expressions
Expressions	start	with	<%=	and	can	contain	any	Java	expression,	which	will	be	evaluated.
The	result	will	be	displayed	in	the	HTML	page,	replacing	the	tag	itself,	like	this:

<%=	salary*1.2	%>

Scriptlets
Initially	scriptlets	were	created	to	give	JSP	developers	a	place	to	put	any	valid	Java	code
to	be	included	in	the	generated	servlet’s	_jspService()	method,	which	is	an	equivalent	of
the	servlet’s	method	service();	for	example,	a	scriptlet	can	look	like	this:

<%	lastName	=	"Smith";	%>

With	the	creation	of	JSP	Standard	Tag	Libraries	(JSTL)	and	Expression	Language	(EL)
there	is	now	no	need	to	use	scriptlets,	but	this	syntax	still	works.

Although	directives,	declarations,	expressions,	and	scriplets	may	mix	in	your	Java	code
inside	the	JSP,	it’s	not	a	good	idea.	JSP	was	created	to	avoid	embedding	HTML	into	Java
code,	and	you	should	also	avoid	embedding	Java	into	HTML.	You	see	how	to	avoid
embedding	Java	into	HTML	in	the	section	on	tag_libraries.	This	thread	on	Stack
Overflow	has	several	good	recommendations	on	how	to	remove	Java	code	from	JSP.

Comments
Comments	that	start	with	<%--	and	end	with	--%>	are	visible	in	the	JSP	source	code,	but
they	are	not	be	included	in	the	resulting	HTML	page:

<%--	Some	comments	--%>

If	you’d	like	to	keep	the	comments	in	the	resulting	web	page,	use	regular	HTML	comment
notation:

<!--	Some	comments	-->

Standard	Actions
Although	the	directive	include	adds	the	content	of	the	included	page	during	compile	time,
the	element	jsp:include	does	it	during	run	time:

<jsp:include	page	"header.jsp"	/>

The	element	forward	enables	you	to	redirect	the	program	flow	from	the	current	JSP	to
another	one	while	preserving	the	request	and	response	objects.	The	other	way	of
redirecting	the	flow	is	to	use	response.sendRedirect(someURL)	in	the	Java	code,	but	in
this	case	new	request	and	response	objects	are	created,	which	forces	a	web	browser	to
make	a	new	request	to	the	server:

<jsp:forward	page	=	"someOther.jsp"	/>

The	plugin	element	ensures	that	your	JSP	includes	an	applet	or	a	Java	bean	(described
later	in	the	“Java	Beans”	section).	During	run	time	the	web	browser	replaces	this	tag	with
one	of	the	HTML	tags	<object>	or	<embed>	to	embed	the	required	Java	class	into	the	web
page:

http://stackoverflow.com/questions/9416049/removing-java-code-from-jsp-pages

<jsp:plugin	type=applet	code="PriceQuotes.class"	>

The	nested	tag	<jsp:param>	is	used	to	pass	parameters	to	an	applet	or	a	bean:

<jsp:plugin	type=applet	code="Login.class">
		<jsp:params>
				<jsp:param	name="userID"	value="SCOTT"	/>
				<jsp:param	name="password"	value="TIGER"	/>
		</jsp:params>
</jsp:plugin>

Even	though	it’s	possible	to	create	web	pages	with	embedded	Java	plug-ins,	this	is
discouraged.	These	days	people	use	a	variety	of	web	browsers	and	devices,	and	the
chances	that	the	user	has	the	right	version	of	the	JRE	installed	on	his	or	her	device	are
slim.	This	was	the	main	reason	why	Java	Applets	(they	operate	inside	web	browsers)	are
rarely	being	used	with	the	exception	of	the	back-office	enterprise	applications	where	the
company	system	administrators	can	push	the	right	version	of	the	web	browser	and	JRE	to
each	user’s	desktop.	

https://docs.oracle.com/javase/tutorial/deployment/applet/

Error	Pages
Say	you	have	a	JSP	called	calcTax.jsp	containing	code	that	may	throw	Java	exceptions.
Instead	of	scaring	users	with	stack	trace	output	screens,	prepare	a	friendly	taxErrors.jsp
explaining	the	problem	in	plain	English.

calcTax.jsp	may	have	an	HTML	<form>	tag	in	which	the	user	enters	gross	income	and	the
number	of	dependents.	The	request	for	tax	calculations	is	sent	to	the	server’s	CalcTax	Java
class,	which	might	throw	an	exception	during	its	processing.	Include	in		calcTax.jsp	the
name	of	the	error	page	that	has	to	be	shown	in	case	of	exceptions:

<html>
			Some	code	to	calculate	tax	and	other	HTML	stuff	goes	here
									...
						<%@	page	errorPage=taxErrors.jsp	%>
</html>

Next	comes	the	error	page	taxErrors.jsp,	which	illustrates	how	to	use	the	JSP	variable
exception,	which	displays	the	error	message	in	a	user-friendly	way	and	also	contains	more
technical	error	description	for	the	technical	support	team:

<html>
	<body>
		Unfortunately	there	was	a	problem	during	your	tax	calculations.
		We	are	working	on	this	issue	-	please	try	again	in	10	minutes.
		If	the	problem	persists,	please	contact	our	award-winning	
		technical	support	team	at	(212)	555-2222	and	provide	them	with	
		the	following	information:

<%=exception.toString()>
	</body>
</html>

Java	Beans
JavaBeans	specification	defines	a	bean	as	a	Java	class	that	implements	the	Serializable
interface	and	that	has	a	public	no-argument	constructor,	private	fields,	and	public	setter
and	getter	methods.	The	similar	concept	of	Data	Transfer	Objects	(DTOs)	was	introduced
in	Listing	21-2).	Java	beans	are	used	mainly	for	data	storing	and	exchange.	In	JSP	they
help	avoiding	mixing	Java	code	and	HTML	(see	also	the	section	“Tag	Libraries”	later	in
this	lesson;	they	also	help	to	avoid	mixing	Java	and	HTML).

Think	of	the	MVC	pattern	implemented	in	JSP-based	web	applications.	The	JSP	belongs
to	the	view	tier;	the	servlet	can	play	a	role	of	a	controller;	and	the	Java	bean	can	represent
a	model.	Instead	of	programming	business	logic	inside	JSP,	separate	presentation	from
business	logic	processing	and	data	storage.	First,	this	enables	you	to	split	the	work	more
easily	between	Alex	and	Matilda,	and	second,	you’re	able	to	have	more	than	one
presentation	solution	(for	example,	a	different	UI	for	mobile	devices)	while	reusing	the
same	Java	code.

Using	Java	beans	is	the	first	step	in	separating	processing	logic	and	presentation.	Listing
27-2	shows	an	example	of	a	bean,	called	Student.

Listing	27-2:	Student	bean

import	java.io.Serializable;
class	Student	implements	Serializable{
										private	String	lastName;
										private	String	firstName;
										private	boolean	undergraduate;
										Student(){
														//	constructor's	code	goes	here
										}
										public	String	getLastName(){
																return	lastName;
										}
										public	String	getFirstName(){
																return	firstName;
										}
										public	void	setLastName(String	value){
																			lastName	=	value;
										}
										public	void	setFirstName	(String	value){
																			firstName	=	value;
										}
										public	void	setUndergraduate(boolean	value){
																			undergraduate	=	value;
										}
										public	boolean	isUndergraduate	(){
																			return	undergraduate;
										}
}

Don’t	confuse	JavaBeans	with	Enterprise	Java	Beans	(EJB),	which	is	a	different	concept
that’s	covered	in	Chapter	31.

Using	JavaBeans	in	JSP
To	use	a	bean	with	JSP,	first	you	need	to	specify	its	name	and	location,	and	after	that	you
can	set	or	get	its	properties.	Following	are	some	examples	of	bean	usage:

<jsp:useBean	id="Student"	class="com.harvard.Student"	/>
<jsp:getProperty	name="Student"	property="LastName"	/>
<jsp:setProperty	name="Student"	property="LastName"	value="Smith"/>

The	next	code	snippet	populates	the	Student	bean’s	properties	LastName	and	FirstName.
This	code	snippet	can	be	located	in	the	HTML	document	with	the	tag	<form>,	which	has
two	HTML	text	input	fields	called	LName	and	FName:

<jsp:setProperty	name="Student"	property="LastName"	
																		value="<%=	request.getParameter("LName")	%>"	/>
<jsp:setProperty	name="Student"	property="FirstName"	
																		value="<%=request.getParameter("FName")	%>"	/>

If	all	bean	property	names	are	the	same	as	the	names	of	the	HTML	form	fields,	mapping
the	HTML	form’s	and	the	bean’s	fields	becomes	even	simpler	with	the	asterisk	notation:

<jsp:setProperty	name="Student"	property="*"	/>

How	Long	Does	a	Bean	Live?
If	a	JSP	variable	is	declared	inside	a	scriptlet,	it	has	a	local	scope.	To	give	it	an	instance
scope,	declare	the	variable	using	the	declaration	tag.	You	can	define	a	bean’s	scope	using
the	scope	attribute	of	the	tag	jsp:useBean.	The	following	list	defines	the	various	scopes.

page:	The	bean	is	available	only	within	the	current	page	and	will	be	destroyed	as	soon
as	the	user	exits	the	page.	This	is	a	default	scope.	For	example:

<jsp:useBean	id="Student"	class="com.harvard.Student"	
																																						scope="page"	/>

request:	The	bean	is	alive	for	as	long	as	the	request	object	is	alive.	Even	if	the	control
is	redirected	to	a	different	JSP	by	means	of	the	tag	jsp:forward,	the	bean	remains
available	on	the	new	page	because	it’s	using	the	same	request	object,	like	this:

<jsp:useBean	id="Student"	class="com.harvard.Student"	
																																						scope="request"	/>

session:	The	bean	is	available	for	all	pages	until	the	user’s	session	ends	(see	the
section	“Session	Tracking”	in	Chapter	26).

<jsp:useBean	id="Student"	class="com.harvard.Student"	
																																						scope="session"	/>

application:	The	bean	is	available	for	all	users	and	all	pages—this	is	a	global	bean.

<jsp:useBean	id="Student"	class="com.harward.Student"	
																																		scope="application"	/>

Loading	JSP	from	Servlets
In	line	with	the	separation	of	presentation	and	processing,	JSP	should	have	a	bare
minimum	of	any	processing.	When	the	servlet	receives	the	data	to	be	sent	to	the	user,
instead	of	sending	hard-coded	HTML	tags	to	the	client	it	should	load	and	send	the	JSP
page	to	the	client.	The	JSP	should	be	laid	out	by	a	web	designer.

Should	Servers	Be	Preparing	Web	Pages?
While	sending	a	pre-created	JSP	to	the	clients	is	better	than	hard-coding	HTML	inside
servlets,	the	trend	is	to	have	the	server	sending	only	the	data	to	the	client	without	any
layout.	In	modern	web	applications,	the	UI	is	programmed	using	HTML,	JavaScript,
and	Cascading	Style	Sheets	(CSS),	and	you	should	consider	sparing	servers	from
laying	out	web	pages.	In	Lesson	33	you	find	out	how	to	create	RESTFul	Web
Services,	where	server-side	POJOs	send	only	the	data	to	the	web	browser.	Learning
how	to	develop	web	pages	in	HTML	and	JavaScript	is	out	of	the	scope	of	this	book,
but	this	process	is	described	in	detail	in	another	book	I	co-authored:	Enterprise	Web
Development	(O’Reilly,	2014).

Let’s	say	you	have	a	servlet	that	needs	to	load	a	JSP	based	on	the	user’s	selection	in	the
HTML	window.	If	you	don’t	need	to	get	new	copies	of	the	request	and	response	objects
you’ll	need	to	create	an	instance	of	the	RequestDispatcher	class	and	call	its	method
forward(),	providing	HttpServletRequest	and	HttpServletResponse	as	arguments,	as	shown
in	Listing	27-3.	The	servlet	MyServlet	returns	to	the	web	browser,	either	the	JSP	showing
the	data	of	the	Toyota	dealership	or	the	JSP	showing	the	data	about	Nissan	vehicles.

http://shop.oreilly.com/product/0636920028314.do

Listing	27-3:	Servlet	loading	JSP

public	class	MyServlet	extends	HttpServlet{
				public	void	doGet(HttpServletRequest	req,	
																						HttpServletResponse	res)
																																	throws	ServletException	{
						ServletContext	context	=	getServletContext();
						RequestDispatcher	requestDisp	=	null;
						String	make	=	req.getParameter("carMake");
						if	(make.equals("Toyota")	{
								requestDisp	=	context.getRequestDispatcher("/Toyota.jsp");
								requestDisp.forward(req,res);
						}
						else	if	(make.equals("Nissan")	{
								requestDisp	=	context.getRequestDispatcher("/Nissan.jsp");
								requestDisp.forward(req,res);
						}
		}
}

In	some	cases	the	current	servlet	performs	all	interactions	with	the	user	and	just	needs	to
load	the	code	of	another	servlet	or	JSP.	For	this	purpose,	use	the	method	include()	instead
of	forward():

requestDisp.include(req,res);

Because	this	redirection	happens	on	the	server	side,	the	initial	URL	is	still	displayed	in	the
web	browser’s	address	bar.	To	provide	the	new	URL	(to	allow	the	user	to	bookmark	the
resulting	page,	for	example),	use	response.sendRedirect("/some_new_URL").

Tag	Libraries
Yet	another	way	of	minimizing	the	amount	of	code	in	JSP	is	to	use	tag	libraries	containing
custom	and	reusable	tags—either	your	own	original	library	or	a	library	created	by
someone	else.	Each	custom	tag	looks	similar	to	a	regular	one,	but	under	the	hood	it	can	be
supported	by	a	Java	class	(or	classes)	written	by	a	programmer	to	provide	the	required
functionality.

If	you	want	to	create	your	own	custom	tags	to	be	used	with	JSP	you	have	to	do	the
following:

Create	a	tag	library	descriptor—an	XML	file	with	the	extension	.tld.	It	has	to	be
deployed	in	the	directory	WEB-INF/tags.

Create	Java	classes	that	provide	business	logic	supporting	the	tags.	Such	classes	are
usually	deployed	as	jars	in	the	WEB-INF/lib	directory.

Register	the	tag	library	with	the	web	application.

Listing	27-4	shows	a	sample	tag	library	descriptor	file.	The	tag	DowJones	should	display	a
Dow	Jones	index	value.	The	empty	value	in	<bodycontent>	means	that	this	is	a	simple	JSP
tag	with	no	content	and	could	be	used	like	this:	<sts:DowJones/>.

Listing	27-4:	Sample	.tld	file

<?xml	version="1.0"	encoding="UTF-8"	?>
<taglib	xmlns="http://java.sun.com/xml/ns/j2ee"
		xmlns:	xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:	schemaLocation="http://java.sun.com/xml/ns/j2ee
		http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
		version="2.0"	>
		<tlib-version>1.0</	tlib-version>
		<shortname>sts</shortname>
		<uri>http://www.mystockserver.com:8080/taglib</uri>
		<info>Wall	Street	tag	library</info>
		<tag>
				<name>DowJones</name>
				<tagclass>DowJonesHandler</tagclass>
				<bodycontent>empty</bodycontent>
				<info>Displays	the	Dow	Jones	index</info>
		</tag>
</taglib>

The	class	supporting	a	JSP	tag	(for	example,	DowJonesHandler)	has	to	implement	the
interface	javax.servlet.jsp.tagext.SimpleTag	or	extend	SimpleTagSupport.	The	JSP
container	will	call	DowJonesHandler’s	methods	to	set	the	JSP	context	(setPageContext())
to	start	the	execution	of	the	tag’s	code	—	doStartTag(),	and	so	on.	This	class	gives	you	a
default	implementation	of	the	SimpleTag	interface	and	initialized	references	to	the

pageContext	and	parent.	Place	required	logic	for	the	tag	in	the	doTag()	method,	which	is
called	by	the	container	at	request	time:

import	javax.servlet.jsp.*;
import	javax.servlet.jsp.tagext.*;
import	java.io.*;
public	class	DowJonesHandler	extends	SimpleTagSupport{
		public	int	doTag()	throws	JspException,	IOException{
						String	dowQuote;
					//		Obtain	the	DowJones	quote	by	accessing
					//		http://finance.yahoo.com/q?d=t&s=^DJI	or	similar
								dowQuote=...;
					//		and	write	it	to	the	client
					JspWriter	out	=	getJspContext().getOut();
					out.print("The	last	price	is	"	+	dowQuote);
	}
}

To	make	a	tag	library	recognizable	by	your	JSP	container,	you	should	register	it	by
inserting	the	following	fragment	into	the	file	web.xml:

<taglib>
					<taglib-uri>
											http://www.mystockserver.com/taglib
					</taglib-uri>
						<taglib-location>
												/WEB-INF/taglib.tld
					</taglib-location>
</taglib>

When	you’ve	done	all	this,	create	a	simple	file	called	test.jsp	and	start	using	your	tag
library.	The	sample	JSP	in	Listing	27-5	uses	the	tag	<DowJones>.

Listing	27-5:	Using	a	custom	tag	in	a	JSP

<html>
<head>
			<%@	taglib	uri=http://www.mystockserver.com/taglib	
																																															prefix="sts"	%>
</head>
<body>
			Today's	Dow	Jones	index:	<sts:DowJones/>
</body>
</html>

If	a	tag	requires	some	parameters,	they	should	be	specified	in	the	.tld	file	with	the	tag
<attribute>;	for	example:

<tag>
			...
			<attribute>
						<name>tradeDate</name>
						<required>false</required>
			</attribute>
</tag>

The	setter	method	has	to	be	provided	in	the	tag	handler	class	for	each	parameter.	Setters
have	to	be	named	according	to	the	same	naming	convention	as	Java	beans:

public	void	setTradeDate(String	tradeDate){
...
}

Custom	tag	libraries	are	created	by	application	developers	to	fit	the	needs	of	a	specific
project(s).	Third	parties	can	also	provide	non-standard-based	tag	libraries.	Apache	hosts
standard	tag	libraries	based	on	the	JSTL	described	next.

http://tomcat.apache.org/taglibs/standard/

JSTL
JSP	Standard	Tag	Library	(JSTL)	is	a	standardized	specification	for	library	components
that	includes	actions	that	are	reusable	for	many	JSP-based	applications.	Standard	JSTL
guarantees	that	any	Java	EE–compliant	JSP	container	will	include	and	support	these
components.	There	are	five	JSTL	libraries.	They	contain	an	iterator,	if	statements,	tags	for
XML	processing,	tags	for	executing	SQL,	tags	for	internationalization,	and	commonly
used	functions.

Whereas	the	JSP	in	Listing	27-3	had	to	specify	the	location	of	the	tag	library	on	your
server,	standardized	libraries	have	predefined	URLs.	For	example,	to	use	the	forEach
iterator	you’d	need	to	specify	the	following	URI:	http://java.sun.com/jsp/jstl/core.	XML
processing	tags	are	located	at	the	following	URI:http://java.sun.com/jsp/jstl/xml.
Accordingly,	the	code	fragment	that	uses	the	iterator	can	look	like	this:

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>
<c:forEach	var="item"	items="${sessionScope.cart.items}">
					...
</c:forEach>

For	learning	programming	with	JSTL	and	Expression	Language	please	refer	to	the	Oracle
tutorial	at	the	following	URL:
http://download.oracle.com/javaee/5/tutorial/doc/bnake.html.

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://download.oracle.com/javaee/5/tutorial/doc/bnake.html

Try	It
Rewrite	the	sample	stock	server	application	that	you	created	in	the	“Try	It”	of	Listing	24-
2	from	Lesson	24	for	generating	the	price	quotes.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson27.zip	file	in	the	download.

Step-by-Step
1.	 In	the	document	root	folderof	Eclipse	project	Lesson27	create	an	HTML

file	GetPriceQuote.html	that	has	a	<form>	tag	with	two	<input>	fields—a	text	and	a
Submit	button—so	the	user	can	enter	the	stock	symbol	and	send	a	request	for	the	price
quote.	The	action	attribute	of	the	form	should	point	at	the	URL	of	the	StockQuote.jsp	.
The	<body>	section	of	GetPriceQuote.html	may	look	like	this:

<body>
				<form	action=http://localhost:8080/Lesson27/StockQuote.jsp
										method=Get>
								<input	type="text"	name="symbol"	
															placeholder="Enter	stock	symbol">	
								<input	type="submit"	value="Get	Price	Quote">
			</form>
</body>

2.	 	In	document	root	create	a	new	JSP	file	named	StockQuote.jsp	that	should	display	a
requested		price	quote.	

3.	 Create	a	Java	package	lesson27.tryit.

4.	 Create	a	class	called	lesson27.tryit.StockPriceGenerator	to	implement	randomly
generated	stock	quotes	for	the	specified	stock	with	code	similar	to	what	is	shown	in
Listing	24-2	from	Lesson	24,	but	it	has	to	be	a	POJO.	

5.	 Create	a	Java	bean	lesson27.tryit.Stock	that	has	a	private	field	symbol	and	public
getter	and	setter	method	to	get	and	set	the	symbol’s	value.	The	class	Stock	should
implement	Serializable.

6.	 Use	JSP	tags	to	include	the	StockPriceGenerator	Java	class	in	StockQuote.jsp,	and
display	the	price	quote	generated	by	its	method	getQuote()	as	well	as	the	list	of	all
available	stock	symbols	by	calling	getNasdaqSymbols().

7.	 The	JSP	should	use		StockPriceGenerator,	Stock,	<jsp:useBean>,	and
<jsp:setProperty>.	For	example:

http://www.wrox.com/go/javaprog24hr2e

<%@page	import="lesson27.tryit.StockPriceGenerator"%>
...
<body>
		<jsp:useBean	id="stock"	class="lesson27.tryit.Stock"	/>
		<jsp:setProperty	property="*"	name="stock"	/>
		<%!StockPriceGenerator	stockServer=new	StockPriceGenerator();%>
				
			Symbol:	<%=stock.getSymbol()%>
			Price:	<%=stockServer.getPrice(stock.getSymbol())%>
</body>

8.	 Restart	GlassFish	server	if	it’s	already	running.	Run	and	test	GetPriceQuote.html	from
Eclipse	and	your	web	browser.	Figure	27-3	shows	how	it	looks	in	my	Eclipse	internal
web	browser.
	

Figure	27-4:	Running	GetPriceQuote.html

TIP			Please	select	the	videos	for	Lesson	27	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	28
Developing	Web	Applications	with	WebSockets
HTTP-based	technologies	like	Java	Servlets,	JSP,	or	JSF	use	the	request-response	model.
A	web	browser	establishes	a	connection	with	the	web	server	and	sends	a	request,	and	then
the	server	responds	using	the	same	connection;	this	is	called	a	half-duplex	communication.
Think	of	a	narrow	bridge	where	cars	can	go	only	in	one	direction	at	a	time.	

As	opposed	to	HTTP,	WebSocket	protocol	is	a	two-way	street	(a	full-duplex
communication).	The	data	travels	in	both	directions	over	the	same	connection.	The	client
doesn’t	have	to	initiate	the	request;	the	server	can	push	the	data	to	the	client	when	the	new
data	is	available.

Another	important	advantage	that	WebSocket	protocol	has	over	HTTP	protocol	is	that	the
former	adds	almost	no	overhead	to	the	data	payload.	The	following	list	includes	some	of
the	web	applications	that	can	benefit	from	using	the	server-side	data	push	with	WebSocket
protocol:

Live	trading/auctions/sports	notifications

Controlling	medical	equipment	over	the	web

Chat	applications

Multiplayer	online	games

Although	you	can	create	a	Java	client	that	uses	raw	socket	connections	and	the	Java	can
push	the	data	to	the	client	as	needed,	the	server	may	be	located	behind	the	firewall	or	a
proxy	server	and	the	company	policy	wouldn’t	allow	the	opening	of	arbitrary	ports	for
connections.		Similarly	to	HTTP/HTTPS,	the	WebSocket	protocol	uses	standard	port	80
for	requests	and	port	443	for	secure	connections.	These	ports	are	usually	open.	Besides,	all
HTML5-compliant	web	browsers	support	WebSocket	protocol	out	of	the	box.

WebSocket	protocol	was	standardized	by	the	open	standards	organization	Internet
Engineering	Task	Force	(IETF),	and	is	supported	by	HTML5	and	Java	EE	7	(JSR	356).
Besides	the	Java	EE	applications	servers,	websockets	are	supported	by	such	popular
servlet	containers	as	Apache	Tomcat	8	and	Jetty	9.	

This	lesson	shows	you	how	to	use	websockets	for	the	data	exchange	between	web
browsers	and	Java	EE	servers.	But	first,	let’s	go	over	the	limitations	of	HTTP	protocol.

https://en.wikipedia.org/wiki/WebSocket
https://tools.ietf.org/html/rfc6455

HTTP	Drawbacks
When	you	see	constantly	refreshing	data	on	a	web	page	(for	example	a	new	mail
notification	or	a	stock	price	change),	the	browser	actually	makes	multiple	requests	in
certain	time	intervals	asking	the	server,	“Do	you	have	something	for	me?”	If	the	new	data
is	available,	the	browser	refreshes	a	specified	location	on	a	web	page.	Just	visit	an	actively
traded	stock	on	the	Google	Finance	page	during	the	stock	exchange	business	hours,	and
it’ll	give	you	an	impression	that	the	server	pushes	the	latest	prices,	but	this	is	not	the	case.
The	Google	Finance	web	application	makes	multiple	AJAX	requests	asking	for	data,	and
the	server	responds.

To	see	it,	open	the	Developer	Tools	panel	in	Chrome	web	browser	(using	View	→
Developer	→	Developer	Tools).	Then	select	the	Network	tab	and	click	the	XHR	tab,
where	you	can	see	the	AJAX	requests	issued	by	the	browser.	In	Figure	28-1	you	can	see	a
snapshot	of	my	screen	while	I	was	monitoring	the	price	of	Apple	stock.	

Figure	28-1:	Monitoring	AJAX	requests	in	the	Chrome	browser

Note	the	size	of	these	HTTP	GET	and	POST	requests	on	the	right.		Web	browsers	add
hundreds	of	bytes	to	the	actual	data	in	the	form	of	HTTP	requests,		and	the	server	adds
HTTP	headers	to	the	response,	too.	Besides,	some	of	the	polling	requests	might	not	even
be	needed	because	the	stock	price	has	not	changed!

HTTP	Hacks	for	Server-Side	Data	Push
Because	HTTP	doesn’t	support	a	real	server-side	data	push,	software	developers	came	up
with	several	hacks	to	emulate	the	push.	Before	the	WebSocket	protocol	was	created,	the
following	hacks	were	used	to	update	the	data	on	the	web	page	without	requiring	a	user	to
click	or	touch	the	graphical	user	interface	(GUI)	controls	such	as	buttons,	links,	and	so	on:

https://www.google.com/finance?q=AAPL
https://developer.mozilla.org/en-US/docs/AJAX

Polling

Long	polling

Streaming

Server-Side	Events

With	polling,	the	web	browser	in	the	specified	time	intervals	establishes	the	connection
with	the	server	and	polls	the	server	asking	for	new	data.	Many	such	requests	may	return
no	new	data,	so	each	client	sends	and	receives	hundreds	of	bytes	that	contain	only	HTTP
request	and	response	objects	without	any	useful	data	payload.	With	polling,	the	web
browser	connects-disconnects-reconnects	with	the	server	for	each	request.

With	long	polling,	the	web	browser	establishes	one	HTTP	connection	with	the	server	and
keeps	it	alive	until	the	new	data	arrives	from	the	server	and	then	reconnects.

Typically	a	connection	is	established	using	the	browser’s	XmlHttpRequest	object	(for
more	information	you	need	to	get	familiar	with	AJAX	techniques,	which	is	not	covered	in
this	book).

With	streaming,	the	web	browser	establishes	one	HTTP	connection	with		the	server.	As
soon	as	the	server	gets	the	data	ready,	it	starts	streaming	content	(adding	more	and	more
data	to	the	HTTP	response	object)	without	closing	the	connection.	The	server	pushes	the
data	to	the	client,	pretending	that	the	HTTP	response	never	ends.

With	Server-Side	Events	(SSE),	web	browsers	can	subscribe	to	events	sent	by	a	server.	All
modern	browsers	support	the	EventSource	object,	which	can	handle	the	Document	Object
Model	(DOM)	events.	SSE	allows	the	switch	from	a	request-response	model	to	a	one-
directional	data	push	from	server	to	browser.

All	of	the	methods	described	here	emulate	a	server-side	data	push	while	using	request-
response-based	HTTP.		With	the	WebSocket	protocol	you	become	HTTP-free,	and	web
browsers	use	a	bidirectional	TCP-based	communication	with	the	server.	

http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://dev.w3.org/html5/eventsource/

Client-Server	Communication	with	Websockets
When	a	client	communicates	with	the	server	via	WebSocket	protocol,	we	say	that	they	use
websockets.	This	section	discusses	the	entire	client-server	data	flow	starting	from	the
client’s	requesting	upgrade	from	HTTP	to	WebSocket	protocol	and	ending	with	the	client
receiving	the	data	from	the	server.	

Besides	being	bidirectional,	websockets	have	literally	no	overhead	as	only	a	couple	of
extra	bytes	are	being	added	for	framing	the	payload	(the	exact	number	of	bytes	varies
depending	on	the	size	of	the	payload).	Compare	that	with	the	hundreds	of	bytes	in	HTTP-
based	communications.	The	smaller	overhead	reduces	the	latency	between	the	client	and
the	server.	

Web	Browser	as	a	WebSocket	Client	
A	WebSocket	client	is	typically	programmed	in	JavaScript	running	inside	a	web	browser.
All	web	browsers	released	in	2012	or	later	support	the	WebSocket	object,	and	the	website	
http://caniuse.com/websockets	can	tell	you	if	a	specific	older	version	of	a	web	browser
supports	it,	too.	In	JavaScript,	you	start	with	creating	an	instance	of	this	object
establishing	a	connection	to	the	server,	and	then	the	client’s	part	of	communications	comes
down	to	processing	events	dispatched	by	the	browser	when	the	connection	is	opened,	the
message	arrives	from	the	server,	and	so	on.	Accordingly,	your	client-side	code	can
perform	the	following	actions:

1.	 Initiate	the	connection	to	the	server’s	endpoint—create	an	instance	of	the	WebSocket
object	providing	the	server’s	URL	

2.	 Write	an	onOpen()	callback	function

3.	 Write	an	onMessage()	callback	function

4.	 Write	an	onClose()	callback	function	

5.	 Write	an	onError()	callback	function

Because	this	book	doesn’t	cover	JavaScript	programming,	here	I	just	show	you	an	easy-to-
read	code	fragment	that	performs	all	of	the	preceding	steps	in	JavaScript	running	in	a	web
browser.	If	you’re	interested	in	reading	more	about	HTML5	programming,	you	could	read
Enterprise	Web	Development	(O’Reilly	Media,	2014),	which	I	coauthored.		The	following
sample	JavaScript	code	connects	to	the	WebSocket	echo	server	and	defines	all	possible
callback	functions:

if	(window.WebSocket)	{			
				ws	=	new	WebSocket("ws://www.websocket.org/echo");	
				
				ws.onopen	=	function()	{
								console.log("onopen");
				};		
				
				ws.onmessage	=	function(e)	{
							console.log("echo	from	server	:	"	+	e.data);	

http://caniuse.com/websockets
http://www.amazon.com/Enterprise-Web-Development-Building-Applications/dp/1449356818

				};
				ws.onclose	=	function()	{	
							console.log("onclose");
				};
				ws.onerror	=	function()	{
							console.log("onerror");		
				};
}	else	{
			console.log("WebSocket	object	is	not	supported");
}

When	the	new	instance	of	the	WebSocket	is	created,	it	makes	a	handshake	request	to	the
server	specified	as	a	URL.	The	URLs	start	with	ws	and	wss	as	opposed	to	http	and	https.
The	handshake’s	HTTP	header	includes	the	following	attributes:

Upgrade:	websocket
Connection:	Upgrade

The	request	header	also	contains	a	unique	value	in	the	Sec-Websocket-Key	attribute.	If	the
server	supports	the	WebSocket	protocol,	it	returns	HTTP	status	code	101	(switching
protocols).	The	server	applies	a	special	hash	code	to		Sec-Websocket-Key,	generates
another	key,	and	places	it	in	the	Sec-Websocket-Accept	attribute	of	the	HTTP	response
header.	This	proves	that	the	server	supports	the	WebSocket	protocol.	After	that,	the	client
opens	a	WebSocket	connection	with	the	server.	Now	both	the	client	and	the	server	know
each	other	and	can	start	sending	messages	to	each	other	without	any	further	ceremony.	If
the	server	doesn’t	support	websockets,	it	returns	the	status	code	400—bad	request.	

When	the	server’s	message	is	received,	the	callback	method	annotated
with	@OnMessage	is	invoked	on	the	client.

If	the	client	sends	a	message,	the	callback	method	annotated	with	@OnMessage	is
invoked	on	the	server.	If	the	server	returns	an	error,	the	@OnError	callback	is	invoked	on
the	client.	The	@OnClose	annotated	method	is	invoked	when	the	connection	is	closed.

Similar	to	raw	socket	connections,	websockets	do	not	define	the	data	format	of	the
message	exchange.	It’s	the	responsibility	of	the	application	to	decide	which	subprotocol	to
use,	and	when	the	client	instantiates	a	WebSocket	object,	it	can	pass	to	the	constructor	an
optional	parameter	for	the	subprotocol,	in	which	case	the	handshake	will	include	the
additional	attribute	Sec-WebSocket-Protocol.	

To	send	a	message	from	JavaScript,	you	can	use	one	of	the	overloaded	methods	send(),
which	can	take	string	or	binary	data	(Blob	or	ArrayBuffer).	When	the	client	receives	a
message,	you	can	do	the	type	check	in	JavaScript	as	follows:

webSocket.onmessage	=	function(messageEvent)	{	
			if	(typeof	messageEvent.data	===	"string"){	
						console.log("Received	text	data:	"	+	messageEvent.data);
			}	elseif	(messageEvent.data	instanceof	Blob){	
						console.log("Received	blob	data")

			}	elseif	(messageEvent.data	instanceof	ArrayBuffer){
						console.log("Received	ArrayBuffer	data")
		}
};

Communication	with	the	Server	Using	WebSockets
There	are	two	ways	of	implementing	a	WebSocket	endpoint	in	Java	on	the	server.	To
create	a	programmatic	endpoint	you	need	to	extend	your	class	from
javax.websocket.Endpoint	and	override	the	methods	onOpen(),	onMessage(),	onError(),
and	onClose().

To	create	an	annotated	endpoint	you	need	to	annotate	a	POJO	with	@ServerEndPoint,	and
each	of	the	callback	methods	with	@OnOpen,	@OnMessage,	@OnError,	and	@OnClose.
This	lesson	uses	only	the	annotated	endpoints,	which	are	easier	to	write	and	read.

Server-side	WebSocket	endpoints	are	deployed	in	.war	files	of	your	web	modules.	No
other	configuration	is	needed.	In	Lesson	36,	you’ll	see	how	to	automate	deployment	with
Gradle.

With	websockets,	the	client	and	server	are	peers	and	can	initiate	the	message	exchange
independently	from	each	other.	Hence	they	need	to	know	about	each	other.	When	a	server-
side	callback	method	is	invoked,	it	gets	a	Session	object,	which	you	can	use	to	get	a
reference	to	the	peer—the	client—and	start	sending	messages	to	it	without	the	need	of
receiving	any	special	requests.		The	next	section	demonstrates	how	to	do	such	a	server
data	push.

Hello	WebSocket	Example

Let’s	create	a	Hello	World-style	WebSocket	application.	I’m	not	going	to	create	an
example,	where	the	client	makes	a	request	and	the	server	responds	to	it.	I	want	the	server
to	send	the	message	to	the	client	first.		On	the	Java	side	I’m	using	just	one	callback
method,	greetTheClient()	annotated	with	@OnOpen,	that	will	be	invoked	on	the	server	as
soon	as	the	client	connects.	The	endpoint	class	will	be	annotated	with	@ServerEndPoint.	

In	Eclipse,	create	a	Dynamic	Web	Project	called	Lesson28	with	the	target	runtime
GlassFish.	Then	create	a	Java	class	HelloWebSocket	that	looks	like	this:	

import	java.io.IOException;
import	javax.websocket.OnOpen;
import	javax.websocket.server.ServerEndpoint;
import	javax.websocket.Session;
@ServerEndpoint("/hello")
public	class	HelloWebSocket	{			
		@OnOpen			
		public	void	greetTheClient(Session	session){			
					try	{	
								session.getBasicRemote().sendText("Hello	stranger");
	

					}	catch	(IOException	ioe)	{	
								System.out.println(ioe.getMessage());	
					}			
		}
}

When	the	client	connects	to	this	WebSocket	endpoint,	the	callback	method
greetTheClient()	is	invoked	and	the	Session	object	that	represents	a	conversation	between
peers	is	passed	as	an	argument.	The	method	getBasicRemote()	returns	the	reference	to	the
client’s	endpoint,	and	sendText()	sends	a	text	message	to	this	client.	There	is	no	special
data	request	from	the	client;	the	server	sends	the	message	“Hello	stranger”	as	soon	as	the
connection	is	opened.

Now	let’s	create	a	simple	HTML	client	that	receives	and	displays	the	server’s	message.	In
Eclipse,	right-click	the	document	root	folder	WebContent,	and	create	there	an	HTML
file	index.html	by	using	the	menu	File	→	New	→	Other	→	HTML	File.	When	you	see	a
Select	HTML	Template	pop-up	window,	just	select	the	template	New	HTML	File
(5).	Eclipse	creates	a	new	file	with	the	following	HTML	content:

<!DOCTYPE	html>
<html>
<head>
		<meta	charset="UTF-8">
		<title>Insert	title	here</title>
</head>
<body>
</body>
</html>

Now	add	one	empty	HTML	tag		where	the	server’s	message	will	be	displayed.	You
also	need	a	simple	JavaScript	code	that	opens	the	connection	and	declares	the	function	to
handle	the	onmessage	callback.	This	is	how	your	client	should	look	(the	manually	added
content	is	shown	in	bold):	

<!DOCTYPE	html>
<html>
<head>
<meta	charset="UTF-8">
<title>Insert	title	here</title>
</head>
<body>
		
		
		<script	type="text/javascript">
				var	ws	=	new	WebSocket("ws://localhost:8080/Lesson28/hello");	
							
				ws.onmessage	=	function(event)	{

						var	mySpan	=	document.getElementById("messageGoesHere");
						mySpan.innerHTML=event.data;	
				};
				
</script>
</body>
</html>

When	the	web	browser	loads	this	file,	it	runs	the	script,	instantiates	the	WebSocket	object,
and	registers	the	onmessage()	callback	function.	There	you	get	a	reference	to	the	
tag	by	calling	getElementById()	and	set	its	content	to	the	payload	event.data,	which
contains	“Hello	stranger.”	

Deploy	the	project	Lesson28	under	GlassFish	(right-click	the	server	and	select	the	“Add
and	Remove”	menu),	right-click	the	file	index.html,	and	run	it	on	the	server.	You	see	a
web	page	with	the	text	Hello	stranger.	

Passing	Parameters	with	@PathParam
If	you	want	to	make	your	Hello	WebSocket	application	more	personal,	you	could	ask
the	user	for	her	name,	save	it	in	a	JavaScript	variable,	and	attach	the	name	to	the	URI
so	the	web	client	would	connect	to	the	following	URI:

ws://localhost:8080/Lesson28/hello/Mary

Accordingly,	on	the	server	side	you	need	to	use	a	different	URI	value	in
@ServerEndpoint	and	the	@PathParam	annotation:	

@ServerEndpoint("/hello/{userName}")
public	class	HelloWebSocket	{			
		@OnOpen			
		public	void	greetTheClient(Session	session,	
																							@PathParam	String	userName){
			...
		}

The	value	“Mary”	is	injected	in	the	method	argument	userName,	and	you	can	process
it	as	any	other	method	argument.	

That’s	all	there	is	to	it.	This	was	an	example	of	a	server	data	push	to	the	client.	Now
imagine	that	the	server	would	be	retrieving	stock	quotes	or	auction	bids	from	a	third-party
server.	The	same	technique	can	be	used	for	refreshing	the	data	in	the	browser’s	window
without	any	polling	requests	from	the	client.		

Monitoring	WebSocket	Network	Traffic

Google	Chrome	browser	allows	monitoring	of	the	WebSockets	traffic.	I’m	using	the
HelloWebSocket	example	from	the	previous	section	to	show	you	what	went	over	the	wire.

First,	open	the	URL	http://localhost:8080/Lesson28/index.html	in	Chrome,	and	then	open
Developer	Tools	and	refresh	the	web	page.	The	Network	tab	includes	the	WebSockets
section.	The	data	is	sent	in	chunks	called	frames,	and	you	can	see	“Hello	stranger”	in	the
Data	column	under	the	tab	Frames,	as	shown	in	Figure	28-2.

In	Figure	28-2,	note	that	the	length	of	the	frame	is	only	14	bytes,	where	the	length	of	the
data	is	13	bytes.	No	HTTP	headers	are	present	during	the	message	exchange.	The	headers
were	only	present	during	the	initial	handshake	and	the	protocol	upgrade.	You	can	see	them
under	the	Headers	tab,	as	shown	in	Figure	28-3.

You	can	see	that	the	request	header	asked	for	a	connection	upgrade,	and	the	GlassFish
server	has	accepted	it	in	the	response	header.	

Chrome	Developer	Tools	offer	an	easy	way	to	monitor	traffic	between	WebSocket	peers.
But	if	you’d	like	to	peek	inside	the	frames	of	WebSocket	messages,	use	the	network
packet	analyzer	called	WireShark.

Figure	28-2:	Monitoring	WebSocket	frames

http://localhost:8080/Lesson28/index.html
http://www.wireshark.org

Figure	28-3:	The	handshake	HTTP	headers

Sending	Messages
If	you	want	to	send	the	message	from	a	JavaScript	client,	just	use	the	method
WebSocket.send(),	which	can	take	text	or	binary	objects	as	arguments.	On	the	Java	side
you	use	different	methods	of	sending	data	depending	on	the	object	data	type.	For	example,
use	the	method	sendText()	from	the	object	javax.websocket.RemoteEndpoint.Basic	as	you
did	in	the	HelloWebSocket	example:

session.getBasicRemote().sendText("Hello	stranger");

The	method	getBasicRemote()	returned	an	instance	of	the	RemoteEndpoint.Basicobject,
which	performs	a	blocking	call	to	the	peer.	For	sending	asynchronous	non-blocking
messages,	use	the	object	RemoteBasic.Async	instead,	which	you	can	obtain	by	calling
getAsyncRemote()	on	the	Session	object.	

If	you’re	not	planning	to	send	text,	use	such	methods	as	sendObject(),	sendBinary(),
or	sendStream().	The	sender	and	receiver	should	ensure	that	the	data	types	of	the	messages
being	sent	are	the	same.	

The	server	can	also	send	a	special	control	message	known	as	ping	to	check	whether	the
connection	is	alive.	The	ping	may	contain	a	small	amount	(up	to	125	bytes)	of	application
data,	but	usually	it’s	just	some	control	word	to	identify	the	ping:		

session.getBasicRemote().sendPing(ByteBuffer	applicationData);

If	the	connection	is	alive,	the	web	browser	returns	a	pong	of	type	PongMessage,	which

can	be	handled	by	the	server	endpoint	in	the	@OnMessage	annotated	method.

The	client	can’t	initiate	a	ping,	though.	You	need	to	manually	program	some	ping	counter,
and	if	pings	are	not	coming	from	the	server	for	more	than	a	specified	time	interval,	the
client	should	reconnect.			

Receiving	Messages	Using	@OnMessage
The	method	in	your	Java	class	that’s	responsible	for	handling	messages	should	be
annotated	with	@OnMessage	annotation.	The	method	must	have	at	least	one	argument
defining	the	type	of	the	expected	message.		

If	such	a	method	returns	a	value,	it’s	sent	to	the	peer	as	a	message	and	should	be	handled
there	as	any	other	WebSocket	message.	For	example,	the	following	message	handler
expects	a	String	message	and	returns	a	String	that	is	sent	as	a	message	to	the	peer:

@OnMessage
public	String	getStockPrice(String	symbol){
				String	stockPrice;
				//	The	code	to	get	the	stock	price	goes	here
				return	stockPrice;
}

The	online	documentation	for	the	@OnMessage	annotation	offers	a	choice	of	parameters:		

Exactly	one	parameter	(text,	binary,	or	a	PongMessage)

Zero	to	n	String	or	Java	primitive	parameters	annotated	with
the	PathParam	annotation	for	server	endpoints

An	optional	Session	parameter

The	String	type	parameters	are	used	for	sending	textual	data,		ByteBuffer	is	for	any	binary
data-like	images,	videos,	or	any	BLOB.	The	server-side	ping	and	the	client	side	pong
(the	PongMessage)	are	used	in	WebSockets	for	heartbeats—to	keep	the	client-server
connection	alive.	

Your	endpoint	class	can	declare	up	to	three	message	handlers	annotated	with
@OnMessage:	one	for	each	message	type	(text,	binary,	and	pong).	

An	optional	parameter	Session	(you	used	it	in	the	HelloWebSocket	example
with	@OnOpen)	is	needed	if	the	server	has	to	perform	actions	like	sending	a	message	to	a
specific	client,	getting	parameters	associated	with	the	client’s	request	(for	example,	user
preferences),	or	close	the	current	conversation.

https://javaee-spec.java.net/nonav/javadocs/javax/websocket/OnMessage.html
https://javaee-spec.java.net/nonav/javadocs/javax/websocket/server/PathParam.html

Endpoint	Instances
By	default,	a	WebSocket	container	creates	a	separate	endpoint	instance	for	each
client’s	connection,	and	the	Session	object	can	be	used	for	storing	the	client’s	state	on
the	server.	If	you	prefer	to	have	one	endpoint	instance	shared	by	multiple	clients,	you
need	to	use	the	@OnOpen	annotation	with	an	additional	optional
parameter	ServerEndpointConfig.Configurator	(see	the	javadoc	for	details)	and
override	the	method	getEndpointInstance()	on	the	configurator.	

A	message	handler	method	can	return	void,	primitives	and	their	wrapper	classes,	a	byte
array	byte[],	ByteBuffer,	or	your	custom	objects	for	which	the	encoder	exists	(covered	in
the	next	section).	

Java-Based	WebSocket	Clients	
JSR	356	describes	how	to	write	WebSocket	clients	in	Java	using	an	annotation
@ClientEndpoint.	Programming	WebSocket	Java	clients	is	very	similar	to	what	you
did	on	the	server;	you	still	need	to	annotate	methods	with	@OnOpen,	@OnMessage,
and	so	on.			

A	web	browser	offers	an	instance	of	the	WebSocket	object	so	it	can	connect	to	the
server	endpoint	without	any	special	preparations.	But	if	you	write	a	WebSocket	client
in	Java,	you	need	to	obtain	the	reference	to	the	WebSocketContainer	object	first,	and
then	you	can	connect	to	the	server	with	the	method	connectToServer()	providing	the
URI	of	the	server’s	endpoint.	To	compile	a	Java	client,	you	have	to	include	in	the
CLASSPATH	some	implementation	(jars)	of	JSR-356	for	the	client—for	example,
Project	Tyrus.	Refer	to	Oracle’s	WebSocket	tutorial	for	details	of	developing
WebSocket	clients	in	Java.

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html
https://tyrus.java.net/dependencies.html
https://docs.oracle.com/javaee/7/tutorial/websocket.htm#GKJIQ5

Encoders	and	Decoders
WebSocket	protocol	doesn’t	define	an	application-specific	protocol	for	data	exchange,	but
it	has	a	place	to	specify	one	of	the	supported	subprotocol	names	that	can	be	used	in	your
application.	For	example,	one	of	the	popular	messaging	protocols	is	called	STOMP,	and
you	can	find	some	relevant	examples	by	searching	for	“Stomp	Over	WebSocket”	online.

Besides,	the	Java	implementation	of	the	WebSocket	protocol	allows	you	to	transform	the
message	payload	from	one	format	to	another	during	the	client-server	data	exchange.
Custom	classes	that	perform	this	transformation	are	called	decoders	and	encoders.

For	example,	a	web	browser	sends	a	JSON-formatted	string	(see	Lesson	33	if	you’re	new
to	JSON)	to	your	Java	WebSocket	endpoint.	You	can	create	a
class	JsonToPojoDecoder	that	parses	the	incoming	string	and	turns	it	into	a	POJO	of
specified	type.	Similarly,	you	can	create	a	class	PojoToJsonEncoder	that	serializes	each
POJO	to	a	JSON	string	on	the	way	from	the	Java	EE	server	to	the	user’s	web	browser.	The
diagram	in	Figure	28-4	depicts	the	decoder	and	encoder	classes	in	a	message	exchange.

Figure	28-4:	Encoders	and	decoders	in	the	message	exchange

Now	I’ll	show	a	sample	application	to	get	a	stock	price	quote	that	uses	a	decoder	and
encoder.	

Earlier,	in	the	HelloWebSocket	example,	you	used	only	the	value	parameter	"/hello"in	the
annotation	@ServerEndpoint.	But	this	annotation	has	four	more	optional
parameters:	decoders,	encoders,	subprotocols,	andconfigurator.	You	use	the	decoders	and
encoders	parameters	in	the	class	StockServerEndpoint	shown	next	(import	statements	are
omitted	for	brevity):

@ServerEndpoint(value	=	"/stockprice",
																encoders	=	{StockEncoder.class},
																decoders	=	{StockDecoder.class})
public	class	StockWebsocketEndpoint	{
	
				@OnMessage
				public	Stock	getPriceQuote(Stock	stock){
								stock.price	=Math.random()*100;				
								return	stock;
				}
}

This	endpoint	invokes	the	method	getPriceQuote()	when	the	message	arrives	from	the
peer.		This	method	generates	a	random	stock	price.	Note	that	both	the	argument	and	the

https://www.iana.org/assignments/websocket/websocket.xml#subprotocol-name
http://stomp.github.io/

return	value	of	the	method	getPriceQuote()	are	of	Java	type	Stock	shown	next:

public	class	Stock	{
				public	String	symbol;
				public	double	price;
}

If	a	WebSocket	client	is	also	written	in	Java	there	is	no	problem	here.	But	a	typical	client
is	written	in	JavaScript,	which	runs	in	a	browser	and	sends	the	data	to	the	server	as
text.	Accordingly,	the	client	running	in	the	web	browser	may	expect	the	data	as	a
formatted	text	and	not	a	Java	object.

To	do	these	data	conversions,	write	a	decoder	that	converts	the	text	into	the	Stock	object
and	an	encoder	that	converts	a	Stock	object	into	text.	The	decoder	class	has	to	implement
either	Decoder.Text	or	Decoder.Binary	interface.	Our	class	StockDecoder	implements	
Decoder.Text:

public	class	StockDecoder	implements	Decoder.Text<Stock>{
				@Override
				public	void	init(EndpointConfig	config)	{}
				public	Stock	decode(String	symbol)	throws	DecodeException	{
								System.out.println("In	Decoder:	converting	"	+	symbol	+	
																											"	into	Stock	object");
								Stock	stock	=	new	Stock();
								stock.symbol=symbol;						
								return	stock;
				}
				public	boolean	willDecode(String	symbol)	{
								System.out.println("Allowing	decoding");
								return	(symbol	!=	null);
				}
				public	void	destroy()	{}
}

You	can	find	details	of	the	Decoder.Text	in	the	online	documentation.	In	short,	the	method
decode()	intercepts	the	incoming	message	from	the	client,	and	your	code	transforms	the
message	into	a	required	Java	object.	The	returned	value	from	decode()	is	passed	to	the
getPriceQuote()	method	of	the	StockWebsocketEndpoint	class.	The	method	decode()	just
creates	an	instance	of	the	Stock	object	and	assigns	the	received	name	of	the	stock	to	its
field	symbol.

The	method	willDecode()	checks	whether	the	given	String	can	be	encoded	into	the
requested	object—the	Stock.	You	just	checked	it	for	null,	but	if	some	prerequisites	would
have	to	be	met	to	allow	the	transformation,	you	could	implement	that	logic	here.	In	the
example	you	don’t	need	to	perform	any	actions	on	initialization	or	destruction	of	the
decoder	instance;	hence	why	the	mandatory	methods	init()	and	destroy()	have	no	code.

The	encoder	class	is	engaged	when	the	method	getPriceQuote()	is	returning	the	instance	of

http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.Text.html

the	Stock	object	with	populated	symbol	and	price.	You	need	to	serialize	the	Java	object
into	text	to	be	sent	to	the	browser.	This	is	how	your	class	StockEncoder	will	look:

public	class	StockEncoder	implements	Encoder.Text<Stock>{
				public	void	init(EndpointConfig	config)	{}
				public	String	encode(Stock	stock)	throws	EncodeException	{
								System.out.println(
														"In	Encoder:	Serializing	Stock	object	into	String");
								
								return	stock.symbol	+	":	"	+	stock.price;
				}
				public	void	destroy()	{}
}

The	method	encode	takes	a	Stock	object	as	an	argument	and	turns	it	into	a	String	by
concatenating	symbol	and	price.	I	purposely	use	such	simple	conversion	because	my	goal
is	to	explain	how	the	encoder	works	and	not	the	conversion	options.	But	you	can
implement	any	transformation	you	like	here.		Most	likely,	you’ll	be	doing	Java	to	JSON
conversion	if	the	client	runs	in	a	web	browser.

You’re	done	coding	the	server	side.	The	code	is	for	the	HTML	page	decodersdemo.html
that	will	be	sending	the	price	quote	requests:

<!DOCTYPE	html>
<html>
<head>
<meta	charset="UTF-8">
<title>Insert	title	here</title>
</head>
<body>
		<form>
				<input	id="stockSymbol"	type="text">
				<input	onClick=	"getPriceQuote()"	type="button"	
																																						value="Get	Price">
		</form>
		
		
		
		<script	type="text/javascript">
				var	ws	=	new	WebSocket(
																								"ws://localhost:8080/Lesson28/stockprice");	
			
				ws.onmessage	=	function(event)	{
							var	mySpan	=	document.getElementById("priceQuote");
							mySpan.innerHTML=event.data;	
				};
				

				function	getPriceQuote(){
								var	symbol	=	document.getElementById("stockSymbol");
								ws.send(symbol.value);
				}
					
</script>
</body>
</html>

This	web	page	has	an	input	field	and	a	Get	Price	button.		When	the	browser	loads	this
page,	it	executes	the	JavaScript	code	that	connects	to	the	server
endpoint	ws://localhost:8080/Lesson28/stockprice.	The	user	enters	the	stock	symbol	and
clicks	the	button,	which	invokes	the	JavaScript	function	getPriceQuote()	that	sends	the
entered	symbol	to	the	WebSocket	server	for	processing.

On	the	server,	the	decoder	converts	the	symbol	into	a	Stock	object,	and	the	Java	method
getPriceQuote()	populates	its	price	field.	The	encoder	turns	the	Stock	object	into	text	and
sends	it	back	to	the	web	browser.

Figure	28-5	shows	how	my	web	page	looked	when	I	directed	my	web	browser
to	http://localhost:8080/Lesson28/decodersdemo.html,	entered	IBM	in	the	input	field,	and
clicked	the	Get	Price	button.

Figure	28-5:	Testing	decodersdemo.html

Debugging	JavaScript
Google	Chrome	(as	well	as	all	other	web	browsers)	offers	an	easy	way	to	debug
JavaScript.	For	example,	I	made	a	typo	in	the	JavaScript	function	getPriceQuote(),
but	there	is	no	compiler	that	could	have	pointed	out	my	error.	The	symbol	was
arriving	to	my	Java	endpoint	as	undefined.	Using	Chrome	Developer	Tools	I	put	a
breakpoint	inside	the	function	getPriceQuote()	and	quickly	found	the	typo.	You	can
read	about	debugging	JavaScript	in	Chrome	in	the	product	documentation.	

http://localhost:8080/Lesson28/decodersdemo.html
https://developer.chrome.com/devtools/docs/javascript-debugging

Publishing	to	All	Clients
Pretty	often	you	need	to	write	a	program	that	publishes	the	same	message	to	all	connected
clients.	For	example,	multiple	clients	of	the	online	auctions	have	to	be	notified	when	a
new	bid	is	placed	on	the	product.	Another	example	is	when	a	new	stock	price	quote	needs
to	be	pushed	from	the	server	to	all	connected	clients.	With	WebSockets	it’s	a	pretty	easy
task.

I’ll	show	you	a	basic	example	when	a	WebSocket	endpoint	pushes	the	server’s	time	to	all
connected	clients.	If	you	can	publish	the	server’s	time	to	all	connected	clients,	you	can
publish	any	application-specific	data.

The	following	endpoint	WebSocketClock	schedules	the	task	that	gets	and	formats	the
server’s	time	every	second	and	publishes	the	time	to	all	connected	clients.	I	schedule	this
timer	once	when	the	first	client	connects	to	the	endpoint.	The	method	sendTimeToAll()
finds	all	connected	clients	by	invoking	getOpenSessions()	on	the	Session	object.	Then	on
each	session	it	calls	getBasicRemote().sendText().

@ServerEndpoint("/clock")
public	class	WebSocketClock	{	
		static	ScheduledExecutorService	timer	=	
							Executors.newSingleThreadScheduledExecutor();	
		private	static	Set<Session>	allSessions;	
		DateTimeFormatter	timeFormatter	=		
										DateTimeFormatter.ofPattern("HH:mm:ss");
		@OnOpen			
		public	void	showTime(Session	session){
						allSessions	=	session.getOpenSessions();
						//	start	the	scheduler	on	the	very	first	connection
						//	to	call	sendTimeToAll	every	second			
						if	(allSessions.size()==1){			
								timer.scheduleAtFixedRate(
													()	->	sendTimeToAll(session),1,1,TimeUnit.SECONDS);				
						}
					}						
			private	void	sendTimeToAll(Session	session){							
					allSessions	=	session.getOpenSessions();
					for	(Session	sess:	allSessions){										
								try{			
										sess.getBasicRemote().sendText("Local	time:	"	+	
																				LocalTime.now().format(timeFormatter));
										}	catch	(IOException	ioe)	{								
														System.out.println(ioe.getMessage());									
										}			
					}			
		}
}

The	web	client	looks	similar	to	the	Hello	WebSocket	example:

<!DOCTYPE	html>
<html>
<head>
<meta	charset="UTF-8">
</head>
<body>
		
		
		<script	type="text/javascript">
				var	ws	=	new	WebSocket("ws://localhost:8080/Lesson28/clock");	
							
				ws.onmessage	=	function(event)	{
						var	mySpan	=	document.getElementById("messageGoesHere");
						mySpan.innerHTML=event.data;	
				};
				
				ws.onerror	=	function(event){
								console.log("Error	",	event)
				}		
</script>
</body>
</html>

Figure	28-6	shows	a	screenshot	where	the	Eclipse	internal	browser,	Chrome,	and	Firefox
show	the	current	time	published	by	the	WebSocket	endpoint.

Figure	28-6:	Three	web	clients	get	current	time	published	by	a	WebSocket	endpoint

You’ll	find	this	example	useful	while	working	on	the	“Try	It”	assignment,	where	you’ll
need	to	push	the	stock	price	quote	to	multiple	clients.

Optimizing	Performance	in	Message	Publishing
Iterating	through	all	open	sessions	works	fine	if	the	number	of	connected	clients	is
small.	But	if	you	have	hundreds	of	clients,	consider	grouping	the	Session	objects	into
separate	collections	in	an	@OnOpen	message	handler	and	sending	messages	to	each
group	in	parallel	from	multiple	threads.	Important:	By	default,	a	Java	EE	server
creates	a	new	instance	of	the	server	endpoint	class	for	each	client’s	connection,	so	if
you’ll	be	creating	your	own	session	collections	they	must	be	static:

private	static	Set<Session>	sessionsChunk1	=	
												Collections.synchronizedSet(new	HashSet<>());
private	static	Set<Session>	sessionsChunk2	=
												Collections.synchronizedSet(new	HashSet<>());
...

Try	It
Rewrite	the	sample	Stock	Server	application	that	you	created	in	the	“Try	It”	of	Lesson	27,
but	this	time	do	it	using	WebSockets.	Create	an	HTML-based	WebSocket	client.

Lesson	Requirements
You	should	have	Java,	GlassFish,	and	Eclipse	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson28
folder	in	the	download.0

Step-by-Step
1.	 Reuse	the	dynamic	web	project	Lesson28	that	you	created	earlier	in	this	lesson.	If	you

don’t	have	it,	download	and	import	it	from	the	book’s	website.	

2.	 Create	an	HTML	client	GetPriceQuote.html	similar	to	the	one	from	the	section
Decoders	and	Encoders.	It	should	have	one	text	input	field	to	enter	the	stock	symbol
and	the	Get	Price	button.	The	user	has	to	enter	the	stock	symbol	she	wants	to	get	a
price	quote	for	and	press	the	button.	The	server	should	generate	random	quotes	for	the
selected	stock.	

3.	 Create	a	server	endpoint	similar	to	the	class	StockWebSocketEndpointfrom	the	section
Decoders	and	Encoders,	but	this	time	reuse	the	classes	Stock	and	StockPriceGenerator
from	the	Try	It	section	from	Lesson	27.

4.	 Implement	a	timer	that	generates	a	new	random	price	quote	every	five	seconds.	For	the
reference	use	the	ScheduledExecutorService	from	the	class	WebSocketClock	from	the
section	“Pushing	to	All	Clients.”

5.	 Deploy	the	project	Lesson28	in	GlassFish	and	start	the	server.

6.	 Run	the	web	page	GetStockPrice.html	inside	Eclipse	or	in	your	web	browser	and	test
the	application.	Enter	one	of	the	stock	symbols;	the	web	page	should	should	refresh
the	stock	price	every	five	seconds.	The	user	should	be	able	to	enter	a	new	stock
symbol	at	any	time	and	the	price	for	the	newly	selected	stock	should	be	displayed	and
refreshed.

TIP			Please	select	the	videos	for	Lesson	28	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e
http://www.wrox.com/go/javaprog24hr2e

Lesson	29
Introducing	JNDI
Instead	of	having	distributed	Java	programs	that	instantiate	lots	of	reusable	objects	over
and	over	again,	it’s	better	if	these	objects	are	pre-created	and	published	at	a	known	server,
where	they	can	be	easily	and	quickly	found.	Lesson	24	introduces	a	registry	concept,	in
which	a	Java	object	can	be	published	under	some	name	so	the	client	can	look	it	up.		

Java	Naming	and	Directory	Interface	(JNDI)	is	also	about	registering	and	finding	objects
in	distributed	applications.	JNDI	is	an	application	programming	interface	(API)	that	can
be	used	for	binding	and	accessing	objects	located	in	Java	EE	or	specialized	naming
servers	that	play	roles		similar	to	that	of	a	company	telephone	directory	assistance
service.	But	instead	of	looking	for	people’s	information,	you	look	for	objects.	Various
software	vendors	offer	specialized	directory	assistance	software,	and	JNDI	provides	a
standard	API	to	read	from	and	write	to	such	directories.	

Every	Java	EE	application	server	comes	with	an	administrator’s	console	that	allows	you	to
manage	objects	in	a	JNDI	tree.	This	lesson	introduces	you	to	the	JNDI	concepts,	and	you
see	how	to	use	JNDI	for	publishing	(and	looking	up)	administered	objects	(that	is,
configured	by	the	server	administrator).		Some	examples	of	administered	objects	are
database	connection	pools	and	message	queues	(explained	in	Lesson	30).	

Naming	and	Directory	Services
A	naming	service	enables	you	to	add,	change,	or	delete	names	of	objects	that	exist	in	some
naming	hierarchy	so	other	Java	classes	can	look	them	up	to	find	their	location.	One	more
analogy:	In	a	library,	you	find	the	name	of	the	physical	location	of	the	book	in	a	directory
and	then	go	to	the	shelf	to	pick	up	the	book.	A	naming	service	provides	a	unique	name	for
every	entry	that	is	registered	with	(bound	to)	this	service.	Every	naming	service	has	one	or
more	contexts—think	of	directories	and	subdirectories	in	a	file	system,	where	any
directory	tree	with	children	is	a	context.	The	naming	tree	originates	from	a	root	node,
which	is	also	known	as	an	initial	context	(like	a	root	directory	on	the	disk).

A	directory	service	enables	you	to	search	the	naming	tree	by	object	attributes	rather	than
object	names.	One	example	is	that	of	the	domain	name	system,	which	is	a	distributed
naming	system	that	takes	the	domain	name	of	a	networked	computer	or	service	and
returns	the	IP	address	and	port	number	of	the	resource.

To	allow	clients	to	do	lookups,	there	has	to	be	a	process	that	initially	binds	the	objects	to	a
naming	tree.	This	can	be	handled	via	a	sever	administration	console	or	an	independent
program	that	(for	example)	binds	employee	names	to	a	directory	server	of	some
organization.	Java	EE	servers	bind	such	objects	as	EJB,	Servlets,	JMS,	and	database
connection	pools	to	their	naming	servers	during	startup.

All	classes	and	interfaces	that	support	JNDI	are	located	in	the	package	javax.naming	that
comes	with	Java	EE	SDK.

Using	the	Class	InitialContext	
The	class	InitialContext	represents	the	root	of	a	JNDI	tree	in	a	naming	server.	There	are
two	ways	of	getting	a	reference	to		a	particular	resource	that	was	bound	to	this	tree:

If	your	Java	code	runs	inside	Java	EE	server,	it	can	can	inject	the	JNDI	resource	into
your	program	by	using	@Resource	annotation.	Your	program	can	also	run	a	lookup()
on	the	InitialContext	object.

If	an	external	Java	program	needs	a	JNDI	resource	(for	example,	a	standalone
messaging	program	needs	to	get	references	to	the	message	queues	bound	to	the	JNDI
tree	of	an	application	server),	it	has	to	get	a	reference	to	the	InitialContext	and	then
invoke	the	method	lookup()	.

Getting	a	Reference	to	InitialContext
Explicit	instantiation	of	InitialContext	is	needed	only	if	you	are	planning	to	use	lookup()
as	opposed	to	resource	injection,	which	is	explained	in	the	next	section.	If	a	Java	program
runs	inside	the	application	server,	instantiating	the	InitialContext	object	comes	down	to
one	line	of	code:

Context	initContext	=	new	InitialContext();

If	a	Java	program	runs	outside	of	the	application	server,	you	need	to	specify	the	location
of	the	server,	the	names	of	the	vendor-specific	classes	implementing	InitialContext,	and
the	access	credentials.	For	example,	for	the	WildFly	application	server,	the	following	code
may	be	used	(given	that	you	know	the	security	credentials):

final	Properties	env	=	new	Properties();	
env.put(Context.INITIAL_CONTEXT_FACTORY,
								"org.jboss.naming.remote.client.InitialContextFactory");	
env.put(Context.PROVIDER_URL,	“http-remoting://127.0.0.1:8080");	
env.put(Context.SECURITY_PRINCIPAL,	“Alex123”);	
env.put(Context.SECURITY_CREDENTIALS,	“MySecretPwd”;
	
Context	initContext	=	new	InitialContext(env);

If	an	external	program	needs	to	access	the	InitialContext	object	in	the	GlassFish	server,
the	code	may	look	like	this:

final	Properties	env	=	new	Properties();	
env.setProperty("java.naming.factory.initial",
											"com.sun.enterprise.naming.SerialInitContextFactory");	
env.setProperty("java.naming.factory.url.pkgs",
											"com.sun.enterprise.naming");	
env.setProperty("java.naming.factory.state",	
				"com.sun.corba.ee.impl.presentation.rmi.JNDIStateFactoryImpl");	
env.setProperty("org.omg.CORBA.ORBInitialHost",	"localhost");	

env.setProperty("org.omg.CORBA.ORBInitialPort",	"8080");	
InitialContext	initContext	=	new	InitialContext(env);

You	need	to	read	the	documentation	that	comes	with	your	application	server	to	get	the
proper	code	for	accessing	JNDI	from	an	external	program.			

After	receiving	a	reference	to	InitialContext,	you	can	invoke	a	lookup()	method	specifying
the	name	of	the	required	resource.	Lesson	30	explains	Java	messaging	in	detail,	but	for
now	I’ll	just	show	you	an	example	of	getting	a	reference	to	a	message	queue	named	test:

Destination	destination	=	(Destination)
																					initContext.lookup(“jms/queue/test");

	The	next	code	samples	show	how	to	get	a	reference	to	an	EJB	and	a	default	JDBC	data
source:

MySessionBean	msb	=	(MySessionBean)	initContext.lookup(
																																	"java:comp/env/ejb/mySessionBean");
	
DataSource	ds	=	(DataSource)	initContext.lookup(
																											"java:comp/env/jdbc/DefaultDataSource");

The	next	section	shows	you	an	example	of	preferable	way	of	getting	JNDI	resources	by
injection.

Injecting	JNDI	Resources
Most	likely,	your	Java	programs	that	need	JNDI	resources	will	run	inside	some	Java	EE
application	server,	which	greatly	simplifies	getting	a	hold	of	such	resources.	In	this	case
you	don’t	even	need	to	instantiate	InitialContext	or	invoke	lookup().	

Resource	injection	with	the	annotation	@Resource	is	a	cleaner	and	simpler	way	of
providing	these	resources	to	your	Java	EE	components.	In	Lesson	30	you	use	resource	for
getting	references	to	JMS	objects,	which	look	as	follows:

import	javax.annotation.Resource;
...
@Resource(name="MyTestConnectionFactory")
private	ConnectionFactory	factory;
@Resource(name="MyJMSTestQueue")
private	Queue	ioQueue;

For	example,	you	could	place	this	code	in	a	Java	servlet,	which	sends	messages	to	a
Queue	bound	to	the	JNDI	tree	under	the	name	MyJMSTestQueue	with	the	help	of	the
ConnectionFactory	that	has	the	JNDI	name	MyTestConnectionFactory.		These	resources
are	injected	into	variables	ioQueue	and	factory	by	the	servlet	container—no	need	to	do	a
lookup.		

Depending	on	its	location,	the	time	of	injection	varies.	If	you	put	the	@Resource

annotation	at	the	class	level,	the	resource	is	injected	during	run	time	when	the	application
looks	it	up.	If	you	put	this	annotation	above	the	field	or	setter	method	declaration,	the
resource	is	injected	in	the	component	when	the	application	is	initialized.

If	you	need	to	override	resources	specified	in	annotations,	you	can	do	it	in	XML
configuration	files.	You	see	more	examples	of	using	resource	injection	with	EJB	in
Chapter	31.	Later	in	this	lesson	you	use	resource	injection	of	JDBC	DataSource.
Meanwhile,	take	a	look	at	the	GlassFish	Administration	Console.

Administering	JNDI	Objects	in	Glassfish
Each	Java	EE	application	server	offers	a	tool	that	allows	administration	of	its	service
modules;	we	are	interested	in	binding	objects	to	their	directory	names.	When	you	start
GlassFish	there	is	a	message	on	the	console:	“Waiting	for	DAS	to	start…”	DAS	stands	for
Domain	Administration	Server,	which	authenticates	the	user	with	administrative	privileges
and	responds	to	requests	from	a	graphical	web	browser-based	Admin	Console.	To	use	the
console	enter	the	following	URL	in	your	browser:	http://localhost:4848/.	You	see	the
console,	as	in	Figure	29-1.

Figure	29-1:	GlassFish	Administration	Console

Administration	Console	enables	you	to	configure	your	instance(s)	of	GlassFish	server	and
administer	various	resources	that	should	be	available	to	Java	EE	applications.	In	Lesson
30	you	see	how	to	configure	JMS	resources.		

http://localhost:4848/

Datasource	and	JNDI
In	Lesson	21,	in	the	section	“Connection	Pools	and	Datasource,”	you	learn	that	creating	a
new	connection	object	for	each	request	is	a	slow	operation,	and	it’s	better	to	work	with
database	connection	pools	that		reuse	pre-created	JDBC	connections.	

Typically	the	administrator	of	the	Java	EE	server	pre-creates	the	pools	of	database
connections	and	configures	the	minimum	and	maximum	number	of	connections	and	some
other	parameters	on	connection	pools.	To	configure	a	new	DBMS	connection	pool	in
GlassFish,	use	the	Administration	Console’s	entry	JDBC	Connection	Pools	(see	Figure
29-2)	and	press	the	button	New.

Figure	29-2:	JDBC	connection	pools	in	GlassFish

Then	you’d	need	to	add	parameters	for	the	new	pool.	GlassFish	includes	DerbyDB
database	server	and	has	a	preconfigured	pool	for	it.	 Figure	29-3	shows	a	snapshot	of	the
GlassFish	administration	console,	where	the	existing	resource	named	DerbyPool
represents	a	pool	of	JDBC	connections.	The	object	javax.sql.DataSource	is	a	factory	of
database	connections.	The	administrator	configures	this	factory	as	a	JNDI	resource,
specifying	what	JDBC	driver	to	use,	how	many	connections	to	create	initially,	and	the
maximum	number	of	connections	allowed.

Figure	29-3:	DerbyPool	is	configured	to	have	from	8	to	32	connections

Configuring	GlassFish	Resources
GlassFish	(and	other	Java	EE	servers)	has	an	alternative	way	of	creating	and
configuring	resources	by	using	an	XML	configuration	file.	GlassFish	resources	can	be
specified	in	the	file	glassfish-resources.xml	that	the	server	loads	on	startup.	

The	Java	program	that	needs	a	JDBC	connection	gets	access	to	the	connection	pool	by	its
JNDI	name	(DerbyPool	in	this	case)	and	makes	a	getConnection()	call	on	this	resource.	If
unused	connections	are	available,	the	Java	class	immediately	gets	an	instance	of
the	Connection	object	that	internally	implements	PooledConnection.	If	many	users	are
making	concurrent	requests,	all	connections	may	be	taken,	and	there	is	a	slight	delay	until
one	of	the	busy	connections	is	returned	to	the	pool.	Connection	is	auto-closable,	and	it
gets	returned	to	the	pool	on	closing.	Connections	returned	to	the	pool	are	not	destroyed;
they	are	preserved	by	the	application	server	for	future	requests.

You	can	do	either	a	JNDI	lookup	of	the	DataSource	object	or	inject	it	to	your	Java	code.	In
Lesson	21	you’ve	been	using	a	standalone	Java	program,	which
invoked	DriverManager.getConnection()	to	get	the	Connection	object.	But	now	you	can
use	getConnection()	on	the	DataSource	object	taken	from	the	pool.	If	the	name	of	the
configured	DataSource	object	is	DerbyPool,	the	sample	code	to	obtain	a	pooled	database
connection	may	look	as	follows:

InitialContext	ic	=	new	InitialContext();
DataSource	ds	=	(DataSource)	ic.lookup("DerbyPool");
Connection	myConnection	=	ds.getConnection();
//The	rest	of	the	JDBC	processing	goes	here	as	in	Lesson	21

Injecting	a	DataSource	using	the	@Resource	syntax	would		look	like	this:

@Resource(name="java:global/DerbyPool")
DataSource	ds;

You	have	a	chance	to	work	with	the	DataSource	while	working	on	the	assignment	from
the	“Try	It”	section	of	this	lesson.	

Lightweight	Directory	Access	Protocol
Lightweight	Directory	Access	Protocol	(LDAP)	servers	are	specialized	software	products
that	store	directory	entries	in	hierarchical	trees	and	are	highly	optimized	for	reading.	This
makes	them	a	good	choice	for	such	directory	services	as	employee	lists	or	phone
directories	in	an	organization.	Directories	are	mainly	read,	not	changed,	and	this	is	where
LDAP	servers	shine.

From	the	enterprise	Java	perspective	you	should	keep	LDAP	solutions	in	mind	when	a
really	fast	lookup	of	some	Java	objects	is	needed,	such	as	with	JMS	connection	factories,
queues,	or	topics.	Java	developers	use	the	JNDI	API	to	bind,	look	up,	and	update	the
entries	in	LDAP.	JNDI	is	to	LDAP	servers	as	JDBC	is	to	DBMSes.

These	are	some	popular	LDAP	servers:

Oracle	Directory	Server	(Oracle)

Microsoft	Active	Directory	(Microsoft)

OpenLDAP	(open-source,	community	developed)

ApacheDS	(open-source,	Apache)

OpenDJ	(open-source,	community	developed)

The	LDAP	directory	tree	has	a	root	entry,	which	consists	of	one	or	more		distinguished
names	(unique	identifiers).	Typically	the	top	of	the	hierarchy	is	an	object	with	the	prefix	o
for	organization.	One	level	below	has	the	prefix	ou	for	organizational	unit,	cn	stands	for
common	name,	and	so	on.	Unlike	with	other	naming	services,	the	search	string	starts	from
the	very	lowest	hierarchical	entry	and	the	root	entry	has	to	be	specified	last.	Here’s	an
example	of	a	distinguished	name	that	can	be	used	in	a	search:

cn=jsmith,	ou=accounting,	o=oracle.com

This	means	“Find	the	entry	that	goes	by	the	name	jsmith	located	under	accounting	node,
which	in	turn	is	located	under	oracle.com.”	The	preceding	search	string	corresponds	to	the
following	hierarchy	in	an	LDAP	tree:

o	=	oracle.com
		ou	=	accounting
					cn	=	jsmith

The	next	Java	code	snippet	specifies	the	JNDI	properties,	connects	to	the	LDAP	server
running	on	port	389,	and	looks	for	the	object	called	CustomerHomethere:	

Hashtable<String,	String>	env	=	new	Hashtable<>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
																								"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL,	"ldap://localhost:389");
env.put(Context.SECURITY_AUTHENTICATION,"simple");
env.put(Context.SECURITY_PRINCIPAL,	"cn=Directory	Manager");

env.put(Context.SECURITY_CREDENTIALS,"myPassword");
DirContext	ctx	=	new	InitialDirContext(env);
CustomerHome	custHome	=(CustomerHome)	ctx.lookup("cn=CusomerHome,
ou=RealBigProject,	o=trump.com");

To	study	distributed	applications	you	can	run	all	the	examples	from	this	book	(clients	and
servers)	on	a	single	computer,	but	real-world	distributed	applications	can	be	constructed	in
various	ways;	for	example:

Computer	#1	runs	the	LDAP	server.

Computer	#2	runs	an	application	server	that	has	registered	(published)	some	objects
with	the	LDAP	server	on	Computer	#1.

Computer	#3	has	a	client	program	that	finds	object	references	on	Computer	#1	and
invokes	their	methods	on	Computer	#2.

Computer	#4	runs	a	DBMS	server	that	is	being	used	by	the	application	server	running
on	Computer	#2.

Computer	#5	publishes	financial	market	data,	and	Computer	#2	subscribes	to	this
service.

…and	so	on,	and	so	on.

September	11
When	the	terrorists	attacked	and	destroyed	the	World	Trade	Center,	I	was	working	for
a	firm	that	lost	the	data	center	as	a	result	of	this	attack.	I	was	working	on	a	financial
trading	application	that	utilized	messaging.	The	JMS	objects	that	were	using	New
York’s	data	center	were	bound	to	an	LDAP	server	located	in	North	Carolina.	When
the	reserved	data	center	started	functioning	in	New	Jersey,	we	just	ran	the	program	to
rebind	the	JMS	objects	to	the	LDAP	server	so	they	would	point	at	the	messaging
server	in	a	new	location.	Because	of	such	a	flexible	architecture,	the	firm’s	trading
application	was	not	operational	for	only	three	days.

This	lesson	has	shown	you	how	to	use	JNDI	and	given	some	examples	of	why	you	may
want	to	use	it.	Comparing	the	code	in	Listing	30-1	with	the	one	in	messageservlet	is	just
one	example	that	shows	that	naming	and	binding	specific	physical	objects	under	a	generic
JNDI	name	enables	you	to	remove	these	physical	locations	from	your	program
code.	Lesson	30	and		Chapter	31	give	more	examples	of	using	JNDI.

Try	It
In	this	assignment	you	need	to	create	a	servlet	deployed	under	GlassFish	server,	which
should	obtain	a	connection	to	DerbyDB	by	using	the	resource	injection	of		a	DataSource
object.

Lesson	Requirements
You	should	have	Java	and	GlassFish	4	installed.	GlassFish	has	to	be	configured	in	Eclipse
IDE	as	described	in	Lesson	26	in	Configuring	GlassFish	in	Eclipse	IDE.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	file
Lesson29.zip.

Step-by-Step
1.	 Open	the	command	(or	Terminal)	window,	switch	to	the	folder	glassfish/javadb/bin

and	start	the	instance	of	the	DerbyDB	that	comes	with	GlassFish.	You	need	to
run	startNetworkServer.exe	(or		startNetworkServer	if	you	use		Mac	OS).

2.	 Start	GlassFish	from	the	Eclipse	IDE.

3.	 In	Eclipse,	create	a	new	Dynamic	Web	Project	Lesson29	specifying	GlassFish	as	the
target	run	time.	

4.	 Create	a	new	servlet	called	MyDerbyClientServlet.	This	servlet	should	get	the
DataSource	injected	and	use	it	for	a	connection	to	DerbyDB.	Modify	the	generated
code	so	the	servlet	looks	as	follows:

@WebServlet("/MyDerbyClientServlet")
public	class	MyDerbyClientServlet	extends	HttpServlet	{
		@Resource(name="java:global/DerbyPool")
		DataSource	ds;	
		protected	void	doGet(HttpServletRequest	request,
																							HttpServletResponse	response)	
																								throws	ServletException,	IOException	{
	 	
					try	{
									Connection	myPooledConnection	=	ds.getConnection();
	 	System.out.println("Got	pooled	connection	to	DerbyDB");
	 	 	
					}	catch	(SQLException	e)	{
	 		e.printStackTrace();
					}
		}
}

http://www.wrox.com/go/javaprog24hr2e

5.	 Deploy	the	servlet:	Right-click	GlassFish	in	the	Server	view	and	select	Add	and
Remove.	Check	the	Eclipse	console	and	locate	the	message	that	the	Lesson29
application	is	loaded.

6.	 Right-click	the	servlet	name	and	select	Run	on	Server.	You	should	see	the
message	“Got	pooled	connection	to	DerbyDB”	in	the	Console	view.

7.	 Open	GlassFish	Administration	Console	and	go	to	the	Additional	Properties	tab	of
DerbyPool.	Modify	the	database	name	to	be	Lesson29.	

Figure	29-4:	Additional	Properties	of	the	connection	pool

	

8.	 Revisit	Lesson	21	and	create	the	Employee	table	as	described	in	“Installing	Derby
DB”	and	“Creating	a	Database.”

9.	 Add	the	code	to	MyDerbyClientServlet	that	retrieves	the	data	from	Employee	table
(use	employeelist_program	as	a	reference).	

10.	 Run	the	servlet	MyDerbyClientServlet.	It	should	retrieve	the	data	from	Employee	and
print	them	in	Eclipse	Console	view.

TIP			Please	select	the	videos	for	Lesson	29	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	30
Introducing	JMS	and	MOM
People	send	messages	to	each	other	via	e-mail,	instant	messages,	Twitter,	Facebook,	and
so	on.	People	can	also	communicate	using	more	traditional	methods	by	sending	regular
mail.	You	just	need	to	drop	a	letter	in	a	mailbox,	and	the	rest	is	taken	care	of	by	postal
service	providers	and	logistics	companies	such	as	USPS,	FedEx,	UPS,	and	DHL.

Applications	can	send	messages	to	each	other	using	specialized	servers	known	as
message-oriented	middleware	(MOM),	which	plays	a	role	similar	to	that	of	the	delivery
services.	A	program	“drops	the	message”	into	a	message	queue	(think	mailbox)	using	the
Java	Messaging	Service	(JMS)	application	programming	interface	(API),	and	the	message
is	delivered	to	another	application	that	reads	messages	off	of	this	queue.	In	short,		JMS	is
an	API	for	working	with	MOM	servers.	

Although	JMS	is	a	part	of	the	Java	EE	specification,	you	can	use	it	with	Java	SE
applications	without	needing	to	have	any	Java	application	server—just	make	a	.jar	file
containing	JMS	classes	available	to	your	program.	This	lesson	shows	you	how	to	write
both	standalone	Java	clients	and	those	that	live	inside	a	Java	EE	server.	These	clients	send
and	receive	applications	with	the	JMS	API	via	a	MOM	provider.	In	Lesson	31	you	learn
about	the	value	that	message-driven	beans	bring	to	the	table.

Messaging	Concepts	and	Terminology
You	have	already	learned	several	methods	of	data	exchange	in	distributed	Java
applications:	direct	socket	communication,	RMI,	and	HTTP-based	interactions.	But	all	of
them	were	based	on	remote	procedure	calls	(RPC)	or	the	request/response	model.	MOM
enables	you	to	build	distributed	systems	that	communicate	asynchronously.

JMS	itself	isn’t	the	transport	for	messages.	JMS	is	to	MOM	what	JDBC	is	to	a	relational
DBMS.	Java	applications	can	use	the	same	JMS	classes	with	any	MOM	provider.	Here’s	a
list	of	some	popular	MOM	software:

WebSphere	MQ	(IBM)

EMS	(Tibco	Software)

SonicMQ	(Progress	Software)

ActiveMQ	(open	source,	Apache)

Open	MQ	(open	source,	Oracle)

If	you	place	an	order	to	buy	some	stocks	by	invoking	the	method	placeOrder()	on	a	remote
machine,	that’s	an	example	of	a	synchronous	or	blocking	call	(also	known	as	remote
procedure	call).	The	calling	program	can’t	continue	until	the	code	in	the	placeOrder()
method	is	finished	or	has	thrown	an	error.

With	asynchronous	communications	it’s	different.	You	can	place	an	order	but	don’t	have
to	wait	for	its	execution.	Similarly,	when	you	drop	a	letter	in	a	mailbox	you	don’t	have	to
wait	for	a	mail	truck	to	arrive	to	the	recipient.	The	same	applies	to	e-mail—press	the	Send
button	and	continue	working	on	other	things	without	waiting	until	your	message	has	been
delivered.	Recipients	of	your	e-mails	also	don’t	have	to	be	online	when	you	send	a
message;	they	can	read	it	later.

The	process	of	placing	a	trade	order	comes	down	to	putting	a	Java	object	that	describes
your	order	into	a	certain	message	queue	of	your	MOM	provider.	After	placing	an	order,
the	program	may	continue	its	execution	without	waiting	until	the	processing	of	the	order	is
finished.	Multiple	users	can	place	orders	into	the	same	queue.	Another	program	(not
necessarily	in	Java)	should	be	de-queueing	and	processing	messages.	Figure	30-1	shows
how	a	trading	application	can	place	orders	(and	receive	executions)	with	another
application	running	on	a	stock	exchange.

Figure	30-1:	Brokerage	company	communicates	with	a	stock	exchange	via	MOM	

Even	from	this	very	high-level	representation	of	a	trading	application	you	can	see	that
messaging	allows	you	to	build	loosely	coupled	distributed	systems.		Say,	the	stock
exchange	server	is	down,	the	brokerage	company	servers	can	still	take	customers’	orders

and	send	them	to	MOM.	As	soon	as	the	stock	exchange	servers	become	operational,	they
start	retrieving	orders	from	the	MOM	queues.	If	the	brokerage	company	would	make
synchronous	RPC-type	calls	to	the	stock	exchange,	the	entire	trading	application	would
stop	functioning	it	the	stock	exchange	servers	were	down.	

The	trading	orders	are	placed	in	one	queue,	and	when	they	are	executed	at	the	stock
exchange	the	confirmations	go	into	another	queue	and,	if	the	application	at	the	brokerage
firm	is	active	at	that	time,	it	will	de-queue	the	messages	immediately	upon	their	arrival.	If
your	application	is	not	running,	but	you’ve	opted	for	guaranteed	delivery,	the	messages
will	be	preserved	in	the	queue	by	the	MOM	provider.

To	increase	the	throughput	of	your	messaging-based	application,	add	multiple	parallel
consumers	reading	messages	off	of	the	same	queue.	You	can	create	a	consumer	Java
program	that	starts	multiple	threads,	each	of	them	de-queuing	messages	from	the	same
queue.	But	a	better	way	is	to	configure	multiple	consumers	using	message-driven	beans
(MDB),	which	l	explain	in	Chapter	31.

With	guaranteed	message	delivery,	MOM—just	like	the	post	office—keeps	the	message	in
a	queue	until	the	receiver	gets	it.	In	this	mode	messages	are	persistent—the	MOM
provider	stores	them	in	its	internal	storage,	which	can	be	a	DBMS	or	a	filesystem.	In	a
non-guaranteed	mode,	MOM	delivers	a	message	only	to	the	receiving	applications	that	are
up	and	running	at	the	moment	that	the	message	arrives.

Two	Modes	of	Message	Delivery
A	program	can	send	or	publish	a	message.	When	it	sends	a	message	to	a	particular	queue
and	another	program	receives	the	message	from	this	queue	it’s	called	point-to-point	(P2P)
messaging.	In	this	mode	a	message	is	removed	from	a	queue	as	soon	as	it’s	successfully
received.	Figure	30-2	shows	that	each	message	goes	to	only	one	consumer.

Figure	30-2:	P2P	messaging

If	a	program	publishes	a	message	to	be	consumed	by	multiple	recipients,	that’s
publish/subscribe	(pub/sub)	mode.	A	message	is	published	to	a	particular	topic	and	many
subscribers	can	subscribe	to	receive	it.	Figure	30-3	illustrates	pub-sub,	where	on	message
can	be	consumed	by	multiple	subscribers.	

Figure	30-3:	Pub/sub	messaging

A	topic	represents	some	important	news	for	applications	and/or	users;	for
example,	PriceDropAlert,	BreakingNews,	and	so	on.	In	pub/sub	mode,	a	message	is
usually	removed	from	a	queue	as	soon	as	all	subscribers	receive	it	(read	about	durable
subscribers	in	the	section	How	to	Subscribe	for	a	Topic).

Another	good	example	of	a	pub/sub	application	is	a	chat	room.	A	message	published	by
one	person	is	received	by	the	other	people	present	in	the	chat	room.	Developing	a	chat
room	with	JMS	and	MOM	is	a	pretty	trivial	task.		

Introducing	OpenMQ	MOM
To	learn	JMS,	you	need	to	install	a	messaging	server	and	configure	some	message	queues
there.	You	can	use	an	open	source	MOM	provider	called	Open	MQ.	As	a	bonus,	it	comes
with	GlassFish.	You	already	have	it	installed	in	the	mq	directory	in	your	GlassFish	install.
If	you	want	to	use	Open	MQ	with	any	other	application	server	you	could	download	Open
MQ	as	a	separate	product	from	https://mq.java.net/downloads/index.html.		

First,	I’m	not	going	to	use	Java	EE	server.	The	goal	is	to	test	standalone	Java	clients
communicating	with	Open	MQ	directly,	without	the	middlemen.	You	need	to	start	the
Open	MQ	server	and	create	a	named	queue	there.

Edit	the	configuration	file	glassfish4/glassfish/mq/etc/imqenv.conf	to	specify	the	location
of	Java	8	on	your	computer.	For	example,	this	is	how	this	configuration	line	looks	on	my
Mac	computer:

IMQ_DEFAULT_JAVAHOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_25.j
dk/Contents/Home

Open	a	command	(or	Terminal)	window	to	the	glassfish4/mq/bin	directory,	and	start	the
Open	MQ	broker.	In	Windows	you	need	to	run	the	program	imqbrokerd.exe.	If	you	use
Mac	OS,	enter	the	following	command:

./imqbrokerd	

You	see	a	message	informing	you	that	the	broker	is	ready	on	port	7676.	Now	open	another
command	window,	change	to	the	glassfish4/mq/bin	directory,	and	start	the	admin
graphical	user	interface	(GUI)	tool	imqadmin	to	create	the	required	messaging
destinations:

./imqadmin

The	administration	console	opens.	In	Open	MQ	there	are	applications	called	brokers	that
manage	all	message	exchanges	between	clients.	So	you	configure	a	message	broker	that
manages	messages	related	to	stock	trading.	Right-click	the	Brokers	node	and	add	a	new
broker	named	StockBroker,	enter	the	password	admin,	and	click	OK.	Then	right-click
StockBroker	and	select	Connect	to	Broker	from	the	menu.	Figure	30-4	shows	a	snapshot
of	my	screen	after	these	steps.

Now	create	a	physical	destination—a	queue	for	placing	trading	orders.	Right-click	the
Destinations	under	the	StockBroker	node	and	select	Add	Broker	Destination.	In	the	pop-
up	window,	enter	the	name	of	the	destination:	TradingOrdersQueue,	as	in	Figure	30-5.

https://mq.java.net/downloads/index.html

Figure	30-4:	Open	MQ	console	with	newly	created	StockBroker

Figure	30-5:	Configuring	a	destination	in	Open	MQ

If	you	want	to	create	a	topic	rather	than	a	queue	you	just	need	to	select	the	Topic	radio
button.	As	you	can	see,	there	are	some	other	parameters	you	can	set	on	a	destination.

It’s	out	of	the	scope	of	this	book	to	include	a	detailed	overview	of	Open	MQ	MOM;	try
reading	the	Open	MQ	Administration	Guide	for	more	information.	As	long	as	you	have	a
MOM	server	running	and	the	messaging	destination	is	configured,	you	can	start	writing
programs	that	send	and	receive	messages	to/from	this	destination.

https://glassfish.java.net/docs/4.0/mq-admin-guide.pdf

JMS	API	Overview
JMS	API	that	includes	Java	classes	that	enable	you	to	send	and	receive	messages.	In	this
lesson	you	discuss	JMS	2.0	introduced	in	Java	EE	7.	If	you	have	to	work	with	application
servers	that	support	only	older	Java	EE	specifications	look	for	tutorials	describing	JMS
1.1	API.	All	of	the	supporting	classes	and	interfaces	are	defined	in	the	package	javax.jms,
and	you	can	read	about	them	at	http://docs.oracle.com/javaee/7/api/javax/jms/package-
summary.htm.

In	the	old	JMS	specification	you’d	need	to	use	multiple	classes	and	interfaces	such	as
Queue,	QueueConnection,	QueueConnectionFactory,	QueueSession,	Connection,
QueueSender,	QueueReceiver	,	Topic,	TopicPublisher,	and	more.	With	JMS	2.0	this	list	is
shorter.	You	can	send	and	receive	messages	using	just	the	few	classes	and	interfaces	listed
here:		

JMSContext	combines	the	JMS		Connection	and	Session	objects.	To	communication
with	MOM	you	need	to	connect	to	it	and	all	your	messaging	exchanges	are	done
within	a	session.

ConnectionFactory	is	an	object	that	creates	Connection	object(s)	encapsulated	in	the
JMSContext	.

Destination	is	a	queue	or	a	topic.	Both	Queue	and	Topic	interfaces	are	inherited	from
Destination.

JMSProducer	is	an	interface	that	has	methods	to	send	messages	to	a	destination.

JMSConsumer	is	an	interface	that	has	methods	to	retrieve	messages	from	a
destination.	

Message	is	a	root	interface	for	all	messages.	It	consists	of	a	header	and	a	body.

Types	of	Messages
Every	message	contains	a	header	and	optional	body	and	has	facilities	for	providing
additional	properties.	The	header	contains	the	message	identification	(unique	message	ID,
destination,	type,	and	so	on).	The	optional	properties	can	be	set	by	a	program	to	tag	a
message	with	application-specific	data;	for	example,	UrgentOrder.

The	optional	body	contains	a	message	that	has	to	be	delivered.	Following	are	the	types	of
JMS	messages	that	you	can	place	in	a	message	body.	All	these	interfaces	are	inherited
from	javax.jms.Message.

TextMessage	is	an	object	that	can	contain	any	Java	String.

ObjectMessage	can	hold	any	Serializable	Java	object.

BytesMessage	holds	an	array	of	bytes.

StreamMessage	has	a	stream	of	Java	primitives.

MapMessage	contains	any	key/value	pairs;	for	example,	id=123.

Typically	the	message	producer	creates	an	object	of	one	of	the	preceding	types,	initializes

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

it	with	the	application	data,		and	then	sends	it	to	a	MOM	queue	or	topic.	The	only
exception	is	String	messages,	which	can	be	sent	as-is	without	wrapping	them	inside	the
TextMessage.		The	consumer	application	extracts	the	message	content	by	invoking	a
method	Message.getBody(),	which	returns	the	message	body	of	a	specified	type;	for
example:

msg.getBody(String.class);	//	msg	is	a	reference	to	received	message

If	you’d	need	to	send	an	object	of,	say	Order	type	(must	be	Serializable),		the	message
producer	needs	to	wrap	it	up	into	the	ObjectMessage—for	example:

Order	order	=	new	Order();
ObjectMessage	objMsg	=	context.createObjectMessage(order);

then	the	invocation	of	getBody()	on	the	message	consumer	would	look	like	this:

Order	receivedOrder	=	msg.getBody(Order.class);		

How	to	Send	a	Message	Directly	to	MOM
This	section	and	the	following	section	show	you	how	a	Java	SE	client	can	communicate
with	MOM	directly	without	using	any	Java	EE	server	as	a	middleman.	This	mode	isn’t
often	used,	but	it’ll	help	you	to	understand	the	benefits	that	Java	EE	and	JNDI	bring	to	the
table	when	it	comes	to	messaging.	After	you	see	these	simple	examples,	you	can	rewrite
them	for	a	Java	EE	server	using	JNDI.	

To	send	and	receive	messages,	queues	or	topics	should	be	preconfigured	in	MOM	and
their	names	must	be	known	before	a	program	can	start	sending	messages.	I	used	the	world
should,	because	even	if	you	wouldn’t	preconfigure	the	queue,	some	MOM	providers
(Open	MQ	included)	may	create	a	temporary	queue	in	memory,	which	will	be	destroyed
on	server	restart.	

In	the	real	world,	a	MOM	server	administrator	manages	queues	and	other	messaging
artifacts,	but	for	the	training	purposes	you	already	did	it	in	the	previous	section	with	the
queue	TradingOrdersQueue	.	

To	send	messages	directly	to	a	MOM	provider,	a	program	has	to	perform	the	following
steps:

1.	 In	a	Java	class	create	a	ConnectionFactory	object	using	the	implementation	classes
provided	by	the	MOM	vendor.	

2.	 Create	a	JMSContext	object.

3.	 Using	the	JMSContext	create	a	Destination	(for	example,	invoke	createQueue()).

4.	 Create	a	JMSProducer	object.

5.	 Create	one	of	the	Message	objects	and	put	some	data	in	it.

6.	 Call	the	send()	method	on	the	JMSProducer	providing	Destination	and	Message	as
arguments.

http://docs.oracle.com/javaee/7/api/javax/jms/Message.xhtml#getBody(java.lang.Class)

Listing	30-1	shows	the	class	DirectMessageSender	that	implements	all	of	the	preceding
steps	except	creating	a	Message	instance	-	for	strings	it’s	not	required.	This	code	sends	a
message	to	a	queue	TradingOrdersQueue.	

Listing	30-1:	Sending	a	message	directly	to	MOM

public	class	DirectMessageSender{
	public	static	void	main(String[]	args){
		
			//	Vendor-specific	factory	implementation	
			ConnectionFactory	factory=	
																			new	com.sun.messaging.ConnectionFactory();		
			try(JMSContext	context=factory.createContext("admin","admin")){
						factory.setProperty(ConnectionConfiguration.imqAddressList,
																						"mq://127.0.0.1:7676,mq://127.0.0.1:7676");
										
						Destination	ordersQueue	=	
																								context.createQueue("TradingOrdersQueue");
						JMSProducer	producer	=	context.createProducer();
										
						//	Send	msg	to	buy	200	shares	of	IBM	at	market	price							
						producer.send(ordersQueue,"IBM	200	Mkt");
														
						System.out.println("Placed	an	order	to	purchase	200	
																												shares	of	IBM	to	TradingOrdersQueue");
					}	catch	(JMSException	e){
															System.out.println("Error:	"	+	e.getMessage());
					}	
		}								
}

The	class	DirectMessageSender	uses	an	Open	MQ–specific	implementation	of	JMS’s
ConnectionFactory,	which	is	located	in	the	vendor’s	package	com.sun.messaging.	If	you
decide	to	change	MOM	providers	or	the	server	address,	you	would	need	to	modify,
recompile,	and	redeploy	this	code.		This	is	not	great,	but	you’ll	fix	this	issue	in	the	Java
EE	version	of	this	client.	

How	to	Receive	a	Message	Directly	from	MOM
The	program	that	receives	messages	is	called	a	message	consumer	(a	listener).	It	can	be	a
standalone	Java	program	or	a	message-driven	bean.	You	can	receive	messages	either
synchronously,	using	the	receive()	method,	or	asynchronously	by	implementing	the
MessageListener	interface	and	programming	a	callback	onMessage().	The	receive()
method	is	rarely	used	because	it	engages	a	polling	mechanism	that	constantly	asks	for	a
message.	

Using	an	asynchronous	callback	method		onMessage()	on	a	message	consumer	is	a
preferred	way	to	receive	messages.	The	callback	method	onMessage()	is	invoked
immediately	when	a	message	is	put	in	the	queue.	The	consumer	class	has	to	perform	the
following	steps	to	receive	messages	asynchronously:

1.	 Create	a	class	that	implements	the	MessageListener	interface	and	instantiate	it.

2.	 Create		a	ConnectionFactory	object	using	the	implementation	classes	provided	by	the
MOM	vendor.	

3.	 Create	a	JMSContext	object.

4.	 Using	the	JMSContext	to	create	a	Destination	(for	example,	invoke	createQueue()).

5.	 Create	a	JMSConsumer	object	and	invoke	on	it	setMessageListener(),	specifying	the
object	that	implements	MessageListener.

6.	 Implement	onMessage()	to	handle	the	message	when	it	arrives.

The	sample	class	MyReceiver	in	Listing	30-2	shows	how	to	consume	messages	from	the
TradingOrdersQueue	asynchronously.	Its	constructor	creates	JMS	objects	and	registers
itself	as	a	message	listener.	The	callback	onMessage()	has	code	for	processing	the
received	messages.

Listing	30-2:	Receiving	a	message

public	class	DirectMessageReceiver	implements	MessageListener{
		ConnectionFactory	factory	=	
																							new	com.sun.messaging.ConnectionFactory();		
		JMSConsumer	consumer;
				
		DirectMessageReceiver(){
			try(JMSContext	context=factory.createContext("admin","admin")){
							factory.setProperty(ConnectionConfiguration.imqAddressList,
																							"mq://127.0.0.1:7676,mq://127.0.0.1:7676");
												
							Destination	ordersQueue	=	context.createQueue(
																																										"TradingOrdersQueue");
												
							consumer	=	context.createConsumer(ordersQueue);
												
							consumer.setMessageListener(this);
														
							System.out.println(
																						"Listening	to	the	TradingOrdersQueue…");
														
														//	Keep	the	program	running	-	wait	for	messages
														Thread.sleep(100000);
												

			}	catch	(InterruptedException	e){
							System.out.println("Error:	"	+	e.getMessage());
			}	catch	(JMSException	e){
							System.out.println("Error:	"	+	e.getMessage());
			}	
	}
		public	void	onMessage(Message	msg){
								
						try{
							System.out.println("Got	the	text	message	from	"	+	
									"the	TradingOrdersQueue:	"	+	msg.getBody(String.class));
							
							System.out.println("\n	===	Here's	what	toString()	
																															on	the	message	prints	\n"	+	msg);
							
						}	catch	(JMSException	e){
										System.err.println("JMSException:	"	+	e.toString());
						}
	}
	public	static	void	main(String[]	args){
						new	DirectMessageReceiver();		//	instantiate	listener
	}					
}

The	class	DirectMessageReciever	calls	the	method	sleep(100000)	to	prevent	the	program
from	termination	for	100	seconds.	I	did	it	for	testing	purposes	so	you	can	send	messages	to
the	queue	and	see	that	they	are	being	received.	If	you	place	a	message	in	a	queue	by
running	DirectMessageSender	the	DirectMessageReciever	gets	it,	producing	output	on	the
console	that	might	look	like	this:

Got	the	text	message	from	the	TradingOrdersQueue:	IBM	200	Mkt
	===	Here's	what	toString()	on	the	message	prints	
Text:				IBM	200	Mkt
Class:												com.sun.messaging.jmq.jmsclient.TextMessageImpl
getJMSMessageID():				ID:7-192.168.1.113(d8:86:af:a3:e1:8d)-62948-
																									1412631694897
getJMSTimestamp():				1412631694897
getJMSCorrelationID():				null
JMSReplyTo:								null
JMSDestination:								TradingOrdersQueue
getJMSDeliveryMode():				PERSISTENT
getJMSRedelivered():				false
getJMSType():								null
getJMSExpiration():				0
getJMSDeliveryTime():				0
getJMSPriority():				4

Properties:								{JMSXDeliveryCount=1}

The	first	line	is	the	result	of	extracting	the	text	of	the	message	by	calling	getBody().

msg.getBody(String.class)

The	argument	String.class	means	“cast	the	message	body	to	type	String.”	

The	rest	of	the	console	output	is	produced	by	the	toString()	method	on	the	Message	object.
I	used	it	in	DirectMessageReceiverjust	to	show	you	that	besides	message	body	there	are	a
number	of	properties	that	can	be	retrieved	by	the	corresponding	getter.	

How	to	Publish	a	Message
Programs	publish	messages	to	topics,	which	should	be	created	in	advance	by	the	MOM
system	administrator.	In	the	case	of	Open	MQ,	you	need	to	select	the	Topic	radio	button	in
the	window	shown	in	Figure	30-5.	Multiple	subscribers	can	get	messages	published	to	the
same	topic	(this	is	also	known	as	one-to-many	mode).

Message	publishing	is	very	similar	to	message	sending,	but	the	program	should	create	a
Topic	instead	of	a	Queue;	the	rest	is	the	same.	Listing	30-3	shows	how	to	change	the
DirectMessageSender	to	publish	a	text	message	with	a	price	quote	to	a	topic	called
PriceQuoteTopic:

Listing	30-3:	Publishing	a	message	to	a	topic

Destination	priceQuoteTopic		=	context.createTopic(
																																														"PriceQuoteTopic");
																								
//	Publish	a	price	quote	msg	to	subscribers	of	PriceQuoteTopic	
producer.send(priceQuoteTopic,"IBM	187.22");

Multiple	subscribers	can	receive	the	same	message.

How	to	Subscribe	for	a	Topic
Subscribers	can	be	durable	or	non-durable.	Durable	subscribers	are	guaranteed	to	receive
their	messages;	they	do	not	have	to	be	active	at	the	time	a	message	arrives.	Non-durable
subscribers	receive	only	those	messages	that	come	when	they	are	active.	With	non-durable
subscriptions,	MOM	removes	the	message	from	its	internal	storage	as	soon	as	all	active
subscribers	have	acknowledged	message	delivery.	With	durable	subscriptions	MOM
retains	the	message	until	it’s	delivered	to	all	subscribers.

Some	applications	don’t	need	durable	subscriptions.	For	example,	if	a	subscriber	missed	a
stock	price	published	a	second	ago	it’s	okay.	But	this	is	not	the	case	if	a	brokerage
company	has	to	report	a	suspicious	transaction	to	several	financial	fraud	prevention
organizations—make	such	subscriptions	durable.	

https://javaee-spec.java.net/nonav/javadocs/javax/jms/Message.html

If	you	were	to	change	the	DirectMessageRetriever	into	a	non-durable	topic	subscriber,	the
following	slight	change	would	do	the	trick:

Listing	30-4:	Creating	a	non-durable	subscriber	

Destination	priceQuoteTopic	=
																										context.createTopic("PriceQuoteTopic");
consumer	=	context.createConsumer(priceQuoteTopic);	

Durable	subscribers	are	created	by	invoking	createDurableConsumer(),	and	each	durable
subscriber	must	have	a	unique	client	ID.	Each	durable	subscription	is	identified	by	a
combination	of	the	topic	name,	subscriber’s	name,	and	the	client	ID.	This	is	how	you	can
create	a	durable	subscriber	named		FraudPreventionUnit:

Listing	30-5:	Creating	a	durable	subscriber	

Destination	priceQuoteTopic	=
																										context.createTopic("PriceQuoteTopic");
context.setClientID("client123");	
consumer	=	context.createDurableConsumer((Topic)priceQuoteTopic,
																																					"FraudPreventionUnit");	

For	scalability	reasons,	the	same	subscription	can	be	shared	by	multiple	standalone
consumers	working	in	parallel	(for	example,	running	on	different	JVMs).	In	this	case,	a
shared	consumer	has	to	be	created	(it	can	be	durable	or	non-durable).	For	example,	you
can	create	a	shared	durable	subscriber,	as	shown	in	Listing	30-6:

Listing	30-6:	Creating	a	shared	durable	subscriber	

Destination	priceQuoteTopic	=
																										context.createTopic("PriceQuoteTopic");
context.setClientID("client123");
consumer	=	context.createSharedDurableConsumer(
																			(Topic)priceQuoteTopic,"FraudPreventionUnit");	

Parallel	Subscriptions	with	MDBs
In	standalone	Java	applications	you	can’t	create	multiple	threads	to	create	several
durable	topic	subscriptions;	using	a	shared	subscription	is	your	only	option.	But	if
subscribers	are	created	as	message-driven	beans	in	a	Java	EE	server,	more	than	one
bean	can	consume	messages	from	the	same	subscription.	

At	any	time	an	application	can	unsubscribe	from	a	topic	by	calling	the	method
unsubscribe()	on	the	JMSContext	object,	for	example:

context.unsubscribe("FraudPreventionUnit");

Message	Acknowledgments	and	Transactions	Support
When	the	message	is	successfully	delivered,	the	MOM	physically	removes	it	from	the
queue.	But	what	does	“successfully	delivered”	means?	Is	it	when	the	message	was	passed
to	the	method	onMessage()	?		But	if	the	code	in	onMessage()	fails	due	to	some	error,	you
want	the	message	to	remain	in	the	queue!	

JMS	API	has	a	concept	of	a	messaging	session	in	which	you	can	specify
either	acknowledgments	modes	or	request	transaction	support	to	give	the	applications
control	over	message	removals	from	queues	or	topics.		

There	are	three	acknowledgments	modes:

AUTO_ACKNOWLEDGE	mode	sends	the	acknowledgment	back	as	soon	as	the
method	onMessage()	is	successfully	finished.	This	is	a		default	acknowledgment
mode.

CLIENT_ACKNOWLEDGE	mode	requires	explicit	acknowledgment	by	calling	the
method	acknowledge()	from	the	message	receiver’s	code.	

DUP_OK_ACKNOWLEDGE	mode	is	used	in	case	the	server	fails;	the	same	message
may	be	delivered	more	than	once.	In	some	use	cases	it’s	acceptable—for	example,
receiving	a	price	quote	twice	doesn’t	hurt.

The	message	acknowledgment	mode	is	defined	when	the	JMSContext	is	created.	So	far,
our	code	samples		DirectMessageSender	and	DirectMessageReceiver	have	created
the	JMSContext	object	by	specifying	two	arguments:	user	ID	and	password.	But	you
could	also	use	an	overloaded	createContext()	method	to	specify	a	messaging	session
mode;	for	example:

	JMSContext	context	=	factory.createContext("admin","admin",	
																												JMSContext.CLIENT_ACKNOWLEDGE));

As	an	alternative	to	using	acknowledgments,	you	can	request	transaction	support	for
message	consumers.	Imagine	if	a	received	message	contains	the	data	that	must	be	saved	in
a	database	and	forwarded	to	a	Web	Service	as	one	unit	of	work,	so	unless	both	operations
are	successful	the	entire	transaction	must	be	rolled	back.	You	may	need	transaction
support	on	the	JMS	producer	side,	too.	For	example,	if	you	need	to	send	two	messages	as
one	logical	unit	of	work—either	both	messages	were	successfully	sent	or	rolled	back	the
transaction.	The	following	code	snippet	shows	how	to	create	JMSContext	and
a	JMSProducer	object	that	sends	two	messages	in	different	queues	as	one	transaction.	

try(JMSContext	context	=	factory.createContext("admin","admin",
																																									JMSContext.TRANSACTED)){
					

			JMSProducer	producer	=	context.createProducer();
			Destination	queue1	=	context.createQueue("Queue1");
			Destination	queue2	=	context.createQueue("Queue2");								
			
			producer.send(queue1,"Msg1");
			producer.send(queue2,"Msg2");
			
			context.commit();	//	commit	the	JMS	transaction
}	catch	(JMSException	e){	
				context.rollback();	//	rollback	the	JMS	transaction
				System.out.println("Error:	"	+	e.getMessage());
}

If	both	sends	went	through	fine,	the	Session	object	(encapsulated	inside	JMSContext)
issues	a	commit.	If	the	exception	is	thrown,	no	messages	are	placed	in	any	of	the	queues.

Message	Selectors
If	you	have	to	share	a	queue	with	some	other	applications	or	developers	from	your	team,
use	message	selectors	(also	known	as	filters)	to	avoid	“stealing”	somebody	else’s
messages.	For	example,	in	the	message	consumer	application	you	can	opt	for	receiving
messages	that	have	a	property	symbol	with	the	value	IBM:

String	selector	=	"symbol=IBM";
Context.createConsumer(ordersQueue,	selector);

In	this	case	the	queue	listener	dequeues	only	those	messages	that	have	a	String	property
symbol	with	the	value	IBM.	Accordingly,	the	message	producers	have	to	set	this	property
on	the	message	object:

TextMessage	outMsg	=	context.createTextMessage();	
outMsg.setText("IBM	200	Mkt");	
outMsg.setStringProperty("symbol",	"IBM");
Destination	ordersQueue=context.createQueue("TradingOrdersQueue");		
JMSProducer	producer	=	context.createProducer();
producer.send(ordersQueue,	outMsg);

Remember	that	message	selectors	slow	down	the	process	of	retrieval.	Messages	stay	in	a
queue	until	the	listener	with	the	matching	selector	picks	them	up.	Selectors	really	help	if
your	team	has	a	limited	number	of	queues	and	everyone	needs	to	receive	messages
without	interfering	with	the	others.	But	if	someone	starts	the	queue	listener	without
selectors,	it	just	drains	the	queue.

Sending	Messages	from	Java	EE	Containers	
Now	that	you	know	how	the	messaging	works,	you	can	see	how	to	send	messages	to
MOM	destinations	from	the	Java	objects	that	live	inside	a	Java	EE	container.	This	time
you	bind	MOM	objects	like	ConnectionFactory,	Queue,	and	Topic	to	the	JNDI	tree,	and
Java	messaging	clients	get	them	from	there.	Figure	30-6	shows	a	high-level	picture	of
JMS	clients	communicating	with	MOM	with	or	without	Java	EE.

Figure	30-6:	Bringing	together	JMS,	Java	EE	,	and	MOM	

An	external	client	can	talk	to	a	MOM	server	directly	or	from	inside	the	Java	EE	server
represented	by	the	oval.	When	the	Java	EE	server	starts,	it	binds	MOM	objects	to	the
JNDI	tree	as	JMS	objects.	So	if	a	Java	servlet	or	other	object	deployed	in	Java	EE	server
needs	to	send	messages	to	MOM,	it	gets	the	references	to	administered	objects	by	using
lookup()	or	resource	injection.		

I’ll	give	you	an	example	of	a	Java	Servlet	that	reuses	most	of	the	code	shown	in	the
DirectMessageSender	class.	Assuming	that	you	are	familiar	with	the	JNDI	concepts	from
Lesson	29,	the	code	of	the		MessageSenderServlet	should	be	easy	to	understand.	

@WebServlet("/MessageSenderServlet")
public	class	MessageSenderServlet	extends	HttpServlet	{
				
			@Resource(lookup	="java:comp/DefaultJMSConnectionFactory")
			ConnectionFactory	factory;
						
			@Resource(lookup	=	"OutgoingTradeOrders")		//	JNDI	queue	name
			Destination	ordersQueue;
		
			protected	void	doGet(HttpServletRequest	request,	
																								HttpServletResponse	response)	
																														throws	ServletException,	IOException{	
								
					try(JMSContext	context=factory.createContext("admin","admin")){
		

											JMSProducer	producer	=	context.createProducer();
														
											//	Send	msg	to	buy	200	shares	of	IBM	at	market	price
											producer.send(ordersQueue,"IBM	200	Mkt");
																		
											System.out.println("Placed	an	order	to	purchase	200"	+
																									"shares	of	IBM	to	OutgoingTradeOrders");
				}
		}
}

For	the	MessageSenderServlet	to	work,	you	need	to	configure	JMS	objects	using	the
administration	console	of	the	Java	EE	server.	In	this	example,	I	use	the	JNDI	queue	name
OutgoingTradeOrders	that	will	be	mapped	to	the	physical	queue	name
TradingOrdersQueue.	In	the	next	section	I	show	you	how	to	do	it	in	GlassFish.

Administering	JMS	Objects	in	GlassFish
Configuring	JMS	objects	comes	down	to	mapping	JNDI	names	to	physical	MOM	objects.
Assuming	that	Open	MQ	and	GlassFish	servers	are	up	and	running,	open	GlassFish
Administration	Console	by	visiting	http://localhost:4848.	There	is	a	JMS	Resources	node
in	the	navigation	tree	on	the	left.	Click	the	server	node,	and	you	see	a	tab	for	adding	the
JMS	physical	destination,	as	shown	Figure	30-7.

Figure	30-7:	JMS	Physical	Destinations	in	GlassFish

The	only	reason	the	destination		TradingOrdersQueue		is	known	is	because	Open	MQ	is
integrated	with	GlassFish.	To	configure	another	MOM	server	you’d	need	to	create	a	new
JMS	host	by	using	the	Configurations	node	in	the	navigation	panel.

Now	you	need	to	create	a	GlassFish	JMS	entry	mapped	to	the	physical	MOM	queue.	Add
the	new	destination	resource	to	JMS	Resources	(see	Figure	30-8).	I	gave	it	a	JNDI	name
OutgoingTradeOrders.

Figure	30-8:	Mapping	JNDI	name	to	a	physical	queue

Creation	and	closing	of	JMS	connections	(it’s	done	internally	by	JMSContext)	are	slow
operations;	you	should	consider	using	JMS	connection	pools.	Java	EE	servers	enable	you
to	automatically	create	such	pools	by	configuring	a	connection	factory.	Figure	30-9	shows
how	to	configure	a	connection	factory	to	use	pooled	connections.	I	set	it	to	create	20	JMS
connections	on	the	GlassFish	server	startup	and,	as	the	number	of	users	increases,	the	pool
size	will	grow	to	the	maximum	size	of	100	connections.

Figure	30-9:	Configuring	JMS	connection	factory

Now	you	can	create,	deploy,	and	run	the	servlet	MessageSenderServlet	in	GlassFish.	Do	it
in	Eclipse	as	explained	in	Lesson	26.	Create	an	Eclipse	Dynamic	Web	Project	specifying
GlassFish	as	a	target	run	time.	Then	create	a	servlet	MessageSenderServlet	with	the	code
shown	earlier	in	this	section.	Finally,	deploy	this	Eclipse	project	using	the	right-click
menu	Add	and	Remove	on	the	GlassFish	server	and	run	it.

Lesson	31	shows	you	how	to	retrieve	messages	from	a	queue	or	topic	using	message-
driven	beans.	The	“Try	It”	section	has	instructions	on	how	to	use	a	standalone	message
consumer.

Try	It
The	goal	is	to	use	a	standalone	message	consumer	DirectMessageReceiver	to	retrieve
messages	sent	by	the	Java	servlet.	Test	the	messaging	scenario	depicted	in	Figure	30-10.

Figure	30-10:	Java	EE	message	sender	and	a	standalone	receiver

Lesson	Requirements
You	should	have	Eclipse	for	Java	EE	Developers	and	GlassFish	4.1	(it	comes	with	Open
MQ)	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	section	from	the
book’s	web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
Lesson30.zip.

Hints
Open	MQ	started	independently	with	imqbrokerd	runs	on	a	different	port	than	embedded
Open	MQ	started	by	GlassFish.

Step-by-Step
1.	 Stop	both	the	Open	MQ	server	started	independently	and	GlassFish.

2.	 Open	the	file	glassfish/domains/domain1/config/domain.xml	and	change	the	value	of
the	system	variable	JMS_PROVIDER_PORT	to	be	7676.	By	default,	GlassFish	starts
embedded	Open	MQ	server	on	the	port	27676,	but	our	DirectMessageReceiver	uses
hardcoded	7676	as	a	port	value.

3.	 Restart	GlassFish.	Now	it	starts	embedded	JMS	provider	on	port	7676.

4.	 Make	sure	that	the	OutgoingTradeOrders	is	configured	in	the	GlassFish,	as	shown	on
Figure	30-8.

5.	 Run	the	MessageSenderServlet	as	explained	earlier.	It’ll	send	the	message	to	the	queue
that	is	known	as	OutgoingTradeOrders	in	the	GlassFish	JNDI	tree.

6.	 Run	DirectMessageReceiver.	It	prints	on	the	console	the	message	“Listening	to	the
TestQueue”	and	then	retrieves	and	prints	the	message	from	the	physical	queue	named

http://www.wrox.com/go/javaprog24hr2e

TradingOrdersQueue.

7.	 Modify	the	code	of	DirectMessageReceiver	so	it	has	no	hardcoded	values	of	the	Open
MQ	server.

8.	 Self-study	the	use	of	the	QueueBrowser	class	and	write	a	program	that	prints	the
content	of	a	queue	without	de-queuing	messages.

TIP			Please	select	the	videos	for	Lesson	30	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	31
Introduction	to	Enterprise	JavaBeans
This	lesson	introduces	you	to	one	of	the	Java	EE	technologies,	Enterprise	JavaBeans	(JSR
345),	which	can	be	used	for	implementing	the	business	tier	in	a	distributed	application
(refer	to	Figure	25-1	in	Lesson	25).	Chapter	26	and	Chapter	27	were	about	various	ways
of	programming	the	presentation	tier	on	the	web;	in	Chapter	30	and	Chapter	29	you
learned	how	to	organize	communication	between	the	different	tiers	of	the	application
using	messaging.	The	application	business	logic	was	programmed	in	POJOs.

In	this	lesson	you	see	how	to	program	the	business	tier	in	EJBs,	which	are	also	POJOs,	but
managed	by	an	EJB	container.	Java	EE	7	includes	EJB	3.2	and	the	Java	Persistence	API
(JPA)	2.1	that	offer	you	a	standardized	way	to	implement	solutions	for	business	logic	and
data	persistence.	Using	EJBs	as	JMS	listeners	makes	your	enterprise	application	more
scalable	without	the	need	to	write	additional	code.		

This	lesson	introduces	you	to	various	types	of	EJBs,	and	the	next	lesson	is	about	persisting
data	with	JPA.	

http://download.oracle.com/otndocs/jcp/ejb-3_2-fr-spec/index.html

Who	Needs	EJB	Containers?
What’s	wrong	with	POJOs?	Why	not	just	implement	business	logic	there?	You	certainly
can,	but	most	likely	you’d	need	to	spend	additional	time	manually	programming	a
multithreaded	environment	for	them.	The	chances	are	that	your	application	needs
transactional	support.	If	the	business	logic	is	located	in	POJO	1	and	POJO	2,	and	the
second	one	fails,	you	want	to	roll	back	whatever	has	been	completed	by	the	first	one.

It’s	great	that	you	know	how	to	program	message	receivers	using	JMS,	but	how	can	you
make	this	solution	scalable?	What	if	you	need	a	couple	of	dozen	message	listeners	that
concurrently	dequeue	the	messages?	Don’t	forget	about	the	tasks	of	integrating	your
POJOs	with	other	tiers	to	perform	authentication	and	JDBC	operations.

EJB	containers	take	care	of	all	these	infrastructure-related	concerns	without	requiring
manual	programming	on	your	side.	Application	servers	allow	you	to	configure	pools	of
message-driven	beans	(MDBs)	if	you	need	multiple	message	listeners.	You	can	turn	on
transactional	support	if	need	be.	You	don’t	need	to	worry	about	multithreading	problems	if
your	beans	operate	in	an	EJB	container.	Turning	a	POJO	into	an	EJB	is	as	simple	as
adding	Java	annotations	in	the	EJB	classes.	Intercommunication	among	beans	is	done	via
dependency	injection	or	singleton	beans.

If	you	need	to	scale	a	distributed	application,	EJB	containers	offer	clustering	and	failover
support.	Security	authorization	is	also	the	container’s	responsibility.	Without	the	need	to
manually	code	all	these	infrastructural	functionalities,	the	code	of	your	EJBs	becomes
really	light.

The	other	interesting	service	offered	by	EJB	containers	is	asynchronous	method
invocation,	which	enables	asynchronous	processing.

EJB	supports	embeddable	containers.	You	can	run	EJB	applications	in	a	Java	SE
environment	outside	of	any	application	servers.	This	is	a	good	idea	for	tasks	such	as
testing	because	there’s	no	need	to	depend	on	the	readiness	of	a	Java	EE	server;	you	can
just	test	your	EJBs	locally.	Creating	an	embeddable	container	comes	down	to	executing
one	line	of	code:

EJBContainer	myContainer	=	EJBContainer.createEJBContainer();

If	the	originally	selected	application	server	doesn’t	deliver	the	performance	or	reliability
you	expected,	deploy	your	EJBs	in	a	different	Java	EE	7-compliant	server	without
changing	a	line	of	code.

https://docs.oracle.com/javaee/7/tutorial/ejb-embedded.htm#GKCQZ

Types	of	EJBs
There	are	two	major	types	of	EJB:	session	beans	and	message-driven	beans.	MDBs
specialize	in	retrieving	messages	from	JMS	queues	or	topics—this	is	all	they	can	do.	Your
application	business	logic	resides	in	the	session	beans.	There	are	three	types	of	session
beans:

A	stateless	session	bean	is	one	that	contains	business	logic	but	doesn’t	support	state.	In
other	words,	it	doesn’t	“remember”	any	data	specific	to	the	client.	If	the	same	client
invokes	two	methods	in	a	row	on	the	stateless	bean	FindBooks,	the	container	may
decide	to	use	two	separate	instances	of	the	FindBooks	bean,	as	it	doesn’t	store	any
intermediate	data	specific	to	the	client.

A	stateful	session	bean	is	one	that	contains	business	logic	and	state.	The	EJB	container
allocates	a	specific	instance	of	the	session	bean	to	the	client	and	can	store	results
between	subsequent	method	invocations.

A	singleton	session	bean	is	instantiated	once	per	application.	Think	of	a	singleton	bean
as	a	global	repository	in	which	one	bean	can	put	some	data	to	be	used	by	another	bean.
Singleton	session	beans	not	only	provide	easy	access	to	common	data	but	also	ensure
that	there	are	no	race	conditions	in	cases	of	concurrent	access.

Older	EJB	specifications	defined	entity	beans	for	data	persistence.	Formally	they	still	exist
in	the	current	EJB	specification,	but	they	are	pruned	(made	optional	for	implementation	by
the	vendors	of	Java	EE	7-compliant	application	servers).

An	EJB	container	creates	and	maintains	pools	of	session	beans.	The	instances	of	the
stateless	beans	are	allocated	to	clients	for	much	less	time	than	stateful	ones.	Therefore,	if
you	are	working	on	a	multiuser	application	with	hundreds	or	thousands	of	concurrent
requests	to	the	EJB	container,	stateless	beans	offer	a	much	more	scalable	solution	because
a	smaller	pool	can	serve	more	users’	requests.

But	even	with	stateful	session	beans,	the	EJB	container	is	playing	smart,	and	those
instances	sitting	in	memory	without	active	interaction	with	the	client	are	being	passivated
—removed	from	memory	and	stored	on	the	disk.	When	the	client	issues	another	request	to
a	stateful	bean	that	has	been	passivated,	the	container	activates	it	again.

Stateless	Session	Beans
I’ll	introduce	you	to	stateless	session	beans	by	creating	a	simple	example	featuring	an	EJB
that	contains	the	business	logic	to	return	the	message	“Hello	World.”

The	Bean
Having	a	class	that	just	returns	“Hello	World”	and	lives	in	a	the	container	can	be	easily
implemented	as	a	stateless	session	bean:	It	has	only	one	method,	and	there	is	no	state	to
remember.	Listing	31-1	shows	you	how	to	program	such	a	bean.

Listing	31-1:	HelloWorld	session	bean,	take	1

@Stateless
public	class	HelloWorldBean	{
				public	String	sayHello(){
								return	"Hello	World!";
				}
}

Basically,	you	create	a	POJO	and	annotate	it	with	one	or	more	Java	annotations.	There	are
no	special	interfaces	to	be	implemented	to	turn	a	POJO	into	an	EJB.	Accordingly	there	are
@Stateful,	@MessageDriven,	and	@Singleton	annotations	to	mark	other	types	of	session
beans.

The	preceding	version	of	HelloWorldBean	doesn’t	specify	how	the	clients	can	access	this
so-called	no	interface	view	bean,	which	means	that	when	a	client	gets	a	reference	to	the
bean	it	can	only	be	of	the	bean’s	data	type	(HelloWorldBean	in	our	case).	You	cannot
declare	a	reference	variable	of	an	interface	type	because	the	bean	doesn’t	implement
any.	Classes	that	are	deployed	in	the	same	archive	file	can	access	the	method	sayHello()
using	resource	injection	with	the	@EJB	annotation:

@EJB	HelloWorldBean	myBean;
myBean.sayHello();

The	Client’s	View
The	bean	shown	in	Listing	31-1	runs	on	the	server,	but	the	client	that	invokes	the
sayHello()	method	can	run	either	in	the	same	Java	Virtual	Machine	(JVM)	(for	example,	a
servlet	or	another	bean)	or	in	another	one	(for	example,	a	standalone	Java	SE	application
or	Java	EE	class	deployed	in	another	container).	Beans	may	or	may	not	implement
interfaces.	If	HelloWorldBean	will	be	used	only	by	clients	running	in	the	same	JVM,	you
can	mark	it	with	an	optional	@LocalBean	annotation	to	show	that	it’s	a	no-interface	bean.
If	HelloWorldBean	in	addition	to	a	no-interface	view	can	also	be	exposed	to	other	clients,
the	@LocalBean	has	to	explicitly	annotate	the	bean.

If	you’d	like	to	expose	only	certain	business	methods	to	local	clients,	you	can	create	a

business	interface,	declare	these	methods	there,	have	your	bean	implement	them,	and	mark
the	bean	with	a	@Local	annotation.	The	@Local	annotation	can	be	used	with	either	a
business	interface	or	with	the	session	bean	itself.

If	you’d	like	to	expose	some	methods	to	remote	clients,	create	an	interface,	declare	the
business	methods	there,	implement	them	in	the	bean,	and	mark	it	as	@Remote.	

Local	No-Interface	Beans

I	am	planning	to	use	HelloWorldBean	from	the	servlet	running	in	the	same	JVM,	so	the
final	version	of	the	code	looks	like	Listing	31-2.		

Listing	31-2:	HelloWorld	session	bean,	take	2

import	javax.ejb.LocalBean;
import	javax.ejb.Stateless;
@LocalBean
@Stateless
public	class	HelloWorldBean	{
				public	String	sayHello(){
								//	You	can	instantiate	and	use	other	POJOs	
								//	here	if	need	be
								return	"Hello	World!";
				}
}

Any	EJB	can	use	regular	Java	classes	to	implement	business	logic:	For	example,
the	sayHello()	method	can	create	instances	of	other	Java	classes	with	the	new	operator	and
invoke	their	business	methods	if	need	be.	Or	even	better,	you	can	instantiate	POJOs	using
Context	Dependency	Injection	(CDI),	which	is	explained	in	Lesson	33.

Now	it’s	time	to	do	it	hands-on.	Create	a	new	Dynamic	Web	Project	in	Eclipse	named
Lesson31.	Then	create	a	new	servlet	class,	HelloWorldServlet,	in	the	package
lesson31.client	(select	File	→	New	→	Servlet).	You	use	only	the	doGet()	method	in	this
servlet.	This	servlet	becomes	your	client,	communicating	with	the	EJB.	

Next	create	a	Java	class	called	HelloWorldBean	in	the	package	lesson31.ejb	by	selecting
File	→	New	→	Other	→	EJB	→	Session	Bean	(EJB	3.x).	Do	not	select	any	local	or
remote	business	interfaces.	By	default,	Eclipse	generates	a	no-interface	view	bean	and
annotates	it	as	@Stateless	@LocalBean.	Eclipse	creates	a	class	with	a	default	constructor.
Add	to	this	class	the	method	sayHello()	shown	earlier	in	Listing	31-2,	and	the	EJB	is
ready	for	use.

The	next	step	is	to	inject	the	HelloWorldBean	into	the	servlet	code	with	the	@EJB
annotation:

@EJB	HelloWorldBean	myBean;

Eclipse	marks	this	line	with	a	red	error	bullet.	Right-click	it	and	select	Quick	Fix	to
automatically	insert	two	import	statements:	one	for	the	@EJB	annotation	and	the	other	for
HelloWorldBean.

Using	JNDI	remains	an	alternative	to	injecting	the	bean	into	the	client.	Java	EE	supports
portable	JNDI	names	that	don’t	depend	on	the	application	server’s	implementation.
Instead	of	the	@EJB	annotation	you	could	(but	we	won’t)	use	the	following	code:

Context	ctx	=	new	InitialContext();
HelloWorldBean	myBean	=	(HelloWorldBean)
																		ctx.lookup("java:global/Lesson31/HelloWorldBean");

Now	add	the	following	two	lines	in	the	doGet()	method	of	the	servlet	to	make	it	invoke
the	method	sayHello()	on	the	EJB:

PrintWriter	out	=	response.getWriter();
out.println(myBean.sayHello());

That’s	all	there	is	to	it.	The	complete	code	of	the	servlet	is	shown	in	Listing	31-3.

Listing	31-3:	Servlet	client	for	HelloWorldBean

package	lesson31.client;
import	java.io.IOException;
import	java.io.PrintWriter;
import	javax.ejb.EJB;
import	javax.servlet.ServletException;
import	javax.servlet.annotation.WebServlet;
import	javax.servlet.http.HttpServlet;
import	javax.servlet.http.HttpServletRequest;
import	javax.servlet.http.HttpServletResponse;
import	lesson31.ejb.HelloWorldBean;
@WebServlet(urlPatterns	=	{	"/HelloWorldServlet"	})
public	class	HelloWorldServlet	extends	HttpServlet	{
		@EJB	HelloWorldBean	myBean;							
		protected	void	doGet(HttpServletRequest	request,	
																							HttpServletResponse	response)	
																								throws	ServletException,	IOException	{	
					
						PrintWriter	out	=	response.getWriter();	
						out.println(myBean.sayHello());	}
}

Deploy	the	project	Lesson31	in	GlassFish	server	(right-click	the	server	name	and	use	Add
and	Remove	menu)	and	start	the	server.	Right-click	the	servlet	HelloWorldServlet	and
select	Run	As	→	Run	on	Server.	The	servlet	calls	the	method	on	the	EJB,	and	you	see

what’s	shown	in	Figure	31-1	in	the	Eclipse	internal	web	browser.

Figure	31-1:	Running	the	servlet,	an	EJB	client

You	can	copy	the	servlet’s	URL	in	your	web	browser	and	the	resulting	web	page	will	be
the	same.

Printing	Hello	World	from	an	EJB	may	not	look	too	impressive,	but	my	goal	was	to
illustrate	how	to	move	the	application	logic	from	servlet	to	the	EJB.			

Automatic	Redeployments	on	the	Server
While	working	on	your	project	you	might	want	to	make	sure	that	the	server	performs
automatic	redeployment	of	your	application	when	the	Java	code	changes.	Just	double-
click	the	GlassFish	server	in	the	Servers	view,	which	will	open	the	Overview	window
describing	the	server.	Expand	the	Publishing	panel	there	and	select	the	option
Automatically	Publish	When	Resources	Change.

Local	Beans

Now	to	expose	a	business	method	to	local	clients,	you	can	declare	the	interface	marked
with	the	@Local	annotation.	In	Eclipse	create	a	new	session	bean	named
HelloWorldLocal,	select	the	Local	checkbox,	and	enter	Authorizable	as	the	name	of	the
business	interface,	as	shown	in	Figure	31-2.	

Figure	31-2:	Creating	an	EJB	with	a	business	interface

Eclipse	generates	the	interface	Authorizable	and	the	EJB	class	that	should	implement	it.

After	I’ve	added	the	declaration	of	the	method	authorize(),	this	interface	looks	as	follows:

package	lesson31.ejb;
import	javax.ejb.Local;
@Local
public	interface	Authorizable	{
			public	String	authorize();
}

Now	you	can	implement	the	method	authorize()	and	add	sayHello()	as	before.

Listing	31-4:	Local	interface	and	bean

package	lesson31.ejb;
import	javax.ejb.Stateless;
@Stateless
public	class	HelloWorldLocal	implements	Authorizable	{
					public	String	authorize(){
												return	"The	user	is	authorized!";
					}
					
					public	String	sayHello(){
									return	"Hello	World!";
					}
}

The	difference	between	HelloWorldBean	and	HelloWorldLocal	is	that	the	former	doesn’t
implement	any	interfaces,	but	the	latter	does.	Accordingly,	the	latter	exposes	a
Authorizable	view	to	the	local	clients.

Remote	Beans

For	clients	that	may	access	the	bean	remotely	(for	example,	from	a	standalone	Java
program	via	a	JNDI	lookup),	you	can	expose	only	the	interface(s)	that	you	want	the
remote	client	to	see.	Declare	an	interface	marked	with	@Remote	and	have	your	bean	class
implement	it.	

An	EJB	can	implement	both	remote	and	local	interfaces,	and	you	can	expose	different
methods	for	remote	and	local	clients,	too.	For	example,	the	following	bean
HelloWorldLocalRemote	exposes	only	the	method	sayHello()	to	the	clients	that	run	in	a
different	JVM.

Listing	31-5:	An	EJB	that	implements	local	and	remote	interfaces

@Local	public	interface	Authorizable	{
				public	String	authorize();	}
@Remote
public	interface	Greeting	{	
			public	String	sayHello();
}
@Stateless
public	class	HelloWorldLocalRemote	
																							implements	Authorizable,	Greeting	{
					public	String	authorize(){
												return	"The	user	is	authorized!";
					}
					
					public	String	sayHello(){
									return	"Hello	World!";
					}
}

The	clients	find	remote	beans	by	performing	JNDI	lookups.	Because	the	remote	client
runs	in	different	JVMs,	all	arguments	of	the	remote	methods	must	be	serializable.	

Asynchronous	Methods	and	Concurrency
There	is	one	more	feature	in	stateless	beans	that	I’d	like	you	to	be	aware	of:	asynchronous
methods.	Imagine	that	sayHello()	is	a	long-running	method	performing	some	lengthy
calculations,	and	you’d	like	to	call	it	and	continue	with	other	operations	without	waiting
for	it	to	complete.	In	a	Core	Java	application	you	would	start	a	thread	that	would
eventually	return	the	Future	object,	as	explained	in	Lesson	17.

Prior	to	Java	EE	7,	it	was	not	safe	to	create	and	start	threads	from	the	Java	EE
container,	which	was	taking	care	of	all	multithreading	issues	for	you.	So	asynchronous
methods	were	introduced	to	start	a	parallel	process	and	free	the	EJB	for	handling	other
clients’	requests.

Just	mark	the	bean’s	method	with	the	@Asynchronous	annotation	and	have	it	return	an
object	of	type	javax.ejb.AsyncResult,	which	is	an	implementation	of	the	Future	interface:

@Asynchronous
public	Future<String>	modelStockPrices(){
				//	Some	lengthy	calculations	go	here
				//...
			return	new	AsyncResult<String>("The	best	stock	to	buy	is…");
}

The	client	would	make	a	call	to	modelStockPrices()	then	execute	some	other	code	without
waiting	for	modelStockPrices()	to	complete.	At	some	point	it	would	request	Future	by
making	a	blocking	call,	get(),	as	in	the	following	code	snippet:

//Asynchronous	call
Future<String>	myFutureStockToBuy	=	myBean.modelStockPrices();
//	Some	other	code	that	is	executed	immediately	without
//	waiting	for	modelStockPrices()	to	complete	goes	here
//	Sometime	later	the	client's	code	makes	a	blocking	call	and	starts
//	waiting	for	the	result	of	modelStockPrices()
String	stockRecommendations	=	myFutureStockToBuy.get();

You	can	also	use	asynchronous	methods	if	a	client	needs	to	start	more	than	one	method	on
the	EJB	to	run	in	parallel	threads.	The	methods	don’t	even	need	to	return	values;	say	one
is	generating	large	PDF	files	and	the	other	prepares	shipments	based	on	today’s	orders.	In
this	case	you	don’t	even	need	to	process	returned	values;	just	declare	the	methods	as
asynchronous	and	invoke	them	from	the	client	(fire	and	forget).	They	start	immediately
and	run	in	parallel.	Such	asynchronous	methods	need	to	return	void	instead	of		<Future>.

The	Java	EE	7	specification	includes	JSR	236	(Concurrency	Utilities)	that	allows	you	to
create	threads	from	the	application	code.	These	threads	are	controlled	by	the	Java	EE
container,	so	your	application	remains	thread	safe.	In	Java	EE	code,	you	can
use	javax.enterprise.concurrent.ManagedExecutorService,	which	is	a	peer	of	the	Java
SE	ExecutorService.	You	can	obtain	the	reference	to	the	ManagedExecutorService	using
standard	resource	injection:

@Resource(lookup="java:comp/DefaultManagedExecutorService")
ManagedExecutorService	myExecutor;

The	JNDI	lookup	is	supported	as	well.	After	obtaining	the	reference	to	the	instance	of
ManagedExecutorService,		you	can	execute	a	task—the	class	that	implements	either
Runnable	or	Callable	interface;	for	example:

myExecutor.execute(new	Runnable(...));
Future	future	=	meExecutor.submit(new	Callable(...));

The	rest	of	the	thread	processing	is	done	similarly	to	the	Executor	Framework	routines
with	the	help	of	Concurrency	Utilities	for	Java	EE.

https://jcp.org/en/jsr/detail?id=236
https://docs.oracle.com/javaee/7/tutorial/concurrency-utilities.htm#GKJIQ8

Stateful	Session	Beans
Although	stateless	session	beans	are	given	to	the	client	just	for	the	time	one	method
execution	takes,	stateful	beans	are	allocated	to	the	client	for	longer.	They	have	state;	they
remember	the	results	of	the	execution	of	previous	method(s).	For	example,	you	can	use	a
stateful	bean	to	implement	shopping	cart	functionality,	enabling	the	user	to	add	more	than
one	item	to	the	cart	while	browsing	the	company’s	catalog.	When	the	client	ends	the
session	the	stateful	bean	can	be	allocated	to	another	client.

Suppose	you	have	a	stateful	EJB	called	MyShoppingCart.	The	client’s	application	looks
up	this	bean	using	JNDI	(or	gets	it	injected)	and	makes	the	first	call	to	the	method
addItem().	Then	the	user	continues	browsing	and	adds	another	item	to	the	shopping	cart.
Then	the	user	decides	to	complete	the	purchase	and	calls	the	method	placeOrder().	All
these	method	invocations	are	done	on	the	same	instance	of	the	stateful	bean
MyShoppingCart:

MyShoppingCart	myCart	=	(MyShoppingCart)
															ctx.lookup("java:global/OnlineStore/MyShoppingCart");
//	The	client	is	browsing	the	catalog	and	finds	the	first	item	
//	to	buy
//	...
myCart.addItem(myFirstItem);
//	The	client	continue	browsing	the	catalog	and	finds	the	second	
//	item	to	buy…
myCart.addItem(mySecondItem);
//	The	client	is	ready	to	complete	the	purchase
//	...
myCart.placeOrder();

To	complete	the	shopping	process	and	release	the	stateful	bean	for	other	users,	the
program	needs	to	call	one	of	the	bean’s	MyShoppingCart	methods	marked	with	the
@Remove	annotation.	In	the	preceding	example	the	method	placeOrder()	should	be
marked	with	this	annotation.	You	should	also	provide	another	@Remove	method	on	the
bean	to	allow	the	client	to	cancel	the	order	and	release	the	bean.

There	is	one	more	way	to	release	a	stateful	bean—by	using	the	@StatefulTimeout
annotation,	which	enables	you	to	specify	how	long	a	bean	can	stay	allocated	to	the	client
without	any	activity.	When	this	time	expires	the	session	times	out	and	the	bean	is	released.

Singleton	Beans
Pretty	often	an	application	needs	a	place	to	keep	data	that	are	shared	by	all	the	beans.	This
is	when	a	singleton	bean	comes	in	handy.	Another	use	case	for	a	singleton	is	to	control
access	to	some	external	resources.	For	example,	if	a	limited	number	of	connections	are
available	to	some	external	Web	Service,	you	can	create	a	singleton	that	implements
throttling	for	EJBs	that	need	these	connections.	A	singleton	bean	can	be	used	as	global
storage	(or	a	cache)	for	the	application;	the	state	of	this	bean	is	shared	among	clients.

Only	one	singleton	bean	with	any	given	name	can	exist	per	JVM	per	application.	If	you
need	several	singletons	in	an	application,	give	them	different	names.	An	EJB	container
doesn’t	create	pools	of	singleton	beans.	To	create	a	singleton	EJB	just	mark	a	POJO	with
the	@Singleton	annotation:

@Singleton
public	class	MyGlobalStorage	{
...
}

When	is	the	singleton	bean	created?	It’s	up	to	the	EJB	container	to	decide,	unless	you
specifically	want	to	request	that	this	bean	be	created	on	application	startup.	This	is	called
eager	initialization,	and	there	is	a	special	annotation,	@Startup,	for	it:

@Startup
@Singleton
public	class	MyGlobalStorage	{
				//	a	storage	for	objects	to	be	shared
				private	Map<String,	Object>	=	new	HashMap<>();
				addToStorage(String	key,	Object	objToStore){...}
				removeFromStorage(String	key){...}
}

Let’s	say	that	you’d	like	to	create	a	program	that	at	certain	times	sends	some	messages
into	a	queue.	Write	a	singleton	bean,	request	that	the	EJB	container	instantiates	it	on
application	start-up,	and	start	pushing	the	messages	immediately	after	the	singleton	has
been	constructed.	There	is	another	handy	annotation,	@PostConstruct,	that	causes	the
container	to	invoke	a	method	immediately	after	the	bean’s	constructor	is	finished:

@Startup
@Singleton
public	class	MyStockQuoteServer	{
...
@PostConstruct
void	sendPriceQuotes(){
			//	The	code	connecting	to	the	stock	prices	feed	and
			//	sending	messages	to	a	queue	goes	here
	}

}

To	get	access	to	the	business	methods	of	a	singleton,	the	client	Java	classes	need	to	call
the	public	static	method	getInstance()	on	the	specific	singleton,	as	shown	in	the	following
code	snippet.	If	you’ll	be	implementing	the	singleton	design	pattern	manually	in	Java	SE
you	need	to	declare	a	private	constructor	and	a	public	static	getInstance()	in	the	class:

MyGlobalStorage.getInstance()
															.addToStorage("emplOfTheMonth",	bestEmployee);

But	in	Java	EE,	the	EJB	container	takes	care	of	this.	The	EJB	container	allows	concurrent
access	to	singleton	beans,	and	by	default	it	applies	the	container-managed	concurrency
policy,	sparing	the	developer	worry	about	race	conditions	and	such.	You	just	need	to	use
the	@Lock	annotation,	specifying	whether	you	want	a	resource	to	be	locked	during	the
read	or	write	operation.	If	you	prefer	to	write	thread-synchronization	code	by	yourself,
switch	to	bean-managed	concurrency.	You	set	the	type	of	concurrency	using	the
@ConcurrencyManagement	annotation,	as	shown	here:

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.BEAN)
public	class	MyGlobalStorage	{
...
}

Deploying	EJB
Before	deployment	to	any	application	server,	EJBs	are	usually	packaged	into	one	archive
file,	which	could	be	a	jar;	an	Enterprise	Archive	(ear),	which	is	a	Java	archive	with	an	.ear
file	name	extension;	or	a	.war	in	case	of	web	applications.	Even	a	simple	web	application
should	be	compressed	and	deployed	as	one	file.	If	your	client’s	code	is	located	in	a	web
application	it’s	convenient	to	keep	the	EJB	inside	a	.war	file,	too.	

The	right	way	to	package	the	application	in	an	archive	file	is	to	use	a	build	automation
system	like	Ant,	Maven,	or	Gradle	(see	Lesson	36).	But	for	training	purposes	you	can
create	a	.war	file	in	Eclipse,	too.		Right-click	the	Deployment	Descriptor	section	in	the
Eclipse	project	Lesson31	and	select	Export		→	WAR	file.	In	a	second	you	get	the	file
Lesson31.war	that	contains	both	the	servlet	and	the	EJB.

This	file	can	be	deployed	in	any	Java	EE-compliant	application	server.	This	.war	file	is
small:	less	than	4	KB!	Java	EE	makes	EJB	components	really	lightweight.	If	you	have
multiple	EJB	classes,	put	them	in	one	or	more	jars	in	the	WEB-INF/lib	directory.

If	your	client	is	not	a	small	web	application,	or	you	want	to	keep	EJBs	deployed
separately,	you	can	package	them	inside	a	separate	.jar	or	.ear	file.	The	root	directory	that
you’ll	be	using	to	create	.ear	files	has	to	have	all	compiled	Java	classes	and,	if	applicable,
the	optional	ejb-jar.xml	file.	As	a	matter	of	fact,	you	can	create	an	.ear	file	that	contains
not	only	your	EJBs,	but	also	the	.war	file.

The	optional	configuration	file	ejb-jar.xml	allows	you	to	specify	metadata	for	the	EJB,	and
if	you	need	to	change	the	metadata	on	a	production	system	without	recompiling	the	code,
make	the	changes	in	ejb-jar.xml.	They	override	the	values	specified	via	annotations.	For
standalone	applications,	this	file	is	stored	in	the	application	server’s	directory	META-INF.
If	the	EJBs	are	packaged	with	the	web	application	inside	the	.war	file,	the	ejb-jar.xml	has
to	be	located	in	the	directory	WEB-INF.

Java	Archives	-	JARs
A	typical	Java	application,	library	or	framework	consists	of	multiple	classes,
interfaces	and	configuration	files.	To	simplify	deployment	and	distribution,	all	these
files	are	packaged	into	a	small	number	of	Java	archives	(JARs).	Most	of	the	third
party	libraries	are	distributed	as	JARs.	Both	JRE	and	Java	SDK	include	dozens	of
JARs.	In	Eclipse	you	can	see	them	by	opening	project	properties.	

Java	comes	with	a	jar	utility	that	is	used	to	archive	multiple	Java	classes	and	other
files	into	a	file	having	the	name	extension	.jar.	Internal	formats	of	.jar	and	.zip	files
are	the	same.	
						
To	create	a	jar	that	will	contain	all	files	with	extension	.class,	open	the		Command	or
Terminal	window,	get	into	the	folder	where	your	classes	are,		and	type	the	following
command:

jar	cvf	myClasses.jar	*.class

After	the	word	jar	you	should	specify	the	options	for	this	command.	In	the	last
example	c	is	for	creating	a	new	archive,	v	is	for	displaying	what	goes	in	there,
and	f	means	that	the	file	name	of	the	new	archive	is	provided.

To	unjar	(extract)	the	files	from	the	archive	myClasses.jar,	type	the	following
command:

jar	xvf	myClasses.jar

All	files	will	be	extracted	into	the	current	directory.	In	this	example	the	option	x	is	for
extracting	files	from	the	archive.

If	you	just	want	to	see	the	content	of	the	jar	without	extracting	the	files,	use	the	next
command	where	t	is	for	the	table	of	contents:

jar	tvf	myClasses.jar

If	a	JAR	includes	a	manifest	file	that	includes	the	Main-Class	entry,	you	can	run	such
a	Java	application	from	a	command	line	without	the	need	to	unzip	the	JAR:

java	-jar	myApplication.jar

If	your	project	needs	to	include	a	third-party	library	you	should	add	its	JAR(s)	to
the	CLASSPATH	environment	variable.	For	example,	in	Lesson	21	we	had	to	add	the
file	derbyclient.jar	that	contained	database	drivers	for	Derby	DB		to
the	CLASSPATH.	In	Eclipse	IDE	you	do	this	by	adding	external	JARs	to	the	Build
Class	Path	of	the	project.	For	more	information	read	Oracle’s	tutorial	“Packaging
programs	in	JAR	Files.”	

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html
http://docs.oracle.com/javase/tutorial/deployment/jar

Message-Driven	Beans
MDBs	(message-driven	beans)	perform	only	one	function:	They	retrieve	messages	from
queues	and	topics	via	the	JMS	API.	The	clients	never	need	to	look	them	up	or	invoke	their
methods.	The	client	just	needs	to	drop	a	message	in	a	queue	or	publish	it	to	a	topic,	and
the	MDBs	that	were	listening	to	the	messages	at	these	destinations	get	invoked
automatically.

MDBs	must	implement	the	MessageListener	interface.	All	configuration	parameters	can
be	specified	in	the	parameters	of	the	@MessageDriven	annotation,	as	shown	in	the
following	example.

Listing	31-6:	MDB	MyMessageBean

@MessageDriven(mappedName="jms/testQueue",	activationConfig	=	{
							@ActivationConfigProperty(propertyName	=	"acknowledgeMode",
																														propertyValue	=	"Auto-acknowledge"),
							@ActivationConfigProperty(propertyName	=	"destinationType",
																														propertyValue	=	"javax.jms.Queue")
				})
public	class	MyMessageBean	implements	MessageListener	{
MessageDrivenContext	ctx;
				//	A	no-argument	constructor	is	required
				public	MyListener()	{}
				public	void	onMessage(Message	message){
								//	The	business	logic	is	implemented	here.
				}
}

When	a	message	appears	in	the	queue	named	testQueue,	the	EJB	container	picks	one	of
the	MDBs	from	the	pool	and	invokes	its	callback	method	onMessage(),	passing	the
message	from	the	queue	as	an	argument.	Unlike	with	the	standalone	message	receivers
described	in	Chapter	30,	with	MDBs	the	container	gives	you	excellent	freebies:	distributed
transaction	processing,	automatic	pooling,	co-location	of	receivers	and	other	beans,	and
simple	assignment	of	queues	or	topics	to	the	receivers	in	deployment	descriptors.	In
addition,	you	can	easily	configure	the	number	of	receivers	by	specifying	the	pool	size	in
the	deployment	descriptor.

You	can	use	any	client	to	send	a	message	in	a	queue.	It	can	be	a	standalone	client	(as
shown	in	how_to_send_a_message),	a	servlet,	an	EJB,	and	so	on.

EJB	and	Transactions	
Java	EE	specification	includes	Java	Transaction	API	(JTA),	which	is	a	standard	interface
for	demarcating	transactions	in	EJB	and	web	containers.	Lesson	21	explains	how	to	do
transactional	updates	while	working	with	relational	databases.	But	a	logical	unit	of	work
may	include	actions	other	than	updating	the	database.	For	example,	your	application	may
need	to	update	a	database	and	send	a	message	using	JMS	in	one	transaction.	If	any	of
these	operation	fails,	the	entire	transaction	should	be	rolled	back.

More	than	one	EJB	can	perform	actions	that	should	be	considered	a	single	transaction.
The	term	transaction	scope	defines	all	participants	of	the	transaction,	which	may	be
declared	on	the	same	or	different	EJBs.	For	example,	one	session	bean	can	have	a	method
saveOrder(),	which	implements	the	logic	for	saving	order	and	calls	a
method		notifySupplier()on	another	bean.	If	any	of	these	methods	fails,	the	entire
transaction	should	be	rolled	back.	

	Say,	a	transaction	started	in	the	method	saveOrder(),	which	called	notifySupplier().
Should	the	code	of	the	latter	work	as	a	part	of	the	existing	transaction	or	create	a	new	one?
Should	a	method	simply	ignore	an	existing	transaction	and	its	failure	should	not	affect	the
transaction?	There	are	other	questions	to	answer,	too.

	JTA	transactions	in	EJB	containers	can	be	of	two	types:	container-managed	and	bean-
managed.	Container-managed	transactions	are	managed	by	the	EJB	container,	and	you	just
specify	transactional	behavior	in	a	declarative	way	by	using	the
annotations	@TransactionAttribute	that	instruct	the	EJB	container	when	to	consider	a
transaction	successful.	With	a	bean-managed	transaction	you’d	need	to	invoke	the
methods		begin(),	commit(),	and	rollback()of	the	UserTransaction	interface.

But	using	container-managed	declarative	transaction	is	a	lot	easier.	The	enum
TransactionAttributeType	declares	a	handful	of	transaction	attributes:	

MANDATORY:	This	method	must	always	be	a	part	of	the	transaction	of	the	invoking
method.	If	the	invoking	method	has	no	transaction,	the	exception
EJBTransactionRequired	is	thrown.	

REQUIRED	:	This	method	must	be	invoked	within	a	transaction	scope.	If	the	invoking
method	was	not	transactional,	the	container	will	create	a	new	transaction.

REQUIRES_NEW:	Always	start	a	new	transaction	for	this	method	even	if	the
invoking	method	has	its	own	transaction

SUPPORT:	Execute	the	code	of	this	method	as	a	part	of	the	transaction	of	the	invoking
method.

NOT_SUPPORTED:	Suspend	the	transaction	of	the	invoking	method	until	this
method	is	complete.	If	the	invoking	method	is	not	executed	within	a	transaction,	this
method	also	won’t	be	transactional.		

NEVER:	This	method	must	never	be	a	part	of	the	transaction.	If	the	invoking	method
has	a	transaction,	the	EJBException	is	thrown.

If	the	class	is	annotated	with	a	transaction	attribute,	it	applies	to	all	methods	from	the

class.	You	can	override	the	class	attribute	on	the	method	level.	The	next	example	shows	a
stateless	bean	that	declares	that	container	must	create	a	new	transaction	for	each	method
except	method3(),	which	should	never	be	executed	inside	a	transaction:

@Stateless	
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
class	MySessionBean	{
		public	void	method1(){...}
		
		public	void	method2(){...}
		
		@TransactionAttribute(TransactionAttributeType.NEVER)
		public	void	method3(){...}
}

Message-driven	bean	can	use	only	NOT_SUPPORTED	or	REQUIRED	transaction
attributes.

Timer	Service
Many	enterprise	applications	require	the	use	of	schedulers	to	perform	certain	repetitive
tasks	at	certain	times.	Cron	is	a	widely	used	scheduler	for	UNIX-based	applications.
Windows	also	has	a	task	scheduler	(Control	Panel	→	Scheduled	Tasks).	The	open-source
Quartz	Scheduler	is	also	popular	among	Java	developers.

EJB	supports	the	@Schedule	annotation,	which	takes	a	calendar-based	expression	so	you
can	schedule	the	execution	of	required	functionality	in	your	beans.	For	example,	you	can
create	expressions	that	invoke	some	business	method	every	second,	minute,	hour,	Monday,
weekday,	midnight,	and	so	on.

The	next	code	snippet	shows	how	you	can	create	a	timer	that	invokes	the	method
getPriceQuotes()	every	second	during	weekdays	from	9:30	a.m.	to	4:00	p.m.:

@Stateless
public	class	MyStockQuoteFeed	{
				@Schedule(second="*",	minute="*",	hour="9:30-16:00",	
														dayOfWeek="Mon-Fri")
				public	List	getPriceQuotes(){
								//	The	code	to	connect	to	price	quote	feed	goes	here
								...
				}
}

You	can	also	create	timers	programmatically	using	the	TimeService	class	and	its	methods
createTimer(),	createSingleActionTimer(),	createIntervalTimer(),	and
createCalendarTimer().

In	addition	to	using	@Schedule	and	programmatic	timers,	you	can	configure	timers	in	the
deployment	descriptor	ejb-jar.xml.

Summary
Enterprise	Java	Beans	technology	is	a	powerful	solution	for	creating	a	scalable,	easy-to-
develop	and	-deploy,	and	lightweight	solution	for	enterprise	applications.	Even	a	small-
scale	applications	can	benefit	from	EJB.	If	your	application	doesn’t	need	all	the	features
mandated	by	the	EJB	specification,	consider	using	EJB	Lite,	which	is	a	subset	of	the	full
specification.

It’s	not	possible	to	cover	all	the	features	offered	by	EJB	containers	in	one	short	lesson.
I’ve	introduced	you	to	the	main	EJB	concepts,	but	if	you’d	like	more	in-depth	coverage,
read	the	EJB	section	in	Oracle’s	Java	EE	7	tutorial.

https://docs.oracle.com/javaee/7/tutorial/partentbeans.htm#BNBLR

Try	It

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	Lesson31.zip.

The	assignment	for	this	lesson	is	to	implement	the	StockServer	class	as	an	EJB	and	to	use
the	timer	to	automatically	generate	and	print	stock	price	quotes	every	second.	The	new
quotes	should	be	sent	to	testQueue	via	the	JMS	API	and	consumed	by	a	message-driven
bean.	Reuse	the	code	of	the	sample	stock	server	application	of	the	StockServerImpl	from
Listing	24-2	to	generate	the	price	quotes.

Lesson	Requirements
You	should	have	Java	and	GlassFish	installed.

Hint
If	you	want	to	push	the	stock	prices	to	the	end	users,	consider	creating	a	JMS	topic	(for
example,	PriceQuotes)	to	which	the	method	getQuote()	publishes	the	latest	prices.	The
Java	client	should	subscribe	to	this	topic	to	get	the	fresh	quotes	every	second.

Step-by-Step
1.	 In	Eclipse	project	Lesson31,	create	a	new	stateless	session	bean,	StockServerBean,

that	includes	the	method	getQuote().	The	initial	version	of	the	bean	may	look	as
follows:

@Stateless
public	class	StockServerBean	{
		private	String	price=null;
		private	List<String>	nasdaqSymbols	=	new	ArrayList<>();
		public	StockServerBean(){
				//	Define	some	hard-coded	NASDAQ	symbols
				nasdaqSymbols.add("AAPL");
				nasdaqSymbols.add("MSFT");
				nasdaqSymbols.add("YHOO");
				nasdaqSymbols.add("AMZN");
	}
	public	void	getQuote(String	symbol){
			if(nasdaqSymbols.indexOf(symbol.toUpperCase())	!=	-1)	{
							//	Generate	a	random	price	for	valid	symbols
							price	=	(new	Double(Math.random()*100)).toString();
			}
			System.out.println("The	price	of	"+	symbol	+	"	is	"	+	price);
		}
}

http://www.wrox.com/go/javaprog24hr2e

2.	 Use	the	@Schedule	annotation	to	have	the	getQuote()	method	invoked	every	second.

3.	 Replace	the	println()	statement	in	the	method	getQuote()	with	the	code	sending	a	text
message	with	the	generated	price	quote	to	the	queue	MyJMSTestQueue	configured	in
Chapter	29.

4.	 Create	an	MDB	called	MyPriceConsumer	to	retrieve	and	print	messages	from	the
queue	MyJMSTestQueue.

5.	 Deploy	this	application	in	GlassFish	and	test	it.

TIP			Please	select	the	videos	for	Lesson	31	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	32
Overview	of	the	Java	Persistence	API
In	the	previous	lesson	you	learned	about	various	types	of	Enterprise	Java	Beans	in	which
you	could	program	the	business	logic	of	your	application.	Now	it’s	time	to	talk	about
persisting	data.	If	an	online	store	allows	users	to	place	orders	with	session	beans,	there
should	be	a	mechanism	for	saving	the	data,	too.	Typically,	the	data	is	persisted	in	the
relational	or	NoSQL	DBMS.

The	Java	Persistence	API	(JPA)	defines	a	standard	way	of	mapping	the	Java	classes	to
their	relational	database	peers.	This	process	is	also	known	as	object-relational	mapping
(ORM).	JPA	allows	you	to	work	with	DBMSes	using	Java	objects	rather	than	with	SQL.
All	SQL	queries	are	generated	under	the	hood	by	the	library	that	implements	JPA.	The
most	popular	implementation	of	JPA	is	Hibernate,	and	there	is	a	reference	implementation
called	EclipseLink.	You	use	EclipseLink	in	the	“Try	It”	section	of	this	lesson.

This	lesson	is	a	brief	introduction	to	the	standard	JPA	2.1	that’s	implemented	by	Java	EE
7-compliant	servers.	You’ll	also	get	familiar	with	the	data	validation	process	offered	by
the	Bean	Validation	framework.	

http://hibernate.org/
http://eclipse.org/eclipselink

The	Big	Picture
In	the	past,	J2EE	(currently	Java	EE)	specifications	recommended	using	Entity	EJB	to
provide	all	interactions	with	databases.	Entity	beans	have	been	pruned	from	the	current
Java	EE	specification,	and	you	should	use	JPA	instead	to	deal	with	your	application’s	data
querying	and	persistence.	As	a	matter	of	fact,	you	can	use	JPA	from	Java	SE	applications,
too.

JPA	enables	you	to	specify	and	run	queries	and	update	data	without	needing	to	write	SQL
statements	as	you	did	in	Chapter	21	while	studying	JDBC.	Starting	from	JPA	2.1	you	can
invoke	stored	procedures	located	in	relational	DBMSes.

JPA	enables	you	to	map	Java	classes	to	database	tables	using	metadata,	and	perform
create,	retrieve,	update,	and	delete	(CRUD)	operations	using	Java	Persistence	Query
Language	(JPQL),	the	Persistence	Criteria	API,	and	native	database	queries	in	SQL
language.	The	idea	is	to	create	an	application-specific	domain	model	as	a	set	of
interrelated	Java	classes	and	map	it	to	the	corresponding	data	storage	(the	DBMS).

If	a	Java	class	marked	with	the	@Entity	annotation	has	no	argument	constructor	you	can
call	it	an	entity:	

@Entity
public	class	Employee{
	...
}

If	a	persistent	storage	is	a	relational	DBMS,	each	entity	instance	corresponds	to	a	row	in	a
database	table.	If	you	start	with	an	empty	database,	JPA	tools	enable	you	to	create
database	tables	based	on	Java	entities.	You	can	also	map	Java	entities	to	the	existing
database	tables.	Just	like	database	tables,	Java	entities	can	have	one-to-one	relationships
(such	as	an	Employee	entity	with	one	corresponding	OfficeAddress	entity);	one-to-many
relationships	(such	as	one	Customer	with	many	Orders);	many-to-one	relationships	(the
opposite	of	one-to-many	relationships);	and	many-to-many	relationships	(for	example,	a
UniversityClass	has	many	enrolled	Students,	but	each	Student	can	enroll	into	multiple
classes).

JPA	and	NoSQL
In	NoSQL	DBMS,	a	Java	class	entity	corresponds	to	an	object	in	the	database.	Format
of	the	object	varies	depending	on	the	DBMS.	Popular	formats	are	JSON	and	BSON
(binary	JSON).	For	details,	refer	to	the	documentation	of	your	JTA	providers.	For
example,	refer	to	the	online	documentation	of	Hibernate	Object/Grid
Mapper	and	EclipseLink.	

Every	entity	class	must	define	a	field	containing	a	unique	value,	which	is	the	equivalent	of
a	primary	key	in	a	database	table.	You	can	either	work	directly	with	the	fields	of	an	entity
class	or	use	setters	and	getters	as	defined	in	the	JavaBeans	specification.	In	the	latter	case,
persistent	fields	must	not	be	public	and	should	be	accessed	by	public	methods,	and	the

http://docs.jboss.org/hibernate/ogm/3.0/reference/en-US/pdf/hibernate_ogm_reference.pdf
https://wiki.eclipse.org/EclipseLink/Examples/JPA/NoSQL
http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html

entity	class	must	have	a	no-argument	constructor.	

The	EntityManager	class	deals	with	objects.	Before	persisting	data	you	can	validate	the
values	using	the	Bean	Validation	API	illustrated	later	in	this	lesson.

While	JPQL	provides	string-based	SQL-like	syntax	for	working	with	entities,	the	Criteria
API	enables	you	to	dynamically	construct	queries	from	strongly	typed	objects.

Mapping	Objects	to	Database	Tables
You	can	map	Java	classes	to	database	tables	via	annotations,	XML	configuration	files,	or
both.	For	example,	common	fields	can	be	mapped	with	annotations,	and	DBMS-specific
mapping	can	be	done	in	XML	files.	It	does	not	have	to	be	one-to-one	mapping;	one	Java
entity	can	be	mapped	to	a	set	of	columns	from	more	than	one	database	table.

Besides	having	fields	mapped	to	table	columns,	Java	entities	can	have	embeddable
classes,	like	Address	in	the	Employee	entity.

Typically	a	database	table	has	a	primary	key—one	or	more	columns	that	uniquely	identify
each	row.	Accordingly,	Java	entities	must	have	one	or	more	fields	making	each	instance
unique.	For	a	one-field	key,	an	entity	ID	is	marked	with	the	@Id	annotation.	A	composite
key	is	declared	in	separate	classes,	and	the	entity	class	is	denoted	with		@IdClass	(or
	@EmbeddedId	if	the	key	defined	in	embeddable	class).	You	can	request	your	JPA
provider	to	auto-generate	the	ID	by	adding	the	annotation	@GeneratedValue	to	the	entity
class.	Listing	32-1	shows	an	example	of	an	Employee	entity.

Listing	32-1:	Employee	entity

@Entity
public	class	Employee{
		@Id
		@GeneratedValue(strategy=GenerationType.IDENTITY)
		@NotNull
		@Size(max=10)
		private	String	firstName;
		@NotNull
		@Size(min=2,	max=20)
		private	String	lastName;
		@Column(name="boss_name")
		private	String	managerName;
		@OneToMany	(mappedBy	=	"employee")
		private	List<Address>	addresses	=	new	ArrayList<Address>();
		//	constructor
		public	Employee(){	...}
		//	getters	and	setters	go	here
}

If	you	don’t	specify	an	annotation	containing	the	database	table	name	in	the	entity	class,
JPA	assumes	that	there	is	a	corresponding	database	table	with	the	same	name	as	the	entity
class,	which	in	our	example	is	Employee.	The	specified	strategy
GenerationType.IDENTITY	means	that	DBMS	has	an	auto-generated	primary	key	with
auto-increment.	Many	database	management	systems	support	either	identity	columns	or
sequence	objects	with	similar	functionality.

The	fields	that	must	have	values	are	marked	as	@NotNull.	If	an	instance	of	the	preceding
Employee	entity	won’t	have	values	in	the	firstName	or	lastName	fields,	Bean	Validation
can	catch	this	and	generate	an	error.	The	entity	fields	that	don’t	have	to	be	persisted	should
be	marked	with	the	@Transient	annotation.

If	a	table	column	name	is	not	the	same	as	the	name	of	the	entity	field,	you	can	specify	the
column	name	using	@Column.	According	to	the	code	sample	Listing	32-1,	the	database
column	name	boss_name	corresponds	to	the	field	managerName	of	the	entity	Employee.

Not	every	Java	class	that	corresponds	to	some	data	in	the	database	has	to	be	an	entity.	You
can	have	embeddable	classes	that	define	a	group	of	arbitrary	properties	that	belong	to	an
entity.	Let’s	say	a	company	gives	to	each	employee	a	smartphone	identified	by	a	phone
number	and	model	number.	You	can	create	a	Java	class	to	represent	such	a	device	and
mark	it	with	@Embeddable:

@Embeddable
public	class	SmartPhone	implements	Serializable{
			@Size(max=10)
			public	String	phoneNumber;
			public	String	model;
}

Now	the	Employee	entity	can	embed	the	property	of	the	SmartPhone	type	along	with
other	fields:

@Entity
public	class	Employee{
		@Id
		@GeneratedValue(strategy=GenerationType.IDENTITY)
		@NotNull
		public	String	firstName;
		//	some	other	fields	go	here
		//	...
		@Embedded
		public	SmartPhone	companyPhone;
}

The	code	in	Listing	32-1	illustrates	the	mapping	of	one-to-many	relations	between	the
entities	Employee	and	Address	(not	shown).	One	employee	can	have	multiple	addresses,
so	Employee	references	a	collection	of	the	Address	entities.		

You	can	also	use	@Embeddable	class	to	declare	a	composite	primary	key	for	an	entity
class.

Querying	Entities
JPA	offers	two	ways	of	querying	entities:	Java	Persistence	Query	Language	(JPQL)	and
the	Criteria	API.

JPQL
JPQL	is	a	SQL-like	query	language.	But	SQL	operates	with	the	DBMS	objects	like
schemas,	tables,	and	stored	procedures,	and	JPQL	manipulates	with	Java	objects	and	their
attributes	from	the	domain	model.	The	application	doesn’t	need	to	know	details	of	the
underlying	data	storage	objects	to	perform	JPQL	queries.

If	you	know	the	queries	in	advance	you	can	precompile	them;	otherwise	you	can	build
them	dynamically	during	the	run	time.	Similarly,	in	JDBC	you	can	use
either	PreparedStatement	or	Statement.

JPQL	includes	(case-insensitive)	keywords	that	are	pretty	easy	to
remember:	SELECT,	FROM,	WHERE,	ORDER	BY,	GROUP	BY,	and	so	on.	Here’s	how
you	would	write	a	JPQL	query	to	find	all	managers	who	have	subordinates	with	the	last
name	Smith:

SELECT	e.managerName,
FROM	Employee	AS	e
WHERE	e.lastName='Smith'

Don’t	be	misled	by	the	SELECT,	FROM,	and	WHERE	clauses;	it’s	not	SQL,	and	this
queries	the	Java	Entity	class,	which	in	turn	will	generate	SQL	under	the	hood.	The
e	serves	as	an	alias	name	here	to	refer	to	the	Employee	entity	name.	The	result	of	this
query	can	be	a	collection	of	Java	objects	that	contains	zero	or	more	instances.

The	next	query	finds	all	employees	who	were	given	iPhones	by	the	firm.	Note	the	dot
notation	to	find	the	phone	model	from	the	embedded	class:

SELECT	e.firstName,	e.lastName
FROM	Employee	AS	e
WHERE	e.companyPhone.model='iPhone'

To	populate	all	fields	of	certain	entities	(the	equivalent	of	Select	*	in	SQL)	just	specify	the
alias	name	of	the	entity	right	after	the	SELECT	clause:

SELECT	e	FROM	Employee	AS	e

The	Employee	and	Address	entities	have	a	one-to-many	relationship.	If	you’d	like	to	find
all	employees	who	live	in	New	York,	this	is	the	join	written	in	JPQL:

SELECT	DISTINCT	e
FROM	Employee	AS	e	JOIN	e.addresses	as	a
WHERE	a.city='New	York'

Criteria	API
Although	JPQL	is	a	string-based	query	language,	the	Criteria	API	allows	the	creation	of
strongly	typed	object-based	queries.	On	one	hand	it’s	more	verbose	than	JPQL,	but	on	the
other	there	is	no	need	to	do	data-type	conversion	when	processing	query	results.	Because
Criteria	API	is	strongly	typed,	Java	compiler	catches	all	the	type-related	errors	during	the
compilation	time,	whereas	string-based	JPQL	needs	to	be	parsed	during	the	run	time.

These	are	some	core	interfaces	in	the	Criteria	API:

CriteriaBuilder:	A	utility	class	that	can	create	criteria	queries.

CriteriaQuery:	This	is	an	object	that	contains	all	parts	of	the	query,	such
as	SELECT,	FROM,	and	WHERE.	It’s	like	a	memory	graph,	in	which	each	node
represents	some	clause	of	the	query.

Root:	Represents	the	root	of	the	query.

TypedQuery:	A	query	prepared	for	execution.

Join:	An	object	that	represents	a	JOIN	clause.

The	next	code	fragment	shows	an	equivalent	of	the	JPQL	query	SELECT	e	FROM
Employee	AS	e	written	using	the	Criteria	API:

EntityManager	em;
...
CriteriaBuilder	cb	=	em.getCriteriaBuilder();
CriteriaQuery<Employee>	crQuery	=	cb.createQuery(Employee.class);
Root<Employee>	employee	=	crQuery.from(Employee.class);
crQuery.select(employee);
TypedQuery<Employee>	tQuery=	em.createQuery(crQuery);
List<Employee>	employees	=	tQuery.getResultList();

Start	with	asking	EntityManager	to	create	CriteriaBuilder,	which	in	turn	creates	the
instance	of	CriteriaQuery.	Note	that	via	generics,	the	CriteriaQuery	is	typed	based	on	the
expected	results.	After	that	you	add	instances	of	required	objects
(SELECT,	FROM,	WHERE,	and	so	on)	to	CriteriaQuery.

Finally,	the	EntityManager	prepares	the	executable	TypedQuery	that	produces	strongly
typed	results	by	executing	getResultList().	If	you	expect	just	one	record	back,	use
the	getSingleResult()	method.	You	can	chain	several	clauses	in	the	query:

crQuery.select(employee).where(...).orderBy(...);

Because	we	are	building	the	object	graph,	the	order	of	the	query	classes	in	the	preceding
line	is	not	important.	The	Root	object	can	serve	as	a	starting	point	for	joining	entities:

Root<Employee>	employee	=	crQuery.from(Employee.class);
Join<Employee,	Address>	empJoin	=	employee.join(...);

The	next	example	shows	how	to	add	the	LIKE	clause	to	get	all	employees	with	the	last

name	Thompson:

Root<Employee>	employee	=	crQuery.from(Employee.class);
crQuery.select(employee).where(
											cb.like(employee.<String>)get("lastName"),
											cb.parameter(String.class,	"lname"));
TypedQuery<Employee>	tQuery=	em.createQuery(crQuery);
tQuery.setParameter("lname",	"%Thompson%");
List<Employee>	employees	=	tQuery.getResultList();

Entity	Manager
Entities	are	managed	by	the	entity	manager	javax.persistense.EntityManager,	which		is	the
centerpiece	of	persistence	mechanism;	it	executes	all	your	JPA	requests	to	read	from	or
write	into	a	database.	Often	each	instance	of	EntityManager	is	associated	with	a	set	of
entities.	Such	a	set	is	called	a	persistence	context.	

A	JTA	transaction	usually	involves	invocation	of	more	than	one	application	component
and	is	annotated	with	@PersistenceContext.	In	Java	EE	containers	the	EntityManager	can
be	injected	as	a	resource—for	example:

@PersistenceContext
EntityManager	em;

With	a	container-managed	entity	manager,	its	persistence	context	is	automatically
propagated	by	the	container	to	application	components.		If	you	want	your	application	to
manage	multiple	instances	of	EntityManager	,		you	need	to	instantiate	it	programmatically
using	EntityManagerFactory:

private	EntityManagerFactory	factory;
private	static	final	String	PERSISTENCE_CONTEXT_NAME	=	"employees";
...
factory	=	Persistence.createEntityManagerFactory(
																																									PERSISTENCE_CONTEXT_NAME);
EntityManager	em	=	factory.createEntityManager();

The	entity	manager	can	create,	update,	remove,	and	find	entities	by	IDs	or	using	a	query.
The	code	to	find	an	Employee	entity	with	the	ID	1234	can	look	like	this:

Employee	employee	=	em.find(Employee.class,	1234);

To	create	a	new	row	in	the	Employee	database	table,	create	an	instance	of	the	entity
Employee	and	invoke	the	method	persist()	on	the	EntityManager.	To	delete	a	row,	call
remove().	Your	application	can	explicitly	begin	and	commit	transactions	when	the
persistence	is	successfully	completed:

@PersistenceContext
EntityManagerFactory	factory;
EntityManager	em;
@Resource
UserTransaction	userTransaction;
...
em=factory.createEntityManager();
Employee	newEmployee	=	new	Employee();
newEmployee.firstName="Mary";
newEmployee.lastName="Thompson";
...
try{

		userTransaction.begin();
		em.persist(newEmployee);
		em.remove(oldEmployee);
userTransaction.commit();
}
catch	(SystemException	e){	//other	exceptions	can	be	thrown	here
		e.printStackTrace();
		try{
			userTransaction.rollback();
			}	catch(SystemException	e1){e1.printStackTrace()}
}

To	select	the	manager	name	of	the	employee	with	the	firstName	Mary	and	the	lastName
Thompson,	ask	the	EntityManager	to	run	the	following	JPQL	query:

EntityManager	em;
List	employees;
...employees	=	em.createQuery(
"SELECT	e.managerName	FROM	Employee	AS	e	WHERE	e.firstName='Mary'	"
						+	"	AND	e.lastName='Thompson'").getResultList();

This	static	query	works	only	for	employees	whose	full	names	are	Mary	Thompson.	Note
that	the	method	getResultList()	is	invoked	on	the	created	query	object.	If	you	expect	just
one	entity	as	a	result,	call	the	method	getSingleResult()	instead.	To	specify	the	first	and
last	names	dynamically,	you	should	use	parameters;	for	example:

EntityManager	em;
List<Employee>	employees;
//	parameters
String	firstName	=	"Mary";
String	lastName	=	"Thompson";
...
employees	=	em.createQuery(
"SELECT	e.managerName	FROM	Employee	AS	e	WHERE	"	+
		"e.firstName=	:fname	AND	lastName=	:lname")
			.setParameter("lname",	lastName)
			.setParameter("fname",	firstName)
			.getResultList();

One	instance	of	EntityManager	manages	a	persistence	unit—a	set	of	classes	specified	in
the	configuration	file	persistence.xml,	which	is	located	in	the	META-INF	directory	of	the
deployed	EJB	jar.	If	you	package	the	application	in	the	.war	file,	this	file	has	to	be	located
either	in	the	directory	WEB-INF/classes/META-INF	or	in	a	jar	under	WEB-INF/lib.

The	file	persistence.xml	specifies	the	name	of	the	.jar	file	that	contains	managed
persistence	classes	and	their	names.	It	also	contains	the	name	of	the	JDBC	data	source
(not	the	specific	JDBC	driver)	used	for	communication	with	DBMS;	for	example:

<persistence>
				<persistence-unit	name="EmployeeManagement">
								<description>This	unit	manages	Acme	Employees	</description>
								<jta-data-source>jdbc/HRDatabase</jta-data-source>
								<jar-file>MyEmployeeApp.jar</jar-file>
								<class>lesson32.Employee</class>
								<class>lesson32.Address</class>
				</persistence-unit>
</persistence>

The	<persistence-unit>	element	must	specify	a	name	that	is	unique	to	the	persistence	unit
scope.	All	classes	included	in	a	persistence	unit	have	to	work	with	a	single	data	store
defined	in	the	element	<jta-data-source>,	which	must	be	preconfigured	as	a	JNDI	resource
in	your	Java	EE	application	server.

Bean	Validation
When	the	user	enters	the	data,	she	can	make	a	mistake.	The	input	validation	can	and
should	be	done	on	the	client’s	side	to	prevent	unnecessary	server	requests	if	the	entered
data	is	wrong	or	incomplete.

Then	the	data	travels	to	the	server,	which	also	has	to	perform	the	validation	before
handling	or	persisting	the	data.	Think	of	a	web	application	where	the	user	enters	the	data
in	the	form,	the	client-side	validation	passed,	and	an	HTTP	request	is	made	to	the	server.
You	should	revalidate	the	data	on	the	server	side	to	protect	against	the	malicious	user	who
might	have	hijacked	and	modified	the	data	en	route.

Then	you	need	to	perform	the	data	validation	prior	to	persisting	the	data.	The	Bean
Validation	framework	is	supported	by	all	Java	EE-compliant	servers.	It’s	a	Java	API	for
ensuring	that	the	values	in	entities	are	correct.	You	can	declare	the	constraints	on	your
entities,	and	the	validation	is	automatically	initiated	when	you	are	about	to	create,	update,
or	remove	an	entity.	Standard	bean	validation	is	done	by	placing	built-in	annotations	on	a
class,	field,	or	a	method	of	a	managed	bean.	Custom	bean	validation	is	done	by	declaring	a
custom	annotation	and	implementing	the	isValid()	method	of	the	ConstraintValidator
interface.

The	code	sample	Listing	32-1	declared	the	field	validation	using	@NotNull	and
@Size	built-in	constraints	defined	in	the	package	javax.validation.constraints,	but	you	can
create	and	implement	custom	validation	rules	as	well.	You	can	validate	non-static	methods
of	the	entity	class.

The	entity	life-cycle	callback	methods	marked	with	the	annotations	@PrePersist	and
@PreRemove	are	invoked	on	the	entity	before	the	EntityManager	persists	or	removes	this
entity.	Accordingly,	another	pair	of	annotations,	@PostPersist	and	@PostRemove,	are
invoked	after	these	operations.

For	example,	you	can	put	the	validation	code	in	the	method	transferEmployee()	to	ensure
that	the	transfer	has	been	approved	by	the	employee’s	manager.	Throwing	an	exception
invalidates	the	operation:

@PrePersist
public	void	validateTransfer(){
			if	(!transferApproved()){
					throw	new	TransferException("Manager	didn't	approve	transfer");
		}
}

To	prevent	NullPointerExceptions,	you	can	add	a	@NotNull	constraint	to	the	return	value
of	a	method:

@NotNull	
public	Employee	getEmployee()	{
	...	
}

https://docs.oracle.com/javaee/7/tutorial/bean-validation001.htm#GKAGK

If	you	need	to	validate	a	group	of	fields,	you	can	create	a	cross-parameter	validation	on
the	constructor	or	a	method	level.	For	example,	you	can	create	a	custom	constraint
@EmploymentDates	that	ensures	that	the	employee’s	hire	date	is	older	than	the
resignation	date,	and	none	of	these	dates	are	Saturday,	Sunday,	or	a	company	holiday.
Such	a	custom	validation	can	be	applied	to	the	class	Employee:

@ValidateEmploymentDates	(start="hireDate",	end="resignationDate")		
public	class	Employee{
		Date	hireDate;
		Date	resignationDate;
	...	
}

To	create	a	custom	validation,	you	need	to	declare	a	custom	annotation	and	implement	it.
For	example,	you	could	declare	the	custom	annotation	as	follows:

@Target({	TYPE,	ANNOTATION_TYPE	})	
@Retention(RUNTIME)	
@Constraint(validatedBy	=	{EmploymentDatesValidator.class})	
@Documented	public	
@interface	ValidateEmploymentDates	{	
				String	message()	default	"{end}	should	be	later	than	{start}	
																					and	can't	fall	on	weekends	and	holidays";	
				String	start();	
				String	end();	
				Class[]	groups()	default	{};	
				Class[]	payload()	default	{};	
}

This	annotation	allows	two	parameters:	start	and	end.	According	to	the	Bean	Validation
specification,	it	must	include	three	mandatory	attributes:	message,	groups,	and	payload.
The	message	attribute	is	needed	to	specify	an	error	message	if	the	constraint	is
violated.	An	attribute	groups	can	be	used	to	group	constraints,	and	must	default	to	an
empty	array.	The	payload	attribute	can	be	used	to	assign	custom	payloads	required	for
validation.	It	also	must	default	to	an	empty	array.

The	class	that	implements	this	validation	has	to	implement	the	interface
javax.validation.ConstraintValidator,	that	declares	two	methods:
initialize()	and	isValid().	The	first	method	initializes	the	values	to	be	validated,	and	the
second	implements	the	validation	logic:

public	class	EmploymentDatesValidator	implements
													ConstraintValidator(ValidateEmploymentDates,	Employee){
		private	String	start;	
		private	String	end;	
		public	void	initialize(ValidateEmploymentDates	validateEmpDates){	
				start	=	validateEmpDates.start();	

				end	=	validateEmpDates.end();	
		}	
		
		public	boolean	isValid(Employee	employee,	
										ConstraintValidatorContext	constraintValidatorContext)	{
	
						//	Implement	the	validation	logic	here.	
						//	Return	true	if	valid,	and	false	if	invalid
			}	
}

The	content	of	this	section	should	give	you	an	idea	how	to	validate	entities.	For	more
details	about	the	Bean	Validation	API,	refer	to	the	Oracle	tutorial.

This	lesson	gives	you	a	very	high-level	overview	of	the	Java	Persistence	API.	You	can
find	more	detailed	explanation	of	JPA	in	the	online	Oracle	tutorial.	

https://docs.oracle.com/javaee/7/tutorial/partbeanvalidation.htm#sthref1322
https://docs.oracle.com/javaee/7/tutorial/partpersist.htm#BNBPY

Try	It
The	GlassFish	4	server	includes	the	binaries	of	the	JPA	2.1	provider	EclipseLink,	which	is
an	open	source	mapping	and	persistence	framework.	You’ll	be	using	EclipseLink	to	auto-
generate	the	Java	entity	class	Employee	based	on	the	existing	database	table	EMPLOYEE.
This	serves	as	an	example	of	object-relational	mapping,	when	Java	entities	are	generated
based	on	the	existing	database.	In	this	walkthrough	you	reuse	the	database	named
	Lesson21	with	a	table	Employee	that	was	created	in	Lesson	21.

Lesson	Requirements
You	should	have	installed	Java,	Eclipse,	GlassFish,	and	Derby	DB	,	which	comes	with
GlassFish.	

You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s	web	page
at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in		Lesson32.zip.

Step-by-Step
1.	 This	time	you	create	a	new	type	of	Eclipse	project.	Create	a	new	JPA	project	by

selecting	File	→	New	→	JPA	→	JPA	project.	Name	it	Lesson32.	Select	GlassFish	4	as
a	target	run	time	and	JPA	Configuration	2.1,	as	shown	in	Figure	32-1.

Figure	32-1:	A	fragment	of	the	JPA	project	configuration	window

	

2.	 A	pop-up	suggesting	the	name	of	the	default	output	folder	displays.	Don’t	change
anything	there;	click	Next.

3.	 The	JPA	Facet	window	enables	you	to	select	the	JPA	implementation—the	library	that
implements	JPA	specification.	The	User	Library	box	is	initially		empty.Press	the	little
Preferences	icon	next	to	it	and	then	click	New	in	the	Preferences	window	to	configure
a	new	library.	Call	it	EclipseLink.

http://eclipse.org/eclipselink
http://www.wrox.com/go/javaprog24hr2e

4.	 To	include	full	EclipseLink	implementation,		add	the	following	external	jars	from	the
folder	glassfish4/glassfish/modules	to	your	EclipseLink	user	library:

org.eclipse.persistence.antlr.jar
org.eclipse.persistence.asm.jar
org.eclipse.persistence.core.jar
org.eclipse.persistence.dbws.jar
org.eclipse.persistence.jpa.jar
org.eclipse.persistence.jpa.jpql.jar
org.eclipse.persistence.jpa.modelgen.processor.jar
org.eclipse.persistence.moxy.jar
org.eclipse.persistence.oracle.jar
javax.persistence.jar

5.	 Click	the	Finish	button	and	the	generation	of	the	Eclipse	JPA	project	will	be	finished.
The	structure	of	your	project	should	look	similar	to	Figure	32-2.

Figure	32-2:	Newly	generated	Eclipse	JPA	project	with	EclipseLink	support

6.	 Start	your	Derby	database	server	using	the	startNetworkServer	command,	as	explained
in		creating_a_database_with_derby	in	Lesson	21.	

7.	 Using	the	ij	utility	in	a	separate	command	window,	check	to	see	that	the	database
Lesson21	exists	and	the	table	Employee	(created	in	Lesson	21)	is	still	there.	If	not,	re-
create	it	and	populate	it	with	data.	

8.	 Add	the	file	derby/lib/derbyclient.jar	to	the	build	path	of	your	Eclipse	project	(right-
click	the	project	Lesson32,	select	Properties	→	Java	Build	Path	→	Libraries	→	Add
External	Jars).	This	is	where	the	Derby	DB	implements	the	JDBC	driver.	

9.	 In	the	project’s	Data	Source	Explorer	view,	right-click	Database	Connections	(see
Figure	32-3)	and	create	a	new	Connection	Profile.
	

Figure	32-3:	The	Data	Source	Explorer	View

10.	 In	the	pop-up	window,	configure	your	new	connection	into	the	database	Lesson21	that
you	created	in	Chapter	21Chapter	21.	The	default	user	id	is	user	and	the	password	is
sys.	(See	Figure	32-4.)

Figure	32-4:	Configuring	new	connection	profile

11.	 Click	Test	Connection	to	ensure	the	connection	is	successful.	

12.	 Using	the	view	Data	Source	Explorer,	connect	to	the	database	using	the	newly
configured	profile	and	see	that	the	table	Employee	exists	in	the	APP	schema,	as	shown
in	Figure	32-5.

Figure	32-5:	Verifying	that	the	table	Employee	exists

13.	 You	can	see	the	data	in	Eclipse,	as	shown	in	Figure	32-6;	right-click	the	table
Employee	and	select	Data	→	Sample	Contents.

Figure	32-6:	Sampling	the	data	from	a	table

14.	 JPA	requires	database	tables	to	have	primary	keys,	but	our	table	Employee	didn’t
define	one.	You	need	to	fix	this	by	making	the	column	empno	a	primary	key.	You	can
do	it	from	the	command	line	via	the	ij	utility	(see
working_with_databases_using_jdbc)	by	issuing	the	following	command:

alter	table	APP.Employee	add	primary	key	(empno);

15.	 Right-click	the	name	of	project	Lesson32	and	select	JPA	Tools	→	Generate	Entities
from	Tables.	In	the	pop-up	window,	select	the	connection,	the	schema	APP,	and	the
table		Employee	and	click	Finish	as	shown	in	Figure	32-7.

Figure	32-7:	Generating	an	entity	from	the	existing	table

16.	 Open	the	folder	src	in	your	Eclipse	project,	where	you’ll	find	a	freshly	generated	class
called	Employee	that	looks	as	follows:

package	model;
import	java.io.Serializable;import	javax.persistence.*;
/**	*	The	persistent	class	for	the	EMPLOYEE	database	table.	*	*/
@Entity
@NamedQuery(name="Employee.findAll",
													query="SELECT	e	FROM	Employee	e")
public	class	Employee	implements	Serializable	{	
		private	static	final	long	serialVersionUID	=	1L;
		@Id	private	int	empno;
		private	String	ename;
		@Column(name="JOB_TITLE")	private	String	jobTitle;
		public	Employee()	{	}
		public	int	getEmpno()	{	return	this.empno;	}
		public	void	setEmpno(int	empno)	{	this.empno	=	empno;	}
		public	String	getEname()	{	return	this.ename;	}
		public	void	setEname(String	ename)	{	this.ename	=	ename;	}
		public	String	getJobTitle()	{	return	this.jobTitle;	}
		public	void	setJobTitle(String	jobTitle)	{	
			this.jobTitle	=	jobTitle;	}
}

Finally,	open	the	folder	META-INF,	where	you’ll	find	the	file	persistence.xml:

<?xml	version="1.0"	encoding="UTF-8"?>
<persistence	version="2.1"	

		xmlns="http://xmlns.jcp.org/xml/ns/persistence"	
		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
		xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence	
		http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
				
				<persistence-unit	name="Lesson32">
								<class>model.Employee</class>
				</persistence-unit>
</persistence>

Eclipse	has	generated	the	Java	entity	class	Employee	from	an	existing	database	table.	This
completes	your	assignment.	

The	reverse	workflow	is	also	supported.	Eclipse	can	generate	a	database	table	based	on	the
entity	class	definition.	To	do	this,	you’d	need	to	use	the	option	JPA	Tools	→	Generate
Tables	from	Entities.

TIP			Please	select	the	videos	for	Lesson	32	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	33
Working	with	RESTful	Web	Services
In	the	1990s	the	web	became	widely	used,	and	newly	created	web	applications	were
consumed	by	millions	of	people	around	the	world.	At	the	same	time	lots	of	legacy
applications	were	available	for	use	only	within	corporate	walls.	They	were	written	in	a
variety	of	programming	languages	and	deployed	on	many	types	of	hardware.	There	was	a
need	to	expose	corporate	data	to	wider	audiences,	which	resulted	in	the	creation	of	the
standard	interface	for	consuming	data	over	the	web.

The	difference	between	traditional	JSP/Servlet/JSF	web	applications	and	Web	Services	is
that	the	latter	offer	just	the	data	and	have	no	interest	in	what	the	client’s	user	interface	(UI)
looks	like.	For	example,	an	insurance	company	could	offer	information	about	its	products,
or	a	mutual	fund	could	expose	its	data	as	a	Web	Service	returning	XML	documents.
Clients	didn’t	need	to	know	that	this	insurance	company	was	running	its	applications
using	a	server	from	Oracle	or	that	the	mutual	fund	was	running	on	mainframe	computers
from	IBM.

Java	EE	includes	specification	for	two	different	implementations	of	Web	Services—JAX-
WS	and	JAX-RS,	which	I	discuss	next.	Take	another	look	at	the		sample	architectural
diagram	in	Lesson	25	and	notice	that	I	put	these	APIs	in	two	places—one	in	the
Presentation	tier	and	another	in	the	Data	tier.	Just	think	of	Web	Services	as	a	mechanism
to	expose	useful	data	that	can	be	retrieved	using	HTTP	requests.	

Thousands	of	publicly	available	Web	Services	offer	various	APIs	to	get	the	data	of	some
kind.	You	can	find	plenty	of	useful	Web	Services	at	the	ProgrammableWeb	directory.
Enterprises	use	private	Web	Services	for	their	internal	needs,	too.

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch33.xhtml#figure_25-1
http://www.programmableweb.com/apis/directory

The	Soap	Web	Services
The	first	standard	for	publishing	and	consuming	Web	Services	was	the	XML-based
Simple	Object	Access	Protocol	(SOAP).	Web	clients	would	form	HTTP	requests	and
receive	responses	using	the	SOAP	syntax.

The	clients	needed	to	know	the	directory	of	services	available	from	this	particular
organization,	the	names	of	the	offered	operations	(functions),	and	the	address	of	the
endpoint	to	connect	to	in	order	to	consume	this	service.

The	directory	of	services	could	be	published	with	the	XML-based	Web	Services
Description	Language	(WSDL),	which	is	pretty	verbose.	In	the	Java	EE	world,	SOAP
messages	could	be	processed	by	means	of	JAX-WS	API	without	the	need	for	a	directory
of	services.

Even	though	SOAP	Web	Services	are	verbose,	they	are	still	being	used	as	a	means	of
integration	with	the	software	produced	by	third	parties.	Some	SOAP	services	are	publicly
available.	For	example,	the	web	page	www.webservicex.net	offers	descriptions	and
WSDL	locations	of	such	information	and	services	as	weather	forecasts,	U.S.	address
verification,	currency	converters,	and	stock	quotes.	You	can	integrate	these	into	your
application,	but	providing	a	user	interface	for	them	remains	your	responsibility.

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://www.webservicex.net

The	RESTful	Web	Services
REST	stands	for	representational	state	of	transfer.	A	Web	Service	built	on	REST
principles	is	called	a	RESTful	Web	Service.	As	opposed	to	SOAP,	REST	is	not	a	protocol,
but	a	lighter-than-SOAP	architectural	style	of	building	Web	Services.	Dr.	Roy	Fielding
identified	the	REST	principles	in	his	PhD	dissertation:

Every	resource	on	the	web	has	a	unique	ID.

Use	uniform	interface:	HTTP	Get,	Post,	Put,	Delete,	and	so	on.	

A	resource	can	have	multiple	representations	(text,	JSON,	XML,	PDF,	and	so	on).

Requests	are	stateless;	no	client-specific	information	is	stored	between	requests.

You	can	link	one	resource	to	another.

Resources	should	be	cacheable.

A	REST	application	can	be	layered.

To	put	it	simply,	a	resource	is	anything	that	you	can	access	with	a	hyperlink.	Each
resource	has	a	uniform	resource	identifier	(URI).	For	example,
www.dice.com/yakovsresume	identifies	a	unique	resource	with	Yakov’s	résumé	on	the
server	dice.com.	The	résumé	might	be	stored	on	the	server	as	a	file	in	a	plain	text	format,
or	it	may	be	located	in	the	database	and	has	to	be	retrieved	by	a	JDBC	query,	but	in	any
case	it	can	be	represented	(served)	in	different	formats	like	PDF,	XML,	or	JSON.

REST	resources	have	to	support	standard	stateless	HTTP	requests.	If	with	SOAP	creators
have	to	come	up	with	arbitrary	names	of	the	supported	operations	(for	example,
getCityByZipCode),	with	REST	you	use	the	standard	HTTP	methods	like	Get,	Post,	Put,
and	Delete.		

I’ve	seen	many	web	applications	that	used	only	the	HTTP	methods	GET	for	reading	the
server-side	content	and	POST	for	updating	the	content	or	hiding	HTTP	parameters	inside
the	HTTP	header,	but	REST	is	stricter	about	this.	In	the	RESTful	world	you	should	use
GET	for	retrieving	the	data,	POST	for	creating	new	resources,	PUT	for	updates,
and	DELETE	for	resource	removal.	

Each	of	the	standard	HTTP	methods	has	certain	characteristics:

GET:	Safe,	idempotent,	cacheable																		

PUT:	Idempotent	

DELETE	:	Idempotent

POST	:	None	of	the	above

Safe	means	that	this	method	doesn’t	modify	the	resource.	Cacheable	means	that	the	client
application	can	cache	the	result.	Idempotent	means	that	no	matter	how	many	times	you
call	this	method,	the	result	will	be	the	same.	For	example,	if	you	update	a	person’s	name
from	Smith	to	Johnson,	no	matter	how	many	times	you	try	to	update	this	person’s	resource
with	the	name	Johnson,	the	last	name	will	still	be	Smith.

	On	the	same	note,	no	matter	how	many	times	you	try	to	delete	the	resource	with	the

http://en.wikipedia.org/wiki/Roy_Fielding

unique	ID,	it	results	in	removal	of	this	resource	only	without	harming	any	other	data.

While	the	client	communicates	with	the	server	both	can	send	application	data	to	each
other	in	various	formats.	Let’s	discuss	the	most	popular	format	used	in	web	applications:
JSON.	

Working	with	JSON-Formatted	Data	
JSON	format	is	based	on	the	syntax	of	the	JavaScript	object	literals.	All	web	browsers
know	how	to	parse	JSON	without	the	need	to	use	any	add-ons	or	plug-ins.	Because	the
majority	of	today’s	web	applications	use	JavaScript	on	the	client	side,	no	wonder	that
JSON	became	a	de	facto	standard	way	of	data	formatting	on	the	web,	replacing	XML,
which	was	popular	in	the	1990s.

Here’s	an	example	of	how	an	instance	of	the	Stock	entity	can	be	represented	in	XML:

<stock>
		<country>USA</country>
		<currency>USD</currency>
		<price>43.12</price>
		<symbol>IBM</symbol>
</stock>

In	JSON,	the	same	resource	would	be	represented	like	this:

"stock":	{	
		"country":	"USA",	
		"currency":	"USD",	
		"price":	43.12,	
		"symbol":	"IBM"	
}

Comparing	XML	and	JSON
The	public	community	domain	www.geonames.org	enables	you	to	search	for
geographical	and	statistical	information	about	countries,	cities,	and	so	on.	For	the
most	part,	this	website	uses	RESTful	Web	Services.	To	compare	how	the	same	data	is
represented	in	XML	and	in	JSON,	visit	this	web	page:	www.geonames.org/export/ws-
overview.html.

Development	of	so-called	Single-Page	Applications	(SPA)	is	a	trend	in	today’s	HTML5
world.	SPA	refers	to	the	applications	that	don’t	refresh	the	entire	web	page	but	rather
update	the	portions	of	it	retrieving	the	fresh	data	by	making	AJAX	requests.	Google’s
GMail	client	is	a	good	example	of	SPA;	when	a	new	e-mail	arrives,	just	one	new	line	is
added	to	a	single	web	page	that	shows	the	content	in	the	inbox.		The	server	sends	only	the
preformatted	data,	which	the	web	client	positions	on	the	screen	using	HTML,	JavaScript,
and	CSS.	No	HTML	markup	is	generated	by	the	server	as	it’s	done	by	Java	Servlets,	JSP,
or	JSF.	

http://en.wikipedia.org/wiki/Ajax_(programming)

REST	or	Websockets
Because	RESTful	Web	Services	send	only	the	data	(without	HTML	markup)	in	client-
server	communications,	they	are	more	efficient	in	terms	of	the	network	throughput
compared	to	servlets,	JSP,	or	JSF.	But	RESTful	Web	Services	are	based	on	HTTP
protocol,	which	adds	an	overhead	by	attaching	HTTP	headers	to	the	data	sent	by	both
the	client	and	the	server.	If	you	need	to	substantially	increase	the	data	throughput,	by
removing	these	heavy	headers	consider	using	websockets,	explained	in	Lesson	28.
For	real-time	applications	that	need	to	push	the	server-side	data	to	a	web	client,
switching	from	REST	to	websockets	substantially	increases	the	number	of	messages
sent	per	second.	With	websockets,	the	application	responsiveness	is	also	increased
because	there	is	no	need	to	re-establish	the	HTTP	connection	for	each	request,	and
there	is	almost	no	overhead	in	the	data	payload.	

SPA	needs	to	use	some	data	format	between	the	client	and	the	server.	Because	of	JSON
popularity,	Java	EE	specification	standardized	its	processing	in	JSR	353.	Usually	Java
application	servers	implement	the	JSON	processing	specification	in	a	separate	jar,	so	you
can	use	it	with	standalone	Java	SE	applications,	too.	For	example,	GlassFish	comes	with	a
file,	glassfish4/glassfish/modules/javax.json.jar,	which	you	can	add	to	any	standalone
application.	

The	package	javax.json	includes	classes		supporting	two	ways	of	producing	JSON	from
Java:

Object	Model	API:	With	this	API	your	Java	code	should	first	create	an	object	tree
representing	JSON	data	in	memory,	and	then	send	it	to	an	I/O	stream.

Streaming	API:	This	is	an	event-driven		API	that	dispatches	events	when	the
beginning	or	end	of	the	JSON	object	is	found,	or	when	it	finds	a	key	or	a	value	in	the
data	load.	The	streaming	API	generates	the	output	into	a	given	stream	(for	example,	a
file	or	a	network	connection).		

Although	you	can	create	a	Java	client	application	that	parses	or	generates	JSON,	typically
JSON	is	produced	or	consumed	by	JavaScript	in	web	browsers.	This	lesson	includes	the
examples	of	parsing	JSON	in	server-side	Java,	assuming	that	the	server	receives	or	builds
a	JSON-formatted	string.	For	complete	coverage	of	JSON	on	both	the	client	and	the
server,	see	JSON	Processing	Tutorial	by	Oracle.

Reading	JSON	with	the	Streaming	API
The	following	code	snippet	shows	how	reading	JSON-formatted	data	with	the	streaming
API	can	be	structured.	The	parser	dispatches	the	appropriate	event	as	it	parses	the	JSON
string,	and	you	should	write	the	code	to	process	events	you’re	interested	in:	

JsonParser	parser	=	Json.createParser(new	StringReader(jsonData));
while	(parser.hasNext())	{
				JsonParser.Event	event	=	parser.next();
				switch(event)	{

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
http://docs.oracle.com/javaee/7/tutorial/jsonp.htm

								case	START_ARRAY:
								case	END_ARRAY:
								case	START_OBJECT:
								case	END_OBJECT:
								case	VALUE_FALSE:
								case	VALUE_NULL:
								case	VALUE_TRUE:
												System.out.println(event.toString());
												break;
								case	KEY_NAME:
												System.out.print(event.toString()	+	"	"	+
																				parser.getString()	+	"	-	");
												break;
								case	VALUE_STRING:
								case	VALUE_NUMBER:
												System.out.println(event.toString()	+	"	"	+
																				parser.getInt());
												break;
				}
}

In	this	example,	the	code	handles	only	the	parser	events:	VALUE_TRUEa	(a	JSON
element	has	a	value	of	true),	KEY_NAME	(a	name	in	a	key/value	pair	is	found),	and
VALUE_NUMBER	(a	numeric	value	is	found.)	

Writing	JSON	with	the	Streaming	API
The	following	class—JavaToJSONStreaming—creates	an	instance	of	a	Product	class	,
turns	it	into	a	JSON-formatted	string,	and	saves	it	in	a	file
named	product_from_stream.json:

public	class	JavaToJSONStreaming	{
	public	static	void	main(String[]	args)	{
			Product	prd1	=	new	Product(777,	"Gucci	Handbag",	1000.00);
			try	(OutputStream	fos	=	
																new	FileOutputStream("product_from_stream.json");
								JsonGenerator	jsonGenerator	=	Json.createGenerator(fos);)	{
							jsonGenerator.writeStartObject();	
							jsonGenerator.write("id",	prd1.id);
							jsonGenerator.write("description",	prd1.description);
							jsonGenerator.write("price",	prd1.price);
						//	To	create	nested	JSON	objects	enclose	each	of	them
						//	into	a	pair	of	writeStartObject()	and	writeEnd()
							jsonGenerator.writeEnd();
			}	catch	(IOException	ioe)	{
							ioe.printStackTrace();
			}

http://docs.oracle.com/javaee/7/api/javax/json/stream/JsonParser.Event.html

	}
}

The	Json	object	creates	a	generator	JsonGenerator	that	writes	JSON	data	to	an	output
source	in	a	streaming	way.	In	this	example,	the	output	source	is	a	file	represented	by	the
variable	fos.	

I	omitted	the	declaration	of	the	Product	class	for	brevity,	but	both	classes	Product
and	JavaToJSONStreaming	come	with	the	book’s	code	samples.	If	you	run	this	program,	it
creates	a	file	with	the	following	content:

{"id":777,"description":"Gucci	Handbag","price":1000.0}

Keep	in	mind	that	to	make	this	program	work	as	a	standalone	application	you	need	to
include	the	jar	that	implements	the	JSON	Processing	API	(also	known	as	JSON-P	API)	in
the	CLASSPATH	of	your	application.	If	this	program	will	run	on	the	server	side,	each
Java	EE	server	already	includes	such	a	jar,	and	no	modification	of	the	CLASSPATH	is
needed.

Writing	JSON	with	the	Object	Model	API
As	opposed	to	streaming,	the	Object	Model	API	requires	you	to	build	the	entire	JSON
object	in	memory,	and	only	after	to	write	the	whole	thing	to	the	destination	of	your	choice.
To	illustrate	this,	I	re-write	the	class	JavaToJSONStreaming	from	the	previous	section:

public	class	JavaToJSONObject	{
			public	static	void	main(String[]	args)	{
					Product	prd1	=	new	Product(777,	"Chanel	Handbag",	1000.00);
					try	(OutputStream	fos	=	
																	new	FileOutputStream("product_from_object.json");
									JsonWriter	jsonWriter	=	Json.createWriter(fos);)	{
									JsonObjectBuilder	prdBuilder	=	Json.createObjectBuilder();
									prdBuilder.add("id",	prd1.id)
																			.add("description",	prd1.description)
																			.add("price",	prd1.price);
									JsonObject	prdJsonObject	=	prdBuilder.build();
									System.out.println("prdJsonObject:	"	+	prdJsonObject);
									jsonWriter.writeObject(prdJsonObject);
									//	Read	and	parse	the	newly	created	file	back
									JsonReader	jsonReader	=	
									Json.createReader(new	FileReader("product_from_object.json"));
									JsonObject	jsonObject	=	jsonReader.readObject();
									System.out.println(jsonObject);
					}	catch	(IOException	e)	{
									e.printStackTrace();
					}
			}
}

JsonObjectBuilder	initializes	the	model	and	allows	you	to	add	key/value	pairs	to	represent
the	JSON	object.	The	class	Json	has	methods	to	create	the	builder	object,	which	includes	a
method		build()	to	create	a	JSON-formatted	string.	The	JsonWriter	writes	the	JSON	object
to	a	file,	and	JsonReader	reads	and	parses	the	newly	created	file.	If	you	don’t	need	to	write
a	JsonObject	to	a	file	you	can	convert	it	to	a	String	by	calling	prdJsonObject.toString()	.
Then,	for	example,	you	can	send	this	String	to	a	web	client.

The	RESTful	Stock	Server
The	Java	EE	specification		includes	the	JAX-RS	API	for	creating	the	server-	and	client-
side	programs	for	RESTful	Web	Services.	All	Java	EE-compliant	application	servers
implement	JAX-RS.	I’ll	continue	using	the	GlassFish	server,	which	comes	with	the	JAX-
RS	implementation	known	as	Jersey,	and	you	won’t	need	to	download	any	additional
libraries	to	run	the	sample	code	from	this	lesson.		Let’s	see	how	to	implement	RESTful
Web	Services	by	redesigning	a	familiar	stock	server	example.	The	representation	of	the
resources	(in	this	case,	stocks)	can	vary	and	is	determined	by	media	type.

Development	of	a	RESTful	application	with	JAX-RS	is	pretty	straightforward:

1.	 Create	a	small	Java	class	that	extends	javax.ws.rs.core.Application,	which	registers
your	application	with	a	Java	EE	server.	

2.	 Create	and	properly	annotate	a	REST	endpoint,	which	is	a	POJO.

3.	 Define	a	Java	bean	that	will	be	converted	into	XML,	JSON,	or	some	other	format	for
communicating	with	the	client’s	application.	

4.	 Create	any	number	of	helper	classes	that	implement	application	logic.

The	following	sections	show	you	how	this	can	be	done.				

Creating	the	Application
The	same	Java	EE	server	may	host	multiple	RESTful	Web	Services.	To	help	the	server
with	routing	the	client’s	requests	to	the	proper	application,	each	application	should	be
mapped	to	a	specific	URL	pattern.	In	older	versions	of	Java	EE	it	could	be	done	only	by
adding	a	configuration	to	the	file	called	web.xml.		This	is	not	required	any	longer.	Just
create	a	class	that	extends	javax.ws.rs.core.Application,	and	mark	it	with
an	@ApplicationPath	annotation	containing	a	URL	fragment	identifying	your
application.	This	is	how	your	application	class	StockQuoteApplication	will	look:

package	lesson33;
import	javax.ws.rs.ApplicationPath;
import	javax.ws.rs.core.Application;
@ApplicationPath("resources")
public	class	StockQuoteApplication	extends	Application	{
}

This	is	all	that	the	Java	EE	server	needs	to	redirect	to	your	application	all	requests
containing	the	pattern	resources	in	the	URL.	This	is	how	the	routing	begins,	but	any
application	can	have	multiple	endpoints.	To	identify	the	right	one	you	need	to	use	the
@Path	annotation,	which	you	see	in	the	section		”Creating	the	Endpoint	StockService.”

Creating	the	Java	Bean	Stock
The	client	and	the	RESTful	server	needs	to	agree	on	the	data	format	for	communications
—for	example,	JSON,	XML,	and	so	on.		Although	JAX-RS	is	a	specification	for
implementing	Java-based	RESTful	Web	Services,	JAXB	is	a	specification	for	converting

data	to/from	XML	format.	For	example,	annotating	a	Java	bean
with	@XmlRootElement	can	bring	into	action	the	JAXB	framework	for	processing	XML,
which	turns	a	Java	bean	into	an	XML	or	JSON	document	before	sending	it	to	the	web
client	that	has	no	knowledge	of	the	Java	object	format.	Listing	33-1	shows	a	Java	bean
called	Stock	annotated	with	@XmlRootElement.

Listing	33-1:	A	Java	bean	Stock

import	javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement
public	class	Stock	{
				private	String	symbol;
				private	Double	price;
				private	String	currency;
				private	String	country;
				public	Stock()	{
				}
				public	Stock(String	symbol,Double	price,	String	currency,	
																																													String	country)	{
								this.symbol	=	symbol;
								this.price	=	price;
								this.currency	=	currency;
								this.country	=	country;
				}
				public	String	getSymbol()	{
								return	symbol;
				}
				public	void	setSymbol(String	symbol)	{
								this.symbol	=	symbol;
				}
				public	Double	getPrice()	{
								return	price;
				}
				public	void	setPrice(Double	price)	{
								this.price	=	price;
				}
				public	String	getCurrency()	{
								return	currency;
				}
				public	void	setCurrency(String	currency)	{
								this.currency	=	currency;
				}
				public	String	getCountry()	{
								return	country;
				}
				public	void	setCountry(String	country)	{
								this.country	=	country;
				}
}

The	server-side	Java	code	can	retrieve	the	data	about	a	particular	stock	and	create	an
instance	of	the	Stock	class,	which	has	to	be	converted	into	the	requested	data	format	and
sent	to	the	web	client.	In	the	JSON	section	of	this	lesson	I	give	examples	of	how	a	Java
class	can	be	converted	into	a	JSON	string.	

Creating	the	Endpoint	StockService
The	endpoint	class	is	an	entry	door	to	a	particular	Web	Service.	Its	role	is	to	find	and
invoke	the	Java	method	with	a	signature	that	matches	the	client’s	request.	For	example,	if
the	endpoint	received	an	HTTP	GET	request	with	one	parameter,	the	endpoint	class	should
have	a	method	that	takes	one	argument	and	is	marked	with	an	@GET	annotation.

You	need	to	mark	an	endpoint	class	with	an	@Path	annotation,	so	the	server		redirects
only	specific	client	requests	to	this	class.	You	also	need	to	annotate	the	methods	of	this
class	to	specify	which	method	should	be	handling	GET	requests,	which	-	PUT,	et	al.

Here	is	a	list	of	the	most	popular	annotations	that	are	used	with	REST	endpoints:

@Path:	A	root	resource	class	(POJO).	This	annotation	specifies	the	URL	pattern	that
this	class	handles.	The	endpoint	class	has	at	least	one	method	annotated	with	@Path.		

@GET:	The	class	method	that	should	handle	HTTP	GET	requests.	You	can	have
multiple	methods	annotated	with	@GET,	and	each	can	produce	the	result	in	a	different
MIME	type.

@POST:	The	class	method	that	handles	HTTP	Post	requests.

@PUT:	The	class	method	that	handles	HTTP	Put	requests.

@DELETE:	The	class	method	that	handles	HTTP	Delete	requests.

@Produces:	Specifies	the	MIME	type(s)	for	response;	for	example,"application/json".	

@Consumes:	Specifies	the	MIME	type(s)	that	a	resource	can	consume	when	sent	by
the	client.	

@PathParam:	Injects	the	URI	fragment	into	a	method	parameter	(for	example,	IBM).

@QueryParam:	Injects	the	parameter	from	the	URL	into	a	method	parameter	(or
example,	stock=IBM).	It	is	used	with	HTTP	GET	requests.

@FormParam:	Injects	the	value	from	an	input	field	of	an	HTML	form	into	the
provided	Java	variable	or	a	method	argument.

The	following	class	StockService	is	an	example	of	a	RESTful	endpoint	that	may	return	the
stock	that’s	identified	by	the	URI
like	http://localhost:8080/Lesson33/resources/stock/IBM.	The	class	StockService	is
sprinkled	with	annotations.	First	comes	the	annotation	@Path,	which	can	be	used	with
either	a	class	or	a	method.	JAX-RS	maps	clients’	requests	to	class	methods.	If	more	than
one	annotation	@Path	are	used	in	a	class,	their	values	are	going	to	be	compared	with	the
URL	fragments	for	finding	the	matching	method.

http://www.iana.org/assignments/media-types/media-types.xhtml
http://localhost:8080/Lesson33/resources/stock/IBM

Listing	33-2:	REST	endpoint	StockService

@Path("/stock")
public	class	StockService	{
				
				@Produces({"application/xml","application/json"})
				@Path("{symbol}")
				@GET
				public	Stock	getStock(@PathParam("symbol")	String	symbol)	{
								Stock	stock	=	StockServiceHelper.getStock(symbol);
								if	(stock	==	null)	{
												return	new	Stock("NOT	FOUND",	0.0,	"--",	"--");
								}
								return	stock;
				}
				@POST
				@Consumes("application/x-www-form-urlencoded")
				public	Response	addStock(
																					@FormParam("symbol")	String	symbol,
																					@FormParam("currency")	String	currency,
																					@FormParam("price")	String	price,
																					@FormParam("country")	String	country)	{
								if	(StockServiceHelper.getStock(symbol)	!=	null)
												return	Response.status(Response.Status.BAD_REQUEST)
																				.entity("Stock	"	+	symbol	+	"	already	exists")
																				.type("text/plain").build();
								double	priceToUse;
								try	{
												priceToUse	=	new	Double(price);
								}
								catch	(NumberFormatException	e)	{
												priceToUse	=	0.0;
								}
								StockServiceHelper.addStock(new	Stock(symbol,	priceToUse,
																																														currency,	country));
								return	Response.ok().build();
				}
}

One	of	the	methods	in	StockService	is	marked	with	an	@GET	annotation	and	the	other
one	with	@POST.	One	of	these	methods	is	automatically	invoked	to	process	the
corresponding	HTTP	requests.	

Let’s	see	how	our	Java	EE	server	routes	the	HTTP	GET	request	to	get	the	resource—the
data	about	the	IBM’s	stock—represented	by	the	following	URI:

http://localhost:8080/Lesson33/resources/stock/IBM.	First,	the	Java	EE	server	parses	the
URI	and	tries	to	find	the	Java	class	that	matches	the	value	from	the	@ApplicationPath,
which	is	resources	in	our	case	(see	the	section	Creating	the	Application).	Then	the
RESTFul	server	looks	for	the	class	annotated	with	@Path("/stock")	and	routes	this	request
to	the	class	StockService.

Because	the	URI	doesn’t	end	with	/stock,	the	matching	process	continues.	Our	URI	has	a
stock	symbol	after	the	word	stock,	(/IBM),	and	the	method-level	annotation	@Path("
{symbol}")	helps	the	server	to	find	(and	invoke)	the	matching	method:	getStock().

The	annotation	@PathParam("symbol")	indicates	that	the	server	should	inject	the	value	of
the	stock	symbol	included	in	the	URI	into	the	symb	argument	of	the	method	getStock().
Figure	33-1	shows	the	annotations	that	were	involved	in	the	parsing	process	of	our	URI.

Figure	33-1:	Parsing	the	URI	with	annotations

The	MIME	type	specified	in	the	annotation	@Produces	means	that	the
method	getStock()	can	produce	the	data	either	in	XML	or	in	JSON	format.	Software
developers	responsible	for	creating	the	client	part	need	to	make	sure	that	the	header	of	the
client’s	HTTP	request	includes	the	required	MIME	format	in	its		Accept	header.	If	no
methods	that	produce	the	content	in	the	requested	MIME	type	are	found,	the	client	gets
the	HTTP	error	406,	which	you	see	in	action	in	the	“Try	It”	section.	One	HTTP	client	may
request	the	stock	data	in	JSON	and	another	requests	it	in	the	XML	format,	but	both	of
them	are	served	by	the	same	method	getStock().

The	addStock()	method	is	marked	with	the	@Consumes	annotation	to	consume	the	HTML
form’s	data	sent	by	the	client.		The	method	addStock()		is	called	when	the	HTTP	POST
request	is	received.	If	the	REST	endpoint	is	unable	to	consume	the	requested	MIME	type,
the	client	gets	HTTP	error	415.	

The	@FormParam	annotation	injects	the	values	entered	in	the	HTML	form	into	the
method	addStock().	If	the	web	client	wouldn’t	be	using	an	HTML	form	but	was	sending
an	HTTP	GET	request	with	parameters,	you’d	have	to	use	the
annotation	@QueryParam	instead	of	@FormParam.

The	stock	MSFT	is	considered	another	resource	and	can	be	represented	by	the
URI	http://localhost:8080/Lesson33/resources/stock/MSFT.	So	your
StockService	endpoint	can	provide	the	data	about	different	stocks	as	long	as	you	know
their	URIs.

The	class	StockService	uses	the	helper	class	StockServiceHelper,	shown
in	stockservicehelper_class.	For	simplicity,	this	class	has	two	hard-coded	stocks,	but	in	the
real	world	it	would	be	connected	to	one	of	the	financial	data	feeds.	This	class	uses	static
initializer,	which	calls	the	method	generateStocks()	on	the	first	reference	to	StockService.

http://localhost:8080/Lesson33/resources/stock/IBM
http://localhost:8080/Lesson33/resources/stock/MSFT

Listing	33-3:	StockServiceHelper	class

public	class	StockServiceHelper	{
				public	static	void	addStock(Stock	stock)	{
								stocks.put(stock.getSymbol(),	stock);
				}
				public	static	void	removeStock(String	symbol)	{
								stocks.remove(symbol);
				}
				public	static	Stock	getStock(String	symbol)	{
								return	stocks.get(symbol);
				}
				private	static	Map<String,	Stock>	stocks	=	new	HashMap<>();
				static	{
								generateStocks();
				}
				private	static	void	generateStocks()	{
								addStock(new	Stock("IBM",	43.12,	"USD",	"USA"));
								addStock(new	Stock("AAPL",	120.0,	"USD",	"USA"));
					}
}

Creating	RESTFful	Clients
A	client	application	that	communicates	with	the	server-side	endpoint	can	be	written	in	any
programming	language	that	supports	HTTP	requests.	Typically,	the	REST	clients	are
HTML	applications	that	use	JavaScript	functions	that	issue	such	requests.	Because	this
book	is	about	Java	programming,	I	do	not	cover	how	to	do	this	in	the	JavaScript,	but	in	the
“Try	It”	section,	I	show	you	how	to	use	a	tool	called	Postman	that	can	be	used	to	test
RESTful	services	from	the	Chrome	web	browser.

Because	RESTful	applications	can	be	layered,	the	following	sample	scenario	is	possible:
An	HTML	client	requests	a	resource	implemented	in	Java,	which	in	turn	becomes	a	client
for	another	resource	implemented	on	another,	say,	.NET	server.	This	is	perfectly	legal
because	both	technologies	support	JSON	as	a	data	exchange	format.					

If	you	need	to	write	RESTful	clients	in	Java,	use	the	JSON	API	discussed	earlier	in	the
section	“Working	with	JSON-Formatted	Data.”

Contexts	and	Dependency	Injection
When	your	Java	code	runs	in	a	Java	EE	container,	it	may	need	to	use	instances	of	some
objects.	Lesson	29	familiarized	you	with	injecting	JNDI	resources,	but	you	can	inject
instances	of	your	application	objects	as	well.	The	Java	EE	specification	includes	JSR	346,
which	defines	Contexts	and	Dependency	Injection	(CDI).	

For	example,	the	StockService	class	might	have	needed	a	modeling	engine	that	would
apply	some	technical	analysis	algorithms	to	give	recommendations	on	buying	or	selling	a
stock.	As	an	example,	you	can	write	a	class	TechAnalysisEngine	that	implements	the
Recommendations	interface,	and	with	CDI	you	don’t	need	to	create	an	instance	of	this
class	yourself;	you	could	ask	the	container	to	inject	the	instance	of	this	class	into	your
code	using	the	CDI	annotation	@Inject,	which	could	be	placed	before	the	field,
constructor,	or	a	method.	The	following	example	injects	the	method	argument:

@Path("/stock")	
public	class	StockService	{
										
		Recommendations	theEngine;
				@Inject
				public	void	setRecommendationsEngine(Recommendations	theEngine){
								this.theEngine	=	theEngine;
				}
		@Produces({"application/xml","application/json"})
		@Path("{symbol}")
		@GET	public	Stock	getStock(@PathParam("symbol")	String	symbol)	{
						Stock	stock	=	StockServiceHelper.getStock(symbol);
						String	tradeRecommendations	=	
																														theEngine.getRecommendations(stock);
		}
						
		...
}									

CDI	bean	is	a	POJO	that	can	be	managed	by	Java	EE	container.	If	you	are	planning	to	use
CDI,	you	need	to	add	an	empty	file	bean.xml,	which	signals	the	Java	EE	container	to
discover	CDI	beans	in	the	application.	To	continue	the	example	with	the	technical	analysis
engine,	you	could	define	it	as	follows:

public	interface	Recommendations	{
			public	String	getRecommendations	(Stock	stock);	
}

Accordingly	the	CDI	bean	could	be	declared	like	this:

public	class	TechAnalysisEngine	implements	Recommendations{
			

				public	TechAnalysisEngine(){
				}
				public	String	getRecommendations(Stock	stock){
					String	recommendations;	
					//	Implement	the	technical	analysis	logic	here	
					return	recommendations;	
				}
}

A	Use	Case	for	a	Singleton
You	don’t	want	Java	EE	container	to	create	multiple	instances	of	the	class
TechAnalysisEngine.	The	same	instance	can	serve	multiple	client	requests.	Just
annotate	the	class	TechAnalysisEngine	as	@Singleton,	and	CDI	injects	it	only	once.
To	ensure	that	you	use	CDI,	import	the	javax.inject.Singleton	implementation	of	the
annotation	@Singleton,	which	is	not	the	same	as	creating	a	singleton
EJB	implemented	in	javax.ejb.Singleton.	

But	what	if	more	than	one	class	implements	the	Recommendation	interface?	How	will	the
container	know	which	implementation	to	inject?	To	avoid	ambiguity	you	should	use
custom	qualifier	annotations.	For	example,	you	can	declare	an	annotation	@Fundamental
like	this:

@Qualifier
@Retention(RUNTIME)
@Target({TYPE,	METHOD,	FIELD,	PARAMETER})
public	@interface	Fundamental	{}

Now	you	can	annotate	with	@Fundamental	another	class	that	also	implements	the
Recommendations	interface:

@Fundamental
public	class	FundamentalAnalysisEngine	implements	Recommendations{
		public	FundamentalAnalysisEngine(){
		}
		public	String	getRecommendations(Stock	stock){
				String	recommendations;
				//	Implement	the	fundamental	analysis	logic	here
				return	recommendations;
		}
}

The	line	that	injects	the	instance	of	the	FundamentalAnalysisEngine	class	into
StockService	looks	like	this:

	@Inject	@Fundamental

	public	void	setRecommendationsEngine(Recommendations	theEngine)	{
				...
	}

The	ambiguity	is	resolved!	

Because	you	are	not	creating	the	instances	of	the	objects	manually,	you	need	to	have	a
way	to	specify	how	long	the	injected	instance	will	live.		This	is	done	using	CDI	scope
annotations:	@RequestScoped,	@SessionScoped,		@ApplicationScoped,	@Dependent,
and	@ConversationScoped.	You	can	find	more	details	about	these	annotations	in	the	CDI
chapter	of	the	Java	EE	Tutorial.

Java	EE	Samples
This	lesson	concludes	the	coverage	of	selected	Java	EE	7	technologies.	Refer	to	the
GitHub	repository	https://github.com/javaee-samples/javaee7-samples	that	contains
lots	of	Java	EE	7	code	samples	that	illustrate	the	usage	of	all	Java	EE	7	JSRs.	

https://docs.oracle.com/javaee/7/tutorial/partcdi.htm#GJBNR
https://github.com/javaee-samples/javaee7-samples

Try	It
Your	assignment	is	to	make	the	code	related	to	the	stock	quote	examples	work.	You	need
to	create	an	Eclipse	project	and	copy	the	code	samples	from	the	book’s	web	page
at	working_with_restful_web_services	there.		Then	you	need	to	deploy	this	project	in
GlassFish	and	run	it.

Lesson	Requirements
You	should	have	Java	and	GlassFish	v4	server	installed.

Note

You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s	web	page	at
www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the
working_with_restful_web_services	folder	in	the	download.

Hints
Eclipse	IDE	for	Java	EE	Developers	has	a	template	for	the	creation	of	REST	resources.
After	the	Eclipse	project	is	created,	right-click	the	project	name,	select	New,	and	then
select	RESTful	Web	Service	from	Pattern	(Java	EE	7).	Eclipse	creates	for	you	an
annotated	class	similar	to	the	one	from	rest_resource_stockresource,	which	you	can	edit	to
meet	your	application’s	requirements.

Step-by-Step
1.	 Create	a	dynamic	web	project	called	Lesson33	in	the	Java	EE	perspective	of	Eclipse.

2.	 Download	the	source	files	for	Lesson	33	from	the
working_with_restful_web_services	folder.

3.	 Create	packages	called	lesson33	and	lesson33.service.

4.	 Copy	the	class	StockQuoteApplication	to	the	folder	lesson33.

5.	 Copy	the	classes	Stock,	StockService,	and	StockServiceHelper	from	the	downloaded
code	samples	into	thе	folder	lesson33/service.

6.	 Deploy	the	project	Lesson33	under	GlassFish.	Right-click	the	server	name,	select	Add
and	Remove,	and	in	the	pop-up	window	move	the	entry	Lesson33	from	the	left	box	to
the	right	one	by	clicking	Add.	Then	click	Finish.	The	RESTFul	service	is	deployed	on
the	server.

7.	 For	the	client,	use	Google	Chrome	Web	browser	with	the	Postman	REST	Client	add-
on.	Open	Chrome	browser	and	launch	the	Postman	from	http://bit.ly/18JpMha.	

8.	 In	the	URL	field	on	top	enter	the	following
URL:	http://localhost:8080/Lesson33/resources/IBM.

9.	 Click	the	Send	button,	and	your	RESTful	service	responds	with	the	JSON-formatted
data.	Your	Postman	window	should	look	similar	to	Figure	33-2.		

https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch33.xhtml#working_with_restful_web_services
http://www.wrox.com/go/javaprog24hr2e
https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch33.xhtml#working_with_restful_web_services
http://bit.ly/18JpMha
http://localhost:8080/Lesson33/resources/IBM

Figure	33-2:	Getting	the	stock/IBM	resource	using	Postman	REST	Client

The	GlassFish	Server	found	the	REST	endpoint	StockService	and	invoked	the
method	getResource("IBM")	on	it.

10.	 Remove	IBM	from	the	URL,	so	it	looks	like
this:	http://localhost:8080/Lesson33/resources.	Press	Send,	and	you	get	the	error	405
because	the	endpoint	StockService	from	rest_resource_stockresource	has	no
@GET	annotated	methods	that	don’t	require	arguments.		

11.	 To	test	the	Add	New	Stock	functionality,	select	POST	in	the	method	drop-down	menu,
select	the		x-www-form-urlencoded	tab,	click	the	URL	Params	button,	and	fill	out	the
parameters	required	by	the	method	addStock()	of	StockService	from
rest_resource_stockresource.	After	you	click	the	Send	button,	your	Postman	window
should	look	like	Figure	33-3.
	

http://localhost:8080/Lesson33/resources
https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch33.xhtml#rest_resource_stockresource

Figure	33-3:	Added	new	stock	using	the	POST	request

The	RESTful	endpoint	properly	matched	the	@POST	annotated	method	addStock()
with	four	arguments.	To	ensure	that	the	information	about	MSFT	has	been	added	on
the	server	side,	issue	a	GET	request:	http://localhost:8080/Lesson33/resources/MSFT.

TIP			Please	select	the	videos	for	Lesson	33	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://localhost:8080/Lesson33/resources/MSFT
http://www.wrox.com/go/javaprog24hr2e

Lesson	34
Java	Logging	API
Every	Java	program	performs	various	functions	during	its	life	cycle—for	example,	it
opens	files,	connects	to	databases	or	remote	services,	or	it	performs	some	calculations.
Often	software	developers	need	to	print	application-specific	messages	from	various	parts
of	the	program.	Sometimes	developers	need	to	confirm	that	a	program	visited	a	certain
method	or	print	the	results	of	intermediate	calculations.

Proper	reporting	of	runtime	errors	is	even	more	important.	You	may	want	to	print	not	only
the	error	messages,	but	also	the	messages	that	inform	about	the	control	flow	of	the
program	(for	example,	an	order	has	been	placed	or	cancelled).	If	your	Java	application
server	won’t	start,	the	first	place	to	check	is	its	log	files,	which	may	have	a	description	of
an	issue,	or	at	least	you	can	see	at	which	stage	the	launch	process	stopped	working.	

Until	now,	in	most	of	the	code	samples	in	this	book	(except	graphical	user	interface
applications)	I’ve	used	the	tried	and	true	method		System.out.println(),		but	this	approach
has	several	issues:

1.	It’s	not	easy	to	“turn	off”	multiple	informational	println()	calls	when	the	application
goes	into	quality	assurance	(QA)	or	production.	You	need	to	find	and	comment	out	these
statements	that	are	sprinkled	through	your	application	code.	And	if	a	bug	is	reported	in	the
production	application,	you	need	to	uncomment	several	println()	statements	and
potentially	add	more	of	them.

2.	There	is	no	trace	of	what’s	happened	in	the	application	after	it’s	complete.

3.	If	one	of	many	users	of	a	server-side	Java	application	calls	the	support	team	about	an
issue,	the	support	personnel	needs	to	be	able	to	quickly	identify	and	analyze	the	messages
related	to	this	particular	user’s	interaction—when	the	issue	happened	and	in	which
software	module	it	occurred.

Replacing	println()	statements	with	a	Java	Logging	application	programming	interface
(API)	or	a	third-party	logging	framework	addresses	these	issues,	and	you	should	use	in	all
applications	both	on	the	server	and	the	client	sides.	Logging	is	used	both	in	development
and	production.	The	logging	messages	can	be	directed	to	the	end	users	as	well.	

There	are	many	Java	logging	frameworks.	But	the	majority	of	this	lesson	is	dedicated	to
the	Java	Logging	API,	which	is	a	part	of	Java	SE.

http://en.wikipedia.org/wiki/Java_logging_framework

Java	Logging	API
The	Java	Logging	API	is	implemented	in	the	package	java.util.logging.	The	two	main
classes	of	the	logging	API	are	Logger	and	Handle.	An	application	obtains	an	instance	of
the	Logger	object,	which	creates	an	instance	of	the	LogRecord	and	gives	it	to	a
Handler	object	for	publishing.	The	Java	Logging	API	includes	several	types	of	handlers,
and	the	default	one	is	ConsoleHandler	that	publishes	messages	on	the	system	console.		

For	a	simple	application,	you	can	create	one	global	logger	that	takes	care	of	all	message
logging.	In	more	complex	applications,	you	can	create	a	hierarchy	of	loggers	where	each
package	or	class	has	its	own	logger.		

The	Java	Logging	API	enables	you	to	group	messages	by	different	levels.	For	example,
you	can	assign	the	INFO	level	to	the	messages	that	do	not	report	errors,	and	you	can
assign	serious	error	messages	the	SEVERE	level.	These	are	the	logging	levels	defined	in
the	class	Level:

1.	 SEVERE			

2.	 WARNING

3.	 INFO

4.	 CONFIG

5.	 FINE

6.	 FINER

7.	 FINEST

The	order	of	these	levels	is	important	as	these	levels	represent	ordered	integers.	SEVERE
is	the	highest	number	and	FINEST	is	the	lowest.	The	default	logging	level	is	INFO,	which
means	that	all	log	messages	marked	as	INFO,	and	the	higher	levels	(WARNING	and
SEVERE)	will	be	logged.	If	you	change	the	default	logging	level	to	WARNING,	then	only
the	messages	of	the	levels	WARNING	and	SEVERE	are	logged.

The	levels	FINE,	FINER,	and	FINEST	are	used	to	create	log	records	with	more
descriptive	messages.	To	turn	on	all	logging	levels,	set	the	level	to	Level.ALL,	and	to	turn
the	logging	off	set	the	level	to	Level.OFF.	For	more	details	of	the	logging	level	refer	to
Oracle	javadoc	for	the	class	Level.		Regardless	of	what	level	you	decide	to	use,	make	sure
that	the	log	messages	are	informative.

You	can	set	the	log	level	on	both	the	Logger	and	the	Handler	objects.	You	do	this
programmatically	or	in	a	configuration	file.	The	latter	allows	you	to	change	the	default
level	during	the	run	time	for	a	deployed	application.		One	logger	object	can	have	several
handlers	that	publish	messages	to	different	destinations,	and	each	of	the	handlers	can	have
a	different	log	level.

Writing	lots	of	logging	messages	can	affect	the	performance	of	your	application.	When
you	change	the	default	log	level	you	minimize	the	performance	burden	in	applications	that
are	deployed	in	production.	I	explain	how	you	set	and	change	log	levels	a	bit	later,	but	for
now	let’s	create	a	very	basic	logging	application.	

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Level.html

Hello	World	with	the	Java	Logging	API
Everyone	starts	learning	Java	by	writing	a	simple	program	that	prints		Hello	World	on	the
system	console	using	the	following	statement:

System.out.println("Hello	World");

It’s	time	to	replace	this	statement	with	the	Java	Logging	API.

Hello	World	with	a	Global	Logger

Start	with	creating	an	Eclipse	Java	project	called	Lesson34.	In	it,	create	a	new
class	HelloLoggingWorld	in	a	package	com.lesson34.	In	the	main()	method	of	this	class
you’re	going	to	use	the		Logger	object	to	greet	the	world	as	follows:

package	com.lesson34;
import	java.util.logging.Logger;
public	class	HelloWorldGlobalLogger	{
				
				private	static	Logger	logger	=	
												Logger.getGlobal();
				public	static	void	main(String[]	args)	{
								
								logger.fine("Hello	fine	world!");
								logger.info("Hello	info	world!");
								logger.severe("Hello	severe	world!");
				}
}

Although	an	application	can	have	a	hierarchy	of	loggers,	this	simple	program	uses	a	single
global	logger	obtained	by	calling	the	method	getGlobal().	The	program	starts	with
initializing	the	logger	variable	with	the	Logger	object.	Then	the	program	invokes	three
methods	on	this	logger:	fine(),	info(),	and	severe().	The	names	of	the	methods	correspond
to	the	logging	levels.	But	if	you	run	this	program,	only	two	messages	are	printed	on	the
system	console:

Jan	28,	2015	11:27:17	AM	com.lesson34.HelloWorldGlobalLogger	main
INFO:	Hello	info	world!
Jan	28,	2015	11:27:17	AM	com.lesson34.HelloWorldGlobalLogger	main
SEVERE:	Hello	severe	world

Because	the	default	logging	level	is	INFO,	the	message	of	the	FINE	level	was	not	printed.
By	default	the	log	records	published	on	the	console	include	the	date	and	time,	the	name	of
the	class,	the	level,	and	the	message.	

Hello	World	with	a	Class-Level	Logger

The	application	can	have	more	than	one	logger,	all	of	which	are	children	of	the	global
logger.	For	example,	you	can	create	a	class-level	logger	identified	by	a	hierarchical	name

that	looks	similar	to	a	fully	qualified	class	name.	You	can	create	a	Java	class	that	creates
the	logger	specifically	for	this	class:

private	static	Logger	logger	=	
												Logger.getLogger("com.lesson34.HelloWorldClassLogger");

To	avoid	hardcoding	the	class	name	(it	can	be	moved	to	a	different	package)	you	can	ask
Java	to	obtain	a	fully	qualified	class	name,	as	shown	here:	

private	static	Logger	helloLogger	=									
									Logger.getLogger(HelloWorldClassLogger.class.getName());

The	following	program	purposely	divides	by	zero	just	to	show	the	use	of	the	class-level
logger:

package	com.lesson34;
import	java.util.logging.Logger;
public	class	HelloWorldClassLogger	{
								
				private	static	Logger	helloLogger	=									
												Logger.getLogger(HelloWorldClassLogger.class.getName());
				
				public	static	void	main(String[]	args)	{
																
								helloLogger.info("Trying	to	divide	by	zero");
								try{
												int	result	=	25/0;
								}	catch(ArithmeticException	e){
												helloLogger.severe("Division	by	zero");				
								}	
				}
}

The	output	of	this	program	is	shown	here:

Jan	28,	2015	2:54:26	PM	com.lesson34.HelloWorldClassLogger	main
INFO:	Trying	to	divide	by	zero
Jan	28,	2015	2:54:26	PM	com.lesson34.HelloWorldClassLogger	main
SEVERE:	Division	by	zero

Software	developers	often	create	a	separate	logger	not	only	for	each	class	but	also	for	each
package.	But	the	procedure	remains	the	same;	just	specify	the	name	of	the	package	as	the
logger	name:

private	static	Logger	logger	=	Logger.getLogger(
																HelloWorldClassLogger.class.getPackage().getName());

Using	Handlers	and	Setting	Log	Levels
The	Logger	object	doesn’t	log	messages	on	its	own.	It	creates	a	LogRecord	and	passes	it
to	a	Handler	object	for	publication	to	a	specified	destination.	So	far	the	log	messages	from
the	code	examples	have	been	sent	to	the	system	console	because	the	Java	Logging	API
uses	a	ConsoleHandler	object	by	default.	It	was	a	ConsoleHandler	that	printed	the	log
messages.

To	set	the	logging	level,	you	need	to	call	a	method	setLevel();	for	example,	to	set	the
FINE	logger	level	you	need	to	call	a	method	setLevel(Level.FINE).		You	can	set	the
severity	level	of	the	log	messages	on	both	the	logger	and	the	handler,	and	they	don’t	have
to	be	the	same.	For	example,	you	may	want	to	record	only	SEVERE	messages	in	the	log
file,	while	sending	to	the	console	messages	of	the	level	INFO	and	higher.	

You	can	also	log	one	message	under	different	logging	level	without	changing	the	current
level	by	using	the	method	log():

log(Level.FINE,	"Hello	fine	world");

You	can	assign	one	or	more	handlers	to	the	Logger	objects	so	the	log	messages	are
published	in	one	or	more	destinations.	The	Java	Logging	API	supports	the	following
handlers:

ConsoleHandler:	A	handler	for	writing	log	records	to	the	System.err	object	(by	default
it	points	at	the	same	device	as	System.out).

FileHandler:	A	handler	that	writes	log	records	either	to	a	single	file	or	to	a	set	of
rotating	log	files.

StreamHandler:	A	handler	for	writing	log	records	to	an	OutputStream.

SocketHandler:	A	handler	that	writes	log	records	to	local	or	remote	Transmission
Control	Protocol	(TCP)	ports.

MemoryHandler:	A	handler	that	buffers	log	records	in	memory.

To	assign	a	handler(s)	to	a	logger	object	you	need	to	create	an	instance	of	one	of	the
previously	listed	handlers	and	add	it	to	the	Logger	object	by	invoking	the	method
addHandler():		

FileHandler	helloFileHandler	
helloFindHandler	=	new	FileHandler("helloWorld.log");
helloLogger.addHandler(helloFileHandler);

Now	write	yet	another	small	program	that	publishes	log	messages	on	the	console	and	in	a
log	file.	The	logger	that	you’ve	used	in	the	previous	examples	internally	created	an
instance	of	the	ConsoleHandler	class	that	published	messages	on	the	system	console.	Now
you’re	adding	another	handler,	FileHandler,	to	write	log	messages	into	a	file,	so	you	have
the	logs	in	the	system	console	as	well	as	in	a	file.		To	make	this	example	more	interesting,
publish	only	WARNING	and	SEVERE	messages	in	a	file	and	have	the	console	get	the
messages	of	the	level	FINE	and	above.

Create	the	directory	named	logs	in	the	root	of	your	Eclipse	project,	and	see	whether	the
following	program	HelloWorldHandlers	properly	publishes	messages	in	the	log	file	and
system	console:

package	com.lesson34;
import	java.io.IOException;
import	java.util.logging.ConsoleHandler;
import	java.util.logging.FileHandler;
import	java.util.logging.Level;
import	java.util.logging.Logger;
public	class	HelloWorldHandlers	{
				
				private	static	Logger	helloLogger	=									
												Logger.getLogger(HelloWorldClassLogger.class.getName());
				
				public	static	void	main(String[]	args)	{
								
								FileHandler	helloFileHandler;
								try	{
										helloFileHandler	=	new	FileHandler("logs/helloWorld.log");
										helloLogger.addHandler(helloFileHandler);
										helloFileHandler.setLevel(Level.WARNING);
								}	catch	(SecurityException	se)	{
											System.out.println(se.getMessage());
								}	catch	(IOException	ioe)	{
											System.out.println(ioe.getMessage());
								}
								
								helloLogger.fine("Hello	from	fine	world");
								helloLogger.info("Trying	to	divide	by	zero");
								try{
												int	result	=	25/0;
								}	catch(Exception	e){
												helloLogger.severe("Division	by	zero");				
								}
				}
}

The	program	HelloWorldHandlers	adds	a	FileHandler	to	the	logger	to	publish	messages	to
the	file	logs/helloWorld.log.	You	can	create	and	assign	a	Formatter	object	to	the	handler	to
format	the	output	in	a	way	that	fits	your	needs.		XMLFormatter	is	the	default	formatter
for	FileHandler.	Having	log	files	in	the	XML	format	allows	writing	programs	that	can
read	and	parse	log	files,	which	can	be	pretty	useful	for	large	log	files.

Creating	an	instance	of	the	FileHandler	may	throw	SecurityException	if	access	to	log	files
was	protected	by	Java	Security	Manager,	which	is	not	the	case	in	our	example.

http://docs.oracle.com/javase/tutorial/essential/environment/security.html

Run	HelloWorldHandlers	and	it	creates	a	file	helloWorld.log	in	the	logs	directory	of
your	Eclipse	project	(you	may	need	to	refresh	the	project	view	to	see	it).	Here’s	the
content	of	this	log	file:		

<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>
<!DOCTYPE	log	SYSTEM	"logger.dtd">
<log>
<record>
		<date>2015-01-28T17:20:38</date>
		<millis>1422483638650</millis>
		<sequence>1</sequence>
		<logger>com.lesson34.HelloWorldClassLogger</logger>
		<level>SEVERE</level>
		<class>com.lesson34.HelloWorldHandlers</class>
		<method>main</method>
		<thread>1</thread>
		<message>Division	by	zero</message>
</record>
</log>

The	preceding	file	contains	only	the	SEVERE	message,	which	is	correct.	At	the	same
time,	the	ConsoleHandler	also	printed	INFO	messages	on	the	system	console:	

Jan	28,	2015	5:20:38	PM	com.lesson34.HelloWorldHandlers	main
INFO:	Trying	to	divide	by	zero
Jan	28,	2015	5:20:38	PM	com.lesson34.HelloWorldHandlers	main
SEVERE:	Division	by	zero

Avoiding	Duplicate	Log	Messages
The	program	HelloWorldHandlers	uses	a	default	console	handler	of	the	global	logger
to	publish	messages	on	the	console.	If	you	add	an	instance	of	the	ConsoleHandler
object	to	helloLogger,	you	have	two	console	handlers:	one	on	the	class	level	and	one
global.	This	results	in	displaying	duplicate	messages	on	the	console	because	the
global	logger	is	a	parent	of	helloLogger,	and	all	handlers	in	this	hierarchy	are
invoked.	If	you	want	to	turn	the	parent	loggers	off,	use	the	method
setUseParentHandlers():

helloLogger.setUseParentHandlers(false);

But	why	was	the	FINE	level	message	“Hello	from	fine	world”	not	displayed	on	the
console?	Invoking	helloLogger.setLevel(Level.FINE)	from	HelloWorldHandlers	won’t
help.	The	reason	is	that	the	Java	Runtime	Environment	(JRE)	comes	with	the
configuration	file	logging.properties,	which	may	supersede	the	log	levels	set	in	the
program.

The	File	logging.properties

If	you	open	the	directory	jre/lib	in	your	Java	distribution,	you	find	the
file	logging.properties,	which	sets	various	logging	properties	including	these:

.level=	INFO
java.util.logging.ConsoleHandler.level	=	INFO

The	first	one	restricts	the	default	global	level	across	all	loggers,	and	the	second	limits	the
messages	that	are	printed	on	the	console.	Both	levels	default	to	INFO.	If	you	change	these
values	to	FINE	or	ALL,	the	program	HelloWorldHandlers	starts	publishing	FINE
messages	on	the	console.

Each	application	can	have	its	own	logging	properties	file	that	you	can	pass	as	the	Java
Virtual	Machine	(JVM)	parameter	from	the	command	line,	for	example:

java	-Djava.util.logging.config.file="myLogging.properties"	MyApp

You	can	also	load	the	application-specific	logging	properties	file	programmatically	as
follows:

LogManager.getLogManager().readConfiguration(
																								newFileInputStream("mylogging.properties"));

If	your	program	creates	named	loggers,	you	can	override	the	log	levels	in	your
log.properties	file;	for	example:

com.lesson34.HelloWorldClassLogger.level=ALL

More	About	Logging	with	FileHandler	

Writing	log	messages	into	files	is	the		most	common	practice.	The	FileHandler	class	has
several	overloaded	constructors.	To	work	with	log	files	in	the	append	mode	(log	records
are	being	added	to	the	existing	file),	use	a	two-argument	constructor:		

helloFileHandler	=	new	FileHandler("logs/helloWorld.log",	true);

To	avoid	littering	your	disk	space	by	tons	of	log	files,	you	can	create	rotating	log	files.
You	can	specify	the	maximum	file	size	and	maximum	number	of	log	files.	A	new	file	is
created	as	soon	as	the	current	log	file	reaches	a	specified	size.		When	the	new	log	file	is
maxed	out,	another	one	is	created.	If	the	number	of	the	allowed	log	files	is	reached	the
oldest	log	file	is	replaced	with	a	new	one,	and	log	records	are	directed	there.

For	example,	the	following	code	snippet	creates	a	FileHandler	object	that	initially	creates
a	log	file	named	helloWorld.log.0,	and	as	soon	as	its	size	grows	to	1000	bytes,	the	handler
renames	the	log	file	into	helloWorld.log.1	and	creates	a	new	one	named	helloWorld.log.0
and	so	on.	This	FileHandler	creates	not	more	than	three	files	in	total,	and	logging	is	done
in	the	append	mode:		

helloFileHandler	=	

											new	FileHandler("logs/helloWorld.log",	1000,	3,	true);

You	see	this	code	in	action	while	working	on	the	assignment	from	the	“Try	It”	section	of
this	lesson.	

Formatters	and	Filters
Formatters	allow	you	to		change	the	format	of	logging	messages	and	filters	(in	addition	to
log	levels),	so	the	handlers	can	decide	if	they	are	interested	in	a	particular	LogRecord.	You
can	assign	formatters	to	the	log	handlers.	Filters	can	be	assigned	to	both	loggers	and
handlers.

Formatters

You	can	format	log	messages	using	classes	SimpleFormatter	or	XMLFormatter	included
in	with	Java	Development	Kit	(JDK)	,	or	create	your	own	custom	formatter.	By	default,
console	handlers	use	SimpleFormatter,	and	file	handlers	use	XMLFormatter.

SimpleFormatter	outputs	the	time-stamp,	class	name,	method	name,	level,	log	message,
and	possible	exception.	XMLFormatter	outputs	messages	in	a	form	of	an	XML	structure
as	XML-formatted	messages	as	you’ve	seen	in	the	section	on	log	handlers.

To	create	a	custom	formatter,	declare	a	class	the	extends	an	abstract	class	Formatter	and
override	its	method	format().		You	can	implement	any	formatting	you	like.	Just	prepare	a
String	with	the	required	content	and	let	the	method	format()	return	it.	The	following
example	shows	a	simple	custom	formatter	that	doesn’t	print	a	timestamp	and	uses	the
symbols	==>	as	a	separator	between	the	fields	of	the	LogRecord:			

package	com.lesson34;
import	java.util.Date;
import	java.util.logging.Formatter;
import	java.util.logging.LogRecord;
	
public	class	MyFormatter	extends	Formatter	{
	
				@Override
				public	String	format(LogRecord	logRecord)	{
								return	logRecord.getSourceClassName()+"==>"
																+	logRecord.getSourceMethodName()+"==>"
																+	logRecord.getMessage()+"\n";
				}
}

Open	your	logging.properties	file	and	assign	this	class	to	be	a	formatter	for	the	console
handler:

java.util.logging.ConsoleHandler.formatter=com.lesson34.MyFormatter

Now	if	you	run	the	HelloWorldHandlers	(or	any	other	sample	from	this	lesson),	the	output

of	the	logger	should	look	like	this:

com.lesson34.HelloWorldHandlers==>main==>Hello	from	the	fine	world
com.lesson34.HelloWorldHandlers==>main==>Trying	to	divide	by	zero
com.lesson34.HelloWorldHandlers==>main==>Division	by	zero

Invoking	the	method	setFormatter()	on	the	handler	object	is	an	alternative	to	specifying	a
formatter	to	a	handler	from	the	command	line.		

Filters

With	filters,	you	can	program	application	logic	to	decide	if	a	particular	LogRecord	should
be	logged.	If	you	don’t	want	to	publish	a	particular	LogRecord,	simply	return	false	and	it
won’t	be	published.	Otherwise,	return	true.		Filter	is	an	interface	with	a	single	method
isLoggable().		Remember	functional	interfaces	from	Lesson	13?	You	can	implement	a
filter	with	a	lambda	expression.

The	following	example	generates	random	prices	for	stocks,	but	it	logs	only	those	prices
that	are	greater	than	$60:

package	com.lesson34;
import	java.util.logging.Filter;
import	java.util.logging.Level;
import	java.util.logging.Logger;
public	class	StockQuotePublisher	{
				
				private	static	Logger	stockLogger	=									
												Logger.getLogger(StockQuotePublisher.class.getName());
				
			//	A	lambda	expression	
			static	Filter	expensiveStocks	=	(logRecord)	->	{
								Object[]	parameters	=	logRecord.getParameters();
								double	price	=	((Double)parameters[0]).doubleValue();
								return	(price	>	60)	?	true:	false;											
				};
				
				public	static	void	main(String	args[]){
								
								stockLogger.setFilter(expensiveStocks);
								
								getPrice("IBM");
								getPrice("MSFT");
								getPrice("AAPL");
								getPrice("CAT");
								getPrice("VZ");
				}
				

				private	static	double	getPrice(String	stockSymbol){
								
								double	price	=	Math.random()*100;
								stockLogger.log(Level.INFO,	stockSymbol	+	":"	
																																																	+	price,	price);	
								return	price;
				}
}

The	method	getPrice()generates	prices	in	the	range	between	0	and	100.	This	method	logs
messages	using	a	different	logging	API—the	method	log()—which	has	several	overloaded
versions.		In	this	case,	I	use	the	version	with	three	arguments:	level,	message,	and	an
object.	The	last	argument	can	be	any	object;	it’s	considered	a	parameter	of	the	LogRecord.
Even	though	it	seems	that	you	log	the	price	value	of	the	primitive	double,	Java	knows	that
an	object	is	required	and	uses	the	autoboxing	feature	to	create	an	instance	of	the	Double
wrapper.		

The	program	calls	getPrice()	from	the	main()	method	for	five	different	stocks.	If	you
didn’t	apply	a	filter,	all	generated	prices	would	be	published	on	the	console.	But	the	class
StockQuotePublisher	declares	a	lambda	expression	expensiveStocks	that	implements	the
functional	interface	Filter	,	which	returns	true	only	if	the	stock	price	is	greater	than	60.
This	filter	is	assigned	to	the	logger:

stockLogger.setFilter(expensiveStocks);

You	can	assign	a	filter	to	a	Handler	the	same	way	you	assign	it	to	a	Logger	object.	Log
filters	go	one	step	further	than	log	levels:	they	offer	data-driven	logging.
Running	StockQuotePublisher	produces	different	results	on	each	run	because	of	the
random	price	generation.	But	none	of	the	published	log	records	show	a	price	lower	than
60.	Here’s	a	sample	console	output:

Jan	29,	2015	8:29:29	PM	com.lesson34.StockQuotePublisher	getPrice
INFO:	AAPL:92.09444632063976
Jan	29,	2015	8:29:29	PM	com.lesson34.StockQuotePublisher	getPrice
INFO:	VZ:85.58149465560332

Logging	Frameworks
Although	the	Java	Logging	API	is	a	good	solution	for		small	and	mid-size	applications,	it
may	present	a	performance	bottleneck	in	high-load	multiuser	applications	where	adding	a
couple	of	hundred	milliseconds	for	publishing	each	message	is	not	acceptable.	There	are
numerous	open-source	logging	frameworks	on	the	market,	which	you	can	easily	learn	if
you’re	familiar	with	the	Java	Logging	API.

Apache	Log4J	2	is	the	most	popular	framework	used	in	commercial	Java	applications.	It’s
a	newer	version	of	Log4J.	Log4J	also	has	a	logger	object.	Appenders	perform	the	same
role	as	handlers.	Layouts	are	similar	to	formatters.	A	log	record	is	represented	by	a	log
event	in	Log4J.	Whereas	the	Java	Logging	API	allows	file	rotation	by	size	only,	Log4J
supports	file	rotation	by	date/time.			

But	Log4J	2	also	supports	asynchronous	loggers	and	appenders,	which	can	make	it	an
order	of	magnitude	faster	than	the	Java	Logging	API.	Log4J	2	is	the	right	choice	for	high-
performance	logging.	To	see	how	many	messages	Log4J	2	can	publish	per	second,	see	the
statistics	on	low-latency	logging.	

The	second	popular	logging	framework	is	called	Logback.	It’s	similar	to	Log4J	as	it	was
founded	by	the	same	developer.	Logback	is	faster	than	Log4J,	but	Log4J	2	asynchronous
logging	is	faster	than	Logback’s.	Start	your	next	project	with	one	of	these	frameworks,
and	if	your	application	requires	some	special	logging	features,	see	if	there	is	a	framework
that	offer	them	out	of	the	box.		

To	minimize	the	dependency	of	any	particular	logging	framework,	it	is	recommended	to
use	an	abstraction	layer	that	will	allow	you	to	easily	switch	logging	frameworks,	if	need
be.	Simple	Logging	Facade	for	Java	(SLFJ)	is	the	most	popular	implementation	of	such	a
layer.	SLFJ	allows	you	to	decouple	the	logging	API	from	a	particular	implementation.	For
example,	no	matter	what	logging	framework	you	use,	creating	a	Logger	object	and
publishing	an	INFO-level	message	looks	the	same	in	SLFJ:

Logger	logger	=	LoggerFactory.getLogger(HelloWorld.class);
logger.info("Hello	World");

With	SLFJ	you’re	not	afraid	that	you	picked	the	wrong	logging	framework;	you	can	easily
change	it	without	modifying	even	one	line	of	code.	SLFJ	logging	levels	include	ERROR,
WARN,	INFO,	DEBUG,	and	TRACE,	which	correspond	to	the	SEVERE,	WARNING,
INFO,	FINE,	FINER	levels	of	the	Java	Logging	API	or	similar	levels	in	other
frameworks.	Watch	this	video	to	see	how	easy	it	is	to	switch	from	one	logging	framework
to	another.

To	add	SLFJ	you	need	to	add	two	JARs	to	your	project:	one	with	the	SLFJ	API,	and
another	that	binds	a	particular	logging	framework	to	SLFJ.	In	Lesson	36,	you’ll	learn	how
to	automate	getting	required	JARs	from	public	repositories	of	binaries.	If	you	decide	to	try
using	SLFJ	with	the	Java	Logging	API,	you	can	find	the	required	two	JARs	in	Maven
Central	by	searching	for	the	following	artifacts:		slf4j-api	and	slf4j-jdk14.

But	no	matter	what	logging	framework	you	choose,	the	sooner	you	stop	using
System.out.println()	the	better.

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/manual/async.xhtml#Performance
http://logback.qos.ch/reasonsToSwitch.html
http://www.slf4j.org/
https://www.youtube.com/watch?v=tMLEbGJ2z7I&hd=1;
http://search.maven.org/#search%7Cga%7C1%7Cslf4j-api

Try	It
In	this	excercise,	you	create,	configure,	and	use	an	application-specific	logging.properties
file.	You	also	use	a	rotating	file	handler	to	control	the	size	and	number	of	your	log	files.

Lesson	Requirements
You	should	have	Java	installed.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson34
folder	in	the	download.

Step-by-Step
1.	 Copy	the	file	logging.properties	from	your	jre/lib	directory	into	the	root	directory	of

the	project	Lesson34.	Rename	this	file	to	myLogging.properties.	I’m	assuming	that
you	previously	created	the	logs	directory.

2.	 Set	the	levels	of	the	logger	and	the	console	handler	to	FINE	in	myLogging.properties:

.level=	FINE
java.util.logging.ConsoleHandler.level	=	FINE

3.	 In	Eclipse	create	a	package	tryit	and	copy	the	file	HelloWorldHandlers.java	there.
Rename	this	file	and	refactor	the	code	so	it	uses	the	class	name	RotatingFilesLogger.

4.	 Open	the	Run	Configurations	window	for	the	class	RotatingFilesLogger,	select	the
Arguments	tab,	and	add	the	following	JRE	property	in	the	VM	Arguments	text	field:

-Djava.util.logging.config.file="myLogging.properties"

5.	 Modify	the	line	in	RotatingFilesHandler	to	direct	the	log	records	to	the	file
logs/rotating.log.

6.	 Run	the	RotatingFilesLogger	program.	It	should	publish		FINE,	INFO,	and	SEVERE
messages	into	Eclipse	console	view	regardless	of	the	settings	in	the	JRE’s
global	logging.properties	file.	This	version	of	the	program	also	creates	a	log	file
rotating.log	in	the	logs	directory.	We	implement	file	rotation	in	the	next	step.

7.	 Modify	the	line	that	creates	FileHandler	to	use	the	constructor	for	rotating	files	in	the
append	mode:

helloFileHandler	=	
											new	FileHandler("logs/rotating.log",	1000,	3,	true);

8.	 Run	the	program	several	times	and	monitor	the	content	of	the	logs	directory.	After
several	runs	you	should	see	the	files	named	like		rotating.log.0,	rotating.log.1,	and
	rotating.log.2	there.		The	numeric	suffix	will	never	go	higher	than	2	as	the	logger

http://www.wrox.com/go/javaprog24hr2e

creates	and	rotates	only	three	log	files.	The	name	of	the	newest	log	file	always	has	the
suffix	0.

TIP			Please	select	the	videos	for	Lesson	34	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	35
Introduction	to	Unit	Testing	with	JUnit	Framework
Software	developers	are	not	perfect,	and	bugs	happen.	Even	if	your	program	has	no	bugs,
you	may	have	used	someone	else’s	code,	which	does	have	bugs.	Moreover,	code
modification	in	one	class	or	interface	can	break	previously	working	code	in	another;	this	is
called	regression.	Thorough	testing	is	an	important	phase	of	any	software	development
project.	

Every	developer	knows	how	to	test	his	or	her	code	manually,	and	they	do	it.	Periodically.
But	manual	testing	is	a	pretty	boring	routine.	Would	you	want	to	start	each	day	with
manual	testing	to	see	if	creating,	updating,	and	deleting		a	sample	purchase	order	still
works?	Neither	do	I.	Testing	should	be	automated.	

The	sooner	your	project	team	implements	automated	testing	routines,	the	shorter	the
development	cycle	will	be.	The	concept	of	test-driven	development	(TDD)	suggests	that
testing	should	be	embedded	in	the	software	development	process	from	the	very	start	of
any	new	project.

There	are	different	types	of	testing	routines	that	have	different	goals.	Here’s	a	description
of	the	main	types	of	testing	(see	more	at	the	Wikipedia	article	Software	Testing)	:

Unit	testing	is	performed	by	a	software	developer	and	is	targeted	at	small	pieces	of
code.	For	example,	if	you	invoke	a	method	calcTax()	with	particular	arguments,	it
should	return	the	expected	result.	Java	classes	performing	application-specific	unit
tests	are	written	by	software	developers.	Sometimes	unit	testing	is	called	white-
box	testing	because	a	developer	is	familiar	with	the	code	being	tested.	

Integration	testing	is	a	process	when	several	unit	tests	are	combined	to	ensure	that
different	pieces	of	code	work	properly	with	each	other.	In	other	words,	the	goal	here	is
to	test	interfaces	between	different	software	components.	If	John	wrote	the
method	calcTax(),	which	uses	the	method	getTaxBrackets()	that	Mary	wrote,	there	is	a
chance	that	Mary	decided	to	change	this	method’s	signature	without	notifying	John
about	the	change.	

If	John	and	Mary	work	with	the	same	source	code,	the	Java	compiler	may	catch	this
error.	But	what	if	Mary	packages	compiled	code	in	a	JAR	that	John	adds	to	the
runtime	CLASSPATH	variable?	The	application	would	break.	Integration	tests		ensure
that	all	pieces	of	software	work	well	together.	Integration	tests	are	written	by	software
developers.

QA	testing	is	not	performed	by	software	developers;	instead	specially	trained	IT
people	use	the	application	written	by	software	developers	and	identify	issues	in	the
functionality—for	example,	a	Place	Order	button	in	the	graphical	user	interface	(GUI)
allows	the	user	to	place	an	order	even	though	the	user	hasn’t	entered	the	shipping
address.	

In	some	scenarios,	QA	engineers	test	the	software	manually,	but	in	many	cases	they
use	test-automation	software	(such	as	Selenium	or		QuickTest	Pro).	They	write	scripts
for	different	use	cases	using	scripting	languages.	All	errors	are	reported	in	an	issue-

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Test_automation
http://docs.seleniumhq.org/
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/index.html

tracking	system	(such	as	Redmine	or	JIRA)	and	are	assigned	to	software	developers
for	providing	code	fixes.

User-acceptance	testing	is	performed	by	end	users.	It	is	often	referred	as	black-box
testing	because	the	users	don’t	know	how	the	software	was	constructed.	Although	QA
engineers	can	catch	a	large	number	of	usability	issues,	they’re	not	experts	in	the
business	domain	for	which	the	software	was	written.	For	example,	an	application	for
insurance	agents	should	check	that	the	agent	is	licensed	for	business	in	certain	states
and	her	license	is	not	expired.		These	kind	of	errors	can	be	caught	by	the	business
users.

Stress	or	load	testing	must	ensure	that	the	application	remains	operational	if	a	large
number	of	users	decide	to	use	the	application	simultaneously.	Load-testing	tools	(such
as	Apache	JMeter	or	NeoLoad)	make	it	possible	to	set	up	several	computers	that
emulate	a	large	number	of	users	working	with	your	application.	How	good	is	an
application	that	works	fine	for	10	users	but	becomes	unresponsive	if	the	number	of
users	increases	to	100?		

Ideally,	there	should	be	a	written	document	called	Service	Level	Agreement	(SLA)	that
defines	the	number	of	concurrent	users	and	acceptable	response	time	for	the	software
being	developed.	A	savvy	project	manager	signs	an	SLA	with	the	users	before	the
software	development	begins.	If	a	user	starts	complaining	about	a	10-second	wait,	you
should	check	the	SLA	and	either	improve	the	response	or	reject	the	user’s	request.

This	lesson	covers	just	the	unit	testing	procedures	as	they	apply	to	the	software	developed
in	Java.	JUnit	is	the	most	popular	tool	for	testing	Java	framework.

http://www.redmine.org/
https://www.atlassian.com/software/jira
http://en.wikipedia.org/wiki/Apache_JMeter
http://www.neotys.com/product/overview-neoload.html

Introduction	to	JUnit
JUnit	is	a	an	open	source	unit	testing	framework	available	for	download	at	http://junit.org.
Before	you	start	writing	test	classes,	you	should	get	familiar	with	the	JUnit	terminology:

Assertions	compare	expected	and	received	results.

Test	setup	is	a	process	of	preparing	the	test	data	before	running	the	test.

Test	teardown	means	getting	rid	of	the	test	data	after	it	runs.

Test	suite	is	a	group	of	test	classes	that	run	together.

Exceptions	testing	checks	that	an	exception	is	thrown	where	it	should	be	or	is	not
thrown	where	it	shouldn’t.

Test	runner	is	a	utility	that	can	run	tests.

Rules	allow	to	add	functionality	that	applies	to	all	tests	within	a	test	class,	but	in	a
more	generic	way.

Theories	allow	to	combine	assertions	to	state	the	test	assumptions	more	clearly.	

Assumptions	selectively	ignore	certain	tests	based	on	some	criteria.	

Parameters	allow	you	to	prepare	a	set	of	data	and	pass	it	to	a	test	as	parameter.

A	class	that	unit-tests	the	application’s	code	is	a	Plain	Old	Java	Object	(POJO)	that
includes	methods	marked	with	the	@Test	annotation.	Each	method	represents	a	test	case.

To	run	a	unit	test	you	need	the	following:

A	test	Java	class

System	Under	Test	(SUT),	which	is	a	class	method	

A	test	runner	

Installing	JUnit
JUnit	is	so	popular	that	all	major	integraged	development	environments	(IDEs)	include	the
JUnit	library,	so	you	don’t	even	need	to	download	it	unless	you	want	to	use	a	newer	JUnit
version.	In	Eclipse,	you	simply	add	the	JUnit	library	to	the	Project	Build	Path.	You	can
run	JUnit	tests	right	from	Eclipse	or	from	a	command	line	using	test	runners.	

If	you’re	not	using	an	IDE	or	prefer	running	tests	from	a	command	line,	you	need	to
download	JUnit;	no	installation	is	required.	JUnit	is	packaged	in	two	JAR
files	junit.jar	and	hamcrest-core.jar,	and	you	need	to	add	them	to	the	CLASSPATH	of	your
application.	You	can	download	these	JARs	from	the	Maven	Central	repository.	Search	for
these	files	by	names	and	click	the	jar	link	to	download.	Lesson	36	shows	you	how	to
automate	downloading	required	JARs	from	Maven	Central	using	build	tools.

Changing	the	Default	Directory	Structure	in	Eclipse
Popular	build	tools	like	Maven	and	Gradle	recommend	the	following	standard	directory
structure	for	Java	sources:

http://junit.org/
http://search.maven.org/
https://atlas.oreilly.com/wiley/java-programming-24hr-trainer/editor/master/ch35.xhtml#gradle

src
		main
				java
		test
				java

The	source	code	of	the	application	classes	should	originate	from	src/main/java,	and	the
test	classes	originate	from	src/test/java.	But	Eclipse	originates	all	Java	sources	from	the
directory	src,	and	it	doesn’t	force	you	to	write	test	classes.	If	you	create	a	new	Eclipse
project,	change	the	directory	structure	up	front	to	be	prepared	for	automating	the	build
process	in	the	future.	

Create	a	new	Eclipse	Java	project	called	Lesson35	and	change	its	default	directory
structure.	Open	the	project	properties	and	select	the	Java	Build	Path	option.	Open	the
Source	tab	and	remove	the	src	folder	from	the	Source	Folders	on	the	Build	Path	field.
After	that	add	the	folders	src/main/java	and	src/test/java.	This	is	it.	Your	project	directory
structure	should	look	like	Figure	35-1.

Figure	35-1:	New	Eclipse	project	with	modified	directory	structure

Now	your	test	classes	are	separated	from	your	application	source	code.

Your	First	JUnit	Test	Case	
Following	standard	naming	conventions	you	name	the	test	class	the	same	as	the	class
under	test	but	with	the	additional	suffix	Test.	For	example,	if	you	are	planning	to	unit	test
the	class	Tax,	the	name	of	the	test	class	should	be	TaxTest.	Start	with	creating	a	new
package	tax	in	the	directory	src/main/java.		Then	create	a	new	interface	Taxable	and	the
class	Tax	there.	The	interface	Taxable	has	the	following	content:

package	tax;
interface	Taxable	{
		double	calcTax(double	grossIncome,	int	dependents)
																																				throws	IllegalArgumentException;
		double	applyStudentDeduction(double	taxAmount,	int	numOfStudents);
}

The	class	Tax	implements	Taxable	as	follows:

package	tax;
class	Tax	implements	Taxable	{

				
				final	static	double	STUDENT_DEDUCTION	=	300.00;
				
				public	double	calcTax(double	grossIncome,	int	dependents)			
																																		throws	IllegalArgumentException{	
								
							if	(grossIncome	<0){
										throw	new	IllegalArgumentException(
																																"Gross	income	can't	be	negative");
							}
	
							return	(grossIncome*0.33	-	dependents*100);
				}
				
				public	double	applyStudentDeduction(double	taxAmount,	
																																												int	numOfStudents){
								
							return	taxAmount	-	STUDENT_DEDUCTION*numOfStudents;	
				}				
}

Why	Using	an	Interface?
You	may	ask,	“Why	do	I	even	need	to	create	a	separate	interface	for	such	a	simple
class?”	Designing	to	interfaces	is	a	good	idea	in	general,	as	it	clearly	declares	the
application	programming	interface	(API)	and	allows	changing	implementation
without	the	need	to	change	classes	that	use	this	API.	From	the	testing	perspective,
interfaces	clearly	expose	the	methods	that	should	be	unit	tested.

Now	create	a	package	tax	inside	src/test/java.		Select	this	package	and	ask	Eclipse	to
generate	a	test	class	by	selecting	the	menu	File		→	New		→	JUnit	Test	Case.

Eclipse	displays	a	window	where	you	enter	the	class	name	as	TaxTest	and	the	name	of	the
class	under	test	as	tax.Tax.	(See	Figure	35-2.)

Figure	35-2:	Creating	a	new	JUnit	Test	Case	in	Eclipse

Click	the	Next	button,	and	you	can	select	the	methods	from	the	class	Tax	that	you	want	to
test,	such	as	calcTax().	Then	Eclipse	displays	a	pop-up	message	asking	if	JUnit	4	should
be	added	to	the	build	path	of	the	project.	Agree	to	this	and	you	see	a	newly	generated	class
that	looks	like	the	following:

package	tax;
import	static	org.junit.Assert.*;
import	org.junit.Test;
public	class	TaxTest	{
				@Test
				public	void	testCalcTax()	{
								fail("Not	yet	implemented");
				}
}

Now	run	this	test.	Right-click	the	TaxTest	class	name	and	select	Run	As		→	Unit	Test.		

Eclipse	starts	its	default	JUnit	test	runner,	which	displays	a	red	bar	and	a	test	failure
message	producing	the	AssertionError	with	a	message	“Not	yet	implemented,”	as	shown
in	Figure	35-3.

Figure	35-3:	The	first	test	failed:	Not	yet	implemented

The	test	runner	found	one	method	annotated	with	@Test	and	ran	it.	The	invocation	of
JUnit’s	method	fail()	reported	an	error	with	the	message	“Not	yet	implemented.”		If	you
comment	out	the	fail()	method	and	rerun	the	test,	it	passes	and	you	see	a	green	bar.	Before
learning	how	to	write	the	real	tests,	the	next	section	familiarizes	you	with	JUnit
annotations.

JUnit	Annotations
JUnit	comes	with	a	handful	of	annotations	that	you	need	to	use	in	your	test	classes.	The
test	runner	reads	these	runtime	annotations	and	performs	the	testing	according	to	your
code.		Here’s	the	list	of	selected	JUnit	annotations:

@Test	annotation	declares	that	a	public	void	method	is	a	unit	test.

@Before	is	used	with	a	method	to	write	some	code	to	be	executed	before	each	test.

@After	is	used	with	a	amethod	to	be	executed	after	each	test.

@BeforeClass	is	used	with	a	method	to	be	executed	before	the	very	first	test	starts.

@AfterClass	is	used	with	a	method	to	be	executed	after	the	very	last	test	is	complete.

@Ignore	disables	a	test	(the	test	runner	skips	such	a	method).

You	can	use	the	@Test	annotation	with	optional	parameters	expected	and	timeout.	For
example,	the	annotation	@Test(expected=Exception.class)	fails	the	test	if	the	specified
exception	is	not	thrown.	The	annotation	@Test(timeout=1000)	fails	the	test	if	it	runs
longer	than	1000	milliseconds.

Applying	Annotations	for	Testing	Tax	
It’s	time	to	see	the	@Test	annotation	in	action.	You’re	going	to	write	a	test	to	ensure	that	if
you	assign	zero	values	to	the	arguments	grossIncome	and	dependents,	the	method
calcTax()	returns	a	zero	tax.	For	that	you	use	the	static	method	assertEquals()	from	the
class	org.junit.Assert.	Names	of	the	test	methods	should	be	descriptive;	call	it

testZeroTax().	The	new	version	of	your	class	TaxTest	is	shown	next:

package	tax;
import	static	org.junit.Assert.*;
import	org.junit.Test;
public	class	TaxTest	{
				@Test
				public	void	testZeroTax()	{
								Tax	tax	=	new	Tax();
								assertEquals("Tax	on	zero	income	is	not	zero",
																																			0,	tax.calcTax(0,	0),	0);
				}
}

The	class	Assert	has	several	overloaded	versions	of	the	method	assertEquals()	,	which
checks	whether	the	expected	value	is	equal	to	the	actual.	I	used	the	method	with	the
following	four	arguments:

The	message	to	display	if	the	test	fails

The	expected	value

The	method	to	invoke	on	the	test	subject

The	maximum	difference	(delta)	between	expected	and	actual,	for	which	both	numbers
are	still	considered	equal

Executing	this	test	with	the	test	runner	returns	success.	Change	the	expected	value	or	delta
while	invoking	assertEquals()	in	the	preceding	example,	and	the	test	fails.	JUnit	has	many
flavors	of	the	assert()	method,	for	example,	assertTrue()	that	check	that	the	boolean	value
is	true	and	assert	NotNull()	checks	that	the	value	is	not	null.		The	names	of	these	methods
are	self-explanatory	and	are	pretty	easy	to	understand.	

Static	imports
In	the	class	TestTax,	I	use	the	import	static	keywords	to	import	the	class	Assert.	This
allows	me	to	use	the	static	method	assertEquals()	without	specifying	the	name	of	the
class	where	it	was	declared.	With	a	regular	import	statement	I	should	have
written	Assert.assertEquals().	In	general	static	imports	should	be	used	rarely,	as	the
code	is	more	difficult	to	understand.

In	a	small	program	such	as	TaxTest,	you	remember	that	the
method	assertEquals()	was	declared	in	JUnit,	but	in	larger	classes	with	lots	of	import
statements	static	imports	would	make	it	less	obvious	where	a	method	without	the
class	qualification	was	declared.

Add	one	more	test	to	see	if	the	tax	deduction	is	properly	applied	for	a	household	with	one
student.	The	classTax	has	a	method	applyStudentDeduction()	that	should	deduct	$300	per
student.	The	method	testOneStudentTaxDeductionIs300()	in	the	following	class	TaxTest

asserts	this:

package	tax;
import	static	org.junit.Assert.*;
import	org.junit.Test;
public	class	TaxTest	{
				@Test
				public	void	testZeroTax()	{
								Tax	tax	=	new	Tax();
								
								assertEquals("Tax	on	zero	income	is	not	zero",	0,	
																												tax.calcTax(0,	0),0);	
				}
				
				@Test
				public	void	testOneStudentTaxDeductionIs300(){
									Tax	tax	=	new	Tax();
									
									assertEquals("The	$300	student	discount	was	not	applied",	
																				2000,	tax.applyStudentDeduction(2300,	1),	0);
				}
}

The	test	runner	runs	both	testZeroTax()	and	testOneStudentTaxDeductionIs300(),	and	both
of	them	are	successful.	By	default,	JUnit	runs	tests	in	arbitrary	order	unless	you	use	a
special	annotation	@FixMethodOrder	that	expects	you	to	name	the	test	methods	in
alphabetical	order.		

If	you	replace	one	of	the	@Test	annotations	with	@Ignore,	the	test	runner	won’t	run	this
test.

Let’s	improve	the	code	of	the	class	TestTax	a	little	bit.	I	don’t	like	that	we	create	a	new
instance	of	Tax	in	each	test	method.	You	can	create	a	set	up	method	that	instantiates	Tax
so	it’s	available	for	each	test	method.	To	perform	some	actions	before	the	first	test	method
run,	you	should	use	a	set	up	method	(for	example,	connect	to	a	database	and	insert	test
data)	annotated	with	@BeforeClass.	If	you	need	to	run	some	cleanup	procedure	(for
example,	remove	the	test	data	from	a	database	and	disconnect)	add	a	tear	down	method
annotated	with	@AfterClass.		The	following	version	of	the	class	TestTax	illustrates	the	use
of	the	annotations	@BeforeClass	and	@AfterClass	(the	latter	just	prints	the	“In	tearDown”
message	on	the	console):

package	tax;
import	static	org.junit.Assert.*;
import	org.junit.*;
public	class	TaxTest	{
				
				static	Tax	tax;
					

http://junit.czweb.org/apidocs/org/junit/FixMethodOrder.html

				@BeforeClass
				public	static	void	setUp(){
								tax	=	new	Tax();
								System.out.println("In	setUp");
				}
				@Test
				public	void	testZeroTax()	{
								assertEquals("Tax	on	zero	income	is	not	zero",	0,	
																												tax.calcTax(0,	0),0);	
				}
				
				@Test
				public	void	testOneStudentTaxDeductionIs300(){
									
									assertEquals("The	$300	student	discount	was	not	applied",	
																				2000,	tax.applyStudentDeduction(2300,	1),	0);
				}
				
				@AfterClass
				public	static	void	tearDown(){
								System.out.println("In	tearDown");
				}
}

If	you	want	to	create	a	test	class	that	invokes	setUp()	and	tearDown()	before	invoking
each	test	method,	replace	@BeforeClass	and	@AfterClass	with
@Before	and	@After,respectively.	Although	@BeforeClass	and	@AfterClass	annotations
can	be	used	only	with	static	methods,	@Before	and	@After	don’t	have	this	restriction.

Test	Suites
A	test	suite	is	a	container	for	test	classes	that	the	test	runner	should	execute	together.	In
large	applications	test	cases	are	grouped	into	suites	by	some	criteria—for	example,	long
running	tests,	or	tests	that	should	check	a	particular	software	module	of	the	application.	

For	a	demonstration	of	how	to	create	a	test	suite,	create	a	second	JUnit	test	case	in	the
same	folder	as	TaxTest.	Name	this	class	TaxExceptionTest;	it	has	one	test	method	to	check
whether	the	exception	is	thrown	if	the	method	Tax.calcTax()	gets	a	negative	number	as
grossIncome:

package	tax;
import	static	org.junit.Assert.*;
import	org.junit.Test;
public	class	TaxExceptionTest	{
				@Test(expected=IllegalArgumentException.class)
				public	void	testForNegativeGrossIncome()	{
						Tax	tax	=	new	Tax();

						tax.calcTax(-100,	2);
						fail("grossIncome	in	calcTax()	can't	be	negative.");				
			}
}

The	test	TaxEceptionTest	is	considered	successful	when	the	calcTax()	throws
an	IllegalArgumentException	if	it	gets	the	negative	number	in	grossIncome.	If	you	want	to
see	it	fail,	comment	out	the	throw	statement	in	the	method	calcTax().	In	this	example,	I
was	using	IllegalArgumentException,	which	is	included	in	Java	SE.	But	you	can	use	the
same	mechanism	with	custom	exceptions	as	well.	

Now	create	a	test	suite	that	consists	of	two	test	cases:	TaxTest	and	TaxExceptionTest.	In
Eclipse	select	File	→	New	→	Other	→	Java	→	JUnit	→	JUnit	Test	Suite;	you	see	the
window	shown	in	Figure	35-4.

Click	the	Finish	button	and	Eclipse	generates	the	class	AllTests	with	the	following
content:

package	tax;
import	org.junit.runner.RunWith;
import	org.junit.runners.Suite;
import	org.junit.runners.Suite.SuiteClasses;
@RunWith(Suite.class)
@SuiteClasses({	TaxExceptionTest.class,	TaxTest.class	})
public	class	AllTests	{
}

The	annotation	@RunWith	instructs	the	test	runner	Suite	to	be	used	instead	of	a	default
test	runner.	The	annotation	@SuiteClasses	includes	both	of	the	test	classes:
TaxExceptionTest		and	TaxTest.	Run	the	test	suite	AllTests	as	JUnit	Test	Case	and	you	see
that	all	of	the	tests	have	succeeded,	as	shown	in	Figure	35-5.

Figure	35-4:	Creating	a	test	suite	in	Eclipse

Figure	35-5:	Running	a	test	suite	in	Eclipse

JUnit	Test	Runners
JUnit	comes	with	several	test	runners	classes	located	in	the	package	org.junit.runner.	The
class	JUnit4	is	a	default	runner	that	was	used	for	most	of	the	examples	in	this	lesson.	To
specify	a	non-default	runner	you	need	to	use	the	annotation	@RunWith.	As	you	saw	in	the
previous	section,	the	test	suite	AllClasses	used	the	runner	implemented	in	the	Suite	class:

@RunWith(Suite.class)

There	are	other	specialized	runners	implemented	in	the	classes	Parameterized,	Categories,
and	Enclose.	There	are	also	several	third-party	runners.

Using	test	runners	inside	Eclipse	is	convenient	for	development,	but	in	real-world	projects

https://github.com/junit-team/junit/wiki/Test-runners

you	should	incorporate	unit	tests	into	build	scripts.	Hence	you	need	to	know	how	to
launch	JUnit	test	runners	without	an	IDE.	You	can	launch	the	runners	outside	of	any	IDE
using	one	of	these	methods:

Create	a	Java	class	that	invokes	the	method	run()	on	the		JUnitCore	object.	
	

Run	the	JUnitCore	from	a	command	line	providing	the	names	of	the	test	classes	as
command-line	arguments.

With	the	first	method,	you	need	to	create	a	Java	class,	instantiate	JUnitCore,	and	invoke	its
method	run()	providing	test	classes	or	a	test	suite	as	arguments.	For	example:

JUnitCore	junitCore=	new	JUnitCore();
Result	result	=	junitCore.run(AllTests.class);

Then	you	can	get	a	collection	of	the	Failure	objects	each	of	which	represents	one	failed
test,	if	any:

List<Failure>	failedTests	=	result.getFailures();

To	have	better	control	and	improved	logging	during	the	test	run,	you	can	create	a	listener
—a	subclass	of	RunListener—and	assign	it	to	the	instance	of	the	JUnitCore	object	using
the	method	addListener():

	JUnitCore	junitCore=	new	JUnitCore();
	jUnitCore.addListener(new	MyRunListener());
	jUnitCore.run(AllTests.class);

In	the	listener	class,	you	can	override	methods		testStarted(),	testFinished(),	testFailure(),
and	several	others.	Then	add	logging	statements	inside	these	methods.

If	you	decide	to	run	JUnitCore	directly	from	the	command	line,	you	need	to	make	sure
that	the	JUnit	JAR	and	the	directories	of	your	test	classes	and	the	classes	under	test	are
included	to	the		CLASSPATH	variable	in	your	runtime	environment.	Then	you	can	run	a
command	similar	to	this	one:

java	org.junit.runner.JUnitCore	tax.TaxTest	

Lesson	36	explains	how	to	automate	builds	with	Gradle.	If	you’ve	written	unit	tests	for
your	application,	you	can	easily	incorporate	them	into	the	build	process,		so	they	run
without	manual	interaction	via	an	IDE.	In	the	“Try	It”	section	you	practice	using	JUnit	test
runners	from	the	command	line.

In	this	lesson	you’ve	learned	how	to	write	simple	unit	tests	using	JUnit	framework.	For
writing	more	advanced	tests	you	should	study	JUnit	online	documentation.	The	other
popular	frameworks	that	can	be	used	for	unit	testing	are	TestNG	and	Spock.	I	can	also
recommend	you	to	watch	a	presentation	“Tooling	for	Test-Driven	Development	in	Java”
by	Pawel	Lipinski.

https://github.com/junit-team/junit/wiki
http://testng.org/doc/index.html
https://code.google.com/p/spock/
http://www.java-tv.com/2015/02/09/tooling-for-java-test-driven-development/

Try	It
In	this	assignment	you	need	to	run	the	test	classes	described	in	this	lesson	from	the
command	line.	First,	you	create	a	Java	class	with	the	code	that	invokes	a	test	runner.	Then
you	try	an	alternative	way	of	launching		the	test	runner;	you	start	the	JUnitCore	runner
directly	from	a	command	line.	

Lesson	Requirements
You	should	have	Java	installed	and	the	JUnit	JARS	available.

NOTE			You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s
web	page	at	www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson35
folder	in	the	download.

Step-by-Step
1.	 Continue	using	the	directory	structure	created	for	Eclipse	project	Lesson35.	In	the

directory	src/test/java/tax	create	a	class	TaxCommanLineRunner	with	the	following
code:	

package	tax;
import	java.util.List;
import	org.junit.internal.TextListener;
import	org.junit.runner.JUnitCore;
import	org.junit.runner.Result;
import	org.junit.runner.notification.Failure;
public	class	TaxCommandLineRunner	{
				public	static	void	main(String[]	args)	{
								
								JUnitCore	junitCore	=	new	JUnitCore();
								
								Result	result	=	junitCore.run(AllTests.class);
								
								if	(result.wasSuccessful()){
												
										System.out.println(
																						"All	Tax	Test	cases	ran	successfully");			
								}	else{
												
										System.out.println("These	Tax	Test	cases	failed:");
										List<Failure>	failedTests	=	result.getFailures();
										failedTests.forEach(failure	->
																System.out.println(failure.getMessage()));				
								}
				}

http://www.wrox.com/go/javaprog24hr2e

}

This	program	runs	the	AllTests	suite	and	either	prints	the	message	that	all	tests	were
successful	or	prints	specific	error	descriptions	from	the	failed	tests.

2.	 Open	the	Command	or	Terminal	window	and	change	to	the	bin	directory	of	the	project
Lesson35	where	all	the	compiled	classes	are	located.

3.	 Run	TestCommandLineRunner	adding	the	JARs	junit.jar	and	hamcrest-core.jar	to	the
CLASSPATH	(the	option	-cp).	In	my	case	these	JARs	were	located	in	the	directory
/Users/yfain11/junit,	and	Figure	35-6	shows	how	I	launched	my	test	runner	in	the
Terminal	window.

Figure	35-6:	Running	TaxCommandLineRunner	in	Mac	OS

4.	 	Replace	the	System.out.println()	calls	with	logging	as	explained	in	Lesson	34.

5.	 Use	an	alternative	way	of	invoking	the	JUnitCore.	Run	it	directly	from	a	Command	or
Terminal	window	specifying	the	test	suite	AllTests	as	a	command-line	argument.	I	did
it,	as	shown	in	Figure	35-7.
	

Figure	35-7:	Invoking	org.junit.runner.JUnitCore	directly

The	output	of	the	AllTests	program	looks	a	little	different	now,	but	the	results	are	the
same:	All	tests	completed	successfully.		

TIP			Please	select	the	videos	for	Lesson	35	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	36
Build	Automation	with	Gradle
While	studying	Java	and	trying	to	work	on	hands-on	assignments,	you’ve	been	compiling,
deploying,	and	running	Java	programs	in	the	integrated	development	environment	(IDE).
These	actions	were	required	to	build	projects.	For	a	real-world	project,	the	build	process
usually	includes	more	steps	before	the	application	goes	into	production.	For	example:

Running	unit	and	integration	tests

Creating	scripts	for	continuous	integration

Working	with	version	control	systems	and	code	repositories

Managing	dependencies	(ensuring	that	the	right	versions	of	the	third-party	libraries	are
linked	to	the	code)

Generating	program	documentation

Deploying	the	application	on	development,	quality	assurance	(QA),	and	production
servers

Sending	notification	e-mails	about	successful	or	failed	builds

In	the	enterprise	setup,	creating,	customizing	and	maintaining	build	scripts	is	a	project	in
its	own,	which	should	be	started	in	early	stages	of	application	development.

The	build	process	should	not	depend	on	any	particular	IDE	or	on	the	presence	of	any
guru-developer	who	knows	how	to	compile	all	the	code,	link	it	with	required	libraries,	and
deploy	it	to	the	right	computer.	Compiling,	building,	and	deploying	the	code	should	be	run
by	scripts.	A	typical	enterprise	Java	project	consists	of	more	than	one	software	module	and
hundreds	of	classes,	and	it	is	developed	by	a	team	(or	teams)	of	programmers,	who	may
use	different	IDEs.

Continuous	Integration	(CI)	is	a	practice	that	requires	developers	to	check	the	code	into	a
code	repository	several	times	a	day,	and	every	check-in	may	initiate	a	new	automated
build	of	the	entire	project.	Besides,	there	could	be	scheduled	builds	that	run	nightly	or
weekly	regardless	of	whether	the	new	code	was	checked	in.	Teams	that	practice	test-
driven	development	(TDD)	include	running	of	multiple	tests	into	the	build	script	to	get	the
reports	and	act	on	any	issues	early.	Continuous	Delivery	practice	goes	even	further	than
CI;	delivery	of	software	to	the	test	or	production	servers	is	scripted	and	automated,	too.
When	a	programmer	sees	a	“Who	broke	the	build?”	message	in	the	team’s	chat	window,
his	first	thought	is,	“It	better	not	be	me.”	

Implementing	build	scripts	improves	the	discipline	in	the	team	.	You	better	think	(or	test)
twice	before	submitting	a	piece	of	the	new	functionality	to	the	code	repository	without
testing	it	as	it	might	break	the	build.

This	lesson	starts	with	very	brief	introduction	to	the	older	build	tools	Ant	and	Maven,	and
then	you	get	familiar	with	the	modern	build	automation	tool	called	Gradle.	

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Continuous_delivery
https://www.gradle.org/

Hello	World	in	Ant	
About	fifteen	years	years	ago,	Apache	Ant	was	the	most	popular	build	tool	in	the	Java
world.	The	build	in	Ant	is	described	in	a	file	that	contains	several	targets	that	the	build
should	achieve	a	sequence—for	example,	compile,	jar,	and	run.	A	target	consists	of	tasks,
such	as		mkdir	and	javac.	

Say	you	wrote	a	class	HelloWorld,	saved	it	in	the	file	HelloWorld.java,	and	want	to
configure	an	Ant	build	process.	Create	a	file	build.xml	with	the	following	content:

<project	default="main">	
		<target	name="clean">	
					<delete	dir="build"/>	
		</target>	
		
			<target	name="compile"	depends="clean">	
					<mkdir	dir="build/classes"/>	
					<javac	srcdir="src"	destdir="build/classes"/>	
		</target>	
		<target	name="jar"		depends="compile">	
						<mkdir	dir="build/jar"/>	
						<jar	destfile="build/jar/HelloWorld.jar"	
																																											basedir="build/classes">	
								<manifest>	
										<attribute	name="Main-Class"	value="HelloWorld"/>	
								</manifest>	
					</jar>	
		</target>	
		<target	name="run"	depends="jar">	
				<java	jar="build/jar/HelloWorld.jar"	fork="true"	/>	
		</target>	
				
		<target	name="main"	depends="clean,	compile,	jar,	run">
		</target>				
</project>

This	file	describes	five	targets:	clean,	compile,	jar,		run,	and	main.	The	clean	task	deletes
the	directory	build.	The	compile	target	consists	of	two	tasks:	create	a	directory	build	and
compile	all	classes	located	in	the	directory	src		into	the	directory	build/classes.

The	jar	target	creates	a	directory	build/jar	and	then	creates	a	jar	file	from	compiled	classes
assigning	the	class	HelloWorld	as	a	runnable	program.	The	run	target	launches	the
application.	The	main	target	runs	by	default	if	you	go	to	the	directory	where	the	build.xml
is	located	and	enter	the	ant	command	without	parameters.

You	may	also	add	custom	<property>	tags	(for	example,	naming	the	source	or	destination
directories)	and	the	<path>	element	listing	JAR	files	that	otherwise	should	have	been
added	to	the	CLASSPATH	environment	variable.	

http://ant.apache.org/

Most	of	the	targets	depend	on	the	success	of	another	(see	the	depends	attributes).	The
target’s	executional	unit	fails	if	any	of	the	targets	listed	in	the	depends	attribute	fail.
Writing	such	detailed	instructions	on	what	has	to	be	done	is	known	as	the	imperative
way	of	describing	builds.		

You	can	run	one	or	more	targets	by	specifying	their	names	in	the	command	line.	For
example,	this	is	how	to	run	several	targets	with	one	command:

ant	clean	compile	jar	run

All	Java	IDEs	support	Ant,	and	you	can	run	the	target	without	even	going	to	the	command
window.	For	example,	Eclipse	has	an	Ant	view,	and	you	can	run	each	of	the	tasks	from	the
right-click	menu,	as	shown	in	Figure	36-1.

Figure	36-1:	Ant	view	in	Eclipse	IDE	

Hello	World	in	Maven
In	2004	Apache	Maven	was	released,	and	it	soon	became	the	de	facto	standard	for
building	Java	projects.	Maven	is	not	just	a	build	tool;	it’s	a	project	management
tool.	Based	on	the	project	object	model	(POM)	defined	in	one	or	more	pom.xml	files,
Maven	can	manage	the	project’s	build	process	and	pull	all	dependencies	either	from	a
local	server	or	a	central	repository.	Maven’s		functionality	can	be	extended	using
numerous	existing	plug-ins	or	with	those	you	write	on	your	own.

The	smallest	unit	of	work	in	Maven	is	called	a	goal.	You	can	start	development	with	the
generation	of	the	standard	project	structure	by	opening	a	Command	or	a	Terminal	window
and	entering	the	mvn	command	with	the	goal	archetype:generate:

mvn	archetype:generate	-DgroupId=hello.app	-DartifactId=Lesson36	
-DarchetypeArtifactId=maven-archetype-quickstart	
-DinteractiveMode=false

In	several	seconds	the	directories	and	files	shown	in	Figure	36-2	are	generated	in	the
directory	Lesson36.

Figure	36-2:	Maven-generated	project

Per	Maven’s	conventions,	the	source	code	is	located	in	the	directory	src/main/java,	and	the
compiled	code	goes	into	the	directory	target	(it	doesn’t	exist	yet).	The	file	App.java
contains	the	Java	class	with	the	code	to	print	Hello	World	on	the	console.	The	file
AppTest.java	creates	the	code	for	unit	testing	using	the	JUnit	framework	covered	in
Lesson	35.	The	content	of	the	generated	file	pom.xml	is	shown	here:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	
														xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
														xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	
														http://maven.apache.org/maven-v4_0_0.xsd">

http://maven.apache.org/
http://search.maven.org/

		<modelVersion>4.0.0</modelVersion>
		<groupId>hello.app</groupId>
		<artifactId>Lesson36</artifactId>
		<packaging>jar</packaging>
		<version>1.0-SNAPSHOT</version>
		<name>Lesson36</name>
		<url>http://maven.apache.org</url>
		<dependencies>
				<dependency>
						<groupId>junit</groupId>
						<artifactId>junit</artifactId>
						<version>3.8.1</version>
						<scope>test</scope>
				</dependency>
		</dependencies>
</project>

With	Maven	you	can,	but	don’t	have	to,	specify	step-by-step	instructions	for	the	build
process.	You	describe	the	project	in	a	declarative	way	by	specifying	packaging	and
dependencies.	You	described	what	has	to	be	done,	but	not	how	to	do	it	as	it’s	done	with
Ant.	For	example,	when	you	declare	that	a	<packaging>	element	of	the	project	is	JAR,
WAR,	or	EAR,	you	don’t	have	to	specify	detailed	executional	units	because	Maven
automatically	creates	a	number	of	goals	that	have	to	be	executed	to	create	a	requested
packaging.			

Maven	promotes	the	convention	over	configuration	paradigm,	where	each	project	has	a
standardized	layout.	For	example,	Maven	knows	that	the	source	code	of	the	project	is
located	in	the	directory	src/main/java.	Standard	conventions	work	well	unless	you	need	to
create	build	scripts	for	several	modules	that	use	different	conventions.	Customizing	builds
requires	writing	Maven	plug-ins	so	the	final	build	consists	of	a	mix	of	XML	and	scripts
written	in	the	Java	or	Groovy	languages.	

The	results	of	a	Maven	build	are	called	artifacts.	In	the	example,	the	artifact	named
Lesson36	depends	on	the	artifact	junit	of	version	3.8.1	(the	current	version	of	junit	is
4.12).

Maven’s	build	life	cycle	consists	of	phases	(such	as	install	and	clean)	,	which	can	run
goals	(for	example,	clean:clean	or	dependency:copy-dependencies).	To	build	the	project,
you	need	to	go	to	the	directory	that	contains	pom.xml	and	execute	the	phase	package,
which	compiles	and	deploys	it	according	to	the	<packaging>	tag:

mvn	package

The	phase	package	compiles	and	creates	the	JAR	file,	attaching	the	prefix	specified	in
<version>	to	the	filename.	You	can	find	this	file	in	the	directory	target	as	shown	in	Figure
36-3.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

Figure	36-3:	The	target	directory	after	running	the	phase	package

If	you	didn’t	want	to	package	the	compiled	classes	into	a	JAR,	you	could	just	run	the	mvn
compile	command	and	Maven	would	compile	the	classes	into	the	target/classes
directory.	To	see	the	Hello	World	message	on	the	console	run	the	following	command:

java	-cp	target/Lesson36-1.0-SNAPSHOT.jar	hello.app.App

To	run	tests	that	were	generated	in	the	test	directory	run	the	verify	goal:	

mvn	verify

Both	Ant	and	Maven	describe	the	control	flow	of	the	build	in	XML	format.	Because	XML
is	not	a	programming	language,	the	ability	to	customize	and	adapt	builds	for	changing
environments	may	not	be	easy.	In	our	Hello	World	projects,	XML	files	were	rather	small,
but	in	real-world	projects	they	could	consist	of	hundreds	of	lines.	

Gradle	Basics
Gradle	is	written	in	Java,	and	it	doesn’t	use	XML	to	describe	builds.	Gradle	uses	a
Domain	Specific	Language	(DSL)	based	on	Groovy,	which	is	a	dynamic	language	that
runs	in	Java	Virtual	Machine	(JVM).	The	build	script	is	written	in	a	text	file,	which	has
a	.gradle	extension.	But	this	file	is	not	just	data	formatted	in	XML	or	another	way.	It’s	a
program.	

The	main	Gradle	concepts	are	projects	and	tasks.	By	default,	the	name	of	the	directory
where	the	build	script	is	located	is	a	name	of	the	project.	Each	build	consist	of	tasks.	A
task	is	an	equivalent	of	the	Ant’s	target.	A	task	consists	of	actions.	Gradle	may	decide	to
run	certain	tasks	in	parallel	or	not	run	at	all.	For	example,	if	the	source	code	has	not	been
changed,	Gradle	won’t	run	the	compile	task.

Installing	Gradle	is	a	pretty	simple	process	described	in	these	installation	instructions.	Just
download	and	unzip	the	file	with	the	latest	Gradle	release	and	add	the	Gradle’s	bin
directory	to	the	PATH	environment	variable	on	your	computer.	

Gradle	has	a	user	guide	in	both	HTML	and	PDF	formats,	which	you	can	find	in	the
docs/userguide	directory	of	your	Gradle	install.	There	is	also	a	javadoc	for	the	Gradle	API
in	the	directory	docs/javadoc.	There	you	can	find	a	description	of	interfaces	Project,	Task,
	Action,	and	many	others.

Similarly	to	Maven,	Gradle	uses	a	certain	convention	about	the	default	project	directory
layout	(it	can	be	customized).	Because	we’ll	be	creating	a	Java	build,	the	default	location
of	the	Java	source	files	is	the	directory	src/main/java.		The	directory	src/main/resources	is
a	default	location	for	all	project	resources	that	are	usually	packaged	inside	a	JAR	file	with
compiled	Java	classes.	By	default,	the	build	output	goes	into	the	directory	called	build.

The	next	section	starts	familiarizing	you	with	Gradle	by	showing	you	how	to	compile	and
run	a	HelloWorld	class	that	should	print	Hello	World	on	the	system	console.

Hello	World	in	Gradle
In	this	example	you’re	going	to	place	the		HelloWorld	class	in	the	package	hello.	Start
with	creating	a	directory	src/main/java/hello	and	save	the	file	HelloWorld.java	there.

Building	Hello	World

Although	core	Gradle	doesn’t	provide	much	functionality,	you	can	use	it	as	a	build	tool	for
different	programming	languages.	All	language-specific	features	are	provided	as	plug-ins,
and	you	add	only	those	that	are	needed	for	your	project.	Some	plug-ins	are	available	out	of
the	box,	and	you	can	extend	Gradle	by	writing	your	own	plug-ins.	

Here’s	a	simple	script,	build.gradle,	that	can	perform	several	tasks.	In	particular,	it	can
compile	Java	classes	located	in	the	directory	src/main/java:

apply	plugin:	'java'

The	file	build.gradle	should	be	located	in	the	same	directory	as	src.	To	run	the	build,	open
the	Command	or	Terminal	window	in	this	directory	and	run	the	build	task:

https://gradle.org/docs/current/userguide/installation.html

gradle	build

Although	you’ve	never	declared	the	build	task	in	build.gradle,	it’s	already	a	part	of	the
Java	plug-in.	You’d	need	to	read	the	documentation	to	learn	what	a	specific	plug-in	can	do
for	you.	For	example,	the	documentation	for	the	java	plug-in	describes	22	tasks	(for
example,	clean,	compileJava,	jar,	and	build).		The	test	task	runs	the	tests	created	with
JUnit	covered	in	Lesson	35.	After	running	the	build	task,	my	Terminal	window	looked
like	Figure	36-4.

Figure	36-4:	Running	the	Gradle	build	command	the	first	time	

Note	that	the	build	task	initiated	a	series	of	other
tasks:	compileJava,	processResources,	classes,	jar,	and	so	on	.	Actually,	some	of	the	tasks
were	marked	as	UP-TO-DATE—they	were	not	run	because	you	don’t	have	any	resources
under	src/main/resources	or	test	classes	under	src/test/java.	You	also	haven’t	included
another	plug-in	that	can	check	the	quality	of	your	code.	Now	run	the	Gradle	build	task
again.	The	output	looks	a	little	different,	as	shown	in	Figure	36-5.

Figure	36-5:	Running	Gradle	build	again

This	time	Gradle	had	nothing	to	do	because	everything,	including	compiled	classes	and
the	JAR,	was	up	to	date.	This	feature	is	called	incremental	build—Gradle	doesn’t	run	the
tasks,	which	would	produce	the	same	results.

The	compileJava	task	supports	incremental	Java	compilation,	which	saves	time	by
compiling	only	those	classes	that	have	been	modified.

http://www.gradle.org/docs/current/userguide/java_plugin.html

I	started	the	build	having	only	class	HelloWorld	in	the	folder	src/main/java/hello.
Gradle’s	build	task	has	created	the	build	directory	with	the	content	shown	in	Figure	36-6.

Figure	36-6:	The	Hello	World	project	after	running	the	Gradle	build	task	

The	classes	directory	contains	the	compiled	classes,	and	the	lib	directory	contains	the	JAR
file	with	HelloWorld.class	inside	(it	was	created	by	the	task	jar).	

Specifying	the	Build	Filename
By	default,	Gradle	assumes	that	the	name	of	the	build	script	is	build.gradle.	But	if
you’d	like	to	keep	more	than	one	build	file	in	the	same	directory,	you	can	always	use
the	-b	command-line	option	and	enter	the	build	filename;	for	example:

gradle	-b	mySecondBuildFile.gradle	build

Running	Hello	World

You	can	run	the	compiled	HelloWorld	class	as	any	other	Java	program	by	entering	the
following	command:

java	-cp	build/classes/main	hello.HelloWorld

On	the	other	hand,	you	can	add	to	build.gradle	the	application	plug-in	that	has	tasks	to	run
programs.	Because	your	project	may	have	multiple	classes,	you	also	need	to	specify	the
name	of	the	class	with	the	main()	method	that	you	want	to	run:

apply	plugin:	'java'
apply	plugin:	'application'
mainClassName="hello.HelloWorld"

Now	enter	gradle	run	on	the	command	line,	and	you	see	the	Hello	World	message	printed
on	the	console.	

Next,	configure	the	manifest	property	of	the	jar	object	(yes,	Gradle	tasks	are	objects).	To
make	the	JAR	executable,	it	has	to	include	the	manifest	file	that	specifies	the	class	with
the	main()	method	in	our	application.	In	the	Hello	World	example,	you	have	a	single	class,
which	has	the	main()	method.	But	in	larger	projects	you	have	multiple	files,	and	only	one
of	them	is	the	main	one.	The	following	build	file	takes	care	of	the	manifest:

apply	plugin:	'java'
apply	plugin:	'application'
mainClassName="hello.HelloWorld"
jar	{
		manifest	{
				attributes	'Main-Class':	'hello.HelloWorld'
		}
}

After	running	the	build	task,	you	can	go	to	the	build/libs	directory	and	run
the	HelloWorld	application	as	follows:

java	-jar	HelloWorld.jar

If	you	want	to	see	the	content	of	the	manifest	file	that	Gradle	created	and	placed	inside	the
JAR,	visit	the	build/tmp/jar	directory	where	you’ll	find	a		MANIFEST.MF	file	with	the
following	content:

Manifest-Version:	1.0
Main-Class:	hello.HelloWorld

Your	build.gradle	file	looks	a	lot	shorter	than	the	build.xml	shown	in	the	section	Hello
World	with	Ant,	but	with	Ant	it’s	easier	to	understand	what	the	build	process	can	do.	On
the	other	hand,	on	large	projects	you	need	to	write	lots	of	Ant	targets	whereas	Gradle
plug-ins	include	multiple	tasks	out	of	the	box.

Changing	Gradle	Conventions
Software	developers	may	be	accustomed	to	certain	project	layouts,	which	may	not
necessarily	match	Gradle	default	conventions.	This	section	shows	you	how	to	change
Gradle’s	conventions	on	where	the	sources	and	resources	are	located,	and	where	the
output	files	should	go.	

Say	that	I	want	to	keep	the	Java	source	code	in	the	src	directory,	and	not	src/main/java,
which	is	Gradle’s	default.	I	want	to	keep	additional	resource	files	in	the	resources
directory	instead	of	src/main/resources.	I	also	want	to	change	my	output	directory
from	build	to	bin	.		

The	SourceSet	API	enables	you	to	change	Gradle	conventions	of	the	Java	projects.	A
source	set	is	a	concept	of	a	Java	plug-in	that	represents	a	group	of	files	(classes	and
resources)	that	are	compiled	and	executed	together.	The	Java	plug-in	defines	two	standard
source	sets:	main	and	test.	Because	you	haven’t	written	any	test	classes;	you	can	just
redefine	the	directory	for	the	source	set	main.

For	illustration	purposes,	this	example	also	shows	you	how	to	have	Gradle	create	the	libs
directory	as	a	sibling	to	src	and	binusing	the	property	libsDirName.	Use	the	same
HelloWorld	example	to	try	this	out.	I’m	using	the	build.gradle	from	the	previous	section
and	adding	a	sourceSets	code	block	to	it:

apply	plugin:	'java'
apply	plugin:	'application'
mainClassName="hello.HelloWorld"
jar	{
		manifest	{
				attributes	'Main-Class':	'hello.HelloWorld'
		}
}
sourceSets{
			main{
					java{
								srcDirs=['src']
								output.classesDir='bin'
					}
					resources	{
								srcDir	'resources'
					}
			}
}
libsDirName='../libs'

Now	move	hello/HelloWorld.java	from	src/main/java	to	src	and	run	the	preceding	build	to
see	the	bin	and	libs	directory	at	the	same	level	as	src,	as	shown	in	Figure	36-7.

http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.SourceSet.html

Figure	36-7:	Running	the	build	after	changing	Gradle’s	defaults

I’m	not	encouraging	you	to	change	the	default	project	layout,	but	in	some	cases	you	need
to	introduce	Gradle	in	the	existing	projects	with	a	different	directory	structure,	so	having
this	type	of	flexibility	helps.

Managing	Dependencies	with	Gradle
Real-world	Java	projects	often	depend	on	external	libraries.	For	example,	the	JDBC
example	from	Lesson	21	wouldn’t	work	without	the	Derby	DB	drivers	packaged	in	the
file	derbyclient.jar.	Hence,	to	create	a	build	script	for	the	application	that	works	with
Derby	DB,	you	need	to	add	this	JAR	to	the	build.gradle	script.

But	knowing	what	JAR	files	to	add	is	not	enough.	You	also	need	to	specify	where	these
files	are	located.		Accordingly,	the	dependencies	code	block	answers	the	what	question,
and	repositories	points	at	the	location	where	these	files	are	stored.

Dependency	Management	is	well	described	in	the	Gradle	tutorial,	but	this	section	shows
you	how	to	work	with	repositories	and	dependencies	while	working	on	a	concrete
example,	namely	the	EmployeeList	program	from	Lesson	21.	This	program	retrieves	a	list
of	employees	from	the	Derby	DB	database.	Start	with	creating	a	directory	derbySample;
the	build.gradle	goes	there.	Then	create	subdirectories	src/main/java	and	copy	to	there	the
file	EmployeeList.java	from	Lesson	21:

//	Class	EmployeeList	displays	Employees	from	the	table	EMP	
//	using	JDBC	drivers	of	type	4
import	java.sql.*;
class	EmployeeList	{
		public	static	void	main(String	argv[])	{
			
			String	sqlQuery	=	"SELECT	*	from	Employee";	
			//	Open	autocloseable	Connection,	Statement	
			//	and	get	the	result	set
			try	(Connection	conn	=	DriverManager.getConnection(
																										"jdbc:derby://localhost:1527/Lesson21");
								Statement	stmt	=	conn.createStatement();	
								ResultSet	rs	=	stmt.executeQuery(sqlQuery);)	{		
						//	Process	the	result	set	-	print	Employees
						while	(rs.next()){	
									int	empNo	=	rs.getInt("EMPNO");
												String	eName	=	rs.getString("ENAME");
									String	job	=	rs.getString("JOB_TITLE");
									System.out.println(""+	empNo	+	",	"	+	eName	+	",	"	+	job);
						}
			}	catch(SQLException	se)	{
						System.out.println	("SQLError:	"	+	se.getMessage	()
											+	"	code:	"	+	se.getErrorCode	());
			}	catch(Exception	e)	{
						System.out.println(e.getMessage());		
			}	
	}
}

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

In	the	directory	derbySample,	create	the	gradle.build	file	that	looks	like	this:

apply	plugin:	'java'
apply	plugin:	'application'
mainClassName="EmployeeList"

Running	the	task	gradle	build	produces	no	errors	and	creates	the	file	EmployeeList.class
in	the	directory	build/classes/main	and	derbySample.jar	in	the	directory	build/libs.	But
when	I	executed	the	command	gradle	run	it	gave	me	the	runtime	exception	“No	suitable
driver,”	as	shown	in	Figure	36-8.

Figure	36-8:	Running	Gradle	results	in	an	exception

You	know	why:	Java	could	not	find	JDBC	drivers	to	work	with	Derby	DB.	In	other	words,
the	application	EmployeeList	depends	on	the	file	derbyclient.jar.,	which	was	not	included
in	the	CLASSPATH.	I	broke	the	build!	Let’s	fix	it	by	adding	repositories	and
dependencies.

Repositories
Repositories	of	the	code	that	a	project	depends	on	can	be	local	or	remote.	You	may	have	a
dedicated	server	within	the	organization	where	all	third-party	and	homemade	JARs	are
located.	In	another	scenario,	the	JAR	(or	JARs)	you	project	may	be	created	as	a	part	of
another	project	build	and	published	in	a	predefined	location.	

There	are	many	software	source	code	hosting	facilities	on	the	Internet.	Some	of	them	are
public,	and	some	are	private.	Some	of	them	host	source	code,	and	some	host-compiled
code	(or	binaries).	In	the	Java	world,	the	most	popular	repositories	of	the	compiled	code
are	Maven	Central,	Apache	Ivy,	and	Bintray	by	JFrog.	This	section	uses	Maven	Central	to
look	for	the	derbyclient.jar.	A	quick	search	in	Maven	Central	produces	the	result	shown	in
Figure	36-9.

Figure	36-9:	Derby	Client	at	Maven	Central

Every	artifact	in	Maven	Central	has	such	attributes	as	group	id,	artifact	id,	and	version.	If
you	click	on	the	Latest	Version	link,	you	find	a	detailed	information	about	this	artifact,	and
you	can	even	copy	the	string	with	dependencies	for	automatic	download	of	this	artifact.
You	use	group	id,	artifact	id,	and	version	in	the	dependencies	section	of	the	build	in	the

http://en.wikipedia.org/wiki/Comparison_of_source_code_software_hosting_facilities

next	section.	For	now,	just	add	Maven	Central	in	the	repositories	block	of	the	build	script:

apply	plugin:	'java'
apply	plugin:	'application'
mainClassName="EmployeeList"
repositories{			
			mavenCentral()	
}

I’ll	use	Maven	Central	repository,	but	if	you	want	to	store	the	artifacts	in	one	of	your
company	servers,	you	could	specify	it	as	follows:

repositories{			
				mavenLocal()
}

By	default,	Gradle	uses	the	directory	USER_HOME/.m2/repository	on	the	local	computer.
This	location	can	be	changed	in	the	file	settings.gradle	(see	Gradle	documentation	for
details).

You’re	done	with	the	first	part.	Your	build	script	knows	where	to	look	for	project
dependencies,	which	are	covered	in	the	next	section.

Dependencies	and	Configurations
Your	build	process	may	depend	on	certain	JARs	during	different	phases	of	its	control	flow.
In	some	cases,	your	code	won’t	even	compile	if	a	certain	JAR	is	not	available	in	the
CLASSPATH.	For	example,	when	you’ve	been	creating	Dynamic	Web	Projects	in	Eclipse,
all	references	to	the	Java	EE	classes,	interfaces,	or	annotations	(for	example,	HttpServlet
	or	@Stateless)	were	known	to	the	project	during	the	compilation.	The	reason	being	that
when	Eclipse	creates	a	Dynamic	Web	Project	for	a	specific	target	server,	it	adds	all	JARS
(dependencies)	to	the	project.	Open	the	Build	Path	of	any	of	your	GlassFish	Eclipse
projects,	and	you’ll	find	there	an	entry	called	GlassFish	System	Libraries	that	includes
dozens	of	JARs.		

In	some	cases	(as	with	the		EmployeeList	program),	the	code	compiles	but	generates
errors	during	the	run	time.	The	same	applies	to	compiling	and	running	test	programs.	

In	Gradle,	when	you	declare	a	dependency,	you	need	to	specify	the	configuration	where
this	dependency	should	be	used.	Run	the	task	gradle	dependencies	in	the	Command
window	to	see	a	list	of	available	configurations	for	Java	projects,	as	shown	in	Figure	36-
10.

As	you	can	see,	dependencies	can	be	configured	for	compilation,	run	time,	archiving,	and
testing	tasks.	Add	the	dependencies	section	to	your	gradle.build	from	the	derbySample
directory:

apply	plugin:	'java'
apply	plugin:	'application'

http://www.gradle.org/docs/current/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/current/userguide/java_plugin.xhtml#tab:configurations

mainClassName="EmployeeList"
repositories{			
			mavenCentral()	
}
dependencies	{
		runtime	group:	'org.apache.derby',	name:	'derbyclient',	
																		version:	'10.11.1.1'
}

If	you	execute	the	gradle	run	task	now,	the	“No	suitable	driver”	exception	isn’t	thrown.
The	task	run	downloads	the	dependency	from	Maven	Central	and	the	JDBC	driver	is
found.	You	get	the	server	connection	error	because	the	Derby	DB	server	is	not	running,
but	it’s	a	different	problem	to	address	(see	Figure	36-11).

Figure	36-10:	Running	Gradle	dependencies	shows	available	configurations

Figure	36-11:	Gradle’s	run	task	downloads	dependency	derbyclient-10.11.1.1.jar

	The	shorter	way	of	declaring	the	same	dependency	would	look	like	this:

dependencies	{
		runtime	'org.apache.derby:derbyclient:10.11.1.1'
}

If	you	wouldn’t	need	to	specifically	request	the	version	10.11.1.1,	you	could	request	any
version	of	the	derbyclient.jar	that’s	greater	than	10:

dependencies	{
			runtime	'org.apache.derby:derbyclient:10+'
}

Gradle	caches	the	downloaded	artifacts	and	stores	them	in	your	home	directory	under	the
.gradle	directory.	On	my	computer,	I	found	the	downloaded	file	derbyclient-10.11.1.1.jar
in	the	following	directory:

/Users/yfain11/.gradle/caches/modules-2/files-2.1/org.apache.derby

If	you	want	to	be	able	to	print	the	exact	location	of	the	cached	runtime	artifacts	on	your
computer,	you	can	add	the	task	showMeCache	(the	name	can	be	different)	to	your
gradle.build	file:

task	showMeCache	<<	{
		configurations.runtime.each	{	println	it	}
}

Running	gradle	showMeCache	prints	the	location	of	the	derbyclient	JAR.	Similarly,	the
task	printing	the	cache	content	of	the	compile	configurations	could	look	like	this:

task	showMeCache	<<	{
		configurations.compile.each	{	println	it	}
}

Packaging	Dependencies	Inside	a	JAR

Knowing	that	dependencies	are	cached	in	the	.gradle	directory	helps	if	you	want	to	know
where	they	are	located	during	development,	but	if	you’re	deploying	the	debrySample.jar
on	another	computer	the	derbyclient	JAR	won’t	be	there.	At	this	point	the	derbySample.jar
includes	only	one	file:	EmployeeList.class.	It	doesn’t	even	have	a	manifest	file	making
this	JAR	executable.	You	can	customize	and	add	the	jar	task	to	your	build	script	so	it
packages	the	derbyclient-10.11.1.1.jar	inside	derbySample.jar.

So	far	you	have	Derby	client	as	a	runtime	dependency.	But	the	derbySample.jar	is	created
before	you	run	the	application.	So	specify	your	dependency	earlier	in	the	compile
configuration.	This	way	the	build	task		downloads	it	during	the	project	compilation.	You
also	need	to	customize	the	jar	section	to	copy	the	dependencies	inside	the	output	jar.	This
is	how	I	did	it:

apply	plugin:	'java'
apply	plugin:	'application'

mainClassName="EmployeeList"
repositories{			
			mavenCentral()	
}
dependencies	{
			compile	'org.apache.derby:derbyclient:10+'
}
jar	{
			from	configurations.compile.collect	{entry	->	zipTree	entry}
			manifest	{attributes	'Main-Class':	'EmployeeList'
		}
}

It	takes	just	one	line	to	loop	through	the	file	hierarchies	of	all	compile	configurations.	In
this	case,	the	file	hierarchy	represents	the	content	of	derbyclient-10.11.1.1.jar,	and	the
following	action	extracts	all	its	content:

from	configurations.compile.collect	{zipTree	it}

The	method	collect	gets	a	reference	to	all	compile	configurations,	and	the	zipTree	method
extracts	the	entire	file	hierarchy	from	the	file	in	a	zip	format.	Then	the	jar	task	includes
these	file	hierarchies	inside	the	output	JAR.	After	running	gradle	build	I	unzipped	the
derbySample.jar.	It	included	all	derby	classes	that	were	initially	located	inside	the
file	derbyclient-10.11.1.1.jar,	as	shown	in	Figure	36-12.

Figure	36-12:	The	content	of	the	derbySample.jar

Now	the	derbySample.jar	is	a	self-contained	application,	and	if	you	open	a	Command
window	and	change	the	directory	to	build/libs,	you	can	run	the	application	by	running	the

standard	Java	command:

java	-jar	derbySample.jar

The	file	derbySample.jar	can	be	copied	on	any	server	now.	You	can	read	about	available
file	operations	in	Chapter	16	of	the	Gradle	User	Guide.

If	you	really	want	to	see	the	employee	list	retrieved	from	the	database	created	in	Lesson
21,	start	Derby	DB	server	in	a	separate	command	window	and	rerun	the	preceding
command.	Figure	36-13	shows	my	result.

Figure	36-13:	Getting	employees	from	Derby	DB	database	

Gradle	Wrapper
When	a	team	of	programmers	works	on	a	project,	you	may	run	into	a	situation	when
developers	have	different	versions	of	Gradle	run	time.	If	a	new	developer	joins	the
team,	she	may	not	even	have	Gradle	installed	yet.	The	Gradle	Wrapper	allows	to	run
build	scripts	without	worrying	about	incompatible	versions	of	the	runtime.	The
Wrapper	ensures	that	the	build	script	runs	with	a	specific	version	of	Gradle.	It
automatically	downloads	and	installs	the	proper	version	of	Gradle	if	need	be.

You	need	to	create	the	wrapper	task.	For	example:

task	wrapper	(type:	Wrapper)	{	
				gradleVersion	=	'2.2.1'
}

Then	run	it:

gradle	wrapper

This	creates	two	scripts	for	executing	Gradle	commands—gradlew	and	gradlew.bat—
and	a	directory	gradle/wrapper	with	two	files	in	it:	gradle-wrapper.jar	and	gradle-
wrapper.properties.	The	JAR	file	contains	the	library	to	download	and	unpack
Gradle’s	distribution.	The	properties	file	contains	the	wrapper’s	metadata.	If	you
already	have	the	right	version	of	Gradle	running,	the	wrapper	task	won’t	do	anything.

After	all	these	files	have	been	added	to	your	project,	you	should	use	gradlew	instead
of	gradle	to	execute	all	your	build	tasks.	When	a	person	without	Gradle	(or	with	the
wrong	version)	runs	any	task	for	the	first	time	using	the	gradlew	script,	the	Gradle
distribution	is	downloaded	and	unpacked	in	.gradle/wrapper/dist	in	her	home
directory.

http://www.gradle.org/docs/current/userguide/working_with_files.html
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html

Building	a	WAR	file

If	you	need	to	compile	a	web	application	and	package	it	in	a	WAR	file,	you	need	to	add
the	war	plug-in	(it	extends	thejava	plug-in)	to	your	build	file:

apply	plugin:	'war'

But	your	code	becomes	dependent	on	the	availability	of	certain	JARs	that	come	with	your
Java	EE	server.	In	Eclipse	IDE,	when	you	create	a	Dynamic	Web	Project	and	select
GlassFish	(or	any	other	Java	server)	as	a	target	run	time,	and	all	required	JARS	become
automatically	available	for	your	project	during	the	compilation	and	run	time.	But	Gradle
doesn’t	use	IDE	settings,	and	it	needs	to	know	where	these	files	are	located.	Say	that	your
web	application	has	the	following	Java	servlet:

import	javax.servlet.*;
import	javax.servlet.annotation.*;
@WebServlet("/books")
public	class	FindBooksServlet	extends	HttpServlet	{
			//	the	servlet's	code	goes	here
}

Unless	you	add	a	repository	and	dependencies	section	to	your	build	script,	this	servlet
won’t	compile	because	it	won’t	find	the	declaration	of	the	annotation	@WebServlet	and
the	class	HttpServlet.	If	you	run	the	command	gradle	dependencies,	you	see	that	in
addition	to	all	configurations	available	for	the	java	plug-in,	the	war	plug-in	adds	two
more:	providedCompile	and	providedRuntime.	

The	providedCompile	configuration	is	for	specifying	an	additional	CLASSPATH	for
libraries	that	shouldn’t	be	part	of	the	WAR	file.	The	word	provided	means	that	these
libraries	are	provided	in	the	environment	where	the	task	runs.	providedRuntime	has	a
similar	use,	but	it	adds	a	CLASSPATH	for	the	run	time.	Add	providedCompile	and	a
repository	to	the	build	file:	

apply	plugin:	'war'
repositories	{
				mavenCentral()
}
dependencies	{
				providedCompile	'javax.servlet:javax.servlet-api:3.1+'
}

If	you	run	the	gradle	war	command	now,	the	JAR	with	servlet	3.1	API	is	downloaded,	the
code	compiles,	and	the	WAR	(not	JAR)	file	is	created	in	the	directory	build/libs	of	your
project.	The	size	of	this	file	is	rather	small	as	it	contains	only	the	application	code.

If	you’d	like	to	add	not	only	the	servlets	but	the	entire	Java	EE	API,	the	dependencies
section	could	look	like	this:

dependencies	{

				providedCompile	'javax:javaee-api:7+'
}

Bintray	Repository
In	all	code	samples,	I’ve	been	using	Maven	Central	as	a	repository.	However,	instead
of	mavenCentral()	you	could	use	jcenter()	if	you’re	getting	the	JARs	from	Bintray.	

https://bintray.com/

Using	Gradle	in	Eclipse	IDE
Gradle	supports	all	major	Java	IDEs.	Each	IDE	has	its	own	proprietary	project	structure,
which	depends	on	the	project	type.	For	example,	when	you	create	a	Dynamic	Web	Project
in	Eclipse,	it	creates	certain	directories	(for	example,	WebContentand	WEB-INF),	which
would	not	be	created	for	a	regular	Java	project.	To	add	a	JAR	to	the	Java	CLASSPATH,
you	open	project	properties	and	add	the	required	file	using	the	Project	Build	Path	window.

Eclipse	stores	the	project	structure	in	the	files	.project,	.classpath,	and	in	an	optional
directory	.settings	.	If	a	zip	file	or	a	directory	contains	an	Eclipse	project	file,	you	can
create	an	Eclipse	project	by	selecting	File	→	Import	→	General	→	Existing	Project	into
Workspace.	

The	creators	of	Gradle	added	support	of	Eclipse	projects	in	the	form	of	Gradle	plug-ins	for
Eclipse,	which	are	covered	in	the	next	section.

Gradle	Eclipse	Plug-ins
Gradle	comes	with	two	Eclipse	plug-ins:	eclipse	and	eclipse-wtp:

The	eclipse	plug-in	is	used	for	creating	regular	Eclipse	Java	projects.	

The	eclipse-wtp	plug-in	is	used	for	creating	Dynamic	Web	Projects.	Internally	it	uses
the	settings	from	Web	Toolkit	Platform—hence	the	wtp	suffix.	If	you	decide	to	use
eclipse-wtp,	it	supports	all	the	tasks	available	in	the	eclipse	plug-in,	too.

To	see	the	eclipse	plug-in	in	action,	create	a	copy	of	the	HelloWorld	directory	from
hellogradle	and	call	it	HelloWorldEcipse.	It	has	the	HelloWorld	class	in	the	directory
src/main/java/hello.	The	build.gradle	file	should	have	the	following	content:

apply	plugin:	'java'
apply	plugin:	'eclipse'

Run	the	gradle	eclipse	command,	and	it	generates	two	new	files—.classpath	and	.project
—and	the	directory	.settings.	Open	Eclipse	and	select	File	→	Import
→	General	→	Existing	Projects	into	Workspace,	and	point	at	the	HelloWorldEclipse	as	the
root	directory.	Eclipse	imports	the	project,	and	you	can	run	it	as	you	did	all	other	projects.
Figure	36-14	shows	how	the	imported	project	looks	on	my	computer.

http://www.gradle.org/docs/current/userguide/eclipse_plugin.html
https://www.eclipse.org/webtools/

Figure	36-14:	Gradle-generated	project	in	Eclipse

A	simple	build.gradle	file	for	generating	an	Eclipse	Dynamic	Web	Project	can	look	like
this:

apply	plugin:	'war'
apply	plugin:	'eclipse-wtp'

The	war	plug-in	extends	the	java	plug-in	and	adds	support	for	assembling	WAR	files	for
web	application	deployments.	

To	generate	an	Eclipse	Dynamic	Web	Project	you	still	need	to	run	the	gradle	eclipse
command,	but	the	content	of	generated	files		.project	and		.classpath	will	be	different.	In
the	“Try	It”	section	of	this	lesson	you	generate,	import,	and	deploy	an	Eclipse	project
using	the	eclipse-wtp	plug-in.	

If	you	need	to	regenerate	Eclipse	project	files	from	scratch,	run	the	gradle	cleanEclipse
command	to	delete	the	existing	project	files.

Eclipse	IDE	and	Gradle
Gradle	supports	IDEs,	and	IDEs	support	Gradle.	Gradle	Integration	for	Eclipse	is	an
Eclipse	IDE	plug-in	created	by	Pivotal.	It	allows	creating	and	importing	Gradle	projects,
and	you	can	run	builds	right	from	the	Eclipse	IDE.			

After	installing	the	plug-in,	I	imported	the	HelloWorldEclipse	project	from	the	previous
section	by	using	File	→	Import	→	Gradle	→	Gradle	Project.	The	right-click	menu	on	the
build.gradle	now	has	an	option	Run	As	→	Gradle	Build.	You	can	either	manually	enter	the
task	to	run	or	open	the	tasks	view	by	selecting	Window	→	Show	View	→	Gradle
→	Gradle	Tasks.	Figure	36-15	shows	a	Gradle	Task	View	in	Eclipse	for	my	imported
project	HelloWorldEclipse.

http://www.gradle.org/docs/current/userguide/war_plugin.html
http://marketplace.eclipse.org/content/gradle-integration-eclipse-44

Figure	36-15:	Gradle	Tasks	View	in	Eclipse	IDE

You	can	select	and	execute	a	task	by	pressing	the	green	play	button	on	the	status	bar	on
the	top.	

Eclipse	Marketplace	has	yet	another	product	that	includes	Gradle	Integration.	It’s	called
Gradle	ID	Pack,	and	it	offers	additional	utilities	for	code	block	highlighting,	an	archive
editor,	and	more.		

If	Gradle	Integration	for	Eclipse	Won’t	Install
If	you	run	into	issues	during	the	Gradle	Integration	plug-in	installation,	turn	off	all
Spring-related	options	on	the	confirmation	window	displayed	during	install.	

This	concludes	my	introduction	to	Gradle.	I	haven’t	covered	the	subject	of	creating
custom	tasks	in	Gradle.	For	this	and	other	Gradle	features,	please	refer	to	the	book
Building	and	Testing	with	Gradle,	which	is	available	as	a	free	online	version	.

http://marketplace.eclipse.org/content/gradle-ide-pack
http://gradleware.com/registered-access?content=books%2Fbuilding-and-testing%2F

Try	It
In	this	assignment	you	need	to	create	and	use	a	Gradle	build	script	to	generate	an	Eclipse
Dynamic	Web	Project.	Then	you	import	it	into	the	Eclipse	IDE,	deploy	it	under	GlassFish,
and	confirm	that	the	web	application	works.	In	this	assignment	you	use	the
FindBooksServlet	class	from	Lesson	26.	

Lesson	Requirements
You	should	have	Java,	GlassFish,	and	Gradle	installed.

You	can	download	the	code	and	resources	for	this	“Try	It”	from	the	book’s	web	page
at		www.wrox.com/go/javaprog24hr2e.	You	can	find	them	in	the	Lesson36	folder	in	the
download.

Step-by-Step
1.	 Create	a	directory	FindBookGradle	with	two	subdirectories:	src	and	WEB-INF.

2.	 Inside	the	directory	FindBookGradle	create	the	build.gradle	file	with	the	following
content:

apply	plugin:	'war'
apply	plugin:	'eclipse-wtp'

3.	 Under	the	src	directory,	create	subdirectories	main	and	java	and	copy	the	file
FindBooksServlet.java	from	the	Lesson	26	code	samples	into	src/main/java.

4.	 In	the	Command	or	Terminal	window,	change	the	directory	to	FindBookGradle	and
run	the	command	gradle	eclipse.	After	this	task	completes,	you	find	there
files	.classpath,	.project,	and	the	directory	.settings.

5.	 Open	Eclipse	in	the	Java	EE	perspective.	You	should	have	GlassFish	server	configured
there.	Select	File	→	Import	→	General	→	Existing	Projects	into	Workspace.
Select	FindBookGradle	as	a	root	directory	and	press	the	Finish	button.	The	project	is
imported	to	Eclipse.

6.	 In	the	project	properties	menu,	select	Targeted	Runtimes,	and	then	select	GlassFish	4
as	your	server.	Click	OK.

7.	 Right-click	the	GlassFish	server	in	the	Servers	view	and	deploy	the	project
FindBookGradle	using	the	Add	and	Remove	menu.	Because	you	are	deploying	the
copy	of	the	FindBookServlet	from	Lesson	26,	make	sure	that	the	project	Lesson26	is
not	deployed	in	GlassFish.

8.	 Enter	the	URL	http://localhost:8080/FindBookGradle/books	in	your	web	browser,	and
you	should	see	the	message	Hellow	from	FindBooks.	

http://www.wrox.com/go/javaprog24hr2e
http://localhost:8080/FindBookGradle/books

TIP			Please	select	the	videos	for	Lesson	36	online
at	www.wrox.com/go/javaprog24hr2e.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/javaprog24hr2e

Lesson	37
Java	Technical	Interviews
Technical	job	interviewing	is	a	game	with	well-defined	rules.	I’ve	worn	the	hats	of	both
interviewer	and	interviewee	many	times	over	my	Java	career.	In	this	lesson	I	share	with
you	my	views	on	hiring	Java	developers	and	on	preparing	for	technical	interviews.

Regardless	of	whether	the	IT	job	market	is	hot	or	not	at	any	given	time,	there	are	some
rules	and	techniques	that	can	increase	your	interview	success	rate.	The	process	of	getting	a
job	consists	of	three	separate	activities:

1.	 Getting	the	interview

2.	 Interviewing	successfully

3.	 Considering	the	offer

I	can’t	stress	enough	how	important	it	is	to	work	on	each	of	these	tasks	separately,	one
step	at	a	time!	Let’s	discuss	them	one	by	one.

Getting	the	Interview
Your	résumé	is	the	most	important	thing	in	the	first	step.	Unless	you	are	a	well-known
Java	guru	(if	you	were,	you	wouldn’t	read	this	book)	your	résumé	is	your	main	weapon	for
getting	an	interview.	Adjust	the	résumé	for	each	position	you	are	applying	for.	No,	I’m	not
asking	you	to	lie,	but	you	have	to	highlight	your	skills	that	match	each	particular	job
opening	you’re	applying	to.	Make	sure	it’s	short	and	to	the	point	(not	more	than	two	pages
long).

If	you	are	applying	for	a	Java	developer’s	position,	nobody	needs	to	know	the	details	of
that	Visual	Basic	project	from	10	years	ago.	Always	update	your	résumé	based	on	the
feedback	you	receive	from	recruiters	or	more	experienced	programmers.

There	is	a	summary	section	on	each	résumé,	and	many	people	waste	this	space	with	some
junk	like,	“I’m	looking	for	a	challenging	position	that	will	let	me	improve	my	talents.”
What	a	waste!	Use	this	summary	line	to	show	your	relevant	skills.

Say	you’ve	been	specializing	in	Java	messaging	during	the	last	two	years,	but	this	job
posting	requires	web	developers.	Add	a	phrase	that	the	messaging	architecture	was	able	to
support	both	Java	and	web	clients.		Recruiters	are	not	too	technical—they	do	a	quick
résumé	scan	to	find	the	presence	of	the	required	keywords.	Also,	chances	are	that	you’ve
developed	web	applications	before;	highlight	your	web	experience	in	the	summary	section
of	your	résumé.	The	same	day	you	may	be	responding	to	another	ad	seeking	people	who
know	Java	messaging.

Modify	your	summary	section	accordingly	and	send	a	version	of	your	résumé	that
emphasizes	your	experience	with	messaging;	your	understanding	of	the	web	principle	is
not	that	important	here.

Job	requirements	are	more	involved	these	days,	and	recruiting	companies	don’t	even	want
to	submit	your	résumé	to	the	client	if	you	have	“only”	8	out	of	10	required	skills.	Read	the
requirements	and	highlight	all	the	relevant	skills	you	have.	Do	not	be	lazy;	work	with	your
résumé.

Networking	is	another	great	way	to	get	an	interview.	This	time	I’m	not	talking	about	Java
networking;	I’m	talking	about	meeting	other	IT	people	who	may	be	hiring	or	know	people
who	are	hiring.	Attend	your	local	Java	Users	Group	meetings,	join	online	meetups,	follow
Java	developers	on	Twitter,	and	go	to	professional	conferences	and	seminars.

http://www.meetup.com/

Doing	Well	at	the	Interview
OK.	The	interview	is	scheduled,	and	now	your	main	goal	is	to	ace	it.	Remember,	your
interviewer	has	a	difficult	task:	He	needs	to	assess	your	technical	skills	within	30	to	60
minutes,	so	help	him!	In	advance	of	the	interview,	try	to	get	as	many	technical	details
about	the	job	as	possible	from	your	recruiter.	If	the	position	you	are	applying	for	requires
knowledge	of	Java	sockets,	research	working	with	non-blocking	sockets.	If	the	company
is	building	Java	EE	applications,	find	out	which	application	server	they	use	and	read	up	on
it.

Do	your	homework	and	prepare	a	short	talk	about	some	interesting	and	challenging
technical	problems	you	might	have	experienced	in	one	of	your	college	or	real-world
projects.	If	you	didn’t	have	any	super-complex	projects,	just	pick	up	a	topic	from	one	of
the	multiple	online	programmers’	forums	and	research	it.	Another	great	source	of	Java	tips
and	tricks	is	a	hugely	popular	online	resource	called	Stackoverlow.	This	is	a	place	where
software	developers	ask	and	answer	questions	about	different	programming	languages	and
technologies.	Check	out	the	Java	section	at	Stackoverflow.

For	example,	if	you	have	prepared	a	talk	on	concurrent	collections,	you’re	not	allowed	to
leave	the	interview	without	talking	about	this.	But	what	if	the	interviewer	won’t	ask	you
about	Java	concurrency?	It	doesn’t	really	matter.	Find	a	way	to	switch	the	conversation	to
the	prepared	topic	and	do	your	best.	The	interviewer	will	be	happy	because	he	doesn’t
need	to	think	about	what	to	ask	next,	and	you’re	happy	because	you’ve	had	a	chance	to
talk	about	a	well-prepared	subject.

Will	this	technique	work	all	the	time?	No.	But	it’ll	work	most	of	the	time.	Obviously	you
need	to	research	the	selected	subject	well,	or	you’ll	get	burned.	You	must	talk	about
technical	challenges	you’ve	resolved.	You	need	to	remember	that	your	interviewers	face	a
challenging	task	of	figuring	out	your	technical	abilities	in	just	30	minutes.	So,	you	need	to
help	them	out.	Be	in	charge.

If	you’re	a	junior	developer,	spend	some	time	answering	the	multiple-choice	computer
tests	that	are	usually	required	for	certification	exams.	You	don’t	need	to	get	certified,	but
all	these	books	and	online	mock	tests	will	help	you	pass	similar	tests	offered	by	some	job
agencies.	Find	some	sample	interview	questions	online.

A	technical	interview	is	a	game	with	known	rules,	but	in	many	cases	the	interviewers	are
not	prepared	to	run	the	interviews.	Sometimes	they	just	go	by	a	prepared	list	of	questions.
Some	interviewees	take	advantage	of	this	and	just	spend	some	time	studying	introductory
courses,	and	then	memorize	questions	and	answers	for	technical	interviews.	Believe	it	or
not,	in	many	cases	this	works.

What	does	a	good	enterprise	Java	developer	have	to	know	in	addition	to	understanding	the
difference	between	abstract	classes	and	interfaces?	Usually	employers	are	looking	for
people	with	knowledge	of	the	following:	Java	Servlets,	JSP,	Spring	framework,	JMS,	any
commercial	message-oriented	middleware,	JDBC,	JNDI,	HTML,	XML,	Hibernate,	build
tools,	SQL,	one	of	the	major	application	servers,	and	a	couple	of	relational	database
management	systems.

Understanding	why	a	particular	Java	EE	component	is	being	used	in	your	current	project

http://stackoverflow.com/questions/tagged/java

is	equally	important.	If	the	interviewer	asks	you,	“Why	did	you	use	EJB	in	this	project?”
please	do	not	answer,	“That	decision	was	made	before	I	joined	the	project.”	Even	if	it	was,
have	your	own	opinion	and	explain	why	you	think	it	was	a	good	or	bad	choice	for	this
particular	project.

Here’s	another	tip:	Don’t	critique	the	application	architecture	of	your	potential	employer.
You’ll	have	plenty	of	chances	to	provide	technical	advice	if	you’re	hired,	so	just	focus	on
getting	an	offer.	Remember,	one	step	at	a	time!

Be	energetic	during	the	interview	and	show	your	interest	in	the	job.	Even	if	you	are	a
technical	guru,	don’t	behave	as	if	you’re	doing	the	interviewer	a	favor	just	by	showing	up.
Personality	matters.	People	don’t	like	prima	donnas.

Be	prepared	to	write	code	on	a	whiteboard	and	practice	that	skill.	The	interviewer	may	not
ask	you	to	do	this,	but	it	may	be	a	good	idea	to	start	illustrating	your	thoughts	on	the	board
if	there	is	one	in	the	room.	If	there	is	no	board,	use	your	own	notepad.	Often	interviewers
are	trying	to	judge	how	well	you	think	and	approach	a	problem	more	than	how	effectively
you’ve	memorized	an	algorithm,	class	name,	or	method	arguments.

No	need	to	rush.	If	you	start	writing	a	code	fragment	on	a	board,	don’t	be	afraid	of	making
mistakes.	Think	aloud.	It	may	be	even	beneficial	for	the	interviewer	to	see	how	you	can
identify	the	wrong	approach	and	then	pick	the	right	one.	Practice	explaining	little	code
fragments	to	your	friends	or	relatives;	they	don’t	need	to	know	Java	to	participate	in	these
role-playing	games.

Questions	of	data	structures	and	collections	are	pretty	popular	during	the	interviews.	For
example,	you	need	to	be	able	to	explain	when	using		LinkedList	is	better	than	using
ArrayList.	Some	people	fail	the	interview	on	simple	task	like	“write	a	program	to	reverse
letters	in	a	word.”	Get	a	book	on	data	structures	and	algorithms	and	skim	through	it	before
going	to	the	interview.

After	the	interview,	as	soon	as	you	leave	the	building,	take	notes	about	what	just
happened.	Don’t	postpone	it	until	you	get	home;	you	may	forget	important	details.	Make	a
note	to	work	on	the	questions	you	might	have	not	answered	correctly.	These	questions
require	your	attention	and	research.	Improve	your	technical	skills	after	each	interview.

Considering	the	Offer
You’ve	got	an	offer!	Now	think	hard	about	whether	you	want	to	accept	it.	Have	I
mentioned	that	you	should	look	for	a	new	job	not	when	your	employer	decides	to	let	you
go	or	your	contract	ends,	but	when	you	have	a	stable	job,	the	sky	is	blue,	and	the	grass	is
green?	This	gives	you	a	tremendous	advantage:	You	can	consider	the	offer	without	being
under	pressure	from	unpaid	bills.

Don’t	accept	an	offer	just	because	the	new	job	pays	an	extra	$5,000	a	year,	which	comes
to	less	than	$300	a	month	after	taxes.	Do	accept	the	offer	that	gives	you	a	chance	to	work
with	interesting	technologies	or	business	applications	even	if	it	won’t	pay	you	an	extra
dime.

Other	nonmonetary	factors	of	an	offer	are	health	benefits,	flexible	work	hours,	ease	of
commute,	or	simply	a	kinship	that	you	feel	with	the	people	working	for	the	potential
employer.	Believe	it	or	not,	some	people	won’t	accept	offers	from	employers	who	require
you	to	wear	suit	and	tie.	Just	make	a	decision	about	what’s	more	important	for	you—
having	an	interesting	job	or	being	able	to	show	off	your	latest	tattoos.

No	matter	what	your	preferences	are,	take	charge	of	your	career	and	actively	build	it	the
way	you	want.

Interviewing	Enterprise	Developers
When	the	job	market	is	healthy,	major	online	job	search	engines	show	thousands	of
openings,	and	people	are	competing	for	these	jobs.	These	days	a	seasoned	developer	has
to	know	about	10	different	tools	or	technologies	to	find	a	good	job	and	feel	relatively
secure	for	a	couple	of	years.	Over	the	last	several	years	I’ve	interviewed	lots	of	Java
developers,	and	this	is	what	I’ve	noticed:

People	do	not	call	themselves	Java	developers	or	programmer-analysts	anymore;	most
of	them	prefer	the	title	Java	architect.	Unfortunately,	only	some	of	them	really
understand	how	Java	EE	components	operate	and	can	suggest	design	solutions.	Of
course,	knowledge	of	Java	EE	is	not	all	that	a	Java	architect	should	know.

Job	applicants	are	more	senior,	and	I	barely	see	any	college	graduates	or	junior
programmers.	Many	of	the	junior	positions	are	being	outsourced	and	the	number	of
graduates	with	computer	science	degrees	has	declined	over	the	past	several	years.

Having	software	certification	does	not	make	a	résumé	stand	out.	Actually,	if	a	résumé
starts	with	a	list	of	certifications,	most	likely	it’s	a	beginner’s.	I’m	not	against
certifications,	as	they	help	you	learn	a	language	or	a	tool,	and	show	that	you	are
willing	to	and	can	study.	But	a	certificate	doesn’t	make	someone	a	skilled	professional.

With	the	introduction	of	middle-tier	object-relational	mapping	frameworks	such	as
Hibernate,	many	people	don’t	even	bother	learning	how	database	management	systems
work	or	how	to	write	a	SQL	query	that	performs	well	—	they	just	map	Java	classes	to
database	tables.

On	multiple	occasions	I’ve	interviewed	enterprise	Java	developers	who	were	trained	to
use	certain	frameworks,	but	without	understanding	how	things	work	under	the	hood.	A
simple	question	to	explain	in	details	what	happens	between	the	moments	when	the
user	click	the	button	Get	Data	on	a	web	page	and	when	the	data	arrive	often	results	in
a	description	of	how	a	certain	web	framework	does	it.	But	what	if	there	is	no
frameworks,	but	just	a	web	page	and	a	servlet.	Not	many	programmers	can	describe
such	a	data	flow.

In	a	slow	economy,	be	prepared	to	pass	at	least	four	interviews	to	get	hired.	Back	in
1999	two	good	interviews	would	be	enough;	in	2001	it	was	very	difficult	to	even	get
an	interview,	let	alone	a	job!

Today	large	portions	of	development	is	done	in	India.	Even	though	the	total	cost	of
development	is	not	low	despite	the	lower	hourly	rates	of	offshore	developers,	Western
hiring	managers	unfortunately	have	an	impression	that	local	candidates	must	be
flexible	in	their	rates,	too.	Being	a	native	English	speaker	is	not	enough	for	you	to
charge	top	dollar.	Always	be	technically	current,	otherwise	the	more	motivated	guys
from	overseas	will	leave	you	in	the	dust.

Good	knowledge	of	the	business	terminology	of	your	potential	employer	is	also	important.
I’m	not	sure	about	the	Silicon	Valley	or	Europe,	but	here	in	New	York	just	being	a	techie
may	not	be	good	enough	to	get	you	a	senior	job.	Of	course,	interviewing	with	Google	or
Microsoft	is	an	exception.

http://yakovfain.com/2012/10/11/the-degradation-of-java-developers/

For	example,	if	you’re	applying	for	a	Java	position	in	a	financial	brokerage	company	and
don’t	know	what	a	short	sale	is,	this	may	be	a	deal	breaker.	If	you	are	a	senior	developer
you	should	be	able	to	hit	the	ground	running:	Try	to	find	out	from	your	recruiter	as	many
details	as	possible	about	the	business.	Do	your	homework,	and	you’ll	get	the	job!
Recruiters	are	desperately	looking	for	good	programmers,	and	you	can	be	one	of	them.

To	Get	or	Not	to	Get	Certified?
Any	certification	program	is	a	business	for	the	vendor	that	wants	to	sell	training	to	award
certificates.	Oracle	is	no	exception;	you	can	find	various	certification	programs	to	rate
your	Java	skills.	The	following	website	offers	various	certification	programs	in	Java	SE
and	EE	technologies:	http://education.oracle.com/pls/web_prod-plq-
dad/db_pages.getpage?page_id=651#5.

Although	most	certification	programs	require	you	to	pass	a	multiple-choice	computer	test,
some	of	them	(such	as	those	for	Java	EE	architects)	give	you	a	challenging	task	to	design
and	program.

Overall	I	think	it’s	a	good	idea	to	prepare	yourself	and	go	through	the	certification	process
because	it	will	definitely	improve	your	understanding	of	the	Java	language	or	a	specific
enterprise	technology	or	framework.	In	some	areas	it	may	also	improve	the	perception	of
your	résumé.	It’ll	also	help	you	slip	through	computer	screening	tests	that	are	used	by	job
placement	agencies.	Just	check	job	postings	from	your	potential	employers	to	see	if	they
insist	on	having	certificates.

I	also	want	to	caution	you	against	overestimating	the	importance	of	getting	Java
certification.	When	I	see	a	résumé	that	starts	with	a	list	of	certificates,	it	tells	me	that	this
candidate	is	good…	at	passing	multiple-choice	tests.	Having	practical	hands-on
experience	working	on	open-source	or	enterprise	projects	is	a	lot	more	valuable	than	any
certificate	you	might	have	earned.	It’s	fine	if	you	have	certificates,	but	keep	them
somewhere	at	the	end	of	your	résumé	rather	than	trying	to	present	them	as	a	major
achievement.

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=651#5

Technical	Questions	and	Answers
Suggesting	a	list	of	technical	questions	for	an	interview	is	a	risky	business.	Seasoned	Java
developers	have	different	views	on	what’s	fair	and	what’s	not	fair	to	ask.	But	junior
developers	who	just	completed	a	Java	tutorial	can	definitely	benefit	from	some	guidance
in	preparing	for	Java	job	interviews.

The	following	are	suggested	technical	interview	questions	and	expected	brief	answers	on
various	Java-related	topics.	The	questions	included	in	this	section	are	those	that	I	had	to
answer	while	working	on	various	projects.	In	no	way	is	this	a	complete	list	of	possible
questions,	but	it	definitely	gives	you	an	idea	of	what	to	expect	at	an	interview.	Most	of	the
answers	to	these	questions	can	be	found	in	this	book,	but	some	require	additional	research.

Q:

What’s	the	difference	between	an	interface	and	an	abstract	class?

A:

Prior	to	Java	8	I’d	answered	that	an	abstract	class	may	contain	code	in	method	bodies,
which	is	not	allowed	in	an	interface.	But	with	introduction	of	the	defender	and	static
methods	in	interfaces	the	answer	should	be	different.	Abstract	classes	can	implement
state	in	member	variables,	but	interfaces	can’t.		You	can	extend	from	one	abstract	class,
but	implement	multiple	interfaces.With	abstract	classes	you	have	to	inherit	your	class
from	the	abstract	one	because	Java	does	not	allow	multiple	inheritance.	

Q:

How	do	you	deploy	a	web	application	in	the	application	server	that	you	currently	use?

A:

In	most	Java	EE	application	servers	you	create	a	web	archive	(war	file)	and	copy	it	to
the	assigned	directory	per	the	application	server	documentation.	(You	should	be	able	to
explain	the	directory	structure	in	a	war	file.)

Q:

Why	were	the	defender	methods	introduced	in	Java	8?

A:

Oracle’s	software	engineers	wanted	to	include	new	methods	in	the	existing	interfaces.
If	they	would	just	add	new	method	declarations,	lots	of	existing	code	would	break
because	classes	that	implement	those	interfaces	didn’t	implement	newly	introduced
methods.	The	keyword	default	allowed	them	to	add	new	methods	in	the	interfaces
without	forcing	existing	classes	implement	them.

Q:

What’s	the	usage	of	the	keyword	static?

A:

It’s	used	in	declarations	of	methods	and	variables	to	make	them	available	without
creating	an	instance	of	the	class.	For	example,	the	main()	method	is	a	static	one.	If	a

variable	is	static,	its	value	is	shared	by	all	instances	of	the	class.

Q:

How	can	you	force	garbage	collection?

A:

You	can’t	force	garbage	collection,	but	you	can	request	it,	because	JVM	does	not
guarantee	that	it’ll	be	started	immediately.	Invoking	System.gc()	requests	Java	garbage
collection.

Q:

Why	would	you	use	lambda	expression	in	your	code?	

A:

Lambda	expression	makes	the	code	more	concise	and	in	some	cases	allows	developers
to	flatten	the	class	hierarchies	and	eliminate	certain	classes.	For	more	details	read	about
eliminating	polymorphism	in	Lesson	13.	

Q:

How	do	you	decide	if	explicit	casting	is	needed?

A:

If	you	assign	a	superclass	object	to	a	variable	of	a	subclass’s	data	type,	you	need	to	use
explicit	casting.	For	example:

Object	a;
Customer	b;
b	=	(Customer)	a;

Java	generics	can	eliminate	the	need	for	explicit	casting.	For	subclass-to-superclass
assignments,	the	casting	is	performed	automatically.	You	can	also	cast	to	interfaces	that
a	class	implements.

Q:

Can	you	perform	casting	between	objects	of	different	types?

A:

No,	you	can’t.	The	objects	can	have	a	superclass-subclass	relationship,	or	you	can	cast
to	interfaces	implemented	by	a	class.

Q:

Can	a	Java	class	be	inherited	from	two	classes?

A:

No,	Java	does	not	allow	multiple	inheritance,	but	a	class	can	implement	multiple
interfaces,	which,	to	some	extent,	can	be	used	as	a	workaround.

Q:

What’s	the	difference	between	constructors	and	regular	methods?

A:

Constructors	must	have	the	same	name	as	the	class	and	cannot	return	a	value.	They	are
invoked	only	once,	while	regular	methods	can	be	invoked	many	times.

Q:

What’s	a	cookie?	Which	Java	components	create	them?

A:

A	cookie	is	an	object	that	represents	a	name/value	pair.	Servlets,	JSP,	and	third-party
Java	frameworks	can	create	and	send	cookies	to	a	web	browser	that	saves	them	on	the
user’s	disk	in	a	special	directory.	Cookies	help	the	server-side	code	to	identify	a	user
and	implement	session	tracking.	

Q:

Does	each	abstract	class	have	at	least	one	abstract	method?

A:

Not	necessarily.	If	a	class	is	declared	with	the	abstract	keyword,	it	can	be	instantiated
even	if	it	has	no	abstract	methods.	For	example,	you	can	declare	an	abstact	class
Animal,	which	should	never	be	instantiated,	while	one	can	create	instances	its	concrete
subclasses	Cat	and	Dog.	

Q:

Explain	the	use	of	Java	packages.

A:

Packages	offer	a	way	to	organize	multifile	projects.	They	also	help	in	resolving	naming
conflicts	when	different	packages	have	classes	with	the	same	names.	Package	access
level	also	enables	you	to	protect	data	from	being	used	by	unauthorized	classes,
permitting	only	the	classes	from	the	same	package	to	see	each	other’s	member
variables.

Q:

Explain	the	usage	of	the	keyword	transient.

A:

The	transient	keyword	indicates	that	the	value	of	this	member	variable	does	not	have	to
be	serialized	with	the	object.	When	the	class	gets	deserialized,	transient	variables	are
initialized	with	the	default	values	of	the	variable	data	types	(such	as	0	for	integers).

Q:

What	do	you	know	about	thread	synchronization?	Explain	the	difference	between

public	void	synchronized	myMethod()	{	...	}

and

public	void	myMethod()	{
						...
				synchronized	(some_object)	{...	}
}

A:

The	keyword	synchronized	is	used	to	prevent	race	conditions	when	more	than	one
thread	tries	to	update	some	values.	Synchronized	blocks	are	preferable	to	synchronized
methods	because	they	place	locks	for	shorter	periods.	The	package
java.util.concurrent	includes	a	class	ReentrantLock,	which	can	be	a	better	solution	than
using	the	synchronized	keyword.

Q:

What’s	the	difference	between	the	methods	sleep()	and	wait()?

A:

The	code	sleep(1000)	puts	the	thread	aside	for	exactly	one	second.	The	code
wait(1000)	makes	the	thread	wait	for	up	to	one	second.	A	thread	can	stop	waiting
earlier	if	it	receives	the	notify()	or	notifyAll()	call.	The	method	wait()	is	defined	in	the
class	Object,	but	sleep()	is	defined	in	the	class	Thread.

Q:

What’s	the	difference	between	creating	threads	subclassing	the	class	Thread	and
implementing	the	Runnable	interface?

A:

Thread	creation	with	the	class	Thread	requires	that	your	class	be	inherited	from	it.
Then	you	need	to	create	an	instance	of	your	class	and	call	its	start()	method.	If	a	class
implements	the	Runnable	interface	the	procedure	is	different;	you	have	to	create	the
instance	of	your	class,	and	the	instance	of	the	Thread	object,	passing	the	Runnable
class	to	the	latter.	Using	Runnable	enables	you	to	create	threads	from	classes	that	have
to	be	inherited	from	classes	other	than	Thread	classes.	You	can	implement	Runnable
with	lambda	expressions.

Q:

How	can	you	create	a	thread	that	can	return	a	value	from	its	method	run()?

A:

You	need	to	implement	the	Callable	interface.

Q:

What	would	you	use	to	compare	two	String	variables:	the	equals()	method	or	the	==
operator?

A:

I’d	use	equals()	to	compare	the	values	of	the	Strings,	and	the	==	operator	to	check
whether	two	variables	point	at	the	same	String	object	in	memory.

Q:

What	do	you	know	about	the	MVC	design	pattern?

A:

MVC	stands	for	the	model-view-controller	design	pattern,	which	is	used	to	separate
presentation	modules	from	business	logic	and	data	ones.	The	model	part	represents	the
data	and	the	business	logic	of	the	application,	the	view	is	a	visual	representation	(for
example,	a	UI),	and	the	controller	accepts	the	data	from	the	view	and	passes	it	to	the
model	and	vice	versa.	

Q:

How	can	you	reduce	the	time	spent	by	JVM	on	creating	frequently	used	instances	of
some	objects?

A:

I’d	create	my	own	or	configure	existing	object	pools	(for	example,	DataSource	can	be
configured	to	use	object	pools	of	database	connections).

Q:

Will	the	following	statement	create	the	file	xyz.txt	on	disk?

File	a	=	new	File("xyz.txt");

A:

No,	it	just	creates	an	object	pointing	to	this	file.

Q:

How	can	a	subclass	invoke	a	method	defined	in	a	superclass?

A:

Java	has	the	keyword	super.	If	a	method	has	been	overridden,	but	you’d	like	to	invoke
its	version	defined	in	the	superclass,	use	the	following	syntax:	super.myMethod();.	To
call	a	constructor	of	the	superclass,	use	super();	with	required	parameters	in	the	first
line	of	the	subclass’s	constructor.

Q:

Can	a	functional	interface	declare	more	than	one	method?

A:

Yes	as	long	as	only	one	of	them	is	abstract.	For	example,	besides	abstract	methods	you
can	have	several	defender	and	static	methods	in	the	interface.

Q:

What	access	level	do	you	need	to	specify	for	members	of	the	class	Customer	to	ensure
that	only	classes	from	the	same	directory	can	access	these	members?

A:

You	do	not	need	to	specify	any	access	level.	In	this	case,	Java	uses	the	default	package
access	level,	which	guarantees	visibility	for	the	Customer	members	only	to	the	classes
located	in	the	same	directory	(package).

Q:

What’s	the	use	of	JNDI?

A:

JNDI	is	a	Java	API	for	naming	and	directory	servers.	It	is	used	for	finding	Java	objects
by	name	in	a	distributed	application.	For	example,	you	can	use	JNDI	to	get	a	reference
to	the	DataSource	or	JMS	objects.

Q:

Can	you	modify	the	data	in	the	underlying	collection	using	the	Stream	API?

A:

No	you	can’t.	The	underlying	data	set	is	immutable.

Q:

If	you	need	to	catch	more	than	one	exception	(such	as	FileNotFoundException	and
IOException),	does	the	order	of	the	catch	statements	matter?

A:

Yes,	it	does.	FileNotFoundException	is	inherited	from	IOException.	The	exception
subclasses	have	to	be	caught	first.

Q:

Explain	in	detail	the	data	workflow	between	a	web	page	and	a	Servlet	called
FindBooks	after	the	user	clicks	Submit.	(In	this	question	interviewers	can	replace	the
web	page	and	Servlet	with	any	other	client-server	components.	The	main	point	is	to
find	out	if	the	job	applicant	understands	the	entire	end-to-end	data	flow.)

A:

The	web	browser	connects	to	the	server	located	at	the	specified	URL,	and	if	FindBooks
has	not	been	started	yet,	the	Servlet	container	starts	it,	invoking	the	servlet’s	init()
method	followed	by	the	service()	method,	which	in	turn	calls	doGet()	or	doPost(),
depending	on	the	method	of	HTTP	request.	The	objects	HTTPServletRequest	and
HTTPServletResponse	are	used	for	the	interaction	between	the	client	and	FindBooks.
The	Servlet’s	output	can	be	sent	back	to	the	user	by	means	of	one	of	the	methods	of
HTTPServletResponse,	for	example	println().

Q:

Explain	the	process	of	getting	the	data	from	a	database	table	in	a	Java	SE	program
using	JDBC.	Which	classes	and	methods	have	to	be	used?

A:

First	you	load	the	appropriate	JDBC	driver	using	Class.forName().	After	that	you	get

the	Connection	object	using	either	the	DataSource	object	or
	DriverManager.getConnection().	Then	you	create	a	Statement	object	and	invoke	one
of	its	methods,	like	executeQuery()	or	executeUpdate().	Process	the	ResultSet,	if	any,
and	close	the	Connection,	Statement,	and	ResultSet	objects.	In	some	cases	instead	of
Statement	you	use	PreparedStatement	or	CallableStatement.

Q:

What	are	the	differences	among	the	Java	keywords	final,	finalize,	and	finally?

A:

Depending	on	its	position,	the	keyword	final	means	either	that	the	variable	can	be
initialized	only	once,	or	that	you	cannot	override	a	method,	or	that	you	cannot	subclass
a	class.	Parameters	in	the	catch	block	are	implicitly	final.

The	method	finalize(),	if	defined	in	your	class,	is	invoked	by	the	garbage	collector
when	it’s	ready	to	release	a	memory	used	by	the	instance	of	your	class.

The	keyword	finally	is	used	in	a	try/catch	block	to	place	code,	that	must	be	executed
whether	the	code	in	the	try	block	succeeds	or	fails.

Q:

Can	you	declare	fields	in	an	interface?

A:

You	can	only	declare		final	and	static	variables	in	an	interface.

Q:

Can	an	inner	class,	declared	inside	a	method,	access	local	variables	of	this	method?

A:

It’s	possible	only	if	the	method’s	variables	are	final.

Q:

What	could	be	used	to	keep	track	of	sessions	in	web	applications?

A:

You	can	use	cookies,	URL	rewriting,	and	the	HTTPSession	object.

Q:

Will	session	management	with	cookies	always	work?

A:

No,	if	a	user	disables	cookies	in	the	web	browser,	it	won’t	work.	In	such	cases
application	servers	usually	automatically	switch	to	URL	rewriting.

Q:

How	can	you	stop	a	long-running	thread?

A:

The	class	Thread	has	a	deprecated	method	called	stop(),	but	this	method	does	not
guarantee	that	the	thread	will	be	stopped.	Depending	on	the	process	that	is	run	by	this
thread,	you	could	try	to	close	connections	or	open	streams,	if	any,	or	use	the	method
interrupt().

Q:

When	could	a	Java	class	be	called	a	bean?

A:

You	call	the	class	a	bean	if	it	has	a	no-argument	constructor,	implements	the
Serializable	interface,	and	has	public	setter/getter	methods	for	its	private	properties.

Q:

What	are	the	advantages	of	using	JSP	rather	than	Servlets?

A:

JSP	enables	you	to	separate	presentation	from	business	logic	and	the	resulting	web
page	can	be	modified	by	people	who	do	not	know	Java.

Q:

Give	an	example	that	shows	the	difference	between	the	use	of	the	operators	&&	and	&.

A:

In	the	following	code	snippet,	the	second	expression	in	the	if	statement	is	not	even
evaluated	if	variable	a	is	null.	If	a	single	ampersand	were	used	here	you’d	get	a
NullPointerException.

String	a=null;
if	(a	!=	null	&&	a.length()>10)	{...}

Q:

Name	some	predefined	JSP	variables.

A:

request,	response,	out,	session…

Q:

How	do	you	deploy	a	JSP?

A:

You	can	place	.jsp	files	in	a	document	root	directory	of	the	Servlet	container	or
application	server,	or	create	a	war	file	and	put	a	JSP	in	the	document	root	there.

Q:

What’s	the	default	port	number	that	web	servers	use	for	HTTP-based	communications?

A:

HTTP	requests	go	through	port	80;	HTTPS	ones	go	through	port	443.

Q:

What	method	of	the	Servlet	class	is	an	equivalent	of	a	constructor	in	a	regular	Java
class?

A:

The	Servlet’s	method	init()	plays	a	similar	role,	but	because	all	clients	use	the	same
instance	of	the	Servlet,	you	should	initialize	only	those	variables	that	are	allowed	to
have	the	same	value	for	each	user’s	request,	such	as	the	name	of	the	database	server.

Q:

Which	is	faster:	array	or	ArrayList?

A:

In	most	cases	arrays	are	faster.	An	array	can	be	used	if	you	know	in	advance	the
number	of	elements	in	the	array.	ArrayList	is	an	API	on	top	of	an	array.	You	do	not
need	to	know	its	size	in	advance;	new	elements	can	be	added	as	needed.	Arrays	work
faster	because	JVM	allocates	memory	only	once	for	all	elements.	But	to	give	you	a
better	answer	I’d	have	to	write	an	appropriate	benchmark	in	context	to	find	out.

Q:

What	do	you	know	about	Java	reflection?

A:

Reflection	is	a	way	of	finding	information	about	a	Java	class	internals	during	run	time.
For	example,	you	can	find	out	the	constructors	and	the	method	signatures	of	a
particular	class.	The	class	Class	has	such	methods	as	getConstructor(),	getFields(),
getMethods(),	and	others.

Q:

What	would	you	do	if	your	Java	program	crashed	during	the	run	time	with	an	“out	of
memory”	error?

A:

I’d	try	to	increase	the	size	of	the	JVM’s	dynamic	memory	(heap)	on	program	start-up
using	command-line	parameters.	For	example,	you	can	request	the	minimum	heap	size
of	512	MB	and	the	maximum	heap	size	of	1024	MB	as	follows:

java	–Xms512	–Xmx1024	MyProgram

Q:

How	can	you	ensure	that	only	one	instance	of	some	class	can	be	created	in	your
application?

A:

You	need	to	implement	the	singleton	design	pattern.	Create	a	class	with	a	private

constructor	and	provide	a	public	getter	method	that	returns	the	only	instance	of	this
class—for	example	MyClass.getInstance().

Q:

What’s	the	major	difference	between	a	Hashtable	and	a	HashMap?

A:

The	Hashtable	class	is	internally	synchronized,	whereas	the	HashMap	is	not.

Q:

Name	some	design	patterns.

A:

Singleton,	MVC,	data	transfer	object,	facade…	While	preparing	to	answer	this
question,	refer	to	the	article	on	design	patterns	at	Wikipedia.

Q:

The	word	stateless	is	used	to	describe	a	session	EJB	as	well	as	HTTP	protocol.	What’s
the	meaning	of	the	word	stateless	in	these	two	cases?

A:

HTTP	protocol	is	page-based,	meaning	that	the	web	browser	does	not	hold	the
connection	between	requests,	but	in	the	case	of	an	EJB,	stateless	means	that	the	session
bean	cannot	be	used	to	store	the	state	of	a	particular	client.

Q:

Are	Java	objects	passed	by	value	or	by	reference?

A:

Objects	are	passed	by	reference,	but	their	reference	variables	are	passed	by	value.

Q:

How	can	a	Java	client	access	a	message-driven	bean?

A:

Java	clients	don’t	access	MDBs	directly;	they	just	place	messages	into	a	queue	or
publish	them	to	topics,	and	the	MDB	retrieves	them	from	there.

http://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list

Epilogue
The	book	is	over.	Even	though	it’s	rather	small	in	size	for	the	number	of	the	covered
subjects,	I	tried	to	touch	on	a	wide	spectrum	of	topics	that	most	Java	practitioners	have	to
know.	You	may	still	need	to	do	additional	research	on	certain	subjects,	depending	on	your
project	needs,	but	at	least	now	you	know	where	to	dig.

I	really	hope	that	you’ll	keep	this	book	handy	as	a	quick	reference	or	for	a	refresher	when
it’s	time	to	start	a	new	Java	project	or	hit	the	job	market.	No	matter	what	your	motivation
is,	have	fun	reading.	I	certainly	had	fun	writing	it.	You	can	send	comments	and
suggestions	via	e-mail	to	yakovfain@gmail.com.	Thank	you	for	reading	my	book!

Java®	Programming

24-Hour	Trainer
Second	Edition
Yakov	Fain

	

Java®	Programming	24-Hour	Trainer,	Second	Edition
Published	by
Wiley	Publishing,	Inc.
10475	Crosspoint	Boulevard
Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2015	by	Wiley	Publishing,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-118-95145-3
ISBN:	978-1-118-95146-0	(ebk)
ISBN:	978-1-118-95157-6	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization
through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)
748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or	warranties	with
respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all	warranties,	including
without	limitation	warranties	of	fitness	for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or	other	professional
services.	If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.	Neither
the	publisher	nor	the	author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is
referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	Web	site	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	Web	sites	listed	in	this	work	may	have	changed	or	disappeared	between	when	this
work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within	the
United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media
such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2015930542

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Wrox	Programmer	to	Programmer,	and	related	trade	dress
are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the	United	States	and	other
countries,	and	may	not	be	used	without	written	permission.	Java	is	a	registered	trademark	of	Oracle,	Inc.	All	other
trademarks	are	the	property	of	their	respective	owners.	Wiley	Publishing,	Inc.,	is	not	associated	with	any	product	or
vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

In	memory	of	my	parents.

Credits
EXECUTIVE	EDITOR
Robert	Elliott

PROJECT	EDITOR
Adaobi	Obi	Tulton

TECHNICAL	EDITORS
Chád	Darby	
Rajesuwer	P.	Singaravelu
Martijn	Verburg	

PRODUCTION	MANAGER
Kathleen	Wisor

COPY	EDITOR
Charlotte	Khugen

MANAGER	OF	CONTENT	DEVELOPMENT	&	ASSEMBLY
Mary	Beth	Wakefield

MARKETING	DIRECTOR
David	Mayhew

MARKETING	MANAGER
Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR
Barry	Pruett

BUSINESS	MANAGER
Amy	Knies

ASSOCIATE	PUBLISHER
Jim	Minatel

PROJECT	COORDINATOR,	COVER
Brent	Savage

PROOFREADER
Jennifer	Bennett,	Word	One

INDEXER
Johnna	VanHoose	Dinse

COVER	DESIGNER
Wiley

COVER	IMAGE
©iStock.com/gpointstudio

About	the	Author

Yakov	Fain	works	as	a	software	architect	for	Farata	Systems,	a	company	that	provides
consulting	services	in	the	field	of	development	of	enterprise	applications.	He	has	authored
several	technical	books	and	lots	of	articles	on	software	development.	Sun	Microsystems
has	awarded	Mr.	Fain	with	the	title	of	Java	Champion,	which	has	been	given	to	only	150
people	in	the	world.	He	leads	the	Princeton	Java	Users	Group.	Yakov	blogs
at	yakovfain.com,	and	his	Twitter	ID	is	@yfain.

http://yakovfain.com/

About	the	Technical	Editors
Chád	(shod)	Darby	is	an	author,	instructor	and	speaker	in	the	Java	development	world.
As	a	recognized	authority	on	Java	applications	and	architectures,	he	has	presented
technical	sessions	at	software	development	conferences	worldwide	(U.S.,	U.K.,	India,
Italy,	Russia	and	Australia).	In	his	fifteen	years	as	a	professional	software	architect,	he’s
had	the	opportunity	to	work	for	Blue	Cross/Blue	Shield,	Merck,	Boeing,	Red	Hat	and	a
handful	of	startup	companies.

Chád	is	a	contributing	author	to	several	Java	books,	including	Professional	Java	E-
Commerce	(Wrox	Press),	Beginning	Java	Networking	(Wrox	Press),	and	XML	and	Web
Services	Unleashed	(Sams	Publishing).	Chád	has	Java	certifications	from	Sun
Microsystems	and	IBM.	He	holds	a	B.S.	in	Computer	Science	from	Carnegie	Mellon
University.

Stay	connected	with	Chád	by	visiting	his	blog:	www.luv2code.com	and	his	YouTube
channel:	www.luv2code.com/youtube.

Rajesuwer	P.	Singaravelu	has	been	working	with	Java	and	web	technologies	since	the
late	’90s,	creating	distributed	enterprise	systems	for	financial	services	industry	in	New
York	City.	When	he	isn’t	hacking,	he	enjoys	spending	time	with	his	wife	Rohini	and	two
kids-	Hassini	and	Arvind.	His	interests	are	in	cross	platform	mobile	development	using
Appcelerator	Titanium	and	he	is	a	Titanium	Certified	Expert	(TCE).	He	is	@rajesuwerps
at	the	usual	hangouts.

Martijn	Verberg	is	the	CEO	of	jClarity,	a	performance	analysis	and	machine	learning
start-up	in	London.	He	is	involved	in	various	Java	and	open	source	communities,	and	co-
leads	the	London’s	Java	User	Group	(LJC,	a	JCP	EC	member).	Martijn	was	recognized	as
a	Java	Champion	in	2012	for	his	services	to	the	community.	You	can	find	him	speaking
regularly	at	conferences	(Devoxx,	JavaOne,	OSCON,	etc.)	on	Java,	open	source,	and
software	development	as	the	“Diabolical	Developer.”

http://www.luv2code.com/
http://www.luv2code.com/youtube

Acknowledgments
First	of	all	I	want	to	thank	my	family	for	understanding	that	stealing	(once	again)	time
from	family	to	write	a	computer	book	is	OK.

I’d	also	like	to	thank	the	technical	editors,	Rajesuwer	P.	Singaravelu	and	Martijn
Verberg,	for	their	valuable	input.

My	special	thanks	to	Chad	Darby	for	producing	the	awesome	videos	for	this	book.		

I	give	particular	thanks	to	my	business	partners	and	colleagues	at	Farata	Systems.	They
didn’t	contribute	to	this	book	directly,	but	working	in	the	same	team	with	these	top	notch
professionals	makes	me	a	better	programmer	day	in	and	day	out.		

Big	thanks	to	the	Wiley	editors	for	doing	a	great	job	of	editing	and	for	not	cursing	me	for
not	meeting	deadlines.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	How To Read This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Lesson 1 Introducing Java
	Why Learn Java?
	Setting the Goals
	The Life Cycle of a Java Program
	JDK and JRE
	Downloading and Installing Java SE
	Installing JDK 8 for MAC OS
	Installing JDK 8 in Windows

	Your First Java Program: Hello World
	Compiling and Running Hello World

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 2 Eclipse IDE
	Introducing Eclipse IDE
	Downloading and Installing Eclipse
	Creating Hello Project in Eclipse
	Creating the HelloWorld Class in Eclipse
	Java Packages
	Completing Code Generation
	Additional Materials
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 3 Object-Oriented Programming with Java
	Classes and Objects
	Variables and Data Types
	Declaring Variables
	Final Variables
	Primitive Data Types

	Variable Scope
	Wrappers, Autoboxing, and Unboxing
	Program Comments
	First Useful Program
	Conditional Statement if
	switch Statement
	Inheritance
	Method Overriding

	Additional Materials
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 4 Class Methods and Constructors
	Method Arguments
	Method Overloading
	Constructors
	The Keyword super
	The Keyword this
	Passing by Value or by Reference
	Variable Scopes
	The Keyword static
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 5 Java Syntax: Bits and Pieces
	Arrays
	More About Strings

	Loops
	Debugging Java Programs
	More About if and switch Statements
	The Flavors of if Statements

	Command-Line Arguments
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 6 Packages, Interfaces, and Encapsulation
	Java Packages
	Encapsulation
	Access Levels

	The Keyword final
	final Variables
	final Methods
	final Classes

	Interfaces
	Marker Interfaces
	Default Methods in Interfaces
	Static Methods in Interfaces

	Casting
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 7 Programming with Abstract Classes and Interfaces
	Abstract Classes
	Assignment
	Solution with an Abstract Class

	Polymorphism
	Making the Interface Solution Polymorphic

	Interfaces Versus Abstract Classes
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 8 Introducing the GUI with Swing
	Swing Basics
	Layout Managers
	A Simple Calculator with FlowLayout
	A Brief Introduction to Layout Managers
	FlowLayout
	GridLayout
	BorderLayout
	Combining Layout Managers
	BoxLayout
	GridBagLayout
	CardLayout
	Containers with Absolute Layout
	More About Swing Widgets

	Swing GUI Builders
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 9 Event Handling in Swing GUI
	Introduction to Event Listeners
	Teaching the Calculator to Calculate
	Registering Components with ActionListener
	Finding the Source of an Event
	How to Pass Data Between Objects

	Design Pattern Model-View-Controller
	More Swing Listeners
	How to use Adapters
	Inner Classes
	Anonymous Inner Classes
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 10 Error Handling
	Stack Trace
	Java Exceptions
	Exception Hierarchy
	Try/Catch Blocks
	Using the throws Clause
	Using the finally Clause
	Try-With-Resources

	The throw Keyword
	Creating Your Own Exceptions
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 11 Introduction to Collections
	Arrays Revisited
	Collection Interfaces From java.util
	Dynamic Arrays with ArrayList
	Classes Hashtable and Hashmap
	Class Properties

	Classes Enumeration and Iterator
	Class LinkedList
	Class BitSet
	Choosing the Right Collection
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 12 Introduction to Generics
	Generics with Classes
	Declaring Generics
	Wildcards
	Creating Custom Parameterized Classes
	Bounded Type Parameters
	Generic Methods
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 13 Lambda Expressions and Functional Style Programming
	Imperative vs Functional Style
	What’s Lambda Expression
	Functional Interfaces

	Methods Versus Functions
	Passing Functions to Methods

	Iterating Collections with forEach()
	Lambdas Versus Inheritance and Polymorphism
	Eliminating Inheritance
	Interfaces Function and BiFunction

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 14 Working with I/O Streams
	Byte Streams
	Buffered Streams
	Character Streams
	Bringing Together GUI and I/O Streams
	Data Streams
	Utility Classes for Working with Files
	The Class File
	NIO.2: Using Files, Path, and Paths

	What NIO Is About
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 15 Java Serialization
	The Class ObjectOutputStream
	The Class ObjectInputStream
	The Interface Externalizable
	Class Versioning
	Serializing into Byte Arrays
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 16 Network Programming Basics
	Reading Data from the Internet
	Connecting Through HTTP Proxy Servers
	How to Download Files from the Internet
	Specifying Command-Line Parameters for FileDownload

	The Stock Quote Program
	Socket Programming
	Why Use Sockets?
	The Stock Quote Server with Sockets

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 17 Concurrency and Multithreading
	The Class Thread
	The Interface Runnable
	Eliminating Inheritance

	Sleeping Threads
	How to Kill a Thread
	Thread Priorities
	Thread Synchronization and Race Conditions
	Thread States
	Wait and Notify
	Closures in Java

	Joining Threads
	Goodies From java.util.concurrent
	ReentrantLock Versus Synchronized
	Executor Framework
	A Brief Review of Concurrent Collections

	Swingworker Thread
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 18 Introduction to GUI with JavaFX
	JavaFX Application Basics
	Using the E(fx)clipse Plug-in

	Layouts
	A Sample Application with the HBox Layout

	A Sample Application with the GridPane Layout
	Skinning with CSS
	Event Handling
	Properties and Binding
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 19 Developing JavaFX Calculator and Tic-Tac-Toe
	Designing a Calculator with Scene Builder
	Designing the Calculator GUI with Scene Builder
	Handling Events in the Controller Class
	Recognizing the Source of the Event
	Passing Data from View to Controller and Back

	Programming Tic-Tac-Toe
	The Game Strategy
	Designing Tic-Tac-Toe GUI with FXML and CSS
	Implementing Game Strategy in Tic-Tac-Toe Controller
	Handling the Tic-Tac-Toe Menu Play
	Tic-Tac-Toe: What to Try Next

	JavaFX on the Web and Mobile Devices
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 20 Stream API
	Stream Basics
	Intermediate and Terminal Operations
	Parallel Versus Sequential Processing

	Sorting Collections and Streams
	Sorting Java Collections
	Sorting Streams

	Other Stream Sources
	Creating Finite Size Streams
	Creating Infinite-Size Streams

	Short-Circuit Operations
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 21 Working with Relational DBMS Using JDBC
	JDBC Driver Types
	Installing Derby DB and Creating a Database
	Sample JDBC Program
	Processing Result Sets
	The PreparedStatement Class
	The CallableStatement Class
	The ResultSetMetaData Class
	Scrollable Result Sets and Rowset
	Transactional Updates
	Connection Pools and DataSource
	Try It
	Lesson Requirements
	Hint
	Step-by-Step

	Lesson 22 Rendering Tabular Data in the GUI
	JTable and the MVC Paradigm
	The Model
	Mandatory Callbacks of Table Models
	Optional Callbacks of Table Models

	Introduction to Renderers
	Summary
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 23 Annotations and Reflection
	Javadoc Annotations
	Java Annotations Basics
	@Override
	@Deprecated
	@Inherited
	@FunctionalInterface
	@Documented

	Custom Annotations
	Reflection
	Run-Time Annotation Processing
	Summary
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 24 Remote Method Invocation
	Developing Applications with RMI
	Defining Remote Interfaces
	Implementing Remote Interfaces
	Registering Remote Objects
	Writing RMI Clients
	Security Considerations
	Finding Remote Objects
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 25 Java EE 7 Overview
	The Big Picture
	JCP, JSR, and Other Acronyms
	Tiers of Java EE Applications
	Containers Versus Application Servers

	Profiles and Pruning
	Why Java EE?
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 26 Programming with Servlets
	The Big Picture
	The Thin Client
	How to Write a Servlet
	How to Deploy a Servlet
	Configuring Glassfish in Eclipse IDE
	How to Create a Servlet in Eclipse
	Deploying a Web Application as WAR

	Browser-Servlet Data Flow
	HTTP Get and Post Requests
	Session Tracking
	Cookies
	URL Rewriting
	Server-Side HttpSession

	Filters
	Asynchronous Servlets
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 27 JavaServer Pages
	Embedding Java Code into HTML
	Implicit JSP Objects
	Overview of the JSP Tags
	Directives
	Declarations
	Expressions

	Scriptlets
	Comments
	Standard Actions

	Error Pages
	Java Beans
	Using JavaBeans in JSP
	How Long Does a Bean Live?

	Loading JSP from Servlets
	Tag Libraries
	JSTL
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 28 Developing Web Applications with WebSockets
	HTTP Drawbacks
	HTTP Hacks for Server-Side Data Push

	Client-Server Communication with Websockets
	Web Browser as a WebSocket Client
	Communication with the Server Using WebSockets
	Sending Messages
	Receiving Messages Using @OnMessage

	Encoders and Decoders
	Publishing to All Clients
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 29 Introducing JNDI
	Naming and Directory Services
	Using the Class InitialContext
	Getting a Reference to InitialContext
	Injecting JNDI Resources

	Administering JNDI Objects in Glassfish
	Datasource and JNDI
	Lightweight Directory Access Protocol
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 30 Introducing JMS and MOM
	Messaging Concepts and Terminology
	Two Modes of Message Delivery
	Introducing OpenMQ MOM
	JMS API Overview
	Types of Messages
	How to Send a Message Directly to MOM
	How to Receive a Message Directly from MOM
	How to Publish a Message
	How to Subscribe for a Topic
	Message Acknowledgments and Transactions Support
	Message Selectors

	Sending Messages from Java EE Containers
	Administering JMS Objects in GlassFish

	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 31 Introduction to Enterprise JavaBeans
	Who Needs EJB Containers?
	Types of EJBs
	Stateless Session Beans
	The Bean
	The Client’s View
	Asynchronous Methods and Concurrency

	Stateful Session Beans
	Singleton Beans
	Deploying EJB
	Message-Driven Beans
	EJB and Transactions
	Timer Service
	Summary
	Try It
	Lesson Requirements
	Hint
	Step-by-Step

	Lesson 32 Overview of the Java Persistence API
	The Big Picture
	Mapping Objects to Database Tables
	Querying Entities
	JPQL
	Criteria API

	Entity Manager
	Bean Validation
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 33 Working with RESTful Web Services
	The Soap Web Services
	The RESTful Web Services
	Working with JSON-Formatted Data
	Reading JSON with the Streaming API
	Writing JSON with the Streaming API
	Writing JSON with the Object Model API

	The RESTful Stock Server
	Creating the Application
	Creating the Java Bean Stock
	Creating the Endpoint StockService
	Creating RESTFful Clients

	Contexts and Dependency Injection
	Try It
	Lesson Requirements
	Hints
	Step-by-Step

	Lesson 34 Java Logging API
	Java Logging API
	Hello World with the Java Logging API
	Using Handlers and Setting Log Levels
	Formatters and Filters

	Logging Frameworks
	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 35 Introduction to Unit Testing with JUnit Framework
	Introduction to JUnit
	Installing JUnit
	Changing the Default Directory Structure in Eclipse
	Your First JUnit Test Case
	JUnit Annotations
	Applying Annotations for Testing Tax
	Test Suites
	JUnit Test Runners

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 36 Build Automation with Gradle
	Hello World in Ant
	Hello World in Maven
	Gradle Basics
	Hello World in Gradle

	Changing Gradle Conventions
	Managing Dependencies with Gradle
	Repositories
	Dependencies and Configurations

	Using Gradle in Eclipse IDE
	Gradle Eclipse Plug-ins
	Eclipse IDE and Gradle

	Try It
	Lesson Requirements
	Step-by-Step

	Lesson 37 Java Technical Interviews
	Getting the Interview
	Doing Well at the Interview
	Considering the Offer
	Interviewing Enterprise Developers
	To Get or Not to Get Certified?
	Technical Questions and Answers
	Epilogue
	End User License Agreement

