
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/cheatsheet/javaprogrammingforandroiddevelopers
http://www.allitebooks.org

Java® Programming for
Android™

Developers

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

by Barry Burd

Java® Programming for
Android™

Developers

www.allitebooks.com

http://www.allitebooks.org

Java® Programming for Android™ Developers For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Java is a registered trademark of Oracle America, Inc. Android is a
trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand. If
this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013948033
ISBN 978-1-118-50438-3 (pbk); ISBN 978-1-118-61212-5 (ebk); ISBN 978-1-118-61214-9 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Java Programming
for Android Developers ... 9
Chapter 1: All about Java and Android ... 11
Chapter 2: Getting the Tools That You Need ... 25
Chapter 3: Running Standard Java Programs ... 53
Chapter 4: Creating an Android App ... 77

Part II: Writing Your Own Java Programs 107
Chapter 5: An Ode to Code ... 109
Chapter 6: Java’s Building Blocks .. 137
Chapter 7: Though These Be Methods, Yet There Is Madness in’t 165
Chapter 8: What Java Does (and When) ... 191

Part III: Working with the Big Picture:
Object-Oriented Programming 217
Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese 219
Chapter 10: Saving Time and Money: Reusing Existing Code 265

Part IV: Powering Android with Java Code 301
Chapter 11: A Simple Android Example: Responding to a Button Click 303
Chapter 12: Dealing with a Bunch of Things at a Time ... 325
Chapter 13: An Android Social Media App ... 351
Chapter 14: Hungry Burds: A Simple Android Game ... 383

Part V: The Part of Tens ... 403
Chapter 15: Ten Ways to Avoid Mistakes ... 405
Chapter 16: Ten Websites for Developers .. 411

Index .. 413

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction ... 1

How to Use This Book ... 1
Conventions Used in This Book ... 2
What You Don’t Have to Read .. 2
Foolish Assumptions ... 3
How This Book Is Organized .. 4

Part I: Getting Started with Java Programming
for Android Developers ... 4

Part II: Writing Your Own Java Programs ... 5
Part III: Working with the Big Picture:

Object-Oriented Programming ... 5
Part IV: Powering Android with Java Code ... 5
Part V: The Part of Tens .. 5
More on the web! ... 6

Icons Used in This Book ... 6
Beyond the Book ... 7
Where to Go from Here ... 7

Part I: Getting Started with Java Programming
for Android Developers .. 9

Chapter 1: All about Java and Android . 11
The Consumer Perspective .. 12
The Many Faces of Android ... 13
The Developer Perspective .. 14

Java .. 14
XML .. 16
Linux .. 18

From Development to Execution with Java .. 18
What is a compiler? ... 19
What is a virtual machine? ... 22

Java, Android, and Horticulture .. 24

Chapter 2: Getting the Tools That You Need . 25
The Stuff You Need .. 25
If You Don’t Like Reading Instructions 27
Getting This Book’s Sample Programs .. 30
Gathering Information ... 31

www.allitebooks.com

http://www.allitebooks.org

Java Programming for Android Developers For Dummies viii
Are you running a 32-bit or 64-bit operating system? 31
If you’re a Mac user, which version of Mac OS X do you have? 35
Is a recent version of Java installed on your computer? 36

Setting Up Java ... 37
Setting Up the Android SDK ... 38
Running Eclipse for the First Time .. 39

Dude, where’s my Android SDK? ... 41
Eclipse, meet Java! ... 42
Importing this book’s sample programs ... 46
Creating an Android Virtual Device ... 50

Chapter 3: Running Standard Java Programs . 53
Running a Canned Java Program ... 53
Typing and Running Your Own Code .. 58

Separating your programs from mine ... 58
Writing and running your program ... 59

What’s All That Stuff in the Eclipse Window? .. 68
Understanding the big picture ... 69
Views, editors, and other stuff ... 70
Looking inside a view or an editor .. 73
Returning to the big picture ... 74

Chapter 4: Creating an Android App . 77
Creating Your First Android App ... 78

Creating an Android project ... 78
Running your project .. 83
What if 87

Testing Apps on a Real Device ... 92
Examining an Android App ... 94

The src directory ... 94
The res directory ... 95
The gen directory .. 100
The Android 4.2 branch .. 101
The AndroidManifest.xml file ... 103

Part II: Writing Your Own Java Programs 107

Chapter 5: An Ode to Code . 109
Examining a Standard Oracle Java Program .. 110

The Java class .. 111
The names of classes... 113
Why Java methods are like meals at a restaurant 115
What does Mom’s Restaurant have to do with Java? 116

www.allitebooks.com

http://www.allitebooks.org

ix Table of Contents

The main method in a standard Java program 120
Punctuating your code .. 121
Comments are your friends .. 123
What’s Barry’s excuse? ... 126

Another One-Line Method .. 126
More Java Methods ... 127

Using an import declaration ... 129
More method parameters ... 130
Fewer method parameters.. 132

Hello, Android .. 132
Where’s the main method? ... 133
Extending a class ... 134
Overriding methods .. 135
An activity’s workhorse methods .. 136

Chapter 6: Java’s Building Blocks . 137
Info Is as Info Does ... 138

Variable names ... 140
Type names .. 140
Assignments and initializations ... 141
Expressions and literals .. 143
How to string characters together .. 146
Java’s primitive types .. 146

Things You Can Do with Types .. 148
Add letters to numbers (Huh?) .. 150
Java’s exotic assignment operators .. 152
True bit .. 153
Java isn’t like a game of horseshoes ... 154
Use Java’s logical operators ... 156
Parenthetically speaking 162

Chapter 7: Though These Be Methods, Yet There Is Madness in’t . . .165
Practice Safe Typing .. 166

Widening is good; narrowing is bad .. 168
Incompatible types .. 169
Using a hammer to bang a peg into a hole 169

Calling a Method .. 170
Method parameters and Java types .. 173
Return types ... 175
The great void .. 176
Displaying numbers ... 176
Method overload without software bloat 177

Primitive Types and Pass-by Value ... 181
What’s a developer to do? .. 185
A final word... 187

Java Programming for Android Developers For Dummies x
Chapter 8: What Java Does (and When) . 191

Making Decisions ... 191
Testing for equality.. 193
Java if statements .. 194
A detour concerning Android screen densities 195
Choosing among many alternatives .. 197
Some formalities concerning Java switch statements 203

Repeating Instructions Over and Over Again .. 204
Check, and then repeat ... 205
Some formalities concerning Java while statements 208
Repeat, and then check ... 211
Some formalities concerning Java do statements 212
Count, count, count ... 213
Some formalities concerning Java for statements 216

What’s Next? ... 216

Part III: Working with the Big Picture:
Object-Oriented Programming 217

Chapter 9: Why Object-Oriented Programming
Is Like Selling Cheese . 219

Classes and Objects .. 221
What is a class, really? .. 222
What is an object? .. 224
Creating objects ... 225
Reusing names ... 227
Calling a constructor ... 230

More About Classes and Objects (Adding Methods to the Mix) 231
Constructors with parameters ... 234
The default constructor .. 237
This is it! .. 237
Giving an object more responsibility .. 239
Members of a class .. 243
Reference types .. 243
Pass by reference ... 245

Java’s Modifiers ... 248
Public classes and default-access classes 248
Access for fields and methods ... 250
Using getters and setters .. 254
What does static mean? .. 257
Knowing when to create a static member 259

What’s Next? ... 263

xi Table of Contents

Chapter 10: Saving Time and Money: Reusing Existing Code 265
The Last Word on Employees — Or Is It? ... 266

Extending a class ... 267
Overriding methods .. 270
Java annotations .. 276

More about Java’s Modifiers .. 277
Keeping Things Simple .. 281

Using an interface .. 282
Creating a callback .. 286
How versatile is this interface? .. 293
Java’s super keyword .. 295

What Does This Have to Do with Android? .. 296

Part IV: Powering Android with Java Code 301

Chapter 11: A Simple Android Example:
Responding to a Button Click . 303

The First Button-Click Example ... 303
Creating the Android app ... 304
Making a view available to your Java code 311
Casting, again ... 315

Introducing Inner Classes ... 316
No Publicity, Please! .. 317
Doing It the Easy Way ... 320

I warned you to skip the rest of this chapter 320
The “no-hassle” way to click a button ... 320

Chapter 12: Dealing with a Bunch of Things at a Time 325
Creating a Collection Class ... 326

Java generics .. 327
Java’s wrapper classes .. 331
Stepping through a collection .. 333
A cautionary tale .. 335
Java’s many collection classes ... 336
Arrays .. 337
Java’s varargs ... 339

Using Collections in an Android App .. 342
The main activity’s initial layout ... 343
The app’s main activity ... 344
The app’s List Activity .. 347
The app’s AndroidManifest.xml file .. 349

Java Programming for Android Developers For Dummies xii
Chapter 13: An Android Social Media App . 351

The Twitter App’s Files ... 352
The Twitter4J API jar file... 352
The manifest file ... 354
The main activity’s layout file .. 355
The twitter4j.properties file ... 358
Getting OAuth codes ... 359

The Application’s Main Activity .. 361
The onCreate method ... 366
The button listener methods.. 367
The trouble with threads .. 367
Android’s AsyncTask... 370
My Twitter app’s AsyncTask classes .. 372
Cutting to the chase, at last .. 374

Java’s Exceptions ... 375
Catch clauses.. 377
A finally clause ... 378
Passing the buck .. 379

Chapter 14: Hungry Burds: A Simple Android Game 383
Introducing the Hungry Burds Game .. 384
The Project’s Files ... 387
The Main Activity .. 389

The code, all the code, and nothing but the code 391
Random ... 394
Measuring the display ... 395
Constructing a Burd .. 397
Android animation ... 399
Shared preferences .. 400

It’s Been Fun ... 402

Part V: The Part of Tens .. 403

Chapter 15: Ten Ways to Avoid Mistakes . 405
Putting Capital Letters Where They Belong ... 405
Breaking Out of a switch Statement .. 406
Comparing Values with a Double Equal Sign ... 406
Adding Listeners to Handle Events ... 406
Defining the Required Constructors ... 407
Fixing Nonstatic References ... 408
Staying within Bounds in an Array .. 408
Anticipating Null Pointers .. 408
Using Permissions ... 409
The Activity Not Found ... 410

xiii Table of Contents

Chapter 16: Ten Websites for Developers . 411
This Book’s Websites .. 411
The Horse’s Mouth .. 411
Finding News and Reviews ... 412
Everyone’s Favorite Sites ... 412

Index ... 413

Java Programming for Android Developers For Dummies xiv

Introduction

A
ndroid is everywhere. In mid-2013, Android ran on 53 percent of all
smartphones in the United States and on 80 percent of all smartphones

worldwide.1 In a study that spans the Americas, Europe, Asia, and the Middle
East, GlobalWebIndex reports that Android tablets outnumber iPads by 34
million.2 More than a million apps are available for download at the Google
Play store (double the number of apps that were available in May 2012).3
And more than 9 million developers write code using Java, the language that
powers Android devices.4

If you read this book in a public place (on a commuter train, at the beach,
or on the dance floor at the Coyote Ugly saloon, for example), you can read
proudly, with a chip on your shoulder and with your head held high. Android
is hot stuff, and you’re cool because you’re reading about it.

How to Use This Book
You can attack this book in either of two ways: go from cover to cover or
poke around from one chapter to another. You can even do both (start at the
beginning, and then jump to a section that particularly interests you). This
book was designed so that the basic topics come first, and the more-involved
topics follow them. But you may already be comfortable with some basics,
or you may have specific goals that don’t require you to know about certain
topics.

1See www.kantarworldpanel.com/global/News/news-articles/
Samsung-nears-50-share-across-Europe-as-Apple-
powers-back-in-the-US and http://www.idc.com/getdoc.
jsp?containerId=prUS24257413.

2See www.globalwebindex.net/android-tablets-dominate-q1-
mobile-market.

3See www.androidguys.com/2013/07/24/sundar-pichai-there-are-
now-more-than-1-million-android-apps.

4See www.java.com/en/about.

http://www.kantarworldpanel.com/global/News/news-articles/Samsung-nears-50-share-across-Europe-as-Apple-powers-back-in-the-US
http://www.kantarworldpanel.com/global/News/news-articles/Samsung-nears-50-share-across-Europe-as-Apple-powers-back-in-the-US
http://www.kantarworldpanel.com/global/News/news-articles/Samsung-nears-50-share-across-Europe-as-Apple-powers-back-in-the-US
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.globalwebindex.net/android-tablets-dominate-q1-mobile-market
http://www.globalwebindex.net/android-tablets-dominate-q1-mobile-market
http://www.androidguys.com/2013/07/24/sundar-pichai-there-are-now-more-than-1-million-android-apps
http://www.androidguys.com/2013/07/24/sundar-pichai-there-are-now-more-than-1-million-android-apps
http://www.java.com/en/about

2 Java Programming for Android Developers For Dummies

In general, my advice is this:

 ✓ If you already know something, don’t bother reading about it.

 ✓ If you’re curious, don’t be afraid to skip ahead. You can always sneak a
peek at an earlier chapter if you need to do so.

Conventions Used in This Book
Almost every technically themed book starts with a little typeface legend,
and Java Programming For Android Developers For Dummies is no exception.
What follows is a brief explanation of the typefaces used in this book:

 ✓ New terms are set in italics.

 ✓ If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject
in the text field.”

 ✓ You also see this computerese font. I use computerese for Java code,
filenames, onscreen messages, and other such things. Also, if something
you need to type is really long, it appears in computerese font on its
own line (or lines).

 ✓ You may need to change certain things when you type them on your
own computer keyboard. For instance, I may ask you to type
public void Anyname

 which means that you type public void and then a name that you make
up on your own. Words that you need to replace with your own words
are set in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you may hate making decisions as much as I
do. If so, here are some guidelines you can follow:

 ✓ If you already know what kind of an animal Java is and you don’t
care what happens behind the scenes when an Android app runs: Skip
Chapter 1 and go straight to Chapter 2. Believe me — I won’t mind.

 ✓ If you already know how to get an Android app running: Skip Part I
and start with Part II.

3 Introduction

 ✓ If you have experience writing computer programs in languages other
than C and C++: Start with Part II. You’ll probably find Part II to be easy
reading. When you get to Part III, it’ll be time to dive in.

 ✓ If you have experience writing computer programs in C or C++: Skim
Part II and start reading seriously in Part III. (Java is a bit different from
C++ in the way it handles classes and objects.)

 ✓ If you have experience writing Java programs: Come to my house and
help me write Java Programming For Android Developers For Dummies,
2nd Edition.

If you want to skip the sidebars and the paragraphs with Technical Stuff
icons, please do. In fact, if you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

 ✓ I assume that you have access to a computer. Access to an Android
device is helpful but not absolutely necessary! All the software you need
in order to test Android apps on a laptop or desktop computer is freely
available. You simply download, install, and get going.

 ✓ I assume that you can navigate your computer’s common menus and
dialog boxes. You don’t have to be a Windows, Linux, or Macintosh
power user, but you should be able to start a program, find a file, put a
file into a certain directory — that sort of thing. Much of the time, when
you follow the instructions in this book, you’re typing code on the
keyboard, not pointing and clicking the mouse.

 On those occasions when you need to drag and drop, cut and paste, or
plug and play, I guide you carefully through the steps. But your computer
may be configured in any of several billion ways, and my instructions
may not quite fit your special situation. When you reach one of these
platform-specific tasks, try following the steps in this book. If the steps
don’t quite fit, consult a book with instructions tailored to your system.
If you can’t find such a book, send me an e-mail. (My address appears
later in the Introduction.)

 ✓ I assume that you can think logically. That’s all there is to application
development — thinking logically. If you can think logically, you’ve got it
made. If you don’t believe that you can think logically, read on. You may
be pleasantly surprised.

4 Java Programming for Android Developers For Dummies

 ✓ I make very few assumptions about your computer programming
experience (or your lack of such experience). In writing this book, I’ve
tried to do the impossible: make the book interesting for experienced
programmers yet accessible to people with little or no programming
experience. This means that I don’t assume any particular programming
background on your part. If you’ve never created a loop or indexed an
array, that’s okay.

 On the other hand, if you’ve done these things (maybe in Visual Basic,
COBOL, or C++), you’ll discover some interesting plot twists in Java. The
creators of Java took the best ideas from object-oriented programming,
streamlined them, reworked them, and reorganized them into a sleek,
powerful way of thinking about problems. You’ll find many new, thought-
provoking features in Java. As you find out about these features, many of
them will seem quite natural to you. One way or another, you’ll feel good
about using Java.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections,
which come together to make chapters, which are lumped, finally, into five
parts (like one of those Russian matryoshka dolls). The parts of the book are
described here.

Part I: Getting Started with Java
Programming for Android Developers
Part I covers all the nuts and bolts. It introduces you to the major ideas
behind Java and Android software development and walks you through the
installation of the necessary software products. You also run a few simple
Java and Android programs.

The instructions in these chapters cover both Windows and Macintosh
computers. They cover many computer configurations, including some
not-so-new operating system versions, the differences between 32-bit systems
and 64-bit systems, and situations in which you already have some form
of Java on your computer. But installing software is always tricky, and you
might have a few hurdles to overcome. If you do, check the end of this
chapter for ways to reach me (the author) and get some quick advice. (Yes, I
answer e-mails, tweets, Facebook posts, and notes sent by carrier pigeons.)

www.allitebooks.com

http://www.allitebooks.org

5 Introduction

Part II: Writing Your Own Java Programs
Chapters 5 through 8 cover Java’s basic building blocks. These chapters
describe the things you need to know so that you can get your computer
humming along.

If you’ve written programs in Visual Basic, C++, or in any another language,
some of the material in Part II may be familiar to you. If so, you can skip some
sections or read this stuff quickly. But don’t read too quickly. Java is a little
different from some other programming languages, especially in the features I
describe in Chapter 6.

Part III: Working with the Big Picture:
Object-Oriented Programming
Part III has some of my favorite chapters. This part covers the all-important
topic of object-oriented programming. In these chapters, you find out how
to map solutions to big problems. (Sure, the examples in these chapters
aren’t big, but the examples involve big ideas.) You discover, in bite-worthy
increments, how to design classes, reuse existing classes, and construct
objects.

Have you read any of those books that explain object-oriented programming
in vague, general terms? I’m very proud to say that Java Programming for
Android Developers For Dummies isn’t like that. In this book, I illustrate each
concept with a simple-yet-concrete program example.

Part IV: Powering Android with Java Code
If you’ve tasted some Java and want more, you can find what you need in this
part of the book. This part’s chapters are devoted to details — the things you
don’t see when you first glance at the material. This part includes some fully
functional Android apps. So, after you read the earlier parts and write some
programs on your own, you can dive in a little deeper by reading Part IV.

Part V: The Part of Tens
In The Part of Tens, which is a little Java candy store, you can find lists —
lists of tips for avoiding mistakes, tracking down resources, and finding all
kinds of interesting goodies.

6 Java Programming for Android Developers For Dummies

More on the web!
You’ve read the Java Programming For Android Developers book, seen the
Java Programming For Android Developers movie, worn the Java Programming
for Android Developers T-shirt, and eaten the Java Programming for Android
Developers candy. What more is there to do?

That’s easy. Just visit this book’s website: www.allmycode.com/Java4
Android. There you can find updates, comments, additional information,
and answers to commonly asked questions from readers. You can also find
a small chat application for sending me quick questions when I’m online.
(When I’m not online, you can contact me in other ways. See the end of this
chapter for more info.)

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence in my head. Most of the sentences
I mutter several times. When I have an extra thought, a side comment, or
something else that doesn’t belong in the regular stream, I twist my head a
little bit. That way, whoever’s listening to me (usually nobody) knows that
I’m off on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way
to set a side thought in a corner by itself. I do it with icons. When you see a
Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

 A tip is an extra piece of information — helpful advice that the other books
may forget to tell you.

 Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark
the text with a Warning icon.

 Question: What’s stronger than a tip but not as strong as a warning?

Answer: A Remember icon.

 “If you don’t remember what such-and-such means, see blah-blah-blah,” or “For
more information, read blahbity-blah-blah.”

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

7 Introduction

 This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of this
introduction!)

 Occasionally, I run across a technical tidbit. The tidbit may help you
understand what the people behind the scenes (the people who created Java)
were thinking. You don’t have to read it, but you may find it useful. You may
also find the tidbit helpful if you plan to read other (geekier) books about Java
and Android.

Beyond the Book
We have written a lot of extra content that you won’t find in this book. Go
online to find the following:

 ✓ Dummies.com online articles: Be sure to check out www.dummies.
com/extras/javaprogrammingforandroiddevelopers for
additional online content dealing with Java and Android app development.
Here you’ll find examples of delightfully weird code, a disquisition on
classes and objects, a quick look at using Android Asset Studio, an
additional Parts of Ten chapter, and much more. And, if we have to post
any updates to this edition of Java Programming for Android Developers
For Dummies, here’s where you’d find them.

 ✓ The Cheat Sheet for this book is at www.dummies.com/cheatsheet/
javaprogrammingforandroiddevelopers

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java and Android
application development. Think of me (the author) as your guide, your host,
your personal assistant. I do everything I can to keep things interesting and,
most importantly, to help you understand.

 If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is java4android@
allmycode.com. If e-mail and chat aren’t your favorites, you can reach me
instead on Twitter (@allmycode) and on Facebook (/allmycode). And don’t
forget — for the latest updates, visit this book’s website. The site’s address is
www.allmycode.com/java4android.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers
http://www.dummies.com/extras/javaprogrammingforandroiddevelopers
http://www.dummies.com/cheatsheet/javaprogrammingforandroiddevelopers
http://www.dummies.com/cheatsheet/javaprogrammingforandroiddevelopers
http://www.allmycode.com/java4android

8 Java Programming for Android Developers For Dummies

Part I
Getting Started with Java
Programming for Android

Developers

 Visit www.dummies.com for great For Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Downloading the software
 ✓ Installing Java and Android
 ✓ Testing Android apps on your computer

Chapter 1

All about Java and Android
In This Chapter
▶ The consumer’s view of the Android ecosystem
▶ The ten-cent tour of Java and Android technologies

U
ntil the mid-2000s, the word android represented a mechanical,
humanlike creature — a root’n-toot’n officer of the law with built-in

machine guns or a hyperlogical space traveler who can do everything except
speak using contractions. And then in 2005, Google purchased Android, Inc. —
a 22-month old company creating software for mobile phones. That move
changed everything.

In 2007, a group of 34 companies formed the Open Handset Alliance. Its task
is “to accelerate innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience”; its primary project is Android, an
open, free operating system based on the Linux operating system kernel.

Though HTC released the first commercially available Android phone near
the end of 2008, in the United States the public’s awareness of Android and
its potential didn’t surface until early 2010.

As I sit and write in mid-2013, Mobile Marketing Watch reports more than
50 billion downloads from the Google Play app store.1 Android developers
earned more from their apps in the first half of 2013 than in all of 2012. And
according to Forbes, Google paid approximately $900 million to Android
developers during the 12-month period starting in mid-2012.2 The pace is
accelerating.

1See www.mobilemarketingwatch.com/google-play-tops-50-
billion-app-downloads-34516/.

2See www.forbes.com/sites/tristanlouis/2013/08/10/how-
much-do-average-apps-make/.

http://www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-34516/
http://www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-34516/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/

12 Part I: Getting Started with Java Programming for Android Developers

The Consumer Perspective
A consumer considers the alternatives:

 ✓ Possibility #1: No mobile phone.

 Advantages: Inexpensive; no interruptions from callers.

 Disadvantages: No instant contact with friends and family; no calls to
services in case of emergencies.

 ✓ Possibility #2: A feature phone.

 This type of mobile phone isn’t a smartphone. Though no official rule
defines the boundary between feature phone and smartphone, a feature
phone generally has an inflexible menu of Home screen options
compared with a smartphone’s “desktop” of downloaded apps.

 Advantage: Less expensive than a smartphone.

 Disadvantages: Less versatile than a smartphone, not nearly as cool as a
smartphone, and nowhere near as much fun as a smartphone.

 ✓ Possibility #3: An iPhone.

 Advantages: Great-looking graphics.

 Disadvantages: Little or no flexibility with the single-vendor iOS
operating system; only a handful of models to choose from.

 ✓ Possibility #4: A Windows phone, a BlackBerry, or another non-
Android, non-Apple smartphone

 Advantage: Having a smartphone without having to belong to a crowd.

 Disadvantage: The possibility of owning an orphan product when the
smartphone wars come to a climax.

 ✓ Possibility #5: An Android phone

 Advantages: Using a popular, open platform with lots of industry support
and powerful market momentum; writing your own software and
installing it on your own phone (without having to post the software
on a company’s website); publishing software without having to face a
challenging approval process.

 Disadvantages: Security concerns when using an open platform; dismay
when iPhone users make fun of your phone.

For me, Android’s advantages far outweigh its possible disadvantages. And
you’re reading a paragraph from Java Programming For Android Developers
For Dummies, so you’re likely to agree with me.

13 Chapter 1: All about Java and Android

The Many Faces of Android
Version numbers can be tricky. My PC’s model number is T420s. When I
download the users’ guide, I download one guide for any laptop in the T400
series. (No guide specifically addresses the T420, let alone the T420s.) But
when I have driver problems, knowing that I have a T420s isn’t good enough.
I need drivers that are specific to my laptop’s seven-digit model number. The
moral to this story: What constitutes a “version number” depends on who’s
asking for the number.

With that in mind, you can see a history of Android versions in Figure 1-1.

A few notes on Figure 1-1 are in order:

 ✓ The platform number is of interest to the consumer and to the
company that sells the hardware.

 If you’re buying a phone with Android 4.2.2, for example, you might want
to know whether the vendor will upgrade your phone to Android 4.3.

Figure 1-1:
Versions of

Android.

14 Part I: Getting Started with Java Programming for Android Developers

 ✓ The API level (also known as the SDK version) is of interest to the
Android app developer.

 For example, the word MATCH_PARENT has a specific meaning in
Android API Levels 8 and higher. You might type MATCH_PARENT in
code that uses API Level 7. If you do (and if you expect MATCH_PARENT
to have that specific meaning), you’ll get a nasty-looking error message.

 You can read more about the Application Programming Interface (API)
in Chapter 2. For more information about the use of Android’s API levels
(SDK versions) in your code, see Chapter 4.

 ✓ The code name is of interest to the creators of Android.

 A code name refers to the work done by the creators of Android to bring
Android to the next level. Picture Google’s engineers working for months
behind closed doors on Project Cupcake, and you’ll be on the right
track.

 An Android version may have variations. For example, plain-old Android 2.2
has an established set of features. To plain-old Android 2.2 you can add the
Google APIs (thus adding Google Maps functionality) and still be using
platform 2.2. You can also add a special set of features tailored for the
Samsung Galaxy Tab.

As a developer, your job is to balance portability with feature-richness. When
you create an app, you specify a target Android version and a minimum
Android version. (You can read more about this topic in Chapter 4.) The
higher the version, the more features your app can have. But on the flip side,
the higher the version, the fewer devices that can run your app.

The Developer Perspective
Android is a multifaceted beast. When you develop for the Android platform,
you use many toolsets. This section gives you a brief rundown.

Java
James Gosling of Sun Microsystems created the Java programming language
in the mid-1990s. (Sun Microsystems has since been bought by Oracle.)
Java’s meteoric rise in use stemmed from the elegance of the language and its
well-conceived platform architecture. After a brief blaze of glory with applets
and the web, Java settled into being a solid, general-purpose language with a
special strength in servers and middleware.

www.allitebooks.com

http://www.allitebooks.org

15 Chapter 1: All about Java and Android

In the meantime, Java was quietly seeping into embedded processors. Sun
Microsystems was developing Java Mobile Edition (Java ME) for creating
small apps to run on mobile phones. Java became a major technology in
Blu-ray disc players. So the decision to make Java the primary development
language for Android apps is no big surprise.

 An embedded processor is a computer chip that is hidden from the user as part
of a special-purpose device. The chips in cars are now embedded processors,
and the silicon that powers the photocopier at your workplace is an embedded
processor. Pretty soon, the flower pots on your windowsill will probably have
embedded processors.

Figure 1-2 describes the development of new Java versions over time. Like
Android, each Java version has several names. The product version is an
official name that’s used for the world in general, and the developer version
is a number that identifies versions so that programmers can keep track of
them. (In casual conversation, developers use all kinds of names for the
various Java versions.) The code name is a more playful name that identifies
a version while it’s being created.

Figure 1-2:
Versions of

Java.

16 Part I: Getting Started with Java Programming for Android Developers

The asterisks in Figure 1-2 mark changes in the formulation of Java
product-version names. Back in 1996, the product versions were Java
Development Kit 1.0 and Java Development Kit 1.1. In 1998, someone decided
to christen the product Java 2 Standard Edition 1.2, which confuses everyone
to this day. At the time, anyone using the term Java Development Kit was
asked to use Software Development Kit (SDK) instead.

In 2004 the 1. business went away from the platform version name, and in
2006 Java platform names lost the 2 and the .0.

By far the most significant changes for Java developers came about in 2004.
With the release of J2SE 5.0, the overseers of Java made changes to the lan-
guage by adding new features — features such as generic types, annotations,
varargs, and the enhanced for statement.

 To see Java annotations in action, go to Chapter 10. For examples of the use of
generic types, varargs, and the enhanced for statement, see Chapter 12.

 If you compare Figures 1-1 and 1-2, you might notice that Android entered the
scene when Java was in version Java SE 6. As a result, Java is frozen at version 6
for Android developers. When you develop an Android app, you can use J2SE
5.0 or Java SE 6. You cannot use Java SE 7 with strings in its switch statements
or use Java SE 8 with its lambda expressions. But that’s okay: As an Android
developer, you probably won’t miss these features.

XML
If you find View Source among your web browser’s options one day and
decide to use it, you’ll see a bunch of HyperText Markup Language (HTML)
tags. A tag is some text, enclosed in angle brackets, that describes something
about its neighboring content.

For example, to create boldface type on a web page, a web designer writes

Look at this!

The b tags in angle brackets turn boldface type on and off.

The M in HTML stands for Markup — a general term describing any extra text
that annotates a document’s content. When you annotate a document’s
content, you embed information about the content into the document itself.
For example, in the previous line of code, the content is Look at this! The
markup (information about the content) consists of the tags and .

17 Chapter 1: All about Java and Android

The HTML standard is an outgrowth of Standard Generalized Markup
Language (SGML), an all-things-to-all-people technology for marking up
documents for use by all kinds of computers running all kinds of software
and sold by all kinds of vendors.

In the mid-1990s, a working group of the World Wide Web Consortium (W3C)
began developing the eXtensible Markup Language, commonly known as
XML. The working group’s goal was to create a subset of SGML for use in
transmitting data over the Internet. They succeeded. XML is now a well-
established standard for encoding information of all kinds.

 For an overview of XML, see the sidebar that describes it in Chapter 4.

Java is good for describing step-by-step instructions, and XML is good for
describing the way things are (or the way they should be). A Java program
says, “Do this and then do that.” In contrast, an XML document says, “It’s this
way and it’s that way.” Android uses XML for two purposes:

 ✓ To describe an app’s data

 An app’s XML documents describe the layout of the app’s screens, the
translations of the app into one or more languages, and other kinds of
data.

 ✓ To describe the app itself

 Every Android app has an AndroidManifest.xml file, an XML
document that describe features of the app. A device’s operating system
uses the AndroidManifest.xml document’s contents to manage the
running of the app.

 For example, an app’s AndroidManifest.xml file describes code that
the app makes available for use by other apps. The same file describes
the permissions that the app requests from the system. When you begin
installing a new app, Android displays these permissions and asks for
your permission to proceed with the installation. (I don’t know about
you, but I always read this list of permissions carefully. Yeah, right!)

 For more information about the AndroidManifest.xml file, see Chapter 4.

Concerning XML, I have bad news and good news. The bad news is that XML
isn’t always easy to compose. At best, writing XML code is boring. At worst,
writing XML code is downright confusing. The good news is that automated
software tools compose most the world’s XML code. As an Android
programmer, the software on your development computer composes much
of your app’s XML code. You often tweak the XML code, read part of the code
for information from its source, make minor changes, and compose brief
additions. But you hardly ever create XML documents from scratch.

18 Part I: Getting Started with Java Programming for Android Developers

Linux
An operating system is a big program that manages the overall running of a
computer or a device. Most operating systems are built in layers. An operating
system’s outer layers are usually in the user’s face. For example, both
Windows and Macintosh OS X have standard desktops. From the desktop, the
user launches programs, manages windows, and does other important things.

An operating system’s inner layers are (for the most part) invisible to the
user. While the user plays Solitaire, for example, the operating system juggles
processes, manages files, keeps an eye on security, and generally does the
kinds of things that the user shouldn’t have to micromanage.

At the deepest level of an operating system is the system’s kernel. The kernel
runs directly on the processor’s hardware and does the low-level work
required to make the processor run. In a truly layered system, higher layers
accomplish work by making calls to lower layers. So an app with a specific
hardware request sends the request (directly or indirectly) through the
kernel.

The best-known, best-loved general purpose operating systems are Windows,
Macintosh OS X (which is really Unix), and Linux. Both Windows and Mac OS X
are the properties of their respective companies. But Linux is open source.
That’s one reason why your TiVo runs Linux and why the creators of Android
based their platform on the Linux kernel.

As a developer, your most intimate contact with the Android operating
system is via the command line, also known as the Linux shell. The shell uses
commands such as cd to change to a directory, ls to list a directory’s files
and subdirectories, rm to delete files, and many others.

Google’s Android Market has plenty of free terminal apps. A terminal app’s
interface is a plain-text screen on which you type Linux shell commands. And
by using one of Android’s developer tools, the Android Debug Bridge, you
can issue shell commands to an Android device via your development
computer. If you like getting your virtual hands dirty, the Linux shell is for you.

From Development to
Execution with Java

Before Java became popular, running a computer program involved one
translation step. Someone (or something) translated the code that a developer
wrote into more cryptic code that a computer could actually execute. But
then Java came along and added an extra translation layer, and then Android
added another layer. This section describes all those layers.

19 Chapter 1: All about Java and Android

What is a compiler?
A Java program (such as an Android application program) undergoes several
translation steps between the time you write the program and the time a
processor runs the program. One of the reasons is simple: Instructions that
are convenient for processors to run are not convenient for people to write.

People can write and comprehend the code in Listing 1-1.

Listing 1-1: Java Source Code
public void checkVacancy(View view) {
 if (room.numGuests == 0) {
 label.setText(“Available”);
 } else {
 label.setText(“Taken :-(“);
 }
}

The Java code in Listing 1-1 checks for a vacancy in a hotel. You can’t run
the code in this listing without adding several additional lines. But here in
Chapter 1, those additional lines aren’t important. What’s important is that,
by staring at the code, squinting a bit, and looking past all its strange
punctuation, you can see what the code is trying to do:

If the room has no guests in it,
 then set the label’s text to “Available”.
Otherwise,
 set the label’s text to “Taken :-(“.

The content of Listing 1-1 is Java source code.

The processors in computers, phones, and other devices don’t normally
follow instructions like the instructions in Listing 1-1. That is, processors
don’t follow Java source code instructions. Instead, processors follow cryptic
instructions like the ones in Listing 1-2.

Listing 1-2: Java Bytecode
 0 aload_0
 1 getfield #19 <com/allmycode/samples/MyActivity/room
 Lcom/allmycode/samples/Room;>
 4 getfield #47 <com/allmycode/samples/Room/numGuests I>
 7 ifne 22 (+15)
10 aload_0
11 getfield #41 <com/allmycode/samples/MyActivity/label
 Landroid/widget/TextView;>
14 ldc #54 <Available>

(continued)

20 Part I: Getting Started with Java Programming for Android Developers

Listing 1-2 (continued)
16 invokevirtual #56
 <android/widget/TextView/setText
 (Ljava/lang/CharSequence;)V>
19 goto 31 (+12)
22 aload_0
23 getfield #41 <com/allmycode/samples/MyActivity/label
 Landroid/widget/TextView;>
26 ldc #60 <Taken :-(>
28 invokevirtual #56
 <android/widget/TextView/setText
 (Ljava/lang/CharSequence;)V>
31 return

The instructions in Listing 1-2 aren’t Java source code instructions. They’re
Java bytecode instructions. When you write a Java program, you write source
code instructions (refer to Listing 1-1). After writing the source code, you
run a program (that is, you apply a tool) to the source code. The program
is a compiler: It translates your source code instructions into Java bytecode
instructions. In other words, the compiler translates code that you can write
and understand (again, refer to Listing 1-1) into code that a computer can
execute (refer to Listing 1-2).

At this point, you might ask “What will I have to do to get the compiler running?”
The one-word answer to your question is “Eclipse.” All the translation steps
described in this chapter come down to using Eclipse — a piece of software
that you download for free using the instructions in Chapter 2. So when
you read in this chapter about compiling and other translation steps, don’t
become intimidated. You don’t have to repair an alternator in order to drive
a car, and you won’t have to understand how compilers work in order to use
Eclipse.

 No one (except for a few crazy developers in isolated labs in faraway places)
writes Java bytecode. You run software (a compiler) to create Java bytecode.
The only reason to look at Listing 1-2 is to understand what a hard worker
your computer is.

If compiling is a good thing, compiling twice may be even better. In 2007, Dan
Bornstein at Google created Dalvik bytecode — another way to represent
instructions for processors to follow. (To find out where some of Bornstein’s
ancestors come from, run your favorite map application and look for Dalvik
in Iceland.) Dalvik bytecode is optimized for the limited resources on a phone
or a tablet device.

Listing 1-3 contains sample Dalvik instructions.

* To see the code in Listing 1-3, I used the Dedexer program. See dedexer.
sourceforge.net.

http://www.dedexer.sourceforge.net
http://www.dedexer.sourceforge.net

21 Chapter 1: All about Java and Android

Listing 1-3: Dalvik Bytecode
.method public checkVacancy(Landroid/view/View;)V
.limit registers 4
; this: v2 (Lcom/allmycode/samples/MyActivity;)
; parameter[0] : v3 (Landroid/view/View;)
.line 30
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.room
 Lcom/allmycode/samples/Room;
; v0 : Lcom/allmycode/samples/Room; , v2 :
 Lcom/allmycode/samples/MyActivity;
 iget v0,v0,com/allmycode/samples/Room.numGuests I
; v0 : single-length , v0 : single-length
 if-nez v0,l4b4
; v0 : single-length
.line 31
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.label
 Landroid/widget/TextView;
; v0 : Landroid/widget/TextView; , v2 :
 Lcom/allmycode/samples/MyActivity;
 const-string v1,”Available”
; v1 : Ljava/lang/String;
 invoke-virtual
 {v0,v1},android/widget/TextView/setText
 ; setText(Ljava/lang/CharSequence;)V
; v0 : Landroid/widget/TextView; , v1 : Ljava/lang/String;
l4b2:
.line 36
 return-void
l4b4:
.line 33
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.label
 Landroid/widget/TextView;
; v0 : Landroid/widget/TextView; , v2 :
 Lcom/allmycode/samples/MyActivity;
 const-string v1,”Taken :-(“
; v1 : Ljava/lang/String;
 invoke-virtual
 {v0,v1},android/widget/TextView/setText ;
 setText(Ljava/lang/CharSequence;)V
; v0 : Landroid/widget/TextView; , v1 : Ljava/lang/String;
 goto l4b2
.end method

When you create an Android app, Eclipse performs at least two compilations:

 ✓ One compilation creates Java bytecode from your Java source files.
The source filenames have the .java extension; the Java bytecode
filenames have the .class extension.

22 Part I: Getting Started with Java Programming for Android Developers

 ✓ Another compilation creates Dalvik bytecode from your Java
bytecode files. Dalvik bytecode file names have the .dex extension.

But that’s not all! In addition to its Java code, an Android app has XML files,
image files, and possibly other elements. Before you install an app on a
device, Eclipse combines all these elements into a single file — one with the
.apk extension. When you publish the app on an app store, you copy that
.apk file to the app store’s servers. Then, to install your app, a user visits
the app store and downloads your .apk file.

 To perform the compilation from source code to Java bytecode, Eclipse uses
a program named javac, also known as the Java compiler. To perform the
compilation from Java bytecode to Dalvik code, Eclipse uses a program named
dx (known affectionately as “the dx tool”). To combine all your app’s files into
one .apk file, Eclipse uses a program named apkbuilder.

What is a virtual machine?
In the section “What is a compiler?” earlier in this chapter, I make a big
fuss about phones and other devices following instructions like the ones in
Listing 1-3. As fusses go, it’s a nice fuss. But if you don’t read every fussy
word, you may be misguided. The exact wording is “. . . processors follow
cryptic instructions like the ones in Listing blah-blah-blah.” The instructions
in Listing 1-3 are a lot like instructions that a phone or tablet can execute, but
computers generally don’t execute Java bytecode instructions, and phones
don’t execute Dalvik bytecode instructions. Instead, each kind of processor
has its own set of executable instructions, and each operating system uses
the processor’s instructions in a slightly different way.

Imagine that you have two different devices: a smartphone and a tablet
computer. The devices have two different kinds of processors: The phone
has an ARM processor, and the tablet has an Intel Atom processor. (The
acronym ARM once stood for Advanced RISC Machine. These days, ARM
simply stands for ARM Holdings, a company whose employees design
processors.) On the ARM processor, the multiply instruction is 000000. On
an Intel processor, the multiply instructions are D8, DC, F6, F7, and others.
Many ARM instructions have no counterparts in the Atom architecture, and
many Atom instructions have no equivalents on an ARM processor. An ARM
processor’s instructions make no sense to your tablet’s Atom processor, and
an Atom processor’s instructions would give your phone’s ARM processor a
virtual headache.

What’s a developer to do? Does a developer provide translations of every
app into every processor’s instruction set?

23 Chapter 1: All about Java and Android

No. Virtual machines create order from all this chaos. Dalvik bytecode is
similar to the code in Listing 1-3, but Dalvik bytecode isn’t specific to a single
kind of processor or to a single operating system. Instead, a set of Dalvik
bytecode instructions runs on any processor. If you write a Java program
and compile that Java program into Dalvik bytecode, your Android phone
can run the bytecode, your Android tablet can run the bytecode, and even
your grandmother’s supercomputer can run the bytecode. (To do this, your
grandmother must install Android-x86, a special port of the Android operating
system, on her Intel-based machine.)

 You never have to write or decipher Dalvik bytecode. Writing bytecode is the
compiler’s job. Deciphering bytecode is the virtual machine’s job.

Both Java bytecode and Dalvik bytecode have virtual machines. With the
Dalvik virtual machine, you can take a bytecode file that you created for one
Android device, copy the bytecode to another Android device, and then run
the bytecode with no trouble. That’s one of the many reasons why Android
has become popular quickly. This outstanding feature, which lets you run
code on many different kinds of computers, is called portability.

Imagine that you’re the Intel representative to the United Nations Security
Council, as shown in Figure 1-3. The ARM representative is seated to
your right, and the representative from Texas Instruments is to your left.
(Naturally, you don’t get along with either of these people. You’re always
cordial to one another, but you’re never sincere. What do you expect? It’s
politics!) The distinguished representative from Dalvik is at the podium. The
Dalvik representative speaks in Dalvik bytecode, and neither you nor your
fellow ambassadors (ARM and Texas Instruments) understand a word of
Dalvik bytecode.

Figure 1-3:
An

imaginary
meeting

of the UN
Security
Council.

24 Part I: Getting Started with Java Programming for Android Developers

But each of you has an interpreter. Your interpreter translates from Dalvik
bytecode to Intel instructions as the Dalvik representative speaks. Another
interpreter translates from bytecode to “ARM-ese.” And a third interpreter
translates bytecode into “Texas Instruments-speak.”

Think of your interpreter as a virtual ambassador. The interpreter doesn’t
really represent your country, but the interpreter performs one important
task that a real ambassador performs: It listens to Dalvik bytecode on your
behalf. The interpreter does what you would do if your native language were
Dalvik bytecode. The interpreter, pretending to be the Intel ambassador,
endures the boring bytecode speech, taking in every word and processing
each one in some way or another.

You have an interpreter — a virtual ambassador. In the same way, an Intel
processor runs its own bytecode-interpreting software. That software is the
Dalvik virtual machine — a proxy, an errand boy, a go-between. The Dalvik
virtual machine serves as an interpreter between Dalvik’s run-anywhere
bytecode and your device’s own system. As it runs, the virtual machine walks
your device through the execution of bytecode instructions. It examines your
bytecode, bit by bit, and carries out the instructions described in the bytecode.
The virtual machine interprets bytecode for your ARM processor, your Intel
processor, your Texas Instruments chip, or whatever kind of processor
you’re using. That’s a good thing. It’s what makes Java code and Dalvik code
more portable than code written in any other language.

Java, Android, and Horticulture
“You don’t see the forest for the trees,” said my Uncle Harvey. To which my
Aunt Clara said “You don’t see the trees for the forest.” This argument went
on until they were both too tired to discuss the matter.

As an author, I like to present both the forest and the trees. The “forest”
is the broad overview, which helps you understand why you perform vari-
ous steps. The “trees” are the steps themselves, getting you from Point A to
Point B until you complete a task.

This chapter shows you the forest. The rest of this book shows you the trees.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

Getting the Tools That You Need
In This Chapter
▶ Installing Java
▶ Downloading and installing the Android software tools
▶ Checking your Eclipse configuration
▶ Getting the code in this book’s examples

e
rgaliophile / r g li fa l/ noun 1. A lover of tools. 2. A person who visits
garage sales for rusty metal implements that might be useful someday

but probably won’t. 3. A person whose computer runs slowly because of the
daily, indiscriminate installation of free software tools.

Several years ago, I found an enormous monkey wrench (more than a yard
long and weighing 35 pounds) at a nearby garage sale. I wasn’t a good
plumber, and to this day any pipe that I fix starts leaking again immediately.
But I couldn’t resist buying this fine piece of hardware. The only problem
was, my wife was sitting in the car about halfway down the street. She’s much
more sensible than I am about these matters, so I couldn’t bring the wrench
back to the car. “Put it aside and I’ll come back for it later,” I told the seller.

When I returned to the car empty-handed, my wife said, “I saw someone
carrying the world’s largest pipe wrench. I’m glad you weren’t the one who
bought it.” And I agreed with her. “I don’t need more junk like that.”

So of course I returned later that day to buy the monkey wrench, and to this
day the wrench sits in our attic, where no one ever sees it. If my wife ever
reads this chapter, she’ll be either amused or angry. I hope she’s not angry,
but I’m taking the risk because I enjoy the little drama. To add excitement to
my life, I’m turning this trivial secret into a public announcement.

The Stuff You Need
This book tells you how to write Java programs, and before you can write
them, you need some software tools. Here’s a list of the tools you need:

26 Part I: Getting Started with Java Programming for Android Developers

 ✓ A Java virtual machine

 Cool people refer to this item as the JVM or simply as Java.

 ✓ The Java code libraries

 These code libraries are known affectionately as the Java Runtime
Environment (JRE) or simply as Java.

 ✓ An integrated development environment

 You can create Java programs using geeky, keyboard-only tools, but
eventually you’ll tire of typing and retyping commands. An integrated
development environment (IDE), on the other hand, is a little like a word
processor: A word processor helps you compose documents (memos,
poems, and other works of fine literature); in contrast, an IDE helps you
compose computer programs.

 For composing Java programs, I recommend using the Eclipse IDE.

You should also gather these extra goodies:

 ✓ Some sample Java programs to help you get started

 All examples in this book are available for download from www.all
mycode.com/Java4Android.

 ✓ The Android Software Development Kit

 The Android Software Development Kit (SDK) includes lots and lots of
prewritten, reusable Android code and a bunch of software tools for
running and testing Android apps.

 The prewritten Android code is the Android Application Programming
Interface (API). The API comes in several versions — versions 9 and 10
(both code-named Gingerbread), versions 11, 12, and 13 (Honeycomb),
versions 14 and 15 (Ice Cream Sandwich), and so on.

 ✓ Android-oriented add-ons for the integrated development environment

 By using add-ons, you customize the Eclipse IDE to help you compose,
run, and test your Android apps. The set of Eclipse add-ons for working
with Android apps is the Android Development Toolkit (ADT).

All these tools run on the development computer — the laptop or desktop
computer you use to develop Java programs and Android apps. After you
create an Android app, you copy the app’s code from the development
computer to a target device — a phone, a tablet, or (someday soon) a
refrigerator that runs Android.

Here’s good news: You can download from the web all the software you need
to run this book’s examples for free. The software is separated into three
downloads:

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

27 Chapter 2: Getting the Tools That You Need

 ✓ This book’s website (www.allmycode.com/Java4Android) has a link
to all code in the book.

 ✓ When you visit www.java.com, you can click a button to install the Java
virtual machine.

 ✓ A button at the page http://developer.android.com/sdk gives
you the big Android SDK download. In spite of its name, it includes more
than simply the Android code libraries. The download includes all the
ingredients you didn’t already collect from www.allmycode.com or
www.java.com.

 The websites I describe in this chapter are always changing. The software
programs you download from these sites change, too. A specific instruction
such as “Click the button in the upper-right corner” becomes obsolete (and
even misleading) in no time at all. So in this chapter, I provide explicit steps,
but I also describe the ideas behind them. Browse the suggested sites and
look for ways to get the software I describe. When a website offers you several
options, check the instructions in this chapter for hints on choosing the best
option. If your computer’s Eclipse window doesn’t look quite like the one in
this chapter’s figures, scan your computer’s window for whatever options I
describe. If, after all that effort, you can’t find the elements you’re looking for,
check this book’s website (www.allmycode.com/Java4Android) or send
an e-mail to me at Java4Android@allmycode.com.

If You Don’t Like Reading Instructions . . .
I start this chapter with a brief (but useful) overview of the steps required
in order to get the software you need. If you’re an old hand at installing
software, and if your computer isn’t quirky, these steps will probably serve
you well. If not, you can read the more detailed instructions in the next
several sections.

 1. Visit www.allmycode.com/Java4Android and download a file
containing all the program examples in this book.

 2. Visit www.java.com and download the Java Runtime Environment (if
you don’t already have a recent version of Java on your computer).

 Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever) and your operating system’s word
length (32-bit or 64-bit).

 3. Visit http://developer.android.com/sdk and download the
Android Software Development Kit (SDK).

 The downloaded bundle is a .zip archive file.

http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk
http://www.allmycode.com
http://www.java.com
http://www.allmycode.com/Java4Android
mailto:BeginProg@allmycode.com
http://www.allmycode.com/Java4Android
http://www.java.com
http://developer.android.com/sdk

28 Part I: Getting Started with Java Programming for Android Developers

 4. Extract the contents of the downloaded archive file to your local hard
drive.

 On my Windows computer, I extract the .zip file’s contents to a new
folder, named c:\Users\MyUserName\adt-bundle-windows-x86.
So I have the folders shown in Figure 2-1.

Figure 2-1:
My

Windows
computer’s

adt-
bundle

folder.

 On my Mac, I extract the .zip file’s contents into my existing
Applications folder, as shown in Figure 2-2.

Figure 2-2:
My Mac’s

adt-
bundle

folder.

 If the Android SDK .zip file contains more than one folder, don’t
separate the folders when you extract the .zip file’s contents. Extract
all content inside the .zip file to the same place on your hard drive.

 5. Launch the Eclipse app.

 The first time you run a fresh, new copy of Eclipse, the Welcome screen
appears.

 6. Dismiss the Welcome screen.

 For most versions of Eclipse, you can dismiss the Welcome screen by
clicking the little x icon that appears on a tab above the screen.

 7. Import the code that you downloaded in Step 1.

29 Chapter 2: Getting the Tools That You Need

 In Eclipse, choose File➪Import➪Existing Projects into Workspace. Then
browse for this book’s sample code — the .zip file from Step 1. (If the
web browser automatically expanded the .zip archive, browse for the
folder containing the files that were in the archive.)

 8. Create an Android virtual device.

 You can test Android programs on a phone or a tablet. But, for
convenience, you might test on an emulator — a program that behaves
like a phone or a tablet but runs on the development computer.

 To run an emulator, you need an Android Virtual Device (AVD), which is
a set of specs for a device (processor type, screen size, screen resolution,
and Android version, for example). In Eclipse, you create an AVD by
choosing Window➪Android Virtual Device Manager and filling in the
blanks. For more info, see the later section “Creating an Android Virtual
Device.”

For details about any of these topics, see the next several sections.

Those pesky filename extensions
The filenames displayed in My Computer or
in a Finder window can be misleading. You
may browse a directory and see the name
Mortgage . The file’s real name might
be Mortgage.java, Mortgage.class,
Mortgage.somethingElse, or plain
old Mortgage. Filename endings such as .zip,
.java, and .class are filename extensions.

The ugly truth is that, by default, Windows and
Macs hide many filename extensions. This
awful feature tends to confuse programmers.
If you don’t want to be confused, change your
computer’s systemwide settings. Here’s how to
do it:

 ✓ In Windows XP: Choose Start➪Control
Panel➪Appearance and Themes➪Folder
Options. Then skip to the fourth bullet.

 ✓ In Windows 7: Choose Start➪Control
Panel➪Appearance and Personalization➪

Folder Options. Then skip to the fourth
bullet.

 ✓ In Windows 8: On the Charms bar,
choose Settings➪Control Panel. In the
Control Panel, choose Appearance and
Personalization➪Folder Options. Then
proceed to the following bullet.

 ✓ In all versions of Windows (XP and
newer): Follow the instructions in one of
the preceding bullets. Then, in the Folder
Options dialog box, click the View tab. Look
for the Hide File Extensions for Known File
Types option. Make sure that this check
box is not selected.

 ✓ In Mac OS X: In the Finder application’s
menu, select Preferences. In the resulting
dialog box, select the Advanced tab and
look for the Show All File Extensions option.
Make sure that this check box is selected.

30 Part I: Getting Started with Java Programming for Android Developers

Getting This Book’s Sample Programs
To get copies of this book’s sample programs, visit www.allmycode.com/
Java4Android and click the link to download the programs in this book.
Save the download file (Java4Android_Programs.zip) to the computer’s
hard drive.

 In some cases, you can click a download link all you want but the web browser
doesn’t offer you the option to save a file. If this happens to you, right-click
the link (or control-click on a Mac). From the resulting contextual menu, select
Save Target As, Save Link As, Download Linked File As, or a similarly labeled
menu item.

Most web browsers save files to the Downloads directory on the computer’s
hard drive. But your browser may be configured a bit differently. One way or
another, make note of the folder containing the downloaded Java4Android_
Programs.zip file.

Compressed archive files
When you visit www.allmycode.com/
Java4Android and you download this
book’s examples, you download a file named
Java4Android_Programs.zip. A zip
file is a single file that encodes a bunch of
smaller files and folders. For example, my
Java4Android_Programs.zip file
encodes folders named 06-01, 06-02, and
so on. The 06-02 folder contains subfolders,
which in turn contain files. (The folder named
06-02 contains the code in Listing 6-2 — the
second listing in Chapter 6.)

A .zip file is an example of a compressed
archive file. Other examples of compressed
archives include .tar.gz files, .rar files,
and .cab files. When you uncompress a file,
you extract the original files stored inside the
larger archive file. (For a .zip file, another
word for uncompressing is unzipping.)
Uncompressing normally re-creates the folder

structure encoded in the archive file. So
after uncompressing my Java4Android_
Programs.zip file, the hard drive has
folders named 06-01, 06-02, with subfolders
named src and bin, which in turn contain files
named TypeDemo1.java, TypeDemo1.
class, and so on.

When you download Java4Android_
Programs.zip, the web browser may
uncompress the file automatically for you. If not,
you can see the .zip file’s contents by double-
clicking the file’s icon. (In fact, you can copy
the file’s contents and do other file operations
after double-clicking the file’s icon.) One way
or another, don’t worry about uncompressing
my Java4Android_Programs.zip file.
When you follow this chapter’s instructions,
you can import the contents of the file into the
Eclipse IDE. And behind the scenes, the Eclipse
import process uncompresses the .zip file.

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android

31 Chapter 2: Getting the Tools That You Need

Gathering Information
For many people (including some inexperienced people), the installations
of Java and the Android SDK are routine tasks. Visit a few websites, click
some buttons, and then take a coffee break. But as you follow this chapter’s
instructions, you might have a question, experience a difficulty, or encounter a
fork in the road. In that case, it helps to know your computer — which entails
jotting down the answers to a few questions.

Are you running a 32-bit or
64-bit operating system?
In this chapter, you install Java and the Android SDK on your computer. Java
comes in two flavors: 32-bit and 64-bit. The Android SDK comes in the same
two flavors, and in order for the Android SDK to work with Java, the Java
flavor must match the Android SDK flavor. In this section, you find out which
flavor is best for your computer.

 The steps in this section are all optional. If you don’t want to perform this
section’s fact-finding missions, try visiting www.java.com and http://
developer.android.com/sdk to download whichever versions of Java and
the Android SDK are offered to you by these two websites. If either site makes
you choose between 32-bit and 64-bit software, be consistent. That is, get the
32-bit versions of both Java and the Android SDK, or get the 64-bit versions
of both Java and the Android SDK. (For Windows, the 32-bit versions are the
safest choice. For Mac, the 64-bit versions are the safest.)

For Windows 8, Windows 7, and Windows Vista:
 1. Press the Windows key.

 In Windows 8, the Start screen appears. In Windows 7 and Windows
Vista, the Start menu appears.

 2. In Windows 8, type the words Control Panel, and then press Enter. In
Windows 7 or Windows Vista, click the Control Panel item on the Start
menu.

 The Control Panel appears.

 3. In the Control Panel, select System and Security (Windows 8 and
Windows 7) or System and Maintenance (Windows Vista).

http://www.java.com
http://developer.android.com/sdk
http://developer.android.com/sdk

32 Part I: Getting Started with Java Programming for Android Developers

 The System window appears. To recognize the System window, look for
the words View basic information about your computer
near the top of the window.

 4. In the System window, look for the words System type.

 The system type is either 32-bit or 64-bit, as shown in Figure 2-3.

Figure 2-3:
Determining

the system
type.

For Windows XP
 1. Press the Windows key.

 The Start menu appears.

 2. Click the My Computer item on the Start menu.

 Windows Explorer opens.

 3. In Windows Explorer, navigate to Drive C.

 4. In Drive C, look for folders named Program Files and Program
Files (x86).

 If you find Program Files but not Program Files (x86) folders,
you’re running 32-bit Windows. If you find both Program Files and
Program Files (x86) folders, you’re running 64-bit Windows.

For Macintosh OS X
 1. Choose Apple➪About This Mac.

 The About This Mac window appears.

33 Chapter 2: Getting the Tools That You Need

How many bits does your computer have?
As you follow this chapter’s instructions, you
may be prompted to choose between two
versions of a piece of software — the 32-bit
version and the 64-bit version. What’s the
difference, and why do you care?

A bit is the smallest piece of information that
you can store on a computer. Most people
think of a bit as either a zero or a one, and
that depiction is quite useful. To represent
almost any number, you pile several bits next
to one another and do some fancy things with
powers of two. The numbering system’s details
aren’t showstoppers. The important thing to
remember is that each piece of circuitry inside
the computer stores the same number of bits.
(Well, some circuits inside the computer are
outliers with their own particular numbers of
bits, but that’s not a big deal.)

In an older computer, each piece of circuitry
stores 32 bits. In a newer computer, each piece
of circuitry stores 64 bits. This number of bits
(either 32 or 64) is the computer’s word length.
In a newer computer, a word is 64 bits long.

“Great!” you say. “I bought my computer last
week. It must be a 64-bit computer.” Well, the
story may not be that simple. In addition to a
computer’s circuitry having a word length, the
operating system on it also has a word length.
An operating system’s instructions work with a
particular number of bits. An operating system
with 32-bit instructions can run on either a
32-bit computer or a 64-bit computer, but
an operating system with 64-bit instructions
can run only on a 64-bit computer. And to
make things even more complicated, each
program that you run (a web browser, a word
processor, or one of your own Java programs)
is either a 32-bit program or a 64-bit program.
You may run a 32-bit web browser on a 64-bit
operating system running on a 64-bit computer.
Alternatively, you may run a 32-bit browser on

a 32-bit operating system on a 64-bit computer.
(See the figure that accompanies this sidebar.)

When a website makes you choose between
32-bit and 64-bit software versions, the
main consideration is the word length of the
operating system, not the word length of the
computer’s circuitry. You can run a 32-bit word
processor on a 64-bit operating system, but you
can’t run a 64-bit word processor on a 32-bit
operating system (no matter what word length
the computer’s circuitry has). Choosing 64-bit
software has one primary advantage: 64-bit
software can access more than 3 gigabytes of
a computer’s fast random access memory. And
in my experience, more memory means faster
processing.

How does all this information about word
lengths affect Java and Android SDK
downloads? Here’s the story:

 ✓ If you run a 32-bit operating system, you run
only 32-bit software.

 ✓ If you run a 64-bit operating system, you
probably run some 32-bit software and
some 64-bit software. Most 32-bit software
runs fine on a 64-bit operating system.

 ✓ On a 64-bit operating system, you might
have two versions of the same program. For
example, on my Windows computer, I have
two versions of Internet Explorer: a 32-bit
version and a 64-bit version.

 Normally, Windows stores 32-bit programs
in its Program Files (x86) directory
and stores 64-bit programs in its Program
Files directory.

 ✓ A chain of word lengths is as strong as
its weakest link. For example, when I visit
www.java.com and click the site’s Do
I Have Java? link, the answer depends on
the match between my computer’s Java

(continued)

http://www.java.com

34 Part I: Getting Started with Java Programming for Android Developers

(continued)

version and the web browser that I’m
running. With only 64-bit Java installed
on my computer, the Do I Have Java? link
in my 32-bit Firefox browser answers, No
working Java was detected on
your system. But the same link in my
64-bit Internet Explorer answers, You
have the recommended Java
installed.

 ✓ Here’s the most important thing to
remember about word lengths: When you

follow this chapter’s instructions, you install
Java software and Android SDK software
on the computer. The Java software’s word
length must match the Android SDK’s word
length. In other words, 32-bit Android SDK
software runs with 32-bit Java, and 64-bit
Android SDK runs with 64-bit Java. I haven’t
tried all possible combinations, but when I
try to run the 32-bit Android SDK with 64-bit
Java, I see the misleading error message
No Java virtual machine was
found.

 2. In the About This Mac window, look for the word Processor.

 If your processor is an Intel Core Solo or Intel Core Duo, you have a
32-bit Mac. All other Intel processors, including Intel Core 2 Duo, are
64-bit Macs. (See Figure 2-4.)

www.allitebooks.com

http://www.allitebooks.org

35 Chapter 2: Getting the Tools That You Need

Figure 2-4:
Displaying

the Mac
processor

type.

 Here’s an alternative (geeky) way to find out whether your Mac is a 32-bit or
64-bit operating system: In the Spotlight, type the word Terminal, and then
press Enter. Then when the Terminal app opens, type uname -a and press
Enter. If the Mac’s response includes i386, you have a 32-bit system. If the
Mac’s response includes x86_64 instead, you have a 64-bit system.

If you’re a Mac user, which version
of Mac OS X do you have?
To answer a burning question about the Macintosh operating system, follow
these steps:

 1. Choose Apple➪About This Mac.

 The About This Mac window appears.

 2. In the About This Mac window, look for the word Version.

 You see Version 10.8 (or something like that) in very light gray text.
(Refer to Figure 2-4.)

 The Android development software for the Mac requires OS X 10.5.8 or later,
and an Intel processor. If the About This Mac window reports that you have a
PowerPC processor or that your version of OS X is older than OS X 10.5, you’ll
have a hard time developing Android apps. (For versions such as OS X 10.5.1,
you can try updating the system to version 10.5.8. For systems before OS X
10.5, and for systems running on PowerPC processors, you can search the web
for hacks and workarounds. Of course, if you use hacks and workarounds, I
make no promises.)

36 Part I: Getting Started with Java Programming for Android Developers

 If you don’t regularly apply software updates, choose Software Update from
the Apple menu. In the resulting window, look for OS X updates and for items
with the word Java in them. Select the relevant items, and then click the
appropriate Install or Update button (or buttons). In addition, you can follow
the instructions in the next section to find out whether the www.java.com
website recommends updates.

Is a recent version of Java
installed on your computer?
Android development requires Java 5.0 or later. Java 6 is recommended (but
not absolutely required). Java 7 and beyond are overkill.

 You might see Java 1.5 and Java 1.6 rather than Java 5.0 and Java 6. Some
people understand the differences these names make, but few people care.
(If you’re one of the people who care, see Chapter 1.)

Follow these steps to check for a recent version of Java on your computer:

 1. Visit www.java.com.

 2. On the main page at www.java.com, click the Do I Have Java? link.

 3. On the Do I Have Java? page, click the Verify Java Version button.

After a brief pause, the java.com site reports that you have Java Version 7
Update 9, or something like that.

 ✓ If you have Java version 6 or higher, you’re good to go. You don’t have
to install any other Java version. You can skip this chapter’s later
section “Setting Up Java.”

 ✓ If the java.com site doesn’t report that you have Java 6 or later, don’t
fret. The java.com site might be wrong!

 After all, a 32-bit web browser can’t detect a 64-bit version of Java, and
(as of early 2013) no browser running in Windows 8 mode can even
detect Java. The potential pitfalls are endless.

 Anyway, if java.com doesn’t report that you have Java 6 or later, I
suggest following the instructions in the section “Setting Up Java.” If you
accidentally install a second version of Java (or a third or fourth version
of Java), you’ll probably be okay.

http://www.java.com
http://www.java.com
http://www.java.com

37 Chapter 2: Getting the Tools That You Need

Setting Up Java
You can get the latest, greatest version of Java by visiting www.java.com.
The site offers several alternatives.

 ✓ (Recommended) Click the big Free Java Download button on the site’s
main page.

 For most computers, clicking this Free Java Download button gives you
all the Java you need for this book’s examples. So if you’re unsure what
to do when you visit www.java.com, click the Free Java Download
button and move to the section “Setting Up the Android SDK,” later in
this chapter.

 If you’re running Mac OS X 10.6 or earlier (or if you’re running OS X 10.7
and you haven’t upgraded to OS X 10.7.3 or later), clicking the Free Java
Download button opens a “Sorry, Charlie!” page that tells you to download
Java directly from Apple. Follow the instructions on that page to install
Java on your computer.

 ✓ (Optional) Follow the Do I Have Java? link.

 When you follow this link, the web browser scans the computer for Java
installations. For this book’s examples, I recommend Java 6 (also known
as Java 1.6) or later (Java 7, Java 8, or whatever). If your version of Java
is older than Java 6 (or if the scan doesn’t find Java on the computer),
I recommend clicking one of the Download buttons at www.java.com.

 ✓ (Optional) Pick and choose among Java versions.

 If you click the All Java Downloads link at www.java.com, you can pick
and choose from among several versions of Java — 32-bit and 64-bit
versions for Windows, Mac, Linux, and Solaris computers.

 This alternative is useful for overriding the default Free Java Download
button’s choice. For example, you want the 64-bit version of Java even
though the Free Java Download button gives you the 32-bit version. (See
the sidebar “How many bits does your computer have?” earlier in this
chapter.) Later, you might visit www.java.com with a Windows computer
to download Java for your Macintosh.

 ✓ (Optional) Cleanse your computer of all but the latest version of Java.

 At www.java.com, the Remove Older Versions link promises to clean
up any Java clutter you’ve collected over time. I’ve had some good luck
and some bad luck in keeping multiple Java versions on a computer. In
my opinion, this Remove Older Versions step is optional.

http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com
http://www.java.com

38 Part I: Getting Started with Java Programming for Android Developers

 Visit the Remove Older Versions link if you’re having trouble that you
suspect is Java related. But if you’ve read several chapters of this book
and the examples are running nicely, don’t worry about an impending
disaster from not having followed the Remove Older Versions link.

Setting Up the Android SDK
In this section, you get four useful tools in one download. Here’s how:

 1. Visit http://developer.android.com/sdk.

 2. Click the Download button on the web page.

 3. Agree to all the legal mumbo-jumbo.

 4. Choose between the 32-bit and 64-bit downloads.

 For sage advice, see the earlier section “Are you running a 32-bit or
64-bit operating system?”

 After you make a choice, one last Download button appears. (At least,
that’s what happens early in 2013.)

 5. Click the last Download button and save the download to the local
hard drive.

 The downloaded file is one big .zip archive.

 6. Extract the contents of the downloaded archive file to the local hard
drive.

 On my Windows computer, I extract the .zip file’s contents to the new
folder c:\Users\MyUserName\adt-bundle-windows-x86. On my
Mac, I extract the .zip file’s contents to my existing Applications
folder. (Refer to Figures 2-1 and 2-2.)

 For help with archive files, see the earlier sidebar “Compressed archive files.”

 In Windows, the blank space in the name Program Files confuses some
Java software. I don’t think any of this book’s software presents this problem,
but I can’t guarantee it. If you want, extract the .zip file’s contents to the C:\
Program Files or C:\Program Files (x86) folder. But make a mental
note about your choice (in case you run into any trouble later).

The .zip archive that you download from http://developer.android.
com/sdk contains these two components:

http://developer.android.com/sdk
http://developer.android.com/sdk
http://developer.android.com/sdk

39 Chapter 2: Getting the Tools That You Need

 ✓ The eclipse component: It contains a customized version of the popular
Eclipse integrated development environment (IDE). You can compose,
run, and debug Java applications in the Eclipse environment. This
customized version of Eclipse includes the Android Development
Toolkit (ADT) — extra plug-ins for working with Android apps.

 ✓ The sdk component: (Yes, only half of the large Android SDK download
is the SDK component. If the names are misleading, don’t blame me.)
The SDK component contains the Android software library (one or more
versions of the Android API). This component also contains a bunch of
software tools for running and testing Android apps.

While you’re still in the mood to follow my advice, note the location on the
hard drive where the sdk component lands. (For example, in Figure 2-1, the
SDK folder is c:\Users\Barry\adk-bundle-windows-x86_64\sdk.) I
have a name for this location: the ANDROID_HOME folder.

Running Eclipse for the First Time
The first time you launch Eclipse, you perform a few extra steps. To get
Eclipse running, follow these steps:

 1. Launch Eclipse.

 In Windows, the Start menu may not have an Eclipse icon. In that case,
look in Windows Explorer (it’s File Explorer in Windows 8) for the folder
containing the extracted Eclipse files. Double-click the icon representing
the eclipse.exe file. (If you see an eclipse file but no eclipse.exe
file, check the sidebar “Those pesky filename extensions,” earlier in this
chapter.)

 On the Mac, go to the Spotlight and type Eclipse in the search field.
When Eclipse appears as the Top Hit in the Spotlight’s list, press Enter.

 When you launch Eclipse, you see the Workspace Launcher dialog box,
as shown in Figure 2-5. The dialog box asks where, on the computer’s
hard drive, you want to store the code that you will create using Eclipse.

 2. In the Workspace Launcher dialog box, click OK to accept the default
(or don’t accept the default).

 One way or another, it’s no big deal.

 Because this is your first time using a particular Eclipse workspace,
Eclipse starts with a Welcome screen, as shown in Figure 2-6.

40 Part I: Getting Started with Java Programming for Android Developers

Figure 2-5:
The Eclipse
Workspace

Launcher.

Figure 2-6:
The

Welcome
screen for
Android’s

customized
version of

Eclipse.

 3. Dismiss the Welcome screen.

 In most versions of Eclipse, you can dismiss the Welcome screen by
clicking the little x icon that appears on a tab above the screen.

 A view of the main screen, after opening Eclipse with a brand-new
workspace, is shown in Figure 2-7.

41 Chapter 2: Getting the Tools That You Need

Figure 2-7:
The Eclipse
workbench

with a
brand-new

workspace.

Dude, where’s my Android SDK?
When you launch Eclipse, the Eclipse IDE looks on the hard drive for the
prewritten, reusable Android code files. (After all, Eclipse uses these files to
help you write and run Android apps.) If Eclipse has trouble finding these
files, you see a nasty-looking Could Not Find SDK Folder message. To tell
Eclipse where to install the Android SDK files, follow these steps:

 1. In Windows, in the Eclipse main menu, choose Window➪Preferences.
On the Mac, in the Eclipse main menu, choose Eclipse➪Preferences.

 The Eclipse Preferences dialog box opens.

 2. In the tree list on the left side of the Preferences dialog box, select
Android.

 Don’t expand the Android branch of the tree. Simply click the word
Android.

 The SDK Location field appears in the main body of the Preferences
dialog box, as shown in Figure 2-8.

42 Part I: Getting Started with Java Programming for Android Developers

Figure 2-8:
Telling

Eclipse
about the

location of
the Android

SDK.

 3. Click the Browse button and (of course) browse to the ANDROID_HOME
directory.

 For example, in Figure 2-1, the ANDROID_HOME directory is c:\Users\
Barry\adt-bundle-windows-x86_64\sdk.

 4. Click Apply and OK, and all those good things to return to the main
Eclipse workbench.

 Look again at Figure 2-8 and notice the text box in the window’s upper-left
corner — the box containing the words type filter text. The text box is for
filtering the names of Eclipse preferences. Figure 2-8 displays only 11 preferences
(such as General, Android, Ant, and C++). But this list of preferences expands
to a tree with approximately 150 branches. Each branch refers to its own set
of choices in the main body of the Preferences window. If you want to see a
bunch of Eclipse preferences related to font (for example), type font in the
little text box. Eclipse then displays only branches of the tree containing the
word font.

Eclipse, meet Java!
Eclipse normally looks on the computer for Java installations and selects an
installed version of Java to use for running your Java programs. The com-
puter may have more than one version of Java, so double-check Eclipse’s
Java version selection. The steps in this section show you how.

 The steps in this section are optional. Follow them only if you suspect that
Eclipse isn’t using your computer’s favorite version of Java.

43 Chapter 2: Getting the Tools That You Need

 1. In Windows: From the Eclipse main menu, choose Window➪
Preferences. On the Mac: From the Eclipse main menu, choose
Eclipse➪Preferences.

 As a result, the Eclipse Preferences dialog box appears. (You can follow
along in Figure 2-9.)

Figure 2-9:
The

Installed
JREs page

of the
Eclipse

Preferences
dialog box.

 2. In the tree on the left side of the Preferences dialog box, expand the
Java branch.

 3. Within the Java branch, select the Installed JREs subbranch.

 4. Look at the list of Java versions (Installed JREs) in the main body of
the Preferences dialog box.

 In the list, each version of Java has a check box. Eclipse uses the version
whose box is checked. If the checked version isn’t your preferred
version (for example, if it isn’t version 6 or later), you have to make
changes.

 5. If your preferred version of Java appears in the Installed JREs list,
select that version’s check box.

 6. If your preferred version of Java doesn’t appear in the Installed JREs
list, click the Add button.

 When you click the Add button, the JRE Type dialog box appears, as
shown in Figure 2-10.

44 Part I: Getting Started with Java Programming for Android Developers

Figure 2-10:
The JRE

Type dialog
box.

 7. In the JRE Type dialog box, double-click Standard VM.

 As a result, the JRE Definition dialog box appears, as shown in
Figure 2-11. What you do next depends on a few different factors.

Figure 2-11:
The JRE

Definition
dialog box

(after you’ve
followed

Steps 8
and 9).

www.allitebooks.com

http://www.allitebooks.org

45 Chapter 2: Getting the Tools That You Need

 8. Fill in the JRE Home field in the dialog box.

 How you do this depends on the operating system:

	 •	In Windows: Browse to the directory in which you’ve installed
your preferred Java version. On my many Windows computers,
the directory is either C:\Program Files\Java\jre7, C:\
Program Files\Java\jdk1.7.0, C:\Program Files (x86)\
Java\jre8, or something of that sort.

	 •	On the Mac: Use the Finder to browse to the directory in which
you’ve installed your preferred Java version. Type the name of the
directory in the dialog box’s JRE home field.

 My Mac has one Java directory, named /System/Library/
Java/Java Virtual Machines/1.6.0jdk/Contents/
Home, and another Java directory named /Library/Java/
JavaVirtualMachines/JDK 1.7.0.jdk/Contents/Home.

 Directories such as /System and /Library don’t normally appear
in the Mac’s Finder window. To browse to one of these directories
(to the /Library directory, for example) choose Go➪Go to Folder
on the Finder’s menu bar. In the resulting dialog box, type /Library
and then press Go.

 As you navigate toward the directory containing your preferred
Java version, you might encounter a JDK 1.7.0.jdk icon, or
another item whose extension is .jdk. To see the contents of this
item, control-click the item’s icon and then select Show Package
Contents.

 You might have one more thing to do back in the JRE Definition dialog box.

 9. Look at the JRE Name field in the JRE Definition dialog box; if Eclipse
hasn’t filled in a name automatically, type a name (almost any text) in
the JRE Name field.

 10. Dismiss the JRE Definition dialog box by clicking Finish.

 The Preferences dialog box in Eclipse returns to the foreground. Its
Installed JREs list contains the newly added version of Java.

 11. Select the check box next to the newly added version of Java.

 You’re almost done. (You have a few more steps to follow.)

 12. Within the Java branch on the left side of the Preferences dialog box,
select the Compiler subbranch.

 In the main body of the Preferences dialog box, you see the Compiler
Compliance Level drop-down list, as shown in Figure 2-12.

46 Part I: Getting Started with Java Programming for Android Developers

Figure 2-12:
Setting the

compiler
compliance

level.

 13. In the Compiler Compliance Level drop-down list, select 1.5 or 1.6.

 Android works with only Java 1.5 or 1.6.

 14. Whew! Click the Preferences dialog box’s OK button to return to the
Eclipse workbench.

Importing this book’s sample programs
This import business can be tricky. As you move from one dialog box to the
next, you see that many of the options have similar names. That’s because
Eclipse offers many different ways to import many different kinds of items.
Anyway, if you follow these instructions, you’ll be okay:

 1. Follow the steps in this chapter’s earlier section “Getting This Book’s
Sample Programs.”

 2. On the Eclipse main menu, choose File➪Import, as shown in Figure 2-13.

 As a result, Eclipse displays the Import dialog box.

 3. In the tree in the Import dialog box, expand the General branch.

 4. In the General branch, double-click the Existing Projects into
Workspace subbranch, as shown in Figure 2-14.

 As a result, the Import Projects dialog box appears.

 5. In the Import Projects dialog box, choose the Select Root Directory or
the Select Archive File radio button, as shown in Figure 2-15.

47 Chapter 2: Getting the Tools That You Need

Figure 2-13:
Starting to
import this

book’s code.

Figure 2-14:
Among all

the options,
select

Existing
Projects into
Workspace.

48 Part I: Getting Started with Java Programming for Android Developers

Figure 2-15:
The Import

Projects
dialog box.

 This book’s code lives in a folder named Java4Android_Programs or
in an archive file named Java4Android_Programs.zip.

 Safari on a Mac generally uncompresses .zip archives automatically,
and Windows browsers (Internet Explorer, Firefox, Chrome, and others)
do not uncompress .zip archives automatically. For the complete
scoop on archive files, see the earlier sidebar “Compressed archive files.”

 6. Click the Browse button to find the Java4Android_Programs.zip
file or the Java4Android_Programs folder on the computer’s hard
drive.

 If you’re unsure where to find these items, look first in a folder named
Downloads.

 After you find Java4Android_Programs, the Import Projects dialog
box in Eclipse displays the names of the projects inside the file. (Refer to
Figure 2-15.)

 7. Click the Select All button.

 This book’s examples are so exciting that you’ll want to import all of them!

 8. Click the Finish button.

 As a result, the main Eclipse workbench reappears. The left side of the
workbench displays the names of this book’s Java projects, as shown in
Figure 2-16.

49 Chapter 2: Getting the Tools That You Need

Figure 2-16:
Eclipse

displays a
bunch of

Java
projects.

After importing the code from this book, you may see lots of red error
markers indicating trouble with the book’s projects. If you do, stay calm. The
markers might disappear after several seconds. If they don’t, check the lower
area of the Eclipse workspace for a message similar to Unable to resolve
target ‘android-15’.

If you see such a message, it means that my book’s code insists on an API
level that you haven’t installed on your computer. To fix the problem, do the
following:

 1. On the Eclipse main menu, choose Window➪Android SDK Manager.

 As a result, the computer displays the Android SDK Manager. (No
surprise here!)

 2. Select the check box labeled Android 4.0.3 (API 15) or in whichever
box is labeled with the missing API level number.

 3. Click the Install button in the lower-right corner of the Android SDK
Manager window.

 4. Wait for installation to finish.

 5. Close the Android SDK Manager.

 6. Restart Eclipse.

When Eclipse restarts, you see the red error markers for a few seconds. But
after a brief (and possibly tense) waiting period, the error markers go away.
You’re ready to roll.

50 Part I: Getting Started with Java Programming for Android Developers

Creating an Android Virtual Device
You might be itching to run some code, but first you must have something
that can run an Android program. By something, I mean either an Android
device (a phone, a tablet, an Android-enabled toaster — whatever) or a
virtual device. An Android Virtual Device (AVD) is a test bed for Android code
on the development computer.

The Android SDK comes with its own emulator — a program that behaves like
a phone or a tablet but runs on the development computer. The emulator
translates Android code into code that the development computer can
execute. But the emulator doesn’t display a particular phone or tablet device
on the screen. The emulator doesn’t know what kind of device you want
to display. Do you want a camera phone with 800-x-480-pixel resolution, or
have you opted for a tablet device with its own built-in accelerometer and
gyroscope? All these choices belong to a particular AVD. An AVD is simply a
bunch of settings, telling the emulator all the details about the device to be
emulated.

Before you can run Android apps on your computer, you must first create at
least one AVD. In fact, you can create several AVDs and use one of them to
run a particular Android app.

To create an AVD, follow these steps:

 1. In the Eclipse main menu, choose Window➪Android Virtual Device
Manager.

 The Android Virtual Device Manager window opens.

 2. In the Android Virtual Device Manager window, click New, as shown
in Figure 2-17.

 The Create New Android Virtual Device (AVD) window opens. That’s nice!

 3. In the AVD Name field, type a new name for the virtual device.

 You can name your device My Sweet Petunia, but in Figure 2-18, I name
my device Nexus7_Android4.2. The name serves to remind me of this
device’s capabilities.

 4. In the Device drop-down menu, select a device type.

 In Figure 2-18, I select Nexus 7 (7.27", 800 x 1280: tvdpi).

 5. Determine the kind of secure digital (SD) card your device has.

 In Figure 2-18, I choose an SD card with a modest 1000 MiB, which is
roughly 1 gigabyte. Alternatively, I could have selected the File radio
button and specified the name of a file on my hard drive. That file would
be storing information as though it were a real SD card on a real device.

51 Chapter 2: Getting the Tools That You Need

Figure 2-17:
The Android

Virtual
Device

Manager.

 Recently, my department hired a new person. We offered a salary of
$50K, which (we thought) meant $50,000 per year. Little did we know
that the new person expected to be paid $51,200 each year. Computer
scientists use the letter K (or the prefix Kilo) to mean 1,024 because
1,024 is a power of 2 (and powers of 2 are quite handy in computer
science). The trouble is, the formal meaning of Kilo in the metric system
is 1,000, not 1,024. To help clear things up (and to have fun creating new
words), a commission of engineers created the Kibibyte (KiB) meaning
1,024 bytes, the Mebibyte (MiB) which is 1,048,576 bytes, and the
Gibibyte (GiB), meaning 1,073,741,824 bytes. Most people (computer
scientists included) don’t know about KiBs or MiBs, and they don’t
worry about the difference between MiBs and ordinary megabytes.
I’m surprised that the creators of the Android Virtual Device Manager
thought about this issue.

 6. Leave the other choices at their defaults (or don’t, if you don’t want
to) and click the Create AVD button.

 The computer returns you to the Android Virtual Device Manager
window, where you see a brand-new AVD in the list, as shown in
Figure 2-19.

And that does it! You’re ready to run your first Android app. I don’t know
about you, but I’m excited. (Sure, I’m not watching you read this book, but
I’m excited on your behalf.) Chapter 3 guides you through the run of a stan-
dard Oracle Java program, and Chapter 4 does the same for an Android appli-
cation. Go for it!

52 Part I: Getting Started with Java Programming for Android Developers

Figure 2-18:
Creating

a new
Android

virtual
device.

Figure 2-19:
You’ve

created an
Android

virtual
device.

Chapter 3

Running Standard Java Programs
In This Chapter
▶ Compiling and running a program
▶ Working with a workspace
▶ Editing your own Java code

I
f you’re a programming newbie, running a program probably means, for
you, clicking the mouse. You want to run Internet Explorer, so you

double-click the Internet Explorer icon. That’s all there is to it. As far as
you’re concerned, Internet Explorer is a black box. How the program does
whatever it does is none of your concern.

But when you create your own program, the situation is a bit different. You
start with no icon to click, and possibly no well-defined notion of what the
program should (and should not) do.

So how do you create a brand-new Java program? Where do you click? How
do you save your work? How do you get the program to run? What do you do
if, at first, the program doesn’t run correctly?

This chapter tells you what you need to know.

 The example in this chapter is a standard Oracle Java program. A standard
Oracle Java program runs only on a desktop or laptop computer. The example
cannot run on an Android device. For an example that runs on Android
devices, see Chapter 4.

Running a Canned Java Program
The best way to get to know Java is to “do Java,” by writing, testing, and
running your own Java programs. This section prepares you by describing
how to run and test a program. Rather than write your own program, you run
one that I’ve already written for you. The program calculates the monthly
payments on a home mortgage loan, as shown in Figure 3-1.

54 Part I: Getting Started with Java Programming for Android Developers

Figure 3-1:
A run of the

mortgage
program in

this chapter.

Here’s how to run the mortgage program:

 1. First, follow the instructions in Chapter 2 for installing Java, installing
and configuring Eclipse, and downloading this book’s sample programs.

 Thank goodness! You don’t have to follow those instructions more than
once.

 2. Launch Eclipse.

 The Workspace Launcher dialog box in Eclipse appears, as shown in
Figure 3-2.

Figure 3-2:
The

Workspace
Launcher in

Eclipse.

 For a complete how-to on launching Eclipse, see Chapter 2.

 A workspace is a folder on the computer’s hard drive. Eclipse stores
Java programs in one or more workspace folders. Along with these Java
programs, each workspace folder contains some Eclipse settings. These
settings store information such as the version of Java that you’re using,
the colors you prefer for words in the editor, the size of the editor area
when you drag the area’s edges, and other preferences. You can have
several workspaces with different programs and different settings in
each workspace.

 By default, the Workspace Launcher offers to open whatever workspace
you opened the last time you ran Eclipse. In this example, you open the
workspace that you use in Chapter 2, so don’t modify anything in the
Workspace field.

www.allitebooks.com

http://www.allitebooks.org

55 Chapter 3: Running Standard Java Programs

 3. In the Workspace Launcher dialog box, click OK.

 The big Eclipse workbench stares at you from the computer screen, as
shown in Figure 3-3.

Figure 3-3:
The Eclipse
workbench.

 In Figure 3-3, the leftmost part of the workbench is the Eclipse Package
Explorer, which contains numbers such as 03-01, 04-01, and so on. Each
number is the name of an Eclipse project, which is, formally, a collection
of files and folders inside a workspace. Intuitively, a project is a basic
work unit. For example, a self-contained collection of Java program files
to manage a CD collection (along with the files containing the data) may
constitute a single Eclipse project.

 Looking again at the Package Explorer in Figure 3-3, you see projects
named 03-01, 04-01, and so on. My project 03-01 holds the code in
Listing 3-1. Project 04-01 contains the Android app whose code begins
in Listing 4-1 (the first code listing in Chapter 4 of this book). Project
05-03 contains the code in Listing 5-3. The project named 03-Mortgage
is a slight anomaly because the code for this chapter’s Mortgage
example isn’t in any of the listings.

 Eclipse project names can include letters, digits, blank spaces, and other
characters; for the names of this book’s examples, I stick with digits and
dashes.

 To read more about topics such as the Eclipse Package Explorer, see the
later section “What’s All That Stuff in the Eclipse Window?”

56 Part I: Getting Started with Java Programming for Android Developers

 When you launch Eclipse, you may see different elements than the ones
shown in Figure 3-3. You may see the Eclipse Welcome screen with only
a few icons in an otherwise barren window. You may also see a workbench
like the one shown in Figure 3-3, but with no list of numbers (03-01,
04-01, and so on) in the Package Explorer. If so, you may have missed
some instructions in Chapter 2 for configuring Eclipse. Alternatively, you
may have modified the workspace name in the Eclipse Workspace
Launcher dialog box.

 In any case, make sure that you see numbers like 03-01 and 04-01
in the Package Explorer. Seeing these numbers ensures that Eclipse is
ready to run the sample programs from this book.

 4. In the Package Explorer, click the 03-Mortgage branch.

 As a result, the 03-Mortgage project appears highlighted.

 To see a sneak preview of the Java program you’re running in Project
03-Mortgage, expand the 03-Mortgage branch in the Package Explorer.
Inside the 03-Mortgage branch, you find the src branch, which in
turn contains a (default package) branch. Inside the (default
package) branch, you find the MortgageWindow.java branch. This
MortgageWindow.java branch represents my Java program. Double-
clicking the MortgageWindow.java branch makes my code appear in
the Eclipse editor, as shown in Figure 3-4.

Figure 3-4:
Java code

in the
Eclipse
editor.

 5. Choose Run➪Run As➪Java Application from the main menu, as
shown in Figure 3-5.

 When you choose Run As➪Java Application, the computer runs the
project’s code. (In this example, the computer runs a Java program
that I wrote.) The program displays the Mortgage Payment Calculator
window on the screen, as shown in Figure 3-6.

57 Chapter 3: Running Standard Java Programs

Figure 3-5:
One way to

run the code
in Project

03-Mortgage.

Figure 3-6:
The

Mortgage
Payment

Calculator
begins
its run.

 6. Type numbers into the fields in the Mortgage Payment Calculator
window. (Refer to Figure 3-1.)

 When you type a principal amount in Step 6, don’t include the country’s
currency symbol and don’t group the digits. (U.S. residents: Omit dollar
signs and commas.) For the percentage rate, omit the % symbol. For the
number of years, don’t use a decimal point. If you break any of these
rules, the Java code can’t read your number, and my Java program
displays nothing in the Payment row.

 Disclaimer: Your local mortgage company charges more (a lot more)
than the amount that my Java program calculates.

If you follow this section’s instructions and you don’t see the results I
describe, you can try these three strategies, listed in order from best to
worst:

 ✓ Double-check all steps to make sure that you followed them correctly.

 ✓ Contact me at Java4Android@allmycode.com via e-mail, @allmycode
on Twitter, or /allmycode on Facebook If you describe what happened,
I can probably figure out what went wrong and tell you how to correct
the problem.

 ✓ Panic.

58 Part I: Getting Started with Java Programming for Android Developers

Typing and Running Your Own Code
The earlier section “Running a Canned Java Program” is all about running
someone else’s Java code (code that you download from this book’s website).
But, eventually, you’ll write code on your own. This section shows you how
to create code by using the Eclipse IDE.

Separating your programs from mine
You can separate your code from this book’s examples by creating a separate
workspace. Here are two (distinct) ways to do it:

 ✓ When you launch Eclipse, type a new folder name in the Workspace
field of the Workspace Launcher dialog box in Eclipse.

 If the folder doesn’t already exist, Eclipse creates the folder. If the folder
already exists, the Eclipse Package Explorer lists any projects that the
folder contains.

 ✓ In the main menu in the Eclipse workbench, choose File➪Switch
Workspace, as shown in Figure 3-7.

Figure 3-7:
Switching
to a differ-

ent Eclipse
workspace.

 When you choose File➪Switch Workspace, Eclipse offers you a few
of your previously opened workspace folders. If your choice of folder
isn’t in the list, select the Other option. In response, Eclipse reopens its
Workspace Launcher dialog box.

59 Chapter 3: Running Standard Java Programs

Writing and running your program
Here’s how to create a new Java project:

 1. Launch Eclipse.

 2. From the Eclipse menu bar, choose File➪New➪Java Project.

 The Create a Java Project dialog box appears.

 3. In the Create a Java Project dialog box, type a name for the project
and then click Finish.

 In Figure 3-8, I type the name MyFirstProject.

Figure 3-8:
Getting

Eclipse to
create a

new project.

 If you click Next instead of Finish, you see other options that you don’t
need right now. To avoid confusion, just click Finish.

 Clicking Finish returns you to the Eclipse workbench, with MyFirst
Project in the Package Explorer, as shown in Figure 3-9.

60 Part I: Getting Started with Java Programming for Android Developers

Figure 3-9:
Your project

appears in
the Package

Explorer in
Eclipse.

 The next step is to create a new Java source code file.

 4. Select the newly created project in the Package Explorer.

 To create Figure 3-9, I selected MyFirstProject instead of
SomeOtherProject.

 5. In the Eclipse main menu, choose File➪New➪Class.

 The Eclipse Java Class dialog box appears, as shown in Figure 3-10.

Figure 3-10:
Getting

Eclipse to
create a

new Java
class.

61 Chapter 3: Running Standard Java Programs

 Like every other windowed environment, Eclipse provides many ways to
accomplish the same task. Rather than choose File➪New➪Class, you
can right-click MyFirstProject in the Package Explorer in Windows
(or control-click MyFirstProject in the Package Explorer on a Mac).
In the resulting context menu, choose New➪Class. You can also start by
pressing Alt-Shift+N in Windows (or Option-Command-N on a Mac). The
choice of clicks and keystrokes is up to you.

 6. In the Name field in the Java Class dialog box, type the name of the
new class.

 In this example, I use the name MyFirstJavaClass, with no blank
spaces between the words in the name. (Refer to Figure 3-10.)

 The name in the Java Class dialog box cannot have blank spaces, and
the only allowable punctuation symbol is the underscore character
(_). You can name the class MyFirstJavaClass or My_First_Java_
Class, but you can’t name it My First Java Class, and you can’t
name it JavaClass,MyFirst. Finally, you can’t start a class name with
a digit. For example, you can name the class Go4It but not 2bOrNot2b.

 7. In the Package field in the Java Class dialog box, type a package
name. (Refer to Figure 3-10.)

 In Java, you group code into bunches called packages. And in the
Android world, each app comes in its own package.

 Don’t worry much about making up package names. If you have your
own domain name (allyourcode.org, for example), you should
reverse the domain name (resulting in org.allyourcode) and then
add a descriptive word. For example, org.allyourcode.myfirst
project is a good package name. If you don’t have a domain name, any
words (separated from one another by dots) will work.

 The package name contains one or more words. Each word can be any
combination of letters, digits, and underscores (_) as long as the word
doesn’t start with a digit. A package name is a bunch of these words,
separated from one another by dots. For example, org.allyourcode.
Go4It is a valid package name, but org.allyourcode. 2bOrNot2b
is not. (You can’t start the third part of the package name with the digit
2. For that matter, you can’t start any of the three words in a name like
org.allyourcode.myfirstproject with a digit.)

 8. Put a check mark in the public static void main(String[]
args) check box.

 The check mark tells Eclipse to create some boilerplate Java code.

 9. Accept the defaults for everything else in the Java Class dialog box.
(In other words, click Finish.)

62 Part I: Getting Started with Java Programming for Android Developers

 Clicking Finish brings you back to the Eclipse workbench. Now
MyFirstProject contains a file named MyFirstJavaClass.java.
For your convenience, the MyFirstJavaClass.java file already has
some code in it. The Eclipse editor displays the Java code, as shown in
Figure 3-11.

Figure 3-11:
Eclipse

writes some
code in the

editor.

 10. Replace an existing line of code in the new Java program.

 Type a line of code in the Eclipse editor. Replace the line
// TODO Auto-generated method stub

 with these lines:
javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

 Any program containing these lines of code runs only on a desktop (or
laptop) computer. The code javax.swing.JOptionPane.show
MessageDialog belongs to standard Oracle Java, but not to Android
Java.

 Copy the new lines of code exactly as you see them in Listing 3-1.

	 •	Spell	each	word	exactly	the	way	I	spell	it	in	Listing	3-1.

	 •	Capitalize	each	word	exactly	the	way	I	do	in	Listing	3-1.

	 •	Include	all	the	punctuation	symbols	—	the	dots,	the	quotation	
marks, the semicolon — everything.

 When you’re done, the code in the Eclipse editor should look exactly
like the code in Listing 3-1.

63 Chapter 3: Running Standard Java Programs

Listing 3-1: A Program to Display a Greeting
public class MyFirstJavaClass {

 /**
 * @param args
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);
 }

}

 Java is case-sensitive, which means that Showmessagedialog isn’t the
same as showMessageDialog. If yOu tyPe Showmessagedialog, your
progrAm won’t worK. Be sUre to cAPItalize your codE eXactLy as it is
shown in Listing 3-1.

Do I see formatting in my Java program?
When you use the Eclipse editor to write a
Java program, you see words in various colors.
Certain words are always in blue. Other words
are always in black. You even see some bold
and italic phrases. You may think you see
formatting, but you don’t. Instead, what you see
is syntax coloring or syntax highlighting.

No matter what you call it, the issue is this:

 ✓ In Microsoft Word, elements such as bold
formatting are marked inside a document.
When you save MyPersonalDiary.
doc, the instructions to make the words
love and hate bold are recorded inside the
MyPersonalDiary.doc file.

 ✓ In a Java program editor, elements such
as bold and coloring aren’t marked inside

the Java program file. Instead, the editor
displays each word in a way that makes
the Java program easy to read.

For example, in a Java program, certain words
(such as class, public, and void) have
their own, special meanings. So the Eclipse
editor displays class, public, and void
in bold, reddish letters. When I save my Java
program file, the computer stores nothing about
bold, colored letters in my Java program file.
But the editor uses its discretion to highlight
special words with reddish coloring.

Another editor may display the same words in
a blue font. Another editor (such as Windows
Notepad) displays all words in plain, old black.

64 Part I: Getting Started with Java Programming for Android Developers

 Some people notice the difference between “curly” quotation marks
and “straight” quotation marks. Is the distinction between the two
types useful? (Do you see the difference?) Is it even appropriate to use
the words curly and straight for the two kinds of quotation marks? In a
Java program, a word like “Hello” (surrounded by straight quotation
marks) stands for a string of characters. In fact, the code in Listing 3-1
makes the letters Hello appear on the user’s screen. Here’s the rule:

 In Java, to denote a string of characters, always use straight quotation
marks; never curly quotation marks.

 In practice, if you copy code from a Kindle or from another electronic
medium, you’re probably copying curly quotation marks, and the code
is incorrect. Fortunately, when you use the computer keyboard to type
code in the Eclipse editor, you automatically type straight quotation
marks. That’s nice.

 In a Java program, almost none of the spacing and indentation matters. In
Listing 3-1, I don’t need all the blank spaces before (null, “Hello”),
but the blank spaces help me to remember that (null, “Hello”) is a
continuation of the showMessageDialog stuff. In other words, all the
characters between the word javax and the word “Hello” are part of
one big Java command. I separate the command into two lines because if
I didn’t, the command would run off the edge of the page.

 If you type everything correctly, you see the information shown in
Figure 3-12.

Figure 3-12:
A Java

program in
the Eclipse

editor.

 If you don’t type your part of the code exactly as it’s shown in Listing 3-1,
you may see jagged red underlines, tiny rectangles with X-like markings
inside them, or other red marks in the Editor, as shown in Figure 3-13.

www.allitebooks.com

http://www.allitebooks.org

65 Chapter 3: Running Standard Java Programs

 The red marks in the Eclipse editor refer to compile-time errors in the
Java code. A compile-time error (also known as a compiler error) is an
error that prevents the computer from translating the code. (See the talk
about code translation in Chapter 1.)

Figure 3-13:
A Java

program,
typed

incorrectly.

 Here, the error markers in Figure 3-13 appear on line 9 of the Java
program. Line numbers are designed to appear in the editor’s left
margin, but they do not appear by default. To make the Eclipse editor
display line numbers, choose Window➪Preferences (in Windows) or
Eclipse➪Preferences (on a Mac). Then choose General➪Editors➪Text
Editors. Finally, add a check mark in the Show Line Numbers check box.

 To fix compile-time errors, you must become a dedicated detective and
join the elite squad known as Law & Order: JPU (Java Programming Unit).
You seldom find easy answers. Instead, comb the evidence slowly and
carefully for clues. Compare everything you see in the editor, character
by character, with my code in Listing 3-1. Don’t miss a single detail,
including spelling, punctuation, and uppercase versus lowercase.

 Eclipse has a few nice features to help you find the source of a compile-
time error. For example, you can hover over the jagged red underline.
When you do, you see a brief explanation of the error along with
suggestions for repairing the error — some quick fixes, in other words.
See Figure 3-14.

 In Figure 3-14, a pop-up message tells you that Java doesn’t know what
the word shoWmESsaGediAlog means — that is, shoWmESsaGediAlog
is “undefined.” Near the bottom of the figure, one quick-fix option is to
repair the incorrect capitalization by changing shoWmESsaGediAlog to
showMessageDialog.

66 Part I: Getting Started with Java Programming for Android Developers

Figure 3-14:
Eclipse

offers
helpful

suggestions.

 When you click the Change to ‘showMessageDialog’ (..) option,
the Eclipse editor replaces shoWmESsaGediAlog with showMessage
Dialog. The editor’s error markers disappear, and the incorrect code
shown in Figure 3-13 changes to the correct code shown in Figure 3-12.

 11. Make any changes or corrections to the code in the Eclipse editor.

 When at last you see no jagged underlines or blotches in the editor,
you’re ready to try running the program.

 12. Select MyFirstJavaClass either by clicking inside the editor or by
clicking the MyFirstProject branch in the Package Explorer.

 13. In the Eclipse main menu, choose Run➪Run As➪Java Application.

 That does the trick. The new Java program runs, and you see the Hello
message shown in Figure 3-15. It’s like being in heaven!

Figure 3-15:
Running the

program
shown in

Listing 3-1.

What can possibly go wrong?
Ridding the editor of jagged underlines is cause
for celebration. Eclipse likes the look of your code,
so from that point on, it’s smooth sailing. Right?

Well, it ain’t necessarily so. In addition to some
conspicuous compile-time errors, the code can
have other, less obvious errors.

Imagine someone telling you to “go to the
intersection, and then rurn tight.” You notice
immediately that the speaker has made a
mistake, and you respond with a polite “Huh?”
The nonsensical rurn tight phrase is like a
compile-time error. Your “Huh?” is like the
jagged underlines in the Eclipse editor. As a

67 Chapter 3: Running Standard Java Programs

human being who listens, you may be able to
guess what rurn tight means, but the Eclipse
editor never dares to fix the mistakes in your
code.

In addition to compile-time errors, other kinds of
gremlins can hide inside a Java program:

 ✓ Unchecked runtime exceptions: You see
no compile-time errors, but when you run
the program, the run ends prematurely.
Somewhere in the middle of the run, the

instructions tell Java to do something that
can’t be done. For example, while you’re
running the Mortgage program in the
earlier section “Running a Canned Java
Program,” you type 1,000,000.00
instead of 1000000.00. Java doesn’t
like the commas in the number, so the
program crashes and Eclipse displays a
nasty-looking message, as shown in the
first figure.

 This example shows an unchecked runtime
exception — the equivalent of someone
telling you to turn right at the intersection
when the only thing to the right is a big,
brick wall. The Eclipse editor doesn’t warn
you about an unchecked runtime exception
because, until you run the program, the
computer can’t predict that the exception
will occur.

 ✓ Logic errors: You see no error markers in
the Eclipse editor, and when you run the
code, the program runs to completion. But
the answer isn’t correct. Instead of $552.20
in the second figure, the payment amount
is $551,518,260.38. The program incorrectly
tells you to pay thousands of times what
your house is worth and tells you to pay
this amount each month! It’s the equivalent
of being told to turn right rather than turn
left. You can drive in the wrong direction for
quite a long time.

 Logic errors are the most challenging
errors to find and to fix. And worst of all,
logic errors often go unnoticed. In March
1985, I got a monthly home heating bill
for $1,328,932.21. Clearly, a computer had
printed the incorrect amount. When I
called the gas company to complain, the
telephone service representative said,
“Don’t be upset. Pay only half that amount.”

 ✓ Compile-time warnings: A warning isn’t
as severe as an error message. So when
Eclipse notices suspicious behavior in
a program, the editor displays a jagged
yellow underline, an exclamation point
enclosed in a tiny yellow icon, and a few
other not-so-intrusive clues.

 For example, in the third figure, you can see
that, on Line 9, I added material related to
amount = 10 to the code from Listing
3-1. The problem is, I never make use of the
amount or of the number 10 anywhere in
my program. With its faint, yellow markings,
Eclipse effectively tells me “Your amount
= 10 code isn’t bad enough to be a
showstopper. Eclipse can still manage to
run the program. But are you sure you want
amount = 10 (this material that seems
to serve no purpose) in your program?”

(continued)

68 Part I: Getting Started with Java Programming for Android Developers

(continued)

 Imagine being told, “Turn when you reach
the intersection.” The direction may be
just fine. But if you’re suspicious, you ask,
“Which way should I turn? Left or right?”

 When you’re sure that you know what
you’re doing, you can ignore warnings
and worry about them later. But a warning
can be an indicator that the code has
a more serious problem. My sweeping
recommendation is this: Pay attention to

warnings. But if you can’t figure out why
you’re seeing a particular warning, don’t
let the warning prevent you from moving
forward.

 Icon yellow?

 Your code is mellow.

 Icon red?

 Your code is dead!

What’s All That Stuff in
the Eclipse Window?

Believe it or not, an editor once rejected one of my book proposals. In the
margin, the editor scribbled “This is not a word” next to text such as can’t,
it’s, and I’ve. To this day, I still do not know what this editor did not like
about contractions. My own opinion is that language always needs to expand.
Where would we be without a few new words — words such as dotcom,
infomercial, and vaporware?

Even the Oxford English Dictionary (the last word in any argument about
words) grows by more than 4,000 entries each year. That’s an increase of
more than 1 percent per year — about 11 new words per day!

69 Chapter 3: Running Standard Java Programs

The fact is, human thought resembles a high-rise building: You can’t build
the 50th floor until you’ve built at least part of the 49th. You can’t talk about
spam until you have a word such as e-mail. In these fast-paced, changing
times, you need verbal building blocks. That’s why this section contains a
bunch of new terms.

In this section, each newly defined term describes an aspect of the Eclipse
IDE. Before you read all this Eclipse terminology, I provide these disclaimers:

 ✓ This section is optional reading. Refer to this section if you have
trouble understanding some of this book’s instructions. But if you have
no trouble navigating the Eclipse IDE, don’t complicate things by fussing
over the terminology in this section.

 ✓ This section provides explanations of terms, not formal definitions
of terms. Yes, my explanations are fairly precise; but no, they’re not
airtight. Almost every description in this section has hidden exceptions,
omissions, exemptions, and exclusions. Take the paragraphs in this
section as friendly reminders, not as legal contracts.

 ✓ Eclipse is a useful tool. But Eclipse isn’t officially part of the Java
ecosystem. Although I don’t describe details in this book, you can write
Java programs without ever using Eclipse.

Understanding the big picture
Your tour of Eclipse begins with the big Burd’s-eye view:

 ✓ Workbench: The Eclipse desktop (refer to Figure 3-3). The workbench is
the environment in which you develop code.

 ✓ Area: A section of the workbench. The workbench shown in Figure 3-3
contains five areas. To illustrate the point, I’ve drawn borders around
each area, as shown in Figure 3-16.

 ✓ Window: A copy of the Eclipse workbench. In Eclipse, you can have
several copies of the workbench open at a time. Each copy appears in its
own window.

 To open a second window, go to the main Eclipse menu bar and choose
Window➪New Window.

 ✓ Action: A choice that’s offered to you, typically when you click something.
For example, when you choose File➪New from the Eclipse main menu
bar, you see a list of new elements you can create. The list usually
includes Project, Folder, File, and Other, but it may also include items
such as Package, Class, and Interface. Each of these things (each item on
the menu) is an action.

70 Part I: Getting Started with Java Programming for Android Developers

Figure 3-16:
The work-

bench is
divided into

areas.

Views, editors, and other stuff
The next bunch of terms deals with things called views, editors, and tabs.

 You may have difficulty understanding the difference between views and
editors. (A view is like an editor, which is like a view, or something like that.)
If views and editors seem the same to you, and you’re not sure whether you
can tell which is which, don’t be upset. When you’re an ordinary Eclipse user,
the distinction between views and editors comes naturally as you gain
experience using the workbench. You rarely have to decide whether the thing
you’re using is a view or an editor.

Anyway, if you ever have to distinguish between a view and an editor, here’s
what you need to know:

 ✓ View: A part of the Eclipse workbench that displays information for you
to browse. In the simplest case, a view fills up an area in the workbench.
For example, in Figure 3-3, earlier in this chapter, the Package Explorer
view fills up the leftmost area.

 Many views display information as lists or trees. For example, in
Figure 3-9, the Package Explorer view contains a tree.

71 Chapter 3: Running Standard Java Programs

 You can use a view to make changes. For example, to delete MyFirst
Project in Figure 3-9, right-click the MyFirstProject branch in the
Package Explorer view. (On a Mac, control-click the MyFirstProject
branch.) Then on the resulting context menu, choose Delete.

 When you use a view to change something, the change takes place
immediately. For example, when you choose Delete in the Package
Explorer’s context menu, whatever item you’ve selected is deleted
immediately. In a way, this behavior is nothing new. The same kind of
thing happens when you recycle a file using Windows Explorer or trash
a file using the Macintosh Finder.

 ✓ Editor: A part of the Eclipse workbench that displays information for
you to modify. A typical editor displays information in the form of text.
This text can be the contents of a file. For example, an editor in Figure 3-11
displays the contents of the MyFirstJavaClass.java file.

 When you use an editor to change something, the change doesn’t take
place immediately. For example, look at the editor shown in Figure 3-11.
This editor displays the contents of the MyFirstJavaClass.java
file. You can type all kinds of things in the editor. Nothing happens to
MyFirstJavaClass.java until you choose File➪Save from the Eclipse
menu bar. Of course, this behavior is nothing new. The same kind of
thing happens when you work in Microsoft Word or in any other word
processing program.

 Like other authors, I occasionally become lazy and use the word view
when I mean view or editor instead. I also write “the Eclipse editor”
when I should write “an Eclipse editor” or “the Editor area of the Eclipse
workbench.” When you catch me blurring the terminology this way, just
shake your head and move onward. When I’m being careful, I use the
official Eclipse terminology. I refer to views and editors as parts of the
Eclipse workbench. Unfortunately, this “parts” terminology doesn’t stick
in peoples’ minds.

An area of the Eclipse workbench might contain several views or several
editors. Most Eclipse users get along fine without giving this “several views”
business a second thought (or even a first thought). But if you care about the
terminology surrounding tabs and active views, here’s the scoop:

 ✓ Tab: Something that’s impossible to describe except by calling it a “tab.”
That which we call a tab by any other name would move us as well from
one view to another or from one editor to another. The important thing
is, views can be stacked on top of one another. Eclipse displays stacked
views as though they’re pages in a tabbed notebook. For example,
Figure 3-17 displays one area of the Eclipse workbench. The area contains
six views (Problems view, Javadoc view, Declaration view, Search view,
Console view, and LogCat view). Each view has its own tab.

72 Part I: Getting Started with Java Programming for Android Developers

Figure 3-17:
An area

containing
several
views.

 The Console view is shown in Figure 3-17, but it doesn’t always appear
as part of the Java perspective. Normally, the Console view appears
automatically whenever the program crashes. If you want to force the
Console view to appear, choose Window➪Show View➪Other. In the
resulting Show View dialog box, expand the General branch. Finally,
within that General branch, double-click the Console item.

 A bunch of stacked views is a tab group. To bring a view in the stack to
the forefront, you click that view’s tab.

 By the way, all this information about tabs and views holds true for
tabs and editors. The only interesting thing is the way Eclipse uses the
word editor. In Eclipse, each tabbed page of the Editor area is an individual
editor. For example, the Editor area shown in Figure 3-18 contains
three editors (not three tabs belonging to a single editor). The three
editors display the contents of three files: MyFirstJavaClass.java,
MortgageWindow.java, and activity_main.xml.

Figure 3-18:
The Editor

area
contains

three
editors.

 ✓ Active view or active editor: In a tab group, the active view or editor
refers to the view or editor that’s in front.

 In Figure 3-18, the MyFirstJavaClass.java editor is the active editor.
The MortgageWindow.java and activity_main.xml editors are
inactive. (The activity_main.xml looks as though it’s active, but
that’s because, in Figure 3-18, I’m hovering the mouse over that
editor’s tab.)

73 Chapter 3: Running Standard Java Programs

Looking inside a view or an editor
The terms in this section deal with individual views, individual editors, and
individual areas:

 ✓ Toolbar: The bar of buttons (and other little items) at the top of a view,
as shown in Figure 3-19.

Figure 3-19:
The tool-
bar in the
Package
Explorer

view.

 ✓ Menu button: A downward-pointing arrow on the toolbar. When you
click the menu button, a drop-down list of actions appears, as shown
in Figure 3-20. Which actions you see in the list vary from one view to
another.

Figure 3-20:
Clicking

the menu
button in the

Package
Explorer

view.

 ✓ Close button: A button that eliminates a particular view or editor, as
shown in Figure 3-21.

74 Part I: Getting Started with Java Programming for Android Developers

Figure 3-21:
An editor’s

Close
button.

 ✓ Chevron: A double arrow indicating that other tabs should appear in a
particular area (but that the area is too narrow). The chevron shown in
Figure 3-22 has a little number 2 beside it. The 2 tells you that, in addition to
the two visible tabs, two tabs are invisible. Clicking the chevron opens a
hover tip containing the labels of all the tabs. (See Figure 3-22.)

Figure 3-22:
The chevron

indicates
that two

editors are
hidden.

 ✓ Marker bar: The vertical ruler on the left edge of the editor area. Eclipse
displays tiny alert icons, called markers, inside the marker bar. (Refer to
Figure 3-13.)

Returning to the big picture
The two terms in this section deal with the overall look and feel of Eclipse:

 ✓ Layout: An arrangement of certain views. The layout shown in Figure 3-3,
for example, has seven views, four of which are active:

	 •	Package Explorer view: You see it on the far left side.

	 •	Task List view and Outline views: They’re on the far right side.

	 •	Problems, Javadoc, Declaration, and Console views: They’re near
the bottom. In this area of the workspace, the Problems view is the
active view.

 Along with all these views, the layout contains a single editor area. Any
and all open editors appear inside this editor area.

www.allitebooks.com

http://www.allitebooks.org

75 Chapter 3: Running Standard Java Programs

 ✓ Perspective: A useful layout. If a particular layout is truly useful,
someone gives that layout a name. And if a layout has a name, you can
use the layout whenever you want. For example, the workbench shown
in Figure 3-3 displays Eclipse’s Java perspective. By default, the Java
perspective contains six views in an arrangement much like the
arrangement shown in Figure 3-3.

 Along with all these views, the Java perspective contains an editor area.
(Sure, the editor area has several tabs, but the number of tabs has
nothing to do with the Java perspective.)

 You can switch among perspectives by choosing Window➪Open
Perspective on the Eclipse main menu bar. This book focuses almost
exclusively on Eclipse’s Java perspective. But if you like poking around,
visit some of the other perspectives to get a glimpse of the power and
versatility of Eclipse.

76 Part I: Getting Started with Java Programming for Android Developers

Chapter 4

Creating an Android App
In This Chapter
▶ Creating an elementary Android app
▶ Troubleshooting troublesome apps
▶ Testing an app on an emulator or a mobile device
▶ Dissecting an app

C
hapter 3 describes the writing and running of a dirt-simple Java program.
Like many Java programs, the one in Chapter 3 runs on a plain-old

desktop or laptop computer. Behind the scenes, the code in Chapter 3 uses
the powerful features of standard Oracle Java. But the two kinds of Java
(standard Oracle Java for desktops and laptops, and Android’s Java for
mobile devices) are slightly different animals, for these reasons:

 ✓ Standard Java uses the power and speed of desktop and laptop
computers.

 Android Java is streamlined to run on smaller devices with less memory.

 ✓ Standard Java uses some features that aren’t available in Android Java.

 For example, the javax.swing.JOptionPane.showMessageDialog
call in the program in Chapter 3 isn’t available in Android Java.

 ✓ Android Java uses some features that aren’t available in standard Java.

 For example, the Activity class in this chapter’s program isn’t
available in standard Java.

 ✓ Creating a basic Android app requires more steps than creating a
basic standard Java app.

This chapter covers the steps that are required in order to create a basic
Android app, though the app doesn’t do much. (In fact, you might argue that
it does nothing.) But the example shows you how to create and run a new
Android project.

78 Part I: Getting Started with Java Programming for Android Developers

Creating Your First Android App
A gadget typically comes supplied with a manual. The manual’s first sentence
is “Read all 37 safety warnings before attempting to install this product.”
Don’t you love it? You can’t get to the pertinent material without wading
through the preliminaries.

Well, nothing in this chapter can set your house on fire or even break your
electronic device. But before you follow this chapter’s instructions, you need
a bunch of software on your development computer. To make sure you have
this software, and that it’s properly configured, see Chapter 2. (Do not pass
Go; do not collect $200.)

When at last you have all the software you need, you’re ready to start Eclipse
and create a real, live Android app.

Creating an Android project
To create your first Android application, follow these steps:

 1. Launch Eclipse.

 For details on launching Eclipse, see Chapter 2.

 2. From the main menu in Eclipse, choose File➪New➪Android
Application Project.

 As a result, Eclipse fires up its New Android Application dialog box, as
shown in Figure 4-1.

 3. In the Application Name field, type a name for the app.

 In Figure 4-1, I type the boring words My First Android App.
Ordinary folks such as Joe and Jane User, however, will see this name
under the app’s icon on the Android launcher screen. If you’re planning
to market your app, make the name short, sweet, and descriptive. You
can even include blank spaces in the name.

 The next several steps involve lots of clicking, but you primarily accept
the default settings.

 4. (Optional) In the Project Name and Package Name fields, change the
name of the project and the name of the Java package containing the
project.

 Eclipse automatically fills in the Project Name and Package Name fields
(guided by whatever text you type in the Application Name field). In

79 Chapter 4: Creating an Android App

Figure 4-1, Eclipse creates the project name MyFirstAndroidApp and
the package name com.example.myfirstandroidapp. Eclipse uses
the project name to label this app’s branch in the Package Explorer tree.

Figure 4-1:
The first

New
Android

Application
dialog box.

 For practice apps, you can cheat by using the package name that Eclipse
creates. But if you plan to publish an app, give the app its own package
name, using the rules described in Chapter 3.

 In Android, a package name belongs to only one app. You can put the
first app in the package org.allyourcode.firstapp and put the
second app in the package org.allyourcode.secondapp. But you
can’t put more than one app in an org.allyourcode.mystuff
package.

 For the lowdown on Java packages and package names, see Chapter 5.

 5. (Optional) Choose values from the drop-down boxes in the dialog box.

 To find out what you’re promising when you select Minimum Required
SDK API 8 and Target SDK API 16, see the nearby sidebar, “Using
Android versions.”

 In Figure 4-1, I accept the defaults offered to me — API 8, API 16, and
API 17. You can select any values from the drop-down boxes as long as
you’ve created an Android Virtual Device (AVD) that can run the target’s
projects. (For example, an Android 2.3.3 AVD can run projects targeted
to earlier versions of Android, such as Android 2.3.1, Android 2.2, and
Android 1.6. The project target doesn’t have to be an exact match with
an existing AVD.)

80 Part I: Getting Started with Java Programming for Android Developers

Using Android versions
Android has a few different uses for version
numbers. For example, in Figure 4-1, the
minimum required SDK is API 8 and the target
SDK is API 16. What’s the difference?

You design an Android app to run on a range
of API versions. You can think informally of the
minimum SDK version as the lowest version in
the range, and the target version as the highest.
So if you select API 8 as the minimum SDK and
select API 16 as the target, you design an app
to run on API levels 8 through 16.

But the lowest-to-highest-version idea needs
refining. The official Android documentation
reports that “ . . . new versions of the platform
are fully backward-compatible.” So an app that
runs correctly on API 8 should run correctly on
all versions higher than API 8. (I write “should
run correctly” because, in practice, full
backward compatibility is difficult to achieve.
Anyway, if the Android team is willing to
promise full backward compatibility, I’m willing
to take my chances.)

The target version (it’s API 16 in Figure 4-1) is
the version for which you test the app. When
you run this chapter’s example, Eclipse opens
an emulator with API 16 or higher installed. (For
example, if you’ve created an AVD whose API is
level 17 but you have no AVD whose API is level
16, Eclipse opens the emulator with API 17.) To
the extent that your app passes your testing,

the app runs correctly on devices that run API
16 (also known as Android 4.1). What about
devices that run other versions of Android? This
list provides an explanation:

 ✓ The app’s target version is API 16, but the
app uses only features that are available
in API 8 and earlier: In that case, you can
safely enter the number 8 in the Minimum
Required SDK field in Eclipse.

 ✓ The app uses some features available only
in API 16 and later, but the app contains
workarounds for devices that run API 8:
(The app’s code can detect a device’s
Android version and contains alternative
code for different versions.) In that case,
you can safely put the number 8 in the
Minimum Required SDK field.

 ✓ The app’s target version is API 16: In 2019,
someone installs your app on a device
running API 99 (code-named Zucchini
Bread). Because of backward compatibility,
the app runs awkwardly but correctly on
the API 99 device. Then the app’s target
version (API 16) isn’t truly the upper limit.

When you select a target version and a minimum
SDK version, Android stores these numbers in
the project’s AndroidManifest.xml file.
You can see the AndroidManifest.xml
file in the project’s tree in the Package Explorer
in Eclipse.

 If you mistakenly select a target for which you have no AVD, Eclipse
hollers at you when you try to run the project. (Though Eclipse hollers,
it also offers to help you create the necessary AVD, so everything turns
out just fine.)

81 Chapter 4: Creating an Android App

 For help with creating an AVD, see Chapter 2.

 6. Click Next.

 As a result, the New Android Application dialog box reappears. (See
Figure 4-2 — okay, originality in naming dialog boxes may not be
Eclipse’s strong suit.)

Figure 4-2:
The

second New
Android

Application
dialog box.

 7. (Optional) Tweak the settings in the latest incarnation of the New
Android Application dialog box.

 For a practice app, I recommend deselecting the Create Custom
Launcher Icon check box and leaving untouched the other settings in
this New Android Application dialog box. In particular, keep the Create
Activity option selected.

 8. Click Next.

 As a result, the Create Activity dialog box appears, as shown in Figure 4-3.

 For the truth about activities in Android, see Chapter 5.

 9. Click Next again. (In other words, accept the defaults in the Create
Activity dialog box.)

 The next box in the sequence is the New Blank Activity dialog box, as
shown in Figure 4-4.

82 Part I: Getting Started with Java Programming for Android Developers

Figure 4-3:
Creating a

new activity.

Figure 4-4:
Creating a

blank
activity.

 10. Click Finish. (That is, accept the defaults.)

 As a result, the New Blank Activity dialog box closes, and the Eclipse
workbench moves to the foreground. The Package Explorer tree in
Eclipse has a new branch. The branch’s label is the name of the new
project, as shown in Figure 4-5.

83 Chapter 4: Creating an Android App

Figure 4-5:
A new

MyFirst
Android

App
branch.

 Congratulations — you’ve created an Android application.

Running your project
To kick your new app’s tires and take your app around the block, do the
following:

 1. Select the app’s branch in the Package Explorer in Eclipse.

 (Refer to Figure 4-5.)

 2. In the main menu, choose Run➪Run As➪Android Application.

 As a result, the Console view displays several lines of text. Among them,
you might find the phrases Launching a new emulator, Waiting
for HOME, and (as shown in Figure 4-6) my personal favorite, Success!

84 Part I: Getting Started with Java Programming for Android Developers

Figure 4-6:
The Console

view
during the

successful
launch of

an app.

 If you don’t see the Console view, you have to coax it out of hiding. For
details, see Chapter 3.

 In the lingo of general app development, a console is a text-only window
that displays the output of a running program. A console might also
accept commands from the user (in this case, the app developer).
A single Android run might create several consoles at a time, so the
Console view in Eclipse can display several consoles at a time. If the
material you see in the Console view in Eclipse is nothing like the text
shown in Figure 4-6, the Console view may be displaying the wrong
console. To fix this problem, look for a button showing a picture of a
computer terminal in the upper-right corner of the Console view, as
shown in Figure 4-7. Click the arrow to the right of the button. In the
resulting drop-down list, choose Android.

Figure 4-7:
Choosing a

console.

 3. Wait for the Android emulator to display the Device Locked screen, a
Home screen, or an app’s screen.

 First you see the word ANDROID as though it’s part of a scene from The
Matrix, as shown in Figure 4-8. Then you see the word ANDROID in

85 Chapter 4: Creating an Android App

shimmering, silvery letters, as shown in Figure 4-9. Finally, you see the
Device Locked screen, a Home screen, or an app’s screen, as shown in
Figure 4-10.

Figure 4-8:
The

emulator
starts

running.

Figure 4-9:
Android

starts
running

on the
emulator.

 4. I can’t overemphasize this point: Wait for the Android emulator to
display the Device Locked screen, a Home screen, or an app’s screen.

 The Android emulator takes a long time to start. For example, on my 2
GHz processor with 4GB of RAM, the emulator takes a few minutes to
mimic a fully booted Android device. You need lots of patience when
you deal with the emulator.

 5. Keep waiting.

 While you’re waiting, you can search the web for the phrase Android
emulator speed up. Lots of people have posted advice, workarounds, and
other hints.

86 Part I: Getting Started with Java Programming for Android Developers

Figure 4-10:
The Device

Locked
screen in

Android 2.3.3
appears.

 Oh! I see that the emulator is finally displaying the Device Locked
screen. It’s time to proceed. . . .

 6. If the emulator displays the Device Locked screen, do whatever you
normally do to unlock an Android device.

 Usually, you unlock the device by sliding something from one part of the
screen to another.

 7. See the app on the emulator’s screen.

 Figure 4-11 shows the running of the Hello World app in Android. (The
screen even displays Hello World!) Eclipse creates this tiny app
when you create a new Android project.

 The Hello World app in Android has no widgets for the user to push, and
the app doesn’t do anything interesting. But the appearance of an app
on the Android screen is a good start. Following the steps in this chapter,
you can start creating many exciting apps.

 Don’t close an Android emulator unless you know that you won’t be using
it for a while. The emulator is fairly reliable after it gets going. (It’s sluggish,
but reliable.) While the emulator runs, you can modify the Android code and
choose Run➪Run As➪Android Application again. When you do, Android
reinstalls the app on the running emulator. The process isn’t speedy, but you
don’t have to wait for the emulator to start. (Actually, if you run a different
app — an app whose minimum required SDK is higher than the running emula-
tor can handle — Android fires up a second emulator. But in many developer
scenarios, jumping between emulators is the exception rather than the rule.)

87 Chapter 4: Creating an Android App

Figure 4-11:
The Hello

World app
in action.

What if . . .
You try to run your first Android app. If your effort stalls, don’t despair. This
section has some troubleshooting tips.

Error message: R cannot be resolved
Every Android app has an R.java file. The Android development tools
generate this file automatically, so normally you don’t have to worry about
R.java. Occasionally, the file takes longer than average to be generated. In
this case, Eclipse finds references to the R class in the rest of the project’s
code and complains that the project has no R class. My advice is to wait.

If one minute of waiting doesn’t bring good results, follow these steps to
double-check the project settings:

 1. Highlight the project in the Package Explorer in Eclipse.

 2. From the main menu, choose Project.

 A list of submenu items appears.

 3. Look for a check mark next to the Build Automatically menu subitem.

88 Part I: Getting Started with Java Programming for Android Developers

 4. If you don’t see a check mark, select the Build Automatically subitem
to add one.

 With any luck, the R.java file appears almost immediately.

If the project is set to Build Automatically and you still don’t have an R.java
file, try these steps:

 1. Highlight the project in the Package Explorer.

 2. From the main menu, choose Project.

 A list of submenu items appears.

 3. In the Clean dialog box in Eclipse, select the project that’s giving you
trouble along with the Clean Projects Selected Below radio button.

 4. Click OK.

Cleaning the project should fix the problem. But if the problem persists, close
Eclipse and then restart it. (Eclipse occasionally becomes “confused” and has
to be restarted.)

 After copying Java code from one Android project to another, you might
see the annoying message Import cannot be resolved near the top of the
program. If so, you might have inadvertently told one project to fetch material
from another project’s R.java file. If the offending line of code is import
somethingOrOther.R, try deleting that line of code. Who knows? Your
deletion might just fix the problem.

Error message: No compatible targets were found
When you see this message, it probably means that you haven’t created
an Android Virtual Device (AVD) capable of running your project. If
Eclipse offers to help you create a new AVD, accept it. Otherwise, choose
Window➪Android Virtual Device Manager to create a new AVD.

 For information about Android Virtual Devices, see Chapter 2.

The emulator stalls during start-up
After five minutes or so, you don’t see the Device Locked screen or the
Android Home screen. Try these solutions:

 ✓ Close the emulator and launch the application again. (Or lather, rinse,
repeat.)

 Sometimes, the second or third time’s a charm. On rare occasions, my
first three attempts fail but my fourth attempt succeeds.

89 Chapter 4: Creating an Android App

 ✓ Start the emulator independently.

 That is, start the emulator without trying to run an Android project.
Follow these four steps:

 a. From the Eclipse main menu, choose Window➪Android Virtual
Device Manager.

 The Android Virtual Device Manager window opens. It contains a
list of AVDs that you’ve already created.

 For help creating an AVD, see Chapter 2.

 b. In the Android Virtual Device Manager, select the AVD that you
want to start.

 c. On the right side of the Android Virtual Device Manager, click
Start.

 As a result, Eclipse displays the Launch Options dialog box.

 d. In the Launch Options dialog box, click Launch.

 In other words, accept the default options and fire up the emulator.

 When, at last, you see the new emulator’s Device Locked screen or
Home screen, follow Steps 1, 2, 6, and 7 in the earlier section “Running
your project.”

 If you try the tricks in this section but the stubborn Android emulator
still doesn’t start, visit this book’s website (http://allmycode.com/
Java4Android) for more strategies to try.

 ✓ Run the app on a phone, a tablet, or another real Android device.

 Testing a brand-new app on a real device makes me queasy. But the
Android sandbox is fairly safe for apps to play in. Besides, apps load
quickly and easily on phones and tablets.

 For instructions on installing apps to Android devices, see the section
“Testing Apps on a Real Device,” later in this chapter.

Error message: The user data image is used by another emulator
If you see this message, a tangle involving the emulator prevents Android
from doing its job. First try closing and restarting the emulator.

If a simple restart doesn’t work, try these steps:

 1. Close the emulator.

 2. From the main menu in Eclipse, choose Window➪Android Virtual
Device Manager.

 To read about the Android Virtual Device Manager, see Chapter 2.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

90 Part I: Getting Started with Java Programming for Android Developers

 3. In the list of virtual devices, select an AVD that’s appropriate to the
project and click Start.

 4. In the resulting Launch Options dialog box, select the Wipe User Data
check box and click Launch.

 As a result, Eclipse launches a new copy of the emulator — this time,
with a clean slate.

 If you follow the steps in this section but you still see the message User
data image is used by another emulator, visit this book’s
website (http://allmycode.com/Java4Android) for more help with
this problem.

Error message: Unknown virtual device name
Android looks for AVDs in the home directory’s .android/avd subdirectory,
and occasionally the search goes awry. For example, one of my Windows
computers lists my home directory on an i drive. My AVDs are in i:\
Users\barry\.android\avd. But Android ignores the computer’s home
directory advice and instead looks in c:\Users\Barry. When Android
doesn’t find any AVDs, it complains.

You can devise fancy solutions to this problem by using either junctions or
symbolic links. But solutions of this kind require special handling of their
own. To keep it simple, I copy the contents of my i:\Users\barry\.
android directory to c:\Users\barry\.android to fix the problem.

Error message: INSTALL_PARSE_FAILED_
INCONSISTENT_CERTIFICATE
This error message indicates that an app you previously installed conflicts
with the app you’re trying to install. So, on the emulator screen, navigate to
the list of installed applications (which is usually an option on the Settings
screen). In the list of applications, delete any apps that you installed
previously.

 Occasionally, you might have trouble finding previously installed apps from
the Settings➪Applications menus in the emulator. If you do, visit this book’s
website (http://allmycode.com/Java4Android) for a geeky workaround
solution.

The app starts, but the emulator displays
the Force Close or Wait dialog box
The formal name of the Force Close or Wait dialog box is Application Not
Responding (ANR). Android displays the ANR dialog box whenever an app
takes too long to do whatever it’s supposed to do. When the app runs on a
real device (a phone or a tablet), the app shouldn’t make Android display the
ANR dialog box.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

91 Chapter 4: Creating an Android App

But on a slow emulator, seeing a few Force Close or Wait messages is par for
the course. When I see the ANR dialog box in an emulator, I usually select
Wait. Within about ten seconds, the dialog box disappears and the app
continues to run.

Changes to your app don’t appear in the emulator
Your app runs and you want to make a few improvements. So, with the
emulator still running, you modify the app’s code. But after choosing
Run➪Run As➪Android Application, the app’s behavior in the emulator
remains unchanged.

When this happens, something is clogged up. Close and restart the emulator.
If necessary, use the Wipe User Data trick that I describe in the earlier
section “Error message: The user data image is used by another emulator.”

The emulator’s screen is too big
Sometimes, the development computer’s screen resolution isn’t high enough.
(Maybe your eyesight isn’t what it used to be.) This symptom isn’t a deal
breaker, but if you can’t see the emulator’s lower buttons, you can’t easily
test the app. You can change the development computer’s screen resolution,
though adjusting the emulator window is less invasive.

To change the emulator window size, follow these steps:

 1. Close the emulator.

 2. From the Eclipse main menu, choose Window➪Android Virtual Device
Manager.

 3. In the list of virtual devices, select an AVD that’s appropriate to the
project and click Start.

 4. In the resulting Launch Options dialog box, select the Scale Display to
Real Size check box.

 5. Lower the value in the Screen Size field.

 As you change the Screen Size value, the value in the Scale field changes
automatically. The smaller the Scale value, the smaller the emulator
appears on the development computer’s screen.

 6. Click Launch.

 As a result, Eclipse launches a new copy of the emulator — this time,
with a smaller emulator window.

92 Part I: Getting Started with Java Programming for Android Developers

Testing Apps on a Real Device
You can bypass emulators and test apps on a phone, a tablet, or maybe an
Android-enabled trash compactor. To do so, you have to prepare the device,
prepare the development computer, and then hook the two together. This
section describes the process.

To test an app on a real Android device, follow these steps:

 1. On the Android device, turn on USB debugging.

 Various Android versions have their own ways of enabling (or disabling)
USB debugging. You can poke around for the debugging option on your
own device or visit this site for the procedures on some representative
Android versions:

www.teamandroid.com/2012/06/25/how-to-enable-usb-
debugging-in-android-phones

 On my device, I keep USB debugging on all the time. But if you’re
nervous about security, turn off USB debugging when you aren’t using
the device to develop apps.

 2. In your project’s branch of the Package Explorer, double-click the
AndroidManifest.xml file.

 Eclipse offers several ways to examine and edit this file.

 3. At the bottom of the Eclipse editor, click the Application tab.

 Eclipse displays a form like the one shown in Figure 4-12.

 4. In the Debuggable drop-down list, choose True. (Refer to Figure 4-12.)

 When Debuggable is set to True, Android tools can monitor the run of
the app.

 The ability to debug is the ability to hack. Debugging also slows down an
app. Never distribute an app to the public with Debuggable set to True.

 5. Choose File➪Save to store the new AndroidManifest.xml file.

 6. Set up the development computer to communicate with the device.

	 • On Windows: Visit http://developer.android.com/sdk/
oem-usb.html to download the device’s Windows USB driver.
Install the driver on the development computer.

	 • On a Mac: /* Do nothing. It just works. */

http://www.teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones
http://www.teamandroid.com/2012/06/25/how-to-enable-usb-debugging-in-android-phones
http://developer.android.com/sdk/oem-usb.html
http://developer.android.com/sdk/oem-usb.html

93 Chapter 4: Creating an Android App

Figure 4-12:
The

Application
tab of a

project’s
Android
Manfest
.xml file.

 7. Using a USB cable, connect the device to the development computer.

 For ways to verify that the device is connected to the development
computer, visit this book’s website at http://allmycode.com/
Java4Android.

 8. In Eclipse, run the project.

 A connected device trumps a running emulator. So, if the Android
version on the device can handle the project’s minimum SDK version,
choosing Run➪Run As➪Android Application installs the app on the
connected device.

Eventually, you’ll disconnect the device from the development computer.
If you’re a Windows user, you may dread reading Windows can’t stop
your device because a program is still using it. To disconnect
the device safely, do the following:

 1. Open the Command Prompt window.

 On Windows 7 or earlier: Choose Start➪All Programs➪Accessories➪
Command Prompt.

 On Windows 8: First press Windows+Q. Then type Command Prompt
and press Enter.

 2. In the Command Prompt window, navigate to the ANDROID_HOME/
platform-tools directory.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

94 Part I: Getting Started with Java Programming for Android Developers

 For example, if the ANDROID_HOME directory is
C:\Users\yourName\adt-bundle-windows-x86_64\sdk

 type this command:
cd C:\Users\yourName\adt-bundle-windows-x86_64\sdk\platform-tools

 3. In the Command Prompt window, type adb kill-server and then press
Enter.

 The adb kill-server command stops communication between the
development computer and any Android devices, real or virtual. In
particular,

	 •	The	development	computer	no	longer	talks	to	the	device	at	the	
end of the USB cable.

	 •	The	development	computer	no	longer	talks	to	any	emulators	it’s	
running.

 After issuing the adb kill-server command, you see the friendly
Safe to Remove Hardware message.

 4. Unplug the Android device from the development computer.

 After unplugging the device, you might want to reestablish communication
between the development computer and any emulators you’re running.
If so, follow Step 5.

 5. In the Command Prompt window, type adb start-server and then press
Enter.

Examining an Android App
In Figure 4-13, the Package Explorer in Eclipse shows the structure of a newly
created Android project. Each branch of the tree represents a file or a folder,
and if you expand all branches of the tree, you see even more files and folders.
Why so many files and folders in an Android project? This section provides
answers.

The src directory
The src directory contains the project’s Java source code. Files in this
directory have names such as MainActivity.java, MyService.java,
DatabaseHelper.java, and MoreStuff.java.

95 Chapter 4: Creating an Android App

Figure 4-13:
The

Package
Explorer
displays

an Android
app.

You can cram hundreds of Java files into a project’s src directory. But when
you create a new project, Android typically creates only one file for you.
Earlier in this chapter, I accepted the default name MainActivity so that
Android creates a file named MainActivity.java. (Refer to Figure 4-4.)

 An Android activity is one “screenful” of components. For more information
about Android activities, see Chapter 5.

Most of the material in this book is about files in the src directory. In this
chapter, I focus on the other directories.

The res directory
A project’s res directory contains resources for use by the Android
application. In Figure 4-13, you see that res has a bunch of subdirectories:
four drawable directories, a layout directory, a menu directory, and three
values directories.

The drawable subdirectories
The drawable directories contain images, shapes, and other elements.

96 Part I: Getting Started with Java Programming for Android Developers

Each drawable directory applies to certain screen resolutions. For example,
in the name drawable-hdpi, the letters hdpi stand for high number of dots
per inch. Files in the drawable-hdpi directory apply to devices whose
resolutions are (roughly) between 180 and 280 dots per inch.

 For more information about Android screen resolutions, visit http://
developer.android.com/guide/practices/screens_support.html.

In Figure 4-13, the drawable-hdpi directory contains one file named ic_
launcher.png. This file describes the image that appears on the app’s icon
on the Android launcher screen.

The values subdirectory
An app’s res/values directory contains a file named strings.xml. (Refer
to Figure 4-13.) Listing 4-1 shows the code in a simple strings.xml file.

Listing 4-1: A Small strings.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<resources>

 <string name=”app_name”>My First Android App</string>
 <string name=”hello_world”>Hello world!</string>
 <string name=”menu_settings”>Settings</string>

</resources>

 The code in Listing 4-1 is XML code. For information about XML code, see the
“All about XML files” sidebar, later in this chapter.

In the strings.xml file, you collect all the words, phrases, and sentences
that the app’s user might see. You lump together phrases such as Hello
world! and My First Android App so that someone can translate them all
into different languages. With all those phrases collected in the strings.
xml file, a translator doesn’t have to poke around to find phrases in the
Java code. (Poking around in the code in any real programming language
can be dangerous because program code is intricate, and it can be brittle.
Believe me: If I were a translator, I’d much rather translate the phrases in a
strings.xml file.)

Listing 4-1 describes a “hello_world” string containing the characters
Hello World! So in the app’s Java code, you refer to the words Hello world!
by typing R.string.hello_world. To refer to the words Hello world!
in another XML file (such as the one in Listing 4-2), you type “@string/
hello_world”. Either way, the text R.string.hello_world or the text “@
string/hello_world” stands for the words Hello world! in Listing 4-1.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

97 Chapter 4: Creating an Android App

The use of strings.xml files helps with localization, which, in the tech world,
is what you do to adapt an app to a culture’s local language and customs.
To localize the app for French-speaking users, for example, you create an
additional folder named values-fr. You add this folder to the tree shown in
Figure 4-13. Inside the values-fr folder, you create a second strings.xml
file, and the new strings.xml file contains a line such as this one:

<string name=”hello_world”>Bonjour tout le monde!</string>

For Romanian, you create a values-ro directory, containing a strings.
xml file with this line:

<string name=”hello_world”>Salut lume!</string>

When Android sees either R.string.hello_world or “@string/hello_
world” in the code, Android determines the user’s country of origin and
automatically displays the correct translation. This localization happens with
no further effort on your part.

The layout subdirectory
The layout directory contains descriptions of the activities’ screens.

A minimal app’s res/layout directory contains an XML file describing an
activity’s screen. (Refer to the activity_main.xml branch in Figure 4-13.)
Listing 4-2 shows the code in the simple activity_main.xml file.

Listing 4-2: A Small Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 tools:context=”.MainActivity” >

 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_centerHorizontal=”true”
 android:layout_centerVertical=”true”
 android:text=”@string/hello_world” />

</RelativeLayout>

The code in Listing 4-2 specifies that the layout of the app’s activity is
a RelativeLayout (whatever that means) and, centered inside the
RelativeLayout, you have a TextView. This TextView thingy is a little
label containing the words Hello world! (Refer to Figure 4-11.)

98 Part I: Getting Started with Java Programming for Android Developers

All about XML files
Every Android app consists of some Java
code, some XML documents, and some other
information. (The acronym XML stands for
eXtensible Markup Language.) You might
already be familiar with HTML documents —
the bread and butter of the World Wide Web.

Listings 4-1 and 4-2 contain XML documents.
Like an HTML document, every XML document
consists of tags (angle-bracketed descriptions
of various pieces of information). But unlike an
HTML document, an XML document doesn’t
necessarily describe a displayable page.

Here are some facts about XML code:

 ✓ A tag consists of text surrounded by angle
brackets .

 For example, the code in Listing 4-2
consists of three tags: The first tag is
the <RelativeLayout ... >
tag, the second tag is the <Text
View ... /> tag, and the third tag is the
</RelativeLayout> tag.

 ✓ An XML document may have three different
kinds of tags: start tags, empty element
tags, and end tags .

 A start tag begins with an open angle
bracket and a name. A start tag’s last
character is a closing angle bracket.

 The first tag in Listing 4-2 (the
<RelativeLayout ... > tag
on lines 1–6) is a start tag. Its name is
RelativeLayout.

 An empty element tag begins with an open
angle bracket followed by a name. An
empty element tag’s last two characters
are a forward slash followed by a closing
angle bracket.

 The second tag in Listing 4-2 (the
<TextView ... /> tag on lines 8–13
in the listing) is an empty element tag. Its
name is TextView.

 An end tag begins with an open angle
bracket followed by a forward slash and
a name. An end tag’s last character is a
closing angle bracket.

 The third tag in Listing 4-2 (the
</RelativeLayout> tag on the last
line of the listing) is an end tag. Its name is
RelativeLayout.

 ✓ An XML element either has both a start tag
and an end tag, or it has an empty element
tag .

 In Listing 4-2, the document’s
RelativeLayout element has both
a start tag and an end tag. (Both the
start and end tags have the same name,
RelativeLayout, so the name of the
entire element is RelativeLayout.)

 In Listing 4-2, the document’s TextView
element has only one tag: an empty element
tag.

 ✓ Elements are either nested inside one
another or have no overlap .

 For example, in the following code, a
TableLayout element contains two
TableRow elements:

<TableLayout xmlns:android=
 “http://schemas.

android.com/apk/res/
android”

 android:layout_
width=”fill_parent”

 android:layout_
height=”fill_parent” >

 <TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”

99 Chapter 4: Creating an Android App

 android:text=”@
string/name” />

 </TableRow>

 <TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/address” />

 </TableRow>

</TableLayout>

 The preceding code works because the
first TableRow ends before the second
TableRow begins. But the following XML
code is illegal:

<!-- The following code isn’t
legal XML code. -->

<TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/name” />
<TableRow>

</TableRow>

 <TextView
 android:layout_

width=”wrap_content”
 android:layout_

height=”wrap_content”
 android:text=”@

string/address” />
</TableRow>

 With two start tags followed by two end
tags, this new XML code doesn’t pass
muster.

 ✓ Each XML document contains a root
element — one element in which all other
elements are nested .

 In Listing 4-2, the root element is
the RelativeLayout element.
The listing’s only other element (the
TextView element) is nested inside that
RelativeLayout element.

 ✓ Different XML documents use different
element names .

 In every HTML document, the

element stands for line break. But in
XML, the names RelativeLayout
and TextView are particular to Android
layout documents. And the names
portfolio and trade are particular to
financial product XML (FpML) documents.
The names prompt and phoneme are
peculiar to voice XML (VoiceXML). Each
kind of document has its own list of element
names.

 ✓ The text in an XML document is case-
sensitive .

 For example, i f you change
R e l a t i v e L a y o u t t o
relativelayout in Listing 4-2, the app
won’t run.

 ✓ Start tags and empty element tags may
contain attributes .

 An attribute is a name-value pair. Each
attribute has the form name=”value”. The
quotation marks around the value are
required.

 In Listing 4-2, the start tag
(RelativeLayout) has five attributes,
and the empty element tag (TextView)
has five of its own attributes. For example,
in the TextView empty element
tag, the text android:layout_
width=”wrap_content” is the first
attribute. This attribute has the name
android:layout_width and the
value “wrap_content”.

(continued)

100 Part I: Getting Started with Java Programming for Android Developers

The gen directory
The directory name gen stands for generated. The gen directory contains
R.java. Listing 4-3 shows that part of the R.java file generated for you
when you create a brand-new project.

Listing 4-3: Don’t Even Look at This File
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.example.myfirstandroidapp;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class id {
 public static final int menu_settings=0x7f070000;
 }
 public static final class layout {
 public static final int activity_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_main=0x7f060000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 public static final int hello_world=0x7f040001;
 public static final int menu_settings=0x7f040002;
 }
 // ... (There’s more!)

(continued)

 ✓ A non-empty XML element may contain
content .

 For example, in the element <string
name=”hello_world”>Hello

world!</string> in Listing 4-1, the
content Hello world! is sandwiched
between the start tag (<string
name=”hello_world”>) and the end
tag (</string>).

101 Chapter 4: Creating an Android App

The values in R.java are the jumping-off points for the resource management
mechanism in Android. Android uses these numbers for quick and easy
loading of the items you store in the res directory.

You can’t make changes to the R.java file. Long after the creation of a
project, Android continues to monitor (and, if necessary, update) the
contents of the R.java file. If you delete R.java, Android re-creates the file.
If you edit R.java, Android undoes the edit. If you answer Yes in the dialog
box named Do You Really Want to Edit This File?, Eclipse accepts the
change — but immediately afterward, Android clobbers your change.

The Android 4.2 branch
The tree shown in Figure 4-13 has an Android 4.2 branch, but it isn’t a
directory on the computer’s file system. In the Package Explorer view, the
Android 4.2 branch (or Android 3.0 branch or Android whatever
branch) reminds you that the project includes prewritten Android code (the
Android API).

 A .jar file is a compressed archive containing a useful bunch of Java classes.
In fact, a .jar file is a .zip archive. You can open any .jar file by using
WinZip or StuffIt Expander or the operating system’s built-in unzipping utility.
(You may or may not have to change the filename from whatever.jar to
whatever.zip.) Anyway, an android.jar file contains prewritten Android
code (the Android API) for a particular version of Android. In Figure 4-13, a
Package Explorer branch reminds you that your project contains a reference
to another location on the hard drive (to one containing the .jar file for
Android 4.2).

R .java and the legend of the two vaudevillians
According to legend, two friends named
Herkimer and Jake once worked together for
50 years as a comedy team in vaudeville. Year
after year, they practiced and refined their act,
adding a new joke here and removing an old
joke there. As time went on, they adopted a kind
of shorthand to refer to the jokes in their act.
“Let’s move Joke Number 35 to the end of the
first song,” said Herkimer. And Jake responded,
“I’d rather do Joke Number 119 when the song
ends.”

Eventually, both Herkimer and Jake retired to
an old-age home. Day after day, they sat side
by side in the TV room, staring at reruns of
Milton Berle’s show and The Ed Sullivan Show.
Occasionally, something on the screen would
remind Herkimer of one the team’s old jokes.
“Fifty-one,” Herkimer would call out. And upon
hearing this number, Jake would start laughing
hysterically.

(continued)

102 Part I: Getting Started with Java Programming for Android Developers

(continued)

Many elements of the code in an Android app
are numbered. For example, an item on the
screen can be in one of three states: 0, 4, or
8. To help you (the developer) remember what
the numbers mean, the creators of Android
provide synonyms for each number. So rather
than write 0 in your Java code, you can write
View.VISIBLE. An item in this state is in
plain sight on the user’s screen. On the other
hand, an item in state 4 (with the synonym
View.INVISIBLE) occupies space on the
screen but doesn’t light up any pixels. The user
doesn’t see this item, but its spooky presence
might force other items to move one way or
another. Finally, an item in state 8 (with the
synonym View.GONE) has no presence on the
screen. This item might have once appeared
in the center of the screen, and it might later
appear again on the screen. But now, in the
View.GONE state, this item has no influence
on the layout of the screen.

When dealing with state numbers, and
with other code numbers, the creators of
Java use hexadecimal notation. In Java,
numbers starting with 0x are hexadecimal
(base 16) numbers. For example, the number
0x00000004 stands for 4 × 160 — which (in
the conventional base 10 system) is plain old 4.
And the number 0x00000024 stands for 2 ×
161 + 4 × 160 — which (in base 10) is 36. Finally,
the number 0x0000001b stands for 1 × 161
+ 11 × 160 — which (in base 10) is 27. As an
Android developer, I seldom have to convert a
hexadecimal value into its conventional base 10
representation. So don’t worry about doing it.

Anyway, the app you see in Figure 4-11 displays
the text Hello world! When you create an

Android app, you seldom put actual words
such as “Hello World!” in the app’s Java code.
Instead, you refer to the words indirectly. You
give the words Hello World! a number, and
you put that number in the Java code. More
precisely, these things happen:

 ✓ You have the line < s t r i n g
name=”hello_world”>Hello
world!</string> in the strings.
xml file, which is in the values
subdirectory of the project’s res directory.

 ✓ Eclipse generates a code number, such as
0x7f040001. (Refer to Listing 4-3.)

 ✓ Android associates the number
0x7f040001 with the synonym
R.string.hello_world by having
the text hello_world=0x7f040001
in the string portion of the R.java file.
(Refer to Listing 4-3).

 ✓ You have the text R.string.hello_
world in the Java code. Alternatively, you
have the text @string/hello_world
in the activity_main.xml file.

This indirect way to refer to the words
Hello world! might seem to be needlessly
complicated. But the indirectness is exactly
what helps you create apps that appeal to
people all over the world. Look at the discussion
of localization in the earlier section “The res
directory.” By creating a new values-fr
directory, you allow a user’s device to
automatically localize to another language, and
to display Bonjour tout le monde! or Hallo Welt!
or Hej Verden! instead of the Anglocentric Hello
world! phrase.

The android.jar file contains code grouped into Java packages, and each
package contains Java classes. Figures 4-14 and 4-15 show you the tip of
the android.jar iceberg. The android.jar file contains classes specific to
Android and classes that simply help Java do its job. Figure 4-14 shows
some Android-specific packages in android.jar. Figure 4-15 displays some
general-purpose Java packages in the android.jar file.

103 Chapter 4: Creating an Android App

Figure 4-14:
Some pack-

ages and
classes in
android

.jar.

Figure 4-15:
The

android
.jar file

includes
general-
purpose

Java
packages.

The AndroidManifest.xml file
If you followed the instructions earlier in this chapter, you’ve already
tinkered with an AndroidMaifest.xml file. Keep in mind that every
Android app has an AndroidManifest.xml file. The AndroidManifest.
xml file provides information that a device needs in order to run the

104 Part I: Getting Started with Java Programming for Android Developers

app. The AndroidManifest.xml file in Listing 4-4 stores some options
that you choose when you create a brand-new Android project. For
example, the listing contains the package name, the minimum required
SDK (the android:minSdkVersion attribute), and the target SDK (the
android:targetSdkVersion attribute).

Listing 4-4: An AndroidManifest.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=”com.example.myfirstandroidapp”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk
 android:minSdkVersion=”8”
 android:targetSdkVersion=”16” />

 <application
 android:allowBackup=”true”
 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name”
 android:theme=”@style/AppTheme” >
 <activity
 android:name=
 “com.example.myfirstandroidapp.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />

 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

For my money, the most important items in an AndroidManifest.xml file
are the activity elements. The code in Listing 4-4 has only one activity
element. But a single Android app can have many activities, and each activity
must have its own activity element in the app’s AndroidManifest.xml
file.

 For the scoop on Android activities, see Chapter 5.

105 Chapter 4: Creating an Android App

 An Android activity is one “screenful” of components. (Refer to Chapter 5
for more about Android activities.) If you add an activity’s Java code to an
Android application, you must also add an activity element to the
application’s AndroidManifest.xml file. If you forget to add an activity
element, you see an ActivityNotFoundException when you try to run the
application. (Believe me. I’ve made this mistake many, many times.)

Within an activity element, an intent-filter element describes the
kinds of duties that this activity can fulfill for apps on the same device.
(Intent filters are complicated, so in this book I don’t dare open that whole
can of worms.) But to give you an idea, the action android.intent.
action.MAIN indicates that this activity’s code can be the starting point
of an app’s execution. And the category android.intent.category.
LAUNCHER indicates that this activity’s icon can appear on the device’s Apps
screen.

106 Part I: Getting Started with Java Programming for Android Developers

Part II
Writing Your Own

Java Programs

 Check out the article “Weird Computer Code” (and more) online at www.dummies.
com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Writing your first Java programs
 ✓ Assembling Java’s building blocks
 ✓ Changing course as your program runs

Chapter 5

An Ode to Code
In This Chapter
▶ Reading the statements in a basic Java program
▶ Writing a Java console app
▶ Understanding the boilerplate Android activity

“Hello, hello, hello, . . . hello!”

—The Three Stooges in Dizzy Detectives and other short films

T
o most people, the words Hello World form a friendly (or even sugary)
phrase. Is Hello World a song title? Is it the cheery slogan of a radio

deejay? Maybe so. But to computer programmers, the phrase Hello World has
a special meaning.

A Hello World app is the simplest program that can run in a particular
programming language or on a particular platform. Authors create Hello
World apps to show people how to start writing code for particular systems.

To help you get started with Java and Android, I devote this chapter to
explaining a few Hello World programs. The programs don’t do much. (In
fact, you might argue that they don’t do anything.) But they introduce some
basic Java concepts.

 To see Hello World apps for more than 450 different programming languages,
visit www.roesler-ac.de/wolfram/hello.htm.

http://www.roesler-ac.de/wolfram/hello.htm

110 Part II: Writing Your Own Java Programs

Examining a Standard
Oracle Java Program

Listing 5-1 is a copy of the example in Chapter 3.

Listing 5-1: A Small Java Program
package org.allyourcode.myfirstproject;

public class MyFirstJavaClass {

 /**
 * @param args
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);
 }

}

When you run the program in Listing 5-1, the computer displays the word
Hello in a dialog box, as shown in Figure 5-1. Now, I admit that writing and
running a Java program just to make Hello appear on a computer screen is a
lot of work, but every endeavor has to start somewhere.

Figure 5-1:
Running the
program in
Listing 5-1.

Figure 5-2 describes the meaning of the code in Listing 5-1.

The next several sections present, explain, analyze, dissect, and otherwise
demystify the Java program shown in Listing 5-1.

111 Chapter 5: An Ode to Code

Figure 5-2:
What you

do in
Listing 5-1.

The Java class
Java is an object-oriented programming language. As a Java developer,
your primary goal is to describe classes and objects. A class is a kind of
category, like the category of all customers, the category of all accounts,
the category of all geometric shapes, or, less concretely, the category of all
MyFirstJavaClass elements, as shown in Listing 5-1. Just as the listing
contains the words class MyFirstJavaClass, another piece of code to
describe accounts might contain the words class Account. The class
Account code would describe what it means to be (for example) one of
several million bank accounts.

 The previous paragraph contains a brief description of what it means to be a
class. For a more detailed description, see Chapter 9.

 You may know what js meant by the phrases “the category of all customers”
and “the category of all geometric shapes,” but you may wonder what “the
category of all MyFirstJavaClass things” means or in what sense a computer
program (such as the program in Listing 5-1) is a category. Here’s my answer
(which, I admit, is somewhat evasive): A Java program gets to be a “class” for
esoteric, technical reasons and not because thinking of a Java program as a
category always makes perfect sense. Sorry about that.

112 Part II: Writing Your Own Java Programs

Except for the first line, the entire program In Listing 5-1 is a class. When I
create a program like this one, I get to make up a name for my new class.
In the listing, I choose the name MyFirstJavaClass. That’s why the code
starts with class MyFirstJavaClass, as shown in Figure 5-3.

Figure 5-3:
A simple

Java
program

is a class.

 The code inside the larger box in Figure 5-3 is, to be painfully correct, the
declaration of a class. (This code is a class declaration.) I’m being slightly
imprecise when I write in the figure that this code is a class. In reality, this
code describes a class.

The declaration of a class has two parts: The first part is the header, and
the rest — the part surrounded by curly braces, or {} —is the class body, as
shown in Figure 5-4.

The word class is a Java keyword. No matter who writes a Java program,
class is always used in the same way. On the other hand, MyFirstJava
Class in Listing 5-1 is an identifier — a name for something (that is, a name
that identifies something). The word MyFirstJavaClass, which I made up
while I was writing Chapter 3, is the name of a particular class — the class
that I’m creating by writing this program.

In Listing 5-1, the words package, public, static, and void are also Java
keywords. No matter who writes a Java program, package and class and
the other keywords always have the same meaning. For more jabber about
keywords and identifiers, see the nearby sidebar, “Words, words, words.”

113 Chapter 5: An Ode to Code

Figure 5-4:
A class

declaration’s
header and

body.

 To find out what the words public, static, and void mean, see Chapters 9
and 10.

 tHE jAVA PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. FOR EXAMPLE, iF
YOU CHANGE A lowercase LETTER IN A WORD TO UPPERCASE OR CHANGE
AN UPPERCASE WORD TO lowercase, YOU CHANGE THE WORD’S MEANING
AND CAN EVEN MAKE THE WORD MEANINGLESS. iN THE FIRST LINE OF lIST-
ING 5-1, FOR EXAMPLE, IF YOU TRIED TO REPLACE class WITH Class, THE
WHOLE PROGRAM WOULD STOP WORKING.

The same holds true, to some extent, for the name of a file containing
a particular class. For example, the name of the class in Listing 5-1 is
MyFirstJavaClass, with 4 uppercase letters and 12 lowercase letters. So
the code in the listing belongs in a file named MyFirstJavaClass.java,
with exactly 4 uppercase letters and 12 lowercase letters in front of .java.

The names of classes
I’m known by several different names. My first name, used for informal
conversation, is Barry. A longer name, used on this book’s cover, is Barry
Burd. The legal name that I use on tax forms is Barry A. Burd, and my passport
(the most official document I own) sports the name Barry Abram Burd.

In the same way, elements in a Java program have several different
names. For example, the class that’s created in Listing 5-1 has the name
MyFirstJavaClass. This is the class’s simple name because, well, it’s
simple and it’s a name.

114 Part II: Writing Your Own Java Programs

Words, words, words
The Java language uses two kinds of words: keywords and identifiers. You can tell which words
are keywords because Java has only 50 of them. Here’s the complete list:

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

As a rule, a keyword is a word whose meaning never changes (from one Java program to another).
For example, in English, you can’t change the meaning of the word if. It doesn’t make sense to
say, “I think that I shall never if / A poem lovely as a riff.” The same concept holds true in a Java
program: You can type if (x > 5) to mean “If x is greater than 5,” but when you type if (x
> if), the computer complains that the code doesn’t make sense.

In Listing 5-1, the words package, public, class, static, and void are keywords. Almost
every other word in that listing is an identifier, which is generally a name for something. The iden-
tifiers in the listing include the package name org.allyourcode.myfirstproject, the
class name MyFirstJavaClass, and a bunch of other words.

In programming lingo, words such as Wednesday, Barry, and university in the following sentence
are identifiers, and the other words (If, it’s, is, and at) are keywords:

 If it’s Wednesday, Barry is at the university.

(I’m undecided about the role of the word the. You can worry about it if you want.)

As in English and most other spoken languages, the names of items are reusable. For example,
a recent web search turns up four people in the United States named Barry Burd (with the same
uncommon spelling). You can even reuse well-known names. (A fellow student at Temple University
had the name John Wayne, and in the 1980s two different textbooks were named Pascalgorithms.)
The Android API has a prewritten class named Activity, but that doesn’t stop you from defining
another meaning for the name Activity.

Of course, having duplicate names can lead to trouble, so intentionally reusing a well-known name
is generally a bad idea. (If you create your own thing named Activity, you’ll find it difficult to
refer to the prewritten Activity class in Android. As for my fellow Temple University student,
everyone laughed when the teacher called roll.)

115 Chapter 5: An Ode to Code

Listing 5-1 begins with the line package org.allyourcode.myfirst
project. The first line is a package declaration. Because of this declaration,
the newly created MyFirstJavaClass is inside a package named org.
allyourcode.myfirstproject. So org.allyourcode.myfirst
project.MyFirstJavaClass is the class’s fully qualified name.

If you’re sitting with me in my living room, you probably call me Barry. But
if you’ve never met me and you’re looking for me in a crowd of a thousand
people, you probably call out the name Barry Burd. In the same way, the
choice between a class’s simple name and its fully qualified name depends
on the context. For more information, see the later section “An import
declaration.”

Why Java methods are like
meals at a restaurant
I’m a fly on the wall at Mom’s Restaurant in a small town along Interstate 80.
I see everything that goes on at Mom’s: Mom toils year after year, fighting
against the influx of high-volume, low-quality restaurant chains while the
old-timers remain faithful to Mom’s menu.

I see you walking into Mom’s. Look — you’re handing Mom a job application.
You’re probably a decent cook. If you get the job, you’ll get carefully typed
copies of every one of the restaurant’s recipes. Here’s one:

Scrambled eggs (serves 2)

5 large eggs, beaten
1⁄4 cup 2% milk

1 cup shredded mozzarella

Salt and pepper to taste

A pinch of garlic powder

In a medium bowl, combine eggs and milk. Whisk until the mixture is smooth,
and pour into preheated frying pan. Cook on medium heat, stirring the
mixture frequently with a spatula. Cook for 2 to 3 minutes or until eggs are
about halfway cooked. Add salt, pepper, and garlic powder. Add cheese a
little at a time, and continue stirring. Cook for another 2 to 3 minutes. Serve.

Before your first day at work, Mom sends you home to study her recipes. But
she sternly warns you not to practice cooking. “Save all your energy for your
first day,” she says.

116 Part II: Writing Your Own Java Programs

On your first day, you don an apron. Mom rotates the sign on the front door
so that the word Open faces the street. You sit quietly by the stove, tapping
four fingers in round-robin fashion. Mom sits by the cash register, trying to
look nonchalant. (After 25 years in business, she still worries that the
morning regulars won’t show up.)

At last! Here comes Joe the barber. Joe orders the breakfast special with two
scrambled eggs.

What does Mom’s Restaurant
have to do with Java?
When you drill down inside the code of a Java class, you find these two
important elements:

 ✓ Method declaration: The “recipe”

 “If anyone ever asks, here’s how to make scrambled eggs.”

 ✓ Method call: The “customer’s order”

 Joe says, “I’ll have the breakfast special with two scrambled eggs.” It’s
time for you to follow the recipe.

 Almost every computer programming language has elements akin to Java’s
methods. If you’ve worked with other languages, you may recall terms like
subprogram, procedure, function, subroutine, subprocedure, or PERFORM statement.
Whatever you call a method in your favorite programming language, it’s a
bunch of instructions, collected in one place and waiting to be executed.

Method declaration
A method declaration is a plan describing the steps that Java will take if and
when the method is called into action. A method call is one of those calls to
action. As a Java developer, you write both method declarations and method
calls. Figure 5-5 shows you the method declaration and the method call from
Listing 5-1.

 If I’m being lazy, I refer to the code in the outer box in Figure 5-5 as a method.
If I’m not being lazy, I refer to it as a method declaration.

A method declaration is a list of instructions: “Do this, then do that, and then
do this other thing.” The declaration in Listing 5-1 (and in Figure 5-5) contains
a single instruction.

To top it all off, each method has a name. In Listing 5-1, the method
declaration’s name is main. The other words — such as public, static,
and void — aren’t parts of the method declaration’s name.

117 Chapter 5: An Ode to Code

Figure 5-5:
A method

declaration
and a

method call.

 The words public, static, and void are modifiers (similar to adjectives, in
the English language). For more information about modifiers, see Chapters 9
and 10.

A method declaration has two parts: the method header (the first line) and
the method body (the rest of it, which is the part surrounded by {} — curly
braces), as shown in Figure 5-6.

Method call
A method call includes the name of the method being called, followed by
some text in parentheses. So the code in Listing 5-1 contains a single method
call:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”)

In this code, javax.swing.JOptionPane.showMessageDialog is the
name of a method, and null, “Hello” is the text in parentheses.

A Java instruction typically ends with a semicolon, so the following is a
complete Java instruction:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

118 Part II: Writing Your Own Java Programs

Figure 5-6:
A method

header and
a method

body.

This instruction tells the computer to execute whatever statements are
inside the javax.swing.JOptionPane.showMessageDialog method
declaration.

 Another term for Java instruction is Java statement, or just statement.

The names of methods
Like many elements in Java, a method has several names, ranging from the
shortest name to the longest name and with names in the middle. For
example, the code in Listing 5-1 calls a method whose simple name is
showMessageDialog.

In Java, each method lives inside a class, and showMessageDialog
lives inside the API’s JOptionPane class. So a longer name for the
showMessageDialog method is JOptionPane.showMessageDialog.

A package in Java is a collection of classes. The JOptionPane class is part
of an API package named javax.swing. So the showMessageDialog
method’s fully qualified name is javax.swing.JOptionPane.show
MessageDialog. Which version of a method’s name you use in the code
depends on the context.

 For more info on choosing between simple names and fully qualified names,
see Chapter 9.

119 Chapter 5: An Ode to Code

 In Java, a package contains classes, and a class contains methods. (A class
might contain other elements, too, but I tell you that story in Chapters 9 and
11.) A class’s fully qualified name includes a package name, followed by the
class’s simple name. A method’s fully qualified name includes a package name,
followed by a class’s simple name, followed by the method’s simple name. To
separate one part of a name from another, you use a period (or “dot”).

Method parameters
In Listing 5-1, this call displays a dialog box:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

The dialog box has the word Message in its title bar and an i icon on its face.
(The letter i stands for information.) Why do you see the Message title and
the i icon? For a clue, notice the method call’s two parameters: null and
“Hello”.

The effect of the values null and “Hello” depends entirely on the instructions
inside the showMessageDialog method’s declaration. You can read these
instructions, if you want, because the entire Java API code is available for
viewing — but you probably don’t want to read the 2,600 lines of Java code in
the JOptionPane class. (I’m sure you’d rather read the CliffsNotes version.)

Here’s a brief description of the effect of the values null and “Hello” in the
showMessageDialog call’s parameter list:

 ✓ In Java, the value null stands for “nothing.”

 In particular, the first parameter null in a call to showMessageDialog
indicates that the dialog box doesn’t initially appear inside any other
window. That is, the dialog box can appear anywhere on the computer
screen. (The dialog box appears inside of “nothing” in particular on the
screen.)

 ✓ In Java, double quotation marks denote a string of characters.

 The second “Hello” parameter tells the showMessageDialog method
to display the characters Hello on the face of the dialog box.

 Even without my description of the showMessageDialog method’s parameters,
you can avoid reading the 2,600 lines of Java API code. Instead, you can
examine the indispensable Java documentation pages. You can find these
documentation pages by visiting

www.oracle.com/technetwork/java/javase/documentation

http://www.oracle.com/technetwork/java/javase/documentation

120 Part II: Writing Your Own Java Programs

The main method in a
standard Java program
Figure 5-7 shows a copy of the code from Listing 5-1 with arrows indicating
what happens when the computer runs the code. The bulk of the code
contains the declaration of a method named main.

Like any Java method, the main method is a recipe:

How to make scrambled eggs:
 Combine eggs and milk
 Whisk until smooth
 Pour into preheated frying pan
 Cook for 2 to 3 minutes while stirring the mixture
 Add salt, pepper, and garlic powder
 Add cheese a little at a time
 Cook for another 2 to 3 minutes

or

How to follow the main instructions for MyFirstJavaClass:
 Display “Hello” in a dialog box on the screen.

Figure 5-7:
It all starts

with the
main

method.

121 Chapter 5: An Ode to Code

The word main plays a special role in Java. In particular, you never write
code that explicitly calls a main method into action. The word main is the
name of the method that’s called into action when the program begins
running.

When the MyFirstJavaClass program runs, the computer automatically
finds the program’s main method and executes any instructions inside the
method’s body. In the MyFirstJavaClass program, the main method’s
body has only one instruction. That instruction tells the computer to display
Hello in a dialog box on the screen. So in Figure 5-1, Hello appears on the
computer screen.

 None of the instructions in a method is executed until the method is called
into action. But if you give a method the name main, that method is called into
action automatically.

Punctuating your code
In English, punctuation is vital. If you don’t believe me, ask this book’s copy
editor, who suffered through my rampant abuse of commas and semicolons
in the preparation of this manuscript. My apologies to her — I’ll try harder in
the next edition.

Anyway, punctuation is also important in a Java program. This list lays out a
few of Java’s punctuation rules:

 ✓ Enclose a class body in a pair of curly braces.

 In Listing 5-1, the MyFirstJavaClass body is enclosed in curly braces.

 The placement of a curly brace (at the end of a line, at the start of a
line, or on a line of its own) is unimportant. The only important aspect
of placement is consistency. The consistent placement of curly braces
throughout the code makes the code easier for you to understand. And
when you understand your own code, you write far better code. When
you compose a program, Eclipse can automatically rearrange the code
so that the placement of curly braces (and other program elements)
is consistent. To make it happen, click the mouse anywhere inside the
editor and choose Source➪Format.

 ✓ Enclose a method body in a pair of curly braces.

 In Listing 5-1, the main method’s body is enclosed in curly braces.

 ✓ A Java statement ends with a semicolon.

122 Part II: Writing Your Own Java Programs

 For example, in Listing 5-1, the call to the showMessageDialog method
ends with a semicolon.

 ✓ A declaration ends with a semicolon.

 Again in Listing 5-1, the first line of code (containing the package
declaration) ends with a semicolon.

 ✓ In spite of the previous two rules, don’t place a semicolon immediately
after a closing curly brace (}).

 Listing 5-1 ends with two closing curly braces, and neither of these
braces is followed by a semicolon.

 ✓ Use parentheses to enclose a method’s parameters, and use commas to
separate the parameters.

 In Listing 5-1 (where else?) the call to the showMessageDialog method
has two parameters: null and “Hello”. The declaration of the main
method has only one parameter: args.

 In the main method’s parameter list, the String[] thing isn’t a separate
parameter. Instead, String[] is the args parameter’s type. For more
information about types, see Chapters 6, 9 and 12.

 ✓ Use double quotation marks (“”) to denote strings of characters.

 In Listing 5-1, the “Hello” parameter tells the showMessageDialog
method to display the characters Hello on the face of the dialog box.

 ✓ Use dots to separate the parts of a qualified name.

 In the Java API, the javax.swing package contains the JOptionPane
class, which in turn contains the showMessageDialog method. So
javax.swing.JOptionPane.showMessageDialog is the method’s
fully qualified name.

 ✓ Use dots within a package name.

 The dots in a package name are a bit misleading. A package name hints
at uses for the code inside the package. But a package name doesn’t
classify packages into subpackages and sub-subpackages.

 For example, the Java API has the packages javax.swing, javax.
security.auth, javax.security.auth.login, and many others.
The word javax alone means nothing, and the javax.security.auth.
login package isn’t inside of the javax.security.auth package.

 The most blatant consequence of a package name’s dots is to determine
a file’s location on the hard drive. For example, because of its package
name, the code in Listing 5-1 must be in a folder named myfirst
project, which must be in a folder named allyourcode, which in turn
must be in a folder named org, as shown in Figure 5-8.

123 Chapter 5: An Ode to Code

Figure 5-8:
The folders

containing a
Java

program.

Comments are your friends
Listing 5-2 has an enhanced version of the code in Listing 5-1. In addition
to all the keywords, identifiers, and punctuation, Listing 5-2 has text that’s
meant for human beings (like you and me) to read.

Listing 5-2: Three Kinds of Comments
/*
 * Listing 5-2 in
 * “Java For Android Developers For Dummies”
 *
 * Copyright 2013 Wiley Publishing, Inc.
 * All rights reserved.
] */

package org.allyourcode.myfirstproject;

/**
 * MyFirstJavaClass displays a dialog box
 * on the computer screen.
 *
 * @author Barry Burd
 * @version 1.0 02/02/13
 * @see java.swing.JOptionPane
 */
public class MyFirstJavaClass {

 /**
 * The starting point of execution.
 *
 * @param args
 * (Not used.)
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”); //null?
 }

}

124 Part II: Writing Your Own Java Programs

A comment is a special section of text inside a program whose purpose is to
help people understand the program. A comment is part of a good program’s
documentation.

The Java programming language has three kinds of comments:

 ✓ Traditional comments: The first seven lines in Listing 3-6 (over in
Chapter 3) form one traditional comment. The comment begins with /*
and ends with */. Everything between the opening /* and the closing
*/ is for human eyes only. No information about “Java For Android
Developers For Dummies” or Wiley Publishing, Inc. is
translated by the compiler.

 To read about compilers, see Chapter 1.

 Lines 2–6 in Listing 5-2 have extra asterisks (*). I call them extra because
these asterisks aren’t required when you create a comment. They only
make the comment look pretty. I include them in the listing because, for
some reason that I don’t entirely understand, most Java programmers
insist on adding these extra asterisks.

 ✓ End-of-line comments: The text //null? in Listing 5-2 is an end-of-line
comment — it starts with two slashes and goes to the end of a line of
type. Once again, the compiler doesn’t translate the text inside an
end-of-line comment.

 ✓ Javadoc comments: A javadoc comment begins with a slash and two
asterisks (/**). Listing 5-2 has two javadoc comments — one with the
text MyFirstJavaClass displays a dialog box . . . and
another with the text The starting point. . . .

 A javadoc comment is a special kind of traditional comment: It’s meant
to be read by people who never even look at the Java code.

 Wait — that doesn’t make sense. How can you see the javadoc comments
in Listing 5-2 if you never look at the listing?

 Well, with a few points and clicks, you can find all the javadoc comments
in Listing 5-2 and turn them into a nice-looking web page, as shown in
Figure 5-9.

To make documentation pages for your own code, follow these steps:

 1. Put Javadoc comments in your code.

 2. From the main menu in Eclipse, choose Project➪Generate Javadoc.

 As a result, the Javadoc Generation dialog box appears.

 3. In the Javadoc Generation dialog box, select the Eclipse project whose
code you want to document.

125 Chapter 5: An Ode to Code

Figure 5-9:
Javadoc

comments,
generated

from the
code in

Listing 5-2.

 4. Still in the Javadoc Generation dialog box, notice the name of the
folder in the Destination field.

 The computer puts the newly created documentation pages in that
folder. If you prefer a different folder, you can change the folder name in
this Destination field.

 5. Click Finish.

 As a result, the computer creates the documentation pages.

126 Part II: Writing Your Own Java Programs

If you visit the Destination folder and double-click the new index.html file’s
icon, you see your beautiful (and informative) documentation pages.

 You can find the documentation pages for Java’s built-in API classes by
visiting www.oracle.com/technetwork/java/javase/documentation.
Java’s API contains thousands of classes, so don’t memorize the names of the
classes and their methods. Instead, you simply visit these online documentation
pages.

What’s Barry’s excuse?
For years, I’ve been telling my students to put all kinds of comments in their
code, and for years, I’ve been creating sample code (such as the code in
Listing 5-1) containing few comments. Why?

Three little words: “Know your audience.” When you write complicated,
real-life code, your audience consists of other programmers, information
technology managers, and people who need help deciphering what you’ve
done. But when I write simple samples of code for this book, my audience is
you — the novice Java programmer. Rather than read my comments, your
best strategy is to stare at my Java statements — the statements that Java’s
compiler deciphers. That’s why I put so few comments in this book’s listings.

Besides, I’m a little lazy.

Another One-Line Method
Listing 5-3 contains another Hello World program. In fact, the code in Listing
5-3 is a bit simpler than the program in Listing 5-1.

Listing 5-3: A Console-Based Hello World Program
package com.allmycode.hello;

public class HelloText {

 public static void main(String[] args) {
 System.out.println(“Hello”);
 }

}

In Listing 5-3, the method call System.out.println(“Hello”) sends
text to the Console view in Eclipse, as shown in Figure 5-10. Sending text to
the Console is dull, dull, dull. But when you’re writing code, a new program

http://www.oracle.com/technetwork/java/javase/documentation

127 Chapter 5: An Ode to Code

often doesn’t do what you think it should do. And adding a quick System.
out.println call to the program helps you understand how the program
behaves behind the scenes.

Figure 5-10:
The Console

view in
Eclipse.

 For concrete examples in which I use System.out.println to diagnose a
program’s behavior, see Chapter 13.

More Java Methods
To move beyond the rock-bottom simplicity of Listings 5-1 and 5-3, the code
in Listing 5-4 mixes a few method declarations and a few method calls.

Listing 5-4: A Goodbye World Program
package com.allmycode.games;

import javax.swing.JOptionPane;

public class CountLives {

 public static void main(String[] args) {
 countdown();
 }

 static void countdown() {
 JOptionPane.showMessageDialog(null,
 “You have 2 more lives.”, “The Game”,
 JOptionPane.INFORMATION_MESSAGE);
 JOptionPane.showMessageDialog(null,
 „You have 1 more life.“, „The Game“,
 JOptionPane.WARNING_MESSAGE);
 JOptionPane.showMessageDialog(null,
 „You have no more lives.“, „The Game“,
 JOptionPane.ERROR_MESSAGE);
 }

}

128 Part II: Writing Your Own Java Programs

Figures 5-11, 5-12, and 5-13 show a complete run of the code shown in
Listing 5-4.]

Figure 5-11:
The

INFORMATION
_MESSAGE

from the
first show
Message

Dialog call.

Figure 5-12:
The

WARNING_
MESSAGE

from the
second

show
Message

Dialog call.

Figure 5-13:
The ERROR_

MESSAGE
from the

third show
Message

Dialog call.

Figure 5-14 gives a more schematic overview of what happens when the
computer runs the code shown in Listing 5-4. The main method calls the
countdown method, which in turn calls Java’s showMessageDialog method
three times.

129 Chapter 5: An Ode to Code

Using an import declaration
Compare the showMessageDialog calls in Listings 5-1 and 5-4. In Listing 5-1,
you use the fully qualified name javax.swing.JOptionPane.showMessage
Dialog, but in Listing 5-4, you use the simpler name JOptionPane.
showMessageDialog. What’s this all about?

The answer is near the top of Listing 5-4. In that listing, you see the line

import javax.swing.JOptionPane;

This line, which announces that you intend to use the short name
JOptionPane later in the listing’s code, clarifies what you mean by
JOptionPane. (You mean javax.swing.JOptionPane.) After having
announced your intention in this import declaration, you can use the short
name JOptionPane in the rest of the CountLives class code.

Figure 5-14:
Going with

the flow.

If you don’t insert an import declaration at the top of the Java code file, you
have to repeat the full javax.swing.JOptionPane name wherever you use
the name JOptionPane in your code. (Refer to Listing 5-1.)

130 Part II: Writing Your Own Java Programs

 The details of this import business can be nasty, but (fortunately) many IDEs
have features to help you write import declarations. For example, in Eclipse,
you can avoid typing import declarations. You can quickly compose code
using the shorter JOptionPane.showMessageDialog name. Then from the
main menu in Eclipse, choose Source➪Organize Imports. When you do this,
Eclipse adds the missing import declarations on your behalf.

More method parameters
Compare the showMessageDialog calls in Listings 5-1 and 5-4. The call in
Listing 5-1 has two parameters, but each call in Listing 5-4 has four param-
eters. This is okay because the Java API contains at least two different
showMessageDialog declarations — one with two parameters:

public static void showMessageDialog
 (Component parentComponent, Object message) {
// . . . etc.

And another with four parameters:

public static void showMessageDialog
 (Component parentComponent, Object message,
 String title, int messageType) {
// . . . etc.

This example demonstrates method overloading. The Java API overloads
the method name showMessageDialog by creating two (or more) ways to
call showMessageDialog. A call with two parameters refers to one method
declaration, and a call with four parameters refers to another declaration,
as shown in Figure 5-15. The computer decides which method declaration to
invoke by counting the parameters in the method call (and by checking other
elements, as described in Chapter 7).

Here’s what happens in the four-parameter version of showMessageDialog:

 ✓ If the first parameter is null, the dialog box doesn’t initially appear
inside any other window.

 This parameter serves the same purpose as the first parameter in the
two-parameter showMessageDialog method.

 ✓ The second parameter tells the showMessageDialog method which
characters to display on the face of the dialog box.

 This parameter serves the same purpose as the second parameter in the
two-parameter showMessageDialog method.

131 Chapter 5: An Ode to Code

Figure 5-15:
Parameters

in the call
match up

with param-
eters in the

declaration.

 ✓ The third parameter tells the showMessageDialog method which
characters to display on the title bar of the dialog box.

 In Listing 5-4 (and back in Figures 5-11, 5-12, and 5-13), the title bar in
every dialog box contains the words The Game.

 ✓ The fourth parameter tells the showMessageDialog which icon to
display on the face of the dialog box.

 Figures 5-11, 5-12, and 5-13 show three of the five icons that may appear
with a call to showMessageDialog. The remaining two possibilities
are the question-mark icon (with the JOptionPane.QUESTION_
MESSAGE parameter) and no icon (with the JOptionPane.
PLAIN_MESSAGE parameter).

 The showMessageDialog method calls in Listing 5-4 illustrate a point from
the “R.java and the legend of the two vaudevillians” sidebar in Chapter 4,
where the words View.VISIBLE, View.INVISIBLE, and View.GONE stand
for the numbers 0, 4, and 8, respectively. Android uses these three numbers
to represent different levels of screen visibility. In the same way, the names
JOptionPane.ERROR_MESSAGE, JOptionPane.INFORMATION_MESSAGE,
and JOptionPane.WARNING_MESSAGE stand for the numbers 0, 1, and 2.
The statements inside the declaration of the showOptionPane message
respond to each of these numbers by displaying a different icon.

132 Part II: Writing Your Own Java Programs

Fewer method parameters
Another story about method parameters in Listing 5-4 begs to be told. In
Listing 5-4 I call a method named countdown, and in the same class I declare
my new countdown method.

 When you call a method that’s declared in the same class, you can use the
method’s simple name. It’s the same way in real life. No one in my family calls
me Barry Burd at home (unless they’re really angry with me).

You may remember how the computer counts a method call’s parameters
and matches this with the number of parameters in the method’s declaration.
In Listing 5-4, the countdown call has no parameters (only an empty pair of
parentheses) and the countdown method’s declaration has the same number
of parameters; namely, none. So the call and the declaration are compatible,
and the computer executes the declaration’s instructions.

 To declare (or to call) a method with no parameters, use an empty pair of
parentheses.

Hello, Android
An Android project’s src directory contains your project’s Java source
code. Files in this directory have names such as MainActivity.java,
MyService.java, DatabaseHelper.java, and MoreStuff.java.

You can cram hundreds of Java files into an Android project’s src directory.
But when you create a new project, Eclipse typically creates just one file for
you. By default, Android creates a file named MainActivity.java. Listing
5-5 shows you the code in the MainActivity.java file.

Listing 5-5: Android Creates This Skeletal Activity Class
package com.allmycode.myfirstandroidapp;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

133 Chapter 5: An Ode to Code

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the
 // action bar if it is present.
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }

}

Where’s the main method?
To start the run of a standard Java program, the computer looks for a
method named main. But the code in Listing 5-5 has no main method. Okay,
I give up — how does a smartphone find the starting point of execution in an
Android app?

The answer involves an app’s XML code. You can build a standard Java
program with Java code alone, but an Android app needs additional code. For
one thing, every Android app needs its own AndroidManifest.xml file.

 Chapter 4 describes an AndroidManifest.xml file.

Listing 5-6 contains a snippet of code from an AndroidManifest.xml file.
(The code that I set in boldface is the most interesting code. The code that’s
not set in boldface isn’t uninteresting. It’s simply less interesting.)

Listing 5-6: The activity Element in an AndroidManifest.xml File
<activity
 android:name=
 “com.allmycode.myfirstandroidapp.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />

 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

And here’s what the code in Listing 5-6 “says” to your Android device:

 ✓ The code’s action element indicates that the program that’s set
forth in Listing 5-5 (the com.allmycode.myfirstandroidapp.
MainActivity class) is MAIN.

134 Part II: Writing Your Own Java Programs

 That is, the program in Listing 5-5 is the starting point of an app’s
execution. In response to this, your Android device reaches back inside
the listing and executes the listing’s onCreate method, onCreate
OptionsMenu method, and several other methods that don’t appear
there.

 ✓ The code’s category element adds an icon to the device’s Application
Launcher screen.

 On most Android devices, the user sees the Home screen. Then, by
touching one element or another on the Home screen, the user gets to
see the Launcher screen, which contains several apps’ icons. By scrolling
this screen, the user can find an appropriate app’s icon. When the user
taps the icon, the app starts running.

 In Listing 5-6, the category element’s LAUNCHER value makes an icon for
running com.allmycode.myfirstandroidapp.MainActivity (the
Java program in Listing 5-5) available on the device’s Launcher screen.

So there you have it. With the proper secret sauce (namely, the action and
category elements in the AndroidManifest.xml file), an Android program’s
onCreate and onCreateOptionsMenu methods become the program’s
starting points of execution.

Extending a class
In Listing 5-5, the words extends and @Override tell an important story —
a story that applies to all Java programs, not only to Android apps. The
words extends and @Override tell the story of a class in the Android API.
The API’s android.app.Activity class forms the basis of all Android
applications.

In Android developer lingo, an activity is one “screenful” of components. Each
Android application can contain many activities. For example, an app’s initial
activity might list the films playing in your neighborhood. When you click a
film’s title, Android covers the entire list activity with another activity (perhaps
an activity displaying a relevant film review).

When you extend the android.app.Activity class, you create a new
kind of Android activity. In Listing 5-5, the words extends Activity tells
the computer that a MainActivity is, in fact, an example of an Android
Activity. That’s good because the folks at Google have already written
more than 5,000 lines of Java code to describe what an Android Activity
can do. Being an example of an Activity in Android means that you can
take advantage of all its prewritten code.

 When you extend an existing Java class (such as the Activity class), you
create a new class with the existing class’s functionality. For details of this
important concept, see Chapter 10.

135 Chapter 5: An Ode to Code

Overriding methods
In Listing 5-5, a MainActivity is a kind of Android Activity. So a
MainActivity is automatically a screenful of components with lots and lots
of handy, prewritten code.

Of course, in some apps, you might not want all that prewritten code. After
all, being a Republican or a Democrat doesn’t mean believing everything in
your party’s platform. You can start by borrowing most of the platform’s
principles but then pick and choose among the remaining principles. In the
same way, the code in Listing 5-5 declares itself to be an Android Activity,
but then overrides two of the Activity class’s existing methods.

In Listing 5-5, the word @Override indicates that the listing doesn’t use the
API’s prewritten onCreate and onCreateOptionsMenu methods. Instead,
the new MainActivity contains declarations for its own onCreate and
onCreateOptionsMenu methods, as shown in Figure 5-16.

Figure 5-16:
I don’t

like the
prewritten

onCreate
and

OnCreate
Options

Menu
methods.

In particular, Listing 5-5’s onCreate method calls setContentView(R.
layout.activity_main), which displays the material described in the
res/layout/activity_main.xml file (the buttons and the text fields, for
example) on the screen.

 For an introduction to the res/layout/activity_main.xml file, see
Chapter 4.

136 Part II: Writing Your Own Java Programs

The other method in Listing 5-5 (the onCreateOptionsMenu method) does
a similar trick with the res/menu/activity_main.xml file to display items
on the app’s Action bar.

An activity’s workhorse methods
Every Android activity has a lifecycle — a set of stages that the activity
undergoes from birth to death to rebirth, and so on. In particular, when your
phone launches an activity, the phone calls the activity’s onCreate method.
The phone also calls the activity’s onStart and onResume methods.

In Listing 5-5, I choose to declare my own onCreate method, but I don’t
bother declaring my own onStart and onResume methods. Rather than
override the onStart and onResume methods, I silently use the Activity
class’s prewritten onStart and onResume methods.

 To find out why you’d choose to override onResume, see Chapter 14.

When your phone ends an activity’s run, the phone calls three additional
methods: the activity’s onPause, onStop, and onDestroy methods. So one
complete sweep of your activity, from birth to death, involves the run of at
least six methods — onCreate, then onStart, and then onResume, and
later onPause, and then onStop, and, finally, onDestroy. As it is with all life
forms, “ashes to ashes, dust to dust.”

Don’t despair. For an Android activity, reincarnation is a common phenomenon.
For example, if you’re running several apps at a time, the phone might run
low on memory. In this case, Android can kill some running activities. As
the phone’s user, you have no idea that any activities have been destroyed.
When you navigate back to a killed activity, Android re-creates the activity
for you and you’re none the wiser.

Here’s another surprising fact. When you turn a phone from Portrait mode to
Landscape mode, the phone destroys the current activity (the activity that’s
in Portrait mode) and re-creates that activity in Landscape mode. The phone
calls all six of the activity’s lifecycle methods (onPause, onStop, and so on)
in order to turn the activity’s display sideways. It’s similar to starting on the
transporter deck of the Enterprise and being a different person after being
beamed down to the planet (except that you act like yourself and think like
yourself, so no one knows that you’re a completely different person).

Indeed, methods like onCreate and onCreateOptionsMenu in Listing 5-5
are the workhorses of Android development.

Chapter 6

Java’s Building Blocks
In This Chapter
▶ Assigning values to things
▶ Making things store certain types of values
▶ Applying operators to get new values

I
’ve driven cars in many cities, and I’m ready to present my candid
reviews:

 ✓ Driving in New York City is a one-sided endeavor. A New York City driver
avoids hitting another car but doesn’t avoid being hit by another car.
In the same way, New York pedestrians do nothing to avoid being hit.
Racing into the path of an oncoming vehicle is commonplace. Anyone
who doesn’t behave this way is either a New Jersey driver or a tourist
from the Midwest. In New York City, safety depends entirely on the car
that’s moving toward a potential target.

 ✓ A driver in certain parts of California will stop on a dime for a pedestrian
who’s about to jaywalk. Some drivers stop even before the pedestrian is
aware of any intention to jaywalk.

 ✓ Boston’s streets are curvy and irregular, and accurate street signs are
rare. Road maps are outdated because of construction and other
contingencies. So driving in Boston is highly problematic. You can’t
find your way around Boston unless you already know your way around
Boston, and you don’t know your way around Boston unless you’ve
already driven around Boston. Needless to say, I can’t drive in Boston.

 ✓ London is quite crowded, but the drivers are polite (to foreigners, at
least). Several years ago, I caused three car accidents in one week on the
streets of London. And after each accident, the driver of the other car
apologized to me!

I was particularly touched when a London cabby expressed regret that an
accident (admittedly, my fault) might stain his driving record. Apparently,
the rules for London cabbies are quite strict.

138 Part II: Writing Your Own Java Programs

This brings me to the subject of the level of training required to drive a
taxicab in London. The cabbies start their careers by memorizing the London
street map. The map has over 25,000 streets, and the layout has no built-in
clues. Rectangular grids aren’t the norm, and numbered streets are quite
uncommon. Learning all the street names takes several years, and the cabbies
must pass a test in order to become certified drivers.

This incredibly circuitous discussion about drivers, streets, and my tendency
to cause accidents leads me to the major point of this section: Java’s built-in
types are easy to learn. In contrast to London’s 25,000 streets, and the
periodic table’s 100-some elements, Java has only eight built-in types. They’re
Java’s primitive types, and this chapter describes them all.

Info Is as Info Does
“Reality! To Sancho, an inn; to Don Quixote, a castle; to someone else,
whatever!”

—Miguel de Cervantes, as updated for “Man of La Mancha”

When you think a computer is storing the letter J, the computer is, in reality,
storing 01001010. For the letter K, the computer stores 01001011. Everything
inside the computer is a sequence of 0s and 1s. As every computer geek
knows, a 0 or 1 is a bit.

As it turns out, the sequence 01001010, which stands for the letter J,
can also stand for the number 74. The same sequence can also stand for
1.0369608636003646 × 10–43. In fact, if the bits are interpreted as screen pixels,
the same sequence can be used to represent the dots shown in Figure 6-1.
The meaning of 01001010 depends on the way the software interprets this
sequence of 0s and 1s.

Figure 6-1:
An extreme
close-up of
eight black-

and-white
screen
pixels.

139 Chapter 6: Java’s Building Blocks

So how do you tell the computer what 01001010 stands for? The answer is in
the concept of type.

The type of a variable is the range of values that the variable is permitted to
store. Listing 6-1 illustrates this idea.

Listing 6-1: Goofing Around with Java Types
package com.allmycode.demos;

import javax.swing.JOptionPane;

public class TypeDemo1 {

 public static void main(String[] args) {
 int anInteger = 74;
 char aCharacter = 74;
 JOptionPane.showMessageDialog(null, anInteger,
 “An int variable”, JOptionPane.PLAIN_MESSAGE);
 JOptionPane.showMessageDialog(null, aCharacter,
 “A char variable”, JOptionPane.PLAIN_MESSAGE);
 }

}

A run of the code in Listing 6-1 looks like the displays in Figures 6-2 and 6-3.

Figure 6-2:
Displaying

01001010
as an int

value.

Figure 6-3:
Displaying

01001010
as a char

value.

140 Part II: Writing Your Own Java Programs

In Figure 6-2, the computer interprets 01001010 as a whole number. But in
Figure 6-3, the computer interprets the same 01001010 bits as the representa-
tion of the character J. The difference stems from the two type declarations at
the start of the main method in Listing 6-1:

 int anInteger = 74;
 char aCharacter = 74;

Each of these declarations consists of three parts: a variable name, a type
name, and an initialization. The next few sections describe these parts.

Variable names
The identifiers anInteger and aCharacter in Listing 6-1 are variable
names, or simply variables. A variable name is a nickname for a value (like
the value 74).

I made up both variable names for the example in Listing 6-1, and I intentionally
made up informative variable names. Instead of anInteger and aCharacter
in Listing 6-1, I could have chosen flower and goose. But I use anInteger
and aCharacter because informative names help other people read and
understand my code. (In fact, informative names help me read and understand
my own code!)

Like most of the names in a Java program, variable names can’t have blank
spaces. The only allowable punctuation symbol is the underscore character
(_). Finally, you can’t start a variable’s name with a digit. For example, you
can name your variable close2Call, but you can’t name it 2Close2Call.

 If you want to look like a seasoned Java programmer, start every variable
name with a lowercase letter, and use uppercase letters to separate words
within the name. For example, numberOfBunnies starts with a lowercase
letter and separates words by using the uppercase letters O and B. This mixing
of upper- and lowercase letters is called camel case because of its resemblance
to a camel’s humps.

Type names
In Listing 6-1, the words int and char are type names. The word int (in the
first type declaration) tells the computer to interpret whatever value an
Integer has as a “whole number” value (a value with no digits to the right of
the decimal point). And the word char (in the second type declaration) tells
the computer to interpret whatever value aCharacter has as a

141 Chapter 6: Java’s Building Blocks

character value (a letter, a punctuation symbol, or maybe even a single digit).
So in Listing 6-1, in the first call to showMessageDialog, when I display
the value of anInteger, the computer displays the number 74. And in the
second call to showMessageDialog, when I display the value of aCharacter,
the computer displays the letter J.

 In Listing 6-1, the words int and char tell the computer what types my
variable names have. The names anInteger and aCharacter remind me,
the programmer, what kinds of values these variables have, but the names
anInteger and aCharacter provide no type information to the computer.
The declarations int rocky = 74 and char bullwinkle = 74 would
be fine, as long as I used the variable names rocky and bullwinkle
consistently throughout Listing 6-1.

Assignments and initializations
Both type declarations in Listing 6-1 end with an initialization. As the name
suggests, an initialization sets a variable to its initial value. In both declarations, I
initialize the variable to the value 74.

You can create a type declaration without an initialization. For example, I
can change the code in Listing 6-1 so that the first four lines inside the main
method look like this:

int anInteger;
char aCharacter;
anInteger = 74;
aCharacter = 74;

A line like anInteger = 74 is an assignment. An assignment changes a
variable’s value. An assignment isn’t part of a type declaration. Instead, an
assignment is separate from its type declaration (maybe many lines after the
type declaration).

You can initialize a variable with one value and then, in an assignment
statement, change the variable’s value.

int year = 2008;
System.out.println(year);
System.out.println(“Global financial crisis”);
year = 2009;
System.out.println(year);
System.out.println(“Obama elected US president”);
year = 2010;
System.out.println(year);
System.out.println(“Oil spill in the Gulf of Mexico”);

142 Part II: Writing Your Own Java Programs

Sometimes, you need a name for a value that doesn’t change during the
program’s run. In such situations, the keyword final signals a variable
whose value can’t be reassigned.

final int NUMBER_OF_PLANETS = 9;

A final variable is a variable whose value doesn’t vary. (As far as I know, no
one’s ever seriously suggested calling these things invariables.)

You can initialize a final variable’s value, but after the initialization, you
can’t change the variable’s value with an assignment statement. In other
words, after you declare final int NUMBER_OF_PLANETS = 9, this
assignment statement isn’t legal:

NUMBER_OF_PLANETS = 8;

If Pluto is no longer a planet, you can’t accommodate the change without
changing the 9 in the final int NUMBER_OF_PLANETS = 9 declaration.

In Java, the word final is one of Java’s modifiers. A modifier is like an
adjective in English. A modifier causes a slight change in the meaning
of a declaration. For example, in this section, the word final modifies
the NUMBER_OF_PLANETS declaration, making the value of NUMBER_OF_
PLANETS unchangeable.

 For more information about Java’s modifiers, see Chapters 9 and 10.

As a rule, you use final variables to give friendly names to values that never
(or rarely) change. For example, in a Java program, 6.626068e-34 stands
for 6.626068 × 10–34, which is the same as this:

0.0000000000000000000000000000000006626068

In a quantum physics application, you probably don’t want to retype the
number 6.626068e-34 several times in your code. (You can type the
number wrong even when you copy-and-paste.) To keep errors from creeping
into your code, you declare

final double PLANCK_CONSTANT = 6.626068e-34;

From that point on, rather than typing 6.626068e-34 multiple times in your
code, you can type only the name PLANCK_CONSTANT when needed.

 You can use lowercase letters in any variable, including final variables. But
Java programmers seldom write code this way. To keep from looking like a
complete newbie, use only uppercase letters and digits in a final variable’s
name. Use underscores to separate words.

143 Chapter 6: Java’s Building Blocks

 A loophole in the Java language specification allows you, under certain
circumstances, to use an assignment statement to give a variable its initial
value. For a variable, such as amount, declared inside of a method, you can
write final int amount; on one line, and then amount = 0; on another
line. Want my advice? Ignore this loophole. Don’t even read this Technical
Stuff icon!

Expressions and literals
In a computer program, an expression is a bunch of text that has a value.
For example, in Listing 6-1, the number 74 and the words anInteger and
aCharacter both have values. If I use the name anInteger in ten different
places in my Java program, then I have ten expressions, and each expression
has a value. If I decide to type anInteger + 17 somewhere in my program,
then anInteger + 17 is an expression because anInteger + 17 has a
value. Listing 6-1 has a bunch of expressions other than the 74, anInteger
and aCharacter expressions, but I’ll let you fish for all the expressions on
your own.

A literal is a kind of expression whose value doesn’t change from one Java
program to another. For example, the expression 74 means “the numeric
value 74” in every Java program. Likewise, the expression ‘J’ means “the
tenth uppercase letter in the Roman alphabet” in every Java program, and
the word true means “the opposite of false” in every Java program. The
expressions true, 74, and ‘J’ are literals. Similarly, the text “An int
variable” in Listing 6-1 is a literal because, in any Java program, the text
“An int variable” stands for the same three words.

In Java, single quotation marks stand for a character. You can change the
second declaration in Listing 6-1 this way:

char aCharacter = ‘J’;

With this change, the program’s run doesn’t change. The dialog box shown in
Figure 6-3 still contains the letter J.

 In Java, a char value is a number in disguise. In Listing 6-1, you get the same
result if the second type declaration is char aCharacter = ‘J’. You
can even do arithmetic with char values. For example, in Listing 6-1, if you
change the second declaration to char aCharacter = ‘J’ + 2, you get
the letter L.

144 Part II: Writing Your Own Java Programs

The 01000001 01000010 01000011s
What does 01001010 have to do with the number
74 or with the letter J?

The answer for 74 involves the binary number
representation. The familiar base-10 (decimal)
system has a 1s column, a 10s column, a 100s
column, a 1000s column, and so on. But the
base-2 (binary) system has a 1s column, a 2s
column, a 4s column, an 8s column, and so on.
The figure shows how you get 74 from 01001010
using the binary column values.

The connection between 01001010 and the
letter J might seem more arbitrary. In the
early 1960s, a group of professionals devised
the American Standard Code for Information
Interchange (ASCII). In the ASCII representa-
tion, each character takes up 8 bits. You can
see the representations for some of the charac-
ters in the sidebar table. For example, our friend
01001010 (which, as a binary number, stands
for 74) is also the way the computer stores the
letter J. The decision to make A be 01000001
and to make J be 01001010 has roots in the
20th century’s typographic hardware. (The site
www.wps.com/J/codes has some nice tid-
bits about all this.)

In the late 1980s, as modern communications
led to increasing globalization, a group of

experts began work on an enhanced code with
up to 32 bits for each character. The lower eight
Unicode bits have the same meanings as in the
ASCII code, but with so many more bits, the
Unicode standard has room for languages other
than English. A Java char value is a 16-bit
Unicode number, which means that, depending
on the way you interpret it, a char is either a
number between 0 and 65535 or a character in
one of the many Unicode languages.

In fact, you can use non-English characters
for identifiers in a Java program. In the figure,
I use Eclipse to run a program with identifiers
and output in Yiddish. The words in a few of the
statements are out of order because I mix left-
to-right and right-to-left languages. But other-
wise, the stuff in the figure is a plain-old Java
program!

http://www.wps.com/J/codes

145 Chapter 6: Java’s Building Blocks

Bits When
Interpreted
As an int

When
Interpreted
As a char

Bits When
Interpreted
As an int

When
Interpreted
As a char

00100000 32 space 00111111 63 ?
00100001 33 ! 01000000 64 @
00100010 34 “ 01000001 65 A
00100011 35 # 01000010 66 B
00100100 36 $ 01000011 67 C
00100101 37 % . . .
00100110 38 & . . .
00100111 39 ‘ etc. etc. etc.
00101000 40 (01011000 88 X
00101001 41) 01011001 89 Y
00101010 42 * 01011010 90 Z
00101011 43 + 01011011 91 [
00101100 44 , 01011100 92 \
00101101 45 - 01011101 93]
00101110 46 . 01011110 94 ^
00101111 47 / 01011111 95 _
00110000 48 0 01100000 96 `
00110001 49 1 01100001 97 a
00110010 50 2 01100010 98 b
00110011 51 3 01100011 99 c
00110100 52 4 . . .
00110101 53 5 . . .
00110110 54 6 etc. etc. etc.
00110111 55 7 01111000 120 x
00111000 56 8 01111001 121 y
00111001 57 9 01111010 122 z
00111010 58 : 01111011 123 {
00111011 59 ; 01111100 124 |
00111100 60 < 01111101 125 }
00111101 61 = 01111110 126 ~
00111110 62 > 01111111 127 delete

146 Part II: Writing Your Own Java Programs

How to string characters together
In Java, a single character isn’t the same as a string of characters. Compare
the character ‘J’ with the string “An int variable” in Listing 6-1. A
character literal has single quotation marks; a string literal has double
quotation marks.

In Java, a string of characters may contain more than one character, but a
string of characters doesn’t necessarily contain more than one character.
(Surprise!) You can write

char aCharacter = ‘J’;

because a character literal has single quotation marks. And because String
is one of Java’s types, you can also write

String myFirstName = “Barry”;

initializing the String variable myFirstName with the String literal
“Barry”. Even though “A” contains only one letter, you can write

String myMiddleInitial = “A”;

because “A”, with its double quotation marks, is a String literal.

But in Java, a single character isn’t the same as a one-character string, so you
can’t write

//Don’t do this:
char theLastLetter = “Z”;

Even though it contains only one character, the expression “Z” is a String
value, so you can’t initialize a char variable with the expression “Z”.

Java’s primitive types
Java has two kinds of types: primitive and reference. Primitive types are the
atoms — the basic building blocks. In contrast, reference types are the things
you create by combining primitive types (and by combining other reference
types).

 This chapter covers (almost exclusively) Java’s primitive types. Chapter 9
introduces Java’s reference types.

147 Chapter 6: Java’s Building Blocks

 Throughout this chapter, I give some attention to Java’s String type. The
String type in reality belongs in Chapter 9 because Java’s String type is a
reference type, not a primitive type. But I can’t wait until Chapter 9 to use
strings of characters in my examples. So consider this chapter’s String
material to be an informal (but useful) preview of Java’s String type.

Table 6-1 describes all eight primitive Java types.

Table 6-1 Java’s Primitive Types
Type Name What a Literal Looks Like Range of Values
Integral types
byte (byte)42 –128 to 127
short (short)42 –32768 to 32767
int 42 –2147483648 to 2147483647
long 42L –9223372036854775808 to

9223372036854775807
Character type (which is, technically, an Integral type)
char ‘A’ Thousands of characters, glyphs,

and symbols
Floating-point types
float 42.0F –3.4 × 1038 to 3.4 × 1038

double 42.0 or

0.314159e1

–1.8 × 10308 to 1.8 × 10308

Logical type
boolean true true, false

You can divide Java’s primitive types into three categories:

 ✓ Integral

 The integral types represent whole numbers — numbers with no digits
to the right of the decimal point. For example, the number 42 in a Java
program represents the int value 42, as in 42 cents or 42 clowns or 42
eggs. A family can’t possibly have 2.5 children, so an int variable is a
good place to store the number of kids in a particular family.

 The thing that distinguishes one integral type from another is the range
of values you can represent with each type. For example, a variable of
type int represents a number from –2147483648 to +2147483647.

148 Part II: Writing Your Own Java Programs

 When you need a number with no digits to the right of the decimal point,
you can almost always use the int type. Java’s byte, short, and long
types are reserved for special range needs (and for finicky programmers).

 ✓ Floating-point

 The floating-point types represent numbers with digits to the right of
the decimal point, even if those digits are all zeros. For example, an old
wooden measuring stick might be 1.001 meters long, and a very precise
measuring stick might be 1.000 meters long.

 The thing that distinguishes the two floating-point types (double and
float) from one another is the range of values you can represent with
the types. The double type has a much larger range and is much more
accurate.

 In spite of their names, Java programmers almost always use double
rather than float, and when you write an ordinary literal (such as
42.0), that literal is a double value. (On the off chance that you want to
create a float value, write 42.0F.)

 ✓ Logical

 A boolean variable has one of two values: true or false. You can
assign 74 to an int variable, and you can assign true (for example) to a
boolean variable:
int numberOfPopsicles;
boolean areLemonFlavored;
numberOfPopsicles = 22;
areLemonFlavored = true;

 You can do arithmetic with numeric values, and you can do a kind of
“arithmetic” with boolean values. For more information, see the next
section.

Things You Can Do with Types
You can do arithmetic with Java’s operators. The most commonly used
arithmetic operators are + (addition), – (subtraction), * (multiplication), /
(division), and % (remainder upon division).

 ✓ When you use an arithmetic operator to combine two int values, the
result is another int value.

 For example, the value of 4 + 15 is 19. The value of 14 / 5 is 2
(because 5 “goes into” 14 two times, and even though the remainder
is bigger than 1⁄2, the remainder is omitted). The value of 14 % 5 is 4
(because 14 divided by 5 leaves a remainder of 4).

149 Chapter 6: Java’s Building Blocks

 The same kinds of rules apply to the other integral types. For example,
when you add a long value to a long value, you get another long
value.

 ✓ When you use an arithmetic operator to combine two double values,
the result is another double value.

 For example, the value of 4.0 + 15.0 is 19.0. The value of 14.0 / 5.0
is 2.8.

 The same kind of rule applies to float values. For example, a float
value plus a float value is another float value.

 ✓ When you use an arithmetic operator to combine an int value with a
double value, the result is another double value.

 Java widens the int value in order to combine it with the double value.
For example, 4 + 15.0 is the same as 4.0 + 15.0, which is 19.0. And
14 / 5.0 is the same as 14.0 / 5.0, which is 2.8.

 This widening also happens when you combine two different kinds of
integral values or two different kinds of floating-point values. For example,
the number 9000000000000000000 is too large to be an int value, so
9000000000000000000L + 1

 is the same as
9000000000000000000L + 1L

 which is
9000000000000000001L

Two other popular operators are increment ++ and decrement --. The most
common use of the increment and decrement operators looks like this:

x++;
y--;

But you can also place the operators before the variables:

++x;
--y;

Placing the operator after the variable is called postincrementing (or
postdecrementing). Placing the operator before the variable is called
preincrementing (or predecrementing).

Both forms (before and after the variable) have the same effect on the
variable’s value; namely, the increment ++ operator always adds 1 to the
value, and the decrement -- operator always subtracts 1 from the value. The
only difference is what happens if you dare to display (or otherwise examine)
the value of something like x++. Figure 6-4 illustrates this unsettling idea.

150 Part II: Writing Your Own Java Programs

Figure 6-4:
Preincrement

and post-
increment.

 In practice, if you remember only that x++ adds 1 to the value of x, you’re
usually okay.

 The curious behavior shown in Figure 6-4 was inspired by assembly languages
of the 1970s. These languages have instructions that perform increment and
decrement operations on a processor’s internal registers.

Add letters to numbers (Huh?)
You can add strings and char values to other elements and to each other.
Listing 6-2 has some examples.

Listing 6-2: Java’s Versatile Plus Sign
package com.allmycode.demos;

public class PlusSignTest {

 public static void main(String[] args) {
 int x = 74;
 System.out.println(“Hello, “ + “world!”);
 System.out.println
 (“The value of x is “ + x + “.”);
 System.out.println

151 Chapter 6: Java’s Building Blocks

 (“The second letter of the alphabet is “ +
 ‘B’ + “.”);
 System.out.println
 (“The fifth prime number is “ + 11 + ‘.’);
 System.out.println
 (“The sum of 18 and 21 is “ + 18 + 21 +
 “. Oops! That’s wrong.”);
 System.out.println
 (“The sum of 18 and 21 is “ + (18 + 21) +
 “. That’s better.”);

 }

}

 The String type more appropriately belongs in Chapter 9 because Java’s
String type isn’t a primitive type. Even so, I start covering the String type
in this chapter.

When you run the code in Listing 6-2, you see the output shown in Figure 6-5.

Figure 6-5:
A run of

the code in
Listing 6-2.

Here’s what’s happening in Figure 6-5:

 ✓ When you use the plus sign to combine two strings, it stands for string
concatenation.

 String concatenation is a fancy name for what happens when you
display one string immediately after another. In Listing 6-2, the act of
concatenating “Hello, “ and “world!” yields the string
“Hello, world!”

 ✓ When you add a string to a number, Java turns the number into a
string and concatenates the strings.

 In Listing 6-2, the x variable is initialized to 74. The code displays “The
value of x is “ + x (a string plus an int variable). When adding
the string “The value of x is “ to the number 74, Java turns the
int 74 into the string “74”. So “The value of x is “ + x becomes
“The value of x is “ + “74”, which (after string concatenation)
becomes “The value of x is 74”.

152 Part II: Writing Your Own Java Programs

 This automatic conversion of a number into a string is handy whenever
you want to display a brief explanation along with a numeric value.

 The computer’s internal representation of the number 74 is 0000000000
0000000000000001001010 (with 1 in the 64s place, 1 in the 8s place, and
1 in the 2s place). In contrast, the computer’s internal representation of
the string “74” is 00000000001101110000000000110100. (For some clues
to help you understand why these bits represent the “74” string, see
the table accompanying this chapter’s earlier sidebar “The 01000001
01000010 01000011s.”) The bottom line, as far as Java is concerned, is
that the number 74 and the string “74” aren’t the same.

 ✓ When you add a string to any other kind of value, Java turns the other
value into a string and concatenates the strings.

 The third System.out.println call in Listing 6-2 adds the char value
‘B’ to a string. The result, as you can see in Figure 6-5, is a string
containing the letter B.

 ✓ The order in which the computer performs operations can affect the
outcome.

 The last two System.out.println calls in Listing 6-2 illustrate this
point. In the next-to-last call, the computer works from left to right. The
computer starts by combining “The sum of 18 and 21 is “ with
18, getting “The sum of 18 and 21 is 18”. Then, working its way
rightward, the computer combines “The sum of 18 and 21 is
18” with 21 getting the screwy string “The sum of 18 and 21 is
1821”.

 In the last System.out.println call, I fix these problems by grouping
18 and 21 in parentheses. As a result, the computer starts by adding 18
and 21 to get 39. Then the computer combines “The sum of 18 and
21 is “ with 39, getting the more sensible string “The sum of 18
and 21 is 39”.

Java’s exotic assignment operators
In a Java program, you can add 2 to a variable with a statement like this:

numberOfCows = numberOfCows + 2;

But to a seasoned Java developer, a statement of this kind is horribly gauche.
You might as well wear white after Labor Day or talk seriously about a
“nucular” reactor. Why?

153 Chapter 6: Java’s Building Blocks

Because Java has a fancy compound assignment operator that performs the
same task in a more concise way. The statement

numberOfCows += 2;

adds 2 to numberOfCows and lets you easily recognize the programmer’s
intention. For a silly example, imagine having several similarly named vari-
ables in the same program:

int numberOfCows;
int numberOfCrows;
int numberOfCries;
int numberOfCrays;
int numberOfGrays;

Then the statement

numberOfCrows += 2;

doesn’t force you to check both sides of an assignment. Instead, the +=
operator makes the statement’s intent crystal-clear.

Java’s other compound assignment operators include -=, *=, /=, %=, and
others. For example, to multiply numberOfCows by numberOfDays, you can
write

numberOfCows *= numberOfDays;

 A compound assignment, like numberOfCrows += 2, might take a tiny bit
less time to execute than the cruder numberOfCows = numberOfCows + 2.
But the main reason for using a compound assignment statement is to make
the program easier for other developers to read and understand. The savings
in computing time, if any, is usually minimal.

True bit
A boolean value is either true or false. Those are only two possible
values, compared with the thousands of values an int variable can have.
But these two values are quite powerful. (When someone says “You’ve won
the lottery” or “Your shoe is untied,” you probably care whether these
statements are true or false. Don’t you?)

154 Part II: Writing Your Own Java Programs

When you compare things with one another, the result is a boolean value.
For example, the statement

System.out.println(3 > 2);

puts the word true in Eclipse’s Console view. In addition to Java’s > (greater
than) operator, you can compare values with < (less than), >= (greater than
or equal), and <= (less than or equal).

You can also use a double-equal sign (==) to find out whether two values are
equal to one another. The statement

System.out.println(15 == 9 + 9);

puts the word false in the Console view. You can also test for inequality.
For example, the statement

System.out.println(15 != 9 + 9);

System.out.println(15 != 9 + 9);

puts the word true in the Console view. (A computer keyboard has no ≠
sign. To help you remember the != operator, think of the exclamation point as
a work-around for making a slash through the equal sign.)

An expression whose value is either true or false is a condition. In this
 section, expressions such as 3 > 2 and 15 != 9 + 9 are examples of
 conditions.

 The symbol to compare for equality isn’t the same as the symbol that’s used
in an assignment or an initialization. Assignment or initialization uses a single
equal sign (=), and comparison for equality uses a double equal sign (==).
Everybody mistakenly uses the single equal sign to compare for equality sev-
eral times in their programming careers. The trick is not to avoid making the
mistake; the trick is to catch the mistake whenever you make it.

 It’s nice to display the word true or false in Eclipse’s Console view, but
boolean values aren’t just for pretty displays. To find out how boolean
values can control the sequence of steps in your program, see Chapter 8.

Java isn’t like a game of horseshoes
Even when you correctly use the double equal sign, you have to be careful.
Figure 6-6 shows you what happens in a paper-and-pencil calculation to con-
vert 21 degrees Celsius to Fahrenheit. You get exactly 69.8.

155 Chapter 6: Java’s Building Blocks

Figure 6-6:
An exact

Celsius-to-
Fahrenheit

conversion.

But when you add the following statement to a Java program, you see false,
not true:

System.out.println(9.0 / 5.0 * 21 + 32.0 == 69.8);

Why isn’t 9.0 / 5.0 * 21 + 32.0 the same as 69.8? The answer is that
Java’s arithmetic operators don’t use the decimal system — they use the
binary system. And in binary arithmetic, things don’t go as well as they do in
Figure 6-6.

Figure 6-7 shows you how the computer divides 189.0 by 5. You might not
understand (and you might not want to understand) how the computer com-
putes the value 100101.110011001100110011 . . ., but when you stop after 64
bits or so, this answer isn’t exactly 37.8. It’s more like 37.800000000000004,
which is slightly inaccurate. In a Java program, when you ask whether 9.0 /
5.0 * 21 + 32.0 is exactly equal to 69.8, the computer says “No, that’s
false.”

 Avoid comparing double values or float values for equality (using ==) or
for inequality (using !=). Comparing strings for equality (as in the expression
“passw0rd” == “passw0rd”) is also unadvisable.

 For details about comparing strings, see Chapter 8.

Figure 6-7:
A division

problem that
never ends.

156 Part II: Writing Your Own Java Programs

Use Java’s logical operators
Real-life situations might involve long chains of conditions. Here’s an example
I found in a letter from the U.S. Department of Education federal student
loans department:

Interest starts to accrue daily prior to repayment on all unsubsidized loans
beginning on the first disbursement date and on all unsubsidized loans first
disbursed on or after July 1, 2012 and before July 1, 2014 at the beginning of
the grace period*. . . .

*Grace Period — A 6-month period before the first payment on a subsidized
or unsubsidized Stafford Loan is due. The grace period begins the day after
the student graduates, leaves school, or drops below half-time status and
ends the day before the repayment period begins.

Whew! I’m glad I didn’t miss any of the fine print!

The good news is that an app’s conditions can be expressed using Java’s &&,
|| and ! operators. The story begins in Listing 6-3. Here, the listing’s code
computes the price for a movie theater ticket.

Listing 6-3: Pay the Regular Ticket Price?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Regular {

 public static void main(String[] args) {
 String ageString;
 int age;
 boolean chargeRegularPrice;

 ageString = JOptionPane.showInputDialog(“Age?”);
 age = Integer.parseInt(ageString);
 chargeRegularPrice = 18 <= age && age < 65;
 JOptionPane.showMessageDialog(null,
 chargeRegularPrice, “Regular price?”,
 JOptionPane.INFORMATION_MESSAGE);
 }

}

Figure 6-8 shows a run of the code in Listing 6-3 with the value of age set to
17; Figure 6-9 shows a run with age set to 18.

157 Chapter 6: Java’s Building Blocks

Figure 6-8:
A youngster
goes to the

movies.

Figure 6-9:
If you

can drink
alcohol in
Moldova,

you can pay
full price at

our theater!

 Figures 6-8 and 6-9 might look peculiar because I’ve chosen to display the
words true and false instead of more user-friendly messages (such as
Charge this bum the regular price!). I do better when I cover Java’s
if statements in Chapter 8.

In Listing 6-3, the value of chargeRegularPrice is true or false depending
on the outcome of the 18 <= age && age < 65 condition test. The &&
operator stands for a logical and combination, so 18 <= age && age < 65
is true as long as age is greater than or equal to 18 and age is less than 65.

 To create a condition like 18 <= age && age < 65, you have to use the
age variable twice. You can’t write 18 <= age < 65. Other people might
understand what 18 <= age < 65 means, but Java doesn’t understand it.

 In the earlier section “Java isn’t like a game of horseshoes,” I warn against
using the == operator to compare two double values with one another. If you
absolutely must compare double values with one another, give yourself a
little leeway. Rather than writing fahrTemp == 69.8, write something like
this:

 (69.7779 < fahrTemp) && (fahrTemp < 69.8001)

Listing 6-3 has two other interesting new features. One feature is the use of
JOptionPane.showInputDialog. This method displays a dialog box like
the first box shown earlier, in Figure 6-8 (and the first box shown in Figure 6-9).
The box has its own text field for the user’s input. Normally, the user types

158 Part II: Writing Your Own Java Programs

something in the text field and then presses OK. Whatever the user types in
the text field becomes the value of the call to JOptionPane.showInput-
Dialog, as shown in Figure 6-10.

Figure 6-10:
An entire

method call
has a value.

In Figure 6-10, notice that the entire method call JOptionPane.
showInputDialog(“Age?”) becomes synonymous with the string “17”
(or with whatever the user types in the text field in the dialog box). So the
statement

ageString = JOptionPane.showInputDialog(“Age?”);

effectively becomes the following statement:

ageString = “17”;

The showInputDialog method always returns a string of characters, so in
Listing 6-3, it’s important that I declare appString to be of type String.
The problem is that a string of characters isn’t the same as a number. You
can’t use the < operator to compare “17” with “18”. Java doesn’t do
arithmetic on strings of characters, even when those strings happen to look
like numbers.

Before comparing the user’s input with the numbers 18 and 65, you have
to turn the user’s input into a number. (You have to turn a string like “17”
into an int value like 17.) To do that, you call Java’s Integer.parseInt
method:

 ✓ The Integer.parseInt method’s parameter is a String value.

 ✓ The value of a call to the Integer.parseInt is an int value.

So, in Listing 6-3, the statement

age = Integer.parseInt(ageString);

assigns an int value to the variable age. That’s good because, in the listing,
age is declared to be of type int.

159 Chapter 6: Java’s Building Blocks

Listing 6-4 illustrates Java’s || operator. (In case you’re not sure, you type
the || operator by pressing the | key twice.) The || operator stands for a
logical or combination, so age < 18 || 65 <= age is true as long as age
is less than 18 or age is greater than or equal to 65.

Listing 6-4: Pay the Discounted Ticket Price?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Discount {

 public static void main(String[] args) {
 String ageString;
 int age;
 boolean chargeDiscountPrice;

 ageString = JOptionPane.showInputDialog(“Age?”);
 age = Integer.parseInt(ageString);
 chargeDiscountPrice = age < 18 || 65 <= age;
 JOptionPane.showMessageDialog(null,
 chargeDiscountPrice, “Discount price?”,
 JOptionPane.INFORMATION_MESSAGE);
 }

}

Runs of the code from Listing 6-4 are shown in Figures 6-11 and 6-12.

Figure 6-11:
Ah, to be

young
again!

Figure 6-12:
Ah, to be old

at last!

Listing 6-5 adds Java’s ! operator to the logical stew. If you’re unfamiliar
with languages like Java, you have to stop thinking that the exclamation
point means, “Yes, definitely.” Instead, Java’s ! operator means not. In
Listing 6-5, with isSpecialShowing being true or false, the expression

160 Part II: Writing Your Own Java Programs

!isSpecialShowing stands for the opposite of isSpecialShowing. That
is, when isSpecialShowing is true, !isSpecialShowing is false. And
when isSpecialShowing is false, !isSpecialShowing is true.

Listing 6-5: What about Special Showings?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Discount2 {

 public static void main(String[] args) {
 String ageString;
 int age;
 boolean chargeDiscountPrice;
 String specialShowingString;
 boolean isSpecialShowing;

 ageString = JOptionPane.showInputDialog(“Age?”);
 age = Integer.parseInt(ageString);

 specialShowingString = JOptionPane.showInputDialog
 (“Special showing (true/false)?”);
 isSpecialShowing =
 Boolean.parseBoolean(specialShowingString);
 chargeDiscountPrice =
 (age < 18 || 65 <= age) && !isSpecialShowing;

 JOptionPane.showMessageDialog(null,
 chargeDiscountPrice, “Discount price?”,
 JOptionPane.INFORMATION_MESSAGE);
 }

}

Runs of the code from Listing 6-5 are shown in Figures 6-13 and 6-14.

The primary condition in Listing 6-5 grants the discount price to kids and to
seniors as long as the current feature isn’t a “special showing” — one that the
management considers to be a hot item, such as the first week of the run of
a highly anticipated movie. When there’s a special showing, no one gets the
discounted price.

In Figures 6-13 and 6-14, I artificially force the user to type the word true or
the word false (without quotation marks) in an input text field. Figure 6-15
shows how the user’s response becomes a string of characters that’s
deposited into my specialShowingString variable.

161 Chapter 6: Java’s Building Blocks

Figure 6-13:
A special
price for

a not-so-
special

showing.

Figure 6-14:
A special
showing

with a not-
so-special

price.

In the next statement in Listing 6-5, the method Boolean.parseBoolean
does for boolean values what Integer.parseInt does for int values.
The Boolean.parseBoolean method turns the value of specialShowing
String (the string “true” or “false”) into an honest-to-goodness
boolean value. To this boolean value, the computer can apply the !
operator and, if needed, the && and || operators.

162 Part II: Writing Your Own Java Programs

Figure 6-15:
Getting the

word true
from the

user’s input.

 For any condition you want to express, you always have several ways to
express it. For example, rather than test numberOfCats != 3, you can be
more long-winded and test !(numberOfCats == 3). Rather than test myAge
< yourAge, you can get the same answer by testing yourAge > myAge or
!(myAge >= yourAge). Rather than type a != b && c != d, you can
get the same result with !(a == b || c == d). (A guy named Augustus
DeMorgan told me about this last trick.)

Parenthetically speaking . . .
The big condition in Listing 6-5 (the condition (age < 18 || 65 <= age)
&& !isSpecialShowing) illustrates the need for (and the importance of)
parentheses (but only when parentheses are needed (or when they help
people understand your code)).

When you don’t use parentheses, Java’s precedence rules settle arguments
about the meaning of the expression. They tell you whether the line

age < 18 || 65 <= age && !isSpecialShowing

stands for the expression

(age < 18 || 65 <= age) && !isSpecialShowing

or for this one:

age < 18 || (65 <= age && !isSpecialShowing)

According to the precedence rules, in the absence of parentheses, the
computer evaluates && before evaluating ||. If you omit the parentheses, the
computer first checks to find out whether 65 <= age && !isSpecial
Showing. Then the computer combines the result with a test of the age <
18 condition. Imagine a 16-year-old kid buying a movie ticket on the day of
a special showing. The condition 65 <= age && !isSpecialShowing is

163 Chapter 6: Java’s Building Blocks

false, but the condition age < 18 is true. Because one of the two conditions
on either side of the || operator is true, the whole nonparenthesized
condition is true — and, to the theater management’s dismay, the 16-year-
old kid gets a discount ticket.

Sometimes, you can take advantage of Java’s precedence rules and omit the
parentheses in an expression. But I have a problem: I don’t like memorizing
precedence rules, and when I visit Java’s online language specifications
document (docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.
html), I don’t like figuring out how the rules apply to a particular condition.

When I create an expression like the one in Listing 6-5, I almost always use
parentheses. In general, I use parentheses if I have any doubt about the way
the computer behaves without them. I also add parentheses when doing so
makes the code easier to read.

Sometimes, if I’m not sure about stuff and I’m in a curious frame of mind, I
write a quick Java program to test the precedence rules. For example, I run
Listing 6-5 with and without the condition’s parentheses. I send a 16-year-old
kid to the movie theater when there’s a special showing and see whether
the kid ever gets a discount ticket. This little experiment shows me that the
parentheses aren’t optional.

http://www.docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html
http://www.docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html

164 Part II: Writing Your Own Java Programs

Chapter 7

Though These Be Methods,
Yet There Is Madness in’t

In This Chapter
▶ Matching Java types
▶ Calling methods effectively
▶ Understanding method parameters

I
n Chapter 5, I compare a method declaration to a recipe for scrambled
eggs. In this chapter, I compute the tax and tip for a meal in a restaurant.

And in Chapter 9 (spoiler alert!), I compare a Java class to the inventory in a
cheese emporium. These comparisons aren’t far-fetched. A method’s
declaration is a lot like a recipe, and a Java class bears some resemblance to
a blank inventory sheet. But instead of thinking about methods, recipes,
and Java classes, you might be reading between the lines. You might be
wondering why this author uses so many food metaphors.

The truth is, my preoccupation with food is a recent development. Like
most men my age, I’ve been told that I should shed my bad habits, lose a few
pounds, exercise regularly, and find ways to reduce the stress in my life. (I’ve
argued to my Wiley editors that submission deadlines are a source of stress,
but so far the editors aren’t buying a word of it. I guess I don’t blame them.)

Above all, I’ve been told to adopt a healthy diet: Skip the chocolate, the
cheeseburgers, the pizza, the fatty foods, the fried foods, the sugary snacks,
and everything else that I normally eat. Instead, eat small portions of
vegetables, carbs, and protein, and eat these things only at regularly
scheduled meals. Sounds sensible, doesn’t it?

I’m making a sincere effort. I’ve been eating right for about two weeks. My
feelings of health and well-being are steadily improving. I’m only slightly
hungry. (Actually, by “slightly hungry,” I mean “extremely hungry.” Yesterday
I suffered a brief hallucination, believing that my computer keyboard was a
giant Hershey’s bar. And this morning I felt like gnawing on my office furniture.
If I start trying to peeling my mouse, I’ll stop writing and go out for a snack.)

166 Part II: Writing Your Own Java Programs

One way or another, the gustatory arena provides many fine metaphors
for object-oriented programming. A method’s declaration is like a recipe. A
declaration sits quietly, doing nothing, waiting to be executed. If you create
a declaration but no one ever calls your declaration, then like a recipe for
worm stew, your declaration goes unexecuted.

On the other hand, a method call is a call to action — a command to follow
the declaration’s recipe. When you call a method, the method’s declaration
wakes up and follows the instructions inside the body of the declaration.

In addition, a method call may contain parameters. You call

JOptionPane.showMessageDialog (null, ticketPrice)

with the parameters null and ticketPrice. The first parameter, null,
tells the computer not to house the dialog box inside another window. The
second parameter, ticketPrice, tells the computer what to display in the
dialog box. In the world of food, you might call meatLoaf(6), which means,
“Follow the meat loaf recipe, and make enough to serve six people.”

A method has two facets: the first is the method’s declaration; the second
consists of any statements making calls to the method.

Practice Safe Typing
“You can’t fit a square peg into a round hole,” or so the saying goes. In Java
programming, the saying goes one step further: “Like all other developers,
you sometimes make a mistake and try to fit a square peg into a round hole.
Java’s type system alerts you to the mistake and doesn’t let you run the
flawed code.”

Here’s an example illustrating pegs and holes: According to the U.S. census,
the average number of children per family in the year 2000 was 0.9. But by
mid-2000, the Duggar family (of 19 Kids & Counting television fame) had 12
children. No matter when you take the census, the average number of children
is a double value, and the number of children in a particular family is an int
value.

In Figure 7-1, I try to calculate the Duggar family’s divergence from the
national average. I don’t even show you a run of this program, because the
program doesn’t work. It’s defective. It’s damaged goods. As cousin Jeb
would say, “This program is a dance party on a leaky raft in a muddy river.”

167 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Figure 7-1:
Trying to fit

a square
peg into a

round hole.

The code in Figure 7-1 deals with two types of values — double values (in
the averageNumberOfKids variable) and int values (in the numberOf
DuggarKids variable). You might plan to type 1 when the computer
prompts you for Average kids per family. But the value stored in the
averageNumberOfKids variable is of type double. An input like 1 or 1.0
doesn’t scare the computer into storing anything but a double in the
averageNumberOfKids variable.

The expression numberOfDuggarKids - averageNumberOfKids is an
int minus a double, so (according to my sage advice in Chapter 6) the value
of numberOfDuggarKids - averageNumberOfKids is of type double.
Sure, if you type 1 when you’re prompted for Average kids per family,
then numberOfDuggarKids - averageNumberOfKids is 11.0, and 11.0 is
sort of the same as the int value 11. But Java doesn’t like things to be “sort
of the same.”

Java’s strong typing rules say that you can’t assign a double value (like 11.0)
to an int variable (like anotherDifference). You don’t lose any accuracy
when you chop the .0 off 11.0. But with digits to the right of the decimal point
(even with 0 to the right of the decimal point), Java doesn’t trust you to stuff
a double value into an int variable. After all, rather than type 1.0 when
you’re prompted for Average kids per family, you can type 0.9. Then
you’d definitely lose accuracy, from stuffing 11.1 into an int variable.

You can try to assure Java that things are okay by using a plain, old assignment
statement, like this:

double averageNumberOfKids;
averageNumberOfKids = 1;

168 Part II: Writing Your Own Java Programs

When you do, the only way for numberOfDuggarKids - averageNumber
OfKids to have any value other than 11.0 is for you to make more changes
to the Java code. Even so, Java doesn’t like assigning 11.0 to the int variable
anotherDifference. This statement is still illegal:

anotherDifference =
 numberOfDuggarKids - averageNumberOfKids;

 When you put numbers in your Java code (like 1 in the previous paragraph
or like the number 12 in Figure 7-1) you hardcode the values. In this book, my
liberal use of hardcoding keeps the examples simple and (more importantly)
concrete. But in real applications, hardcoding is generally a bad idea. When
you hardcode a value, you make it difficult to change. In fact, the only way to
change a hardcoded value is to tinker with the Java code, and all code (written
in Java or not) can be brittle. It’s much safer to input values in a dialog box (or
to read the value from a hard drive or an SD card) than to change a value in a
piece of code.

Remember to do as I say and not as I do. Avoid hardcoding values in your
programs.

Widening is good; narrowing is bad
Java prevents you from making any assignment that potentially narrows a
value, as shown in Figure 7-2. For example, if with the declarations

int numberOfDuggarKids = 12;
long lotsAndLotsOfKids;

the following attempt to narrow from a long value to an int value is illegal:

numberOfDuggarKids = lotsAndLotsOfKids; //Don’t do this!

An attempt to widen from an int value to a long value, however, is fine:

lotsAndLotsOfKids = numberOfDuggarKids;

In fact, back in Figure 7-1, I assign an int value to a double value with no
trouble at all:

double difference;
difference = numberOfDuggarKids - averageNumberOfKids;

Assigning an int value to a double value is legal because it’s an example of
widening.

169 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Figure 7-2:
Widening

and
narrowing.

Incompatible types
Aside from the technical terms narrowing and widening, there’s another
possibility — plain, old incompatibility — trying to fit one element into
another when the two have nothing in common and have no hope of ever
being mistaken for one another. You can’t assign an int value to a boolean
value or assign a boolean value to an int value:

int numberOfDuggarKids;
boolean isLarge;
numberOfDuggarKids = isLarge; //Don’t do this!
isLarge = numberOfDuggarKids; //Don’t do this!

You can’t do either assignment because boolean values aren’t numeric. In
other words, neither of these assignments makes sense.

 Java is a strongly typed computer programming language. It doesn’t let you
make assignments that might result in a loss of accuracy or in outright
nonsense.

Using a hammer to bang a peg into a hole
In some cases, you can circumvent Java’s prohibition against narrowing by
casting a value. For example, you can create the long variable lotsAnd
LotsOfKids and make the assignment numberOfDuggarKids = (int)
lotsAndLotsOfKids, as shown in Listing 7-1.

170 Part II: Writing Your Own Java Programs

Listing 7-1: Casting to the Rescue
package com.allmycode.stats;

import javax.swing.JOptionPane;

public class MoreKids {

 public static void main(String[] args) {
 long lotsAndLotsOfKids = 2147483647;
 int numberOfDuggarKids;

 numberOfDuggarKids = (int) lotsAndLotsOfKids;

 JOptionPane.showMessageDialog
 (null, numberOfDuggarKids);
 }

}

The type name (int) in parentheses is a cast operator. It tells the computer
that you’re aware of the potential pitfalls of stuffing a long value into an int
variable and that you’re willing to take your chances.

When you run the code in Listing 7-1, the value of lotsAndLotsOfKids
might be between –2147483648 and 2147483647. If so, the assignment
numberOfDuggarKids = (int) lotsAndLotsOfKids is just fine.
(Remember: An int value can be between –2147483648 and 2147483647.
Refer to Table 6-1.)

But if the value of lotsAndLotsOfKids isn’t between –2147483648 and
2147483647, the assignment statement in Listing 7-1 goes awry. When I run
the code in Listing 7-1 with the different initialization

long lotsAndLotsOfKids = 2098797070970970956L;

the value of numberOfDuggarKids. becomes –287644852 (a negative
number!).

When you use a casting operator, you’re telling the computer, “I’m aware that
I’m doing something risky but (trust me) I know what I’m doing.” And if you
don’t know what you’re doing, you get a wrong answer. That’s life!

Calling a Method
After all the fuss I make in the previous section over type safety for assignment
statements, I should give equal time to type safety for method calls. After all,
a method call involves values going both ways — from the call to the running
method and from the running method back to the call. Here are the details:

171 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 ✓ In a method call, each parameter has a value. The computer sends
that value to one of the declaration’s parameters.

 In a method call, each parameter has a type. The types of the parameters
in the method’s declaration must match the types of parameters in the
method call.

 ✓ A method declaration might contain a return statement, and the
return statement might calculate a particular value. If so, the
computer assigns that value back to the entire method call.

 A method’s return type is the type of value calculated by the return
statement. So the return type is the type of the method call’s value.

To make this concept more concrete, consider the code in Listing 7-2.

Listing 7-2: Parameter Types and Return Types
package com.allmycode.money;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class Mortgage {

 public static void main(String[] args) {
 double principal = 100000.00, ratePercent = 5.25;
 double payment;
 int years = 30;
 String paymentString;

 payment =
 monthlyPayment(principal, ratePercent, years);

 NumberFormat currency =
 NumberFormat.getCurrencyInstance();
 paymentString = currency.format(payment);
 JOptionPane.showMessageDialog(null,
 paymentString, “Monthly payment”,
 JOptionPane.INFORMATION_MESSAGE);

 }

 static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears) {

 double rate, effectiveAnnualRate;
 int paymentsPerYear = 12, numberOfPayments;
 rate = pRatePercent / 100.00;
 numberOfPayments = paymentsPerYear * pYears;
 effectiveAnnualRate = rate / paymentsPerYear;

(continued)

172 Part II: Writing Your Own Java Programs

Listing 7-2 (continued)
 return pPrincipal * (effectiveAnnualRate /
 (1 - Math.pow(1 + effectiveAnnualRate,
 -numberOfPayments)));
 }

}

 Again, to keep the example simple, I hardcode the values of the variables
principal, ratePercent, and years, making Listing 7-2 useless for any-
thing except one particular calculation. In a real app, you’d ask the user for
the values of these variables.

Figure 7-3 shows the output of a run of the code in Listing 7-2.

Figure 7-3:
Pay it and

weep.

In Listing 7-2, I choose the parameter names principal and pPrincipal,
ratePercent and pRatePercent, and years and pYears. I use the letter
p to distinguish a declaration’s parameter from a call’s parameter. I do this to
drive home the point that the names in the call aren’t automatically the same
as the names in the declaration. In fact, there are many variations on this
call/declaration naming theme, and they’re all correct. For example, you can
use the same names in the call as in the declaration:

 payment =
 monthlyPayment(principal, ratePercent, years);

static double monthlyPayment
 (double principal, double ratePercent, int years) {

You can use expressions in the call that aren’t single variable names:

 payment =
 monthlyPayment(amount + fees, rate * 100, 30);

static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears) {

173 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

When you call a method from Java’s API, you don’t even know the names of
parameters used in the method’s declaration. And you don’t care. The
only things that matter are the positions of parameters in the list and the
compatibility of the parameters:

 ✓ The value of the call’s leftmost parameter becomes the value of
the declaration’s leftmost parameter, no matter what name the
declaration’s leftmost parameter has.

 Of course, the types of the two leftmost parameters (the call’s
parameter and the declaration’s parameter) must be compatible.

 ✓ The value of the call’s second parameter becomes the value of the
declaration’s second parameter, no matter what name the declaration’s
second parameter has.

 And so on.

 Real Java developers start the names of variables and methods with
lowercase letters. You can ignore this convention and create a method named
MonthlyPayment or MONTHLY_PAYMENT, for example. But if you ignore the
convention, some developers will wince when they read your code.

Method parameters and Java types
Listing 7-2 contains both the declaration and a call for the monthlyPayment
method. Figure 7-4 illustrates the type matches between these two parts of
the program.

Figure 7-4:
Each value

fits like a
glove.

174 Part II: Writing Your Own Java Programs

In Figure 7-4, the monthlyPayment method call has three parameters, and
the monthlyPayment declaration’s header has three parameters. The call’s
three parameters have the types double and then double and then int.
And sure enough, the declaration’s three parameters have the types double
and then double and then int.

As in the earlier section “Practice Safe Typing,” you don’t need an exact
match between a method call’s parameter and the declaration’s parameter.
You can take advantage of widening. For example, in Listing 7-2, adding the
following call would be okay:

payment = monthlyPayment(100000, 5, years);

You can pass an int value (like 100000) to the pPrincipal parameter,
because the pPrincipal parameter is of type double. Java widens the
values 100000 and 5 to the values 100000.0 and 5.0. But, once again, Java
doesn’t narrow your values. The following call causes a big red blotch in the
Eclipse editor:

payment = monthlyPayment(principal, ratePercent, 30.0);

You can’t stuff a double value (like 30.0) into the pYears parameter,
because the pYears parameter is of type int.

 In a method declaration, each parameter has the form

typeName variableName

For example, in the declaration that starts with static double
monthlyPayment(double pPrincipal, the word double is a typeName,
and the word pPrincipal is a variableName. But in a method call,
each parameter is an expression with a certain value. In the main method
in Listing 7-2, the call monthlyPayment(principal, ratePercent,
years) contains three parameters: principal, ratePercent, and years.
Each of these parameters has a value. So with the initializations in the main
method, the call monthlyPayment(principal, ratePercent, years)
is essentially the same as calling monthlyPayment(100000.00, 5.25,
30). In fact, a call like monthlyPayment(100000.00, 5.25, 30) or
monthlyPayment(10 * 1000.00, 5 + 0.25, 30) is legal in Java. A
method call’s parameters can be expressions of any kind. The only requirement
is that the expressions in the call have types that are compatible with the
corresponding parameters in the method’s declaration.

175 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Return types
A method declaration’s header normally looks like this:

someWords returnType methodName(parameters) {

For example, Listing 7-2 contains a method declaration with the following
header:

static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears)

In this header, the returnType is double, the methodName is monthly
Payment, and the parameters are double pPrincipal, double
pRatePercent, int pYears.

 A method declaration’s parameter list differs from the method call’s parameter
list. The declaration’s parameter list contains the name of each parameter’s
type. In contrast, the call’s parameter list contains no type names.

An entire method call can have a value, and the declaration’s returnType
tells the computer what type that value has. In Listing 7-2, the returnType is
double, so the call

monthlyPayment(principal, ratePercent, years)

has a value of type double. (Refer to Figure 7-4.)

I hardcoded the values of principal, ratePercent, and years in Listing 7-2.
So when you run Listing 7-2, the value of the monthlyPayment method call
is always 552.20. The call’s value is whatever comes after the word return
when the method is executed. And in Listing 7-2, the expression

pPrincipal * (effectiveAnnualRate /
 (1 - Math.pow(1 + effectiveAnnualRate,
 -numberOfPayments)))

always comes out to be 552.20. Also, in keeping with the theme of type safety,
the expression after the word return is of type double.

In summary, a call to the monthlyPayment method has the return value
552.20 and has the return type double.

176 Part II: Writing Your Own Java Programs

 Only book authors and bad programmers hardcode values like principal,
ratePercent, and years. I hardcoded these values to keep the example as
simple as possible. But, normally, values like these should be part of the
program’s input so that the values can change from one run to another.

The great void
A method to compute a monthly mortgage payment naturally returns a value.
But a Java program’s main method, or Java’s own showMessageDialog
method (with no user input), has little reason to return a value.

When a method doesn’t return a value, the method’s body has no return
statement. And, in place of a return type, the header in the method’s
declaration contains the word void. A program’s main method doesn’t
return a value, so when you create a main method, you type

public static void main(String args[]) {

 To be painfully precise, you can put a return statement in a method that
doesn’t return a value. When you do, the return statement has no expression.
It’s just one word, return, followed by a semicolon. When the computer
executes this return statement, the computer ends the run of the method
and returns to the code that called the method. This rarely used form of the
return statement works well in a situation in which you want to end the
execution of a method before you reach the last statement in the method’s
declaration.

Displaying numbers
Here are a few lines that are scattered about in Listing 7-2:

import java.text.NumberFormat;

NumberFormat currency =
 NumberFormat.getCurrencyInstance();
paymentString = currency.format(payment);

Taken together, these statements give you easy formatting of numbers into
local currency amounts. On my computer, when I call getCurrency
Instance() with no parameters, I get a number (like 552.2) formatted for
United States currency. (Refer to Figure 7-3.) But if your computer is set to
run in Germany, you see the message box shown in Figure 7-5.

177 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

Figure 7-5:
Displaying

the euro
symbol.

A country, its native language, or a variant of the native language is a locale.
And by adding a parameter to the getCurrencyInstance call, you can
format for locales other than your own. For example, by calling

NumberFormat.getCurrencyInstance(Locale.GERMANY)

anyone in any country can get the message box shown in Figure 7-5.

In the choice of available locales, standard Oracle Java is a bit better than
Android Java. For example, the Locale.GERMANY trick works in standard
Java and in Android Java. But some variants of the Thai language use their
own, special digit symbols. (See Figure 7-6.) To form a number with Thai
digits, you need

NumberFormat.getCurrencyInstance(
 new Locale(“th”, “TH”, “TH”))

And this locale works only in standard Java.

Figure 7-6:
Thai digit
symbols.

Method overload without software bloat
Chapter 5 introduces method overloading. But that chapter doesn’t show you
a complete example using method overloading. Listing 7-3 remedies this
situation.

178 Part II: Writing Your Own Java Programs

Listing 7-3: Filling but Not Fatty (Yes, I’m Still Hungry)
package com.allmycode.money;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class Mortgage {

 public static void main(String[] args) {
 double principal = 100000.00, ratePercent = 5.25;
 double payment;
 int years = 30;
 String paymentString;
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 payment =
 monthlyPayment(principal, ratePercent, years);
 paymentString = currency.format(payment);
 JOptionPane.showMessageDialog(null,
 paymentString, “Monthly payment”,
 JOptionPane.INFORMATION_MESSAGE);

 ratePercent = 3.0;
 payment = monthlyPayment(principal, ratePercent);
 paymentString = currency.format(payment);
 JOptionPane.showMessageDialog(null,
 paymentString, “Monthly payment”,
 JOptionPane.INFORMATION_MESSAGE);

 payment = monthlyPayment();
 paymentString = currency.format(payment);
 JOptionPane.showMessageDialog(null,
 paymentString, “Monthly payment”,
 JOptionPane.INFORMATION_MESSAGE);

 }

 static double monthlyPayment
 (double pPrincipal, double pRatePercent, int pYears) {

 double rate, effectiveAnnualRate;
 int paymentsPerYear = 12, numberOfPayments;
 rate = pRatePercent / 100.00;
 numberOfPayments = paymentsPerYear * pYears;
 effectiveAnnualRate = rate / paymentsPerYear;
 return pPrincipal * (effectiveAnnualRate /
 (1 - Math.pow(1 + effectiveAnnualRate,
 -numberOfPayments)));

179 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 }

 static double monthlyPayment
 (double pPrincipal, double pRatePercent) {

 return monthlyPayment(pPrincipal, pRatePercent, 30);
 }

 static double monthlyPayment() {
 return 0.0;
 }
}

The three dialog boxes that you see when you run the code in Listing 7-3 are
shown in Figure 7-7.

In Listing 7-3, the monthlyPayment method has three declarations, each
with its own parameter list, and with each parameter list representing a
different bunch of types. As a method name, the name monthlyPayment is
overloaded.

 ✓ The first monthlyPayment declaration is a copy of the declaration in
Listing 7-2.

 When you call the first declaration, you supply values for three
parameters — two double values and one int value:
monthlyPayment(principal, ratePercent, years)

Figure 7-7:
Running

the code in
Listing 7-3.

180 Part II: Writing Your Own Java Programs

 ✓ The second monthlyPayment declaration has only two parameters.

 When you call the second declaration, you supply values for only two
double parameters:
monthlyPayment(principal, ratePercent)

 When the computer encounters this monthlyPayment call with two
double parameters, the computer executes the monthlyPayment
declaration that has two double parameters. (See Listing 7-3.) This
automatic choice of method declaration is what makes overloading
work.

 Notice the trick that I use in the body of the two-parameter monthly
Payment declaration. To create the two-parameter declaration, I could
get away with simply duplicating the code from the three-parameter
monthlyPayment declaration:
// (Insert throat-clearing here.) This duplication
// of code isn’t a very good idea.
static double monthlyPayment
 (double pPrincipal, double pRatePercent) {

 double rate, effectiveAnnualRate;
 int paymentsPerYear = 12, numberOfPayments;
 rate = pRatePercent / 100.00;
 numberOfPayments = paymentsPerYear * 30;
 effectiveAnnualRate = rate / paymentsPerYear;
 return pPrincipal * (effectiveAnnualRate /
 (1 - Math.pow(1 + effectiveAnnualRate,
 -numberOfPayments)));
}

 But duplicating code is a bad idea. Copying and pasting code causes
errors down the road. In Listing 7-3, I don’t copy the three-parameter
code. Instead, I call the three-parameter monthlyPayment method from
the body of the two-parameter monthlyPayment method. I supply a
default value of 30 for the third pYears parameter. In the program’s
documentation, I must state clearly that the two-parameter monthly
Payment method assumes a 30-year mortgage term.

 ✓ The third monthlyPayment declaration has no parameters.

 When you call the third declaration in Listing 7-3, you don’t supply
values for any parameters. Instead, you follow the method’s name with
an empty pair of parentheses:
monthlyPayment()

181 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 The parameterless monthlyPayment method might be useful in those
don’t-know-what-else-to-do situations. You have to display something
about a borrower who hasn’t yet decided on the principal, rate, or
number of years. With little or no information about a mortgage loan,
you display $0.00 as a temporary value for the borrower’s monthly
payment.

For method overloading to work, the parameter types in a call must match
the parameter types in a declaration. In Listing 7-3, no two monthlyPayment
declarations have the same number of parameters, so parameter matching
isn’t too challenging.

But there’s more to matching than having the same number of parameters.
For example, you can add another two-parameter declaration to the code in
Listing 7-3:

 static double monthlyPayment
 (double pPrincipal, int pYears) {

With this addition, you have more than one two-parameter monthly
Payment declaration — an old declaration with two double parameters and
a new declaration with a double parameter and an int parameter. If you
call monthlyPayment(principal, 15), the computer calls the newly
added method. It calls the new method because the new method, with its
double and int parameters, is a better match for your call than the old
monthlyPayment(double pPrincipal, double pRatePercent)
declaration in Listing 7-3.

Primitive Types and Pass-by Value
Java has two kinds of types: primitive and reference. The eight primitive types
are the atoms — the basic building blocks. In contrast, the reference
types are the things you create by combining primitive types (and by
combining other reference types).

 My coverage of Java’s reference types begins in Chapter 9.

Here are two concepts you should remember when you think about primitive
types and method parameters:

 ✓ When you assign a value to a variable with a primitive type, you’re
identifying that variable name with the value.

182 Part II: Writing Your Own Java Programs

 The same is true when you initialize a primitive type variable to a
particular value.

 ✓ When you call a method, you’re making copies of each of the call’s
parameter values and initializing the declaration’s parameters with
those copied values.

This scheme, in which you make copies of the call’s values, is named pass-by
value. Listing 7-4 shows you why you should care about any of this.

Listing 7-4: Rack Up Those Points!
import javax.swing.JOptionPane;

public class Scorekeeper {

 public static void main(String[] args) {
 int score = 50000;
 int points = 1000;
 addPoints(score, points);
 JOptionPane.showMessageDialog(null, score,
 “New Score”, JOptionPane.INFORMATION_MESSAGE);
 }

 static void addPoints(int score, int points) {
 score += points;
 }

}

In Listing 7-4, the addPoints method uses Java’s compound assignment
operator to add 1000 (the value of points) to the existing score (which is
50000). To make things as cozy as possible, I’ve used the same parameter
names in the method call and the method declaration. (In both, I use the
names score and points.)

So what happens when I run the code in Listing 7-4? I get the result shown in
Figure 7-8.

Figure 7-8:
Getting

1000 more
points?

183 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

But wait! When you add 1000 to 50000, you don’t normally get 50000. What’s
wrong?

With Java’s pass-by value feature, you make a copy of each parameter value
in a call. You initialize the declaration’s parameters with the copied values.
So immediately after making the call, you have two pairs of variables: the
original score and points variables in the main method and the new
score and points variables in the addPoints method. The new score
and points variables have copies of values from the main method. (See
Figure 7-9.)

Figure 7-9:
Java makes

copies of
the values

of variables.

The statement in the body of the addPoints method adds 1000 to the value
stored in its score variable. After adding 1000 points, the program’s variables
look like the stuff shown in Figure 7-10.

Notice how the value of the main method’s score variable remains
unchanged. After returning from the call to addPoints, the addPoints
method’s variables disappear. All that remains is the original main method
and its variables. (See Figure 7-11.)

184 Part II: Writing Your Own Java Programs

Figure 7-10:
Java adds

1000 to only
one of the
two score
variables.

Figure 7-11:
The vari-
able with

value 51000
no longer

exists.

Finally, in Listing 7-4, the computer calls showMessageDialog to display the
value of the main method’s score variable. And (sadly, for the game player)
the value of score is still 50000.

185 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

What’s a developer to do?
The program in Listing 7-4 has a big, fat bug. The program doesn’t add 1000
to a player’s score. That’s bad.

You can squash the bug in Listing 7-4 in several different ways. For example,
you can avoid calling the addPoints method by inserting score += points
in the main method. But that’s not a satisfactory solution. Methods such as
addPoints are useful for dividing work into neat, understandable chunks. And
avoiding problems by skirting around them is no fun at all.

Perils and pitfalls of parameter passing
How would you like to change the value of
2 + 2? What would you like 2 + 2 to be? Six?
Ten? Three hundred? In certain older versions
of the FORTRAN programming language,
you could make 2 + 2 be almost anything you
wanted. For example, the following chunk of
code (translated to look like Java code) would
display 6 for the value of 2 + 2:
public void increment(int

score) {
 score++;
}
...
increment(2);
JOptionPane.

showMessageDialog(null, 2
+ 2);

When computer languages were first being
developed, their creators didn’t realize how
complicated parameter passing can be.
They weren’t as careful about specifying the
rules for copying parameters’ values or for
doing whatever else they wanted to do with
parameters. As a result, some versions of
FORTRAN indiscriminately passed memory
addresses rather than values. Though address-
passing alone isn’t a terrible idea, things

become ugly if the language designer isn’t
careful.

In some early FORTRAN implementations, the
computer automatically (and without warning)
turned the literal 2 into a variable named two.
(In fact, the newly created variable probably
wasn’t named two. But in this story, the actual
name of the variable doesn’t matter.) FORTRAN
would substitute the variable name two in any
place where the programmer typed the literal
value 2. But then, while running this sidebar’s
code, the computer would send the address of
the two variable to the increment method.
The method would happily add 1 to whatever
was stored in the two variable and then
continue its work. Now the two variable stored
the number 3. By the time you reached the
showMessageDialog call, the computer
would add to itself whatever was in two,
getting 3 + 3, which is 6.

If you think parameter passing is a no-brainer,
think again. Different languages use all
different kinds of parameter passing. And in
many situations, the minute details of the way
parameters are passed makes a big difference.

186 Part II: Writing Your Own Java Programs

A better way to get rid of the bug is to make the addPoints method return a
value. Listing 7-5 has the code.

Listing 7-5: A New-and-Improved Scorekeeper Program
import javax.swing.JOptionPane;

public class Scorekeeper {

 public static void main(String[] args) {
 int score = 50000;
 int points = 1000;
 score = addPoints(score, points);
 JOptionPane.showMessageDialog(null, score,
 “New Score”, JOptionPane.INFORMATION_MESSAGE);
 }

 static int addPoints(int score, int points) {
 return score + points;
 }

}

In Listing 7-5, the new-and-improved addPoints method returns an
int value; namely, the value of score + points. So the value of the
addPoints(score, points) call is 51000. Finally, I change the value of
score by assigning the method call’s value, 51000, to the score variable.

 Java’s nitpicky rules insure that the juggling of the score variable’s values
is reliable and predictable. In the statement score = addPoints(score,
points), there’s no conflict between the old value of score (50000 in the
addPoints parameter list) and the new value of score (51000 on the left side
of the assignment statement).

A run of the code in Listing 7-5 is shown in Figure 7-12. You probably already
know what the run looks like. (After all, 50000 + 1000 is 51000.) But I can’t
bear to finish this example without showing the correct answer.

Figure 7-12:
At last,

a higher
score!

187 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

 Making addPoints return a value isn’t the only way to correct the problem in
Listing 7-4. At least two other ways (using fields and passing objects) are
among the subjects of discussion in Chapter 9.

A final word
The program in Listing 7-6 displays the total cost of a $100 meal.

Listing 7-6: Yet Another Food Example
package org.allyourcode.food;

import java.text.NumberFormat;

import javax.swing.JOptionPane;

public class CheckCalculator {

 public static void main(String[] args) {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();
 JOptionPane.showMessageDialog(null,
 currency.format(addAll(100.00, 0.05, 0.20)));
 }

 static double addAll
 (double bill, double taxRate, double tipRate) {
 bill *= 1 + taxRate;
 bill *= 1 + tipRate;
 return bill;
 }

}

A run of the program in Listing 7-6 is shown in Figure 7-13.

Figure 7-13:
Support

your local
eating

establish-
ment.

188 Part II: Writing Your Own Java Programs

Listing 7-6 is nice, but this code computes the tip after the tax has been
added to the original bill. Some of my less generous friends believe that the
tip should be based on only the amount of the original bill. (Guys, you know
who you are!) They believe that the code should compute the tax but that it
should remember and reuse the original $100.00 amount when calculating the
tip. Here’s my friends’ version of the addAll method:

static double addAll
 (double bill, double taxRate, double tipRate) {
 double originalBill = bill;
 bill *= 1 + taxRate;
 bill += originalBill * tipRate;
 return bill;
}

The new (stingier) total is shown in Figure 7-14.

Figure 7-14:
A dollar
saved is
a dollar
earned.

The revised addAll method is overly complicated. (In fact, in creating this
example, I got this little method wrong two or three times before getting it
right.) Wouldn’t it be simpler to insist that the bill parameter’s value never
changes? Rather than mess with the bill amount, you make up new
variables named tax and tip and total everything in the return statement:

static double addAll
 (double bill, double taxRate, double tipRate) {
 double tax = bill * taxRate;
 double tip = bill * tipRate;
 return bill + tax + tip;
}

When you have these new tax and tip variables, the bill parameter always
stores its original value — the value of the untaxed, untipped meal.

After developing this improved code, you make a mental note that the bill
variable’s value shouldn’t change. Months later, when your users are paying
big bucks for your app and demanding many more features, you might turn
the program into a complicated, all-purpose meal calculator with localized
currencies and tipping etiquette from around the world. Whatever you do,
you always want easy access to that original bill value.

189 Chapter 7: Though These Be Methods, Yet There Is Madness in’t

After your app has gone viral, you’re distracted by the need to count your
earnings, pay your servants, and maintain the fresh smell of your private jet’s
leather seats. With all these pressing issues, you accidentally forget your old
promise not to change the bill variable. You change the variable’s value
somewhere in the middle of your 1000-line program. Now you’ve messed
everything up.

But wait! You can have Java remind you that the bill parameter’s value
doesn’t change. To do this, you add the keyword final (one of Java’s
modifiers) to the method declaration’s parameter list. And while you’re at it,
you can add final to the other parameters (taxRate and tipRate) in the
addAll method’s parameter list:

static double addAll (final double bill,
 final double taxRate,
 final double tipRate) {
 double tax = bill * taxRate;
 double tip = bill * tipRate;
 return bill + tax + tip;
}

With this use of the word final, you’re telling the computer not to let you
change a parameter’s value. If you plug the newest version of addAll into
the code in Listing 7-6, bill becomes 100.00 and bill stays 100.00 throughout
the execution of the addAll method. If you accidentally add the statement

bill += valetParkingFee;

to your code, Eclipse flags that line as an error because a final parameter’s
value cannot be changed. Isn’t it nice to know that, with servants to manage
and your private jet to maintain, you can still rely on Java to help you write a
good computer program?

190 Part II: Writing Your Own Java Programs

Chapter 8

What Java Does (and When)
In This Chapter
▶ Making decisions with Java statements
▶ Repeating actions with Java statements

H
uman thought centers around nouns and verbs. Nouns are the “stuff,”
and verbs are the stuff’s actions. Nouns are the pieces, and verbs are

the glue. Nouns are, and verbs do. When you use nouns, you say “book,”
“room,” or “stuff.” When you use verbs, you say “do this,” “do that,” “tote
that barge,” or “lift that bale.”

Java also has nouns and verbs. Java’s nouns include int, JOptionPane,
and String, along with Android-specific terms such as Activity,
Application, and Bundle. Java’s verbs involve assigning values, choosing
among alternatives, repeating actions, and taking other courses of action.

This chapter covers some of Java’s verbs. (In the next chapter, I bring in the
nouns.)

Making Decisions
When you’re writing computer programs, you’re continually hitting forks in
roads. Did the user type the correct password? If the answer is yes, let the
user work; if it’s no, kick the bum out. The Java programming language needs
a way to make a program branch in one of two directions. Fortunately, the
language has a way: It’s the if statement. The use of the if statement is
illustrated in Listing 8-1.

192 Part II: Writing Your Own Java Programs

Listing 8-1: Using an if Statement
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class TicketPrice {

 public static void main(String[] args) {
 String ageString;
 int age;
 String specialShowingString;
 String price;

 ageString = JOptionPane.showInputDialog(“Age?”);
 age = Integer.parseInt(ageString);

 specialShowingString = JOptionPane.showInputDialog
 (“Special showing (y/n)?”);

 if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”)) {
 price = “$7.00”;
 } else {
 price = “$10.00”;
 }

 JOptionPane.showMessageDialog(null,
 price, “Ticket price”,
 JOptionPane.INFORMATION_MESSAGE);
 }

}

Listing 8-1 revives a question that I pose originally in Chapter 6: How much
should a person pay for a movie ticket? Most people pay $10. But when the
movie has no special showings, youngsters (under 18) and seniors (65 and
older) pay only $7.

In Listing 8-1, a Java if statement determines a person’s eligibility for the
discounted ticket. If this condition is true:

(age < 18 || 65 <= age) && specialShowingString.
equals(“n”)

the price becomes “$7.00”; otherwise, the price becomes “$10.00”. In
either case, the code displays the price in a message box. (See Figure 8-1.)

193 Chapter 8: What Java Does (and When)

Figure 8-1:
Checking
the ticket

price.

Testing for equality
Java has several ways to test for equality: “Is this value the same as that
value?” None of these ways is the first one you’d consider. In particular,
to find out whether someone’s age is 35, you don’t write if (age = 35).
Instead, you use a double equal sign (==): if (age == 35). In Java, the
single equal sign (=) is reserved for assignment. So age = 35 means “Let
age stand for the value 35”, and age == 35 means “True or false: Does age
stand for the value 35?”

Comparing two strings is a different story. When you compare two strings,
you don’t use the double equal sign. Using it would ask a question that’s
usually not what you want to ask: “Is this string stored in exactly the same
place in memory as that other string?” Instead, you usually ask, “Does this
string have the same characters in it as that other string?” To ask the second
question (the more appropriate one), use Java’s equals method. To call
this equals method, follow one of the two strings with a dot and the word
equals, and then with a parameter list containing the other string:

if (specialShowingString.equals(“n”)) {

The equals method compares two strings to see whether they have the
same characters in them. In this paragraph’s tiny example, the variable
specialShowingString refers to a string, and the text “n” refers to
a string. The condition specialShowingString.equals(“n”) is true
if specialShowingString refers to a string whose only character is the
letter n.

194 Part II: Writing Your Own Java Programs

Java if statements
An if statement has this form:

if (condition) {
 statements to be executed when the condition is true
} else {
 statements to be executed when the condition is false
}

In Listing 8-1, the condition being tested is

(age < 18 || 65 <= age) &&
specialShowingString.equals(“n”)

The condition is either true or false — true for youngsters and seniors
when there’s no special showing and false otherwise.

Conditions in if statements
The condition in an if statement must be enclosed in parentheses. The
condition must be a boolean expression — an expression whose value is
either true or false. For example, the following condition is okay:

if (numberOfTries < 17) {

But the strange kind of condition that you can use in other (non-Java)
languages — languages such as C++ — is not okay:

if (17) { //This is incorrect.

 See Chapter 6 for information about Java’s primitive types, including the
boolean type.

Omitting braces
You can omit an if statement’s curly braces when only one statement
appears between the condition and the word else. You can also omit braces
when only one statement appears after the word else. For example, the
following chunk of code is right and proper:

if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”))
 price = “$7.00”;
else
 price = “$10.00”;

195 Chapter 8: What Java Does (and When)

The code is correct because only one statement (price = “$7.00”)
appears between the condition and the else, and only one statement (price
= “$10.00”) appears after the word else.

An if statement can also enjoy a full and happy life without an else part.
The following example contains a complete if statement:

price = “$10.00”;
if ((age < 18 || 65 <= age) &&
 specialShowingString.equals(“n”))
 price = “$7.00”;

Compound statements
An if statement is one of Java’s compound statements because an if state-
ment normally contains other Java statements. For example, the if state-
ment in Listing 8-1 contains the assignment statement price = “$7.00”
and the other assignment statement contains price = “$10.00”.

A compound statement might even contain other compound statements. In
this example:

price = “$10.00”;
if (age < 18 || 65 <= age) {
 if (specialShowingString.equals(“n”)) {
 price = “$7.00”;
 }
}

one if statement (with the condition age < 18 || 65 <= age) contains
another if statement (with the condition specialShowingString.
equals(“n”)).

A detour concerning Android
screen densities
A device’s screen density is the number of pixels squeezed into each inch of
the screen. Older devices and less expensive devices have low screen
densities, and newer, more expensive devices compete to have increasingly
higher screen densities.

Android supports a wide range of screen densities. It also goes to the trouble
of grouping the densities, as I show in Table 8-1.

196 Part II: Writing Your Own Java Programs

Table 8-1 Android Screen Densities
Name Acronym Approximate*

Number of Dots per
Inch (dpi)

Fraction of the
Default Density

DENSITY_LOW ldpi 120 3⁄4
DENSITY_MEDIUM mdpi 160 1
DENSITY_HIGH hdpi 240 11⁄5
DENSITY_XHIGH xhdpi 320 2
DENSITY_XXHIGH xxhdpi 480 3
* When the screen density of a device doesn’t match a number in Column 3 of Table 8-1, Android does
its best with the existing categories. For example, Android classifies density 265 dpi in the hdpi group.

Fun facts: DENSITY_XHIGH is the same as 1080p high-definition television in
the United States. A seldom-used Android density, DENSITY_TV with 213 dpi,
represents 720p television.

Screen densities can make a big difference. An image that looks good on
a low-density screen might look choppy on a high-density screen. And an
image designed for a high-density screen might be much too large for a low-
density screen. That’s why, when you create a new application, Android
offers to create several different icons for your app. (See Figure 8-2. And I’m
sorry, Paul — it’s another cat picture!)

Figure 8-2:
One icon;

many sizes.

197 Chapter 8: What Java Does (and When)

Choosing among many alternatives
A Java if statement creates a fork in the road: The computer chooses
between two alternatives. But some problems lend themselves to forks with
many prongs. What’s the best way to decide among five or six alternative
actions?

For me, multipronged forks are scary. In my daily life, I hate making decisions.
(If a problem crops up, I would rather have it be someone else’s fault.) So,
writing the previous sections (on making decisions with Java’s if statement)
knocked the stuffing right out of me. That’s why my mind boggles as I begin
this section on choosing among many alternatives.

To prepare for this section’s example, I created the four icons shown in
Figure 8-2. The icons are for four of the densities depicted in Table 8-1. I have
a medium-density icon, a high-density icon, an extra-high-density icon, and an
extra-extra-high-density icon.

I named each icon cat.png and placed the four icons into four different
folders. I added a fifth folder for the ic_dialog_alert.png icon, as shown
in Figure 8-3.

Figure 8-3:
Folders

containing
images.

The folder structure matches the one you’d see in an Android app. To keep
the example simple, I created a plain, old Java program to display the icons.
The program is shown in Listing 8-2.

Listing 8-2: Switching from One Icon to Another
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIcons {

 public static void main(String[] args) {
 String densityCodeString = JOptionPane

(continued)

198 Part II: Writing Your Own Java Programs

Listing 8-2 (continued)
 .showInputDialog(“Density?”);

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:
 iconFileName = “res/drawable-xhdpi/cat.png”;
 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

 The code in Listing 8-2 is a standard Oracle Java program. The code illustrates
some ideas about Android screen densities, but the program is not an Android
application. This program can’t run on an Android device. In Chapter 10, I
begin building some examples that run on Android devices.

In Listing 8-2, the program asks the user to enter a screen-density value. If
the user types 160, for example, the program responds by displaying my
medium-density icon (the image in the cat.png file in my res/drawable-
mdpi directory). Two runs of the program are shown in Figure 8-4.

Why the medium-density icon? The program enters the switch statement
in Listing 8-2. The switch statement contains an expression (the value of
densityCode). The switch statement also contains case clauses, followed

199 Chapter 8: What Java Does (and When)

(optionally) by a default clause. The program compares the value of
densityCode with 160 (the number in the first of the case clauses). If the
value of densityCode is equal to 160, the program executes the statements
after the words case 160.

Figure 8-4:
Running
the code
shown in

Listing 8-2.

In Listing 8-2, the statements after case 160 are

iconFileName = “res/drawable-mdpi/cat.png”;
message = “mdpi”;
break;

The first two statements set the values of iconFileName and message in
preparation for the display of a message box. The third statement (the break
statement) jumps out of the entire switch statement, skipping past all the
other case clauses and past the default clause to get to the last part of the
program.

After the switch statement, the statement

ImageIcon icon = new ImageIcon(iconFileName);

creates a new icon variable to refer to the image in the iconFileName file.
(I have more to say about this kind of statement in Chapter 9.) Finally, the
statement

JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);

displays the icon image in a message box on the user’s screen. (Refer to
Figure 8-4.)

200 Part II: Writing Your Own Java Programs

A simple slash?
Both the Windows and Macintosh operating
systems have directories (also known as
folders), and these directories may contain
subdirectories, which in turn may contain their
own subdirectories. At the bottom of the food
chain is the humble file containing a document,
an image, a sound, or whatever. On my
Windows computer, one of my cat.png files
lives in a directory named drawable-hdpi,

which is inside a directory named res, which
is inside an Eclipse project directory named
08-02. The Eclipse project directory is inside
my Eclipse workspace directory, which in
turn is inside my Barry directory, which is
inside my Users directory, as shown in the
sidebar figure. It’s a long chain of stuff leading
eventually to a picture of a cat.

When you’re visiting Times Square in New
York City, you can say, “I’m walking to the
McDonald’s on 34th Street.” You don’t have
to say “I’m walking to the McDonald’s on 34th
Street in New York City, USA.” In a similar
way, my code doesn’t have to refer to the
cat.png file by naming a whole bunch of
directories and subdirectories. Instead, I can
take advantage of the fact that Listing 08-02 is
in my 08-02 directory. From the viewpoint of
the 08-02 directory, I can refer directly to the
res directory, which is contained immediately
inside the 08-02 directory. In both the
Windows and Macintosh operating system, I
can use the forward slash character (/) to point
from the 08-02 directory to my cat picture:

res/drawable-hdpi/cat.png

In Windows, the forward slash works in many
directory-and-file situations. But the backslash
(\) is used more commonly than the forward
slash in Windows. So in Windows, I usually
refer to my cat picture this way:

res\drawable-hdpi\cat.png

But there’s a problem. In a Java string, a
single backslash (\) has a special meaning.
That special meaning depends on whatever
character appears immediately after the
backslash. For example, \n stands for “Go to
a new line,” \t stands for “Go to the next tab
stop,” and \\ stands for “A single backslash.”
In Listing 8-2, a double-quoted string such as
“res\\drawable-mdpi\\cat.png”
stands for res\drawable-mdpi\cat.
png. To the Windows operating system, this
double-backslash business is another way
to refer to the cat.png file that’s in the
drawable-mdpi subdirectory of the res
directory.

Once again, if you’re a Mac user, you use a
forward slash (/) to separate directory names,
and a forward slash has no special meaning
inside a Java string. Mac users don’t have to
worry about doubling up on slashes.

201 Chapter 8: What Java Does (and When)

Take a break
This news might surprise you: The end of a case clause (the beginning of
another case clause) doesn’t automatically make the program jump out of
the switch statement. If you forget to add a break statement at the end of a
case clause, the program finishes the statements in the case clause and then
continues executing the statements in the next case clause. Imagine that I write
the following code (and omit a break statement):

switch (densityCode) {
case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
... Etc.

With this modified code (and with densityCode equal to 160), the program
sets iconFileName to “res/drawable-mdpi/cat.png”, sets message
to “mdpi”, sets iconFileName to “res/drawable-hdpi/cat.png”,
sets message to “hdpi”, and, finally, breaks out of the switch statement
(skipping past all other case clauses and the default clause). The result is
that iconFileName has the value “res/drawable-hdpi/cat.png” (not
“res/drawable-mdpi/cat.png”) and that message has the value “hdpi”
(not “mdpi”).

This phenomenon of jumping from one case clause to another in the
absence of a break statement) is called fall-through, and, occasionally, it’s
useful. Imagine a dice game in which 7 and 11 are instant wins; 2, 3, and 12
are instant losses; and any other number (from 4 to 10) tells you to continue
playing. The code for such a game might look like this:

switch (roll) {
case 7:
case 11:
 message = “win”;
 break;
case 2:
case 3:
case 12:
 message = “lose”;
 break;
case 4:
case 5:
case 6:
case 8:
case 9:

202 Part II: Writing Your Own Java Programs

case 10:
 message = “continue”;
 break;
default:
 message = “not a valid dice roll”;
 break;
}

If you roll a 7, you execute all the statements immediately after case 7 (of
which there are none), and then you fall-through to case 11, executing the
statement that assigns “win” to the variable message.

 Every beginning Java programmer forgets to put a break statement at the end
of a case clause. When you make this mistake, don’t beat yourself up about
it. Just remember what’s causing your program’s unexpected behavior, add
break statements to your code, and move on. As you gain experience in
writing Java programs, you’ll make this mistake less and less frequently.
(You’ll still make the mistake occasionally, but not as often.)

The computer selects a case clause
When you run the code in Listing 8-2, the user doesn’t have to enter the
number 160. If the user enters 320, the program skips past the statements in
the case 160 clause and then skips past the statements in the 240 clause.
The program hits pay dirt when it reaches the case 320 clause, and executes
that clause’s statements, making iconFileName be “res/drawable-
xhdpi/cat.png” and making message be xhdpi. The case clause’s
break statement makes the program skip the rest of the stuff in the switch
statement.

The default clause
A switch statement’s optional default clause is a catchall for values that
don’t match any of the case clauses’ values. For example, if you run the
program and the user enters the number 265, the program doesn’t fix on any
of the case clauses. (To select a switch statement’s case clause, the value
after the word switch has to be an exact match of the value after the word
case.) So if densityCode is 265, the program skips past all the case clauses
and executes the code in the default clause, making iconFileName be
“res/drawable/ic_dialog_alert.png” and making message be “No
suitable icon”. In this way, the program in Listing 8-2 doesn’t mirror
Android’s screen-resolution tricks. (Android uses an existing icon even if
the screen’s density doesn’t exactly match one of the numbers 160, 240, 320,
or 480.)

203 Chapter 8: What Java Does (and When)

 The last break statement in Listing 8-2 tells the computer to jump to the end
of the switch statement, skipping any statements after the default clause.
But look again. Nothing comes after the default clause in the switch
statement! Which statements are being skipped? The answer is none. I put a
break at the end of the default clause for good measure. This extra break
statement doesn’t do anything, but it doesn’t do any harm, either.

Some formalities concerning
Java switch statements
A switch statement has the following form:

switch (expression) {
case constant1:
 statements to be executed when the
 expression has value contstant1
case constant2:
 statements to be executed when the
 expression has value contstant2
case ...

default:
 statements to be executed when the
 expression has a value different from
 any of the constants
}

You can’t put any old expression in a switch statement. The expression
that’s tested at the start of a switch statement must have one of these
elements:

 ✓ A primitive type: char, byte, short, or int

 ✓ A reference type: Character, Byte, Short, or Integer

 ✓ An enum type

An enum type is a type whose values are limited to the few that you declare.
For example, the line

enum TrafficSignal {GREEN, YELLOW, RED};

defines a type whose only values are GREEN, YELLOW, and RED. Elsewhere in
your code, you can write

204 Part II: Writing Your Own Java Programs

TrafficSignal signal;
signal = TrafficSignal.GREEN;

to make use of the TrafficSignal type.

Starting with Java 7, you can put a String type expression at the start of
a switch statement. But the last time I checked, Java 5 or 6 is required for
developing Android code. You can’t use Java 7 or later to create an Android
app. So with densityCodeString declared to be of type String, you
can’t create a switch statement whose first line is switch (display
CodeString), and you can’t have a case clause that begins with case
“hdpi”.

Repeating Instructions
Over and Over Again

In 1966, the company that brings you Head & Shoulders shampoo made
history. On the back of the bottle, the directions for using the shampoo read,
“Lather, rinse, repeat.” Never before had a complete set of directions (for
doing anything, let alone shampooing hair) been summarized so succinctly.
People in the direction-writing business hailed it as a monumental achieve-
ment. Directions like these stood in stark contrast to others of the time. (For
instance, the first sentence on a can of bug spray read, “Turn this can so that
it points away from your face.” Duh!)

Aside from their brevity, the characteristic that made the Head & Shoulders
directions so cool was that, with three simple words, they managed to
capture a notion that’s at the heart of all instruction-giving: repetition. That
last word, repeat, turned an otherwise bland instructional drone into a
sophisticated recipe for action.

The fundamental idea is that when you’re following directions, you don’t just
follow one instruction after another. Instead, you make turns in the road. You
make decisions (“If HAIR IS DRY, then USE CONDITIONER,”) and you repeat
steps (“LATHER-RINSE, and then LATHER-RINSE again.”). In application
development, you use decision-making and repetition all the time.

205 Chapter 8: What Java Does (and When)

Check, and then repeat
The program in Listing 8-2 is nice (if I say so myself). But the program has
its flaws. I expect the user to type a number and for things to go wrong if the
user doesn’t type a number, as shown in Figure 8-5. The program doesn’t
even like numbers with decimal points.

Figure 8-5:
My program

wants
integers!

You should anticipate all kinds of user input. To do that, you have several
alternatives. One thing you can do is to dismiss bad input and ask the user
for better input — so you might have to repeat your input request over and
over again. Listing 8-3 shows you one way to do it.

206 Part II: Writing Your Own Java Programs

Listing 8-3: Look Before You Leap
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithWhile {

 public static void main(String[] args) {
 String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

 while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”)) {

 densityCodeString = JOptionPane
 .showInputDialog(“Invalid input. Try again:”);

 }

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = „res/drawable-mdpi/cat.png“;
 message = „mdpi“;
 break;
 case 240:
 iconFileName = „res/drawable-hdpi/cat.png“;
 message = „hdpi“;
 break;
 case 320:
 iconFileName = „res/drawable-xhdpi/cat.png“;
 message = „xhdpi“;
 break;
 case 480:
 iconFileName = „res/drawable-xxhdpi/cat.png“;
 message = „xxhdpi“;
 break;
 default:
 iconFileName = „res/drawable/ic_dialog_alert.png“;
 message = „No suitable icon“;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 „Icon“, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

207 Chapter 8: What Java Does (and When)

A run of the code in Listing 8-3 is shown in Figure 8-6.

Figure 8-6:
Try, try, try

again.

The code in Listing 8-3 begins by displaying an input dialog box with the
“Density?” message. If the user responds with a value other than 160, 240,
320, or 480, the code dives into its while statement, displaying the message
“Invalid input. Try again:” in the input dialog box over and over
again. The code continues displaying this input dialog box until the user
responds with one of the four valid values — 160, 240, 320, or 480.

In plain language, the while statement in Listing 8-3 says:

while (densityCodeString isn’t 160 and
 densityCodeString isn’t 240 and
 densityCodeString isn’t 320 and
 densityCodeString isn’t 480) {

 get a value for the densityCodeString

}

In even plainer language, the while statement says:

208 Part II: Writing Your Own Java Programs

while (densityCodeString isn’t acceptable) {

 get a value for the densityCodeString

}

The while statement is one of Java’s compound statements. It’s also one of
Java’s looping statements because, when executing a while statement, the
computer can go into a loop, spinning around and around, executing a
certain chunk of code over and over again.

In a looping statement, each go-around is an iteration.

 If you stare at Listing 8-3, you might notice this peculiarity: The while
statement at the top of the program ensures that the density is either 160,
240, 320, or 480. But toward the end of the program, the switch statement’s
default clause provides for the possibility that the density isn’t one of those
160, 240, 320, or 480 values. What gives? The answer is that it never hurts to
double-check. You may think that your while statement can spit out only
160, 240, 320, or 480, but you might have forgotten about an unusual scenario
that causes the density to be another, strange number. And what happens if
another developer (someone trying to improve on your code) messes with
your while statement and lets bad density values trickle over to the switch
statement? Adding a default clause to a switch statement is never costly,
and the default clause always adds an extra layer of protection from errors.

Some formalities concerning
Java while statements
A while statement has this form:

while (condition) {
 statements inside the loop
}

The computer repeats the statements inside the loop over and over again as
long as the condition in parentheses is true:

Check to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

And so on.

209 Chapter 8: What Java Does (and When)

At some point, the while statement’s condition becomes false. (Generally,
this happens because one of the statements in the loop changes one of the
program’s values.) When the condition becomes false, the computer stops
repeating the statements in the loop. (That is, the computer stops iterating.)
Instead, the computer executes whatever statements appear immediately
after the end of the while statement:

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Execute the statements inside the loop.

Check again to make sure that the condition is true;
Oops! The condition is no longer true!
Execute the code immediately after the while statement.

In Listing 8-3, the code

int densityCode =
 Integer.parseInt(densityCodeString);

comes immediately after the end of the while statement.

Variations on a theme
Many of the if statement’s tricks apply to while statements as well. A
while statement is a compound statement, so it might contain other com-
pound statements. And when a while statement contains only one state-
ment, you can omit curly braces. So the following code is equivalent to the
while statement in Listing 8-3:

while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”))

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

After all, the code

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

is only one (admittedly large) assignment statement.

210 Part II: Writing Your Own Java Programs

 A while statement’s condition might become false in the middle of an
iteration, before all the iteration’s statements have been executed. When this
happens, the computer doesn’t stop the iteration dead in its tracks. Instead,
the computer executes the rest of the loop’s statements. After executing the
rest of the loop’s statements, the computer checks the condition (finding the
condition to be false) and marches on to whatever code comes immediately
after the while statement.

 The previous icon should come with some fine print. To be painfully accurate,
I should point out a few ways for you to stop abruptly in the middle of a
loop iteration. You can execute a break statement to jump out of a while
statement immediately. (It’s the same break statement that you use in a
switch statement.) Alternatively, you can execute a continue statement
(the word continue, followed by a semicolon) to jump abruptly out of an
iteration. When you jump out with a continue statement, the computer ends
the current iteration immediately and then checks the while statement’s
condition. A true condition tells the computer to begin the next loop iteration.
A false condition tells the computer to go to whatever code comes after the
while statement.

Priming the pump
Java’s while statement uses the policy “Look before you leap.” The computer
always checks a condition before executing the statements inside the loop.
Among other things, this forces you to prime the loop. When you prime a
loop, you create statements that affect the loop’s condition before the
beginning of the loop. (Think of an old-fashioned water pump and how
you have to prime the pump before water comes out.) In Listing 8-3, the
initialization in

String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

primes the loop. This initialization — the = part — gives densityCodeString
its first value so that when you check the condition !densityCodeString.
equals(“160”) && ... Etc. for the first time, the variable density
CodeString has a value that’s worth comparing.

Here’s something you should consider when you create a while statement:
The computer can execute a while statement without ever executing the
statements inside the loop. For example, the code in Listing 8-3 prompts the
user one time before the while statement. If the user enters a good density
value, the while statement’s condition is false. The computer skips past the
statement inside the loop and goes immediately to the code after the while
statement. The computer never displays the Invalid input. Try again
prompt.

211 Chapter 8: What Java Does (and When)

Repeat, and then check
The while statement (which I describe in the previous section) is the
workhorse of repetition in Java. Using while statements, you can do any
kind of looping that you need to do. But sometimes it’s convenient to have
other kinds of looping statements. For example, occasionally you want to
structure the repetition so that the first iteration takes place without
checking a condition. In that situation, you use Java’s do statement. Listing 8-4
is almost the same as Listing 8-3. But in Listing 8-4, I replace a while statement
with a do statement.

Listing 8-4: Leap before You Look
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithDo {

 public static void main(String[] args) {
 String densityCodeString =
 JOptionPane.showInputDialog(“Density?”);

 do {

 densityCodeString = JOptionPane
 .showInputDialog(“Density?”);

 } while (!densityCodeString.equals(“160”) &&
 !densityCodeString.equals(“240”) &&
 !densityCodeString.equals(“320”) &&
 !densityCodeString.equals(“480”));

 int densityCode =
 Integer.parseInt(densityCodeString);
 String iconFileName = null, message = null;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:

(continued)

212 Part II: Writing Your Own Java Programs

Listing 8-4 (continued)
 iconFileName = “res/drawable-xhdpi/cat.png”;

 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
}

With a do statement, the computer jumps right in, takes action, and then
checks a condition to see whether the result of the action is what you want. If
it is, execution of the loop is done. If not, the computer goes back to the top
of the loop for another go-round.

Some formalities concerning
Java do statements
A do statement has the following form:

do {
 statements inside the loop
} while (condition)

The computer executes the statements inside the loop and then checks to see
whether the condition in parentheses is true. If the condition in parentheses
is true, the computer executes the statements inside the loop again. And so on.

Java’s do statement uses the policy “Leap before you look.” The statement
checks a condition immediately after each iteration of the statements inside
the loop.

213 Chapter 8: What Java Does (and When)

A do statement is good for situations in which you know for sure that
you should perform the loop’s statements at least once. Unlike a while
statement, a do statement generally doesn’t need to be primed. On the
downside, a do statement doesn’t lend itself to situations in which the first
occurrence of an action is slightly different from subsequent occurrences.
For example, with the properly primed while statement in Listing 8-3, the
message in the first input dialog box is Density? and all subsequent messages
say Invalid input. Try again. With the do statement in Listing 8-4, all
input dialog boxes simply say Density?.

Count, count, count
This section’s example is a kludge.

kludge (klooj) n. Anything that solves a problem in an awkward way,
either to fix the problem quickly or (in Chapter 8 of Java Programming For
Android Developers For Dummies) to illustrate a point.

In fact, after examining this example, you might wonder whether anyone ever
uses the Java feature that’s illustrated in this section. Well, this section’s
feature (the for statement) appears quite frequently in Java programs. Life
is filled with examples of counting loops, and app development mirrors life —
or is it the other way around? When you tell a device what to do, you’re often
telling it to display three lines, process ten accounts, dial a million phone
numbers, or whatever.

For example, to display the first thousand rows of an Android data table, you
might use this Java for statement:

cursor.moveToFirst();

for (int i = 0; i < 999; i++) {
 String _id = cursor.getString(0);
 String name = cursor.getString(1);
 String amount = cursor.getString(2);
 textViewDisplay.append(i + “: “ + _id + “ “ +
 name + “ “ + amount + “\n”);
 cursor.moveToNext();
}

Unfortunately, examples involving Android’s data tables and phone numbers
can be quite complicated. Start with a simple example — one that displays
icons in three different sizes. Listing 8-5 has the code.

214 Part II: Writing Your Own Java Programs

Listing 8-5: A Loop That Counts
package com.allmycode.icons;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ShowIconsWithFor {

 public static void main(String[] args) {

 int densityCode;
 String iconFileName = null, message = null;

 for (int i = 1; i <= 3; i++) {
 densityCode = i * 160;

 switch (densityCode) {
 case 160:
 iconFileName = “res/drawable-mdpi/cat.png”;
 message = “mdpi”;
 break;
 case 240:
 iconFileName = “res/drawable-hdpi/cat.png”;
 message = “hdpi”;
 break;
 case 320:
 iconFileName = “res/drawable-xhdpi/cat.png”;
 message = “xhdpi”;
 break;
 case 480:
 iconFileName = “res/drawable-xxhdpi/cat.png”;
 message = “xxhdpi”;
 break;
 default:
 iconFileName = “res/drawable/ic_dialog_alert.png”;
 message = “No suitable icon”;
 break;
 }

 ImageIcon icon = new ImageIcon(iconFileName);
 JOptionPane.showMessageDialog(null, message,
 “Icon”, JOptionPane.INFORMATION_MESSAGE, icon);
 }
 }
}

215 Chapter 8: What Java Does (and When)

Listing 8-5 declares an int variable named i. The starting value of i is 1. As
long as the condition i <= 3 is true, the computer executes the statements
inside the loop and then executes i++ (adding 1 to the value of i). After
three iterations, the value of i gets to be 4, in which case the condition i <=
3 is no longer true. At that point, the program stops repeating the statements
inside the loop and moves on to execute any statements that come after
the for statement. (Ha-ha! Listing 8-5 has no statements after the for
statement!)

In this example, the statements inside the loop include

densityCode = i * 160;

which makes densityCode be either 160, 320, or 480 (depending on the
value of i). The loop’s statements also include a big switch statement
(which creates icon and message values from the densityCode) and a
couple of statements to display the icon and the message. The result is the
display, one after another, of the three icons for the three densities 160, 320,
and 480. Listing 8-5 displays all three icons, one after another, without ever
getting input from the user, as shown in Figure 8-7.

Figure 8-7:
One run of

the code in
Listing 8-5.

216 Part II: Writing Your Own Java Programs

Some formalities concerning
Java for statements
A for statement has the following form:

for (initialization ; condition ; update) {
 statements inside the loop
}

 ✓ An initialization (such as int i = 1 in Listing 8-5) defines the action to
be taken before the first loop iteration.

 ✓ A condition (such as i <= 3 in Listing 8-5) defines the element to be
checked before an iteration. If the condition is true, the computer
executes the iteration. If the condition is false, the computer doesn’t
execute the iteration, and it moves on to execute whatever code comes
after the for statement.

 ✓ An update (such as i++ in Listing 8-5) defines an action to be taken at
the end of each loop iteration.

You can omit the curly braces when only one statement is inside the loop.

What’s Next?
This chapter describes several ways to jump from one place in your code to
another.

Java provides other ways to move from place to place in a program, including
enhanced for statements and try statements. But descriptions of these
elements don’t belong in this chapter. To understand the power of enhanced
for statements and try statements, you need a firm grasp of classes and
objects, so Chapter 9 dives fearlessly into the classes-and-objects waters.

I’m your swimming instructor. Everyone into the pool!

Part III
Working with the Big Picture:
Object-Oriented Programming

 Check out the article “Classes and Objects” (and more) online at www.dummies.
com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Understanding object-oriented programming (at last!)
 ✓ Reusing code
 ✓ Establishing lines of communication among the parts of

your app

Chapter 9

Why Object-Oriented Programming
Is Like Selling Cheese

In This Chapter
▶ The truth about object-oriented programming
▶ Why a class is actually a Java type
▶ An end to the mystery surrounding words like static

A
ndy’s Cheese and Java Emporium carries fine cheeses and freshly
brewed java from around the world (especially from Java in Indonesia).

The Emporium is in Cheesetown, Pennsylvania, a neighborhood along the
Edenville–Cheesetown Road in Franklin County.

The emporium sells cheese by the bag, each containing a certain variety,
such as Cheddar, Swiss, Munster, or Limburger. Bags are labeled by weight
and by the number of days the cheese was aged (admittedly, an approximation).
Bags also carry the label Domestic or Imported, depending on the cheese’s
country of origin.

Before starting up the emporium, Andy had lots of possessions — material
and otherwise. He had a family, a cat, a house, an abandoned restaurant
property, a bunch of restaurant equipment, a checkered past, and a mountain
of debt. But for the purpose of this narrative, Andy had only one thing: a
form. Yes, Andy had developed a form for keeping track of his emporium’s
inventory. The form is shown in Figure 9-1.

Figure 9-1:
An online

form.

220 Part III: Working with the Big Picture: Object-Oriented Programming

Exactly one week before the emporium’s grand opening, Andy’s supplier
delivered one bag of cheese. Andy entered the bag’s information into the
inventory form. The result is shown in Figure 9-2.

Figure 9-2:
A virtual bag

of cheese.

Andy had only a form and a bag of cheese (which isn’t much to show for all
his hard work), but the next day the supplier delivered five more bags of
cheese. Andy’s second entry looked like the one shown in Figure 9-3, and the
next several entries looked similar.

Figure 9-3:
Another vir-

tual bag of
cheese.

At the end of the week, Andy was giddy: He had exactly one inventory form
and six bags of cheese.

The story doesn’t end here. As the grand opening approached, Andy’s sup-
plier brought many more bags so that, eventually, Andy had his inventory
form and several hundred bags of cheese. The business even became an icon
on Interstate Highway 81 in Cheesetown, Pennsylvania. But as far as you’re
concerned, the business had, has, and always will have only one form and
any number of cheese bags.

That’s the essence of object-oriented programming!

221 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Classes and Objects
Java is an object-oriented programming language. A program that you create
in Java consists of at least one class.

A class is like Andy’s blank form, described in this chapter’s introduction.
That is, a class is a general description of some kind of thing. In the intro-
duction to this chapter, the class (the form) describes the characteristics
that any bag of cheese possesses. But imagine other classes. For example,
Figure 9-4 illustrates a bank account class:

Figure 9-4:
A bank

account
class.

Figure 9-5 illustrates a sprite class, which is a class for a character in a com-
puter game:

Figure 9-5:
A sprite

class.

222 Part III: Working with the Big Picture: Object-Oriented Programming

What is a class, really?
In practice, a class doesn’t look like any of the forms in Figures 9-1 through
9-5. In fact, a class doesn’t look like anything. Instead, a Java class is a bunch
of text describing the kinds of things that I refer to as “blanks to be filled in.”
Listing 9-1 contains a real Java class — the kind of class you write when you
program in Java.

Listing 9-1: A Class in the Java Programming Language
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;
}

 As a developer, your primary job is to create classes. You don’t develop
attractive online forms like the form in Figure 9-1. Instead, you write Java
language code — code containing descriptions, like the one in Listing 9-1.

Compare Figure 9-1 with Listing 9-1. In what ways are they the same, and in
what ways are they different? What does one have that the other doesn’t
have?

 ✓ The form in Figure 9-1 appears on a user’s screen. The code in
Listing 9-1 does not.

 A Java class isn’t necessarily tied to a particular display. Yes, you can
display a bank account on a user’s screen. But the bank account isn’t a
bunch of items on a computer screen — it’s a bunch of information in
the bank’s computers.

 In fact, some Java classes are difficult to visualize. Android’s SQLite
OpenHelper class assists developers in the creation of databases. An
SQLiteOpenHelper doesn’t look like anything in particular, and
certainly not an online form or a bag of cheese.

 ✓ Online forms appear in some contexts but not in others. In contrast,
classes affect every part of every Java program’s code.

 Forms show up on web pages, in dialog boxes, and in other situations.
But when you use a word processing program to type a document, you
deal primarily with free-form input. I didn’t write this paragraph by
filling in some blanks. (Heaven knows! I wish I could!)

223 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 The paragraphs I’ve written started out as part of a document in an
Android word processing application. In the document, every paragraph
has its own alignment, borders, indents, line spacing, styles, and many
other characteristics. As a Java class, a list of paragraph characteristics
might look something like this:
class Paragraph {
 int alignment;
 int borders;
 double leftIndent;
 double lineSpacing;
 int style;
}

 When I create a paragraph, I don’t fill in a form. Instead, I type words,
and the underlying word processing app deals silently with its
Paragraph class.

 ✓ The form shown in Figure 9-1 contains several fields, and so does the
code in Listing 9-1.

 In an online form, a field is a blank space — a place that’s eventually
filled with specific information. In Java, a field is any characteristic that
you (the developer) attribute to a class. The BagOfCheese class in
Listing 9-1 has four fields, and each of the four fields has a name: kind,
weight, daysAged, or isDomestic.

 Like an online form, a Java class describes items by listing the
characteristics that each of the items has. Both the form in Figure 9-1
and the code in Listing 9-1 say essentially the same thing: Each bag of
cheese has a certain kind of cheese, a certain weight, a number of days
that the cheese was aged, and a domestic-or-imported characteristic.

 ✓ The code in Listing 9-1 describes exactly the kind of information that
belongs in each blank space. The form in Figure 9-1 is much more
permissive.

 Nothing in Figure 9-1 indicates what kinds of input are permitted in the
Weight field. The weight in pounds can be a whole number (0, 1, 2, and
so on) or a decimal number (such as 3.14159, the weight of a big piece
of “pie”). What happens if the user types the words three pounds into
the form in Figure 9-1? Does the form accept this input, or does the
computer freeze up? A developer can add extra code to test for valid
input in a form, but, on its own, a form cares little about the kind of
input that the user enters.

 In contrast, the code in Listing 9-1 contains this line:
double weight;

224 Part III: Working with the Big Picture: Object-Oriented Programming

 This line tells Java that every bag of cheese has a characteristic named
weight and that a bag’s weight must be of type double. Similarly, each
bag’s daysAged value is an int, each bag’s isDomestic value is
boolean, and each bag’s kind value has the type String.

 The unfortunate pun in the previous paragraph makes life more difficult
for me, the author! A Java String has nothing to do with the kind of
cheese that peels into strips. A Java String is a sequence of characters,
like the sequence “Cheddar” or the sequence “qwoiehasljsal” or
the sequence “Go2theMoon!”. So the String kind line in Listing 9-1
indicates that a bag of cheese might contain “Cheddar”, but it might
also contain “qwoiehasljsal” cheese or “Go2theMoon!” cheese.
Well, that’s what happens when Andy starts a business from scratch.

What is an object?
At the start of this chapter’s detailed Cheese Emporium exposé, Andy had
nothing to his name except an online form — the form in Figure 9-1. Life was
simple for Andy and his dog Fido. But eventually the suppliers delivered bags
of cheese. Suddenly, Andy had more than just an online form —he had things
whose characteristics matched the fields in the form. One bag had the
characteristics shown in Figure 9-2; another bag had the characteristics
shown in Figure 9-3.

In the terminology of object-oriented programming, each bag of cheese is an
object, and each bag of cheese is an instance of the class in Listing 9-1.

You can also think of classes and objects as part of a hierarchy. The
BagOfCheese class is at the top of the hierarchy, and each instance of the
class is attached to the class itself. See Figures 9-6 and 9-7.

Figure 9-6:
First, Andy

has a class.

 The diagrams in Figures 9-6 and 9-7 are part of the standardized Unified
Modeling Language (UML). For more info about UML, visit www.omg.org/
spec/UML/.

http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/

225 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Figure 9-7:
Later, Andy
has a class

and two
objects.

 An object is a particular thing. (For Andy, an object is a particular bag of
cheese.) A class is a description with blanks to be filled in. (For Andy, a class
is a form with four blank fields: a field for the kind of cheese, another field for
the cheese’s weight, a third field for the number of days aged, and a fourth
field for the Domestic-or-Imported designation.)

And don’t forget: Your primary job is to create classes. You don’t develop
attractive online forms like the form in Figure 9-1. Instead, you write Java
language code — code containing descriptions, like the one in Listing 9-1.

Creating objects
Listing 9-2 contains real-life Java code to create two objects — two instances
of the class in Listing 9-1.

Listing 9-2: Creating Two Objects
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 = new BagOfCheese();
 bag1.kind = “Cheddar”;
 bag1.weight = 2.43;
 bag1.daysAged = 30;

(continued)

226 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-2 (continued)
 bag1.isDomestic = true;

 BagOfCheese bag2 = new BagOfCheese();
 bag2.kind = “Blue”;
 bag2.weight = 5.987;
 bag2.daysAged = 90;
 bag2.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag1.kind + “, “ +
 bag1.weight + “, “ +
 bag1.daysAged + “, “ +
 bag1.isDomestic);

 JOptionPane.showMessageDialog(null,
 bag2.kind + “, “ +
 bag2.weight + “, “ +
 bag2.daysAged + “, “ +
 bag2.isDomestic);
 }
}

A run of the code in Listing 9-2 is shown in Figure 9-8.

Figure 9-8:
Running the

code from
Listing 9-2.

 To vary the terminology, I might say that the code in Listing 9-2 creates
“two BagOfCheese objects” or “two BagOfCheese instances,” or I might
say that the new BagOfCheese() statements in Listing 9-2 instantiate the
BagOfCheese class. One way or another, Listing 9-1 declares the existence of
one class, and Listing 9-2 declares the existence of two objects.

 In Listing 9-2, each use of the words new BagOfCheese() is a constructor call.
For details, see the “Calling a constructor” section later in this chapter.

227 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 To run the code in Listing 9-2, you put two Java files (BagOfCheese.java
from Listing 9-1 and CreateBags.java from Listing 9-2) in the same Eclipse
project.

In Listing 9-2, I use ten statements to create two bags of cheese. The first
statement (BagOfCheese bag1 = new BagOfCheese()) does three
things:

 ✓ With the words
BagOfCheese bag1

 the first statement declares that the variable bag1 refers to a bag of
cheese.

 ✓ With the words
new BagOfCheese()

 the first statement creates a bag with no particular cheese in it. (If it
helps, you can think of it as an empty bag reserved for eventually
storing cheese.)

 ✓ Finally, with the equal sign, the first statement makes the bag1 variable
refer to the newly created bag.

The next four statements in Listing 9-2 assign values to the fields of bag1:

bag1.kind = “Cheddar”;
bag1.weight = 2.43;
bag1.daysAged = 30;
bag1.isDomestic = true;

 To refer to one of an object’s fields, follow a reference to the object with a dot
and then the field’s name. (For example, follow bag1 with a dot, and then the
field name kind.)

The next five statements in Listing 9-2 do the same for a second variable,
bag2, and a second bag of cheese.

Reusing names
In Listing 9-2, I declare two variables — bag1 and bag2 — to refer to two
different BagOfCheese objects. That’s fine. But sometimes having only one
variable and reusing it for the second object works just as well, as shown in
Listing 9-3.

228 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-3: Reusing the bag Variable
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Cheddar”;
 bag.weight = 2.43;
 bag.daysAged = 30;
 bag.isDomestic = true;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);

 bag = new BagOfCheese();
 bag.kind = “Blue”;
 bag.weight = 5.987;
 bag.daysAged = 90;
 bag.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

In Listing 9-3, when the computer executes the second bag = new
BagOfCheese() statement, the old object (the bag containing cheddar) has
disappeared. Without bag (or any other variable) referring to that cheddar
object, there’s no way your code can do anything with the cheddar object.
Fortunately, by the time you reach the second bag = new BagOfCheese()
statement, you’re finished doing everything you want to do with the original
cheddar bag. In this case, reusing the bag variable is acceptable.

 When you reuse a variable (like the one and only bag variable in Listing 9-3),
you do so by using an assignment statement, not an initialization. In other
words, you don’t write BagOfCheese bag a second time in your code. If you
do, you see error messages in the Eclipse editor.

229 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 To be painfully precise, you can, in fact, write BagOfCheese bag more than
once in the same piece of code. For an example, see the use of shadowing later
in this chapter, in the “Constructors with parameters” section.

In Listing 9-1, none of the BagOfCheese class’s fields is final. In other
words, the class’s code lets you reassign values to the fields inside a
BagOfCheese object. With this information in mind, you can shorten the
code in Listing 9-3 even more, as shown in Listing 9-4.

Listing 9-4: Reusing a bag Object’s Fields
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Cheddar”;
 bag.weight = 2.43;
 bag.daysAged = 30;
 bag.isDomestic = true;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);

 // bag = new BagOfCheese();
 bag.kind = “Blue”;
 bag.weight = 5.987;
 bag.daysAged = 90;
 bag.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

With the second constructor call in Listing 9-4 commented out, you don’t
make the bag variable refer to a new object. Instead, you economize by
assigning new values to the existing object’s fields.

230 Part III: Working with the Big Picture: Object-Oriented Programming

In some situations, reusing an object’s fields can be more efficient (quicker
to execute) than creating a new object. But whenever I have a choice, I prefer
to write code that mirrors real data. If an actual bag’s content doesn’t change
from cheddar cheese to blue cheese, I prefer not to change a BagOfCheese
object’s kind field from “Cheddar” to “Blue”.

Calling a constructor
In Listing 9-2, the words new BagOfCheese() look like method calls, but
they aren’t — they’re constructor calls. A constructor call creates a new
object from an existing class. You can spot a constructor call by noticing that

 ✓ A constructor call starts with Java’s new keyword:
new BagOfCheese()

 and

 ✓ A constructor call’s name is the name of a Java class:
new BagOfCheese()

When the computer encounters a method call, the computer executes the
statements inside a method’s declaration. Similarly, when the computer
encounters a constructor call, the computer executes the statements inside
the constructor’s declaration. When you create a new class (as I did in
Listing 9-1), Java can create a constructor declaration automatically. If you
want, you can type the declaration’s code manually. Listing 9-5 shows you
what the declaration’s code would look like:

Listing 9-5: The Parameterless Constructor
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }
}

In Listing 9-5, the boldface code

BagOfCheese() {
}

231 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

is a very simple constructor declaration. This declaration (unlike most
constructor declarations) has no statements inside its body. This declaration
is simply a header (BagOfCheese()) and an empty body ({}).

 You can type Listing 9-5 exactly as it is. Alternatively, you can omit the code in
boldface type, and Java creates that constructor for you automatically. (You
don’t see the constructor declaration in the Eclipse editor, but Java behaves
as if the constructor declaration exists.) To find out when Java creates a
constructor declaration automatically and when it doesn’t, see the
“Constructors with parameters” section, later in this chapter.

A constructor’s declaration looks much like a method declaration. But a
constructor’s declaration differs from a method declaration in two ways:

 ✓ A constructor’s name is the same as the name of the class whose
objects the constructor constructs.

 In Listing 9-5, the class name is BagOfCheese, and the constructor’s
header starts with the name BagOfCheese.

 ✓ Before the constructor’s name, the constructor’s header has no type.

 Unlike a method header, the constructor’s header doesn’t say int
BagOfCheese() or even void BagOfCheese(). The header simply
says BagOfCheese().

The constructor declaration in Listing 9-5 contains no statements. That isn’t
typical of a constructor, but it’s what you get in the constructor that Java
creates automatically. With or without statements, calling the constructor in
Listing 9-5 creates a brand-new BagOfCheese object.

More About Classes and Objects
(Adding Methods to the Mix)

In Chapters 5 and 7, I introduce parameter passing. In those chapters, I
unobtrusively avoid details about passing objects to methods. (At least, I
hope it’s unobtrusive.) In this chapter, I shed my coy demeanor and face the
topic (passing objects to methods) head-on.

I start with an improvement on an earlier example. The code in Listing 9-2
contains two nasty-looking showMessageDialog calls. You can streamline
the code there by moving the calls to a method. Here’s how:

 1. View the code from Listing 9-2 in the Eclipse editor.

232 Part III: Working with the Big Picture: Object-Oriented Programming

 The CreateBags.java file is in the 09-01 project that you import in
Chapter 2.

 2. Use the mouse to select the entire statement containing the first call to
JOptionPane.showMessagedialog.

 Be sure to highlight all words in the statement, starting with the word
JOptionPane and ending with the semicolon four lines later.

 3. On the Eclipse main menu, choose Refactor➪Extract Method.

 The Extract Method dialog box in Eclipse appears, as shown in Figure 9-9.

Figure 9-9:
The Extract

Method dia-
log box.

 4. In the Method Name field in the Extract Method dialog box, type
displayBag.

 5. (Optional) In the Name column in the Extract Method dialog box,
change bag1 to bag.

 6. Make sure that a check mark appears in the box labeled Replace 1
Additional Occurrence of Statements with Method.

 This check mark indicates that Eclipse will replace both show
MessageDialog calls with a call to the new displayBag method.

233 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 7. Click OK.

 Eclipse dismisses the Extract Method dialog box and replaces your Java
code with the new code in Listing 9-6.

Listing 9-6: A Method Displays a Bag of Cheese
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 = new BagOfCheese();
 bag1.kind = “Cheddar”;
 bag1.weight = 2.43;
 bag1.daysAged = 30;
 bag1.isDomestic = true;

 BagOfCheese bag2 = new BagOfCheese();
 bag2.kind = “Blue”;
 bag2.weight = 5.987;
 bag2.daysAged = 90;
 bag2.isDomestic = false;

 displayBag(bag1);

 displayBag(bag2);
 }

 private static void displayBag(BagOfCheese bag) {
 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

According to the displayBag declaration (Listing 9-6), the displayBag
method takes one parameter. That parameter must be a BagOfCheese
instance. Inside the body of the method declaration, you refer to that
instance with the parameter name bag. (You refer to bag.kind, bag.
weight, bag.daysAged, and bag.isDomestic.)

In the main method, you create two BagOfCheese instances:
bag1 and bag2. You call displayBag once with the first instance
(displayBag(bag1)), and call it a second time with the second instance
(displayBag(bag2)).

234 Part III: Working with the Big Picture: Object-Oriented Programming

Constructors with parameters
Listing 9-7 contains a variation on the theme from Listing 9-2.

Listing 9-7: Another Way to Create Two Objects
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);
 BagOfCheese bag2 =
 new BagOfCheese(“Blue”, 5.987, 90, false);

 displayBag(bag1);

 displayBag(bag2);
 }

 private static void displayBag(BagOfCheese bag) {
 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

Listing 9-7 calls a BagOfCheese constructor with four parameters, so the
code has to have a four-parameter constructor. In Listing 9-8, I show you how
to declare that constructor.

Listing 9-8: A Constructor with Parameters
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 BagOfCheese(String pKind, double pWeight,

235 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 int pDaysAged, boolean pIsDomestic) {
 kind = pKind;
 weight = pWeight;
 daysAged = pDaysAged;
 isDomestic = pIsDomestic;
 }
}

Listing 9-8 borrows some tricks from Chapters 5 and 7. In those chapters, I
introduce the concept of overloading — reusing a name by providing different
parameter lists. Listing 9-8 has two different BagOfCheese constructors —
one with no parameters and another with four parameters. When you call a
BagOfCheese constructor (as in Listing 9-7), Java knows which declaration
to execute by matching the parameters in the constructor call. The call in
Listing 9-7 has parameters of type String, double, int, and boolean, and
the second constructor in Listing 9-8 has the same types of parameters in the
same order, so Java calls the second constructor in Listing 9-8.

You might also notice another trick from Chapter 7. In Listing 9-8, in the
second constructor declaration, I use different names for the parameters and
the class’s fields. For example, I use the parameter name pKind and the field
name kind. So what happens if you use the same names for the parameters
and the fields, as in this example:

// DON’T DO THIS
BagOfCheese(String kind, double weight,
 int daysAged, boolean isDomestic) {
 kind = kind;
 weight = weight;
 daysAged = daysAged;
 isDomestic = isDomestic;
}

Figure 9-10 shows you exactly what happens. (Hint: Nothing good happens!)

Aside from all the yellow warning markers in the Eclipse editor, the code
with duplicate parameter and field names gives you the useless results from
Figure 9-10. The code in Listing 9-8 makes the mistake of containing two kind
variables — one inside the constructor and another outside of the constructor,
as shown in Figure 9-11.

When you have a field and a parameter with the same name, kind, the
parameter name shadows the field name inside the method or the constructor.
So, outside the constructor declaration, the word kind refers to the field
name. Inside the constructor declaration, however, the word kind refers
only to the parameter name. So, in the horrible code with duplicate names,
the statement

236 Part III: Working with the Big Picture: Object-Oriented Programming

kind = kind;

does nothing to the kind field. Instead, this statement tells the computer to
make the kind parameter refer to the same string that the kind parameter
already refers to.

If this explanation sounds like nonsense to you, it is.

Figure 9-10:
Some

unpleasant
results.

Figure 9-11:
Two kind

variables.

237 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

The kind variable in the constructor declaration’s parameter list is local to
the constructor. Any use of the word kind outside the constructor cannot
refer to the constructor’s local kind variable.

Fields are different. You can refer to a field anywhere in the class’s code. For
example, in Listing 9-8, the second constructor declaration has no local kind
variable of its own. Inside that constructor’s body, the word kind refers to
the class’s field.

One way or another, the second constructor in Listing 9-8 is cumbersome. Do
you always have to make up peculiar names like pKind for a constructor’s
parameters? No, you don’t. To find out why, see the “This is it!” section.

The default constructor
In Listing 9-1, I don’t explicitly type a parameterless constructor into my
program’s code, and Java creates a parameterless constructor for me. (I
don’t see a parameterless constructor in Listing 9-1, but I can still call new
BagOfCheese() in Listing 9-2.) But in Listing 9-8, if I didn’t explicitly type
the parameterless constructor in my code, Java wouldn’t have created a
parameterless constructor for me. A call to new BagOfCheese()would
have been illegal. (The Eclipse editor would tell me that The BagOfCheese()
constructor is undefined.)

Here’s how it works: When you define a class, Java creates a parameterless
constructor (known formally as a default constructor) if, and only if, you
haven’t explicitly defined any constructors in your class’s code. When Java
encounters Listing 9-1, Java automatically adds a parameterless constructor
to your BagOfCheese class. But when Java encounters Listing 9-8, you have
to type the lines

BagOfCheese() {
}

into your code. If you don’t, calls to new BagOfCheese() (with no
parameters) will be illegal.

This is it!
The naming problem that crops up earlier in this chapter, in the
“Constructors with parameters” section, has an elegant solution. Listing 9-9
illustrates the idea.

238 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-9: Using Java’s this Keyword
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 public BagOfCheese(String kind, double weight,
 int daysAged, boolean isDomestic) {
 super();
 this.kind = kind;
 this.weight = weight;
 this.daysAged = daysAged;
 this.isDomestic = isDomestic;
 }
}

To use the class in Listing 9-9, you can run the CreateBags code in Listing 9-7.
When you do, you see the run shown earlier, in Figure 9-8.

You can persuade Eclipse to create the oversized constructor that you see in
Listing 9-9. Here’s how:

 1. Start with the code from Listing 9-1 (or Listing 9-3) in the Eclipse
editor.

 2. Click the mouse cursor anywhere inside the editor.

 3. On the Eclipse main menu, select Source➪ Generate Constructor
Using Fields.

 The Generate Constructor Using Fields dialog box in Eclipse appears, as
shown in Figure 9-12.

 4. In the Select Fields to Initialize pane in the dialog box, make sure that
all four of the BagOfCheese fields are selected.

 Doing so ensures that the new constructor will have a parameter for
each of the class’s fields.

 5. Click OK.

 That does it! Eclipse dismisses the dialog box and adds a freshly brewed
constructor to the editor’s code.

239 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Figure 9-12:
The

Generate
Constructor
Using Fields

dialog box.

Java’s this keyword refers to “the object that contains the current line of
code.” So in Listing 9-9, the word this refers to an instance of BagOfCheese
(that is, to the object that’s being constructed). That object has a kind field,
so this.kind refers to the first of the object’s four fields (and not to the
constructor’s kind parameter). That object also has weight, daysAged,
and isDomestic fields, so this.weight, this.daysAged, and this.
isDomestic refer to that object’s fields, as shown in Figure 9-13. And the
assignment statements inside the constructor give values to the new object’s
fields.

 Listing 9-9 contains the call super(). To find out what super() means, see
Chapter 10.

Giving an object more responsibility
You have a printer and you try to install it on your computer. It’s a capable
printer, but it didn’t come with your computer, so your computer needs a
program to drive the printer: a printer driver. Without a driver, your new
printer is nothing but a giant paperweight.

But, sometimes, finding a device driver can be a pain in the neck. Maybe you
can’t find the disk that came with the printer. (That’s always my problem.)

240 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 9-13:
Assigning
values to

an object’s
fields.

I have one off-brand printer whose driver is built into its permanent memory.
When I plug the printer into a USB port, the computer displays a new storage
location. (The location looks, to ordinary users, like another of the computer’s
disks.) The drivers for the printer are stored directly on the printer’s internal
memory. It’s as though the printer knows how to drive itself!

Now consider the code in Listings 9-7 and 9-8. You’re the CreateBags class
(refer to Listing 9-7), and you have a new gadget to play with — the Bag
OfCheese class in Listing 9-8. You want to display the properties of a particular
bag, and you don’t enjoy reinventing the wheel. That is, you don’t like declaring
your own displayBag method (the way you do in Listing 9-7). You’d rather
have the BagOfCheese class come with its own displayBag method.

Here’s the plan: Move the displayBag method from the CreateBags class
to the BagOfCheese class. That is, make each BagOfCheese object be
responsible for displaying itself. With the Andy’s Cheese Emporium metaphor
that starts this chapter, each bag’s form has its own Display button, as
shown in Figure 9-14.

241 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

The interesting characteristic of a Display button is that when you press it,
the message you see depends on the bag of cheese you’re examining. More
precisely, the message you see depends on the values in that particular
form’s fields.

Figure 9-14:
Two bag

objects and
two

displays.

The same thing happens in Listing 9-11 when you call bag1.displayBag().
Java runs the displayBag method shown in Listing 9-10. The values used in
that method call — kind, weight, daysAged, and isDomestic — are the
values in the bag1 object’s fields. Similarly, the values used when you call
bag2.displayBag() are the values in the bag2 object’s fields.

Listing 9-10: A Self-Displaying Class
package com.allmycode.andy;

import javax.swing.JOptionPane;

class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 public BagOfCheese(String kind, double weight,

(continued)

242 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-10 (continued)
 int daysAged, boolean isDomestic) {

 super();
 this.kind = kind;
 this.weight = weight;
 this.daysAged = daysAged;
 this.isDomestic = isDomestic;
 }

 public void displayBag() {
 JOptionPane.showMessageDialog(null,
 kind + “, “ +
 weight + “, “ +
 daysAged + “, “ +
 isDomestic);
 }
}

Listing 9-11: Having a Bag Display Itself
package com.allmycode.andy;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);
 BagOfCheese bag2 =
 new BagOfCheese(“Blue”, 5.987, 90, false);

 bag1.displayBag();

 bag2.displayBag();
 }
}

In Listing 9-10, the BagOfCheese object has its own, parameterless display
Bag method. And in Listing 9-11, the following two lines make two calls to the
displayBag method — one call for bag1 and another call for bag2:

 bag1.displayBag();

 bag2.displayBag();

A call to displayBag behaves differently depending on the particular bag
that’s being displayed. When you call bag1.displayBag(), you see the
field values for bag1, and when you call bag2.displayBag(), you see the
field values for bag2.

243 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 To call one of an object’s methods, follow a reference to the object with a dot
and then the method’s name.

Members of a class
Notice the similarity between fields and methods:

 ✓ As I say earlier in this chapter, in the “Creating objects” section:

To refer to one of an object’s fields, follow a reference to the object with a
dot and then the field’s name.

 ✓ As I say earlier in this chapter, in the “Giving an object more
responsibility” section:

To call one of an object’s methods, follow a reference to the object with a
dot and then the method’s name.

The similarity between fields and methods stretches far and wide in object-
oriented programming. The similarity is so strong that special terminology
is necessary to describe it. In addition to each BagOfCheese object having
its own values for the four fields, you can think of each object as having its
own copy of the displayBag method. So the BagOfCheese class in Listing
9-10 has five members. Four of the members are the fields kind, weight,
daysAged, and isDomestic, and the remaining member is the displayBag
method.

Reference types
Here’s a near-quotation from the earlier section “Creating objects:”

In Listing 9-2, the initialization of bag1 makes the bag1 variable refer to the
newly created bag.

In the quotation, I choose my words carefully. “The initialization makes the
bag1 variable refer to the newly created bag.” Notice how I italicize the words
refer to. A variable of type int stores an int value, but the bag1 variable in
Listing 9-2 refers to an object.

What’s the difference? The difference is similar to holding an object in your
hand versus pointing to it in the room. Figure 9-15 shows you what I mean.

244 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 9-15:
Primitive

types versus
reference

types.

Java has two kinds of types: primitive types and reference types.

 ✓ I cover primitive types in Chapter 6. Java’s eight primitive types are int,
double, boolean, char, byte, short, long, and float.

 ✓ A reference type is the name of a class or (as you see in Chapter 10) an
interface.

In Figure 9-15, the variable daysAged contains the value 30 (indicating that
the cheese in a particular bag has been aged for 30 days). I imagine the value
30 being right inside the daysAged box because the daysAged variable has
type int — a primitive type.

But the variable bag1 has type BagOfCheese, and BagOfCheese isn’t a
primitive type. (I know of no computer programming language in which a bag
of cheese is a built-in, primitive type!) So the bag1 variable doesn’t contain
“Cheddar” 2.43 30 true. Instead, the variable bag1 contains the
information required to locate the “Cheddar” 2.43 30 true object. The
variable bag1 stores information that refers to the “Cheddar” 2.43 30
true object.

 The types int, double, boolean, char, byte, short, long, and float
are primitive types. A primitive type variable (int daysAged, double
weight, boolean, and isDomestic, for example) stores a value. In contrast,
a class is a reference type, such as String, which is defined in Java’s API, and
BagOfCheese, which you or I declare ourselves. A reference type variable
(BagOfCheese bag and String kind, for example) refers to an object.

 Figure 9-15 would be slightly more accurate (but a bit more complicated) if the
bottommost box contained a picture of a hand followed by the values 2.43 30
true. The hand would point outside of the box to the string “Cheddar”.

245 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 In this section, I say that the bag1 variable refers to the “Cheddar” 2.43 30
true object. It’s also common to say that the bag1 variable points to the
“Cheddar” 2.43 30 true object. Alternatively, you can say that the bag1
variable stores the number of the memory address where the “Cheddar”
2.43 30 true object’s values begin. Neither the pointing language nor
the memory language expresses the truth of the matter, but if the rough
terminology helps you understand what’s going on, there’s no harm in
using it.

Pass by reference
In the previous section, I emphasize that classes are reference types. A
variable whose type is a class contains something that refers to blah, blah,
blah. You might ask, “Why should I care?”

Look at Listing 7-4, over in Chapter 7, and notice the result of passing a
primitive type to a method:

When the method’s body changes the parameter’s value, the change has no
effect on the value of the variable in the method call.

This principle holds true for reference types as well. But in the case of a
reference type, the value that’s passed is the information about where to find
an object, not the object itself. When you pass a reference type in a method’s
parameter list, you can change values in the object’s fields.

See, for example, the code in Listing 9-12.

Listing 9-12: Another Day Goes By
package com.allmycode.andy;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);

 addOneDay(bag1);

 bag1.displayBag();
 }

 static void addOneDay(BagOfCheese bag) {
 bag.daysAged++;
 }
}

246 Part III: Working with the Big Picture: Object-Oriented Programming

A run of the code in Listing 9-12 is shown in Figure 9-16. In that run, the
constructor creates a bag that is aged 30 days, but the addOneDay method
successfully adds a day. In the end, the display in Figure 9-16 shows 31 days
aged.

Figure 9-16:
Thirty-one

days old.

Unlike the story with int values, you can change a bag of cheese’s daysAged
value by passing the bag as a method parameter. Why does it work this way?

When you call a method, you make a copy of each parameter’s value in
the call. You initialize the declaration’s parameters with the copied values.
Immediately after making the addOneDay call in Listing 9-12, you have two
variables: the original bag1 variable in the main method and the new bag
variable in the addOneDay method. The new bag variable has a copy of the
value from the main method, as shown in Figure 9-17. That “value” from the
main method is a reference to a BagOfCheese object. In other words, the
bag1 and bag variables refer to the same object.

The statement in the body of the addOneDay method adds 1 to the value
stored in the object’s daysAged field. After one day is added, the program’s
variables look like the information in Figure 9-18.

Notice how both the bag1 and bag variables refer to an object whose
daysAged value is 31. After returning from the call to addOneDay, the bag
variable goes away. All that remains is the original main method and its bag1
variable, as shown in Figure 9-19. But bag1 still refers to an object whose
daysAged value has been changed to 31.

In Chapter 7, I show you how to pass primitive values to method parameters.
Passing a primitive value to a method parameter is called pass-by value. In
this section, I show you how to pass both primitive values and objects to
method parameters. Passing an object (such as bag1) to a method parameter
is called pass-by reference.

247 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Figure 9-17:
Java copies

a pointer.

Figure 9-18:
Java adds 1

to days
Aged.

248 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 9-19:
The original
bag is aged

31 days.

Java’s Modifiers
Throughout this book, you see words like static and public peppered
throughout the code listings. You might wonder what these words mean.
(Actually, if you’re reading from front to back, you might have grown
accustomed to seeing them and started thinking of them as background
noise.) In the next few sections, I tackle some of these modifier keywords.

Public classes and default-access classes
Most of the classes in this chapter’s listings begin with the word public.
When a class is public, any program in any package can use the code (or at
least some of the code) inside that class. If a class isn’t public, then for a
program to use the code inside that class, the program must be inside the
same package as the class. Listings 9-13, 9-14, and 9-15 illustrate these ideas.

Listing 9-13: What Is a Paragraph?
package org.allyourcode.wordprocessor;

class Paragraph {
 int alignment;
 int borders;
 double leftIndent;
 double lineSpacing;
 int style;
}

249 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Listing 9-14: Making a Paragraph with Code in the Same Package
package org.allyourcode.wordprocessor;

class MakeParagraph {

 public static void main(String[] args) {
 Paragraph paragraph = new Paragraph();
 paragraph.leftIndent = 1.5;
 }

}

Listing 9-15: Making a Paragraph with Code in Another Package
package com.allyourcode.editor;

import org.allyourcode.wordprocessor.Paragraph;

public class MakeAnotherParagraph {

 public static void main(String[] args) {
 Paragraph paragraph = new Paragraph();
 paragraph.leftIndent = 1.5;
 }

}

The Paragraph class in Listing 9-13 has default access — that is, the
Paragraph class isn’t public. The code in Listing 9-14 is in the same package
as the Paragraph class (the org.allyourcode.wordprocessor package).
So In Listing 9-14, you can declare an object to be of type Paragraph, and
you can refer to that object’s leftIndent field.

The code in Listing 9-15 isn’t in the same org.allyourcode.wordprocessor
package. For that reason, the use of names like Paragraph and leftIndent
(from Listing 9-13) aren’t legal in Listing 9-15, even if Listings 9-13 and 9-15 are
in the same Eclipse project. When you type Listings 9-13, 9-14, and 9-15 into
the Eclipse editor, you see a red, blotchy mess for Listing 9-15, as shown in
Figure 9-20.

Figure 9-20:
Errors in

Listing 9-15.

250 Part III: Working with the Big Picture: Object-Oriented Programming

 An Android activity can invoke the code from another package (that is,
another Android app). To do this, you don’t use names from the other
package in your activity’s code. For details, see the discussion of start
Activity in Chapter 12.

The .java file containing a public class must have the same name as the
public class, so the file containing the code in Listing 9-1 must be named
BagOfCheese.java.

Even the capitalization of the filename must be the same as the public class’s
name. You see an error message if you put the code in Listing 9-1 inside a file
named bagofcheese.java. In the file’s name, you have to capitalize the
letters B, O, and C.

Because of the file-naming rule, you can’t declare more than one public class
in a .java file. If you put the public classes from Listings 9-1 and 9-2 into the
same file, would you name the file BagOfCheese.java or CreateBags.
java? Neither name would satisfy the file-naming rule. For that matter, no
name would satisfy it.

 It’s customary to declare a class containing a main method to be public. I
sometimes ignore this convention, but when I do, the code looks strange
to me later. Once, I faced a situation in which a Java class had to be public
simply because that class contained a main method. I promised myself that
I’d use this example in my writing later, but since then I haven’t been able to
remember the situation. Oh, well!

Access for fields and methods
A class can have either public access or nonpublic (default) access. But a
member of a class has four possibilities: public, private, default, and
protected.

 A class’s fields and methods are the class’s members. For example, the class
in Listing 9-10 has five members: the fields kind, weight, daysAged, and
isDomestic and the method displayBag.

Here’s how member access works:

 ✓ A default member of a class (a member whose declaration doesn’t
contain the words public, private, or protected) can be used by
any code inside the same package as that class.

 ✓ A private member of a class cannot be used in any code outside the
class.

251 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 ✓ A public member of a class can be used wherever the class itself can be
used; that is:

	 •	Any	program	in	any	package	can	refer	to	a	public	member	of	a	
public class.

	 •	For	a	program	to	reference	a	public	member	of	a	default	access	
class, the program must be inside the same package as the class.

To see these rules in action, check out the public class in Listing 9-16.

Listing 9-16: A Class with Public Access
package org.allyourcode.bank;

public class Account {
 public String customerName;
 private int internalIdNumber;
 String address;
 String phone;
 public int socialSecurityNumber;
 int accountType;
 double balance;

 public static int findById(int internalIdNumber) {
 Account foundAccount = new Account();
 // Code to find the account goes here.
 return foundAccount.internalIdNumber;
 }
}

The code in Figures 9-21 and 9-22 uses the Account class and its fields.

Figure 9-21:
Referring

to a public
class in the

same
package.

252 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 9-22:
Referring

to a public
class in a
different

package.

In Figures 9-21 and 9-22, notice that

 ✓ The UseAccount class is in the same package as the Account class.

 ✓ The UseAccount class can create a variable of type Account.

 ✓ The UseAccount class’s code can refer to the public customerName
field of the Account class and to the default address field of the
Account class.

 ✓ The UseAccount class cannot refer to the private internalIdNumber
field of the Account class, even though UseAccount and Account are
in the same package.

 ✓ The UseAccountFromOutside class is not in the same package as the
Account class.

 ✓ The UseAccountFromOutside class can create a variable of type
Account. (An import declaration keeps me from having to repeat the
fully qualified org.allyourcode.bank.Account name everywhere in
the code.)

 ✓ The UseAccountFromOutside class’s code can refer to the public
customerName field of the Account class.

 ✓ The UseAccountFromOutside class’s code cannot refer to the default
address field of the Account class or to the private internalIdNum-
ber field of the Account class.

Now examine the nonpublic class in Listing 9-17.

Listing 9-17: A Class with Default Access
package org.allyourcode.game;

class Sprite {
 public String name;

253 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 String image;
 double distanceFromLeftEdge, distanceFromTop;
 double motionAcross, motionDown;
 private int renderingMethod;

 void render() {
 if (renderingMethod == 2) {
 // Do stuff here
 }
 }
}

The code in Figures 9-23 and 9-24 uses the Sprite class and its fields.

Figure 9-23:
Referring

to a default
access
class in

the same
package.

Figure 9-24:
Referring

to a default
access

class in a
different

package.

In Figures 9-23 and 9-24, notice that

 ✓ The UseSprite class is in the same package as the Sprite class.

 ✓ The UseSprite class can create a variable of type Sprite.

 ✓ The UseSprite class’s code can refer to the public name field of the
Sprite class and to the default distanceFromTop field of the Sprite
class.

254 Part III: Working with the Big Picture: Object-Oriented Programming

 ✓ The UseSprite class cannot refer to the private renderingValue field
of the Sprite class, even though UseSprite and Sprite are in the
same package.

 ✓ The UseSpriteFromOutside class isn’t in the same package as the
Sprite class.

 ✓ The UseSpriteFromOutside class cannot create a variable of type
Sprite. (Not even an import declaration can save you from an error
message here.)

 ✓ Inside the UseAccountFromOutside class, references to sprite.
name, sprite.distanceFromTop, and sprite.renderingValue are
all meaningless because the sprite variable doesn’t have a type.

Using getters and setters
In Figures 9-21 and 9-22, the UseAccount and UseAccountFromOutside
classes can set an account’s customerName and get the account’s existing
customerName:

account.customerName = “Occam”;
String nameBackup = account.customerName;

But neither the UseAccount class nor the UseAccountFromOutside class
can tinker with an account’s internalIdNumber field.

What if you want a class like UseAccount to be able to get an existing
account’s internalIdNumber but not to change an account’s inter-
nalIdNumber? (In many situations, getting information is necessary, but
changing existing information is dangerous.) You can do all this with a getter
method, as shown in Listing 9-18.

Listing 9-18: Creating a Read-Only Field
package org.allyourcode.bank;

public class Account {
 public String customerName;
 private int internalIdNumber;
 String address;
 String phone;
 public int socialSecurityNumber;
 int accountType;
 double balance;

 public static int findById(int internalIdNumber) {

255 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 Account foundAccount = new Account();
 // Code to find the account goes here.
 return foundAccount.internalIdNumber;
 }

 public int getInternalIdNumber() {
 return internalIdNumber;
 }
}

With the Account class in Listing 9-18, another class’s code can call

System.out.println(account.getInternalIdNumber());

or

int backupIdNumber = account.getInternalIdNumber();

The Account class’s internalIdNumber field is still private, so another
class’s code has no way to assign a value to an account’s internalId
Number field. To enable other classes to change an account’s private
internalIdNumber value, you can add a setter method to the code in
Listing 9-18, like this:

public void setInternalIdNumber(int internalIdNumber) {
 this.internalIdNumber = internalIdNumber;
}

Getter and setter methods aren’t built-in features in Java — they’re simply
ordinary Java methods. But this pattern (having a method whose purpose
is to access an otherwise inaccessible field’s value) is used so often that
programmers use the terms getter and setter to describe it.

 Getter and setter methods are accessor methods. Java programmers almost
always follow the convention of starting an accessor method name with get
or set and then capitalizing the name of the field being accessed. For example,
the field internalIdNumber has accessors named getInternal
IdNumber and setInternalIdNumber. The field renderingValue has
accessors named getRenderingValue and setRenderingValue.

You can have Eclipse create getters and setters for you. Here’s how:

 1. Start with the code from Listing 9-16 in the Eclipse editor.

 2. Click the mouse cursor anywhere inside the editor.

 3. On the Eclipse main menu, select Source➪Generate Getters and Setters.

256 Part III: Working with the Big Picture: Object-Oriented Programming

 The Generate Getters and Setters dialog box in Eclipse appears, as
shown in Figure 9-25.

Figure 9-25:
The

Generate
Getters and

Setters
dialog box.

 4. In the Select Getters and Setters to Create pane in the dialog box,
expand the internalIdNumber branch.

 5. Within the internalIdNumber branch, select either or both of the
getInternalIdNumber() or setInternalIdNumber(int) check boxes.

 Eclipse creates only the getters and setters whose check boxes you
select.

 6. Click OK.

 Eclipse dismisses the dialog box and adds freshly brewed getter and
setter methods to the editor’s code.

 I cover protected access in Chapter 10.

257 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

What does static mean?
This chapter begins with a discussion of cheese and its effects on Andy’s
business practices. Andy has a blank form that represents a class. He also
has a bunch of filled-in forms, each of which represents an individual bag-of-
cheese object.

One day, Andy decides to take inventory of his cheese by counting all the
bags of cheese (see Figure 9-26).

Figure 9-26:
Counting

bags of
cheese.

Compare the various fields shown in Figure 9-27. From the object-oriented
point of view, how is the daysAged field so different from the count field?

The answer is that a single bag can keep track of how many days it has
been aged, but it shouldn’t count all the bags. As far back as Listing 9-1, a
BagOfCheese object has its own daysAged field. That makes sense. (Well, it
makes sense to an object-oriented programmer.)

But giving a particular object the responsibility of counting all objects in its
class doesn’t seem fair. To have each BagOfCheese object speak on behalf
of all the others violates a prime directive of computer programming: The
structure of the program should imitate the structure of the real-life data. For
example, I can post a picture of myself on Facebook, but I can’t promise to
count everyone else’s pictures on Facebook. (“All you other Facebook users,
count your own @#!% pictures!”)

A field to count all bags of cheese belongs in one central place. That’s why,
in Figure 9-27, I have one, and only one, count field. Each object has its own
daysAged value, but only the class itself has a count value.

A field or method that belongs to an entire class rather than to each individual
object is a static member of the class. To declare a static member of a class,
you use Java’s static keyword (what a surprise!), as shown in Listing 9-19.

258 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 9-27:
The UML
diagram
has only

one count
variable.

kind : String
weight : double
daysAged : int
isDomestic : Boolean
displayBag() : void
count : int

BagOfCheese

kind = “Cheddar”
weight = 2.43
daysAged = 30
isDomestic = true
displayBag() : void

:BagOfCheese

kind = “Blue”
weight = 5.987
daysAged = 90
isDomestic = false
displayBag() : void

:BagOfCheese

Listing 9-19: Creating a Static Field
package com.allmycode.andy;

class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 static int count = 0;

 public BagOfCheese() {
 count++;
 }
}

To refer to a class’s static member, you preface the member’s name with the
name of the class, as shown in Listing 9-20.

Listing 9-20: Referring to a Static Field
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {

 public static void main(String[] args) {

259 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 new BagOfCheese();
 new BagOfCheese();
 new BagOfCheese();
 JOptionPane.showMessageDialog
 (null, BagOfCheese.count);
 }

}

Knowing when to create a static member
In many situations, you declare an element to be static in order to mirror
the structure of real-life data — but sometimes you declare it to be static for
technical reasons. For example, a program’s main method has to be static in
order to provide the Java virtual machine with easy access to the method.

Listing 9-21 is a copy of an example from Chapter 7. In the listing, the main
method has to be static. I’ve learned to live with that fact.

Listing 9-21: Declaring and Calling a Static Method
import javax.swing.JOptionPane;

public class Scorekeeper {

 public static void main(String[] args) {
 int score = 50000;
 int points = 1000;
 score = addPoints(score, points);
 JOptionPane.showMessageDialog(null, score,
 “New Score”, JOptionPane.INFORMATION_MESSAGE);
 }

 static int addPoints(int score, int points) {
 return score + points;
 }

}

But what about the addPoints method in Listing 9-21? Why is the addPoints
method static? If you remove the word static from the addPoints method’s
declaration, you get this ferocious-looking error: Cannot make a static
reference to non-static method. What gives?

To understand what’s going on, consider the three ways to refer to a member
(a field or a method):

260 Part III: Working with the Big Picture: Object-Oriented Programming

 ✓ You can preface the member name with a name that refers to an
object.

 For example, in Listing 9-11, I preface calls to displayBag with the
names bag1 and bag2, each of which refers to an object:
bag1.displayBag();
bag2.displayBag();

 When you do this, you’re referring to something that belongs to each
individual object. (You’re referring to the object’s nonstatic field, or
calling the object’s nonstatic method.)

 ✓ You can preface the member name with a name that refers to a class.

 For example, in Listing 9-20, I prefaced the field name count with the
class name BagOfCheese.

 When you do this, you’re referring to something that belongs to the
entire class. (You’re referring to the class’s static field, or calling the
class’s static method.)

 ✓ You can preface the member name with nothing.

 For example, in Listing 9-10, inside the displayBag method, I use the
names kind, weight, daysAged, and isDomestic with no dots in front
of them:
public void displayBag() {
 JOptionPane.showMessageDialog(null,
 kind + “, “ +
 weight + “, “ +
 daysAged + “, “ +
 isDomestic);
}

 In Listing 9-21, I preface the static method name addPoints with no
dots in front of the name:
score = addPoints(score, points);

 When you do this, you’re referring to either a nonstatic member belong-
ing to a particular object or to a static member belonging to a particular
class. It all depends on the location of the code containing the member
name, as described in this list:

	 •	If	the	code	is	inside	a	nonstatic	method,	the	name	refers	to	an	ele-
ment belonging to an object. That is, the name refers to an object’s
nonstatic field or method.

 For example, in Listing 9-10, the following code snippet is in the
non-static displayBag method:

kind + “, “ +
weight + “, “ +
daysAged + “, “ +
isDomestic);

261 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 In this context, the names kind, weight, daysAged, and is
Domestic refer to a particular object’s properties.

	 •	If	the	code	is	inside	a	static	method,	the	name	refers	to	something	
belonging to an entire class. That is, the name refers to a class’s
static field or method.

 In Listing 9-21, the line
score = addPoints(score, points);

 is inside the static main method, so the name addPoints refers to
the Scorekeeper class’s static addPoints method.

 Java provides a loophole in which you break one of the three rules I just
described. You can preface a member name with a name that refers to an
object. If the member is static, it’s the same as prefacing the member name
with the name of a class (whatever class you used when you declared that
name).

Consider the code in Listing 9-21. If the addPoints method isn’t static, each
instance of the Scorekeeper class has its own addPoints method, and
each addPoints method belongs to an instance of the Scorekeeper class.
The trouble is that the code in Listing 9-21 doesn’t construct any instances of
the Scorekeeper class. (The listing declares the Scorekeeper class itself,
but doesn’t create any instances.) The listing has no copies of addPoints to
call. (See Figure 9-28.)Without addPoints being static, the statement score
= addPoints(score, points) is illegal.

Sure, you can call the Scorekeeper constructor to create a Scorekeeper
instance:

Scorekeeper keeper = new Scorekeeper();

But that doesn’t solve the problem. The call to addPoints is inside the
main method, and the main method is static. So the addPoints call doesn’t
come from the new keeper object, and the call doesn’t refer to the keeper
object’s addPoints method.

You can fix the problem (of addPoints not being static) by using a two-
step approach: Create a Scorekeeper instance, and call the new instance’s
addPoints method, as shown here and in Figure 9-29:

Scorekeeper keeper = new Scorekeeper();
keeper.addPoints(score, points);

But this approach complicates the example from Chapter 7.

In Listing 9-21, the one and only static addPoints method belongs to the
entire Scorekeeper class, as shown in Figure 9-30. Also, the static main

262 Part III: Working with the Big Picture: Object-Oriented Programming

method and the call to addPoints belong to the entire Scorekeeper class,
so the addPoints call in Listing 9-21 has a natural target, as shown in
Figure 9-29.

Figure 9-28:
Failing when
trying to call

a nonstatic
add

Points
method.

Figure 9-29:
Succeeding

in calling a
nonstatic

add
Points

method.

Figure 9-30:
Calling
a static

method.

263 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

What’s Next?
This chapter talks about individual classes. Most classes don’t exist in
isolation from other classes. Most classes belong to hierarchies of classes,
subclasses, and sub-subclasses, so the next chapter covers the relationships
among classes.

264 Part III: Working with the Big Picture: Object-Oriented Programming

Chapter 10

Saving Time and Money:
Reusing Existing Code

In This Chapter
▶ Tweaking your code
▶ Adding new life to old code
▶ Making changes without spending a fortune

W
ouldn’t it be nice if every piece of software did just what you wanted
it to do? In an ideal world, you could simply buy a program, make it

work right away, plug it seamlessly into new situations, and update it easily
whenever your needs changed. Unfortunately, software of this kind doesn’t
exist. (Nothing of this kind exists.) The truth is that no matter what you want
to do, you can find software that does some of it, but not all of it.

This is one reason that object-oriented programming has been successful.
For years, companies were buying prewritten code only to discover that the
code didn’t do what they wanted it to do. So the companies began messing
with the code. Their programmers dug deep into the program files, changed
variable names, moved subprograms around, reworked formulas, and gener-
ally made the code worse. The reality was that if a program didn’t already
do what you wanted (even if it did something ever so close to it), you could
never improve the situation by mucking around inside the code. The best
option was to chuck the whole program (expensive as that was) and start
over. What a sad state of affairs!

Object-oriented programming has brought about a big change. An object-
oriented program is, at its heart, designed to be modified. Using correctly
written software, you can take advantage of features that are already built
in, add new features of your own, and override features that don’t suit your
needs. The best aspect of this situation is that the changes you make are
clean — no clawing and digging into other people’s brittle program code.
Instead, you make nice, orderly additions and modifications without touching
the existing code’s internal logic. It’s the ideal solution.

266 Part III: Working with the Big Picture: Object-Oriented Programming

The Last Word on Employees — Or Is It?
When you write an object-oriented program, you start by considering the
data. You’re writing about accounts. So what’s an account? You’re writing
code to handle button clicks. So what’s a button? You’re writing a program to
send payroll checks to employees. What’s an employee?

In this chapter’s first example, an employee is someone with a name and a
job title — sure, employees have other characteristics, but for now I stick to
the basics:

class Employee {
 String name;
 String jobTitle;
}

Of course, any company has different kinds of employees. For example,
your company may have full-time and part-time employees. Each full-time
employee has a yearly salary:

class FullTimeEmployee extends Employee {
 double salary;
}

In this example, the words extends Employee tell Java that the new class
(the FullTimeEmployee class) has all the properties that any Employee
has and, possibly, more. In other words, every FullTimeEmployee object
is an Employee object (an employee of a certain kind, perhaps). Like any
Employee, a FullTimeEmployee has a name and a jobTitle. But a
FullTimeEmployee also has a salary. That’s what the words extends
Employee do for you.

A part-time employee has no fixed yearly salary. Instead, every part-time
employee has an hourly pay rate and a certain number of hours worked in
a week:

class PartTimeEmployee extends Employee {
 double hourlyPay;
 int hoursWorked;
}

So far, a PartTimeEmployee has four characteristics: name, jobTitle,
hourlyPay, and number of hoursWorked.

267 Chapter 10: Saving Time and Money: Reusing Existing Code

Then you have to consider the big shots — the executives. Every executive is a
full-time employee. But in addition to earning a salary, every executive receives
a bonus (even if the company goes belly-up and needs to be bailed out):

class Executive extends FullTimeEmployee {
 double bonus;
}

Java’s extends keyword is cool because, by extending a class, you inherit all
the complicated code that’s already in the other class. The class you extend
can be a class that you have (or another developer has) already written. One
way or another, you’re able to reuse existing code and to add ingredients to
the existing code.

Here’s another example: The creators of Android wrote the Activity class,
with its 5,000 lines of code. You get to use all those lines of code for free by
simply typing extends Activity:

public class MainActivity extends Activity {

With the two words extends Activity, your new MainActivity class
can do all the things that a typical Android activity can do — start running,
find items in the app’s res directory, show a dialog box, respond to a low-
memory condition, start another activity, return an answer to an activity,
finish running, and much more.

Extending a class
So useful is Java’s extends keyword that developers have several different
names to describe this language feature:

 ✓ Superclass/subclass: The Employee class (see the earlier section
“The Last Word on Employees — Or Is It?”) is the superclass of the
FullTimeEmployee class. The FullTimeEmployee class is a subclass
of the Employee class.

 ✓ Parent/child: The Employee class is the parent of the FullTimeEmployee
class. The FullTimeEmployee class is a child of the Employee class.

 In fact, the Executive class extends the FullTimeEmployee class,
which in turn extends the Employee class. So Executive is a descendent
of Employee, and Employee is an ancestor of Executive. The Unified
Modeling Language (UML) diagram in Figure 10-1 illustrates this point.

268 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 10-1:
A class,

two child
classes, and
a grandchild

class.

 ✓ Inheritance: The FullTimeEmployee class inherits the Employee class’s
members. (If any of the Employee class’s members were declared to be
private, the FullTimeEmployee class wouldn’t inherit those members.)

 The Employee class has a name field, so the FullTimeEmployee class
has a name field, and the Executive class has a name field. In other
words, with the declarations of Employee, FullTimeEmployee, and
Executive at the start of this section, the code in Listing 10-1 is legal.

 All descendants of the Employee class have name fields, even though a
name field is explicitly declared only in the Employee class itself.

Listing 10-1: Using the Employee Class and Its Subclasses
public class Main {

 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.name = “Sam”;

 FullTimeEmployee ftEmployee = new FullTimeEmployee();
 ftEmployee.name = “Jennie”;

 Executive executive = new Executive();
 executive.name = “Harriet”;
 }
}

269 Chapter 10: Saving Time and Money: Reusing Existing Code

Almost every Java class extends another Java class. I write almost because
one (and only one) class doesn’t extend any other class. Java’s built-in
Object class doesn’t extend anything. The Object class is at the top of
Java’s class hierarchy. Any class whose header has no extends clause auto-
matically extends Java’s Object class. So every other Java class is, directly
or indirectly, a descendent of the Object class, as shown in Figure 10-2.

The notion of extending a class is one pillar of object-oriented programming.
In the 1970s, computer scientists were noticing that programmers tended to
reinvent the wheel. If you needed code to balance an account, for example,
you started writing code from scratch to balance an account. Never mind
that other people had written their own account-balancing code. Integrating
other peoples’ code with yours, and adapting other peoples’ code to your
own needs, was a big headache. All things considered, it was easier to start
from scratch.

Figure 10-2:
Everything

comes
from Java’s
Object

class.

270 Part III: Working with the Big Picture: Object-Oriented Programming

Then, in the 1980s, object-oriented programming became popular. The
notion of classes and subclasses provided a clean way to connect existing
code (such as Android’s Activity class code) with new code (such as your
new MainActivity class code). By extending an existing class, you hook
into the class’s functionality, and you reuse features that have already been
 programmed.

 By reusing code, you avoid the work of reinventing the wheel. But you also
make life easier for the end user. When you extend Android’s Activity
class, your new activity behaves like other peoples’ activities because both
your activity and the other peoples’ activities inherit the same behavior from
Android’s Activity class. With so many apps behaving the same way, the
user learns familiar patterns. It’s a win-win situation.

Overriding methods
In this section, I expand on all the employee code snippets from the start of
this chapter. From these snippets, I can present a fully baked program exam-
ple. The example, as laid out in Listings 10-2 through 10-6, illustrates some
important ideas about classes and subclasses.

Listing 10-2: What Is an Employee?
package org.allyourcode.company;

import javax.swing.JOptionPane;

public class Employee {
 String name;
 String jobTitle;

 public Employee() {
 }

 public Employee(String name, String jobTitle) {
 this.name = name;
 this.jobTitle = jobTitle;
 }

 public void showPay() {
 JOptionPane.showMessageDialog(null, name +
 “, Pay not known”);
 }
}

271 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-3: Full-Time Employees Have Salaries
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class FullTimeEmployee extends Employee {
 double salary;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public FullTimeEmployee() {
 }

 public FullTimeEmployee(String name,
 String jobTitle,
 double salary) {
 this.name = name;
 this.jobTitle = jobTitle;
 this.salary = salary;
 }

 public double pay() {
 return salary;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(pay()));
 }
}

Listing 10-4: Executives Get Bonuses
package org.allyourcode.company;

public class Executive extends FullTimeEmployee {
 double bonus;

 public Executive() {
 }

 public Executive(String name, String jobTitle,
 double salary, double bonus) {
 this.name = name;

(continued)

272 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10-4 (continued)
 this.jobTitle = jobTitle;
 this.salary = salary;
 this.bonus = bonus;
 }

 @Override
 public double pay() {
 return salary + bonus;
 }
}

Listing 10-5: Part-Time Employees Are Paid by the Hour
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class PartTimeEmployee extends Employee {
 double hourlyPay;
 int hoursWorked;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public PartTimeEmployee() {
 }

 public PartTimeEmployee(String name,
 String jobTitle,
 double hourlyPay,
 int hoursWorked) {
 this.name = name;
 this.jobTitle = jobTitle;
 this.hourlyPay = hourlyPay;
 this.hoursWorked = hoursWorked;
 }

 public double pay() {
 return hourlyPay * hoursWorked;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(pay()));
 }
}

273 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-6: Putting Your Employee Classes to the Test
package org.allyourcode.company;

public class Main {

 public static void main(String[] args) {
 Employee employee =
 new Employee(“Barry”, “Author”);

 FullTimeEmployee ftEmployee =
 new FullTimeEmployee(“Ed”, “Manager”, 10000.00);

 PartTimeEmployee ptEmployee =
 new PartTimeEmployee(“Joe”, “Intern”, 8.00, 20);

 Executive executive =
 new Executive(“Jane”, “CEO”, 20000.00, 5000.00);

 employee.showPay();
 ftEmployee.showPay();
 ptEmployee.showPay();
 executive.showPay();
 }

}

Figure 10-3 shows a run of the code in Listings 10-2 through 10-6, and Figure 10-4
contains a UML diagram for the classes in these listings. (In Figure 10-4, I ignore
the Main class from Listing 10-6. The Main class isn’t interesting, because it’s
not part of the Employee class hierarchy. The Main class is simply a subclass
of Java’s Object class.)

 In Figure 10-4, I use strikethrough text and simulated handwriting to repre-
sent overridden methods. These typographical tricks are my own inventions.
Neither the strikethrough nor the simulated handwriting is part of the UML
standard. In fact, the UML standard has all kinds of rules that I ignore in this
book. My main purpose in showing you the rough UML diagrams is to help
you visualize the hierarchies of classes and their subclasses.

Consider the role of the showPay method in Figure 10-4 and in Listings 10-2
through 10-6. In the figure, showPay appears in all except the Executive
class; in the listings, I define showPay in all except the Executive class.

The showPay method appears for the first time in the Employee class (refer to
Listing 10-2), where it serves as a placeholder for not knowing the employee’s
pay. The FullTimeEmployee class (refer to Listing 10-3) would inherit this
vacuous showPay class except that the FullTimeEmployee class declares
its own version of showPay. In the terminology from Chapter 5, the showPay
method in FullTimeEmployee overrides the showPay method in Employee.

274 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 10-3:
Running
the code

in Listings
10-2 through

10-6.

Figure 10-4:
Classes

and sub-
classes with

fields and
 methods.

275 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-6 contains a call to a full-time employee’s showPay method:

FullTimeEmployee ftEmployee = ... Etc.
ftEmployee.showPay();

And in Figure 10-3, the call to ftEmployee.showPay() gives you the
FullTimeEmployee class’s version of showPay, not the Employee class’s
clueless version of showPay. (If ftEmployee.showPay() called the
Employee class’s version of showPay, you’d see Ed, Pay not known in
Figure 10-3.) Overriding a method declaration means taking precedence over
that existing version of the method.

Of course, overriding a method isn’t the same as obliterating a method. In
Listing 10-6, the snippet

Employee employee = ... Etc.
employee.showPay();

conjures up the Employee class’s noncommittal version of showPay. It
happens because an object declared with the Employee constructor has
no salary field, no hourlyPay field, and no showPay method other than
the method declared in the Employee class. The Employee class, and any
objects declared using the Employee constructor, could do their work even
if the other classes (FullTimeEmployee, PartTimeEmployee, and so on)
didn’t exist.

 The only way to override a method is to declare a method with the same
name and the same parameters inside a subclass. By same parameters, I
mean the same number of parameters, each with the same type. For example,
calculate(int count, double amount) overrides calculate(int
x, double y) because both declarations have two parameters: The first
parameter in each declaration is of type int, and the second parameter in
each declaration is of type double. But calculate(int count, String
amount) doesn’t override calculate(int count, double amount). In
one declaration, the second parameter has type double, and in the other dec-
laration, the second parameter has type String. If you call calculate(42,
2.71828), you get the calculate(int x, double y) method, and if
you call calculate(42, “Euler”) you get the calculate(int count,
String amount) method.

Listings 10-2 through 10-5 have other examples of overriding methods. For
example, the Executive class in Listing 10-4 overrides its parent class’s pay
method, but not the parent class’s showPay method. Calculating an execu-
tive’s pay is different from calculating an ordinary full-time employee’s pay.
But after you know the two peoples’ pay amounts, showing an executive’s
pay is no different from showing an ordinary full-time employee’s pay.

276 Part III: Working with the Big Picture: Object-Oriented Programming

 When I created this section’s examples, I considered giving the Employee class
a pay method (returning 0 on each call). This strategy would make it unneces-
sary for me to create identical showPay methods for the FullTimeEmployee
and PartTimeEmployee classes. For various reasons, (none of them interest-
ing), I decided against doing it that way.

Overriding works well in situations in which you want to tweak an existing
class’s features. Imagine having a news ticker that does everything you want
except scroll sideways. (I’m staring at one on my computer right now! As
one news item disappears toward the top, the next news item scrolls in from
below. The program’s options don’t allow me to change this setting.) After
studying the code’s documentation, you can subclass the program’s Ticker
class and override the Ticker class’s scroll method. In your new scroll
method, the user has the option to move text upward, downward, sideways,
or inside out (whatever that means).

Java annotations
In Java, elements that start with an at-sign (@) are annotations. Java didn’t
have annotations until Java 5.0, so if you try to use the @Override annota-
tion with Java 1.4.2, for example, you’ll see some nasty-looking error mes-
sages. That’s okay because Android requires Java 5.0 or Java 6. You can’t use
earlier versions of Java to create Android apps.

In Listings 10-3, 10-4, and 10-5, each @Override annotation reminds Java
that the method immediately below the annotation has the same name and
the same parameter types as a method in the parent class. The use of the @
Override annotation is optional. If you remove all @Override lines from
Listings 10-3, 10-4, and 10-5, the code works the same way.

So why use the @Override annotation? Imagine leaving it off and mistakenly
putting the following method in Listing 10-4:

public void showPay(double salary) {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(salary));
}

You might think that you’ve overridden the parent class’s showPay method,
but you haven’t! The Employee class’s showPay method has no parameters,
and your new FullTimeEmployee class’s showPay method has a parame-
ter. Eclipse looks at this stuff in the editor and says, “Okay, I guess the devel-
oper is inheriting the Employee class’s showPay method and declaring an
additional version of showPay. Both showPay methods are available in the

277 Chapter 10: Saving Time and Money: Reusing Existing Code

FullTimeEmployee class.” (By the way, when Eclipse speaks, you can’t see
my lips moving.)

Everything goes fine until you run the code and see the message Pay
not known when you call ftEmployee.showPay(). The Java virtual
machine is calling the parameterless version of showPay, which the
FullTimeEmployee class inherits from its parent.

The problem in this hypothetical example isn’t so much that you commit
a coding error — everybody makes mistakes like this one. (Yes, even I do.
I make lots of them.) The problem is that, without an @Override annota-
tion, you don’t catch the error until you’re running the program. That is, you
don’t see the error message as soon as you compose the code in the Eclipse
editor. Waiting until runtime can be as painless as saying, “Aha! I know why
this program didn’t run correctly.” But waiting until runtime can also be quite
painful — as painful as saying, “My app was rated 1 on a scale of 5 because of
this error that I didn’t see until a user called my bad showPay method.”

Ideally, Eclipse is aware of your intention to override an existing method,
and it can complain to you while you’re staring at the editor. If you use the @
Override annotation in conjunction with the bad showPay method, you see
the blotches shown in Figure 10-5. That’s good because you can fix the prob-
lem long before the problem shows up in a run of your code.

Figure 10-5:
The show-
Pay method

doesn’t
override
the par-

ent class’s
showPay

method.

More about Java’s Modifiers
I start the conversation about Java’s modifiers in Chapters 6 and 9. Chapter 6
describes the keyword final as it applies to variables, and Chapter 9 deals
with the keywords public and private. In this section, I add a few more
fun facts about Java modifiers.

278 Part III: Working with the Big Picture: Object-Oriented Programming

The word final has many uses in Java programs. In addition to having final
variables, you can have these elements:

 ✓ Final class: If you declare a class to be final, no one (not even you)
can extend it.

 ✓ Final method: If you declare a method to be final, no one (not even
you) can override it.

Figures 10-6 and 10-7 put these rules into perspective. In Figure 10-6, I can’t
extend the Stuff class, because the Stuff class is final. And in Figure 10-7,
I can’t override the Stuff class’s increment method because that increment
method is final.

Figure 10-6:
Trying to
extend a

final class.

Figure 10-7:
Trying to
override

a final
method.

279 Chapter 10: Saving Time and Money: Reusing Existing Code

You can apply Java’s protected keyword to a class’s members. This
 protected keyword has always seemed a bit strange to me. In common
English usage, when my possessions are “protected,” my possessions aren’t
as available as they’d normally be. But in Java, when you preface a field or a
method with the protected keyword, you make that field or method a bit
more available than it would be by default, as shown in Figure 10-8.

Figure 10-8:
Access

modes for
fields and
methods.

Here’s what I say in Chapter 9 about members with default access:

A default member of a class (a member whose declaration doesn’t contain
the words public, private, or protected) can be used by any code
inside the same package as that class.

The same thing is true about a protected class member. But in addition, a
protected member is inherited outside the class’s package by any subclass
of the class containing that protected member.

Huh? What does that last sentence mean, about protected members? To
make things concrete, Figure 10-9 shows you the carefree existence in which
two classes are in the same package. With both Stuff and MyStuff in the
same package, the MyStuff class inherits the Stuff class’s default value
variable and the Stuff class’s default increment method.

If you move the Stuff class to a different package, MyStuff no longer inher-
its the Stuff class’s default value variable or the Stuff class’s default
increment method, as shown in Figure 10-10.

But if you turn value into a protected variable and you turn increment
into a protected method, the MyStuff class again inherits its parent class’s
value variable and increment method, as shown in Figure 10-11.

280 Part III: Working with the Big Picture: Object-Oriented Programming

Figure 10-9:
Two classes
in the same

package.

Figure 10-10:
Classes in

different
packages.

281 Chapter 10: Saving Time and Money: Reusing Existing Code

Figure 10-11:
Using the
protected
modifier.

Notice one more detail in Figure 10-11. I change the MyStuff class’s
 increment method from default to public. I do this to avoid seeing an
interesting little error message. You can’t override a method with another
method whose access is more restrictive than the original method. In other
words, you can’t override a public method with a private method. You can’t
even override a public method with a default method.

Java’s default access is more restrictive than protected access (see
Figure 10-8). So you can’t override a protected method with a default
method. In Figure 10-11, I avoid the whole issue by making public the
MyStuff class’s increment method. That way, I override the increment
method with the least restrictive kind of access.

Keeping Things Simple
Most computer programs operate entirely in the virtual realm. They have
no bricks, nails, or girders. So you can type a fairly complicated computer
program in minutes. Even with no muscle and no heavy equipment, you can
create a structure whose complexity rivals that of many complicated physi-
cal structures. You, the developer, have the power to build intricate, virtual
bridges.

282 Part III: Working with the Big Picture: Object-Oriented Programming

One goal of computer programming is to manage complexity. A good app
isn’t simply useful or visually appealing — a good app’s code is nicely orga-
nized, easy to understand, and easy to modify.

Certain programming languages, like C++, support multiple inheritance, in
which a class can have more than one parent class. For example, in C++ you
can create a Book class, a TeachingMaterial class, and a Textbook class.
You can make Textbook extend both Book and TeachingMaterial. This
feature makes class hierarchies quite flexible, but it also makes those same
hierarchies extremely complicated. You need tricky rules to decide how
to inherit the move methods of both the computer’s Mouse class and the
rodent’s Mouse class.

To avoid all this complexity, Java doesn’t support multiple inheritance.
In Java, each class has one (and only one) superclass. A class can have
any number of subclasses. You can (and will) create many subclasses of
Android’s Activity class. And other developers create their own sub-
classes of Android’s Activity class. But classes don’t have multiple person-
alities. A Java class can have only one parent. The Executive class (refer
to Listing 10-4) cannot extend both the FullTimeEmployee class and the
PartTimeEmployee class.

Using an interface
The relationship between a class and its subclass is one of inheritance. In
many real-life families, a child inherits assets from a parent. That’s the way
it works.

But consider the relationship between an editor and an author. The editor
says, “By signing this contract, you agree to submit a completed manuscript
by the fifteenth of July.” Despite any excuses that the author gives before the
deadline date (and, believe me, authors make plenty of excuses), the rela-
tionship between the editor and the author is one of obligation. The author
agrees to take on certain responsibilities; and, in order to continue being an
author, the author must fulfill those responsibilities. (By the way, there’s no
subtext in this paragraph — none at all.)

Now consider Barry Burd. Who? Barry Burd — that guy who writes Java
Programming For Android Developers For Dummies and certain other For
Dummies books (all from Wiley Publishing). He’s a parent, and he’s also an
author. You want to mirror this situation in a Java program, but Java doesn’t
support multiple inheritance. You can’t make Barry extend both a Father
class and an Author class at the same time.

283 Chapter 10: Saving Time and Money: Reusing Existing Code

Fortunately for Barry, Java has interfaces. A class can extend only one parent
class, but a class can implement many interfaces. A parent class is a bunch
of stuff that a class inherits. On the other hand, as with the relationship
between an editor and an author, an interface is a bunch of stuff that a class
is obliged to provide.

Here’s another example. Listings 10-2 through 10-5 describe what it means to
be an employee of various kinds. Though a company might hire consultants,
consultants who work for the company aren’t employees. Consultants are
normally self-employed. They show up temporarily to help companies solve
problems and then leave the companies to work elsewhere. In the United
States, differentiating between an employee and a consultant is important:
So serious are the U.S. tax withholding laws that labeling a consultant an
“employee” of any kind would subject the company to considerable legal risk.

To include consultants with employees in your code, you need a
Consultant class that’s separate from your existing Employee class hierar-
chy. On the other hand, consultants have a lot in common with a company’s
regular employees. For example, every consultant has a showPay method.
You want to represent this commonality in your code, so you create an inter-
face. The interface obligates a class to give meaning to the method name
showPay, as shown in Listing 10-7.

Listing 10-7: Behold! An Interface!
package org.allyourcode.company;

public interface Payable {

 public void showPay();

}

The element in Listing 10-7 isn’t a class — it’s a Java interface. Here’s a
description of the listing’s code:

As an interface, I have a header, but no body, for the showPay method.
In this interface, the showPay method takes no arguments and returns
void. A class that claims to implement me (the Payable interface) must
provide (either directly or indirectly) a body for the showPay method.
That is, a class that claims to implement Payable must, in one way or
another, implement the showPay method.

 To find out about the difference between a method declaration’s header and
its body, see Chapter 5.

284 Part III: Working with the Big Picture: Object-Oriented Programming

Listings 10-8 and 10-9 implement the Payable interface and provide bodies
for the showPay method.

Listing 10-8: Implementing an Interface
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class Consultant implements Payable {

 String name;
 double hourlyFee;
 int hoursWorked;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public Consultant() {
 }

 public Consultant(String name, String jobTitle,
 double hourlyFee, int hoursWorked) {
 this.name = name;
 this.hourlyFee = hourlyFee;
 this.hoursWorked = hoursWorked;
 }

 public double pay() {
 return hourlyFee * hoursWorked;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +

currency.format(pay()));
 }
}

Listing 10-9: Another Class Implements the Interface
package org.allyourcode.company;

import javax.swing.JOptionPane;

public class Employee implements Payable {

285 Chapter 10: Saving Time and Money: Reusing Existing Code

 String name;
 String jobTitle;

 public Employee() {
 }

 public Employee(String name, String jobTitle) {
 this.name = name;
 this.jobTitle = jobTitle;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name +
 “, Pay not known”);
 }
}

In Listings 10-8 and 10-9, both the Consultant and Employee classes imple-
ment the Payable interface — the interface that summarizes what it means
to be paid by the company. Implementing this interface guarantees that these
classes have bodies for the showPay method. This guarantee allows any other
code to safely call employee.showPay() or consultant.showPay().

In this section’s example, two otherwise unrelated classes (Employee and
Consultant) both implement the Payable interface. When I picture a Java
interface, it’s an element that cuts across levels of Java’s class/subclass hier-
archy, as shown in Figure 10-12.

Figure 10-12:
An interface
cuts across

the class
hierarchy.

 The dotted line in Figure 10-12 isn’t part of standard UML. The folks who
manage the standard have much better ways to represent interfaces than I use
in this chapter’s figures.

286 Part III: Working with the Big Picture: Object-Oriented Programming

Creating a callback
In this chapter’s (just discussed) “Using an interface” section, I reveal how
an interface helps me realize the commonalities among various pay-receiving
classes. The interface gives me an elegant way to mirror the connections in
the real-world’s data. But aside from its elegance, the interface in the “Using
an interface” section doesn’t make any problems easier to solve. The code
with and without the interface is basically the same.

So in this section, I describe another problem that I solve using an interface.
(In fact, the use of an interface plays a key role in the problem’s solution.)
This section’s code is a bit more complicated than the code in the “Using an
interface” section, but this section’s code illustrates a widely used program-
ming technique.

Many scenarios in application development involve callbacks. Imagine a stop-
watch program. The program tells you when ten seconds have gone by. It has
two statements: one to start a countdown and another to notify the user that
the time is up. You can write the code this way:

try {
 Thread.sleep(10000);
} catch (InterruptedException e) {
 e.printStackTrace();
}
JOptionPane.showMessageDialog(null, “Time’s up!”);

Java’s built-in Thread class has a sleep method that makes your app’s
action pause for any number of milliseconds you want. Ten thousand milli-
seconds is the same as ten seconds.

 The try/catch business surrounding the sleep method call is part of the
Java exception-handling feature. I cover it in Chapter 13.

Your code looks sensible, but it’s seriously flawed. While your program puts
itself to sleep for ten seconds, the user doesn’t get a response from it — its
buttons are frozen. Your program is sleeping, so the user can’t use any other
feature that your program offers. The user touches your program’s widgets
and presses your program’s Cancel button, but the program doesn’t respond.
Yes, this is a great way to guarantee a 1-of-5 rating at Google Play (its app
store).

To fix the problem, you take advantage of somebody’s TimerCommon class,
a general-purpose class that sleeps for a certain period on behalf of your

287 Chapter 10: Saving Time and Money: Reusing Existing Code

program. While the TimerCommon object sleeps, your program can remain
awake, responding to the user’s clicks, taps, inputs, swipes, or whatever.

(By the way, the TimerCommon class isn’t part of the Java API. Somebody
posted the TimerCommon class on the web along with a note permitting any
developer to use the code.)

When the TimerCommon object wakes up, the object calls one of your pro-
gram’s methods. (In this section’s example, your method is named alert.)
Until the TimerCommon object calls your alert method, the method sits qui-
etly in your program, doing nothing. Rather than execute the alert method,
your program responds to the user’s requests. Slick!

Now review the general flow of execution in the stopwatch code: First you set
the TimerCommon object in motion. The TimerCommon object takes a brief
nap. Finally, when the TimerCommon object wakes up, the TimerCommon
object calls you back. In other words, the TimerCommon object issues a call-
back, as shown in Figure 10-13.

Figure 10-13:
The Timer-

Common
object calls

you back.

Listings 10-10 through 10-13 have the basic code to illustrate the callback
technique.

288 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10-10: Implementing the Alertable Interface
package org.allyourcode.stopwatch;

import java.util.Calendar;

import javax.swing.JOptionPane;

import com.example.timers.Alertable;
import com.example.timers.TimerCommon;

public class StopWatch implements Alertable {

 public StopWatch(int seconds) {
 Calendar wakeTime = Calendar.getInstance();
 wakeTime.add(Calendar.SECOND, seconds);
 new TimerCommon(this, “Stop”, wakeTime);
 }

 @Override
 public void alert(String message) {
 JOptionPane.showMessageDialog(null, message);
 }
}

Listing 10-11: The Alertable Interface
package com.example.timers;

public interface Alertable {

 public void alert(String message);
}

Listing 10-12: Receiving an Alertable Parameter Value
package com.example.timers;

import java.util.Calendar;

public class TimerCommon {

 public TimerCommon(Alertable alertable,
 String message,
 Calendar wakeTime) {

 long whenMillis = wakeTime.getTimeInMillis();

289 Chapter 10: Saving Time and Money: Reusing Existing Code

 long currentMillis = System.currentTimeMillis();

 try {
 Thread.sleep(whenMillis - currentMillis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 alertable.alert(message);
 }
}

Listing 10-13: Everything Has to Start Somewhere!
package org.allyourcode.stopwatch;

public class Main {

 public static void main(String[] args) {
 new StopWatch(10);
 }
}

When you run the code in Listings 10-10 through 10-13, you experience a ten-
second delay. Then you see the dialog box shown in Figure 10-14.

Figure 10-14:
Running
the code

in Listings
10-10

through
10-13.

 At the start of this section, I complain that without TimerCommon, your
stopwatch code isn’t responsive to new user input. Well, I must confess that
the code in Listings 10-10 through 10-13 doesn’t solve the responsiveness
problem. To make the program more responsive, you use the interface tricks
in Listings 10-10 through 10-13, and, in addition, you put TimerCommon in a
thread of its own. The trouble is that the separate thread business doesn’t
help you understand how interfaces work, so I don’t bother creating an extra
thread in this section’s example. For a more honest multi-threading example,
see Chapter 13.

290 Part III: Working with the Big Picture: Object-Oriented Programming

One program; two Eclipse projects
To emphasize my point about the StopWatch
and TimerCommon classes being devel-
oped independently, I’ve spread Listings 10-10
through 10-13 over two different Eclipse proj-
ects. The StopWatch and Main classes
star in the 10-10 project, and Alertable and
TimerCommon star in the 10-11 project. To
make this multiproject code work, you have to
tell Eclipse about one project’s dependency on
the other. Here’s how:

 1 . Right-click (in Windows) or Control-click
(on a Mac) the 10-10 project’s branch in the
Package Explorer in Eclipse .

 You do this because, in this section’s
example, the code in the 10-10 project

makes use of the code in the 10-11 project.
(The StopWatch class creates a new
TimerCommon instance.)

 2 . From the contextual menu that appears,
choose Properties .

 The dialog box labeled Properties for 10-10
opens. On the left side, you see a list of
 categories.

 3 . In the list of categories, click to select the
Project References item .

 4 . In the main body of the dialog box, select
the check box labeled 10-11, as shown in
the first sidebar figure .

 Remember that the 10-10 project uses the
constructor that’s declared in the 10-11
project .

 5 . In the list of categories, select the Java
Build Path item .

 6 . In the main body of the Properties for 10-10
dialog box, select the Projects tab, as
shown in the second sidebar figure .

291 Chapter 10: Saving Time and Money: Reusing Existing Code

 7 . On the right side of the Projects tab, click
the Add button .

 The Required Project Selection dialog box
opens.

 8 . In the Required Project Selection dialog
box, select the 10-11 option to place a
check mark next to it .

 Remember (again) that the 10-10 project
uses the constructor that’s declared in the
10-11 project .

 9 . Click OK to dismiss the Required Project
Selection dialog box .

 As a result, the Properties for 10-10 dialog
box looks like the one shown in the second
sidebar figure.

 10 . Click OK to save your changes and to dis-
miss the Properties for 10-10 dialog box .

 Now Eclipse knows that Project 10-10
depends on some code from 10-11.

A brief explanation of this section’s code
In Listing 10-10, your code calls new TimerCommon(this, “Stop”,
when). Here’s the equivalent command, translated into English:

Create a new TimerCommon object; tell it to call this code back at
the moment that I’ve named when. Have the new TimerCommon object
deliver a “Stop” message back to this code.

A detailed explanation of this section’s code
The constructor call in Listing 10-13 creates a StopWatch instance. To
understand how Listings 10-10 through 10-12 work, you have to trace the
progress of that StopWatch instance throughout the run of the program
(you can follow along in Figure 10-13):

292 Part III: Working with the Big Picture: Object-Oriented Programming

 ✓ In Listing 10-10, Java’s this keyword represents the StopWatch
instance.

 The word this appears inside a TimerCommon constructor. So the next
bunch of code to be executed is the code inside the TimerCommon con-
structor’s body.

 ✓ In the TimerCommon constructor’s body (refer to Listing 10-12),
the alertable parameter becomes synonymous with the original
StopWatch instance.

 The TimerCommon instance “sleeps” for a while.

 ✓ Finally, with alertable referring to the StopWatch instance,
Listing 10-12 calls alertable.alert(message).

 In other words, Listing 10-12 calls back the original StopWatch instance.
Listing 10-12 knows how to call the original StopWatch instance,
because the StopWatch instance passed itself (the keyword this) in
the TimerCommon construction call.

How do interfaces help with all this? Remember that the TimerCommon
class isn’t your own code. Someone else wrote the TimerCommon class and
placed it in a separate com.example.timers package. Whoever wrote the
TimerCommon class knew nothing about you or your StopWatch class (the
code in Listing 10-10). In particular, the TimerCommon class doesn’t contain
the following code:

public TimerCommon(StopWatch yourStopWatch,
 String message,
 Calendar wakeTime) {

yourStopWatch.alert(message);

Instead, the TimerCommon class is written for a more general audience. The
TimerCommon class contains the following lines:

public TimerCommon(Alertable alertable,
 String message,
 Calendar wakeTime) {

alertable.alert(message);

The class’s constructor expects its first argument to implement the Alertable
interface. And sure enough, the first argument in new TimerCommon(this,
“Stop”, when) in Listing 10-10 is this, which is your StopWatch instance,
which (Oh, joy!) implements Alertable. Here’s the best part: As long as your
class implements the Alertable interface, your class is guaranteed to have
an alert method with one String argument (refer to Listing 10-11). So the
TimerCommon class can safely call your code’s alert method.

293 Chapter 10: Saving Time and Money: Reusing Existing Code

How versatile is this interface?
The previous section shows what an interface can do. There, an interface
bridges the gap between two otherwise unrelated pieces of code. To belabor
this point even further (if that’s possible), consider a new app of mine — a
reminder app.

Here I sit, halfway around the world from where you created your stopwatch
program. I know all about the TimerCommon class, but I know nothing about
your stopwatch app. (Okay, maybe in real life, you live 20 miles from me
in New Jersey, and I know about your stopwatch app because I wrote it for
this chapter and the app isn’t really yours. Who cares?) Here I am, halfway
around the world, knowing nothing about your stopwatch app, using the
TimerCommon class to create a completely different program — a reminder
program. The code is in Listings 10-14 through 10-16.

Listing 10-14: What Is an Appointment?
package com.allmycode.reminder;

import java.util.Calendar;

public class Appointment {
 String name;

(continued)

Time doesn’t pass
Java’s Calendar class has a misleading
name: An instance of the Calendar class is a
moment in time, not an entire month or year full
of times. In Listing 10-10, the line
wakeTime = Calendar.

getInstance()

makes wakeTime refer to a particular
moment. In fact, when you call the parameter-
less Calendar.getInstance(), you get
the current moment (the precise millisecond in
which the method call is executed). You can
check that moment’s fields (the YEAR, MONTH,
DAY_OF_MONTH, HOUR, MINUTE, SECOND
and MILLISECOND fields). But you can also

see the moment as a number of milliseconds
since midnight on January 1, 1970.

A Calendar object’s getTimeIn
Millis method finds the exact number of mil-
liseconds since January 1, 1970 for that object.
(Nowadays, it’s a huge number.) The call
add(Calendar.SECOND, seconds)
adds a certain number of seconds to a par-
ticular Calendar moment. And the System
class’s static currentTimeMillis method
provides a one-step way to find out how many
milliseconds have passed since that landmark
date in 1970.

294 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10-14 (continued)
 Calendar when;

 public Appointment(String name, Calendar when) {
 this.name = name;
 this.when = when;
 }
}

Listing 10-15: A Reminder Is an Appointment That’s Alertable
package com.allmycode.reminder;

import java.awt.Toolkit;
import java.util.Calendar;

import javax.swing.JOptionPane;

import com.example.timers.Alertable;
import com.example.timers.TimerCommon;

public class Reminder extends Appointment
 implements Alertable {

 public Reminder(String name, Calendar when) {
 super(name, when);
 new TimerCommon(this, name, when);
 }

 @Override
 public void alert(String message) {
 Toolkit.getDefaultToolkit().beep();
 JOptionPane.showMessageDialog(null, message,
 “Reminder!”, JOptionPane.WARNING_MESSAGE);
 }
}

Listing 10-16: Creating a Reminder
package com.allmycode.reminder;

import java.util.Calendar;

public class Main {

 public static void main(String[] args) {
 Calendar when = Calendar.getInstance();
 when.add(Calendar.SECOND, 5);
 new Reminder(“Take a break!”, when);
 }
}

295 Chapter 10: Saving Time and Money: Reusing Existing Code

 The call to beep() in Listing 10-15 makes some sort of noise (no big surprise).
But you might want to know a bit about the details. Java has a Toolkit class
with a static getDefaultToolkit method. A call to Toolkit.getDefault
Toolkit() returns a connection to the user’s operating system. This connec-
tion (an instance of the Toolkit class) has its own beep method. There! Now
you know.

As in your case, my class implements the Alertable interface and has an
alert(String message) method. In Listing 10-15, my Reminder object
passes itself (this) to a new TimerCommon object. Because the TimerObject
class’s code expects the first constructor parameter to be Alertable, every-
thing is okay. The TimerCommon object sleeps until it’s time to remind the
user. At the appropriate time, the TimerCommon object calls my object’s
alert method — again, the use of an interface adds versatility to the code by
cutting across class/subclass lines, as shown in Figure 10-15.

Figure 10-15:
Cutting

across class
lines.

Java’s super keyword
Here’s an excerpt from Listing 10-15:

public class Reminder extends Appointment
 implements Alertable {

 public Reminder(String name, Calendar when) {
 super(name, when);
 new TimerCommon(this, name, when);
 }

296 Part III: Working with the Big Picture: Object-Oriented Programming

In Listing 10-15, the word super stands for the superclass’s constructor. In par-
ticular, the call super(name, when) tells Java to find the superclass of the
current class, to call that superclass’s constructor, and to feed the parameter
values name and when to the superclass constructor.

My Reminder class extends the Appointment class (refer to Listing 10-14). So
in Listing 10-15, the call super(name, when) invokes one of the Appointment
class’s constructors.

Of course, the Appointment class had better have a constructor whose
types match the super call’s parameter types (String for name and
Calendar for when). Otherwise, the Eclipse editor displays lots of red
marks. Fortunately, the Appointment class in Listing 10-14 has the appropri-
ate two-parameter constructor.

public Appointment(String name, Calendar when) {
 this.name = name;
 this.when = when;
}

What Does This Have
to Do with Android?

Employees and consultants make good examples of classes and subclasses.
But at this point in the book, you might be interested in a more practical
programming example. How about an Android app? The first example is rue-
fully simple, but it’s one that an Android programmer sees every day. It’s an
Android Activity.

A typical Android app displays one screen at a time, as shown in Figure 10-16.
A screenful of material might present the user with a list of options and a
Start button. The next screenful (after the user clicks Start, for example)
shows some helpful information, such as a map, a video, or a list of items
for sale. When the user touches on this information screen, the app’s dis-
play changes to reveal a third screen, showing detailed information about
whatever option the user selected. Eventually, the user dismisses the detail
screen by clicking the Back button.

In Android terminology, each screenful of material is an activity. As the
user progresses through the sequence of screens displayed in Figure 10-16,
Android displays three activities. (It displays the middle activity twice —
once after the user clicks Start and a second time after the user dismisses the
detailed-info activity.)

297 Chapter 10: Saving Time and Money: Reusing Existing Code

Figure 10-16:
Android

displays a
sequence of

screens.

Android developers deal with activities all the time, so the creators of Android
have created an Activity class. The Activity class is part of Android’s
Application Programming Interface (API), the enormous library of classes
that’s available to every Android developer. You download the Android API
when you follow the instructions in Chapter 2.

In Chapter 4, you create a brand-new Android app. Eclipse creates some skel-
etal code (enough to run a simple “Hello” program). I’ve copied this skeletal
code in Listing 10-17.

Listing 10-17: Eclipse Creates a Main Activity
package com.allmycode.myfirstandroidapp;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

298 Part III: Working with the Big Picture: Object-Oriented Programming

The following list can help you relate elements from Listing 10-17 to this
chapter’s discussion of classes, subclasses, and interfaces:

 ✓ Every Android app is in a package of its own.

 The app in Listing 10-17 belongs to the package named com.allmy
code.myfirstandroidapp.

 ✓ If the first part of a package name is android, that package probably
belongs to Google’s Android operating system code.

 For example, Android’s Activity class lives in the android.app
package. When I import android.app.Activity, I can refer to the
Activity class in the rest of Listing 10-17 without repeating the class’s
fully qualified name.

 Java has no rule to enforce package naming conventions. You can create
your own package and name it android.app, and you can use that
package in code that has nothing to do with Google Android. But a good
developer never looks for trouble. If convention dictates that the word
android signals a package in the official Android API, don’t use the
word android in your own package names.

 ✓ The MainActivity class extends the android.app.Activity class.

 A MainActivity is an Activity. Therefore, the MainActivity in
Listing 10-17 has all the rights and responsibilities that any Activity
instance has. For example, the MainActivity has onCreate and
onCreateOptionsMenu methods, which it overrides in Listing 10-17.

 In fact, the MainActivity class inherits about 5,000 lines of Java code
from Android’s Activity class. The inherited methods include ones
such as getCallingActivity, getCallingPackage, getParent,
getTitle, getTitleColor, getWindow, onBackPressed, onKey
Down, onKeyLongPress, onLowMemory, onMenuItemSelected,
 setTitle, setTitleColor, startActivity, finish, and many,
many others. You inherit all this functionality by typing two simple
words: extends Activity.

 The Android Activity class extends another class: Android’s own
ContextThemeWrapper. Without knowing what a ContextTheme
Wrapper is (and without caring), your app’s own MainActivity class
(refer to Listing 10-17) extends Android’s Activity class, which in turn
extends Android’s ContextThemeWrapper class. So in the terminology
of familial relationships, your MainActivity class is a descendant of
Android’s ContextThemeWrapper. Your MainActivity class is a kind
of ContextThemeWrapper.

299 Chapter 10: Saving Time and Money: Reusing Existing Code

 ✓ On creating an activity, you find out what was going on when the
activity was last destroyed.

 The parameter savedInstanceState stores information about what
was going on when the activity was last destroyed. If the savedInstance
State contains any meaningful information, it’s because the activity
was destroyed in the middle of a run. Maybe the user tilted the device
sideways, causing the activity to be destroyed and then re-created in
Landscape mode. (See Chapter 5.)

 In Listing 10-17, you feed the information in the savedInstanceState
parameter to the code’s superclass, which is Android’s Activity class.
In turn, the Activity class’s constructor does all kinds of useful things
with savedInstanceState. Among other things, the Activity class’s
constructor restores much of your activity to the state it was in when
your activity was last destroyed.

 ✓ The MainActivity class inherits a setContentView method from
the Activity class.

 A call to the setContentView method’s parameter is a code number
(as described in a sidebar in Chapter 4). The setContentView method
looks up that code number and finds an XML file in your project’s res\
layout directory. (In this example, the filename is activity_main.
xml.) The method then inflates the XML file: That is, the method inter-
prets the XML file’s text as the description of a nice-looking arrangement
of items on the user’s screen. This arrangement becomes the overall
look of your activity’s screen.

 ✓ The MainActivity class overrides the Activity class’s onCreate
OptionsMenu method.

 At some point during the display of MainActivity on the screen,
Android creates the activity’s Options menu. (Normally, the user opens
the Options menu by touching an icon containing a few dots or dashes.)
In Listing 10-17, the call to inflate once again turns the text from an
XML file (res\menu\main.xml) into a bunch of menu items and menu
actions.

 The onCreateOptionsMenu method returns true, which means, “Yes,
I’ve done all that I have to do in setting up the activity’s Options menu.”
(A false value would indicate that other code must do the follow-up
work to help set up the Options menu.)

So much for Eclipse’s autogenerated app. In the next few chapters, I intro-
duce more Java features, and I show you how to build more functionality on
top of the autogenerated Android app.

300 Part III: Working with the Big Picture: Object-Oriented Programming

Part IV
Powering Android

with Java Code

 Check out the article “Using Android Asset Studio” (and more) online at www.
dummies.com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Responding to touches, clicks, and pops
 ✓ Becoming a collector (in the Java sense)
 ✓ Creating an app that uses social media
 ✓ Creating an Android game

Chapter 11

A Simple Android Example:
Responding to a Button Click

In This Chapter
▶ How to make a button do something
▶ Putting a class inside another class
▶ Using Android’s special tricks to avoid programming hassles

I
n common English usage, an insider is someone with information that’s
not available to most people. An insider gets special information because

of her position within an organization.

American culture has many references to insiders. Author John Gunther
became famous for writing Inside Europe and Inside Africa and other books in
his Inside series. On TV crime shows, an inside job is a theft or a murder com-
mitted by someone who works in the victim’s own company. So significant is
the power of inside information that in most countries, insider stock trading
is illegal.

In the same way, a Java class can live inside another Java class. When
this happens, the inner class has useful insider information. This chapter
explains why.

The First Button-Click Example
Ever heard that wonderful old joke about a circus acrobat jumping over
mice? Unfortunately, I’d get sued for copyright infringement if I included it
in this book. Anyway, the joke is about starting small and working your way
up to bigger things. That’s what you do when you read Java Programming For
Android Developers For Dummies. Most of the programs in this book aren’t

304 Part IV: Powering Android with Java Code

Android apps. Instead, the programs are standard Oracle Java apps — apps
that run on a desktop or a laptop computer, not on an Android device. In fact,
the JOptionPane.showMessageDialog method that I use in many of this
book’s examples runs only on a desktop or laptop, not on Android.

Why does a book with the word Android featured prominently in its title
contain many examples that don’t run on phones or tablet devices? The
answer is that you must always start practicing by jumping over small mice.
Compare the sets of instructions in Chapters 3 and 4, and notice how much
more work is involved in running a Hello World Android app. When you prac-
tice creating several Android apps, you become accustomed to the eccentric-
ities of Android’s emulator. But when you’re learning Java, you don’t want an
emulator’s quirks to get in the way. Java is Java, whether it’s a standard Java
app to display the words Hello World or an Android app to send a spaceship
to another world.

Anyway, by the time you reach Chapter 11, you’re ready to see some Java fea-
tures running on a phone or on a phone emulator. So this chapter’s example,
simple though it might be, is specific to Android.

Creating the Android app
You can import this chapter’s code from my website (http://allmycode.
com/Java4Android) by following the instructions in Chapter 2. But if you
want to create the example on your own, follow the next several steps:

 1. Follow the instructions in Chapter 4 to create a skeletal Android
 application.

 2. Expand your new project’s branch in Eclipse’s Package Explorer tree,
on the left.

 3. In the project’s branch, navigate to the res/layout directory.

 4. In the res/layout directory, double-click the activity_main.xml
item.

 A graphical layout of your app shows up in Eclipse’s editor, as shown in
Figure 11-1.

 You can resize this Graphical Layout view of the app by clicking the little
magnifying glass icons near the upper-right corner of the editor.

 The activity_main.xml file contains a bunch of XML code describing
the look (the layout) of your Android activity. To switch between the
picture displayed in Figure 11-1 and the actual XML code, select either
the Graphical Layout tab or the activity_main.xml tab at the bottom
of Eclipse’s editor.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

305 Chapter 11: A Simple Android Example: Responding to a Button Click

Figure 11-1:
A blank
 layout.

 5. In the palette on the left side of the graphical layout, expand the Form
Widgets category.

 In this Form Widgets category, you find TextView elements, buttons,
check boxes, and other doodads, as shown in Figure 11-2.

Figure 11-2:
Dragging a
button onto
your app’s

layout.

 6. Drag a button from the Form Widgets category onto your app’s layout
(refer to Figure 11-2).

 7. Notice the names of the items in Eclipse’s Outline view.

 Most likely, the names you see are RelativeLayout, textView1, and
button1, as shown in Figure 11-3.

 8. On Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

306 Part IV: Powering Android with Java Code

Figure 11-3:
Eclipse’s

Outline
view.

 9. In the Package Explorer tree, navigate to your project’s src directory.

 10. Inside the src directory, expand the branch for the package contain-
ing the project.

 The package name will resemble the name com.example.myfirst
androidapp.

 11. Within the package’s branch, double-click the MainActivity.java
file.

 The activity’s Java file appears in Eclipse’s editor. Eclipse created all
this code for you.

 12. In the editor, add the following fields to the MainActivity class’s
code:
Button button;
TextView textView;

 Listing 11-1 shows you exactly where to place the new section of code.
(Note that you still have to add some more code; that comes up in
Step 13.)

 Android’s Button class is in the android.widget package. To use the
short name Button, your code needs an import declaration. You can
type an import declaration yourself. Alternatively, Eclipse can add the
import declaration for you. After adding the Button button1 field and
seeing the nasty red squiggle underneath the name TextView, press
Ctrl+Shift+O. (That’s the letter O, not the digit 0.) This shortcut adds the
import declaration automatically. If you don’t like memorizing shortcut
keys, you can achieve the same effect by selecting Source➪Organize
Imports from Eclipse’s main menu.

 13. In Eclipse’s editor, add the following statements immediately after the
call to setContentView:
button = (Button) findViewById(R.id.button1);
button.setOnClickListener
 (new MyOnClickListener(this));
textView = (TextView) findViewById(R.id.textView1);

 Listing 11-1 has the proper placement of this new code.

307 Chapter 11: A Simple Android Example: Responding to a Button Click

 The editor displays a red squiggle under the name MyOnClick
Listener because you haven’t yet declared the MyOnClickListener
class. You do that in the next few steps.

 In this step, I assume that the item names you see in Step 7 are text
View1 and button1. If you see different names (such as textView01
and button01), use those alternative names after each occurrence of
R.id in Listing 11-1. For example, rather than use R.id.button1, use
R.id.button01. (No matter what names you see in Step 7, you don’t
have to change the names button and textView that you create in
Step 12. You can make up any variable names as long as you use these
variable names consistently throughout the class’s code.)

 14. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the MainActivity.java file.

 15. In the Package Explorer, right-click (on a Mac, Control-click) the
branch displaying your app’s package name.

 The package name will resemble com.example.myfirstandroidapp.

 16. From the resulting contextual menu that appears, select New➪Class.

 The New Java Class dialog box appears.

 17. In the Name field of the New Java Class dialog box, type MyOnClick
Listener (the same name you typed in the code in Step 13).

 18. Click Finish to dismiss the New Java Class dialog box.

 The New Java Class dialog box goes away, and a minimal
MyOnClickListener class appears in Eclipse’s editor. This class con-
tains (more or less) the following code:
package com.example.myfirstandroidapp;

public class MyOnClickListener {

}

 19. Add code to the (newly created) MyOnClickListener class, as shown
in Listing 11-2.

 20. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the new MyOnClickListener.java
file.

 21. Run your new Android app.

When you run the new app, you start with the display shown in Figure 11-4.
After clicking the button, you see the display shown in Figure 11-5.

308 Part IV: Powering Android with Java Code

Listing 11-1: Your Main Activity
package com.example.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener
 (new MyOnClickListener(this));
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

Listing 11-2: A Class Listens for Button Clicks
package com.example.myfirstandroidapp;

import android.view.View;
import android.view.View.OnClickListener;

public class MyOnClickListener
 implements OnClickListener {
 MainActivity caller;

 public MyOnClickListener(MainActivity activity) {
 this.caller = activity;
 }

 public void onClick(View view) {
 caller.textView.setText(“You clicked the button!”);
 }
}

309 Chapter 11: A Simple Android Example: Responding to a Button Click

Figure 11-4:
Beginning

a run of
the code in

Listings 11-1
and 11-2.

Figure 11-5:
What you
see after

clicking the
button in

Listings 11-1
and 11-2.

The code in Listings 11-1 and 11-2 performs a callback, much the same
as the callback I describe in Chapter 10. In this chapter’s callback, the
MyOnClickListener class calls back to the activity’s textView object. As
in Chapter 10, the callback is possible for two reasons:

 ✓ Android’s built-in setOnClickListener method expects its param-
eter to implement Android’s OnClickListener interface.

 Here’s how it works in Listings 11-1 and 11-2:

	 •	In	Listing	11-1,	the	call	to	setOnClickListener has, as its param-
eter, a new MyOnClickListener object.

	 •	As	Listing	11-2	shows,	the	MyOnClickListener class implements
Android’s OnClickListener interface.

 If I don’t make the MyWhatever class implement the OnClickListener
interface, this call is illegal:
button.setOnClickListener(new MyWhatever(this));

310 Part IV: Powering Android with Java Code

 ✓ The MyOnClickListener object knows how to call back the activity
that constructed it.

 Again, in Listing 11-1, the MyOnClickListener constructor call passes
this to its new MyOnClickListener object. (“Call me back,” says your
activity’s code in Listing 11-1.) See Figure 11-6.

 Then, in Listing 11-2, the MyOnClickListener constructor makes a
mental note of who gets called back, by storing a reference to your activ-
ity in its own caller field. So, when push comes to shove, the code in
Listing 11-2 calls back caller.textView.setText, which changes the
words displayed in the original activity’s textView.

Figure 11-6:
The journey

of your
applica-

tion’s main
activity.

311 Chapter 11: A Simple Android Example: Responding to a Button Click

Making a view available to your Java code
In Listing 11-2, you execute the statement

caller.textView.setText(“You clicked the button!”);

For this statement to work correctly, the textView variable must refer to
a particular widget on the activity’s screen. In particular, the textView
variable must refer to the widget that displays the words Hello world! in
Figure 11-4. Presumably, this “widget” that displays those words is an instance
of Android’s TextView class. But who knows? Maybe the code has a mistake
in it. (I don’t presume to know much about the textView variable until later
in this section.)

Anyway, there’s a problem. That Hello World widget isn’t declared anywhere
inside Listings 11-1 or 11-2. Instead, it appears because of some stuff in the
application’s activity_main.xml file. You need a way to connect the stuff
in the XML file with the textView variable in your Java code.

How can you do that? In Chapter 4, I describe the way code numbers stand
for strings in Android apps. You put a line such as

<string name=”hello_world”>Hello world!</string>

in one of your project’s XML files. As a result, Android automatically puts the
following lines (and many more lines like them) inside an R.java file:

public final class R {

 public static final class string {
 public static final int hello_world=0x7f040001;
 }

}

Because of this code number mechanism, you can refer to Hello world!
in your code with the value R.string.hello_world. Under the hood,
the name R.string.hello_world stands for the hexadecimal number
0x7f040001, though you care only about the name R.string.hello_world.

One way or another, this whole code-number mechanism with its R.java file
allows you to connect values in your XML files with names in your Java code.

312 Part IV: Powering Android with Java Code

 All hexadecimal numbers in R.java files are arbitrary values. The number to
represent the hello_world string (the number 0x7f040001 in my example)
might be different in someone else’s R.java file or even in the R.java file
that Eclipse generates for you tomorrow. You can use the name R.string.
hello_world in your code, but never use the number 0x7f040001.

 Sometimes, I can’t resist seeing my code’s sordid underbelly. If mysterious
hex numbers bother you, find a website that converts hexadecimal numbers
to and from decimal numbers. You can type 0x7f040001, for example, into a
field on the web page and learn that it has the same value as the ordinary deci-
mal number 2130968577. You can’t do much with this information, but it’s nice
to know that hexadecimal numbers don’t involve any special magic.

An Android app has several XML files, one of which describes the layout of
the app’s main activity. Listing 11-3 contains the activity_main.xml file
for this section’s example.

Listing 11-3: A Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=
 “@dimen/activity_vertical_margin”
 android:paddingLeft=
 “@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=
 “@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/hello_world” />

 <Button
 android:id=”@+id/button1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/textView1”
 android:layout_below=”@+id/textView1”
 android:layout_marginTop=”46dp”
 android:text=”Button” />

</RelativeLayout>

313 Chapter 11: A Simple Android Example: Responding to a Button Click

 The code that you see in your own project’s activity_main.xml file might
not be exactly the same as the code in Listing 11-3. For example, when you
drag a button onto your layout in Step 6, you might drop the button in a
slightly different place inside your activity’s screen. This is no big deal.

Fortunately, you don’t have to type the code in Listing 11-3. Eclipse’s tools do
the typing for you when you create your new Android project and you drop a
button into the app’s graphical layout.

In Listing 11-3, the lines

<TextView
 android:id=”@+id/textView1”
 . . .
<Button
 android:id=”@+id/button1”

tell Android to display a text view and a button on your activity’s screen.
These lines also tell Eclipse to create code numbers for the new text view and
the new button. Finally, these particular lines tell Eclipse to add some code to
your project’s R.java file, as shown in Listing 11-4.

Listing 11-4: A Few Lines from Your Project’s R.java File
public final class R {
 ...

 public static final class id {
 public static final int button1=0x7f080001;
 public static final int textView1=0x7f080000;
 }

 ...
}

The lines in this listing associate the names R.id.button1 and R.id.
textView1 with the numbers 0x7f080001 and 0x7f080000. So, indirectly,
the lines in Listing 11-4 associate the names R.id.button1 and R.id.
textView1 with the button and the text view on your main activity’s screen.

In your application’s main activity (refer to Listing 11-1), Android’s find-
ViewById method completes the chain of associations. The findViewById
method takes a number as its parameter (a number such as 0x7f080000 —
the value of R.id.textView1). The findViewById method looks up that
number and finds the widget associated with it (a widget from Listing 11-3).

314 Part IV: Powering Android with Java Code

Figure 11-7 illustrates the chain of associations in concrete terms. Using the
code snippet in Listing 11-4, the call

findViewById(R.id.textView1)

sends Android hunting for a view that’s connected with the number
0x7f080000. And because of the clever way that Eclipse generates the R.java
file, the number 0x7f080000 is associated with the appropriate text view
widget on the activity’s screen. Armed with the intermediate name R.id.
textView1, your Java code manages to find the appropriate widget in the
activity’s screen layout.

Figure 11-7:
How the

textView
variable

becomes
synonymous

with a wid-
get on the

screen.

315 Chapter 11: A Simple Android Example: Responding to a Button Click

Casting, again
When you call findViewById, Java doesn’t know what kind of view it will
find. The findViewById method always returns a View instance, but lots of
Android’s classes extend the View class. For example, the classes Button,
TextView, ImageView, CheckBox, Chronometer, and RatingBar all
extend Android’s View class. If you type the following code:

// DON’T DO THIS!!

TextView textView;

textView = findViewById(R.id.textView1);

Java lets out a resounding, resentful roar: “How dare you assume that the object
returned by a call to findViewById refers to an instance of the TextView
class!” (Actually, Java quietly and mechanically displays an error message in
Eclipse’s editor. But I like to personify Java as though it’s a stern taskmaster.)

In Listing 11-1, you appease the Java gods by adding a casting operator to
the code. You tell Java to convert whatever pops out of the findViewById
method call into a TextView object.

textView = (TextView) findViewById(R.id.textView1);

While you’re typing the code, Java humors you and says, “Your casting
operator shows me that you’re aware of the difference between a TextView
and any old View. I’ll do my best to interpret the View object that I find at
runtime as a TextView object.” (Actually, while you’re typing the code, Java
says nothing. The fact that Java doesn’t display any error messages when
you use this casting trick is a good sign. Java’s casting feature saves the day!)

 Casting prevents you from seeing an error message while you develop your
code. In that way, casting is quite a useful feature of Java. But casting can’t
save you if your code contains runtime errors. In Step 7, you verify that the
name textView1 represents a TextView widget. When the app runs, Java
grabs the R.id.textView1 widget from the activity_main.xml file,
and everything works just fine. But you may sometimes forget to check your
R.java names against the widgets in the XML file. A call to findViewById
spits out an ImageView widget when your casting tells Java to expect a
TextView widget. When this happens, Java chokes on the casting operator
and your app crashes during its run. Back to the drawing board!

 For a more complete discussion of casting, see Chapter 7.

316 Part IV: Powering Android with Java Code

Introducing Inner Classes
Does the diagram in Figure 11-6 seem unnecessarily complicated? Look at
all those arrows! You might expect to see a few somersaults as the caller
object bounces from place to place! The MyOnClickListener class (refer
to Listing 11-2) devotes much of its code to obsessively keeping track of this
caller object. Is there a simpler way to handle a simple button click?

There is. You can define a class inside another class. When you do, you’re
creating an inner class. It’s a lot like any other class. But within an inner
class’s code, you can refer to the enclosing class’s fields with none of the
froufrou in Listing 11-2. That’s why, at the beginning of this chapter, I sing the
praises of insider knowledge.

One big class with its own inner class can replace both Listings 11-1 and 11-2.
And the new inner class requires none of the exotic gyrations that you see
in the old MyOnClickListener class. Listing 11-5 contains this wonderfully
improved code.

Listing 11-5: A Class within a Class
package com.allmycode.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new MyOnClickListener());
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;

317 Chapter 11: A Simple Android Example: Responding to a Button Click

 }

 class MyOnClickListener implements OnClickListener {

 public void onClick(View view) {
 textView.setText(“You clicked the button!”);
 }
 }

}

When you run the code in Listing 11-5, you see the results shown earlier, in
Figures 11-4 and 11-5.

Notice the relative simplicity of the new MyOnClickListener class in
Listing 11-5. Going from the old MyOnClickListener class (refer to
Listing 11-2) to the new MyOnClickListener inner class (refer to Listing 11-5),
you reduce the code’s size by a factor of three. But aside from the shrinkage,
all the complexity of Figure 11-6 is absent from Listing 11-5. The use of this,
caller, and textView in Listings 11-1 and 11-2 feels like a tangled rope. But
in Listing 11-5, when you pull both ends of the rope, you find that the rope isn’t
knotted.

An inner class needs no fancy bookkeeping in order to keep track of its
enclosing class’s fields. Near the end of Listing 11-5, the line

textView.setText(“You clicked the button!”);

refers to the MainActivity class’s textView field, which is exactly what
you want. It’s that straightforward.

No Publicity, Please!
Notice that the code in Listing 11-5 uses the MyOnClickListener class
only once. (The only use is in a call to button.setOnClickListener.) So I
ask, do you really need a name for something that’s used only once? No, you
don’t. (If there’s only one cat in the house, it’s safe to say “Hey, cat!”)

When you give a name to your disposable class, you have to type the name
twice: once when you call the class’s constructor:

button.setOnClickListener(new MyOnClickListener());

and a second time when you declare the class:

class MyOnClickListener implements OnClickListener {

318 Part IV: Powering Android with Java Code

To eliminate this redundancy, you can substitute the entire definition of the
class in the place where you’d ordinarily call the constructor. When you do
this, you have an anonymous inner class. Listing 11-6 shows you how it works.

Listing 11-6: A Class with No Name (Inside a Class with a Name)
package com.allmycode.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 textView.setText(“You clicked the button!”);
 }
 });
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

A run of the code from Listing 11-6 is shown in Figures 11-4 and 11-5. In other
words, the listing does exactly the same thing as its wordier counterparts in
this chapter. The big difference is that, unlike this chapter’s previous exam-
ples, the listing uses an anonymous inner class.

An anonymous inner class is a lot like an ordinary inner class. The big differ-
ence is that an anonymous inner class has no name. Nowhere in Listing 11-6

319 Chapter 11: A Simple Android Example: Responding to a Button Click

do you see a name like MyOnClickListener. Instead, you see what looks
like an entire class declaration inside a call to button.setOnClick
Listener. It’s as though the setOnClickListener call says, “The follow-
ing listener class, which no one else refers to, responds to the button clicks.”

As far as I’m concerned, the most difficult aspect of using an anonymous
inner class is keeping track of the code’s parentheses, curly braces, and other
non-alphabetic characters. Notice, for example, the string of closing punctua-
tion characters — !”);}}); — that straddles a few lines in Listing 11-6. The
indentation in that listing helps a little bit when you try to read a big mush of
anonymous inner class code, but it doesn’t help a lot. Fortunately, there’s a
nice correspondence between the code in Listing 11-5 and the anonymized
code in Listing 11-6. Figure 11-8 illustrates this correspondence.

Figure 11-8:
Turning

ordinary
inner

class code
(refer to

Listing 11-5)
into anony-
mous inner
class code

(refer to
Listing 11-6).

I feel obliged to include a written explanation of the material in Figure 11-8.
Here goes:

To go from a named inner class to an anonymous inner class, you replace
the named class’s constructor call with the entire class declaration. In
place of the class name, you put the name of the interface that the inner
class implements (or, possibly, the name of the class that the inner class
extends).

320 Part IV: Powering Android with Java Code

If you find my explanation helpful, I’m pleased. But if you don’t find it helpful,
I’m neither offended nor surprised. When I create a brand-new inner class, I
find my gut feeling and Figure 11-8 to be more useful than Java’s formal gram-
mar rules.

My humble advice: Start by writing code with no inner classes, such as
the code in Listing 11-5. Later, when you become bored with ordinary Java
classes, experiment by changing some of your ordinary classes into anony-
mous inner classes.

Doing It the Easy Way
With all the fuss about callbacks and inner classes in this chapter, I’m
tempted to end the chapter right here. So this is the last paragraph in
Chapter 11. Don’t read any further in this chapter. Really, there’s nothing
more to see here. Move on, everybody!

I warned you to skip the
rest of this chapter
Starting with Android 1.6 (code-named Donut, API Level 4), developers can
add click-handling code to a button, or to any other Android widget, without
creating a separate class. You don’t need the extra Java file in Listing 11-2 or
the inner class in Listing 11-5 or the anonymous inner class in Listing 11-6.

 The onClick attribute described in this section (which you shouldn’t be read-
ing) lets you handle clicks and other occurrences without coding any additional
classes. The onClick feature is quite convenient. But the onClick feature’s
existence doesn’t mean that you, the Android developer, don’t have to under-
stand callbacks and inner classes. Interfaces, callbacks, and inner classes are
used implicitly and explicitly in almost every Android application. And, among
all the introductory inner class examples, button clicking is one of the easiest to
understand. The use of an inner class to handle a button click is an old standby
among Java programming examples, so I use this example in Chapter 11, even
though Android provides this section’s fast, convenient onClick attribute
work-around.

The “no-hassle” way to click a button
In this section’s example, your app’s activity class handles the button click
on its own. You don’t create an additional class to handle the click.

321 Chapter 11: A Simple Android Example: Responding to a Button Click

You can follow the instructions in Chapter 2 to import this section’s example
from my website (http://allmycode.com/Java4Android). But if you
want to create the example on your own, follow these steps:

 1. Follow Steps 1 through 7 earlier in this chapter, in the section “The
First Button-Click Example.”

 2. Right-click (in Windows) or Control-click (on the Mac) the picture of
the button in the graphical layout.

 3. From the contextual menu that appears, select Other
Properties➪Inherited from View➪OnClick.

 A dialog box with a field labeled New onClick Value appears, as shown in
Figure 11-9.

Figure 11-9:
The New

onClick
Value dia-

log box.

 4. In the New onClick Value field, type the name of a method.

 In Figure 11-9, I typed the name whenButtonClicked. In the next sev-
eral steps, I assume that you type the same name, whenButtonClicked.

 5. Click OK to dismiss the dialog box.

 6. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

 Your actions in Steps 2 through 6 tell Android to look for a method with
the following header when the user clicks the button:
public void whenButtonClicked(View view)

 In the remaining steps, you add that whenButtonClicked method to
your app’s Java code.

 7. In the Package Explorer, navigate to your project’s src directory.

 8. Inside the src directory, expand the branch for the package contain-
ing the project.

 The package name is probably similar to com.example.myfirst
androidapp.

http://allmycode.com/Java4Android

322 Part IV: Powering Android with Java Code

 9. Within the package’s branch, double-click the MainActivity.java
file.

 The activity’s Java file appears in Eclipse’s editor. Eclipse created all
this Java code for you.

 10. In the editor, add the following field to your MainActivity class’s
code:
TextView textView;

 See Listing 11-7.

 After typing the TextView declaration, select Source➪Organize Imports
from Eclipse’s main menu. When you do, Eclipse automatically adds the
TextView class’s import declaration to your code.

 11. In Eclipse’s editor, add the following statement immediately after the
call to setContentView:
textView = (TextView) findViewById(R.id.textView1);

 Refer to Listing 11-7.

 12. Type the whenButtonClicked method in your code.

 You can find the method in Listing 11-7.

 13. From Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

 14. Run your project.

 The project runs exactly as it did in this chapter’s examples. Under
the hood, Android creates all the necessary callbacks to have your
whenButtonClicked method respond to the user’s actions.

Listing 11-7: Adding the whenButtonClicked Method to Your Code
package com.example.myfirstandroidappnew;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends Activity {
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

323 Chapter 11: A Simple Android Example: Responding to a Button Click

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 textView = (TextView) findViewById(R.id.textView1);
 }

 public void whenButtonClicked(View view) {
 textView.setText(“You clicked the button!”);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

324 Part IV: Powering Android with Java Code

Chapter 12

Dealing with a Bunch of Things
at a Time

In This Chapter
▶ Dealing with many objects at a time
▶ Creating versatile classes and methods
▶ Stepping through a list of items

All the world’s a class,

And all the data, merely objects.

—Jimmy Shakespeare, 11-year-old computer geek

A
 class is a blueprint for things, and an object is a thing made from
the blueprint. By thing, I mean a particular employee, a customer, an

Android activity, or a more ethereal element, such as an SQLiteOpenHelper.
Here’s another quotation, this one from a more reliable source:

In fact, some Java classes are difficult to visualize. Android’s
SQLiteOpenHelper class assists developers in the creation of databases.
An SQLiteOpenHelper doesn’t look like anything in particular, and
certainly not an online form or a bag of cheese.

—Barry Burd, Java Programming for Android Developers
For Dummies, Chapter 9

This chapter covers a concept that you might not normally consider a class
or an object — namely, a bunch of things. I use the word bunch, by the way,
to avoid the formal terminology. (There’s nothing wrong with the formal ter-
minology, but I want to save it for this chapter’s official grand opening, in the
first section.)

326 Part IV: Powering Android with Java Code

Creating a Collection Class
A collection class is a class whose job is to store a bunch of objects at a
time — a bunch of String objects, a bunch of BagOfCheese objects, a
bunch of tweets, or whatever. You can create a collection class with the
code in Listing 12-1.

Listing 12-1: Your First Collection Class
package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList arrayList = new ArrayList();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 for (int i = 0; i < 4; i++) {
 System.out.print(arrayList.get(i));
 }
 }

}

When you run the code in Listing 12-1, you see the output shown in Figure 12-1.

Figure 12-1:
Running

the code in
Listing 12-1.

The code in Listing 12-1 constructs a new ArrayList instance and makes
the arrayList variable refer to that new instance. The ArrayList class is
one of many kinds of collection classes.

 The statement ArrayList arrayList = new ArrayList() creates an
empty list of things and makes the arrayList variable refer to that empty list.
What does a list look like when it’s empty? I don’t know. I guess it looks like a
blank sheet of paper. Anyway, the difference between having an empty list and

327 Chapter 12: Dealing with a Bunch of Things at a Time

having no list is important. Before executing ArrayList arrayList = new
ArrayList(), you have no list. After executing ArrayList arrayList =
new ArrayList(), you have a list that happens to be empty.

The code in Listing 12-1 calls arrayList.add four times in order to put
these four objects (all strings) into the list:

 ✓ “Hello”

 ✓ “, “

 ✓ “readers”

 ✓ “!”

After calling arrayList.add, the list is no longer empty.

To display the objects in Eclipse’s Console view, the code calls System.
out.print four times, each time with a different object from the arrayList
collection.

 If you don’t see Eclipse’s Console view, click Window➪Show View➪Console.

 There’s a difference between System.out.println and System.out.
print (without the ln ending): The System.out.println method goes to
a new line after displaying its text; the System.out.print method does not
go to a new line after displaying its text. In Listing 12-1, for example, with four
calls to System.out.print, all four chunks of text appear on the same line
in Eclipse’s Console view.

The for statement in Listing 12-1 marches through the values in the array-
List. Every value in the list has an index, each ranging from 0 to 3.

 In a Java collection, the initial index is always 0, not 1.

Java generics
If you look at Listing 12-1 in Eclipse’s editor, you see lots of yellow warning
markers, as shown in Figure 12-2. The warning text looks something like this:
“ArrayList is a raw type. References to generic type ArrayList<E> should be
parameterized.” What does that mean?

Starting with Java 5, the collection classes use generic types. You can recog-
nize a generic type because of the angle brackets around its type name. For
example, the following declaration uses String for a generic type:

ArrayList<String> arrayList = new ArrayList<String>();

328 Part IV: Powering Android with Java Code

Figure 12-2:
What are all
these warn-
ings about?

This improved declaration tells Java that the arrayList variable refers to a
bunch of objects, each of which is an instance of String. When you substitute
this new declaration in place of the nongeneric declaration from Listing 12-1,
the yellow warning markers disappear, as you can see in Figure 12-3.

Figure 12-3:
Using

generics.

The yellow markers show warnings, not errors (refer to Figure 12-2), so
you can get away with using the nongeneric declaration in Listing 12-1. But
creating a nongeneric collection has some disadvantages. When you don’t
use generics (as in Listing 12-1), you create a collection that might contain
objects of any kind. In that case, Java can’t take advantage of any special
properties of the items in the collection.

Here’s an example. Chapter 9 starts with a description of the BagOfCheese
class (which I’ve copied in Listing 12-2).

329 Chapter 12: Dealing with a Bunch of Things at a Time

Listing 12-2: A Class in the Java Programming Language
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;
}

You can put a few BagOfCheese objects into a nongeneric collection. But
when you examine the objects in the collection, Java remembers only that
the items in the collection are objects. Java doesn’t remember that they’re
BagOfCheese objects, as shown in Figure 12-4.

Figure 12-4:
Your code

without
casting.

In Figure 12-4, Java doesn’t remember that what you get from arrayList is
always a BagOfCheese instance. So Java refuses to reference the object’s
kind field. (The last marker in Figure 12-4 is an error marker. Java can’t run
the code in that figure.)

Using casting, you can remind Java that the item you’re getting from array-
List is a BagOfCheese instance.

System.out.print(((BagOfCheese) arrayList.get(i)).kind);

When you cast arrayList.get(i) to a BagOfCheese instance, you don’t
see the error message in Figure 12-4. You can run the code, warnings and
all. Life is good, but the code is ugly! Look at all the parentheses you need in
order to make the casting work correctly. It’s a mess.

330 Part IV: Powering Android with Java Code

If you tweak the code to make arrayList generic, Java knows that what
you get from arrayList is always a BagOfCheese instance, and every
BagOfCheese instance has a kind field, as shown in Figure 12-5. No casting
is required.

Figure 12-5:
Java gener-

ics save
the day.

You can use generics to create your own collection class. When you do,
the generic type serves as a placeholder for an otherwise unknown type.
Listing 12-3 contains a home-grown declaration of an OrderedPair class.

Listing 12-3: A Custom-Made Collection Class
package com.allmycode.collections;

public class OrderedPair<T> {
 private T x;
 private T y;

 public T getX() {
 return x;
 }
 public void setX(T x) {
 this.x = x;
 }
 public T getY() {
 return y;
 }
 public void setY(T y) {
 this.y = y;
 }
}

331 Chapter 12: Dealing with a Bunch of Things at a Time

An OrderedPair object has two components: an x component and a y
component. If you remember your high school math, you can probably plot
ordered pairs of numbers on a two-dimensional grid. But who says that every
ordered pair must contain numbers? The newly declared OrderedPair class
stores objects of type T, and T can stand for any Java class. In Listing 12-4, I
show you how to create an ordered pair of BagOfCheese objects.

Listing 12-4: Using the Custom-Made Collection Class
package com.allmycode.collections;

public class PairOfBags {

 public static void main(String[] args) {
 OrderedPair<BagOfCheese> pair =
 new OrderedPair<BagOfCheese>();

 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Muenster”;
 pair.setX(bag);

 bag = new BagOfCheese();
 bag.kind = “Brie”;
 pair.setY(bag);

 System.out.println(pair.getX().kind);
 System.out.println(pair.getY().kind);
 }

}

Java’s wrapper classes
Chapters 6 and 9 describe the difference between primitive types and refer-
ence types:

 ✓ Each primitive type is baked into the language.

 Java has eight primitive types.

 ✓ Each reference type is a class or an interface.

 You can define your own reference type. So the number of reference
types in Java is potentially endless.

332 Part IV: Powering Android with Java Code

The difference between primitive types and reference types is one of Java’s
most controversial features, and developers often complain about the differ-
ences between primitive values and reference values.

Here’s one of the primitive-versus-reference-type “gotchas:” You can’t store a
primitive value in an ArrayList. You can write

// THIS IS OKAY:
ArrayList<String> arrayList = new ArrayList<String>();

because String is a reference type. But you can’t write

// DON’T DO THIS:
ArrayList<int> arrayList = new ArrayList<int>();

because int is a primitive type. Fortunately, each of Java’s primitive types
has a wrapper type, which is a reference type whose purpose is to contain
another type’s value. For example, an object of Java’s Integer type contains
a single int value. An object of Java’s Double type contains a single double
value. An object of Java’s Character type contains a single char value. You
can’t create an ArrayList of int values, but you can create an ArrayList
of Integer values.

// THIS IS OKAY:
ArrayList<Integer> arrayList = new ArrayList<Integer>();

 Every primitive type’s name begins with a lowercase letter. Every wrapper
type’s name begins with an uppercase letter.

In addition to containing primitive values, wrapper classes provide useful
methods for working with primitive values. For example, the Integer wrap-
per class contains parseInt and other useful methods for working with int
values:

String string = “17”;
int number = Integer.parseInt(string);

On the downside, working with wrapper types can be clumsy. For example,
you can’t use arithmetic operators with Java’s numeric wrapper types. Here’s
the way I usually create two Integer values and add them together:

Integer myInteger = new Integer(3);
Integer myOtherInteger = new Integer(15);

Integer sum =
 myInteger.intValue() + myOtherInteger.intValue();

333 Chapter 12: Dealing with a Bunch of Things at a Time

Stepping through a collection
The program in Listing 12-1 uses a for loop with indexes to step through a col-
lection. The code does what it’s supposed to do, but it’s a bit awkward. When
you’re piling objects into a collection, you shouldn’t have to worry about which
object is first in the collection, which is second, and which is third, for example.

Java has two features that make it easier to step through a collection of
objects. One feature is the iterator. Listing 12-5 shows you how an iterator
works.

Listing 12-5: Iterating through a Collection
package com.allmycode.collections;

import java.util.ArrayList;
import java.util.Iterator;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 Iterator<String> iterator = arrayList.iterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next());
 }
 }

}

The output from running Listing 12-5 is shown earlier, in Figure 12-1.

When you have a collection (such as an ArrayList), you can create an itera-
tor to go along with that collection. In Listing 12-5, I show you how to create
an iterator to go along with the arrayList collection, by calling

 Iterator<String> iterator = arrayList.iterator();

After you’ve made this call, the variable iterator refers to something that
can step through all values in the arrayList collection. Then, to step
from one value to the next, you call iterator.next() repeatedly. And,

334 Part IV: Powering Android with Java Code

to find out whether another iterator.next() call will yield results, you
call iterator.hasNext(). The call to iterator.hasNext() returns
a boolean value: true when there are more values in the collection and
false when you’ve already stepped through all the values in the collection.

An even nicer way to step through a collection is with Java’s enhanced for
statement. Listing 12-6 shows you how to use it.

Listing 12-6: Using the Enhanced for Statement
package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 for (String string : arrayList) {
 System.out.print(string);
 }
 }

}

An enhanced for statement doesn’t have a counter. Instead, the statement
has the format shown in Figure 12-6.

Figure 12-6:
The anat-
omy of an
enhanced

for
statement.

335 Chapter 12: Dealing with a Bunch of Things at a Time

The enhanced for statement in Listing 12-6 achieves the same effect as the
iterator in Listing 12-5 and the ordinary for statement in Listing 12-1. That is,
the enhanced for statement steps through the values stored in the array
List collection.

The enhanced for statement was introduced in Java 5.0. It’s “enhanced”
because, for stepping through a collection, it’s easier to use than a pre-Java
5.0 for statement.

A cautionary tale
In an enhanced for statement, the variable that repeatedly stands for dif-
ferent values in the collection never refers directly to any of those values.
Instead, this variable always contains a copy of the value in the collection.
So, if you assign a value to that variable, you don’t change any values inside
the collection.

Here’s a quiz. (Don’t be scared. The quiz isn’t graded.) What’s the output of
the following code?

package com.allmycode.collections;

import java.util.ArrayList;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 ArrayList<String> arrayList = new ArrayList<String>();
 arrayList.add(“Hello”);
 arrayList.add(“, “);
 arrayList.add(“readers”);
 arrayList.add(“!”);

 // THIS IS PRETTY BAD CODE
 for (String string : arrayList) {
 string = “Oops!”;
 System.out.print(string);
 }

 System.out.println();

 for (String string : arrayList) {
 System.out.print(string);
 }
 }

}

The output is shown in Figure 12-7.

336 Part IV: Powering Android with Java Code

Figure 12-7:
Running this

section’s
bad code.

In the first for statement, the variable string is reassigned to refer to the
word “Oops!” each time through the loop. The call to System.out.print
displays that word “Oops!”. So far, so good.

But in the second for statement, the variable string isn’t reassigned.
Instead, the string variable retains whatever value it copies from the
arrayList collection. So the second for statement displays the words
Hello, readers!.

Java’s many collection classes
The ArrayList class that I use in many of this chapter’s examples is only
the tip of the Java collections iceberg. The Java library contains many collec-
tions classes, each with its own advantages. Table 12-1 contains an abbrevi-
ated list.

Table 12-1 Some Collection Classes
Class Name Characteristic
ArrayList A resizable array.
LinkedList A list of values, each having a field that points to the next

one in the list.
Stack A structure (which grows from bottom to top) that’s opti-

mized for access to the topmost value. You can easily add
a value to the top or remove it from the top.

Queue A structure (which grows at one end) that’s optimized for
adding values to one end (the rear) and removing values
from the other end (the front).

PriorityQueue A structure, like a queue, that lets certain (higher-priority)
values move toward the front.

HashSet A collection containing no duplicate values.
HashMap A collection of key/value pairs.

337 Chapter 12: Dealing with a Bunch of Things at a Time

Each collection class has its own set of methods (in addition to the methods that
it inherits from AbstractCollection, the ancestor of all collection classes).

 To find out which collection classes best meet your needs, visit the Android API
documentation pages at http://developer.android.com/reference.

Arrays
In the “Stepping through a collection” section, earlier in this chapter, I cast
aspersions on the use of an index in Listing 12-1. “You shouldn’t have to
worry about which object is first in the collection, which is second, and
which is third,” I write. Well, that’s my story and I’m sticking to it, except in
the case of an array. An array is a particular kind of collection that’s opti-
mized for indexing. That is, you can easily and efficiently find the 100th value
stored in an array, the 1,000th value stored in an array, or the 1,000,000th
value stored in an array.

The array is a venerable, tried-and-true feature of many programming lan-
guages, including newer languages such as Java and older languages such as
FORTRAN. In fact, the array’s history goes back so far that most languages
(including Java) have special notation for dealing with arrays. Listing 12-7
illustrates the notation for arrays in a simple Java program.

Listing 12-7: Creating and Using an Array
package com.allmycode.collections;

public class SimpleCollectionsDemo {

 public static void main(String[] args) {
 String[] myArray = new String[4];
 myArray[0] = “Hello”;
 myArray[1] = “, “;
 myArray[2] = “readers”;
 myArray[3] = “!”;

 for(int i = 0; i < 4; i++) {
 System.out.print(myArray[i]);
 }

 System.out.println();

 for (String string : myArray) {
 System.out.print(string);
 }
 }

}

http://developer.android.com/reference

338 Part IV: Powering Android with Java Code

Figure 12-8 shows the output of a run of the code in Listing 12-7. Both the
ordinary for loop and the enhanced for loop display the same output.

Figure 12-8:
Running

the code in
Listing 12-7.

In Listing 12-7, the ordinary for loop uses indexes, with each index marked
by square brackets. As it is with all Java collections, the initial value’s index
is 0, not 1. Notice also the number 4 in the array’s declaration — it indicates
that “you can store 4 values in the array.” The number 4 doesn’t indicate that
“you can assign a value to myArray[4].” In fact, if you add a statement such
as myArray[4] = “Oops!” to the code in Listing 12-7, you get a nasty error
message (ArrayIndexOutOfBoundsException) when you run the program.

 The statement String[] myArray = new String[4] creates an empty
array and makes the myArray variable refer to that empty array. The array can
potentially store as many as four values. But, initially, that variable refers to an
array that contains no values. It’s not until Java executes the first assignment
statement (myArray[0] = “Hello”) that the array contains any values.

You can easily and efficiently find the 100th value stored in an array or the
1,000,000th value stored in an array. Not bad for a day’s work. So, what’s the
downside of using an array? The biggest disadvantage of an array is that each
array has a fixed limit on the number of values it can hold. When you create
the array in Listing 12-7, Java reserves space for as many as four String
values. If, later in the program, you decide that you want to store a fifth ele-
ment in the array, you need some clumsy, inefficient code to make yourself
a larger array. You can also overestimate the size you need for an array, as
shown in this example:

 String[] myArray = new String[20000000];

When you overestimate, you probably waste a lot of memory space.

Another unpleasant feature of an array is the difficulty you can have in insert-
ing new values. Imagine having a wooden box for each year in your collection
of Emperor Constantine Comics. The series dates back to the year 307 A.D.,
when Constantine became head of the Roman Empire. You have only 1,700
boxes because you’re missing about six years (mostly from the years 1150 to
1155). The boxes aren’t numbered, but they’re stacked one next to another
in a line that’s 200 meters long. (The line is as long as the 55th floor of a sky-
scraper is tall.)

339 Chapter 12: Dealing with a Bunch of Things at a Time

At a garage sale in Istanbul, you find a rare edition of Emperor Constantine
Comics from March 1152. After rejoicing over your first comic from the year
1152, you realize that you have to insert a new box into the pile between the
years 1151 and 1153, which involves moving the year 2013 box about ten cen-
timeters to the left, and then moving the 2012 box in place of the 2013 box,
and then moving the 2011 box in place of the 2012 box. And so on. Life for
the avid Emperor Constantine Comics collector is about to become tiresome!
Inserting a value into the middle of a large array is equally annoying.

Java’s varargs
In an app of some kind, you need a method that displays a bunch of words
as a full sentence. How do you create such a method? You can pass a bunch
of words to the sentence. In the method’s body, you display each word, fol-
lowed by a blank space, as shown here:

for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
}

To pass words to the method, you create an array of String values:

String[] stringsE = { “Goodbye,”, “kids.” };
displayAsSentence(stringsE);

Notice the use of the curly braces in the initialization of stringsE. In Java,
you can initialize any array by writing the array’s values, separating the
values from one another by commas, and surrounding the entire bunch of
values with curly braces. When you do this, you create an array initializer.

Listing 12-8 contains an entire program to combine words into sentences.

Listing 12-8: A Program without Varargs
package com.allmycode.arrays;

public class UseArrays {

 public static void main(String[] args) {
 String[] stringsA = { “Hello,”, “I”, “must”, “be”,
 “going.” };
 String[] stringsB = { “ “, “-Groucho” };
 String[] stringsC = { “Say”, “Goodnight,”,
 “Gracie.” };

(continued)

340 Part IV: Powering Android with Java Code

Listing 12-8 (continued)
 String[] stringsD = { “ “, “-Nathan Birnbaum” };
 String[] stringsE = { “Goodbye,”, “kids.” };
 String[] stringsF = { “ “, “-Clarabell” };

 displayAsSentence(stringsA);
 displayAsSentence(stringsB);
 displayAsSentence(stringsC);
 displayAsSentence(stringsD);
 displayAsSentence(stringsE);
 displayAsSentence(stringsF);
 }

 static void displayAsSentence(String[] words) {
 for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
 }
 System.out.println();
 }
}

When you run the code in Listing 12-8, you see the output shown in Figure 12-9.

Figure 12-9:
Running

the code in
Listing 12-8.

The code in Listing 12-8 is awkward because you have to declare six different
arrays of String values. You can’t combine the variable declarations and
the method call. A statement such as

displayAsSentence(“Say”, “Goodnight,”, “Gracie.”);

is illegal because the call’s parameter list has three values, and because the
displayAsSentence method (in Listing 12-8) has only one parameter (one
array). You can try fixing the problem by declaring displayAsSentence
with three parameters:

static void displayAsSentence
 (String word0, String word1, String word2) {

341 Chapter 12: Dealing with a Bunch of Things at a Time

But then you’re in trouble when you want to pass five words to the method.

To escape from this mess, Java 5.0 introduces varargs. A parameter list with
varargs has a type name followed by three dots. The dots represent any
number of parameters, all of the same type. Listing 12-9 shows you how it
works.

Listing 12-9: A Program with Varargs
package com.allmycode.varargs;

public class UseVarargs {

 public static void main(String[] args) {
 displayAsSentence(“Hello,”, “I”, “must”, “be”,
 “going.”);
 displayAsSentence(“ “, “-Groucho”);
 displayAsSentence(“Say”, “Goodnight,”, “Gracie.”);
 displayAsSentence(“ “, “-Nathan Birnbaum”);
 displayAsSentence(“Goodbye,”, “kids.”);
 displayAsSentence(“ “, “-Clarabell”);
 }

 static void displayAsSentence(String... words) {
 for (String word : words) {
 System.out.print(word);
 System.out.print(“ “);
 }
 System.out.println();
 }
}

In Listing 12-9, the parameter list (String... words) stands for any
number of String values — one String value, one hundred String values,
or even no String values. So in Listing 12-9, I can call the displayAsSent-
ence method with two parameters (“Goodbye,”, “kids.”), with three
parameters (“Say”, “Goodnight,”, “Gracie.”), and with five param-
eters (“Hello,”, “I”, “must”, “be”, “going.”).

In the body of the displayAsSentence method, I treat the collection of
parameters as an array. I can step through the parameters with an enhanced
for statement, or I can refer to each parameter with an array index. For
example, in Listing 12-9, during the first call to the displayAsSentence
method, the expression words[0] stands for “Hello”. During the second
call to the displayAsSentence method, the expression words[2] stands
for “Goodnight”. And so on.

342 Part IV: Powering Android with Java Code

Using Collections in an Android App
I conclude this chapter with an Android app that’s all about collections. This
example will never become Google Play’s featured app of the day, but the app
demonstrates some of Java’s collection features, and it shows you how to do
a few interesting Android tricks.

The app begins by displaying five check boxes, as shown in Figure 12-10.

The user selects a few of the check boxes and then clicks the Show the List
button. After the button is clicked, the app switches to a new activity (an
Android ListActivity) that displays the numbers of the check boxes the
user clicked, as shown in Figure 12-11.

In the app’s code, I use an array to store the check boxes, I use an ArrayList
for the items in the ListActivity, and I use an Android ArrayAdapter to
determine which numbers the ListActivity displays.

Figure 12-10:
The app’s

main
 activity.

Figure 12-11:
The app’s

other
 activity.

343 Chapter 12: Dealing with a Bunch of Things at a Time

The main activity’s initial layout
In an Android app, you use layouts to describe the arrangement of widgets on
the device’s screen. The Android API has several kinds of layouts, including
these:

 ✓ LinearLayout: Arranges widgets in a line across the screen, or in a
column down the screen.

 ✓ GridLayout: Arranges widgets in a rectangular grid (that is, in the cells
of a table whose borders are invisible).

 ✓ RelativeLayout: Arranges widgets by describing their positions relative
to one another. For example, you can make the top of button2 be 50
pixels below the bottom of button1.

In a LinearLayout, items appear one to the right of the other, or one
beneath the other, depending on the layout’s orientation. According to the
code in Listing 12-10, the app’s main activity has a LinearLayout with
vertical orientation. So when you add items to the layout, new items appear
beneath existing items on the activity’s screen.

Listing 12-10: The Main Activity’s Layout
<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 android:id=”@+id/linearLayout”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:orientation=”vertical” >

 <TextView
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/main_activity” >
 </TextView>

 <Button
 android:id=”@+id/button1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:onClick=”onShowListClick”
 android:text=”@string/show_list” >
 </Button>

</LinearLayout>

344 Part IV: Powering Android with Java Code

As always, you can download this chapter’s Android app from the book’s
website (www.allmycode.com/Java4Android). But if you create the app
from scratch, you can create most of Listing 12-10 by dragging and dropping
items into Eclipse’s graphical layout.

By default, Eclipse doesn’t create an android:id attribute when you drag
a LinearLayout or a RelativeLayout onto the Graphical Layout pane.
But, as you can see in the next section, you need a way to refer back to the
overall layout in this app’s main activity. To create the code in Listing 12-10,
you add your own android:id attribute to the code’s LinearLayout
element, either by right-clicking (in Windows) or Control-clicking (on
the Mac) the layout on the Graphical Layout tab or typing the words
android:id=”@+id/linearLayout” on the activity_main.xml tab.

In this app example, the layout’s TextView element is mere eye candy. The
only interesting widget in Listing 12-10 is the button. When the user clicks the
button, Android calls your main activity’s onShowListClick method.

 Both standard Oracle Java and Android Java have layouts. But the kinds of lay-
outs that come with standard Java are different from the kinds that come with
Android Java. For example, Android’s LinearLayout is similar to (but not
identical to) standard Java’s FlowLayout. Android’s FrameLayout is some-
thing like two of standard Java’s layouts: CardLayout and OverlayLayout.
Standard Java’s BorderLayout has no direct counterpart in Android. But, in
Android, you can achieve the same effect as a BorderLayout by combining
some of Android’s existing layouts or by creating your own custom layout.

The app’s main activity
In Chapter 5, I introduce the lifecycle of an Android activity. Unlike a stan-
dard Java program, an Android activity has no main method. Instead, the
Android operating system calls the activity’s onCreate, onStart, and
onResume methods.

Listing 12-11 contains the code for the app’s main activity (refer to Figure 12-10).
The MainActivity class in Listing 12-11 has all three lifecycle methods —
onCreate, onStart and onResume, although you see only onCreate in
Listing 12-11. The other two lifecycle methods (onStart and onResume) come
quietly as a result of extending Android’s Activity class.

http://www.allmycode.com/Java4Android

345 Chapter 12: Dealing with a Bunch of Things at a Time

Listing 12-11: The Main Activity’s Java Code
package com.allmycode.lists;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.CheckBox;
import android.widget.LinearLayout;

public class MainActivity extends Activity {
 static CheckBox[] checkBoxes = new CheckBox[5];

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 LinearLayout layout =
 (LinearLayout) findViewById(R.id.linearLayout);

 for (int i = 0; i < 5; i++) {
 checkBoxes[i] = new CheckBox(this);
 layout.addView(checkBoxes[i]);
 }
 }

 public void onShowListClick(View view) {
 Intent intent =
 new Intent(this, MyListActivity.class);
 startActivity(intent);
 }
}

The onCreate method in Listing 12-11 calls findViewById to locate the
layout on the activity’s screen. After assigning the result to the layout vari-
able, the onCreate method’s for loop adds five check boxes to layout. In
the CheckBox constructor call . . .

Hey, wait a minute! Don’t I have to declare the five check boxes in the
activity_main.xml file of Listing 12-10? Can I really add a widget to
a layout using Java code? Yes, I can. To place a widget (a TextView, a
Button, a CheckBox, or whatever) on the screen, I can either declare
the widget in my activity_main.xml file or (as I do in Listing 12-11)
call the layout’s addView method in my Java code.

Most Android developers agree that the activity_main.xml route
is often the better way to go. After all, the widgets on a screen are just

346 Part IV: Powering Android with Java Code

“there” all at once. They don’t usually appear one by one, as though
someone commands them into existence. But creating check boxes with
Java code is particularly good for this chapter’s sample app, especially
because I want to consider the check boxes as numbered from 0 to 4.

Anyway, in the CheckBox constructor call, the parameter this represents
the app’s main activity. When you create a widget in an Android app, you do
so within a context, which is a pile of information about the environment in
which a widget lives. A context includes facts such as an activity’s package
name, the values in the activity’s strings.xml file, and a list of files associ-
ated with the activity.

Now here’s the strange part: Android’s Activity class is a subclass of
Android’s Context class. In other words. every activity is a context. In the
CheckBox constructor in Listing 12-11, passing this to the constructor
means that I’m passing a context to the constructor. For all the Android code
that I’ve written, I’ve never gotten used to thinking of an activity as a kind of
context. But the android.app.Activity class is a subclass of a subclass of
a subclass of the android.context.Context class. So it’s true. I can pass
my main activity to the CheckBox constructor in Listing 12-11.

The onShowListClick method in Listing 12-11 responds to the click of
the Show the List button in Figure 12-10. In that method’s body, the call to
startActivity(intent) makes a second activity replace the main activ-
ity. The main activity becomes stopped (that is, hidden) and another activity
(an instance of the MyListActivity class) takes over the device’s screen.

Android uses Intent objects to transition from one activity to another. The
Intent object in Listing 12-11 is called an explicit intent because the name of
the new activity’s class (MyListActivity) is in the intent’s constructor.

 The alternative to an explicit intent is an implicit intent. With an implicit intent,
you don’t provide the new activity’s class name. Instead, you provide infor-
mation about the kinds of things you want the new activity to be able to do.
When you call startActivity with an implicit intent, Android goes search-
ing around the user’s device for any activity (in your app or in other people’s
apps) that can do the kinds of things you want done. For example, with the
intent new Intent(Intent.ACTION_VIEW, “http://www.allmycode.
com”), Android searches for a web browser activity — an activity that can
view this book’s website. Anyway, don’t get me started on Android’s implicit
intents. They can be extremely complicated. (Okay, if you insist, I describe
implicit intents in great detail in my book Android Application Development All-
in-One For Dummies, published by John Wiley & Sons, Inc.)

347 Chapter 12: Dealing with a Bunch of Things at a Time

The app’s List Activity
When the code in Listing 12-11 calls startActivity(intent), an instance
of the MyListActivity takes over the user’s screen. The code for the
MyListActivity class is in Listing 12-12, and the activity’s screen is pic-
tured earlier, in Figure 12-11.

Listing 12-12: The App’s List Activity
package com.allmycode.lists;

import java.util.ArrayList;

import android.app.ListActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MyListActivity extends ListActivity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ArrayList<Integer> listItems =
 new ArrayList<Integer>();
 for (int i = 0; i < 5; i++) {
 if (MainActivity.checkBoxes[i].isChecked()) {
 listItems.add(i);
 }
 }

 setListAdapter(new ArrayAdapter<Integer>(this,
 R.layout.my_list_layout, listItems));
 }
}

Android’s ListActivity class is a subclass of the Activity class. So
the class described in Listing 12-12 is a kind of activity. In particular, a
ListActivity displays one thing after another, each in its own slot. The
screen shown in Figure 12-11 displays three slots.

In a ListActivity, each slot can consist of one row or two rows or as many
rows as the developer sees fit. The number of rows is determined by the
layout of things in yet another XML file. On the screen shown in Figure 12-11,
each slot has only one row.

348 Part IV: Powering Android with Java Code

When you declare a ListActivity, you call Android’s setListAdapter
method. In the call to setListAdapter in Listing 12-12, you have three
parameters:

 ✓ You provide a context.

 In Listing 12-12, I provide the familiar this context.

 ✓ You point to an XML file in your application’s res/layout directory.

 In Listing 12-12 I point to the my_list_layout.xml file.

 ✓ You provide a collection of items, each to be displayed in its own slot.

 In Listing 12-12, I provide listItems, which I declare to be an
ArrayList of Integer values.

With respect to the layout file, Android treats a ListActivity a bit
differently from the way it treats an ordinary Activity. To display
a ListActivity (like the activity in Listing 12-12), Android reuses a
layout XML file over and over again. Android reuses the layout file once
for each of the items being displayed. In other words, the layout file for a
ListActivity doesn’t describe the entire screen. Instead, the layout file for
a ListActivity describes only one of the many slots on the user’s screen.

The my_list_layout.xml file for this chapter’s app is shown in Listing 12-13.
That XML file contains a single text view. So in Figure 12-11, each item in the
list (each number beneath the “Using Collections” title) is in a single text view.
Each slot in the list has a single text view. That’s the way a ListActivity
works.

Listing 12-13: The R.layout.my_list_layout.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=
 “http://schemas.android.com/apk/res/android”
 android:id=”@+id/identView”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”>
</TextView>

The items displayed in Figure 12-11 correspond to the selected check boxes
in Figure 12-10. (Remember: When Java numbers the items in a collection,
Java starts with 0.) To get the right numbers in MyListActivity, I fill the
listItems collection in Listing 12-12. A for statement marches through the
main activity’s checkBoxes collection. The for statement adds the number
i to listItems whenever the call to checkBoxes[i].isChecked()
returns true.

349 Chapter 12: Dealing with a Bunch of Things at a Time

For any check box that isn’t selected, the call to checkBoxes[i].is
Checked() returns false. So that i value doesn’t get into the
listItems collection. But for any check box that’s selected, the call to
checkBoxes[i].isChecked() returns true. That i value gets into the
listItems collection and is displayed on the user’s screen.

The app’s AndroidManifest.xml file
When Eclipse creates a new Android project, Eclipse also offers to create a
main activity. If you accept the offer to create a main activity, Eclipse puts
an activity element in the project’s AndroidManifest.xml file. This
happens behind the scenes. So, when you add a second activity to an app
(such as the activity in Listing 12-12) you can easily forget to manually add an
activity element.

Listing 12-14 contains the AndroidManifest.xml file for this chapter’s
Android app:

Listing 12-14: The AndroidManifest.xml file
<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=“com.allmycode.lists“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-sdk
 android:minSdkVersion=“8“
 android:targetSdkVersion=“15“ />

 <application
 android:icon=“@drawable/icon“
 android:label=“@string/app_name“ >

 <activity
 android:name=”.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />
 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>

(continued)

350 Part IV: Powering Android with Java Code

Listing 12-14 (continued)
 </activity>

 <activity android:name=”.MyListActivity” />

 </application>

</manifest>

Notice that the code in Listing 12-14 contains two activity elements.

 ✓ The first activity element’s android:name attribute has value
.MainActivity.

 Eclipse creates this first element when you create the Android project,
As the android:name attribute indicates, this element applies to the
app’s MainActivity class. Inside the activity element, the intent-
filter element indicates that this activity’s code can be the starting
point of the app’s execution, and this activity’s icon can appear on the
device’s Apps screen.

 ✓ The second activity element’s android:name attribute has value
.MyListActivity.

 If you create this chapter’s Android app on your own, you must edit the
app’s AndroidManifest.xml file and type this code by hand. As the
android:name attribute indicates, this element applies to the app’s
MyListActivity class (refer to Listing 12-12).

 The MyListActivity class isn’t the starting point of the app’s execution,
and the user shouldn’t be able to launch this activity from the device’s
Apps screen. So the second activity element doesn’t have the MAIN and
LAUNCHER information that’s in the listing’s first activity element.

 In fact, I’ve rigged this app so that MyListActivity requires no
intent-filter information, and no information at all between the
activity element’s start and end tags. So, in Listing 12-14, the second
activity element has no start and end tags. Instead, this activity
element has one empty element tag.

 For more information about start tags, end tags, and empty element tags, see
Chapter 4.

 If you add an activity’s Java code to an Android application, you must also add
an activity element to the application’s AndroidManifest.xml file.

Chapter 13

An Android Social Media App
In This Chapter
▶ Posting on Twitter with Android code
▶ Tweeting with your app on a user’s behalf
▶ Using Java exceptions to get out of a jam

A
 reader from Vancouver (in British Columbia, Canada) writes:

“Hello, Barry. I just thought I would ask that you include the area that
seems to get attention from app developers: programs connecting with
social sites. I look forward to reading the new book! Best regards, David.”

Well, David, you’ve inspired me to create a Twitter app. This chapter’s exam-
ple does two things: Post a new tweet, and get a twitter user’s timeline. The
app can perform many more Twitter tasks — for example, search for tweets,
look for users, view trends, check friends and followers, gather suggestions,
and do lots of other things that Twitter users want done. For simplicity,
though, I have the app perform only two tasks: tweet and display a timeline.

I can summarize the essence of this chapter’s Twitter code in two short state-
ments. To post a tweet, the app executes

twitter.updateStatus(“This is my tweet.”);

And, to display a user’s timeline, the app executes

List<twitter4j.Status> statuses =
 twitter.getUserTimeline(“allmycode”);

Of course, these two statements only serve as a summary, and a summary is
never the same as the material it summarizes. Imagine standing on the street
in Times Square and shouting the statement “Twitter dot update status: ‘This
is my tweet.’” Nothing good happens because you’re issuing the correct com-
mand in the wrong context. In the same way, the context surrounding a call
to twitter.updateStatus in an app matters an awful lot.

352 Part IV: Powering Android with Java Code

This chapter covers all the context surrounding your calls to twitter.
updateStatus and twitter.getUserTimeline. In the process, you can
read about Java’s exceptions — a vital feature that’s available to all Java
 programmers.

The Twitter App’s Files
You can import this chapter’s code from my website (http://allmycode.
com/Java4Android) by following the instructions in Chapter 2. As is true
for any Android app, this chapter’s Eclipse project contains about 40 files
in about 30 different folders. In this chapter, I concentrate on the project’s
MainActivity.java file. But a few other files require some attention.

The Twitter4J API jar file
Android has no built-in support for communicating with Twitter. Yes, the raw
materials are contained in Android’s libraries, but to deal with all of Twitter’s
requirements, someone has to paste together those raw materials in a useful
way. Fortunately, several developers have done all the pasting and made
their libraries available for use by others. The library that I use in this chap-
ter is Twitter4J. Its website is http://twitter4j.org.

Chapter 4 describes the role of .jar files in Java program development. For
this chapter’s example to work, your project must include a .jar file con-
taining the Twitter4J libraries. If you’ve successfully imported this book’s
code into Eclipse, the 13-01 project contains the necessary .jar file.

If you’re creating this chapter’s example on your own, or if you’re having
trouble with the project’s existing .jar files, you can add the Twitter4J
libraries by following these steps:

 1. Visit http://twitter4j.org.

 2. Find the link to download the latest stable version of Twitter4J.

 To run this chapter’s example, I use Twitter4J version 3.0.3. If you down-
load a later version, it’ll probably work. But I make no promises about
the backward compatibility, forward compatibility, or sideward com-
patibility of the various Twitter4J versions. If my example doesn’t run
properly for you, you can search the Twitter4J site for a download link
to version 3.0.3.

 3. Click the link to download the Twitter4J software.

 The file that I downloaded is twitter4j-3.0.3.zip.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android
http://twitter4j.org
http://twitter4j.org

353 Chapter 13: An Android Social Media App

 4. Look for a twitter4j-core.jar file inside the downloaded .zip
file.

 In the .zip file that I downloaded, I found a file named twitter4j-
core-3.0.3.jar.

 5. Extract the twitter4j-core.jar file to a place on your computer’s
hard drive.

 Any location on your hard drive is okay, as long as you remember where
you put the twitter4j-core.jar file.

 6. In Eclipse’s Package Explorer, right-click (or Control-click on a Mac)
this chapter’s project.

 7. In the resulting context menu, select Properties.

 Eclipse’s Properties dialog box appears.

 8. On the left side of the Properties dialog box, select Java Build Path.

 9. In the middle of the Properties dialog box, select the Libraries tab.

 10. On the right side of the Properties dialog box, click the Add External
JARs button.

 Eclipse displays the JAR Selection dialog box.

 11. In the JAR Selection dialog box, navigate to the directory containing
your twitter4j-core.jar file.

 What I refer to as your twitter4j-core.jar file is probably named
twitter4j-core-3.0.3.jar or similar.

 12. Select the twitter4j-core.jar file and close the JAR Selection
dialog box.

 Doing so adds your twitter4j-core.jar file to the list of items on the
Libraries tab.

 13. In the middle of the Properties dialog box, switch from the Libraries
tab to the Order and Export tab.

 The Order and Export tab contains a list of items, one of which is your
twitter4j-core.jar file.

 14. Make sure that the check box next to your twitter4j-core.jar file
is selected.

 Doing so ensures that this .jar file is uploaded to whatever device
you use to test the application. Without the check mark indicating the
selection, Eclipse compiles the code using the .jar file but doesn’t
bother sending the .jar file to an emulator or to your phone. It’s quite
frustrating.

354 Part IV: Powering Android with Java Code

 15. Select your twitter4j-core.jar item on the Order and Export
tab. Then, on the right side of the Properties dialog box, click the Up
button a few times.

 Keep clicking the Up button until your twitter4j-core.jar file is at
the top of the Order and Export tab’s list.

 16. Click OK to dismiss the Properties dialog box.

 If you look at Eclipse’s Package Explorer, your project now has a
Referenced Libraries branch. When you expand the Referenced Libraries
branch, you see a branch for your twitter4j-core.jar file.

The manifest file
Every Android app has an AndroidManifest.xml file. Listing 13-1 contains
the AndroidManifest.xml file for this chapter’s Twitter app.

Listing 13-1: The AndroidManifest.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=
 “http://schemas.android.com/apk/res/android”
 package=”com.allmycode.twitter”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-sdk
 android:minSdkVersion=”8”
 android:targetSdkVersion=”17” />
 <uses-permission android:name=
 „android.permission.INTERNET“/>

 <application
 android:allowBackup=“true“
 android:icon=“@drawable/ic_launcher“
 android:label=“@string/app_name“
 android:theme=“@style/AppTheme“ >
 <activity
 android:name=“com.allmycode.twitter.MainActivity“
 android:label=“@string/app_name“
 android:windowSoftInputMode=”adjustPan” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />
 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>

355 Chapter 13: An Android Social Media App

 </activity>
 </application>

</manifest>

When you use Eclipse to create a new Android application project, Eclipse
writes most of the code in Listing 13-1 automatically. For this chapter’s proj-
ect, I have to add two additional snippets of code:

 ✓ The windowSoftInputMode attribute tells Android what to do when
the user activates the onscreen keyboard.

 The adjustPan value tells Android not to squash together all my
screen’s widgets. (Take my word for it: The app looks ugly without this
adjustPan value.)

 ✓ The uses-permission element warns Android that my app requires
Internet connectivity.

 When a user installs an app that uses the android.permission.
INTERNET permission, Android warns the user that the app requires
full network access. Yes, a large percentage of users ignore this kind of
warning. But the app can’t access Twitter without the permission. If you
forget to add this uses-permission element (as I often do), the app
doesn’t obey any of your Twitter commands. And when your app fails to
contact the Twitter servers, Android often displays only cryptic, unhelp-
ful error messages.

 The error messages from an unsuccessful run of your Android app range
from extremely helpful to extremely unhelpful. One way or another, it never
hurts to read these messages. You can find most of the messages in Eclipse’s
Console view or in Eclipse’s LogCat view.

 For more information about AndroidManifest.xml files, see Chapter 4.

The main activity’s layout file
Chapter 4 introduces the use of a layout file to describe the look of an activ-
ity on the screen. The layout file for this chapter’s example has no extraor-
dinary qualities. I include it in Listing 13-2 for completeness. As usual, you
can import this chapter’s code from my website (http://allmycode.com/
Java4Android). But if you’re living large and creating the app on your own
from scratch, you can copy the contents of Listing 13-2 to the project’s res/
layout/activity_main.xml file. Alternatively, you can use Eclipse’s tool-
set to drag and drop, point and click, or type and tap your way to the graphi-
cal layout shown in Figure 13-1.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

356 Part IV: Powering Android with Java Code

Listing 13-2: The Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=”@dimen/activity_vertical_margin”
 android:paddingLeft=”@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=”@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView
 android:id=”@+id/textView2”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignBaseline=”@+id/editTextUsername”
 android:layout_alignBottom=”@+id/editTextUsername”
 android:layout_alignLeft=”@+id/editTextTweet”
 android:text=”@string/at_sign”
 android:textAppearance=
 “?android:attr/textAppearanceLarge” />

 <EditText
 android:id=”@+id/editTextUsername”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/timelineButton”
 android:layout_toRightOf=”@+id/textView2”
 android:ems=”10”
 android:hint=”@string/type_username_here” />

 <TextView
 android:id=”@+id/textViewTimeline”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/timelineButton”
 android:layout_below=”@+id/timelineButton”
 android:maxLines=”100”
 android:scrollbars=”vertical”
 android:text=”@string/timeline_here” />

 <Button
 android:id=”@+id/timelineButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/textView2”
 android:layout_centerVertical=”true”
 android:onClick=”onTimelineButtonClick”
 android:text=”@string/timeline” />

357 Chapter 13: An Android Social Media App

 <Button
 android:id=”@+id/tweetButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/editTextUsername”
 android:layout_alignLeft=”@+id/editTextTweet”
 android:layout_marginBottom=”43dp”
 android:onClick=”onTweetButtonClick”
 android:text=”@string/tweet” />

 <EditText
 android:id=”@+id/editTextTweet”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_above=”@+id/tweetButton”
 android:layout_alignParentLeft=”true”
 android:layout_marginLeft=”14dp”
 android:ems=”10”
 android:hint=”@string/type_your_tweet_here” />

 <TextView
 android:id=”@+id/textViewCountChars”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignBaseline=”@+id/tweetButton”
 android:layout_alignBottom=”@+id/tweetButton”
 android:layout_toRightOf=”@+id/timelineButton”
 android:text=”@string/zero” />

</RelativeLayout>

Figure 13-1:
The graphi-

cal layout
of the main

activity’s
screen.

358 Part IV: Powering Android with Java Code

The twitter4j.properties file
This chapter’s example involves a file that you don’t find in most other apps.
It’s a file of the kind you see in Listing 13-3.

Listing 13-3: A Fake twitter4j.properties File (Yes, It’s Fake!)
oauth.consumerKey=01qid0qod5drmwVJIkU1dg
oauth.consumerSecret=TudvMiX1h37WsIvq173SNWnRIhI0ALnGfS1
oauth.accessToken=1385541-ueSEFeFgwQJ8vUpfy6LBv6FibSfm5aXF
oauth.accessTokenSecret=G2FXeXYLSHPI7XlVdMsS2eGfIaKU6nJc

The twitter4j.properties file lives directly inside your project’s src
directory, as shown in Figures 13-2 and 13-3. Each line of the file gives your
app important information for communicating with Twitter.

Figure 13-2:
The location

of twit-
ter4j.-
proper-
ties on

a Windows
computer.

Figure 13-3:
The location

of twit-
ter4j.-
proper-
ties on a

Mac.

359 Chapter 13: An Android Social Media App

When you run this chapter’s example, the code has to talk to Twitter on your
behalf. And normally, to talk to Twitter, you supply a username and pass-
word. But should you be sharing your Twitter password with any app that
comes your way? Probably not. Your password is similar to the key to your
house. You don’t want to give copies of your house key to strangers, and you
don’t want an Android app to remember your Twitter password.

So how can your app post a tweet without having your Twitter password?
One answer is OAuth, a standardized way to have apps log on to host com-
puters. If the gobbledygook in Listing 13-3 is copied correctly, the app
acquires revocable permission to act on behalf of the Twitter user. And the
app never gets hold of the user’s password.

Now, here come the disclaimers:

 ✓ A discussion of how OAuth works, and why it’s safer than using ordi-
nary Twitter passwords, is far beyond the scope of this book.

 I don’t pretend to explain OAuth and its mysteries in this chapter.

 ✓ True app security requires more than a simple twitter4j.properties
file.

 The goal of this chapter is to show how an app can talk to a social media
site. In the code, I use OAuth and Twitter4J commands to achieve that
goal as quickly as I can, without necessarily showing you the “right”
way to do it. For more comprehensive coverage of OAuth, visit http://
oauth.net: the official website for OAuth developers.

 ✓ The codes in Listing 13-3 don’t work.

 I’m not prepared to share my own OAuth codes with the general public,
so to create Listing 13-3, I took the general outline of my real twitter4j.
properites file and then ran my fingers over the keyboard to replace
most of the characters.

 To run this chapter’s app, you have to create your own set of OAuth
keys and copy them to your twitter4j.properties file. The next sec-
tion outlines the steps.

Getting OAuth codes
For your Android app to communicate with Twitter servers, you need your
own OAuth codes. To get them, follow this section’s steps.

 The following instructions apply to the Twitter web pages for developers at
the time of this book’s publication. Twitter might change the design of its web-
site at any time without notice. (At any rate, it won’t notify me!)

http://oauth.net/
http://oauth.net/

360 Part IV: Powering Android with Java Code

 1. Sign in to your Twitter user account (or register for an account if you
don’t already have one).

 2. Visit https://dev.twitter.com/apps/new.

 If the stars are aligned harmoniously, you should see Twitter’s Create an
Application page.

 3. On the Create an Application page, fill in all required fields along
with the (misleadingly optional) Callback URL field.

 When I visit the page, I see the Name field, the Description field, the
Website field, and the Callback URL field. All but the Callback URL field
are listed as being required.

 Typing your name in the Name field is a no-brainer. But what do you use
for the other fields? After all, you aren’t creating an industrial-strength
Android app. You’re creating only a test app — an app to help you see
how to use Twitter4J.

 The good news is that almost anything you type in the Description field
is okay. The same is true for the Website and Callback URL fields, as
long as you type things that look like real URLs.

 I’ve never tried typing a twitter.com URL in either the Website or
Callback URL fields, but I suspect that typing a twitter.com URL
doesn’t work.

 To communicate with Twitter via an Android app, you need a callback
URL. In other words, for this chapter’s example, the callback URL isn’t
optional. Neither the Website field nor the Callback URL field has to
point to a real web page. But you must fill in those two fields.

 The Callback URL field isn’t marked as being required. Nevertheless, you
must type a URL in the Callback URL field.

 4. After agreeing to the terms, and doing the other stuff to prove that
you’re a good person, click the Create Your Twitter Application
button.

 Doing so brings you to a page where you see some details about your
new application — the Details tab, in other words. On this page, you see
four important items: your app’s access level, consumer key, and con-
sumer secret and a button that offers to create your app’s access token.

 In the OAuth world, an app whose code communicates with Twitter’s
servers is a consumer. To identify itself as a trustworthy consumer, an
app must send passwords to Twitter’s servers. In OAuth terminology,
these passwords are called the consumer key and the consumer secret.

 5. On that same web page, select your application’s Settings tab.

https://dev.twitter.com/apps/new

361 Chapter 13: An Android Social Media App

 6. Among the settings, look for a choice of access types. Change your
app’s access from Read Only (the default) to Read, Write and Access
Direct Messages.

 For this toy application, you select Read, Write and Access Direct
Messages — the most permissive access model that’s available. This
option prevents your app from hitting brick walls because of access
problems. But when you develop a real-life application, you do the
 opposite — you select the least permissive option that suits your appli-
cation’s requirements.

 First change your app’s access level, and then create the app’s access
token (as explained in Step 9). Don’t create the access token before
changing the access level. If you try to change the access level after
you’ve created the access token, your app won’t work. What’s worse,
the dev.twitter.com page won’t warn you about the problem. Believe
me — I’ve wasted hours of my life on this Twitter quirk.

 7. Click the button that offers to update your application’s settings.

 Doing so changes your app’s access level to Read, Write and Access
Direct Messages.

 8. Return to your application’s Details tab.

 I’m not thrilled with the way Twitter’s developer site works. A title near
the top of the Settings tab reads Application Details, and there’s no title
near the top of the Details tab. Anyway, find the Details tab and click on it.

 9. Click the button that offers to create your access token.

 After doing so, your app’s Details tab now displays your app’s access
token and the access token secret, in addition to your app’s access level,
consumer key, and consumer secret.

 10. Copy the four codes (Consumer Key, Consumer Secret, Access Token,
and Access Token Secret) from your app’s Details tab to the appropri-
ate lines in your twitter4j.properties file.

 Whew! You’re done creating your twitter4j.properites file!

The Application’s Main Activity
What’s a Java Programming For Android Developers For Dummies book with-
out some Java code? Listing 13-4 contains the Twitter app’s Java code.

362 Part IV: Powering Android with Java Code

Listing 13-4: The MainActivity.java file
package com.allmycode.twitter;

import java.util.List;

import twitter4j.Twitter;
import twitter4j.TwitterException;
import twitter4j.TwitterFactory;
import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.text.method.ScrollingMovementMethod;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends Activity {
 TextView textViewCountChars, textViewTimeline;
 EditText editTextTweet, editTextUsername;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 editTextTweet =
 (EditText) findViewById(R.id.editTextTweet);
 editTextTweet.addTextChangedListener
 (new MyTextWatcher());
 textViewCountChars =
 (TextView) findViewById(R.id.textViewCountChars);
 editTextUsername =
 (EditText) findViewById(R.id.editTextUsername);
 textViewTimeline =
 (TextView) findViewById(R.id.textViewTimeline);
 textViewTimeline.setMovementMethod
 (new ScrollingMovementMethod());
 }

 // Button click listeners

 public void onTweetButtonClick(View view) {
 new MyAsyncTaskTweet().execute
 (editTextTweet.getText().toString());
 }

 public void onTimelineButtonClick(View view) {
 new MyAsyncTaskTimeline().execute
 (editTextUsername.getText().toString());

363 Chapter 13: An Android Social Media App

 }

 // Count characters in the Tweet field

 class MyTextWatcher implements TextWatcher {

 @Override
 public void afterTextChanged(Editable s) {
 textViewCountChars.setText
 (“” + editTextTweet.getText().length());
 }

 @Override
 public void beforeTextChanged(CharSequence s,
 int start, int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence s,
 int start, int before, int count) {
 }

 }

 // The AsyncTask classes

 public class MyAsyncTaskTweet
 extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... tweet) {
 String result = “”;

 Twitter twitter = TwitterFactory.getSingleton();
 try {
 twitter.updateStatus(tweet[0]);
 result =
 getResources().getString(R.string.success);
 } catch (TwitterException twitterException) {
 result =
 getResources().getString(R.string.failure);
 }

 return result;
 }

 @Override
 protected void onPostExecute(String result) {
 editTextTweet.setHint(result);
 editTextTweet.setText(“”);
 }

(continued)

364 Part IV: Powering Android with Java Code

Listing 13-4 (continued)
 }

 public class MyAsyncTaskTimeline
 extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... username) {
 String result = new String(“”);
 List<twitter4j.Status> statuses = null;

 Twitter twitter = TwitterFactory.getSingleton();
 try {
 statuses = twitter.getUserTimeline(username[0]);

 } catch (TwitterException twitterException) {
 twitterException.printStackTrace();
 }

 for (twitter4j.Status status : statuses) {
 result += status.getText();
 result += “\n”;
 }
 return result;
 }

 @Override
 protected void onPostExecute(String result) {
 editTextUsername.setText(“”);
 textViewTimeline.setText(result);
 }
 }
}

 Twitter’s network protocols require that the device that runs this chapter’s
app is set to the correct time. I don’t know how correct the “correct time” has
to be, but I’ve had lots of trouble running the app on emulators. Either my
emulator is set to get the time automatically from the network (and it gets the
time incorrectly) or I set the time manually and the seconds part of the time
isn’t close enough. One way or another, the error message that comes back
from Twitter (usually specifying a null authentication challenge) isn’t help-
ful. So I avoid lots of hassle by avoiding emulators whenever I test this code.
Rather than run an emulator, I set my phone or tablet to get the network time
automatically. Then I run this chapter’s app on that phone or tablet. I recom-
mend that you do the same.

When you run the app, you see two areas. One area contains a Tweet button;
the other area contains a Timeline button, as shown in Figure 13-4.

365 Chapter 13: An Android Social Media App

Figure 13-4:
The main
activity in

its pristine
state.

In Figure 13-4, the text in both text fields is light gray. This happens because I
use android:hint attributes in Listing 13-2. A hint is a bunch of characters
that appear only when a text field is otherwise empty. When the user clicks
inside the text field, or types any text inside the text field, the hint disappears.

Type a tweet into the text field on top, and then press the Tweet button,
as shown in Figure 13-5. If your attempt to tweet is successful, the message
Success! replaces the tweet in the text field, as shown in Figure 13-6. If, for
one reason or another, your tweet can’t be posted, the message Failed to
tweet replaces the tweet in the text field, as shown in Figure 13-7.

Figure 13-5:
The user

types a
tweet.

Figure 13-6:
The app

indicates a
successful

tweet.

366 Part IV: Powering Android with Java Code

Figure 13-7:
The app

brings bad
tidings to
the user.

Next, type a username in the lower text field, and then click Timeline. If all
goes well, a list of the user’s most recent tweets appears below the Timeline
button, as shown in Figure 13-8. You can scroll the list to see more of the
user’s tweets.

Figure 13-8:
A user’s
timeline.

The onCreate method
The onCreate method in Listing 13-4 calls findViewById to locate some of
the widgets declared in Listing 13-2.

 For insight into the workings of Android’s findViewById method, see
Chapter 11.

The onCreate method also creates a MyTextWatcher instance to listen
for changes in the field where the user types a tweet. Android notifies the
MyTextWatcher instance whenever the user types characters in (or deletes
characters from) the app’s editTextTweet field. Later in Listing 13-4, the
actual TextChangedListener class’s afterTextChanged method counts

367 Chapter 13: An Android Social Media App

the number of characters in the editTextTweet field. The method dis-
plays the count in the tiny textViewCountChars field. (With the advent of
Twitter, the number 140 has become quite important.)

This chapter’s app doesn’t do anything special if a user types more than 140
characters into the editTextTweet field. In a real-life app, I’d add code to
handle 141 characters gracefully, but when I create sample apps, I like to
keep the code as uncluttered as possible.

 Android actually notifies the MyTextWatcher instance three times for
each text change in the editTextTweet field — once before changing the
text, once during the change of the text, and once after changing the text. In
Listing 13-4, I don’t make MyTextWatcher execute any statements before
or during the changing of the text. In MyTextWatcher, the only method
whose body contains statements is the afterTextChanged method.
Even so, in order to implement Android’s TextWatcher interface, the
MyTextWatcher class must provide bodies for the beforeTextChanged and
the onTextChanged methods.

Finally, in the onCreate method, the call to setMovementMethod(new
ScrollingMovementMethod()) permits scrolling on the list of items in a
user’s timeline.

The button listener methods
Listing 13-2 describes two buttons, each with its own onClick method.
I declare the two methods in Listing 13-4 — the onTweetButtonClick
method and the onTimelineButtonClick method. Each of the methods
has a single statement in its body — a call to execute a newly constructed
AsyncTask of some kind. Believe me, this is where the fun begins!

The trouble with threads
In Chapter 10, I describe the callback as the solution to all your activity’s
timing problems. Your activity wants to be alerted after a certain number of
seconds passes. You can’t stall the execution of your activity during those
seconds. If you do, your activity is completely unresponsive to user input
during those seconds. At best, users give your app a bad rating on Google
Play; at worst, users pound on their screens, breaking the glass, blaming you,
and sending you the repair bill.

Rather than put your activity to sleep for ten seconds, you create another
class that sleeps on your activity’s behalf. When the other class’s nap

368 Part IV: Powering Android with Java Code

is finished, that other class issues a callback to your original activity.
Everything is hunky-dory except for what I say in Chapter 10, in a paragraph
with the little Technical Stuff icon on it:

“Well, I must confess that the code in Listings 10-10 through 10-13 doesn’t
solve the responsiveness problem. To make the program more responsive,
you use the interface tricks in Listings 10-10 through 10-13 and, in addition,
you put TimerCommon in a thread of its own.”

Chapter 10 is the wrong place to describe threads. So in Chapter 10, the dis-
cussion of activity timing ends with a disappointing thud. (Yes, I’m secure
enough to admit it.) Creating a thread means executing several different
pieces of code at the same time. For the Java developer, things become com-
plicated in no time at all. Juggling several simultaneous pieces of code is like
juggling several raw eggs: One way or another, you’re sure to end up with egg
on your face.

To help fix all this, the creators of Android developed a multi-threading frame-
work. Within this framework, you bundle all your delicately timed code into a
carefully defined box. This box contains all the ready-made structure for man-
aging threads in a well-behaved way. Rather than worry about where to put
your sleep method calls and how to change a field’s text in a timely fashion,
you simply plug certain statements into certain places in the box and let the
box’s ready-made structure take care of all the routine threading details.

This marvelous box, the miracle cure for all your activity-timing ills, belongs
to Android’s AsyncTask classes. To understand these classes, you need a bit
of terminology explained:

 ✓ Thread: A bunch of statements to be executed in the order prescribed
by the code

 ✓ Multi-threaded code: A bunch of statements in more than one thread

 Java executes each thread’s statements in the prescribed order. But if
your program contains two threads, Java might not execute all the state-
ments in one thread before executing all the statements in the other
thread. Instead, Java might intermingle execution of the statements in
the two threads. For example, I ran the following code several times:
package com.allmycode.threads;

public class TwoThreads {

 public static void main(String[] args) {
 new OneThread().start();
 new AnotherThread().start();
 }

369 Chapter 13: An Android Social Media App

}

class OneThread extends Thread {
 public void run() {
 System.out.print(“1”);
 System.out.print(“2”);
 System.out.print(“3”);
 }
}

class AnotherThread extends Thread {
 public void run() {
 System.out.print(“A”);
 System.out.print(“B”);
 System.out.print(“C”);
 }
}

 The first time I ran the code, the output was 1AB23C. The second time,
the output was 123ABC. The tenth time, the output was ABC123. The
eleventh time, the output was 12AB3C. The output 1 always comes
before the output 2 because the statements to output 1 and 2 are in the
same thread. But you can’t predict whether Java will display 1 or A first,
because the statements to output 1 and A are in two different threads.

 ✓ The UI thread: The thread that displays widgets on the screen

 In an Android program, your main activity runs primarily in the UI
thread.

 The “UI” in “UI Thread” stands for “user interface.” Another name for the
UI thread is the main thread. The use of this terminology predates the
notion of a main activity in Android.

 ✓ A background thread: Any thread other than the UI thread

 In an Android program, when you create an AsyncTask class, some of
that class’s code runs in a background thread.

In addition to all the terminology, you should know about two rules concern-
ing threads:

 ✓ Any time-consuming code should be in a background thread — not in
the UI thread.

 If you put time-consuming code in the UI thread, the app responds slug-
gishly to the user’s clicks and keystrokes. Needless to say, users don’t
like this. In Chapter 10, a call to sleep for ten seconds is time-consuming
code. In this chapter, any access to data over the Internet (like posting a
tweet or getting a Twitter user’s timeline) is time-consuming code.

370 Part IV: Powering Android with Java Code

 ✓ Any code that modifies a property of the screen must be in the UI
thread.

 If, in a background thread, you have code that modifies text on the
screen, you’re either gumming up the UI thread or creating code that
doesn’t compile. Either way, you don’t want to do it.

Android’s AsyncTask
A class that extends Android’s AsyncTask looks like the outline in Listing 13-5.

Listing 13-5: The Outline of an AsyncTask Class
public class MyAsyncTaskName
 extends AsyncTask<Type1, Type2, Type3> {

 @Override
 protected void onPreExecute () {
 // Execute statements in the UI thread before the
 // starting background thread. For example, display
 // an empty progress bar.
 }

 @Override
 protected Type3 doInBackground(Type1... param1) {
 // Execute statements in the background thread.
 // For example, get info from Twitter.

 return resultValueOfType3;
 }

 @Override
 protected void onProgressUpdate(Type2... param) {
 // Update a progress bar (or some other kind of
 // progress indicator) during execution of the
 // background thread.
 }

 @Override
 protected void onPostExecute(Type3 resultValueOfType3) {
 // Execute statements in the UI thread after
 // finishing the statements in the background thread.
 // For example, display info from Twitter in the
 // activity’s widgets.
 }
}

371 Chapter 13: An Android Social Media App

When you create an AsyncTask class, Android executes each method in its
appropriate thread. In the doInBackground method (refer to Listing 13-5),
you put code that’s too time-consuming for the UI thread. So Android exe-
cutes the doInBackground method in the background thread. (Big surprise!)
In Listing 13-5’s other three methods (onPreExecute, onProgressUpdate,
and onPostExecute), you put code that updates the widgets on the device’s
screen. So Android executes these methods in the UI thread, as shown in
Figure 13-9.

Android also makes your life easier by coordinating the execution of an
AsyncTask class’s methods. For example, onPostExecute doesn’t change
the value of a screen widget until after the execution of doInBackground.
(Refer to Figure 13-9.) In this chapter’s Twitter app, the onPostExecute
method doesn’t update the screen until after the doInBackground method
has fetched a user’s timeline from Twitter. The user doesn’t see a timeline
until the timeline is ready to be seen.

Figure 13-9:
The UI
thread

and the
background

thread run
simultane-

ously.

You’d think that with all this coordination of method calls, you lose any
benefit from having more than one thread. But that’s not the case. Because
the doInBackground method runs outside the UI thread, your activity can
respond to the user’s clicks and drags while the doInBackground method
waits for a response from the Twitter servers. It’s all good.

372 Part IV: Powering Android with Java Code

My Twitter app’s AsyncTask classes
Listing 13-5 contains four methods. But in Listing 13-4, I override only
two of the methods — doInBackground and onPostExecute. The
MyAsyncTaskTweet and MyAsyncTaskTimeline classes in Listing 13-4
inherit the other two methods from their superclass.

Notice (in Listings 13-4 and 13-5) the use of generic type names in an
AsyncTask class. An AsyncTask is versatile enough to deal with all types of
values. In Listing 13-4, the first generic parameter of MyAsyncTaskTweet has
type String because a tweet is a string of as many as 140 characters. But
someone else’s AsyncTask might accept an image or a music file as its input.
So when you create an AsyncTask class, you “fill in the blanks” by putting
the following three type names inside the angle brackets:

 ✓ The first type name (Type1 in Listing 13-5) stands for a value (or
values) that you pass to the doInBackground method.

 The doInBackground method, with its varargs parameter, uses these
values to decide what has to be done.

 ✓ The second type name (Type2 in Listing 13-5) stands for a value (or
values) that mark the background thread’s progress in completing its
work.

 This chapter’s example has no progress bar, nor a progress indicator of
any kind. So in Listing 13-4, the second type name is Void.

 In Java, the Void class is a wrapper class for the void value. Put that in
your black hole of nothingness!

 ✓ The third type name (Type3 in Listing 13-5) stands for a value that
the doInBackground method returns and that the onPostExecute
method takes as a parameter.

 In the doInBackground method of Listing 13-4, this third type name
is String. It’s String because the doInBackground method returns
the word “Success!” or the words “Failed to tweet”, and the
onPostExecute method displays these words in the screen’s edit-
TextTweet field.

Figure 13-10 summarizes the way generic type names influence the methods’
types in Listing 13-4, and Figure 13-11 summarizes how values move from one
place to another in the MyAsyncTaskTweet class of Listing 13-4.

An AsyncTask can be fairly complicated. But when you compare Android’s
AsyncTask to the do-it-yourself threading alternatives, the AsyncTask idea
isn’t bad at all. In fact, when you get a little practice and create a few of your

373 Chapter 13: An Android Social Media App

own AsyncTask classes, you get used to thinking that way. The whole busi-
ness starts to feel quite natural.

Figure 13-10:
The use of
types in an
Async
Task
class.

Figure 13-11:
The flow of

values in an
Async
Task
class.

374 Part IV: Powering Android with Java Code

Cutting to the chase, at last
At the beginning of this chapter, I promise that a statement like

twitter.updateStatus(“This is my tweet.”);

lies at the heart of the code to post a tweet. You can see this by looking at the
first doInBackground method in Listing 13-4. Here’s a quick excerpt from
that method:

protected String doInBackground(String... tweet) {

 Twitter twitter = TwitterFactory.getSingleton();
 twitter.updateStatus(tweet[0]);

In the Twitter4J API,

 ✓ A Twitter object is a gateway to the Twitter servers.

 ✓ TwitterFactory is a class that helps you create a new Twitter object.

 In Java, a factory class is a class that can call a constructor on your behalf.

 ✓ Calling the getSingleton method creates a new Twitter object.

 A factory method, such as getSingleton, calls a constructor on your
behalf.

 ✓ A call to the Twitter class’s updateStatus method posts a brand-
new tweet.

In Listing 13-4, the parameter to the updateStatus method is an array ele-
ment. That’s because, in the doInBackground method’s header, tweet is a
varargs parameter. You can pass as many values to doInBackground as
you want. In the body of the method, you treat tweet as though it’s an ordi-
nary array. The first tweet value is tweet[0]. If there were a second tweet
value, it would be tweet[1]. And so on.

 For the lowdown on varargs parameters, see Chapter 12.

In Listing 13-4, the code to fetch a user’s timeline looks something like this:

List<twitter4j.Status> statuses = null;

Twitter twitter = TwitterFactory.getSingleton();
statuses = twitter.getUserTimeline(username[0]);

A fellow named Yusuke Yamamoto developed Twitter4J (or at least, Yusuke
Yamamoto was the Twitter4J project leader), and at some point Mr. Yamamoto
decided that the getUserTimeline method returns a collection of

375 Chapter 13: An Android Social Media App

twitter4J.Status objects. (Each twitter4J.Status instance contains
one tweet.) So, to honor the contract set by calling the getUserTimeline
method, the code in Listing 13-4 declares statuses to be a collection of
twitter4J.Status objects.

A few lines later in the code, an enhanced for statement steps through the
collection of statuses values and appends each value’s text to a big result
string. The loop adds “\n” (Java’s go-to-the-next-line character) after each
tweet for good measure. In the onPostExecute method, the code displays
the big result string in the screen’s textViewTimeline field.

 In Listing 13-4, in the second doInBackground method, I use the fully quali-
fied name twitter4j.Status. I do this to distinguish the twitter4J.
Status class from Android’s own AsyncTask.Status class (an inner class
of the AsyncTask class).

 For insight into Java’s inner classes, refer to Chapter 11.

Java’s Exceptions
Have I ever had something go wrong during the run of a program? (Hint: The
answer is yes.) Have you ever tried to visit a website and been unable to pull
up the page? (Indubitably, the answer is yes.) Is it possible that Java state-
ments can fail when they try to access the Twitter server? (Absolutely!)

In Java, most of the things that go wrong during the execution of a program
are exceptions. When something goes wrong, your code throws an exception.
If your code provides a way to respond to an exception, your code catches
the exception.

Like everything else in Java, an exception is an object. Every exception
is an instance of Java’s Exception class. When your code tries to divide
by zero (which is always a “no-no”), your code throws an instance of the
ArithmeticException class. When your code can’t read from a stored file,
your code throws an instance of the IOException class. When your code
can’t access a database, your code throws an instance of the SQLException
class. And when your Twitter4J code can’t access the Twitter servers, your
code throws an instance of the TwitterException class.

The classes ArithmeticException, IOException, SQLException,
TwitterException, and many, many others are subclasses of Java’s
Exception class. The classes Exception, ArithmeticException,
IOException, and SQLException are each part the Java’s standard
API library. The class TwitterException is declared separately in the
Twitter4J API.

376 Part IV: Powering Android with Java Code

Java has two kinds of exceptions: unchecked exceptions and checked excep-
tions. The easiest way to tell one kind of exception from the other is to watch
Eclipse’s response when you type and run your code.

 ✓ When you execute a statement that can throw an unchecked excep-
tion, you don’t have to add additional code.

 For example, an ArithmeticException is an unchecked exception.
You can write and run the following (awful) Java program:
package com.allmycode.exceptions;

public class DoNotDoThis {

 public static void main(String[] args) {
 int i = 3 / 0;
 }

}

 When you try to run this code, the program crashes. In Eclipse’s
Console view, you see the message shown in Figure 13-12.

Figure 13-12:
Shame on

you! You
divided by

zero.

 ✓ When you execute a statement that can throw a checked exception,
you must add code.

 A TwitterException is an example of a checked exception, and a call
to getUserTimeline can throw a TwitterException. To find out
what happens when you call getUserTimeline without adding code,
see a portion of Eclipse’s editor in Figure 13-13.

In Figure 13-13, the error message indicates that by calling the getUser
Timeline method, you run the risk of throwing a TwitterException. The
word “Unhandled” means that TwitterException is one of Java’s checked
exceptions, and that you haven’t provided any code to address the possibil-
ity of the exception’s being thrown. That is, if the app can’t communicate
with the Twitter servers, and Java throws a TwitterException, your code
has no “Plan B.”

377 Chapter 13: An Android Social Media App

Figure 13-13:
Java insists

that you
add code

to acknowl-
edge an

exception.

So in Listing 13-4, I add Java’s try / catch statement to my getUserTime-
line call. Here’s the translation of the try / catch statement:

try to execute this statement (or statements): {
 statuses = twitter.getUserTimeline(username[0]);

} If you throw a TwitterException while you’re trying, {
 display a stack trace in Eclipse’s LogCat view.
}

A stack trace is the kind of output (refer to Figure 13-12) that tells you which
sequence of method calls caused the throwing of the exception. A stack trace
can help you diagnose your code’s ills.

Catch clauses
A try / catch statement has only one try clause. But a try / catch state-
ment can have many catch clauses, as shown in this example:

try {
 count = numberOfTweets / averagePerDay;
 statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException e) {
 System.out.println(“Difficulty with Twitter”);
} catch (ArithmeticException a) {
 a.printStackTrace();
} catch (Exception e) {
 System.out.println(“Something went wrong.”);
}

System.out.println(“No longer contacting Twitter”);

When an exception is thrown inside a try clause, Java examines the accom-
panying list of catch clauses. Every catch clause has a parameter list, and
every parameter list contains a type of exception.

378 Part IV: Powering Android with Java Code

Java starts at whatever catch clause appears immediately after the try
clause and works its way down the program’s text. For each catch clause,
Java asks: Is the exception that was just thrown an instance of the class in
this clause’s parameter list? If it isn’t, Java skips the catch clause and moves
on to the next catch clause in line; if it is, Java executes the catch clause
and then skips past all other catch clauses that come with this try clause.
Java goes on and executes whatever statements come after the whole try /
catch statement.

In the sample code with three catch clauses, if averagePerDay is zero, the
code throws an ArithmeticException. Java skips past the getUserTime-
line statement and looks at the catch clauses, starting with the topmost
catch clause. Here’s what happens.

The topmost catch clause is for TwitterException instances, but dividing
by zero doesn’t throw a TwitterException. So Java marches onward to the
next catch clause.

The next catch clause is for ArithmeticException instances. Yes, divid-
ing by zero threw an ArithmeticException. So Java executes the state-
ment a.printStackTrace() and jumps out of the try / catch statement.

Java executes the statement immediately after the try / catch statement,
displaying the words No longer contacting Twitter. Then Java executes any
other statements after that one.

 In the sample code with three catch clauses, I end the chain of catch clauses
with an Exception e clause. Java’s Exception class is an ancestor of
TwitterException and ArithmeticException and all the other exception
classes. No matter what kind of exception your code throws inside a try clause,
that exception matches the Exception e catch clause. You can always rely on
an Exception e clause as a last resort for handling a problem.

A finally clause
In addition to tacking on catch clauses, you can also tack a finally clause
onto your try / catch statement. Java’s finally keyword says, in effect,
“Execute the finally clause’s statements whether the code threw an excep-
tion or not.” For example, in the following code snippet, Java always assigns
“Finished” to the report variable, whether or not the call to getUser-
Timeline throws an exception:

379 Chapter 13: An Android Social Media App

String report = “”;

try {
 statuses = twitter.getUserTimeline(username[0]);
} catch (TwitterException e) {
 e.printStackTrace();
} finally {
 report = “Finished”;
}

Passing the buck
Here’s a handy response to use whenever something goes wrong: “Don’t
blame me — tell my supervisor to deal with the problem.” (I should have
added the Tip icon to this paragraph!) When dealing with an exception, a
Java method can do the same thing and say, “Don’t expect me to have a try /
catch statement — pass the exception on to the method that called me.”

Listing 10-12, over in Chapter 10 calls the Thread class’s sleep method.
Execution of the sleep method can throw an InterruptedException,
which is one of Java’s checked exceptions. In the listing, I show you how
to surround the call to Thread.sleep with a try / catch statement. In
Listing 13-6, I show you how to insert that try / catch statement inside
another Java program.

Listing 13-6: Nipping an Exception in the Bud
package com.allmycode.naptime;

class GoodNightsSleepA {

 public static void main(String args[]) {
 System.out.println(“Excuse me while I nap.”);
 takeANap();
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 System.out.println(“Hey, who woke me up?”);
 }
 }
}

380 Part IV: Powering Android with Java Code

In Listing 13-6, the takeANap method says “Try to sleep for 10,000 millisec-
onds. If your sleep is interrupted, handle it by displaying the question Hey,
who woke me up?” Normally, no other thread interrupts the takeANap
method’s sleep. So, in Figure 13-14, the output of the code doesn’t include
Hey, who woke me up? (In the figure, you don’t see the ten-second pause
between the display of the first and second lines of output. To experience
the full effect, look at the first line in Figure 13-14, pause for ten seconds, and
then look at the second line.)

Figure 13-14:
Running

the code in
Listing 13-6.

You can get rid of the try / catch statement in the takeANap method, as
long as the next method upstream acknowledges the exception’s existence.
To see what I mean, look at Listing 13-7.

Listing 13-7: Make the Calling Method Handle the Exception
package com.allmycode.naptime;

class GoodNightsSleepB {

 public static void main(String args[]) {
 System.out.println(“Excuse me while I nap.”);
 try {
 takeANap();
 } catch (InterruptedException e) {
 System.out.println(“Hey, who woke me up?”);
 }
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() throws InterruptedException {
 Thread.sleep(10000);
 }
}

In Listing 13-7, the takeANap method’s header contains a throws clause that
passes the buck from the takeANap method to whichever method calls the
takeANap method. Because the main method calls takeANap, Java insists

381 Chapter 13: An Android Social Media App

that the main method contain code to acknowledge the possibility of an
InterruptedException. To fulfill this responsibility, the main method sur-
rounds the takeANap call with a try / catch statement.

Of course, the buck doesn’t have to stop in the main method. You could say,
“Don’t blame me — tell my supervisor to deal with the problem.” And then
your supervisor could say, “Don’t blame me — tell my supervisor to deal
with the problem.” The main method can avoid having a try / catch state-
ment with its own throws clause (see Listing 13-8).

Listing 13-8: Keep Passing the Hot Potato
package com.allmycode.naptime;

class GoodNightsSleepC {

 public static void main(String args[])
 throws InterruptedException {
 System.out.println(“Excuse me while I nap.”);
 takeANap();
 System.out.println(“Hey, who woke me up?”);
 System.out.println(“Ah, that was refreshing.”);
 }

 static void takeANap() throws InterruptedException {
 Thread.sleep(10000);
 }
}

If another thread interrupts this code’s sleep time, the takeANap method
passes the exception to the main method, which in turn passes the exception
to the Java virtual machine. The Java virtual machine deals with the excep-
tion by displaying a stack trace and calling quits on your whole program. It’s
not the smartest way to handle a problem, but it’s a legal alternative in Java.

382 Part IV: Powering Android with Java Code

Chapter 14

Hungry Burds: A Simple
Android Game

In This Chapter
▶ Coding an Android game
▶ Using Android animation
▶ Saving data from one run to another

W
hat started as a simple pun involving the author’s last name has
turned into Chapter 14 — the most self-indulgent writing in the his-

tory of technical publishing.

The scene takes place in south Philadelphia in the early part of the 20th
century. My father (then a child) sees his father (my grandfather) handling
an envelope. The envelope has just arrived from the old country. My grand-
mother grabs the envelope out of my grandfather’s hands. The look on her
face is one of superiority. “I open the letters around here,” she says with her
eyes.

While my grandmother opens the letter, my father glances at the envelope.
The last name on the envelope is written in Cyrillic characters, so my father
can’t read it. But he notices a short last name in the envelope’s address.
Whatever the characters are, they’re more likely to be a short name like Burd
than a longer name like Burdinsky or Burdstakovich.

The Russian word for bird is ptitsa, so there’s no etymological connection
between my last name and our avian friends. But as I grew up, I would often
hear kids yell “Burd is the word” or “Hey, Burdman” from across the street.
Today, my one-person Burd Brain Consulting firm takes in a small amount of
change every year.

384 Part IV: Powering Android with Java Code

Introducing the Hungry Burds Game
When the game begins, the screen is blank. Then, for a random amount of
time (averaging one second), a Burd fades into view, as shown in Figure 14-1.

If the user does nothing, the Burd disappears after fading into full view. But if
the user touches the Burd before it disappears, the Burd gets a cheeseburger
and remains onscreen, as shown in Figure 14-2.

Figure 14-1:
A Burd

fades into
view.

Figure 14-2:
You’ve fed
this Burd.

385 Chapter 14: Hungry Burds: A Simple Android Game

After ten Burds have faded in (and the unfed ones have disappeared), the
screen displays a text view, showing the number of fed Burds in the current
run of the game. The text view also shows the high score for all runs of the
game, as shown in Figure 14-3.

 For many apps, timing isn’t vitally important: For them, a consistently slow
response is annoying but not disabling. But for a game like Hungry Burds,
timing makes a big difference. Running Hungry Burds on an emulator feels
more like a waiting game than an action game. To gain a reasonable sense of
how Hungry Burds works, run the app on a real-life device.

The Hungry Burds Java code is about 140 lines long. (Compare this with one
of the Android game developer’s books that I bought. In that book, the sim-
plest example has 2,300 lines of Java code.) To keep the Hungry Burds code
from consuming dozens of pages, I’ve omitted some features that you might
see in a more realistically engineered game.

Figure 14-3:
The game

ends.

386 Part IV: Powering Android with Java Code

 ✓ The Hungry Burds game doesn’t access data over a network.

 The game’s high-score display doesn’t tell you how well you did com-
pared with your friends or with other players around the world. The
high-score display applies to only one device — the one you’re using to
play the game.

 ✓ The game restarts whenever you change the device’s orientation.

 If you tilt the device from Portrait mode to Landscape mode, or from
Landscape mode to Portrait mode, Android calls the main activity’s
lifecycle methods. Android calls the activity’s onPause, onStop, and
onDestroy methods. Then it reconstitutes the activity by calling the
activity’s onCreate, onStart, and onResume methods. As a result,
whatever progress you’ve made in the game disappears and the game
starts itself over again from scratch.

 For an introduction to an activity’s lifecycle methods, see Chapter 5.

 ✓ The game has no Restart button.

 To play the game a second time, you can press Android’s Back button
and then touch the game’s launcher icon. Alternatively, you can tilt the
device from Portrait mode to Landscape mode, or vice versa.

 ✓ The screen measurements that control the game are crude.

 Creating a visual app that involves drawing, custom images, or motion
of any kind involves some math. You need math to make measurements,
estimate distances, detect collisions, and complete other tasks. To do
the math, you produce numbers by making Android API calls, and you
use the results of your calculations in Android API library calls.

 To help me cut quickly to the chase, my Hungry Burds game does only
a minimal amount of math, and it makes only the API calls I believe to
be absolutely necessary. As a result, some items on the screen don’t
always look their best. (This happens particularly when the device is in
Landscape mode.)

 ✓ The game has no settings.

 The number of Burds displayed, the average time of each Burd’s display,
and the minimal length of time for each Burd’s display are all hard-
coded in the game’s Java file. In the code, these constants are NUMBER_
OF_BURDS, AVERAGE_SHOW_TIME, and MINIMUM_SHOW_TIME. As a
developer, you can change the values in the code and reinstall the game.
But the ordinary player can’t change these numbers.

 ✓ The game isn’t challenging with the default NUMBER_OF_BURDS,
AVERAGE_SHOW_TIME, and MINIMUM_SHOW_TIME values.

 I admit it: On this front, I’m at a distinct disadvantage. I’m a lousy game
player. I remember competing in video games against my kids when they
were young. I lost every time. At first it was embarrassing; in the end

387 Chapter 14: Hungry Burds: A Simple Android Game

it was ridiculous. I could never avoid being shot, eaten, or otherwise
squashed by my young opponents’ avatars.

 I don’t presume to know what values of NUMBER_OF_BURDS, AVERAGE_
SHOW_TIME, and MINIMUM_SHOW_TIME are right for you. And if no
values are right for you (and the game isn’t fun to play no matter which
values you have), don’t despair. I’ve created Hungry Burds as a teaching
tool, not as a replacement for Super Mario.

The Project’s Files
The project’s AndroidManifest.xml file is nothing special. The only
element you have to watch for is uses-sdk — in that element, the
android:minSdkVersion attribute has the value 13 or higher. That’s
because the Java code calls the Display class’s getSize method, and that
method isn’t available in Android API levels below 13.

 If you have to get a layout’s measurements in an app that runs in API Level
12 or lower, check the documentation for Android’s ViewTreeObserver.
OnPreDrawListener class.

The project’s activity_main.xml file is almost empty, as shown in
Listing 14-1. I put a TextView somewhere on the screen so that, at the
end of each game, I can display the most recent statistics. I also add an
android:id attribute to the RelativeLayout element. Using that
android:id element, I can refer to the screen’s layout in the Java code.

Listing 14-1: The Main Activity’s Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:id=”@+id/relativeLayout”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=
 “@dimen/activity_vertical_margin”
 android:paddingLeft=
 “@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=
 “@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView

(continued)

388 Part IV: Powering Android with Java Code

Listing 14-1 (continued)
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignParentLeft=”true”
 android:layout_alignParentTop=”true”
 android:layout_marginLeft=”42dp”
 android:layout_marginTop=”34dp”
 android:text=”@string/nothing”
 android:textAppearance=
 “?android:attr/textAppearanceLarge” />

</RelativeLayout>

In the res directory of my Hungry Burds project, I have ten .png files — two
files for each of Android’s generalized screen densities, as shown in Figure 14-4.

 For a look at Android screen densities, see Chapter 8.

Each burd.png file is a picture of me. Each burd_burger.png file is a
picture of me with a cheeseburger. When Android runs the game, Android
checks the device’s specs and decides, on the spot, which of the five screen
densities to use. (You don’t need an if statement like the one in Chapter 8.)

Figure 14-4:
Images in

the proj-
ect’s res
 directory.

389 Chapter 14: Hungry Burds: A Simple Android Game

The Main Activity
The Hungry Burds game has only one activity: the app’s main activity. So you
can digest the game’s Java code in its entirety in one big gulp. To make this
gulp palatable, I start with an outline of the activity’s code. The outline is in
Listing 14-2. (If outlines don’t work for you, and you want to see the code in
its entirety, refer to Listing 14-3.)

Listing 14-2: An Outline of the App’s Java Code
package com.allmycode.hungryburds;

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {

 // Declare fields

 /* Activity methods */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Find layout elements

 // Get the size of the device’s screen

 // Set up SharedPreferences to record high scores
 }

 @Override
 public void onResume() {
 showABurd();
 }

 /* Game methods */

 void showABurd() {
 // Add a Burd in some random place
 // At first, the Burd is invisible

 // Create an AlphaAnimation to make the Burd
 // fade in (from invisible to fully visible).
 burd.startAnimation(animation);
 }

 private void showScores() {
 // Get high score from SharedPreferences

(continued)

390 Part IV: Powering Android with Java Code

Listing 14-2 (continued)
 // Display high score and this run’s score
 }

 /* OnClickListener method */

 public void onClick(View view) {
 countClicked++;
 // Change the image to a Burd with a cheeseburger
 }

 /* AnimationListener methods */

 public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd(); // Again!
 } else {
 showScores();
 }
 }

}

The heart of the Hungry Burds code is the code’s game loop, as shown in the
following example:

public void onResume() {
 showABurd();
}

void showABurd() {
 // Add a Burd in some random place.
 // At first, the Burd is invisible ...

 burd.setVisibility(View.INVISIBLE);

 // ... but the animation will make the
 // Burd visible.

 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setDuration(duration);
 animation.setAnimationListener(this);
 burd.startAnimation(animation);
}

public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd(); // Again!

391 Chapter 14: Hungry Burds: A Simple Android Game

 } else {
 showScores();
 }
}

When Android executes the onResume method, the code calls the showA-
Burd method. The showABurd method does what its name suggests, by
animating an image from alpha level 0 to alpha level 1. (Alpha level 0 is fully
transparent; alpha level 1 is fully opaque.)

 In the onCreate method, you put code that runs when the activity comes
into existence. In contrast, in the onResume method, you put code that runs
when the user begins interacting with the activity. The user isn’t aware of the
difference because the app starts running so quickly. But for you, the devel-
oper, the distinction between an app’s coming into existence and starting to
interact is important. In Listings 14-2 and 14-3, the onCreate method contains
code to set the layout of the activity, assign variable names to screen widgets,
measure the screen size, and prepare for storing high scores. The onResume
method is different. With the onResume method, the user is about to touch
the device’s screen. So in Listings 14-2 and 14-3, the onResume method dis-
plays something for the user to touch: the first of several hungry Burds.

When the animation ends, the onAnimationEnd method checks the number
of Burds that have already been displayed. If the number is less than ten,
the onAnimationEnd method calls showABurd again, and the game loop
continues.

By default, a Burd returns to being invisible when the animation ends. But
the main activity implements OnClickListener, and when the user touches
a Burd, the class’s onClick method makes the Burd permanently visible, as
shown in the following snippet:

public void onClick(View view) {
 countClicked++;
 ((ImageView) view).setImageResource
 (R.drawable.burd_burger);
 view.setVisibility(View.VISIBLE);
}

The code, all the code, and
nothing but the code
Following the basic outline of the game’s code in the previous section,
Listing 14-3 contains the entire text of the game’s MainActivity.java file.

392 Part IV: Powering Android with Java Code

Listing 14-3: The App’s Java Code
package com.allmycode.hungryburds;

import java.util.Random;

import android.app.Activity;
import android.content.SharedPreferences;
import android.graphics.Point;
import android.os.Bundle;
import android.view.Display;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.animation.AlphaAnimation;
import android.view.animation.Animation;
import android.view.animation.Animation.AnimationListener;
import android.widget.ImageView;
import android.widget.RelativeLayout;
import android.widget.RelativeLayout.LayoutParams;
import android.widget.TextView;

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {

 final int NUMBER_OF_BURDS = 10;
 final long AVERAGE_SHOW_TIME = 1000L;
 final long MINIMUM_SHOW_TIME = 500L;
 TextView textView;
 int countShown = 0, countClicked = 0;
 Random random = new Random();

 RelativeLayout relativeLayout;
 int displayWidth, displayHeight;

 SharedPreferences prefs;
 SharedPreferences.Editor editor;

 /* Activity methods */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 textView = (TextView) findViewById(R.id.textView1);
 relativeLayout = (RelativeLayout)
 findViewById(R.id.relativeLayout);

 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();

393 Chapter 14: Hungry Burds: A Simple Android Game

 display.getSize(size);
 displayWidth = size.x;
 displayHeight = size.y;

 prefs = getPreferences(MODE_PRIVATE);
 editor = prefs.edit();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public void onResume() {
 super.onResume();
 countClicked = countShown = 0;
 textView.setText(R.string.nothing);
 showABurd();
 }

 /* Game methods */

 void showABurd() {
 long duration =
 random.nextInt((int) AVERAGE_SHOW_TIME)
 + MINIMUM_SHOW_TIME;

 LayoutParams params = new LayoutParams
 (LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT);

 params.leftMargin =
 random.nextInt(displayWidth) * 7 / 8;
 params.topMargin =
 random.nextInt(displayHeight) * 4 / 5;

 ImageView burd = new ImageView(this);
 burd.setOnClickListener(this);
 burd.setLayoutParams(params);
 burd.setImageResource(R.drawable.burd);
 burd.setVisibility(View.INVISIBLE);

 relativeLayout.addView(burd);

 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setDuration(duration);
 animation.setAnimationListener(this);
 burd.startAnimation(animation);

(continued)

394 Part IV: Powering Android with Java Code

Listing 14-3 (continued)
 }

 private void showScores() {
 int highScore = prefs.getInt(“highScore”, 0);

 if (countClicked > highScore) {
 highScore = countClicked;
 editor.putInt(“highScore”, highScore);
 editor.commit();
 }

 textView.setText(“Your score: “ + countClicked +
 “\nHigh score: “ + highScore);
 }

 /* OnClickListener method */

 public void onClick(View view) {
 countClicked++;
 ((ImageView) view).setImageResource
 (R.drawable.burd_burger);
 view.setVisibility(View.VISIBLE);
 }

 /* AnimationListener methods */

 public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd();
 } else {
 showScores();
 }
 }

 public void onAnimationRepeat(Animation arg0) {
 }

 public void onAnimationStart(Animation arg0) {
 }
}

Random
A typical game involves random choices. (You don’t want Burds to appear in
the same places every time you play the game.) Truly random values are dif-
ficult to generate. But an instance of Java’s Random class creates what appear
to be random values (pseudorandom values) in ways that the programmer
can help determine.

395 Chapter 14: Hungry Burds: A Simple Android Game

For example, a Random object’s nextDouble method returns a double
value between 0.0 and 1.0 (with 0.0 being possible but 1.0 being impossible).
The Hungry Burds code uses a Random object’s nextInt method. A call to
 nextInt(10) returns an int value from 0 to 9.

If displayWidth is 720 (which stands for 720 pixels), the call to random.
nextInt(displayWidth) in Listing 14-3 returns a value from 0 to 719.
And because AVERAGE_SHOW_TIME is the long value 1000L, the expression
random.nextInt((int) AVERAGE_SHOW_TIME) stands for a value from 0
to 999. (The casting to int helps fulfill the promise that the nextInt meth-
od’s parameter is an int, not a long value.) By adding back MINIMUM_SHOW_
TIME (refer to Listing 14-3), I make duration be a number between 500 and
1499. A Burd takes between 500 and 1499 milliseconds to fade into view.

Measuring the display
Android’s Display object stores information about a device’s display. How
complicated can that be? You can measure the screen size with a ruler, and you
can determine a device’s resolution by reading the specs in the user manual.

Of course, Android programs don’t have opposable thumbs, so they can’t
use plastic rulers. And a layout’s characteristics can change depending on
several runtime factors, including the device’s orientation (portrait or land-
scape) and the amount of screen space reserved for Android’s notification
bar and buttons. If you don’t play your cards right, you can easily call meth-
ods that prematurely report a display’s width and height as zero values.

Fortunately, the getSize method in Android API level 13 and higher gives
you some correct answers in an activity’s onCreate method. So, here and
there in Listing 14-3, you find the following code:

public class MainActivity extends Activity {

 int displayWidth, displayHeight;

 public void onCreate(Bundle savedInstanceState) {

 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 displayWidth = size.x;
 displayHeight = size.y;

 }

 void showABurd() {

396 Part IV: Powering Android with Java Code

 LayoutParams params;
 params = new LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT);
 params.leftMargin =
 random.nextInt(displayWidth) * 7 / 8;
 params.topMargin =
 random.nextInt(displayHeight) * 4 / 5;

 }

An instance of Android’s Point class is basically an object with two compo-
nents: an x component and a y component. In the Hungry Burds code, a call
to getWindowManager().getDefaultDisplay() retrieves the device’s
display. The resulting display’s getSize method takes an instance of the
Point class and fills its x and y fields. The x field’s value is the display’s
width, and the y field’s value is the display’s height, as shown in Figure 14-5.

A LayoutParams object stores information about the way a widget
should appear as part of an activity’s layout. (Each kind of layout has its
own LayoutParams inner class, and the code in Listing 14-3 imports the
RelativeLayout.LayoutParams inner class.) A LayoutParams instance
has a life of its own, apart from any widget whose appearance the instance
describes. In Listing 14-3, I construct a new LayoutParams instance before
applying the instance to any particular widget. Later in the code, I call

burd.setLayoutParams(params);

to apply the new LayoutParams instance to one of the Burds.

Constructing a new LayoutParams instance with a double dose of
LayoutParams.WRAP_CONTENT (one LayoutParams.WRAP_CONTENT for
width and one LayoutParams.WRAP_CONTENT for height) indicates that a
widget should shrink-wrap itself around whatever content is drawn inside it.
Because the code eventually applies this LayoutParams instance to a Burd,
the Burd will be only wide enough and only tall enough to contain a picture
of yours truly from one of the project’s res/drawable directories.

 The alternative to WRAP_CONTENT is MATCH_PARENT. With two MATCH_
PARENT parameters in the LayoutParams constructor, a Burd’s width and
height would expand to fill the activity’s entire relative layout.

A LayoutParams instance’s leftMargin field stores the number of pixels
between the left edge of the display and the left edge of the widget. Similarly,
a LayoutParams instance’s topMargin field stores the number of pixels
between the top edge of the display and the top edge of the widget. (Refer to
Figure 14-5.)

397 Chapter 14: Hungry Burds: A Simple Android Game

Figure 14-5:
Measuring

distances
on the

screen.

In Listing 14-3, I use random values to position a new Burd. A Burd’s left edge
is no farther than 7⁄8 ths of the way across the screen, and the Burd’s top edge
is no lower than 4⁄5 ths of the way down the screen. If you don’t multiply the
screen’s width by 7⁄8 (or some such fraction), an entire Burd can be positioned
beyond the right edge of the screen. The user sees nothing while the Burd
comes and goes. The same kind of thing can happen if you don’t multiply the
screen’s height by 4⁄5.

 The fractions 7⁄8 and 4⁄5, which I use to determine each widget’s position, are
crude guesstimates of a portrait screen’s requirements. A more refined app
would carefully measure the available turf and calculate the optimally sized
region for positioning new Burds.

Constructing a Burd
Android’s ImageView class represents objects that contain images.
Normally, you put an image file (a .png file, a .jpg file, or a .gif file) in one
of your project’s res/drawable directories, and a call to the ImageView

398 Part IV: Powering Android with Java Code

object’s setImageResource method associates the ImageView object with
the image file. In Listing 14-3, the following lines fulfill this role:

ImageView burd = new ImageView(this);

burd.setImageResource(R.drawable.burd);

Because of the R.drawable.burd parameter, Android looks in the project’s
res/drawable directories for files named burd.png, burd.jpg, or burd.
gif. (Refer to Figure 14-4.) Android selects the file whose resolution best
suits the device and displays that file’s image on the ImageView object.

The statement

burd.setVisibility(View.INVISIBLE);

makes the Burd be completely transparent. The next statement

relativeLayout.addView(burd);

normally makes a widget appear on the user’s screen. But with the View.
INVISIBLE property, the Burd doesn’t show up. It’s not until I start the
code’s fade-in animation that the user begins seeing a Burd on the screen.

 Android has two kinds of animation: view animation and property anima-
tion. The Hungry Burds code uses view animation. An object’s visibility
property doesn’t change when a view animation makes the object fade in or
fade out. In this chapter’s example, a Burd starts off with View.INVISIBLE.
A fade-in animation makes the Burd appear slowly on the screen. But when
the animation finishes, the Burd’s visibility field still contains the original
View.INVISIBLE value. So normally, when the animation ends, the Burd
simply disappears.

When the user clicks on a Burd, Android calls the onClick method in
Listing 14-3. The onClick method’s view parameter represents the
ImageView object that the user clicked. In the body of the onClick method,
the statement

((ImageView) view).setImageResource
 (R.drawable.burd_burger);

assures Java that view is indeed an ImageView instance and changes the
picture on the face of that instance from a hungry author to a well-fed author.
The onClick method also sets the ImageView instance’s visibility to View.
VISIBLE. That way, when this Burd’s animation ends, the happy Burd
remains visible on the user’s screen.

399 Chapter 14: Hungry Burds: A Simple Android Game

Android animation
Android has two types of animation:

 ✓ View animation: An older system in which you animate with either
tweening or frame-by-frame animation, as described in this list:

	 •	Tweening: You tell Android how an object should look initially and
how the object should look eventually. You also tell Android how
to change from the initial appearance to the eventual appearance.
(Is the change gradual or sudden? If the object moves, does it
move in a straight line or in a curve of some sort? Will it bounce a
bit when it reaches the end of its path?)

 With tweening, Android considers all your requirements and fig-
ures out exactly how the object looks between the start and the
finish of the object’s animation.

	 •	Frame-by-frame animation: You provide several snapshots of the
object along its path. Android displays these snapshots in rapid
succession, one after another, giving the appearance of movement
or of another change in the object’s appearance.

 Movie cartoons are the classic example of frame-by-frame anima-
tion even though, in modern moviemaking, graphics specialists use
tweening to create sequences of frames.

 ✓ Property animation: A newer system (introduced in Android 3.0, API
Level 11) in which you can modify any property of an object over a
period of time.

 With property animation, you can change anything about any kind of
object, whether the object appears on the device’s screen or not. For
example, you can increase an earth object’s average temperature from
15° Celsius to 18° Celsius over a period of ten minutes. Rather than
display the earth object, you can watch the way average temperature
affects water levels and plant life, for example.

 Unlike view animation, the use of property animation changes the value
stored in an object’s field. For example, you can use property animation
to change a widget from being invisible to being visible. When the prop-
erty animation finishes, the widget remains visible.

The Hungry Burds code uses view animation, which includes these special-
ized animation classes:

 ✓ AlphaAnimation: Fades into view or fades out of view

 ✓ RotateAnimation: Turns around

400 Part IV: Powering Android with Java Code

 ✓ ScaleAnimation: Changes size

 ✓ TranslateAnimation: Moves from one place to another

In particular, the Hungry Burds code uses AlphaAnimation.

The statement

AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);

creates a fade-in/fade-out animation. An alpha level of 0.0 indicates complete
transparence, and an alpha level of 1.0 indicates complete opaqueness. (The
AlphaAnimation constructor expects its parameters to be float values, so I
plug the float values 0.0F and 1.0F into the constructor call.)

The call

animation.setAnimationListener(this);

tells Java that the code to respond to the animation’s progress is in this
main activity class. Indeed, the class header at the top of Listing 14-3 informs
Java that the HungryBurds class implements the AnimationListener
interface. And to make good on the implementation promise, Listing 14-3 con-
tains bodies for the methods onAnimationEnd, onAnimationRepeat, and
onAnimationStart. (Nothing happens in the onAnimationRepeat and
onAnimationStart methods. That’s okay.)

The onAnimationEnd method does what I describe earlier in this chapter:
The method checks the number of Burds that have already been displayed. If
the number is less than ten, the onAnimationEnd method calls showABurd
again, and the game loop continues.

Shared preferences
When a user finishes a game of Hungry Burds, the app displays the score for
the current game and the high score for all games. (Refer to Figure 14-3.) The
high score display applies to only one device — the device that’s running the
current game. To remember the high score from one run to another, I use
Android’s shared preferences feature.

 Android provides several ways to store information from one run of an app to
the next. In addition to using shared preferences, you can store information in
the device’s SQLite database. (Every Android device has SQLite database soft-
ware.) You can also store information in an ordinary Linux file or on a network
host of some kind.

401 Chapter 14: Hungry Burds: A Simple Android Game

Here’s how you wield a set of shared preferences:

 ✓ To create shared preferences, you call the activity’s getShared
Preferences method.

 In fact, the getSharedPreferences method belongs to Android’s
Context class, and the Activity class is a subclass of the Context
class.

 In Listing 14-3, I call getSharedPreferences in the activity’s on
Create method. The call’s parameter, MODE_PRIVATE, tells Android
that no other app can read from or write to this app’s shared prefer-
ences. (I know — there’s nothing “shared” about something that no
other app can use. But that’s the way Android’s terminology works.)

 Aside from MODE_PRIVATE, the alternatives are described in this list:

	 •	MODE_WORLD_READABLE: Other apps can read from these
 preferences.

	 •	MODE_WORLD_WRITEABLE: Other apps can write to these
 preferences.

	 •	MODE_MULTI_PROCESS: Other apps can write to these prefer-
ences even while an app is in the middle of a read operation. Weird
things can happen with this much concurrency. If you use MODE_
MULTI_PROCESS, watch out!

 You can combine modes with Java’s bitwise or operator (|). A call such as
getSharedPreferences(
 MODE_WORLD_READABLE | MODE_WORLD_WRITEABLE);

 makes your preferences both readable and writable for all other pro-
cesses.

 ✓ To start adding values to a set of shared preferences, you use an
instance of the SharedPreferences.Editor class.

 In Listing 14-3, the onCreate method makes a new editor object. Then,
in the showScores method, I use the editor to add (“highScore”,
highScore) to the shared preferences. Taken together, (“high
Score”, highScore) is a key/value pair. The value (whatever number
my highscore variable holds) is the actual information. The key (the
string “highScore”) identifies that particular piece of information.
(Every value has to have a key. Otherwise, if you’ve stored several differ-
ent values in your app’s shared preferences, you have no way to retrieve
any particular value.)

 In Listing 14-3, I call putInt to store an int value in shared preferences.
Android’s Editor class (an inner class of the SharedPreferences
class) has methods such as putInt, putFloat, putString, and put
StringSet.

402 Part IV: Powering Android with Java Code

 ✓ To finish adding values to a set of shared preferences, you call the edi-
tor’s commit method.

 In the showScores method in Listing 14-3, the statement editor.
commit() does the job.

 ✓ To read values from an existing set of shared preferences, you call
getBoolean, getInt, getFloat, or one of the other get methods
belonging to the SharedPreferences class.

 In the showScores method in Listing 14-3, the call to getInt takes
two parameters. The first parameter (the string “highscore”) is the
key that identifies a particular piece of information. The second param-
eter (the int value 0) is a default value. So when you call prefs.
getInt(“highScore”, 0), the following applies:

	 •	If	prefs has no pair with key “highscore”, the method call
returns 0.

	 •	If	prefs has a previously stored “highscore” value, the method
returns that value.

It’s Been Fun
This chapter has been fun, and this book has been fun! I love writing about
Android and Java. And I love hearing from readers. Remember that you can
send e-mail to me at java4android @allmycode.com, and you can reach
me on Twitter (@allmycode) and on Facebook (/allmycode).

Occasionally, I hear from a reader who says something like this: “If I read
your whole book, will I know everything I have to know about Java?” The
answer is always “No, no, no!” (That’s not only one “no.” It’s “no” times
three.) No matter what topic you study, there’s always more to learn. So keep
reading, keep practicing, keep learning, and, by all means, keep in touch.

Part V
The Part of Tens

 Enjoy an additional Part of Tens chapter from Java Programming for Android
Developers For Dummies online at www.dummies.com/extras/java
programmingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Preventing mistakes
 ✓ Mining the web for more information

Chapter 15

Ten Ways to Avoid Mistakes
In This Chapter
▶ Checking your capitalization and value comparisons
▶ Watching out for fall-through
▶ Putting methods, listeners, and constructors where they belong
▶ Using static and nonstatic references
▶ Avoiding other heinous errors

“T
he only people who never make mistakes are the people who never
do anything at all.” One of my college professors said that. I don’t

remember the professor’s name, so I can’t give him proper credit. I guess
that’s my mistake.

Putting Capital Letters
Where They Belong

Java is a case-sensitive language, so you really have to mind your Ps and
Qs — along with every other letter of the alphabet. Here are some concepts
to keep in mind as you create Java programs:

 ✓ Java’s keywords are all completely lowercase. For instance, in a Java if
statement, the word if can’t be If or IF.

 ✓ When you use names from the Java Application Programming Interface
(API), the case of the names has to match what appears in the API.

 ✓ You also need to make sure that the names you make up yourself are
capitalized the same way throughout the entire program. If you declare
a myAccount variable, you can’t refer to it as MyAccount, myaccount,
or Myaccount. If you capitalize the variable name two different ways,
Java thinks you’re referring to two completely different variables.

For more info on Java’s case-sensitivity, see Chapter 5.

406 Part V: The Part of Tens

Breaking Out of a switch Statement
If you don’t break out of a switch statement, you get fall-through. For
instance, if the value of roll is 7, the following code prints all three words —
win, continue, and lose:

switch (roll) {
case 7:
 System.out.println(“win”);
case 10:
 System.out.println(“continue”);
case 12:
 System.out.println(“lose”);
}

For the full story, see Chapter 8.

Comparing Values with
a Double Equal Sign

When you compare two values with one another, you use a double equal
sign. The line

if (inputNumber == randomNumber)

is correct, but the line

if (inputNumber = randomNumber)

is not correct. For a full report, see Chapter 6.

Adding Listeners to Handle Events
You want to know when the user clicks a widget, when an animation ends, or
when something else happens, so you create listeners:

407 Chapter 15: Ten Ways to Avoid Mistakes

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {
 ...
 public void onClick(View view) {
 ...
 }
 public void onAnimationEnd(Animation animation) {
 ...
 }

When you create listeners, you must remember to set the listeners:

 ImageView widget = new ImageView(this);
 widget.setOnClickListener(this);
 ...
 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setAnimationListener(this);
 ...

If you forget the call to setOnClickListener, nothing happens when you
click the widget. Clicking the widget harder a second time doesn’t help.

For the rundown on listeners, see Chapter 11.

Defining the Required Constructors
When you define a constructor with parameters, as in

public Temperature(double number)

Java no longer creates a default parameterless constructor for you. In other
words, you can no longer call

Temperature roomTemp = new Temperature();

unless you explicitly define your own parameterless Temperature construc-
tor. For all the gory details on constructors, see Chapter 9.

408 Part V: The Part of Tens

Fixing Nonstatic References
If you try to compile the following code, you get an error message:

class WillNotWork {
 String greeting = “Hello”;

 public static void main(String args[]) {
 System.out.println(greeting);
 }
}

You get an error message because main is static, but greeting isn’t static.
For the complete guide to finding and fixing this problem, see Chapter 9.

Staying within Bounds in an Array
When you declare an array with ten components, the components have
indexes 0 through 9. In other words, if you declare

int guests[] = new int[10];

you can refer to the guests array’s components by writing guests[0],
guests[1], and so on, all the way up to guests[9]. You can’t write
guests[10], because the guests array has no component with index 10.

For the latest gossip on arrays, see Chapter 12.

Anticipating Null Pointers
This book’s examples aren’t prone to throwing the NullPointer
Exception, but in real-life Java programming, you see that exception all the
time. A NullPointerException comes about when you call a method on
an expression that doesn’t have a “legitimate” value. Here’s a cheap example:

public class ThrowNullPointerException {

 public static void main(String[] args) {
 String myString = null;
 display(myString);

409 Chapter 15: Ten Ways to Avoid Mistakes

 }

 static void display(String aString) {
 if (!aString.contains(“confidential”)) {
 System.out.println(aString);
 }
 }
}

The display method prints a string of characters only if that string doesn’t
contain the word confidential. The problem is that the myString variable
(and thus the aString parameter) doesn’t refer to a string of any kind — not
even to the empty string (“”).

When the computer reaches the call to aString.contains, the computer
looks for a contains method belonging to null. But null is nothing. The
null value has no methods. So you get a big NullPointerException, and
the program comes crashing down around you.

To avoid this kind of calamity, think twice about any method call in your
code. If the expression before the dot can possibly be null, add exception-
handling code to your program:

try {
 if (!aString.contains(“confidential”)) {
 System.out.println(aString);
 }
} catch (NullPointerException e) {
 System.out.println(“The string is null.”);
}

For the story on handling exceptions, see Chapter 13.

Using Permissions
Some apps require explicit permissions. For example, the app in Chapter 13
talks to Twitter’s servers over the Internet. This doesn’t work unless you add
a <uses-permission> element to the app’s AndroidManifest.xml file:

<uses-permission android:name=
 “android.permission.INTERNET”/>

410 Part V: The Part of Tens

If you forget to add the <uses-permission> element to your Android
Manifest.xml file, the app can’t communicate with Twitter’s servers. The
app fails without displaying a useful error message. Too bad!

The Activity Not Found
If you create a second activity for your app, you must add a new <activity>
element in the app’s AndroidManifest.xml file. For example, the Android
app in Chapter 12 has two activities: MainActivity and MyListActivity.
Eclipse automatically creates an <activity android:name=”.Main
Activity” element, but you have to type your own element for the
MyListActivity:

<activity android:name=”.MyListActivity”>
 <intent-filter>
 <data android:scheme=”checked” />
 </intent-filter>
</activity>

If you don’t add this <activity> element, Android can’t find the
MyListActivity class, even though the MyListAcitivity.java
file is in the app’s Eclipse project directory. Your app crashes with an
ActivityNotFoundException.

And that makes all the difference.

Chapter 16

Ten Websites for Developers
In This Chapter
▶ Checking out this book’s website
▶ Finding resources from Oracle
▶ Reading more about Java

T
his chapter lists ten useful and fun websites. Each one has resources to
help you use Java more effectively. And as far as I know, none of these

sites uses adware or pop-ups or other grotesque programs.

This Book’s Websites
For all matters related to the technical content of this book, visit www.all
mycode.com/Java4Android.

For business issues (for example, “How can I purchase 100 copies of Java
Programming For Android Developers For Dummies?”), visit www.dummies.
com/extras/javaprogrammingforandroiddevelopers.

The Horse’s Mouth
Oracle’s official website for Java is www.oracle.com/technetwork/java.

Consumers of Java technology should visit www.java.com.

Programmers and developers interested in sharing Java technology can go to
www.java.net.

For everything an Android developer needs to know, visit developer.
android.com.

http://www.allmycode.com/Java4Android
http://www.allmycode.com/Java4Android
http://www.dummies.com/extras/javaprogrammingforandroiddevelopers
http://www.dummies.com/extras/javaprogrammingforandroiddevelopers
http://www.oracle.com/technetwork/java
http://www.java.com
http://www.java.net
http://developer.android.com
http://developer.android.com

412 Part V: The Part of Tens

Finding News and Reviews
For articles by the experts, visit the InfoQ site: www.infoq.com.

For discussions by everyone (including many very smart people), visit
JavaRanch at www.javaranch.com.

Everyone’s Favorite Sites
No geekworthy list of resources would be complete without Slashdot and
SourceForge.

Slashdot’s slogan (“News for nerds, stuff that matters”) says it all.

By all means, visit slashdot.org.

The SourceForge repository (at sourceforge.net) houses more than
200,000 free, open source projects.

Check it out!

http://www.infoq.com/
http://www.javaranch.com
http://slashdot.org
http://sourceforge.net

Index
• Symbols and Numerics •
\ (backslash), 200
-- (decrement), 149–150
 - (minus) operator, 148
 ‘ (single quotation mark), 143, 146
 , (comma), 339
 ! (not) operator, 159–160
 != (unequal) operator, 154
 “ (double quotation mark)

copying issues, 64
curly versus straight, 64
punctuation rules, 121
strings, using with, 119, 146
values, using with, 99

% (remainder upon division) operator, 148
 %= (remainder equals) operator, 153
 && (logical and) operator, 157
 () (parentheses)

code, simplifying, 162
empty, 131
if statements, using with, 194
precedence, choosing with, 152, 162–163
punctuation rules, 121

 * (multiply) operator, 148
*= (multiply equals) operator, 153
 . (dot)

method names, 260
object fields, using with, 227
object methods, calling, 243
packages, using with, 122
varargs, using with, 341

 / (division) operator, 148
/= (division equals) operator, 153
 ; (semicolon)
continue statements, using with, 210
punctuation rules, 121
return statement, using with, 176
statements, ending with, 232

 ? (question mark) icon, 131
 [] (brackets), 338

_ (underscore character), 61–62, 140, 142
{ } (curly braces)

arrays, using with, 339
class body, using with, 112
consistent placement, 121
if statements, omission rules, 194–195
method body, using with, 117, 121
punctuation rules, 121

|| (logical or) operator, 158
+ (plus) operator, 148
++ (increment), 149–150
< (less than) operator, 154
< > (angle brackets), 327
<= (less than or equal) operator, 154
-= (minus equals) operator, 153
= (single equal) sign, 154, 193, 210, 227
== (double equal) sign

definition, 154
if statements, testing with, 193
values, comparing with, 406
warning about using, 154–155

> (greater than) operator, 154
>= (greater than or equal) operator, 154
32-bit systems

consistency, importance of, 31
identifying, 31–35
Java and Android SDK software, matching

versions of, 34
Macintosh system information, 32–35
64-bit versus, 31
Windows system information, 31–32
word length, 33

64-bit systems
consistency, importance of, 31
identifying, 31–35
Java and Android SDK software, matching

versions of, 34
Macintosh system information, 32–35
32-bit versus, 31
Windows system information, 31–32
word length, 33

414 Java Programming for Android Developers For Dummies

• A •
AbstractCollection class, 337
Access Token codes (Oauth), 361
accessor methods, 255–257
action element, 133–134
actions (Eclipse workbench), 69
active view (Eclipse workbench), 72–74
activities
Activity class, using with, 297
activity element, adding, 410
creating/destroying, 136
definition, 134, 296
extending, 134
overriding, 134–135

Activity class
Context class, relationship to, 346
declaring, 134
dependencies, 346
overview, 296–298

activity elements
AndroidManifest.xml file, adding to

automatically, for main activity, 349
manually, for additional activities,

350, 410
overview, 104–105

activity_main.xml file
Eclipse Editor, viewing in, 304
widgets, declaring in, 345

ActivityNotFoundException error,
105, 410

adb kill-server command, 93–94
addAll method, 188
addPoints method

advantages of, 185
compound assignment operators,

using, 182
copying parameter values, 183–184
values, returning, 186–187

adjustPan value, 355
ADT (Android Development Toolkit), 26
afterTextChanged method, 366–367
alert method, 287, 295
alertable method, 290
AlphaAnimation, 399
ancestors, 267

Android
Activity class, built-in functions, 134
advantages versus disadvantages, 12
API levels, 14
code names, 14
devices, testing on, 92–94
history, 11
Java version choices, 16
platform numbers, 13
portability advantages, 23–24
portability versus features, balancing, 14
usage figures, 1
version choices, 14
version numbers, 13–14

Android 4.2 branch, 100–101
Android API, 343–344
Android Application Development All-in-One

For Dummies, 346
Android Debug Bridge, 18
Android Development Toolkit (ADT), 26
android: id attribute, 344, 387–388
Android Java

standard Java versus, 62, 77, 177, 344
XML files, combining with, 133–134

Android screen densities, 195–196
Android SDK. See SDK
Android versions

API, relationship to, 80
history of, 13

Android Virtual Device (AVD)
creating, 50–52
error messages, resolving, 88
overview, 29, 50

android.app.Activity class, 134, 298
.android/avd subdirectory, 80, 90
android:hint attributes, 365–366
android.intent.action.MAIN, 105
android.intent.category.LAUNCHER,

105
AndroidManifest.xml file
action element, 133–134
activity element, adding

automatically, for main activity, 349, 355
manually, for additional activities,

350, 355
overview, 104–105

415415 Index

app execution, starting, 133
contents of, 103–104
example, 104
onCreate method, 134
onCreateOptionsMenu method,

133–134
overview, 17

android:name attribute, 350
android.permission.INTERNET

permission, 355
Android-x86, 23
angle brackets (< >), 327
AnimationListener interface, 400
animations

listeners, using, 406–407
view versus property, 399

annotations, 276–277
anonymous inner classes

advantages of, 317–318
named inner classes, converting

from, 319
punctuation, 319

ANR (Application Not Responding), 90–91
API (Application Programing Interface)

Android versions, relationship to, 80
android.app.Activity class, 134
Eclipse errors, resolving, 49
levels, 14
target version, definition, 80
versions, choosing minimum and target,

14, 79–80
versions of, 26

.apk files, 22
Application Not Responding (ANR), 90–91
Application Programing Interface (API)

Android versions, relationship to, 80
android.app.Activity class, 134
Eclipse errors, resolving, 49
levels, 14
target version, definition, 80
versions, choosing minimum and target,

14, 79–80
versions of, 26

apps, creating
activity element, adding

automatically, for main activity, 349
manually, for additional activities, 350

Android devices, testing on
AndroidManifest.xml file, editing, 92
development computer, setting up, 92
Eclipse, running app from, 93
USB cable, connecting/disconnecting, 93
USB debugging, enabling, 92

AndroidManifest.xml file, editing,
349–350

API values, choosing, 79–81
console apps, 126
Eclipse, naming apps, 78
Eclipse, opening new projects, 78
emulators, running on, 83–87
example, 304–307
icons, adding, 133
main method, android equivalents, 344
naming, projects and packages, 78–79
New Android Application dialog box,

recommended settings, 81–82
permissions, app installation, 17
permissions, internet, 355
XML code required, 132–134

area (Eclipse workbench), 69
arithmetic

assignment operators, 152–153
binary versus decimal, 154–155
characters and strings, combining,

150–152
compound assignment operators, 153
operators, 148
order, importance of, 152
types, combining, 148–150

ArithmeticException class, 375
array initializers, 339
ArrayList class, 326–327
arrayList.add, 327
arrays

disadvantages, 338–339
indexes, using with, 337–338
initializers, creating, 339
number declarations, changing, 338
overview, 337
String values, 339
values, storing system, 327, 338, 408

assignments
compound operators, using, 152–153
constructors, using with, 237–239
initializing with, 143

416 Java Programming for Android Developers For Dummies

assignments (continued)
narrowing versus widening, 168–169, 174
single equal sign, using, 154, 193
strong typing rules, 167–169
variables, changing values with, 141–142

AsyncTask class
doInBackground method, using, 371
generic type names, using, 372–373
terminology, 368–369
threads, rules for, 369–370

@Override, 135, 276–277
AVD (Android Virtual Device). See Android

Virtual Device

• B •
backslash (\), 200
beep method, 295
beforeTextChanged method, 367
bits

8 versus 16 versus 32, 144
definition, 138
interpretation, listing of, 145
Unicode, 144

body
definition, 112
punctuation rules, 121

boolean type, 147, 244
boolean variables

characters, changing into values, 161–162
definition, 148
if statements, using with, 194
overview, 153–154
while statements, using with, 210

Boolean.parseBoolean method,
161–162

BorderLayout, 344
braces. See curly braces
brackets ([]), 338
branches
Android 4.2 branch, 100–101
gen directory, 100–101
res directory
drawable subdirectory, 95–96
layout subdirectory, 97
 subdirectory, 96–97

src directory, 94–95
working with, 42–46, 72, 82–83

break statements
switch statements, using with, 201–203
while statements, using with, 210

Burd, Barry, 282
Button class, 306, 315
buttons

callbacks, using with, 286–289, 309–310
clicks, responding to

classes, handling without, 320–323
inner classes, handling with, 316–320
listeners, using, 406–407
MyOnClickListener class, using for,

309–310
Display, creating, 239–243
Graphical Layout, creating automatically

with, 313, 321–323
layouts, adding to, 305
listener methods, 367
Twitter apps, 364–366

byte type (primitive), 147, 203, 244
Byte type (reference), 203

• C •
.cab files, 30
Calendar class, 293
Calendar.getInstance method, 293
callbacks

creating, 286–289
example, 309–310

calls (in methods)
main method, 120
overview, 117–118
parameter compatibility issues,

170–174, 181
parameters, 118–119

camel case, 140
CardLayout, 344
case clauses
break statements, ending with, 201–203
fall-through, using, 201–202
switching with, 198–199

case-sensitivity
class names, 114
Java, 63
keywords, 405
matching, rules, 405
XML documents, 99

417417 Index

cast operators, 170
casting

example, 315
generic types versus, 329–330
overview, 169–170

catch clauses
Exception e, using, 378
parameter list, using, 377
sequence of use, 378

category element, 133–134
char type, 147, 244
Character type, 203, 332
characters

checking for input, 366–367
literals, using, 146
strings, combining with, 150–152

CheckBox class, 315
CheckBox method, 346
checkBoxes [i] . isChecked method,

348–349
checked exceptions, 376
chevrons (Eclipse workbench), 74
child, 267
Chronometer class, 315
class keyword, 112
classes. See also collection classes;

individual classes by name
code, affected by, 222–223
constructor calls, 226
creating, 61
declarations

identifiers, 112–113
keywords, 112–113
Package Explorer, creating in, 307

definition, 111–112, 221–222
displaying, requirements for, 222
examples, 222–224, 227
extending, 134, 269–270, 298
factory classes, 374
final keyword, locking with, 278
hierarchies, 263
inner classes, 316–320
instances, 224–225
instantiating, 226
keywords and identifiers, 113
members of, 243
names, reusing, 227–229

naming conventions
blanks and digits, underscores, 61
case-sensitivity, 63, 114
declarations and identifiers, 112–113
fully qualified versus simple, 114,

118, 375
method declarations, 116–117
packages, 61–62, 114

objects
creating, 225–226
 relationship to, 224–225

Ordered Pair, creating, 330–331
punctuation rules, 121
static members/fields

declaring, 257
referring to, 258

subclass, 267, 282
superclass, 267, 282
wrappers, 331–332

code-number system, 102, 311–314
collection classes
AbstractCollection class, inheriting

from, 337
creating, 330
custom, using, 331
definition, 326
example, 326–327
generic types, using, 327–330
HashMap, 336
HashSet, 336
index, 327
LinkedList, 336
listing of, 336
non-generics types, disadvantages of, 328
Ordered Pair class, creating, 330–331
PriorityQueue, 336
Queue, 336
Stack, 336

comma (,), 339
comments

definition, 123
end-of-line, 124
examples, 122–123, 125, 229
javadoc, 124–125
traditional, 123

comparisons
boolean variables, using for, 153–154
comparison operators, using, 154

418 Java Programming for Android Developers For Dummies

compile-time errors
compile-time warnings, 67–68
finding, 65
fixing, 66
logic errors, 67
quick-fix suggestions, 65
red marks, 65
unchecked runtime exceptions, 67

compiling
.apk files, 22
Dalvik bytecode from Java, 22
Eclipse, using for Java, 20–22
error markers, red, 65
Java bytecode, 21
overview, 19–20

compound assignment operators, 152–153
compound statements, 195
compressed archive files, 30
concatenation, 151–152
conditions

definition, 154
if statements, punctuation of, 194

Console view
error messages, listing, 355
opening, 83–84
sending text to, 126

constructor calls
example, 226
objects, creating with, 230–231

constructors
assignments, using with, 237–239
declarations, creating automatically, 231
default, automatic creation of, 237
defining, 407
local variables, 237
methods, calling, 240–243
naming, 230–231
objects, creating, 230–231
parameters, declaring, 234–235
parameters, naming issues, 235–236
parameters, overloading, 235
this keyword, using with, 237–239

Consumer Key codes (Oauth), 361
Consumer Secret codes (Oauth), 361
context (apps), 346
Context class, 346
ContextThemeWrapper class, 298
continue statement, 210
countdown method, 128, 131

curly braces ({ })
arrays, using with, 339
class body, using with, 112, 122
consistent placement, 121
if statements, omission rules, 194–195
method body, using with, 117, 121
punctuation rules, 121

currency, locale displays, 177
currentTimeMillis method, 293

• D •
Dalvik bytecode

advantages of, 23
overview, 22–23

Dalvik virtual machine, 23–24
debugging bridge, 18
declarations

classes, 112
constructors, creating in, 230–231
headers

definition, 112, 117
syntax, 175

import declarations, 128–129
methods

definition, 116
naming conventions, 116–117
parameters, 131
type compatibility issues, 170–174, 181

packages, 114
punctuation rules, 121
statements, executing, 230–231
type declarations, 140

decrement (--), 149–150
default class, 249–250
default clauses, 199–203, 208
densities, 195–196, 388
densityCode, 198–199, 201
dependencies
Activity class, 346
catch clauses, 378
classes, extending, 267–270
projects, managing with Eclipse, 290–291

descendants, 267
development computer

emulators, setting up, 29
filename extensions, viewing, 29
software installation, 27–28
target device versus, 26

419419 Index

.dex files, 22. See also Dalvik bytecode
dialog boxes

creating, 118, 127–131
text input boxes, 157–158

digits
Java Class naming conventions, 61
Java Package naming conventions, 61–62
variable names, using with, 140

Display object, 395
displayAsSentence method, 341
displays

measuring, 395–397
objects, methods from within, 240–242
screen densities, 195–196

displayWidth method, 395
division (/) operator, 148
division equals (/=) operator, 153
do statements

advantages of, 213
syntax, 212
while statements versus, 211–212

documentation, 123
doInBackground method, 371
dot (.)

method names, 260
object fields, using with, 227
object methods, calling, 243
packages, using with, 122
varargs, using with, 341

double equal (==) sign
definition, 154
if statements, testing with, 193
values, comparing with, 406
warning about using, 154–155

double minus (--), 149–150
double plus (++), 149–150
double quotation mark (“)

copying issues, 64
curly versus straight, 64
punctuation rules, 121
strings, using with, 119, 146
values, using with, 99

double type, 147, 244
double values, warning against comparing,

155, 157
dragging and dropping, 344, 355
dx tool, 22

• E •
Eclipse

ADT add-ons, 26
Android SDK files, installing, 41
android.id attribute, creating, 344
branches, working with, 42–46, 72, 82–83
classes, creating, 61
compile-time errors, 65
console view, 83–84, 126
desktop terminology, 69–70
downloading, 38–39
files, importing, 46–49
Graphical Layout view, 304
import declarations, generating, 128–129
Java Classes, naming conventions, 61
Java code, spelling and syntax, 62–63
Java Package naming conventions, 61–62
Java program previews, 56
launching, initial, 39–40
layouts, creating, 343–344
line numbers, showing, 65
overview, 20–22
Package Explorer, 55
preferences, displaying, 42
programs, running, 66
projects, naming, 59
SDK files, locating, 41–42
setting up, 28–29, 39–42
syntax highlighting, 63
Unable to resolve target

‘android-15’ error, resolving, 49
views versus editors, 70–71
Welcome Screen warning, 56
Workspace Launcher, using, 54–55
workspaces, creating, 58
zip files, uncompressing, 30

Eclipse Editor
AndroidManifest.xml file, adding

activity elements, 349–350
compile-time errors, 66
compile-time warnings, 67–68
error messages

ActivityNotFoundException, 105
Application Not Responding, 90–91
Force Close, 90–91
No compatible targets were found, 88

420 Java Programming for Android Developers For Dummies

Eclipse Editor, error messages (continued)
R cannot be resolved, 87–88
Unknown virtual device name, 89–90
The user data image is used by another

emulator, 89–90
Windows can’t stop your device, 93–94

Java code, entering, 62
Java code, syntax conventions, 62–63
line numbers, showing, 65
logic errors, 67
red error markings, 64–68
syntax highlighting, 63
tabbed groups, 72
tabs, changing with, 71–72
terminology for, 73–74
unchecked runtime exceptions, 67
views versus editors, 70–71
yellow warning markings, 67–68

Eclipse Package Explorer
.jar files, creating and using, 352–354
Java Classes, 61
Java Packages, naming conventions,

61–62
Java program previews, 56
Java programs, running from, 56–57
libraries, adding with, 352–354
packages, naming conventions, 61–62
projects, naming conventions, 59
Referenced Libraries branch, adding,

353–354
src directory, 94–95
workspaces, creating, 58

Eclipse workbench
active views/editors, 72
definition, 69
overview, 55
tabbed groups, 72
tabs, changing views with, 71–72
terminology, editors/views, 73–74
terminology, main view, 69–70, 74–75
views versus editors, 70–71
workspaces, selecting, 58

editor. See Eclipse Editor
editTextTweet, 367
elements, 98–100
else statements

curly braces, 194–195
if statement, omission rules, 195

e-mail, author’s account, 7, 57

embedded processors, 15
emulators

apps, keeping open between, 86
apps, testing, 83–86
changes not appearing, 91
definition, 29
Device Locked screen

unlocking, 86
waiting for, 84–85

.jar files, uploading to, 353
launching, 83–86
screen size, adjusting, 91
speeding up, 85
stalling during start-up

AVD, opening from, 89
re-starting from Package Explorer, 88

Twitter apps, problems with, 364
enhanced for statements

overview, 334–335
variables, warning about, 335–336

enum type
definition, 203
example, 203–204

equal sign, double (==)
definition, 154
if statements, testing with, 193
warning about using, 154–155

equal sign, single (=), 154, 193, 210, 227
equality

double equal (==) sign, using for, 193
if statements, testing with, 193

equals method, 193
error message icon, creating, 128, 131
error messages. See also compile-time

errors
ActivityNotFoundException, 105
Application Not Responding, 90–91
Force Close, 90–91
listing of, 355
No compatible targets were found, 88
R cannot be resolved, 87–88
red error markings, 64–68
stack traces, diagnosing with, 377
Unknown virtual device name, 89–90
The user data image is used by another

emulator, 89–90
Windows can’t stop your device, 93–94
yellow warning markings, 67–68

Exception class, 375

421421 Index

Exception e catch clause, 378
exceptions

checked versus unchecked, 376–377
definition, 375
Exception e catch clause, using, 378
finally clause, using with, 378–379
InterruptedException, 381
NullPointerException, 408–409
stack traces, diagnosing with, 377
Unhandled, 376
upstream methods, passing to, 379–381

explicit intent objects, 346
expressions, definition, 143
extending

advantages of, 267
ancestor/descendent description, 267
classes, 134, 269–270, 298
classes, final, 278
definition, 134
examples, 266–267
inheritances, 268
methods, 298
parent/child description, 267
superclass/subclass description, 267

extends keyword
inheritance, supplying, 298
overview, 267

eXtensible Markup Language (XML).
See XML

• F •
Facebook, author’s account, 7
factory classes, 374
fall-through, 201–202
fields

access modes, 279
definition, 223
input control, 223–224
methods, similarity to, 243
naming issues, 235–236
referring, rules for, 259–260
reusing, 229–230
static, declaration of, 257
static, referring to, 258

filenames
Eclipse projects, 55
extensions, viewing, 29

punctuation rules, 122
slashes, using with, 200

final keyword
classes, locking with, 278
definition, 142
methods, locking with, 278
variables, locking with, 189

finally clause, 378–379
findViewById method

definition, 313
layouts, locating with, 345
overview, 315
widgets, locating with, 366

finish method, 298
float type

equality sign, warning about, 155
overview, 147–148, 244

floating point types, 148
FlowLayout, 344
for statements

collections, stepping through, 333
counting with, 213
enhanced

advantages of, 334–335
variables, warning about, 335–336

example, 214–215
syntax, 216

frame-by-frame animation, 399
FrameLayout, 344

• G •
gen directory, 100–101
generic types

angle brackets, using, 327
casting versus, 329–330
overview, 327–328

get method, 255
getBoolean method, 402
getCallingActivity method, 298
getCallingPackage method, 298
getCurrencyInstance (), 176–177
getFloat method, 402
getInt method, 402
getParent method, 298
getSharedPreferences method, 401
getSingleton method, 374
getSize method, 395–397

422 Java Programming for Android Developers For Dummies

getter methods, 254–255
getTimeInMillis method, 293
getTitle method, 298
getTitleColor method, 298
getUserTimeline method, 376–377
getWindow method, 298
Gibibyte (GiB), 51
Goodbye World app, 127–128
Graphical Layout view

buttons, creating automatically, 313,
321–323

dragging and dropping, 344, 355
opening, 304
resizing, 304
widgets, adding with, 305
XML code, switching to, 304

greater than (>) operator, 154
greater than or equal (>=) operator, 154

• H •
hardcoding values, avoiding, 168, 176
hardware requirements, 4
HashMap class, 336
HashSet class, 336
headers

definition, 112
overview, 117
syntax, 175

Hello World app
definition, 109
example, console method, 126
example, simple, 110–111

hexadecimal notation
code-number system, 102
R.java file, used in, 311–314

highlighting, Java code syntax, 63
hint messages, 365–366
HTML (HyperText Markup Language), 16
Hungry Burds game

animations, 399–400
displays, measuring, 395–397
features minimalized, 386–387
objects, constructing, 397–398
overview, 384–386
random values, creating, 394–395
shared preferences, 400–402

HyperText Markup Language (HTML), 16

• I •
iconFileName, 201–202
icons

Android apps, creating, 133
showMessageDialog method, calling

with, 128–131
used in book, 6–7

IDE (integrated development
environment). See also Eclipse

description, 26
downloading with Software Development

Kit, 39
word processors versus, 26
.zip files, importing with, 26

identifiers
definition, 112
Unicode usage, 145

if statements
boolean variables, using with, 194
compound statements, 195
curly braces, using, 194–195
overview, 191–192
parentheses, using with, 194

image files, storing, 397–398
ImageView class, 315
implicit intent objects, 346
import declarations

definition, 128
generating automatically, 129, 306
Organize Imports, using for, 306

increment (++), 149–150
indexes

arrays, using with, 337–338
brackets, using, 338
collection classes, using with, 327

inflating, 299
information icon, creating, 127, 131
inheritance

Java code functionality, 298
multiples, forbidden, 282
overview, 267–268, 282

initialization
arrays, 339
declaration parameters, 182–183, 246
definition, 141
for loops, 210, 216
single equal sign, using, 154

423423 Index

inner classes
advantages of, 317
anonymous, 317–320
overview, 316

instances
classes, relationship to, 224–225
creating, 225–226
overview, 224

instantiation, 226
int type, 139, 147–148, 244, 332
Integer type, 147, 203, 332
Integer.parseInt method, 158
integral types, 147–148
integrated development environment

(IDE). See also Eclipse
description, 26
downloading with Software Development

Kit, 39
word processors versus, 26
.zip files, importing with, 26

Intent object, 346
intent objects, explicit versus implicit, 346
intent-filter element, 105
interfaces

advantages of, 292
definition, 283, 293
examples, 284–285, 286–289

internet permissions, 355
InterruptedException, 380–381
IOException class, 375
iterations, 208–209
iterator.hasNext method, 334
iterator.next method, 333–334
iterators

creating, 333
definition, 333
testing, 333–334

• J •
.jar files

creating, 352–353
definition, 101–103
libraries, adding to, 353–354

Java. See also Android Java; name
conventions; standard Java

32-bit versus 64-bit installations, 31, 37
case-sensitivity, 63, 114

code
organizing, 281–282
spelling and syntax, 62–63

compiling
creating .apk files, 22
Java versus Dalvik bytecode, 21–22
overview, 19–21

downloading, 36
Eclipse

running project code, 56–57
setting version in, 43–46

errors, red marks, 65, 67–68
history, 14–15
import declarations, 128–129
item number syntax, 348
older versions, removing, 37–38
Oracle programs, running, 53
portability advantages, 23–24
programs

creating, 59
issues, resolving, 57
running from Eclipse, 56–57
separate workspaces for, 58

projects, naming, 59
punctuation rules, 121–122
quotations marks, curly versus straight,

64
src directory, 94–95
syntax highlighting, 63
versions

for Android, 16
checking, 387
history of, 15–16
recommended, 36

XML veresus, 17
Java classes. See classes
Java ME (Java Mobile Edition), 15
Java Mobile Edition (Java ME), 15
Java Programming for Android Developers

For Dummies, website for, 26–27
Java Runtime Environment (JRE)

definition, 26
download site, 27
version, checking, 43–46

Java source code, 19–20
Java types. See types
Java Virtual Machine (JVM), 27
javac, 22

424 Java Programming for Android Developers For Dummies

javadoc comments, 124–125
JOptionPane.showInutDialog method,

157–158
JOptionPane.showMessageDialog

method
android use, missing from, 62, 299
dialog boxes, creating, 118
fully qualified name, 129

JRE (Java Runtime Environment). See Java
Runtime Environment

JVM (Java Virtual Machine), 27

• K •
kernel, 18
keywords

definition, 112
final, using with variables, 142
listing, complete, 113
syntax, 405

KiB (Kibibyte), 51
Kibibyte (KiB), 51

• L •
Launcher element, 133
layout directory, 97–100
LayoutParams class, 396
LayoutParams.WRAP_CONTENT, 396
layouts (Android API)

definition, 343
layout types, 343
ListActivity distinctions, 348
standard Java versus, 344

layouts (Eclipse workbench), 74
leftMargin, 396
less than operator (<), 154
less than or equal (<=) operator, 154
libraries

Eclipse Package Explorer, adding with,
352–354

.jar files, adding to, 353–354
Referenced Libraries branch, adding to

Eclipse Package Explorer, 353–354
lifecycles

apps activities, 344
definition, 135
example, 136

line numbers, viewing, 65
LinearLayout, 343
LinkedList class, 336
Linux

Android, advantages for, 18
overview, 18

Linux shell, 18
ListActivity class

overview, 347
parameters, 348

listeners, using, 406–407
literals

character versus string, 146
definition, 143

local variables, 237
Locale, 177
localization, 97
LogCat view, 71, 355
logic errors, 67
logical and (&&) operator, 157
logical operators

! operator, 159
&& operator, 157
|| operator, 159
definition, 148
multiples, using, 161–162

logical or (||) operator, 158
logical type, 148
long type, 147, 149, 244
looping statements

definition, 208
do statements, 211–213
initialization, 210
while statements, 208–210

lowercase
final variables, 142
method names, 173
variable names, 140, 142, 173

• M •
Macintosh systems

Android development, version issues,
35–36

Eclipse, setting Java version, 43–46
Java updates, installing, 36
operating system version, identifying, 35
processor identification, 32–34

425425 Index

SDK files, locating, 41–42
zip file uncompression, 48

MAIN activity, 389–390
MAIN activity (Android XML code), 133
main method

Android app replacement for, 132–133
importance of, 119–120
public class, declaring, 250
punctuation rules, 121
starting with, 132

MainActivity class
creating, 344–345
description, 134
inheritance rules, 298

MainActivity.java file
Java, created by, 132
saving work to, 306

marker bars (Eclipse workbench), 74
markup, definition, 16–17
MATCH_PARENT, 396
mathematics. See arithmetic
Mebibyte (MiB), 51
members

access possibilities, 250–254
default/private/public/protected, 250–251
definition, 243
referring, rules for, 259–260
static, declaration of, 257
static, referring to, 258

method calls
call/parameter compatibility,

170–174, 181
constructors, calling from, 240–243
definition, 166
no parameters, 131
parameters, calling, 166
parameters, passing issues, 182–185
pass-by values, 181–182
syntax, 117–118

methodName method, 175
methods. See also individual methods by

name
access modes, 279
body, definition, 112
body, punctuation rules, 121
constructors, calling from, 240–243

declarations
definition, 116
naming conventions, 116–118
no parameters, 131

definition, 111
fields, similarity to, 243
header syntax, 175
headers, definition, 112, 117
headers, syntax, 175
modifiers, 117
names

fully-qualified versus simple, 114, 118
lowercase, use of, 173

overloading, 129–131, 177–181
overriding

access rules, 281
advantages of, 276
definition, 134–135
example, 270–275

overview, 114–116
parameters

calling, 166
overloading, 129–131
overview, 118–119, 131
syntax, 174

punctuation rules, 121–122, 173
recipe metaphor, 165–166
statements, purpose of, 166

MiB (Mebibyte), 51
minus (-) operator, 148
minus equals (-=) operator, 153
modifiers (in declarations), 117, 142
monthlyPayment method, 173–174
multiply (*) operator, 148
multiply equals (*=) operator, 153
multi-threading

code handling sequences, 368–369
diagram of, 371
framework for, 368
overview, 367–368, 371
rules, 369–370
UI versus background threads, 369

MyListActivity class, 347
MyOnClickListener class, 306
MyTextWatcher

character input, checking for, 366–367
creating, 366

426 Java Programming for Android Developers For Dummies

• N •
name conventions

case-sensitivity, 63, 114
classes

blanks, digits, underscores, 61
declarations and identifiers, 112–113
fully qualified versus simple, 114,

118, 375
constructors, 230
import declarations, 128–129
keywords and identifiers, 113
members, rules for, 259–260
methods

calls, 117–118
declarations, 116–117
fully qualified versus simple, 118, 144
lowercase, use of, 173
modifiers, 117

packages, 61–62
parts of names, 118
public classes, 250
punctuation rules, 121–122
shadowing issues, 235–236
variables, lowercase, 173

narrowing, 168–169, 174
New Android Application dialog box,

recommended settings, 81–82
new keyword, 230
nextDouble method, 395
nextInt method, 395
not (!) operator, 159–160
null parameter, effects of, 118–119
NullPointerException, 408–409

• O •
Oauth

access tokens, 360–361
overview, 359–360

object-oriented programming
advantages of, 265, 269–270
class extensions, 269–270
definition, 111
overriding

advantages of, 276
definition, 134–135
example, 270–275

objects. See also collection classes
Character class, 332
classes, relationship to, 224–225
constructor calls, creating with, 230
creating, 225–226, 397–398
displaying from within, 240–242
explicit versus implicit intent, 346
fields versus methods, 243
members, 243
Ordered Pair class, 332
overview, 224
passing to methods, 231–233
positioning warning, 397

onAnimationEnd method, 390–391
onBackPressed method, 298
onClick method

overview, 320–323
Twitter app example, 367

onClickListener interface, 406–407
onCreate method

field changes, watching for, 366
inheritance rules, 298
lifecycles, part of, 135–136
MyTextWatcher, creating, 366
onResume method versus, 391
overriding, 135
starting apps with, 134
widgets, locating, 366

onCreateOptionsMenu method
inheritance rules, 298
overriding, 135
starting apps with, 133–134

onDestroy method, 136
onKeyDown method, 298
onKeyLongpress method, 298
online resources

Android Development Toolkit, 38–39
Android emulator issues, 89
author

e-mail address, 7
social media accounts, 57

author’s e-mail, 7
Dedexer programer, 20
Dummies articles, 7
Eclipse IDE, 38–39
Hello World app, 109
InfoQ site, 412
Java API classes, 124
Java documentation, 119

427427 Index

Java language specifications, 163
Java programmers and developers, 411
Java Programming for Android Developers

For Dummies code, 26–27
Java Runtime Environment download, 27
Java virtual machine, 27
JavaRanch, 412
precedence rules, 163
SDK (Software Development Kit), 38–39
SDK download, 27
security, passwords/usernames, 359
Slashdot, 412
SourceForge, 412
Twitter developers site, 360
Twitter libraries, 352–354
Unified Modeling Language, 224

onPause method, 136
onPreExecute method, 371
onResume method

description, 136
onCreate method versus, 391

onStart method, 136
onStop method, 136
onTextChanged method, 367
onTimelineButtonClick method, 367
onTweetButtonClick method, 367
operating system, 18
operators

arithmetic signs, 148
casting, 169–170
incrementing and decrementing, 149
types, combining with, 148–149

Oracle Java. See standard Java
Ordered Pair class

creating, 330
objects, storing in, 331

Organize Imports
imports, generating automatically, 129,

306
shortcut keys for, 306

OverlayLayout, 344
overloading

constructors, using with, 235
methods without parameters, 180–181
overview, 129–131
parameters, calling versus copying, 180
type matching issues, 181

@Override annotation, 135, 276–277

overriding
access rules, 281
advantages of, 276
definition, 134–135
example, 270–275
methods, declaring final, 278
syntax, 275

• P •
Package Explorer (Eclipse)

Console view, opening, 83–84
Console view, sending text to, 126
.jar files, creating and using, 352–354
Java Classes, creating, 61
Java Classes, naming conventions, 61
Java Packages, naming conventions,

61–62
Java program previews, 56
Java programs, running from, 56–57
libraries, adding with, 352–354
packages, naming conventions, 61–62
projects, naming conventions, 59
Referenced Libraries branch, adding,

353–354
src directory, 94–95
workspaces, creating, 58

packages
definition, 118
name conventions, 61–62, 114, 298
overview, 61
package declarations, 114
punctuation rules, 122

parameters
call compatibility issues, 170–174, 181
calling versus copying, 180
constructors, using with, 234–235
declarations versus calls, 175
dot (.), using in varargs, 341
empty parentheses, using, 131
example, 118
final keyword, using with, 189
methods, calling from, 166
naming issues, 235–236
objects, passing, 246
overloading, 129–131, 177–181
passing issues, 182–185
positions, importance of, 173

428 Java Programming for Android Developers For Dummies

parameters (continued)
primitive values, passing, 181–183, 246
punctuation rules, 121
values, effects of, 118–119

parent/child inheritance, 267, 282
parentheses (())

code, simplifying, 162
empty, 131
if statements, using with, 194
precedence, choosing with, 152, 162–163
punctuation rules, 121

pass-by reference
definition, 246
effects of, 245
pass-by value versus, 246–248

pass-by value
overview, 181–183
pass-by reference versus, 246

passing
activities, 346
objects to methods, overview, 231–233
parameters, issues with, 185

permissions. See also Oauth
Android apps, 17
internet, 355
overview, 408–409
social media, limiting for, 361
social media, revocable, 359

perspective layout (Eclipse workbench), 75
plus (+) operator, 148
.png files, 200, 388, 397–398
Point class, 396
pointing (referring), 243–245
portability, Android advantages, 23
postdecrementing, 149–150
postincrementing, 149–150
precedence rules

online resources, 163
overview, 162–163
parentheses, bypassing with, 152,

162–163
predecrementing, 149–150
preincrementing, 149–150
primitive types

definition, 146, 331
floating point, 148

integral, 147–148
listing of, 147
logical, 148
pass-by values, 181–182
passing issues, 182–185
reference types versus, 181, 244, 332
switch statements, 203
syntax, 332
traffic metaphor, 138

PriorityQueue class, 336
programming, Android version choices, 14
protected keyword, 279–281
public class
default class versus, 249
definition, 248
naming conventions, 250

public static void main
(string[] args) checkbox, 61

punctuation
anonymous inner classes, 319
arrays, 339
camel case, 140
character literals, 146
characters, 143
class body, 112
code, simplifying, 162
consistent placement, 121
continue statements, 210
if statements, 194–195
method body, 117, 121
method names, 121–122, 173, 260
naming conventions, 61–62
object fields, 227
object methods, 243
package names, 61, 122
precedence rules, 152, 162–163
return statement, 176
rules, listing of, 121–122
statements, 232
string literals, 146
strings, 119, 146
values, 99
varargs, 341
variable names, 140, 142, 173

429429 Index

• Q •
question mark (?) icon, 131
Queue class, 336
quick fixes, 65
quotation mark, double (“)

copying issues, 64
curly versus straight, 64
punctuation rules, 121
using with strings, 119, 146
values, using with, 99

quotations mark, single (‘), 143, 146

• R •
Random class, 394–395
random values

generating, 395
pseudorandom versus, 394

.rar files, 30
RatingBar class, 315
red error markings, 64–68
reference types

definition, 146, 181, 331
passing, effects of, 246–247
primitive types versus, 181, 244, 332
strings, 147
switch statement, using in, 203

Referenced Libraries branch (Package
Explorer), 352–354

referring (pointing), 243–245
RelativeLayout element, 344, 387–388
RelativeLayout.LayoutParams

class, 396
remainder equals (%=) operator, 153
remainder upon division (%) operator, 148
repeating, 204–208
res directory, 95–97
return statement

definition, 171
values versus types, 175
void, replacing with, 175

returnType method, 175

R.java file
auto-generated, unchangeable, 100–101,

313
code-number system, 311–314
error messages, 87
hexadecimal notation in, 102
names, checking, 315
replacing, 88

RotateAnimation, 399

• S •
savedInstanceState, 299
ScaleAnimation, 400
screen densities, 195–196, 388
ScrollingMovementMethod method, 367
SD (secure digital) card, virtual, 50
SDK (Software Development Kit)

32-bit versus 64-bit installations, 31
download site, 27
Eclipse, installing in, 41
file directory, locating in Eclipse, 41–42
history, 14–16
overview, 26
setting up, 38–39
testing tools, 39

secure digital (SD) card, virtual, 50
security

social media apps
OAuth, using for, 359–361
twitter4j.properties file, using for,

359
username/password issues, 359

semicolon (;)
continue statements, using with, 210
punctuation rules, 121
return statement, using with, 176
statements, ending with, 232

set method, 255
setContentView method, 299
setListAdapter method, 348
setMovementMethod method, 367
setOnClickListener method, 309–310
setter methods, 254–255
setTitle method, 298

430 Java Programming for Android Developers For Dummies

SGML (Standard Generalized Markup
Language), 17

shadowing (names), 235–236
shared preferences

creating, 401–402
overview, 400

SharedPreferences.Editor class, 401
Short type, 203
short type, 147, 244
showMessageDialog method, 118, 128,

130–131
showScores method, 402
single equal (=) sign, 154, 193, 210, 227
single quotation mark (‘), 143, 146
64-bit systems

consistency, importance of, 31
identifying, 31–35
Java and Android SDK software, matching

versions of, 34
Macintosh system information, 32–35
32-bit versus, 31
Windows system information, 31–32
word length, 33

sleep method, 286
social media app. See Twitter app
Software Development Kit (SDK). See SDK
spaces

Java Class names, avoiding in, 61
Java code, using in, 64
variable names, using with, 140

SQLException class, 375
SQLite database, 400
src directory

description, 132
MainActivity.java file,

creating, 132
overview, 94–95
Package Explorer, editing in, 306, 358
twitter4j.properties file, creating,

358–361
Stack class, 336
stack traces, 377
Standard Generalized Markup Language

(SGML), 17
standard Java (desktop)

Android Java versus, 62, 77
limitations of, 53

startActivity method, 298, 346
statements. See also individual statements

by name
assignments, changing values with,

141–142
compound assignments, purpose of, 153
compound statements, 195
definition, 118, 121
looping, 208
punctuation, 121
purpose of, 166
values, assigning with, 158

static declaration
definition, 257
Java loophole, 261
referring, rules for, 259–260

static keyword, 257
statuses, 375
String type

arrays, using with, 339
declaring, 158
switch statements, using with, 204

strings
characters, changing into numbers, 158
characters, combining with, 150–152
concatenation, 151–152
equality sign, warning about, 155
Java SE 7, missing from, 16
literals, using, 146
quotation marks, straight versus curly, 64
strings.xml files, retrieving from,

96–97
values, adding to, 150–152

strings.xml files, 96–97
strong typing rules

accuracy, assuring, 167
definition, 169
incompatibility, 169
widening versus narrowing, 168–169, 174

subclass, 267, 282
super keyword, 295–296
superclass, 267, 282
switch statement
break statements, 201–203, 406
case clauses, 198–199
default clauses, 202, 208
fall-through, 201–202, 406

431431 Index

String type, using with, 204
syntax, 203

syntax
character strings, 146
declaration headers, 175
do statements, 212
Eclipse, highlighting in, 63
Java code, entering, 62–63
keywords, 405
matching, rules, 405
method calls, 117–118
method headers, 175
method names, 173
method parameters, 174
overriding, 275
primitive types, 332
for statements, 216
switch statements, 203
try/catch statements, 377
varargs, 341
variable names, 173
warning about, 114
while statements, 208
wrapper type, 332

System.out.print, 327
System.out.println

overview, 126
System.out.print versus, 327

• T •
tabs (Eclipse workbench)

changing views with, 71–72
tabbed groups, 72

tags
definition, 16
description, 98–100
layout directory, residing in, 97

takeANap method, 380–381
target device, development computer

versus, 26
.tar.gz files, 30
terminal app, 18

testing
Android devices, 92–94
AVDs, 50–52
emulators, 83–86
SDK (Software Development Kit), tools

for, 39
stack traces, 377
System.out.println, using for, 126
trial programs, using, 163
Twitter apps, warnings about, 364

TextChangedListener class, 366
TextView class

text, displaying, 311–314
View class, extending, 315

textViewCountChars, 367
32-bit systems

consistency, importance of, 31
identifying, 31–35
Java and Android SDK software, matching

versions of, 34
Macintosh system information, 32–35
64-bit versus, 31
Windows system information, 31–32
word length, 33

this keyword, 237–239, 291–292
Thread class, 286
threads

definition, 368
multi-threading
AsyncTask class, managing with, 368,

370–371
code handling sequences, 368–369
diagram of, 371
framework for, 368
overview, 271, 367–368
rules, 369–370
UI versus background, 369

TimerCommon class, 286–290
tokens (Oauth), 359–361
Toolkit class, 295
Toolkit.getDefaultToolkit method,

295
topMargin, 396
TranslateAnimation, 400

432 Java Programming for Android Developers For Dummies

true or false conditions, 153–154
try clauses, 377–378
try/catch statements

clauses, sequence of use, 378
eliminating, 379–381
Exception e clause, using with, 378
finally clause, using with, 378–379
syntax, 377

tweening animation, 399
tweets

recent, listing, 366
sending/receiving, 365

Twitter, author’s account, 57
Twitter app

Android, native support lacking, 352
button, creating, 360
character input, checking for, 366–367
consumer key, definition, 360
consumer secret, definition, 360
context, importance of, 351–352
emulators, problems with, 364
hint messages, 365–366
internet permissions, 355
.jar files, creating, 352–354
layout file example, 356–357
libraries, 352
objects, 374
online resources, 352, 360
overview, 351
permissions

overview, 408–409
revocable, 359

posting statements, 351
security

OAuth, using for, 359–361
username/password issues, 359

tasks, possibilities for, 351
tweets

recent listing, 366
sending/receiving, 365

twitter4j.properties file
description, 358
location, 358
Oauth, using with, 359–361
security issues, 359–361

twitter.getUserTimeline calls, 352
twitter.updateStatus calls, 352
username/password issues, 359
varargs, using with, 374

twitter4j.properties file
description, 358
location, 358
Oauth codes, obtaining, 359–361
username/password issues, 359

TwitterException class, 375
TwitterFactory class, 374
twitter.getUserTimeline calls, 352
twitter.updateStatus calls, 352
type declarations, 140
types. See also individual types by name

(int), 170
arithmetic, combining with with, 148–150
assignments

changing values with, 141–142
type declarations versus, 141

assignments versus type declarations,
141

call/parameter compatibility,
170–174, 181

declarations of, 140
final variable, 142
generic, using with AsyncTask class,

372–373
initialization, 141
modifiers, 142
names of, 140–141
overview, 139–140
primitive versus reference, 146, 181, 332
switch statement, using in, 203–204

• U •
UML (Unified Modeling Language), 224
unchecked exceptions, 376
unchecked runtime exceptions, 67
uncompressing, 30
underscore character (_), 61–62, 140, 142
unequal (!=) operator, 154
Unicode, discussion of, 144
Unified Modeling Language (UML), 224

433433 Index

unzipping, 30
updateStatus method, 374
uses-permission element, 355
uses-sdk element, 387

• V •
values
addPoints method, using with, 186–187
boolean, 153–154, 161
casting, 169–170
comparing, 406
conditions, 154
double, warning against comparing,

155, 158
equality statements, 154
final keyword, using with, 189
float, warning against comparing, 155
hardcode, avoiding, 168, 176
incompatibility, 169
incrementing and decrementing, 149–150
logical operators, using with, 156–158
long type, 149
method calls, compatibility issues,

170–173
operator rules, 148–150
pass-by, 181–182
strings, adding to, 150–152
types, 158, 166–168
widening

example, 149
narrowing versus, 168–169

varargs
dot (.), using with, 341
example, 339–341
syntax, 341
Twitter app, using with, 374

variable names
overview, 140
punctuation rules, 140, 142

variables
enhanced for statements, using with,

335–336
local, 237
primitive versus reference, 244
reusing, 227–229
storing versus referring, 243–245
types, overview, 139–140

version, checking for, 387
view animation
AlphaAnimation, description, 399
frame-by-frame, 399
property versus, 399
RotateAnimation, description, 399
ScaleAnimation, description, 400
TranslateAnimation, 400
tweening, 399

View class, 315
View.GONE, 131
View.INVISIBLE, 131
views (Eclipse workbench)

editors versus, 71
tabbed groups, 72
tabs, changing with, 71–72

views (text), 311–314
View.VISIBLE, 131
virtual machines, 22–24
void, 175

• W •
W3C (World Wide Web Consortium), 17
warning icon, creating, 128, 131
websites

author, contacting, 7
InfoQ site, 412
Java programmers and developers, 411
Java Programming for Android Developers

For Dummies code, 26–27
JavaRanch, 412
Oauth, 359
Slashdot, 412
SourceForge, 412
Twitter developers site, 360
Twitter libraries, 352

whenButtonClicked method, 321
while statements
boolean variables, using with, 210
break statements, ending with, 210
default clauses, using with, 208
do statements versus, 211–212
repeating with, 206–208
syntax, 208

widening
example, 149
narrowing versus, 168–169, 174

434 Java Programming for Android Developers For Dummies

widgets
Graphical Layout, adding with, 305
layouts, 343–346
text views, associating with, 311–314

window (Eclipse workbench), definition, 69
Windows

Eclipse, setting Java version, 43–46
processor identification, 31–32
SDK files, locating, 41–42
system information, obtaining, 43–46
USB cable, disconnecting safely, 93–94

windowsSoftInputMode attribute, 355
word length

hardware versus operating system versus
software, 33

software issues, 34
workbench. See Eclipse workbench
Workspace Launcher (Eclipse)

filenames, 55
overview, 54
workspaces, 54, 58

World Wide Web Consortium (W3C), 17
WRAP_CONTENT, 396
wrapper type

overview, 331–332
syntax, 332

• X •
XML (eXtensible Markup Language)
activity_main.xml file, 312
Android apps, required for, 17, 133
AndroidManifest.xml, 133
compiling for Android, 22
history, 16–17
Java, connecting files to, 311–314
Java versus, 17
method overriding, calling for, 135
software tools, composing with, 17
tags and elements, describing, 98–100

• Y •
yellow warning markings, 67–68

• Z •
.zip files, 26, 30, 48

Dedication

Acknowledgments

Publisher’s Acknowledgments

Acquisitions Editor: Constance Santisteban
Senior Project Editor: Paul Levesque
Copy Editor: Becky Whitney
Technical Editor: Brian Buikema
Editorial Assistant: Annie Sullivan
Sr. Editorial Assistant: Cherie Case

Project Coordinator: Kristie Rees
Cover Image: ©iStockphoto.com/scanrail

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Contents at a Glance
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Java Programming for Android Developers
	Chapter 1: All about Java and Android
	The Consumer Perspective
	The Many Faces of Android
	The Developer Perspective
	From Development to Execution with Java
	Java, Android, and Horticulture

	Chapter 2: Getting the Tools That You Need
	The Stuff You Need
	If You Don’t Like Reading Instructions . . .
	Getting This Book’s Sample Programs
	Gathering Information
	Setting Up Java
	Setting Up the Android SDK
	Running Eclipse for the First Time

	Chapter 3: Running Standard Java Programs
	Running a Canned Java Program
	Typing and Running Your Own Code
	What’s All That Stuff in the Eclipse Window?

	Chapter 4: Creating an Android App
	Creating Your First Android App
	Testing Apps on a Real Device
	Examining an Android App

	Part II: Writing Your Own Java Programs
	Chapter 5: An Ode to Code
	Examining a Standard Oracle Java Program
	Another One-Line Method
	More Java Methods
	Hello, Android

	Chapter 6: Java’s Building Blocks
	Info Is as Info Does
	Things You Can Do with Types

	Chapter 7: Though These Be Methods, Yet There Is Madness in’t
	Practice Safe Typing
	Calling a Method
	Primitive Types and Pass-by Value

	Chapter 8: What Java Does (and When)
	Making Decisions
	Repeating Instructions Over and Over Again
	What’s Next?

	Part III: Working with the Big Picture: Object-Oriented Programming
	Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese
	Classes and Objects
	More About Classes and Objects (Adding Methods to the Mix)
	Java’s Modifiers
	What’s Next?

	Chapter 10: Saving Time and Money: Reusing Existing Code
	The Last Word on Employees — Or Is It?
	More about Java’s Modifiers
	Keeping Things Simple
	What Does This Have to Do with Android?

	Part IV: Powering Android with Java Code
	Chapter 11: A Simple Android Example: Responding to a Button Click
	The First Button-Click Example
	Introducing Inner Classes
	No Publicity, Please!
	Doing It the Easy Way

	Chapter 12: Dealing with a Bunch of Things at a Time
	Creating a Collection Class
	Using Collections in an Android App

	Chapter 13: An Android Social Media App
	The Twitter App’s Files
	The Application’s Main Activity
	Java’s Exceptions

	Chapter 14: Hungry Burds: A Simple Android Game
	Introducing the Hungry Burds Game
	The Project’s Files
	The Main Activity
	It’s Been Fun

	Part V: The Part of Tens
	Chapter 15: Ten Ways to Avoid Mistakes
	Putting Capital Letters Where They Belong
	Breaking Out of a switch Statement
	Comparing Values with a Double Equal Sign
	Adding Listeners to Handle Events
	Defining the Required Constructors
	Fixing Nonstatic References
	Staying within Bounds in an Array
	Anticipating Null Pointers
	Using Permissions
	The Activity Not Found

	Chaper 16: Ten Websites for Developers
	This Book’s Websites
	The Horse’s Mouth
	Finding News and Reviews
	Everyone’s Favorite Sites

	Index
	About the Author

