

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Sams	Teach	Yourself	Java™	in	21	Days
Rogers	Cadenhead

800	East	96th	Street,	Indianapolis,	Indiana	46240

Sams	Teach	Yourself	Java™	in	21	Days
Copyright	©	2016	by	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or
otherwise,	without	written	permission	from	the	publisher.	No	patent	liability	is	assumed
with	respect	to	the	use	of	the	information	contained	herein.	Although	every	precaution	has
been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages	resulting
from	the	use	of	the	information	contained	herein.

ISBN-13:	978-0-672-33710-9
ISBN-10:	0-672-33710-X

Library	of	Congress	Control	Number:	2015916217

Printed	in	the	United	States	of	America

First	Printing	December	2015

Editor-in-Chief
Mark	Taub

Executive	Editor
Mark	Taber

Managing	Editor
Kristy	Hart

Project	Editor
Elaine	Wiley

Copy	Editor
Barbara	Hacha

Senior	Indexer
Cheryl	Lenser

Proofreader
Chuck	Hutchinson

Technical	Editor
Boris	Minkin

Editorial	Assistant
Vanessa	Evans

Cover	Designer
Mark	Shirar

Senior	Compositor
Gloria	Schurick

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have

been	appropriately	capitalized.	Sams	Publishing	cannot	attest	to	the	accuracy	of	this
information.	Use	of	a	term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of
any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The
author	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or
entity	with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this
book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents	at	a	Glance

Introduction

WEEK	I:	The	Java	Language

DAY	1	Getting	Started	with	Java

DAY	2	The	ABCs	of	Programming

DAY	3	Working	with	Objects

DAY	4	Lists,	Logic,	and	Loops

DAY	5	Creating	Classes	and	Methods

DAY	6	Packages,	Interfaces,	and	Other	Class	Features

DAY	7	Exceptions	and	Threads

WEEK	II:	The	Java	Class	Library

DAY	8	Data	Structures

DAY	9	Working	with	Swing

DAY	10	Building	a	Swing	Interface

DAY	11	Arranging	Components	on	a	User	Interface

DAY	12	Responding	to	User	Input

DAY	13	Creating	Java2D	Graphics

DAY	14	Developing	Swing	Applications

WEEK	III:	Java	Programming

DAY	15	Working	with	Input	and	Output

DAY	16	Using	Inner	Classes	and	Closures

DAY	17	Communicating	Across	the	Internet

DAY	18	Accessing	Databases	with	JDBC	4.2	and	Derby

DAY	19	Reading	and	Writing	RSS	Feeds

DAY	20	XML	Web	Services

DAY	21	Writing	Android	Apps	with	Java

APPENDIXES

A	Using	the	NetBeans	Integrated	Development	Environment

B	This	Book’s	Website

C	Fixing	a	Problem	with	the	Android	Studio	Emulator

D	Using	the	Java	Development	Kit

E	Programming	with	the	Java	Development	Kit

Index

Table	of	Contents

Introduction

How	This	Book	Is	Organized

Who	Should	Read	This	Book

Conventions	Used	in	This	Book

WEEK	I:	The	Java	Language

DAY	1:	Getting	Started	with	Java

The	Java	Language

History	of	the	Language

Introduction	to	Java

Selecting	a	Development	Tool

Object-Oriented	Programming

Objects	and	Classes

Attributes	and	Behavior

Attributes	of	a	Class	of	Objects

Behavior	of	a	Class	of	Objects

Creating	a	Class

Running	the	Program

Organizing	Classes	and	Class	Behavior

Inheritance

Creating	a	Class	Hierarchy

Inheritance	in	Action

Interfaces

Packages

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	2:	The	ABCs	of	Programming

Statements	and	Expressions

Variables	and	Data	Types

Creating	Variables

Naming	Variables

Variable	Types

Assigning	Values	to	Variables

Constants

Comments

Literals

Number	Literals

Boolean	Literals

Character	Literals

String	Literals

Expressions	and	Operators

Arithmetic

More	About	Assignment

Incrementing	and	Decrementing

Comparisons

Logical	Operators

Operator	Precedence

String	Arithmetic

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	3:	Working	with	Objects

Creating	New	Objects

Using	new

How	Objects	Are	Constructed

A	Note	on	Memory	Management

Using	Class	and	Instance	Variables

Getting	Values

Setting	Values

Class	Variables

Calling	Methods

Formatting	Strings

Nesting	Method	Calls

Class	Methods

References	to	Objects

Casting	Objects	and	Primitive	Types

Casting	Primitive	Types

Casting	Objects

Converting	Primitive	Types	to	Objects	and	Vice	Versa

Comparing	Object	Values	and	Classes

Comparing	Objects

Determining	the	Class	of	an	Object

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	4:	Lists,	Logic,	and	Loops

Arrays

Declaring	Array	Variables

Creating	Array	Objects

Accessing	Array	Elements

Changing	Array	Elements

Multidimensional	Arrays

Block	Statements

If	Conditionals

Switch	Conditionals

The	Ternary	Operator

For	Loops

While	and	Do	Loops

While	Loops

Do-While	Loops

Breaking	Out	of	Loops

Labeled	Loops

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	5:	Creating	Classes	and	Methods

Defining	Classes

Creating	Instance	and	Class	Variables

Defining	Instance	Variables

Class	Variables

Creating	Methods

Defining	Methods

The	this	Keyword

Variable	Scope	and	Method	Definitions

Passing	Arguments	to	Methods

Class	Methods

Creating	Java	Applications

Helper	Classes

Java	Applications	and	Arguments

Passing	Arguments	to	Java	Applications

Handling	Arguments	in	Your	Java	Application

Creating	Methods	with	the	Same	Name

Constructors

Basic	Constructors

Calling	Another	Constructor

Overloading	Constructors

Overriding	Methods

Creating	Methods	That	Override	Existing	Methods

Calling	the	Original	Method

Overriding	Constructors

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	6:	Packages,	Interfaces,	and	Other	Class	Features

Modifiers

Access	Control	for	Methods	and	Variables

Static	Variables	and	Methods

Final	Classes,	Methods,	and	Variables

Variables

Methods

Classes

Abstract	Classes	and	Methods

Packages

The	import	Declaration

Class	Name	Conflicts

Creating	Your	Own	Packages

Picking	a	Package	Name

Creating	the	Folder	Structure

Adding	a	Class	to	a	Package

Packages	and	Class	Access	Control

Interfaces

The	Problem	of	Single	Inheritance

Interfaces	and	Classes

Implementing	and	Using	Interfaces

Implementing	Multiple	Interfaces

Other	Uses	of	Interfaces

Creating	and	Extending	Interfaces

New	Interfaces

Methods	Inside	Interfaces

Extending	Interfaces

Creating	an	Online	Storefront

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	7:	Exceptions	and	Threads

Exceptions

Exception	Classes

Managing	Exceptions

Exception	Consistency	Checking

Protecting	Code	and	Catching	Exceptions

The	finally	Clause

Declaring	Methods	That	Might	Throw	Exceptions

The	throws	Clause

Which	Exceptions	Should	You	Throw?

Passing	on	Exceptions

throws	and	Inheritance

Creating	and	Throwing	Exceptions

Throwing	Exceptions

Creating	Your	Own	Exceptions

Combining	throws,	try,	and	throw

When	Not	to	Use	Exceptions

Bad	Style	Using	Exceptions

Threads

Writing	a	Threaded	Program

A	Threaded	Application

Stopping	a	Thread

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

WEEK	II:	The	Java	Class	Library

DAY	8:	Data	Structures

Moving	Beyond	Arrays

Java	Structures
Iterator

Bit	Sets

Array	Lists

Looping	Through	Data	Structures

Stacks
Map

Hash	Maps

Generics

Enumerations

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	9:	Working	with	Swing

Creating	an	Application

Creating	an	Interface

Developing	a	Framework

Creating	a	Component

Adding	Components	to	a	Container

Working	with	Components

Image	Icons

Labels

Text	Fields

Text	Areas

Scrolling	Panes

Check	Boxes	and	Radio	Buttons

Combo	Boxes

Lists

The	Java	Class	Library

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	10:	Building	a	Swing	Interface

Swing	Features

Standard	Dialog	Boxes

Using	Dialog	Boxes

Sliders

Scroll	Panes

Toolbars

Progress	Bars

Menus

Tabbed	Panes

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	11:	Arranging	Components	on	a	User	Interface

Basic	Interface	Layout

Laying	Out	an	Interface

Flow	Layout

Box	Layout

Grid	Layout

Border	Layout

Mixing	Layout	Managers

Card	Layout

Using	Card	Layout	in	an	Application

Cell	Padding	and	Insets

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	12:	Responding	to	User	Input

Event	Listeners

Setting	Up	Components

Event-Handling	Methods

Working	with	Methods

Action	Events

Focus	Events

Item	Events

Key	Events

Mouse	Events

Mouse	Motion	Events

Window	Events

Using	Adapter	Classes

Using	Inner	Classes

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	13:	Creating	Java2D	Graphics

The	Graphics2D	Class

The	Graphics	Coordinate	System

Drawing	Text

Improving	Fonts	and	Graphics	with	Antialiasing

Finding	Information	About	a	Font

Color

Using	Color	Objects

Testing	and	Setting	the	Current	Colors

Drawing	Lines	and	Polygons

User	and	Device	Coordinate	Spaces

Specifying	the	Rendering	Attributes

Creating	Objects	to	Draw

Drawing	Objects

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	14:	Developing	Swing	Applications

Java	Web	Start

Using	Java	Web	Start

Creating	a	JNLP	File

Supporting	Web	Start	on	a	Server

Additional	JNLP	Elements

Improving	Performance	with	SwingWorker

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

WEEK	III:	Java	Programming

DAY	15:	Working	with	Input	and	Output

Introduction	to	Streams

Using	a	Stream

Filtering	a	Stream

Handling	Exceptions

Byte	Streams

File	Streams

Filtering	a	Stream

Byte	Filters

Character	Streams

Reading	Text	Files

Writing	Text	Files

Files	and	Paths

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	16:	Using	Inner	Classes	and	Closures

Inner	Classes

Anonymous	Inner	Classes

Closures

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	17:	Communicating	Across	the	Internet

Networking	in	Java

Opening	a	Stream	Over	the	Net

Sockets

Socket	Servers

Testing	the	Server

The	java.nio	Package

Buffers

Channels

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	18:	Accessing	Databases	with	JDBC	4.2	and	Derby

Java	Database	Connectivity

Database	Drivers

Examining	a	Database

Reading	Records	from	a	Database

Writing	Records	to	a	Database

Moving	Through	Resultsets

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	19:	Reading	and	Writing	RSS	Feeds

Using	XML

Designing	an	XML	Dialect

Processing	XML	with	Java

Processing	XML	with	XOM

Creating	an	XML	Document

Modifying	an	XML	Document

Formatting	an	XML	Document

Evaluating	XOM

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	20:	XML	Web	Services

Introduction	to	XML-RPC

Communicating	with	XML-RPC

Sending	a	Request

Responding	to	a	Request

Choosing	an	XML-RPC	Implementation

Using	an	XML-RPC	Web	Service

Creating	an	XML-RPC	Web	Service

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

DAY	21:	Writing	Android	Apps	with	Java

The	History	of	Android

Writing	an	Android	App

Organizing	an	Android	Project

Creating	the	Program

Running	the	App

Designing	an	Android	App

Preparing	Resources

Configuring	a	Manifest	File

Designing	the	Graphical	User	Interface

Writing	Code

Summary

Q&A

Quiz

Questions

Answers

Certification	Practice

Exercises

APPENDIXES

APPENDIX	A:	Using	the	NetBeans	Integrated	Development	Environment

Installing	NetBeans

Creating	a	New	Project

Creating	a	New	Java	Class

Running	the	Application

Fixing	Errors

Expanding	and	Shrinking	a	Pane

Exploring	NetBeans

APPENDIX	B:	This	Book’s	Website

APPENDIX	C:	Fixing	a	Problem	with	the	Android	Studio	Emulator

Problems	Running	an	App

Install	HAXM	in	Android	Studio

Install	HAXM	on	Your	Computer

Checking	BIOS	Settings

APPENDIX	D:	Using	the	Java	Development	Kit

Choosing	a	Java	Development	Tool

Installing	the	Java	Development	Kit

Configuring	the	Java	Development	Kit

Using	a	Command-Line	Interface

Opening	Folders	in	MS-DOS

Creating	Folders	in	MS-DOS

Running	Programs	in	MS-DOS

Correcting	Configuration	Errors

Using	a	Text	Editor

Creating	a	Sample	Program

Compiling	and	Running	the	Program	in	Windows

Setting	Up	the	CLASSPATH	Variable

Setting	the	Classpath	on	Most	Windows	Versions

Setting	the	CLASSPATH	on	Windows	98	or	Me

APPENDIX	E:	Programming	with	the	Java	Development	Kit

Overview	of	the	JDK

The	java	Virtual	Machine

The	javac	Compiler

The	appletviewer	Browser

The	javadoc	Documentation	Tool

The	jar	Java	File	Archival	Tool

The	jdb	Debugger

Debugging	Applications

Debugging	Applets

Advanced	Debugging	Commands

Using	System	Properties

The	keytool	and	jarsigner	Code	Signing	Tools

Index

About	the	Author

Rogers	Cadenhead	is	a	programmer	and	author.	He	has	written	more	than	30	books	on
programming	and	web	publishing,	including	Sams	Teach	Yourself	Java	in	24	Hours	and
Absolute	Beginner’s	Guide	to	Minecraft	Mods	Programming.	He	also	publishes	the
Drudge	Retort	and	other	websites	that	receive	more	than	20	million	visits	a	year.	He
maintains	this	book’s	official	website	at	www.java21days.com	and	a	personal	weblog	at
http://workbench.cadenhead.org.

http://www.java21days.com
http://workbench.cadenhead.org

Dedication

To	my	son	Max	Cadenhead,	who	just	began	his	freshman	year	at	art	school.
Your	talent	and	dedication	to	your	craft	at	such	an	early	age	makes	me	proud.

—Dad

Acknowledgments

A	book	of	this	scope	(and	heft!)	requires	the	hard	work	and	dedication	of	numerous
people.	Most	of	them	are	at	Sams	Publishing	in	Indianapolis,	and	to	them	I	owe
considerable	thanks—in	particular,	to	Boris	Minkin,	Barbara	Hacha,	Elaine	Wiley,	and
Mark	Taber.	Most	of	all,	thanks	to	my	wife,	Mary,	and	my	sons,	Max,	Eli,	and	Sam.

I’d	also	like	to	thank	readers	who	have	sent	helpful	comments	about	corrections,	typos,
and	suggested	improvements	regarding	this	book	and	its	prior	editions.	The	list	includes
the	following	people:	Dave	Barton,	Patrick	Benson,	Ian	Burton,	Lawrence	Chang,	Jim
DeVries,	Ryan	Esposto,	Kim	Farr,	Sam	Fitzpatrick,	Bruce	Franz,	Owen	Gailar,	Rich	Getz,
Bob	Griesemer,	Jenny	Guriel,	Brenda	Henry-Sewell,	Ben	Hensley,	Jon	Hereng,	Drew
Huber,	John	R.	Jackson,	Bleu	Jaegel,	Natalie	Kehr,	Mark	Lehner,	Stephen	Loscialpo,	Brad
Kaenel,	Chris	McGuire,	Paul	Niedenzu,	E.J.	O’Brien,	Chip	Pursell,	Pranay	Rajgarhia,
Peter	Riedlberger,	Darrell	Roberts,	Luke	Shulenburger,	Mike	Tomsic,	John	Walker,	Joseph
Walsh,	Mark	Weiss,	P.C.	Whidden,	Chen	Yan,	Kyu	Hwang	Yeon,	and	J-F.	Zurcher.

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value
your	opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what
areas	you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to
pass	our	way.

We	welcome	your	comments.	You	can	email	or	write	to	let	us	know	what	you	did	or	didn’t
like	about	this	book—as	well	as	what	we	can	do	to	make	our	books	better.

Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this
book.

When	you	write,	please	be	sure	to	include	this	book’s	title	and	author	as	well	as	your	name
and	email	address.	We	will	carefully	review	your	comments	and	share	them	with	the
author	and	editors	who	worked	on	the	book.

Email:							errata@informit.com

Mail:									Addison-Wesley/Prentice	Hall	Publishing
																		ATTN:	Reader	Feedback
																		330	Hudson	Street
																		7th	Floor
																		New	York,	New	York,	10013

mailto:errata@informit.com

Reader	Services

Visit	our	website	and	register	this	book	at	informit.com/register	for	convenient	access	to
any	updates,	downloads,	or	errata	that	might	be	available	for	this	book.

http://informit.com/register

Introduction

Some	revolutions	catch	the	world	by	surprise.	Twitter,	the	Linux	operating	system,	and
Pawn	Stars	all	rose	to	prominence	unexpectedly.

The	remarkable	success	of	the	Java	programming	language,	on	the	other	hand,	caught
nobody	by	surprise.	Java	has	been	a	source	of	great	expectations	since	its	introduction	20
years	ago.	When	Java	was	introduced	in	web	browsers,	a	torrent	of	publicity	welcomed
the	arrival	of	the	new	language.

Sun	Microsystems	cofounder	Bill	Joy	proclaimed,	“This	represents	the	end	result	of	nearly
15	years	of	trying	to	come	up	with	a	better	programming	language	and	environment	for
building	simpler	and	more	reliable	software.”

Sun,	which	created	Java	in	1991	and	first	released	it	to	the	public	four	years	later,	was
acquired	by	Oracle	in	2010.	Oracle,	which	has	been	committed	to	Java	development	since
its	earliest	years,	has	continued	to	support	the	language	and	produce	new	versions.

In	the	ensuing	years,	Java	lived	up	to	a	considerable	amount	of	its	hype.	The	language	has
become	as	strong	a	part	of	software	development	as	the	beverage	of	the	same	name.	One
kind	of	Java	keeps	programmers	up	nights.	The	other	kind	enables	programmers	to	rest
easier	after	they	have	developed	their	software.

Java	was	originally	offered	as	a	technology	for	enhancing	websites	with	programs	that	run
in	browsers.	Today,	it’s	more	likely	to	be	found	on	servers,	driving	dynamic	web
applications	backed	by	relational	databases	on	some	of	the	web’s	largest	sites,	and	on
millions	of	Android	cell	phones	and	tablets	running	popular	apps	such	as	Clash	of	Clans
and	Instagram.

Each	new	release	of	Java	strengthens	its	capabilities	as	a	general-purpose	programming
language	for	a	wide	range	of	environments.	Today,	Java	is	being	put	to	use	in	desktop
applications,	Internet	servers,	mobile	devices,	and	many	other	environments.	It’s	even
making	a	comeback	in	the	browser	with	sophisticated	applications	created	in	Java.

Now	in	its	ninth	major	release—Java	8—the	Java	language	has	matured	into	a	full-
featured	competitor	to	other	general-purpose	development	languages,	such	as	C++,
Python,	and	Ruby.

You	might	be	familiar	with	Java	programming	tools	such	as	Eclipse,	NetBeans,	and
IntelliJ	IDEA.	These	programs	make	it	possible	to	develop	functional	Java	programs,	and
you	also	can	use	Oracle’s	Java	Development	Kit.	The	kit,	which	is	available	for	free	on
the	Web,	is	a	set	of	command-line	tools	for	writing,	compiling,	and	testing	Java	programs.
NetBeans,	another	free	tool	offered	by	Oracle,	is	an	integrated	development	environment
for	the	creation	of	Java	programs.	It	can	be	downloaded	from	www.netbeans.org.

This	book	introduces	you	to	all	aspects	of	Java	software	development	using	the	most
current	version	of	the	language	and	the	best	available	techniques	in	Java	Standard	Edition,
the	most	widely	used	version	of	the	language.	Programs	are	prepared	and	tested	using
NetBeans,	so	you	can	quickly	demonstrate	the	skills	you	master	each	day.

Reading	this	book	will	help	you	understand	why	Java	has	become	the	most	widely

http://www.netbeans.org

employed	programming	language	on	the	planet.

How	This	Book	Is	Organized
Sams	Teach	Yourself	Java	in	21	Days	teaches	you	about	the	Java	language	and	how	to	use
it	to	create	applications	for	any	computing	environment	and	Android	apps	that	run	on	cell
phones	and	other	mobile	devices.	By	the	time	you	have	finished	the	book,	you’ll	have
well-rounded	knowledge	of	Java	and	the	Java	class	libraries.	Using	your	new	skills,	you
will	be	able	to	develop	your	own	programs	for	tasks	such	as	web	services,	database
connectivity,	XML	processing,	and	mobile	programming.

You	learn	by	doing	in	this	book,	creating	several	programs	each	day	that	demonstrate	the
topics	being	introduced.	The	source	code	for	all	these	programs	is	available	on	the	book’s
official	website	at	www.java21days.com,	along	with	other	supplemental	material	such	as
answers	to	reader	questions.

This	book	covers	the	Java	language	and	its	class	libraries	in	21	days,	organized	into	three
weeks.	Each	week	covers	a	broad	area	of	developing	Java	programs.

In	the	first	week,	you	learn	about	the	Java	language	itself:

	Day	1	covers	the	basics—what	Java	is,	why	you	should	learn	the	language,	and	how
to	create	software	using	a	powerful	style	of	development	called	object-oriented
programming.	You	create	your	first	Java	application.

	On	Day	2,	you	dive	into	the	fundamental	Java	building	blocks—data	types,
variables,	and	expressions.

	Day	3	goes	into	detail	about	how	to	deal	with	objects	in	Java—how	to	create	them,
use	their	variables,	call	their	methods,	and	compare	them.

	On	Day	4,	you	give	Java	programs	some	brainpower	using	conditionals	and	work
with	arrays	and	loops.

	Day	5	fully	explores	creating	classes—the	basic	building	blocks	of	any	Java
program.

	On	Day	6,	you	discover	more	about	interfaces	and	packages,	which	are	useful	for
grouping	classes	and	organizing	a	class	hierarchy.

	Day	7	covers	three	powerful	features	of	Java:	exceptions,	the	ability	to	deal	with
errors;	threads,	the	capability	to	run	different	parts	of	a	program	simultaneously;	and
assertions,	a	technique	for	making	programs	more	reliable.

Week	2	is	dedicated	to	the	most	useful	classes	offered	by	Oracle	for	use	in	your	own	Java
programs:

	Day	8	introduces	data	structures	that	you	can	use	as	an	alternative	to	strings	and
arrays—array	lists,	stacks,	maps,	hash	maps,	and	bit	sets.	It	also	describes	a	special
for	loop	that	makes	them	easier	to	use.

	Day	9	begins	a	five-day	exploration	of	visual	programming.	You	learn	how	to	create
a	graphical	user	interface	using	Swing	classes	for	interfaces,	graphics,	and	user
input.

http://www.java21days.com

	Day	10	covers	more	than	a	dozen	interface	components	you	can	use	in	a	Java
program,	including	buttons,	text	fields,	sliders,	scrolling	text	areas,	and	icons.

	Day	11	explains	how	to	make	a	user	interface	look	marvelous	using	layout
managers,	a	set	of	classes	that	determine	how	components	on	an	interface	are
arranged.

	Day	12	concludes	the	coverage	of	Swing	with	event-handling	classes,	which	enable
a	program	to	respond	to	mouse	clicks	and	other	user	interactions.

	On	Day	13,	you	learn	about	drawing	shapes	and	characters	on	user	interface
components.

	Day	14	demonstrates	how	to	use	Java	Web	Start,	a	technique	that	makes	installing	a
Java	program	as	easy	as	clicking	a	web	page	link.

Week	3	moves	into	advanced	topics:

	Day	15	covers	input	and	output	using	streams,	a	set	of	classes	that	enable	file
access,	network	access,	and	other	sophisticated	data	handling.

	Day	16	provides	a	complete	introduction	to	closures,	the	most	exciting	new	feature
of	Java	8.	Also	called	lambda	expressions,	closures	make	it	possible	to	employ	a
new	type	of	coding	called	functional	programming	in	Java	for	the	first	time.	Inner
classes	are	explored	in	greater	depth	as	they	relate	to	closures.

	On	Day	17,	you	extend	your	knowledge	of	streams	to	write	programs	that
communicate	with	the	Internet,	including	socket	programming,	buffers,	channels,
and	URL	handling.

	Day	18	shows	you	how	to	connect	to	relational	databases	using	Java	Database
Connectivity	(JDBC)	version	4.2.	You	learn	how	to	exploit	the	capabilities	of	Derby,
the	open	source	database	that’s	included	with	Java.

	Day	19	covers	how	to	read	and	write	RSS	documents	using	the	XML	Object	Model
(XOM),	an	open	source	Java	class	library.	RSS	feeds,	one	of	the	most	popular	XML
dialects	in	use	today,	enable	millions	of	people	to	follow	site	updates	and	other	new
web	content.

	Day	20	explores	how	to	write	web	services	clients	with	the	language	and	the
Apache	XML-RPC	class	library.

	Day	21	covers	the	fastest-growing	area	of	Java	programming:	developing	apps	for
Android	phones	and	mobile	devices.	Using	Google’s	free	Android	Studio	as	a
development	environment	and	a	free	Android	development	kit,	you	create	apps	that
can	be	deployed	and	tested	on	a	phone.

Who	Should	Read	This	Book
This	book	teaches	the	Java	language	to	three	groups:

	Novices	who	are	relatively	new	to	programming

	People	who	have	been	introduced	to	earlier	versions	of	Java

	Experienced	developers	in	other	languages,	such	as	Visual	C++,	Visual	Basic,	or
Python

When	you’re	finished	with	this	book,	you’ll	be	able	to	tackle	any	aspect	of	the	Java
language.	You’ll	also	be	comfortable	enough	to	tackle	your	own	ambitious	programming
projects,	both	on	and	off	the	Web.

If	you’re	somewhat	new	to	programming	or	have	never	written	a	program,	you	might
wonder	whether	this	is	the	right	book	for	you.	Because	all	the	concepts	in	this	book	are
illustrated	with	working	programs,	you’ll	be	able	to	work	your	way	through	the	subject
regardless	of	your	experience	level.	If	you	understand	what	variables	and	loops	are,	you’ll
be	able	to	benefit	from	this	book.	You	might	want	to	read	this	book	if	any	of	the	following
are	true:

	You	had	some	beginning	programming	lessons	in	school,	you	grasp	what
programming	is,	and	you’ve	heard	that	Java	is	easy	to	learn,	powerful,	and	cool.

	You’ve	programmed	in	another	language	for	a	few	years,	you	keep	hearing
accolades	for	Java,	and	you	want	to	see	whether	it	lives	up	to	its	hype.

	You’ve	heard	that	Java	is	great	for	web	application	and	Android	programming.

If	you’ve	never	been	introduced	to	object-oriented	programming,	which	is	the	style	of
programming	that	Java	embodies,	don’t	be	discouraged.	This	book	assumes	that	you	have
no	background	in	object-oriented	design.	You’ll	get	a	chance	to	learn	this	development
methodology	as	you’re	learning	Java.

If	you’re	a	complete	beginner	to	programming,	this	book	might	move	a	little	fast	for	you.
Java	is	a	good	language	to	start	with,	though,	and	if	you	take	it	slowly	and	work	through
all	the	examples,	you	can	still	pick	up	Java	and	start	creating	your	own	programs.

Conventions	Used	in	This	Book

Note

A	Note	presents	an	interesting,	sometimes	technical,	piece	of	information	related	to
the	discussion.

Tip

A	Tip	offers	advice,	such	as	an	easier	way	to	do	something.

Caution

A	Caution	advises	you	of	potential	problems	and	helps	you	steer	clear	of	disaster.

Text	that	you	type	and	text	that	appears	onscreen	is	presented	in	a	monospace	font:
Click	here	to	view	code	image

Monospace	looks	like	this.	Hi,	mom!

This	font	represents	how	text	looks	onscreen.	Placeholders	for	variables	and	expressions
appear	in	monospace	italic.

The	end	of	each	lesson	offers	several	special	features:	answers	to	commonly	asked
questions	about	that	day’s	subject	matter,	a	quiz	to	test	your	knowledge	of	the	material,
two	exercises	that	you	can	try	on	your	own,	and	a	practice	question	in	case	you’re
preparing	for	Java	certification.	Solutions	to	the	exercises	and	the	answer	to	the
certification	question	can	be	found	on	the	book’s	official	website	at	www.java21days.com.

http://www.java21days.com

Week	I:	The	Java	Language
1	Getting	Started	with	Java

2	The	ABCs	of	Programming

3	Working	with	Objects

4	Lists,	Logic,	and	Loops

5	Creating	Classes	and	Methods

6	Packages,	Interfaces,	and	Other	Class	Features

7	Exceptions	and	Threads

Day	1.	Getting	Started	with	Java

The	thing	that	Java	tries	to	do	and	is	actually	remarkably	successful	at	is	spanning
a	lot	of	different	domains,	so	you	can	do	app	server	work,	you	can	do	cell	phone
work,	you	can	do	scientific	programming,	you	can	write	software,	do	interplanetary
navigation,	all	kinds	of	stuff…

—Java	language	creator	James	Gosling

When	the	Java	programming	language	was	unleashed	on	the	public	in	1995,	it	was	an
inventive	toy	for	the	Web	that	had	the	potential	to	be	more.

The	word	“potential”	is	a	compliment	that	comes	with	an	expiration	date.	Sooner	or	later,
potential	must	be	realized,	or	new	words	and	phrases	are	used	in	its	place,	such	as
“slacker,”	“letdown,”	“waste,”	or	“major	disappointment	to	your	mother	and	me.”

As	you	develop	your	skills	in	this	book’s	21	one-day	tutorials,	you’ll	be	in	a	good	position
to	judge	whether	the	language	has	lived	up	to	more	than	a	decade	of	hype.

You’ll	also	become	a	Java	programmer	with	a	lot	of	potential.

The	Java	Language
Now	in	its	ninth	major	release,	Java	has	lived	up	to	the	expectations	that	accompanied	its
arrival.	More	than	four	million	programmers	have	learned	the	language	and	are	using	it	in
places	such	as	NASA,	IBM,	Kaiser	Permanente,	and	Google.	It’s	a	standard	part	of	the
academic	curriculum	at	many	computer	science	departments	around	the	world.	First	used
to	create	simple	programs	on	web	pages,	Java	can	be	found	today	in	the	following	places
(and	many	more):

	Web	servers

	Relational	databases

	Orbiting	telescopes

	E-book	readers

	Cell	phones

Although	Java	remains	useful	for	web	developers,	its	ambitions	today	extend	far	beyond
the	Web.	Java	has	matured	into	one	of	the	most	popular	general-purpose	programming
languages.

History	of	the	Language
The	story	of	the	Java	language	is	well	known	by	this	point.	James	Gosling	and	a	team	of
developers	were	working	on	an	interactive	TV	project	at	Sun	Microsystems	in	the	mid-
1990s	when	Gosling	became	frustrated	with	the	language	being	used.	C++	was	an	object-
oriented	programming	language	developed	a	decade	earlier	as	an	extension	of	the	C
language.

To	address	some	of	the	things	that	frustrated	him	about	C++,	Gosling	holed	up	in	his

office	and	created	a	new	language	that	was	suitable	for	his	project.

Although	that	interactive	TV	effort	flopped,	Gosling’s	language	had	unforeseen
applicability	to	a	new	medium	that	was	becoming	popular	at	the	same	time:	the	Web.

Java	was	released	to	the	public	for	the	first	time	in	1995.	Although	most	of	the	language’s
features	were	primitive	compared	with	C++	(and	Java	today),	special	Java	programs	called
applets	could	be	run	as	part	of	web	pages	on	the	most	popular	web	browser	at	that	time,
Netscape	Navigator.

This	functionality—the	first	interactive	programming	available	on	the	Web—drew	so
much	attention	to	the	new	language	that	several	hundred	thousand	programmers	learned
Java	in	its	first	six	months.

Even	after	the	novelty	of	Java	web	programming	wore	off,	the	overall	benefits	of	the
language	became	clear,	and	the	programmers	stuck	around.	There	are	more	professional
Java	programmers	today	than	C++	programmers.

Sun	Microsystems	controlled	the	development	of	the	Java	language	from	its	inception
until	2010,	when	the	company	was	acquired	by	the	database	and	enterprise	software	giant
Oracle	in	a	$7.4	billion	deal.	Oracle,	a	longtime	user	of	the	language	on	its	own	products,
has	a	strong	commitment	to	supporting	Java	and	continues	to	increase	its	capabilities	with
each	new	release.

Introduction	to	Java
Java	is	an	object-oriented,	platform-neutral,	secure	language	designed	to	be	easier	to	learn
than	C++	and	harder	to	misuse	than	C	and	C++.

Object-oriented	programming	(OOP)	is	a	software	development	methodology	in	which	a
program	is	conceptualized	as	a	group	of	objects	that	work	together.	Objects	are	created
from	templates	called	classes,	and	they	contain	data	and	the	statements	required	to	use	that
data.	Java	is	primarily	object-oriented,	as	you’ll	see	later	today	when	you	create	your	first
class	and	use	it	to	create	objects.

Platform	neutrality	is	a	program’s	ability	to	run	without	modification	in	different
computing	environments.	Java	programs	are	transformed	into	a	format	called	bytecode
that	can	be	run	by	any	computer	or	device	equipped	with	a	Java	Virtual	Machine	(JVM).
You	can	create	a	Java	program	on	a	Windows	10	machine	that	runs	on	a	Linux	web	server,
an	Apple	Mac	using	OS	10.10,	and	a	Samsung	Android	phone.	As	long	as	a	platform	has	a
JVM,	it	can	run	the	bytecode.

Although	the	relative	ease	of	learning	one	language	over	another	is	always	a	point	of
contention	among	programmers,	Java	was	designed	to	be	easier	than	C++	primarily	in	the
following	ways:

	Java	automatically	takes	care	of	memory	allocation	and	deallocation,	freeing
programmers	from	this	error-prone	and	complex	task.

	Java	doesn’t	include	pointers,	a	powerful	feature	for	experienced	programmers	that
can	be	easily	misused	and	introduce	major	security	vulnerabilities.

	Java	includes	only	single	inheritance	in	object-oriented	programming.

The	lack	of	pointers	and	the	presence	of	automatic	memory	management	are	two	key
elements	of	Java	security.

Selecting	a	Development	Tool
Now	that	you’ve	been	introduced	to	Java	as	a	spectator,	it’s	time	to	put	some	of	these
concepts	into	play	and	create	your	first	Java	program.

If	you	work	your	way	through	the	21	days	of	this	book,	you’ll	become	well	versed	in
Java’s	capabilities,	including	graphics,	file	input	and	output,	XML	processing,	and
Android	app	development.	You	will	write	programs	that	run	on	web	pages	and	others	that
run	on	your	computer,	web	servers,	or	other	computing	environments.

Before	you	get	started,	you	must	have	software	on	your	computer	that	can	be	used	to	edit,
prepare,	and	run	Java	programs	that	use	the	most	up-to-date	version	of	the	language:	Java
8.

Several	popular	integrated	development	environments	(IDEs)	for	Java	support	version	8,
including	IntelliJ	IDEA	and	the	open	source	software	Eclipse.

If	you	are	learning	to	use	these	tools	at	the	same	time	as	you	are	learning	Java,	it	can	be	a
daunting	task.	Most	IDEs	are	aimed	primarily	at	experienced	programmers	who	want	to
be	more	productive,	not	new	people	who	are	taking	their	first	foray	into	a	new	language.

The	simplest	tool	for	Java	development	is	the	Java	Development	Kit,	which	is	free	and
can	be	downloaded	from	www.oracle.com/technetwork/java/javase/downloads.

Whenever	Oracle	releases	a	new	version	of	Java,	it	also	makes	a	free	development	kit
available	over	the	Web	to	support	that	version.	The	current	release	is	Java	SE
Development	Kit	8.

The	drawback	of	developing	Java	programs	with	the	JDK	is	that	it	is	a	set	of	command-
line	tools.	Therefore,	it	has	no	graphical	user	interface	for	editing	programs,	turning	them
into	Java	classes,	and	testing	them.	(A	command	line	is	simply	a	prompt	for	typing	text
commands.	It’s	available	in	Windows	as	the	program	Command	Prompt.)

Oracle	offers	an	excellent	free	IDE	for	Java	programmers	called	NetBeans	on	the	website
www.netbeans.org.	Because	NetBeans	is	easier	to	use	for	most	people	than	the	JDK,	it’s
employed	throughout	this	book.

If	you	don’t	have	a	Java	development	tool	on	your	computer	yet	and	you	want	to	try
NetBeans,	you	can	find	out	how	to	get	started	with	the	software	in	Appendix	A,	“Using
the	NetBeans	Integrated	Development	Environment.”	The	appendix	covers	how	to
download	and	install	the	kit	and	use	it	to	create	a	sample	Java	program	to	make	sure	it
works.

As	soon	as	you	have	a	Java	development	tool	on	your	computer	that	supports	Java	8,
you’re	ready	to	dive	into	the	language.

If	you	don’t	have	one	on	your	computer	yet,	now’s	the	time	to	set	one	up—preferably
NetBeans.

http://www.oracle.com/technetwork/java/javase/downloads
http://www.netbeans.org

Tip

For	more	information	on	the	other	IDEs	for	Java,	visit	the	IDEA	site	at
www.jetbrains.com/idea	and	Eclipse	at	www.eclipse.org.	The	IDE	Android	Studio,
a	version	of	IntelliJ	IDEA,	is	used	for	creating	mobile	apps	in	Day	21,	“Writing
Android	Apps	with	Java.”

Object-Oriented	Programming
The	biggest	challenge	for	a	new	Java	programmer	is	learning	object-oriented
programming	while	learning	the	Java	language.

Although	this	might	sound	daunting	if	you	are	unfamiliar	with	this	style	of	programming,
think	of	it	as	a	two-for-one	discount	for	your	brain.	You	will	learn	object-oriented
programming	by	learning	Java.	There’s	no	other	way	to	make	use	of	the	language.

Object-oriented	programming	is	an	approach	to	building	computer	programs	that	mimics
how	objects	are	assembled	in	the	physical	world.

By	using	this	style	of	development,	you	can	create	programs	that	are	more	reusable,
reliable,	and	understandable.

To	get	to	that	point,	you	first	must	explore	how	Java	embodies	the	principles	of	object-
oriented	programming.

If	you	already	are	familiar	with	object-oriented	programming,	much	of	today’s	material
will	be	a	review	for	you.	Even	if	you	skim	over	the	introductory	material,	you	should
create	the	sample	program	to	get	some	experience	in	developing,	compiling,	and	running
Java	programs.

There	are	many	ways	to	conceptualize	a	computer	program.	One	way	is	to	think	of	a
program	as	a	series	of	instructions	carried	out	in	sequence,	which	commonly	is	called
procedural	programming.	Some	programmers	start	by	learning	a	procedural	language
such	as	a	version	of	BASIC.

Procedural	languages	mirror	how	a	computer	carries	out	instructions,	so	the	programs	you
write	are	tailored	to	the	computer’s	manner	of	doing	things.	One	of	the	first	things	a
procedural	programmer	must	learn	is	how	to	break	a	problem	into	a	series	of	simple	steps
followed	in	order.

Object-oriented	programming	looks	at	a	computer	program	from	a	different	angle,
focusing	on	the	task	the	program	was	created	to	perform,	not	on	how	a	computer	handles
tasks.

In	object-oriented	programming,	a	computer	program	is	conceptualized	as	a	set	of	objects
that	work	together	to	accomplish	a	task.	Each	object	is	a	separate	part	of	the	program,
interacting	with	the	other	parts	in	highly	controlled	ways.

For	a	real-life	example	of	object-oriented	design,	consider	a	stereo	system.	Most	systems
are	built	by	hooking	together	a	bunch	of	different	objects,	which	are	more	commonly
called	components.	If	you	came	back	from	a	stereo	shopping	trip,	you	might	bring	home
all	these	objects:

http://www.jetbrains.com/idea
http://www.eclipse.org

	Speaker	components	that	play	midrange	and	high-frequency	sounds.

	A	subwoofer	component	that	plays	low	bass	frequency	sounds.

	A	tuner	component	that	receives	radio	broadcast	signals.

	A	CD	player	component	that	reads	audio	data	from	CDs.

	A	turntable	component	that	reads	audio	data	from	vinyl	records.

These	components	are	designed	to	interact	with	each	other	using	standard	input	and	output
connectors.	Even	if	you	bought	speakers,	subwoofer,	tuner,	CD	player,	and	turntable	made
by	different	companies,	you	could	combine	them	to	form	a	stereo	system—as	long	as	each
component	has	standard	connectors.

Object-oriented	programming	works	under	the	same	principle:	You	put	together	a	program
by	creating	new	objects	and	connecting	them	to	each	other	and	to	existing	objects
provided	by	Oracle	or	another	software	developer.	Each	object	is	a	component	in	the
larger	program,	and	they	are	combined	together	in	a	standard	way.	Each	object	plays	a
specific	role	in	the	larger	program.

An	object	is	a	self-contained	element	of	a	computer	program	that	represents	a	related
group	of	features	and	that	is	designed	to	accomplish	specific	tasks.

Objects	and	Classes
Object-oriented	programming	is	modeled	on	the	observation	that	in	the	physical	world,
objects	are	made	up	of	many	kinds	of	smaller	objects.

The	capability	to	combine	objects	is	only	one	aspect	of	object-oriented	programming.
Another	important	feature	is	the	use	of	classes.

A	class	is	a	template	used	to	create	an	object.	Every	object	created	from	the	same	class	has
similar	features.

Classes	embody	all	features	of	a	particular	set	of	objects.	When	you	write	a	program	in	an
object-oriented	language,	you	don’t	define	individual	objects.	Instead,	you	define	classes
used	to	create	those	objects.

If	you	were	writing	a	networking	program	in	Java,	you	could	create	a
HighSpeedModem	class	that	describes	the	features	of	all	Internet	modems.	These
devices	have	the	following	common	features:

	They	connect	to	a	computer’s	ethernet	port.

	They	send	and	receive	information.

	They	communicate	with	Internet	servers.

The	HighSpeedModem	class	serves	as	an	abstract	model	for	the	concept	of	such	a
modem.	To	have	something	concrete	you	can	manipulate	in	a	program,	you	need	an
object.	You	must	use	the	HighSpeedModem	class	to	create	a	HighSpeedModem
object.	The	process	of	creating	an	object	from	a	class	is	called	instantiation,	which	is	why
objects	also	are	called	instances.

A	HighSpeedModem	class	can	be	used	to	create	different	HighSpeedModem	objects
in	a	program,	each	with	different	features,	such	as	the	following:

	Some	function	as	a	wireless	Internet	gateway,	whereas	others	do	not.

	Some	can	be	used	as	a	network	router.

	They	support	different	connection	speeds.

Even	with	these	differences,	two	HighSpeedModem	objects	still	have	enough	in
common	to	be	recognizable	as	related	objects.

Here’s	another	example:	Using	Java,	you	could	create	a	class	to	represent	all	command
buttons—the	clickable	rectangles	that	appear	on	windows,	dialogs,	and	other	parts	of	a
program’s	graphical	user	interface.

When	the	CommandButton	class	is	developed,	it	could	define	these	features:

	The	text	displayed	on	the	button

	The	size	of	the	button

	Aspects	of	its	appearance,	such	as	whether	it	has	a	3D	shadow

The	CommandButton	class	also	could	define	how	a	button	behaves	when	it	is	clicked.

After	you	define	the	CommandButton	class,	you	can	create	instances	of	that	button—in
other	words,	CommandButton	objects.	The	objects	all	take	on	the	basic	features	of	a
button	as	defined	by	the	class.	But	each	one	could	have	a	different	appearance	and	slightly
different	behavior,	depending	on	what	you	need	that	object	to	do.

By	creating	a	CommandButton	class,	you	don’t	have	to	keep	rewriting	the	code	for	each
button	you	want	to	use	in	your	programs.	In	addition,	you	can	reuse	the
CommandButton	class	to	create	different	kinds	of	buttons	as	you	need	them,	both	in	this
program	and	in	others.

When	you	write	a	Java	program,	you	design	and	construct	a	set	of	classes.	When	your
program	runs,	objects	are	created	from	those	classes	and	used	as	needed.	Your	task	as	a
Java	programmer	is	to	create	the	right	set	of	classes	to	accomplish	what	your	program
needs	to	accomplish.

Fortunately,	you	don’t	have	to	start	from	scratch.	The	Java	language	includes	the	Java
Class	Library,	more	than	4,000	classes	that	implement	most	of	the	functionality	you	will
need.	These	classes	are	installed	along	with	a	development	tool	such	as	the	JDK.

When	you’re	talking	about	programming	in	the	Java	language,	you’re	actually	talking
about	using	this	class	library	and	some	standard	keywords	and	operators	defined	in	Java.

The	class	library	handles	numerous	tasks,	such	as	mathematical	functions,	text,	graphics,
user	interaction,	and	networking.	Working	with	these	classes	is	no	different	from	working
with	the	Java	classes	you	create.

For	complicated	Java	programs,	you	might	create	a	whole	set	of	new	classes	that	form
their	own	class	library	for	use	in	other	programs.

Reuse	is	one	of	the	fundamental	benefits	of	object-oriented	programming.

Note

In	the	Java	Class	Library,	one	of	Java’s	standard	classes,	JButton	in	the
javax.swing	package,	encompasses	all	the	functionality	of	this	hypothetical
CommandButton	example,	along	with	a	lot	more.	You’ll	get	a	chance	to	create
objects	from	this	class	during	Day	9,	“Working	with	Swing.”

Attributes	and	Behavior
A	Java	class	consists	of	two	distinct	types	of	information:	attributes	and	behavior.

Both	of	these	are	present	in	MarsRobot,	a	project	you	will	implement	today	as	a	class.
This	project,	a	simple	simulation	of	a	planetary	exploration	vehicle,	is	inspired	by	the
Mars	Exploration	Rovers	used	by	NASA’s	Jet	Propulsion	Laboratory	program	to	do
research	on	the	surface	and	geology	of	the	planet	Mars.

Before	you	create	the	program,	you	need	to	learn	some	things	about	how	object-oriented
programs	are	designed	in	Java.	The	concepts	may	be	difficult	to	understand	as	you’re
introduced	to	them,	but	you’ll	get	plenty	of	practice	with	them	throughout	the	book.

Attributes	of	a	Class	of	Objects
Attributes	are	the	data	that	differentiate	one	object	from	another.	They	can	be	used	to
determine	the	appearance,	state,	and	other	qualities	of	objects	that	belong	to	that	class.

An	exploration	vehicle	could	have	the	following	attributes:

	Status—Exploring,	moving,	returning	home

	Speed—Measured	in	miles	per	hour

	Temperature—Measured	in	degrees	Fahrenheit

In	a	class,	attributes	are	defined	by	variables—places	to	store	information	in	a	computer
program.	Instance	variables	are	attributes	that	have	values	that	differ	from	one	object	to
another.

An	instance	variable	defines	an	attribute	of	one	particular	object.	The	object’s	class
defines	what	kind	of	attribute	it	is,	and	each	instance	stores	its	own	value	for	that	attribute.
Instance	variables	also	are	called	object	variables	or	member	variables.

Each	class	attribute	has	a	single	corresponding	variable.	You	change	that	attribute	of	the
object	by	changing	the	value	of	the	variable.

For	example,	the	MarsRobot	class	defines	a	speed	instance	variable.	This	must	be	an
instance	variable	because	each	robot	travels	at	a	different	speed.	The	value	of	a	robot’s
speed	instance	variable	could	be	changed	to	make	the	robot	move	more	quickly	or
slowly.

Instance	variables	can	be	given	a	value	when	an	object	is	created	and	then	stay	constant
throughout	the	life	of	the	object.	They	also	can	be	given	different	values	as	the	object	is
used	in	a	running	program.

For	other	variables,	it	makes	more	sense	to	have	one	value	that	is	shared	by	all	objects	of
that	class.	These	attributes	are	called	class	variables.

A	class	variable	defines	an	attribute	of	an	entire	class.	The	variable	applies	to	the	class
itself	and	to	all	its	instances,	so	only	one	value	is	stored,	no	matter	how	many	objects	of
that	class	have	been	created.

An	example	of	a	class	variable	for	the	MarsRobot	class	would	be	a	topSpeed	variable
that	holds	the	maximum	speed	any	robot	is	capable	of	traveling.	If	an	instance	variable
were	created	to	hold	the	speed,	each	object	could	have	a	different	value	for	this	variable.
That	could	cause	problems	because	no	robot	is	capable	of	exceeding	it.

Using	a	class	variable	prevents	this	problem	because	all	objects	of	that	class	share	the
same	value	automatically.	Each	MarsRobot	object	would	have	access	to	that	variable.

Behavior	of	a	Class	of	Objects
Behavior	refers	to	the	things	that	a	class	of	objects	can	do—both	to	themselves	and	to
other	objects.	Behavior	can	be	used	to	change	an	object’s	attributes,	receive	information
from	other	objects,	and	send	messages	to	other	objects,	asking	them	to	perform	tasks.

A	Mars	robot	could	have	the	following	behavior:

	Check	the	current	temperature

	Begin	a	survey

	Accelerate	or	decelerate	its	speed

	Report	its	current	location

Behavior	for	a	class	of	objects	is	implemented	using	methods.

Methods	are	groups	of	related	statements	in	a	class	that	perform	a	specific	task.	They	are
used	to	accomplish	specific	tasks	on	their	own	objects	and	on	other	objects	and	are
comparable	to	functions	and	subroutines	in	other	programming	languages.	A	well-
designed	method	performs	only	one	task.

Objects	communicate	with	each	other	using	methods.	A	class	or	object	can	call	methods	in
another	class	or	object	for	many	reasons,	including	the	following:

	To	report	a	change	to	another	object

	To	tell	the	other	object	to	change	something	about	itself

	To	ask	another	object	to	do	something

For	example,	two	Mars	robots	could	use	methods	to	report	their	locations	to	each	other
and	avoid	collisions,	and	one	robot	could	tell	another	to	stop	so	that	it	can	pass	by	safely.

Just	as	there	are	instance	and	class	variables,	there	also	are	instance	and	class	methods.
Instance	methods,	which	are	usually	just	called	methods,	are	used	when	you	are	working
with	an	object	of	the	class.	If	a	method	changes	an	individual	object,	it	must	be	an	instance
method.	Class	methods	apply	to	a	class	itself.

Creating	a	Class
To	see	classes,	objects,	attributes,	and	behavior	in	action,	you	will	develop	a	MarsRobot
class,	create	objects	from	that	class,	and	work	with	them	in	a	running	program.

Note

The	main	purpose	of	this	project	is	to	explore	object-oriented	programming.	You’ll
learn	more	about	Java	programming	syntax	during	Day	2,	“The	ABCs	of
Programming.”

This	book	uses	NetBeans	as	its	primary	development	tool	for	creating	Java	programs.
NetBeans	organizes	Java	classes	into	projects.	It	will	be	useful	to	have	a	project	to	hold
the	classes	you	create	in	this	book.	If	you	have	not	done	so	already,	create	a	project:

1.	Choose	the	menu	command	File,	New	Project.	The	New	Project	dialog	appears.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	Projects	pane,	choose	Java	Application	and	click	Next.	The	New	Java
Application	dialog	opens.

4.	In	the	Project	Name	text	field,	enter	the	name	of	the	project	(I	used	Java21).	The
Project	Folder	field	is	updated	as	you	type	the	name.	Make	a	note	of	this	folder—it’s
where	your	Java	programs	can	be	found	on	your	computer.

5.	Deselect	the	check	box	Create	Main	Class.

6.	Click	Finish.

The	project	is	created.	You	can	use	it	throughout	the	book	for	the	programs	you	work	on.

If	you	created	a	project	earlier,	it	probably	will	be	open	in	NetBeans.	(If	not,	choose	the
menu	command	File,	Open	Recent	Project	to	select	it.)	A	new	class	you	create	will	be
added	to	this	project.

To	begin	your	first	class,	run	NetBeans	and	start	a	new	program:

1.	Choose	the	menu	command	File,	New	File.	The	New	File	dialog	opens.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	File	Types	pane,	choose	Empty	Java	File	and	click	Next.	The	Empty	Java	File
dialog	opens.

4.	In	the	Class	Name	text	field,	enter	MarsRobot.	The	file	you’re	creating	is	shown
in	the	Created	File	field,	which	can’t	be	edited.	This	file	has	the	name
MarsRobot.java.

5.	Click	Finish.

The	NetBeans	source	code	editor	opens	with	nothing	in	it.	Fill	it	with	the	code	in	Listing
1.1.	When	you’re	done,	save	the	file	using	the	menu	command	File,	Save.	The	file
MarsRobot.java	will	be	saved.

Note

Don’t	type	the	numbers	at	the	beginning	of	each	line	in	the	listing.	They’re	not	part
of	the	program.	They	are	included	so	that	individual	lines	can	be	described	for
instructive	purposes	in	this	book.

LISTING	1.1	The	Full	Text	of	MarsRobot.java.
Click	here	to	view	code	image

	1:	class	MarsRobot	{
	2:					String	status;
	3:					int	speed;
	4:					float	temperature;
	5:
	6:					void	checkTemperature()	{
	7:									if	(temperature	<	-80)	{
	8:													status	=	“returning	home”;
	9:													speed	=	5;
10:									}
11:					}
12:
13:					void	showAttributes()	{
14:									System.out.println(“Status:	“	+	status);
15:									System.out.println(“Speed:	“	+	speed);
16:									System.out.println(“Temperature:	“	+	temperature);
17:					}
18:	}

When	you	save	this	file,	if	it	has	no	errors,	NetBeans	automatically	creates	a	MarsRobot
class.	This	process	is	called	compiling	the	class,	and	it	uses	a	tool	called	a	compiler.	The
compiler	turns	the	lines	of	source	code	into	bytecode	that	the	Java	Virtual	Machine	can
run.

The	class	statement	in	line	1	of	Listing	1.1	defines	and	names	the	MarsRobot	class.
Everything	contained	between	the	opening	brace	{	on	line	1	and	the	closing	brace	}	on
line	18	is	part	of	this	class.

The	MarsRobot	class	contains	three	instance	variables	and	two	instance	methods.

The	instance	variables	are	defined	in	lines	2–4:
String	status;
int	speed;
float	temperature;

The	variables	are	named	status,	speed,	and	temperature.	Each	is	used	to	store	a
different	type	of	information:

	status	holds	a	String	object—a	group	of	letters,	numbers,	punctuation,	and
other	characters.

	speed	holds	an	int,	a	numeric	integer	value.

	temperature	holds	a	float,	a	floating-point	number.

String	objects	are	created	from	the	String	class,	which	is	part	of	the	Java	Class
Library.

Tip

As	you	might	have	noticed	from	the	use	of	String	in	this	program,	a	class	can	use
an	object	as	an	instance	variable.

The	first	instance	method	in	the	MarsRobot	class	is	defined	in	lines	6–11:
Click	here	to	view	code	image

void	checkTemperature()	{
				if	(temperature	<	-80)	{
								status	=	“returning	home”;
								speed	=	5;
				}
}

Methods	are	defined	in	a	manner	similar	to	a	class.	They	begin	with	a	statement	that
names	the	method,	identifies	the	type	of	information	the	method	produces,	and	defines
other	things.

The	checkTemperature()	method	is	contained	within	the	opening	brace	on	line	6	of
Listing	1.1	and	the	closing	brace	on	line	11.	This	method	can	be	called	on	a	MarsRobot
object	to	find	out	its	temperature.

This	method	checks	to	see	whether	the	object’s	temperature	instance	variable	has	a
value	less	than	–80.	If	it	does,	two	other	instance	variables	are	changed:

	The	status	variable	is	changed	to	the	text	“returning	home,”	indicating	that	the
temperature	is	too	cold,	and	the	robot	is	heading	back	to	its	base.

	The	speed	is	changed	to	5.	(Presumably,	this	is	as	fast	as	the	robot	can	travel.)

The	second	instance	method,	showAttributes(),	is	defined	in	lines	13–17:
Click	here	to	view	code	image

void	showAttributes()	{
				System.out.println(“Status:	“	+	status);
				System.out.println(“Speed:	“	+	speed);
				System.out.println(“Temperature:	“	+	temperature);
}

This	method	calls	the	method	System.out.println()	to	display	the	values	of	three
instance	variables,	along	with	some	text	explaining	what	each	value	represents.

If	you	haven’t	saved	this	file	yet,	choose	File,	Save.	This	command	is	disabled	if	the	file
hasn’t	been	changed	since	the	last	time	you	saved	it.

Running	the	Program
Even	if	you	typed	the	MarsRobot	program	in	Listing	1.1	correctly	and	compiled	it	into	a
class,	you	can’t	do	anything	with	it.	The	class	you	have	created	defines	what	a
MarsRobot	object	is	like,	but	it	doesn’t	actually	create	one	of	these	objects.

There	are	two	ways	to	put	the	MarsRobot	class	to	use:

	Create	a	separate	Java	program	that	creates	an	object	belonging	to	that	class.

	Add	a	special	class	method	called	main()	to	the	MarsRobot	class	so	that	it	can
be	run	as	an	application.	Create	an	object	of	that	class	in	that	method.

The	first	option	is	chosen	for	this	exercise.

Listing	1.2	contains	the	source	code	for	MarsApplication,	a	Java	class	that	creates	a
MarsRobot	object,	sets	its	instance	variables,	and	calls	methods.	Following	the	same
steps	as	in	the	preceding	listing,	create	a	new	Java	file	in	NetBeans	and	name	it
MarsApplication.

To	begin	this	second	class,	follow	these	steps	in	NetBeans:

1.	Choose	File,	New	File	from	the	menu.	The	New	File	dialog	opens.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	File	Types	pane,	choose	Empty	Java	File	and	click	Next.	The	Empty	Java	File
dialog	opens.

4.	In	the	Class	Name	text	field,	enter	MarsApplication.	The	file	you’re	creating	is
shown	in	the	Created	File	field	and	has	the	name	MarsApplication.java.

5.	Click	Finish.

Enter	the	code	shown	in	Listing	1.2	into	the	NetBeans	source	code	editor.

LISTING	1.2	The	Full	Text	of	MarsApplication.java
Click	here	to	view	code	image

	1:	class	MarsApplication	{
	2:					public	static	void	main(String[]	arguments)	{
	3:									MarsRobot	spirit	=	new	MarsRobot();
	4:									spirit.status	=	“exploring”;
	5:									spirit.speed	=	2;
	6:									spirit.temperature	=	-60;
	7:
	8:									spirit.showAttributes();
	9:									System.out.println(“Increasing	speed	to	3.”);
10:									spirit.speed	=	3;
11:									spirit.showAttributes();
12:									System.out.println(“Changing	temperature	to	-90.”);
13:									spirit.temperature	=	-90;
14:									spirit.showAttributes();
15:									System.out.println(“Checking	the	temperature.”);
16:									spirit.checkTemperature();
17:									spirit.showAttributes();
18:					}
19:	}

When	you	choose	File,	Save	to	save	the	file,	NetBeans	automatically	compiles	it	into	the
MarsApplication	class,	which	contains	bytecode	for	the	JVM	to	run.

Tip

If	you	encounter	problems	compiling	or	running	any	program	in	this	book,	you	can
find	a	copy	of	the	source	file	and	other	related	files	on	the	book’s	official	website	at
www.java21days.com.

After	you	have	compiled	the	application,	run	the	program	by	choosing	the	menu	command
Run,	Run	File.	The	output	displayed	by	the	MarsApplication	class	appears	in	an
Output	pane	in	NetBeans,	as	shown	in	Figure	1.1.

FIGURE	1.1	The	output	of	the	MarsApplication	class.

Using	Listing	1.2	as	a	guide,	you	can	see	the	following	things	taking	place	in	the	main()
class	method	of	this	application:

	Line	2—The	main()	method	is	created	and	named.	All	main()	methods	take
this	format,	as	you’ll	see	during	Day	5,	“Creating	Classes	and	Methods.”	For	now,
the	most	important	thing	to	note	is	the	static	keyword,	which	indicates	that	the
method	is	a	class	method	shared	by	all	MarsRobot	objects.

	Line	3—A	new	MarsRobot	object	is	created	using	the	class	as	a	template.	The
object	is	given	the	name	spirit.

	Lines	4–6—Three	instance	variables	of	the	spirit	object	are	given	values:
status	is	set	to	the	text	“exploring,”	speed	is	set	to	2,	and	temperature	is	set
to	–60.

	Line	8—On	this	line	and	several	that	follow,	the	showAttributes()	method	of
the	spirit	object	is	called.	This	method	displays	the	current	values	of	the	instance
variables	status,	speed,	and	temperature.

http://www.java21days.com

	Line	9—On	this	line	and	others	that	follow,	a	call	to	the
System.out.println()	method	displays	the	text	within	parentheses	to	the
output	device	(your	monitor).

	Line	10—The	speed	instance	variable	is	set	to	the	value	3.

	Line	13—The	temperature	instance	variable	is	set	to	the	value	–90.

	Line	16—The	checkTemperature()	method	of	the	spirit	object	is	called.
This	method	checks	to	see	whether	the	temperature	instance	variable	is	less	than
–80.	If	it	is,	status	and	speed	are	assigned	new	values.

Note

If	for	some	reason	you	can’t	use	NetBeans	to	write	Java	programs	and	must	instead
use	the	Java	Development	Kit,	you	can	find	out	how	to	install	it	in	Appendix	D,
“Using	the	Java	Development	Kit,”	and	how	to	compile	and	run	Java	programs
with	it	in	Appendix	E,	“Programming	with	the	Java	Development	Kit.”

Organizing	Classes	and	Class	Behavior
Object-oriented	programming	in	Java	also	requires	three	more	concepts:	inheritance,
interfaces,	and	packages.	All	three	are	mechanisms	for	organizing	classes	and	class
behavior.

Inheritance
Inheritance,	one	of	the	most	crucial	concepts	in	object-oriented	programming,	has	a	direct
impact	on	how	you	design	and	write	your	own	Java	classes.

Inheritance	is	a	mechanism	that	enables	one	class	to	inherit	the	behavior	and	attributes	of
another	class.

Through	inheritance,	a	class	automatically	picks	up	the	functionality	of	an	existing	class.
The	new	class	must	only	define	how	it	is	different	from	that	existing	class.

With	inheritance,	all	classes—including	those	you	create	and	the	ones	in	the	Java	Class
Library—are	arranged	in	a	strict	hierarchy.

A	class	that	inherits	from	another	class	is	called	a	subclass.	The	class	that	gives	the
inheritance	is	called	a	superclass.

A	class	can	have	only	one	superclass,	but	it	can	have	an	unlimited	number	of	subclasses.
Subclasses	inherit	all	the	attributes	and	behavior	of	their	superclass.

In	practical	terms,	this	means	that	if	the	superclass	has	behavior	and	attributes	that	your
class	needs,	you	don’t	have	to	redefine	the	behavior	or	copy	that	code	to	have	the	same
behavior	and	attributes.	Your	class	automatically	receives	these	things	from	its	superclass,
the	superclass	gets	them	from	its	superclass,	and	so	on,	all	the	way	up	the	hierarchy.	Your
class	becomes	a	combination	of	its	own	features	and	all	the	features	of	the	classes	above	it
in	the	hierarchy.

The	situation	is	comparable	to	how	you	inherited	traits	from	your	parents,	such	as	your
height,	hair	color,	and	love	of	peanut-butter-and-banana	sandwiches.	They	inherited	some
of	these	things	from	their	parents,	who	inherited	from	theirs,	and	backward	through	time
to	the	Garden	of	Eden,	Big	Bang,	giant	spaghetti	monster,	or	[insert	personal	belief	here].

Figure	1.2	shows	how	a	hierarchy	of	classes	is	arranged.

FIGURE	1.2	A	class	hierarchy.

At	the	top	of	the	Java	class	hierarchy	is	the	class	Object.

All	classes	inherit	from	this	superclass.	Object	is	the	most	general	class	in	the	hierarchy.
It	defines	behavior	inherited	by	all	the	classes	in	the	Java	Class	Library.

Each	class	further	down	the	hierarchy	becomes	more	tailored	to	a	specific	purpose.	A	class
hierarchy	defines	abstract	concepts	at	the	top	of	the	hierarchy.	Those	concepts	become
more	concrete	further	down	the	line	of	subclasses.

Often	when	you	create	a	new	class	in	Java,	you	want	all	the	functionality	of	an	existing
class	except	for	some	additions	or	modifications	of	your	own	creation.	For	example,	you
might	want	a	new	version	of	CommandButton	that	makes	a	sound	when	clicked.

To	receive	all	the	CommandButton	functionality	without	doing	any	work	to	re-create	it,
you	can	define	your	new	class	as	a	subclass	of	CommandButton.

Because	of	inheritance,	your	class	automatically	inherits	behavior	and	attributes	defined	in
CommandButton	as	well	as	the	behavior	and	attributes	defined	in	the	superclasses	of
CommandButton.	All	you	have	to	worry	about	are	the	things	that	make	your	new	class
different	from	CommandButton	itself.	Subclassing	is	the	mechanism	for	defining	new
classes	as	the	differences	between	those	classes	and	their	superclass.

Subclassing	is	the	creation	of	a	new	class	that	inherits	from	an	existing	class.	The	only
task	in	the	subclass	is	to	indicate	the	differences	in	behavior	and	attributes	between	the
subclass	and	its	superclass.

If	your	class	defines	entirely	new	behavior	and	isn’t	a	subclass	of	another	class,	you	can
inherit	directly	from	the	Object	class.

If	you	create	a	class	that	doesn’t	indicate	a	superclass,	Java	assumes	that	the	new	class
inherits	directly	from	Object.	The	MarsRobot	class	you	created	earlier	today	did	not
specify	a	superclass,	so	it’s	a	subclass	of	Object.

Creating	a	Class	Hierarchy
If	you’re	creating	a	large	set	of	classes,	it	makes	sense	for	your	classes	to	inherit	from	the
existing	class	hierarchy	and	to	make	up	a	hierarchy	themselves.	This	gives	your	classes
several	advantages:

	Functionality	common	to	multiple	classes	can	be	put	into	a	superclass,	which
enables	it	to	be	used	repeatedly	in	all	classes	below	it	in	the	hierarchy.

	Changes	to	a	superclass	automatically	are	reflected	in	all	its	subclasses,	their
subclasses,	and	so	on.	There	is	no	need	to	change	or	recompile	any	of	the	lower
classes;	they	receive	the	new	information	through	inheritance.

For	example,	imagine	that	you	have	created	a	Java	class	to	implement	all	the	features	of
an	exploratory	robot.	(This	shouldn’t	take	much	imagination.)

The	MarsRobot	class	is	completed	and	works	successfully.	Your	boss	at	NASA	asks	you
to	create	a	Java	class	called	MercuryRobot.

These	two	kinds	of	robots	have	similar	features.	Both	are	research	robots	that	work	in
hostile	environments	and	conduct	research.	Both	keep	track	of	their	current	temperature
and	speed.

Your	first	impulse	might	be	to	open	the	MarsRobot.java	source	file,	copy	it	into	a
new	source	file	called	MercuryRobot.java,	and	then	make	the	necessary	changes	for
the	new	robot	to	do	its	job.

A	better	plan	is	to	figure	out	the	common	functionality	of	MercuryRobot	and
MarsRobot	and	organize	it	into	a	more	general	class	hierarchy.	This	might	be	a	lot	of
work	just	for	the	classes	MarsRobot	and	MercuryRobot,	but	what	if	you	also	want	to
add	MoonRobot,	UnderseaRobot,	and	DesertRobot?	Factoring	common
behavior	into	one	or	more	reusable	superclasses	significantly	reduces	the	overall	amount
of	work	you	must	do.

To	design	a	class	hierarchy	that	might	serve	this	purpose,	start	at	the	top	with	the	class
Object,	the	pinnacle	of	all	Java	classes.

The	most	general	class	to	which	these	robots	belong	might	be	called	Robot.	A	robot,
generally,	could	be	defined	as	a	self-controlled	exploration	device.	In	the	Robot	class,
you	define	only	the	behavior	that	qualifies	something	to	be	a	device,	to	be	self-controlled,
and	to	be	designed	for	exploration.

There	could	be	two	classes	below	Robot:	WalkingRobot	and	DrivingRobot.	The
obvious	thing	that	differentiates	these	classes	is	that	one	travels	by	foot	and	the	other	by
wheel.	The	behavior	of	walking	robots	might	include	bending	over	to	pick	up	something,

ducking,	running,	and	the	like.	Driving	robots	would	behave	differently.	Figure	1.3	shows
what	you	have	so	far.

FIGURE	1.3	The	basic	Robot	hierarchy.

Now,	the	hierarchy	can	become	even	more	specific.

With	WalkingRobot,	you	might	have	several	classes:	ScienceRobot,
GuardRobot,	SearchRobot,	and	so	on.	As	an	alternative,	you	could	factor	out	still
more	functionality	and	have	intermediate	classes	for	TwoLegged	and	FourLegged
robots,	with	different	behaviors	for	each	(see	Figure	1.4).

FIGURE	1.4	Two-legged	and	four-legged	walking	robots.

Finally,	the	hierarchy	is	done,	and	you	have	a	place	for	MarsRobot.	It	can	be	a	subclass
of	ScienceRobot,	which	is	a	subclass	of	WalkingRobot,	which	is	a	subclass	of
Robot,	which	is	a	subclass	of	Object.

Where	do	attributes	such	as	status,	temperature,	and	speed	come	in?	At	the	place	they	fit

into	the	class	hierarchy	most	naturally.	Because	all	robots	need	to	keep	track	of	the
temperature	of	their	environment,	it	makes	sense	to	define	temperature	as	an	instance
variable	in	Robot.	All	subclasses	would	have	that	instance	variable	as	well.	Remember
that	you	need	to	define	a	behavior	or	attribute	only	once	in	the	hierarchy,	and	it	is
inherited	automatically	by	each	subclass.

Note

Designing	an	effective	class	hierarchy	involves	a	lot	of	planning	and	revision.	As
you	attempt	to	put	attributes	and	behavior	into	a	hierarchy,	you’re	likely	to	find
reasons	to	move	some	classes	to	different	spots	in	the	hierarchy.	The	goal	is	to
reduce	the	number	of	repetitive	features	(and	redundant	code)	needed.

Inheritance	in	Action
Inheritance	in	Java	works	much	more	simply	than	it	does	in	the	real	world.	No	wills	or
courts	are	required	when	inheriting	from	a	parent.

When	you	create	a	new	object,	Java	keeps	track	of	each	variable	defined	for	that	object
and	each	variable	defined	for	each	superclass	of	the	object.	In	this	way,	all	the	classes
combine	to	form	a	template	for	the	current	object,	and	each	object	fills	in	the	information
appropriate	to	its	situation.

Methods	operate	similarly.	A	new	object	has	access	to	all	method	names	of	its	class	and
superclass.	This	is	determined	dynamically	when	a	method	is	used	in	a	running	program.
If	you	call	a	method	of	a	particular	object,	the	Java	virtual	machine	first	checks	the
object’s	class	for	that	method.	If	the	method	isn’t	found,	the	virtual	machine	looks	for	it	in
the	superclass	of	that	class,	and	so	on,	until	the	method	definition	is	found.	This	is
illustrated	in	Figure	1.5.

FIGURE	1.5	How	methods	are	located	in	a	class	hierarchy.

Things	get	complicated	when	a	subclass	defines	a	method	that	matches	a	method	defined
in	a	superclass	in	name	and	other	aspects.	In	this	case,	the	method	definition	found	first
(starting	at	the	bottom	of	the	hierarchy	and	working	upward)	is	the	one	that	is	used.

Because	of	this,	you	can	create	a	method	in	a	subclass	that	prevents	a	method	in	a
superclass	from	being	used.	To	do	this,	you	give	the	method	the	same	name,	return	type,
and	arguments	as	the	method	in	the	superclass.	This	procedure,	shown	in	Figure	1.6,	is
called	overriding.

FIGURE	1.6	Overriding	methods.

Note

Java’s	form	of	inheritance	is	called	single	inheritance	because	each	Java	class	can
have	only	one	superclass,	although	any	given	superclass	can	have	multiple
subclasses.

In	other	object-oriented	programming	languages	such	as	C++,	classes	can	have
more	than	one	superclass,	and	they	inherit	combined	variables	and	methods	from	all
those	superclasses.	This	is	called	multiple	inheritance.	Java	makes	inheritance
simpler	by	allowing	only	single	inheritance.

Interfaces
Single	inheritance	makes	the	relationship	between	classes	and	the	functionality	they
implement	easier	to	understand	and	design.	However,	it	also	can	be	restrictive,	especially
when	you	have	similar	behavior	that	needs	to	be	duplicated	across	different	branches	of	a
class	hierarchy.	Java	solves	the	problem	of	shared	behavior	by	using	interfaces.

An	interface	is	a	collection	of	methods	that	indicate	a	class	has	some	behavior	in	addition
to	what	it	inherits	from	its	superclasses.	The	methods	included	in	an	interface	do	not
define	this	behavior;	that	task	is	left	for	the	classes	that	implement	the	interface.

For	example,	the	Comparable	interface	contains	a	method	that	compares	two	objects	of
the	same	class	to	see	which	one	should	appear	first	in	a	sorted	list.	Any	class	that
implements	this	interface	shows	other	objects	that	it	knows	how	to	determine	the	sorting
order	for	objects	of	that	class.	This	behavior	would	be	unavailable	to	the	class	without	the
interface.

You’ll	learn	about	interfaces	during	Day	6,	“Packages,	Interfaces,	and	Other	Class

Features.”

Packages
Packages	in	Java	are	a	way	to	group	related	classes	and	interfaces.	Packages	enable
groups	of	classes	to	be	referenced	more	easily	in	other	classes.	They	also	eliminate
potential	naming	conflicts	among	classes.

Classes	in	Java	can	be	referred	to	by	a	short	name	such	as	Object	or	a	full	name	such	as
java.lang.Object.

By	default,	your	Java	classes	can	refer	to	the	classes	in	the	java.lang	package	using
only	short	names.	The	java.lang	package	provides	basic	language	features	such	as
string	handling	and	mathematical	operations.	To	use	classes	from	any	other	package,	you
must	refer	to	them	explicitly	using	their	full	package	name	or	use	an	import	command
to	import	the	package	in	your	source	code	file.

Because	the	Color	class	is	contained	in	the	java.awt	package,	you	normally	refer	to	it
in	your	programs	with	the	notation	java.awt.Color.

If	the	entire	java.awt	package	has	been	imported	using	import,	the	class	can	be
referred	to	as	Color.

The	package	for	a	class	is	determined	by	the	package	statement.	Many	of	the	classes
you	create	in	this	book	are	put	in	the	com.java24hours	package,	like	so:

package	com.java24hours;

This	statement	must	be	the	first	line	of	the	program.	When	it	is	omitted,	as	it	was	in	the
MarsRobot	and	MarsApplication	programs	you	created	today,	the	class	belongs	to
an	unnamed	package	called	the	default	package.

Summary
If	today	was	your	first	exposure	to	object-oriented	programming,	it	probably	seemed
theoretical	and	a	bit	overwhelming.

Because	your	brain	has	been	stuffed	with	object-oriented	programming	concepts	and
terminology	for	the	first	time,	you	might	be	worried	that	no	room	is	left	for	the	Java
lessons	of	the	remaining	20	days.

Don’t	panic.	Keep	calm	and	carry	on.

At	this	point,	you	should	have	a	basic	understanding	of	classes,	objects,	attributes,	and
behavior.	You	also	should	be	familiar	with	instance	variables	and	methods.	You’ll	use
these	right	away	tomorrow.

The	other	aspects	of	object-oriented	programming,	such	as	inheritance	and	packages,	will
be	covered	in	more	detail	in	upcoming	days.

You’ll	work	with	object-oriented	programming	in	every	remaining	day	of	the	book.
There’s	no	other	way	to	create	programs	in	Java.

By	the	time	you	finish	the	first	week,	you’ll	have	working	experience	with	objects,

classes,	inheritance,	and	all	other	aspects	of	the	methodology.

Q&A
Q	Methods	are	functions	defined	inside	classes.	If	they	look	like	functions	and	act
like	functions,	why	aren’t	they	called	functions?

A	Some	object-oriented	programming	languages	do	call	them	functions.	(C++	calls
them	member	functions.)	Other	object-oriented	languages	differentiate	between
functions	inside	and	outside	the	body	of	a	class	or	object	because	in	those	languages
the	use	of	the	separate	terms	is	important	to	understanding	how	each	function	works.
Because	the	difference	is	relevant	in	other	languages	and	because	the	term	method
now	is	in	common	use	in	object-oriented	terminology,	Java	uses	the	term	as	well.

Q	What’s	the	distinction	between	instance	variables	and	methods	and	their
counterparts,	class	variables	and	methods?

A	Almost	everything	you	do	in	a	Java	program	involves	instances	(also	called	objects)
rather	than	classes.	However,	some	behavior	and	attributes	make	more	sense	if
stored	in	the	class	itself	rather	than	in	the	object.

For	example,	the	Math	class	in	the	java.lang	package	includes	a	class	variable
called	PI	that	holds	the	approximate	value	of	pi.	This	value	does	not	change,	so
there’s	no	reason	why	different	objects	of	that	class	would	need	their	own	individual
copy	of	the	PI	variable.	On	the	other	hand,	every	String	object	contains	a	method
called	length()	that	reveals	the	number	of	characters	in	that	String.	This	value
can	be	different	for	each	object	of	that	class,	so	it	must	be	an	instance	method.

Class	variables	occupy	memory	until	a	Java	program	is	finished	running,	so	they
should	be	used	with	care.	If	a	class	variable	references	an	object,	that	object	will
remain	in	memory	as	well.	This	is	a	common	problem	causing	a	program	to	take	up
too	much	memory	and	run	slowly.

Q	When	a	Java	class	imports	an	entire	package,	does	it	increase	the	compiled	size
of	that	class?

A	No.	The	use	of	the	term	“import”	is	a	bit	misleading.	The	import	keyword	does
not	add	the	bytecode	of	one	class	or	one	package	to	the	class	you	are	creating.
Instead,	it	makes	it	easier	to	refer	to	classes	within	another	class.

The	sole	purpose	of	importing	is	to	shorten	the	class	names	when	they’re	used	in
Java	statements.	It	would	be	cumbersome	to	always	have	to	refer	to	full	class	names
such	as	javax.swing.JButton	and	java.awt.Graphics	in	your	code
instead	of	calling	them	JButton	and	Graphics.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	is	another	word	for	a	class?

A.	Object

B.	Template

C.	Instance

2.	When	you	create	a	subclass,	what	must	you	define	about	that	class?

A.	Nothing.	Everything	is	defined	already.

B.	Things	that	are	different	from	its	superclass

C.	Everything	about	the	class

3.	What	does	an	instance	method	of	a	class	represent?

A.	The	attributes	of	that	class

B.	The	behavior	of	that	class

C.	The	behavior	of	an	object	created	from	that	class

Answers
1.	B.	A	class	is	an	abstract	template	used	to	create	objects	that	are	similar	to	each	other.

2.	B.	You	define	how	the	subclass	is	different	from	its	superclass.	The	things	that	are
similar	are	already	defined	for	you	because	of	inheritance.	Answer	A	is	technically
correct,	but	if	everything	in	the	subclass	is	identical	to	the	superclass,	there’s	no
reason	to	create	the	subclass.

3.	C.	Instance	methods	refer	to	a	specific	object’s	behavior.	Class	methods	refer	to	the
behavior	of	all	objects	belonging	to	that	class.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material.

Which	of	the	following	statements	is	true?

A.	All	objects	created	from	the	same	class	must	be	identical.

B.	All	objects	created	from	the	same	class	can	have	different	attributes	than	each
other.

C.	An	object	inherits	attributes	and	behavior	from	the	class	used	to	create	it.

D.	A	class	inherits	attributes	and	behavior	from	its	subclass.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	1
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	In	the	main()	method	of	the	MarsRobot	class,	create	a	second	MarsRobot

http://www.java21days.com

robot	named	opportunity,	set	up	its	instance	variables,	and	display	them.

2.	Create	an	inheritance	hierarchy	for	the	pieces	of	a	chess	set.	Decide	where	the
instance	variables	color,	startingPosition,	forwardMovement,	and
sideMovement	should	be	defined	in	the	hierarchy.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	2.	The	ABCs	of	Programming

A	Java	program	is	made	up	of	classes	and	objects,	which,	in	turn,	are	made	up	of	methods
and	variables.	Methods	are	made	up	of	statements	and	expressions,	which	are	made	up	of
operators.

At	this	point,	you	might	be	worried	that	Java	is	like	a	set	of	Russian	nesting	matryoshka
dolls.	Each	doll	has	a	smaller	doll	inside	it,	as	intricate	and	detailed	as	its	larger
companion,	until	you	reach	the	smallest	one.

Today’s	lesson	clears	away	the	big	dolls	to	reveal	the	smallest	elements	of	Java
programming.	You	will	set	aside	classes,	objects,	and	methods	for	a	day	and	examine	the
basic	things	you	can	do	in	a	single	line	of	Java	code.

The	following	subjects	are	covered:

	Statements	and	expressions

	Variables	and	primitive	data	types

	Constants

	Comments

	Literals

	Arithmetic

	Comparisons

	Logical	operators

Statements	and	Expressions
All	the	tasks	you	want	to	accomplish	in	a	Java	program	can	be	broken	into	a	series	of
statements.	In	a	programming	language,	a	statement	is	a	simple	command	that	causes
something	to	happen.

Statements	represent	a	single	action	taken	in	a	Java	program.	Here	are	three	simple	Java
statements:
Click	here	to	view	code	image

int	weight	=	225;
System.out.println(“Free	the	bound	periodicals!”);
song.duration	=	230;

Some	statements	can	convey	a	value,	such	as	when	two	numbers	are	added	or	two
variables	are	compared	to	find	out	if	they	are	equal.

A	statement	that	produces	a	value	is	called	an	expression.	The	value	can	be	stored	for	later
use	in	the	program,	used	immediately	in	another	statement,	or	disregarded.	The	value
produced	by	a	statement	is	called	its	return	value.

Some	expressions	produce	a	numeric	return	value,	as	when	two	numbers	are	added	or
multiplied.	Others	produce	a	Boolean	value—either	true	or	false—or	even	can

produce	a	Java	object.	They	are	discussed	later	today.

Although	many	Java	programs	contain	one	statement	per	line,	this	is	a	formatting	decision
that	does	not	determine	where	one	statement	ends	and	another	one	begins.	Each	statement
in	Java	is	terminated	with	a	semicolon	character	;.	A	programmer	can	put	more	than	one
statement	on	a	line	and	it	will	compile	successfully,	as	in	the	following	example:
Click	here	to	view	code	image

spirit.speed	=	2;	spirit.temperature	=	-60;

To	make	your	program	more	readable	to	other	programmers	(and	yourself),	you	should
follow	the	convention	of	putting	only	one	statement	on	each	line.

Statements	in	Java	are	grouped	using	an	opening	brace	{	and	a	closing	brace	}.	A	group
of	statements	organized	between	these	characters	is	called	a	block	(or	block	statement).
You	learn	more	about	them	during	Day	4,	“Lists,	Logic,	and	Loops.”

Variables	and	Data	Types
In	the	MarsRobot	application	created	during	Day	1,	“Getting	Started	with	Java,”	you	used
variables	to	keep	track	of	information.	A	variable	is	a	place	where	information	can	be
stored	while	a	program	is	running.	The	value	can	be	changed	at	any	point	in	the	program
—hence	the	name.

To	create	a	variable,	you	must	give	it	a	name	and	identify	the	type	of	information	it	will
store.	You	also	can	give	a	variable	an	initial	value	at	the	same	time	you	create	it.

Java	has	three	kinds	of	variables:	instance	variables,	class	variables,	and	local	variables.

Instance	variables,	as	you	learned	yesterday,	define	an	object’s	attributes.

Class	variables	define	the	attributes	of	an	entire	class	of	objects	and	apply	to	all	instances
of	it.

Local	variables	are	used	inside	method	definitions	or	even	smaller	blocks	of	statements
within	a	method.	You	can	use	them	only	while	the	method	or	block	is	being	executed	by
the	Java	Virtual	Machine.	They	cease	to	exist	afterward.

Although	all	three	kinds	of	variables	are	created	in	much	the	same	way,	class	and	instance
variables	are	used	in	a	different	manner	than	local	variables.	You	learn	about	local
variables	today	and	explore	instance	and	class	variables	during	Day	3,	“Working	with
Objects.”

Creating	Variables
Before	you	can	use	a	variable	in	a	Java	program,	you	must	create	the	variable	by	declaring
its	name	and	the	type	of	information	it	will	store.	The	type	of	information	is	listed	first,
followed	by	the	name	of	the	variable.	The	following	all	are	examples	of	variable
declarations:

int	loanLength;
String	message;
boolean	gameOver;

In	these	examples,	the	int	type	represents	integers,	String	is	an	object	that	holds	text,

and	boolean	is	used	for	Boolean	true/false	values.

Local	variables	can	be	declared	at	any	place	inside	a	method,	like	any	other	Java
statement,	but	they	must	be	declared	before	they	can	be	used.

In	the	following	example,	three	variables	are	declared	at	the	top	of	a	program’s	main()
method:
Click	here	to	view	code	image

public	static	void	main(String[]	arguments)	{
				int	total;
				String	reportTitle;
				boolean	active;
}

If	you	are	creating	several	variables	of	the	same	type,	you	can	declare	all	of	them	in	the
same	statement	by	separating	the	variable	names	with	commas.	The	following	statement
creates	three	String	variables	named	street,	city,	and	state:

String	street,	city,	state;

Variables	can	be	assigned	a	value	when	they	are	created	by	using	an	equal	sign	(=)
followed	by	the	value.	The	following	statements	create	new	variables	and	give	them	initial
values:
Click	here	to	view	code	image

String	zipCode	=	“02134”;

int	box	=	350;
boolean	pbs	=	true;
String	name	=	“Zoom”,	city	=	“Boston”,	state	=	“MA”;

As	the	last	statement	demonstrates,	you	can	assign	values	to	multiple	variables	of	the	same
type	by	using	commas	to	separate	them.

You	must	give	values	to	local	variables	before	you	use	them	in	a	program,	or	the	program
won’t	compile	successfully.	For	this	reason,	it	is	good	practice	to	give	initial	values	to	all
local	variables.

Instance	and	class	variable	definitions	are	given	an	initial	value	depending	on	the	type	of
information	they	hold,	as	in	the	following:

	Numeric	variables:	0

	Characters:	"\0"

	Booleans:	false

	Objects:	null

Naming	Variables
Variable	names	in	Java	must	start	with	a	letter,	an	underscore	character	_,	or	a	dollar	sign
$.

Variable	names	cannot	start	with	a	number.	After	the	first	character,	variable	names	can
include	any	combination	of	letters,	numbers,	underscore	characters,	or	dollar	signs.

Note

In	addition,	the	Java	language	uses	the	Unicode	character	set,	which	includes
thousands	of	character	sets	to	represent	international	alphabets.	Accented	characters
and	other	symbols	can	be	used	in	variable	names	as	long	as	they	have	a	Unicode
character	number.

When	naming	a	variable	and	using	it	in	a	program,	it’s	important	to	remember	that	Java	is
case-sensitive—the	capitalization	of	letters	must	be	consistent.	Because	of	this,	a	program
can	have	a	variable	named	X	and	another	named	x	(so	Rose	is	not	rose	is	not	ROSE).

In	programs	in	this	book	and	elsewhere,	Java	variables	are	given	meaningful	names	that
include	several	joined	words.	To	make	it	easier	to	spot	the	words,	the	following	general
rules	are	used:

	The	first	letter	of	the	variable	name	is	lowercase.

	Each	successive	word	in	the	variable	name	begins	with	a	capital	letter.

	All	other	letters	are	lowercase.

The	following	variable	declarations	follow	these	naming	rules:
Button	loadFile;
int	localAreaCode;
boolean	quitGame;

Although	dollar	signs	and	underscores	are	permitted	in	variable	names,	you	should	avoid
using	either	of	them	except	in	one	situation:	When	a	variable’s	entire	name	is	capitalized,
each	word	is	separated	by	an	underscore.	Here’s	an	example:

static	int	DAYS_IN_WEEK	=	7;

You	will	see	why	a	variable	name	might	be	capitalized	like	this	later	today.

Dollar	signs	never	should	be	used	in	variable	names,	even	though	they’re	permitted.	The
official	documentation	for	Java	always	has	discouraged	their	use,	so	programmers	follow
this	convention.

Variable	Types
In	addition	to	a	name,	a	variable	declaration	must	include	the	data	type	of	information
being	stored.	The	type	can	be	any	of	the	following:

	One	of	the	primitive	data	types,	such	as	int	or	boolean

	The	name	of	a	class	or	interface

	An	array

You	learn	how	to	declare	and	use	array	variables	on	Day	4.	Today’s	lesson	focuses	on	the
other	variable	types.

Data	Types

Java	has	eight	basic	data	types	that	store	integers,	floating-point	numbers,	characters,	and
Boolean	values.	These	often	are	called	primitive	types	because	they	are	built-in	parts	of
the	language	rather	than	objects,	which	makes	them	easier	to	create	and	use.	These	data
types	have	the	same	size	and	characteristics	no	matter	what	operating	system	and	platform
you’re	on,	unlike	some	data	types	in	other	programming	languages.

You	can	use	four	data	types	to	store	integers.	Which	one	you	use	depends	on	the	integer’s
size,	as	shown	in	Table	2.1.

TABLE	2.1	Integer	Types

All	these	types	are	signed,	which	means	that	they	can	hold	either	positive	or	negative
numbers.	The	type	used	for	a	variable	depends	on	the	range	of	values	it	might	need	to
hold.	None	of	these	integer	variables	can	reliably	store	a	value	that	is	too	large	or	too
small	for	its	designated	variable	type,	so	take	care	when	designating	the	type.

Another	type	of	number	that	can	be	stored	is	a	floating-point	number,	which	has	the	type
float	or	double.	Floating-point	numbers	are	numbers	with	a	decimal	point.	The
float	type	can	handle	any	number	from	1.4E-45	to	3.4E+38,	while	the	double
type	can	be	used	for	more	precise	numbers	ranging	from	4.9E-324	to	1.7E+308.
Because	double	has	more	precision,	that	type	generally	is	preferred.

The	char	type	is	used	for	individual	characters,	such	as	letters,	numbers,	punctuation,
and	other	symbols.

The	last	of	the	eight	primitive	data	types	is	boolean.	As	you	have	learned,	this	data	type
holds	either	true	or	false.

All	these	variable	types	appear	in	lowercase,	and	you	must	use	them	as	such	in	programs.
Some	classes	have	the	same	names	as	these	data	types,	but	with	different	capitalization,
such	as	Boolean	and	Double	These	are	created	and	referenced	differently	in	a	Java
program,	so	you	can’t	use	them	interchangeably	in	most	circumstances.	Tomorrow	you
will	see	how	to	use	these	special	classes.

Note

There’s	actually	a	ninth	primitive	data	type	in	Java,	void,	which	represents
nothing.	It’s	used	in	methods	to	indicate	that	they	do	not	return	a	value.

Class	Types

In	addition	to	the	primitive	data	types,	a	variable	can	have	a	class	as	its	type,	as	in	the
following	examples:

String	lastName	=	“Hopper”;
Color	hair;
MarsRobot	robbie;

When	a	variable	has	a	class	as	its	type,	the	variable	refers	to	an	object	of	that	class	or	one
of	its	subclasses.

The	last	statement	in	the	preceding	list	creates	a	variable	named	robbie	that	is	reserved
for	a	MarsRobot	object.	You	learn	more	tomorrow	about	how	to	associate	objects	with
variables.

Assigning	Values	to	Variables
After	a	variable	has	been	declared,	a	value	can	be	assigned	to	it	with	the	assignment
operator,	which	is	an	equal	sign	=.	The	following	are	examples	of	assignment	statements:

idCode	=	8675309;

accountOverdrawn	=	false;

Constants
Variables	are	useful	when	you	need	to	store	information	that	can	be	changed	as	a	program
runs.

If	the	value	never	should	change	during	a	program’s	runtime,	you	can	use	a	type	of
variable	called	a	constant.	A	constant	is	a	variable	with	a	value	that	never	changes.	(This
might	seem	like	an	oxymoron,	given	the	meaning	of	the	word	“variable.”)

Constants	are	useful	in	defining	shared	values	for	the	use	of	all	methods	of	an	object.	In
Java,	you	can	create	constants	for	all	kinds	of	variables:	instance,	class,	and	local.

To	declare	a	constant,	use	the	final	keyword	before	the	variable	declaration	and	include
an	initial	value	for	that	variable,	as	in	the	following:

final	double	PI	=	3.141592;
final	boolean	DEBUG	=	false;
final	int	PENALTY	=	25;

Constants	can	be	handy	for	naming	various	states	of	an	object	and	then	testing	for	those
states.	Suppose	you	have	a	program	that	takes	directional	input	from	the	numeric	keypad
on	the	keyboard—press	8	to	go	up,	4	to	go	left,	6	to	go	right,	and	2	to	go	down.	You	can
define	those	values	as	constant	integers:

final	int	LEFT	=	4;
final	int	RIGHT	=	6;
final	int	UP	=	8;
final	int	DOWN	=	2;

Constants	often	make	a	program	easier	to	understand.	To	illustrate	this	point,	consider
which	of	the	following	two	statements	is	more	informative	as	to	its	function:

guide.direction	=	4;

guide.direction	=	LEFT;

Note

In	the	preceding	statements,	the	names	of	the	constants	such	as	DEBUG	and	LEFT
are	capitalized.	This	is	a	convention	adopted	by	Java	programmers	to	make	it	clear
that	the	variable	is	a	constant.	Java	does	not	require	that	constants	be	capitalized	in
this	manner,	but	it’s	a	good	practice	to	adopt.

When	a	constant’s	variable	name	is	more	than	one	word,	putting	it	in	all	caps	would	make
the	words	run	together	confusingly,	as	in	ESCAPECODE.	Separate	the	words	with	an
underscore	character	_,	like	this:

final	int	ESCAPE_CODE	=	27;

Today’s	first	project	is	a	Java	application	that	creates	several	variables,	assigns	them	initial
values,	and	displays	two	of	them	as	output.	Run	NetBeans	and	create	a	new	Java	program
by	undertaking	these	steps,	which	have	one	difference	from	the	procedure	in	Day	1:

1.	Choose	the	menu	command	File,	New	File.	The	New	File	dialog	box	opens.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	File	Types	pane,	choose	Empty	Java	File	and	click	Next.	The	Empty	Java	File
dialog	box	opens.

4.	In	the	Class	Name	text	field,	enter	Variables,	which	will	give	the	source	code
file	the	name	Variables.java.

5.	Here’s	the	different	step:	In	the	Package	Name	text	field,	enter
com.java21days.

6.	Click	Finish.

On	this	project,	you	specify	a	class	name	and	a	package	name.	Packages	are	a	way	to
organize	related	Java	programs	together.	They	serve	a	similar	purpose	to	file	folders	in	a
file	system.	Enter	the	code	shown	in	Listing	2.1	into	the	source	code	editor.

LISTING	2.1	The	Full	Text	of	Variables.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	public	class	Variables	{
	4:
	5:					public	static	void	main(String[]	arguments)	{
	6:									final	char	UP	=	‘U’;
	7:									byte	initialLevel	=	12;
	8:									short	location	=	13250;
	9:									int	score	=	3500100;
10:									boolean	newGame	=	true;
11:
12:									System.out.println(“Level:	“	+	initialLevel);
13:									System.out.println(“Up:	“	+	UP);
14:					}
15:	}

Save	the	file	by	choosing	File,	Save.	NetBeans	automatically	compiles	the	application	if	it
contains	no	errors.	Run	the	program	by	choosing	Run,	Run	File.	This	program	produces
the	output	shown	in	Figure	2.1.

FIGURE	2.1	Creating	and	displaying	variable	values.

The	package	name	of	the	class	is	established	by	the	package	statement,	which	must	be
the	first	line	of	a	Java	program	when	it	is	used:

package	com.java21days;

This	class	uses	four	local	variables	and	one	constant,	making	use	of
System.out.println()	in	lines	12–13	to	produce	output.

System.out.println()	is	a	method	called	to	display	strings	and	other	information
to	the	standard	output	device,	which	usually	is	the	monitor.

This	method	takes	a	single	argument	within	its	parentheses:	a	string.	To	present	more	than
one	variable	or	literal	as	the	argument	to	println(),	the	+	operator	combines	the
elements	into	a	single	string.

Java	also	has	a	System.out.print()	method	that	displays	a	string	without
terminating	it	with	a	newline	character.	You	can	call	print()	instead	of	println()	to
display	several	strings	on	the	same	line.

Comments
One	of	the	most	effective	ways	to	improve	a	program’s	readability	is	to	use	comments.
These	are	text	included	in	a	program	that	explains	what’s	going	on	in	the	code.	The	Java
compiler	ignores	comments	when	preparing	a	bytecode	version	of	a	Java	source	file	that
can	be	run	as	a	class,	so	there’s	no	penalty	for	using	them.

You	can	use	three	kinds	of	comments	in	Java	programs.

A	single-line	comment	is	preceded	by	two	slash	characters	//.	Everything	from	the
slashes	to	the	end	of	the	line	is	considered	a	comment	and	is	disregarded	by	the	compiler,
as	in	the	following	statement:
Click	here	to	view	code	image

int	creditHours	=	3;	//	set	up	credit	hours	for	course

Everything	from	the	slashes	onward	is	ignored.	As	far	as	the	compiler	is	concerned,	the
preceding	line	is	the	same	as	this:

int	creditHours	=	3;

A	multiline	comment	begins	with	/*	and	ends	with	*/.	Everything	between	these	two
delimiters	is	considered	a	comment,	even	over	multiple	lines,	as	in	the	following	code:
Click	here	to	view	code	image

/*	This	program	occasionally	deletes	all	files	on
your	hard	drive	and	renders	it	unusable
forever	when	you	click	the	Save	button.	*/

A	Javadoc	comment	begins	with	/**	and	ends	with	*/.	Everything	between	these
delimiters	is	considered	to	be	official	documentation	on	how	the	class	and	its	methods
work.

Javadoc	comments	are	designed	to	be	read	by	utilities	such	as	javadoc,	a	command-line
tool	that’s	part	of	the	Java	Development	Kit	(JDK).	This	tool	uses	official	comments	to
create	a	set	of	web	pages	that	document	the	functionality	of	a	Java	class,	show	its	place	in
relation	to	its	superclass	and	subclasses,	and	describe	each	of	its	methods.

Tip

All	the	official	documentation	on	each	class	in	the	Java	Class	Library	is	generated
from	Javadoc	comments.	You	can	view	current	Java	documentation	at
http://docs.oracle.com/javase/8/docs/api.

You	learn	how	to	use	the	javadoc	tool	in	Appendix	E,	“Programming	with	the	Java
Development	Kit.”

Literals
In	addition	to	variables,	you	can	work	with	values	as	literals	in	a	Java	statement.	A	literal
is	any	number,	text,	or	other	information	that	directly	represents	a	value.

The	following	assignment	statement	uses	a	literal:
int	year	=	2016;

The	literal	2016	represents	the	integer	value	2016.	Numbers,	characters,	and	strings	are	all
examples	of	literals.	Java	has	types	of	literals	that	represent	different	kinds	of	numbers,
characters,	strings,	and	Boolean	values.

Number	Literals
Java	has	several	integer	literals.	The	number	4,	for	example,	is	an	integer	literal	of	the
int	variable	type.	It	also	can	be	assigned	to	byte	and	short	variables,	because	the
number	is	small	enough	to	fit	into	those	integer	types.	An	integer	literal	larger	than	an
int	can	hold	automatically	is	considered	to	be	of	the	type	long.	You	also	can	indicate
that	a	literal	should	be	a	long	integer	by	adding	the	letter	L	to	the	number	(either	in
upper-	or	lowercase).	Here’s	an	example:

pennyTotal	=	pennyTotal	+	4L;

This	statement	adds	the	value	4,	formatted	as	a	long,	to	the	current	value	of	the
pennyTotal	variable.

http://docs.oracle.com/javase/8/docs/api

To	represent	a	negative	number	as	a	literal,	precede	it	with	a	minus	sign	(–),	as	in	–45.

Floating-point	literals	use	a	period	character.	for	the	decimal	point,	as	you	would	expect.
The	following	statement	uses	a	literal	to	set	up	a	double	variable:

double	gpa	=	3.55;

All	floating-point	literals	are	considered	to	be	of	the	double	variable	type	instead	of
float.	To	specify	a	literal	of	float,	add	the	letter	F	to	the	literal	(upper-	or	lowercase),
as	in	the	following	example:

float	piValue	=	3.1415927F;

You	can	use	exponents	in	floating-point	literals	by	using	the	letter	e	or	E	followed	by	the
exponent,	which	can	be	a	negative	number.	The	following	statements	use	exponential
notation:

double	x	=	12e22;

double	y	=	19E-95;

A	large	integer	literal	can	include	an	underscore	character	_	to	make	it	more	readable	to
humans.	The	underscore	serves	the	same	purpose	as	a	comma	in	a	large	number,	making
its	value	more	apparent.	Consider	these	two	examples,	one	of	which	uses	underscores:

int	jackpot	=	3500000;

int	jackpot	=	3_500_000;

Both	examples	equal	3,500,000,	which	is	easier	to	see	in	the	second	statement.	The	Java
compiler	ignores	the	underscores.

Java	also	supports	numeric	literals	that	use	binary,	octal,	and	hexadecimal	numbering.

Binary	numbers	are	a	base-2	numbering	system	in	which	only	the	values	0	and	1	are	used.
Values	made	up	of	1s	and	0s	are	the	simplest	form	for	a	computer	and	are	a	fundamental
part	of	computing.	Counting	up	from	0,	binary	values	are	0,	1,	10,	11,	100,	111,	and	so	on.
Each	digit	in	the	number	is	called	a	bit.	The	combination	of	eight	numbers	is	a	byte.	A
binary	literal	is	specified	by	preceding	it	with	0b,	as	in	0b101	for	101	(5	in	decimal)	and
0b01111111	(127).

Octal	numbers	are	a	base-8	numbering	system,	which	means	that	they	can	represent	only
the	values	0	through	7	as	a	single	digit.	The	eighth	number	in	octal	is	10.	Octal	literals
begin	with	a	0,	so	010	is	the	decimal	value	8,	012	is	9,	and	020	is	16.

Hexadecimal	is	a	base-16	numbering	system	that	can	represent	16	numbers	as	a	single
digit.	The	letters	A	through	F	represent	the	last	six	digits,	so	the	first	16	numbers	are	0,	1,
2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	and	F.	Hexademical	literals	begin	with	0x,	as	on	0x12
(decimal	18)	and	0xFF	(255).

The	octal	and	hexadecimal	systems	are	better	suited	for	certain	tasks	in	programming	than
the	normal	decimal	system.	If	you	ever	have	edited	a	web	page	to	set	its	background	color,
you	could	have	used	hexadecimal	numbers	for	green	(0x001100),	blue	(0x000011),	or
butterscotch	(0xFFCC99).

Boolean	Literals
The	Boolean	literals	true	and	false	are	the	only	two	values	you	can	use	when
assigning	a	value	to	a	boolean	variable	type	or	using	a	Boolean	in	a	statement.

The	following	statement	sets	a	boolean	variable:
boolean	chosen	=	true;

Caution

If	you	have	programmed	in	other	languages,	you	might	expect	that	a	value	of	1	is
equivalent	to	true	and	0	is	equivalent	to	false.	This	isn’t	the	case	in	Java;	you	must
use	the	values	true	and	false	to	represent	Boolean	values.

Note	that	the	literal	true	does	not	have	quotation	marks	around	it.	If	it	did,	the	Java
compiler	would	assume	that	it	is	a	string	of	characters.

Character	Literals
Character	literals	are	expressed	by	a	single	character	surrounded	by	single	quotation
marks,	such	as	‘a’,	‘#’,	and	‘3’.	You	might	be	familiar	with	the	ASCII	character	set,	which
includes	128	characters,	including	letters,	numerals,	punctuation,	and	other	characters
useful	in	computing.	Java	supports	ASCII	along	with	thousands	of	additional	characters
through	the	16-bit	Unicode	standard.

Some	character	literals	represent	characters	that	are	not	readily	printable	or	accessible
from	a	keyboard.	Table	2.2	lists	the	codes	that	can	represent	these	special	characters	as
well	as	characters	from	the	Unicode	character	set.

TABLE	2.2	Character	Escape	Codes

In	Table	2.2,	the	letter	d	in	the	octal,	hex,	and	Unicode	escape	codes	represents	a	number

or	a	hexadecimal	digit	(a	through	f	or	A	through	F).

String	Literals
The	final	literal	that	you	can	use	in	a	Java	program	represents	strings	of	characters.	A
string	in	Java	is	an	object	rather	than	a	primitive	data	type.	Strings	are	not	stored	in	arrays
as	they	are	in	languages	such	as	C.

Because	string	objects	are	real	objects	in	Java,	methods	are	available	to	combine	strings,
modify	strings,	and	determine	whether	two	strings	have	the	same	value.

String	literals	consist	of	a	series	of	characters	inside	double	quotation	marks,	as	in	the
following	statements:
Click	here	to	view	code	image

String	quitMsg	=	“Are	you	sure	you	want	to	quit?”;

String	password	=	“drowssap”;

Strings	can	include	the	character	escape	codes	listed	in	Table	2.2,	as	shown	here:
Click	here	to	view	code	image

String	example	=	“Socrates	asked,	"Hemlock	is	poison?"”;

System.out.println(“Sincerely,\nMillard	Fillmore\n”);

String	title	=	“Sams	Teach	Yourself	Node	in	the	John\u2122”;

In	the	last	example,	the	Unicode	code	sequence	\u2122	produces	a	™	symbol	on
systems	that	have	been	configured	to	support	Unicode.

Caution

Although	Java	supports	the	transmission	of	Unicode	characters,	a	computer	also
must	support	it	for	the	characters	to	be	displayed	when	the	program	is	run.	Unicode
support	provides	a	way	to	encode	its	characters	for	systems	that	support	the
standard.	Java	supports	the	display	of	any	Unicode	character	that	can	be	represented
by	a	host	font.

For	more	information	about	Unicode,	visit	the	Unicode	Consortium	website	at
www.unicode.org.

Although	string	literals	are	used	in	a	manner	similar	to	other	literals	in	a	program,	they	are
handled	differently	behind	the	scenes.

With	a	string	literal,	Java	stores	that	value	as	a	String	object.	You	don’t	have	to
explicitly	create	a	new	object,	as	you	must	when	working	with	other	objects,	so	they	are	as
easy	to	work	with	as	primitive	data	types.	Strings	are	unusual	in	this	respect—none	of	the
basic	types	are	stored	as	an	object	when	used.	You’ll	learn	more	about	strings	and	the
String	class	later	today.

http://www.unicode.org

Expressions	and	Operators
An	expression	is	a	statement	that	can	convey	a	value.	Some	of	the	most	common
expressions	are	mathematical,	such	as	in	the	following	examples:

int	x	=	3;
int	y	=	x;
int	z	=	x	*	y;

All	three	of	these	statements	can	be	considered	expressions;	they	convey	values	that	can
be	assigned	to	variables.	The	first	assigns	the	literal	3	to	the	variable	x.	The	second
assigns	the	value	of	the	variable	x	to	the	variable	y.	In	the	third	expression,	the
multiplication	operator	*	is	used	to	multiply	the	x	and	y	integers,	and	the	result	is	stored
in	the	z	integer.

Expressions	can	be	any	combination	of	variables,	literals,	and	operators.	They	also	can	be
method	calls	because	methods	send	back	a	value	to	the	object	or	class	that	called	the
method.

The	value	conveyed	by	an	expression	is	called	a	return	value.	This	value	can	be	assigned
to	a	variable	and	used	in	many	other	ways	in	your	Java	programs.

Most	of	the	expressions	in	Java	use	operators	such	as	*.	Operators	are	special	symbols
used	for	mathematical	functions,	assignment	statements,	and	logical	comparisons.

Arithmetic
Five	operators	are	used	to	accomplish	basic	arithmetic	in	Java,	as	shown	in	Table	2.3.

TABLE	2.3	Arithmetic	Operators

Each	operator	takes	two	operands,	one	on	each	side	of	the	operator.	The	subtraction
operator	also	can	be	used	to	negate	a	single	operand,	which	is	equivalent	to	multiplying
that	operand	by	–1.

One	thing	to	be	mindful	of	when	performing	division	is	the	type	of	numbers	being	used.	If
you	store	a	division	operation	in	an	integer,	the	result	is	truncated	to	the	next-lower	whole
number,	because	the	int	data	type	can’t	handle	floating-point	numbers.

For	example,	the	expression	31	/	9	results	in	3	if	stored	as	an	integer.

Modulus	division,	which	uses	the	%	operator,	produces	the	remainder	of	a	division
operation.	The	expression	31	%	9	results	in	4	because	31	divided	by	9,	with	the	whole
number	result	of	3,	leaves	a	remainder	of	4.

Note	that	many	arithmetic	operations	involving	integers	produce	an	int	regardless	of	the
original	type	of	the	operands.	If	you’re	working	with	other	numbers,	such	as	floating-point
numbers	or	long	integers,	you	should	make	sure	that	the	operands	have	the	same	type
you’re	trying	to	end	up	with.

The	next	project	is	a	Java	class	that	demonstrates	how	to	perform	simple	arithmetic	in	the
language.	Create	a	new	empty	Java	file	in	NetBeans	called	Weather	in	the
com.java21days	package	and	enter	the	code	shown	in	Listing	2.2	into	the	source	code
editor.	Save	the	file	with	the	menu	command	File,	Save	when	you’re	done.

LISTING	2.2	The	Full	Text	of	Weather.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	public	class	Weather	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									float	fah	=	86;
	6:									System.out.println(fah	+	”	degrees	Fahrenheit	is	…”);
	7:									//	To	convert	Fahrenheit	into	Celsius
	8:									//	begin	by	subtracting	32
	9:									fah	=	fah	-	32;
10:									//	Divide	the	answer	by	9
11:									fah	=	fah	/	9;
12:									//	Multiply	that	answer	by	5
13:									fah	=	fah	*	5;
14:									System.out.println(fah	+	”	degrees	Celsius\n”);
15:
16:									float	cel	=	33;
17:									System.out.println(cel	+	”	degrees	Celsius	is	…”);
18:									//	To	convert	Celsius	into	Fahrenheit
19:									//	begin	by	multiplying	by	9
20:									cel	=	cel	*	9;
21:									//	Divide	the	answer	by	5
22:									cel	=	cel	/	5;
23:									//	Add	32	to	the	answer
24:									cel	=	cel	+	32;
25:									System.out.println(cel	+	”	degrees	Fahrenheit”);
26:					}
27:	}

Run	the	program	by	selecting	Run,	Run	File.	It	produces	the	output	shown	in	Figure	2.2.

FIGURE	2.2	Converting	temperatures	with	expressions.

In	lines	5–14	of	this	Java	application,	a	temperature	in	Fahrenheit	is	converted	to	Celsius
using	the	arithmetic	operators:

	Line	5—The	floating-point	variable	fah	is	created	with	a	value	of	86.

	Line	6—The	current	value	of	fah	is	displayed.

	Line	7—The	first	of	several	comments	explains	what	the	program	is	doing.	The
Java	compiler	ignores	these	comments.

	Line	9—fah	is	set	to	its	current	value	minus	32.

	Line	11—fah	is	set	to	its	current	value	divided	by	9.

	Line	13—fah	is	set	to	its	current	value	multiplied	by	5.

	Line	14—Now	that	fah	has	been	converted	to	a	Celsius	value,	fah	is	displayed
again.

A	similar	thing	happens	in	lines	16–25,	but	in	the	reverse	direction.	A	temperature	in
Celsius	is	converted	to	Fahrenheit.

More	About	Assignment
Assigning	a	value	to	a	variable	is	an	expression	because	it	produces	a	value.	Because	of
this	feature,	you	can	combine	assignment	statements	in	this	unusual	way:

x	=	y	=	z	=	7;

In	this	statement,	all	three	variables	x,	y,	and	z	end	up	with	the	value	7.

The	right	side	of	an	assignment	expression	always	is	calculated	before	the	assignment
takes	place.	This	makes	it	possible	to	use	an	expression	statement	as	in	the	following
code:

int	x	=	5;
x	=	x	+	2;

In	the	expression	x	=	x	+	2,	the	first	thing	that	happens	is	that	x	+	2	is	calculated.
The	result	of	this	calculation,	7,	is	then	assigned	to	x.

Using	an	expression	to	change	a	variable’s	value	is	a	common	task	in	programming.
Several	operators	are	used	strictly	in	these	cases.

Table	2.4	shows	these	assignment	operators	and	the	expressions	they	are	functionally
equivalent	to.

TABLE	2.4	Assignment	Operators

Caution

These	shorthand	assignment	operators	are	functionally	equivalent	to	the	longer
assignment	statements	for	which	they	substitute.	If	either	side	of	your	assignment
statement	is	part	of	a	complex	expression,	however,	there	are	cases	where	the
operators	are	not	equivalent.	For	example,	if	x	equals	20	and	y	equals	5,	the
following	two	statements	do	not	produce	the	same	value:

x	=	x	/	y	+	5;
x	/=	y	+	5;

The	first	statement	produces	an	x	value	of	9	and	the	second	an	x	value	of	2.	When
in	doubt	about	what	an	expression	is	doing,	simplify	it	by	using	multiple
assignment	statements	and	don’t	use	the	shorthand	operators.

Incrementing	and	Decrementing
Another	common	task	required	in	programming	is	to	add	or	subtract	1	from	an	integer
variable.	These	expressions	have	special	operators,	which	are	called	increment	and
decrement	operators.	Incrementing	a	variable	means	adding	1	to	its	value,	and
decrementing	a	variable	means	subtracting	1	from	its	value.

The	increment	operator	is	++,	and	the	decrement	operator	is	--.	These	operators	are
placed	immediately	after	or	before	a	variable	name,	as	in	the	following	code:

int	x	=	7;
x++;

In	this	example,	the	statement	x++	increments	the	x	variable	from	7	to	8.

These	increment	and	decrement	operators	can	be	placed	before	or	after	a	variable	name.
This	affects	the	value	of	expressions	that	involve	these	operators.

Increment	and	decrement	operators	are	called	prefix	operators	if	listed	before	a	variable
name	and	postfix	operators	if	listed	after	a	name.

In	a	simple	expression	such	as	count--;,	using	a	prefix	or	postfix	operator	produces	the
same	result,	making	the	operators	interchangeable.	When	increment	and	decrement
operations	are	part	of	a	larger	expression,	however,	the	choice	between	prefix	and	postfix
operators	is	important.

Consider	the	following	code:
int	x,	y,	z;
x	=	42;
y	=	x++;
z	=	++x;

The	three	expressions	in	this	code	yield	different	results	because	of	the	difference	between
prefix	and	postfix	operations.

When	you	use	postfix	operators	on	a	variable	in	an	expression,	the	variable’s	value	is
evaluated	in	the	expression	before	it	is	incremented	or	decremented.	So	in	y	=	x++,	y
receives	the	value	of	x	before	it	is	incremented	by	1.

When	using	prefix	operators	on	a	variable	in	an	expression,	the	variable	is	incremented	or
decremented	before	its	value	is	evaluated	in	that	expression.	Therefore,	in	z	=	++x,	x	is
incremented	by	1	before	the	value	is	assigned	to	z.

The	end	result	of	the	preceding	codes	example	is	that	y	equals	42,	z	equals	44,	and	x
equals	44.

If	you’re	still	having	some	trouble	figuring	this	out,	here’s	the	example	again	with
comments	describing	each	step:
Click	here	to	view	code	image

int	x,	y,	z;	//	x,	y,	and	z	are	declared
x	=	42;						//	x	is	given	the	value	42
y	=	x++;					//	y	is	given	x’s	value	(42)	before	it	is	incremented
													//	and	x	is	then	incremented	to	43
z	=	++x;					//	x	is	incremented	to	44,	and	z	is	given	x’s	value

Caution

Using	increment	and	decrement	operators	in	complex	expressions	can	produce
results	you	might	not	expect.

The	concept	of	“assigning	x	to	y	before	x	is	incremented”	isn’t	precisely	right,
because	Java	evaluates	everything	on	the	right	side	of	an	expression	before
assigning	its	value	to	the	left	side.

Java	stores	some	values	before	handling	an	expression	to	make	postfix	work	the
way	it	has	been	described	in	this	section.

If	you’re	not	getting	the	results	you	expect	from	a	complex	expression	that	includes
prefix	and	postfix	operators,	try	breaking	the	expression	into	multiple	statements	to
simplify	it.

Comparisons
Java	has	several	operators	for	making	comparisons	among	variables,	variables	and	literals,
or	other	types	of	information	in	a	program.

These	operators	are	used	in	expressions	that	return	Boolean	values	of	true	or	false,
depending	on	whether	the	comparison	being	made	is	true	or	not.	Table	2.5	shows	the
comparison	operators.

TABLE	2.5	Comparison	Operators

The	following	example	shows	a	comparison	operator	in	use:
boolean	isHip;
int	age	=	37;
isHip	=	age	<	25;

The	expression	age	<	25	produces	a	result	of	either	true	or	false,	depending	on	the
value	of	the	integer	age.	Because	age	is	37	in	this	example	(which	is	not	less	than	25),
isHip	is	given	the	Boolean	value	false.

Logical	Operators
Expressions	that	result	in	Boolean	values,	such	as	comparison	operations,	can	be
combined	to	form	more	complex	expressions.	This	is	handled	through	logical	operators,
which	are	used	for	the	logical	combinations	AND,	OR,	XOR,	and	logical	NOT.

For	AND	combinations,	the	&	or	&&	logical	operator	is	used.	When	two	Boolean
expressions	are	linked	by	these	operators,	the	combined	expression	returns	a	true	value
only	if	both	Boolean	expressions	are	true.

Consider	this	example:
Click	here	to	view	code	image

boolean	extraLife	=	(score	>	75000)	&	(playerLives	<	10);

This	expression	combines	two	comparison	expressions:	score	>	75000	and
playerLives	<	10.	If	both	expressions	are	true,	the	Boolean	value	true	is	assigned
to	the	variable	extraLife.	In	any	other	circumstance,	the	value	false	is	assigned	to
the	variable.

The	difference	between	&	and	&&	lies	in	how	much	work	Java	does	on	the	combined
expression.	If	&	is	used,	the	expressions	on	both	sides	of	the	&	are	evaluated	no	matter
what.	If	&&	is	used	and	the	left	side	of	the	&&	is	false,	the	expression	on	the	right	side	of
the	&&	never	is	evaluated.

This	makes	&&	more	efficient	because	no	unnecessary	work	is	performed.	In	the	preceding
example	if	score	is	not	greater	than	75,000,	there’s	no	need	to	consider	whether
playerLives	is	less	than	10.

For	OR	combinations,	the	|	or	||	logical	operator	is	used.	These	combined	expressions

return	a	true	value	if	either	Boolean	expression	is	true.

Consider	this	example:
Click	here	to	view	code	image

boolean	extralife	=	(score	>	75000)	||	(playerLevel	==	0);

This	expression	combines	two	comparison	expressions:	score	>	75000	and
playerLevel	==	0.	If	either	of	these	expressions	is	true,	the	Boolean	value	true	is
assigned	to	the	variable	extraLife.	Only	if	both	of	these	expressions	are	false	is	the
value	false	assigned	to	extraLife.

Note	the	use	of	||	instead	of	|.	Because	of	this	usage,	if	score	>	75000	is	true,
extraLife	is	set	to	true,	and	the	second	expression	never	is	evaluated.

The	XOR	combination	has	one	logical	operator,	^.	This	results	in	a	true	value	only	if	the
Boolean	expressions	it	combines	have	opposite	values.	If	both	are	true	or	both	are	false,
the	^	operator	produces	a	false	value.

The	NOT	combination	uses	the	!	logical	operator	followed	by	a	single	expression.	It
reverses	the	value	of	a	Boolean	expression	in	the	same	way	that	a	minus	sign	reverses	the
positive	or	negative	sign	on	a	number.	For	example,	if	age	<	25	returns	a	true	value,
!(age	<	25)	returns	a	false	value.

The	logical	operators	may	seem	illogical	when	you	first	encounter	them.	You	get	plenty	of
opportunities	to	work	with	them	during	the	rest	of	this	week,	especially	on	Day	5,
“Creating	Classes	and	Methods.”

Operator	Precedence
When	more	than	one	operator	is	used	in	an	expression,	Java	has	an	established	precedence
hierarchy	to	determine	the	order	in	which	operators	are	evaluated.	In	many	cases,	this
precedence	determines	the	expression’s	overall	value.

For	example,	consider	the	following	expression:
y	=	6	+	4	/	2;

The	y	variable	will	equal	the	value	5	or	the	value	8,	depending	on	which	arithmetic
operation	is	handled	first.	If	the	6	+	4	expression	comes	first,	y	has	the	value	of	5.
Otherwise,	y	equals	8.

In	general,	the	order	of	evaluation	from	first	to	last	is	as	follows:

1.	Increment	and	decrement	operations

2.	Arithmetic	operations

3.	Comparisons

4.	Logical	operations

5.	Assignment	expressions

If	two	operations	have	the	same	precedence,	the	one	on	the	left	in	the	expression	is

handled	before	the	one	on	the	right.	Table	2.6	shows	the	specific	precedence	of	the	various
operators	in	Java.	Operators	higher	up	in	the	table	are	evaluated	first.

TABLE	2.6	Operator	Precedence

Several	of	the	operators	listed	in	Table	2.6	are	covered	later	this	week.

Returning	to	the	expression	y	=	6	+	4	/	2,	Table	2.6	shows	that	division	is	evaluated
before	addition,	so	the	value	of	y	equals	8.

To	change	the	order	in	which	expressions	are	evaluated,	place	parentheses	around	the
expressions	that	should	be	evaluated	first.	You	can	nest	one	set	of	parentheses	inside
another	to	make	sure	that	expressions	are	evaluated	in	the	desired	order;	the	innermost
parenthetic	expression	is	evaluated	first.

The	following	expression	results	in	a	value	of	5:
y	=	(6	+	4)	/	2

The	value	of	5	is	the	result	because	6	+	4	is	calculated	first,	and	then	the	result,	10,	is
divided	by	2.

Parentheses	also	can	improve	an	expression’s	readability.	If	an	expression’s	precedence
isn’t	immediately	clear	to	you,	adding	parentheses	to	impose	the	desired	precedence	can
make	the	statement	easier	to	understand.

String	Arithmetic
As	stated	earlier,	the	+	operator	has	a	double	life	outside	the	world	of	mathematics.	It	can
concatenate	two	or	more	strings.

The	word	“concatenate”	means	to	link	two	things.	For	reasons	unknown,	it	is	the	verb	of
choice	in	computer	programming	when	describing	the	act	of	combining	two	strings,
winning	out	over	paste,	glue,	affix,	combine,	link,	smush	together,	and	conjoin.

In	several	examples,	you	have	seen	statements	that	look	something	like	this:
Click	here	to	view	code	image

String	brand	=	“Jif”;
System.out.println(“Choosy	mothers	choose	“	+	brand);

These	two	lines	result	in	the	display	of	the	following	text:
Choosy	mothers	choose	Jif

The	+	operator	combines	strings,	other	objects,	and	variables	to	form	a	single	string.	In	the
preceding	example,	the	literal	“Choosy	mothers	choose”	is	concatenated	to	the	value	of
the	String	object	brand.

Working	with	the	concatenation	operator	is	made	easier	in	Java	by	the	fact	that	the
operator	can	handle	any	variable	type	and	object	value	as	if	it	were	a	string.	If	any	part	of
a	concatenation	operation	is	a	String	or	a	string	literal,	all	elements	of	the	operation	are
treated	as	if	they	were	strings:
Click	here	to	view	code	image

System.out.println(4	+	”	score	and	“	+	7	+	”	years	ago”);

This	produces	the	output	text	“4	score	and	7	years	ago”,	as	if	the	integer	literals	4	and	7
were	strings.

There	also	is	a	+=	shorthand	operator	to	append	something	to	the	end	of	a	string.	For
example,	consider	the	following	expression:

myName	+=	”	Jr.”;

This	expression	is	equivalent	to	the	following:
myName	=	myName	+	”	Jr.”;

In	this	example,	+=	changes	the	value	of	myName,	which	might	be	something	like
“Robert	Downey,”	by	adding	“Jr.”	at	the	end	to	form	the	string	“Robert	Downey	Jr.”

To	summarize	today’s	material,	Table	2.7	lists	the	operators	you	have	learned	about.	Be	a
doll	and	look	them	over	carefully.

TABLE	2.7	Operator	Summary

Summary
Anyone	who	pops	open	a	set	of	matryoshka	dolls	has	to	be	a	bit	disappointed	upon
reaching	the	smallest	doll	in	the	group.

Today	you	reached	Java’s	smallest	nesting	doll.	Using	statements	and	expressions	enables
you	to	begin	building	effective	methods,	which	makes	effective	objects	and	classes
possible.

Today	you	learned	about	creating	variables	and	assigning	values	to	them.	You	also	used
literals	to	represent	numeric,	character,	and	string	values	and	worked	with	operators.
Tomorrow,	you’ll	put	these	skills	to	use	developing	classes.

Q&A
Q	What	happens	if	I	assign	an	integer	value	to	a	variable	that	is	too	large	for	that
variable	to	hold?

A	Logically,	you	might	think	that	the	variable	is	converted	to	the	next-larger	type,	but
this	isn’t	what	happens.	Instead,	an	overflow	occurs—a	situation	in	which	the
number	wraps	around	from	one	size	extreme	to	the	other.	An	example	of	overflow
would	be	a	byte	variable	that	goes	from	127	(an	acceptable	value)	to	128
(unacceptable).	It	would	wrap	around	to	the	lowest	acceptable	value,	which	is	–128,
and	start	counting	upward	from	there.	Overflow	isn’t	something	you	can	readily
detect	in	a	program,	so	be	sure	to	give	your	numeric	variables	plenty	of	living	space
in	their	chosen	data	type.

Small	data	types	like	byte	were	more	necessary	when	computers	had	much	less
memory	than	they	do	today	and	every	byte	counted.	Today,	with	plentiful	memory
and	hard	disk	space	measured	in	terabytes,	it	is	better	to	use	larger	data	types	like
int	to	ensure	that	you	have	enough	space	to	store	all	possible	values	in	a	particular
variable.

Q	Why	does	Java	have	all	these	shorthand	operators	for	arithmetic	and
assignment?	It’s	really	hard	to	read	that	way.

A	Java’s	syntax	is	based	on	C++,	which	is	based	on	C	(more	Russian	nesting	doll
behavior).	C	is	an	expert	language	that	values	programming	power	over	readability,
and	the	shorthand	operators	are	one	of	the	legacies	of	that	design	priority.	Using
them	in	a	program	isn’t	required	because	effective	substitutes	are	available,	so	you
can	avoid	them	in	your	own	programming	if	you	prefer.

Q	The	MarsRobot	and	MarsApplication	programs	on	Day	1	didn’t	contain
a	package	statement.	Does	that	mean	they’re	not	in	a	package?

A	All	Java	programs	belong	to	a	package.	When	the	package	statement	appears	in	a
program,	the	program	is	part	of	that	named	package.	The	programs	you	created
during	this	day	are	all	in	the	com.java21days	package.

A	program	that	does	not	have	a	package	statement	is	put	into	the	default	package,
which	does	not	have	a	name.	Although	programs	can	be	created	in	this	unnamed
package,	it’s	good	practice	to	always	specify	a	package	with	each	program	you
create	in	Java.	(This	wasn’t	done	in	Day	1	for	the	sake	of	simplicity.)

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	of	the	following	is	a	valid	value	for	a	boolean	variable?

A.	“false”

B.	false

C.	10

2.	Which	of	these	is	NOT	a	convention	for	naming	variables	in	Java?

A.	After	the	first	word	in	the	variable	name,	each	successive	word	begins	with	a
capital	letter.

B.	The	first	letter	of	the	variable	name	is	lowercase.

C.	All	letters	are	capitalized.

3.	Which	of	these	data	types	holds	numbers	from	–32,768	to	32,767?

A.	char

B.	byte

C.	short

Answers
1.	B.	In	Java,	a	boolean	can	be	only	true	or	false.	If	you	put	quotation	marks
around	the	value,	it	is	treated	like	a	String	rather	than	one	of	the	two	boolean
values.

2.	C.	Constant	names	are	capitalized	to	make	them	stand	out	from	other	variables.

3.	C.	The	short	primitive	data	type	has	that	range	of	values.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material.

Which	of	the	following	data	types	can	hold	the	number	3,000,000,000	(3	billion)?

A.	short,	int,	long,	float

B.	int,	long,	float

C.	long,	float

D.	byte

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	2
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

http://www.java21days.com

1.	Create	a	program	that	calculates	how	much	a	$14,000	investment	would	be	worth	if
it	increased	in	value	by	40%	during	the	first	year,	lost	$1,500	in	value	the	second
year,	and	increased	12%	in	the	third	year.

2.	Write	a	program	that	displays	two	numbers	and	uses	the	/	and	%	operators	to
display	the	result	and	remainder	after	they	are	divided.	Use	the	\t	character	escape
code	to	make	a	tab	character	separate	the	result	and	remainder	in	your	output.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	3.	Working	with	Objects

Java	is	an	object-oriented	programming	language.	When	you	do	work	in	Java,	you
primarily	use	objects	to	get	the	job	done.	You	create	objects,	modify	them,	change	their
variables,	call	their	methods,	and	combine	them	with	other	objects.	You	develop	classes,
create	objects	out	of	those	classes,	and	use	them	with	other	classes	and	objects.

Today,	you	work	extensively	with	objects	as	you	undertake	these	essential	tasks:

	Creating	objects

	Testing	and	modifying	their	class	and	instance	variables

	Calling	an	object’s	methods

	Converting	objects	from	one	class	to	another

Creating	New	Objects
When	you	write	a	Java	program,	you	define	a	set	of	classes.	As	you	learned	during	Day	1,
“Getting	Started	with	Java,”	a	class	is	a	template	used	to	create	one	or	more	objects.	These
objects,	which	also	are	called	instances,	are	self-contained	elements	of	a	program	with
related	features	and	data.	For	the	most	part,	you	use	the	class	merely	to	create	instances
and	then	work	with	those	instances.	In	this	section,	you	learn	how	to	create	a	new	object
from	any	given	class.

When	using	strings	during	Day	2,	“The	ABCs	of	Programming,”	you	learned	that	a	string
literal	(a	series	of	characters	enclosed	in	double	quotation	marks)	can	be	used	to	create	a
new	instance	of	the	class	String	with	the	value	of	that	string.

The	String	class	is	unusual	in	that	respect.	Although	it’s	a	class,	it	can	be	assigned	a
value	with	a	literal	as	if	it	was	a	primitive	data	type.	This	shortcut	is	available	only	for
strings	and	classes	that	represent	primitive	data	types,	such	as	Integer	and	Double.	To
create	instances	for	all	other	classes,	the	new	operator	is	used.

Note

What	about	the	literals	for	numbers	and	characters?	Don’t	they	create	objects	too?
Actually,	they	don’t.	The	primitive	data	types	for	numbers	and	characters	create
numbers	and	characters,	but	for	efficiency	they	actually	aren’t	objects.	On	Day	5,
“Creating	Classes	and	Methods,”	you	learn	how	to	use	objects	to	represent
primitive	values.

Using	new
To	create	a	new	object,	you	use	the	new	operator	with	the	name	of	the	class	that	should	be
used	as	a	template.	The	name	of	the	class	is	followed	by	parentheses,	as	in	these	three
examples:
Click	here	to	view	code	image

String	name	=	new	String(“Hal	Jordan”);

URL	address	=	new	URL(“http://www.java21days.com”);

MarsRobot	robbie	=	new	MarsRobot();

The	parentheses	are	important	and	can’t	be	omitted.	They	can	be	empty,	however,	in
which	case	the	most	simple,	basic	object	of	that	class	is	created.	The	parentheses	also	can
contain	arguments	that	determine	the	values	of	instance	variables	or	other	initial	qualities
of	that	object.

Here	are	two	objects	being	created	with	arguments:
Click	here	to	view	code	image

Random	seed	=	new	Random(606843071);

Point	pt	=	new	Point(0,	0);

The	number	and	type	of	arguments	to	include	inside	the	parentheses	are	defined	by	the
class	itself	using	a	special	method	called	a	constructor	(which	is	introduced	later	today).	If
you	try	to	create	a	new	instance	of	a	class	with	the	wrong	number	or	wrong	type	of
arguments,	or	if	you	give	it	no	arguments	and	it	needs	them,	an	error	occurs	when	the
program	is	compiled.

Today’s	first	project	is	a	demonstration	of	creating	different	types	of	objects	with	different
numbers	and	types	of	arguments.	The	StringTokenizer	class	in	the	java.util
package	divides	a	string	into	a	series	of	shorter	strings	called	tokens.

You	divide	a	string	into	tokens	by	applying	a	character	or	characters	as	a	delimiter.	For
example,	the	text	“02/20/67”	could	be	divided	into	three	tokens—“02”,	“20”,	and	“67”—
using	the	slash	character	/	as	a	delimiter.

Today’s	first	project	is	a	Java	application	that	uses	string	tokens	to	analyze	stock	price
data.	In	NetBeans,	create	a	new	empty	Java	file	for	the	class	TokenTester	in	the
com.java21days	package,	and	enter	the	code	in	Listing	3.1	as	its	source	code.	This
program	creates	StringTokenizer	objects	by	using	new	in	two	different	ways	and
then	displays	each	token	the	objects	contain.

LISTING	3.1	The	Full	Text	of	TokenTester.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.StringTokenizer;
	4:
	5:	class	TokenTester	{
	6:
	7:					public	static	void	main(String[]	arguments)	{
	8:									StringTokenizer	st1,	st2;
	9:
10:									String	quote1	=	“GOOG	530.80	-9.98”;
11:									st1	=	new	StringTokenizer(quote1);
12:									System.out.println(“Token	1:	“	+	st1.nextToken());
13:									System.out.println(“Token	2:	“	+	st1.nextToken());
14:									System.out.println(“Token	3:	“	+	st1.nextToken());
15:

16:									String	quote2	=	“RHT@75.00@0.22”;
17:									st2	=	new	StringTokenizer(quote2,	“@”);
18:									System.out.println(”\nToken	1:	“	+	st2.nextToken());
19:									System.out.println(“Token	2:	“	+	st2.nextToken());
20:									System.out.println(“Token	3:	“	+	st2.nextToken());
21:					}
22:	}

Save	this	file	by	choosing	File,	Save	or	clicking	Save	All	on	the	NetBeans	toolbar.	Run
the	application	by	choosing	Run,	Run	File	to	see	the	output	displayed	in	Figure	3.1.

FIGURE	3.1	Displaying	a	StringTokenizer	object’s	tokens.

Two	different	StringTokenizer	objects	are	created	using	different	arguments	to	the
constructor.

The	first	object	is	created	using	new	StringTokenizer()	with	one	argument,	a
String	object	named	quote1	(line	11).	This	creates	a	StringTokenizer	object
that	uses	the	default	delimiters,	which	are	blank	spaces,	tabs,	newlines,	carriage	returns,	or
formfeed	characters.

If	any	of	these	characters	is	contained	in	the	string,	it	is	used	to	divide	the	string.	Because
the	quote1	string	contains	spaces,	these	are	used	as	delimiters	dividing	each	token.	Lines
12–14	display	the	values	of	all	three	tokens:	“GOOG”,	“530.80”,	and	“–9.98”.

The	second	StringTokenizer	object	in	this	example	has	two	arguments	when	it	is
constructed	in	line	16—a	String	object	named	quote2	and	an	at-sign	character	@.
This	second	argument	indicates	that	the	@	character	should	be	used	as	the	delimiter
between	tokens.	The	StringTokenizer	object	created	in	line	17	contains	three	tokens:
“RHT”,	“75.00”,	and	“0.22”.

How	Objects	Are	Constructed
Several	things	happen	when	you	use	the	new	operator.	The	new	instance	of	the	given	class
is	created,	memory	is	allocated	for	it,	and	a	special	method	defined	in	the	given	class	is
called.	This	method	is	called	a	constructor.

A	constructor	is	a	way	to	create	a	new	instance	of	a	class.	A	constructor	initializes	the	new
object	and	its	variables,	creates	any	other	objects	that	the	object	needs,	and	performs	any
additional	operations	the	object	requires	to	initialize	itself.

A	class	can	have	several	different	constructors,	each	with	a	different	number	or	type	of
argument.	When	you	use	new,	you	can	specify	different	arguments	in	the	argument	list,
and	the	correct	constructor	for	those	arguments	is	called.

In	the	TokenTester	project,	multiple	constructor	definitions	enabled	the
StringTokenizer	class	to	accomplish	different	things	with	different	uses	of	the	new
operator.	When	you	create	your	own	classes,	you	can	define	as	many	constructors	as	you
need	to	implement	the	behavior	of	the	class.

No	two	constructors	in	a	class	can	have	the	same	number	and	type	of	arguments,	because
this	is	the	only	way	constructors	are	differentiated	from	each	other.

If	a	class	defines	no	constructors,	a	constructor	with	no	arguments	is	called	by	default
when	an	object	of	the	class	is	created.	The	only	thing	this	constructor	does	is	call	the	same
constructor	in	its	superclass.

Caution

The	default	constructor	only	exists	in	a	class	that	has	not	defined	any	constructors.
Once	you	define	at	least	one	constructor	in	a	class,	you	can’t	count	on	there	being	a
default	constructor	with	no	arguments.

A	Note	on	Memory	Management
If	you	are	familiar	with	other	object-oriented	programming	languages,	you	might	wonder
whether	the	new	operator	has	an	opposite	that	destroys	an	object	when	it	is	no	longer
needed.

Memory	management	in	Java	is	dynamic	and	automatic.	When	you	create	a	new	object,
Java	automatically	allocates	the	proper	amount	of	memory	for	that	object.	You	don’t	have
to	allocate	any	memory	for	objects	explicitly.	The	Java	Virtual	Machine	(JVM)	does	it	for
you.

Because	Java	memory	management	is	automatic,	you	don’t	need	to	deallocate	the	memory
an	object	uses	when	you’re	finished	using	it.	Under	most	circumstances,	when	you	are
finished	with	an	object	you	have	created,	Java	can	determine	that	the	object	no	longer	has
any	live	references	to	it.	(In	other	words,	the	object	isn’t	assigned	to	any	variables	still	in
use	or	stored	in	any	arrays.)

As	a	program	runs,	the	JVM	periodically	looks	for	unused	objects	and	reclaims	the
memory	that	those	objects	are	using.	This	process	is	called	dynamic	garbage	collection
and	occurs	without	any	programming	on	your	part.	You	don’t	have	to	explicitly	free	the
memory	taken	up	by	an	object;	you	just	have	to	make	sure	that	you’re	not	still	holding
onto	an	object	you	want	to	get	rid	of.

This	feature	is	one	of	the	most	touted	advantages	of	the	language	over	its	predecessor
C++.

Using	Class	and	Instance	Variables
At	this	point,	you	can	create	your	own	object	with	class	and	instance	variables,	but	how	do
you	work	with	those	variables?	They’re	used	in	largely	the	same	manner	as	the	local
variables	you	learned	about	yesterday.	You	can	put	them	in	expressions,	assign	values	to
them	in	statements,	and	so	on.	You	just	refer	to	them	slightly	differently.

Getting	Values
To	get	to	the	value	of	an	instance	variable,	you	use	dot	notation,	a	form	of	addressing	in
which	an	instance	or	class	variable	name	has	two	parts:

	A	reference	to	an	object	or	class	on	the	left	side	of	a	dot	operator.

	A	variable	on	the	right	side

Dot	notation	is	how	you	refer	to	an	object’s	instance	variables	and	methods.

For	example,	if	you	have	an	object	named	customer	with	a	variable	called
orderTotal,	here’s	how	that	variable	could	be	referred	to	in	a	statement:
Click	here	to	view	code	image

float	total	=	customer.orderTotal;

This	statement	assigns	the	value	of	the	customer	object’s	orderTotal	instance
variable	to	a	floating-point	variable	named	total.

Accessing	variables	in	dot	notation	is	an	expression	(meaning	that	it	returns	a	value).	Both
sides	of	the	dot	also	are	expressions.	This	means	that	you	can	chain	instance	variable
access.

Extending	the	preceding	example,	suppose	the	customer	object	is	an	instance	variable
of	the	store	class.	Dot	notation	can	be	used	twice,	as	in	this	statement:
Click	here	to	view	code	image

float	total	=	store.customer.orderTotal;

Dot	expressions	are	evaluated	from	left	to	right,	so	you	start	with	store’s	instance
variable	customer,	which	itself	has	an	instance	variable	orderTotal.	The	value	of
this	variable	is	assigned	to	the	total	variable.

One	thing	to	note	when	chaining	objects	together	in	this	manner	is	that	the	statement	will
fail	with	an	error	if	any	object	in	the	chain	does	not	have	a	value	yet.

Setting	Values
Assigning	a	value	to	an	instance	variable	with	dot	notation	employs	the	=	operator	just
like	variables	holding	primitive	types:

customer.layaway	=	true;

This	example	sets	the	value	of	a	boolean	instance	variable	named	layaway	to	true.

The	PointSetter	application	in	Listing	3.2	tests	and	modifies	the	instance	variables	in	a
Point	object.	Point,	a	class	in	the	java.awt	package,	represents	points	in	a

coordinate	system	with	(x,	y)	values.

Create	a	new	empty	Java	file	in	NetBeans	with	the	class	name	PointSetter	and	the
package	name	com.java21days;	then	type	the	source	code	shown	in	Listing	3.2	and
save	the	file.

LISTING	3.2	The	Full	Text	of	PointSetter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.Point;
	4:
	5:	class	PointSetter	{
	6:
	7:					public	static	void	main(String[]	arguments)	{
	8:									Point	location	=	new	Point(4,	13);
	9:
10:									System.out.println(“Starting	location:”);
11:									System.out.println(“X	equals	“	+	location.x);
12:									System.out.println(“Y	equals	“	+	location.y);
13:
14:									System.out.println(”\nMoving	to	(7,	6)”);
15:									location.x	=	7;
16:									location.y	=	6;
17:
18:									System.out.println(“\nEnding	location:”);
19:									System.out.println(“X	equals	“	+	location.x);
20:									System.out.println(“Y	equals	“	+	location.y);
21:					}
22:	}

When	you	run	this	application,	the	output	should	match	Figure	3.2.

FIGURE	3.2	Setting	and	displaying	an	object’s	instance	variables.

In	this	application,	you	create	an	instance	of	Point	where	x	equals	4	and	y	equals	13
(line	8).	These	individual	values	are	retrieved	using	dot	notation.

The	value	of	x	is	changed	to	7	and	y	to	6	(lines	15–16).	The	values	are	displayed	again	to
show	how	they	have	changed.

Class	Variables
Class	variables,	as	you	have	learned,	are	variables	defined	and	stored	in	the	class	itself.
Their	values	apply	to	the	class	and	all	its	instances.

With	instance	variables,	each	new	instance	of	the	class	gets	a	new	copy	of	the	instance
variables	that	the	class	defines.	Each	instance	then	can	change	the	values	of	those	instance
variables	without	affecting	any	other	instances.	With	class	variables,	only	one	copy	of	that
variable	exists	when	the	class	is	loaded.	Changing	the	value	of	that	variable	changes	it	for
all	instances	of	that	class.

You	define	class	variables	by	including	the	static	keyword	before	the	variable	itself.
For	example,	consider	the	following	partial	class	definition:
Click	here	to	view	code	image

class	FamilyMember	{
				static	String	surname	=	“Mendoza”;
				String	name;
				int	age;
}

Each	instance	of	the	class	FamilyMember	has	its	own	values	for	name	and	age,	but	the
class	variable	surname	has	only	one	value	for	all	family	members:	“Mendoza.”	If	the
value	of	surname	is	changed,	all	instances	of	FamilyMember	are	affected.

Note

Calling	these	static	variables	refers	to	one	of	the	meanings	of	the	word	“static”:
fixed	in	one	place.	If	a	class	has	a	static	variable,	every	object	of	that	class	has
the	same	value	for	that	variable.

To	access	class	variables,	you	use	the	same	dot	notation	as	with	instance	variables.	To
retrieve	or	change	the	value	of	the	class	variable,	you	can	use	either	the	instance	or	the
name	of	the	class	on	the	left	side	of	the	dot	operator.	Both	lines	of	output	in	this	example
display	the	same	value:
Click	here	to	view	code	image

FamilyMember	dad	=	new	FamilyMember();
System.out.println(“Family’s	surname	is:	“	+	dad.surname);
System.out.println(“Family’s	surname	is:	“	+	FamilyMember.surname);

Because	you	can	use	an	object	to	change	the	value	of	a	class	variable,	it’s	easy	to	become
confused	about	class	variables	and	where	their	values	are	coming	from.	Remember	that
the	value	of	a	class	variable	affects	all	objects	of	that	particular	class.	If	the	surname
instance	variable	of	one	FamilyMember	object	was	set	to	“Paciorek”,	all	objects	of	that
class	would	have	that	new	surname.

To	reduce	confusion	when	using	class	variables,	it’s	a	good	idea	to	use	the	name	of	the
class	when	you	refer	to	a	class	variable—not	an	object	of	that	class.	This	makes	the	use	of
a	class	variable	more	clear	and	helps	strange	results	become	easier	to	debug.

Calling	Methods
Methods	of	an	object	are	called	to	make	it	do	something.

Calling	a	method	in	an	object	also	makes	use	of	dot	notation.	The	object	whose	method	is
being	called	is	on	the	left	side	of	the	dot,	and	the	name	of	the	method	and	its	arguments
are	on	the	right	side:
Click	here	to	view	code	image

customer.addToCart(itemNumber,	price,	quantity);

All	method	calls	must	have	parentheses	after	them,	even	when	the	method	takes	no
arguments,	as	in	this	example:

customer.cancelOrder();

In	Listing	3.3,	the	StringChecker	application	shows	an	example	of	calling	some	methods
defined	in	the	String	class.	Strings	include	methods	for	string	tests	and	modification.
Create	this	program	in	NetBeans	as	an	empty	Java	file	with	the	class	name
StringChecker	and	package	name	com.java21days.

LISTING	3.3	The	Full	Text	of	StringChecker.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	StringChecker	{
	4:
	5:					public	static	void	main(String[]	arguments)	{
	6:									String	str	=	“A	Lannister	always	pays	his	debts”;
	7:									System.out.println(“The	string	is:	“	+	str);
	8:									System.out.println(“Length	of	this	string:	“
	9:													+	str.length());
10:									System.out.println(“The	character	at	position	6:	“
11:													+	str.charAt(6));
12:									System.out.println(“The	substring	from	12	to	18:	“
13:													+	str.substring(12,	18));
14:									System.out.println(“The	index	of	the	first	‘t’:	“
15:													+	str.indexOf(‘t’));
16:									System.out.println(“The	index	of	the	beginning	of	the	“
17:													+	“substring	"debts":	“	+	str.indexOf(“debts”));
18:									System.out.println(“The	string	in	uppercase:	“
19:													+	str.toUpperCase());
20:					}
21:	}

Running	the	program	produces	the	output	shown	in	Figure	3.3.

FIGURE	3.3	Calling	String	methods	to	learn	more	about	that	string.

In	line	6,	you	create	a	new	instance	of	String	by	using	the	string	literal	“A	Lannister
always	pays	his	debts”.	The	remainder	of	the	program	simply	calls	different	string
methods	to	do	different	operations	on	that	string:

	Line	7	prints	the	value	of	the	string.

	Line	9	calls	the	length()	method	in	the	new	String	object	to	find	out	how
many	characters	it	contains.

	Line	11	calls	the	charAt()	method,	which	returns	the	character	at	the	given
position	in	the	string.	Note	that	string	positions	start	at	position	0	rather	than	1,	so
the	character	at	position	6	is	‘i’.

	Line	13	calls	the	substring()	method,	which	takes	two	integers	indicating	a
range	and	returns	the	substring	with	those	starting	and	ending	points.	The
substring()	method	also	can	be	called	with	only	one	argument,	which	returns
the	substring	from	that	position	to	the	end	of	the	string.

	Line	15	calls	the	indexOf()	method,	which	returns	the	position	of	the	first
instance	of	the	given	character.	Character	literals	are	surrounded	by	single	quotation
marks,	so	the	argument	is	‘t’	(not	“t”).

	Line	17	shows	a	different	use	of	the	indexOf()	method,	which	takes	a	string
argument	and	returns	the	index	of	the	beginning	of	that	string.	String	literals	always
are	surrounded	by	double	quotation	marks.

	Line	19	uses	the	toUpperCase()	method	to	return	a	copy	of	the	string	in	all
uppercase.

Note

If	you	compare	the	output	of	the	StringChecker	application	to	the	characters	in
the	string,	you	might	be	wondering	how	‘i’	could	be	at	position	6	when	it	is	the
seventh	character	in	the	string.	All	of	the	methods	look	like	they’re	off	by	one
(except	for	length()).	The	reason	is	that	the	methods	are	zero-based,	which
means	they	begin	counting	with	0	instead	of	1.	So	‘A’	is	at	position	0,	a	space	at
position	1,	‘L’	at	position	2	and	so	on.	This	kind	of	numbering	is	something	you
encounter	often	in	Java.

Formatting	Strings
Numbers	such	as	money	often	need	to	be	displayed	in	a	precise	manner.	There	are	only
two	places	after	the	decimal	for	the	number	of	cents,	a	dollar	sign	($)	preceding	the	value,
and	commas	separating	groups	of	three	numbers—as	in	$22,453.70	(the	amount	the	U.S.
National	Debt	goes	up	in	one	second).

This	kind	of	formatting	when	displaying	strings	can	be	accomplished	with	the
System.out.format()	method.

The	method	takes	two	arguments:	the	output	format	template	and	the	string	to	display.
Here’s	an	example	that	adds	a	dollar	sign	and	commas	to	the	display	of	an	integer:
Click	here	to	view	code	image

int	accountBalance	=	5005;
System.out.format(“Balance:	$%,d%n”,	accountBalance);

This	code	produces	the	output	Balance:	$5,005.

The	formatting	string	begins	with	a	percent	sign	%	followed	by	one	or	more	flags.	The
%,d	code	displays	a	decimal	with	commas	dividing	each	group	of	three	digits.	The	%n
code	displays	a	newline	character.

The	next	example	displays	the	value	of	pi	to	11	decimal	places:
Click	here	to	view	code	image

double	pi	=	Math.PI;
System.out.format(“%.11f%n”,	pi);

The	output	is	3.14159265359.

Tip

Oracle’s	Java	site	includes	a	beginner’s	tutorial	for	printf-style	output	that
describes	some	of	the	most	useful	formatting	codes:

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html

Nesting	Method	Calls
A	method	can	return	a	reference	to	an	object,	a	primitive	data	type,	or	no	value	at	all.	In
the	StringChecker	application,	all	the	methods	called	on	the	String	object	str	returned
values	that	are	displayed.	The	charAt()	method	returned	a	character	at	a	specified
position	in	the	string.

The	value	returned	by	a	method	also	can	be	stored	in	a	variable:
Click	here	to	view	code	image

String	label	=	“From”;
String	upper	=	label.toUpperCase();

In	this	example,	the	String	object	upper	contains	the	value	returned	by	calling
label.toUpperCase(),	which	is	the	text	“FROM”.

If	the	method	returns	an	object,	you	can	call	the	methods	of	that	object	in	the	same
statement.	This	makes	it	possible	for	you	to	nest	methods	as	you	would	variables.

Earlier	today,	you	saw	an	example	of	a	method	called	with	no	arguments:
customer.cancelOrder();

If	the	cancelOrder()	method	returns	an	object,	you	can	call	methods	of	that	object	in
the	same	statement:
Click	here	to	view	code	image

customer.cancelOrder().fileComplaint();

This	statement	calls	the	fileComplaint()	method,	which	is	defined	in	the	object
returned	by	the	cancelOrder()	method	of	the	customer	object.

You	can	combine	nested	method	calls	and	instance	variable	references	as	well.	In	the	next
example,	the	putOnLayaway()	method	is	defined	in	the	object	stored	by	the
orderTotal	instance	variable,	which	itself	is	part	of	the	customer	object:
Click	here	to	view	code	image

customer.orderTotal.putOnLayaway(itemNumber,	price,	quantity);

This	manner	of	nesting	variables	and	methods	is	demonstrated	in	a	method	you’ve	used
frequently	in	the	first	three	days	of	this	book:	System.out.println().

That	method	displays	strings	and	other	data	to	the	computer’s	standard	output	device.

The	System	class,	part	of	the	java.lang	package,	describes	behavior	specific	to	the
computer	system	on	which	Java	is	running.	System.out	is	a	class	variable	that	contains
an	instance	of	the	class	PrintStream	representing	the	system’s	standard	output,	which
normally	is	the	monitor	but	can	be	a	printer	or	file.	PrintStream	objects	have	a
println()	method	that	sends	a	string	to	that	output	stream.	The	PrintStream	class
is	in	the	java.io	package.

Class	Methods
Class	methods,	also	called	static	methods,	apply	to	the	class	as	a	whole	and	not	to	its
instances	just	like	class	variables.	Class	methods	commonly	are	used	for	general	utility
methods	that	might	not	operate	directly	on	an	object	of	that	class	but	do	fit	with	that	class
conceptually.

For	example,	the	String	class	contains	a	class	method	called	valueOf(),	which	can
take	one	of	many	types	of	arguments	(integers,	Booleans,	objects,	and	so	on).	The
valueOf()	method	then	returns	a	new	instance	of	String	containing	the	argument’s
string	value.	This	method	doesn’t	operate	directly	on	an	existing	instance	of	String,	but
getting	a	string	from	another	object	or	data	type	is	behavior	that	makes	sense	to	define	in
the	String	class.

Class	methods	also	can	be	useful	for	gathering	general	methods	in	one	place.	For	example,
the	Math	class,	defined	in	the	java.lang	package,	contains	a	large	set	of	mathematical
operations	as	class	methods.	No	objects	can	be	created	from	the	Math	class,	but	you	still
can	use	its	methods	with	numeric	or	Boolean	arguments.

For	example,	the	class	method	Math.max()	takes	two	arguments	and	returns	the	larger
of	the	two.	You	don’t	need	to	create	a	new	instance	of	Math;	it	can	be	called	anywhere
you	need	it,	as	in	the	following:
Click	here	to	view	code	image

int	firstPrice	=	225;
int	secondPrice	=	217;
int	higherPrice	=	Math.max(firstPrice,	secondPrice);

Dot	notation	is	used	to	call	a	class	method.	As	with	class	variables,	you	can	use	either	an
instance	of	the	class	or	the	class	itself	on	the	left	side	of	the	dot.	For	the	same	reasons
noted	earlier	about	class	variables,	using	the	name	of	the	class	makes	your	code	easier	to
read.

The	last	two	lines	in	this	example	both	produce	strings	equal	to	“550”:
String	s,	s2;
s	=	“potrzebie”;
s2	=	s.valueOf(550);
s2	=	String.valueOf(550);

References	to	Objects
As	you	work	with	objects,	it’s	important	to	understand	references.	A	reference	is	an
address	that	indicates	where	an	object’s	variables	and	methods	are	stored.

You	aren’t	actually	using	objects	when	you	assign	an	object	to	a	variable	or	pass	an	object
to	a	method	as	an	argument.	You	aren’t	even	using	copies	of	the	objects.	Instead,	you’re
using	references	to	those	objects.

To	better	illustrate	what	this	means,	the	RefTester	application	in	Listing	3.4	shows	how
references	work.	Create	an	empty	Java	file	in	NetBeans	for	the	class	RefTester	in	the
package	com.java21days,	and	enter	Listing	3.4	as	the	application’s	source	code.

LISTING	3.4	The	Full	Text	of	RefTester.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.Point;
	4:
	5:	class	RefTester	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									Point	pt1,	pt2;
	8:									pt1	=	new	Point(100,	100);
	9:									pt2	=	pt1;
10:
11:									pt1.x	=	200;
12:									pt1.y	=	200;
13:									System.out.println(“Point1:	“	+	pt1.x	+	“,	“	+	pt1.y);
14:									System.out.println(“Point2:	“	+	pt2.x	+	“,	“	+	pt2.y);
15:					}
16:	}

Save	and	run	the	application.	The	output	is	shown	in	Figure	3.4.

FIGURE	3.4	Putting	references	to	a	test.

The	following	takes	place	in	the	first	part	of	this	program:

	Line	7—Two	Point	variables	are	created.

	Line	8—A	new	Point	object	is	assigned	to	pt1.

	Line	9—The	variable	pt1	is	assigned	to	pt2.

Lines	11–14	are	the	tricky	part.	The	x	and	y	variables	of	pt1	both	are	set	to	200	and	all
variables	of	pt1	and	pt2	are	displayed	onscreen.

You	might	expect	pt1	and	pt2	to	have	different	values,	but	Figure	3.4	shows	this	not	to
be	the	case.	The	x	and	y	variables	of	pt2	also	have	changed	even	though	nothing	in	the
program	explicitly	changes	them.	This	happens	because	line	7	creates	a	reference	from
pt2	to	pt1	instead	of	creating	pt2	as	a	new	object	copied	from	pt1.

The	variable	pt2	is	a	reference	to	the	same	object	as	pt1,	as	shown	in	Figure	3.5.	Either
variable	can	be	used	to	refer	to	the	object	or	to	change	its	variables.

FIGURE	3.5	References	to	objects.

If	you	wanted	pt1	and	pt2	to	refer	to	separate	objects,	you	could	use	separate	new
Point()	statements	on	lines	6–7	to	create	separate	objects,	as	shown	here:

pt1	=	new	Point(100,	100);
pt2	=	new	Point(100,	100);

References	in	Java	become	particularly	important	when	arguments	are	passed	to	methods.
You	learn	more	about	this	later	today.

Note

Java	has	no	explicit	pointers	or	pointer	arithmetic,	unlike	C	and	C++.	By	using
references	and	Java	arrays,	you	can	duplicate	most	pointer	capabilities	without
many	of	their	drawbacks.

Casting	Objects	and	Primitive	Types
One	thing	you	discover	quickly	about	Java	is	how	finicky	it	is	about	the	information	it	will
handle.	Like	Goldilocks,	the	child	who	is	oddly	hard	to	please	about	porridge	for	a	person
who	breaks	into	homes,	Java	methods	and	constructors	require	things	to	take	a	specific
form	and	won’t	accept	alternatives.

When	you	send	arguments	to	methods	or	use	variables	in	expressions,	you	must	use
variables	of	the	correct	data	types.	If	a	method	requires	an	int,	the	Java	compiler
responds	with	an	error	if	you	try	to	send	a	float	value	to	the	method.	Likewise,	if	you
set	up	one	variable	with	the	value	of	another,	they	must	be	of	compatible	types.	The	two
variables	must	be	the	same	type	or	the	variable	receiving	the	value	must	be	big	enough	to
hold	the	value.

Note

There	is	one	area	where	Java’s	compiler	is	decidedly	flexible:	the	String	object.
String	handling	in	println()	methods,	assignment	statements,	and	method
arguments	is	simplified	by	the	+	concatenation	operator.	If	any	variable	in	a	group
of	concatenated	variables	is	a	string,	Java	treats	the	whole	thing	as	a	String.	This
makes	the	following	possible:

Click	here	to	view	code	image
float	gpa	=	2.25F;
System.out.println(“Honest,	mom,	my	GPA	is	a	“	+
(gpa	+	1.5));

Using	the	concatenation	operator,	a	single	string	can	hold	the	text	representation	of
multiple	objects	and	primitive	types	in	Java.

Sometimes	you	have	a	value	in	your	Java	class	that	isn’t	the	right	type	for	what	you	need.
It	might	be	the	wrong	class	or	the	wrong	data	type,	such	as	a	float	when	you	need	an
int.

In	these	situations,	you	can	use	a	process	called	casting	to	convert	a	value	from	one	type
to	another.

Although	casting	is	reasonably	simple,	the	process	is	complicated	by	the	fact	that	Java	has
both	primitive	types	(such	as	int,	float,	and	boolean)	and	object	types	(String,
Point,	and	the	like).	This	section	discusses	three	forms	of	casts	and	conversions:

	Casting	between	primitive	types,	such	as	int	to	float	or	float	to	double

	Casting	from	an	object	of	a	class	to	an	object	of	another	class,	such	as	from
Object	to	String

	Casting	primitive	types	to	objects	and	then	extracting	primitive	values	from	those
objects

When	discussing	casting,	it	can	be	easier	to	think	in	terms	of	sources	and	destinations.	The
source	is	the	variable	being	cast	into	another	type.	The	destination	is	the	result.

Casting	Primitive	Types
Casting	between	primitive	types	enables	you	to	convert	the	value	of	one	type	to	another.
This	most	commonly	occurs	with	the	numeric	types,	but	one	primitive	type	never	can	be
used	in	a	cast.	Boolean	values	must	be	either	true	or	false	and	cannot	be	used	in	a
casting	operation.

In	many	casts	between	primitive	types,	the	destination	can	hold	larger	values	than	the
source,	so	the	value	is	converted	easily.	An	example	would	be	casting	a	byte	into	an
int.	Because	a	byte	holds	values	from	–128	to	127	and	an	int	holds	from	around	–
2,100,000	to	2,100,000,	there’s	more	than	enough	room	to	cast	a	byte	into	an	int.

Often	you	can	automatically	use	a	byte	or	char	as	an	int;	an	int	as	a	long;	an	int
as	a	float;	or	anything	as	a	double.	In	most	cases,	because	the	larger	type	provides
more	precision	than	the	smaller,	no	loss	of	information	occurs	as	a	result.	The	exception	is
casting	integers	to	floating-point	values.	Casting	a	long	to	a	float	or	a	long	to	a
double	can	cause	some	loss	of	precision.

Note

A	character	can	be	used	as	an	int	because	each	character	has	a	corresponding
numeric	code	that	represents	its	position	in	the	character	set.	If	the	variable	key	has
the	value	65,	the	cast	(char)	key	produces	the	character	value	'A'.	The
numeric	code	associated	with	a	capital	A	is	65	in	the	ASCII	character	set,	which
Java	adopted	as	part	of	its	character	support.

You	must	use	an	explicit	cast	to	convert	a	value	in	a	large	type	to	a	smaller	type.	Explicit
casts	take	the	following	form:

(typename)	value

Here	typename	is	the	name	of	the	primitive	data	type	to	which	you’re	converting,	such
as	short,	int,	or	float.	value	is	an	expression	that	results	in	the	value	of	the	source
type.	For	example,	in	the	following	statement,	the	value	of	x	is	divided	by	the	value	of	y
and	the	result	is	cast	into	an	int:

int	result	=	(int)(x	/	y);

Note	that	because	the	precedence	of	casting	is	higher	than	that	of	arithmetic,	you	have	to
use	parentheses	here.	Otherwise,	first	the	value	of	x	would	be	cast	into	an	int,	and	then	it
would	be	divided	by	y,	which	could	produce	a	different	result.

Casting	Objects
Objects	of	classes	also	can	be	cast	into	objects	of	other	classes	when	the	source	and
destination	classes	are	related	by	inheritance	and	one	class	is	a	subclass	of	the	other.

Some	objects	might	not	need	to	be	cast	explicitly.	In	particular,	because	a	subclass
contains	all	the	information	as	its	superclass,	you	can	use	an	object	of	a	subclass	anywhere
a	superclass	is	expected.

For	example,	consider	a	method	that	takes	two	arguments,	one	of	type	Object	and
another	of	type	Component	in	the	java.awt	package	(which	has	classes	for	a
graphical	user	interface).

You	can	pass	an	instance	of	any	class	for	the	Object	argument	because	all	Java	classes
are	subclasses	of	Object.

For	the	Component	argument,	you	can	pass	in	its	subclasses,	such	as	Button,
Container,	and	Label	(all	in	java.awt).

This	is	true	anywhere	in	a	program,	not	just	inside	method	calls.	If	you	had	a	variable
defined	as	class	Component,	you	could	assign	objects	of	that	class	or	any	of	its
subclasses	to	that	variable	without	casting.

This	also	is	true	in	the	reverse,	so	you	can	use	a	superclass	when	a	subclass	is	expected.
There	is	a	catch,	however:	Because	subclasses	contain	more	behavior	than	their
superclasses,	a	loss	of	precision	occurs	in	the	casting.	Those	superclass	objects	might	not
have	all	the	behavior	needed	to	act	in	place	of	a	subclass	object.

Consider	this	example:	If	you	have	an	operation	that	calls	methods	in	objects	of	the	class
Integer,	using	an	object	of	its	superclass	Number	won’t	include	many	methods
specified	in	Integer.	Errors	occur	if	you	try	to	call	methods	that	the	destination	object
doesn’t	have.

To	use	superclass	objects	where	subclass	objects	are	expected,	you	must	cast	them
explicitly.	You	won’t	lose	any	information	in	the	cast,	but	you	gain	all	the	methods	and
variables	that	the	subclass	defines.

To	cast	an	object	to	another	class,	you	use	the	same	operation	as	for	primitive	types,	which
takes	this	form:

(classname)	object

In	this	template,	classname	is	the	name	of	the	destination	class,	and	object	is	a
reference	to	the	source	object.	Casting	creates	a	reference	to	the	old	object	of	the	type
classname;	the	old	object	continues	to	exist	as	it	did	before.

The	following	example	casts	an	instance	of	the	class	VicePresident	to	an	instance	of

the	class	Employee.	VicePresident	is	a	subclass	of	Employee	with	more
information:
Click	here	to	view	code	image

Employee	emp	=	new	Employee();
VicePresident	veep	=	new	VicePresident();
emp	=	veep;	//	no	cast	needed	for	upward	use
veep	=	(VicePresident)	emp;	//	must	cast	explicitly

When	you	begin	working	with	graphical	user	interfaces	during	Week	2,	“The	Java	Class
Library,”	you	will	see	that	casting	one	object	is	necessary	whenever	you	use	Java2D
graphics	operations.	You	must	cast	a	Graphics	object	to	a	Graphics2D	object	before
you	can	draw	onscreen.	The	following	example	uses	a	Graphics	object	called	screen
to	create	a	new	Graphics2D	object	called	screen2D:
Click	here	to	view	code	image

Graphics2D	screen2D	=	(Graphics2D)	screen;

Graphics2D	is	a	subclass	of	Graphics	and	both	belong	to	the	java.awt	package.
You’ll	explore	this	subject	fully	during	Day	13,	“Creating	Java2D	Graphics.”

In	addition	to	casting	objects	to	classes,	you	can	cast	objects	to	interfaces,	but	only	if	an
object’s	class	or	one	of	its	superclasses	actually	implements	the	interface.	Casting	an
object	to	an	interface	means	that	you	can	call	one	of	that	interface’s	methods	even	if	that
object’s	class	does	not	actually	implement	that	interface.

Converting	Primitive	Types	to	Objects	and	Vice	Versa
One	thing	you	can’t	do	is	cast	from	an	object	to	a	primitive	data	type,	or	vice	versa.

Primitive	types	and	objects	are	different	things	in	Java,	and	you	can’t	automatically	cast
between	the	two.

As	an	alternative,	the	java.lang	package	includes	classes	that	correspond	to	each
primitive	data	type:	Float,	Boolean,	Byte,	and	so	on.	Most	of	these	classes	have	the
same	names	as	the	data	types,	except	that	the	class	names	begin	with	a	capital	letter
(Short	instead	of	short,	Double	instead	of	double,	and	the	like).	Also,	two	classes
have	names	that	differ	from	the	corresponding	data	type:	Character	is	used	for	char
variables	and	Integer	is	used	for	int	variables.

Using	the	classes	that	correspond	to	each	primitive	type,	you	can	create	an	object	that
holds	the	same	value.	The	following	statement	creates	an	instance	of	the	Integer	class
with	the	integer	value	7801:
Click	here	to	view	code	image

Integer	dataCount	=	new	Integer(7801);

After	you	have	created	an	object	in	this	manner,	you	can	use	it	as	you	would	any	object
(although	you	cannot	change	its	value).	When	you	want	to	use	that	value	again	as	a
primitive	value,	there	are	methods	for	that	as	well.	For	example,	if	you	wanted	to	get	an
int	value	from	a	dataCount	object,	the	following	statement	shows	how:
Click	here	to	view	code	image

int	newCount	=	dataCount.intValue();	//	returns	7801

A	common	translation	you	need	in	programs	is	converting	a	String	to	a	numeric	type,
such	as	an	integer.	When	you	need	an	int	as	the	result,	this	can	be	done	by	using	the
parseInt()	class	method	of	the	Integer	class.	The	String	to	convert	is	the	only
argument	sent	to	the	method,	as	in	the	following	example:
Click	here	to	view	code	image

String	pennsylvania	=	“65000”;
int	penn	=	Integer.parseInt(pennsylvania);

The	following	classes	can	be	used	to	work	with	objects	instead	of	primitive	data	types:
Boolean,	Byte,	Character,	Double,	Float,	Integer,	Long,	Short,	and
Void.	These	classes	are	commonly	called	object	wrappers	because	they	provide	an	object
representation	that	contains	a	primitive	value.

Caution

If	you	try	to	use	the	preceding	example	in	a	program,	your	program	won’t	compile.
The	parseInt()	method	is	designed	to	fail	with	a	NumberFormatException
error	if	the	argument	to	the	method	is	not	a	valid	numeric	value.	To	deal	with	errors
of	this	kind,	you	must	use	special	error-handling	statements,	which	are	introduced
during	Day	7,	“Exceptions	and	Threads.”

Working	with	primitive	types	and	objects	that	represent	the	same	values	is	made	easier
through	autoboxing	and	unboxing,	an	automatic	conversion	process.

Autoboxing	automatically	converts	a	primitive	type	to	an	object.	Unboxing	converts	in	the
other	direction.

If	you	write	a	statement	that	uses	an	object	where	a	primitive	type	is	expected,	or	vice
versa,	the	value	is	converted	so	that	the	statement	executes	successfully.

Here’s	an	example	of	autoboxing	and	unboxing:
Click	here	to	view	code	image

Float	f1	=	12.5F;
Float	f2	=	27.2F;
System.out.println(“Lower	number:	“	+	Math.min(f1,	f2));

The	Math.min()	method	takes	two	float	values	as	arguments,	but	the	preceding
example	sends	the	method	two	Float	objects	as	arguments	instead.

The	compiler	does	not	report	an	error	over	this	discrepancy.	Instead,	the	Float	objects
automatically	are	unboxed	into	float	values	before	being	sent	to	the	min()	method.

Caution

Unboxing	an	object	works	only	if	the	object	has	a	value.	If	no	constructor	has	been
called	to	set	up	the	object,	compilation	fails	with	an	error.

Comparing	Object	Values	and	Classes
In	addition	to	casting,	you	often	will	perform	three	other	common	tasks	that	involve
objects:

	Comparing	objects

	Finding	out	the	class	of	any	given	object

	Testing	whether	an	object	is	an	instance	of	a	given	class

Comparing	Objects
Yesterday,	you	learned	about	operators	for	comparing	values—equal,	not	equal,	less	than,
and	so	on.	Most	of	these	operators	work	only	on	primitive	types,	not	on	objects.	If	you	try
to	use	other	values	as	operands,	the	Java	compiler	produces	errors.

The	exceptions	to	this	rule	are	the	==	operator	for	equality	and	the	!=	operator	for
inequality.	When	applied	to	objects,	these	operators	don’t	do	what	you	might	first	expect.
Instead	of	checking	whether	one	object	has	the	same	value	as	the	other,	they	determine
whether	both	sides	of	the	operator	refer	to	the	same	object.

To	compare	objects	of	a	class	and	have	meaningful	results,	you	must	implement	special
methods	in	your	class	and	call	those	methods.

A	good	example	of	this	is	the	String	class.	It	is	possible	to	have	two	different	String
objects	that	represent	the	same	text.	If	you	were	to	employ	the	==	operator	to	compare
these	objects,	however,	they	would	be	considered	unequal.	Although	their	contents	match,
they	are	not	the	same	object.

To	see	whether	two	String	objects	have	matching	values,	an	equals()	method	of	the
class	is	used.	The	method	tests	each	character	in	the	string	and	returns	true	if	the	two
strings	have	the	same	value.	The	EqualsTester	application	shown	in	Listing	3.5	illustrates
this.	Create	the	application	with	NetBeans	in	the	com.java21days	package	and	save
the	file,	either	by	choosing	File,	Save	or	clicking	the	Save	All	toolbar	button.

LISTING	3.5	The	Full	Text	of	EqualsTester.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	EqualsTester	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									String	str1,	str2;
	6:									str1	=	“Boy,	that	escalated	quickly.”;
	7:									str2	=	str1;
	8:
	9:									System.out.println(“String1:	“	+	str1);
10:									System.out.println(“String2:	“	+	str2);
11:									System.out.println(“Same	object?	“	+	(str1	==	str2));
12:
13:									str2	=	new	String(str1);
14:
15:									System.out.println(“String1:	“	+	str1);
16:									System.out.println(“String2:	“	+	str2);

17:									System.out.println(“Same	object?	“	+	(str1	==	str2));
18:									System.out.println(“Same	value?	“	+	str1.equals(str2));
19:					}
20:	}

The	program’s	output	appears	in	Figure	3.6.

FIGURE	3.6	Calling	String	methods	to	learn	more	about	that	string.

The	first	part	of	this	program	declares	two	variables	(str1	and	str2),	assigns	the	literal
“Boy,	that	escalated	quickly.”	to	str1,	and	then	assigns	that	value	to	str2	(lines	5–7).
As	you	learned	earlier,	str1	and	str2	now	point	to	the	same	object,	and	the	equality
test	at	line	11	proves	that.

In	the	second	part	of	this	program,	you	create	a	new	String	object	with	the	same	value
as	str1	and	assign	str2	to	that	new	String	object.

Now	you	have	two	different	string	objects	in	str1	and	str2,	both	with	the	same	value.
Testing	them	to	see	whether	they’re	the	same	object	by	using	the	==	operator	returns	the
expected	answer:	false	(line	17).	They	are	not	the	same	object	in	memory.	Testing	them
using	the	equals()	method	in	line	18	also	returns	the	expected	answer	of	true,	which
shows	they	have	the	same	value.

Note

Why	can’t	you	just	use	another	literal	when	you	change	str2,	instead	of	using
new?	String	literals	are	optimized	in	Java.	If	you	create	a	string	using	a	literal	and
then	use	another	literal	with	the	same	characters,	Java	gives	you	back	the	first
String	object.	Both	strings	are	the	same	object;	you	have	to	go	out	of	your	way	to
create	two	separate	objects.

Determining	the	Class	of	an	Object
Want	to	find	out	the	name	of	an	object’s	class?	Here’s	how	for	an	object	assigned	to	the
variable	key:
Click	here	to	view	code	image

String	name	=	key.getClass().getName();

The	getClass()	method	is	defined	in	the	Object	class,	so	it	can	be	called	in	all	Java
objects.	The	method	returns	a	Class	object	that	represents	the	object’s	class.	That
object’s	getName()	method	returns	a	string	holding	the	name	of	the	class.

Another	useful	test	is	the	instanceof	operator,	which	has	two	operands:	a	reference	to
an	object	on	the	left,	and	a	class	name	on	the	right.	The	expression	produces	a	Boolean
value:	true	if	the	object	is	an	instance	of	the	named	class	or	any	of	that	class’s
subclasses,	or	false	otherwise,	as	in	these	examples:
Click	here	to	view	code	image

boolean	check1	=	“Texas”	instanceof	String;	//	true

Object	obiwan	=	new	Object();
boolean	check2	=	obiwan	instanceof	String;	//	false

The	instanceof	operator	also	can	be	used	for	interfaces.	If	an	object	implements	an
interface,	the	instanceof	operator	returns	true	when	this	is	tested.

Unlike	other	operators	in	Java,	instanceof	is	not	a	form	of	punctuation	like	*	for
multiplication	or	+	for	addition.	Instead,	the	instanceof	keyword	is	the	operator.

Summary
Now	that	you	have	spent	three	days	exploring	how	object-oriented	programming	is
implemented	in	Java,	you’re	in	a	better	position	to	decide	how	useful	it	can	be	in	your
programming.

If	you	are	a	“glass	half	empty”	kind	of	person,	object-oriented	programming	(OOP)	is	a
level	of	abstraction	that	gets	in	the	way	of	using	a	programming	language.	You	learn	more
about	why	OOP	is	thoroughly	ingrained	in	Java	in	the	coming	days	and	may	change	your
mind.

If	you	are	a	“glass	half	full”	kind	of	person,	object-oriented	programming	is	beneficial
because	of	its	benefits:	improved	reliability,	reusability,	and	maintenance.

Today	you	learned	how	to	deal	with	objects:	creating	them,	reading	their	values	and
changing	them,	and	calling	their	methods.	You	also	learned	how	to	cast	objects	from	one
class	to	another,	cast	to	and	from	primitive	data	types	and	classes,	and	take	advantage	of
automatic	conversions	through	autoboxing	and	unboxing.

Q&A
Q	I’m	confused	about	the	differences	between	objects	and	the	primitive	data
types,	such	as	int	and	boolean.

A	The	primitive	types	(byte,	short,	int,	long,	float,	double,	boolean,	and
char)	are	not	objects,	although	in	many	ways	they	can	be	handled	like	objects.
They	can	be	assigned	to	variables	and	passed	in	and	out	of	methods.

Objects	are	instances	of	classes	and	as	such	are	much	more	complex	data	types	than
simple	numbers	and	characters.	They	often	contain	numbers	and	characters	as
instance	or	class	variables.

Q	The	length()	and	charAt()	methods	in	the	StringChecker	application
(Listing	3.3)	don’t	appear	to	make	sense.	If	length()	says	that	a	string	is	33
characters	long,	shouldn’t	the	characters	be	numbered	from	1	to	33	when
charAt()	is	used	to	display	characters	in	the	string?

A	The	two	methods	look	at	strings	differently.	The	length()	method	counts	the
characters	in	the	string,	with	the	first	character	counting	as	1,	the	second	as	2,	and	so
on.	The	charAt()	method	considers	the	first	character	in	the	string	to	be	located	at
position	number	0.	This	is	the	same	numbering	system	used	with	array	elements	in
Java.	Consider	the	string	“Charlie	Brown”.	It	has	13	characters	ranging	from
position	0	(the	letter	C)	to	position	12	(the	letter	n).

Q	If	Java	lacks	pointers,	how	can	I	do	something	like	linked	lists,	where	there’s	a
pointer	from	one	node	to	another	so	that	they	can	be	traversed?

A	It’s	incorrect	to	say	that	Java	has	no	pointers;	it	just	has	no	explicit	pointers.	Object
references	are	effectively	pointers.	To	create	something	like	a	linked	list,	you	could
create	a	class	called	Node,	which	would	have	an	instance	variable	also	of	type
Node.	To	link	node	objects,	assign	a	node	object	to	the	instance	variable	of	the
object	immediately	before	it	in	the	list.	Because	object	references	are	pointers,
linked	lists	set	up	this	way	behave	as	you	would	expect	them	to.	(You’ll	work	with
the	Java	class	library’s	version	of	linked	lists	on	Day	8,	“Data	Structures.”)

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	operator	do	you	use	to	call	an	object’s	constructor	and	create	a	new	object?

A.	+

B.	new

C.	instanceof

2.	What	kind	of	methods	apply	to	all	objects	of	a	class	rather	than	an	individual	object?

A.	Universal	methods

B.	Instance	methods

C.	Class	methods

3.	If	you	have	a	program	with	objects	named	obj1	and	obj2,	what	happens	when
you	use	the	statement	obj2	=	obj1?

A.	The	instance	variables	in	obj2	are	given	the	same	values	as	obj1.

B.	obj2	and	obj1	are	considered	to	be	the	same	object.

C.	Neither	A	nor	B.

Answers
1.	B.	The	new	operator	is	followed	by	a	call	to	the	object’s	constructor.

2.	C.	Class	methods	can	be	called	without	creating	an	object	of	that	class.

3.	B.	The	=	operator	does	not	copy	values	from	one	object	to	another.	Instead,	it	makes
both	variables	refer	to	the	same	object.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	AyeAye	{
				int	i	=	40;
				int	j;

				public	AyeAye()	{
								setValue(i++);
				}

				void	setValue(int	inputValue)	{
								int	i	=	20;
								j	=	i	+	1;
								System.out.println(“j	=	“	+	j);
				}
}

What	is	the	value	of	the	j	variable	at	the	time	it	is	displayed	inside	the	setValue()
method?

A.	42

B.	40

C.	21

D.	20

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	3
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	a	program	that	turns	a	birthday	in	MM/DD/YYYY	format	(such	as
04/29/2016)	into	three	individual	strings.

2.	Create	a	class	with	instance	variables	for	height,	weight,	and	depth,	making
each	an	integer.	Create	a	Java	application	that	uses	your	new	class,	sets	each	of	these
values	in	an	object,	and	displays	the	values.

http://www.java21days.com

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	4.	Lists,	Logic,	and	Loops

Today,	you	learn	about	three	of	the	most	boring	features	in	the	Java	language:

	How	to	organize	groups	of	the	same	class	or	data	type	into	lists	called	arrays

	How	to	make	a	program	decide	whether	to	do	something	based	on	logic

	How	to	make	part	of	a	Java	program	repeat	itself	by	using	loops

If	these	features	don’t	sound	boring	to	you,	that’s	good.	Most	of	the	significant	work	that
you	will	accomplish	with	your	Java	software	will	use	all	three.

These	topics	are	boring	for	computers.	They	enable	software	to	do	one	of	the	things	at
which	it	excels:	performing	repetitive	tasks	repeatedly.

Arrays
At	this	point,	you	have	dealt	with	only	a	few	variables	in	each	Java	program.	In	some
cases,	it’s	manageable	to	use	individual	variables	to	store	information,	but	what	if	you	had
20	items	of	related	information	to	track?	You	could	create	20	different	variables	and	set	up
their	initial	values,	but	that	approach	becomes	progressively	more	cumbersome	as	you
deal	with	larger	amounts	of	information.	What	if	there	were	100	items,	or	even	1,000?

Arrays	are	a	way	to	store	a	list	of	items	that	have	the	same	primitive	data	type,	the	same
class,	or	a	common	parent	class.	Each	item	on	the	list	goes	into	its	own	numbered	slot	so
that	you	can	easily	access	the	information.

Arrays	can	contain	any	type	of	information	that	is	stored	in	a	variable,	but	after	the	array
is	created,	you	can	use	it	for	that	information	type	only.	For	example,	you	can	have	an
array	of	integers,	an	array	of	String	objects,	or	an	array	of	arrays,	but	you	can’t	have	an
array	that	contains	both	String	objects	and	the	primitive	type	integers.

There	is	one	way	around	this	prohibition:	An	array	can	hold	a	class	and	any	of	its
subclasses.	So	an	array	of	the	Object	class	could	contain	any	object	in	Java,	including
the	classes	that	represent	the	same	values	as	primitive	types.

Java	implements	arrays	differently	than	other	languages—as	objects	treated	like	other
objects.

To	create	an	array	in	Java,	you	must	do	the	following:

1.	Declare	a	variable	to	hold	the	array.

2.	Create	a	new	array	object	and	assign	it	to	the	array	variable.

3.	Store	information	in	that	array.

Declaring	Array	Variables
The	first	step	in	array	creation	is	to	declare	a	variable	that	will	hold	the	array.	Array
variables	indicate	the	object	or	data	type	that	the	array	will	hold	and	the	array’s	name.	To
differentiate	from	regular	variable	declarations,	a	pair	of	empty	brackets	[]	is	added	to	the
object	or	data	type,	or	to	the	variable	name.

The	following	statements	are	examples	of	array	variable	declarations:
String[]	requests;
Point[]	targets;
float[]	donations;

You	also	can	declare	an	array	by	putting	the	brackets	after	the	variable	name	instead	of	the
information	type,	as	in	the	following	statements:

String	requests[];
Point	targets[];
float	donations[];

Note

The	choice	of	which	style	to	use	is	a	matter	of	personal	preference.	The	sample
programs	in	this	book	place	the	brackets	after	the	information	type	rather	than	the
variable	name,	which	is	the	more	popular	convention	among	Java	programmers.

Creating	Array	Objects
After	you	declare	the	array	variable,	the	next	step	is	to	create	an	array	object	and	assign	it
to	that	variable.	To	do	this:

	Use	the	new	operator.

	Initialize	the	contents	of	the	array	directly.

Because	arrays	are	objects	in	Java,	you	can	use	the	new	operator	to	create	a	new	instance
of	an	array,	as	in	the	following	statement:
Click	here	to	view	code	image

String[]	players	=	new	String[10];

This	statement	creates	a	new	array	of	strings	with	10	slots	that	can	contain	String
objects.	When	you	create	an	array	object	by	using	new,	you	must	indicate	how	many	slots
the	array	will	hold.	This	statement	does	not	put	actual	String	objects	in	the	slots;	you
must	do	that	later.

Array	objects	can	contain	primitive	types,	such	as	integers	or	Booleans,	just	as	they	can
contain	objects:

int[]	temps	=	new	int[99];

When	you	create	an	array	object	using	new,	all	its	slots	automatically	are	given	an	initial
value	(0	for	numeric	arrays,	false	for	Booleans,	‘\0’	for	character	arrays,	and	null	for
objects).

Note

The	Java	keyword	null	refers	to	a	null	object	(and	can	be	used	for	any	object
reference).	It	is	not	equivalent	to	0	or	the	‘\0’	character	as	the	NULL	constant	is	in
C.

Because	each	object	in	an	array	of	objects	has	a	null	reference	when	created,	you	must
assign	an	object	to	each	array	element	before	using	it.

The	following	example	creates	an	array	of	three	Integer	objects	and	then	assigns	each
element	an	object:
Click	here	to	view	code	image

Integer[]	series	=	new	Integer[3];
series[0]	=	new	Integer(10);
series[1]	=	new	Integer(3);
series[2]	=	new	Integer(5);

You	can	create	and	initialize	an	array	at	the	same	time	by	enclosing	the	array’s	elements
inside	braces,	separated	by	commas:
Click	here	to	view	code	image

Point[]	markup	=	{	new	Point(1,5),	new	Point(3,3),	new	Point(2,3)	};

Each	of	the	elements	inside	the	braces	must	be	the	same	type	as	the	variable	that	holds	the
array.	When	you	create	an	array	with	initial	values	in	this	manner,	the	array	is	the	same
size	as	the	number	of	elements	you	include	within	the	braces.	The	preceding	example
creates	an	array	of	Point	objects	named	markup	that	contains	three	elements.

Because	String	objects	can	be	created	and	initialized	without	the	new	operator,	you	can
do	the	same	when	creating	an	array	of	strings:
Click	here	to	view	code	image

String[]	titles	=	{	“Mr.”,	“Mrs.”,	“Ms.”,	“Miss”,	“Dr.”	};

The	preceding	statement	creates	a	five-element	array	of	String	objects	named	titles.

All	arrays	have	an	instance	variable	named	length	that	holds	a	count	of	the	number	of
elements	in	the	array.	Extending	the	preceding	example,	the	variable	titles.length
contains	the	value	5.

The	first	element	of	an	array	has	a	subscript	of	0	rather	than	1,	so	an	array	with	five
elements	has	array	slots	accessed	using	subscripts	0	through	4.

Accessing	Array	Elements
After	you	have	an	array	with	initial	values,	you	can	retrieve,	change,	and	test	the	values	in
each	slot	of	that	array.	The	value	in	a	slot	is	accessed	using	the	array	name	followed	by	a
subscript	enclosed	in	square	brackets.	This	name	and	subscript	can	be	put	into
expressions,	as	in	the	following:

testScore[40]	=	920;

This	statement	sets	the	41st	element	of	the	testScore	array	to	a	value	of	920,	since

element	numbering	begins	at	0.	The	testScore	part	of	this	expression	is	a	variable
holding	an	array	object,	although	it	also	can	be	an	expression	that	results	in	an	array.	The
subscript	expression	specifies	the	slot	to	access	within	the	array.
All	array	subscripts	are	checked	to	make	sure	that	they	are	inside	the	array’s	boundaries	as
specified	when	the	array	was	created.	In	Java,	it	is	impossible	to	access	or	assign	a	value
to	an	array	slot	outside	the	array’s	boundaries.	This	avoids	the	problems	that	result	from
overrunning	the	bounds	of	an	array	in	other	languages.	Note	the	following	two	statements:
Click	here	to	view	code	image

float[]	rating	=	new	float[20];
rating[20]	=	3.22F;

Typing	these	statements	into	NetBeans	would	produce	an	error	because	the	rating	array
does	not	have	a	slot	numbered	20;	it	has	20	slots	that	begin	at	0	and	end	at	19.	The	Java
compiler	would	fail	with	an	ArrayIndexOutOfBoundsException	error.

The	Java	Virtual	Machine	(JVM)	also	notes	an	error	if	the	array	subscript	is	calculated
when	the	program	is	running	and	the	subscript	is	outside	the	array’s	boundaries.	You	learn
more	about	errors,	which	are	called	exceptions,	on	Day	7,	“Exceptions	and	Threads.”

One	way	to	avoid	accidentally	overrunning	the	end	of	an	array	in	your	programs	is	to	use
the	length	instance	variable.	The	following	statement	displays	the	number	of	elements
in	the	rating	array:
Click	here	to	view	code	image

System.out.println(“Elements:	“	+	rating.length);

Changing	Array	Elements
As	you	saw	in	the	previous	examples,	you	can	assign	a	value	to	a	specific	slot	in	an	array
by	putting	an	assignment	statement	after	the	array	name	and	subscript,	as	in	the	following:

temperature[4]	=	85;

day[0]	=	“Sunday”;

manager[2]	=	manager[0];

It’s	important	to	remember	that	an	array	of	objects	in	Java	is	an	array	of	references	to
those	objects.	When	you	assign	a	value	to	a	slot	in	that	kind	of	array,	you	are	creating	a
reference	to	that	object.	When	you	move	around	values	inside	arrays,	you	are	reassigning
the	reference	rather	than	copying	a	value	from	one	slot	to	another.	Arrays	of	a	primitive
data	type,	such	as	int	and	float,	do	copy	the	values	from	one	slot	to	another,	as	do
elements	of	a	String	array,	even	though	they	are	objects.

Arrays	are	simple	to	create	and	modify,	and	they	provide	an	enormous	amount	of
functionality	in	Java.	The	HalfDollars	application,	shown	in	Listing	4.1,	creates,
initializes,	and	displays	elements	of	three	arrays.	Create	a	new	empty	Java	file	in
NetBeans	called	HalfDollars	in	the	com.java21days	package,	and	enter	the	listing’s
source	code.

LISTING	4.1	The	Full	Text	of	HalfDollars.java

Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	HalfDollars	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									int[]	denver	=	{	1_700_000,	4_600_000,	2_100_000	};
	6:									int[]	philadelphia	=	new	int[denver.length];
	7:									int[]	total	=	new	int[denver.length];
	8:									int	average;
	9:
10:									philadelphia[0]	=	1_800_000;
11:									philadelphia[1]	=	5_000_000;
12:									philadelphia[2]	=	2_500_000;
13:
14:									total[0]	=	denver[0]	+	philadelphia[0];
15:									total[1]	=	denver[1]	+	philadelphia[1];
16:									total[2]	=	denver[2]	+	philadelphia[2];
17:									average	=	(total[0]	+	total[1]	+	total[2])	/	3;
18:
19:									System.out.print(“2012	production:	“);
20:									System.out.format(“%,d%n”,	total[0]);
21:									System.out.print(“2013	production:	“);
22:									System.out.format(“%,d%n”,	total[1]);
23:									System.out.print(“2014	production:	“);
24:									System.out.format(“%,d%n”,	total[2]);
25:									System.out.print(“Average	production:	“);
26:									System.out.format(“%,d%n”,	average);
27:					}
28:	}

The	HalfDollars	application	uses	three	integer	arrays	to	store	production	totals	for	U.S.
half-dollar	coins	produced	at	the	Denver	and	Philadelphia	mints.	When	you	run	the
program,	it	displays	the	output	shown	in	Figure	4.1.

FIGURE	4.1	Displaying	the	contents	of	a	String	array.

The	class	created	here,	HalfDollars,	has	three	instance	variables	that	hold	arrays	of
integers.

The	first,	which	is	named	denver,	is	declared	and	initialized	on	line	5	to	contain	three
integers:	1_700_000	in	element	0,	4_600_000	in	element	1,	and	2_100_000	in	element	2.
These	figures	are	the	total	half-dollar	production	at	the	Denver	mint	for	three	years.	The
integers	use	an	underscore	character	_	after	every	three	digits	to	make	the	numbers	more
human-readable.	The	compiler	ignores	the	underscores.

The	second	and	third	instance	variables,	philadelphia	and	total,	are	declared	in
lines	6	and	7.	The	philadelphia	array	contains	the	production	totals	for	the

Philadelphia	mint,	and	total	is	used	to	store	the	overall	production	totals.

No	initial	values	are	assigned	to	the	slots	of	the	philadelphia	and	total	arrays	in
lines	6	and	7.	For	this	reason,	each	element	is	given	the	default	value	for	integers:	0.

The	denver.length	variable	is	used	to	give	both	of	these	arrays	the	same	number	of
slots	as	the	denver	array.	Every	array	contains	a	length	variable	that	you	can	use	to
keep	track	of	the	number	of	elements	it	contains.

The	rest	of	the	main()	method	of	this	application	does	the	following:

	Line	8	creates	an	integer	variable	called	average.

	Lines	10–12	assign	new	values	to	the	three	elements	of	the	philadelphia	array.

	Lines	14–16	assign	new	values	to	the	elements	of	the	total	array.	In	line	14,
total	element	0	is	given	the	sum	of	denver	element	0	and	philadelphia
element	0.	Similar	expressions	are	used	in	lines	15	and	16.

	Line	17	sets	the	value	of	the	average	variable	to	the	average	of	the	three	total
elements.	Because	average	and	the	three	total	elements	are	integers,	the
average	is	expressed	as	an	integer	rather	than	a	floating-point	number.

	Lines	19–26	display	the	values	stored	in	the	total	array	and	the	average
variable,	using	the	System.out.format()	method	to	display	the	numeric
values	in	a	more	readable	form	using	commas.

This	application	handles	arrays	inefficiently.	The	statements	are	almost	identical,	except
for	the	subscripts	that	indicate	the	array	element	to	which	you	are	referring.	If	the
HalfDollars	application	were	being	used	to	track	100	years	of	production	totals	instead	of
three,	this	approach	would	require	a	lot	of	redundant	statements.

When	dealing	with	arrays,	you	can	use	loops	to	cycle	through	an	array’s	elements	instead
of	dealing	with	each	element	individually.	This	makes	the	code	a	lot	shorter	and	easier	to
read.	When	you	learn	about	loops	later	today,	you	see	a	rewrite	of	the	current	example.

Multidimensional	Arrays
Arrays	can	be	multidimensional,	containing	more	than	one	subscript	to	store	information
in	multiple	dimensions.

A	common	use	of	a	multidimensional	array	is	to	represent	the	data	in	an	(x,y)	grid	of	array
elements.

Java	supports	this	by	enabling	an	array	to	hold	arrays	as	each	of	its	elements.	Those	arrays
can	also	contain	arrays,	and	so	on,	for	as	many	dimensions	as	needed.

For	example,	consider	a	program	that	needs	to	accomplish	the	following	tasks:

	Record	an	integer	value	each	day	for	a	year.

	Organize	those	values	by	week.

One	way	to	organize	this	data	is	to	create	a	53-element	array	in	which	each	element
contains	a	7-element	array:

Click	here	to	view	code	image
int[][]	dayValue	=	new	int[53][7];

This	array	of	arrays	contains	a	total	of	371	integers,	enough	room	for	each	day	of	the	year
(plus	a	few	extra).	You	could	set	the	value	for	the	first	day	of	the	10th	week	with	the
following	statement:

dayValue[9][0]	=	14200;

Remember	that	array	indexes	start	at	0	instead	of	1,	so	the	10th	week	is	at	element	9	and
the	first	day	at	element	0.

You	can	use	the	length	instance	variable	with	these	arrays	as	you	would	any	other.	The
following	statement	contains	a	three-dimensional	array	of	integers	and	displays	the
number	of	elements	in	each	dimension:
Click	here	to	view	code	image

int[][][]	cen	=	new	int[100][52][7];
System.out.println(“Elements	in	1st	dimension:	“	+	cen.length);
System.out.println(“Elements	in	2nd	dimension:	“	+	cen[0].length);
System.out.println(“Elements	in	3rd	dimension:	“	+	cen[0][0].length);

Block	Statements
Statements	in	Java	are	grouped	into	blocks.	The	beginning	and	ending	boundaries	of	a
block	are	noted	with	brace	characters—an	opening	brace	{	for	the	beginning	and	a	closing
brace	}	for	the	ending.

You	have	used	blocks	to	hold	the	variables	and	methods	in	a	class	definition	and	define
statements	that	belong	in	a	method.

Blocks	also	are	called	block	statements	because	an	entire	block	can	be	used	anywhere	a
single	statement	could	be	used.	Each	statement	inside	the	block	then	is	executed	from	top
to	bottom.

You	can	put	blocks	inside	other	blocks,	just	as	you	do	when	you	put	a	method	inside	a
class	definition.

An	important	thing	to	note	about	using	a	block	is	that	it	creates	a	scope	for	the	local
variables	created	inside	the	block.	Scope	is	the	part	of	a	program	where	a	variable	exists
and	can	be	used.	If	you	try	to	use	a	variable	outside	its	scope,	an	error	occurs.

In	Java,	the	scope	of	a	variable	is	the	block	in	which	it	was	created.	When	you	can	declare
and	use	local	variables	inside	a	block,	those	variables	cease	to	exist	after	the	block	is
finished	executing.	For	example,	the	following	method	contains	a	block:

void	testBlock()	{
				int	x	=	10;
				{	//	start	of	block
								int	y	=	40;
								y	=	y	+	x;
				}	//	end	of	block
}

Two	variables	are	defined	in	this	method:	x	and	y.	The	scope	of	the	y	variable	is	the	block
it’s	in,	which	is	marked	by	the	comments	//	start	of	block	and	//	end	of

block.	The	variable	can	be	used	only	within	that	block.	An	error	would	result	if	you	tried
to	use	the	y	variable	in	another	part	of	the	method.

The	x	variable	was	created	inside	the	method	but	outside	the	inner	block,	so	it	can	be	used
anywhere	in	the	method.	You	can	modify	the	value	of	x	anywhere	within	the	method.

Block	statements	are	used	in	class	and	method	definitions	and	the	logic	and	looping
structures	you	learn	about	next.	The	way	the	preceding	example	uses	the	inner	block	is	not
common.

If	Conditionals
A	key	aspect	of	any	programming	language	is	how	it	enables	a	program	to	make
decisions.	This	is	handled	through	a	type	of	statement	called	a	conditional,	a	statement
executed	only	if	a	specific	condition	is	met.

The	most	basic	conditional	in	Java	is	if.	The	if	conditional	uses	a	Boolean	expression	to
decide	whether	a	statement	should	be	executed.	If	the	expression	produces	a	true	value,
the	statement	is	executed.

Here’s	a	simple	example	that	displays	the	message	“Not	enough	arguments”	only	if	the
value	of	an	instance	variable	is	less	than	3:
Click	here	to	view	code	image

if	(arguments.length	<	3)	{
				System.out.println(“Not	enough	arguments”);
				System.exit(-1);
}

If	you	want	something	else	to	happen	when	an	if	expression	is	not	true,	you	can	use
the	else	keyword.	The	following	example	uses	both	if	and	else:

String	server;
int	duration;
if	(arguments.length	<	1)	{
				server	=	“localhost”;
}	else	{
				server	=	arguments[0];
}

The	if	conditional	executes	different	statements	based	on	the	result	of	a	single	Boolean
test.

Note

A	difference	between	if	conditionals	in	Java	and	those	in	other	languages	is	that
Java	conditionals	produce	only	Boolean	values	(true	or	false).	In	C	and	C++,
the	test	can	return	an	integer.

Using	if,	you	can	include	only	a	single	statement	as	the	code	to	execute	if	the	test
expression	is	true	and	another	statement	if	the	expression	is	false.

However,	as	you	learned	earlier	today,	a	block	can	appear	anywhere	in	Java	that	a	single
statement	can	appear.	If	you	want	to	do	more	than	one	thing	as	a	result	of	an	if	statement,

you	can	enclose	those	statements	inside	a	block.	Note	the	following	code,	which	was	used
on	Day	1,	“Getting	Started	with	Java”:

int	speed;
String	status;
float	temperature	=	-60;

if	(temperature	<	-80)	{
				status	=	“returning	home”;
				speed	=	5;
}

The	if	statement	in	this	example	contains	the	test	expression	temperature	<	-80.	If
the	temperature	variable	contains	a	value	less	than	–80,	the	block	statement	is
executed,	and	two	things	occur:

	The	status	variable	is	given	the	value	“returning	home.”

	The	speed	variable	is	set	to	5.

If	the	temperature	variable	is	equal	to	or	greater	than	–80,	the	entire	block	is	skipped,
so	nothing	happens.

All	if	and	else	statements	use	Boolean	tests	to	determine	whether	statements	are
executed.	You	can	use	a	boolean	variable	itself	for	this	test,	as	in	the	following:

String	status;
boolean	outOfGas	=	true;
if	(outOfGas)	{
				status	=	“inactive”;
}

The	preceding	example	uses	a	boolean	variable	called	outOfGas.	It	functions	exactly
like	the	following:

if	(outOfGas	==	true)	{
				status	=	“inactive”;
}

Switch	Conditionals
A	common	programming	practice	is	to	test	a	variable	against	a	value,	and	if	it	doesn’t
match,	test	it	again	against	a	different	value,	and	so	on.

This	approach	can	become	unwieldy	if	you’re	using	only	if	statements,	depending	on
how	many	different	values	you	have	to	test.	For	example,	you	might	end	up	with	a	set	of
if	statements	something	like	the	following:
Click	here	to	view	code	image

if	(operation	==	‘+’)
				add(object1,	object2);
else	if	(operation	==	‘-‘)
				subtract(object1,	object2);
else	if	(operation	==	‘*’)
				multiply(object1,	object2);
else	if	(operation	==	‘/’)
				divide(object1,	object2);

This	use	of	if	statements	is	called	a	nested	if	statement	because	each	else	statement

contains	another	if	until	all	possible	tests	have	been	made.

A	better	way	to	handle	this	situation	in	Java	is	by	grouping	actions	with	the	switch
statement.	The	following	example	demonstrates	switch	usage:
Click	here	to	view	code	image

char	grade	=	‘D’;
switch	(grade)	{
				case	‘A’:
								System.out.println(“Great	job!”);
								break;
				case	‘B’:
								System.out.println(“Good	job!”);
								break;
				case	‘C’:
								System.out.println(“You	can	do	better!”);
								break;
				default:
								System.out.println(“Consider	cheating!”);
}

A	switch	statement	is	built	on	a	test	variable.	In	the	preceding	example,	the	variable	is
the	value	of	the	grade	variable,	which	holds	a	char	value.

The	test	variable	can	be	the	primitive	types	byte,	char,	short,	or	int	or	the	class
String.	The	following	code	uses	the	value	of	a	String	object	named	command	to
decide	which	method	to	call:
Click	here	to	view	code	image

String	command	=	“close”;
switch	(command)	{
				case	“open”:
								openFile();
								break;
				case	“close”:
								closeFile();
								break;
				default:
								System.out.println(“Invalid	command”);
				}
}

The	test	variable	is	compared	in	turn	with	each	case	value.	If	a	match	is	found,	the
statement	or	statements	after	the	test	are	executed.

If	no	match	is	found,	the	default	statement	or	statements	are	executed.	Providing	a
default	statement	is	optional.	If	it	is	omitted	and	there	is	no	match	for	any	of	the	case
statements,	the	switch	statement	might	complete	without	executing	anything.

The	test	cases	in	a	switch	statement	are	limited	to	primitive	types	that	can	be	cast	to	an
int,	such	as	char	or	strings.	You	cannot	use	larger	primitive	types	such	as	long	or
float	or	test	for	any	relationship	other	than	equality.

The	following	is	a	revision	of	the	nested	if	example	shown	previously.	It	has	been
rewritten	as	a	switch	statement:
Click	here	to	view	code	image

switch	(operation)	{
				case	‘+’:
								add(object1,	object2);
								break;
				case	‘-‘:
								subtract(object1,	object2);
								break;
				case	‘*’:
								multiply(object1,	object2);
								break;
				case	‘/’:
								divide(object1,	object2);
								break;
	}

After	each	case,	you	can	include	a	single	result	statement	or	as	many	as	you	need.
Unlike	if	statements,	multiple	statements	don’t	require	a	block	statement.

The	break	statement	included	with	each	case	section	determines	when	to	stop
executing	statements	in	response	to	a	matching	case.	Suppose	a	case	section	has	no
break	statement.	After	a	match	is	made,	the	statements	for	that	match	and	all	the
statements	further	down	the	switch	are	executed	until	a	break	or	the	end	of	the	switch
is	found.

In	some	situations,	this	might	be	exactly	what	you	want	to	do.	Otherwise,	you	should
include	break	statements	to	ensure	that	only	the	right	code	is	executed.	The	break
statement,	which	you	use	again	later	in	the	section	“Breaking	Out	of	Loops,”	stops
execution	at	the	current	point.	Then	it	jumps	to	the	statement	after	the	closing	brace	that
ends	the	switch	statement.

One	handy	use	of	falling	through	without	a	break	occurs	when	multiple	values	need	to
execute	the	same	statements.	To	accomplish	this	task,	you	can	use	multiple	case	lines
with	no	result;	the	switch	executes	the	first	statement	it	finds.

For	example,	in	the	following	switch	statement,	the	string	“x	is	an	even	number”	is
printed	if	x	has	a	value	of	2,	4,	6,	or	8.	All	other	values	of	x	cause	the	string	“x	is	an	odd
number”	to	be	printed.
Click	here	to	view	code	image

int	x	=	5;
switch	(x)	{
				case	2:
				case	4:
				case	6:
				case	8:
								System.out.println(“x	is	an	even	number”);
								break;
				default:
								System.out.println(“x	is	an	odd	number”);
}

The	next	project	for	today,	the	DayCounter	application	in	Listing	4.2,	takes	a	month	and	a
year	as	arguments	and	displays	the	number	of	days	in	that	month.	A	switch	statement,
if	statements,	and	else	statements	are	used.	Create	this	application	in	NetBeans	as	an
empty	Java	file	in	the	com.java21days	package.

LISTING	4.2	The	Full	Text	of	DayCounter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	DayCounter	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									int	yearIn	=	2016;
	6:									int	monthIn	=	1;
	7:									if	(arguments.length	>	0)
	8:													monthIn	=	Integer.parseInt(arguments[0]);
	9:									if	(arguments.length	>	1)
10:													yearIn	=	Integer.parseInt(arguments[1]);
11:									System.out.println(monthIn	+	“/”	+	yearIn	+	”	has	“
12:													+	countDays(monthIn,	yearIn)	+	”	days.”);
13:					}
14:
15:					static	int	countDays(int	month,	int	year)	{
16:									int	count	=	-1;
17:									switch	(month)	{
18:													case	1:
19:													case	3:
20:													case	5:
21:													case	7:
22:													case	8:
23:													case	10:
24:													case	12:
25:																	count	=	31;
26:																	break;
27:													case	4:
28:													case	6:
29:													case	9:
30:													case	11:
31:																	count	=	30;
32:																	break;
33:													case	2:
34:																	if	(year	%	4	==	0)
35:																					count	=	29;
36:																	else
37:																					count	=	28;
38:																	if	((year	%	100	==	0)	&	(year	%	400	!=	0))
39:																					count	=	28;
40:									}
41:									return	count;
42:					}
43:	}

This	application	uses	command-line	arguments	to	specify	the	month	and	year	to	check.
The	first	argument	is	the	month,	which	should	be	expressed	as	a	number	from	1	to	12.	The
second	argument	is	the	year,	which	should	be	expressed	as	a	full	four-digit	year.

If	the	application	is	run	without	setting	the	arguments,	it	uses	1	as	the	month	and	12	as	the
year,	displaying	the	output	in	Figure	4.2.

FIGURE	4.2	Using	switch-case	to	handle	numerous	conditionals.

To	set	command-line	arguments	in	NetBeans,	choose	Run,	Set	Project	Configuration,
Customize.	The	Project	Properties	dialog	opens,	as	shown	in	Figure	4.3.

FIGURE	4.3	Setting	command-line	arguments	for	an	application	in	NetBeans.

In	the	Main	Class	field,	enter	the	name	of	the	class	that	contains	the	main()	method	that
will	be	run:	com.java21days.DayCounter.

In	the	Arguments	field,	enter	the	command-line	arguments	separated	by	spaces,	such	as	9
2016.	Click	OK	to	save	this	configuration.

To	run	the	application	with	these	arguments	in	NetBeans,	choose	Run,	Run	Project
(instead	of	Run,	Run	File).	When	run	with	9	and	2016	as	arguments,	the	output	is	that
shown	in	Figure	4.4.

FIGURE	4.4	Using	switch-case	to	handle	numerous	conditionals.

The	DayCounter	application	uses	a	switch	statement	to	count	the	days	in	a	month.
This	statement	is	part	of	the	countDays()	method	in	lines	15–42	of	Listing	4.2.

The	countDays()	method	has	two	int	arguments:	month	and	year.	The	number	of
days	is	stored	in	the	count	variable,	which	is	given	an	initial	value	of	–1	that	is	replaced
by	the	correct	count	later.

The	switch	statement	that	begins	on	line	17	uses	month	as	its	conditional	value.

The	number	of	days	in	a	month	is	easy	to	determine	for	11	months	of	the	year.	January,
March,	May,	July,	August,	October,	and	December	have	31	days.	April,	June,	September,
and	November	have	30	days.

The	count	for	these	11	months	is	handled	in	lines	18–32	of	Listing	4.2.	Months	are
numbered	from	1	(January)	to	12	(December),	as	you	would	expect.	When	one	of	the
case	statements	has	the	same	value	as	month,	every	statement	after	that	is	executed
until	break	or	the	end	of	the	switch	statement	is	reached.

February	is	more	complex	and	is	handled	in	lines	33–39.	Every	leap	year	has	29	days	in
February,	whereas	other	years	have	28.	A	leap	year	must	meet	either	of	the	following
conditions:

	The	year	must	be	evenly	divisible	by	4	and	not	evenly	divisible	by	100.

	The	year	must	be	evenly	divisible	by	400.

As	you	learned	on	Day	2,	“The	ABCs	of	Programming,”	the	modulus	operator	%	returns
the	remainder	of	a	division	operation.	This	is	used	with	several	if-else	statements	to
determine	how	many	days	there	are	in	February,	depending	on	what	year	it	is.

The	if-else	statement	in	lines	34–37	sets	count	to	29	when	the	year	is	evenly
divisible	by	4	and	sets	it	to	28	otherwise.

The	if	statement	in	lines	38–39	uses	the	&	operator	to	combine	two	conditional
expressions:	year	%	100	==	0	and	year	%	400	!=	0.	If	both	these	conditions
are	true,	count	is	set	to	28.

The	countDays	method	ends	by	returning	the	value	of	count	in	line	41.

When	you	run	the	DayCounter	application,	the	main()	method	in	lines	4–13	is	executed.

In	all	Java	applications,	command-line	arguments	are	stored	in	an	array	of	String
objects.	This	array	is	called	arguments	in	DayCounter.	The	first	command-line
argument	is	stored	in	argument[0],	the	second	in	argument[1],	and	upward	until
all	arguments	have	been	stored.	If	the	application	is	run	with	no	arguments,	the	array	is
created	with	no	elements.

Lines	5	and	6	create	yearIn	and	monthIn,	two	integer	variables	to	store	the	year	and
month	that	should	be	checked.

The	if	statement	in	line	7	uses	arguments.length	to	make	sure	that	the
arguments	array	has	at	least	one	element.	If	it	does,	line	8	is	executed.

Line	10	calls	parseInt(),	a	class	method	of	the	Integer	class,	with
arguments[0]	as	an	argument.	This	method	takes	a	String	object	as	an	argument,
and	if	the	string	could	be	a	valid	integer,	it	returns	that	value	as	an	int.	This	converted

value	is	stored	in	monthIn.	A	similar	thing	happens	in	line	10:	parseInt()	is	called
with	arguments[1],	and	this	is	used	to	set	yearIn.

The	program’s	output	is	displayed	in	lines	11–12.	As	part	of	the	output,	the
countDays()	method	is	called	with	monthIn	and	yearIn,	and	the	value	returned	by
this	method	is	displayed.

Note

At	this	point,	you	might	want	to	know	how	to	collect	input	from	a	user	in	a	program
rather	than	using	command-line	arguments	to	receive	it.	There	isn’t	a	method
comparable	to	System.out.println()	that	receives	input.	Instead,	you	must
learn	a	bit	more	about	Java’s	input	and	output	classes	before	you	can	receive	input
in	a	program	without	a	graphical	user	interface.	This	topic	is	covered	during	Day
15,	“Working	with	Input	and	Output.”

The	Ternary	Operator
An	alternative	to	using	the	if	and	else	keywords	in	a	conditional	statement	is	to	use	the
ternary	operator,	also	called	the	conditional	operator.	This	operator	is	ternary	because	it
has	three	operands	(the	word	“ternary”	refers	to	anything	with	three	parts).

This	operator	is	an	expression,	meaning	that	it	returns	a	value—unlike	the	more	general
if,	which	can	result	in	only	a	statement	or	block	being	executed.	The	operator	is	most
useful	for	short	or	simple	conditionals	and	takes	the	following	form:
Click	here	to	view	code	image

test	?	trueResult	:	falseResult;

The	test	is	an	expression	that	returns	true	or	false,	just	like	the	test	in	the	if
statement.	If	the	test	is	true,	the	conditional	operator	returns	the	value	of	trueResult.
If	the	test	is	false,	the	conditional	operator	returns	the	value	of	falseResult.	For
example,	the	following	conditional	tests	the	values	of	myScore	and	yourScore	and
sets	the	variable	ourBestScore	equal	to	one	of	them:
Click	here	to	view	code	image

int	ourBestScore	=	myScore	>	yourScore	?	myScore	:	yourScore;

In	this	statement,	the	larger	value	of	myScore	and	yourScore	is	copied	to
ourBestScore.

This	use	of	the	ternary	operator	is	equivalent	to	the	following	if-else	code:
int	ourBestScore;
if	(myScore	>	yourScore)	{
				ourBestScore	=	myScore;
}	else	{
				ourBestScore	=	yourScore;
}

The	ternary	operator	has	low	precedence.	Usually	it	is	evaluated	only	after	all	its
subexpressions	have	been	evaluated.	The	only	operators	lower	in	precedence	are	the

assignment	operators.	For	a	refresher	on	operator	precedence,	refer	to	Table	2.6	in	Day	2.

Note

The	ternary	operator	is	of	primary	benefit	to	experienced	programmers	creating
complex	expressions.	Because	its	functionality	is	duplicated	in	simpler	use	of	if-
else	statements,	there’s	no	need	to	use	this	operator	while	you’re	beginning	to
learn	the	language.	The	main	reason	it’s	introduced	in	this	book	is	because	you’ll
encounter	it	in	the	source	code	of	other	Java	programmers.

For	Loops
A	for	loop	is	used	to	repeat	a	statement	until	a	condition	is	met.	Although	for	loops
frequently	are	used	for	simple	iteration	in	which	a	statement	is	repeated	a	certain	number
of	times,	for	loops	can	be	used	for	just	about	any	kind	of	loop.

The	for	loop	in	Java	has	the	following	structure:
Click	here	to	view	code	image

for	(initialization;	test;	increment)	{
				statement;
}

The	start	of	the	for	loop	has	three	parts:

	The	initialization	is	an	expression	that	initializes	the	start	of	the	loop.	If	you
have	a	loop	index,	this	expression	might	declare	and	initialize	it,	such	as	int	i	=
0.	Variables	that	you	declare	in	this	part	of	the	for	loop	are	local	to	the	loop	itself.
They	cease	to	exist	after	the	loop	is	finished	executing.	You	can	initialize	more	than
one	variable	in	this	section	by	separating	each	expression	with	a	comma.	The
statement	int	i	=	0,	j	=	10	in	this	section	would	declare	the	variables	i	and
j,	and	both	would	be	local	to	the	loop.

	The	test	is	the	test	that	occurs	before	each	pass	of	the	loop.	The	test	must	be	a
Boolean	expression	or	a	function	that	returns	a	boolean	value,	such	as	i	<	10.	If
the	test	is	true,	the	loop	executes.	When	the	test	is	false,	the	loop	stops
executing.

	The	increment	is	any	expression	or	method	call.	Commonly,	the	increment	is
used	to	change	the	value	of	the	loop	index	to	bring	the	state	of	the	loop	closer	to
returning	false	and	stopping	the	loop.	The	increment	takes	place	after	each	pass	of
the	loop.	Similar	to	the	initialization	section,	you	can	put	more	than	one
expression	in	this	section	by	separating	each	expression	with	a	comma.

The	statement	part	of	the	for	loop	is	the	statement	that	is	executed	each	time	the	loop
iterates.	As	with	if,	you	can	include	either	a	single	statement	or	a	block	statement.	The
previous	example	used	a	block	because	that	is	more	common.	The	following	example	is	a
for	loop	that	sets	all	slots	of	a	String	array	to	the	value	“Mr.”:
Click	here	to	view	code	image

String[]	salutation	=	new	String[10];
int	i;	//	the	loop	index	variable
for	(i	=	0;	i	<	salutation.length;	i++)	{
				salutation[i]	=	“Mr.”;
}

In	this	example,	the	variable	i	serves	as	a	loop	index;	it	counts	the	number	of	times	the
loop	has	been	executed.	Before	each	trip	through	the	loop,	the	index	value	is	compared
with	salutation.length,	the	number	of	elements	in	the	salutation	array.	When
the	index	is	equal	to	or	greater	than	salutation.length,	the	loop	is	exited.

The	final	element	of	the	for	statement	is	i++.	This	causes	the	loop	index	to	increment	by
1	each	time	the	loop	is	executed.	Without	this	statement,	the	loop	would	never	stop.

The	statement	inside	the	loop	sets	an	element	of	the	salutation	array	equal	to	“Mr.”
The	loop	index	is	used	to	determine	which	element	is	modified.

Any	part	of	the	for	loop	can	be	an	empty	statement;	in	other	words,	you	can	include	a
semicolon	with	no	expression	or	statement,	and	that	part	of	the	for	loop	is	ignored.	Note
that	if	you	do	use	an	empty	statement	in	your	for	loop,	you	might	have	to	initialize	or
increment	any	loop	variables	or	loop	indexes	yourself	elsewhere	in	the	program.

You	also	can	have	an	empty	statement	as	the	body	of	your	for	loop	if	everything	you
want	to	do	is	in	the	first	line	of	that	loop.	For	example,	the	following	for	loop	finds	the
first	prime	number	higher	than	4,000.	(It	assumes	the	existence	of	a	method	called
notPrime()	that	returns	a	Boolean	value	to	indicate	when	i	is	not	prime.)
Click	here	to	view	code	image

for	(i	=	4001;	notPrime(i);	i	+=	2);

The	semicolon	at	the	end	of	the	for	statement	indicates	that	the	loop	has	no	statements	in
its	body.

A	common	mistake	in	for	loops	is	to	accidentally	put	a	semicolon	at	the	end	of	the	line
that	includes	the	for	statement:
Click	here	to	view	code	image

int	x	=	1;
for	(i	=	0;	i	<	10;	i++);
				x	=	x	*	i;	//	this	line	is	not	inside	the	loop!

In	this	example,	the	semicolon	outside	the	parentheses	in	the	for	statement	ends	the	loop
without	executing	x	=	x	*	i	as	part	of	the	loop.	The	x	=	x	*	i	line	is	executed
only	once	because	it	is	outside	the	for	loop.	Be	careful	not	to	make	this	mistake	in	your
Java	programs.

The	next	project	you	undertake	is	a	rewrite	of	the	HalfDollar	application	that	uses	for
loops	to	remove	redundant	code.

The	original	application	works	with	an	array	that	is	only	three	elements	long.	The	new
version	shown	in	Listing	4.3,	called	HalfLooper,	is	shorter	and	more	flexible	and	returns
the	same	output.	Create	an	empty	Java	file	with	that	class	name	and	the	package	name
com.java21days	in	NetBeans.

LISTING	4.3	The	Full	Text	of	HalfLooper.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	HalfLooper	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									int[]	denver	=	{	1_700_000,	4_600_000,	2_100_000	};
	6:									int[]	philadelphia	=	{	1_800_000,	5_000_000,	2_500_000	};
	7:									int[]	total	=	new	int[denver.length];
	8:									int	sum	=	0;
	9:
10:									for	(int	i	=	0;	i	<	denver.length;	i++)	{
11:													total[i]	=	denver[i]	+	philadelphia[i];
12:													System.out.format((i	+	2012)	+	”	production:	%,d%n”,
13:																	total[i]);
14:													sum	+=	total[i];
15:									}
16:
17:									System.out.format(“Average	production:	%,d%n”,
18:													(sum	/	denver.length));
19:					}
20:	}

The	output	is	the	same	as	for	the	HalfDollars	application	in	Figure	4.1.

Instead	of	going	through	the	elements	of	the	three	arrays	one	by	one,	this	example	uses	a
for	loop.	The	following	things	take	place	in	the	loop,	which	is	contained	in	lines	10–15:

	Line	10—The	loop	is	created	with	an	int	variable	called	i	as	the	index.	The	index
increments	by	1	for	each	pass	through	the	loop	and	stops	when	i	is	equal	to	or
greater	than	denver.length,	the	total	number	of	elements	in	the	denver	array.

	Lines	11–12—The	value	of	one	of	the	total	elements	is	set	using	the	loop	index
and	then	is	displayed	with	some	text	identifying	the	year.

	Line	14—The	value	of	a	total	element	is	added	to	the	sum	variable,	which	is
used	to	calculate	the	average	yearly	production.

Using	a	more	general-purpose	loop	to	iterate	over	an	array	enables	you	to	use	the	program
with	arrays	of	different	sizes	and	still	have	it	assign	correct	values	to	the	elements	of	the
total	array	and	display	those	values.

Note

Java	also	includes	a	for	loop	that	can	be	used	to	iterate	through	all	the	elements	of
data	structures,	such	as	array	lists,	linked	lists,	hash	maps,	and	other	collections.
This	loop	is	covered	along	with	those	structures	on	Day	8,	“Data	Structures.”

While	and	Do	Loops
The	remaining	types	of	loops	are	while	and	do,	which	also	enable	a	block	of	Java	code
to	be	executed	repeatedly	until	a	specific	condition	is	met.

While	Loops
The	while	loop	repeats	a	statement	for	as	long	as	a	particular	condition	remains	true.
Here’s	an	example:
Click	here	to	view	code	image

while	(i	<	13)	{
				x	=	x	*	i++;	//	the	body	of	the	loop
}

The	condition	that	accompanies	the	while	keyword	is	a	Boolean	expression—i	<	13
in	the	preceding	example.	If	the	expression	returns	true,	the	while	loop	executes	the
body	of	the	loop	and	then	tests	the	condition	again.	This	process	repeats	until	the
condition	is	false.

Although	the	preceding	loop	uses	opening	and	closing	braces	to	form	a	block	statement,
the	braces	are	unneeded	because	the	loop	contains	only	one	statement:	x	=	x	*	i++.
Using	the	braces	does	not	create	any	problems,	though,	and	the	braces	will	be	required	if
you	add	another	statement	inside	the	loop	later.

The	ArrayCopier	application	in	Listing	4.4	uses	a	while	loop	to	copy	the	elements	of	an
array	of	integers	(array1)	to	an	array	of	float	variables	(array2),	casting	each
element	to	a	float	as	it	goes.	The	one	catch	is	that	if	any	of	the	elements	in	the	first
array	is	1,	the	loop	immediately	exits	at	that	point.

Create	an	empty	Java	file	in	NetBeans	with	the	class	name	ArrayCopier	and	package
com.java21days.	Enter	Listing	4.4	as	the	source	code.

LISTING	4.4	The	Full	Text	of	ArrayCopier.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	ArrayCopier	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									int[]	array1	=	{	7,	4,	8,	1,	4,	1,	4	};
	6:									float[]	array2	=	new	float[array1.length];
	7:
	8:									System.out.print(“array1:	[“);
	9:									for	(int	i	=	0;	i	<	array1.length;	i++)	{
10:													System.out.print(array1[i]	+	”	“);
11:									}
12:									System.out.println(“]”);
13:
14:									System.out.print(“array2:	[“);
15:									int	count	=	0;
16:									while	(count	<	array1.length	&&	array1[count]	!=	1)	{
17:													array2[count]	=	(float)	array1[count];
18:													System.out.print(array2[count++]	+	”	“);
19:									}
20:									System.out.println(“]”);
21:					}
22:	}

The	output	is	shown	in	Figure	4.5.

FIGURE	4.5	Using	a	while	loop	to	examine	an	array.

Here	is	what’s	going	on	in	the	main()	method:

	Lines	5	and	7	declare	the	arrays.	array1	is	an	array	of	integers,	which	are
initialized	to	some	suitable	numbers.	array2	is	an	array	of	floating-point	numbers
the	same	length	as	array1.

	Lines	8–12	iterate	through	array1	using	a	for	loop	to	print	its	values.

	Lines	14–20	assign	the	values	of	array2	(converting	the	numbers	to	floating-point
numbers	along	the	array)	and	print	them.	You	start	with	a	count	variable,	which
keeps	track	of	the	array	index	elements.	The	test	in	the	while	loop	keeps	track	of
the	two	conditions	for	exiting	the	loop,	where	those	two	conditions	are	running	out
of	elements	in	array1	or	encountering	a	1	in	array1.

You	can	use	the	logical	conditional	&&	operator	to	keep	track	of	the	test;	remember
that	&&	makes	sure	that	both	conditions	are	true	before	the	entire	expression	is
true.	If	either	one	is	false,	the	expression	returns	false,	and	the	loop	exits.

The	program’s	output	shows	that	the	first	four	elements	in	array1	were	copied	to
array2,	but	a	1	in	the	middle	stopped	the	loop	from	going	any	further.	Without	the	1,
array2	should	end	up	with	all	the	same	elements	as	array1.	If	the	while	loop’s	test
initially	is	false	the	first	time	it	is	tested	(for	example,	if	the	first	element	in	that	first
array	is	1),	the	body	of	the	while	loop	will	never	be	executed.	If	you	need	to	execute	the
loop	at	least	once,	you	can	do	one	of	two	things:

	Duplicate	the	body	of	the	loop	outside	the	while	loop.

	Use	a	do	loop	(which	is	described	in	the	following	section).

The	do	loop	is	considered	the	better	solution.

Do-While	Loops
The	do	loop	is	like	a	while	loop,	with	one	major	difference—the	place	in	the	loop	where
the	condition	is	tested.

A	while	loop	tests	the	condition	before	looping,	so	if	the	condition	is	false	the	first
time	it	is	tested,	the	body	of	the	loop	never	executes.

A	do	loop	executes	the	body	of	the	loop	at	least	once	before	testing	the	condition.	So	if
the	condition	is	false	the	first	time	it	is	tested,	the	body	of	the	loop	already	will	have
executed	once.

The	following	example	uses	a	do	loop	to	keep	doubling	the	value	of	a	long	integer	until
it	is	larger	than	3	trillion:
Click	here	to	view	code	image

long	i	=	1;
do	{
				i	*=	2;
				System.out.print(i	+	”	“);
}	while	(i	<	3_000_000_000_000L);

The	body	of	the	loop	is	executed	once	before	the	test	condition,	i	<
3_000_000_000_000L,	is	evaluated.	Then,	if	the	test	evaluates	as	true,	the	loop	runs
again.	If	it	is	false,	the	loop	exits.	Keep	in	mind	that	the	body	of	the	loop	executes	at
least	once	with	do	loops.

The	for,	while,	and	do	loops	all	accomplish	the	same	purpose	in	slightly	different
ways.	When	writing	your	own	code,	you	may	have	trouble	deciding	which	one	to	use.
There’s	often	no	wrong	answer.	Whether	you	use	a	for,	while,	or	do	loop	is	largely	a
matter	of	preference.

Breaking	Out	of	Loops
All	loops	end	when	a	tested	condition	is	met.	There	might	be	times	when	something
occurs	during	execution	of	a	loop,	and	you	want	to	exit	the	loop	early.	In	that	case,	you
can	use	the	break	and	continue	keywords.

You	already	have	seen	break	as	part	of	the	switch	statement;	break	stops	execution
of	the	switch	statement,	and	the	program	continues.	The	break	keyword,	when	used
with	a	loop,	does	the	same	thing—it	immediately	halts	execution	of	the	current	loop.	If
you	have	nested	loops	within	loops,	execution	picks	up	with	the	next	outer	loop.
Otherwise,	the	program	continues	executing	the	next	statement	after	the	loop.

For	example,	recall	the	while	loop	from	the	ArrayCopier	application	in	Listing	4.4.	It
copied	elements	from	an	integer	array	into	an	array	of	floating-point	numbers	until	either
the	end	of	the	array	or	a	1	was	reached.	You	can	test	for	the	latter	case	inside	the	body	of
the	while	loop	and	then	use	break	to	exit	the	loop:
Click	here	to	view	code	image

int	count	=	0;
while	(count	<	array1.length)	{
				if	(array1[count]	==	1)	{
								break;
				}
				array2[count]	=	(float)	array2[count++];
}

The	continue	keyword	starts	the	loop	over	at	the	next	iteration.	For	do	and	while
loops,	this	means	that	the	execution	of	the	block	statement	starts	over	again;	with	for
loops,	the	increment	expression	is	evaluated,	and	then	the	block	statement	is	executed.

The	continue	keyword	is	useful	when	you	want	to	make	a	special	case	out	of	elements
within	a	loop.	With	the	previous	example	of	copying	one	array	to	another,	you	could	test
for	whether	the	current	element	is	equal	to	1	and	use	continue	to	restart	the	loop	after

every	1	so	that	the	resulting	array	never	contains	0.	Note	that	because	you’re	skipping
elements	in	the	first	array,	you	now	have	to	keep	track	of	two	different	array	counters:
Click	here	to	view	code	image

int	count	=	0;
int	count2	=	0;
while	(count++	<=	array1.length)	{
				if	(array1[count]	==	1)	{
							continue;
				}
				array2[count2++]	=	(float)	array1[count];
}

Labeled	Loops
Both	break	and	continue	can	have	an	optional	label	that	indicates	where	to	resume
execution	of	the	program.	Without	a	label,	break	jumps	outside	the	nearest	loop	to	an
enclosing	loop	or	to	the	next	statement	outside	the	loop.	The	continue	keyword	restarts
the	loop	it	is	enclosed	within.	Using	break	and	continue	with	a	label	enables	you	to
use	break	to	go	to	a	point	outside	a	nested	loop	or	to	use	continue	to	go	to	a	loop
outside	the	current	loop.

To	use	a	labeled	loop,	add	the	label	before	the	initial	part	of	the	loop	with	a	colon	between
the	label	and	the	loop.	Then,	when	you	use	break	or	continue,	add	the	name	of	the
label	after	the	keyword	itself,	as	in	the	following:
Click	here	to	view	code	image

out:	for	(int	i	=	0;	i	<	10;	i++)	{
				for	(int	j	=	0;	j	<	50;	j++)	{
								if	(i	*	j	>	400)	{
												break	out;
								}
				}
}

In	this	code	snippet,	the	label	out	labels	the	outer	loop.	Then,	inside	both	the	for	loops,
when	a	particular	condition	is	met,	a	break	causes	the	execution	to	break	out	of	both
loops.	Without	the	label	out,	the	break	statement	would	exit	the	inner	loop	and	resume
execution	with	the	outer	loop.

Labeled	loops	are	used	infrequently	in	Java.	There’s	usually	another	way	to	accomplish
the	same	thing.

Summary
Now	that	you	have	been	introduced	to	lists,	loops,	and	logic,	you	can	make	a	computer
decide	whether	to	repeatedly	display	the	contents	of	an	array.

You’ve	learned	how	to	declare	an	array	variable,	assign	an	object	to	it,	and	access	and
change	elements	of	the	array.	With	the	if	and	switch	conditional	statements,	you	can
branch	to	different	parts	of	a	program	based	on	a	Boolean	test.	You	learned	about	the	for,
while,	and	do	loops,	and	you	learned	that	each	enables	a	portion	of	a	program	to	be
repeated	until	a	given	condition	is	met.

It	bears	repeating:	You’ll	use	all	three	of	these	features	frequently	in	your	Java	programs.

You’ll	use	all	three	of	these	features	frequently	in	your	Java	programs.

Q&A
Q	I	declared	a	variable	inside	a	block	statement	for	an	if.	When	the	if	was
done,	the	definition	of	that	variable	vanished.	Where	did	it	go?

A	In	technical	terms,	block	statements	form	a	new	lexical	scope.	This	means	that	if
you	declare	a	variable	inside	a	block,	it’s	visible	and	usable	only	inside	that	block.
When	the	block	finishes	executing,	all	the	variables	you	declared	go	away.

It’s	a	good	idea	to	declare	most	of	your	variables	in	the	outermost	block	in	which
they’ll	be	needed—usually	at	the	top	of	a	block	statement.	The	exception	might	be
simple	variables,	such	as	index	counters	in	for	loops,	where	declaring	them	in	the
first	line	of	the	for	loop	is	an	easy	shortcut.

Q	Why	can’t	I	use	switch	with	strings?

A	You	can.	If	it	isn’t	working	in	NetBeans,	you	must	make	sure	that	you	have	a
current	version	of	Java	installed	and	your	development	environment	has	been	set	up
to	use	it.

In	NetBeans,	to	see	whether	the	current	project	is	set	up	for	Java	8,	choose	File,
Project	Properties	to	open	the	properties	dialog.	Choose	Libraries	in	the
Categories	pane;	then	set	Java	Platform	to	JDK	8	if	it	isn’t	already.	Click	OK	to
save	the	change	and	exit	the	dialog.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	kind	of	loop	is	used	to	execute	the	statements	in	the	loop	at	least	once	before
the	conditional	expression	is	evaluated?

A.	do-while

B.	for

C.	while

2.	Which	of	the	following	cannot	be	used	as	the	test	in	a	case	statement?

A.	characters

B.	strings

C.	objects

3.	Which	instance	variable	of	an	array	is	used	to	find	out	how	big	it	is?

A.	size

B.	length

C.	MAX_VALUE

Answers
1.	A.	In	a	do-while	loop,	the	while	conditional	statement	appears	at	the	end	of	the
loop.	Even	if	it	is	initially	false,	the	statements	in	the	loop	are	executed	once.

2.	C.	It	used	to	be	true	that	strings	could	not	be	used	as	the	test,	but	that	is	no	longer
the	case.

3.	B.	The	length	variable	is	an	integer	that	returns	the	array’s	size.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	Cases	{
				public	static	void	main(String[]	arguments)	{
								float	x	=	9;
								float	y	=	5;
								int	z	=	(int)(x	/	y);
								switch	(z)	{
												case	1:
																x	=	x	+	2;
												case	2:
																x	=	x	+	3;
												default:
																x	=	x	+	1;
								}
								System.out.println(“Value	of	x:	“	+	x);
				}
}

What	will	be	the	value	of	x	when	it	is	displayed?

A.	9.0

B.	11.0

C.	15.0

D.	The	program	will	not	compile.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	4
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Using	the	countDays()	method	from	the	DayCounter	application,	create	an

http://www.java21days.com

application	that	displays	every	date	in	a	given	year	in	a	single	list	from	January	1	to
December	31.

2.	Create	a	class	that	takes	words	for	the	first	10	numbers	(“one”	to	“ten”)	and
converts	them	into	a	single	long	integer.	Use	a	switch	statement	for	the
conversion	and	command-line	arguments	for	the	words.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	5.	Creating	Classes	and	Methods

If	you’re	coming	to	Java	from	another	programming	language,	you	might	be	struggling
with	the	meaning	of	the	term	class.	It	seems	synonymous	with	the	term	program,	but	you
might	be	uncertain	of	the	relationship	between	the	two.

In	Java,	a	program	is	made	up	of	a	main	class	and	any	other	classes	needed	to	support	the
main	class.	These	support	classes	include	any	you	might	need	in	the	Java	Class	Library,
such	as	String,	Math,	and	the	like.

Today,	the	meaning	of	class	is	clarified	as	you	create	classes	and	methods,	which	define
the	behavior	of	an	object	or	class.	You	learn	about	each	of	the	following:

	The	parts	of	a	class

	The	creation	and	use	of	instance	variables

	The	creation	and	use	of	methods

	The	use	of	the	main()	method	in	applications

	The	creation	of	overloaded	methods

	The	creation	of	constructors

Defining	Classes
Because	you	have	created	classes	during	each	of	the	previous	days,	you	should	be	familiar
with	the	basics	of	their	creation	at	this	point.	A	class	is	defined	via	the	class	keyword
and	the	name	of	the	class,	as	in	the	following	example:

class	Ticker	{
				//	body	of	the	class
}

By	default,	classes	inherit	from	the	Object	class,	the	superclass	of	all	classes	in	the	Java
class	hierarchy.

The	extends	keyword	is	used	to	indicate	the	superclass	of	a	class,	as	in	this	example,
which	is	defined	as	a	subclass	of	Ticker:
Click	here	to	view	code	image

class	SportsTicker	extends	Ticker	{
				//	body	of	the	class
}

A	class	that	does	not	use	extends	to	identify	its	superclass	has	Object	as	its
superclass.

Creating	Instance	and	Class	Variables
Whenever	you	create	a	class,	one	thing	you	must	do	is	define	behavior	that	makes	the	new
class	different	from	its	superclass.

This	behavior	is	defined	by	specifying	the	variables	and	methods	of	the	new	class.	In	this

section,	you	work	with	three	kinds	of	variables:	instance	variables,	local	variables,	and
class	variables.	The	subsequent	section	covers	methods.

Defining	Instance	Variables
On	Day	2,	“The	ABCs	of	Programming,”	you	learned	how	to	declare	and	initialize	local
variables,	which	are	variables	inside	method	definitions.

Instance	variables	are	declared	and	defined	in	almost	the	same	manner	as	local	variables.
The	main	difference	is	their	location	in	the	class	definition.

Variables	are	considered	instance	variables	if	they	are	declared	outside	a	method	definition
and	are	not	modified	by	the	static	keyword.

By	programming	custom,	most	instance	variables	are	defined	right	after	the	first	line	of
the	class	definition,	but	they	could	just	as	easily	be	defined	at	the	end.

Here’s	a	simple	class	definition	for	the	class	MarsRobot,	which	inherits	from	the
superclass	ScienceRobot:
Click	here	to	view	code	image

class	MarsRobot	extends	ScienceRobot	{
				String	status;
				int	speed;
				float	temperature;
				int	power;
}

This	class	definition	contains	four	variables.	Because	these	variables	are	not	defined	inside
a	method,	they	are	instance	variables.	The	variables	are	as	follows:

	status—A	string	indicating	the	robot’s	current	activity	(for	example,	“exploring”
or	“returning	home”)

	speed—An	integer	that	indicates	the	robot’s	current	rate	of	travel

	temperature—A	floating-point	number	that	indicates	the	current	temperature	of
the	robot’s	environment

	power—An	integer	indicating	the	robot’s	current	battery	power

Class	Variables
As	you	learned	in	previous	days,	class	variables	apply	to	a	class	as	a	whole,	rather	than	to
a	particular	object	of	that	class.

Class	variables	are	good	for	sharing	information	between	different	objects	of	the	same
class	or	for	keeping	track	of	common	information	among	a	set	of	objects.

The	static	keyword	is	used	in	the	class	declaration	to	declare	a	class	variable,	as	in	the
following	example:
Click	here	to	view	code	image

static	int	SUM;
static	final	int	MAX_OBJECTS	=	10;

By	convention,	many	Java	programmers	capitalize	the	entire	names	of	class	variables	so
that	they’re	distinguished	in	code	from	other	variables.	This	is	not	a	requirement	of	the
language,	but	is	a	practice	that’s	recommended.

Creating	Methods
As	you	learned	on	Day	3,	“Working	with	Objects,”	methods	define	an	object’s	behavior—
anything	that	happens	when	the	object	is	created	as	well	as	the	various	tasks	the	object	can
perform	during	its	lifetime.

This	section	introduces	method	definitions	and	how	methods	work.	Tomorrow’s	lesson
has	more	details	about	more	sophisticated	things	you	can	do	with	methods.

Defining	Methods
In	Java,	a	method	definition	has	four	basic	parts:

	The	method’s	name

	A	list	of	parameters

	The	type	of	object	or	primitive	type	that	the	method	returns

	The	body	of	the	method

The	first	two	parts	of	the	method	definition	form	the	method’s	signature.

Note

To	keep	things	simpler	today,	two	optional	parts	of	the	method	definition	have	been
left	out:	a	modifier,	such	as	public	or	private,	and	the	throws	keyword,
which	indicates	the	exceptions	a	method	can	throw.	You	learn	about	these	parts	of
method	definition	on	Day	6,	“Packages,	Interfaces,	and	Other	Class	Features,”	and
Day	7,	“Exceptions	and	Threads.”

In	other	languages,	the	name	of	the	method	(which	might	be	called	a	function,	subroutine,
or	procedure)	is	enough	to	distinguish	it	from	other	methods	in	the	program.

In	Java,	you	can	have	several	methods	in	the	same	class	with	the	same	name	but	different
signatures.	This	practice	is	called	method	overloading,	and	you	learn	more	about	it	later
today.

Here’s	what	a	basic	method	definition	looks	like:
Click	here	to	view	code	image

returnType	methodName(type1	arg1,	type2	arg2,	type3	arg3	…)	{
				//	body	of	method
}

The	returnType	is	the	primitive	type	or	class	of	the	value	returned	by	the	method.	It
can	be	one	of	the	primitive	types,	such	as	int	or	float,	a	class	name,	or	void	if	the
method	does	not	return	a	value.

The	method’s	parameter	list	is	a	set	of	variable	declarations	separated	by	commas	and	set

inside	parentheses.	These	parameters	become	local	variables	in	the	body	of	the	method,
receiving	their	values	when	the	method	is	called.
If	a	method	returns	an	array	object,	the	array	brackets	can	go	after	either	the	return	type	or
the	closing	parenthesis	of	the	parameter	list.	Because	putting	the	brackets	after	the	return
type	is	easier	to	read,	that	approach	is	used	in	this	book.	For	instance,	the	following
declares	a	method	that	returns	an	integer	array:
Click	here	to	view	code	image

int[]	makeRange(int	lower,	int	upper)	{
				//	body	of	method
}

Inside	the	body	of	a	method,	you	can	have	statements,	expressions,	method	calls	on	other
objects,	conditionals,	loops,	and	so	on.

Unless	a	method	has	been	declared	with	void	as	its	return	type,	the	method	returns	some
kind	of	value	when	it	is	completed.	This	value	must	be	explicitly	returned	at	some	exit
point	inside	the	method	by	using	the	return	keyword.

Listing	5.1	contains	RangeLister,	a	class	that	defines	a	makeRange()	method.	This
method	takes	two	integers—a	lower	boundary	and	an	upper	boundary—and	creates	an
array	that	contains	all	the	integers	between	those	two	boundaries.	The	boundaries
themselves	are	included	in	the	array	of	integers.

Create	a	new	empty	Java	file	in	NetBeans	for	a	class	called	RangeLister	(package
com.java21days)	and	enter	the	code	of	Listing	5.1	into	it.

LISTING	5.1	The	Full	Text	of	RangeLister.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	RangeLister	{
	4:					int[]	makeRange(int	lower,	int	upper)	{
	5:									int[]	range	=	new	int[(upper-lower)	+	1];
	6:
	7:									for	(int	i	=	0;	i	<	range.length;	i++)	{
	8:													range[i]	=	lower++;
	9:									}
10:									return	range;
11:					}
12:
13:					public	static	void	main(String[]	arguments)	{
14:									int[]	range;
15:									RangeLister	lister	=	new	RangeLister();
16:
17:									range	=	lister.makeRange(4,	13);
18:									System.out.print(“The	array:	[“);
19:									for	(int	i	=	0;	i	<	range.length;	i++)	{
20:													System.out.print(range[i]	+	”	“);
21:									}
22:									System.out.println(“]”);
23:					}
24:
25:	}

Run	the	program	by	choosing	Run,	Run	File	in	NetBeans	to	produce	the	output	shown	in
Figure	5.1.

FIGURE	5.1	Using	a	method	to	make	and	display	an	array.

The	main()	method	in	this	class	tests	the	makeRange()	method	by	calling	it	with	the
arguments	of	4	and	13.	The	method	creates	an	empty	integer	array	and	uses	a	for	loop	to
fill	the	new	array	with	values	from	4	through	13	in	lines	7–9.

The	this	Keyword
In	the	body	of	a	method	definition,	sometimes	you	need	to	refer	to	the	object	that	contains
the	method	(in	other	words,	the	object	itself).	You	can	do	this	to	use	the	object’s	instance
variables	and	to	pass	the	current	object	as	an	argument	to	another	method.

To	refer	to	the	object	in	its	own	method,	use	the	this	keyword	where	you	normally
would	refer	to	an	object’s	name.

The	this	keyword	refers	to	the	current	object,	and	you	can	use	it	anywhere	a	reference	to
an	object	might	appear:	in	dot	notation,	as	an	argument	to	a	method,	as	the	return	value	for
the	current	method,	and	so	on.	Here	are	examples	of	using	this	with	comments	to
explain	each	one:
Click	here	to	view	code	image

t	=	this.x;												//	the	x	instance	variable	for	this	object

z.resetData(this);					//	call	the	resetData	method,	defined	in
																							//	the	z	class,	and	pass	it	the	current	object
return	this;											//	return	the	current	object

In	many	cases,	you	might	not	need	to	explicitly	use	the	this	keyword	because	it	is
assumed.	For	instance,	you	can	refer	to	both	instance	variables	and	method	calls	defined
in	the	current	class	simply	by	name	because	the	this	is	implicit	in	those	references.
Therefore,	you	could	write	the	first	example	as	follows:
Click	here	to	view	code	image

t	=	x;																	//	the	x	instance	variable	for	this	object

Note

The	viability	of	omitting	the	this	keyword	for	instance	variables	depends	on
whether	variables	of	the	same	name	are	declared	in	the	local	scope.	You	explore
this	further	in	the	next	section.

Because	this	is	a	reference	to	the	current	instance	of	a	class,	only	use	it	inside	the	body
of	an	instance	method	definition.	Class	methods—which	are	declared	with	the	static
keyword—cannot	use	this.

Variable	Scope	and	Method	Definitions
One	thing	you	must	know	to	use	a	variable	is	its	scope.	Scope	is	the	part	of	a	program	in
which	a	variable	exists,	making	it	possible	to	use	the	variable	in	statements	and
expressions.	When	the	part	defining	the	scope	has	finished	executing,	the	variable	ceases
to	exist.

When	you	declare	a	variable	in	Java,	that	variable	always	has	limited	scope.	A	variable
with	local	scope,	for	example,	can	be	used	only	inside	the	block	in	which	it	was	defined.
Instance	variables	have	a	scope	that	extends	to	the	entire	class,	so	they	can	be	used	by	any
of	the	instance	methods	within	that	class.

When	you	refer	to	a	variable,	Java	checks	for	its	definition	outward,	starting	with	the
innermost	scope.

The	innermost	scope	could	be	a	block	statement,	such	as	the	contents	of	a	while	loop.
The	second-innermost	scope	could	be	the	method	in	which	the	block	is	contained.

If	the	variable	hasn’t	been	found	in	the	method,	the	class	itself	is	checked.

Because	of	how	Java	checks	for	the	scope	of	a	given	variable,	it	is	possible	for	you	to
create	a	variable	in	a	lower	scope	that	hides	(or	replaces)	the	original	value	of	that	variable
and	introduces	subtle	bugs	into	your	code.

For	example,	consider	the	following	Java	application:
Click	here	to	view	code	image

class	ScopeTest	{
				int	test	=	10;

				void	printTest()	{
								int	test	=	20;
								System.out.println(“Test:	“	+	test);
				}

				public	static	void	main(String[]	arguments)	{
								ScopeTest	st	=	new	ScopeTest();
								st.printTest();
				}
}

This	class	has	two	variables	with	the	same	name,	test.	The	first,	an	instance	variable,	is
initialized	with	the	value	10.	The	second	is	a	local	variable	with	the	value	20.

The	local	variable	test	within	the	printTest()	method	hides	the	instance	variable
test	in	that	scope.	When	the	printTest()	method	is	called	within	the	main()
method,	it	displays	that	test	equals	20,	even	though	there’s	a	test	instance	variable
that	equals	10.	You	could	avoid	this	problem	by	using	this.test	to	refer	to	the
instance	variable	and	using	test	to	refer	to	the	local	variable.

A	more	insidious	example	occurs	when	you	redefine	a	variable	in	a	subclass	that	already
occurs	in	a	superclass.	This	can	create	subtle	bugs	in	your	code.	For	example,	you	might
call	methods	that	are	intended	to	change	the	value	of	an	instance	variable,	but	the	wrong
variable	is	changed.	Another	bug	might	occur	when	you	cast	an	object	from	one	class	to
another.	The	value	of	your	instance	variable	might	mysteriously	change	because	the

variable	was	getting	that	value	from	the	superclass	instead	of	your	class.

The	best	way	to	avoid	this	behavior	is	to	be	aware	of	the	variables	defined	in	the
superclass	of	your	class	and	avoid	duplicating	a	variable	name	used	higher	in	the	class
hierarchy.

Passing	Arguments	to	Methods
When	you	call	a	method	with	an	object	as	a	parameter,	the	object	is	passed	into	the
method’s	body	as	a	reference	to	that	object.	Any	change	made	to	the	object	inside	the
method	persists	outside	the	method.

Keep	in	mind	that	this	includes	arrays	and	all	objects	contained	in	arrays.	When	you	pass
an	array	into	a	method	and	modify	its	contents,	the	original	array	is	affected.	Primitive
types	and	strings,	on	the	other	hand,	are	passed	by	value.	You	can’t	do	anything	in	the
method	that	changes	those	types.

The	Passer	class	in	Listing	5.2	demonstrates	how	this	works.	Create	this	class	in
NetBeans	in	the	com.java21days	package.

LISTING	5.2	The	Full	Text	of	Passer.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	Passer	{
	4:
	5:					void	toUpperCase(String[]	text)	{
	6:									for	(int	i	=	0;	i	<	text.length;	i++)	{
	7:													text[i]	=	text[i].toUpperCase();
	8:									}
	9:					}
10:
11:					public	static	void	main(String[]	arguments)	{
12:									Passer	passer	=	new	Passer();
13:									passer.toUpperCase(arguments);
14:									for	(int	i	=	0;	i	<	arguments.length;	i++)	{
15:													System.out.print(arguments[i]	+	”	“);
16:									}
17:									System.out.println();
18:					}
19:	}

This	application	takes	one	or	more	command-line	arguments	and	displays	them	in	all
uppercase	letters.

In	NetBeans,	set	the	arguments	by	choosing	Run,	Set	Project	Configuration,	Customize.
The	Project	Properties	dialog	appears.	Enter	com.java21days.Passer	as	the	Main
Class	and	Athos	Aramis	Porthos	(or	words	of	your	choosing)	as	the	Arguments
and	click	OK.	Run	the	application	by	choosing	Run,	Run	Project.

If	you	use	the	suggested	arguments,	the	program	produces	the	output	shown	in	Figure	5.2.

FIGURE	5.2	Testing	how	objects	are	passed	to	a	method.

The	Passer	application	uses	command-line	arguments	stored	in	the	arguments	array	of
strings.

The	application	creates	a	Passer	object	and	calls	its	toUpperCase()	method	with	the
arguments	array	as	an	argument	(lines	12–13).

Because	a	reference	to	the	array	object	is	passed	to	the	method,	changing	the	value	of	each
array	element	in	line	7	changes	the	actual	element	(rather	than	a	copy	of	it).	Displaying	the
array	with	lines	14–16	demonstrates	this.

Caution

If	nothing	happens	when	you	run	the	Passer	application	in	NetBeans,	you’re
running	it	with	the	command	Run,	Run	File	instead	of	Run,	Run	Project.	The	Run
File	command	does	not	use	the	arguments	set	up	in	the	project	configuration.	The
Run	Project	command	does.

Class	Methods
The	relationship	between	class	and	instance	variables	is	directly	comparable	to	how	class
and	instance	methods	work.

Class	methods	are	available	to	any	instance	of	the	class	itself	and	can	be	made	available	to
other	classes.	In	addition,	unlike	an	instance	method,	a	class	does	not	require	an	object	of
the	class	for	its	methods	to	be	called.

For	example,	the	Java	Class	Library	includes	the	System	class,	which	defines	a	set	of
methods	that	are	useful	when	displaying	text,	retrieving	configuration	information,	and
accomplishing	other	tasks.	Here	are	two	statements	that	use	its	class	methods:
Click	here	to	view	code	image

System.exit(0);

long	now	=	System.currentTimeMillis();

The	exit(int)	method	closes	an	application	with	a	status	code	that	indicates	success
(0)	or	failure	(any	other	value).	The	currentTimeMillis()	method	returns	a	long
holding	the	number	of	milliseconds	since	midnight	on	Jan.	1,	1970.	This	number	is	a
representation	of	the	current	date	and	time.

To	define	class	methods,	use	the	static	keyword	in	front	of	the	method	definition	as
you	would	in	front	of	a	class	variable.	For	example,	the	class	method	exit()	in	the
preceding	example	might	have	the	following	signature:
Click	here	to	view	code	image

static	void	exit(int	argument)	{
				//	body	of	method
}

Java	supplies	wrapper	classes	such	as	Integer	and	Float	for	each	of	the	primitive
types.	By	using	class	methods	defined	in	those	classes,	you	can	create	objects	for
primitive	types,	and	vice	versa.	The	same	value	is	represented	in	either	form.

For	example,	the	parseInt()	class	method	in	the	Integer	class	can	be	used	with	a
string	argument,	returning	an	int	representation	of	that	string:
Click	here	to	view	code	image

int	count	=	Integer.parseInt(“42”);

In	this	statement,	parseInt()	returns	the	String	value	“42”	as	an	integer	with	a
value	of	42,	which	is	stored	in	the	count	variable.

The	lack	of	a	static	keyword	in	front	of	a	method	name	makes	it	an	instance	method.
Instance	methods	operate	in	a	particular	object,	rather	than	a	class	of	objects.	On	Day	1,
“Getting	Started	with	Java,”	you	created	an	instance	method	called
checkTemperature()	that	checked	the	temperature	in	the	robot’s	environment.

Tip

Methods	that	affect	a	particular	object	should	be	defined	as	instance	methods.
Methods	that	provide	some	general	capability	but	do	not	directly	affect	an	object	of
the	class	should	be	declared	as	class	methods.

Class	methods,	unlike	instance	methods,	are	not	inherited.	A	class	method	in	a	superclass
cannot	be	overridden	in	a	subclass.

Creating	Java	Applications
Now	that	you	know	how	to	create	classes,	objects,	class	and	instance	variables,	and	class
and	instance	methods,	you	can	put	them	all	together	in	a	Java	program.

A	Java	application	consists	of	one	or	more	classes	and	can	be	as	large	or	as	small	as	you
want	it	to	be.	Although	all	the	applications	you’ve	created	up	to	this	point	do	nothing
visually	other	than	display	characters,	you	also	can	create	Java	applications	that	use
windows,	graphics,	and	a	graphical	user	interface.

The	only	thing	you	need	to	make	a	Java	application	run	is	one	class	that	serves	as	the
starting	point.

The	class	needs	only	one	thing:	a	main()	method.	When	the	application	is	run,	the	Java
Virtual	Machine	(JVM)	calls	this	method.

The	signature	for	the	main()	method	takes	the	following	form:
Click	here	to	view	code	image

public	static	void	main(String[]	arguments)	{
				//	body	of	method
}

Here’s	a	rundown	of	the	parts	of	the	main()	method:

	public	means	that	this	method	is	available	to	other	classes	and	objects,	which	is	a
form	of	access	control.	The	main()	method	must	be	declared	public.	You	learn
more	about	access	methods	during	Day	6.

	static	means	that	main()	is	a	class	method.

	void	means	that	the	main()	method	doesn’t	return	a	value.

	main()	takes	one	parameter,	which	is	an	array	of	strings.	This	argument	holds
command-line	arguments.

The	body	of	the	main()	method	contains	any	code	you	need	to	start	your	application,
such	as	the	initialization	of	variables	or	the	creation	of	objects.

The	main()	method	is	a	class	method.	An	object	of	the	class	that	holds	main()	is	not
created	automatically	when	your	application	runs.	If	you	want	to	treat	that	class	as	an
object,	you	have	to	create	an	instance	of	it	in	the	main()	method	(as	you	did	in	the
Passer	application	in	Listing	5.2	on	line	12).

In	a	NetBeans	project,	one	class	can	be	designated	as	the	main	class	of	the	project.	When
the	project	is	packaged	into	a	single	Java	archive	(JAR)	file,	the	main	class	will	be	run	if
the	JAR	file	is	executed.

To	set	the	main	class,	choose	Run,	Set	Project	Configuration,	Customize.	In	the	Project
Properties	dialog,	enter	the	name	of	this	class	in	the	Main	Class	field.

Helper	Classes
Your	Java	application	may	consist	of	a	single	class—the	one	with	the	main()	method—
or	several	classes	that	use	each	other.	(In	reality,	even	a	simple	tutorial	program	uses
numerous	classes	in	the	Java	Class	Library.)	You	can	create	as	many	classes	as	you	want
for	your	program.

As	long	as	Java	can	find	the	class,	your	program	uses	it	when	it	runs.	Note,	however,	that
only	the	starting-point	class	needs	a	main()	method.	After	it	is	called,	the	methods
inside	the	various	classes	and	objects	used	in	your	program	take	over.	Although	you	can
include	main()	methods	in	helper	classes,	they	are	ignored	when	the	program	runs.

Java	Applications	and	Arguments
Because	Java	applications	are	standalone	programs,	it’s	useful	to	pass	arguments	to	an
application	to	customize	how	it	operates.

You	can	use	arguments	to	determine	how	an	application	will	run	or	to	enable	an
application	to	operate	on	different	kinds	of	input.	You	can	use	program	arguments	for
many	purposes,	such	as	to	turn	on	debugging	input	or	to	indicate	a	filename	to	load.

Passing	Arguments	to	Java	Applications
How	you	pass	arguments	to	a	Java	application	varies	based	on	the	environment	and	JVM
on	which	Java	is	being	run.

To	pass	arguments	to	a	Java	program	with	the	java	interpreter	included	with	the	Java
Development	Kit	(JDK),	the	arguments	would	be	appended	to	the	command	line	when	the
program	is	run.	For	example:

java	Echo	April	450	-10

Here	java	is	the	name	of	the	interpreter,	Echo	is	the	Java	application,	and	the	rest	are
three	arguments	passed	to	a	program:	“April”,	“450”,	and	“-10”.	Note	that	a	space
separates	each	of	the	arguments.

To	group	arguments	that	have	spaces	in	them,	surround	the	arguments	with	quotation
marks.	For	example,	consider	the	following	command	line:
Click	here	to	view	code	image

java	Echo	Wilhelm	Niekro	Hough	“Tim	Wakefield”	49

Putting	quotation	marks	around	“Tim	Wakefield”	causes	that	text	to	be	treated	as	a	single
argument.	The	Echo	application	would	receive	five	arguments:	“Wilhelm”,	“Niekro”,
“Hough”,	“Tim	Wakefield”,	and	“49”.	The	quotation	marks	prevent	the	space	within	“Tim
Wakefield”	from	being	used	to	separate	arguments.	Those	spaces	are	not	included	as	part
of	the	argument	when	it	is	sent	to	the	program	and	received	using	the	main()	method.

Caution

One	thing	quotation	marks	are	not	used	for	is	to	identify	strings.	Every	argument
passed	to	an	application	is	stored	in	an	array	of	String	objects,	even	if	it	has	a
numeric	value	(such	as	450,	–10,	and	49	in	the	preceding	examples).

Because	NetBeans	runs	the	JVM	behind	the	scenes,	there’s	no	command	line	on	which	to
specify	arguments.	Instead,	they	can	be	set	in	the	project	configuration	with	the	Run,	Set
Project	Configuration,	Customize	command,	as	you	did	earlier	to	run	the	RangeLister
application.

Handling	Arguments	in	Your	Java	Application
When	an	application	is	run	with	arguments,	Java	stores	the	arguments	as	an	array	of
strings	and	passes	the	array	to	the	application’s	main()	method.	Take	another	look	at	the
signature	for	main():
Click	here	to	view	code	image

public	static	void	main(String[]	arguments)	{
				//	body	of	method
}

Here,	arguments	is	the	name	of	the	array	of	strings	that	contains	the	list	of	arguments.
You	can	call	this	array	anything	you	want.

Inside	the	main()	method,	you	handle	the	arguments	your	program	was	given	by	looping

through	the	array.	The	Averager	class	in	Listing	5.3	is	a	Java	application	that	takes
numeric	arguments	and	returns	the	sum	and	average	of	those	arguments.

Create	a	new	empty	Java	file	in	NetBeans	for	the	Averager	class	in	the
com.java21days	package.

LISTING	5.3	The	Full	Text	of	Averager.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	Averager	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									int	sum	=	0;
	6:
	7:									if	(arguments.length	>	0)	{
	8:													for	(int	i	=	0;	i	<	arguments.length;	i++)	{
	9:																	sum	+=	Integer.parseInt(arguments[i]);
10:													}
11:													System.out.println(“Sum	is:	“	+	sum);
12:													System.out.println(“Average	is:	“	+
13:																	(float)	sum	/	arguments.length);
14:									}
15:					}
16:	}

Before	running	the	application	in	NetBeans,	choose	two	or	more	numeric	arguments	in	the
project	configuration,	as	you	did	with	the	RangeLister	application.	They	all	should	be
integers.

The	Averager	application	makes	sure	that	in	line	7	at	least	one	argument	is	passed	to	the
program.	This	is	handled	through	length,	the	instance	variable	that	contains	the	number
of	elements	in	the	arguments	array.

You	must	always	do	things	like	this	when	dealing	with	command-line	arguments.
Otherwise,	your	programs	crash	with	ArrayIndexOutOfBoundsException	errors
whenever	the	user	supplies	fewer	command-line	arguments	than	you	were	expecting.

If	at	least	one	argument	is	passed	to	the	application,	the	for	loop	iterates	through	all	the
strings	stored	in	the	arguments	array	(lines	8–10).

Because	all	command-line	arguments	are	passed	to	a	Java	application	as	String	objects,
you	must	convert	them	to	numeric	values	before	using	them	in	any	mathematical
expressions.	The	parseInt()	class	method	of	the	Integer	class	takes	a	String
object	as	input	and	returns	an	int	(line	9).

If	75	1080	95	1316	were	submitted	as	your	arguments,	you	would	see	output
matching	Figure	5.3.

FIGURE	5.3	Receiving	arguments	in	an	application.

Creating	Methods	with	the	Same	Name
When	you	work	with	the	Java	Class	Library,	you	often	encounter	classes	that	have
numerous	methods	with	the	same	name.

Two	things	differentiate	these	same-named	methods:

	The	number	of	arguments	they	take

	The	primitive	type	or	objects	of	each	argument

These	two	things	are	part	of	a	method’s	signature.	Using	several	methods	with	the	same
name	and	different	signatures	is	called	overloading.

Method	overloading	can	eliminate	the	need	for	entirely	different	methods	that	do
essentially	the	same	thing.	Overloading	also	makes	it	possible	for	methods	to	behave
differently	based	on	the	arguments	they	receive.

When	you	call	a	method	in	an	object,	Java	matches	the	method	name	and	arguments	to
choose	which	method	definition	to	execute.

To	create	an	overloaded	method,	you	create	different	method	definitions	in	a	class,	each
with	the	same	name	but	different	argument	lists.	The	difference	can	be	the	number,	the
type	of	arguments,	or	both.	Java	allows	method	overloading	as	long	as	each	argument	list
is	unique	for	the	same	method	name.

Caution

Java	does	not	consider	the	return	type	when	differentiating	among	overloaded
methods.	If	you	attempt	to	create	two	methods	with	the	same	signature	and	different
return	types,	the	class	won’t	compile.	In	addition,	the	variable	names	that	you
choose	for	each	argument	to	the	method	are	irrelevant.	The	number	and	the	type	of
arguments	are	the	two	things	that	matter.

The	next	project	you	undertake	creates	an	overloaded	method.	It	begins	with	a	simple
class	definition	for	a	class	called	Box.	This	defines	a	rectangular	shape	with	four	instance
variables	to	define	the	upper-left	and	lower-right	corners	of	the	rectangle,	(x1,	y1)	and
(x2,	y2):

class	Box	{
				int	x1	=	0;
				int	y1	=	0;
				int	x2	=	0;
				int	y2	=	0;
}

When	a	new	instance	of	the	Box	class	is	created,	all	its	instance	variables	are	initialized	to
0.

A	buildBox()	instance	method	sets	the	variables	to	their	correct	values:
Click	here	to	view	code	image

Box	buildBox(int	x1,	int	y1,	int	x2,	int	y2)	{
				this.x1	=	x1;
				this.y1	=	y1;
				this.x2	=	x2;
				this.y2	=	y2;
				return	this;
}

This	method	takes	four	integer	arguments	and	returns	a	reference	to	the	resulting	Box
object.	Because	the	arguments	have	the	same	names	as	the	instance	variables,	the	keyword
this	is	used	inside	the	method	when	referring	to	the	instance	variables.

This	method	can	be	used	to	create	rectangles,	but	what	if	you	wanted	to	define	a
rectangle’s	dimensions	differently?	An	alternative	would	be	to	use	Point	objects	rather
than	individual	coordinates—because	Point	objects	contain	both	an	x	and	y	value	as
instance	variables.

You	can	overload	buildBox()	by	creating	a	second	version	of	the	method	with	an
argument	list	that	takes	two	Point	objects:
Click	here	to	view	code	image

Box	buildBox(Point	topLeft,	Point	bottomRight)	{
				x1	=	topLeft.x;
				y1	=	topLeft.y;
				x2	=	bottomRight.x;
				y2	=	bottomRight.y;
				return	this;
}

For	this	method	to	work,	the	java.awt.Point	class	must	be	imported	so	that	it	can	be
referred	to	by	the	short	name	Point.

Another	possible	way	to	define	the	rectangle	is	to	use	a	top	corner,	a	height,	and	a	width:
Click	here	to	view	code	image

Box	buildBox(Point	topLeft,	int	w,	int	h)	{
				x1	=	topLeft.x;
				y1	=	topLeft.y;
				x2	=	(x1	+	w);
				y2	=	(y1	+	h);
				return	this;
}

To	finish	this	example,	a	printBox()	method	is	created	to	display	the	rectangle’s
coordinates.	A	main()	method	turns	Box	into	an	application	and	tries	out	everything	on
a	Box	object.	Listing	5.4	shows	the	completed	class	definition.	Create	this	class	using
NetBeans	in	package	com.java21days.

LISTING	5.4	The	Full	Text	of	Box.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.Point;
	4:
	5:	class	Box	{
	6:					int	x1	=	0;
	7:					int	y1	=	0;
	8:					int	x2	=	0;
	9:					int	y2	=	0;
10:
11:					Box	buildBox(int	x1,	int	y1,	int	x2,	int	y2)	{
12:									this.x1	=	x1;
13:									this.y1	=	y1;
14:									this.x2	=	x2;
15:									this.y2	=	y2;
16:									return	this;
17:					}
18:
19:					Box	buildBox(Point	topLeft,	Point	bottomRight)	{
20:									x1	=	topLeft.x;
21:									y1	=	topLeft.y;
22:									x2	=	bottomRight.x;
23:									y2	=	bottomRight.y;
24:									return	this;
25:					}
26:
27:					Box	buildBox(Point	topLeft,	int	w,	int	h)	{
28:									x1	=	topLeft.x;
29:									y1	=	topLeft.y;
30:									x2	=	(x1	+	w);
31:									y2	=	(y1	+	h);
32:									return	this;
33:					}
34:
35:					void	printBox(){
36:									System.out.print(“Box:	<”	+	x1	+	“,	“	+	y1);
37:									System.out.println(“,	“	+	x2	+	“,	“	+	y2	+	“>”);
38:					}
39:
40:					public	static	void	main(String[]	arguments)	{
41:									Box	rect	=	new	Box();
42:
43:									System.out.println(“Calling	buildBox	with	“
44:													+	“coordinates	(25,25)	and	(50,50):”);
45:									rect.buildBox(25,	25,	50,	50);
46:									rect.printBox();
47:
48:									System.out.println(“\nCalling	buildBox	with	“
49:													+	“points	(10,10)	and	(20,20):”);
50:									rect.buildBox(new	Point(10,	10),	new	Point(20,	20));
51:									rect.printBox();
52:
53:									System.out.println(“\nCalling	buildBox	with	“
54:													+	“point	(10,10),	width	50	and	height	50:”);
55:
56:									rect.buildBox(new	Point(10,	10),	50,	50);
57:									rect.printBox();
58:				}
59:	}

Run	the	application	to	see	the	output	depicted	in	Figure	5.4.

FIGURE	5.4	Calling	overloaded	methods.

You	can	define	as	many	versions	of	a	method	as	you	need	to	implement	the	behavior
needed	for	that	class.

When	you	have	several	methods	that	do	similar	things,	using	one	method	to	call	another	is
a	shortcut	technique	to	consider.	For	example,	the	buildBox()	method	in	lines	19–25
can	be	replaced	with	the	following,	much	shorter,	method:
Click	here	to	view	code	image

Box	buildBox(Point	topLeft,	Point	bottomRight)	{
				return	buildBox(topLeft.x,	topLeft.y,
								bottomRight.x,	bottomRight.y);
}

The	return	statement	in	this	method	calls	the	buildBox()	method	in	lines	11–17
with	four	integer	arguments,	producing	the	same	result	in	fewer	statements.

This	application	uses	a	programming	shortcut	for	working	with	objects	that	hasn’t	been
employed	up	to	this	point.	Take	a	look	at	line	56:
Click	here	to	view	code	image

rect.buildBox(new	Point(10,	10),	50,	50);

The	new	operator	is	used	as	an	argument	to	a	method.	This	makes	the	argument	the	object
created	by	calling	that	constructor,	which	is	possible	in	Java	because	calling	new	is	an
expression	whose	value	is	the	newly	created	object.

The	preceding	statement	accomplishes	the	same	thing	as	these	two	lines	of	code:
Click	here	to	view	code	image

Point	rectangle	=	new	Point(10,	10),	50,	50);
rect.buildBox(new	Point(10,	10),	50,	50);

The	one-line	version	is	more	efficient	because	it	doesn’t	store	an	object	in	a	variable	that
will	be	used	only	once	and	never	needs	to	be	accessed	in	any	subsequent	code.	You	will
find	this	shortcut	employed	often	in	Java	programs.

Constructors
You	also	can	define	constructors	in	your	class	definition	that	are	called	automatically
when	objects	of	that	class	are	created.	A	constructor	is	a	method	called	on	an	object	when
it	is	created—in	other	words,	when	it	is	constructed.

Unlike	other	methods,	a	constructor	cannot	be	called	directly.	Java	does	three	things	when
new	is	used	to	create	an	instance	of	a	class:

	It	allocates	memory	for	the	object.

	It	initializes	that	object’s	instance	variables,	either	to	initial	values	or	to	a	default	(0
for	numbers,	null	for	objects,	false	for	Booleans,	or	‘\0’	for	characters).

	It	calls	a	constructor	of	the	class.

If	a	class	doesn’t	have	any	constructors	defined,	an	object	still	is	created	when	the	new
operator	is	used	in	conjunction	with	the	class.	However,	you	might	have	to	set	its	instance
variables	or	call	other	methods	that	the	object	needs	to	initialize	itself.

When	an	object	is	created	of	a	class	that	has	no	constructors,	a	constructor	with	no
arguments	is	implicitly	provided	by	Java.	This	constructor	is	called	to	create	the	object.
For	this	reason,	a	constructor	with	no	arguments	can	be	called	with	new	even	when	no
constructors	are	defined.

By	defining	constructors	in	your	own	classes,	you	can	set	initial	values	of	instance
variables,	call	methods	based	on	those	variables,	call	methods	on	other	objects,	and	set	an
object’s	initial	properties.

When	creating	a	class,	you	can	overload	constructors,	as	you	can	do	with	methods,	to
create	an	object	that	has	specific	properties	based	on	the	arguments	you	give	to	new.

If	a	class	has	a	constructor	that	takes	one	or	more	arguments,	a	constructor	with	no
arguments	can	be	called	only	if	one	has	been	defined	in	the	class.

Basic	Constructors
Constructors	look	a	lot	like	regular	methods,	with	three	basic	differences:

	They	always	have	the	same	name	as	the	class.

	They	don’t	have	a	return	type.

	They	cannot	return	a	value	in	the	method	by	using	the	return	statement.

For	example,	the	following	class	uses	a	constructor	to	initialize	its	instance	variables
based	on	arguments	for	new:
Click	here	to	view	code	image

class	MarsRobot	{
				String	status;
				int	speed;
				int	power;

				MarsRobot(String	in1,	int	in2,	int	in3)	{
								status	=	in1;

								speed	=	in2;
								power	=	in3;
				}
}

You	could	create	an	object	of	this	class	with	the	following	statement:
Click	here	to	view	code	image

MarsRobot	curiosity	=	new	MarsRobot(“exploring”,	5,	200);

The	status	instance	variable	would	be	set	to	“exploring”,	speed	to	5,	and	power	to
200.

Calling	Another	Constructor
If	you	have	a	constructor	that	duplicates	some	of	the	behavior	of	an	existing	constructor,
you	can	call	the	first	constructor	from	inside	the	body	of	the	second.	Java	provides	special
syntax	for	doing	this.	Use	the	following	code	to	call	a	constructor	defined	in	the	current
class:
Click	here	to	view	code	image

this(argument1,	argument2,	argument3);

The	use	of	this	with	a	constructor	is	similar	to	how	this	can	be	used	to	access	a
current	object’s	variables.	In	the	preceding	statement,	the	arguments	with	this()	are	the
arguments	for	the	constructor.

For	example,	consider	a	simple	class	that	defines	a	circle	using	the	(x,	y)	coordinate	of	its
center	and	the	length	of	its	radius.	The	class,	Circle,	could	have	two	constructors:	one
where	the	radius	is	defined	and	one	where	the	radius	is	set	to	a	default	value	of	1.	Here’s
code	that	does	this:
Click	here	to	view	code	image

class	Circle	{
				int	x,	y,	radius;

				Circle(int	xPoint,	int	yPoint,	int	radiusLength)	{
								this.x	=	xPoint;
								this.y	=	yPoint;
								this.radius	=	radiusLength;
				}

				Circle(int	xPoint,	int	yPoint)	{
								this(xPoint,	yPoint,	1);
				}
}

The	second	constructor	in	Circle	takes	only	the	(x,	y)	coordinates	of	the	circle’s	center.
Because	no	radius	is	defined,	the	default	value	of	1	is	used.	The	first	constructor	is	called
with	the	arguments	xPoint,	yPoint,	and	the	integer	literal	1.

Overloading	Constructors
Like	methods,	constructors	also	can	take	varying	numbers	and	types	of	arguments.	This
capability	enables	you	to	create	an	object	with	exactly	the	properties	you	want	it	to	have,
or	as	an	alternative,	allows	the	object	to	calculate	properties	from	different	kinds	of	input.

For	example,	the	buildBox()	methods	that	you	defined	in	the	Box	class	earlier	today
would	make	excellent	constructors	because	they	are	used	to	initialize	an	object’s	instance
variables	to	the	appropriate	values.	So,	instead	of	the	original	buildBox()	method	you
defined	(which	took	four	arguments	for	the	corners’	coordinates),	you	could	create	a
constructor.

Listing	5.5	shows	a	new	class,	Box2,	that	has	the	same	functionality	as	the	original	Box
class	but	uses	overloaded	constructors	instead	of	overloaded	buildBox()	methods.
Create	the	Box2	class	in	NetBeans,	putting	it	in	package	com.java21days.

LISTING	5.5	The	Full	Text	of	Box2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.Point;
	4:
	5:	class	Box2	{
	6:					int	x1	=	0;
	7:					int	y1	=	0;
	8:					int	x2	=	0;
	9:					int	y2	=	0;
10:
11:					Box2(int	x1,	int	y1,	int	x2,	int	y2)	{
12:									this.x1	=	x1;
13:									this.y1	=	y1;
14:									this.x2	=	x2;
15:									this.y2	=	y2;
16:					}
17:
18:					Box2(Point	topLeft,	Point	bottomRight)	{
19:									this(topLeft.x,	topLeft.y,	bottomRight.x,
20:													bottomRight.y);
21:					}
22:
23:					Box2(Point	topLeft,	int	w,	int	h)	{
24:									this(topLeft.x,	topLeft.y,	topLeft.x	+	w,
25:													topLeft.y	+	h);
26:					}
27:
28:					void	printBox()	{
29:									System.out.print(“Box:	<”	+	x1	+	“,	“	+	y1);
30:									System.out.println(“,	“	+	x2	+	“,	“	+	y2	+	“>”);
31:					}
32:
33:					public	static	void	main(String[]	arguments)	{
34:									Box2	rect;
35:
36:									System.out.println(“Calling	Box2	with	coordinates	“
37:													+	“(25,25)	and	(50,50):”);
38:									rect	=	new	Box2(25,	25,	50,	50);
39:									rect.printBox();
40:
41:									System.out.println(“\nCalling	Box2	with	points	“
42:													+	“(10,10)	and	(20,20):”);
43:									rect	=	new	Box2(new	Point(10,	10),	new	Point(20,	20));
44:									rect.printBox();
45:

46:									System.out.println(“\nCalling	Box2	with	1	point	“
47:													+	“(10,10),	width	50	and	height	50:”);
48:									rect	=	new	Box2(new	Point(10,	10),	50,	50);
49:									rect.printBox();
50:
51:					}
52:	}

This	application	produces	the	same	output	as	the	Box	application	shown	in	Figure	5.4.	In
Listing	5.5,	the	second	and	third	constructors	use	this	in	lines	19–20	and	lines	24–25	to
call	the	first	constructor,	giving	it	the	task	of	creating	the	object	with	the	specified
parameters.

Overriding	Methods
When	you	call	an	object’s	method,	Java	looks	for	that	method	definition	in	the	object’s
class.	If	it	doesn’t	find	it,	the	method	is	sought	in	the	object’s	superclass,	and	on	up	the
class	hierarchy	until	a	method	definition	is	found.	Inheritance	enables	you	to	define	and
use	methods	repeatedly	in	subclasses	without	having	to	duplicate	the	code.

However,	there	might	be	times	when	you	want	an	object	to	respond	to	the	same	method
but	have	different	behavior	when	that	method	is	called.	In	that	case,	you	can	override	the
method.

To	do	this,	define	a	method	in	a	subclass	with	the	same	signature	as	a	method	in	a
superclass.	Then,	when	the	method	is	called,	the	subclass	method	is	found	and	executed
instead	of	the	one	in	the	superclass.	This	is	called	overriding	a	method.

Creating	Methods	That	Override	Existing	Methods
To	override	a	method,	all	you	have	to	do	is	create	a	method	in	your	subclass	that	has	the
same	signature	(name	and	argument	list)	as	a	method	defined	by	your	class’s	superclass.
Because	Java	executes	the	first	method	definition	it	finds	that	matches	the	signature,	the
new	signature	hides	the	original	method	definition.

Here’s	a	simple	example.	Listing	5.6	contains	two	classes.	Printer	contains	a	method
called	printMe()	that	displays	information	about	objects	of	that	class.	SubPrinter	is
a	subclass	that	adds	a	z	instance	variable	to	the	class.	Create	this	class	and	name	it
Printer	in	NetBeans	(package	com.java21days).

LISTING	5.6	The	Full	Text	of	Printer.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	Printer	{
	4:					int	x	=	0;
	5:					int	y	=	1;
	6:
	7:					void	printMe()	{
	8:									System.out.println(“x	is	”	+	x	+	“,	y	is	”	+	y);
	9:									System.out.println(“I	am	an	instance	of	the	class	“	+
10:													this.getClass().getName());

11:					}
12:	}
13:
14:	class	SubPrinter	extends	Printer	{
15:					int	z	=	3;
16:
17:					public	static	void	main(String[]	arguments)	{
18:									SubPrinter	obj	=	new	SubPrinter();
19:									obj.printMe();
20:					}
21:	}

When	this	file	is	compiled,	there	are	two	class	files	rather	than	one.	Because	the	source
file	defines	the	Printer	and	SubPrinter	classes,	the	compiler	produces	both.	Run
SubPrinter	(by	selecting	Run,	Run	File	in	NetBeans),	and	you	see	the	output	in	Figure
5.5.

FIGURE	5.5	Calling	a	superclass	method	in	a	subclass.

Caution

The	Printer	class	does	not	have	a	main()	method,	so	it	cannot	be	run	as	an
application.	So	when	you	choose	Run,	Run	File	in	NetBeans,	it	automatically	runs
the	SubPrinter	application’s	main()	method,	because	no	other	class	has	such	a
method.	If	a	source	code	file	contains	more	than	one	class	with	main(),	NetBeans
asks	which	one	should	be	run.

In	the	application	a	SubPrinter	object	was	created	and	the	printMe()	method	was
called	in	the	main()	method	of	SubPrinter.	Because	the	SubPrinter	does	not
define	this	method,	Java	looks	for	it	in	the	superclasses	of	SubPrinter,	starting	with
Printer.	Printer	has	a	printMe()	method,	so	it	is	executed.	Unfortunately,	this
method	does	not	display	the	z	instance	variable,	as	you	can	see	from	the	preceding	output.
The	superclass	does	not	define	this	variable,	so	it	could	not	display	it.

To	correct	the	problem,	you	can	override	the	printMe()	method	in	SubPrinter,
adding	a	statement	to	display	the	z	instance	variable:
Click	here	to	view	code	image

void	printMe()	{
				System.out.println(“x	is	“	+	x	+	“,	y	is	“	+	y	+
								“,	z	is	“	+	z);
				System.out.println(“I	am	an	instance	of	the	class	“	+
								this.getClass().getName());
}

Calling	the	Original	Method
Usually,	there	are	two	reasons	why	you	want	to	override	a	method	that	a	superclass
already	has	implemented:

	To	replace	the	definition	of	that	original	method

	To	augment	the	original	method	with	additional	behavior

Overriding	a	method	and	giving	it	a	new	definition	hides	the	original	method	definition.
However,	sometimes	behavior	should	be	added	to	the	original	definition	instead	of	being
replaced,	particularly	when	behavior	is	duplicated	in	both	the	original	method	and	the
method	that	overrides	it.	By	calling	the	original	method	in	the	body	of	the	overriding
method,	you	can	add	only	what	you	need.

Use	the	super	keyword	to	call	the	original	method	from	inside	a	method	definition.	This
keyword	passes	the	method	call	up	the	hierarchy,	as	shown	in	the	following:
Click	here	to	view	code	image

void	doMethod(String	a,	String	b)	{
				//	do	stuff	here
				super.doMethod(a,	b);
				//	do	more	stuff	here
}

The	super	keyword,	similar	to	the	this	keyword,	is	a	placeholder	for	the	class’s
superclass.	You	can	use	it	anywhere	that	you	use	this,	but	super	refers	to	the
superclass	rather	than	to	the	current	object.

Overriding	Constructors
Technically,	constructors	cannot	be	overridden.	Because	they	always	have	the	same	name
as	the	current	class,	new	constructors	are	created	instead	of	being	inherited.	This	system	is
fine	much	of	the	time;	when	your	class’s	constructor	is	called,	the	constructor	with	the
same	signature	for	all	your	superclasses	also	is	called.	Therefore,	initialization	can	happen
for	all	parts	of	a	class	you	inherit.

However,	when	you	are	defining	constructors	for	your	own	class,	you	might	want	to
change	how	your	object	is	initialized,	not	only	by	initializing	new	variables	added	by	your
class,	but	also	by	changing	the	contents	of	variables	that	are	already	there.	To	do	this,
explicitly	call	the	constructors	of	the	superclass,	and	change	whatever	variables	need	to	be
changed.

To	call	a	regular	method	in	a	superclass,	you	use	super.methodname(arguments).
Because	constructor	methods	don’t	have	a	method	name	to	call,	the	following	form	is
used:
Click	here	to	view	code	image

super(argument1,	argument2,	…);

Java	has	a	rule	for	the	use	of	super():	It	must	be	the	first	statement	in	your	constructor
definition.	If	you	don’t	call	super()	explicitly	in	that	first	statement,	Java	automatically
calls	super()	with	no	arguments	before	the	first	statement	in	the	constructor.

Because	a	call	to	a	super()	method	must	be	the	first	statement,	you	can’t	do	something
like	the	following	in	your	overriding	constructor:
Click	here	to	view	code	image

if	(condition	==	true)	{
				super(1,2,3);	//	call	one	superclass	constructor
}	else	{
				super(1,2);	//	call	a	different	constructor
}

Similar	to	using	this()	in	a	constructor,	super()	calls	the	constructor	for	the
immediate	superclass	(which	might,	in	turn,	call	the	constructor	of	its	superclass,	and	so
on).	Note	that	a	constructor	with	that	signature	has	to	exist	in	the	superclass	for	the	call	to
super()	to	work.	The	Java	compiler	checks	this	when	a	class	is	compiled.

You	don’t	have	to	call	the	constructor	in	your	superclass	that	has	the	same	signature	as	the
constructor	in	your	class;	you	have	to	call	the	constructor	only	for	the	values	you	need
initialized.	In	fact,	you	can	create	a	class	that	has	constructors	with	entirely	different
signatures	from	any	of	the	superclass’s	constructors.

Listing	5.7	shows	a	class	called	NamedPoint,	which	extends	the	class	Point	from	the
java.awt	package.	The	Point	class	has	only	one	constructor,	which	takes	an	x	and	a
y	argument	and	returns	a	Point	object.	NamedPoint	has	an	additional	instance
variable	(a	string	for	the	name)	and	defines	a	constructor	to	initialize	x,	y,	and	the	name.
Create	this	class	in	NetBeans	in	the	com.java21days	package.

LISTING	5.7	The	NamedPoint	Class
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.Point;
	4:
	5:	class	NamedPoint	extends	Point	{
	6:					String	name;
	7:
	8:					NamedPoint(int	x,	int	y,	String	name)	{
	9:									super(x,	y);
10:									this.name	=	name;
11:					}
12:
13:					public	static	void	main(String[]	arguments)	{
14:									NamedPoint	np	=	new	NamedPoint(5,	5,	“SmallPoint”);
15:									System.out.println(“x	is	“	+	np.x);
16:									System.out.println(“y	is	“	+	np.y);
17:									System.out.println(“Name	is	“	+	np.name);
18:					}
19:	}

The	output	is	displayed	in	Figure	5.6.

FIGURE	5.6	Extending	a	superclass	constructor	in	a	subclass.

The	constructor	defined	for	NamedPoint	calls	Point’s	constructor	to	initialize	the
instance	variables	of	Point	(x	and	y).	Although	you	can	just	as	easily	initialize	x	and	y
yourself,	you	might	not	know	what	other	things	Point	is	doing	to	initialize	itself.
Therefore,	it	is	always	a	good	idea	to	pass	constructors	up	the	hierarchy	to	make	sure	that
everything	is	set	up	correctly.

Summary
After	finishing	today’s	lesson,	you	should	have	a	pretty	good	idea	of	the	relationship
among	classes	in	Java	and	programs	you	create	using	the	language.

Everything	you	create	in	Java	involves	the	use	of	a	main	class	that	interacts	with	other
classes	as	needed.	It’s	a	different	programming	mindset	than	you	might	be	used	to	with
other	languages.

During	this	day,	you	put	together	everything	you	have	learned	about	creating	Java	classes.
These	topics	were	covered:

	Instance	and	class	variables,	which	hold	the	attributes	of	a	class	and	objects	created
from	it

	Instance	and	class	methods,	which	define	the	behavior	of	a	class.	You	learned	how
to	define	methods,	including	the	parts	of	a	method	signature,	how	to	return	values
from	a	method,	how	arguments	are	passed	to	methods,	and	how	to	use	the	this
keyword	to	refer	to	the	current	object.

	The	main()	method	of	Java	applications,	and	how	to	pass	arguments	to	it

	Overloaded	methods,	which	reuse	a	method	name	by	giving	it	different	arguments

	Constructors,	which	define	the	initial	variables	and	other	starting	conditions	of	an
object

Q&A
Q	My	class	has	an	instance	variable	called	origin.	It	also	has	a	local	variable
called	origin	in	a	method,	which,	because	of	variable	scope,	gets	hidden	by
the	local	variable.	Is	there	any	way	to	access	the	instance	variable’s	value?

A	The	easiest	way	to	avoid	this	problem	is	to	give	your	local	variables	different	names
than	your	instance	variables.	If	for	some	reason	you	prefer	to	call	a	local	variable
origin	when	there’s	an	instance	variable	of	the	same	name,	you	can	use
this.origin	to	refer	to	the	instance	variable	and	origin	to	refer	to	the	local

variable.

Q	I	created	two	methods	with	the	following	signatures:
Click	here	to	view	code	image

int	total(int	arg1,	int	arg2,	int	arg3)	{	…	}
float	total(int	arg1,	int	arg2,	int	arg3)	{	…	}

The	Java	compiler	complains	when	I	try	to	compile	the	class	with	these	method
definitions,	even	though	their	signatures	are	different.	What	did	I	do	wrong?

A	Your	methods	have	the	same	signature.	Method	overloading	in	Java	works	only	if
the	argument	lists	are	different	in	either	number	or	type	of	arguments.	Return	type	is
not	part	of	a	method	signature,	so	it’s	not	considered	when	methods	have	been
overloaded.	Looking	at	it	from	the	point	at	which	a	method	is	called,	this	makes
sense:	If	two	methods	have	exactly	the	same	argument	list,	how	would	Java	know
which	one	to	call?

Q	I	wrote	a	program	to	take	four	arguments,	but	when	I	give	it	too	few
arguments,	it	crashes	with	a	runtime	error.	Why?

A	It’s	up	to	you	to	test	for	the	number	and	type	of	arguments	your	program	expects;
Java	won’t	do	it	for	you.	If	your	program	requires	four	arguments,	test	in	the
main()	method	that	you	have	indeed	been	given	four	arguments	by	using	the
length	variable	of	an	array,	which	contains	the	count	of	its	elements.	Return	an
error	message	if	you	haven’t	and	end	the	program.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	If	a	local	variable	has	the	same	name	as	an	instance	variable,	how	can	you	refer	to
the	instance	variable	in	the	scope	of	the	local	variable?

A.	You	can’t;	you	should	rename	one	of	the	variables.

B.	Use	the	keyword	this	before	the	instance	variable	name.

C.	Use	the	keyword	super	before	the	name.

2.	Where	are	instance	variables	declared	in	a	class?

A.	Anywhere	in	the	class

B.	Outside	all	methods	in	the	class

C.	After	the	class	declaration	and	above	the	first	method

3.	How	can	you	send	to	a	program	an	argument	that	includes	a	space	or	spaces?

A.	Surround	the	argument	with	double	quotes.

B.	Separate	the	arguments	with	commas.

C.	Separate	the	arguments	with	periods.

Answers
1.	B.	Answer	A	is	a	good	idea,	but	variable	name	conflicts	can	be	a	source	of	subtle
errors	in	your	Java	programs.

2.	B.	Customarily,	instance	variables	are	declared	right	after	the	class	declaration	and
before	any	methods.	It’s	necessary	only	that	they	be	outside	all	methods.

3.	A.	The	quotation	marks	are	not	included	in	the	argument	when	it	is	passed	to	the
program.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	BigValue	{
				float	result;

				public	BigValue(int	a,	int	b)	{
								result	=	calculateResult(a,	b);
				}

				float	calculateResult(int	a,	int	b)	{
								return	(a	*	10)	+	(b	*	2);
				}

				public	static	void	main(String[]	arguments)	{
								BiggerValue	bgr	=	new	BiggerValue(2,	3,	4);
								System.out.println(“The	result	is	“	+	bgr.result);
				}
}

class	BiggerValue	extends	BigValue	{

				BiggerValue(int	a,	int	b,	int	c)	{
								super(a,	b);
								result	=	calculateResult(a,	b,	c);
				}

				//	answer	goes	here
								return	(c	*	3)	*	result;
				}
}

What	statement	should	replace	//	answer	goes	here	so	that	the	result	variable
equals	312.0?

A.	float	calculateResult(int	c)	{

B.	float	calculateResult(int	a,	int	b)	{

C.	float	calculateResult(int	a,	int	b,	int	c)	{

D.	float	calculateResult()	{

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	5
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Modify	the	MarsRobot	project	from	Day	1	so	that	it	includes	constructors.

2.	Create	a	class	for	four-dimensional	points	called	FourDPoint	that	is	a	subclass	of
Point	from	the	java.awt	package.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	6.	Packages,	Interfaces,	and	Other	Class	Features

Classes,	the	templates	used	to	create	objects	that	can	store	data	and	accomplish	tasks,	turn
up	in	everything	you	do	with	the	Java	language.

Today,	you	extend	your	knowledge	of	classes	by	learning	more	about	how	to	create	them,
use	them,	organize	them,	and	establish	rules	for	how	other	classes	can	use	them.

The	following	subjects	are	covered:

	Controlling	access	to	methods	and	variables	from	outside	a	class

	Finalizing	classes,	methods,	and	variables	so	that	their	values	or	definitions	cannot
be	overridden	in	subclasses

	Creating	abstract	classes	and	methods	for	factoring	common	behavior	into
superclasses

	Grouping	classes	into	packages

	Using	interfaces	to	bridge	gaps	in	a	class	hierarchy

Modifiers
During	this	week,	you	have	learned	how	to	define	classes,	methods,	and	variables	in	Java.
The	programming	techniques	you	learn	today	involve	different	ways	of	thinking	about
how	a	class	is	organized.	All	these	techniques	use	special	modifiers	in	the	Java	language.
Modifiers	are	keywords	that	you	add	to	those	definitions	to	change	their	meanings.

The	Java	language	has	a	wide	variety	of	modifiers:

	Modifiers	for	controlling	access	to	a	class,	method,	or	variable:	public,
protected,	and	private

	The	static	modifier	for	creating	class	methods	and	variables

	The	final	modifier	for	finalizing	the	implementations	of	classes,	methods,	and
variables

	The	abstract	modifier	for	creating	abstract	classes	and	methods

	The	synchronized	and	volatile	modifiers,	which	are	used	for	threads

To	add	a	modifier,	you	include	its	keyword	in	the	definition	of	a	class,	method,	or
variable.	The	modifier	precedes	the	rest	of	the	statement,	as	in	the	following	examples:
Click	here	to	view	code	image

public	class	RedButton	extends	javax.swing.JButton	{
				//	…
}

private	boolean	offline;

static	final	double	WEEKS	=	9.5;

protected	static	final	int	MEANING_OF_LIFE	=	42;

public	static	void	main(String[]	arguments)	{
				//	body	of	method
}

If	you’re	using	more	than	one	modifier	in	a	statement,	you	can	place	them	in	any	order,	as
long	as	all	modifiers	precede	the	element	they	are	modifying.	Be	sure	to	avoid	treating	a
method’s	return	type—such	as	void—as	if	it	were	one	of	the	modifiers.	The	return	type
must	precede	the	method	name,	with	no	modifiers	between	them.

Modifiers	are	optional,	as	you	might	have	recognized	after	using	some	of	them	in	the
preceding	five	days.	However,	there	are	many	good	reasons	to	use	them	in	your	programs.

Access	Control	for	Methods	and	Variables
The	modifiers	that	you	will	use	most	often	control	access	to	methods	and	variables:
public,	private,	and	protected.	These	modifiers	determine	which	variables	and
methods	of	a	class	are	visible	to	other	classes.

By	using	access	control,	you	can	dictate	how	your	class	is	used	by	other	classes.	Some
variables	and	methods	in	a	class	are	of	use	only	within	the	class	itself	and	should	be
hidden	from	other	classes.	This	process	is	called	encapsulation:	An	object	controls	what
the	outside	world	can	know	about	it	and	how	the	outside	world	can	interact	with	it.
Encapsulation	is	the	process	that	prevents	class	variables	from	being	read	or	modified	by
other	classes.	The	only	way	to	use	these	variables	is	by	calling	methods	of	the	class	if	they
are	available.

The	Java	language	provides	four	levels	of	access	control:	public,	private,	protected,	and	a
default	level	specified	by	using	none	of	these	access	control	modifiers.

Default	Access

Variables	and	methods	can	be	declared	without	any	modifiers,	as	in	the	following
examples:

String	version	=	“0.7a”;

boolean	processOrder()	{
				//	…
				return	true;
}

A	variable	or	method	declared	without	an	access	control	modifier	is	available	to	any	other
class	in	the	same	package.	The	Java	Class	Library	is	organized	into	packages	such	as
javax.swing,	a	collection	of	windowing	classes	for	use	in	graphical	user	interface
programming;	and	java.util,	a	useful	group	of	utility	classes.

Any	variable	declared	without	a	modifier	can	be	read	or	changed	by	any	other	class	in	the
same	package.	Any	method	declared	the	same	way	can	be	called	by	any	other	class	in	the
same	package.	No	other	classes	can	access	these	elements	in	any	way.

This	level	of	access	control	doesn’t	control	much	access,	so	it’s	less	useful	when	you
begin	thinking	about	how	you	want	a	class	to	be	used	by	other	classes.

Private	Access

To	completely	hide	a	method	or	variable	and	keep	it	from	being	used	by	other	classes,	use
the	private	modifier.	The	only	place	these	methods	or	variables	can	be	accessed	is
within	their	own	class.

A	private	instance	variable	can	be	used	by	methods	in	its	own	class	but	not	by	objects	of
any	other	class.	Private	methods	can	be	called	by	other	methods	in	their	own	class	but
cannot	be	called	by	any	others.	This	restriction	also	affects	inheritance:	Neither	private
variables	nor	private	methods	are	inherited	by	subclasses.

Private	variables	are	useful	in	two	circumstances:

	When	other	classes	have	no	reason	to	use	that	variable

	When	another	class	could	wreak	havoc	by	changing	the	variable	in	an	inappropriate
way

For	example,	consider	a	Java	class	called	CouponMachine	that	generates	discounts	for
an	Internet	shopping	site.	A	variable	in	that	class	called	salesRatio	could	control	the
size	of	discounts	based	on	product	sales.	This	variable	has	a	big	impact	on	the	business’s
bottom	line.	If	the	variable	were	changed	by	other	classes,	CouponMachine’s
performance	would	change	significantly.	To	guard	against	this	scenario,	you	could	declare
the	salesRatio	variable	as	private.

The	following	class	uses	private	access	control:
Click	here	to	view	code	image

class	Logger	{
				private	String	format;

				public	String	getFormat()	{
								return	this.format;
				}

				public	void	setFormat(String	fmt)	{
								if	((fmt.equals(“common”))	||	(fmt.equals(“combined”)))	{
												this.format	=	fmt;
								}
				}
}

In	this	code	example,	the	format	variable	of	the	Logger	class	is	private,	so	there’s	no
way	for	other	classes	to	retrieve	or	set	its	value	directly.

Instead,	it’s	available	through	two	public	methods:	getFormat(),	which	returns	the
value	of	format,	and	setFormat(String),	which	sets	its	value.

The	latter	method	contains	logic	that	allows	the	variable	to	be	set	to	only	“common”	or
“combined”.	This	demonstrates	a	benefit	of	using	public	methods	as	the	only	means	of
accessing	instance	variables	of	a	class:	The	methods	can	give	the	class	control	over	how
the	variable	is	accessed	and	limit	the	values	it	can	take.

Using	the	private	modifier	is	the	main	way	in	which	an	object	encapsulates	itself.	You
can’t	limit	the	ways	in	which	a	class	is	used	without	using	private	to	hide	variables	and

methods.	Another	class	is	free	to	change	the	variables	inside	a	class	and	call	its	methods	in
many	possible	ways	if	you	don’t	control	access.
A	big	advantage	of	privacy	is	that	it	lets	the	implementation	of	a	class	change	without
affecting	the	users	of	that	class.	If	you	come	up	with	a	better	way	to	accomplish
something,	you	can	rewrite	the	class	as	long	as	its	public	methods	take	the	same
arguments	and	return	the	same	kinds	of	values.

Public	Access

In	some	cases,	you	might	want	a	method	or	variable	in	a	class	to	be	completely	available
to	any	other	class	that	wants	to	use	it.	For	example,	the	Color	class	in	the	java.awt
package	has	public	variables	for	common	colors	such	as	black.	This	variable	is	used
when	a	graphical	class	wants	to	use	the	color	black,	so	black	should	have	no	access
control.

Class	variables	often	are	declared	to	be	public.	An	example	is	a	set	of	variables	in	a
Football	class	that	represent	the	number	of	points	used	in	scoring.	The	TOUCHDOWN
variable	could	equal	6,	the	FIELD_GOAL	variable	could	equal	3,	and	SAFETY	could
equal	2.	If	these	variables	are	public,	other	classes	could	use	them	in	statements	such	as
the	following:
Click	here	to	view	code	image

if	(yard	<	0)	{
				System.out.println(“Touchdown!”);
				score	=	score	+	Football.TOUCHDOWN;
}

The	public	modifier	makes	a	method	or	variable	completely	available	to	all	classes.
You	have	used	it	in	every	application	you	have	written	so	far	in	their	main()	methods:
Click	here	to	view	code	image

public	static	void	main(String[]	arguments)	{
				//	…
}

The	main()	method	of	an	application	has	to	be	public.	Otherwise,	it	could	not	be	called
by	a	Java	Virtual	Machine	(JVM)	to	run	the	class.

Because	of	class	inheritance,	all	public	methods	and	variables	of	a	class	are	inherited	by
its	subclasses.

Protected	Access

The	next	level	of	access	control	is	to	limit	a	method	and	variable	to	use	by	the	following
two	groups:

	Subclasses	of	a	class

	Other	classes	in	the	same	package

You	do	so	by	using	the	protected	modifier,	as	in	the	following	statement:
Click	here	to	view	code	image

protected	boolean	outOfData	=	true;

Note

You	might	be	wondering	how	these	two	groups	differ.	After	all,	aren’t	subclasses
part	of	the	same	package	as	their	superclass?	Not	always.	An	example	is	the
java.sql.Date	class,	which	represents	calendar	dates	in	a	SQL	database.	It	is	a
subclass	of	java.util.Date,	a	more	generic	date	class.	Protected	access	differs
from	default	access	in	this	way;	protected	variables	are	available	to	subclasses,	even
if	they	aren’t	in	the	same	package.

This	level	of	access	control	is	useful	if	you	want	to	make	it	easier	for	a	subclass	to	be
implemented.	Your	class	might	use	a	method	or	variable	to	help	the	class	do	its	job.
Because	a	subclass	inherits	much	of	the	same	behavior	and	attributes,	it	might	have	the
same	job	to	do.	Protected	access	gives	the	subclass	a	chance	to	use	the	helper	method	or
variable	while	preventing	an	unrelated	class	from	trying	to	use	it.

Consider	the	example	of	a	class	called	AudioPlayer	that	plays	an	audio	file.
AudioPlayer	has	a	method	called	openSpeaker(),	which	interacts	with	the
hardware	to	prepare	the	speaker	for	playing.	openSpeaker()	isn’t	important	to	anyone
outside	the	AudioPlayer	class,	so	at	first	glance	you	might	want	to	make	it	private.	A
snippet	of	AudioPlayer	might	look	something	like	this:
Click	here	to	view	code	image

class	AudioPlayer	{

				private	boolean	openSpeaker(Speaker	sp)	{
								//	implementation	here
				}
}

This	code	works	fine	if	AudioPlayer	won’t	be	subclassed.	But	what	if	later	you	need	a
class	called	StreamingAudioPlayer	that	is	a	subclass	of	AudioPlayer?	That
class	needs	access	to	the	openSpeaker()	method	to	override	it	and	provide	support	for
streaming	audio	devices.	You	still	don’t	want	the	method	to	be	generally	available	to
random	objects,	so	it	shouldn’t	be	public,	but	you	want	any	subclasses	to	have	access	to	it.

Comparing	Levels	of	Access	Control

The	differences	among	the	various	protection	types	can	be	confusing,	particularly	in	the
case	of	protected	methods	and	variables.	Table	6.1,	which	summarizes	exactly	what	is
allowed	where,	helps	clarify	the	differences	from	the	least	restrictive	(public)	to	the	most
restrictive	(private)	forms	of	protection.

TABLE	6.1	The	Different	Levels	of	Access	Control

Access	Control	and	Inheritance

One	last	issue	regarding	access	control	for	methods	involves	subclasses.	When	you	create
a	subclass	and	override	a	method,	you	must	consider	the	access	control	in	place	on	the
original	method.

As	a	general	rule,	you	cannot	override	a	method	in	Java	and	make	the	new	method	more
restrictively	controlled	than	the	original.	You	can,	however,	make	it	more	public.	The
method	in	a	subclass	can’t	reduce	the	visibility	of	the	one	it	overrides.	The	following	rules
for	inherited	methods	are	enforced:

	Methods	declared	public	in	a	superclass	also	must	be	public	in	all	subclasses.

	Methods	declared	protected	in	a	superclass	must	be	either	protected	or	public	in
subclasses;	they	cannot	be	private.

	Methods	declared	without	access	control	(no	modifier	was	used)	can	be	declared
more	private	in	subclasses.

Methods	declared	private	are	not	inherited,	so	the	rules	don’t	apply.

Accessor	Methods

In	many	cases,	you	may	have	an	instance	variable	in	a	class	that	has	strict	rules	for	the
values	it	can	contain.	An	example	is	a	zipCode	variable.	A	ZIP	Code	in	the	United
States	must	be	a	five-digit	number.	(There	also	is	a	ZIP+4	format	that’s	nine	digits.)

To	prevent	an	external	class	from	setting	the	zipCode	variable	incorrectly,	you	can
declare	it	private:

private	int	zipCode;

However,	what	if	other	classes	must	be	able	to	set	the	zipCode	variable	for	the	class	to
be	useful?	In	that	circumstance,	you	can	give	other	classes	access	to	a	private	variable	by
using	an	accessor	method	inside	the	same	class	as	zipCode.

An	accessor	method	provides	access	to	a	variable	that	otherwise	would	be	off-limits.	By
using	a	method	to	provide	access	to	a	private	variable,	you	can	control	how	that	variable	is

used.	In	the	ZIP	Code	example,	the	class	could	prevent	anyone	else	from	setting
zipCode	to	an	incorrect	value.

Often,	separate	accessor	methods	to	read	and	write	a	variable	are	available.	Reading
methods	have	a	name	beginning	with	get,	and	writing	methods	have	a	name	beginning
with	set,	as	in	setZipCode(int)	and	getZipCode().

There’s	one	exception	to	this	convention:	If	the	variable	being	accessed	is	a	Boolean,	the
accessor	method	doesn’t	begin	with	get.	Instead,	start	it	with	is	as	in	isValid()	for
the	boolean	variable	valid.	Here’s	an	example:

private	boolean	empty;

public	boolean	isEmpty()	{
				return	empty;
}

Using	methods	to	access	instance	variables	is	a	common	technique	in	object-oriented
programming.	This	approach	makes	classes	more	reusable	by	guarding	against	improper
use.

Static	Variables	and	Methods
A	modifier	that	you	already	have	used	in	programs	is	static,	which	was	described	in
detail	during	Day	5,	“Creating	Classes	and	Methods.”	The	static	modifier	is	used	to
create	class	methods	and	variables,	as	in	the	following	example:
Click	here	to	view	code	image

public	class	Circle	{
				public	static	double	PI	=	3.14159265F;
				public	double	radius;

				public	double	area()	{
								return	PI	*	radius	*	radius;
				}
}

Class	variables	and	methods	can	be	accessed	using	the	class	name	followed	by	a	dot	and
the	name	of	the	variable	or	method,	as	in	Color.black	or	Circle.PI.	You	also	can
use	the	name	of	an	object	belonging	to	the	class,	but	for	class	variables	and	methods,
using	the	class	name	is	better.	This	approach	makes	it	more	clear	what	kind	of	variable	or
method	you’re	working	with;	instance	variables	and	methods	never	can	be	referred	to	by	a
class	name.

The	following	statements	use	class	variables	and	methods:
Click	here	to	view	code	image

double	circumference	=	2	*	Circle.PI	*	radius;
double	randomNumber	=	Math.random();

Tip

For	the	same	reason	as	instance	variables,	class	variables	can	benefit	from	being
private	and	limiting	their	use	to	accessor	methods	only.

The	first	project	you	undertake	today	is	a	class	called	InstanceCounter	that	uses
class	and	instance	variables	to	keep	track	of	how	many	objects	of	that	class	have	been
created.	In	NetBeans,	create	an	empty	Java	file	named	InstanceCounter	in	the
com.java21days	package	you’ve	been	using	for	most	of	this	book.	Enter	the	code
shown	in	Listing	6.1	in	the	source	code	file,	and	save	it	when	you’re	done.

LISTING	6.1	The	Full	Text	of	InstanceCounter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	public	class	InstanceCounter	{
	4:					private	static	int	numInstances	=	0;
	5:
	6:					protected	static	int	getCount()	{
	7:									return	numInstances;
	8:					}
	9:
10:					private	static	void	addInstance()	{
11:									numInstances++;
12:					}
13:
14:					InstanceCounter()	{
15:									InstanceCounter.addInstance();
16:					}
17:
18:					public	static	void	main(String[]	arguments)	{
19:									System.out.println(“Starting	with	“	+
20:													InstanceCounter.getCount()	+	”	objects”);
21:									for	(int		i	=	0;	i	<	500;	++i)	{
22:													new	InstanceCounter();
23:									}
24:									System.out.println(“Created	“	+
25:													InstanceCounter.getCount()	+	”	objects”);
26:					}
27:	}

NetBeans	attempts	to	compile	a	Java	class	when	it	is	saved	or	run.	If	there	are	no	errors,
you	can	run	it	to	see	the	output	contained	in	Figure	6.1.

FIGURE	6.1	Working	with	class	and	instance	variables.

This	application	demonstrates	several	features	of	the	Java	language.	In	line	4,	a	private
class	variable	is	declared	to	hold	the	number	of	objects.	It	is	a	class	variable	(declared
static)	because	the	number	of	objects	is	relevant	to	the	class	as	a	whole,	not	to	any
particular	object.	It’s	private	so	that	it	can	be	retrieved	with	only	an	accessor	method.

Note	the	initialization	of	numInstances.	Just	as	an	instance	variable	is	initialized	when
its	instance	is	created,	a	class	variable	is	initialized	when	its	class	is	created.	This	class

initialization	happens	essentially	before	anything	else	can	happen	to	that	class,	or	its
instances,	so	that	the	class	in	the	example	will	work	as	planned.

In	lines	6–8,	a	get	method	is	defined	so	that	the	private	instance	variable’s	value	can	be
retrieved.	This	method	also	is	declared	as	a	class	method	because	it	applies	directly	to	the
class	variable.	The	getCount()	method	is	declared	protected,	as	opposed	to
public,	because	only	this	class	and	perhaps	its	subclasses	are	interested	in	that	value;
other	random	classes,	therefore,	are	restricted	from	seeing	it.

Note	that	there	is	no	accessor	method	to	set	the	value.	The	value	of	the	variable	should	be
incremented	only	when	a	new	instance	is	created;	it	should	not	be	set	to	any	random	value.
Instead	of	creating	an	accessor	method,	a	special	private	method	called
addInstance()	is	defined	in	lines	10–12	that	increments	the	value	of
numInstances	by	1.

Lines	14–16	create	the	constructor	for	this	class.	Constructors	are	called	when	a	new
object	is	created,	which	makes	this	the	most	logical	place	to	call	addInstance()	and
to	increment	the	variable.

The	main()	method	indicates	that	you	can	run	this	as	a	Java	application	and	test	all	the
other	methods.	In	the	main()	method,	500	objects	of	the	InstanceCounter	class	are
created,	and	then	the	value	of	the	numInstances	class	variable	is	displayed.

Final	Classes,	Methods,	and	Variables
The	final	modifier	is	used	with	classes,	methods,	and	variables	to	indicate	that	they	will
never	be	changed.	It	has	different	meanings	for	each	thing	that	can	be	made	final,	as
follows:

	A	final	class	cannot	be	subclassed.

	A	final	method	cannot	be	overridden	by	any	subclasses.

	A	final	variable	cannot	change	in	value.

Variables
Final	variables	often	are	called	constants	(or	constant	variables)	because	they	do	not
change	in	value	at	any	time.

With	variables,	the	final	modifier	is	used	with	static	when	making	a	constant	a	class
variable.	If	the	value	never	changes,	you	don’t	have	much	reason	to	give	each	object	in	the
same	class	its	own	copy	of	the	value.	They	all	can	use	the	class	variable	with	the	same
functionality.

The	following	statements	are	examples	of	declaring	constants:
Click	here	to	view	code	image

public	static	final	int	TOUCHDOWN	=	6;

static	final	String	TITLE	=	“Captain”;

Methods
Final	methods	never	can	be	overridden	by	a	subclass.	You	declare	them	using	the	final
modifier	in	the	class	declaration,	as	in	the	following	example:
Click	here	to	view	code	image

public	final	void	getSignature()	{
				//	body	of	method
}

The	most	common	reason	to	declare	a	method	final	is	to	make	the	class	run	more
efficiently.	Normally,	when	the	JVM	runs	a	method,	first	it	checks	the	current	class	to	find
the	method,	then	it	checks	its	superclass,	and	so	on	up	the	class	hierarchy	until	the	method
is	found.	This	process	sacrifices	some	speed	in	the	name	of	flexibility	and	ease	of
development.

If	a	method	is	final,	the	Java	compiler	can	put	the	method’s	executable	bytecode	directly
into	any	program	that	calls	the	method	because	the	method	will	never	change	because	of	a
subclass	that	overrides	it.

When	you	first	develop	a	class,	you	don’t	have	much	reason	to	use	final.	However,	if
you	need	to	make	the	class	execute	more	quickly,	you	can	change	a	few	methods	into	final
methods	to	speed	up	the	process.	Doing	so	removes	the	possibility	that	the	method	later
will	be	overridden	in	a	subclass,	so	consider	this	change	carefully	before	continuing.

The	Java	Class	Library	declares	many	of	the	commonly	used	methods	final	so	that	they
can	be	executed	more	quickly	when	used	in	programs	that	call	them.

Note

Private	methods	are	final	without	being	declared	that	way	because	they	can’t	be
overridden	in	a	subclass	under	any	circumstance.

Classes
You	make	a	class	impossible	to	subclass	by	using	the	final	modifier	in	the	class’s
declaration,	as	in	the	following:
Click	here	to	view	code	image

public	final	class	ChatServer	{
				//	body	of	method
}

A	final	class	cannot	appear	after	extends	in	a	class	declaration	to	create	a	subclass.
As	with	final	methods,	this	process	introduces	some	speed	benefits	to	the	Java	language
at	the	expense	of	flexibility.

If	you’re	wondering	what	you	lose	by	using	final	classes,	you	must	not	have	tried	to
subclass	anything	in	the	Java	Class	Library.	Many	of	the	popular	classes	are	final,	such	as
java.lang.String,	java.lang.Math,	and	java.net.URL.	If	you	want	to
create	a	class	that	behaves	like	strings	but	with	some	new	changes,	you	can’t	subclass
String	and	define	only	the	behavior	that	is	different.	You	have	to	start	from	scratch.

All	methods	in	a	final	class	are	automatically	final	themselves,	so	you	don’t	have	to	use	a
modifier	in	their	declarations.

Because	classes	that	can	provide	behavior	and	attributes	to	subclasses	are	much	more
useful,	you	should	strongly	consider	whether	the	benefit	of	using	final	on	one	of	your
classes	is	outweighed	by	the	cost.

Abstract	Classes	and	Methods
In	a	class	hierarchy,	the	higher	the	class,	the	more	abstract	its	definition.	A	class	at	the	top
of	a	hierarchy	of	other	classes	can	define	only	the	behavior	and	attributes	common	to	all
the	classes.	More-specific	behavior	and	attributes	fall	somewhere	lower	down	the
hierarchy.

When	you	factor	out	common	behavior	and	attributes	during	the	process	of	defining	a
hierarchy	of	classes,	you	might	at	times	find	yourself	with	a	class	that	never	needs	to	be
instantiated	directly.	Instead,	such	a	class	serves	as	a	place	to	hold	common	behavior	and
attributes	shared	by	their	subclasses.

These	classes	are	called	abstract	classes,	and	they	are	created	using	the	abstract
modifier.	The	following	is	an	example:
Click	here	to	view	code	image

public	abstract	class	Palette	{
				//	…
}

An	example	of	an	abstract	class	is	java.awt.Component,	the	superclass	of	graphical
user	interface	components.	Because	numerous	components	inherit	from	this	class,	it
contains	methods	and	variables	useful	to	each	of	them.	However,	there’s	no	such	thing	as
a	generic	component	that	can	be	added	to	a	user	interface,	so	you	would	never	need	to
create	a	Component	object	in	a	program.

Abstract	classes	can	contain	anything	a	normal	class	can,	including	constructors,	because
their	subclasses	might	need	to	inherit	them.	Abstract	classes	also	can	contain	abstract
methods,	which	are	method	signatures	with	no	implementation.	These	methods	are
implemented	in	subclasses	of	the	abstract	class.	Abstract	methods	are	declared	with	the
abstract	modifier.	You	cannot	declare	an	abstract	method	in	a	class	that	isn’t	itself
abstract.	If	an	abstract	class	has	nothing	but	abstract	methods,	you’re	better	off	using	an
interface,	as	you’ll	see	later	today.

Packages
Using	packages	is	a	way	of	organizing	groups	of	classes.	A	package	contains	classes	that
are	related	in	purpose,	in	scope,	or	by	inheritance.

If	your	programs	are	small	and	use	a	limited	number	of	classes,	you	might	find	that	you
don’t	need	to	explore	packages.	But	as	you	begin	creating	more	sophisticated	projects	with
many	classes	related	to	each	other	by	inheritance,	you	might	discover	the	benefit	of
organizing	them	into	packages.

Packages	are	useful	for	several	broad	reasons:

	They	enable	you	to	organize	your	classes	into	units.	Just	as	you	have	folders	on	your
hard	drive	to	organize	your	files	and	applications,	packages	enable	you	to	organize
your	classes	into	groups	so	that	you	use	only	what	you	need	for	each	program.

	They	reduce	problems	with	conflicts	about	names.	As	the	number	of	Java	classes
grows,	so	does	the	likelihood	that	you’ll	use	the	same	class	name	as	another
developer.	This	introduces	the	possibility	of	naming	clashes	and	error	messages	if
you	try	to	integrate	groups	of	classes	into	a	single	program.	Packages	provide	a	way
to	refer	specifically	to	the	desired	class,	even	if	it	shares	a	name	with	a	class	in
another	package.

	They	enable	you	to	protect	classes,	variables,	and	methods	in	larger	ways	than	on	a
class-by-class	basis.	You	learn	more	about	protections	with	packages	later.

	Packages	can	be	used	to	uniquely	identify	your	work.

Every	time	you	use	the	import	command	or	refer	to	a	class	by	its	full	package	name
(java.util.StringTokenizer,	for	example),	you	are	using	packages.

To	use	a	class	contained	in	a	package,	you	can	use	one	of	three	techniques:

	If	the	class	you	want	to	use	is	in	the	package	java.lang	(for	example,	System
or	Date),	you	can	use	the	class	name	to	refer	to	that	class.	The	java.lang	classes
are	automatically	available	to	you	in	all	your	programs.

	If	the	class	you	want	to	use	is	in	some	other	package,	you	can	refer	to	that	class	by
its	full	name,	including	any	package	names	(for	example,	java.awt.Font).

	For	classes	that	you	use	frequently	from	other	packages,	you	can	import	individual
classes	or	a	whole	package	of	classes.	After	a	class	or	package	has	been	imported,
you	can	refer	to	that	class	by	its	class	name.

If	you	don’t	declare	that	your	class	belongs	to	a	package,	it	is	put	into	an	unnamed	default
package.	You	can	refer	to	that	class	and	any	other	unpackaged	class	by	its	class	name	from
anywhere	in	other	classes.

To	refer	to	a	class	in	another	package,	you	always	can	use	its	full	name:	the	class	name
preceded	by	its	package.	You	do	not	have	to	import	the	class	or	package	to	use	it	in	this
manner:
Click	here	to	view	code	image

java.awt.Font	text	=	new	java.awt.Font();

For	classes	that	you	use	only	once	or	twice	in	your	program,	using	the	full	name	might
make	sense.	If	you	use	a	class	multiple	times,	you	can	import	the	class	to	save	yourself
some	typing.	But	there’s	no	reason	not	to	use	import,	so	you	may	decide	to	follow	this
book’s	convention	of	always	using	it	so	that	class	names	are	short	and	code	is	more
readable.

The	import	Declaration
To	import	classes	from	a	package,	use	the	import	declaration.	You	can	import	an
individual	class,	as	in	this	statement:

import	java.util.ArrayList;

You	also	can	import	an	entire	package	of	classes	using	an	asterisk	*	in	place	of	an
individual	class	name:

import	java.awt.*;

In	an	import	statement,	the	asterisk	can	be	used	only	in	place	of	a	class	name.	It	does
not	make	it	possible	to	import	multiple	packages	with	similar	names.

For	example,	the	Java	Class	Library	includes	the	java.util,	java.util.jar,	and
java.util.prefs	packages.	You	could	not	import	all	three	packages	with	the
following	statement:

import	java.util.*;

This	merely	imports	the	java.util	package.	To	make	all	three	available	in	a	class,	the
following	statements	are	required:

import	java.util.*;
import	java.util.jar.*;
import	java.util.prefs.*;

Also,	you	cannot	indicate	partial	class	names	(such	as	L*	to	import	all	the	classes	that
begin	with	the	letter	L).	Your	only	options	when	using	an	import	declaration	are	to
identify	a	single	class	or	use	an	asterisk	to	load	all	the	classes	in	a	package.

The	import	declarations	in	your	class	definition	go	at	the	top	of	the	file,	before	any	class
definitions	but	after	the	package	declaration,	as	you’ll	see	in	the	next	section.

Using	individual	import	declarations	or	importing	packages	is	mostly	a	question	of	your
own	coding	style.	Importing	a	group	of	classes	does	not	slow	down	your	program	or	make
it	any	larger;	only	the	classes	that	you	actually	use	in	your	code	are	loaded	as	they	are
needed.	Importing	specific	classes	makes	it	easier	for	readers	of	your	code	to	figure	out
what	classes	are	being	used	in	the	code.

Note

If	you’re	familiar	with	C	or	C++,	you	might	expect	the	import	declaration	to
work	like	#include	and	potentially	result	in	a	large	executable	program	because
it	includes	source	code	from	another	file.	This	isn’t	the	case	in	Java.	The	import
keyword’s	only	function	is	to	tell	the	Java	compiler	where	to	look	for	the	full	name
of	a	class	when	its	short	name	is	used.	It	doesn’t	actually	import	code	from	any
classes.

The	import	statement	also	can	be	used	to	refer	to	constants	in	a	class	by	name.

Normally,	class	constants	must	be	prefaced	with	the	name	of	the	class,	as	in
Color.black,	Math.PI,	and	File.separator.

An	import	static	statement	makes	the	constants	in	an	identified	class	available	in
shorter	form.	The	keywords	import	static	are	followed	by	the	name	of	an	interface
or	class	and	an	asterisk.	For	example:

Click	here	to	view	code	image
import	static	java.lang.Math.*;

This	statement	makes	it	possible	to	refer	to	the	constants	in	the	Math	class,	E	and	PI,
using	only	their	names.	Here’s	a	short	example	of	a	class	that	takes	advantage	of	this
feature:
Click	here	to	view	code	image

import	static	java.lang.Math.*;

public	class	ShortConstants	{
				public	static	void	main(String[]	arguments)	{
								System.out.println(“PI:	“	+	PI);
								System.out.println(””	+	(PI	*	3));
				}
}

Class	Name	Conflicts
After	you	have	imported	a	class	or	a	package	of	classes,	you	usually	can	refer	to	a	class	by
its	name	without	the	package	identifier.	However,	you	must	be	more	explicit	when	you
import	two	classes	from	different	packages	that	have	the	same	class	name.

One	situation	where	a	naming	conflict	might	occur	is	during	database	programming,
which	you	undertake	on	Day	18,	“Accessing	Databases	with	JDBC	4.2	and	Derby.”	This
kind	of	programming	can	involve	the	java.util	and	java.sql	packages,	which	both
contain	a	class	named	Date.

If	you’re	working	with	both	packages	in	a	class	that	reads	or	writes	data	in	a	database,	you
could	import	them	with	these	statements:

import	java.sql.*;
import	java.util.*;

When	both	these	packages	are	imported,	a	compiler	error	occurs	when	you	refer	to	the
Date	class	without	specifying	a	package	name,	as	in	this	statement:

Date	now	=	new	Date();

The	error	occurs	because	the	Java	compiler	has	no	way	of	knowing	which	Date	class	is
being	referred	to	in	the	statement.	The	package	must	be	included	in	the	statement,	like
this:
Click	here	to	view	code	image

java.util.Date	=	new	java.util.Date();

Tip

NetBeans	makes	it	easy	to	import	individual	classes	as	you	write	a	program.	As	you
enter	statements	in	the	source	code	editor,	NetBeans	will	detect	that	a	class	you	use
hasn’t	been	imported.	A	warning	icon	(lightbulb	and	red	circle)	appears	in	the	left
edge	of	the	editor	on	that	line.	When	you	click	the	icon,	a	pop-up	menu	appears
with	a	command	to	import	the	class.	Choose	it	and	an	import	statement	is	added
at	the	top	of	the	class.

Creating	Your	Own	Packages
Creating	a	package	for	your	classes	in	Java	is	not	much	more	complicated	than	creating	a
class.

Picking	a	Package	Name
The	first	step	is	to	decide	on	a	name.	The	name	you	choose	for	your	package	depends	on
how	you	will	use	those	classes.	Perhaps	you	name	your	package	after	yourself	or	a	part	of
the	Java	system	you’re	working	on	(such	as	graphics	or	messaging).	If	you	intend	to
distribute	your	package	as	an	open	source	or	commercial	product,	use	a	package	name	that
uniquely	identifies	its	authorship.

Oracle	recommends	that	Java	developers	use	an	Internet	domain	name	that	you	control	as
the	basis	for	a	unique	package	name.

To	form	the	name,	reverse	the	elements	of	the	domain	so	that	the	last	part	becomes	the
first	part	of	the	package	name,	followed	by	the	second-to-last	part.	Following	this
convention,	because	my	personal	domain	name	is	cadenhead.org,	Java	packages	I
create	begin	with	the	name	org.cadenhead,	such	as	org.cadenhead.game	and
org.cadenhead.xml.

This	book’s	website	is	at	the	domain	java21days.com,	so	the	package	for	the	classes
created	in	its	pages	is	com.java21days.

This	convention	provides	a	reasonable	assurance	that	no	other	Java	developers	will	offer	a
package	with	the	same	name,	as	long	as	they	follow	the	same	rule	themselves	(as	most
developers	do).

By	another	convention,	package	names	use	no	capital	letters,	which	distinguishes	them
from	class	names.	For	example,	in	the	full	name	of	the	class	java.lang.String,	you
can	easily	distinguish	the	package	name	java.lang	from	the	class	name	String.

Creating	the	Folder	Structure
The	second	step	in	creating	packages	is	to	create	a	folder	structure	that	matches	the
package	name,	which	requires	a	separate	folder	for	each	part	of	the	name.	The	package
org.cadenhead.rss	requires	an	org	folder,	a	cadenhead	folder	inside	org,	and
an	rss	folder	inside	cadenhead.	The	classes	in	the	package	then	are	stored	in	the	rss
folder.

In	NetBeans,	when	you	put	a	class	in	a	package,	the	folders	are	created	automatically	and
the	source	code	and	class	files	are	stored	in	the	correct	subfolder.	All	you	have	to	worry
about	is	choosing	the	package	name.

To	see	this,	click	the	Files	tab	in	the	Projects	pane	to	bring	it	to	the	front	(Figure	6.2).	The
files	and	folders	of	the	Java21	project	are	shown.	You	have	been	using	the	package
com.java21days	on	your	programs	in	this	book.	Expand	the	src	folder,	then	the	com
subfolder,	then	the	java21days	subfolder.	All	the	Java	source	files	for	classes	in	this
package	will	be	listed.

FIGURE	6.2	Viewing	a	project’s	package	folder	hierarchy	in	NetBeans.

Adding	a	Class	to	a	Package
The	final	step	of	putting	a	class	inside	a	package	is	to	add	a	statement	above	any	import
declarations	and	the	class	declaration.	The	package	declaration	is	followed	by	the	full
name	of	the	package:

package	org.cadenhead.rss;

The	package	declaration	must	be	the	first	line	of	code	in	your	source	file,	disregarding
comments	or	blank	lines.

Packages	and	Class	Access	Control
Earlier	today,	you	learned	about	access	control	modifiers	for	methods	and	variables.	You
also	can	control	access	to	classes.

Classes	have	the	default	access	control	if	no	modifier	is	specified,	which	means	that	the
class	is	available	to	all	other	classes	in	the	same	package	but	is	not	visible	or	available
outside	that	package.	The	class	cannot	be	imported	or	referred	to	by	name;	classes	with
package	protection	are	hidden	inside	the	package	in	which	they	are	contained.

To	allow	a	class	to	be	visible	and	importable	outside	your	package,	you	can	give	it	public
protection	by	adding	the	public	modifier	to	its	definition:

public	class	Visible	{
				//	…
}

Classes	declared	as	public	can	be	accessed	by	other	classes	outside	the	package.

Note	that	when	you	use	an	import	statement	with	an	asterisk,	you	import	only	the	public
classes	inside	that	package.	Other	classes	remain	hidden	and	can	be	used	only	by	the	other
classes	in	that	package.

Why	would	you	want	to	hide	a	class	inside	a	package?	For	the	same	reasons	that	you	want
to	hide	variables	and	methods	inside	a	class:	so	that	you	can	have	utility	classes	and
behavior	that	are	useful	only	to	your	implementation,	or	so	that	you	can	limit	your
program’s	interface	to	minimize	the	effect	of	larger	changes.	As	you	design	your	classes,
consider	the	whole	package,	and	decide	which	classes	you	want	to	declare	public	and
which	you	want	to	be	hidden.

Creating	a	good	package	consists	of	defining	a	small,	clean	set	of	public	classes	and
methods	for	other	classes	to	use	and	then	implementing	them	by	using	any	number	of
hidden	support	classes.	You’ll	see	another	use	for	private	classes	later	today.

Interfaces
Interfaces,	like	abstract	classes	and	methods,	provide	templates	of	behavior	that	other
classes	are	expected	to	implement.	They	also	offer	significant	advantages	in	class	and
object	design	that	complement	Java’s	single-inheritance	approach	to	object-oriented
programming.

The	Problem	of	Single	Inheritance
As	you	begin	turning	a	project	into	a	hierarchy	of	classes	related	by	inheritance,	you	might
discover	that	the	simplicity	of	the	class	organization	is	restrictive.	This	is	especially	true
when	you	have	some	behavior	that	needs	to	be	used	by	classes	that	do	not	share	a	common
superclass.

Other	object-oriented	programming	(OOP)	languages	include	the	concept	of	multiple
inheritance,	which	solves	this	problem	by	letting	a	class	inherit	from	more	than	one
superclass,	acquiring	behavior	and	attributes	from	all	its	superclasses	at	once.

This	concept	makes	a	programming	language	more	challenging	to	learn	and	use.
Questions	of	method	invocation	and	how	the	class	hierarchy	is	organized	become	far	more
complicated	with	multiple	inheritance.	They	also	become	more	open	to	confusion	and
ambiguity.

Because	one	of	the	goals	of	Java	was	to	be	simpler	than	languages	that	inspired	its
creation,	multiple	inheritance	was	rejected	in	favor	of	single	inheritance.

A	Java	interface	is	a	collection	of	abstract	behavior	that	can	be	adopted	by	any	class
without	being	inherited	from	a	superclass.

An	interface	contains	abstract	method	definitions	and	constants.	It	has	no	instance
variables	or	method	implementations.

Interfaces	are	implemented	and	used	throughout	the	Java	Class	Library	when	behavior	is
expected	to	be	implemented	by	a	number	of	disparate	classes.	Later	today,	you’ll	use	one
of	the	interfaces,	java.lang.Comparable.

Interfaces	and	Classes
Classes	and	interfaces,	despite	their	different	definitions,	have	a	great	deal	in	common.
Both	are	declared	in	source	files	and	compiled	into	.class	files.	In	most	cases,	an
interface	can	be	used	anywhere	you	can	use	a	class.

You	can	substitute	an	interface	name	for	a	class	name	in	almost	every	example	in	this
book.	Java	programmers	often	say	“class”	when	they	actually	mean	“class	or	interface.”
Interfaces	complement	and	extend	the	power	of	classes,	and	the	two	can	be	treated	almost
the	same,	but	an	interface	cannot	be	instantiated:	new	can	only	create	an	instance	of	a
non-abstract	class.

Implementing	and	Using	Interfaces
You	can	do	two	things	with	interfaces:	use	them	in	your	own	classes	and	define	your	own.
For	now,	start	with	using	them	in	your	own	classes.

To	use	an	interface,	include	the	implements	keyword	as	part	of	your	class	definition:
Click	here	to	view	code	image

public	class	AnimatedSign	extends	Sign
				implements	Runnable	{
				//…
}

In	this	example,	the	Runnable	interface	extends	the	behavior	of	the	AnimatedSign
class,	which	is	a	subclass	of	Sign.

Because	interfaces	provide	nothing	but	abstract	method	definitions,	you	must	implement
those	methods	in	your	own	classes	using	the	same	method	signatures	in	the	interface.

To	implement	an	interface,	you	must	offer	all	the	methods	in	that	interface—you	can’t
pick	and	choose	the	methods	you	need.	By	implementing	an	interface,	you’re	telling	users
of	your	class	that	you	support	the	entire	interface.

After	your	class	implements	an	interface,	subclasses	of	your	class	inherit	those	new
methods	and	can	override	or	overload	them.	If	your	class	inherits	from	a	superclass	that
implements	a	given	interface,	you	don’t	have	to	include	the	implements	keyword	in
your	own	class	definition.

Implementing	Multiple	Interfaces
Unlike	inheritance,	where	a	class	can	have	only	one	superclass,	you	can	include	as	many
interfaces	as	you	need	in	a	class.	Your	class	must	implement	the	combined	behavior	of	all
the	included	interfaces.	To	include	multiple	interfaces	in	a	class,	separate	their	names	with
commas:
Click	here	to	view	code	image

public	class	AnimatedSign	extends	Sign
				implements	Runnable,	Observer	{

				//	…
}

Note	that	complications	might	arise	from	implementing	multiple	interfaces.	What	happens
if	two	different	interfaces	both	define	the	same	method?	You	can	solve	this	problem	in
three	ways:

	If	the	methods	in	each	interface	have	identical	signatures,	you	implement	one
method	in	your	class,	and	that	definition	satisfies	both	interfaces.

	If	the	methods	have	different	argument	lists,	it	is	a	simple	case	of	method
overloading;	you	implement	both	method	signatures,	and	each	definition	satisfies	its
respective	interface	definition.

	If	the	methods	have	the	same	argument	lists	but	different	return	types,	you	cannot
create	a	method	that	satisfies	both.	(Remember	that	a	method	signature	does	not
include	the	method’s	return	type.)	In	this	case,	trying	to	compile	a	class	that
implements	both	interfaces	would	produce	a	compiler	error	message.	Encountering
this	problem	suggests	that	your	interfaces	have	some	design	flaws	that	you	might
need	to	reexamine.

Other	Uses	of	Interfaces
Almost	everywhere	that	you	can	use	a	class,	you	can	use	an	interface	instead.	For
example,	you	can	declare	a	variable	to	be	of	an	interface	type:

Iterator	loop;

When	a	variable	is	declared	to	be	of	an	interface	type,	it	must	be	used	to	hold	an	object
that	implements	the	interface.	Any	class	that	implements	the	Iterator	interface	can	be
stored	in	loop.	In	this	case,	because	loop	is	an	object	of	the	type	Iterator,	the
assumption	is	that	you	can	call	all	three	of	the	interface’s	methods	on	that	object:
hasNext(),	next(),	and	remove().

You	can	cast	objects	to	an	interface,	just	as	you	can	cast	objects	to	other	classes.

Creating	and	Extending	Interfaces
After	you	use	interfaces	for	a	while,	the	next	step	is	to	define	your	own	interfaces.
Interfaces	look	a	lot	like	classes;	they	are	declared	in	much	the	same	way	and	can	be
arranged	into	a	hierarchy.	However,	you	must	follow	certain	rules	for	declaring	them.

New	Interfaces
To	create	a	new	interface,	you	declare	it	like	this:

interface	Expandable	{
				//	…
}

This	declaration	is,	effectively,	the	same	as	a	class	definition,	with	the	word	interface
replacing	the	word	class.	Inside	the	interface	definition	are	methods	and	variables.

The	method	definitions	inside	the	interface	are	public	and	abstract.	You	can	explicitly
declare	them	as	such,	or	they	will	be	turned	into	public	and	abstract	methods	if	you	do	not
include	those	modifiers.	You	cannot	declare	a	method	inside	an	interface	to	be	either

private	or	protected.

As	an	example,	here’s	an	Expandable	interface	with	one	method	explicitly	declared
public	and	abstract	and	one	declared	implicitly:
Click	here	to	view	code	image

public	interface	Expandable	{
				public	abstract	void	expand();	//	explicitly	public	and	abstract
				void	contract();	//	effectively	public	and	abstract
}

Both	methods	are	public	and	abstract.

Like	abstract	methods	in	classes,	methods	inside	interfaces	do	not	have	bodies.	An
interface	consists	of	only	method	signatures;	no	implementation	is	involved.

In	addition	to	methods,	interfaces	can	have	variables,	but	those	variables	must	be	declared
public,	static,	and	final	(making	them	constant).	As	with	methods,	you	can
explicitly	define	a	variable	to	be	these	modifiers	or	it	is	implicitly	defined	as	such	if	you
don’t	use	those	modifiers.	Here’s	that	same	Expandable	definition	with	two	new
variables:
Click	here	to	view	code	image

public	interface	Expandable	{
				public	static	final	int	INCREMENT	=	10;
				long	CAPACITY	=	15000;	//	becomes	public	static	and	final

				public	abstract	void	expand();	//	explicitly	public	and	abstract
				void	contract();	//	effectively	public	and	abstract
}

Interfaces	must	have	either	public	or	package	protection,	just	like	classes.	Note,	however,
that	interfaces	without	the	public	modifier	do	not	automatically	convert	their	methods
to	public	and	abstract	nor	their	constants	to	public.	A	non-public	interface	also	has	non-
public	methods	and	constants	that	can	be	used	only	by	classes	and	other	interfaces	in	the
same	package.

Interfaces,	like	classes,	can	belong	to	a	package.	Interfaces	also	can	import	other
interfaces	and	classes	from	other	packages,	just	as	classes	can.

Methods	Inside	Interfaces
Here’s	one	trick	to	note	about	methods	inside	interfaces:	Those	methods	are	supposed	to
be	abstract	and	apply	to	any	kind	of	class,	but	how	can	you	define	arguments	to	those
methods?	You	don’t	know	what	class	will	be	using	them!	The	answer	lies	in	the	fact	that
you	use	an	interface	name	anywhere	a	class	name	can	be	used,	as	you	learned	earlier.	By
defining	your	method	arguments	to	be	interface	types,	you	can	create	generic	arguments
that	apply	to	any	class	that	might	use	this	interface.

Consider	the	interface	Trackable,	which	defines	methods	with	no	arguments	for
track()	and	quitTracking().	You	also	might	have	a	method	for
beginTracking(),	which	has	one	argument:	an	object	of	the	Trackable	class.

What	class	should	that	argument	be?	Any	object	that	implements	the	Trackable

interface	rather	than	a	particular	class	and	its	subclasses.	The	solution	is	to	declare	the
argument	as	simply	Trackable	in	the	interface:
Click	here	to	view	code	image

public	interface	Trackable	{
				public	abstract	Trackable	beginTracking(Trackable	self);
}

Then,	in	an	actual	implementation	for	this	method	in	a	class,	you	can	take	the	generic
Trackable	argument	and	cast	it	to	the	appropriate	object:
Click	here	to	view	code	image

public	class	Monitor	implements	Trackable	{

public	Trackable	beginTracking(Trackable	self)	{
				Monitor	mon	=	(Monitor)	self;
				//	…
				return	mon;
}

Extending	Interfaces
As	you	can	do	with	classes,	you	can	organize	interfaces	into	a	hierarchy.	When	one
interface	inherits	from	another	interface,	that	subinterface	acquires	all	the	method
definitions	and	constants	that	its	superinterface	declared.

To	extend	an	interface,	you	use	the	extends	keyword	just	as	you	do	in	a	class	definition:
Click	here	to	view	code	image

interface	PreciselyTrackable	extends	Trackable	{
				//	…
}

Note	that	unlike	classes,	the	interface	hierarchy	has	no	equivalent	of	the	Object	class—
there	is	no	root	superinterface	from	which	all	interfaces	descend.	Interfaces	can	either
exist	entirely	on	their	own	or	inherit	from	another	interface.

Note	also	that	unlike	the	class	hierarchy,	the	inheritance	hierarchy	can	have	multiple
inheritance.	For	example,	a	single	interface	can	extend	as	many	classes	as	it	needs	to
(separated	by	commas	in	the	extends	part	of	the	definition),	and	the	new	interface
contains	a	combination	of	all	its	parent’s	methods	and	constants.

In	interfaces,	the	rules	for	managing	method	name	conflicts	are	the	same	as	for	classes
that	use	multiple	interfaces;	methods	that	differ	only	in	return	type	result	in	a	compiler
error	message.

Creating	an	Online	Storefront
To	explore	all	the	topics	covered	up	to	this	point,	the	Storefront	application	uses	packages,
access	control,	interfaces,	and	encapsulation.	This	application	manages	the	items	in	an
online	storefront,	handling	two	main	tasks:

	Calculating	the	sale	price	of	each	item,	depending	on	how	much	of	it	is	presently	in
stock

	Sorting	items	according	to	sale	price

The	application	consists	of	two	classes,	Storefront	and	Item.	These	classes	will	be
organized	as	a	new	package	called	org.cadenhead.ecommerce.

In	NetBeans,	choose	File,	New	File,	indicate	that	you’re	creating	a	new	empty	Java	file,
and	then	click	Next.	Give	it	the	class	name	Item	and	the	package	name
org.cadenhead.ecommerce.	Click	Finish	to	start	entering	the	code	shown	in	Listing
6.2.

LISTING	6.2	The	Full	Text	of	Item.java
Click	here	to	view	code	image

	1:	package	org.cadenhead.ecommerce;
	2:
	3:	public	class	Item	implements	Comparable	{
	4:					private	String	id;
	5:					private	String	name;
	6:					private	double	retail;
	7:					private	int	quantity;
	8:					private	double	price;
	9:
10:					Item(String	idIn,	String	nameIn,	String	retailIn,	String	qIn)	{
11:									id	=	idIn;
12:									name	=	nameIn;
13:									retail	=	Double.parseDouble(retailIn);
14:									quantity	=	Integer.parseInt(qIn);
15:
16:									if	(quantity	>	400)
17:													price	=	retail	*	.5D;
18:									else	if	(quantity	>	200)
19:													price	=	retail	*	.6D;
20:									else
21:													price	=	retail	*	.7D;
22:									price	=	Math.floor(price	*	100	+	.5)	/	100;
23:					}
24:
25:					public	int	compareTo(Object	obj)	{
26:									Item	temp	=	(Item)	obj;
27:									if	(this.price	<	temp.price)	{
28:													return	1;
29:									}	else	if	(this.price	>	temp.price)	{
30:													return	-1;
31:									}
32:									return	0;
33:					}
34:
35:					public	String	getId()	{
36:									return	id;
37:					}
38:
39:					public	String	getName()	{
40:									return	name;
41:					}
42:
43:					public	double	getRetail()	{
44:									return	retail;
45:					}
46:

47:					public	int	getQuantity()	{
48:									return	quantity;
49:					}
50:
51:					public	double	getPrice()	{
52:									return	price;
53:					}
54:	}

When	you	save	this	file,	look	in	the	Projects	pane	of	NetBeans.	The	Item.java	source
code	file	has	been	put	in	a	different	place,	as	shown	in	Figure	6.3.

FIGURE	6.3	Grouping	packages	in	a	NetBeans	project.

NetBeans	puts	the	source	code	file	in	the	org.cadenhead.ecommerce	category.

The	Item	class	is	a	support	class	that	represents	a	product	sold	by	an	online	store.	It
contains	private	instance	variables	for	the	product	ID	code,	name,	how	many	are	in	stock
(quantity),	and	the	retail	and	sale	prices.

Because	all	the	instance	variables	of	this	class	are	private,	no	other	class	can	set	or	retrieve
their	values.	Simple	accessor	methods	are	created	in	lines	35–53	to	provide	a	way	for
other	programs	to	retrieve	these	values.	Each	method	begins	with	get	followed	by	the
capitalized	name	of	the	variable,	which	is	a	standard	convention	in	Java	programming
used	throughout	the	Java	Class	Library.	The	getPrice()	method	returns	a	double
containing	the	value	of	price.	No	methods	are	provided	for	setting	any	of	these	instance
variables.	That	is	handled	in	the	constructor	method	for	this	class.

Line	1	establishes	that	the	Item	class	is	part	of	the	org.cadenhead.ecommerce
package.

The	Item	class	implements	the	Comparable	interface	(line	3),	which	makes	it	easy	to
sort	a	class’s	objects.	This	interface	has	only	one	method,	compareTo(Object),
which	returns	an	integer.

The	compareTo()	method	compares	two	objects	of	a	class:	the	current	object	and
another	object	passed	as	an	argument	to	the	method.	The	value	returned	by	the	method
defines	the	natural	sorting	order	for	objects	of	this	class:

	If	the	current	object	should	be	sorted	above	the	other	object,	return	–1.

	If	the	current	object	should	be	sorted	below	the	other	object,	return	1.

	If	the	two	objects	are	equal,	return	0.

You	determine	in	the	compareTo()	method	which	of	an	object’s	instance	variables	to
consider	when	sorting.	Lines	25–33	override	the	compareTo()	method	for	the	Item
class,	sorting	on	the	basis	of	the	price	variable.	Items	are	sorted	by	price	from	highest	to
lowest.

After	you	have	implemented	the	Comparable	interface	for	an	object,	two	class	methods
can	be	called	to	sort	an	array	or	a	class	holding	those	objects.	You’ll	see	this	later,	when
the	Storefront	class	is	created.

The	Item()	constructor	in	lines	10–23	takes	four	String	objects	as	arguments	and
uses	them	to	set	up	the	id,	name,	retail,	and	quantity	instance	variables.	The	last
two	must	be	converted	from	strings	to	numeric	values	using	the
Double.parseDouble()	and	Integer.parseInt()	class	methods,	respectively.

The	value	of	the	price	instance	variable	depends	on	how	much	of	that	item	is	presently
in	stock:

	If	more	than	400	are	in	stock,	price	is	50	percent	of	retail	(lines	16–17).

	If	between	201	and	400	are	in	stock,	price	is	60	percent	of	retail	(lines	18–
19).

	For	everything	else,	price	is	70	percent	of	retail	(lines	20–21).

Line	22	rounds	off	price	so	that	it	contains	two	or	fewer	decimal	places,	turning	a	value
such	as	$6.92999999999999	into	$6.93.	The	Math.floor()	method	rounds	off	decimal
numbers	to	the	next-lowest	integer,	returning	them	as	double	values.

As	the	next	step	in	the	project,	you	need	a	class	that	represents	a	storefront	for	these
products.	Create	an	empty	Java	file	with	the	class	name	Storefront	and	package	name
org.cadenhead.ecommerce,	and	enter	the	code	shown	in	Listing	6.3.

LISTING	6.3	The	Full	Text	of	Storefront.java
Click	here	to	view	code	image

	1:	package	org.cadenhead.ecommerce;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	Storefront	{
	6:					private	LinkedList	catalog	=	new	LinkedList();
	7:
	8:					public	void	addItem(String	id,	String	name,	String	price,
	9:									String	quant)	{
10:
11:									Item	it	=	new	Item(id,	name,	price,	quant);
12:									catalog.add(it);
13:					}
14:
15:					public	Item	getItem(int	i)	{
16:									return	(Item)	catalog.get(i);
17:					}
18:
19:					public	int	getSize()	{
20:									return	catalog.size();

21:					}
22:
23:					public	void	sort()	{
24:									Collections.sort(catalog);
25:					}
26:	}

Because	it	belongs	to	the	same	package	as	the	Item	class,	Storefront	will	be	listed	with	it
in	the	NetBeans	Projects	pane.

The	Storefront	class	is	used	to	manage	a	collection	of	products	in	an	online	store.
Each	product	is	an	Item	object,	and	they	are	stored	together	in	a	LinkedList	instance
variable	named	catalog	(line	6).

The	addItem()	method	in	lines	8–13	creates	a	new	Item	object	based	on	four
arguments	sent	to	the	method:	the	ID,	name,	price,	and	quantity	of	the	item	that	is	in	stock.
After	the	item	is	created,	it	is	added	to	the	catalog	linked	list	through	a	call	to	its
add(Object)	method	with	the	Item	object	as	an	argument.

The	getItem()	and	getSize()	methods	provide	an	interface	to	the	information
stored	in	the	private	catalog	variable.	The	getSize()	method	in	lines	19–21	calls	the
catalog.size()	method,	which	returns	the	number	of	objects	contained	in
catalog.

Because	objects	in	a	linked	list	are	numbered	like	arrays	and	other	data	structures,	you	can
retrieve	them	using	an	index	number.	The	getItem()	method	in	lines	15–17	calls
catalog.get(int)	with	an	index	number	as	an	argument,	returning	the	object	stored
at	that	location	in	the	linked	list.

The	sort()	method	in	lines	23–25	is	where	you	benefit	from	the	implementation	of	the
Comparable	interface	in	the	Item	class.	The	class	method	Collections.sort()
sorts	a	linked	list	and	other	data	structures	based	on	the	natural	sort	order	of	the	objects
they	contain,	calling	the	object’s	compareTo()	method	to	determine	this	order.

To	finish	this	project,	the	GiftShop	application	is	a	class	that	makes	use	of	Item	and
Storefront	objects.	This	application	also	belongs	to	the
org.cadenhead.ecommerce	package.	Create	the	new	Java	class	GiftShop	with
the	source	code	shown	in	Listing	6.4.

LISTING	6.4	The	Full	Text	of	GiftShop.java
Click	here	to	view	code	image

	1:	package	org.cadenhead.ecommerce;
	2:
	3:	public	class	GiftShop	{
	4:				public	static	void	main(String[]	arguments)	{
	5:									Storefront	store	=	new	Storefront();
	6:									store.addItem(“C01”,	“MUG”,	“9.99”,	“150”);
	7:									store.addItem(“C02”,	“LG	MUG”,	“12.99”,	“82”);
	8:									store.addItem(“C03”,	“MOUSEPAD”,	“10.49”,	“800”);
	9:									store.addItem(“D01”,	“T	SHIRT”,	“16.99”,	“90”);
10:									store.sort();

11:
12:									for	(int	i	=	0;	i	<	store.getSize();	i++)	{
13:													Item	show	=	(Item)	store.getItem(i);
14:													System.out.println(“\nItem	ID:	“	+	show.getId()	+
15:																	“\nName:	“	+	show.getName()	+
16:																	“\nRetail	Price:	$”	+	show.getRetail()	+
17:																	“\nPrice:	$”	+	show.getPrice()	+
18:																	“\nQuantity:	“	+	show.getQuantity());
19:									}
20:					}
21:	}

The	GiftShop	class	demonstrates	each	part	of	the	public	interface	that	the
Storefront	and	Item	classes	make	available.	You	can	do	the	following:

	Create	an	online	store

	Add	items	to	it

	Sort	the	items	by	sale	price

	Loop	through	a	list	of	items	to	display	information	about	each	one

The	output	is	shown	in	Figure	6.4.

FIGURE	6.4	Displaying	a	gift	shop’s	inventory	sorted	by	price.

Many	implementation	details	of	these	classes	are	hidden	from	GiftShop	and	other
classes	that	would	use	the	package.

For	instance,	the	programmer	who	developed	GiftShop	doesn’t	need	to	know	that
Storefront	uses	a	linked	list	to	hold	all	the	store’s	product	data.	If	the	developer	of
Storefront	later	decided	to	use	a	different	data	structure,	as	long	as	getSize()	and
getItem()	returned	the	expected	values,	GiftShop	would	continue	to	work	correctly.

Summary
Today	you	learned	how	to	encapsulate	an	object	by	using	access	control	modifiers	for	its
variables	and	methods.	You	also	learned	how	to	use	other	modifiers	such	as	static,
final,	and	abstract	to	develop	Java	classes	and	class	hierarchies.

To	further	the	effort	of	developing	and	using	a	set	of	classes,	you	learned	how	to	group
classes	into	packages.	These	groupings	better	organize	your	programs	and	help	you	share
classes	with	the	many	other	Java	programmers	making	their	code	publicly	available.

Finally,	you	learned	how	to	implement	interfaces	and	inner	classes,	an	extremely	helpful

Java	language	feature	that	models	behavior	outside	of	a	class	hierarchy.

Q&A
Q	Won’t	using	accessor	methods	everywhere	slow	down	my	Java	code?

A	Not	always.	As	Java	compilers	improve	and	can	implement	better	optimizations,
they	will	be	able	to	make	accessor	methods	fast	automatically.	But	if	you’re
concerned	about	speed,	you	can	always	declare	accessor	methods	to	be	final,	and
they’ll	be	comparable	in	speed	to	direct	instance	variable	accesses	under	most
circumstances.

Q	Based	on	what	I’ve	learned,	private	abstract	methods	and	final	abstract
methods	and	classes	don’t	seem	to	make	sense.	Are	they	legal?

A	No.	They	cause	compiler	errors,	as	you	have	guessed.	To	be	useful,	abstract
methods	must	be	overridden,	and	abstract	classes	must	be	subclassed,	but	neither	of
those	operations	would	be	legal	if	they	were	also	private	or	final.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	packages	are	automatically	imported	into	your	Java	classes?

A.	None

B.	The	classes	stored	in	the	folders	of	your	Classpath

C.	The	classes	in	the	java.lang	package

2.	According	to	the	convention	for	naming	packages,	what	should	be	the	first	part	of
the	name	of	a	package	you	create?

A.	Your	name	followed	by	a	period

B.	Your	top-level	Internet	domain	followed	by	a	period

C.	The	text	java	followed	by	a	period

3.	If	you	create	a	subclass	and	override	a	public	method,	what	access	modifiers	can
you	use	with	that	method?

A.	public	only

B.	public	or	protected

C.	public,	protected,	or	default	access

Answers
1.	C.	All	other	packages	must	be	imported	if	you	want	to	use	short	class	names	such	as
LinkedList	instead	of	full	package	and	class	names	such	as
java.util.LinkedList.

2.	B.	This	convention	assumes	that	all	Java	package	developers	will	own	an	Internet
domain	or	have	access	to	one	so	that	the	package	can	be	made	available	for
download.

3.	A.	All	public	methods	must	remain	public	in	subclasses.	Access	control	in	a
subclass	can	be	more	public	or	the	same	as	its	subclass,	but	it	can’t	be	more	private.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

package	org.cadenhead.bureau;

public	class	Information	{
				public	int	duration	=	12;
				protected	float	rate	=	3.15F;
				float	average	=	0.5F;
}

and:
Click	here	to	view	code	image

package	org.cadenhead.bureau;

public	class	MoreInformation	extends	Information	{
				public	int	quantity	=	8;
}

and:
Click	here	to	view	code	image

package	org.cadenhead.bureau.us;

import	org.cadenhead.bureau.*;

public	class	EvenMoreInformation	extends	MoreInformation	{
				public	int	quantity	=	9;

				EvenMoreInformation()	{
								super();
								int	i1	=	duration;
								float	i2	=	rate;
								float	i3	=	average;
				}
}

Which	instance	variables	are	visible	in	the	EvenMoreInformation	class?

A.	quantity,	duration,	rate,	and	average

B.	quantity,	duration,	and	rate

C.	quantity,	duration,	and	average

D.	quantity,	rate,	and	average

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	6
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	a	modified	version	of	the	Storefront	project	that	includes	a
noDiscount	variable	for	each	item.	When	this	variable	is	true,	sell	the	item	at
the	retail	price.

2.	Create	a	ZipCode	class	that	uses	access	control	to	ensure	that	its	zipCode
instance	variable	always	has	a	five-digit	value.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	7.	Exceptions	and	Threads

Your	first	week	in	the	Java	language	ends	with	two	of	its	most	useful	elements,	threads
and	exceptions.

Threads	are	objects	that	implement	the	Runnable	interface	or	extend	the	Thread	class,
indicating	that	they	can	run	simultaneously	with	other	parts	of	a	Java	program.	Exceptions
are	objects	that	represent	errors	that	may	occur	as	a	Java	program	runs.

Threads	enable	programs	to	make	efficient	use	of	resources	by	isolating	the	computing-
intensive	parts	of	a	program	so	that	they	don’t	slow	down	everything	else.	Exceptions
enable	programs	to	recognize	errors	and	respond	to	them.	Exceptions	even	make	it
possible	for	programs	to	correct	the	conditions	and	continue	running,	when	possible.

Exceptions	are	covered	first	because	they’re	one	of	the	things	you	use	when	working	with
threads.

Exceptions
Programmers	in	any	language	endeavor	to	write	programs	that	are	bug-free,	never	crash,
can	handle	any	circumstance	with	grace,	and	always	recover	from	unusual	situations.

So	much	for	that	idea.

Errors	occur	because	programmers	didn’t	anticipate	possible	problems	or	didn’t	test
enough.	Or	programs	encounter	situations	out	of	their	control,	such	as	bad	data	from	users,
corrupt	files	that	don’t	have	the	correct	data	in	them,	network	connections	that	don’t
connect,	hardware	devices	that	don’t	respond,	sunspots,	gremlins,	and	on	and	on.

In	Java,	the	strange	events	that	might	cause	a	program	to	fail	are	called	exceptions.	Java
defines	a	number	of	language	features	that	deal	with	exceptions:

	How	to	handle	exceptions	in	your	code	and	recover	gracefully	from	potential
problems

	How	to	tell	code	that	uses	your	classes	that	you’re	expecting	a	potential	exception

	How	to	create	an	exception	if	you	detect	one

	How	your	code	is	limited	yet	made	more	robust	by	exceptions

With	most	programming	languages,	handling	error	conditions	requires	much	more	work
than	handling	a	program	that	is	running	properly.	It	can	require	a	confusing	structure	of
conditional	statements	to	deal	with	errors	that	might	occur.

As	an	example,	consider	the	following	code	that	could	be	used	to	load	a	file	from	disk.
File	input	and	output	can	be	problematic	because	of	disk	errors,	file-not-found	errors,	and
the	like.	If	the	program	must	have	the	data	from	the	file	to	operate	properly,	it	must	deal
with	all	these	circumstances	before	continuing.

Here’s	the	structure	of	one	possible	solution:
Click	here	to	view	code	image

int	status	=	loadTextFile();

if	(status	!=	1)	{
				//	something	unusual	happened;	report	it
				switch	(status)	{
								case	2:
												System.out.println(“File	not	found”);
												break;
								case	3:
												System.out.println(“Disk	error”);
												break;
								case	4:
												System.out.println(“File	corrupted”);
												break;
								default:
												System.out.println(“Error”);
				}
}	else	{
				//	file	loaded	OK;	continue	with	program
}

This	code	tries	to	load	a	file	by	calling	the	method	loadTextFile(),	which
presumably	has	been	defined	elsewhere	in	the	class.	The	method	returns	an	integer	that
indicates	whether	the	file	loaded	properly	(a	value	of	1)	or	an	error	occurred	(2,	3,	4,	or
higher).

The	program	uses	a	switch	statement	keyed	on	that	error	code	to	address	the	problem.
The	end	result	is	a	block	of	code	in	which	the	most	common	circumstance—a	successful
file	load—can	be	lost	amid	the	error-handling	code.	This	is	the	result	of	handling	only	one
possible	error.	If	other	errors	take	place	later	in	the	program,	you	might	end	up	with	more
nested	if-else	and	switch-case	blocks.

As	you	can	see,	error	management	would	become	unmanageable	in	larger	programs,
making	a	Java	class	difficult	to	read	and	maintain.

Dealing	with	errors	in	this	manner	makes	it	impossible	for	the	compiler	to	check	for
consistency	the	way	it	can	check	to	make	sure	that	you	called	a	method	with	the	right
arguments	or	set	a	variable	to	the	right	class	of	object.

Although	the	previous	example	uses	Java	syntax,	you	never	have	to	deal	with	errors	that
way	with	the	Java	language.	You	can	use	a	group	of	classes	called	exceptions	that	work
much	better.

Exceptions	include	errors	that	could	be	fatal	to	your	program	and	other	circumstances	that
indicate	a	problem.	By	managing	exceptions,	you	can	manage	errors	and	possibly	work
around	them.

Errors	and	other	conditions	in	Java	programs	can	be	more	easily	managed	through	a
combination	of	language	features,	consistency	checking	at	compile	time,	and	a	set	of
extensible	exception	classes.

With	these	features,	you	can	add	a	whole	new	dimension	to	the	behavior	and	design	of
your	classes,	your	class	hierarchy,	and	your	overall	system.	Your	classes	and	interface
describe	how	your	program	is	supposed	to	behave	under	the	best	circumstances.	With
exceptions,	you	can	consistently	describe	how	the	program	will	behave	when
circumstances	are	not	ideal	and	allow	programmers	who	use	your	classes	to	know	what	to
expect	in	those	cases.

Exception	Classes
At	this	point,	it’s	likely	that	you’ve	run	into	at	least	one	Java	exception.	Maybe	you	tried
to	run	a	Java	application	without	providing	the	command-line	arguments	that	were	needed
and	saw	an	ArrayIndexOutOfBoundsException	message.

Chances	are,	when	an	exception	occurred,	the	application	quit	and	spewed	a	bunch	of
mysterious	errors	to	the	screen.	Those	errors	are	exceptions.	When	your	program	stops
without	successfully	finishing	its	work,	an	exception	is	thrown.	Exceptions	can	be	thrown
by	the	Java	Virtual	Machine	(JVM),	by	classes	you	use,	or	intentionally	in	your	own
programs.

Just	as	exceptions	are	thrown,	they	also	can	be	caught.	Catching	an	exception	involves
dealing	with	the	exceptional	circumstance	so	that	your	program	doesn’t	crash,	as	you	learn
later	today.

Exceptions	in	Java	are	instances	of	classes	that	inherit	from	the	Throwable	class.	An
instance	of	a	Throwable	class	is	created	when	an	exception	is	thrown.

Throwable	has	two	subclasses:	Error	and	Exception.	Instances	of	Error	are
internal	errors	involving	the	JVM.	These	errors	are	rare	and	usually	fatal	to	the	program;
there’s	not	much	you	can	do	about	them,	other	than	catch	them	or	throw	them	yourself.

The	class	Exception	is	more	relevant	to	your	own	programming.	Subclasses	of
Exception	fall	into	two	general	groups:

	Unchecked	exceptions	(subclasses	of	the	class	RuntimeException)	such	as
ArrayIndexOutofBoundsException,	SecurityException,	and
NullPointerException

	Checked	exceptions	such	as	EOFException	and	MalformedURLException

Unchecked	exceptions,	also	called	runtime	exceptions,	usually	occur	because	of	code	that
isn’t	very	robust.	An	ArrayIndexOutofBounds	exception,	for	example,	should	never
be	thrown	if	you’re	properly	checking	to	make	sure	that	your	code	stays	within	the	bounds
of	an	array.	NullPointerException	exceptions	happen	when	you	try	to	use	a
variable	that	doesn’t	refer	to	an	object	yet.

Caution

If	your	program	is	causing	unchecked	exceptions,	you	should	fix	those	problems	by
improving	your	code.	Don’t	rely	on	exception	management	to	handle	programming
mistakes	that	can	be	corrected	while	you’re	creating	a	Java	program.

Checked	exceptions	indicate	that	something	strange	and	out	of	control	is	happening.	An
EOFException,	for	example,	happens	when	you’re	reading	a	file	and	the	file	ends
before	it	was	expected	to.	A	MalformedURLException	happens	when	a	web	address
(also	called	a	URL)	isn’t	in	the	right	format.	This	group	includes	exceptions	that	you
create	to	signal	unusual	cases	that	might	occur	in	your	own	programs.

Exceptions	are	arranged	in	a	hierarchy	just	as	other	classes	are,	where	the	superclasses	are

more	general	kinds	of	problems	and	the	subclasses	are	more	specific.	This	organization
becomes	more	important	to	you	as	you	deal	with	exceptions	in	your	own	code.

The	primary	exception	classes	are	part	of	the	java.lang	package:	Throwable,
Exception,	and	RuntimeException.	Many	of	the	other	packages	in	the	Java	Class
Library	define	other	exceptions,	which	are	used	throughout	the	library.

The	java.io	package	defines	a	general	exception	class	called	IOException.	It	is
subclassed	not	only	in	the	java.io	package	for	input	and	output	exceptions
(EOFException	and	FileNotFoundException)	but	also	in	the	java.net
classes	for	networking	exceptions	such	as	MalformedURLException	and	in	the
java.util	package	with	ZipException.

Managing	Exceptions
Now	that	you	know	what	an	exception	is,	how	do	you	deal	with	one	in	your	own	code?	In
many	cases,	the	Java	compiler	enforces	exception	management	when	you	try	to	use
methods	that	throw	exceptions;	you	need	to	deal	with	those	exceptions	in	your	own	code,
or	it	won’t	compile	and	NetBeans	will	flag	the	error.	In	this	section,	you’ll	learn	about
consistency	checking	and	how	to	use	three	new	keywords—try,	catch,	and	finally
—to	deal	with	exceptions	that	might	occur.

Exception	Consistency	Checking
The	more	you	work	with	the	Java	Class	Library,	the	more	likely	you	are	to	run	into	an
exception	such	as	this	one:

Output	
Click	here	to	view	code	image

Exception	java.lang.InterruptedException
must	be	caught	or	it	must	be	declared	in	the	throws	clause
of	this	method.

In	Java,	a	method	can	indicate	the	kinds	of	errors	it	might	potentially	throw.	For	example,
methods	that	read	from	files	can	throw	IOException	errors,	so	those	methods	are
declared	with	a	special	modifier	that	indicates	potential	errors.	When	you	use	those
methods	in	your	own	Java	programs,	you	have	to	protect	your	code	against	the	exceptions.

This	rule	is	enforced	by	the	compiler	itself,	in	the	same	way	that	it	checks	to	make	sure
that	you’re	using	methods	with	the	correct	number	of	arguments	and	that	all	your	variable
types	match	what	you’re	assigning	to	them.

Why	is	this	check	in	place?	It	makes	programs	less	likely	to	crash	with	fatal	errors,
because	you	know	up	front	the	kind	of	exceptions	that	can	be	thrown	by	the	methods	a
program	uses.

If	you	define	your	methods	so	that	they	indicate	the	exceptions	they	can	throw,	Java	can
tell	your	objects’	users	to	handle	those	errors.

Protecting	Code	and	Catching	Exceptions
Assume	that	you’ve	been	happily	coding	and	an	exception	occurs	as	a	class	is	compiled.
According	to	the	error	message,	you	have	to	either	catch	the	error	or	declare	that	your
method	throws	it.

First,	you	deal	with	catching	potential	exceptions,	which	requires	two	things:

	Protect	the	code	that	contains	the	method	that	might	throw	an	exception	inside	a
try	block.

	Handle	an	exception	inside	a	catch	block.

A	try	block	tries	a	block	of	code	to	see	if	it	can	execute	all	of	it	without	causing	an
exception.	If	it	fails	and	an	exception	occurs,	a	catch	block	deals	with	it.

You’ve	seen	try	and	catch	before.	On	Day	6,	“Packages,	Interfaces,	and	Other	Class
Features,”	you	used	the	following	code	to	create	an	integer	from	a	String	value:
Click	here	to	view	code	image

public	SquareTool(String	input)	{
				try	{
								float	in	=	Float.parseFloat(input);
								//	rest	of	method
				}	catch	(NumberFormatException	nfe)	{
								System.out.println(input	+	”	is	not	a	valid	number.”);
				}
}

In	this	code,	the	Float.parseFloat()	class	method	might	throw	an	exception	of	the
class	NumberFormatException,	which	signifies	that	the	string	is	not	in	a	valid
format	as	a	number.	(One	situation	that	triggers	this	exception	is	if	input	equals	15x,
which	is	not	a	number.)

To	handle	the	exception,	the	call	to	parseFloat()	is	placed	inside	a	try	block,	and	an
associated	catch	block	has	been	set	up.	The	catch	block	receives	any
NumberFormatException	objects	thrown	within	the	try	block.

The	part	of	the	catch	clause	inside	the	parentheses	is	similar	to	a	method	definition’s
argument	list.	It	contains	the	class	of	exception	to	be	caught	and	a	variable	name.	You	can
use	the	variable	to	refer	to	that	exception	object	inside	the	catch	block.

An	exception	object	has	a	getMessage()	method	that	displays	a	detailed	error	message
describing	what	happened.

The	following	example	is	a	revised	version	of	the	try-catch	block	used	on	Day	6:
Click	here	to	view	code	image

try	{
				float	in	=	Float.parseFloat(input);
}	catch	(NumberFormatException	nfe)	{
				System.out.println(“Oops:	“	+	nfe.getMessage());
}

The	examples	you	have	seen	thus	far	catch	a	specific	type	of	exception.	Because	exception
classes	are	organized	into	a	hierarchy	and	you	can	use	a	subclass	anywhere	that	a

superclass	is	expected,	you	can	catch	groups	of	exceptions	within	the	same	catch
statement.

When	you	write	programs	that	handle	input	and	output	from	files,	Internet	servers,	and
similar	places,	you	deal	with	several	types	of	IOException	exceptions	(the	IO	stands
for	input/output).	These	exceptions	include	two	of	its	subclasses,	EOFException	and
FileNotFoundException.	By	catching	IOException,	you	also	catch	instances	of
any	IOException	subclass.

To	catch	several	different	exceptions	that	aren’t	related	by	inheritance,	you	can	use
multiple	catch	blocks	for	a	single	try,	like	this:
Click	here	to	view	code	image

try	{
				//	code	that	might	generate	exceptions
}	catch	(IOException	ioe)	{
				System.out.println(“Input/output	error”);
				System.out.println(ioe.getMessage());
}	catch	(ClassNotFoundException	cnfe)	{
				System.out.println(“Class	not	found”);
				System.out.println(cnfe.getMessage());
}	catch	(InterruptedException	ie)	{
				System.out.println(“Program	interrupted”);
				System.out.println(ie.getMessage());
}

In	a	multiple	catch	block,	the	first	catch	block	that	matches	is	executed,	and	the	rest	is
ignored.

Caution

You	can	run	into	unexpected	problems	by	using	an	Exception	superclass	in	a
catch	block	followed	by	one	or	more	of	its	subclasses	in	their	own	catch
blocks.	For	example,	the	input/output	exception	IOException	is	the	superclass
of	the	end-of-file	exception	EOFException.	If	you	put	an	IOException	block
above	an	EOFException	block,	the	subclass	never	catches	any	exceptions.

You	also	can	catch	more	than	one	class	of	exceptions	in	the	same	catch	statement.	The
classes	must	be	separated	by	a	pipe	character	|.	Here’s	an	example:
Click	here	to	view	code	image

try	{
				//	code	that	reads	a	file	from	disk
}	catch	(EOFException	|	FileNotFoundException	exc)	{
				System.out.println(“File	error:	“	+	exc.getMessage());
}

This	code	catches	two	exceptions,	EOFException	and	FileNotFoundException,
in	the	same	catch	block.	The	exception	is	assigned	to	the	exc	argument,	and	its
getMessage()	method	is	called.

The	first	class	in	the	list	that	matches	the	thrown	exception	will	be	assigned	to	the
argument.

The	exceptions	declared	as	alternatives	in	the	catch	statement	cannot	be	superclasses	or
subclasses	of	each	other	unless	they	are	in	the	proper	order.	The	following	would	not
work:
Click	here	to	view	code	image

try	{
				//	code	that	reads	a	file	from	disk
}	catch	(IOException	|	EOFException	|	FileNotFoundException	exc)	{
				System.out.println(“File	error:	“	+	exc.getMessage());
}

This	code	fails	to	compile	because	IOException	is	the	superclass	of	the	other	two
exceptions	and	it	precedes	them	in	the	list.	Because	a	superclass	can	catch	exceptions	of
its	subclasses,	the	second	and	third	exceptions	in	that	statement	never	would	be	caught.

Here’s	a	fixed	version	that	would	work:
Click	here	to	view	code	image

try	{
				//	code	that	reads	a	file	from	disk
}	catch	(EOFException	|	FileNotFoundException	exc)	{
				System.out.println(“File	error:	“	+	exc.getMessage());
}	catch	(IOException	ioe)	{
				System.out.println(“IO	error:	“	+	ioe.getMessage());
}

Another	way	to	make	it	work	would	be	to	put	the	superclass	last	in	the	catch	statement:
Click	here	to	view	code	image

try	{
				//	code	that	reads	a	file	from	disk
}	catch	(EOFException	|	FileNotFoundException	|	IOException	exc)	{
				System.out.println(“File	error:	“	+	exc.getMessage());
}

Caution

Exceptions	have	a	printStackTrace()	method	that	displays	the	sequence	of
method	calls	that	led	to	the	statement	that	generated	the	exception.	If	you	use	this	in
a	program,	NetBeans	flags	it	for	a	warning	in	the	source	code	editor.	The	reason	is
that	printStackTrace()	contains	debugging	information	that	for	security
reasons	should	not	be	shared	with	users	after	a	program	has	been	finished.

A	catch	statement	must	be	needed	by	the	corresponding	try	block.	The	exception	class
in	catch	has	to	be	one	that	could	be	thrown	in	that	block	(or	a	superclass	of	one	that
could	be	thrown).	The	compiler	will	fail	with	an	error	otherwise.

For	example,	if	you	used	catch	for	FileNotFoundException	in	a	program	that	did
not	read	any	files,	the	program	would	not	compile.

The	finally	Clause
Suppose	that	there	is	some	action	in	your	code	that	you	absolutely	must	do,	no	matter
what	happens,	regardless	of	whether	an	exception	is	thrown.	This	is	usually	to	free	some
external	resource	after	acquiring	it,	to	close	a	file	after	opening	it,	or	something	similar.

One	example	is	when	you	are	working	with	databases,	as	you	do	during	Day	18,
“Accessing	Databases	with	JDBC	4.2	and	Derby.”	The	database	connection	and	objects
you	create	to	access	the	database	are	closed	in	a	finally	block	to	free	those	resources
because	they’re	no	longer	needed.

Although	you	could	put	that	action	both	inside	a	catch	block	and	outside	it,	duplicating
the	same	code	in	two	different	places	should	be	avoided	as	much	as	possible	in	your
programming.

Instead,	put	that	code	inside	a	special	optional	block	of	the	try-catch	statement	that
uses	the	keyword	finally:

try	{
				readTextFile();
}	catch	(IOException	ioe)	{
				//	deal	with	IO	errors
}	finally	{
			closeTextFile();
}

Today’s	first	project	shows	how	a	finally	statement	can	be	used	inside	a	method.

The	HexReader	application	in	Listing	7.1	reads	sequences	of	two-digit	hexadecimal
numbers	and	displays	their	decimal	values.	There	are	three	sequences	to	read:

	000A110D1D260219

	78700F1318141E0C

	6A197D45B0FFFFFF

As	you	learned	on	Day	2,	“The	ABCs	of	Programming,”	hexadecimal	is	a	base-16
numbering	system	in	which	the	single-digit	numbers	range	from	00	(decimal	0)	to	0F
(decimal	15).	Double-digit	numbers	range	from	10	(decimal	16)	to	FF	(decimal	255).

Create	this	class	in	NetBeans	as	an	empty	Java	file	in	the	com.java21days	package
and	enter	the	source	code	of	Listing	7.1.

LISTING	7.1	The	Full	Text	of	HexReader.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	class	HexReader	{
	4:					String[]	input	=	{	“000A110D1D260219	“,
	5:									“78700F1318141E0C	“,
	6:									“6A197D45B0FFFFFF	“	};
	7:
	8:					public	static	void	main(String[]	arguments)	{
	9:									HexReader	hex	=	new	HexReader();
10:									for	(int	i	=	0;	i	<	hex.input.length;	i++)

11:													hex.readLine(hex.input[i]);
12:					}
13:
14:					void	readLine(String	code)	{
15:									try	{
16:													for	(int	j	=	0;	j	+	1	<	code.length();	j	+=	2)	{
17:																	String	sub	=	code.substring(j,	j	+	2);
18:																	int	num	=	Integer.parseInt(sub,	16);
19:																	if	(num	==	255)	{
20:																					return;
21:																	}
22:																	System.out.print(num	+	”	“);
23:													}
24:									}	finally	{
25:													System.out.println(“**”);
26:									}
27:									return;
28:					}
29:	}

The	output	of	this	program	is	shown	in	Figure	7.1.

FIGURE	7.1	Displaying	decimal	values	converted	from	hexadecimal.

Line	17	of	the	program	reads	two	characters	from	code,	the	string	that	was	sent	to	the
readLine()	method,	by	calling	the	string’s	substring(int,	int)	method.

Note

In	the	substring()	method	of	the	String	class,	you	select	a	substring	in	a
somewhat	counterintuitive	way.	The	first	argument	specifies	the	index	of	the	first
character	to	include	in	the	substring,	but	the	second	argument	does	not	specify	the
last	character.	Instead,	the	second	argument	indicates	the	index	of	the	last	character
plus	1.	A	call	to	substring(2,	5)	for	a	string	would	return	the	characters	from
index	position	2	to	index	position	4.

The	two-character	substring	contains	a	hexadecimal	number	stored	as	a	String.	The
Integer	class	method	parseInt	can	be	used	with	a	second	argument	to	convert	this
number	into	an	integer.	Use	16	as	the	argument	for	a	hexadecimal	(base	16)	conversion,	8
for	an	octal	(base	8)	conversion,	and	so	on.

In	the	HexReader	application,	the	hexadecimal	FF	is	used	to	fill	out	the	end	of	a	sequence
and	should	not	be	displayed	as	a	decimal	value.	This	is	accomplished	by	using	a	try-
finally	block	in	lines	15–26	of	Listing	7.1.

The	try-finally	block	causes	an	unusual	thing	to	happen	when	the	return	statement

is	encountered	at	line	27.	You	would	expect	return	to	cause	the	readLine()	method
to	be	exited	immediately.

Because	it	is	within	a	try-finally	block,	the	statement	within	the	finally	block	is
executed	no	matter	how	the	try	block	is	exited.	The	text	“**”	is	displayed	at	the	end	of	a
line	of	decimal	values.

There’s	a	way	to	ensure	that	resources	are	freed	properly	even	when	an	operation	inside	a
try	block	fails	with	an	exception.	The	try-with-resources	feature	enables	statements
that	claim	resources	to	be	declared	inside	parentheses	in	a	try	statement.

The	following	code	contains	two	statements	that	read	data	from	an	Internet	server	using	a
networking	socket	(a	type	of	connection):
Click	here	to	view	code	image

Socket	digit	=	new	Socket(host,	79);
BufferedReader	in	=	new	BufferedReader(
				new	InputStreamReader(digit.getInputStream()));

To	ensure	that	resources	are	properly	released,	they	can	be	declared	inside	the	try
statement:
Click	here	to	view	code	image

try	(Socket	digit	=	new	Socket(host,	79);
				BufferedReader	in	=	new	BufferedReader(
								new	InputStreamReader(digit.getInputStream()));
)	{

				//	code	goes	here
}	catch	(IOException	e)	{
				System.out.println(“IO	Error:”	+	e.getMessage());
}

No	matter	how	the	code	in	the	try	block	exits,	whether	through	success	or	an	exception,
the	digit	and	in	resources	will	be	disposed	of	properly.

NetBeans	issues	a	warning	in	the	source	code	editor	on	any	statement	that	ought	to	be	in	a
try-with-resources	statement	but	isn’t.	Take	this	advice	whenever	you	can,	because	this
technique	eliminates	the	common	error	of	forgetting	to	close	a	resource	when	no	longer	in
use.

Declaring	Methods	That	Might	Throw	Exceptions
You	have	learned	how	to	deal	with	methods	that	might	throw	exceptions	by	protecting
code	and	catching	any	exceptions	that	occur.	The	Java	compiler	checks	to	make	sure	that
you’ve	dealt	with	a	method’s	exceptions.	But	how	does	it	know	which	exceptions	to	tell
you	about?

The	answer	is	that	the	original	method	indicated	the	exceptions	that	it	might	possibly
throw	as	part	of	its	definition.	You	can	use	this	mechanism	in	your	own	methods.	In	fact,
it’s	good	style	to	do	so	to	make	sure	that	users	of	your	classes	are	alerted	to	the	errors	your
methods	might	experience.

To	indicate	that	a	method	will	possibly	throw	an	exception,	you	use	a	special	clause	in	the

method	definition	called	throws.

The	throws	Clause
If	some	code	in	your	method’s	body	might	throw	an	exception,	add	the	throws	keyword
after	the	method’s	closing	parenthesis,	followed	by	the	name	or	names	of	the	exception
that	your	method	throws.	Here’s	an	example:
Click	here	to	view	code	image

public	void	getPoint(int	x,	int	y)	throws	NumberFormatException	{
				//	body	of	method
}

If	your	method	might	throw	multiple	kinds	of	exceptions,	you	can	declare	them	all	in	the
throws	clause	separated	by	commas:
Click	here	to	view	code	image

public	void	storePoint(int	x,	int	y)
				throws	NumberFormatException,	EOFException	{
								//	body	of	method
}

As	with	catch,	you	can	use	a	superclass	of	a	group	of	exceptions	to	indicate	that	your
method	might	throw	any	subclass	of	that	exception.	For	instance:
Click	here	to	view	code	image

public	void	loadPoint()	throws	IOException	{
				//	body	of	method
}

Keep	in	mind	that	adding	a	throws	clause	to	your	method	definition	simply	means	that
the	method	might	throw	an	exception	if	something	goes	wrong,	not	that	it	actually	will.
The	throws	clause	provides	extra	information	in	your	method	definition	about	potential
exceptions	and	allows	Java	to	make	sure	that	your	method	is	being	used	correctly	by	other
classes.

Think	of	a	method’s	overall	description	as	a	contract	between	the	designer	of	that	method
and	the	caller	of	the	method.	(You	can	be	on	either	side	of	that	contract,	of	course.)

Usually	the	description	indicates	the	types	of	a	method’s	arguments,	what	it	returns,	and
the	particulars	of	what	it	normally	does.	By	using	throws,	you	are	adding	information
about	the	abnormal	things	the	method	can	do.	This	new	part	of	the	contract	helps	make
explicit	all	the	places	where	exceptional	conditions	should	be	handled	in	your	program.

Which	Exceptions	Should	You	Throw?
After	you	decide	to	declare	that	your	method	might	throw	an	exception,	you	must	decide
which	exceptions	it	might	throw	and	actually	throw	them	or	call	a	method	that	will	throw
them.	(You	learn	about	throwing	your	own	exceptions	in	the	next	section.)

In	many	instances,	this	is	apparent	from	the	operation	of	the	method	itself.	Perhaps	you’re
already	creating	and	throwing	your	own	exceptions,	in	which	case	you’ll	know	exactly
which	exceptions	to	throw.

You	don’t	have	to	list	all	possible	exceptions	that	your	method	could	throw.	Unchecked
exceptions	are	handled	by	the	JVM	and	are	so	common	that	you	don’t	have	to	deal	with
them.

In	particular,	exceptions	of	the	Error	or	RuntimeException	classes	or	any	of	their
subclasses	do	not	have	to	be	listed	in	your	throws	clause.

They	get	special	treatment	because	they	can	occur	anywhere	within	a	Java	program	and
are	usually	conditions	that	you,	as	the	programmer,	did	not	directly	cause.

One	good	example	is	OutOfMemoryError	when	the	JVM	has	run	out	of	memory,
which	can	happen	anywhere,	at	any	time,	for	any	number	of	reasons.

Unchecked	exceptions	are	subclasses	of	the	RuntimeException	and	Error	classes
and	are	usually	thrown	by	the	JVM.	You	don’t	have	to	declare	that	your	method	throws
them	and	usually	do	not	need	to	deal	with	them	in	any	other	way.

Note

You	can	choose	to	list	these	errors	and	runtime	exceptions	in	your	throws	clause
if	you	want,	but	classes	that	call	the	method	will	not	be	forced	to	handle	them.	Only
non-runtime	exceptions	must	be	handled.

All	other	exceptions	are	called	checked	exceptions	and	are	potential	candidates	for	a
throws	clause	in	your	method.

Passing	on	Exceptions
There	are	times	when	it	doesn’t	make	sense	for	your	method	to	deal	with	an	exception.	It
might	be	better	for	the	method	that	calls	your	method	to	deal	with	that	exception.

For	example,	consider	the	hypothetical	example	of	WebRetriever,	a	class	that	loads	a
web	page	using	its	web	address	and	stores	it	in	a	file.	As	you	learn	on	Day	17,
“Communicating	Across	the	Internet,”	you	can’t	work	with	web	addresses	without	dealing
with	MalformedURLException,	the	exception	thrown	when	an	address	is	in	the
wrong	format.

To	use	WebRetriever,	another	class	calls	its	constructor	with	the	address	as	an
argument.	If	the	address	specified	by	the	other	class	is	in	the	wrong	format,	a
MalformedURLException	is	thrown.	Instead	of	dealing	with	this,	the	constructor	of
the	WebRetriever	class	could	have	the	following	declaration:
Click	here	to	view	code	image

public	WebRetriever()	throws	MalformedURLException	{
				//	body	of	constructor
}

This	would	force	any	class	that	works	with	WebRetriever	objects	to	deal	with
MalformedURLException	errors	or	pass	the	buck	with	its	own	throws	clause.

One	thing	is	always	true:	It’s	better	to	pass	on	exceptions	to	calling	methods	than	to	catch
them	and	do	nothing	in	response.

In	addition	to	declaring	methods	that	throw	exceptions,	there’s	one	other	instance	in	which
your	method	definition	may	include	a	throws	clause:	Within	that	method,	you	want	to
call	a	method	that	throws	an	exception,	but	you	don’t	want	to	catch	or	deal	with	that
exception.

Rather	than	using	the	try	and	catch	clauses	in	your	method’s	body,	you	can	declare
your	method	with	a	throws	clause	so	that	it,	too,	might	possibly	throw	the	appropriate
exception.	It’s	then	the	responsibility	of	the	method	that	calls	your	method	to	deal	with
that	exception.	This	is	the	other	case	that	tells	the	Java	compiler	that	you	have	done
something	with	a	given	exception.

Using	this	technique,	you	could	create	a	method	that	deals	with	a
NumberFormatException	without	a	try-catch	block:
Click	here	to	view	code	image

public	void	readFloat(String	input)	throws	NumberFormatException	{
				float	in	=	Float.parseFloat(input);
}

After	you	declare	your	method	to	throw	an	exception,	you	can	use	other	methods	that	also
throw	those	exceptions	inside	the	body	of	this	method,	without	needing	to	catch	the
exception.

Note

You	can,	of	course,	deal	with	other	exceptions	using	try	and	catch	in	the	body
of	your	method	in	addition	to	passing	on	the	exceptions	you	listed	in	the	throws
clause.	You	also	can	both	deal	with	the	exception	in	some	way	and	then	rethrow	it
so	that	your	method’s	calling	method	has	to	deal	with	it	anyhow.

throws	and	Inheritance
If	your	method	definition	overrides	a	method	in	a	superclass	that	includes	a	throws
clause,	there	are	special	rules	for	how	your	overridden	method	deals	with	throws.
Unlike	other	parts	of	the	method	signature	that	must	mimic	those	of	the	method	it	is
overriding,	your	new	method	does	not	require	the	same	set	of	exceptions	listed	in	the
throws	clause.

Because	there’s	a	possibility	that	your	new	method	might	deal	with	an	exception	instead
of	throwing	it,	your	method	can	potentially	throw	fewer	types	of	exceptions.	It	could	even
throw	no	exceptions.	This	means	that	you	can	have	the	following	two	class	definitions	and
things	will	work	fine:
Click	here	to	view	code	image

public	class	RadioPlayer	{
				public	void	startPlaying()	throws	SoundException	{
								//	body	of	method
				}
}
public	class	StereoPlayer	extends	RadioPlayer	{
				public	void	startPlaying()	{
								//	body	of	method

				}
}

The	converse	of	this	rule	is	not	true:	A	subclass	method	cannot	throw	more	checked
exceptions	(either	exceptions	of	different	types	or	more	general	exception	classes)	than	its
superclass	method.

Any	exception	thrown	by	the	subclass	must	be	the	same	as	the	superclass	or	a	subclass	of
that	exception.	Consider	this	example:
Click	here	to	view	code	image

void	readFields()	throws	IOException	{
				//	body	of	method
}

If	this	method	is	in	a	superclass	and	you	override	the	method,	this	would	not	be	allowed	in
the	subclass:
Click	here	to	view	code	image

void	readFiles()	throws	SQLException	{
				//	body	of	method
}

SQLException	is	not	a	subclass	of	IOException,	so	this	code	will	not	compile.	But
the	method	could	throw	FileNotFoundException,	because	that’s	a	subclass	of
IOException.

Creating	and	Throwing	Exceptions
There	are	two	sides	to	every	exception:	the	side	that	throws	the	exception	and	the	side	that
catches	it.	An	exception	can	be	tossed	around	a	number	of	times	to	a	number	of	methods
before	it’s	caught,	but	eventually	it	will	be	caught	and	dealt	with.

Many	exceptions	are	thrown	by	the	Java	runtime	or	by	methods	inside	the	Java	classes
themselves.	You	also	can	throw	any	of	the	standard	exceptions	that	the	Java	Class	Library
defines,	or	you	can	create	and	throw	your	own	exceptions.

Throwing	Exceptions
Declaring	that	your	method	throws	an	exception	is	useful	to	classes	that	use	your	method
and	to	the	Java	compiler,	which	checks	to	make	sure	that	all	your	exceptions	are	being
handled.	The	declaration	itself	doesn’t	do	anything	to	throw	that	exception	should	it	occur;
you	must	do	that	as	needed	in	the	body	of	the	method.

You	need	to	create	a	new	object	of	an	exception	class	to	throw	an	exception.	After	you
have	that	object,	use	the	throw	statement	to	throw	it.

Here’s	an	example	using	a	hypothetical	NotInServiceException	class	that	is	a
subclass	of	the	Exception	class:
Click	here	to	view	code	image

NotInServiceException	nise	=	new	NotInServiceException();
throw	nise;

You	only	can	throw	objects	that	are	subclasses	of	the	Throwable	class.

Depending	on	the	exception	class,	the	exception	also	may	have	arguments	to	its
constructor	that	you	can	use.	The	most	common	of	these	is	a	string	argument,	which
enables	you	to	describe	the	problem	in	greater	detail	(which	can	be	useful	for	debugging
purposes).	Here’s	an	example:
Click	here	to	view	code	image

NotInServiceException	nise	=	new
				NotInServiceException(“Database	Not	in	Service”);
throw	nise;

After	an	exception	is	thrown,	the	method	exits	without	executing	any	other	code,	other
than	the	code	inside	a	finally	block	if	one	exists.	The	method	won’t	return	a	value
either.	If	the	calling	method	does	not	have	a	try	or	catch	surrounding	the	call	to	your
method,	the	program	might	exit	based	on	the	exception	you	threw.

Creating	Your	Own	Exceptions
Creating	new	exceptions	is	easy.	Your	new	exception	should	inherit	from	another
exception	in	the	Java	class	hierarchy.	All	user-created	exceptions	should	be	part	of	the
Exception	hierarchy	rather	than	the	Error	hierarchy,	which	is	reserved	for	errors
involving	the	JVM.	Look	for	an	exception	that’s	close	to	the	one	you’re	creating;	for
example,	an	exception	for	a	bad	file	format	would	logically	be	an	IOException.	If	you
can’t	find	a	closely	related	exception	for	your	new	exception,	consider	inheriting	from
Exception,	which	sits	atop	the	exception	hierarchy	for	checked	exceptions.	Unchecked
exceptions	should	inherit	from	RuntimeException.

Exception	classes	typically	have	two	constructors:	The	first	takes	no	arguments,	and	the
second	takes	a	single	string	as	an	argument.

Exception	classes	are	like	other	classes.	Here’s	an	extremely	simple	one:
Click	here	to	view	code	image

public	class	SunSpotException	extends	Exception	{
				public	SunSpotException()	{}

				public	SunSpotException(String	message)	{
								super(message);
				}
}

Combining	throws,	try,	and	throw
What	if	you	want	to	combine	the	approaches	described	thus	far:	You	want	to	handle
incoming	exceptions	in	your	method,	but	you	also	want	the	option	to	pass	on	the
exception	to	your	method’s	caller.	Simply	using	try	and	catch	doesn’t	pass	on	the
exception,	and	adding	a	throws	clause	doesn’t	give	you	a	chance	to	deal	with	the
exception.

If	you	want	to	both	manage	the	exception	and	pass	it	on	to	the	caller,	use	all	three
mechanisms:	the	throws	clause,	the	try	statement,	and	a	throw	statement	to	explicitly
rethrow	the	exception.

Here’s	a	method	that	uses	this	technique:

Click	here	to	view	code	image
public	void	readMessage()	throws	IOException	{
				MessageReader	mr	=	new	MessageReader();

				try	{
								mr.loadHeader();
				}	catch	(IOException	e)	{
								//	do	something	to	handle	the
								//	IO	exception	and	then	rethrow
								//	the	exception	…
								throw	e;
				}
}

This	works	because	exception	handlers	can	be	nested.	You	handle	the	exception	by	doing
something	responsible	with	it	but	decide	that	it	is	important	enough	to	give	the	method’s
caller	a	chance	to	handle	it	as	well.

Exceptions	can	float	all	the	way	up	the	chain	of	method	callers	this	way	(not	being
handled	by	most	of	them),	until	finally	the	JVM	handles	any	uncaught	exceptions	by
aborting	your	program	and	printing	an	error	message.

If	it’s	possible	for	you	to	catch	an	exception	and	do	something	necessary	with	it,	you
should.

When	you	use	throw	in	a	catch	block	for	an	exception	superclass,	it	throws	that
superclass.	This	represents	a	potential	loss	of	information,	because	the	exception	could	be
a	subclass	with	more	information	about	the	error.

Here’s	a	situation	where	that	occurs:

	A	try-catch	statement	in	a	file	reader	looks	for	an	IOException.

	An	EOFException	occurs	because	the	end	of	the	file	is	reached.

	The	exception	is	caught	in	the	catch	block,	because	IOException	is	the
superclass	of	EOFException.

If	throw	is	used	with	this	exception,	it	will	throw	an	IOException,	not	an
EOFException.	Java	8	introduces	a	technique	that	enables	the	more	precise	exception
to	be	thrown:	Use	the	final	keyword	in	the	catch	statement	for	the	object.	This	code
rewrites	the	previous	example	to	do	this:

try	{
				mr.loadHeader();
catch	(final	IOException	e)	{
				throw	e;
}

Caution

New	features	in	Java	8	require	that	NetBeans	is	set	up	to	recognize	them	or	the	IDE
will	flag	them	as	an	error.	If	you	enter	this	code	in	NetBeans	and	it	displays	an	error
message,	make	sure	your	project	has	been	set	to	the	current	version	of	the	language.
Choose	File,	Project	Properties	to	open	the	Project	Properties	dialog,	choose	the
category	Libraries,	and	make	sure	the	Java	Platform	drop-down	is	set	to	JDK
1.8.

When	Not	to	Use	Exceptions
There	are	several	situations	where	you	should	not	use	exceptions.

First,	don’t	use	them	in	circumstances	you	could	avoid	easily	in	your	code.	For	example,
although	you	can	rely	on	an	ArrayIndexOutofBounds	exception	to	indicate	when
you’ve	gone	past	the	end	of	an	array,	it’s	simple	to	use	the	array’s	length	variable	to
keep	from	going	beyond	the	bounds.

In	addition,	if	your	users	will	enter	data	that	must	be	an	integer,	testing	to	make	sure	that
the	data	is	an	integer	is	a	much	better	idea	than	throwing	an	exception	and	dealing	with	it
somewhere	else.

Exceptions	take	up	a	lot	of	processing	time.	A	simple	conditional	will	run	much	faster
than	exception	handling	and	make	your	program	more	efficient.	Exceptions	should	be
used	only	for	truly	exceptional	cases	that	are	out	of	your	control.

It’s	also	easy	to	get	carried	away	with	exceptions	and	to	try	to	make	sure	that	all	your
methods	have	been	declared	to	throw	all	the	possible	exceptions	that	they	can	throw.

You	create	more	work	for	everyone	involved	when	you	get	carried	away	with	exceptions.
Declaring	a	method	to	throw	either	few	or	many	exceptions	is	a	trade-off;	the	more
exceptions	your	method	can	throw,	the	more	complex	that	method	is	to	use.	Declare	only
the	exceptions	that	have	a	reasonably	fair	chance	of	happening	and	that	make	sense	for	the
overall	design	of	your	classes.

Bad	Style	Using	Exceptions
When	you	first	start	using	exceptions,	it	might	be	appealing	to	work	around	the	compiler
errors	that	result	when	you	use	a	method	that	declares	a	throws	statement.	Although	it	is
permissible	to	add	an	empty	catch	clause	or	to	add	a	throws	statement	to	your	own
method	(and	there	are	appropriate	reasons	for	doing	so),	intentionally	dropping	exceptions
without	dealing	with	them	subverts	the	checks	that	the	Java	compiler	does	for	you.

Compiler	errors	regarding	exceptions	are	there	to	remind	you	to	reflect	on	these	issues.
Take	the	time	to	deal	with	the	exceptions	that	might	affect	your	code.	This	extra	care
richly	rewards	you	as	you	reuse	your	classes	in	later	projects	and	in	larger	and	larger
programs.	The	Java	Class	Library	has	been	written	with	exactly	this	degree	of	care,	and
that’s	one	of	the	reasons	it’s	robust	enough	to	be	used	in	your	Java	projects.

Threads
One	thing	to	consider	in	Java	programming	is	how	system	resources	are	being	used.
Graphics,	complex	math	computations,	and	other	intensive	tasks	can	take	up	a	lot	of
processor	time.

This	is	especially	true	of	programs	that	have	a	graphical	user	interface,	which	is	a	style	of
software	that	you	explore	next	week.

If	you	write	a	graphical	Java	program	that	does	something	that	consumes	a	lot	of	the
computer’s	time,	you	might	find	that	the	program’s	user	interface	responds	slowly.	Drop-
down	lists	take	a	second	or	more	to	appear,	button	clicks	are	recognized	slowly,	and	so	on.

To	solve	this	problem,	you	can	segregate	the	processor-hogging	functions	in	a	Java	class
so	that	they	run	separately	from	the	rest	of	the	program.

This	is	possible	through	the	use	of	threads.

Threads	are	parts	of	a	program	that	run	on	their	own	while	the	rest	of	the	program	does
something	else.	This	also	is	called	multitasking	because	the	program	handles	more	than
one	task	simultaneously.

Threads	are	ideal	for	anything	that	takes	up	a	lot	of	processing	time	and	runs	continuously.

By	putting	the	program’s	hardest	workload	into	a	thread,	you	free	up	the	rest	of	the
program	to	handle	other	things.	You	also	make	the	program	easier	for	the	JVM	because
the	most	intensive	work	is	isolated.

Writing	a	Threaded	Program
Threads	are	implemented	in	Java	with	the	Thread	class	in	the	java.lang	package.

The	simplest	use	of	threads	is	to	make	a	program	pause	in	execution	and	stay	idle	during
that	time.	To	do	this,	call	the	Thread	class	method	sleep(long)	with	the	number	of
milliseconds	to	pause	as	the	only	argument.

This	method	throws	an	exception,	InterruptedException,	when	the	paused	thread
has	been	interrupted	for	some	reason.	(One	possible	reason	is	when	a	user	closes	the
program	while	it	is	sleeping.)

The	following	statements	stop	a	program	in	its	tracks	for	3	seconds:
Click	here	to	view	code	image

try	{
				Thread.sleep(3000);
}	catch	(InterruptedException	ie)	{
				//	do	nothing
}

The	catch	block	does	nothing,	which	is	typical	when	you’re	using	sleep().

One	way	to	use	threads	is	to	put	all	the	time-consuming	behavior	in	its	own	class.

A	thread	can	be	created	in	two	ways:	by	subclassing	the	Thread	class	or	implementing
the	Runnable	interface	in	another	class.	Both	belong	to	the	java.lang	package.

Because	the	Thread	class	implements	Runnable,	both	techniques	result	in	objects	that
start	and	stop	threads	in	the	same	manner.

To	implement	the	Runnable	interface,	add	the	keyword	implements	to	the	class
declaration	followed	by	the	name	of	the	interface,	as	in	this	example:
Click	here	to	view	code	image

public	class	StockTicker	implements	Runnable	{
				public	void	run()	{
							//	…
				}
}

The	Runnable	interface	contains	only	one	method	to	implement,	run().

The	first	step	in	creating	a	thread	is	to	create	a	reference	to	an	object	of	the	Thread	class:
Thread	runner;

This	statement	creates	a	reference	to	a	thread,	but	no	Thread	object	has	been	assigned	to
it	yet.	Threads	are	created	by	calling	the	constructor	Thread(Object)	with	the
threaded	object	as	an	argument.	You	could	create	a	threaded	StockTicker	object	with
the	following	statement:
Click	here	to	view	code	image

StockTicker	tix	=	new	StockTicker();
Thread	tickerThread	=	new	Thread(tix);

Two	good	places	to	create	threads	are	the	constructor	for	an	application	and	the
constructor	for	a	component	(such	as	a	panel).

A	thread	is	begun	by	calling	its	start()	method,	as	in	the	following	statement:
tickerThread.start();

The	following	statements	can	be	used	in	a	thread	class	to	start	the	thread:
Thread	runner	=	null;
if	(runner	==	null)	{
				runner	=	new	Thread(this);
				runner.start();
}

The	this	keyword	used	in	the	Thread()	constructor	refers	to	the	object	in	which	these
statements	are	contained.	The	runner	variable	has	a	value	of	null	before	any	object	is
assigned	to	it,	so	the	if	statement	is	used	to	make	sure	that	the	thread	is	not	started	more
than	once.

To	run	a	thread,	its	start()	method	is	called.	Calling	a	thread’s	start()	method
causes	another	method	to	be	called—the	run()	method	that	must	be	present	in	all
threaded	objects.

The	run()	method	is	the	engine	of	a	threaded	class,	containing	the	processor-intensive
behavior	and	calling	methods	to	perform	it.

A	Threaded	Application
Threaded	programming	should	become	more	clear	when	you	see	it	in	action.

Listing	7.2	contains	PrimeFinder,	a	class	that	finds	a	specific	prime	number	in	a
sequence,	such	as	the	100th,	1,000th,	or	30,000th	prime.	This	can	take	some	time,
especially	for	numbers	beyond	100,000,	so	the	search	for	the	right	prime	takes	place	in	its
own	thread.

Enter	the	code	shown	in	Listing	7.2	in	NetBeans	and	save	it	as	the	class	name
PrimeFinder	in	the	package	com.java21days.

LISTING	7.2	The	Full	Text	of	PrimeFinder.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	public	class	PrimeFinder	implements	Runnable	{
	4:					public	long	target;
	5:					public	long	prime;
	6:					public	boolean	finished	=	false;
	7:					private	Thread	runner;
	8:
	9:					PrimeFinder(long	inTarget)	{
10:									target	=	inTarget;
11:									if	(runner	==	null)	{
12:													runner	=	new	Thread(this);
13:													runner.start();
14:									}
15:					}
16:
17:					public	void	run()	{
18:									long	numPrimes	=	0;
19:									long	candidate	=	2;
20:									while	(numPrimes	<	target)	{
21:													if	(isPrime(candidate))	{
22:																	numPrimes++;
23:																	prime	=	candidate;
24:													}
25:													candidate++;
26:									}
27:									finished	=	true;
28:					}
29:
30:					boolean	isPrime(long	checkNumber)	{
31:									double	root	=	Math.sqrt(checkNumber);
32:									for	(int	i	=	2;	i	<=	root;	i++)	{
33:													if	(checkNumber	%	i	==	0)
34:																	return	false;
35:									}
36:									return	true;
37:					}
38:	}

Save	the	PrimeFinder	class	when	you’re	finished.	This	class	doesn’t	have	a	main()
method,	so	you	can’t	run	it	as	an	application.	Next	you’ll	create	a	program	that	uses	this
class.

The	PrimeFinder	class	implements	the	Runnable	interface,	so	it	can	be	run	as	a
thread.

There	are	three	public	instance	variables:

	target	is	a	long	that	indicates	when	the	specified	prime	in	the	sequence	has
been	found.	If	you’re	looking	for	the	5,000th	prime,	target	equals	5000.

	prime	is	a	long	that	holds	the	last	prime	number	found	by	this	class.

	finished	is	a	Boolean	that	indicates	when	the	target	has	been	reached.

There’s	also	a	private	instance	variable	called	runner	that	holds	the	Thread	object	this
class	runs	in.	This	object	equals	null	before	the	thread	is	started.

The	PrimeFinder	constructor	method	in	lines	9–15	sets	the	target	instance	variable
and	starts	the	thread	if	it	hasn’t	been	started.	When	the	thread’s	start()	method	is
called,	it	in	turn	calls	the	run()	method	of	the	threaded	class.

The	run()	method	is	in	lines	17–28.	This	method	does	most	of	the	work	of	the	thread.

This	method	uses	two	new	variables:	numPrimes,	the	number	of	primes	that	have	been
found,	and	candidate,	the	number	that	might	possibly	be	prime.	The	candidate
variable	begins	at	the	first	possible	prime	number,	which	is	2.

The	while	loop	in	lines	20–26	continues	until	the	right	number	of	primes	has	been
found.

First,	it	checks	whether	the	current	candidate	is	prime	by	calling	the
isPrime(long)	method,	which	returns	true	if	the	number	is	prime	and	false
otherwise.

If	the	candidate	is	prime,	numPrimes	increases	by	1,	and	the	prime	instance
variable	is	set	to	this	prime	number.

The	candidate	variable	is	then	incremented	by	1,	and	the	loop	continues.

After	the	right	number	of	primes	has	been	found,	the	while	loop	ends,	and	the
finished	instance	variable	is	set	to	true.	This	indicates	that	the	PrimeFinder
object	has	found	the	right	prime	number	and	is	finished	searching.

The	end	of	the	run()	method	is	reached	in	line	28,	and	the	thread	no	longer	does	any
work.

The	isPrime()	method	is	contained	in	lines	30–37.	This	method	determines	whether	a
number	is	prime	by	using	the	%	operator,	which	returns	the	remainder	of	a	division
operation.	If	a	number	is	evenly	divisible	by	2	or	any	higher	number	(leaving	a	remainder
of	0),	it	is	not	a	prime	number.

Listing	7.3	is	an	application	that	uses	the	PrimeFinder	class.	Enter	the	code	shown	in
Listing	7.3	in	NetBeans	as	a	new	Java	class	named	PrimeThreads	in	the
com.java21days	package.

LISTING	7.3	The	Full	Text	of	PrimeThreads.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	public	class	PrimeThreads	{
	4:					public	static	void	main(String[]	arguments)	{
	5:									PrimeThreads	pt	=	new	PrimeThreads(arguments);
	6:					}
	7:
	8:					public	PrimeThreads(String[]	arguments)	{
	9:									PrimeFinder[]	finder	=	new	PrimeFinder[arguments.length];
10:									for	(int	i	=	0;	i	<	arguments.length;	i++)	{
11:													try	{
12:																	long	count	=	Long.parseLong(arguments[i]);
13:																	finder[i]	=	new	PrimeFinder(count);
14:																	System.out.println(“Looking	for	prime	“	+	count);
15:													}	catch	(NumberFormatException	nfe)	{
16:																	System.out.println(“Error:	“	+	nfe.getMessage());
17:													}
18:									}
19:									boolean	complete	=	false;
20:									while	(!complete)	{
21:													complete	=	true;
22:													for	(int	j	=	0;	j	<	finder.length;	j++)	{
23:																	if	(finder[j]	==	null)	continue;
24:																	if	(!finder[j].finished)	{
25:																					complete	=	false;
26:																	}	else	{
27:																					displayResult(finder[j]);
28:																					finder[j]	=	null;
29:																	}
30:													}
31:													try	{
32:																	Thread.sleep(1000);
33:													}	catch	(InterruptedException	ie)	{
34:																	//	do	nothing
35:													}
36:									}
37:					}
38:
39:					private	void	displayResult(PrimeFinder	finder)	{
40:									System.out.println(“Prime	“	+	finder.target
41:													+	”	is	“	+	finder.prime);
42:					}
43:	}

Specify	the	prime	numbers	that	you’re	looking	for	as	command-line	arguments	(using
Run,	Set	Project	Configuration,	Customize),	and	include	as	many	as	you	want.

If	this	program	is	run	with	the	command-line	arguments	5000	12000	50000
120000,	it	is	likely	to	produce	the	output	in	Figure	7.2.	Because	there’s	no	guarantee	of
the	order	threads	will	finish,	the	report	of	each	found	prime	may	be	ordered	differently.

FIGURE	7.2	Using	threads	to	find	multiple	primes	in	a	sequence.

The	for	loop	in	lines	10–18	of	the	PrimeThreads	application	creates	one	PrimeFinder
object	for	each	command-line	argument	specified	when	the	program	is	run.

Because	arguments	are	Strings	and	the	PrimeFinder	constructor	requires	long
values,	the	Long.parseLong(String)	class	method	is	used	to	handle	the
conversion.	All	the	number-parsing	methods	throw	NumberFormatException
exceptions,	so	they	are	enclosed	in	try-catch	blocks	to	deal	with	arguments	that	are	not
numeric.

When	a	PrimeFinder	object	is	created,	the	object	starts	running	in	its	own	thread	(as
specified	in	the	PrimeFinder	constructor).

The	while	loop	in	lines	20–36	checks	to	see	whether	any	PrimeFinder	thread	has
completed,	which	is	indicated	by	its	finished	instance	variable	equaling	true.	When	a
thread	has	completed,	the	displayResult()	method	is	called	in	line	27	to	display	the
prime	number	that	was	found.	The	thread	then	is	set	to	null,	freeing	the	object’s
resources	(and	preventing	its	result	from	being	displayed	more	than	once).

The	call	to	Thread.sleep(1000)	in	line	32	causes	the	while	loop	to	pause	for	one
second	during	each	pass	through	the	loop.	A	slowdown	in	loops	helps	keep	the	JVM	from
executing	statements	at	such	a	furious	pace	that	it	becomes	bogged	down.

Stopping	a	Thread
Stopping	a	thread	is	a	little	more	complicated	than	starting	one.

The	best	way	to	stop	a	thread	is	to	place	a	loop	in	the	thread’s	run()	method	that	ends
when	a	variable	changes	in	value,	as	in	the	following	example:

public	void	run()	{
				while	(okToRun	==	true)	{
								//	…
				}
}

The	okToRun	variable	could	be	an	instance	variable	of	the	thread’s	class.	If	it	is	changed
to	false,	the	loop	inside	the	run()	method	ends.

Another	option	you	can	use	to	stop	a	thread	is	to	loop	in	the	run()	method	only	while
the	currently	running	thread	has	a	variable	that	references	it.

A	class	method,	Thread.currentThread(),	returns	a	reference	to	the	current	thread
(in	other	words,	the	thread	in	which	the	object	is	running).

The	following	run()	method	loops	as	long	as	runner	and	currentThread()	refer
to	the	same	object:
Click	here	to	view	code	image

public	void	run()	{
				Thread	thisThread	=	Thread.currentThread();
				while	(runner	==	thisThread)	{
								//	body	of	loop
				}
}

If	you	use	a	loop	like	this,	you	can	stop	the	thread	anywhere	in	the	class	with	the
following	statement:

runner	=	null;

Summary
Exceptions	and	threads	strengthen	the	robustness	of	your	programs.

Exceptions	enable	you	to	manage	potential	errors.	By	using	try,	catch,	and	finally,
you	can	protect	code	that	might	result	in	exceptions	by	handling	those	exceptions	as	they
occur.

Handling	exceptions	is	only	half	the	battle;	the	other	half	is	generating	and	throwing
exceptions.	A	throws	clause	tells	a	method’s	users	that	the	method	might	throw	an
exception.	It	also	can	be	used	to	pass	on	an	exception	from	a	method	call	in	the	body	of
your	method.

You	learned	how	to	create	and	throw	your	own	methods	by	defining	new	exception	classes
and	by	throwing	instances	of	any	exception	classes	using	throw.

Threads	enable	you	to	run	the	most	processor-intensive	parts	of	a	Java	class	separately
from	the	rest	of	the	class.	This	is	especially	useful	when	the	class	is	doing	something
computing-intensive	such	as	animation,	complex	math,	or	looping	through	a	large	amount
of	data	quickly.

You	also	can	use	threads	to	do	several	things	at	once	and	to	start	and	stop	threads
externally.

Threads	implement	the	Runnable	interface,	which	contains	one	method:	run().	When
you	start	a	thread	by	calling	its	start()	method,	the	thread’s	run()	method	is	called
automatically.

Q&A
Q	I’m	still	not	sure	I	understand	the	difference	between	exceptions,	errors,	and
runtime	exceptions.	Is	there	another	way	of	looking	at	them?

A	Errors	are	caused	by	dynamic	linking	or	JVM	problems.	Thus,	they	are	too	low-
level	for	most	programs	to	care	about—or	to	be	able	to	handle	even	if	they	did	care.

Runtime	exceptions	are	generated	by	the	normal	execution	of	Java	code.	Although
they	occasionally	reflect	a	condition	you	will	want	to	handle	explicitly,	more	often
they	reflect	a	coding	mistake	made	by	the	programmer,	and	thus	simply	print	an
error	to	help	flag	that	mistake.

Non-runtime	exceptions	(IOException	exceptions,	for	example)	are	conditions
that,	because	of	their	nature,	should	be	explicitly	handled	by	any	robust	and	well-
thought-out	code.	The	Java	Class	Library	has	been	written	using	only	a	few	of	these,
but	those	few	are	important	to	using	the	system	safely	and	correctly.	The	compiler
helps	you	handle	these	exceptions	properly	via	its	throws	clause	checks	and
restrictions.

Q	Does	Java	support	unit	testing	to	make	programs	more	reliable?

A	Unit	testing,	a	technique	for	ensuring	the	reliability	of	software	by	adding	tests,	is
supported	by	the	open	source	Java	Class	Library	JUnit.	This	is	the	most	popular
unit-testing	framework	for	Java	programmers.	Visit	www.junit.org	to	download	it.

With	JUnit,	you	write	a	set	of	tests,	called	a	suite,	that	create	the	Java	objects	you’ve
developed	and	call	their	methods.	The	values	produced	by	these	tests	are	checked	to
see	whether	they’re	what	you	expected.	All	tests	must	pass	for	your	software	to	pass.

Although	unit	testing	is	only	as	good	as	the	tests	you	create,	the	existence	of	a	test
suite	is	extremely	helpful	when	you	make	changes	to	your	software.	By	running	the
tests	again	after	the	changes,	you	can	better	assure	yourself	that	it	continues	to	work
correctly.

Some	Java	programmers	believe	so	strongly	in	the	benefits	of	unit	testing	that	they
write	tests	before	any	code.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	keyword	is	used	to	jump	out	of	a	try	block	and	into	a	finally	block?

A.	catch

B.	return

C.	while

2.	What	class	should	be	the	superclass	of	any	exceptions	you	create	in	Java?

A.	Throwable

B.	Error

C.	Exception

http://www.junit.org

3.	If	a	class	implements	the	Runnable	interface,	what	methods	must	the	class
contain?

A.	start(),	stop(),	and	run()

B.	actionPerformed()

C.	run()

Answers
1.	B.	The	return	statement	exits	the	block.

2.	C.	The	kinds	of	errors	you’ll	want	to	note	in	your	programs	generally	belong	in	the
Exception	hierarchy.

3.	C.	The	Runnable	interface	requires	only	the	run()	method.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

The	AverageValue	application	is	supposed	to	take	up	to	10	floating-point	numbers	as
command-line	arguments	and	display	their	average.

Given:
Click	here	to	view	code	image

public	class	AverageValue	{
				public	static	void	main(String[]	arguments)	{
								float[]	temps	=	new	float[10];
								float	sum	=	0;
								int	count	=	0;
								int	i;
								for	(i	=	0;	i	<	arguments.length	&	i	<	10;	i++)	{
												try	{
																temps[i]	=	Float.parseFloat(arguments[i]);
																count++;
												}	catch	(NumberFormatException	nfe)	{
																System.out.println(“Invalid	input:	“	+	arguments[i]);
												}
												sum	+=	temps[i];
								}
								System.out.println(“Average:	“	+	(sum	/	i));
				}
}

Which	statement	contains	an	error?

A.	for	(i	=	0;	i	<	arguments.length	&	i	<	10;	i++)	{

B.	sum	+=	temps[i];

C.	System.out.println("Average:	"	+	(sum	/	i));

D.	None	of	them;	the	program	is	correct.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	7
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Modify	the	PrimeFinder	class	so	that	it	throws	a	new	exception,
NegativeNumberException,	if	a	negative	number	is	sent	to	the	constructor.

2.	Modify	the	PrimeThreads	application	so	that	it	can	handle	the	new
NegativeNumberException	error.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Week	II:	The	Java	Class	Library
8	Data	Structures

9	Working	with	Swing

10	Building	a	Swing	Interface

11	Arranging	Components	on	a	User	Interface

12	Responding	to	User	Input

13	Creating	Java2D	Graphics

14	Developing	Swing	Applications

Day	8.	Data	Structures

During	the	first	week,	you	learned	about	the	core	elements	of	the	Java	language:	objects,
classes,	and	interfaces,	along	with	the	keywords,	statements,	expressions,	and	operators
they	contain.

For	the	second	week,	the	focus	shifts	from	the	classes	you	create	to	the	ones	that	have
been	created	for	you.	The	Java	Class	Library	is	a	set	of	standard	packages	from	Oracle
that	has	more	than	4,200	classes	you	can	use	in	your	own	Java	programs.

Today,	you	start	with	classes	that	represent	data.

The	following	data	structures	are	covered:

	Bit	sets,	which	hold	Boolean	values

	Array	lists,	arrays	that	can	grow	and	shrink	in	size

	Stacks,	structures	stored	in	last-in,	first-out	(LIFO)	order

	Hash	maps,	which	store	items	using	keys

Moving	Beyond	Arrays
The	Java	Class	Library	provides	a	set	of	data	structures	in	the	java.util	package	that
gives	you	more	flexibility	in	organizing	and	manipulating	data.

A	solid	understanding	of	data	structures	and	when	to	employ	them	will	be	useful
throughout	your	Java	programming	efforts.

Many	Java	programs	that	you	create	rely	on	some	means	of	storing	and	manipulating	data
within	a	class.	Up	to	this	point,	you	have	used	three	structures	to	store	and	retrieve	data:
variables,	String	objects,	and	arrays.

These	are	just	a	few	of	the	data	classes	available	in	Java.	If	you	don’t	understand	the	full
range	of	data	structures,	you’ll	find	yourself	trying	to	use	arrays	or	strings	when	other
options	would	be	more	efficient	or	easier	to	implement.

Outside	of	primitive	types	and	strings,	arrays	are	the	simplest	data	structure	that	Java
supports.	An	array	is	a	series	of	data	elements	of	the	same	primitive	type	or	class.	It’s
treated	as	a	single	object	but	contains	multiple	elements	that	can	be	accessed
independently.	Arrays	are	useful	when	you	need	to	store	and	access	related	information.

A	glaring	limitation	of	arrays	is	that	they	can’t	adjust	in	size	to	accommodate	more	or
fewer	elements.	You	can’t	add	new	elements	to	an	array	that’s	already	full.	One	data
structure	you	learn	about	today,	array	lists,	does	not	have	this	limitation.

Note

Unlike	the	data	structures	provided	by	the	java.util	package,	arrays	are
considered	such	a	core	component	of	Java	that	they	are	implemented	in	the
language	itself.	Therefore,	you	can	use	arrays	in	Java	without	using	an	object	to
hold	their	data.

Java	Structures
The	data	structures	provided	by	the	java.util	package	perform	a	wide	range	of
functions.	These	data	structures	consist	of	the	Iterator	interface,	Map	interface,	and
classes	such	as	the	following:

	BitSet

	ArrayList

	Stack

	HashMap

Each	of	these	data	structures	provides	a	way	to	store	and	retrieve	information	in	a	well-
defined	manner.	The	Iterator	interface	itself	isn’t	a	data	structure,	but	it	defines	a
means	to	retrieve	successive	elements	from	a	data	structure.	For	example,	Iterator
defines	a	method	called	next()	that	gets	the	next	element	in	a	data	structure	containing
multiple	elements.

Note

Iterator	is	an	expanded	and	improved	version	of	the	Enumeration	interface
from	early	versions	of	the	language.	Although	Enumeration	is	still	supported,
Iterator	should	be	used	instead	because	it	has	simpler	method	names	and
support	for	removing	items.	Iterator	also	has	been	designed	to	detect	a
problem-prone	situation	with	threads:	It	fails	with	a
ConcurrentModificationException	when	one	thread	changes	an	item
while	another	one	is	looping	through	the	elements.

The	BitSet	class	implements	a	group	of	bits,	or	flags,	that	can	be	set	and	cleared
individually.	This	class	is	useful	when	you	need	to	keep	up	with	a	set	of	Boolean	values;
you	simply	assign	a	bit	to	each	value	and	set	or	clear	it	as	appropriate.	A	flag	is	a	Boolean
value	that	represents	one	of	a	group	of	on/off	type	states	in	a	program.

The	ArrayList	class	is	similar	to	an	array,	except	that	it	can	grow	as	necessary	to
accommodate	new	elements	and	also	shrink.	Like	an	array,	elements	of	an	ArrayList
object	can	be	accessed	via	an	index	value.	The	nice	thing	about	using	an	array	list	is	that
you	aren’t	required	to	give	it	a	specific	size	upon	creation;	it	shrinks	and	grows
automatically	as	needed.

The	Stack	class	implements	a	last-in,	first-out	stack	of	elements.	You	can	think	of	a

stack	as	a	vertical	stack	of	objects.	When	you	add	a	new	element,	it’s	stacked	on	top	of	the
others.	When	you	pull	an	element	off	the	stack,	it	comes	off	the	top.	The	capability	to
remove	an	item	differs	from	a	structure	like	an	array,	where	the	elements	always	are
available.

The	HashMap	class	implements	Dictionary,	an	abstract	class	that	defines	a	data
structure	for	mapping	keys	to	values.	This	is	useful	when	you	want	to	access	data	through
a	particular	key	rather	than	an	integer	index.	Because	the	Dictionary	class	is	abstract,
it	provides	only	the	framework	for	a	key-mapped	data	structure	rather	than	a	specific
implementation.	A	key	is	an	identifier	used	to	reference,	or	look	up,	a	value	in	a	data
structure.

The	HashMap	class	provides	an	implementation	of	a	key-mapped	data	structure.
HashMap	organizes	data	based	on	a	user-defined	key	structure.	For	example,	in	a	ZIP
Code	list	stored	in	a	hash	map,	you	could	store	data	using	each	code	as	a	key.	The	specific
meaning	of	keys	in	a	hash	map	depends	on	how	the	map	is	used	and	the	data	it	contains.

The	next	section	looks	at	these	data	structures	in	more	detail	to	show	how	they	work.

Iterator

The	Iterator	interface	provides	a	standard	means	of	progressing	through	a	list	of
elements	in	a	defined	sequence,	which	is	a	common	task	for	many	data	structures.

Even	though	you	can’t	use	the	interface	outside	a	particular	data	structure,	understanding
how	the	Iterator	interface	works	helps	you	understand	other	Java	data	structures.

With	that	in	mind,	take	a	look	at	three	methods	defined	by	the	Iterator	interface:
public	boolean	hasNext();

public	Object	next();

public	void	remove();

These	methods	lack	code	because	interfaces	don’t	have	implementations.	The	class	that
implements	the	interface	must	provide	the	code	to	define	the	methods.

The	hasNext()	method	determines	whether	the	structure	contains	any	more	elements.
You	can	call	this	method	to	see	whether	you	can	continue	iterating	through	a	structure.

The	next()	method	retrieves	the	next	element	in	a	structure.	If	there	are	no	more
elements,	next()	throws	a	NoSuchElementException	exception.	To	avoid	this,
you	can	use	hasNext()	in	conjunction	with	next()	to	make	sure	that	there	is	another
element	to	retrieve.

The	following	while	loop	uses	these	two	methods	to	iterate	through	a	data	structure
called	users	that	implements	the	Iterator	interface:

while	(users.hasNext())	{
				Object	ob	=	users.next();
				System.out.println(ob);
}

This	sample	code	displays	the	contents	of	each	list	item	by	using	the	hasNext()	and

next()	methods.

The	next()	method	returns	an	object	of	the	class	Object.	You	can	cast	this	to	another
class	that	the	structure	holds.	Here’s	an	example	for	a	data	structure	that	holds	String
objects:
Click	here	to	view	code	image

while	(users.hasNext())	{
				String	ob	=	(String)	users.next();
				System.out.println(ob);
}

Note

Because	Iterator	is	an	interface,	you	never	use	it	directly	as	a	data	structure.
Instead,	you	use	the	methods	defined	by	Iterator	for	structures	that	implement
the	interface.	This	provides	a	consistent	way	to	work	with	many	of	Java’s	standard
data	structures,	which	makes	them	easier	to	learn	and	use.

Bit	Sets
The	BitSet	class	is	useful	when	you	need	to	represent	a	large	amount	of	binary	data—
bit	values	that	equal	either	0	or	1.	These	also	are	called	on-or-off	values	(with	1
representing	on	and	0	representing	off)	or	Boolean	values	(with	1	true	and	0	false).

With	the	BitSet	class,	you	can	use	individual	bits	to	store	Boolean	values	without
requiring	bitwise	operations	to	extract	bit	values.	You	simply	refer	to	each	bit	using	an
index.	Another	nice	feature	of	BitSet	is	that	it	automatically	grows	to	represent	the
number	of	bits	that	a	program	requires.	Figure	8.1	shows	the	logical	organization	of	a	bit
set	data	structure.

FIGURE	8.1	The	organization	of	a	bit	set.

You	can	use	a	BitSet	object	to	hold	attributes	that	easily	can	be	modeled	by	Boolean
values.	Because	the	individual	bits	in	a	set	are	accessed	via	an	index,	you	can	define	each
attribute	as	a	constant	index	value,	as	in	this	class:
Click	here	to	view	code	image

class	ConnectionAttributes	{
				public	static	final	int	READABLE	=	0;
				public	static	final	int	WRITABLE	=	1;
				public	static	final	int	STREAMABLE	=	2;
				public	static	final	int	FLEXIBLE	=	3;
}

In	this	class,	the	attributes	are	assigned	increasing	values	beginning	with	0.	You	can	use
these	values	to	get	and	set	the	appropriate	bits	in	a	set.	First,	you	need	to	create	a	BitSet
object:

BitSet	connex	=	new	BitSet();

This	constructor	creates	a	set	with	no	specified	size.	You	also	can	create	a	set	with	a
specific	size:

BitSet	connex	=	new	BitSet(4);

This	creates	a	set	containing	four	Boolean	bits.	Regardless	of	the	constructor	used,	all	bits
in	new	sets	initially	are	set	to	false.	After	you	have	a	set,	you	can	set	and	clear	the	bits
by	using	set(int)	and	clear(int)	methods	with	the	bit	constants	you	defined:
Click	here	to	view	code	image

connex.set(ConnectionAttributes.WRITABLE);
connex.set(ConnectionAttributes.STREAMABLE);
connex.set(ConnectionAttributes.FLEXIBLE);

connex.clear(ConnectionAttributes.WRITABLE);

In	this	code,	the	WRITABLE,	STREAMABLE,	and	FLEXIBLE	attributes	are	set,	and	then
the	WRITABLE	bit	is	cleared.	The	class	name	is	used	for	each	attribute	because	the
constants	are	class	variables	in	the	ConnectionAttributes	class.

You	can	get	the	value	of	individual	bits	in	a	set	by	using	the	get()	method:
Click	here	to	view	code	image

boolean	isWriteable	=	connex.get(ConnectionAttributes.WRITABLE);

You	can	find	out	how	many	bits	a	set	represents	with	the	size	method:
int	numBits	=	connex.size();

The	BitSet	class	also	provides	other	methods	for	performing	comparisons	and	bitwise
operations	on	sets,	such	as	AND,	OR,	and	XOR.	All	these	methods	take	a	BitSet	object	as
their	only	argument.

Today’s	first	project	is	HolidaySked,	a	Java	class	that	uses	a	set	to	keep	track	of	which
days	in	a	year	are	holidays.

A	set	is	employed	because	HolidaySked	must	be	able	to	take	any	day	of	the	year	and
answer	the	same	yes/no	question:	Are	you	a	holiday?

Enter	the	code	shown	in	Listing	8.1	into	an	empty	Java	file	in	NetBeans	named
HolidaySked	in	the	com.java21days	package.

LISTING	8.1	The	Full	Text	of	HolidaySked.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	HolidaySked	{
	6:					BitSet	sked;
	7:
	8:					public	HolidaySked()	{
	9:									sked	=	new	BitSet(365);
10:									int[]	holiday	=	{	1,	15,	50,	148,	185,	246,
11:													281,	316,	326,	359	};

12:									for	(int	i	=	0;	i	<	holiday.length;	i++)	{
13:													addHoliday(holiday[i]);
14:									}
15:					}
16:
17:					public	void	addHoliday(int	dayToAdd)	{
18:									sked.set(dayToAdd);
19:					}
20:
21:					public	boolean	isHoliday(int	dayToCheck)	{
22:									boolean	result	=	sked.get(dayToCheck);
23:									return	result;
24:					}
25:
26:					public	static	void	main(String[]	arguments)	{
27:									HolidaySked	cal	=	new	HolidaySked();
28:									if	(arguments.length	>	0)	{
29:													try	{
30:																	int	whichDay	=	Integer.parseInt(arguments[0]);
31:																	if	(cal.isHoliday(whichDay))	{
32:																					System.out.println(“Day	number	“	+	whichDay	+
33:																									”	is	a	holiday.”);
34:																	}	else	{
35:																					System.out.println(“Day	number	“	+	whichDay	+
36:																									”	is	not	a	holiday.”);
37:																	}
38:													}	catch	(NumberFormatException	nfe)	{
39:																	System.out.println(“Error:	“	+	nfe.getMessage());
40:													}
41:									}
42:					}
43:	}

This	application	requires	one	command-line	argument:	a	number	from	1	to	365	that
represents	the	day	of	the	year,	in	sequence.	(These	numbers	are	defined	in	lines	10–11	and
would	be	different	for	each	year.)	Use	the	command	Run,	Set	Project	Configuration,
Customize	to	set	the	argument.

Test	the	program	with	values	such	as	15	(Martin	Luther	King	Day)	or	103	(my	birthday).
The	application	should	respond	that	day	15	is	a	holiday	but	that	day	103,	sadly,	is	not.

The	output	of	the	application	for	day	170	is	shown	in	Figure	8.2.

FIGURE	8.2	Trying	out	the	BitSet	data	structure.

The	HolidaySked	class	contains	only	one	instance	variable:	sked,	a	BitSet	that
holds	values	for	each	day	in	a	year.

The	constructor	of	the	class	creates	the	sked	bit	set	with	365	positions,	with	a	value	of	0
(lines	8–15).	All	bit	sets	are	filled	with	0	values	when	they	are	created.

Next,	an	integer	array	called	holiday	is	created.	This	array	holds	the	number	of	each
work	holiday	in	the	year,	beginning	with	1	(New	Year’s	Day)	and	ending	with	359
(Christmas).

The	holiday	array	is	used	to	add	each	holiday	to	the	sked	bit	set.	A	for	loop	iterates
through	the	holiday	array	and	calls	the	method	addHoliday(int)	with	each	one
(lines	12–14).

The	addHoliday(int)	method	is	defined	in	lines	17–19.	The	argument	represents	the
day	that	should	be	added.	The	bit	set’s	set(int)	method	is	called	to	set	the	bit	at	the
specified	position	to	1.	For	example,	if	set(359)	is	called,	the	bit	at	position	359	is
given	the	value	1.

The	HolidaySked	class	also	can	determine	whether	a	specified	day	is	a	holiday.	This	is
handled	by	the	isHoliday(int)	method	(lines	21–24).	The	method	calls	the	bit	set’s
get(int)	method,	which	returns	true	if	the	specified	position	has	the	value	1	and
false	otherwise.

This	class	can	be	run	as	an	application	because	of	the	main()	method	(lines	26–42).	The
application	takes	a	single	command-line	argument:	a	number	from	1	to	365	that	represents
one	of	the	days	of	the	year.	The	application	displays	whether	that	day	is	a	holiday
according	to	the	schedule	of	the	HolidaySked	class.

Array	Lists
One	of	the	most	popular	data	structures	in	Java,	the	ArrayList	class	implements	an
expandable	and	contractible	array	of	objects,	making	it	more	flexible	and	useful	than
arrays.	Because	the	ArrayList	class	is	responsible	for	changing	size	as	necessary,	it	has
to	decide	when	and	how	much	to	grow	or	shrink	as	elements	are	added	and	removed.

An	array	list	can	be	created	with	a	constructor	taking	no	arguments:
Click	here	to	view	code	image

ArrayList	golfer	=	new	ArrayList();

This	constructor	creates	a	default	array	list	containing	no	elements.	All	lists	are	empty
upon	creation.	One	of	the	attributes	that	determines	how	a	list	sizes	itself	is	its	initial
capacity—the	number	of	elements	for	which	it	allocates	memory	to	hold.

The	size	of	an	array	list	is	the	number	of	elements	currently	stored	in	it.	A	list’s	capacity	is
always	greater	than	or	equal	to	the	size.

The	following	code	shows	how	to	create	an	array	list	with	a	specified	capacity:
Click	here	to	view	code	image

ArrayList	golfer	=	new	ArrayList(30);

This	list	allocates	enough	memory	to	support	30	elements.	If	the	capacity	fills	up,	the	list
automatically	expands	by	half	the	initial	size.	So	if	a	30th	element	is	put	in	golfer,	it
expands	to	make	room	for	45	elements.

Because	allocating	additional	space	for	the	list	takes	time	and	consumes	memory,	it’s	best

to	create	a	list	with	as	many	elements	as	you	expect	to	use.

You	can’t	just	use	square	brackets	[]	to	access	the	elements	in	an	array	list,	as	you	can	in
an	array.	You	must	use	methods	of	the	ArrayList	class.

Use	the	add(Object)	method	to	add	an	element	to	an	array	list,	like	this:
golfer.add(“Park”);
golfer.add(“Lewis”);
golfer.add(“Ko”);

The	lastElement()	method	returns	an	Object	because	the	ArrayList	class
supports	all	classes	of	objects.	You	must	cast	it	to	the	class	that	was	put	into	the	list.	Here,
because	strings	were	stored	in	golfer,	the	returned	object	is	cast	to	a	string.

The	get()	method	retrieves	a	list	element	using	a	numeric	index,	as	shown	in	the
following	code:
Click	here	to	view	code	image

String	s1	=	(String)	golfer.get(0);
String	s2	=	(String)	golfer.get(2);

Because	array	list	numbering	is	zero-based,	the	first	call	to	get()	retrieves	the	“Park”
string,	and	the	second	call	retrieves	the	“Lewis”	string.

Just	as	you	can	retrieve	an	element	at	a	particular	index,	you	also	can	add	and	remove
elements	at	an	index	by	using	the	add(int,	Object)	and	remove(int)	methods:

golfer.add(1,	“Kim”);
golfer.add(0,	“Thompson”);
golfer.remove(3);

The	first	call	to	add()	inserts	an	element	at	index	1,	between	the	“Park”	and	“Lewis”
strings.	The	“Lewis”	and	“Ko”	strings	are	moved	by	an	element	in	the	list	to
accommodate	the	inserted	“Kim”	string.	The	second	call	to	add()	inserts	an	element	at
index	0,	which	is	the	beginning	of	the	list.	All	existing	elements	are	moved	up	one	space
in	the	list	to	accommodate	the	inserted	“Thompson”	string.	At	this	point,	the	contents	of
the	list	look	like	this:

0.	“Thompson”

1.	“Park”

2.	“Kim”

3.	“Lewis”

4.	“Ko”

The	call	to	remove()	removes	the	element	at	index	3,	which	is	the	“Lewis”	string.	The
resulting	list	consists	of	the	following	strings:

0.	“Thompson”

1.	“Park”

2.	“Kim”

3.	“Ko”

You	can	use	the	set()	method	to	change	a	specific	element:
golfer.set(1,	“Pressel”);

This	method	replaces	the	“Park”	string	with	the	“Pressel”	string,	resulting	in	the	following
list:

0.	“Thompson”

1.	“Pressel”

2.	“Kim”

3.	“Ko”

If	you	want	to	clear	out	the	array	list,	you	can	remove	all	the	elements	with	the	clear()
method:

golfer.clear();

The	ArrayList	class	also	provides	some	methods	for	working	with	elements	without
using	indexes.	These	methods	search	through	the	list	for	a	particular	element.	The	first	of
these	methods	is	the	contains(Object)	method,	which	simply	checks	whether	an
object	is	in	the	list:
Click	here	to	view	code	image

boolean	isThere	=	golfer.contains(“Kerr”);

Another	method	for	searching	is	the	indexOf(Object)	method,	which	finds	the	index
of	an	element	matching	an	object:

int	i	=	golfer.indexOf(“Ko”);

The	indexOf()	method	returns	the	index	or	–1	if	the	object	is	not	in	the	list.	The
remove(Object)	method	works	similarly,	removing	an	object	from	the	list,	as	in	this
statement:

golfer.remove(“Pressel”);

The	ArrayList	class	offers	a	few	methods	for	determining	and	manipulating	a	list’s
size.	First,	the	size	method	determines	the	number	of	elements	in	the	list:

int	size	=	golfer.size();

Recall	that	lists	have	two	attributes	relating	to	size:	size	and	capacity.	The	size	is	the
number	of	elements	in	the	list,	and	the	capacity	is	the	amount	of	memory	allocated	to	hold
all	the	elements.	The	capacity	always	is	greater	than	or	equal	to	the	size.	You	can	force	the
capacity	to	exactly	match	the	size	by	using	the	trimToSize()	method:

golfer.trimToSize();

Caution

The	Java	Class	Library	also	includes	Vector,	a	data	structure	that	works	a	lot	like
array	lists.	When	you	use	vectors	in	NetBeans,	a	warning	is	displayed	that	calls	the
class	an	“obsolete	collection.”	This	occurs	because	array	lists	are	considered	a
superior	version	of	vectors.

Looping	Through	Data	Structures
If	you’re	interested	in	working	sequentially	with	all	the	elements	in	a	list,	you	can	use	the
iterator()	method,	which	returns	an	Iterator	that	holds	a	list	of	the	elements	you
can	loop	through:
Click	here	to	view	code	image

Iterator	it	=	golfer.iterator();

As	you	learned	earlier	today,	you	can	use	an	iterator	to	step	through	elements	sequentially.
In	this	example,	you	can	work	with	the	it	list	using	the	methods	defined	by	the
Iterator	interface.

The	following	for	loop	uses	an	iterator	and	its	methods	to	traverse	an	entire	array	list:
Click	here	to	view	code	image

for	(Iterator	i	=	golfer.iterator();	i.hasNext();)	{
				String	name	=	(String)	i.next();
				System.out.println(name);
}

Today’s	next	project	demonstrates	the	care	and	feeding	of	array	lists.	The	CodeKeeper
class,	shown	in	Listing	8.2,	holds	a	set	of	text	codes,	some	provided	by	the	class	and
others	provided	by	users.	Because	the	amount	of	space	needed	to	hold	the	codes	isn’t
known	until	the	program	is	run,	an	array	list	is	used	to	store	the	data	instead	of	an	array.
Create	this	class	in	NetBeans,	remembering	to	put	it	in	the	com.java21days	package.

LISTING	8.2	The	Full	Text	of	CodeKeeper.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	CodeKeeper	{
	6:					ArrayList	list;
	7:					String[]	codes	=	{	“alpha”,	“lambda”,	“gamma”,	“delta”,	“zeta”	};
	8:
	9:					public	CodeKeeper(String[]	userCodes)	{
10:									list	=	new	ArrayList();
11:									//	load	built-in	codes
12:									for	(int	i	=	0;	i	<	codes.length;	i++)	{
13:													addCode(codes[i]);
14:									}
15:									//	load	user	codes
16:									for	(int	j	=	0;	j	<	userCodes.length;	j++)	{
17:													addCode(userCodes[j]);

18:									}
19:									//	display	all	codes
20:									for	(Iterator	ite	=	list.iterator();	ite.hasNext();)	{
21:													String	output	=	(String)	ite.next();
22:													System.out.println(output);
23:								}
24:					}
25:
26:					private	void	addCode(String	code)	{
27:									if	(!list.contains(code))	{
28:													list.add(code);
29:									}
30:					}
31:
32:					public	static	void	main(String[]	arguments)	{
33:									CodeKeeper	keeper	=	new	CodeKeeper(arguments);
34:					}
35:	}

NetBeans	may	display	a	warning	that	this	class	uses	“unchecked	or	unsafe	operations.”
This	isn’t	as	severe	as	it	sounds.	The	code	works	properly	as	written	and	is	not	unsafe.

The	warning	serves	as	a	strong	hint	that	there’s	a	better	way	to	work	with	array	lists	and
other	data	structures.	You’ll	learn	about	this	technique	later	today.

The	CodeKeeper	class	uses	an	ArrayList	instance	variable	named	list	to	hold	the
text	codes.

First,	five	built-in	codes	are	read	from	a	string	array	into	the	list	(lines	12–14).

Next,	any	codes	provided	by	the	user	as	command-line	arguments	are	added	(lines	16–18).

Codes	are	added	by	calling	the	addCode()	method	(lines	26–30).	addCode()	adds	a
new	text	code	only	if	it	isn’t	already	present,	using	the	list’s	contains(Object)
method	to	make	this	determination.

You	add	command-line	arguments	in	NetBeans	by	selecting	Project,	Set	Project
Configuration,	Customize.	The	arguments	should	be	a	list	of	codes	separated	by	spaces.

After	the	codes	have	been	added	to	the	list,	its	contents	are	displayed.	Running	the	class
with	the	command-line	arguments	“beta”	and	“epsilon”	produces	the	output	shown	in
Figure	8.3.

FIGURE	8.3	Manipulating	and	displaying	an	array	list.

A	simpler	for	loop	can	be	employed	to	iterate	through	a	data	structure.	The	loop	takes
the	form	for	(variable	:	structure),	where	structure	is	a	data	structure	that
implements	the	Iterator	interface.	The	variable	section	declares	an	object	that
holds	each	element	of	the	structure	as	the	loop	progresses.

This	for	loop	uses	an	iterator	and	its	methods	to	traverse	an	array	list	named	golfer:
for	(Object	name	:	golfer)	{
				System.out.println(name);
}

The	loop	can	be	used	with	any	data	structure	that	works	with	Iterator.

Stacks
Stacks	are	a	data	structure	used	to	model	information	accessed	in	a	specific	order.	The
Stack	class	in	Java	is	implemented	as	a	last-in,	first-out	stack,	which	means	that	the	last
item	added	to	the	stack	is	the	first	one	to	be	removed.	Figure	8.4	shows	the	logical
organization	of	a	stack.

FIGURE	8.4	The	organization	of	a	stack.

You	might	wonder	why	the	numbers	of	the	elements	don’t	match	their	positions	from	the
top	of	the	stack.	Keep	in	mind	that	elements	are	added	to	the	top,	so	Element0,	which	is
on	the	bottom,	was	the	first	element	added	to	the	stack.	Likewise,	Element3,	which	is
on	top,	was	the	last	element	added.	Also,	because	Element3	is	at	the	top	of	the	stack,	it
will	be	the	first	to	be	removed.

The	Stack	class	defines	only	one	constructor,	which	is	a	default	constructor	that	creates
an	empty	stack.	You	use	this	constructor	to	create	a	stack	like	this:

Stack	s	=	new	Stack();

Stacks	in	Java	contain	methods	to	manipulate	the	stack.

You	can	add	new	elements	to	a	stack	by	using	the	push()	method,	which	pushes	an
element	onto	the	top	of	the	stack:

s.push(“One”);
s.push(“Two”);
s.push(“Three”);

s.push(“Four”);
s.push(“Five”);
s.push(“Six”);

This	code	pushes	six	strings	onto	the	stack,	with	the	last	string	(“Six”)	ending	up	on	top.
You	remove	elements	from	the	stack	by	using	the	pop()	method,	which	pops	them	off
the	top:

String	s1	=	(String)	s.pop();
String	s2	=	(String)	s.pop();

This	code	pops	the	last	two	strings	off	the	stack,	leaving	the	first	four	strings.	This	code
results	in	the	s1	variable’s	containing	the	“Six”	string	and	the	s2	variable’s	containing	the
“Five”	string.

If	you	want	to	use	the	top	element	on	the	stack	without	actually	popping	it	off	the	stack,
you	can	use	the	peek()	method:

String	s3	=	(String)	s.peek();

This	call	to	peek()	returns	the	“Four”	string	but	leaves	the	string	on	the	stack.	You	can
search	for	an	element	on	the	stack	by	using	the	search()	method:

int	i	=	s.search(“Two”);

The	search()	method	returns	the	distance	from	the	top	of	the	stack	to	the	element	if	it
is	found,	or	–1	if	not.	In	this	case,	the	“Two”	string	is	the	third	element	from	the	top,	so
the	search()	method	returns	2.

Note

As	in	all	Java	data	structures	that	deal	with	indexes	or	lists,	the	Stack	class	reports
element	positions	in	a	zero-based	fashion:	The	top	element	in	a	stack	has	a	location
of	0,	the	fourth	element	down	has	a	location	of	3,	and	so	on.

The	last	method	defined	in	the	Stack	class	is	empty(),	which	indicates	whether	a	stack
is	empty:

boolean	isEmpty	=	s.empty();

Map

The	Map	interface	defines	a	framework	for	implementing	a	key-mapped	data	structure,	a
place	to	store	objects	each	referenced	by	a	key.	The	key	serves	the	same	purpose	as	an
element	number	in	an	array—it’s	a	unique	value	used	to	access	the	data	stored	at	a
position	in	the	data	structure.

You	can	put	the	key-mapped	approach	to	work	by	using	the	HashMap	class	or	one	of	the
other	classes	that	implement	the	Map	interface.	You	learn	about	the	HashMap	class	in	the
next	section.

The	Map	interface	defines	a	means	of	storing	and	retrieving	information	based	on	a	key.
This	is	similar	in	some	ways	to	the	ArrayList	class,	in	which	elements	are	accessed
through	an	index,	which	is	a	specific	type	of	key.	However,	keys	in	the	Map	interface	can

be	just	about	anything.	You	can	create	your	own	classes	to	use	as	the	keys	for	accessing
and	manipulating	data	in	a	dictionary.	Figure	8.5	shows	how	keys	map	to	data	in	a
dictionary.

FIGURE	8.5	The	organization	of	a	key-mapped	data	structure.

The	Map	interface	declares	a	variety	of	methods	for	working	with	the	data	stored	in	a
dictionary.	Implementing	classes	have	to	implement	all	those	methods	to	be	truly	useful.
The	put(String,	Object)	and	get(String,	Object)	methods	are	used	to
store	objects	in	the	dictionary	and	retrieve	them.

Assuming	that	look	is	an	object	that	implements	the	Map	interface,	the	following	code
shows	how	to	use	the	put()	method	to	add	elements:
Click	here	to	view	code	image

Rectangle	r1	=	new	Rectangle(0,	0,	5,	5);
look.put(“small”,	r1);
Rectangle	r2	=	new	Rectangle(0,	0,	15,	15);
look.put(“medium”,	r2);
Rectangle	r3	=	new	Rectangle(0,	0,	25,	25);
look.put(“large”,	r3);

This	code	adds	three	Rectangle	objects	to	the	map	(from	the	java.awt	package),
using	strings	as	the	keys.	To	get	an	element,	use	the	get()	method	and	specify	the
appropriate	key:
Click	here	to	view	code	image

Rectangle	r	=	(Rectangle)	look.get(“medium”);

You	also	can	remove	an	element	with	a	key	by	using	the	remove()	method:
look.remove(“large”);

You	can	find	out	how	many	elements	are	in	the	structure	by	using	the	size()	method,	as
in	the	ArrayList	class:

int	size	=	look.size();

You	also	can	check	whether	the	structure	is	empty	by	using	the	isEmpty()	method:
Click	here	to	view	code	image

boolean	isEmpty	=	look.isEmpty();

Hash	Maps
The	HashMap	class	implements	the	Map	interface	and	provides	a	complete
implementation	of	a	key-mapped	data	structure.	Hash	maps	let	you	store	data	based	on
some	type	of	key	and	have	an	efficiency	defined	by	the	map’s	load	factor.	The	load	factor
is	a	floating-point	number	between	0.0	and	1.0	that	determines	how	and	when	the	hash
map	allocates	space	for	more	elements.

Like	array	lists,	hash	maps	have	a	capacity,	or	an	amount	of	allocated	memory.	Hash	maps
allocate	memory	by	comparing	the	map’s	current	size	with	the	product	of	the	capacity	and
the	load	factor.	If	the	size	of	the	hash	map	exceeds	this	product,	the	map	increases	its
capacity	by	rehashing	itself.

Load	factors	closer	to	1.0	result	in	a	more	efficient	use	of	memory	at	the	expense	of	a
longer	lookup	time	for	each	element.	Similarly,	load	factors	closer	to	0.0	result	in	more
efficient	lookups	but	tend	to	be	more	wasteful	with	memory.	Determining	the	load	factor
for	your	own	hash	maps	depends	on	how	you	use	each	map	and	whether	your	priority	is
performance	or	memory	efficiency.

You	can	create	hash	maps	in	one	of	three	ways.	The	first	constructor	creates	a	default	hash
map	with	an	initial	capacity	of	16	elements	and	a	load	factor	of	0.75:

HashMap	hash	=	new	HashMap();

The	second	constructor	creates	a	hash	map	with	the	specified	initial	capacity	and	a	load
factor	of	0.75:
Click	here	to	view	code	image

HashMap	hash	=	new	HashMap(20);

Finally,	the	third	constructor	creates	a	hash	map	with	the	specified	initial	capacity	and	load
factor:
Click	here	to	view	code	image

HashMap	hash	=	new	HashMap(20,	0.5F);

All	the	abstract	methods	defined	in	Map	are	implemented	in	the	HashMap	class.	In
addition,	the	HashMap	class	implements	a	few	others	that	perform	functions	specific	to
supporting	maps.	One	of	these	is	the	clear()	method,	which	clears	a	map	of	all	its	keys
and	elements:

hash.clear();

The	containsValue(Object)	method	checks	whether	an	object	is	stored	in	the	hash
map:
Click	here	to	view	code	image

Rectangle	box	=	new	Rectangle(0,	0,	5,	5);
boolean	isThere	=	hash.containsValue(box);

The	containsKey(String)	method	searches	a	map	for	a	key:
Click	here	to	view	code	image

boolean	isThere	=	hash.containsKey(“Small”);

The	practical	use	of	a	hash	map	comes	from	its	capability	to	represent	data	that	is	too

time-consuming	to	search	or	reference	by	value.	The	data	structure	comes	in	handy	when
you’re	working	with	complex	data	and	it’s	more	efficient	to	access	the	data	by	using	a	key
rather	than	comparing	the	data	objects	themselves.

This	key,	which	is	called	a	hash	code,	is	a	computed	key	that	uniquely	identifies	each
element	in	a	hash	map.

This	technique	of	computing	and	using	hash	codes	for	object	storage	and	reference	is
exploited	heavily	throughout	the	Java	Class	Library.	The	parent	of	all	classes,	Object,
defines	a	hashCode()	method	overridden	in	most	standard	Java	classes.	Any	class	that
defines	a	hashCode()	method	can	be	efficiently	stored	and	accessed	in	a	hash	map.	A
class	that	wants	to	be	hashed	also	must	implement	the	equals()	method,	which	defines
a	way	of	telling	whether	two	objects	are	equal.	The	equals()	method	usually	just
performs	a	straight	comparison	of	all	the	member	variables	defined	in	a	class.

The	next	project	you	undertake	today	uses	maps	for	a	shopping	application.

The	ComicBooks	application	prices	collectible	comic	books	according	to	their	base	value
and	condition.	The	condition	is	described	as	one	of	the	following:	mint,	near	mint,	very
fine,	fine,	good,	or	poor.	Each	condition	has	a	specific	effect	on	a	comic’s	value:

	“Mint”	books	are	worth	3	times	their	base	price.

	“Near	mint’	books	are	worth	2	times	their	base	price.

	“Very	fine”	books	are	worth	1.5	times	their	base	price.

	“Fine”	books	are	worth	their	base	price.

	“Good”	books	are	worth	0.5	times	their	base	price.

	“Poor”	books	are	worth	0.25	times	their	base	price.

To	associate	text	such	as	“mint”	or	“very	fine”	with	a	numeric	value,	they	are	put	into	a
hash	map.	The	keys	to	the	map	are	the	condition	descriptions,	and	the	values	are	floating-
point	numbers	such	as	3.0,	1.5,	and	0.25.

Enter	the	code	shown	in	Listing	8.3	in	NetBeans	as	the	class	ComicBooks	in	the
package	com.java21days.

LISTING	8.3	The	Full	Text	of	ComicBooks.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	ComicBooks	{
	6:
	7:					public	ComicBooks()	{
	8:					}
	9:
10:					public	static	void	main(String[]	arguments)	{
11:									//	set	up	hash	map
12:									HashMap	quality	=	new	HashMap();
13:									float	price1	=	3.00F;

14:									quality.put(“mint”,	price1);
15:									float	price2	=	2.00F;
16:									quality.put(“near	mint”,	price2);
17:									float	price3	=	1.50F;
18:									quality.put(“very	fine”,	price3);
19:									float	price4	=	1.00F;
20:									quality.put(“fine”,	price4);
21:									float	price5	=	0.50F;
22:									quality.put(“good”,	price5);
23:									float	price6	=	0.25F;
24:									quality.put(“poor”,	price6);
25:									//	set	up	collection
26:									Comic[]	comix	=	new	Comic[3];
27:									comix[0]	=	new	Comic(“Amazing	Spider-Man”,	“1A”,	“very	fine”,
28:													12_000.00F);
29:									comix[0].setPrice((Float)	quality.get(comix[0].condition));
30:									comix[1]	=	new	Comic(“Incredible	Hulk”,	“181”,	“near	mint”,
31:													680.00F);
32:									comix[1].setPrice((Float)	quality.get(comix[1].condition));
33:									comix[2]	=	new	Comic(“Cerebus”,	“1A”,	“good”,	190.00F);
34:									comix[2].setPrice((Float)	quality.get(comix[2].condition));
35:									for	(int	i	=	0;	i	<	comix.length;	i++)	{
36:													System.out.println(“Title:	“	+	comix[i].title);
37:													System.out.println(“Issue:	“	+	comix[i].issueNumber);
38:													System.out.println(“Condition:	“	+	comix[i].condition);
39:													System.out.println(“Price:	$”	+	comix[i].price	+	“\n”);
40:									}
41:					}
42:	}
43:
44:	class	Comic	{
45:					String	title;
46:					String	issueNumber;
47:					String	condition;
48:					float	basePrice;
49:					float	price;
50:
51:					Comic(String	inTitle,	String	inIssueNumber,	String	inCondition,
52:									float	inBasePrice)	{
53:
54:									title	=	inTitle;
55:									issueNumber	=	inIssueNumber;
56:									condition	=	inCondition;
57:									basePrice	=	inBasePrice;
58:					}
59:
60:					void	setPrice(float	factor)	{
61:									price	=	basePrice	*	factor;
62:					}
63:	}

When	you	run	the	ComicBooks	application,	it	produces	the	output	in	Figure	8.6.

FIGURE	8.6	Storing	comic	book	values	in	a	hash	map.

The	ComicBooks	application	is	implemented	as	two	classes:	an	application	class	called
ComicBooks	and	a	helper	class	called	Comic.

In	the	application,	the	hash	map	is	created	in	lines	12–24.

First,	the	map	is	created	in	line	12.

Next,	a	float	called	price1	is	created	with	the	value	3.00.	This	value	is	added	to	the
map	and	associated	with	the	key	“mint”.	(Remember	that	hash	maps,	like	other	data
structures,	can	hold	only	objects.	The	float	value	is	automatically	converted	to	a	Float
object	through	autoboxing.)

The	process	is	repeated	for	each	of	the	other	comic	book	conditions,	from	“near	mint”	to
“poor.”

After	the	hash	map	is	set	up,	an	array	of	Comic	objects	called	comix	is	created	to	hold
each	comic	book	currently	for	sale.

The	Comic	constructor	is	called	with	four	arguments:	the	book’s	title,	issue	number,
condition,	and	base	price.	The	first	three	are	strings,	and	the	last	is	a	float.

After	a	Comic	has	been	created,	its	setPrice(float)	method	is	called	to	set	the
book’s	price	based	on	its	condition.	Here’s	an	example,	line	29:
Click	here	to	view	code	image

comix[0].setPrice((Float)	quality.get(comix[0].condition));

The	hash	map’s	get(String)	method	is	called	with	the	book’s	condition,	a	string	that
is	one	of	the	keys	in	the	map.	An	Object	is	returned	that	represents	the	value	associated
with	that	key.	(In	line	29,	because	comix[0].condition	is	equal	to	“very	fine”,

get()	returns	the	floating-point	value	3.00F.)

Because	get()	returns	an	Object,	it	must	be	cast	as	a	Float.	The	Float	argument	is
unboxed	as	a	float	value	automatically	through	unboxing.

This	process	is	repeated	for	two	more	books.

Lines	35–40	display	information	about	each	comic	book	in	the	comix	array.

The	Comic	class	is	defined	in	lines	44–63.	It	has	five	instance	variables—the	String
object’s	title,	issueNumber,	and	condition,	and	the	floating-point	value’s
basePrice	and	price.

The	constructor	method	of	the	class,	located	in	lines	51–58,	sets	the	value	of	four	instance
variables	to	the	arguments	sent	to	the	constructor.

The	setPrice(Float)	method	in	lines	60–62	sets	the	price	of	a	comic	book.	The
argument	sent	to	the	method	is	a	float	value.	A	comic’s	price	is	calculated	by
multiplying	this	float	by	the	comic’s	base	price.	Consequently,	if	a	book	is	worth
$1,000,	and	its	multiplier	is	2.0,	the	book	is	priced	at	$2,000.

Hash	maps	are	a	powerful	data	structure	for	manipulating	large	amounts	of	data.	The	fact
that	these	maps	are	so	widely	supported	in	the	Java	Class	Library	via	the	Object	class
should	give	you	a	clue	as	to	their	importance	in	Java	programming.

Generics
The	data	structures	that	you	learned	about	today	are	some	of	the	most	essential	utility
classes	in	the	Java	Class	Library.

Hash	maps,	array	lists,	stacks,	and	the	other	structures	in	the	java.util	package	are
useful	regardless	of	the	kind	of	programs	you	want	to	develop.	Almost	every	software
program	handles	data	in	some	manner.

These	data	structures	are	well-suited	for	use	in	code	that	applies	generically	to	a	wide
range	of	classes	of	objects.	A	method	written	to	manipulate	array	lists	could	be	written	to
function	equally	well	on	strings,	string	buffers,	character	arrays,	or	other	objects	that
represent	text.	A	method	in	an	accounting	program	could	take	objects	that	represent
integers,	floating-point	numbers,	and	other	math	classes,	using	each	to	calculate	a	balance.

This	flexibility	comes	at	a	price:	When	a	data	structure	works	with	any	kind	of	object,	the
Java	compiler	can’t	display	a	warning	when	the	structure	is	being	misused.

For	instance,	the	ComicBooks	application	uses	a	hash	map	named	quality	to	associate
condition	descriptions	such	as	“mint”	and	“good”	with	price	multipliers.	Here’s	the
statement	for	“near	mint”:
Click	here	to	view	code	image

quality.put(“near	mint”,	1.50F);

By	design,	the	quality	map	should	hold	only	floating-point	values	(as	Float	objects).
However,	the	class	compiles	successfully	regardless	of	the	class	of	the	value	added	to	a
map.	You	might	goof	and	unintentionally	add	a	string	to	the	map,	as	in	this	revised

statement:
Click	here	to	view	code	image

quality.put(“near	mint”,	“1.50”);

The	class	compiles	successfully,	but	when	it	is	run,	it	fails	with	a
ClassCastException	error	in	the	following	statement:
Click	here	to	view	code	image

comix[1].setPrice((Float)	quality.get(comix[1].condition));

The	reason	for	the	error	is	that	the	statement	tries	to	cast	the	map’s	“near	mint”	value	to	a
Float,	which	fails	because	it	receives	the	string	“1.50”	instead.

Runtime	errors	are	much	more	troublesome	for	programmers	than	compiler	errors.	A
compiler	error	stops	you	in	your	tracks	and	must	be	fixed	before	you	can	continue.	A
runtime	error	might	creep	its	way	into	the	code,	unbeknownst	to	you,	and	cause	problems
for	users	of	your	software.

You	can	specify	the	class	or	classes	expected	in	a	data	structure	using	a	feature	of	the
language	called	generics.

The	expected	class	information	is	added	to	statements	where	the	structure	is	assigned	a
variable	or	created	with	a	constructor.	The	class	or	classes	are	placed	within	<	and	>
characters	and	follow	the	name	of	the	class,	as	in	this	statement:
Click	here	to	view	code	image

ArrayList<Integer>	zipCodes	=	new	ArrayList<>();

This	statement	creates	an	array	list	that	will	be	used	to	hold	Integer	objects.	The
compiler	uses	inference	to	correctly	guess	the	type	of	the	class	the	second	time	the	<	and
>	characters	appear.	The	<>	after	a	class	name	sometimes	is	called	a	diamond	operator.
Here’s	another	example:
Click	here	to	view	code	image

HashMap<String,	Float>	quality	=	new	HashMap<String,	Float>();

The	diamond	operator	<>	infers	the	classes	based	on	what	they	would	have	to	be	for	the
statement	to	make	sense.

Because	the	list	is	declared	with	a	class	specified,	the	following	statements	cause	a
compiler	error	that	NetBeans	will	flag	in	the	source	code	editor:

zipCodes.add(“90210”);
zipCodes.add(“02134”);
zipCodes.add(“20500”);

The	compiler	recognizes	that	String	objects	do	not	belong	in	this	array	list.	The	proper
way	to	add	elements	to	the	list	is	to	use	integer	values:

zipCodes.add(90210);
zipCodes.add(02134);
zipCodes.add(20500);

These	integers	are	converted	to	Integer	objects	by	autoboxing.

Data	structures	that	use	multiple	classes,	such	as	hash	maps,	take	these	class	names

separated	by	commas	within	the	<	and	>	characters.

The	ComicBooks	application	can	take	advantage	of	generics	by	changing	line	10	of
Listing	8.3	to	the	following:
Click	here	to	view	code	image

HashMap<String,	Float>	quality	=	new	HashMap<>();

This	sets	up	a	map	to	use	String	objects	for	keys	and	Float	objects	for	values.	With
this	statement	in	place,	a	string	no	longer	can	be	added	as	the	value	for	a	condition	such	as
“near	mint.”	A	compiler	error	flags	a	problem	of	this	kind.

Generics	also	make	it	easier	to	retrieve	an	object	from	a	data	structure,	because	you	don’t
have	to	use	casting	to	convert	them	to	the	desired	class.	For	example,	the	quality	map
no	longer	requires	a	cast	to	produce	Float	objects	in	statements	like	this	one:
Click	here	to	view	code	image

comix[1].setPrice(quality.get(comix[1].condition));

From	a	stylistic	standpoint,	the	addition	of	generics	in	variable	declarations	and
constructor	methods	is	likely	to	appear	intimidating.	However,	after	you	become
accustomed	to	working	with	them	(and	using	autoboxing,	unboxing,	and	the	new	for
loops),	data	structures	are	significantly	easier	to	work	with	and	less	error-prone.

The	CodeKeeper2	class,	shown	in	Listing	8.4,	is	a	new	version	of	CodeKeeper	that
has	been	rewritten	to	use	generics,	type	inference,	and	the	for	loop	that	can	iterate
through	data	structures	such	as	array	lists.

LISTING	8.4	The	Full	Text	of	CodeKeeper2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	CodeKeeper2	{
	6:					ArrayList<String>	list;
	7:					String[]	codes	=	{	“alpha”,	“lambda”,	“gamma”,	“delta”,	“zeta”	};
	8:
	9:					public	CodeKeeper2(String[]	userCodes)	{
10:									list	=	new	ArrayList<>();
11:									//	load	built-in	codes
12:									for	(int	i	=	0;	i	<	codes.length;	i++)	{
13:													addCode(codes[i]);
14:									}
15:									//	load	user	codes
16:									for	(int	j	=	0;	j	<	userCodes.length;	j++)	{
17:													addCode(userCodes[j]);
18:									}
19:									//	display	all	codes
20:									for	(String	code	:	list)	{
21:													System.out.println(code);
22:									}
23:					}
24:
25:					private	void	addCode(String	code)	{
26:									if	(!list.contains(code))	{

27:													list.add(code);
28:									}
29:					}
30:
31:					public	static	void	main(String[]	arguments)	{
32:									CodeKeeper2	keeper	=	new	CodeKeeper2(arguments);
33:					}
34:	}

The	only	modifications	to	the	class	are	in	line	6,	where	the	generics	declaration	for	an
array	list	of	strings	is	made;	line	10,	where	type	inference	figures	out	the	proper	generics
declaration;	and	lines	20–22,	the	simpler	for	loop	that	displays	all	the	codes.

Enumerations
A	common	use	of	constants	in	Java	is	to	attach	a	meaningful	label	to	a	series	of	integers,
which	you	did	earlier	today	as	you	worked	with	bit	sets:
Click	here	to	view	code	image

class	ConnectionAttributes	{
				public	static	final	int	READABLE	=	0;
				public	static	final	int	WRITABLE	=	1;
				public	static	final	int	STREAMABLE	=	2;
				public	static	final	int	FLEXIBLE	=	3;
}

These	constants	are	useful	because	of	the	extra	information	provided	in	statements	that
contain	them.	Compare	these	two	statements,	which	do	the	same	thing:
Click	here	to	view	code	image

setConnectionType(1);

setConnectionType(ConnectionAttributes.WRITABLE);

The	latter	is	much	easier	to	understand	for	a	programmer	examining	the	code.

Java	has	a	data	type	called	enumerations	that	serve	the	same	purpose	and	have	advantages
over	using	constants	in	a	class.	The	enum	keyword	is	used	in	place	of	class	and	the
values	are	separated	by	commas.

Here’s	a	simple	enumeration	called	Compass	for	the	eight	compass	directions:
public	enum	Compass	{
				NORTH,
				EAST,
				SOUTH,
				WEST,
				NORTHEAST,
				SOUTHEAST,
				SOUTHWEST,
				NORTHWEST
}

Each	of	these	values	is	implicitly	static	and	final,	just	like	constants.	They	can
appear	in	statements,	method	calls,	and	other	code	just	like	they	were	class	constants.
Here’s	an	application	that	uses	the	enumeration:
Click	here	to	view	code	image

public	class	DirectionSetter	{
				Compass	current;
				public	void	setDirection(Compass	dir)	{
								current	=	dir;
				}

				public	static	void	main(String[]	arguments)	{
								DirectionSetter	app	=	new	DirectionSetter();
								app.setDirection(Compass.WEST);
								System.out.println(app.current);
				}
}

This	class	sets	the	current	instance	variable	to	WEST	from	the	Compass	enumeration	and
displays	the	variable,	which	is	output	as	the	text	“WEST”.

An	advantage	to	using	enum	over	class	constants	is	that	the	compiler	can	detect	errors
when	an	invalid	value	is	used.	The	only	acceptable	values	that	can	be	sent	to	the
setDirection(Compass)	method	are	the	values	of	the	Compass	enumeration.

By	comparison,	a	method	that	took	ConnectionAttributes	values	as	an	argument
could	be	called	with	any	integer	value.

There	are	other	advantages	to	enumerations,	which	can	function	like	a	class	with	methods
and	variables	of	their	own.

Any	time	you	need	a	fixed	set	of	constants,	you	can	make	them	an	enumeration.

Summary
Today	you	learned	about	several	data	structures	you	can	use	in	your	Java	programs:

	Bit	sets—Large	sets	of	Boolean	on-or-off	values

	Array	lists—Arrays	that	can	change	in	size	dynamically	and	be	shrunken	or
expanded	as	needed

	Stacks—Structures	in	which	the	last	item	added	is	the	first	item	removed

	Hash	maps—Objects	stored	and	retrieved	using	unique	keys

These	data	structures	are	part	of	the	java.util	package,	a	collection	of	useful	classes
for	handling	data,	dates,	strings,	and	other	things.	The	addition	of	generics	and	new	for
loops	for	iteration	enhances	their	capabilities.

You	also	were	introduced	to	enumerations,	a	data	type	for	representing	a	set	of	related
values	as	constants.

Learning	about	the	ways	in	which	you	can	organize	data	in	Java	has	benefits	in	all	aspects
of	software	development.	Whether	you’re	learning	the	language	to	write	servlets,	desktop
applications,	apps,	or	something	else,	you	need	to	represent	data	in	numerous	ways.

Q&A
Q	The	HolidaySked	project	from	today	could	be	implemented	as	an	array	of
Boolean	values.	Is	one	way	preferable	to	the	other?

A	That	depends.	One	thing	you’ll	find	as	you	work	with	data	structures	is	that	there
are	often	many	ways	to	implement	something.	Bit	sets	are	somewhat	preferable	to	a
Boolean	array	when	the	size	of	your	program	matters,	because	a	bit	set	is	smaller.
An	array	of	a	primitive	type	such	as	Boolean	is	preferable	when	the	speed	of	your
program	matters,	because	arrays	are	somewhat	faster.	In	the	example	of	the
HolidaySked	class,	it’s	so	small	that	the	difference	is	negligible,	but	as	you
develop	your	own	robust,	real-world	applications,	these	kinds	of	decisions	can
sometimes	make	a	difference.

Q	The	Java	compiler’s	warning	for	data	structures	that	don’t	use	generics	is
pretty	ominous.	It	doesn’t	sound	like	a	very	good	idea	to	release	a	class	that	has
“unchecked	or	unsafe	operations.”	Is	there	any	reason	to	stick	with	old	code	or
not	use	generics	with	data	structures?

A	The	compiler’s	warning	about	safety	is	a	bit	overstated.	Java	programmers	have
been	using	array	lists,	hash	maps,	and	other	structures	for	years	in	their	classes,
creating	software	that	runs	reliably	and	safely.	The	lack	of	generics	meant	that	more
work	was	necessary	to	ensure	that	runtime	problems	didn’t	occur	because	of	wrong
classes	being	placed	in	a	structure.

It’s	more	accurate	to	state	that	data	structures	can	be	made	more	safe	through	the	use
of	generics,	rather	than	suggesting	that	previous	versions	of	Java	were	unsafe.

My	personal	rule	is	to	use	generics	in	new	code	and	old	code	that’s	being
reorganized	or	significantly	rewritten,	but	leave	alone	old	code	that	works	correctly.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	of	the	following	kinds	of	data	cannot	be	stored	in	a	hash	map?

A.	String

B.	int

C.	Both	can	be	stored	in	a	map.

2.	An	array	list	is	created,	and	three	strings,	“Tinker”,	“Evers”,	and	“Chance”,	are
added	to	it.	The	method	remove("Evers")	is	called.	Which	of	the	following
ArrayList	methods	retrieves	the	string	“Chance”?

A.	get(1);

B.	get(2);

C.	get("Chance");

3.	Which	of	these	classes	implements	the	Map	interface?

A.	Stack

B.	HashMap

C.	BitSet

Answers
1.	C.	In	past	versions	of	Java,	to	store	primitive	types	such	as	int	in	a	map,	objects
had	to	be	used	to	represent	their	values	(such	as	Integer	for	integers).	This	is	no
longer	true.	Primitive	types	are	converted	automatically	to	the	corresponding	object
class	through	a	process	called	autoboxing.

2.	A.	The	index	numbers	of	each	item	in	an	array	list	can	change	as	items	are	added	or
removed.	Because	“Chance”	becomes	the	second	item	in	the	list	after	“Evers”	is
removed,	it	is	retrieved	by	calling	get(1).

3.	B.	HashMap	implements	the	interface,	as	does	a	similar	class	called	Hashtable.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	Recursion	{
				public	int	dex	=	-1;

				public	Recursion()	{
								dex	=	getValue(17);
				}

				public	int	getValue(int	dexValue)	{
								if	(dexValue	>	100)	{
												return	dexValue;
								}	else	{
												return	getValue(dexValue	*	2);
								}
				}

				public	static	void	main(String[]	arguments)	{
								Recursion	r	=	new	Recursion();
								System.out.println(r.dex);
				}
}

What	will	be	the	output	of	this	application?

A.	–1

B.	17

C.	34

D.	136

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	8

http://www.java21days.com

page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Add	two	more	conditions	to	the	ComicBooks	application:	“pristine	mint”	for	books
that	should	sell	at	5	times	their	base	price,	and	“coverless”	for	books	that	should	sell
at	one-tenth	of	their	base	price.

2.	Rewrite	the	ComicBooks	application	so	that	the	set	of	possible	conditions	of	a
comic	is	an	enumeration.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	9.	Working	with	Swing

Computer	users	today	expect	the	software	they	use	to	feature	a	graphical	user	interface
(GUI)	with	a	variety	of	widgets	such	as	text	boxes,	sliders,	and	scrollbars.	The	Java	Class
Library	includes	a	set	of	packages	called	Swing	that	enable	Java	programs	to	offer	a
sophisticated	GUI	and	collect	user	input	with	the	mouse,	keyboard,	and	other	input
devices.

Today,	you	will	use	Swing	to	create	applications	that	feature	these	GUI	components:

	Frames—Windows	that	can	include	a	title	bar;	menu	bar;	and	Maximize,	Minimize,
and	Close	buttons

	Containers—Interface	elements	that	can	hold	other	components

	Buttons—Clickable	regions	with	text	or	graphics	indicating	their	purpose

	Labels—Text	or	graphics	that	provide	information

	Text	fields	and	text	areas—Windows	that	accept	keyboard	input	and	allow	text	to
be	edited

	Drop-down	lists—Groups	of	related	items	that	can	be	selected	from	drop-down
menus	or	scrolling	windows

	Check	boxes	and	radio	buttons—Small	squares	or	circles	that	can	be	selected	or
deselected

	Image	icons—Graphics	that	can	be	added	to	buttons,	labels,	and	other	components

	Scrolling	panes—Panels	that	hold	components	too	big	for	a	user	interface	that	are
accessed	in	full	with	a	scrollbar

Creating	an	Application
Swing	enables	you	to	create	a	Java	program	with	an	interface	that	adopts	the	style	of	the
native	operating	system,	such	as	Windows	or	Linux,	or	a	style	that’s	unique	to	Java.	Each
of	these	styles	is	called	a	look	and	feel	because	it	describes	both	the	appearance	of	the
interface	and	how	its	components	function	when	they	are	used.

Java	offers	a	distinctive	new	look	and	feel	called	Nimbus	that’s	unique	to	the	language.

Swing	components	are	part	of	the	javax.swing	package,	a	standard	part	of	the	Java
Class	Library.	To	refer	to	a	Swing	class	using	its	short	name—without	referring	to	the
package,	in	other	words—you	must	make	it	available	with	an	import	statement	or	use	a
catchall	statement	such	as	the	following:

import	javax.swing.*;

Two	other	packages	that	are	used	to	support	GUI	programming	are	java.awt,	the
Abstract	Windowing	Toolkit	(AWT),	and	java.awt.event,	event-handling	classes
that	handle	user	input.

When	you	use	a	Swing	component,	you	work	with	objects	of	that	component’s	class.	You

create	the	component	by	calling	its	constructor	and	then	calling	methods	of	the	component
as	needed	for	proper	setup.

All	Swing	components	are	subclasses	of	the	abstract	class	JComponent.	It	includes
methods	to	set	a	component’s	size,	change	the	background	color,	define	the	font	used	for
any	displayed	text,	and	set	up	ToolTips.	These	are	explanatory	text	that	appears	when	you
hover	the	mouse	over	the	component	for	a	few	seconds.

Caution

Swing	classes	inherit	from	many	of	the	same	superclasses	as	the	Abstract
Windowing	Toolkit,	so	it	is	possible	to	use	Swing	and	AWT	components	together	in
the	same	interface.	However,	the	two	types	of	components	will	not	be	rendered
correctly	in	a	container,	so	it’s	best	to	always	use	Swing	components—there’s	one
for	every	AWT	component.

Before	components	can	be	displayed	in	a	user	interface,	they	must	be	added	to	a
container,	a	component	that	can	hold	other	components.	Swing	containers	are	subclasses
of	java.awt.Container.	This	class	includes	methods	to	add	and	remove	components
from	a	container,	arrange	components	using	an	object	called	a	layout	manager,	and	set	up
borders	around	the	edges	of	a	container.	Containers	often	can	be	placed	in	other
containers.

Creating	an	Interface
The	first	step	in	creating	a	Swing	application	is	to	create	a	class	that	represents	the	main
GUI.	An	object	of	this	class	serves	as	a	container	that	holds	all	the	other	components	to	be
displayed.

In	many	projects,	the	main	interface	object	is	a	frame	(the	JFrame	class).	Frames	are	the
window	shown	whenever	you	open	an	application	on	your	computer,	regardless	of	the
language	it	was	programmed	in.	Frames	have	a	title	bar;	Maximize,	Minimize,	and	Close
buttons;	and	other	features.

In	a	graphical	environment	such	as	Windows	or	Mac	OS,	users	expect	to	be	able	to	move,
resize,	and	close	the	windows	of	programs	they	run.	One	way	to	create	a	graphical	Java
application	is	to	make	the	interface	a	subclass	of	JFrame,	as	in	the	following	class
declaration:
Click	here	to	view	code	image

public	class	FeedReader	extends	JFrame	{
				//	body	of	class
}

The	constructor	of	the	class	should	handle	the	following	tasks:

	Call	a	superclass	constructor	to	give	the	frame	a	title	and	handle	other	setup
procedures.

	Set	the	size	of	the	frame’s	window,	either	by	specifying	the	width	and	height	in
pixels	or	by	letting	Swing	choose	the	right	size.

	Decide	what	to	do	if	a	user	closes	the	window.

	Display	the	frame.

The	JFrame	class	has	the	simple	constructors	JFrame()	and	JFrame(String).	One
sets	the	frame’s	title	bar	to	the	specified	text,	and	the	other	leaves	the	title	bar	empty.	You
also	can	set	the	title	by	calling	the	frame’s	setTitle(String)	method.

The	size	of	a	frame	can	be	established	by	calling	the	setSize(int,	int)	method	with
the	width	and	height	as	arguments.	A	frame’s	size	is	indicated	in	pixels,	so	calling
setSize(650,	550)	creates	a	frame	650	pixels	wide	and	550	pixels	tall,	taking	up
most	of	a	screen	that	has	800×600	resolution.

Note

You	also	can	call	the	method	setSize(Dimension)	to	set	up	a	frame’s	size.
Dimension	is	a	class	in	the	java.awt	package	that	represents	the	width	and
height	of	a	user	interface	component.	Calling	the	Dimension(int,	int)
constructor	creates	a	Dimension	object	representing	the	width	and	height
specified	as	arguments.

Another	way	to	set	a	frame’s	size	is	to	fill	the	frame	with	the	components	it	will	contain
and	then	call	the	frame’s	pack()	method.	This	resizes	the	frame	based	on	the	size	of	the
components	inside	it.	If	the	frame	is	bigger	than	it	needs	to	be,	pack()	shrinks	it	to	the
minimum	size	required	to	display	the	components.	If	the	frame	is	too	small	(or	the	size	has
not	been	set),	pack()	expands	it	to	the	required	size.

Frames	are	invisible	when	they	are	created.	You	can	make	them	visible	by	calling	the
frame’s	setVisible(boolean)	method	with	the	literal	true	as	an	argument.

If	you	want	a	frame	to	be	displayed	when	it	is	created,	call	one	of	these	methods	in	the
constructor.	You	also	can	leave	the	frame	invisible,	requiring	any	class	that	uses	the	frame
to	make	it	visible	by	calling	setVisible(true).	As	you	probably	have	surmised,
calling	setVisible(false)	makes	a	frame	invisible.

When	a	frame	is	displayed,	the	default	behavior	is	for	it	to	be	positioned	in	the	upper-left
corner	of	the	computer’s	desktop.

You	can	specify	a	different	location	by	calling	the	setBounds(int,	int,	int,
int)	method.	The	first	two	arguments	to	this	method	are	the	(x,y)	position	of	the	frame’s
upper-left	corner	on	the	desktop.	The	last	two	arguments	set	the	frame’s	width	and	height.

Another	way	to	set	the	bounds	is	with	a	Rectangle	object	from	the	java.awt
package.	Create	the	rectangle	with	the	Rectangle(int,	int,	int,	int)
constructor.	The	first	two	arguments	are	the	(x,	y)	position	of	the	upper-left	corner.	The
next	two	are	the	width	and	height.	Call	setBounds(Rectangle)	to	draw	the	frame	at
that	spot.

The	following	class	represents	a	300×100	frame	with	“Edit	Payroll”	in	the	title	bar:
Click	here	to	view	code	image

public	class	Payroll	extends	javax.swing.JFrame	{
				public	Payroll()	{
								super(“Edit	Payroll”);
								setSize(300,	100);
								setVisible(true);
				}
}

Every	frame	has	Maximize,	Minimize,	and	Close	buttons	on	the	title	bar	that	the	user	can
control—the	same	controls	present	in	the	interface	of	other	software	running	on	your
computer.

The	normal	behavior	when	a	frame	is	closed	is	for	the	application	to	keep	running.	When
a	frame	serves	as	a	program’s	main	GUI,	this	leaves	a	user	with	no	way	to	stop	the
program.

To	change	this,	you	must	call	a	frame’s	setDefaultCloseOperation()	method
with	one	of	four	static	variables	as	an	argument:

	EXIT_ON_CLOSE—Exits	the	application	when	the	frame	is	closed

	DISPOSE_ON_CLOSE—Closes	the	frame,	removes	the	frame	object	from	Java
Virtual	Machine	(JVM)	memory,	and	keeps	running	the	application

	DO_NOTHING_ON_CLOSE—Keeps	the	frame	open	and	continues	running

	HIDE_ON_CLOSE—Closes	the	frame	and	continues	running

These	variables	are	in	the	JFrame	class	because	it	implements	the	WindowConstants
interface.	To	prevent	a	user	from	closing	a	frame,	add	the	following	statement	to	the
frame’s	constructor	method:
Click	here	to	view	code	image

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

If	you	are	creating	a	frame	to	serve	as	an	application’s	main	user	interface,	the	expected
behavior	is	probably	EXIT_ON_CLOSE,	which	shuts	down	the	application	along	with	the
frame.

As	mentioned	earlier,	you	can	customize	the	overall	appearance	of	a	user	interface	in	Java
by	designating	a	look	and	feel.	The	UIManager	class	in	the	javax.swing	package
manages	this	aspect	of	Swing.	To	set	the	look	and	feel,	call	the	class	method
setLookAndFeel(String)	with	the	name	of	the	look	and	feel’s	class	as	the
argument.	Here’s	how	to	choose	the	Nimbus	look	and	feel:
Click	here	to	view	code	image

UIManager.setLookAndFeel(
				“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
);

This	method	call	should	be	contained	within	a	try-catch	block	because	it	might
generate	five	different	exceptions.	Catching	the	Exception	class	and	ignoring	it	causes
the	default	look	and	feel	to	be	used	in	the	unlikely	circumstance	that	Nimbus	can’t	be
chosen	properly.

Caution

Using	EXIT_ON_CLOSE	shuts	down	the	entire	JVM,	so	it	should	be	used	only	in
the	frame	for	an	application’s	main	window.	If	anything	needs	to	happen	after	the
frame	closes,	DISPOSE_ON_CLOSE	or	HIDE_ON_CLOSE	should	be	used
instead.

Developing	a	Framework
Today’s	first	project	is	an	application	that	displays	a	frame	containing	no	other	interface
components.	In	NetBeans,	create	a	new	Java	file	with	the	class	name	SimpleFrame	and
the	package	name	com.java21days;	then	enter	Listing	9.1	as	the	source	code.	This
simple	application	displays	a	frame	300×100	pixels	in	size	and	can	serve	as	a	framework
—pun	unavoidable—for	any	applications	you	create	that	use	a	GUI.

LISTING	9.1	The	Full	Text	of	SimpleFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	SimpleFrame	extends	JFrame	{
	6:					public	SimpleFrame()	{
	7:									super(“Frame	Title”);
	8:									setSize(300,	100);
	9:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10:									setLookAndFeel();
11:									setVisible(true);
12:					}
13:
14:					private	static	void	setLookAndFeel()	{
15:									try	{
16:													UIManager.setLookAndFeel(
17:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
18:);
19:									}	catch	(Exception	exc)	{
20:													//	ignore	error
21:									}
22:					}
23:
24:					public	static	void	main(String[]	arguments)	{
25:									setLookAndFeel();
26:									SimpleFrame	sf	=	new	SimpleFrame();
27:					}
28:	}

When	you	compile	and	run	the	application,	you	should	see	the	frame	displayed	in	Figure
9.1.

FIGURE	9.1	Displaying	a	frame.

The	SimpleFrame	application	isn’t	much	to	look	at.	The	GUI	contains	no	components,
aside	from	the	standard	Minimize,	Maximize,	and	Close	(X)	buttons	on	the	title	bar,	as
shown	in	Figure	9.1.	You	add	components	later	today.

In	the	application,	a	SimpleFrame	object	is	created	in	the	main()	method	in	lines	24–
27.	If	you	had	not	displayed	the	frame	when	it	was	constructed,	you	could	call
sf.setVisible(true)	in	the	main()	method	to	display	the	frame.

Nimbus	is	set	as	the	frame’s	look	and	feel	in	lines	16–18.

The	work	involved	in	creating	the	frame’s	user	interface	takes	place	in	the
SimpleFrame()	constructor	in	lines	6–12.	Components	can	be	created	and	added	to	the
frame	within	this	constructor.

Creating	a	Component
Creating	a	GUI	is	a	great	way	to	get	experience	working	with	objects	in	Java,	because
each	interface	component	is	represented	by	its	own	class.

To	use	an	interface	component	in	Java,	you	create	an	object	of	that	component’s	class.	You
already	have	worked	with	the	container	class	JFrame.

One	of	the	simplest	components	to	employ	is	JButton,	the	class	that	represents	clickable
buttons.

In	most	programs,	buttons	trigger	an	action.	You	can	click	Install	to	begin	installing
software,	click	a	smiley	button	to	begin	a	new	game	of	Angry	Birds,	click	the	Minimize
button	to	prevent	your	boss	from	seeing	Angry	Birds	running,	and	so	on.

A	Swing	button	can	feature	a	text	label,	a	graphical	icon,	or	a	combination	of	both.

Constructors	you	can	use	for	buttons	include	the	following:

	JButton(String)—A	button	labeled	with	the	specified	text

	JButton(Icon)—A	button	that	displays	the	specified	graphical	icon

	JButton(String,	Icon)—A	button	with	the	specified	text	and	graphical	icon

The	following	statements	create	three	buttons	with	text	labels:
Click	here	to	view	code	image

JButton	play	=	new	JButton(“Play”);
JButton	stop	=	new	JButton(“Stop”);
JButton	rewind	=	new	JButton(“Rewind”);

Graphical	buttons	are	covered	later	today.

Adding	Components	to	a	Container
Before	you	can	display	a	user	interface	component	such	as	a	button	in	a	Java	program,	you
must	add	it	to	a	container	and	display	that	container.

To	add	a	component	to	a	container,	call	the	container’s	add(Component)	method	with
the	component	as	the	argument	(all	user	interface	components	in	Swing	inherit	from
java.awt.Component).

The	simplest	Swing	container	is	a	panel	(the	JPanel	class).	The	following	example
creates	a	button	and	adds	it	to	a	panel:
Click	here	to	view	code	image

JButton	quit	=	new	JButton(“Quit”);
JPanel	panel	=	new	JPanel();
panel.add(quit);

Use	the	same	technique	to	add	components	to	frames	and	windows.

The	ButtonFrame	class,	shown	in	Listing	9.2,	expands	on	the	application	framework
created	earlier	today.	A	panel	is	created,	three	buttons	are	added	to	the	panel,	and	then	it	is
added	to	a	frame.	Enter	the	source	code	of	Listing	9.2	into	a	new	Java	file	called
ButtonFrame	in	NetBeans,	making	sure	to	put	it	in	the	com.java21days	package.

LISTING	9.2	The	Full	Text	of	ButtonFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	ButtonFrame	extends	JFrame	{
	6:					JButton	load	=	new	JButton(“Load”);
	7:					JButton	save	=	new	JButton(“Save”);
	8:					JButton	unsubscribe	=	new	JButton(“Unsubscribe”);
	9:
10:					public	ButtonFrame()	{
11:									super(“Button	Frame”);
12:									setSize(340,	170);
13:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:									JPanel	pane	=	new	JPanel();
15:									pane.add(load);
16:									pane.add(save);
17:									pane.add(unsubscribe);
18:									add(pane);
19:									setVisible(true);
20:					}
21:
22:					private	static	void	setLookAndFeel()	{
23:									try	{
24:													UIManager.setLookAndFeel(
25:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
26:);
27:									}	catch	(Exception	exc)	{
28:													System.out.println(exc.getMessage());
29:									}
30:					}
31:

32:					public	static	void	main(String[]	arguments)	{
33:									setLookAndFeel();
34:									ButtonFrame	bf	=	new	ButtonFrame();
35:					}
36:	}

When	you	run	the	application,	a	small	frame	opens	that	contains	the	three	buttons,	as
shown	in	Figure	9.2.

FIGURE	9.2	The	ButtonFrame	application.

The	ButtonFrame	class	has	three	instance	variables:	the	load,	save,	and
unsubscribe	JButton	objects.

In	lines	14–17	of	Listing	9.2,	a	new	JPanel	object	is	created,	and	the	three	buttons	are
added	to	the	panel	by	calls	to	its	add(Component)	method.	When	the	panel	contains
all	the	buttons,	the	frame’s	own	add(Component)	method	is	called	in	line	18	with	the
panel	as	an	argument,	adding	it	to	the	frame.

Note

If	you	click	the	buttons,	nothing	happens.	Doing	something	in	response	to	a	button
click	is	covered	in	Day	12,	“Responding	to	User	Input.”

Working	with	Components
Swing	offers	more	than	two	dozen	user	interface	components	in	addition	to	the	buttons
and	containers	you	have	used	so	far.	You	will	work	with	many	of	these	components	for	the
rest	of	today	and	on	Day	10,	“Building	a	Swing	Interface.”

All	Swing	components	share	a	common	superclass,	javax.swing.JComponent,
from	which	they	inherit	several	methods	you	will	find	useful	in	your	own	programs.

The	setEnabled(boolean)	method	determines	whether	a	component	can	receive
user	input	(an	argument	of	true)	or	is	inactive	and	cannot	receive	input	(false).
Components	are	enabled	by	default.	Many	components	change	in	appearance	to	indicate
when	they	are	not	presently	usable.	For	instance,	a	disabled	JButton	has	light	gray
borders	and	gray	text.	If	you	want	to	check	whether	a	component	is	enabled,	you	can	call
the	isEnabled()	method,	which	returns	a	boolean	value.

The	setVisible(boolean)	method	works	for	all	components	the	way	it	does	for
containers.	Use	true	to	display	a	component	and	false	to	hide	it.	There	also	is	a

boolean	isVisible()	method.

The	setSize(int,	int)	method	resizes	the	component	to	the	width	and	height
specified	as	arguments,	and	setSize(Dimension)	uses	a	Dimension	object	to
accomplish	the	same	thing.	For	most	components,	you	don’t	need	to	set	a	size;	the	default
is	usually	acceptable.	To	find	out	a	component’s	size,	call	its	getSize()	method,	which
returns	a	Dimension	object	with	the	dimensions	in	height	and	width	instance
variables.

As	you	will	see,	similar	Swing	components	also	have	other	methods	in	common,	such	as
setText()	and	getText()	for	text	components	and	setValue()	and
getValue()	for	components	that	store	a	numeric	value.

Caution

When	you	begin	working	with	Swing	components,	a	common	source	of	mistakes	is
to	set	up	aspects	of	a	component	after	it	has	been	added	to	a	container.	Be	sure	to
set	up	a	component	fully	before	placing	it	in	a	panel	or	any	other	container.

Image	Icons
Swing	supports	the	use	of	graphical	ImageIcon	objects	on	buttons	and	other
components	in	which	a	label	can	be	provided.	An	icon	is	a	small	graphic	that	can	be
placed	on	a	button,	label,	or	other	user	interface	element	to	identify	it.	Examples	include	a
garbage	can	or	recycling	bin	icon	for	deleting	files,	and	folder	icons	for	opening	and
storing	files.

You	can	create	an	ImageIcon	object	by	specifying	the	filename	of	a	graphic	as	the	only
argument	to	the	constructor.	The	following	example	loads	an	icon	from	the	graphics	file
subscribe.gif	and	creates	a	JButton	with	the	icon	as	its	label:
Click	here	to	view	code	image

ImageIcon	subscribe	=	new	ImageIcon(“subscribe.gif”);
JButton	button	=	new	JButton(subscribe);
JPanel	pane	=	new	JPanel();
pane.add(button);
add(pane);
setVisible(true);

Listing	9.3	is	a	Java	application	that	creates	four	image	icons	with	text	labels,	adds	them
to	a	panel,	and	then	adds	the	panel	to	a	frame.	Create	a	new	empty	Java	file	in	NetBeans
for	a	class	named	IconFrame	in	the	package	com.java21days,	and	enter	this	listing
with	the	source	code	editor.

LISTING	9.3	The	Full	Text	of	IconFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:

	5:	public	class	IconFrame	extends	JFrame	{
	6:					JButton	load,	save,	subscribe,	unsubscribe;
	7:
	8:					public	IconFrame()	{
	9:									super(“Icon	Frame”);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									JPanel	panel	=	new	JPanel();
12:									//	create	icons
13:									ImageIcon	loadIcon	=	new	ImageIcon(“load.gif”);
14:									ImageIcon	saveIcon	=	new	ImageIcon(“save.gif”);
15:									ImageIcon	subscribeIcon	=	new	ImageIcon(“subscribe.gif”);
16:									ImageIcon	unsubscribeIcon	=	new	ImageIcon(“unsubscribe.gif”);
17:									//	create	buttons
18:									load	=	new	JButton(“Load”,	loadIcon);
19:									save	=	new	JButton(“Save”,	saveIcon);
20:									subscribe	=	new	JButton(“Subscribe”,	subscribeIcon);
21:									unsubscribe	=	new	JButton(“Unsubscribe”,	unsubscribeIcon);
22:									//	add	buttons	to	panel
23:									panel.add(load);
24:									panel.add(save);
25:									panel.add(subscribe);
26:									panel.add(unsubscribe);
27:									//	add	the	panel	to	a	frame
28:									add(panel);
29:									pack();
30:									setVisible(true);
31:					}
32:
33:					public	static	void	main(String[]	arguments)	{
34:									IconFrame	ike	=	new	IconFrame();
35:					}
36:	}

Figure	9.3	shows	the	result.

FIGURE	9.3	An	interface	containing	buttons	labeled	with	icons.

The	icons’	graphics	referred	to	in	lines	13–16	can	be	found	on	this	book’s	official	website
at	www.java21days.com	on	the	Day	9	page.

In	NetBeans,	the	graphics	must	be	part	of	the	project	before	this	application	runs	correctly.
The	graphics	need	to	be	stored	in	the	main	folder	of	the	Java21	project	you’ve	been	using
throughout	this	book	to	hold	the	classes	you	create.	Follow	these	steps:

1.	Save	the	graphics	files	to	a	temporary	folder	on	your	computer.

2.	Click	the	Files	tab	to	bring	that	pane	to	the	front.	The	Files	tab	opens,	as	shown	in
Figure	9.4,	listing	the	files	in	the	project.

http://www.java21days.com

FIGURE	9.4	Dragging	files	into	the	NetBeans	Files	pane.

3.	Drag	and	drop	the	four	graphics	files	into	the	Java21	folder	in	this	pane.

The	IconFrame	application	does	not	set	the	size	of	the	frame	in	pixels.	Instead,	the
pack()	method	is	called	in	line	29	to	expand	the	frame	to	the	minimum	size	required	to
present	the	four	buttons	next	to	each	other.

If	the	frame	were	set	to	be	tall	rather	than	wide—for	instance,	by	calling
setSize(100,	400)	in	the	constructor—the	buttons	would	be	stacked	vertically.

Note

Some	of	the	project’s	graphics	are	from	Oracle’s	Java	Look	and	Feel	Graphics
Repository,	a	collection	of	icons	suitable	for	use	in	your	own	programs.	If	you’re
looking	for	icons	to	experiment	with	in	Swing	applications,	you	can	find	some	at
the	following	address:	www.oracle.com/technetwork/java/index-138612.html.

Labels
A	label	is	a	user	component	that	holds	text,	an	icon,	or	both.	Labels,	which	are	created
from	the	JLabel	class,	identify	the	purpose	of	other	components	on	an	interface.	A	user
cannot	edit	them	directly.

To	create	a	label,	you	can	use	these	simple	constructors:

	JLabel(String)—A	label	with	the	specified	text

	JLabel(String,	int)—A	label	with	the	specified	text	and	alignment

	JLabel(String,	Icon,	int)—A	label	with	the	specified	text,	icon,	and
alignment

A	label’s	alignment	determines	how	its	text	or	icon	is	aligned	in	relation	to	the	area	taken
up	by	the	window.	Three	static	class	variables	of	the	SwingConstants	interface	are
used	to	specify	alignment:	LEFT,	CENTER,	and	RIGHT.

You	can	set	a	label’s	contents	with	the	setText(String)	or	setIcon(Icon)
methods.	You	also	can	retrieve	these	things	with	the	getText()	and	getIcon()

http://www.oracle.com/technetwork/java/index-138612.html

methods.

The	following	statements	create	three	labels	with	left,	center,	and	right	alignment,
respectively:
Click	here	to	view	code	image

JLabel	feedsLabel	=	new	JLabel(“Feeds:	“,	SwingConstants.LEFT);
JLabel	urlLabel	=	new	JLabel(“URL:	“,	SwingConstants.CENTER);
JLabel	dateLabel	=	new	JLabel(“Date:	“,	SwingConstants.RIGHT);

Text	Fields
A	text	field	is	a	location	on	an	interface	where	a	user	can	enter	and	modify	text	using	the
keyboard.	Text	fields	are	represented	by	the	JTextField	class,	and	each	can	handle	one
line	of	input.	The	next	section	describes	a	text	area	component	that	can	handle	multiple
lines.

Constructors	for	text	fields	include	the	following:

	JTextField()—An	empty	text	field

	JTextField(int)—A	text	field	with	the	specified	width

	JTextField(String,	int)—A	text	field	with	the	specified	text	and	width

A	text	field’s	width	attribute	has	relevance	only	if	the	interface	is	organized	in	a	manner
that	does	not	resize	components.	You	get	more	experience	with	this	when	you	work	with
layout	managers	on	Day	11,	“Arranging	Components	on	a	User	Interface.”

The	following	statements	create	an	empty	text	field	that	has	enough	space	for	roughly	60
characters	and	a	text	field	of	the	same	size	with	the	starting	text	“Enter	feed	URL	here”:
Click	here	to	view	code	image

JTextField	rssUrl	=	new	JTextField(60);
JTextField	rssUrl2	=	new	JTextField(“Enter	feed	URL	here”,	60);

Text	fields	and	text	areas	both	inherit	from	the	superclass	JTextComponent	and	share
many	common	methods.

The	setEditable(boolean)	method	determines	whether	a	text	component	can	be
edited	(true)	or	not	(false).	An	isEditable()	method	returns	a	corresponding
boolean	value.

The	setText(String)	method	changes	the	text	to	the	specified	string,	and	the
getText()	method	returns	the	component’s	current	text	as	a	string.	Another	method
retrieves	only	the	text	that	a	user	has	highlighted	in	the	getSelectedText()
component.

Password	fields	are	text	fields	that	hide	the	characters	a	user	types	into	the	field.	They	are
represented	by	the	JPasswordField	class,	a	subclass	of	JTextField.	The
JPasswordField	constructors	take	the	same	arguments	as	those	of	the	parent	class.

After	you	have	created	a	password	field,	call	its	setEchoChar(char)	method	to
obscure	input	by	replacing	each	input	character	with	the	specified	character.

The	following	statements	create	a	password	field	and	set	its	echo	character	to	#:
Click	here	to	view	code	image

JPasswordField	codePhrase	=	new	JPasswordField(20);
codePhrase.setEchoChar(‘#’);

Text	Areas
Text	areas,	editable	text	fields	that	can	handle	more	than	one	line	of	input,	are
implemented	by	the	JTextArea	class,	which	includes	these	constructors:

	JTextArea(int,	int)—A	text	area	with	the	specified	number	of	rows	and
columns

	JTextArea(String,	int,	int)—A	text	area	with	the	specified	text,	rows,
and	columns

You	can	use	the	getText(),	getSelectedText(),	and	setText(String)
methods	with	text	areas	as	you	would	text	fields.	Also,	an	append(String)	method
adds	the	specified	text	at	the	end	of	the	current	text,	and	an	insert(String,	int)
method	inserts	the	specified	text	at	the	indicated	position.

The	setLineWrap(boolean)	method	determines	whether	text	will	wrap	to	the	next
line	when	it	reaches	the	right	edge	of	the	component.	Call	setLineWrap(true)	to
cause	line	wrapping	to	occur.

The	setWrapStyleWord(boolean)	method	determines	what	wraps	to	the	next	line
—either	the	current	word	(true)	or	the	current	character	(false).

The	next	project	you	create,	the	Authenticator	application	shown	in	Listing	9.4,	uses
several	Swing	components	to	collect	user	input:	a	text	field,	a	password	field,	and	a	text
area.	Labels	also	are	used	to	indicate	the	purpose	of	each	text	component.	In	NetBeans,
create	an	empty	Java	file	called	Authenticator	in	the	package	com.java21days.

LISTING	9.4	The	Full	Text	of	Authenticator.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	Authenticator	extends	javax.swing.JFrame	{
	6:					JTextField	username	=	new	JTextField(15);
	7:					JPasswordField	password	=	new	JPasswordField(15);
	8:					JTextArea	comments	=	new	JTextArea(4,	15);
	9:					JButton	ok	=	new	JButton(“OK”);
10:					JButton	cancel	=	new	JButton(“Cancel”);
11:
12:					public	Authenticator()	{
13:									super(“Account	Information”);
14:									setSize(300,	220);
15:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16:
17:									JPanel	pane	=	new	JPanel();
18:									JLabel	usernameLabel	=	new	JLabel(“Username:	“);

19:									JLabel	passwordLabel	=	new	JLabel(“Password:	“);
20:									JLabel	commentsLabel	=	new	JLabel(“Comments:	“);
21:									comments.setLineWrap(true);
22:									comments.setWrapStyleWord(true);
23:									pane.add(usernameLabel);
24:									pane.add(username);
25:									pane.add(passwordLabel);
26:									pane.add(password);
27:									pane.add(commentsLabel);
28:									pane.add(comments);
29:									pane.add(ok);
30:									pane.add(cancel);
31:									add(pane);
32:									setVisible(true);
33:					}
34:
35:					private	static	void	setLookAndFeel()	{
36:									try	{
37:													UIManager.setLookAndFeel(
38:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
39:);
40:									}	catch	(Exception	exc)	{
41:													System.out.println(exc.getMessage());
42:									}
43:					}
44:
45:					public	static	void	main(String[]	arguments)	{
46:									Authenticator.setLookAndFeel();
47:									Authenticator	auth	=	new	Authenticator();
48:					}
49:	}

This	application	sets	up	components	and	adds	them	to	a	panel	in	lines	17–30.	Figure	9.5
shows	the	application	in	use.	The	password	is	obscured	with	asterisk	characters	(*),	which
is	the	default	when	no	other	echo	character	is	designated	by	calling	the	field’s
setEchoChar(char)	method.

FIGURE	9.5	The	Authenticator	application.

The	text	area	in	this	application	behaves	in	a	manner	that	you	might	not	expect.	When	you
reach	the	bottom	of	the	field	and	continue	entering	text,	the	component	grows	to	make
more	room	for	input	(and	even	scrolls	below	the	bottom	edge	of	the	frame).	The	next
section	describes	how	to	add	scrollbars	to	prevent	the	area	from	changing	in	size.

Scrolling	Panes
Text	areas	in	Swing	do	not	include	horizontal	or	vertical	scrollbars,	and	there’s	no	way	to
add	them	using	this	component	alone.

Swing	supports	scrollbars	through	a	new	container	that	can	be	used	to	hold	any
component	that	can	be	scrolled:	JScrollPane.

A	scrolling	pane	is	associated	with	a	component	in	the	pane’s	constructor.	You	can	use
these	following	constructors:

	JScrollPane(Component)—A	scrolling	pane	that	contains	the	specified
component

	JScrollPane(Component,	int,	int)—A	scrolling	pane	with	the	specified
component,	vertical	scrollbar	configuration,	and	horizontal	scrollbar	configuration

Scrollbars	are	configured	using	one	of	six	static	class	variables	of	the
ScrollPaneConstants	interface.	There	are	three	for	vertical	scrollbars:

	VERTICAL_SCROLLBAR_ALWAYS

	VERTICAL_SCROLLBAR_AS_NEEDED

	VERTICAL_SCROLLBAR_NEVER

There	also	are	three	variables	for	horizontal	scrollbars	with	similar	names.

After	you	create	a	scrolling	pane	containing	a	component,	you	should	add	the	pane	to
containers	in	place	of	that	component.

The	following	example	creates	a	text	area	with	a	vertical	scrollbar	and	no	horizontal
scrollbar	and	then	adds	it	to	a	container:
Click	here	to	view	code	image

JPanel	pane	=	new	JPanel();
JTextArea	comments	=	new	JTextArea(4,	15);
JScrollPane	scroll	=	new	JScrollPane(comments,
				ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
				ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
pane.add(scroll);
add(pane);

Note

This	book’s	website	contains	Authenticator2,	a	full	application	that	makes	use	of
this	code.	Visit	www.java21days.com	and	open	the	Day	9	page	to	find	a	link	to
Authenticator2.java.

Check	Boxes	and	Radio	Buttons
The	next	two	components,	check	boxes	and	radio	buttons,	hold	only	two	possible	values:
selected	or	not	selected.

Check	boxes	are	used	to	make	a	simple	choice	in	an	interface,	such	as	yes/no	or	on/off.

http://www.java21days.com

Radio	buttons	are	grouped	so	that	only	one	button	can	be	selected	at	any	time.

Check	boxes	(the	JCheckBox	class)	appear	as	labeled	or	unlabeled	boxes	that	contain	a
check	mark	when	they	are	selected	and	nothing	otherwise.	Radio	buttons	(the
JRadioButton	class)	appear	as	circles	that	contain	a	dot	when	selected	and	nothing
otherwise.

Both	the	JCheckBox	and	JRadioButton	classes	have	several	useful	methods
inherited	from	JToggleButton,	their	common	superclass:

	setSelected(boolean)—Selects	the	component	if	the	argument	is	true	and
deselects	it	otherwise

	isSelected()—Returns	a	boolean	indicating	whether	the	component	is
currently	selected

The	following	constructors	can	be	used	for	the	JCheckBox	class:

	JCheckBox(String)—A	check	box	with	the	specified	text	label

	JCheckBox(String,	boolean)—A	check	box	with	the	specified	text	label
that	is	selected	if	the	second	argument	is	true

	JCheckBox(Icon)—A	check	box	with	the	specified	graphical	icon

	JCheckBox(Icon,	boolean)—A	check	box	with	the	specified	graphical	icon
that	is	selected	if	the	second	argument	is	true

	JCheckBox(String,	Icon)—A	check	box	with	the	specified	text	label	and
graphical	icon

	JCheckBox(String,	Icon,	boolean)—A	check	box	with	the	specified	text
label	and	graphical	icon	that	is	selected	if	the	third	argument	is	true

The	JRadioButton	class	has	constructors	with	the	same	arguments	and	functionality.

Check	boxes	and	radio	buttons	by	themselves	are	nonexclusive,	meaning	that	if	you	have
five	check	boxes	in	a	container,	all	five	can	be	checked	or	unchecked	at	the	same	time.	To
make	them	exclusive,	as	radio	buttons	should	be,	you	must	organize	related	components
into	groups.

To	organize	several	radio	buttons	into	a	group,	allowing	only	one	to	be	selected	at	a	time,
create	a	ButtonGroup	class	object,	as	demonstrated	in	the	following	statement:
Click	here	to	view	code	image

ButtonGroup	choice	=	new	ButtonGroup();

The	ButtonGroup	object	keeps	track	of	all	radio	buttons	in	its	group.	Call	the	group’s
add(Component)	method	to	add	the	specified	component	to	the	group.

The	following	example	creates	a	group	and	two	radio	buttons	that	belong	to	it:
Click	here	to	view	code	image

ButtonGroup	saveFormat	=	new	ButtonGroup();
JRadioButton	s1	=	new	JRadioButton(“JSON”,	false);

saveFormat.add(s1);
JRadioButton	s2	=	new	JRadioButton(“XML”,	true);
saveFormat.add(s2);

The	saveFormat	object	groups	the	s1	and	s2	radio	buttons.	The	s2	object,	which	has
the	label	"XML",	is	selected.	Only	one	member	of	the	group	can	be	selected	at	a	time.	If
one	component	is	selected,	the	ButtonGroup	object	ensures	that	all	others	in	the	group
are	deselected.

Create	a	new	empty	Java	file	in	NetBeans	called	FormatFrame	in	the	package
com.java21days.	Enter	the	source	code	shown	in	Listing	9.5	to	create	an	application
with	four	radio	buttons	in	a	group.

LISTING	9.5	The	Full	Text	of	FormatFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	FormatFrame	extends	JFrame	{
	6:					JRadioButton[]	teams	=	new	JRadioButton[4];
	7:
	8:					public	FormatFrame()	{
	9:									super(“Choose	an	Output	Format”);
10:									setSize(320,	120);
11:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:									teams[0]	=	new	JRadioButton(“Atom”);
13:									teams[1]	=	new	JRadioButton(“RSS	0.92”);
14:									teams[2]	=	new	JRadioButton(“RSS	1.0”);
15:									teams[3]	=	new	JRadioButton(“RSS	2.0”,	true);
16:									JPanel	panel	=	new	JPanel();
17:									JLabel	chooseLabel	=	new	JLabel(
18:													“Choose	an	output	format	for	syndicated	news	items.”);
19:									panel.add(chooseLabel);
20:									ButtonGroup	group	=	new	ButtonGroup();
21:									for	(JRadioButton	team	:	teams)	{
22:													group.add(team);
23:													panel.add(team);
24:									}
25:									add(panel);
26:									setVisible(true);
27:					}
28:
29:					private	static	void	setLookAndFeel()	{
30:									try	{
31:													UIManager.setLookAndFeel(
32:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
33:);
34:									}	catch	(Exception	exc)	{
35:													System.out.println(exc.getMessage());
36:									}
37:					}
38:
39:					public	static	void	main(String[]	arguments)	{
40:									FormatFrame.setLookAndFeel();
41:									FormatFrame	ff	=	new	FormatFrame();
42:					}
43:	}

Figure	9.6	shows	the	application	running.	The	four	JRadioButton	objects	are	stored	in
an	array	in	lines	12–15.	In	the	for	loop	in	lines	21–24,	each	element	is	first	added	to	a
button	group	and	then	is	added	to	a	panel.	After	the	loop	ends,	the	panel	is	added	to	the
frame.

FIGURE	9.6	The	FormatFrame	application.

Choosing	one	of	the	radio	buttons	causes	the	existing	choice	to	be	deselected.

Combo	Boxes
The	Swing	class	JComboBox	can	be	used	to	create	combo	boxes,	components	that
present	a	drop-down	menu	from	which	a	single	value	can	be	selected.	The	menu	is	hidden
when	the	component	is	not	being	used,	thus	taking	up	less	space	in	a	GUI.

After	a	combo	box	is	created	by	calling	the	JComboBox()	constructor	with	no
arguments,	the	combo	box’s	addItem(Object)	method	adds	items	to	the	list.

Another	way	to	create	a	combo	box	is	to	call	JComboBox(Object[])	with	an	array
that	contains	the	items.	If	the	items	are	text,	a	String	array	would	be	the	argument.

In	a	combo	box,	users	can	select	only	one	of	the	items	on	the	drop-down	menu.	If	the
component’s	setEditable()	method	is	called	with	true	as	an	argument,	it	also
supports	text	entry.	This	feature	gives	combo	boxes	their	name:	A	component	configured
in	this	manner	serves	as	both	a	drop-down	menu	and	a	text	field.

The	JComboBox	class	has	several	methods	you	can	use	to	control	a	drop-down	list	or
combo	box:

	getItemAt(int)—Returns	the	text	of	the	list	item	at	the	index	position
specified	by	the	integer	argument.	As	with	arrays,	the	first	item	of	a	choice	list	is	at
index	position	0,	the	second	is	at	position	1,	and	so	on.

	getItemCount()—Returns	the	number	of	items	in	the	list.

	getSelectedIndex()—Returns	the	index	position	of	the	currently	selected
item	in	the	list.

	getSelectedItem()—Returns	the	text	of	the	currently	selected	item.

	setSelectedIndex(int)—Selects	the	item	at	the	indicated	index	position.

	setSelectedIndex(Object)—Selects	the	specified	object	in	the	list.

The	FormatFrame2	application,	shown	in	Listing	9.6,	rewrites	the	preceding	radio	button
example.	The	program	uses	a	noneditable	combo	box	from	which	a	user	can	choose	one	of

four	options.

LISTING	9.6	The	Full	Text	of	FormatFrame2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	FormatFrame2	extends	JFrame	{
	6:					String[]	formats	=	{	“Atom”,	“RSS	0.92”,	“RSS	1.0”,	“RSS	2.0”	};
	7:					JComboBox	formatBox	=	new	JComboBox(formats);
	8:
	9:					public	FormatFrame2()	{
10:									super(“Choose	a	Format”);
11:									setSize(220,	150);
12:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13:									JPanel	pane	=	new	JPanel();
14:									JLabel	formatLabel	=	new	JLabel(“Output	formats:”);
15:									pane.add(formatLabel);
16:									pane.add(formatBox);
17:									add(pane);
18:									setVisible(true);
19:					}
20:
21:					private	static	void	setLookAndFeel()	{
22:									try	{
23:													UIManager.setLookAndFeel(
24:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
25:);
26:									}	catch	(Exception	exc)	{
27:													System.out.println(exc.getMessage());
28:									}
29:					}
30:
31:					public	static	void	main(String[]	arguments)	{
32:									FormatFrame2.setLookAndFeel();
33:									FormatFrame2	ff	=	new	FormatFrame2();
34:					}
35:	}

A	string	array	is	defined	in	line	6,	and	then	these	strings	are	used	in	the	combo	box
constructor	in	line	7	to	set	its	possible	values.	Figure	9.7	shows	the	application	as	the
combo	box	is	expanded	so	that	a	value	can	be	selected.

FIGURE	9.7	The	FormatFrame2	application.

Lists
The	last	Swing	component	to	be	introduced	today	is	similar	to	combo	boxes.	Lists,	which
are	represented	by	the	JList	class,	allow	you	to	select	one	or	more	values	from	a	list.

You	can	create	and	fill	lists	with	the	contents	of	an	array	or	vector	(a	data	structure	similar
to	array	lists).	The	following	constructors	are	available:

	JList()—Creates	an	empty	list

	JList(Object[])—Creates	a	list	that	contains	an	array	of	the	specified	class
(such	as	String)

	JList(Vector<Class>)—Creates	a	list	that	contains	the	specified
java.util.Vector	object	of	the	specified	class

An	empty	list	can	be	filled	by	calling	its	setListData()	method	with	either	an	array
or	vector	as	the	only	argument.

Unlike	combo	boxes,	lists	display	more	than	one	of	their	rows	when	they	are	presented	in
a	user	interface.	The	default	is	to	display	eight	items.	To	change	this,	call
setVisibleRowCount(int)	with	the	number	of	items	to	display.

The	getSelectedValuesList()	method	returns	a	list	of	objects	containing	all	the
items	selected	in	the	list.	This	list	can	be	cast	to	an	ArrayList.

You	can	use	generics	with	JList	to	indicate	the	class	of	the	object	array	the	list	contains.

The	Subscriptions	application	in	the	com.java21days	package,	shown	in	Listing	9.7,
displays	eight	items	from	an	array	of	strings.

LISTING	9.7	The	Full	Text	of	Subscriptions.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	Subscriptions	extends	JFrame	{
	6:					String[]	subs	=	{	“Burningbird”,	“Freeform	Goodness”,
	7:									“Ideoplex”,	“Inessential”,	“Intertwingly”,	“Now	This”,
	8:									“Rasterweb”,	“RC3”,	“Whole	Lotta	Nothing”,	“Workbench”	};
	9:					JList<String>	subList	=	new	JList<>(subs);
10:
11:					public	Subscriptions()	{
12:									super(“Subscriptions”);
13:									setSize(150,	335);
14:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:									JPanel	panel	=	new	JPanel();
16:									JLabel	subLabel	=	new	JLabel(“RSS	Subscriptions:”);
17:									panel.add(subLabel);
18:									subList.setVisibleRowCount(8);
19:									JScrollPane	scroller	=	new	JScrollPane(subList);
20:									panel.add(scroller);
21:									add(panel);
22:									setVisible(true);
23:					}

24:
25:					private	static	void	setLookAndFeel()	{
26:									try	{
27:													UIManager.setLookAndFeel(
28:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
29:);
30:									}	catch	(Exception	exc)	{
31:													System.out.println(exc.getMessage());
32:									}
33:					}
34:
35:					public	static	void	main(String[]	arguments)	{
36:									Subscriptions.setLookAndFeel();
37:									Subscriptions	app	=	new	Subscriptions();
38:					}
39:	}

The	application	is	shown	in	Figure	9.8.	The	Subscriptions	application	has	an	interface
with	a	label	atop	a	list	displaying	eight	items.	A	Scroll	pane	is	used	in	lines	19–21	to
enable	the	list	to	be	scrolled	to	see	items	9	and	10.

FIGURE	9.8	The	Subscriptions	application.

The	Java	Class	Library
The	first	week	of	this	book	was	devoted	to	the	building	blocks	of	the	Java	language,
including	statements,	expressions,	and	operators;	and	the	components	of	object-oriented
programming	(OOP)	such	as	methods,	constructors,	classes,	and	interfaces.

The	second	week	covers	how	to	build	things	with	those	blocks	by	using	the	Java	Class
Library.	A	lot	of	your	work	as	a	programmer	is	done	for	you,	provided	you	know	where	to
look.

The	Java	Class	Library	contains	over	4,200	classes.	Many	of	them	will	be	useful	in
programs	that	you	create.

Note

There	also	are	Java	class	libraries	produced	by	other	organizations.	The	Apache
Project	has	more	than	a	dozen	Java	open	source	projects,	including
HttpComponents,	a	set	of	classes	for	creating	web	servers,	clients,	and	crawlers.	To
see	these	projects,	visit	http://projects.apache.org.

Oracle	offers	comprehensive	documentation	for	the	library	on	the	Web.	A	page	from	this
documentation	is	shown	in	Figure	9.9.

FIGURE	9.9	The	Java	Class	Library’s	online	documentation.

The	home	page	is	divided	into	frames.	The	largest	lists	all	the	packages	that	compose	the
library	with	a	description	of	each.	Package	names	describe	their	purpose,	such	as	the
java.io	package	of	classes	for	input	and	output	from	files,	Internet	servers,	and	other
data	sources;	and	java.time	for	time	and	date	classes.

On	the	home	page,	the	largest	frame	presents	a	list	of	packages	with	a	short	description	of
each	one.	Click	the	name	of	a	package	to	load	a	page	listing	all	of	its	classes.

Each	class	in	the	library	has	its	own	page	of	documentation.	To	get	a	taste	of	how	to	use
this	reference,	follow	these	steps:

1.	In	your	web	browser,	load	the	page	http://docs.oracle.com/javase/8/docs/api.

http://projects.apache.org
http://docs.oracle.com/javase/8/docs/api

2.	Scroll	down	to	the	java.lang	package	and	click	the	link.	That	package’s	page
opens.

3.	Scroll	down	to	the	link	for	the	Math	class,	and	click	it.	The	page	for	the	class	opens.

4.	Find	the	random()	method	link	and	click	it.	The	page	jumps	to	that	section.

The	Math	class	page	describes	its	purpose	and	package.	Use	a	class	page	to	learn	how	to
create	an	object	of	the	class	and	what	variables	and	methods	it	contains.

This	class	has	handy	methods	that	extend	Java’s	math	capabilities	and	turn	up	often	in
Java	applications.	One	is	random(),	a	method	that	produces	a	random	double	value
from	0.0	to	1.0.

Here’s	a	statement	that	uses	this	method:
Click	here	to	view	code	image

double	d100	=	Math.random()	*	100;

The	random()	method	produces	a	randomly	generated	number	ranging	from	0.0	up	to
1.0,	but	not	including	that	maximum	value.	This	is	a	floating-point	number,	so	it	needs	to
be	stored	in	a	float	or	double.

Because	this	random	number	is	multiplied	by	100,	the	number	will	be	anything	from	0	to
100	(not	including	100).

Here’s	a	statement	to	round	the	number	down	to	the	nearest	integer	and	add	1:
d100	=	Math.floor(roll)	+	1;

This	statement	uses	another	method	of	the	Math	class,	floor(),	which	rounds	a
floating-point	number	down	to	the	closest	lower	integer.	A	value	of	47.52	would	be
rounded	down	to	47.	Adding	one	makes	the	value	of	d100	48.

Without	the	Math	class,	you’d	have	to	create	your	own	class	to	produce	random	numbers,
which	is	a	highly	complex	task.

Poking	around	the	Java	Class	Library	documentation	is	a	good	way	to	find	classes	that
will	save	you	an	enormous	amount	of	time.

Because	you’re	new	to	Java,	you	likely	will	find	some	of	the	documentation	difficult	to
understand—it’s	written	for	experienced	programmers.	But	as	you	read	this	book	and
encounter	interesting	Java	classes,	use	this	reference	to	find	out	more	about	them.	A	good
place	to	begin	is	to	look	up	the	methods	in	a	class,	each	of	which	performs	a	job,	and	see
what	arguments	they	take	and	values	they	return.

While	you	are	learning	about	Swing	user	interface	components	and	classes	during	the	next
five	days,	check	out	their	pages	in	the	official	documentation.	They	have	more	cool
methods	than	this	book	has	time	to	cover.

Summary
Today	you	began	working	with	Swing,	the	package	of	classes	that	enables	your	Java
programs	to	support	a	GUI.

You	used	more	than	a	dozen	classes	today,	creating	interface	components	such	as	buttons,
labels,	and	text	fields.	You	put	each	of	these	into	containers:	components	that	include
panels,	frames,	and	windows.

This	kind	of	programming	can	be	complicated.	Swing	represents	the	largest	package	of
classes	that	a	new	Java	programmer	must	deal	with	in	learning	the	language.

However,	as	you	have	experienced	with	components	such	as	text	areas	and	text	fields,
Swing	components	have	many	superclasses	in	common.	This	makes	it	easier	to	extend
your	knowledge	into	new	components	and	containers,	along	with	the	other	aspects	of
Swing	programming	you	will	explore	over	the	coming	days.

Q&A
Q	Is	there	a	way	to	change	the	font	of	text	that	appears	on	a	button	and	other
components?

A	The	JComponent	class	includes	a	setFont(Font)	method	that	can	be	used	to
set	the	font	for	text	displayed	by	that	component.	You	will	work	with	Font	objects,
color,	and	more	graphics	on	Day	13,	“Creating	Java2D	Graphics.”

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	of	the	following	user	interface	components	is	not	a	container?

A.	JScrollPane

B.	JTextArea

C.	JPanel

2.	Which	component	can	be	placed	into	a	Scroll	pane?

A.	JTextArea

B.	JTextField

C.	Any	component

3.	If	you	use	setSize()	on	an	application’s	main	frame,	where	will	it	appear	on
your	desktop?

A.	At	the	center	of	the	desktop

B.	At	the	same	spot	the	last	application	appeared

C.	At	the	upper-left	corner	of	the	desktop

Answers
1.	B.	A	JTextArea	requires	a	container	to	support	scrolling,	but	it	is	not	a	container
itself.

2.	C.	Any	component	can	be	added	to	a	Scroll	pane,	but	most	are	unlikely	to	need
scrolling.

3.	C.	This	is	a	trick	question.	Calling	setSize()	has	nothing	to	do	with	a	window’s
position	on	the	desktop.	You	must	call	setBounds()	rather	than	setSize()	to
choose	where	a	frame	will	appear.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	javax.swing.*;

public	class	Display	extends	JFrame	{
				public	Display()	{
								super(“Display”);
								//	answer	goes	here
								JLabel	hello	=	new	JLabel(“Hello”);
								JPanel	pane	=	new	JPanel();
								add(hello);
								pack();
								setVisible(true);
				}

				public	static	void	main(String[]	arguments)	{
								Display	ds	=	new	Display();
				}
}

What	statement	needs	to	replace	//	answer	goes	here	to	make	the	application
function	properly?

A.	setSize(300,	200);

B.	setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

C.	Display	ds	=	new	Display();

D.	No	statement	is	needed.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	9
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

http://www.java21days.com

1.	Create	an	application	with	a	frame	that	includes	several	DVR	controls	as	individual
components:	play,	stop/eject,	rewind,	fast-forward,	and	pause.	Choose	a	size	for	the
window	that	enables	all	the	components	to	be	displayed	on	a	single	row.

2.	Create	a	frame	that	opens	a	smaller	frame	with	fields	asking	for	a	username	and
password.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	10.	Building	a	Swing	Interface

Although	computers	can	be	operated	in	a	command-line	environment	such	as	a	Linux
shell	or	the	Windows	command	prompt,	most	computer	users	expect	software	to	feature	a
graphical	user	interface	(GUI)	and	to	receive	input	with	a	mouse	and	keyboard.

GUI	software	can	be	one	of	the	more	challenging	tasks	for	a	novice	programmer,	but	as
you	learned	yesterday,	Java	has	simplified	the	process	with	Swing.

Swing	offers	the	following	features:

	Common	user	interface	components,	including	buttons,	text	fields,	text	areas,	labels,
check	boxes,	radio	buttons,	scrollbars,	lists,	menu	items,	and	sliders.

	Containers—interface	components	that	can	be	used	to	hold	other	components
(including	other	containers).	Containers	include	frames,	panels,	menus,	menu	bars,
and	tabbed	panes.

Swing	Features
Most	components	and	containers	you	learned	about	yesterday	were	Swing	versions	of
classes	that	were	part	of	the	Abstract	Windowing	Toolkit,	the	original	Java	package	for
GUI	programming.

Swing	offers	many	additional	new	components,	including	keyboard	mnemonics,	ToolTips,
and	standard	dialog	boxes.

Standard	Dialog	Boxes
The	JOptionPane	class	offers	several	methods	you	can	use	to	create	standard	dialog
boxes:	small	windows	that	ask	a	question,	warn	a	user,	or	provide	an	important	message.
Figure	10.1	shows	an	example.

FIGURE	10.1	A	standard	dialog	box.

You	have	doubtless	seen	dialog	boxes	like	the	one	shown	in	Figure	10.1.	When	your
system	crashes,	a	dialog	box	appears	to	break	the	bad	news.	When	you	delete	files,	a
dialog	box	pops	up	to	make	sure	that	you	really	want	to	do	so.

These	windows	are	an	effective	way	to	communicate	with	a	user	without	the	overhead	of
creating	a	new	class	to	represent	the	window,	adding	components	to	it,	and	writing	event-
handling	methods	to	receive	input.	All	these	tasks	are	handled	automatically	when	one	of
the	standard	dialog	boxes	offered	by	JOptionPane	is	used.

The	four	classes	of	the	standard	dialog	boxes	are	as	follows:

	ConfirmDialog—Asks	a	question,	with	buttons	for	Yes,	No,	and	Cancel
responses

	InputDialog—Prompts	for	text	input

	MessageDialog—Displays	a	message

	OptionDialog—Comprises	all	three	of	the	other	dialog	box	types

Each	of	these	dialog	boxes	has	its	own	display	method	in	the	JOptionPane	class.

Confirm	Dialog	Boxes

The	easiest	way	to	create	a	Yes/No/Cancel	dialog	box	is	by	calling	the
showConfirmDialog	(Component,	Object)	method.	The	Component
argument	specifies	the	container	that’s	the	parent	of	the	dialog	box,	which	determines
where	the	dialog	window	should	be	displayed.	If	null	is	used	instead	of	a	container,	or	if
the	container	is	not	a	JFrame	object,	the	dialog	box	will	be	centered	onscreen.

The	second	argument,	Object,	can	be	a	string,	a	component,	or	an	Icon	object.	If	it’s	a
string,	that	text	will	be	displayed	in	the	dialog	box.	If	it’s	a	component	or	an	Icon,	that
object	will	be	displayed	in	place	of	a	text	message.

This	method	returns	one	of	five	possible	integer	values,	each	a	class	constant	of
JOptionPane:	YES_OPTION,	NO_OPTION,	CANCEL_OPTION,	OK_OPTION,	or
CLOSED_OPTION.

The	following	example	uses	a	confirm	dialog	box	with	a	text	message	and	stores	the
response	in	the	response	variable:
Click	here	to	view	code	image

int	response	=	JOptionPane.showConfirmDialog(null,
				“Should	I	delete	all	of	your	irreplaceable	personal	files?”);

This	dialog	box	was	shown	in	Figure	10.1.

Another	method	offers	more	options	for	the	dialog	box:	showConfirmDialog
(Component,	Object,	String,	int,	int).	The	first	two	arguments	are	the	same
as	those	in	other	showConfirmDialog()	methods.	The	last	three	arguments	are	the
following:

	A	string	that	will	be	displayed	in	the	dialog	box’s	title	bar.

	An	integer	that	indicates	which	option	buttons	will	be	shown.	It	should	be	equal	to
one	of	the	class	constants	YES_NO_CANCEL_OPTION	or	YES_NO_OPTION.

	An	integer	that	describes	the	kind	of	dialog	box	it	is,	using	the	class	constants
ERROR_MESSAGE,	INFORMATION_MESSAGE,	PLAIN_MESSAGE,
QUESTION_MESSAGE,	or	WARNING_MESSAGE.	(This	argument	is	used	to
determine	which	icon	to	draw	in	the	dialog	box	along	with	the	message.)

For	example:

Click	here	to	view	code	image
int	response	=	JOptionPane.showConfirmDialog(null,
				“Error	reading	file.	Want	to	try	again?”,
				“File	Input	Error”,
				JOptionPane.YES_NO_OPTION,
				JOptionPane.ERROR_MESSAGE);

Figure	10.2	shows	the	resulting	dialog	box.

FIGURE	10.2	A	confirm	dialog	box	with	Yes	and	No	buttons.

Input	Dialog	Boxes

An	input	dialog	box	asks	a	question	and	uses	a	text	field	to	store	the	response.	Figure	10.3
shows	an	example.

FIGURE	10.3	An	input	dialog	box.

The	easiest	way	to	create	an	input	dialog	box	is	with	a	call	to	the
showInputDialog(Component,	Object)	method.	The	arguments	are	the	parent
component	and	the	string,	component,	or	icon	to	display	in	the	box.

The	input	dialog	box	method	call	returns	a	string	that	represents	the	user’s	response.	The
following	statement	creates	the	input	dialog	box	shown	in	Figure	10.3:
Click	here	to	view	code	image

String	response	=	JOptionPane.showInputDialog(null,
				“Enter	your	name:”);

You	also	can	create	an	input	dialog	box	with	the	showInputDialog	(Component,
Object,	String,	int)	method.	The	first	two	arguments	are	the	same	as	the	shorter
method	call,	and	the	last	two	are	the	following:

	The	title	to	display	in	the	dialog	box	title	bar

	One	of	five	class	constants	describing	the	type	of	dialog	box:	ERROR_MESSAGE,
INFORMATION_MESSAGE,	PLAIN_MESSAGE,	QUESTION_MESSAGE,	or
WARNING_MESSAGE

The	following	statement	uses	this	method	to	create	an	input	dialog	box:
Click	here	to	view	code	image

String	response	=	JOptionPane.showInputDialog(null,
				“What	is	your	ZIP	code?”,
				“Enter	ZIP	Code”,
				JOptionPane.QUESTION_MESSAGE);

Message	Dialog	Boxes

A	message	dialog	box	is	a	simple	window	that	displays	information,	as	shown	in	Figure
10.4.

FIGURE	10.4	A	message	dialog	box.

A	message	dialog	box	can	be	created	with	a	call	to	the
showMessageDialog(Component,	Object)	method.	As	with	other	dialog	boxes,
the	arguments	are	the	parent	component	and	the	string,	component,	or	icon	to	display.

Unlike	the	other	dialog	boxes,	message	dialog	boxes	do	not	return	a	response	value.	The
following	statement	creates	the	message	dialog	box	shown	in	Figure	10.4:
Click	here	to	view	code	image

JOptionPane.showMessageDialog(null,
				“The	program	has	been	uninstalled.”);

You	also	can	create	a	message	input	dialog	box	by	calling	the
showMessageDialog(Component,	Object,	String,	int)	method.	The	use	is
identical	to	the	showInputDialog()	method,	with	the	same	arguments,	except	that
showMessageDialog()	does	not	return	a	value.

The	following	statement	creates	a	message	dialog	box	using	this	method:
Click	here	to	view	code	image

JOptionPane.showMessageDialog(null,
				“An	asteroid	has	destroyed	the	Earth.”,
				“Asteroid	Destruction	Alert”,
				JOptionPane.WARNING_MESSAGE);

Option	Dialog	Boxes

The	most	complex	of	the	dialog	boxes	is	the	option	dialog	box,	which	combines	the
features	of	all	the	other	dialog	boxes.	It	can	be	created	with	the
showOptionDialog(Component,	Object,	String,	int,	int,	Icon,
Object[],	Object)	method.

The	arguments	to	this	method	are	as	follows:

	The	parent	component	of	the	dialog	box

	The	text,	icon,	or	component	to	display

	A	string	to	display	in	the	title	bar

	The	type	of	box,	using	the	class	constant	YES_NO_OPTION	or
YES_NO_CANCEL_OPTION,	or	the	value	0	if	other	buttons	will	be	used	instead

	The	icon	to	display,	using	the	class	constants	ERROR_MESSAGE,
INFORMATION_MESSAGE,	PLAIN_MESSAGE,	QUESTION_MESSAGE,	or
WARNING_MESSAGE,	or	the	value	0	if	none	of	these	should	be	used

	An	Icon	object	to	display	instead	of	one	of	the	icons	in	the	preceding	argument

	An	array	of	objects	holding	the	objects	that	represent	the	choices	in	the	dialog	box	if
YES_NO_OPTION	and	YES_NO_CANCEL_OPTION	are	not	being	used

	The	object	representing	the	default	selection	if	YES_NO_OPTION	and
YES_NO_CANCEL_OPTION	are	not	being	used

The	final	two	arguments	offer	a	wide	range	of	possibilities	for	the	dialog	box.	You	can
create	an	array	of	strings	that	holds	the	text	of	each	button	to	display	on	the	dialog	box.

The	following	example	creates	an	option	dialog	box	that	uses	an	array	of	String	objects
for	the	options	in	the	box	and	the	gender[2]	element	as	the	default	selection:
Click	here	to	view	code	image

String[]	gender	=	{
				“Male”,
				“Female”,
				“None	of	Your	Business”
};
int	response	=	JOptionPane.showOptionDialog(null,
				“What	is	your	gender?”,
				“Gender”,
				0,
				JOptionPane.INFORMATION_MESSAGE,
				null,
				gender,
				gender[2]);
System.out.println(“You	chose	“	+	gender[response]);

Figure	10.5	shows	the	resulting	dialog	box.

FIGURE	10.5	An	option	dialog	box.

Using	Dialog	Boxes
The	next	project	shows	a	series	of	dialog	boxes	in	a	working	program.	The	FeedInfo
application	in	the	com.java21days	package	uses	dialog	boxes	to	get	information	from
the	user;	that	information	is	then	placed	into	text	fields	in	the	application’s	main	window.

Enter	Listing	10.1	and	save	the	result.

LISTING	10.1	The	Full	Text	of	FeedInfo.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.GridLayout;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	FeedInfo	extends	JFrame	{
	8:					private	JLabel	nameLabel	=	new	JLabel(“Name:	“,
	9:									SwingConstants.RIGHT);
10:					private	JTextField	name;
11:					private	JLabel	urlLabel	=	new	JLabel(“URL:	“,
12:									SwingConstants.RIGHT);
13:					private	JTextField	url;
14:					private	JLabel	typeLabel	=	new	JLabel(“Type:	“,
15:									SwingConstants.RIGHT);
16:					private	JTextField	type;
17:
18:					public	FeedInfo()	{
19:									super(“Feed	Information”);
20:									setSize(400,	145);
21:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22:									setLookAndFeel();
23:									//	Site	name
24:									String	response1	=	JOptionPane.showInputDialog(null,
25:													“Enter	the	site	name:”);
26:									name	=	new	JTextField(response1,	20);
27:
28:									//	Site	address
29:									String	response2	=	JOptionPane.showInputDialog(null,
30:													“Enter	the	site	address:”);
31:									url	=	new	JTextField(response2,	20);
32:
33:									//	Site	type
34:									String[]	choices	=	{	“Personal”,	“Commercial”,	“Unknown”	};
35:									int	response3	=	JOptionPane.showOptionDialog(null,
36:													“What	type	of	site	is	it?”,
37:													“Site	Type”,
38:													0,
39:													JOptionPane.QUESTION_MESSAGE,
40:													null,
41:													choices,
42:													choices[0]);
43:									type	=	new	JTextField(choices[response3],	20);
44:
45:									setLayout(new	GridLayout(3,	2));
46:									add(nameLabel);
47:									add(name);
48:									add(urlLabel);
49:									add(url);

50:									add(typeLabel);
51:									add(type);
52:									setLookAndFeel();
53:									setVisible(true);
54:					}
55:
56:					private	void	setLookAndFeel()	{
57:									try	{
58:													UIManager.setLookAndFeel(
59:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
60:);
61:													SwingUtilities.updateComponentTreeUI(this);
62:									}	catch	(Exception	e)	{
63:													System.err.println(“Couldn’t	use	the	system	“
64:																	+	“look	and	feel:	“	+	e);
65:									}
66:					}
67:
68:					public	static	void	main(String[]	arguments)	{
69:									FeedInfo	frame	=	new	FeedInfo();
70:					}
71:	}

After	you	fill	in	the	fields	in	each	dialog	box,	you	see	the	application’s	main	window,
which	is	displayed	in	Figure	10.6.	Three	text	fields	have	values	supplied	by	dialog	boxes.

FIGURE	10.6	The	main	window	of	the	FeedInfo	application.

Much	of	this	application	is	boilerplate	code	that	can	be	used	with	any	Swing	application.
The	following	lines	relate	to	the	dialog	boxes:

	In	lines	24–26,	an	input	dialog	box	asks	the	user	to	enter	a	site	name.	This	name	is
used	in	the	constructor	for	a	JTextField	object,	placing	it	in	the	text	field.

	In	lines	29–31,	a	similar	input	dialog	box	asks	for	a	site	address,	which	is	used	in
the	constructor	for	another	JTextField	object.

	In	line	34,	an	array	of	String	objects	called	choices	is	created,	and	three
elements	are	given	values.

	In	lines	35–42,	an	option	dialog	box	asks	for	the	site	type.	The	choices	array	is
the	seventh	argument,	which	sets	up	three	buttons	on	the	dialog	box	labeled	with	the
strings	in	the	array:	"Personal",	"Commercial",	and	"Unknown".	The	last
argument,	choices[0],	designates	the	first	array	element	as	the	default	selection
in	the	dialog	box.

	Line	43	contains	the	response	to	the	option	dialog	box—an	integer	identifying	the
array	element	that	was	selected.	It	is	stored	in	a	JTextField	component	called

type.

The	look	and	feel,	which	is	established	in	the	setLookAndFeel()	method	in	lines	56–
66,	is	called	at	the	beginning	and	end	of	the	frame’s	constructor	method.	Because	you’re
opening	several	dialog	boxes	in	the	constructor,	you	must	set	up	the	look	and	feel	before
opening	them.

This	class	designates	a	look	and	feel	differently	than	previous	examples	today	and	on	Day
9,	“Working	with	Swing.”	The	setLookAndFeel()	method	is	called	within	the
constructor	in	line	22.	To	ensure	that	all	components	in	the	user	interface	reflect	the	look
and	feel,	the	SwingUtilities	class	method
SwingUtilities.updateComponentTreeUI	(Component)	is	called	with
this	as	the	argument,	which	refers	to	the	FeedInfo	object	being	created.

Sliders
Sliders,	which	are	implemented	in	Swing	with	the	JSlider	class,	enable	the	user	to	set	a
number	by	sliding	a	control	within	the	range	of	a	minimum	and	maximum	value.	In	many
cases,	a	slider	can	be	used	for	numeric	input	instead	of	a	text	field.	This	has	the	advantage
of	restricting	input	to	a	range	of	acceptable	values.

Figure	10.7	shows	a	JSlider	component.

FIGURE	10.7	A	JSlider	component.

Sliders	are	horizontal	by	default.	You	can	explicitly	set	the	orientation	using	two	class
constants	of	the	SwingConstants	interface:	HORIZONTAL	or	VERTICAL.

You	can	use	the	following	constructor	methods:

	JSlider(int)—A	slider	with	the	specified	orientation,	a	minimum	value	of	0,
maximum	value	of	100,	and	starting	value	of	50

	JSlider(int,	int)—A	slider	with	the	specified	minimum	value	and
maximum	value

	JSlider(int,	int,	int)—A	slider	with	the	specified	minimum	value,
maximum	value,	and	starting	value

	JSlider(int,	int,	int,	int)—A	slider	with	the	specified	orientation,
minimum	value,	maximum	value,	and	starting	value

Slider	components	have	an	optional	label	that	can	be	used	to	indicate	the	minimum	value,
maximum	value,	and	two	different	sets	of	tick	marks	ranging	between	the	values.	The
default	values	are	a	minimum	of	0,	maximum	of	100,	starting	value	of	50,	and	horizontal
orientation.

The	elements	of	this	label	are	established	by	calling	several	methods	of	JSlider:

	setMajorTickSpacing(int)—Separates	major	tick	marks	by	the	specified
distance.	The	distance	is	not	in	pixels,	but	in	values	between	the	minimum	and
maximum	values	represented	by	the	slider.

	setMinorTickSpacing(int)—Separates	minor	tick	marks	by	the	specified
distance.	Minor	ticks	are	displayed	as	half	the	height	of	major	ticks.

	setPaintTicks(boolean)—Determines	whether	the	tick	marks	should	be
displayed	(true)	or	not	(false).

	setPaintLabels(boolean)—Determines	whether	the	slider’s	numeric	label
should	be	displayed	(true)	or	not	(false).

These	methods	should	be	called	on	the	slider	before	it	is	added	to	a	container.

Listing	10.2	contains	the	Slider.java	source	code;	the	application	was	shown	in
Figure	10.7.

LISTING	10.2	The	Full	Text	of	Slider.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	Slider	extends	JFrame	{
	6:
	7:					public	Slider()	{
	8:									super(“Slider”);
	9:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10:									setLookAndFeel();
11:									JSlider	pick	=	new	JSlider(JSlider.HORIZONTAL,	0,	30,	5);
12:									pick.setMajorTickSpacing(10);
13:									pick.setMinorTickSpacing(1);
14:									pick.setPaintTicks(true);
15:									pick.setPaintLabels(true);
16:									add(pick);
17:									pack();
18:									setVisible(true);
19:					}
20:
21:					private	void	setLookAndFeel()	{
22:									try	{
23:													UIManager.setLookAndFeel(
24:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
25:);
26:													SwingUtilities.updateComponentTreeUI(this);
27:									}	catch	(Exception	e)	{
28:													System.err.println(“Couldn’t	use	the	system	“
29:																	+	“look	and	feel:	“	+	e);
30:									}
31:					}
32:
33:					public	static	void	main(String[]	arguments)	{
34:									Slider	frame	=	new	Slider();
35:					}
36:	}

Lines	12–16	contain	the	code	that’s	used	to	create	a	JSlider	component,	set	up	its	tick
marks	to	be	displayed,	and	add	the	component	to	a	container.	The	rest	of	the	program	is	a
basic	framework	for	an	application	that	consists	of	a	main	JFrame	container	with	no
menus.

Scroll	Panes
In	early	versions	of	Java,	text	areas	and	some	other	components	had	a	built-in	scrollbar.
The	bar	could	be	used	when	the	text	in	the	component	took	up	more	space	than	the
component	could	display.	Scrollbars	could	be	used	in	either	the	vertical	or	horizontal
direction	to	scroll	through	the	text.

One	of	the	most	common	examples	of	scrolling	is	in	a	web	browser,	where	a	scrollbar	can
be	used	on	any	page	bigger	than	the	browser’s	display	area.

Swing	changes	the	rules	for	scrollbars	to	the	following:

	For	a	component	to	be	able	to	scroll,	it	must	be	added	to	a	JScrollPane
container.

	This	JScrollPane	container	is	added	to	a	container	in	place	of	the	scrollable
component.

Scroll	panes	can	be	created	using	the	JScrollPane(Object)	constructor,	where
Object	represents	the	component	that	can	be	scrolled.

The	following	example	creates	a	text	area	in	a	Scroll	pane	called	scroller	and	then
adds	it	to	a	container	called	mainPane:
Click	here	to	view	code	image

JTextArea	textBox	=	new	JTextArea(7,	30);
JScrollPane	scroller	=	new	JScrollPane(textBox);
mainPane.add(scroller);

As	you	work	with	a	Scroll	pane,	it	often	can	be	useful	to	indicate	the	size	you	want	it	to
occupy	on	the	interface.	You	do	so	by	calling	the	setPreferredSize(Dimension)
method	of	the	Scroll	pane	before	adding	it	to	a	container.	The	Dimension	object
represents	the	width	and	height	of	the	preferred	size	in	pixels.

The	following	code	builds	on	the	previous	example	by	setting	the	preferred	size	of
scroller:
Click	here	to	view	code	image

Dimension	pref	=	new	Dimension(350,	100);
scroller.setPreferredSize(pref);

You	should	set	the	dimensions	before	scroller	is	added	to	a	container.

Caution

This	is	one	of	many	situations	in	Swing	where	you	must	do	something	in	the	proper
order	for	it	to	work	correctly.	For	most	components,	the	order	is	the	following:
Create	the	component,	set	up	the	component	fully,	and	add	the	component	to	a
container.

By	default,	a	Scroll	pane	does	not	display	scrollbars	unless	they	are	needed.	If	the
component	inside	the	pane	is	no	larger	than	the	pane	itself,	the	bars	won’t	appear.	In	the
case	of	components	such	as	text	areas,	where	the	component	size	might	increase	as	the
program	is	used,	the	bars	automatically	appear	when	they’re	needed	and	disappear	when
they’re	not.

To	override	this	behavior,	you	can	set	a	policy	for	a	JScrollBar	component	when	you
create	it,	using	one	of	several	constants	in	the	ScrollPaneConstants	interface:

	HORIZONTAL_SCROLLBAR_ALWAYS

	HORIZONTAL_SCROLLBAR_AS_NEEDED

	HORIZONTAL_SCROLLBAR_NEVER

	VERTICAL_SCROLLBAR_ALWAYS

	VERTICAL_SCROLLBAR_AS_NEEDED

	VERTICAL_SCROLLBAR_NEVER

These	class	constants	are	used	with	the	JScrollPane(Object,	int,	int)
constructor,	which	specifies	the	component	in	the	pane,	the	vertical	scrollbar	policy,	and
the	horizontal	scrollbar	policy.	Here’s	an	example:
Click	here	to	view	code	image

JScrollPane	scroller	=	new	JScrollPane(textBox,
				VERTICAL_SCROLLBAR_ALWAYS,
				HORIZONTAL_SCROLLBAR_NEVER);

Toolbars
A	toolbar,	created	in	Swing	with	the	JToolBar	class,	is	a	container	that	groups	several
components	into	a	row	or	column.	These	components	are	most	often	buttons.

Toolbars	are	rows	or	columns	of	components	that	group	the	most	commonly	used	program
options.	Toolbars	often	contain	buttons	and	lists	and	can	be	used	as	an	alternative	to	using
pull-down	menus	or	shortcut	keys.

Toolbars	are	horizontal	by	default,	but	the	orientation	can	be	set	explicitly	with	the
HORIZONTAL	or	VERTICAL	class	variables	of	the	SwingConstants	interface.

Constructor	methods	include	the	following:

	JToolBar()—Creates	a	new	toolbar

	JToolBar(int)—Creates	a	new	toolbar	with	the	specified	orientation

After	you	have	created	a	toolbar,	you	can	add	components	to	it	with	the	toolbar’s
add(Object)	method,	where	Object	represents	the	component	to	place	on	the
toolbar.

Many	programs	that	use	toolbars	enable	the	user	to	move	the	bars.	These	are	called
dockable	toolbars	because	you	can	dock	them	along	an	edge	of	the	screen,	similar	to
docking	a	boat.	Swing	toolbars	also	can	be	docked	into	a	new	window,	separate	from	the
original.

For	best	results,	a	dockable	JToolBar	component	should	be	arranged	in	a	container
using	the	BorderLayout	class,	which	is	a	user	interface	class	called	a	layout	manager.
A	border	layout	divides	a	container	into	five	areas:	north,	south,	east,	west,	and	center.
Each	of	the	directional	components	takes	up	whatever	space	it	needs,	and	the	rest	are
allocated	to	the	center.

The	toolbar	should	be	placed	in	one	of	the	directional	areas	of	the	border	layout.	The	only
other	area	of	the	layout	that	can	be	filled	is	the	center.	(Youl	learn	about	layout	managers
such	as	border	layout	during	tomorrow’s	lesson,	Day	11,	“Arranging	Components	on	a
User	Interface.”)

Figure	10.8	shows	a	dockable	toolbar	occupying	the	south	area	of	a	border	layout.	A	text
area	has	been	placed	in	the	center.

FIGURE	10.8	A	dockable	toolbar	and	a	text	area.

Listing	10.3	shows	the	source	code	used	to	produce	this	application.

LISTING	10.3	The	Full	Text	of	FeedBar.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	FeedBar	extends	JFrame	{
	7:
	8:					public	FeedBar()	{
	9:									super(“FeedBar”);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									setLookAndFeel();
12:									//	create	icons
13:									ImageIcon	loadIcon	=	new	ImageIcon(“load.gif”);

14:									ImageIcon	saveIcon	=	new	ImageIcon(“save.gif”);
15:									ImageIcon	subIcon	=	new	ImageIcon(“subscribe.gif”);
16:									ImageIcon	unsubIcon	=	new	ImageIcon(“unsubscribe.gif”);
17:									//	create	buttons
18:									JButton	load	=	new	JButton(“Load”,	loadIcon);
19:									JButton	save	=	new	JButton(“Save”,	saveIcon);
20:									JButton	sub	=	new	JButton(“Subscribe”,	subIcon);
21:									JButton	unsub	=	new	JButton(“Unsubscribe”,	unsubIcon);
22:									//	add	buttons	to	toolbar
23:									JToolBar	bar	=	new	JToolBar();
24:									bar.add(load);
25:									bar.add(save);
26:									bar.add(sub);
27:									bar.add(unsub);
28:									//	prepare	user	interface
29:									JTextArea	edit	=	new	JTextArea(8,	40);
30:									JScrollPane	scroll	=	new	JScrollPane(edit);
31:									BorderLayout	bord	=	new	BorderLayout();
32:									setLayout(bord);
33:									add(“North”,	bar);
34:									add(“Center”,	scroll);
35:									pack();
37:									setVisible(true);
38:					}
39:
40:					private	void	setLookAndFeel()	{
41:									try	{
42:													UIManager.setLookAndFeel(
43:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
44:);
45:													SwingUtilities.updateComponentTreeUI(this);
46:									}	catch	(Exception	e)	{
47:													System.err.println(“Couldn’t	use	the	system	“
48:																	+	“look	and	feel:	“	+	e);
49:									}
50:					}
51:
52:					public	static	void	main(String[]	arguments)	{
53:									FeedBar	frame	=	new	FeedBar();
54:					}
55:	}

This	application	uses	four	images	to	represent	the	graphics	on	the	buttons—the	same
graphics	used	in	the	IconFrame	project	yesterday.	If	you	haven’t	downloaded	them	yet,
they	are	available	on	the	book’s	official	website	at	www.java21days.com	on	the	Day	10
page.	You	also	can	use	graphics	from	your	own	computer.

Four	ImageIcon	objects	are	created	from	the	four	graphics	in	lines	13–16,	and	then	they
are	used	to	create	buttons	in	lines	18–21.	A	JToolbar	is	created	in	line	23,	and	the
buttons	are	added	to	it	in	lines	24–27.

The	toolbar	in	this	application	starts	at	the	top	edge	of	the	frame,	but	it	can	be	moved.	The
component	can	be	grabbed	by	its	handle—the	area	immediately	to	the	left	of	the	Load
button	shown	in	Figure	10.8.	If	you	drag	it	within	the	window,	you	can	dock	it	along
different	edges	of	the	application	window.	When	you	release	the	toolbar,	the	application	is
rearranged	using	the	border	layout	manager.	You	also	can	drag	the	toolbar	outside	the
application	window.

http://www.java21days.com

If	the	toolbar	has	been	dragged	to	its	own	window,	when	the	frame	is	closed,	the	toolbar
also	will	close.

Although	toolbars	are	most	commonly	used	with	graphical	buttons,	they	can	contain
textual	buttons,	combo	boxes,	and	other	components.

Progress	Bars
Progress	bars	are	components	used	to	show	how	much	time	is	left	before	a	task	is
complete.

Progress	bars	are	implemented	in	Swing	through	the	JProgressBar	class.	Figure	10.9
shows	a	Java	application	that	uses	this	component.

FIGURE	10.9	A	progress	bar	in	a	frame.

Progress	bars	are	used	to	track	the	progress	of	a	task	that	can	be	represented	numerically.
They	are	created	by	specifying	a	minimum	and	a	maximum	value	that	represent	the	points
at	which	the	task	is	beginning	and	ending.

Consider	a	software	program	that	consists	of	335	files	when	it	is	installed	on	a	computer.
This	is	a	good	example	of	a	task	that	can	be	numerically	quantified.	The	number	of	files
transferred	can	be	used	to	monitor	the	progress	of	the	task.	The	minimum	value	is	0,	and
the	maximum	value	is	335.

Constructor	methods	include	the	following:

	JProgressBar()—Creates	a	new	progress	bar

	JProgressBar(int,	int)—Creates	a	new	progress	bar	with	the	specified
minimum	value	and	maximum	value

	JProgressBar(int,	int,	int)—Creates	a	new	progress	bar	with	the
specified	orientation,	minimum	value,	and	maximum	value

The	orientation	of	a	progress	bar	can	be	established	with	the
SwingConstants.VERTICAL	and	SwingConstants.HORIZONTAL	class
constants.	Progress	bars	are	horizontal	by	default.

You	also	can	set	the	minimum	and	maximum	values	by	calling	the	progress	bar’s
setMinimum(int)	and	setMaximum(int)	values	with	the	indicated	values.

To	update	a	progress	bar,	you	call	its	setValue(int)	method	with	a	value	indicating
how	far	along	the	task	is	at	that	moment.	This	value	should	be	somewhere	between	the
minimum	and	maximum	values	established	for	the	bar.	The	following	example	tells	the
install	progress	bar	in	the	previous	example	of	a	software	installation	how	many	files
have	been	uploaded	thus	far:
Click	here	to	view	code	image

int	filesDone	=	getNumberOfFiles();

install.setValue(filesDone);

In	this	example,	the	getNumberOfFiles()	method	represents	some	code	that	would
be	used	to	keep	track	of	how	many	files	have	been	copied	so	far	during	the	installation.
When	this	value	is	passed	to	the	progress	bar	by	the	setValue()	method,	the	bar	is
immediately	updated	to	represent	the	percentage	of	the	task	that	has	been	completed.

Progress	bars	often	include	a	text	label	in	addition	to	the	graphic	of	an	empty	box	filling
up.	This	label	displays	the	percentage	of	the	task	that	has	been	completed.	You	can	set	it
up	for	a	bar	by	calling	the	setStringPainted(boolean)	method	with	a	value	of
true.	A	false	argument	turns	off	this	label.

Listing	10.4	contains	ProgressMonitor,	the	application	shown	at	the	beginning	of	this
section	in	Figure	10.9.

LISTING	10.4	The	Full	Text	of	ProgressMonitor.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	ProgressMonitor	extends	JFrame	{
	7:
	8:					JProgressBar	current;
	9:					JTextArea	out;
10:					JButton	find;
11:					int	num	=	0;
12:
13:					public	ProgressMonitor()	{
14:									super(“Progress	Monitor”);
15:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16:									setLookAndFeel();
17:									setSize(205,	68);
18:									setLayout(new	FlowLayout());
19:									current	=	new	JProgressBar(0,	2000);
20:									current.setValue(0);
21:									current.setStringPainted(true);
22:									add(current);
23:					}
24:
25:					public	void	iterate()	{
26:									while	(num	<	2000)	{
27:													current.setValue(num);
28:													try	{
29:																	Thread.sleep(1000);
30:													}	catch	(InterruptedException	e)	{	}
31:													num	+=	95;
32:									}
33:					}
34:
35:					private	void	setLookAndFeel()	{
36:									try	{
37:													UIManager.setLookAndFeel(
38:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
39:);
40:													SwingUtilities.updateComponentTreeUI(this);
41:									}	catch	(Exception	e)	{

42:													System.err.println(“Couldn’t	use	the	system	“
43:																	+	“look	and	feel:	“	+	e);
44:									}
45:					}
46:
47:					public	static	void	main(String[]	arguments)	{
48:									ProgressMonitor	frame	=	new	ProgressMonitor();
49:									frame.setVisible(true);
50:									frame.iterate();
51:				}
52:	}

The	ProgressMonitor	application	uses	a	progress	bar	to	track	the	value	of	the	num
variable.	The	progress	bar	is	created	in	line	19	with	a	minimum	value	of	0	and	a	maximum
value	of	2,000.

The	iterate()	method	in	lines	25–33	loops	while	num	is	less	than	2,000	and	increases
num	by	95	each	iteration.	The	progress	bar’s	setValue()	method	is	called	in	line	27	of
the	loop	with	num	as	an	argument,	causing	the	bar	to	use	that	value	when	charting
progress.

Using	a	progress	bar	is	a	way	to	make	a	program	more	user-friendly	when	it	will	be	busy
for	more	than	a	few	seconds.	Software	users	like	progress	bars	because	they	estimate	how
much	more	time	something	will	take.

Progress	bars	also	provide	another	essential	piece	of	information:	proof	that	the	program	is
still	running	and	has	not	crashed.

Menus
One	way	you	can	enhance	a	frame’s	usability	is	to	give	it	a	menu	bar,	a	series	of	pull-
down	menus	used	to	perform	tasks.	Menus	often	duplicate	the	same	tasks	you	could
accomplish	by	using	buttons	and	other	user	interface	components,	giving	users	two	ways
to	get	work	done.

Menus	in	Java	are	supported	by	three	components	that	work	in	conjunction	with	each
other:

	JMenuItem—An	item	on	a	menu

	JMenu—A	drop-down	menu	that	contains	one	or	more	JMenuItem	components,
other	interface	components,	and	separators—lines	displayed	between	items

	JMenuBar—A	container	that	holds	one	or	more	JMenu	components	and	displays
their	names

A	JMenuItem	component	is	like	a	button	and	can	be	set	up	using	the	same	constructor
methods	as	a	JButton	component.	Call	it	with	JMenuItem(String)	for	a	text	item,
JMenuItem(Icon)	for	an	item	that	displays	a	graphics	file,	or
JMenuItem(String,	Icon)	for	both.

The	following	statements	create	seven	menu	items:
Click	here	to	view	code	image

JMenuItem	j1	=	new	JMenuItem(“Open“);
JMenuItem	j2	=	new	JMenuItem(“Save“);
JMenuItem	j3	=	new	JMenuItem(“Save	as	Template”);
JMenuItem	j4	=	new	JMenuItem(“Page	Setup”);
JMenuItem	j5	=	new	JMenuItem(“Print”);
JMenuItem	j6	=	new	JMenuItem(“Use	as	Default	Message	Style”);
JMenuItem	j7	=	new	JMenuItem(“Close”);

A	JMenu	container	holds	all	the	menu	items	for	a	drop-down	menu.	To	create	it,	call	the
JMenu(String)	constructor	with	the	name	of	the	menu	as	an	argument.	This	name
appears	on	the	menu	bar.

After	you	have	created	a	JMenu	container,	call	its	add(JMenuItem)	to	add	a	menu
item	to	it.	New	items	are	placed	at	the	end	of	the	menu.

The	item	you	put	on	a	menu	doesn’t	have	to	be	a	menu	item.	Call	the	add(Component)
method	with	a	user	interface	component	as	the	argument.	One	that	often	appears	on	a
menu	is	a	check	box	(the	JCheckBox	class	in	Java).

To	add	a	line	separator	to	the	end	of	the	menu,	call	the	addSeparator()	method.
Separators	often	are	used	to	visually	group	several	related	items	on	a	menu.

You	also	can	add	text	to	a	menu	that	serves	as	a	label	of	some	kind.	Call	the
add(String)	method	with	the	text	as	an	argument.

Using	the	seven	menu	items	from	the	preceding	example,	the	following	statements	create
a	menu	and	fill	it	with	all	those	items	and	three	separators:

JMenu	m1	=	new	JMenu(“File”);
m1.add(j1);
m1.add(j2);
m1.add(j3);
m1.addSeparator();
m1.add(j4);
m1.add(j5);
m1.addSeparator();
m1.add(j6);
m1.addSeparator();
m1.add(j7);

A	JMenuBar	container	holds	one	or	more	JMenu	containers	and	displays	each	of	their
names.	The	most	common	place	to	see	a	menu	bar	is	directly	below	an	application’s	title
bar.

To	create	a	menu	bar,	call	the	JMenuBar()	constructor	method	with	no	arguments.	Add
menus	to	the	end	of	a	bar	by	calling	its	add(JMenu)	method.

After	you	have	created	all	your	items,	added	them	to	menus,	and	added	the	menus	to	a	bar,
you’re	ready	to	add	them	to	a	frame.	Call	the	frame’s	setJMenuBar(JMenuBar)
method.

The	following	statement	finishes	the	current	example	by	creating	a	menu	bar,	adding	a
menu	to	it,	and	then	placing	the	bar	on	a	frame	called	gui:

JMenuBar	bar	=	new	JMenuBar();
bar.add(m7);
gui.setJMenuBar(bar);

Figure	10.10	shows	what	this	menu	looks	like	on	an	otherwise	empty	menu	bar.

FIGURE	10.10	A	frame	with	a	menu	bar.

Although	you	can	open	and	close	a	menu	and	select	items,	nothing	happens	in	response.
You’ll	learn	how	to	receive	user	input	for	this	component	and	others	during	Day	12,
“Responding	to	User	Input.”

Listing	10.5	is	an	expanded	version	of	the	FeedBar	project,	adding	a	menu	bar	that	holds
one	menu	and	four	individual	items.

LISTING	10.5	The	Full	Text	of	FeedBar2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	FeedBar2	extends	JFrame	{
	7:
	8:					public	FeedBar2()	{
	9:									super(“FeedBar	2”);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									setLookAndFeel();
12:									//	create	icons
13:									ImageIcon	loadIcon	=	new	ImageIcon(“load.gif”);
14:									ImageIcon	saveIcon	=	new	ImageIcon(“save.gif”);
15:									ImageIcon	subIcon	=	new	ImageIcon(“subscribe.gif”);
16:									ImageIcon	unsubIcon	=	new	ImageIcon(“unsubscribe.gif”);
17:									//	create	buttons
18:									JButton	load	=	new	JButton(“Load”,	loadIcon);
19:									JButton	save	=	new	JButton(“Save”,	saveIcon);
20:									JButton	sub	=	new	JButton(“Subscribe”,	subIcon);
21:									JButton	unsub	=	new	JButton(“Unsubscribe”,	unsubIcon);
22:									//	add	buttons	to	toolbar
23:									JToolBar	bar	=	new	JToolBar();
24:									bar.add(load);
25:									bar.add(save);
26:									bar.add(sub);
27:									bar.add(unsub);
28:									//	create	menu
29:									JMenuItem	j1	=	new	JMenuItem(“Load”);
30:									JMenuItem	j2	=	new	JMenuItem(“Save”);
31:									JMenuItem	j3	=	new	JMenuItem(“Subscribe”);

32:									JMenuItem	j4	=	new	JMenuItem(“Unsubscribe”);
33:									JMenuBar	menubar	=	new	JMenuBar();
34:									JMenu	menu	=	new	JMenu(“Feeds”);
35:									menu.add(j1);
36:									menu.add(j2);
37:									menu.addSeparator();
38:									menu.add(j3);
39:									menu.add(j4);
40:									menubar.add(menu);
41:									//	prepare	user	interface
42:									JTextArea	edit	=	new	JTextArea(8,	40);
43:									JScrollPane	scroll	=	new	JScrollPane(edit);
44:									BorderLayout	bord	=	new	BorderLayout();
45:									setLayout(bord);
46:									add(“North”,	bar);
47:									add(“Center”,	scroll);
48:									setJMenuBar(menubar);
49:									pack();
50:									setVisible(true);
51:					}
52:
53:					private	void	setLookAndFeel()	{
54:									try	{
55:													UIManager.setLookAndFeel(
56:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
57:);
58:													SwingUtilities.updateComponentTreeUI(this);
59:									}	catch	(Exception	e)	{
60:													System.err.println(“Couldn’t	use	the	system	“
61:																	+	“look	and	feel:	“	+	e);
62:									}
63:					}
64:
65:					public	static	void	main(String[]	arguments)	{
66:									FeedBar2	frame	=	new	FeedBar2();
67:					}
68:	}

This	application	creates	the	menu	bar	in	lines	29–40	and	adds	it	to	the	frame	in	line	48.
Figure	10.10	shows	the	application	running.

Tabbed	Panes
Tabbed	panes,	a	group	of	stacked	panels	in	which	only	one	panel	can	be	viewed	at	a	time,
are	implemented	in	Swing	by	the	JTabbedPane	class.

To	view	a	panel,	you	click	the	tab	that	contains	its	name.	Tabs	can	be	arranged
horizontally	across	the	top	or	bottom	of	the	component	or	vertically	along	the	left	or	right
side.

Tabbed	panes	are	created	with	the	following	three	constructor	methods:

	JTabbedPane()—Creates	a	vertical	tabbed	pane	along	the	top	that	does	not
scroll

	JTabbedPane(int)—Creates	a	tabbed	pane	that	does	not	scroll	and	has	the
specified	placement

	JTabbedPane(int,	int)—Creates	a	tabbed	pane	with	the	specified	placement

(first	argument)	and	scrolling	policy	(second	argument)

The	placement	of	a	tabbed	pane	is	the	position	where	its	tabs	are	displayed	in	relation	to
the	panels.	Use	one	of	four	class	variables	as	the	argument	to	the	constructor:
JTabbedPane.TOP,	JTabbedPane.BOTTOM,	JTabbedPane.LEFT,	or
JTabbedPane.RIGHT.

The	scrolling	policy	determines	how	tabs	will	be	displayed	when	there	are	more	tabs	than
the	interface	can	hold.	A	tabbed	pane	that	does	not	scroll	displays	extra	tabs	on	their	own
line,	which	can	be	set	up	using	the	JTabbedPane.WRAP_TAB_LAYOUT	class	variable.
A	tabbed	pane	that	scrolls	displays	scrolling	arrows	beside	the	tabs.	This	can	be	set	up
with	JTabbedPane.SCROLL_TAB_LAYOUT.

After	you	create	a	tabbed	pane,	you	can	add	components	to	it	by	calling	the	pane’s
addTab(String,	Component)	method.	The	String	argument	will	be	used	as	the
tab’s	label.	The	second	argument	is	the	component	that	will	make	up	one	of	the	tabs	on	the
pane.	It’s	common	but	not	required	to	use	a	JPanel	object	for	this	purpose.

The	TabPanels	application	in	Listing	10.6	displays	a	pane	with	five	tabs,	each	holding
its	own	panel.

LISTING	10.6	The	Full	Text	of	TabPanels.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	TabPanels	extends	JFrame	{
	7:
	8:					public	TabPanels()	{
	9:									super(“Tabbed	Panes”);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									setLookAndFeel();
12:									setSize(480,	218);
13:									JPanel	mainSettings	=	new	JPanel();
14:									JPanel	advancedSettings	=	new	JPanel();
15:									JPanel	privacySettings	=	new	JPanel();
16:									JPanel	emailSettings	=	new	JPanel();
17:									JPanel	securitySettings	=	new	JPanel();
18:									JTabbedPane	tabs	=	new	JTabbedPane();
19:									tabs.addTab(“Main”,	mainSettings);
20:									tabs.addTab(“Advanced”,	advancedSettings);
21:									tabs.addTab(“Privacy”,	privacySettings);
22:									tabs.addTab(“E-mail”,	emailSettings);
23:									tabs.addTab(“Security”,	securitySettings);
24:									add(tabs);
25:									setVisible(true);
26:					}
27:
28:					private	void	setLookAndFeel()	{
29:									try	{
30:													UIManager.setLookAndFeel(
31:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
32:);
33:													SwingUtilities.updateComponentTreeUI(this);

34:									}	catch	(Exception	e)	{
35:													System.err.println(“Couldn’t	use	the	system	“
36:																	+	“look	and	feel:	“	+	e);
37:									}
38:					}
39:
40:					public	static	void	main(String[]	arguments)	{
41:									TabPanels	frame	=	new	TabPanels();
42:					}
43:	}

Five	panels	are	created	in	lines	13–17.	A	tabbed	pane	is	created,	and	then	the	panels	are
added	to	each	tab	in	lines	18–23.	Each	panel	can	hold	its	own	user	interface	components.

Figure	10.11	shows	the	application	running.

FIGURE	10.11	A	tabbed	pane	with	five	tabs.

Note

The	TOP,	BOTTOM,	LEFT,	and	RIGHT	constants	used	in	JTabbedPane
constructors	are	part	of	the	SwingConstants	interface	in	the	javax.swing
package.	The	interface	contains	a	set	of	integer	constants	that	help	position	and
align	components.

Summary
You	now	know	how	to	paint	a	user	interface	onto	a	Java	application	window	using	the
components	of	the	Swing	package.

Swing	includes	classes	for	many	of	the	buttons,	bars,	lists,	and	fields	you	would	expect	to
see	on	a	program.	It	also	includes	more	advanced	components,	such	as	sliders,	dialog
boxes,	progress	bars,	and	menu	bars.	You	implement	interface	components	by	creating	an
instance	of	their	class	and	adding	it	to	a	container	such	as	a	frame.	You	use	the	container’s
add()	method	or	a	similar	method	specific	to	the	container,	such	as	the	tabbed	pane’s
addTab()	method.

Today,	you	developed	components	and	added	them	to	an	interface.	During	the	next	two
days,	you	will	learn	about	two	tasks	required	to	make	a	graphical	interface	usable.	You
will	see	how	to	arrange	components	to	form	a	whole	interface	and	how	to	receive	input
from	a	user	through	these	components.

Swing	offers	a	lot	more	user	interface	components	than	the	ones	covered	today	and
yesterday.	Visit	Oracle’s	Javadoc	site	at	http://docs.oracle.com/javase/8/docs/api	and	click
the	javax.swing	package	link	to	explore	these	classes	further.

Q&A
Q	Can	an	application	be	created	without	Swing?

A	Certainly.	Swing	is	just	an	expansion	on	the	Abstract	Windowing	Toolkit,	so	you
could	use	only	AWT	classes	to	design	your	interface	and	receive	input	from	a	user.
But	there’s	no	comparison	between	Swing’s	capabilities	and	those	offered	by	the
AWT.	With	Swing,	you	can	use	many	more	components,	control	them	in	more
sophisticated	ways,	and	count	on	better	performance	and	more	reliability.

Java	includes	an	alternative	to	Swing	called	JavaFX	that	had	the	original	design	goal
of	replacing	it	in	a	future	release	of	the	language.	JavaFX	is	designed	for	the
creation	of	desktop	applications,	mobile	applications,	and	Rich	Internet	Applications
(RIA).	JavaFX	includes	its	own	user	interface	components	and	support	for
animation,	3D	graphics,	and	HTML	5.	The	popularity	of	Android	for	Java	mobile
development	has	undercut	some	of	the	rationale	for	JavaFX,	so	it	appears	Swing	will
continue	to	be	the	most	widely	implemented	GUI	platform	in	Java.

Other	user	interface	libraries	also	extend	or	compete	with	Swing.	One	of	the	most
popular	is	the	Standard	Widget	Toolkit	(SWT),	an	open	source	GUI	library	created
by	the	Eclipse	project.	The	SWT	offers	components	that	appear	and	behave	like	the
interface	components	offered	by	each	operating	system.	For	more	information,	visit
www.eclipse.org/swt.

Q	In	the	Slider	application,	what	does	the	pack()	statement	do?

A	Every	interface	component	has	a	preferred	size,	although	this	often	is	disregarded
by	the	layout	manager	used	to	arrange	the	component	within	a	container.	Calling	a
frame	or	window’s	pack()	method	causes	it	to	be	resized	to	fit	the	preferred	size
of	the	components	it	contains.	Because	the	Slider	application	does	not	set	a	size	for
the	frame,	calling	pack()	sets	it	to	an	adequate	size	before	the	frame	is	displayed.

Q	When	I	try	to	create	a	tabbed	pane,	all	that	appears	are	the	tabs—the	panels
themselves	are	not	visible.	What	can	I	do	to	correct	this?

A	Tabbed	panes	won’t	work	correctly	until	their	contents	have	been	fully	set	up	with
components	inside	them.	If	a	tab’s	panes	are	empty,	nothing	appears	below	or	beside
the	tabs.	Make	sure	that	the	panels	you	are	putting	into	the	tabs	display	all	their
components.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	user	interface	component	is	common	in	software	installation	programs?

http://docs.oracle.com/javase/8/docs/api
http://www.eclipse.org/swt

A.	Sliders

B.	Progress	bars

C.	Dialog	boxes

2.	Which	Java	package	includes	a	class	for	clickable	buttons?

A.	java.awt	(Abstract	Windowing	Toolkit)

B.	javax.swing	(Swing)

C.	Both

3.	Which	user	interface	component	can	be	picked	up	and	moved	around?

A.	JSlider

B.	JToolBar

C.	Both

Answers
1.	B.	Progress	bars	are	useful	when	used	to	display	the	progress	of	a	file-copying	or
file-extracting	activity.

2.	C.	Swing	duplicates	all	the	simple	user	interface	components	included	in	the
Abstract	Windowing	Toolkit.

3.	B.	The	toolbar	can	be	dragged	to	the	top,	right,	left,	or	bottom	of	the	interface	and
also	out	of	the	interface.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.awt.*;
import	javax.swing.*;

public	class	AskFrame	extends	JFrame	{
				public	AskFrame()	{
								setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
								JSlider	value	=	new	JSlider(0,	255,	100);
								add(value);
								setSize(450,	150);
								setVisible(true);
								super();
				}

				public	static	void	main(String[]	arguments)	{
								AskFrame	af	=	new	AskFrame();
				}
}

What	will	happen	when	you	attempt	to	compile	and	run	this	source	code?

A.	It	compiles	without	error	and	runs	correctly.

B.	It	compiles	without	error	but	does	not	display	anything	in	the	frame.

C.	It	does	not	compile	because	of	the	super()	statement.

D.	It	does	not	compile	because	of	the	add()	statement.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	10
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	an	input	dialog	box	that	can	be	used	to	set	the	title	of	the	frame	that	loaded
the	dialog	box.

2.	Create	a	modified	version	of	the	ProgressMonitor	application	that	also	displays	the
value	of	the	num	variable	in	a	text	field.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	11.	Arranging	Components	on	a	User	Interface

If	designing	a	graphical	user	interface	(GUI)	were	comparable	to	painting,	currently	you
could	produce	only	one	kind	of	art:	abstract	expressionism.	You	can	put	components	on	an
interface,	but	you	can’t	control	where	they	go.

To	arrange	the	components	of	a	user	interface	in	Java,	you	must	use	a	set	of	classes	called
layout	managers.

Today,	you	will	learn	how	to	use	layout	managers	to	arrange	components	in	an	interface.
You	will	take	advantage	of	the	flexibility	of	Java’s	graphical	user	interface	capabilities,
which	were	designed	to	be	presentable	on	the	many	platforms	that	support	the	language.

You	also	will	learn	how	to	put	several	layout	managers	to	work	on	the	same	interface.	This
approach	is	for	the	many	times	when	one	layout	manager	doesn’t	suit	the	exact	interface
you	seek	to	design.

Basic	Interface	Layout
As	you	learned	yesterday,	a	GUI	designed	with	Swing	is	a	fluid	thing.	Resizing	a	window
can	wreak	havoc	on	your	interface,	because	components	move	to	places	on	a	container
that	you	might	not	have	intended.

This	fluidity	is	a	necessary	part	of	Java’s	support	for	different	platforms,	where	there	are
subtle	differences	in	how	each	platform	displays	things	such	as	buttons,	scrollbars,	and
other	parts	of	a	user	interface.

With	some	programming	languages,	a	component’s	location	on	a	window	is	precisely
defined	by	its	(x,y)	coordinate.	Some	Java	development	tools	allow	similar	control	over	an
interface	through	the	use	of	their	own	windowing	classes	(and	there’s	a	way	to	do	that	in
Java).

When	using	Swing,	a	programmer	gains	more	control	over	the	layout	of	an	interface	by
using	layout	managers.

The	platform-independent	nature	of	Swing	provides	flexibility	at	the	cost	of	slower
performance	and	a	user	interface	look	and	feel	that	doesn’t	closely	match	the	native	look
and	feel	of	the	operating	system.

Laying	Out	an	Interface
A	layout	manager	determines	how	components	will	be	arranged	when	they	are	added	to	a
container.

The	default	layout	manager	for	panels	is	the	FlowLayout	class.	This	class	lets
components	flow	from	left	to	right	in	the	order	in	which	they	are	added	to	a	container.
When	there’s	no	more	room,	a	new	row	of	components	begins	immediately	below	the
first,	and	the	left-to-right	order	continues.

Java	includes	a	bunch	of	general-purpose	layout	managers:	BorderLayout,
BoxLayout,	CardLayout,	FlowLayout,	and	GridLayout.	To	create	a	layout

manager	for	a	container,	first	call	its	constructor	to	create	an	instance	of	the	class,	as	in
this	example:
Click	here	to	view	code	image

FlowLayout	flo	=	new	FlowLayout();

After	you	create	a	layout	manager,	you	designate	it	as	the	layout	manager	for	a	container
by	using	the	container’s	setLayout()	method.	The	layout	manager	must	be	set	before
any	components	are	added	to	the	container.	If	no	layout	manager	is	specified,	the
container’s	default	layout	is	used.	The	default	is	FlowLayout	for	panels	and
BorderLayout	for	frames.

The	following	statements	represent	the	starting	point	for	a	frame	that	uses	a	layout
manager	to	control	the	arrangement	of	all	the	components	that	will	be	added	to	the	frame:
Click	here	to	view	code	image

import	java.awt.*;
import	javax.swing.*;

public	class	Starter	extends	JFrame	{

				public	Starter()	{
								super(“Example	Frame”);
								FlowLayout	manager	=	new	FlowLayout();
								setLayout(manager);
								//	add	components	here
				}
}

After	the	layout	manager	is	set,	you	can	start	adding	components	to	the	container	it
manages.	For	some	of	the	layout	managers,	such	as	FlowLayout,	the	order	in	which
components	are	added	is	significant.	You’ll	see	this	as	you	work	with	each	of	the
managers.

Flow	Layout
The	FlowLayout	class	in	the	java.awt	package	is	the	simplest	layout	manager.	It
lays	out	components	in	rows	in	the	same	way	that	words	are	laid	out	on	a	page	in	English
—from	left	to	right	until	there’s	no	more	room	at	the	right	edge,	and	then	on	to	the	left
edge	on	the	next	row.

By	default,	the	components	in	each	row	are	centered	when	you	use	the	FlowLayout	()
constructor	with	no	arguments.	If	you	want	the	components	to	be	aligned	along	the	left	or
right	edge	of	the	container,	you	can	use	the	FlowLayout.LEFT	or
FlowLayout.RIGHT	class	variable	as	the	constructor’s	only	argument,	as	in	the
following	statement:
Click	here	to	view	code	image

FlowLayout	righty	=	new	FlowLayout(FlowLayout.RIGHT);

The	FlowLayout.CENTER	class	variable	specifies	a	centered	alignment	for
components.

Note

If	you	need	to	align	components	for	a	non-English-speaking	audience	where	left-to-
right	order	does	not	make	sense,	you	can	use	the	FlowLayout.LEADING	and
FlowLayout.TRAILING	variables.	They	set	justification	to	the	side	of	either	the
first	component	in	a	row	or	the	last,	respectively.

The	Alphabet	application,	shown	in	Listing	11.1,	displays	six	buttons	arranged	by	the	flow
layout	manager.	Because	the	FlowLayout.LEFT	class	variable	is	used	in	the
FlowLayout()	constructor,	the	components	are	lined	up	along	the	left	side	of	the
application	window.	Create	this	application	in	NetBeans	in	the	com.java21days
package.

LISTING	11.1	The	Full	Text	of	Alphabet.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	Alphabet	extends	JFrame	{
	8:
	9:					public	Alphabet()	{
10:									super(“Alphabet”);
11:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:									setLookAndFeel();
13:									setSize(360,	120);
14:									FlowLayout	lm	=	new	FlowLayout(FlowLayout.LEFT);
15:									setLayout(lm);
16:									JButton	a	=	new	JButton(“Alibi”);
17:									JButton	b	=	new	JButton(“Burglar”);
18:									JButton	c	=	new	JButton(“Corpse”);
19:									JButton	d	=	new	JButton(“Deadbeat”);
20:									JButton	e	=	new	JButton(“Evidence”);
21:									JButton	f	=	new	JButton(“Fugitive”);
22:									add(a);
23:									add(b);
24:									add(c);
25:									add(d);
26:									add(e);
27:									add(f);
28:									setVisible(true);
29:					}
30:
31:					private	void	setLookAndFeel()	{
32:									try	{
33:													UIManager.setLookAndFeel(
34:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
35:);
36:													SwingUtilities.updateComponentTreeUI(this);
37:									}	catch	(Exception	exc)	{
38:													System.err.println(“Couldn’t	use	the	system	“
39:																	+	“look	and	feel:	“	+	exc);
40:									}

41:					}
42:
43:					public	static	void	main(String[]	arguments)	{
44:									Alphabet	frame	=	new	Alphabet();
45:					}
46:	}

Figure	11.1	shows	the	application	running.

FIGURE	11.1	Six	buttons	arranged	by	a	flow	layout	manager.

The	Alphabet	application	creates	a	flow	layout	manager	in	line	14	and	sets	it	to	manage
the	frame	in	line	15.	The	buttons	added	to	the	frame	in	lines	22–27	are	arranged	by	this
manager.

The	manager	uses	the	default	gap	of	5	pixels	between	each	component	on	a	row	and	a	gap
of	5	pixels	between	each	row.	You	can	change	the	horizontal	and	vertical	gap	between
components	with	some	extra	arguments	to	the	FlowLayout()	constructor	or	by	calling
flow	layout’s	setVgap(int)	and	setHgap(int)	methods	with	the	desired	vertical
or	horizontal	gap.

The	FlowLayout(int,	int,	int)	constructor	takes	the	following	three	arguments,
in	order:

	The	alignment,	which	must	be	one	of	five	class	variables	of	FlowLayout:
CENTER,	LEFT,	RIGHT,	LEADING,	or	TRAILING

	The	horizontal	gap	between	components,	in	pixels

	The	vertical	gap,	in	pixels

The	following	constructor	creates	a	flow	layout	manager	with	centered	components,	a
horizontal	gap	of	30	pixels,	and	a	vertical	gap	of	10	pixels:
Click	here	to	view	code	image

FlowLayout	flo	=	new	FlowLayout(FlowLayout.CENTER,	30,	10);

Box	Layout
The	next	layout	manager	can	be	used	to	stack	components	from	top	to	bottom	or	from	left
to	right.	Box	layout,	managed	by	the	BoxLayout	class	in	the	javax.swing	package,
improves	on	flow	layout	by	ensuring	that	components	always	line	up	vertically	or
horizontally,	regardless	of	how	their	container	is	resized.

A	box	layout	manager	must	be	created	with	two	arguments	to	its	constructor:	the	container
it	will	manage	and	a	class	variable	that	sets	up	vertical	or	horizontal	alignment.

The	alignment,	specified	with	class	variables	of	the	BoxLayout	class,	can	be	X_AXIS

for	left-to-right	horizontal	alignment	or	Y_AXIS	for	top-to-bottom	vertical	alignment.

The	following	code	sets	up	a	panel	to	use	vertical	box	layout:
Click	here	to	view	code	image

JPanel	optionPane	=	new	JPanel();
BoxLayout	box	=	new	BoxLayout(optionPane,	BoxLayout.Y_AXIS);
optionPane.setLayout(box);

Components	added	to	the	container	will	line	up	on	the	specified	axis	and	will	be	displayed
at	their	preferred	sizes.	In	horizontal	alignment,	the	box	layout	manager	attempts	to	give
each	component	the	same	height.	In	vertical	alignment,	the	manager	attempts	to	give	each
one	the	same	width.

The	Stacker	application,	shown	in	Listing	11.2,	contains	a	panel	of	buttons	arranged	with
box	layout.	Create	it	in	NetBeans	in	the	com.java21days	package.

LISTING	11.2	The	Full	Text	of	Stacker.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	Stacker	extends	JFrame	{
	7:					public	Stacker()	{
	8:									super(“Stacker”);
	9:									setSize(430,	150);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									setLookAndFeel();
12:									//	create	top	panel
13:									JPanel	commandPane	=	new	JPanel();
14:									BoxLayout	horizontal	=	new	BoxLayout(commandPane,
15:													BoxLayout.X_AXIS);
16:									commandPane.setLayout(horizontal);
17:									JButton	subscribe	=	new	JButton(“Subscribe”);
18:									JButton	unsubscribe	=	new	JButton(“Unsubscribe”);
19:									JButton	refresh	=	new	JButton(“Refresh”);
20:									JButton	save	=	new	JButton(“Save”);
21:									commandPane.add(subscribe);
22:									commandPane.add(unsubscribe);
23:									commandPane.add(refresh);
24:									commandPane.add(save);
25:									//	create	bottom	panel
26:									JPanel	textPane	=	new	JPanel();
27:									JTextArea	text	=	new	JTextArea(4,	70);
28:									JScrollPane	scrollPane	=	new	JScrollPane(text);
29:									//	put	them	together
30:									FlowLayout	flow	=	new	FlowLayout();
31:									setLayout(flow);
32:									add(commandPane);
33:									add(scrollPane);
34:									setVisible(true);
35:					}
36:
37:					private	void	setLookAndFeel()	{
38:									try	{
39:													UIManager.setLookAndFeel(

40:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
41:);
42:													SwingUtilities.updateComponentTreeUI(this);
43:									}	catch	(Exception	exc)	{
44:													System.err.println(“Couldn’t	use	the	system	“
45:																	+	“look	and	feel:	“	+	exc);
46:									}
47:					}
48:
49:					public	static	void	main(String[]	arguments)	{
50:									Stacker	st	=	new	Stacker();
51:					}
52:	}

When	the	class	is	compiled	and	run,	the	output	should	resemble	Figure	11.2.

FIGURE	11.2	A	user	interface	with	buttons	arranged	with	the	box	layout	manager.

This	application	creates	a	JPanel	container	named	commandPane	in	line	13,	creates	a
box	layout	manager	associated	with	that	pane	in	lines	14–15,	and	sets	that	manager	for	the
panel	in	line	16.

The	panel	of	buttons	along	the	top	edge	of	the	interface	is	stacked	horizontally.	If	the
second	argument	to	the	box	layout	constructor	was	BoxLayout.Y_AXIS,	the	buttons
would	be	arranged	vertically	instead.

Grid	Layout
The	grid	layout	manager	arranges	components	into	a	grid	of	vertical	columns	and
horizontal	rows	like	the	days	on	a	12-month	calendar.	Components	are	added	first	to	the
top	row	of	the	grid,	beginning	with	the	leftmost	grid	cell	and	continuing	to	the	right.	When
all	the	cells	in	the	top	row	are	full,	the	next	component	is	added	to	the	leftmost	cell	in	the
second	row	of	the	grid—if	there	is	a	second	row—and	so	on.

Grid	layout	managers	are	created	with	the	GridLayout	class,	which	belongs	to	the
java.awt	package.	Two	arguments	are	sent	to	the	GridLayout	constructor:	the
number	of	rows	and	the	number	of	columns	in	the	grid.

The	following	statement	creates	a	grid	layout	manager	with	10	rows	and	3	columns:
Click	here	to	view	code	image

GridLayout	gr	=	new	GridLayout(10,	3);

As	with	flow	layout,	you	can	specify	a	vertical	and	horizontal	gap	between	components
with	two	extra	arguments	(or	by	calling	the	setHgap()	or	setVgap()	methods).	The
following	statement	creates	a	grid	layout	with	10	rows	and	3	columns,	a	horizontal	gap	of
5	pixels,	and	a	vertical	gap	of	8	pixels:

Click	here	to	view	code	image
GridLayout	gr2	=	new	GridLayout(10,	3,	5,	8);

The	default	gap	between	components	arranged	in	grid	layout	is	0	pixels	in	both	vertical
and	horizontal	directions.

For	the	next	project,	create	the	Bunch	application	in	the	com.java21days	package,
which	is	shown	in	Listing	11.3.	The	program	creates	a	grid	with	3	rows,	3	columns,	and	a
10-pixel	gap	between	components	in	both	the	vertical	and	horizontal	directions.

LISTING	11.3	The	Full	Text	of	Bunch.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	Bunch	extends	JFrame	{
	8:
	9:					public	Bunch()	{
10:									super(“Bunch”);
11:									setSize(260,	260);
12:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13:									setLookAndFeel();
14:									JPanel	pane	=	new	JPanel();
15:									GridLayout	family	=	new	GridLayout(3,	3,	10,	10);
16:									pane.setLayout(family);
17:									JButton	marcia	=	new	JButton(“Marcia”);
18:									JButton	carol	=	new	JButton(“Carol”);
19:									JButton	greg	=	new	JButton(“Greg”);
20:									JButton	jan	=	new	JButton(“Jan”);
21:									JButton	alice	=	new	JButton(“Alice”);
22:									JButton	peter	=	new	JButton(“Peter”);
23:									JButton	cindy	=	new	JButton(“Cindy”);
24:									JButton	mike	=	new	JButton(“Mike”);
25:									JButton	bobby	=	new	JButton(“Bobby”);
26:									pane.add(marcia);
27:									pane.add(carol);
28:									pane.add(greg);
29:									pane.add(jan);
30:									pane.add(alice);
31:									pane.add(peter);
32:									pane.add(cindy);
33:									pane.add(mike);
34:									pane.add(bobby);
35:									add(pane);
36:									setVisible(true);
37:					}
38:
39:					private	void	setLookAndFeel()	{
40:									try	{
41:													UIManager.setLookAndFeel(
42:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
43:);
44:													SwingUtilities.updateComponentTreeUI(this);
45:									}	catch	(Exception	exc)	{
46:													System.err.println(“Couldn’t	use	the	system	“
47:																	+	“look	and	feel:	“	+	exc);

48:									}
49:					}
50:
51:					public	static	void	main(String[]	arguments)	{
52:									Bunch	frame	=	new	Bunch();
53:					}
54:	}

Figure	11.3	shows	this	application.

FIGURE	11.3	Nine	buttons	arranged	in	a	3×3	grid	layout.

The	Bunch	application	displays	nine	buttons	in	a	grid.	The	buttons	are	added	to	a	pane	in
lines	26–34,	and	the	pane	is	added	to	the	frame	in	line	35.

One	thing	to	note	about	the	buttons	in	Figure	11.3	is	that	they	expanded	to	fill	the	space
available	to	them	in	each	cell.	This	is	an	important	difference	between	grid	layout	and
some	of	the	other	layout	managers,	which	display	components	at	a	much	smaller	size	by
using	the	preferred	size	of	those	components.

Border	Layout
The	layout	managers	introduced	so	far	have	been	fairly	simple.	The	next	one	employs	a
more	complex	arrangement	called	border	layout.

This	layout	is	created	by	using	the	BorderLayout	class	in	the	java.awt	package,
which	divides	a	container	into	five	sections:	north,	south,	east,	west,	and	center.	The	five
areas	in	Figure	11.4	show	how	these	sections	are	arranged.

FIGURE	11.4	Components	arranged	by	a	border	layout	manager.

In	border	layout,	the	components	represented	by	the	four	compass	points	fill	their	sections,
and	the	center	component	gets	all	the	space	that’s	left	over.	Ordinarily,	this	results	in	an
arrangement	with	a	large	central	component	and	four	smaller	components	around	it.	The
preferred	sizes	of	the	components	are	not	followed	by	the	layout	manager.

A	border	layout	is	created	with	either	the	BorderLayout()	or
BorderLayout(int,	int)	constructors.	The	first	constructor	creates	a	border	layout
with	no	gap	between	any	of	the	components.	The	second	constructor	uses	arguments	to
specify	the	horizontal	gap	and	vertical	gap,	in	that	order,	and	setVgap()	and
setHgap()	also	are	available.

After	you	create	a	border	layout	and	set	it	up	as	a	container’s	layout	manager,	components
are	added	using	a	call	to	the	add()	method	that’s	different	from	the	ones	seen	previously:

add(Component,	String)

The	first	argument	is	the	component	that	should	be	added	to	the	container.

The	second	argument	is	a	BorderLayout	class	variable	that	indicates	the	region	of	the
border	layout	to	which	the	component	should	be	assigned.	The	class	variables	NORTH,
SOUTH,	EAST,	WEST,	and	CENTER	can	be	used	for	this	argument.

The	following	statement	adds	a	button	called	quitButton	to	the	north	portion	of	a
border	layout:
Click	here	to	view	code	image

JButton	quitButton	=	new	JButton(“quit”);
add(quitButton,	BorderLayout.NORTH);

The	Border	application,	shown	in	Listing	11.4,	creates	the	GUI	shown	earlier	in	Figure
11.4.	Create	the	Border	class	in	the	com.java21days	package.

LISTING	11.4	The	Full	Text	of	Border.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:

	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	Border	extends	JFrame	{
	7:
	8:					public	Border()	{
	9:									super(“Border”);
10:									setSize(240,	280);
11:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:									setLookAndFeel();
13:									setLayout(new	BorderLayout());
14:									JButton	nButton	=	new	JButton(“North”);
15:									JButton	sButton	=	new	JButton(“South”);
16:									JButton	eButton	=	new	JButton(“East”);
17:									JButton	wButton	=	new	JButton(“West”);
18:									JButton	cButton	=	new	JButton(“Center”);
19:									add(nButton,	BorderLayout.NORTH);
20:									add(sButton,	BorderLayout.SOUTH);
21:									add(eButton,	BorderLayout.EAST);
22:									add(wButton,	BorderLayout.WEST);
23:									add(cButton,	BorderLayout.CENTER);
24:									setVisible(true);
25:					}
26:
27:					private	void	setLookAndFeel()	{
28:									try	{
29:													UIManager.setLookAndFeel(
30:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
31:);
32:													SwingUtilities.updateComponentTreeUI(this);
33:									}	catch	(Exception	exc)	{
34:													System.err.println(“Couldn’t	use	the	system	“
35:																	+	“look	and	feel:	“	+	exc);
36:									}
37:					}
38:
39:					public	static	void	main(String[]	arguments)	{
40:									Border	frame	=	new	Border();
41:					}
42:	}

The	Border	application	is	a	frame	that	sets	its	layout	manager	in	a	new	way	in	line	13.	The
call	to	the	new	BorderLayout()	constructor	returns	a	BorderLayout	object,
which	then	becomes	the	argument	to	the	setLayout()	method.

Line	13	is	equivalent	to	the	following	two	statements:
Click	here	to	view	code	image

BorderLayout	bl	=	new	BorderLayout();
setLayout(bl);

The	advantage	of	the	technique	employed	in	line	13	is	that	there’s	no	need	to	create	a
variable	and	assign	the	BorderLayout	object	to	it.	That	object’s	never	needed	after	the
layout	manager	is	designated	for	the	frame.

The	application	creates	the	five	buttons	in	lines	14–18	and	assigns	them	to	positions	in	the
border	layout	in	lines	19–23.

Tip

When	you	run	the	application,	increase	the	window	size	several	times	to	see	how
the	components	respond.	As	the	window	becomes	larger,	the	center	component
grows	accordingly.	The	other	components	stay	the	same.	This	is	an	advantage	of	the
grid	and	border	layout	managers.

Mixing	Layout	Managers
At	this	point,	you	might	be	wondering	how	Java’s	layout	managers	can	be	used	on	the
GUIs	you	want	to	design	for	your	own	programs.	Choosing	a	layout	manager	is	an
experience	akin	to	Goldilocks	checking	out	the	home	of	the	three	bears:	This	one	is	too
square!	This	one	is	too	disorganized!	This	one	is	too	strange!

To	find	the	layout	that	is	just	right,	you	often	have	to	combine	more	than	one	manager
within	the	same	interface.

You	can	do	so	by	putting	several	containers	inside	a	larger	container	and	giving	each	of
the	smaller	containers	its	own	layout	manager.

The	container	to	use	for	these	smaller	containers	is	the	panel,	which	is	created	from	the
JPanel	class	in	the	javax.swing	package.	Panels	are	simple	containers	used	to	group
components.	Keep	in	mind	two	things	when	working	with	panels:

	The	panel	is	filled	with	components	before	it	is	put	into	a	larger	container.

	The	panel	has	its	own	layout	manager.

Panels	are	created	with	a	simple	call	to	the	constructor	of	the	JPanel	class,	as	shown	in
the	following	example:

JPanel	pane	=	new	JPanel();

You	set	the	layout	method	for	a	panel	by	calling	the	setLayout()	method	on	that
panel.	Here’s	how	to	create	a	layout	manager	and	apply	it	to	a	JPanel	object	called
pane:
Click	here	to	view	code	image

FlowLayout	flo	=	new	FlowLayout();
pane.setLayout(flo);

You	add	components	to	a	panel	by	calling	the	panel’s	add()	method,	which	works	the
same	for	panels	as	it	does	for	other	containers.

The	following	statements	create	a	text	field	and	add	it	to	a	JPanel	object	called	pane:
Click	here	to	view	code	image

JTextField	nameField	=	new	JTextField(80);
pane.add(nameField);

You’ll	see	several	examples	of	panel	use	in	the	rest	of	today’s	applications.

As	you	gain	experience	with	layout	managers,	you	get	a	feel	for	which	ones	to	use	in
specific	situations.	For	instance,	border	layout	is	good	for	putting	a	status	line	at	the

bottom	and	a	toolbar	at	the	top,	and	grid	layout	is	effective	for	rows	and	columns	of	text
fields	and	labels	that	take	the	same	size.

Card	Layout
A	card	layout	manager	differs	from	the	other	layout	managers	because	it	hides	some
components	from	view.	A	card	layout	is	a	group	of	containers	or	components	displayed
one	at	a	time,	in	the	same	way	that	a	blackjack	dealer	reveals	one	card	at	a	time	from	a
deck.	Each	container	in	the	group	is	called	a	card.

If	you	have	used	a	wizard	in	an	installation	program,	you	have	seen	card	layout.	Each	step
in	the	installation	process	has	its	own	card.	Often,	a	Next	button	advances	from	one	card
to	the	next.

The	most	common	way	to	use	a	card	layout	is	to	use	a	panel	container	for	each	card.
Components	are	added	to	the	panels	first,	and	then	the	panels	are	added	to	the	container
that	employs	card	layout.

A	card	layout	is	created	from	the	CardLayout	class	in	the	java.awt	package	with	a
simple	constructor:
Click	here	to	view	code	image

CardLayout	cc	=	new	CardLayout();

The	setLayout()	method	makes	this	the	layout	manager	for	the	container,	as	in	the
following	statement:

setLayout(cc);

After	you	set	a	container	to	use	the	card	layout	manager,	you	must	use	the
add(Component,	String)	method	to	add	components.

The	first	argument	to	the	add()	method	specifies	the	container	or	component	that	serves
as	a	card.	If	it	is	a	container,	all	components	must	have	been	added	to	it	before	the	card	is
added.

The	second	argument	is	a	string	that	names	the	card.	This	can	be	anything	you	want	to	call
the	card,	such	as	"Card	1",	"Card	2",	"Card	3",	or	some	other	naming	scheme.

The	following	statement	adds	a	panel	object	named	options	to	a	container	and	names
this	card	"Options	Card":

add(options,	“Options	Card”);

When	a	container	using	card	layout	is	displayed	for	the	first	time,	the	visible	card	is	the
first	card	added	to	the	container.

You	can	display	subsequent	cards	by	calling	the	show()	method	of	the	layout	manager,
which	takes	two	arguments:

	The	container	holding	all	the	cards

	The	name	of	the	card

The	following	statement	calls	the	show	()	method	of	a	card	layout	manager	called	cc:

cc.show(this,	“Fact	Card”);

The	this	keyword	would	be	used	in	a	frame	governed	by	card	layout.	It	refers	to	the
object	inside	which	the	cc.show()	statement	appears.	In	this	example,	“Fact	Card”	is
the	name	of	the	card	to	reveal.	A	card	is	added	to	the	container	that	has	been	given	this
name.

When	a	card	is	shown,	the	previously	displayed	card	is	hidden	automatically.	Only	one
card	in	a	card	layout	can	be	shown	at	a	time.

In	a	program	that	uses	the	card	layout	manager,	a	card	change	generally	is	triggered	by	a
user’s	action.	For	example,	in	an	installation	program,	a	user	could	choose	a	folder	where
the	program	should	be	saved	and	click	the	Next	button	to	see	the	next	card.

Using	Card	Layout	in	an	Application
The	next	project	demonstrates	both	card	layout	and	the	use	of	different	layout	managers
within	the	same	GUI.

The	SurveyWizard	class	is	a	panel	that	implements	a	wizard	interface:	a	series	of
simple	questions	accompanied	by	a	Next	button	that	is	used	to	see	the	subsequent
question.	The	last	question	has	a	Finish	button	instead	and	is	shown	in	Figure	11.5.

FIGURE	11.5	Using	a	card	layout	for	a	wizard-style	interface.

The	easiest	way	to	implement	a	card-based	layout	is	to	use	panels.	This	project	uses
several	panels:

	The	SurveyWizard	class	is	a	panel	that	holds	all	the	cards.

	The	SurveyPanel	helper	class	is	a	panel	that	holds	one	card.

	Each	SurveyPanel	object	contains	three	panels	stacked	on	top	of	each	other.

The	SurveyWizard	and	SurveyPanel	classes	are	both	panels,	the	easiest	component
to	use	when	working	with	card	layout.	Each	card	is	created	as	a	panel	and	is	added	to	a
containing	panel	that	will	be	used	to	show	them	in	sequence.

This	takes	place	in	the	SurveyWizard()	constructor,	using	two	instance	variables,	a
card	layout	manager,	and	an	array	of	three	SurveyPanel	objects:
Click	here	to	view	code	image

SurveyPanel[]	ask	=	new	SurveyPanel[3];
CardLayout	cards	=	new	CardLayout();

The	constructor	sets	the	class	to	use	the	layout	manager,	creates	each	SurveyPanel
object,	and	then	adds	it	to	the	class:

Click	here	to	view	code	image
setLayout(cards);
String	question1	=	“What	is	your	gender?”;
String[]	resp1	=	{	“female”,	“male”,	“not	telling”	};
ask[0]	=	new	SurveyPanel(question1,	resp1,	2);
add(ask[0],	“Card	0”);

Each	SurveyPanel	object	is	created	with	three	arguments	to	the	constructor:	the	text	of
the	question,	an	array	of	possible	responses,	and	the	element	number	of	the	default	answer.

In	the	preceding	code,	the	question	“What	is	your	gender?”	has	the	responses	“female”,
“male”,	and	“not	telling”.	The	response	at	position	2,	“not	telling”,	is	set	as	the	default.

The	SurveyPanel	constructor	uses	a	label	component	to	hold	the	question	and	an	array
of	radio	buttons	to	hold	the	responses:
Click	here	to	view	code	image

SurveyPanel(String	ques,	String[]	resp,	int	def)	{
				question	=	new	JLabel(ques);
				response	=	new	JRadioButton[resp.length];
				//	more	to	come
}

The	class	uses	grid	layout	to	arrange	its	components	into	a	grid	with	three	vertical
columns	and	one	horizontal	row.	Each	component	placed	in	the	grid	is	a	panel.

First,	a	panel	is	created	to	hold	the	question	label:
Click	here	to	view	code	image

JPanel	sub1	=	new	JPanel();
JLabel	quesLabel	=	new	JLabel(ques);
sub1.add(quesLabel);

The	default	layout	for	panels,	flow	layout	with	centered	alignment,	determines	the
placement	of	the	label	on	the	panel.

Next,	a	panel	is	created	to	hold	the	possible	responses.	A	for	loop	iterates	through	the
string	array	that	holds	the	text	of	each	response.	This	text	is	used	to	create	a	radio	button.
The	second	argument	of	the	JRadioButton()	constructor	determines	whether	it	is
selected.	This	is	implemented	with	the	following	code:
Click	here	to	view	code	image

JPanel	sub2	=	new	JPanel();
for	(int	i	=	0;	i	<	resp.length;	i++)	{
				if	(def	==	i)	{
								response[i]	=	new	JRadioButton(resp[i],	true);
				}	else	{
								response[i]	=	new	JRadioButton(resp[i],	false);
				}
				group.add(response[i]);
				sub2.add(response[i]);
}

The	last	panel	holds	the	Next	and	Finish	buttons:
JPanel	sub3	=	new	JPanel();
nextButton.setEnabled(true);
sub3.add(nextButton);
finalButton.setEnabled(false);

sub3.add(finalButton);

Now	that	the	three	panels	have	been	fully	set	up,	they	are	added	to	the	SurveyPanel
interface,	which	completes	the	work	of	the	constructor	method:
Click	here	to	view	code	image

GridLayout	grid	=	new	GridLayout(3,	1);
setLayout(grid);
add(sub1);
add(sub2);
add(sub3);

There’s	one	extra	wrinkle	in	the	SurveyPanel	class—a	method	that	enables	the	Finish
button	and	disables	the	Next	button	when	the	last	question	has	been	reached:
Click	here	to	view	code	image

void	setFinalQuestion(boolean	finalQuestion)	{
				if	(finalQuestion)	{
								nextButton.setEnabled(false);
								finalButton.setEnabled(true);
				}
}

In	a	user	interface	that	uses	card	layout,	the	display	of	each	card	usually	takes	place	in
response	to	an	action	by	the	user.

These	actions	are	called	events,	which	are	covered	on	Day	12,	“Responding	to	User
Input.”

A	brief	preview	demonstrates	how	the	SurveyPanel	class	is	equipped	to	handle	button
clicks.

The	class	implements	ActionListener,	an	interface	in	the	java.awt.event
package:
Click	here	to	view	code	image

public	class	SurveyWizard	extends	JPanel	implements	ActionListener	{
				//	more	to	come
}

This	interface	indicates	that	the	class	can	respond	to	action	events,	which	represent	button
clicks,	menu	choices,	and	similar	user	input.

Next,	each	button’s	addActionListener(Object)	method	is	called:
Click	here	to	view	code	image

ask[0].nextButton.addActionListener(this);
ask[0].finalButton.addActionListener(this);

Listeners	are	classes	that	monitor	specific	kinds	of	user	input.	The	argument	to
addActionListener()	is	the	class	that’s	looking	for	action	events.	Using	this	as
the	argument	indicates	that	the	SurveyPanel	class	handles	this	job.

The	ActionListener	interface	includes	only	one	method:
Click	here	to	view	code	image

public	void	actionPerformed(Action	evt)	{
				//	more	to	come
}

This	method	is	called	when	a	component	being	listened	to	generates	an	action	event.	In
the	SurveyPanel	class,	this	happens	whenever	a	button	is	clicked.

In	SurveyPanel,	this	method	uses	an	instance	variable	that	keeps	track	of	which	card	to
display:

int	currentCard	=	0;

Every	time	a	button	is	clicked	and	the	actionPerformed()	method	is	called,	this
variable	is	incremented,	and	the	card	layout	manager’s	show(Container,	String)
method	is	called	to	display	a	new	card.	If	the	last	card	has	been	displayed,	the	Finish
button	is	disabled.

Listing	11.5	shows	the	full	SurveyWizard	class	with	the	complete
actionPerformed()	method.	Create	a	new	empty	Java	file	in	NetBeans	called
SurveyWizard,	assigning	it	to	the	com.java21days	package.

LISTING	11.5	The	Full	Text	of	SurveyWizard.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	SurveyWizard	extends	JPanel	implements	ActionListener	{
	8:					int	currentCard	=	0;
	9:					CardLayout	cards	=	new	CardLayout();
10:					SurveyPanel[]	ask	=	new	SurveyPanel[3];
11:
12:					public	SurveyWizard()	{
13:									super();
14:									setSize(240,	140);
15:									setLayout(cards);
16:									//	set	up	survey
17:									String	question1	=	“What	is	your	gender?”;
18:									String[]	resp1	=	{	“female”,	“male”,	“not	telling”	};
19:									ask[0]	=	new	SurveyPanel(question1,	resp1,	2);
20:									String	question2	=	“What	is	your	age?”;
21:									String[]	resp2	=	{	“Under	25”,	“25-34”,	“35-54”,
22:													“Over	54”	};
23:									ask[1]	=	new	SurveyPanel(question2,	resp2,	1);
24:									String	question3	=	“How	often	do	you	exercise	each	week?”;
25:									String[]	resp3	=	{	“Never”,	“1-3	times”,	“More	than	3”	};
26:									ask[2]	=	new	SurveyPanel(question3,	resp3,	1);
27:									ask[2].setFinalQuestion(true);
28:									addListeners();
29:					}
30:
31:					private	void	addListeners()	{
32:									for	(int	i	=	0;	i	<	ask.length;	i++)	{
33:													ask[i].nextButton.addActionListener(this);
34:													ask[i].finalButton.addActionListener(this);
35:													add(ask[i],	“Card	“	+	i);
36:									}
37:					}
38:

39:					public	void	actionPerformed(ActionEvent	evt)	{
40:									currentCard++;
41:									if	(currentCard	>=	ask.length)	{
42:													System.exit(0);
43:									}
44:									cards.show(this,	“Card	“	+	currentCard);
45:					}
46:	}
47:
48:	class	SurveyPanel	extends	JPanel	{
49:					JLabel	question;
50:					JRadioButton[]	response;
51:					JButton	nextButton	=	new	JButton(“Next”);
52:					JButton	finalButton	=	new	JButton(“Finish”);
53:
54:					SurveyPanel(String	ques,	String[]	resp,	int	def)	{
55:									super();
56:									setSize(160,	110);
57:									question	=	new	JLabel(ques);
58:									response	=	new	JRadioButton[resp.length];
59:									JPanel	sub1	=	new	JPanel();
60:									ButtonGroup	group	=	new	ButtonGroup();
61:									JLabel	quesLabel	=	new	JLabel(ques);
62:									sub1.add(quesLabel);
63:									JPanel	sub2	=	new	JPanel();
64:									for	(int	i	=	0;	i	<	resp.length;	i++)	{
65:													if	(def	==	i)	{
66:																	response[i]	=	new	JRadioButton(resp[i],	true);
67:													}	else	{
68:																	response[i]	=	new	JRadioButton(resp[i],	false);
69:													}
70:													group.add(response[i]);
71:													sub2.add(response[i]);
72:									}
73:									JPanel	sub3	=	new	JPanel();
74:									nextButton.setEnabled(true);
75:									sub3.add(nextButton);
76:									finalButton.setEnabled(false);
77:									sub3.add(finalButton);
78:									GridLayout	grid	=	new	GridLayout(3,	1);
79:									setLayout(grid);
80:									add(sub1);
81:									add(sub2);
82:									add(sub3);
83:					}
84:
85:					void	setFinalQuestion(boolean	finalQuestion)	{
86:									if	(finalQuestion)	{
87:													nextButton.setEnabled(false);
88:													finalButton.setEnabled(true);
89:									}
90:					}
91:	}

The	SurveyWizard	class	is	a	JPanel	component	that	creates	a	card	layout	manager	as
an	instance	variable	in	line	9	and	assigns	it	to	the	panel	in	line	15.	This	class	lacks	a
main()	method,	so	it	must	be	added	to	another	program’s	user	interface	to	be	tested.

The	SurveyFrame	application,	shown	in	Listing	11.6,	contains	a	frame	that	displays	a
survey	panel.	Create	it	in	NetBeans	(package	com.java21days).

LISTING	11.6	The	Full	Text	of	SurveyFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	javax.swing.*;
	5:
	6:	public	class	SurveyFrame	extends	JFrame	{
	7:					public	SurveyFrame()	{
	8:									super(“Survey”);
	9:									setSize(290,	140);
10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:									setLookAndFeel();
12:									SurveyWizard	wiz	=	new	SurveyWizard();
13:									add(wiz);
14:									setVisible(true);
15:					}
16:
17:					private	void	setLookAndFeel()	{
18:									try	{
19:													UIManager.setLookAndFeel(
20:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
21:);
22:													SwingUtilities.updateComponentTreeUI(this);
23:									}	catch	(Exception	exc)	{
24:													System.err.println(“Couldn’t	use	the	system	“
25:																	+	“look	and	feel:	“	+	exc);
26:									}
27:					}
28:
29:					public	static	void	main(String[]	arguments)	{
30:									SurveyFrame	surv	=	new	SurveyFrame();
31:					}
32:	}

A	SurveyWizard	object	is	created	in	line	12	and	is	added	to	the	frame	in	line	13.	The
running	application	was	shown	earlier	in	Figure	11.5.

Cell	Padding	and	Insets
By	default,	no	components	have	extra	space	around	them	(which	is	easiest	to	see	in
components	that	fill	their	cells).

The	horizontal	and	vertical	gaps	that	appear	when	you	create	a	new	layout	manager	are
used	to	determine	the	amount	of	space	between	components	in	a	panel.	Insets,	however,
are	used	to	determine	the	amount	of	space	around	the	panel	itself.	The	Insets	class
includes	values	for	the	top,	bottom,	left,	and	right	insets,	which	then	are	used	when	the
panel	is	drawn.

Insets	determine	the	amount	of	space	between	the	edges	of	a	panel	and	that	panel’s
components.

The	following	statement	creates	an	Insets	object	that	specifies	20	pixels	of	insets	above
and	below	and	13	pixels	to	the	left	and	right:
Click	here	to	view	code	image

Insets	whitespace	=	new	Insets(20,	13,	20,	13);

You	can	establish	insets	in	any	container	by	overriding	its	getInsets()	method	and
returning	an	Insets	object,	as	in	this	example:
Click	here	to	view	code	image

public	Insets	getInsets()	{
				return	new	Insets(10,	30,	10,	30);
}

Summary
When	it	comes	to	designing	a	user	interface	in	Java,	you’ve	seen	today	that	abstract
expressionism	goes	only	so	far.	Getting	the	desired	user	interface	layout	in	a	Swing
application	requires	the	use	of	layout	managers.

These	managers	require	some	adjustment	for	people	who	are	used	to	more	precise	control
over	where	components	appear	on	an	interface.

You	now	know	how	to	use	the	five	layout	managers	and	panels.	As	you	work	with	Swing,
you’ll	find	that	it	can	approximate	any	kind	of	interface	through	the	use	of	nested
containers	and	different	layout	managers.

After	you	master	the	development	of	a	user	interface	in	Java,	your	programs	can	offer	an
interface	that	works	on	multiple	platforms	without	modification.

Q&A
Q	I	really	dislike	working	with	layout	managers;	they’re	either	too	simplistic	or
too	complicated.	Even	with	a	lot	of	tinkering,	I	can	never	get	my	user	interface
to	look	like	I	want	it	to.	All	I	want	to	do	is	define	the	sizes	of	my	components
and	put	them	at	an	(x,y)	position	on	the	screen.	Can	I	do	this?

A	It’s	possible,	but	problematic.	Java	was	designed	in	such	a	way	that	a	program’s
GUI	could	run	equally	well	on	different	platforms	and	with	different	screen
resolutions,	fonts,	screen	sizes,	and	the	like.	Relying	on	pixel	coordinates	can	cause
a	program	that	looks	good	on	one	platform	to	be	unusable	on	others.	Layout
disasters	such	as	components	overlapping	each	other	or	getting	cut	off	by	the	edge
of	a	container	may	result.	Layout	managers,	by	dynamically	placing	elements	on	the
screen,	get	around	these	problems.	Although	there	might	be	some	differences	in	the
end	results	on	different	platforms,	they	are	less	likely	to	be	catastrophic.

If	none	of	that	is	persuasive,	here’s	how	to	ignore	my	advice:	Set	the	content	pane’s
layout	manager	with	null	as	the	argument.	Create	a	Rectangle	object	(from	the
java.awt	package)	with	the	(x,y)	position,	width,	and	height	of	the	component	as
arguments.	Finally,	call	the	component’s	setBounds(Rectangle)	method	with
that	rectangle	as	the	argument.

The	following	application	displays	a	300×300-pixel	frame	with	a	Click	Me	button	at
the	(x,y)	position	10,	10	that	is	120	pixels	wide	by	30	pixels	tall:

Click	here	to	view	code	image
import	java.awt.*;

import	javax.swing.*;

public	class	Absolute	extends	JFrame	{
				public	Absolute()	{
								super(“Example”);
								setSize(300,	300);
								setLayout(null);
								JButton	myButton	=	new	JButton(“Click	Me”);
								myButton.setBounds(new	Rectangle(10,	10,	120,	30));
								add(myButton);
								setVisible(true);
				}

				public	static	void	main(String[]	arguments)	{
								Absolute	ex	=	new	Absolute();
				}
}

You	can	find	out	more	about	setBounds()	in	the	Component	class.	You	can
find	the	documentation	for	the	Java	class	library	at
http://docs.oracle.com/javase/8/docs/api.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	is	the	default	layout	manager	for	a	panel	in	Java?

A.	None

B.	BorderLayout

C.	FlowLayout

2.	Which	layout	manager	uses	a	compass	direction	or	a	reference	to	the	center	when
adding	a	component	to	a	container?

A.	BorderLayout

B.	MapLayout

C.	FlowLayout

3.	If	you	want	to	create	an	installation	wizard	that	has	multiple	steps,	what	layout
manager	should	you	use?

A.	GridLayout

B.	CardLayout

C.	BorderLayout

Answers
1.	C.	To	keep	a	panel	from	using	flow	layout,	you	can	set	its	layout	manager	to	null.

http://docs.oracle.com/javase/8/docs/api

2.	A.	Border	layout	has	class	variables	NORTH,	SOUTH,	EAST,	WEST,	and	CENTER.

3.	B.	Card	layout	enables	components	to	be	stacked	like	cards	and	displayed	one	at	a
time,	making	it	well-suited	to	implement	a	wizard.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.awt.*;
import	javax.swing.*;

public	class	ThreeButtons	extends	JFrame	{
				public	ThreeButtons()	{
								super(“Program”);
								setSize(350,	225);
								setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
								JButton	alpha	=	new	JButton(“Alpha”);
								JButton	beta	=	new	JButton(“Beta”);
								JButton	gamma	=	new	JButton(“Gamma”);
								//	answer	goes	here
								add(alpha);
								add(beta);
								add(gamma);
								pack();
								setVisible(true);
				}

				public	static	void	main(String[]	arguments)	{
								ThreeButtons	b3	=	new	ThreeButtons();
				}
}

Which	statement	should	replace	//	answer	goes	here	to	make	the	frame	display	all
three	buttons	side	by	side?

A.	content.setLayout(null);

B.	content.setLayout(new	FlowLayout());

C.	content.setLayout(new	GridLayout(3,1));

D.	content.setLayout(new	BorderLayout());

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	11
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	a	user	interface	that	displays	a	calendar	for	a	single	month,	including
headings	for	the	seven	days	of	the	week	and	a	title	for	the	month	across	the	top.

http://www.java21days.com

2.	Create	an	interface	that	incorporates	more	than	one	layout	manager.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	12.	Responding	to	User	Input

Designing	a	Java	program	with	a	graphical	user	interface	(GUI)	isn’t	very	useful	if	the
user	can’t	do	anything	to	it.	To	make	the	program	completely	functional,	you	must	make
the	interface	receptive	to	user	events.

Swing	handles	events	with	a	set	of	interfaces	called	event	listeners.	You	create	a	listener
object	and	associate	it	with	the	user	interface	component	being	monitored.

Today,	you	will	learn	how	to	add	listeners	of	all	kinds	to	your	Swing	programs,	including
those	that	handle	action	events,	mouse	events,	and	other	interaction.

When	you’re	finished,	you	will	have	created	a	full	Java	application	using	the	Swing	set	of
classes.

Event	Listeners
If	a	class	wants	to	respond	to	a	user	event	in	Java,	it	must	implement	the	interface	that
deals	with	the	events.	This	interface	is	not	the	same	thing	as	a	GUI.	The	interface	is	an
abstract	type	that	defines	methods	a	class	must	implement.

Interfaces	that	handle	user	events	are	called	event	listeners.

Each	listener	handles	a	specific	kind	of	event.

The	java.awt.event	package	contains	all	the	basic	event	listeners,	as	well	as	the
objects	that	represent	specific	events.	These	listener	interfaces	are	some	of	the	most
useful:

	ActionListener—Action	events,	which	are	generated	when	a	user	performs	an
action	on	a	component,	such	as	clicking	a	button

	AdjustmentListener—Adjustment	events,	which	are	generated	when	a
component	is	adjusted,	such	as	when	a	scrollbar	is	moved

	FocusListener—Keyboard	focus	events,	which	are	generated	when	a
component	such	as	a	text	field	gains	or	loses	the	focus

	ItemListener—Item	events,	which	are	generated	when	an	item	such	as	a	check
box	is	changed

	KeyListener—Keyboard	events,	which	occur	when	a	user	enters	text	using	the
keyboard

	MouseListener—Mouse	events,	which	are	generated	by	mouse	clicks,	a	mouse
entering	a	component’s	area,	and	a	mouse	leaving	a	component’s	area

	MouseMotionListener—Mouse	movement	events,	which	track	all	movement
by	a	mouse	over	a	component

	WindowListener—Window	events,	which	are	generated	when	a	window	is
maximized,	minimized,	moved,	or	closed

Just	as	a	Java	class	can	implement	multiple	interfaces,	a	class	that	takes	user	input	can
implement	as	many	listeners	as	needed.	The	implements	keyword	in	the	class
declaration	is	followed	by	the	name	of	the	interface.	If	more	than	one	interface	has	been
implemented,	their	names	are	separated	by	commas.

The	following	class	is	declared	to	handle	both	action	and	text	events:
Click	here	to	view	code	image

public	class	Suspense	extends	JFrame	implements	ActionListener,
					TextListener	{
				//	body	of	class
}

To	refer	to	these	event	listener	interfaces	in	your	programs,	you	can	import	them
individually	or	use	an	import	statement	with	a	wildcard	to	make	the	entire	package
available:

import	java.awt.event.*;

Setting	Up	Components
When	you	make	a	class	an	event	listener,	you	have	set	up	a	specific	type	of	event	to	be
heard	by	that	class.	However,	the	event	won’t	be	heard	unless	you	follow	up	with	a	second
step:	You	must	add	a	matching	listener	to	the	GUI	component.	That	listener	generates	the
events	when	the	component	is	used.

After	a	component	is	created,	you	can	call	one	(or	more)	of	the	following	methods	on	the
component	to	associate	a	listener	with	it:

	addActionListener()—JButton,	JCheckBox,	JComboBox,
JTextField,	JRadioButton,	and	JMenuItem	components

	addFocusListener()—All	Swing	components

	addItemListener()—JButton,	JCheckBox,	JComboBox,	and
JRadioButton	components

	addKeyListener()—All	Swing	components

	addMouseListener()—All	Swing	components

	addMouseMotionListener()—All	Swing	components

	addTextListener()—JTextField	and	JTextArea	components

	addWindowListener()—JWindow	and	JFrame	components

Caution

Modifying	a	component	after	adding	it	to	a	container	is	an	easy	mistake	to	make	in
a	Java	program.	You	must	add	listeners	to	a	component	and	handle	any	other
configuration	before	the	component	is	added	to	any	containers;	otherwise,	these
settings	are	disregarded	when	the	program	is	run.

The	following	example	creates	a	JButton	object	and	associates	an	action	event	listener
with	it:
Click	here	to	view	code	image

JButton	zap	=	new	JButton(“Zap”);
zap.addActionListener(this);

All	the	listener	adding	methods	take	one	argument:	the	object	that	is	listening	for	events	of
that	kind.	Using	this	indicates	that	the	current	class	is	the	event	listener.	You	could
specify	a	different	object,	as	long	as	its	class	implements	the	right	listener	interface.

Event-Handling	Methods
When	you	associate	an	interface	with	a	class,	the	class	must	contain	methods	that
implement	every	method	in	the	interface.

In	the	case	of	event	listeners,	the	windowing	system	calls	each	method	automatically
when	the	corresponding	user	event	takes	place.

The	ActionListener	interface	has	only	one	method:	actionPerformed().	All
classes	that	implement	ActionListener	must	have	a	method	with	the	following
structure:
Click	here	to	view	code	image

public	void	actionPerformed(ActionEvent	event)	{
				//	handle	event	here
}

If	only	one	component	in	your	program’s	GUI	has	a	listener	for	action	events,	you	will
know	that	this	actionPerformed()	method	is	called	only	in	response	to	an	event
generated	by	that	component.

This	makes	it	simpler	to	write	the	actionPerformed()	method.	All	the	method’s
code	responds	to	that	component’s	user	event.

But	when	more	than	one	component	has	an	action	event	listener,	you	must	use	the
method’s	ActionEvent	argument	to	figure	out	which	component	was	used	and	act
accordingly	in	your	program.	You	can	use	this	object	to	discover	details	about	the
component	that	generated	the	event.

ActionEvent	and	all	other	event	objects	are	part	of	the	java.awt.event	package.

Every	event-handling	method	is	sent	an	event	object	of	some	kind.	You	can	use	the
object’s	getSource()	method	to	determine	which	component	sent	the	event,	as	in	the
following	example:
Click	here	to	view	code	image

public	void	actionPerformed(ActionEvent	event)	{
				Object	source	=	evt.getSource();
}

The	object	returned	by	the	getSource()	method	can	be	compared	to	components	by
using	the	==	operator.	The	following	statements	extend	the	preceding	example	to	handle
user	clicks	on	buttons	named	quitButton	and	sortRecords:

if	(source	==	quitButton)	{
				quit();
}
if	(source	==	sortRecords)	{
				sort();
}

The	quit()	method	is	called	if	the	quitButton	object	generated	the	event,	and	the
sort()	method	is	called	if	the	sortRecords	button	generated	the	event.

Many	event-handling	methods	call	a	different	method	for	each	kind	of	event	or
component.	This	makes	the	event-handling	method	easier	to	read.	In	addition,	if	a	class
has	more	than	one	event-handling	method,	each	one	can	call	the	same	methods	to	get
work	done.

Java’s	instanceof	operator	can	be	used	in	an	event-handling	method	to	determine	the
class	of	component	that	generated	the	event.	The	following	example	can	be	used	in	a
program	with	one	button	and	one	text	field,	each	of	which	generates	an	action	event:
Click	here	to	view	code	image

void	actionPerformed(ActionEvent	event)	{
				Object	source	=	event.getSource();
				if	(source	instanceof	JTextField)	{
								calculateScore();
				}	else	if	(source	instanceof	JButton)	{
								quit();
				}
}

If	the	event-generating	component	belongs	to	the	JTextField	class,	the
calculateScore()	method	is	called.	If	the	component	belongs	to	JButton,	the
quit()	method	is	called	instead.

The	TitleBar	application,	shown	in	Listing	12.1,	displays	a	frame	with	two	JButton
components,	which	are	used	to	change	the	text	on	the	frame’s	title	bar.	Create	a	new
empty	Java	file	called	TitleBar,	assign	it	the	package	com.java21days,	and	enter
the	class’s	source	code.

LISTING	12.1	The	Full	Text	of	TitleBar.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.event.*;
	4:	import	javax.swing.*;
	5:	import	java.awt.*;
	6:
	7:	public	class	TitleBar	extends	JFrame	implements	ActionListener	{
	8:					JButton	b1;
	9:					JButton	b2;
10:
11:					public	TitleBar()	{
12:									super(“Title	Bar”);
13:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:									setLookAndFeel();
15:									b1	=	new	JButton(“Rosencrantz”);
16:									b2	=	new	JButton(“Guildenstern”);

17:									b1.addActionListener(this);
18:									b2.addActionListener(this);
19:									FlowLayout	flow	=	new	FlowLayout();
20:									setLayout(flow);
21:									add(b1);
22:									add(b2);
23:									pack();
24:									setVisible(true);
25:					}
26:
27:					public	void	actionPerformed(ActionEvent	evt)	{
28:									Object	source	=	evt.getSource();
29:									if	(source	==	b1)	{
30:													setTitle(“Rosencrantz”);
31:									}	else	if	(source	==	b2)	{
32:													setTitle(“Guildenstern”);
33:									}
34:									repaint();
35:					}
36:
37:					private	void	setLookAndFeel()	{
38:									try	{
39:													UIManager.setLookAndFeel(
40:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
41:);
42:													SwingUtilities.updateComponentTreeUI(this);
43:									}	catch	(Exception	exc)	{
44:													System.err.println(“Couldn’t	use	the	system	“
45:																	+	“look	and	feel:	“	+	exc);
46:									}
47:					}
48:
49:					public	static	void	main(String[]	arguments)	{
50:									TitleBar	frame	=	new	TitleBar();
51:					}
52:	}

After	you	run	this	application	with	the	Java	Virtual	Machine	(JVM),	the	program’s
interface	should	resemble	Figure	12.1.

FIGURE	12.1	The	TitleBar	application.

Only	13	lines	are	needed	to	respond	to	action	events	in	this	application:

	Line	3	imports	the	java.awt.event	package.

	Line	7	indicates	the	class	implements	the	ActionListener	interface.

	Lines	17–18	add	action	listeners	to	both	JButton	objects.

	Lines	27–35	respond	to	action	events	that	occur	from	the	two	JButton	objects.
The	evt	object’s	getSource()	method	determines	the	event’s	source.	If	it	is
equal	to	the	b1	button,	the	frame’s	title	is	set	to	Rosencrantz;	if	it	is	equal	to	b2,
the	title	is	set	to	Guildenstern.	A	call	to	repaint()	is	needed	so	that	the

frame	is	redrawn	after	any	title	change	that	might	have	occurred	in	the	method.

Working	with	Methods
The	following	sections	detail	the	structure	of	each	event-handling	method	and	the	methods
that	can	be	used	within	them.

In	addition	to	the	methods	described,	the	getSource()	method	can	be	used	on	any
event	object	to	determine	which	object	generated	the	event.

Action	Events
Action	events	occur	when	a	user	completes	an	action	using	components	such	as	buttons,
check	boxes,	menu	items,	text	fields,	and	radio	buttons.

A	class	must	implement	the	ActionListener	interface	to	handle	these	events.	In
addition,	the	addActionListener()	method	must	be	called	on	each	component	that
should	generate	an	action	event—unless	you	want	to	ignore	that	component’s	action
events.

The	actionPerformed	(ActionEvent)	method	is	the	only	method	of	the
ActionListener	interface.	It	takes	the	following	form:
Click	here	to	view	code	image

public	void	actionPerformed(ActionEvent	event)	{
			//	…
}

In	addition	to	the	getSource()	method,	you	can	use	the	getActionCommand()
method	on	the	ActionEvent	object	to	discover	more	information	about	the	event’s
source.

By	default,	the	action	command	is	the	text	associated	with	the	component,	such	as	the
label	on	a	button.	You	also	can	set	a	different	action	command	for	a	component	by	calling
its	setActionCommand(String)	method.	The	string	argument	should	be	the	action
command’s	desired	text.

The	following	statements	create	a	button	and	menu	item	and	give	both	of	them	the	action
command	“Sort	Files”:
Click	here	to	view	code	image

JButton	sort	=	new	JButton(“Sort”);
JMenuItem	menuSort	=	new	JMenuItem(“Sort”);
sort.setActionCommand(“Sort	Files”);
menuSort.setActionCommand(“Sort	Files”);

Tip

Action	commands	are	useful	in	a	program	in	which	more	than	one	component
should	cause	the	same	thing	to	happen.	By	giving	both	components	the	same	action
command,	you	can	handle	them	with	the	same	code	in	an	event-handling	method.

Focus	Events
Focus	events	occur	when	any	component	gains	or	loses	input	focus	on	a	GUI.	Focus
describes	the	component	that	is	active	for	keyboard	input.	If	one	of	the	fields	has	the	focus
(in	a	user	interface	with	several	editable	text	fields),	the	cursor	blinks	in	the	field.	Any	text
entered	goes	into	this	component.

Focus	applies	to	all	components	that	can	receive	input.	You	can	give	a	component	the
focus	by	calling	its	requestFocus()	method	with	no	arguments,	as	in	this	example:
Click	here	to	view	code	image

JButton	ok	=	new	JButton(“OK”);
ok.requestFocus();

To	handle	a	focus	event,	a	class	must	implement	the	FocusListener	interface,	which
has	two	methods:	focusGained(FocusEvent)	and	focusLost(FocusEvent).
They	take	the	following	forms:
Click	here	to	view	code	image

public	void	focusGained(FocusEvent	event)	{
			//	…
}

public	void	focusLost(FocusEvent	event)	{
			//	…
}

To	determine	which	object	gained	or	lost	the	focus,	the	getSource()	method	can	be
called	on	the	FocusEvent	object	sent	as	an	argument	to	the	two	methods.

Listing	12.2	contains	Calculator,	a	Java	application	that	displays	the	sum	of	two	numbers.
Focus	events	are	used	to	determine	when	the	sum	needs	to	be	recalculated.	In	NetBeans
create	a	new	Java	file	with	the	name	Calculator	and	package	name
com.java21days	with	the	source	code	of	this	listing.

LISTING	12.2	The	Full	Text	of	Calculator.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.event.*;
	4:	import	javax.swing.*;
	5:	import	java.awt.*;
	6:
	7:	public	class	Calculator	extends	JFrame	implements	FocusListener	{
	8:					JTextField	value1,	value2,	sum;
	9:					JLabel	plus,	equals;
10:
11:					public	Calculator()	{
12:									super(“Add	Two	Numbers”);
13:									setSize(350,	90);
14:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:									setLookAndFeel();
16:									FlowLayout	flow	=	new	FlowLayout(FlowLayout.CENTER);
17:									setLayout(flow);
18:									//	create	components
19:									value1	=	new	JTextField(“0”,	5);

20:									plus	=	new	JLabel(“+”);
21:									value2	=	new	JTextField(“0”,	5);
22:									equals	=	new	JLabel(“=”);
23:									sum	=	new	JTextField(“0”,	5);
24:									//	add	listeners
25:									value1.addFocusListener(this);
26:									value2.addFocusListener(this);
27:									//	set	up	sum	field
28:									sum.setEditable(false);
29:									//	add	components
30:									add(value1);
31:									add(plus);
32:									add(value2);
33:									add(equals);
34:									add(sum);
35:									setVisible(true);
36:					}
37:
38:					public	void	focusGained(FocusEvent	event)	{
39:									try	{
40:													float	total	=	Float.parseFloat(value1.getText())	+
41:																	Float.parseFloat(value2.getText());
42:													sum.setText(””	+	total);
43:									}	catch	(NumberFormatException	nfe)	{
44:													value1.setText(“0”);
45:													value2.setText(“0”);
46:													sum.setText(“0”);
47:									}
48:					}
49:
50:					public	void	focusLost(FocusEvent	event)	{
51:									focusGained(event);
52:					}
53:
54:					private	void	setLookAndFeel()	{
55:									try	{
56:													UIManager.setLookAndFeel(
57:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
58:);
59:													SwingUtilities.updateComponentTreeUI(this);
60:									}	catch	(Exception	exc)	{
61:													System.err.println(“Couldn’t	use	the	system	“
62:																	+	“look	and	feel:	“	+	exc);
63:									}
64:					}
65:
66:					public	static	void	main(String[]	arguments)	{
67:									Calculator	frame	=	new	Calculator();
68:					}
69:	}

Figure	12.2	shows	the	application.

FIGURE	12.2	The	Calculator	application.

In	this	application,	focus	listeners	are	added	to	the	first	two	text	fields,	value1	and

value2,	and	the	class	implements	the	FocusListener	interface.

The	focusGained()	method	is	called	whenever	either	of	these	fields	gains	the	input
focus	(lines	38–48).	In	this	method,	the	sum	is	calculated	by	adding	the	values	in	the	other
two	fields.	If	either	field	contains	an	invalid	value,	such	as	a	string,	a
NumberFormatException	is	thrown,	and	all	three	fields	are	reset	to	“0”.

The	focusLost()	method	accomplishes	the	same	behavior	by	calling
focusGained()	with	the	focus	event	as	an	argument.

One	thing	to	note	about	this	application	is	that	event-handling	behavior	is	not	required	to
collect	numeric	input	in	a	text	field.	This	is	taken	care	of	automatically	by	any	component
in	which	text	input	is	received.

Item	Events
Item	events	occur	when	an	item	is	selected	or	deselected	on	components	such	as	buttons,
check	boxes,	or	radio	buttons.	A	class	must	implement	the	ItemListener	interface	to
handle	these	events.

The	itemStateChanged(ItemEvent)	method	is	the	only	method	in	the
ItemListener	interface.	It	takes	the	following	form:
Click	here	to	view	code	image

void	itemStateChanged(ItemEvent	event)	{
			//	…
}

To	determine	in	which	item	the	event	occurred,	the	getItem()	method	can	be	called	on
the	ItemEvent	object.

You	also	can	see	whether	the	item	was	selected	or	deselected	by	using	the
getStateChange	()	method.	This	method	returns	an	integer	that	equals	either	the
class	variable	ItemEvent.DESELECTED	or	ItemEvent.SELECTED.

The	FormatChooser	application,	shown	in	in	Listing	12.3,	illustrates	the	use	of	item
events,	displaying	information	about	a	selected	combo	box	item	in	a	label.	Create	it	with
NetBeans	as	an	empty	Java	file	with	the	class	name	FormatChooser	and	package	name
com.java21days.

LISTING	12.3	The	Full	Text	of	FormatChooser.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	FormatChooser	extends	JFrame	implements	ItemListener	{
	8:					String[]	formats	=	{	“(choose	format)”,	“Atom”,	“RSS	0.92”,
	9:									“RSS	1.0”,	“RSS	2.0”	};
10:					String[]	descriptions	=	{
11:									“Atom	weblog	and	syndication	format”,

12:									“RSS	syndication	format	0.92	(Netscape)”,
13:									“RSS/RDF	syndication	format	1.0	(RSS/RDF)”,
14:									“RSS	syndication	format	2.0	(UserLand)”
15:					};
16:					JComboBox	formatBox	=	new	JComboBox();
17:					JLabel	descriptionLabel	=	new	JLabel(””);
18:
19:					public	FormatChooser()	{
20:									super(“Syndication	Format”);
21:									setSize(420,	150);
22:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23:									setLayout(new	BorderLayout());
24:									for	(int	i	=	0;	i	<	formats.length;	i++)	{
25:													formatBox.addItem(formats[i]);
26:									}
27:									formatBox.addItemListener(this);
28:									add(BorderLayout.NORTH,	formatBox);
29:									add(BorderLayout.CENTER,	descriptionLabel);
30:									setVisible(true);
31:					}
32:
33:					public	void	itemStateChanged(ItemEvent	event)	{
34:									int	choice	=	formatBox.getSelectedIndex();
35:									if	(choice	>	0)	{
36:														descriptionLabel.setText(descriptions[choice-1]);
37:									}
38:					}
39:
40:					public	Insets	getInsets()	{
41:									return	new	Insets(50,	10,	10,	10);
42:					}
43:
44:					private	static	void	setLookAndFeel()	{
45:									try	{
46:													UIManager.setLookAndFeel(
47:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
48:);
49:									}	catch	(Exception	exc)	{
50:													System.err.println(“Couldn’t	use	the	system	“
51:																	+	“look	and	feel:	“	+	exc);
52:									}
53:					}
54:
55:					public	static	void	main(String[]	arguments)	{
56:									FormatChooser.setLookAndFeel();
57:									FormatChooser	fc	=	new	FormatChooser();
58:					}
59:	}

This	application	extends	the	combo	box	example	from	Day	9,	“Working	with	Swing.”
Figure	12.3	shows	how	it	looks	after	a	choice	has	been	made.

FIGURE	12.3	The	output	of	the	FormatChooser	application.

The	application	creates	a	combo	box	from	an	array	of	strings	and	adds	an	item	listener	to
the	component	(lines	24–27).	Item	events	are	received	by	the
itemStateChanged(ItemEvent)	method	(lines	33–38),	which	changes	a	label’s
text	based	on	the	index	number	of	the	selected	item.	Index	1	corresponds	with	"Atom",	2
with	"RSS	0.92",	3	with	"RSS	1.0",	and	4	with	"RSS	2.0".

Key	Events
Key	events	occur	when	a	key	is	pressed	on	the	keyboard.	Any	component	can	generate
these	events,	and	a	class	must	implement	the	KeyListener	interface	to	support	them.

The	KeyListener	interface	has	three	methods:	keyPressed	(KeyEvent),
keyReleased	(KeyEvent),	and	keyTyped	(KeyEvent).	They	take	the
following	forms:
Click	here	to	view	code	image

public	void	keyPressed(KeyEvent	event)	{
				//	…
}

public	void	keyReleased(KeyEvent	event)	{
				//	…
}

public	void	keyTyped(KeyEvent	event)	{
				//	…
}

KeyEvent’s	getKeyChar	()	method	returns	the	character	of	the	key	associated	with
the	event.	If	no	Unicode	character	can	be	represented	by	the	key,	getKeyChar()
returns	a	character	value	equal	to	the	class	variable	KeyEvent.CHAR_UNDEFINED.

For	a	component	to	generate	key	events,	it	must	be	able	to	receive	the	input	focus.	Text
fields,	text	areas,	and	other	components	that	accept	keyboard	input	support	this	capability
automatically.	For	other	components,	such	as	labels	and	panels,	the
setFocusable(boolean)	method	should	be	called	with	an	argument	of	true,	as	in
the	following	code:

JPanel	pane	=	new	JPanel();
pane.setFocusable(true);

Mouse	Events
Mouse	events	are	generated	by	a	mouse	click,	a	mouse	entering	a	component’s	area,	or	a
mouse	leaving	the	area.	Any	component	can	generate	these	events,	which	are
implemented	by	a	class	through	the	MouseListener	interface,	which	has	five	methods:

	mouseClicked(MouseEvent)

	mouseEntered(MouseEvent)

	mouseExited(MouseEvent)

	mousePressed(MouseEvent)

	mouseReleased(MouseEvent)

Each	method	takes	the	same	basic	form	as	mouseReleased(MouseEvent):
Click	here	to	view	code	image

public	void	mouseReleased(MouseEvent	event)	{
				//	…
}

The	following	methods	can	be	used	on	MouseEvent	objects:

	getClickCount()—Returns	as	an	integer	the	number	of	times	the	mouse	was
clicked

	getPoint()—Returns	as	a	Point	object	the	(x,y)	coordinate	within	the
component	where	the	mouse	was	clicked

	getX()—Returns	the	x	position

	getY()—Returns	the	y	position

Mouse	Motion	Events
Mouse	motion	events	occur	when	the	mouse	is	moved	over	a	component.	As	with	other
mouse	events,	any	component	can	generate	mouse	motion	events.	A	class	must	implement
the	MouseMotionListener	interface	to	support	them.

The	MouseMotionListener	interface	has	two	methods:
mouseDragged(MouseEvent)	and	mouseMoved(MouseEvent).	They	take	the
following	forms:
Click	here	to	view	code	image

public	void	mouseDragged(MouseEvent	event)	{
				//	…
}

public	void	mouseMoved(MouseEvent	event)	{
				//	…
}

Unlike	the	other	event-listener	interfaces	you	have	dealt	with	up	to	this	point,
MouseMotionListener	does	not	have	its	own	event	type.	Instead,	MouseEvent

objects	are	used.

Because	of	this,	you	can	call	the	same	methods	you	would	for	mouse	events:
getClick(),	getPoint(),	getX(),	and	getY().

The	next	project	you	will	undertake	demonstrates	how	to	detect	and	respond	to	mouse
events.	The	MousePrank	application,	shown	in	Listing	12.4,	consists	of	two	classes,
MousePrank	and	PrankPanel,	that	implement	a	user	interface	button	that	tries	to
avoid	being	clicked.

Create	a	new	empty	Java	file	in	NetBeans	with	the	class	name	MousePrank	and	package
name	com.java21days;	then	enter	the	code	shown	in	Listing	12.4.	The	techniques
demonstrated	in	this	class	will	be	described	after	you	create	the	application	and	see	how	it
runs.

LISTING	12.4	The	Full	Text	of	MousePrank.java
Click	here	to	view	code	image

1:	package	com.java21days;
		2:
		3:	import	java.awt.*;
		4:	import	java.awt.event.*;
		5:	import	javax.swing.*;
		6:
		7:	public	class	MousePrank	extends	JFrame	implements	ActionListener	{
		8:					public	MousePrank()	{
		9:									super(“Message”);
	10:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
	11:									setSize(420,	220);
	12:									BorderLayout	border	=	new	BorderLayout();
	13:									setLayout(border);
	14:									JLabel	msg	=	new	JLabel(“Click	OK	to	close	program.”);
	15:									add(BorderLayout.NORTH,	msg);
	16:									PrankPanel	prank	=	new	PrankPanel();
	17:									prank.ok.addActionListener(this);
	18:									add(BorderLayout.CENTER,	prank);
	19:									setVisible(true);
	20:					}
	21:
	22:					public	void	actionPerformed(ActionEvent	event)	{
	23:									System.exit(0);
	24:					}
	25:
	26:					public	Insets	getInsets()	{
	27:									return	new	Insets(40,	10,	10,	10);
	28:					}
	29:
	30:					private	static	void	setLookAndFeel()	{
	31:									try	{
	32:													UIManager.setLookAndFeel(
	33:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
	34:);
	35:									}	catch	(Exception	exc)	{
	36:													System.err.println(“Couldn’t	use	the	system	“
	37:																	+	“look	and	feel:	“	+	exc);
	38:									}
	39:					}
	40:

	41:					public	static	void	main(String[]	arguments)	{
	42:									MousePrank.setLookAndFeel();
	43:									new	MousePrank();
	44:					}
	45:	}
	46:
	47:	class	PrankPanel	extends	JPanel	implements	MouseMotionListener	{
	48:					JButton	ok	=	new	JButton(“OK”);
	49:					int	buttonX,	buttonY,	mouseX,	mouseY;
	50:					int	width,	height;
	51:
	52:					PrankPanel()	{
	53:									super();
	54:									setLayout(null);
	55:									addMouseMotionListener(this);
	56:									buttonX	=	110;
	57:									buttonY	=	110;
	58:									ok.setBounds(new	Rectangle(buttonX,	buttonY,
	59:													70,	20));
	60:									add(ok);
	61:					}
	62:
	63:					public	void	mouseMoved(MouseEvent	event)	{
	64:									mouseX	=	event.getX();
	65:									mouseY	=	event.getY();
	66:									width	=	(int)	getSize().getWidth();
	67:									height	=	(int)	getSize().getHeight();
	68:									if	(Math.abs((mouseX	+	35)	-	buttonX)	<	50)	{
	69:													buttonX	=	moveButton(mouseX,	buttonX,	width);
	70:													repaint();
	71:									}
	72:									if	(Math.abs((mouseY	+	10)	-	buttonY)	<	50)	{
	73:													buttonY	=	moveButton(mouseY,	buttonY,	height);
	74:													repaint();
	75:									}
	76:					}
	77:
	78:					public	void	mouseDragged(MouseEvent	event)	{
	79:									//	ignore	this	event
	80:					}
	81:
	82:					private	int	moveButton(int	mouseAt,	int	buttonAt,	int	bord)	{
	83:									if	(buttonAt	<	mouseAt)	{
	84:													buttonAt—;
	85:									}	else	{
	86:													buttonAt++;
	87:									}
	88:									if	(buttonAt	>	(bord	-	20))	{
	89:													buttonAt	=	10;
	90:									}
	91:									if	(buttonAt	<	0)	{
	92:													buttonAt	=	bord	-	80;
	93:									}
	94:									return	buttonAt;
	95:					}
	96:
	97:					public	void	paintComponent(Graphics	comp)	{
	98:									super.paintComponent(comp);
	99:									ok.setBounds(buttonX,	buttonY,	70,	20);
100:					}
101:	}

The	MousePrank	class	is	a	frame	that	holds	two	components	arranged	with	a	border
layout—the	label	“Click	OK	to	close	this	program.”	and	a	panel	with	an	OK	button	on	it.
Figure	12.4	shows	the	user	interface	for	this	application.

FIGURE	12.4	The	running	MousePrank	application.

Because	the	button	does	not	behave	normally,	it	is	implemented	with	the	PrankPanel
class,	a	subclass	of	JPanel.	This	panel	includes	a	button	that	is	drawn	at	a	specific
position	on	the	panel	instead	of	being	placed	by	a	layout	manager.	This	technique	was
described	at	the	end	of	Day	11,	“Arranging	Components	on	a	User	Interface.”

First,	the	panel’s	layout	manager	is	set	to	null,	which	causes	it	to	stop	using	flow	layout
as	its	default	manager:

setLayout(null);

Next,	the	button	is	placed	on	the	panel	using	setBounds(Rectangle),	the	same
method	that	determines	where	a	frame	or	window	will	appear	on	a	desktop.

A	Rectangle	object	is	created	with	four	arguments:	its	x	position,	y	position,	width,	and
height.	Here’s	how	PrankPanel	draws	the	button:
Click	here	to	view	code	image

JButton	ok	=	new	JButton(“OK”);
int	buttonX	=	110;
int	buttonY	=	110;
ok.setBounds(new	Rectangle(buttonX,	buttonY,	70,	20));

Creating	the	Rectangle	object	as	the	argument	to	setBounds()	is	more	efficient
than	creating	an	object	with	a	name	and	using	that	object	as	the	argument.	You	don’t	need
to	use	the	object	anywhere	else	in	the	class,	so	it	doesn’t	need	a	name.	The	following
statements	accomplish	the	same	thing	in	two	steps:
Click	here	to	view	code	image

Rectangle	box	=	new	Rectangle(buttonX,	buttonY,	70,	20);
ok.setBounds(box);

The	class	has	instance	variables	that	hold	the	button’s	(x,y)	position,	buttonX	and
buttonY.	They	start	out	at	(110,110)	and	change	whenever	the	mouse	comes	within	50
pixels	of	the	center	of	the	button.

You	track	mouse	movements	by	implementing	the	MouseListener	interface	and	its
two	methods,	mouseMoved(MouseEvent)	and	mouseDragged(MouseEvent).

The	panel	uses	mouseMoved()	and	ignores	mouseDragged().

When	the	mouse	moves,	a	mouse	event	object’s	getX()	and	getY()	methods	return	its
current	(x,y)	position,	which	is	stored	in	the	instance	variables	mouseX	and	mouseY.

The	moveButton(int,	int,	int)	method	takes	three	arguments:

	The	button’s	x	or	y	position

	The	mouse’s	x	or	y	position

	The	panel’s	width	or	height

This	method	moves	the	button	away	from	the	mouse	in	either	a	vertical	or	horizontal
direction,	depending	on	whether	it	is	called	with	x-coordinates	and	the	panel	height	or	y-
coordinates	and	the	width.

After	the	button’s	position	has	moved,	the	repaint()	method	is	called,	which	causes
the	panel’s	paintComponent(Graphics)	method	to	be	called	in	lines	97–100.

Every	component	has	a	paintComponent()	method	that	can	be	overridden	to	draw
the	component.	The	button’s	setBounds()	method	displays	it	at	the	current	(x,y)
position	in	line	99.

Window	Events
Window	events	occur	when	a	user	opens	or	closes	a	window	object,	such	as	a	JFrame	or
JWindow.	Any	component	can	generate	these	events,	and	a	class	must	implement	the
WindowListener	interface	to	support	them.

The	WindowListener	interface	has	seven	methods:

	windowActivated(WindowEvent)

	windowClosed(WindowEvent)

	windowClosing(WindowEvent)

	windowDeactivated(WindowEvent)

	windowDeiconified(WindowEvent)

	windowIconified(WindowEvent)

	windowOpened(WindowEvent)

They	all	take	the	same	form	as	the	windowOpened	()	method:
Click	here	to	view	code	image

public	void	windowOpened(WindowEvent	event)	{
				//	body	of	method
}

The	windowClosing	()	and	windowClosed	()	methods	are	similar,	but	one	is
called	as	the	window	is	closing	and	the	other	is	called	after	it	is	closed.	In	fact,	you	can
take	action	in	a	windowClosing()	method	to	stop	the	window	from	being	closed.

Using	Adapter	Classes
A	Java	class	that	implements	an	interface	must	include	all	its	methods,	even	if	it	doesn’t
plan	to	do	anything	in	response	to	some	of	them.

This	requirement	can	make	it	necessary	to	add	a	lot	of	empty	methods	when	you’re
working	with	an	event-handling	interface	such	as	WindowListener,	which	has	seven
methods.

As	a	convenience,	Java	offers	adapters,	Java	classes	that	contain	empty	do-nothing
implementations	of	specific	interfaces.	By	subclassing	an	adapter	class,	you	can
implement	only	the	event-handling	methods	you	need	by	overriding	those	methods.	The
rest	inherit	those	do-nothing	methods.

The	java.awt.event	package	includes	FocusAdapter,	KeyAdapter,
MouseAdapter,	MouseMotionAdapter,	and	WindowAdapter.	They	correspond
to	the	expected	listeners	for	focus,	keyboard,	mouse,	mouse	motion,	and	window	events.

Listing	12.5	is	a	Java	application	that	displays	the	most	recently	pressed	key,	monitoring
keyboard	events	through	a	subclass	of	KeyAdapter.	Enter	this	source	code	in	a	new
empty	Java	class	file	named	KeyChecker	in	NetBeans	in	the	package
com.java21days.

LISTING	12.5	The	Full	Text	of	KeyChecker.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	KeyChecker	extends	JFrame	{
	8:					JLabel	keyLabel	=	new	JLabel(“Hit	any	key”);
	9:
10:					public	KeyChecker()	{
11:									super(“Hit	a	Key”);
12:									setSize(300,	200);
13:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:									setLayout(new	FlowLayout(FlowLayout.CENTER));
15:									KeyMonitor	monitor	=	new	KeyMonitor(this);
16:									setFocusable(true);
17:									addKeyListener(monitor);
18:									add(keyLabel);
19:									setVisible(true);
20:					}
21:
22:					private	static	void	setLookAndFeel()	{
23:									try	{
24:													UIManager.setLookAndFeel(
25:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
26:);
27:									}	catch	(Exception	exc)	{
28:													System.err.println(“Couldn’t	use	the	system	“
29:																	+	“look	and	feel:	“	+	exc);
30:									}
31:					}

32:
33:					public	static	void	main(String[]	arguments)	{
34:									KeyChecker.setLookAndFeel();
35:									new	KeyChecker();
36:					}
37:	}
38:
39:	class	KeyMonitor	extends	KeyAdapter	{
40:					KeyChecker	display;
41:
42:					KeyMonitor(KeyChecker	display)	{
43:									this.display	=	display;
44:					}
45:
46:					public	void	keyTyped(KeyEvent	event)	{
47:									display.keyLabel.setText(””	+	event.getKeyChar());
48:									display.repaint();
49:					}
50:	}

The	KeyChecker	application	is	implemented	as	a	main	class	of	that	name	and	a
KeyMonitor	helper	class.

KeyMonitor	is	a	subclass	of	KeyAdapter,	an	adapter	class	for	keyboard	events	that
implements	the	KeyListener	interface.	In	lines	46–49,	the	keyTyped	method
overrides	the	same	method	in	KeyAdapter,	which	does	nothing.

When	a	key	is	pressed,	the	key	is	discovered	by	calling	getKeyChar()	of	the	user
event	object.	This	key	becomes	the	text	of	the	keyLabel	label	in	the	KeyChecker
class.	This	application	is	shown	in	Figure	12.5.

FIGURE	12.5	The	running	KeyChecker	application.

Using	Inner	Classes
One	of	the	challenges	of	taking	user	input	in	Java	is	to	keep	the	code	as	short	and	simple
as	possible.	The	need	to	implement	event	listeners	and	all	their	methods,	even	for
undesired	input,	requires	a	lot	of	coding.

In	the	KeyChecker	application,	an	adapter	class	was	used	to	shorten	the	amount	of
programming	required	to	handle	key	events.

A	technique	to	shorten	it	further	would	be	to	use	inner	classes,	which	are	defined	within	a
class,	as	if	they	were	a	method	or	variable.	An	adapter	class	is	created	as	an	inner	class	in
this	statement:

Click	here	to	view	code	image
KeyAdapter	monitor	=	new	KeyAdapter()	{
				public	void	keyTyped(KeyEvent	event)	{
								keyLabel.setText(””	+	event.getKeyChar());
								repaint();
				}
};

The	KeyAdapter	object	overrides	one	method,	keyTyped(KeyEvent),	to	receive
keyboard	input.	The	KeyChecker2	class	shown	in	Listing	12.6	has	two	advantages	over
its	predecessor.	As	you	create	it	in	NetBeans,	see	if	you	can	figure	out	what	they	are.

LISTING	12.6	The	Full	Text	of	KeyChecker2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	KeyChecker2	extends	JFrame	{
	8:					JLabel	keyLabel	=	new	JLabel(“Hit	any	key”);
	9:
10:					public	KeyChecker2()	{
11:										super(“Hit	a	Key”);
12:										setSize(300,	200);
13:										setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14:										setLayout(new	FlowLayout(FlowLayout.CENTER));
15:										KeyAdapter	monitor	=	new	KeyAdapter()	{
16:														public	void	keyTyped(KeyEvent	event)	{
17:																		keyLabel.setText(””	+	event.getKeyChar());
18:																		repaint();
19:														}
20:										};
21:										setFocusable(true);
22:										addKeyListener(monitor);
23:										add(keyLabel);
24:										setVisible(true);
25:						}
26:
27:						private	static	void	setLookAndFeel()	{
28:										try	{
29:														UIManager.setLookAndFeel(
30:																		“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
31:);
32:										}	catch	(Exception	exc)	{
33:														System.err.println(“Couldn’t	use	the	system	“
34:																		+	“look	and	feel:	“	+	exc);
35:										}
36:						}
37:
38:						public	static	void	main(String[]	arguments)	{
39:										KeyChecker2.setLookAndFeel();
40:										new	KeyChecker2();
41:						}
42:		}

The	application	functions	identically	to	the	KeyChecker	version.

The	advantages	of	this	version	are	that	it	is	shorter,	not	requiring	the	creation	of	a	separate
class,	and	it	does	not	need	to	make	use	of	the	this	variable	in	the	inner	class	to	be	able	to
change	the	label	in	line	17.	The	inner	class	can	access	the	variables	and	methods	of	its
own	class.

Inner	classes	also	can	be	anonymous,	which	are	objects	of	the	class	not	assigned	to	a
variable.

The	TitleBar	application	developed	today,	which	used	action	events	to	change	a
frame’s	title	in	response	to	button	clicks,	could	be	simplified	by	using	anonymous	inner
classes.	An	anonymous	inner	class	becomes	the	argument	to	the	button’s
addActionListener()	method,	as	you	can	see:
Click	here	to	view	code	image

JButton	b1;
b1.addActionListener(new	ActionListener()	{
				public	void	actionPerformed(ActionEvent	evt)	{
								setTitle(“Rosencrantz”);
				}
});
JButton	b2;
b2.addActionListener(new	ActionListener()	{
				public	void	actionPerformed(ActionEvent	evt)	{
								setTitle(“Guildenstern”);
				}
});

The	anonymous	inner	class	is	an	object	that	implements	the	ActionListener
interface.	The	object’s	actionPerformed()	method	is	overridden	to	set	the	frame’s
title	when	the	corresponding	button	is	clicked.	Because	each	button	has	its	own	listener,
it’s	simpler	than	using	one	listener	for	multiple	interface	components.

Inner	classes	look	more	complicated	than	separate	classes,	but	they	can	simplify	and
shorten	your	Java	code.	You	will	look	much	further	into	inner	classes	during	Day	16,
“Using	Inner	Classes	and	Closures.”

Summary
Event	handling	is	added	to	a	GUI	in	Swing	through	these	fundamental	steps:

	A	listener	interface	is	added	to	the	class	that	will	contain	the	event-handling
methods.

	A	listener	is	added	to	each	component	that	will	generate	the	events	to	handle.

	The	methods	are	added,	each	with	an	EventObject	class	as	the	only	argument	to
the	method.

	Methods	of	that	EventObject	class,	such	as	getSource(),	are	used	to	learn
which	component	generated	the	event	and	what	kind	of	event	it	was.

When	you	know	these	steps,	you	can	work	with	each	of	the	listener	interfaces	and	event
classes.	You	also	can	learn	about	new	listeners	as	they	are	added	to	Swing	with	new
components.

Q&A
Q	Can	a	program’s	event-handling	behavior	be	put	into	its	own	class	instead	of
being	included	with	the	code	that	creates	the	interface?

A	It	can,	and	many	programmers	will	tell	you	that	this	is	a	good	way	to	design	your
programs.	Separating	interface	design	from	your	event-handling	code	allows	you	to
develop	the	two	separately.	This	makes	it	easier	to	maintain	the	project;	related
behavior	is	grouped	and	isolated	from	unrelated	behavior.

Q	Is	there	a	way	to	differentiate	between	the	buttons	on	a	mouseClicked()
event?

A	Yes.	This	feature	of	mouse	events	wasn’t	covered	today	because	right	and	middle
mouse	buttons	are	platform-specific	features	that	are	unavailable	on	some	systems
where	Java	programs	run.

All	mouse	events	send	a	MouseEvent	object	to	their	event-handling	methods.	Call
the	object’s	getModifiers()	method	to	receive	an	integer	value	that	indicates
which	mouse	button	generated	the	event.

Check	the	value	against	three	class	variables.	It	equals
MouseEvent.BUTTON1_MASK	if	the	left	button	was	clicked,
MouseEvent.BUTTON2_MASK	if	the	middle	button	was	clicked,	and
MouseEvent.BUTTON3_MASK	if	the	right	button	was	clicked.	See
MouseTest.java	on	the	Day	12	page	of	the	book’s	website	at
www.java21days.com	for	an	example	that	implements	this	technique.

For	more	information,	see	the	Java	class	library	documentation	for	the	MouseEvent
class.	Visit	the	web	page	http://docs.oracle.com/javase/8/docs/api	and	click	the
java.awt.event	hyperlink	to	view	the	classes	in	that	package.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	If	you	use	this	in	a	method	call	such	as	addActionListener(this),	what
object	is	being	registered	as	a	listener?

A.	An	adapter	class

B.	The	current	class

C.	No	class

2.	What	is	the	benefit	of	subclassing	an	adapter	class	such	as	WindowAdapter
(which	implements	the	WindowListener	interface)?

A.	You	inherit	all	the	behavior	of	that	class.

B.	The	subclass	automatically	becomes	a	listener.

http://www.java21days.com
http://docs.oracle.com/javase/8/docs/api

C.	You	don’t	need	to	implement	any	WindowListener	methods	you	won’t	be
using.

3.	What	kind	of	event	is	generated	when	you	press	Tab	to	leave	a	text	field?

A.	FocusEvent

B.	WindowEvent

C.	ActionEvent

Answers
1.	B.	The	current	class	must	implement	the	correct	listener	interface	and	the	required
methods.

2.	C.	Because	most	listener	interfaces	contain	more	methods	than	you	will	need,	using
an	adapter	class	as	a	superclass	saves	the	hassle	of	implementing	empty	methods	just
to	implement	the	interface.

3.	A.	A	user	interface	component	loses	focus	when	the	user	stops	editing	that
component	and	moves	to	a	different	part	of	the	interface.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.awt.event.*;
import	javax.swing.*;
import	java.awt.*;

public	class	Expunger	extends	JFrame	implements	ActionListener	{
				public	boolean	deleteFile;

				public	Expunger()	{
								super(“Expunger”);
								JLabel	commandLabel	=	new	JLabel(“Do	you	want	to	delete	the	file?”);
								JButton	yes	=	new	JButton(“Yes”);
								JButton	no	=	new	JButton(“No”);
								yes.addActionListener(this);
								no.addActionListener(this);
								setLayout(new	BorderLayout());
								JPanel	bottom	=	new	JPanel();
								bottom.add(yes);
								bottom.add(no);
								add(“North”,	commandLabel);
								add(“South”,	bottom);
								pack();
								setVisible(true);
				}

				public	void	actionPerformed(ActionEvent	evt)	{
								JButton	source	=	(JButton)	evt.getSource();

								//	answer	goes	here
												deleteFile	=	true;
								else
												deleteFile	=	false;
				}

				public	static	void	main(String[]	arguments)	{
								new	Expunger();
				}
}

Which	of	the	following	statements	should	replace	//	answer	goes	here	to	make
the	application	function	correctly?

A.	if	(source	instanceof	JButton)

B.	if	(source.getActionCommand().equals("yes"))

C.	if	(source.getActionCommand().equals("Yes"))

D.	if	source.getActionCommand()	==	"Yes"

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	12
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	an	application	that	uses	FocusListener	to	ensure	that	a	text	field’s	value
is	multiplied	by	–1	and	is	redisplayed	whenever	a	user	changes	it	to	a	negative
value.

2.	Create	a	calculator	that	adds	or	subtracts	the	contents	of	two	text	fields	whenever
the	appropriate	button	is	clicked,	displaying	the	result	as	a	label.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	13.	Creating	Java2D	Graphics

Today,	you’ll	work	with	Java	classes	that	put	the	graphics	in	graphical	user	interfaces.
Java2D	is	a	set	of	classes	that	support	high-quality,	scalable,	two-dimensional	images,
color,	and	text.

Java2D,	which	includes	classes	in	the	java.awt	and	javax.swing	packages,	can	be
used	for	each	of	these	visually	appealing	tasks:

	Drawing	text

	Drawing	shapes	such	as	circles	and	polygons

	Using	different	fonts,	colors,	and	line	widths

	Filling	shapes	with	colors	and	patterns

The	Graphics2D	Class
Everything	in	Java2D	begins	with	the	Graphics2D	class	in	the	java.awt	package,
which	represents	a	graphics	context,	an	environment	in	which	something	can	be	drawn.	A
Graphics2D	object	can	represent	a	component	on	a	graphical	user	interface,	printer,	or
another	display	device.

Graphics2D	is	a	subclass	of	the	Graphics	class	that	extends	and	improves	its	visual
capabilities.

Before	you	can	start	using	the	Graphics2D	class,	you	need	a	surface	on	which	to	draw.

Several	user	interface	components	can	act	as	a	canvas	for	graphical	operations,	including
panels	and	windows.

As	soon	as	you	have	a	component	to	use	as	a	canvas,	you	can	draw	text,	lines,	ovals,
circles,	arcs,	rectangles,	and	other	polygons	on	that	object.

One	component	that’s	suitable	for	this	purpose	is	JPanel	in	the	javax.swing
package.	This	class	represents	panels	in	a	graphical	user	interface	that	can	be	empty	or
contain	other	components.

The	following	code	creates	a	frame	and	a	panel	and	then	adds	the	panel	to	the	frame:
Click	here	to	view	code	image

JFrame	main	=	new	JFrame(“Welcome	Screen”);
JPanel	pane	=	new	JPanel();
main.add(pane);

Like	many	user	interface	components	in	Java,	panels	have	a
paintComponent(Graphics)	method	that	is	called	automatically	when	the
component	needs	to	be	redisplayed.

Several	things	could	cause	paintComponent()	to	be	called:

	The	graphical	user	interface	containing	the	component	is	displayed	for	the	first	time.

	A	window	that	was	displayed	on	top	of	the	component	is	closed.

	The	graphical	user	interface	containing	the	component	is	resized.

By	creating	a	subclass	of	JPanel,	you	can	override	the	panel’s	paintComponent()
method	and	put	all	your	drawing	operations	in	this	method.

As	you	might	have	noticed,	a	Graphics	object	is	sent	to	an	interface	component’s
paintComponent()	method—not	the	Graphics2D	you	need.	To	create	a
Graphics2D	object	that	represents	the	component’s	drawing	surface,	you	must	use
casting	to	convert	it,	as	in	the	following	example:
Click	here	to	view	code	image

public	void	paintComponent(Graphics	comp)	{
				Graphics2D	comp2D	=	(Graphics2D)	comp;
				//	body	of	method
}

After	a	comp2D	object	has	been	cast	from	the	Graphics	object	sent	to	the	method	as	an
argument,	all	drawing	methods	use	this	new	object.	The	Graphics	object	will	not	be
used	again.

The	Graphics	Coordinate	System
Java2D	classes	use	the	same	(x,	y)	coordinate	system	you	have	used	when	setting	the	size
of	frames	and	other	components	in	your	Swing	applications.

Java’s	coordinate	system	uses	pixels	as	its	unit	of	measure.	The	origin	coordinate	(0,	0)	is
in	the	upper-left	corner	of	a	component.

The	value	of	x-coordinates	increases	to	the	right	of	(0,	0),	and	y-coordinates	increase
downward.

When	you	set	a	frame’s	size	by	calling	its	setSize(int,	int)	method,	the	frame’s
upper-left	corner	is	at	(0,	0),	and	its	lower-right	corner	is	at	the	two	arguments	sent	to
setSize().

The	following	statement	creates	a	frame	425	pixels	wide	by	130	pixels	tall	with	its	lower-
right	corner	at	(425,	130):

setSize(425,	130);

Caution

Java2D	differs	from	other	drawing	systems	in	which	the	(0,	0)	origin	is	at	the	lower
left	and	y	values	increase	in	an	upward	direction.

All	pixel	values	are	integers;	you	can’t	use	decimal	numbers	to	display	something	at	a
position	between	two	integer	values.

Figure	13.1	shows	Java’s	graphical	coordinate	system	visually,	with	the	origin	at	(0,	0).
Two	of	the	points	of	a	rectangle	are	at	(20,	20)	and	(60,	60).

FIGURE	13.1	The	Java	graphics	coordinate	system.

Drawing	Text
Text	is	the	easiest	thing	to	draw	in	Java2D.	To	draw	text,	call	a	Graphics2D	object’s
drawString(String,	int,	int)	method	with	three	arguments:

	The	string	to	display

	The	x-coordinate	where	it	should	be	displayed

	The	y-coordinate	where	it	should	be	displayed

The	(x,	y)	coordinates	used	in	the	drawString()	method	represent	the	pixel	at	the
lower-left	corner	of	the	string.

The	following	paintComponent()	method	draws	the	string	“Free	the	bound
periodicals”	at	the	coordinates	(22,	100):
Click	here	to	view	code	image

public	void	paintComponent(Graphics	comp)	{
				Graphics2D	comp2D	=	(Graphics2D)	comp;
				comp2D.drawString(“Free	the	bound	periodicals”,	22,	100);
}

This	example	uses	a	default	font.	To	use	a	different	font,	you	must	create	an	object	of	the
Font	class	in	the	java.awt	package.

Font	objects	represent	a	font’s	name,	style,	and	point	size.	A	Font	object	is	created	by
sending	three	arguments	to	its	constructor:

	The	font’s	name

	The	font’s	style

	The	font’s	point	size

A	font’s	name	can	be	its	physical	name,	such	as	Arial,	Courier	New,	Garamond,	or
Turman	Grotesk.	If	the	font	is	present	on	the	computer	running	the	application,	it	is	used.
If	the	font	is	not	present,	the	default	font	is	used.

The	name	also	can	be	one	of	five	logical	fonts:	Dialog,	DialogInput,	Monospaced,
SanSerif,	or	Serif.	These	fonts	can	be	used	to	specify	the	kind	of	font	to	use	without
requiring	a	specific	font.	This	often	is	a	better	choice,	because	some	font	families	might
not	be	present	on	all	implementations	of	Java.

Three	Font	styles	can	be	selected	by	using	class	variables:	PLAIN,	BOLD,	and	ITALIC.
These	constants	are	integers,	and	you	can	add	them	to	combine	effects.

The	following	statement	creates	a	24-point	Dialog	font	that	is	bold	and	italicized:
Click	here	to	view	code	image

Font	f	=	new	Font(“Dialog”,	Font.BOLD	+	Font.ITALIC,	24);

After	you	have	created	a	font,	you	can	use	it	by	calling	the	setFont(Font)	method	of
the	Graphics2D	class	with	the	font	as	the	argument.

The	setFont()	method	sets	the	current	font,	which	will	be	used	for	all	subsequent	calls
to	the	drawString()	method	on	the	same	Graphics2D	object	until	another	font	is
set.

The	following	paintComponent()	method	creates	a	new	Font	object,	sets	the	current
font	to	that	object,	and	draws	the	string	“I’m	deeply	font	of	you”	in	72-point	type	at	the
coordinates	(13,	100):
Click	here	to	view	code	image

public	void	paintComponent(Graphics	comp)	{
				Graphics2D	comp2D	=	(Graphics2D)	comp;
				Font	f	=	new	Font(“Arial	Narrow”,	Font.PLAIN,	72);
				comp2D.setFont(f);
				comp2D.drawString(“I’m	deeply	font	of	you”,	13,	100);
}

Java	applications	can	ensure	that	a	font	is	available	by	including	it	with	the	program	and
loading	it	from	a	file.	This	technique	requires	the	Font	class	method
createFont(int,	InputStream),	which	returns	a	Font	object	representing	that
font.

Input	streams,	which	are	covered	on	Day	15,	“Working	with	Input	and	Output,”	are
objects	that	can	load	data	from	a	source	such	as	a	disk	file	or	web	address.	The	following
statements	load	a	font	from	a	file	named	Verdana.ttf	in	the	same	folder	as	the	class
file	that	uses	it:
Click	here	to	view	code	image

try	{
				File	ttf	=	new	File(“Verdana.ttf”);
				FileInputStream	fis	=	new	FileInputStream(ttf);
				Font	font	=	Font.createFont(Font.TRUETYPE_FONT,	fis);
}	catch	(IOException|FontFormatException	exc)	{
				System.out.println(“Error:	“	+	exc.getMessage());
}

The	try-catch	block	handles	input/output	errors,	which	must	be	considered	when	data
is	loaded	from	a	file.	The	File,	FileInputStream,	and	IOException	classes	are
part	of	the	java.io	package	and	are	discussed	in	depth	on	Day	15.

When	a	font	is	loaded	with	createFont(),	the	Font	object	is	1	point	and	plain	style.
To	change	the	size	and	style,	call	the	font	object’s	deriveFont(int,	int)	method
with	two	arguments:	the	desired	style	and	size.

Improving	Fonts	and	Graphics	with	Antialiasing
If	you	displayed	text	using	the	skills	introduced	up	to	this	point,	the	font’s	appearance
would	look	crude	compared	to	what	you’ve	come	to	expect	from	other	software.
Characters	would	be	rendered	with	jagged	edges,	especially	on	curves	and	diagonal	lines.

Java2D	can	draw	fonts	and	graphics	much	more	attractively	using	its	support	for
antialiasing,	a	rendering	technique	that	smooths	out	rough	edges	by	altering	the	color	of
surrounding	pixels.

This	functionality	is	off	by	default.	To	turn	it	on,	call	a	Graphics2D	object’s
setRenderingHint()	method	with	two	arguments:

	A	RenderingHint.Key	object	that	identifies	the	rendering	hint	being	set

	A	RenderingHint.Key	object	that	sets	the	value	of	that	hint

The	following	code	enables	antialiasing	on	a	Graphics2D	object	named	comp2D:
Click	here	to	view	code	image

comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
				RenderingHints.VALUE_ANTIALIAS_ON);

By	calling	this	method	in	the	paintComponent()	method	of	a	component,	you	can
cause	all	subsequent	drawing	operations	to	employ	antialiasing.

Finding	Information	About	a	Font
To	make	text	look	good	in	a	graphical	user	interface,	you	often	must	figure	out	how	much
space	the	text	is	taking	up	on	an	interface	component.

The	FontMetrics	class	in	the	java.awt	package	provides	methods	to	determine	the
size	of	the	characters	being	displayed	with	a	specified	font,	which	can	be	used	for	things
such	as	formatting	and	centering	text.

The	FontMetrics	class	can	be	used	to	find	out	detailed	information	about	the	current
font,	such	as	the	width	or	height	of	characters	it	can	display.

To	use	this	class’s	methods,	you	must	create	a	FontMetrics	object	using	the
getFontMetrics()	method.	The	method	takes	a	single	argument:	a	Font	object.

Table	13.1	shows	some	of	the	information	you	can	find	using	font	metrics.	All	these
methods	should	be	called	on	a	FontMetrics	object.

TABLE	13.1	Font	Metrics	Methods

Listing	13.1	shows	how	the	Font	and	FontMetrics	classes	can	be	used.	The
TextFrame	application	displays	a	string	at	the	center	of	a	frame,	using	font	metrics	to
measure	the	string’s	width	using	the	selected	font.	Create	it	in	NetBeans	in	the
com.java21days	package.

LISTING	13.1	The	Full	Text	of	TextFrame.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	TextFrame	extends	JFrame	{
	8:					public	TextFrame(String	text,	String	fontName)	{
	9:									super(“Show	Font”);
10:									setSize(425,	150);
11:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:									TextFramePanel	sf	=	new	TextFramePanel(text,	fontName);
13:									add(sf);
14:									setVisible(true);
15:					}
16:
17:					public	static	void	main(String[]	arguments)	{
18:									if	(arguments.length	<	1)	{
19:													System.out.println(“Usage:	java	TextFrame	msg	font”);
20:													System.exit(-1);
21:									}
22:									TextFrame	tf	=	new	TextFrame(arguments[0],	arguments[1]);
23:					}
24:
25:	}
26:
27:	class	TextFramePanel	extends	JPanel	{
28:					String	text;
29:					String	fontName;
30:
31:					public	TextFramePanel(String	text,	String	fontName)	{
32:									super();
33:									this.text	=	text;
34:									this.fontName	=	fontName;
35:					}
36:
37:					public	void	paintComponent(Graphics	comp)	{
38:									super.paintComponent(comp);
39:									Graphics2D	comp2D	=	(Graphics2D)	comp;
40:									comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
41:													RenderingHints.VALUE_ANTIALIAS_ON);
42:									Font	font	=	new	Font(fontName,	Font.BOLD,	18);

43:									FontMetrics	metrics	=	getFontMetrics(font);
44:									comp2D.setFont(font);
45:									int	x	=	(getSize().width	-	metrics.stringWidth(text))	/	2;
46:									int	y	=	getSize().height	/	2;
47:									comp2D.drawString(text,	x,	y);
48:					}
49:	}

The	TextFrame	application	takes	two	command-line	arguments,	which	you	can	set	in
NetBeans	by	choosing	Project,	Set	Project	Configuration,	Customize.	To	run	the
application	with	this	configuration,	choose	Run,	Run	Project.

Figure	13.2	shows	how	the	application	looks	with	a	text	message	displayed	in	the	font
Arial	Black.	When	you	run	the	application,	resize	the	frame	window	to	see	how	the	text
moves	so	that	it	remains	centered.

FIGURE	13.2	Displaying	centered	text	in	a	graphical	user	interface.

The	TextFrame	application	consists	of	two	classes:	a	frame	and	a	panel	subclass	called
TextFramePanel.	The	text	is	drawn	on	the	panel	by	overriding	the
paintComponent(Graphics)	method	and	calling	drawing	methods	of	the
Graphics2D	class	inside	the	method.

The	getSize()	method	calls	in	lines	45	and	46	use	the	panel’s	width	and	height	to
determine	where	the	text	should	be	displayed.	When	the	application	is	resized,	the	panel
also	is	resized,	and	paintComponent()	is	called	automatically.

Color
The	Color	class	(in	the	java.awt	package)	and	ColorSpace	class	(in
java.awt.color)	can	be	used	to	make	a	graphical	user	interface	more,	well,	colorful.
With	these	classes,	you	can	set	the	color	for	use	in	drawing	operations,	as	well	as	the
background	color	of	an	interface	component	and	other	windows.	You	also	can	translate	a
color	from	one	color	system	into	another.

By	default,	Java	uses	colors	according	to	the	sRGB	color	system,	which	describes	each
shade	by	the	amounts	of	red,	green,	and	blue	it	contains	(R,	G,	and	B).	Each	of	the	three
components	can	be	represented	as	an	integer	between	0	and	255.	Black	is	0,	0,	0—the
absence	of	any	red,	green,	or	blue.	White	is	255,	255,	255—the	maximum	amount	of	all
three	colors.	You	also	can	represent	sRGB	values	using	three	floating-point	numbers
ranging	from	0	to	1.0.	Java	can	represent	millions	of	colors	between	the	two	extremes
using	sRGB.

A	color	system	is	called	a	color	space,	and	sRGB	is	only	one	such	space.	There	also	is

XYZ,	which	was	created	by	an	international	conference	in	1931.	Java	supports	the	use	of
any	color	space	desired	as	long	as	a	ColorSpace	object	is	used	that	defines	the
description	system.	You	also	can	convert	from	any	color	space	to	sRGB,	and	vice	versa.

Java’s	internal	representation	of	colors	using	sRGB	is	just	one	color	space	used	in	a
program.	An	output	device	such	as	a	monitor	or	printer	also	has	its	own	color	space.

When	you	display	or	print	something	of	a	designated	color,	the	output	device	might	not
support	the	designated	color.	In	this	circumstance,	a	different	color	is	substituted	or	a
dithering	pattern	is	used	to	approximate	the	unavailable	color.

The	practical	reality	of	color	management	is	that	the	color	you	designate	with	sRGB	will
not	be	available	on	all	output	devices.	If	you	need	more	precise	control	of	the	color,	you
can	use	ColorSpace	and	other	classes	in	the	java.awt.color	package.

For	most	needs,	the	built-in	use	of	sRGB	to	define	colors	should	be	sufficient.

Using	Color	Objects
Colors	are	represented	by	Color	objects,	which	can	be	created	with	a	constructor	or	by
using	one	of	the	small	number	of	standard	colors	available	in	the	Color	class.

You	can	call	the	Color()	constructor	to	create	a	color	with	three	integers	that	represent
the	sRGB	value	of	the	desired	color	or	three	floating-point	numbers	that	serve	the	same
purpose:
Click	here	to	view	code	image

Color	c1	=	new	Color(0.807F,	1F,	0F);

Color	c2	=	new	Color(255,	204,	102);

The	c1	object	describes	a	neon	green	color,	and	c2	is	butterscotch.

Note

It’s	easy	to	confuse	floating-point	literals	such	as	0F	and	1F	with	hexadecimal
numbers,	which	were	discussed	on	Day	2,	“The	ABCs	of	Programming.”	Colors
often	are	expressed	in	hexadecimal,	such	as	when	a	background	color	is	set	on	a
web	page	using	Cascading	Style	Sheets.	The	Java	classes	and	methods	you	work
with	don’t	take	hexadecimal	arguments,	so	when	you	see	a	literal	such	as	1F	or	0F,
you’re	dealing	with	floating-point	numbers.

Testing	and	Setting	the	Current	Colors
The	current	color	for	drawing	is	designated	by	using	the	setColor()	method	of	the
Graphics2D	class.	This	method	must	be	called	on	the	Graphics2D	object	that
represents	the	area	on	which	something	is	being	drawn.

Several	of	the	most	common	colors	are	available	as	class	variables	in	the	Color	class.
These	colors	use	the	following	Color	variables	(sRGB	values	appear	in	parentheses):
Click	here	to	view	code	image

black	(0,	0,	0)																		magenta	(255,	0,	255)
blue	(0,	0,	255)																	orange	(255,	200,	0)
cyan	(0,	255,	255)															pink	(255,	175,	175)
darkGray	(64,	64,	64)												red	(255,	0,	0)
gray	(128,	128,	128)													white	(255,	255,	255)
green	(0,	255,	0)																yellow	(255,	255,	0)
lightGray	(192,	192,	192)

The	following	statement	sets	the	color	for	a	Graphics2D	object	named	comp2D	by
using	one	of	the	standard	class	variables:

comp2D.setColor(Color.pink);

If	you	have	created	a	Color	object,	it	can	be	set	in	a	similar	fashion:
Click	here	to	view	code	image

Color	brush	=	new	Color(255,	204,	102);
comp2D.setColor(brush);

After	you	set	the	current	color,	subsequent	methods	to	draw	strings	and	other	graphics	will
use	that	color.

You	can	set	the	background	color	for	a	component,	such	as	a	panel	or	frame,	by	calling	the
component’s	setBackground(Color)	method.

The	setBackground()	method	sets	the	component’s	background	color,	as	in	this
example:

setBackground(Color.white);

If	you	want	to	find	out	what	the	current	color	is,	you	can	use	the	getColor()	method
on	a	Graphics2D	object,	or	the	getBackground()	method	on	the	component.

The	following	statement	sets	the	current	color	of	comp2D—a	Graphics2D	object—to
the	same	color	as	a	component’s	background:
Click	here	to	view	code	image

comp2D.setColor(getBackground());

Drawing	Lines	and	Polygons
All	the	basic	drawing	commands	covered	today	are	Graphics2D	methods	called	within
a	component’s	paintComponent()	method.

This	is	an	ideal	place	for	all	drawing	operations	because	paintComponent()	is
automatically	called	any	time	the	component	needs	to	be	redisplayed.

If	another	program’s	window	overlaps	the	component	and	it	needs	to	be	redrawn,	putting
all	the	drawing	operations	in	paintComponent()	ensures	that	no	part	of	the	drawing	is
left	out.

Java2D	features	include	the	following:

	The	capability	to	draw	empty	polygons	and	polygons	filled	with	a	solid	color

	Special	fill	patterns,	such	as	gradients	and	patterns

	Strokes	that	define	the	width	and	style	of	a	drawing	stroke

	Antialiasing	to	smooth	edges	of	drawn	objects

User	and	Device	Coordinate	Spaces
One	concept	introduced	with	Java2D	is	the	difference	between	an	output	device’s
coordinate	space	and	the	coordinate	space	you	refer	to	when	drawing	an	object.
Coordinate	space	is	any	2D	area	that	can	be	described	using	(x,	y)	coordinates.

For	all	drawing	operations	prior	to	Java,	the	only	coordinate	space	used	was	the	device
coordinate	space.	You	specified	the	(x,	y)	coordinates	of	an	output	surface,	such	as	a
panel,	and	those	coordinates	were	used	to	draw	text	and	other	elements.

Java2D	requires	a	second	coordinate	space	that	you	refer	to	when	creating	an	object	and
actually	drawing	it.	This	is	called	the	user	coordinate	space.

Before	any	2D	drawing	has	occurred	in	a	program,	the	device	space	and	user	space	have
the	(0,	0)	coordinates	in	the	same	place—the	upper-left	corner	of	the	drawing	area.

The	user	space’s	(0,	0)	coordinates	can	move	as	a	result	of	the	2D	drawing	operations
being	conducted.	The	x-	and	y-axes	even	can	shift	because	of	a	2D	rotation.	You’ll	learn
more	about	the	two	coordinate	systems	as	you	work	with	Java2D.

Specifying	the	Rendering	Attributes
The	next	step	in	2D	drawing	is	to	specify	how	a	drawn	object	is	rendered.	Java2D	offers	a
wide	range	of	attributes	for	designating	color,	including	line	width,	fill	patterns,
transparency,	and	many	other	features.

Fill	Patterns

Fill	patterns	control	how	a	drawn	object	will	be	filled	in.	With	Java2D,	you	can	use	a	solid
color,	gradient	fill,	texture,	or	pattern	of	your	own	devising.

A	fill	pattern	is	defined	by	using	the	setPaint(Paint)	method	of	Graphics2D	with
a	Paint	object	as	its	only	argument.	Any	class	that	can	be	a	fill	pattern,	including
GradientPaint,	TexturePaint,	and	Color,	can	implement	the	Paint	interface.
Using	a	Color	object	with	setPaint()	is	the	same	thing	as	using	a	solid	color	as	the
pattern.

A	gradient	fill	is	a	gradual	shift	from	one	color	at	one	coordinate	point	to	another	color	at
a	different	coordinate	point.	The	shift	can	occur	once	between	the	points—which	is	called
an	acyclic	gradient—or	it	can	happen	repeatedly,	which	is	a	cyclic	gradient.

Figure	13.3	shows	examples	of	acyclic	and	cyclic	gradients	between	white	and	a	darker
color.	The	arrows	indicate	the	points	that	the	colors	shift	between.

FIGURE	13.3	Acyclic	and	cyclic	gradient	shifts.

The	coordinate	points	in	a	gradient	do	not	refer	directly	to	points	on	the	Graphics2D
object	being	drawn	onto.	Instead,	they	refer	to	user	space	and	even	can	be	outside	the
object	being	filled	with	a	gradient.

Figure	13.4	illustrates	this.	Both	rectangles	are	filled	using	the	same	GradientPaint
object	as	a	guide.	One	way	to	think	of	a	gradient	pattern	is	as	a	piece	of	fabric	that	has
been	spread	over	a	flat	surface.	The	shapes	being	filled	with	a	gradient	are	the	patterns	cut
from	the	fabric,	and	more	than	one	pattern	can	be	cut	from	the	same	piece	of	cloth.

FIGURE	13.4	Two	rectangles	using	the	same	GradientPaint.

A	call	to	the	GradientPaint	constructor	method	takes	the	following	format:
Click	here	to	view	code	image

GradientPaint	gp	=	new	GradientPaint(
				x1,	y1,	color1,	x2,	y2,	color2);

The	point	(x1,	y1)	is	where	the	color	represented	by	color1	begins,	and	(x2,	y2)	is
where	the	shift	ends	at	color2.

If	you	want	to	use	a	cyclic	gradient	shift,	an	extra	argument	is	added	at	the	end:
Click	here	to	view	code	image

GradientPaint	gp	=	new	GradientPaint(
				x1,	y1,	color1,	x2,	y2,	color2,	true);

The	last	argument	is	a	Boolean	value	that	is	true	for	a	cyclic	shift.	A	false	argument
can	be	used	for	acyclic	shifts,	or	you	can	omit	this	argument;	acyclic	shifts	are	the	default
behavior.

After	you	have	created	a	GradientPaint	object,	set	it	as	the	current	paint	attribute	by
using	the	setPaint()	method.	The	following	statements	create	and	select	a	gradient:
Click	here	to	view	code	image

GradientPaint	pat	=	new	GradientPaint(0f,	0f,	Color.white,
				100f,	45f,	Color.blue);
comp2D.setPaint(pat);

All	subsequent	drawing	operations	to	the	comp2D	object	use	this	fill	pattern	until	another
one	is	chosen.

Setting	a	Drawing	Stroke

Java2D	allows	you	to	vary	the	width	of	drawn	lines	by	using	the	setStroke()	method
with	a	BasicStroke.

A	simple	BasicStroke	constructor	takes	three	arguments:

	A	float	value	representing	the	line	width,	with	1.0	as	the	norm

	An	int	value	determining	the	style	of	cap	decoration	drawn	at	the	end	of	a	line

	An	int	value	determining	the	style	of	juncture	between	two	line	segments

The	endcap-	and	juncture-style	arguments	use	BasicStroke	class	variables.	Endcap
styles	apply	to	the	ends	of	lines	that	do	not	connect	to	other	lines.	Juncture	styles	apply	to
the	ends	of	lines	that	join	other	lines.

Possible	endcap	styles	are	CAP_BUTT	for	no	endpoints,	CAP_ROUND	for	circles	around
each	endpoint,	and	CAP_SQUARE	for	squares.	Figure	13.5	shows	each	endcap	style.	As
you	can	see,	the	only	visible	difference	between	the	CAP_BUTT	and	CAP_SQUARE	styles
is	that	CAP_SQUARE	is	longer	because	of	the	added	square	endcap.

FIGURE	13.5	Endpoint	cap	styles.

Possible	juncture	styles	include	JOIN_MITER,	which	joins	segments	by	extending	their
outer	edges,	JOIN_ROUND,	which	rounds	off	a	corner	between	two	segments,	and
JOIN_BEVEL,	which	joins	segments	with	a	straight	line.	Figure	13.6	shows	examples	of
each	juncture	style.

FIGURE	13.6	Endpoint	juncture	styles.

The	following	statements	create	a	BasicStroke	object	and	make	it	the	current	stroke:
Click	here	to	view	code	image

BasicStroke	pen	=	new	BasicStroke(2.0F,
				BasicStroke.CAP_BUTT,
				BasicStroke.JOIN_ROUND);
comp2D.setStroke(pen);

The	stroke	has	a	width	of	2	pixels,	plain	endpoints,	and	rounded	segment	corners.

Creating	Objects	to	Draw
After	you	have	created	a	Graphics2D	object	and	specified	the	rendering	attributes,	the
final	two	steps	are	to	create	the	object	and	draw	it.

You	create	a	drawn	object	in	Java2D	by	defining	it	as	a	geometric	shape	using	a	class	in
the	java.awt.geom	package.	You	can	draw	lines,	rectangles,	ellipses,	arcs,	and
polygons.

The	Graphics2D	class	does	not	have	a	different	method	for	each	shape	you	can	draw.
Instead,	you	define	the	shape	and	use	it	as	an	argument	to	draw()	or	fill()	methods.

Lines

Lines	are	created	using	the	Line2D.Float	class.	This	class	takes	four	arguments:	the
(x,y)	coordinates	of	one	endpoint	followed	by	the	(x,y)	coordinates	of	the	other.	Here’s	an
example:
Click	here	to	view	code	image

Line2D.Float	ln	=	new	Line2D.Float(60F,	5F,	13F,	28F);

This	statement	creates	a	line	between	(60,	5)	and	(13,	28).	Note	that	an	F	is	used	with	the
literals	sent	as	arguments.	Otherwise,	the	Java	compiler	would	assume	that	the	values
were	integers.

Rectangles

Rectangles	are	created	by	using	the	Rectangle2D.Float	class	or
Rectangle2D.Double	class.	The	difference	between	the	two	is	that	one	takes	float
arguments,	and	the	other	takes	double	arguments.

Rectangle2D.Float	takes	four	arguments:	x-coordinate,	y-coordinate,	width,	and
height.	The	following	is	an	example:
Click	here	to	view	code	image

Rectangle2D.Float	rc	=	new	Rectangle2D.Float(10F,	13F,	40F,	20F);

This	creates	a	rectangle	at	10,	13	that	is	40	pixels	wide	by	20	pixels	tall.

Ellipses

Ellipses	can	be	created	with	the	Ellipse2D.Float	class.	It	takes	four	arguments:	x-
coordinate,	y-coordinate,	width,	and	height.

The	following	statement	creates	an	ellipse	at	(113,	25)	with	a	width	of	22	pixels	and	a
height	of	40	pixels:
Click	here	to	view	code	image

Ellipse2D.Float	ee	=	new	Ellipse2D.Float(113,	25,	22,	40);

Arcs

Of	all	the	shapes	you	can	draw	in	Java2D,	arcs	are	the	most	complex	to	construct.

Arcs	are	created	with	the	Arc2D.Float	class,	which	takes	seven	arguments:

	The	(x,y)	coordinates	of	an	invisible	ellipse	that	would	include	the	arc	if	it	were
drawn	(first	two	arguments)

	The	width	and	height	of	the	ellipse	(third	and	fourth	arguments)

	The	starting	degree	of	the	arc

	The	number	of	degrees	it	travels	on	the	ellipse

	An	integer	describing	how	the	arc	is	closed

The	number	of	degrees	the	arc	travels	is	specified	in	a	counterclockwise	direction	by	using
negative	numbers.

Figure	13.7	shows	where	degree	values	are	located	when	determining	an	arc’s	starting
degree.	The	arc’s	starting	angle	ranges	from	0	to	359	degrees	counterclockwise.	On	a
circular	ellipse,	0	degrees	is	at	the	3	o’clock	position,	90	degrees	is	at	12	o’clock,	180
degrees	is	at	9	o’clock,	and	270	degrees	is	at	6	o’clock.

FIGURE	13.7	Determining	the	starting	degree	of	an	arc.

The	last	argument	to	the	Arc2D.Float	constructor	uses	one	of	three	class	variables:
Arc2D.OPEN	for	an	unclosed	arc,	Arc2D.CHORD	to	connect	the	arc’s	endpoints	with	a
straight	line,	and	Arc2D.PIE	to	connect	the	arc	to	the	center	of	the	ellipses	like	a	pie
slice.	Figure	13.8	shows	each	of	these	styles.

FIGURE	13.8	Arc	closure	styles.

Note

The	Arc2D.OPEN	closure	style	does	not	apply	to	filled	arcs.	A	filled	arc	that	has
Arc2D.OPEN	as	its	style	will	be	closed	using	the	same	style	as	Arc2D.CHORD.

The	following	statement	creates	an	Arc2D.Float	object:
Click	here	to	view	code	image

Arc2D.Float	arc	=	new	Arc2D.Float(
				27F,	22F,	42F,	30F,	33F,	90F,	Arc2D.PIE);

This	creates	an	arc	for	an	oval	at	(27,	22)	that	is	42	pixels	wide	by	30	pixels	tall.	The	arc
begins	at	33	degrees,	extends	90	degrees	clockwise,	and	is	closed	like	a	pie	slice.

Polygons

You	create	polygons	in	Java2D	by	defining	each	movement	from	one	point	on	the	polygon
to	another.	A	polygon	can	be	formed	from	straight	lines,	quadratic	curves,	or	Bézier
curves.

The	movements	to	create	a	polygon	are	defined	as	a	GeneralPath	object,	which	also	is
part	of	the	java.awt.geom	package.

A	GeneralPath	object	can	be	created	without	any	arguments,	as	shown	here:
Click	here	to	view	code	image

GeneralPath	polly	=	new	GeneralPath();

The	moveTo()	method	of	GeneralPath	is	used	to	create	the	first	point	on	the
polygon.	The	following	statement	would	be	used	if	you	wanted	to	start	polly	at	the
coordinate	5,	0:

polly.moveTo(5F,	0F);

After	creating	the	first	point,	the	lineTo()	method	is	used	to	create	lines	that	end	at	a
new	point.	This	method	takes	two	arguments:	the	(x,y)	coordinates	of	the	new	point.

The	following	statements	add	three	lines	to	the	polly	object:
polly.lineTo(205F,	0F);
polly.lineTo(205F,	90F);
polly.lineTo(5F,	90F);

The	lineTo()	and	moveTo()	methods	require	float	arguments	to	specify	coordinate
points.

If	you	want	to	close	a	polygon,	the	closePath()	method	is	used	without	any
arguments,	as	shown	here:

polly.closePath();

This	method	closes	a	polygon	by	connecting	the	current	point	with	the	point	specified	by
the	most	recent	moveTo()	method.	You	can	close	a	polygon	without	this	method	by
using	a	lineTo()	method	that	connects	to	the	original	point.

After	you	have	created	an	open	or	closed	polygon,	you	can	draw	it	like	any	other	shape
using	the	draw()	and	fill()	methods.	The	polly	object	is	a	rectangle	with	points	at
(5,	0),	(205,	0),	(205,	90),	and	(5,	90).

Drawing	Objects
After	you	have	defined	the	rendering	attributes,	such	as	color	and	line	width,	and	have
created	the	object	to	be	drawn,	you’re	ready	to	draw	something	in	all	its	2D	glory.

All	drawn	objects	use	the	same	Graphics2D	class’s	methods:	draw()	for	outlines	and
fill()	for	filled	objects.	These	take	an	object	as	the	only	argument.

Drawing	a	Map

The	next	project	you	will	create	is	an	application	that	draws	a	simple	map	using	2D
drawing	techniques.	Create	the	Map	class	in	the	com.java21days	package	in
NetBeans	and	fill	it	with	the	code	in	Listing	13.2.

LISTING	13.2	The	Full	Text	of	Map.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.geom.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	Map	extends	JFrame	{
	8:					public	Map()	{
	9:									super(“Map”);
10:									setSize(360,	350);
11:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:									MapPane	map	=	new	MapPane();
13:									add(map);
14:									setVisible(true);
15:					}
16:
17:					public	static	void	main(String[]	arguments)	{
18:									Map	frame	=	new	Map();
19:					}
20:
21:	}
22:
23:	class	MapPane	extends	JPanel	{
24:					public	void	paintComponent(Graphics	comp)	{
25:									Graphics2D	comp2D	=	(Graphics2D)	comp;
26:									comp2D.setColor(Color.blue);
27:									comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
28:													RenderingHints.VALUE_ANTIALIAS_ON);
29:									Rectangle2D.Float	background	=	new	Rectangle2D.Float(
30:													0F,	0F,	getSize().width,	getSize().height);
31:									comp2D.fill(background);
32:									//	Draw	waves
33:									comp2D.setColor(Color.white);
34:									BasicStroke	pen	=	new	BasicStroke(2F,
35:									BasicStroke.CAP_BUTT,	BasicStroke.JOIN_ROUND);
36:									comp2D.setStroke(pen);
37:									for	(int	ax	=	0;	ax	<	340;	ax	+=	10)	{
38:													for	(int	ay	=	0;	ay	<	340	;	ay	+=	10)	{
39:																	Arc2D.Float	wave	=	new	Arc2D.Float(ax,	ay,
40:																					10,	10,	0,	-180,	Arc2D.OPEN);
41:																	comp2D.draw(wave);
42:													}
43:									}
44:									//	Draw	Florida
45:									GradientPaint	gp	=	new	GradientPaint(0F,	0F,	Color.green,
46:													350F,350F,	Color.orange,	true);
47:									comp2D.setPaint(gp);
48:									GeneralPath	fl	=	new	GeneralPath();
49:									fl.moveTo(10F,	12F);
50:									fl.lineTo(234F,	15F);
51:									fl.lineTo(253F,	25F);

52:									fl.lineTo(261F,	71F);
53:									fl.lineTo(344F,	209F);
54:									fl.lineTo(336F,	278F);
55:									fl.lineTo(295F,	310F);
56:									fl.lineTo(259F,	274F);
57:									fl.lineTo(205F,	188F);
58:									fl.lineTo(211F,	171F);
59:									fl.lineTo(195F,	174F);
60:									fl.lineTo(191F,	118F);
61:									fl.lineTo(120F,	56F);
62:									fl.lineTo(94F,	68F);
63:									fl.lineTo(81F,	49F);
64:									fl.lineTo(12F,	37F);
65:									fl.closePath();
66:									comp2D.fill(fl);
67:									//	Draw	ovals
68:									comp2D.setColor(Color.black);
69:									BasicStroke	pen2	=	new	BasicStroke();
70:									comp2D.setStroke(pen2);
71:									Ellipse2D.Float	e1	=	new	Ellipse2D.Float(235,	140,	15,	15);
72:									Ellipse2D.Float	e2	=	new	Ellipse2D.Float(225,	130,	15,	15);
73:										Ellipse2D.Float	e3	=	new	Ellipse2D.Float(245,	130,	15,	15);
74:									comp2D.fill(e1);
75:									comp2D.fill(e2);
76:									comp2D.fill(e3);
77:					}
78:	}

In	the	Map	application,	line	4	imports	the	classes	in	the	java.awt.geom	package.	This
statement	is	required	because	import	java.awt.*;	in	line	1	handles	only	classes,
not	packages,	available	under	java.awt.

Line	25	creates	the	comp2D	object	used	for	all	2D	drawing	operations.	It’s	a	cast	of	the
Graphics	object	that	represents	the	panel’s	visible	surface.

Lines	34–36	create	a	BasicStroke	object	that	represents	a	line	width	of	2	pixels	and
then	makes	this	the	current	stroke	with	the	setStroke()	method	of	Graphics2D.

Lines	37–42	use	two	nested	for	loops	to	create	waves	from	individual	arcs.

Lines	45–46	create	a	gradient	fill	pattern	from	the	color	green	at	(0,	0)	to	orange	at	(50,
50).	The	last	argument	to	the	constructor,	true,	causes	the	fill	pattern	to	repeat	itself	as
many	times	as	needed	to	fill	an	object.

Line	47	sets	the	current	gradient	fill	pattern	using	the	setPaint()	method	and	the	gp
object	just	created.

Lines	48–66	create	the	polygon	shaped	like	the	author’s	home	state	and	draw	it.	This
polygon	is	filled	with	a	green-to-orange	gradient	pattern.

Line	68	sets	the	current	color	to	black.	This	replaces	the	gradient	fill	pattern	for	the	next
drawing	operation	because	colors	are	also	fill	patterns.

Line	69	creates	a	new	BasicStroke()	object	with	no	arguments,	which	defaults	to	a	1-
pixel	line	width.

Line	70	sets	the	current	line	width	to	the	new	BasicStroke	object	pen2.

Lines	71–73	create	three	ellipses	at	(235,	140),	(225,	130),	and	(245,	130).	Each	is	15
pixels	wide	by	15	pixels	tall,	making	them	circles.

Figure	13.9	shows	the	application	running.

FIGURE	13.9	The	Map	application.

Summary
You	now	have	some	tools	to	improve	the	looks	of	a	Java	program.	You	can	draw	with
lines,	rectangles,	ellipses,	polygons,	fonts,	colors,	and	patterns	onto	a	frame,	a	panel,	and
other	user	interface	components	using	Java2D.

Java2D	uses	the	same	two	methods	for	each	drawing	operation—draw()	and	fill().
Different	objects	are	created	using	classes	of	the	java.awt.geom	package,	and	these
are	used	as	arguments	for	the	drawing	methods	of	Graphics2D.

Tomorrow,	on	Day	14,	“Developing	Swing	Applications,”	you’ll	learn	how	to	create
applications	that	are	launched	from	a	web	page	using	Java	Web	Start	technology.

Q&A
Q	What	does	the	uppercase	F	refer	to	in	source	code	today?	It	is	added	to
coordinates,	as	in	the	method	polly.moveTo(5F,	0F).	Why	is	F	used	for
these	coordinates	and	not	others,	and	why	is	a	lowercase	f	used	elsewhere?

A	The	F	or	f	indicates	that	a	number	is	a	floating-point	number	rather	than	an	integer,
and	uppercase	and	lowercase	can	be	used	interchangeably.	If	you	don’t	use	one	of
them,	the	Java	compiler	assumes	that	the	number	is	an	int	value.	Many	methods
and	constructors	in	Java	require	floating-point	arguments	but	can	handle	integers
because	an	integer	can	be	converted	to	floating-point	without	changing	its	value.	For
this	reason,	constructors	such	as	Arc2D.Float()	can	use	arguments	such	as	10
and	180	instead	of	10F	and	180F.

Q	The	section	“Improving	Fonts	and	Graphics	with	Antialiasing”	mentioned	a
class	called	RenderingHint.Key.	Why	does	this	class	have	two	names
separated	by	a	period?	What	does	this	signify?

A	The	use	of	two	names	to	identify	a	class	indicates	that	it	is	an	inner	class.	The	first
class	name	is	the	enclosing	class,	followed	by	a	period	and	the	name	of	the	inner
class.	In	this	case,	the	Key	class	is	an	inner	class	within	the	RenderingHint
class.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	object	is	required	before	you	can	draw	something	in	Java	using	Swing?

A.	Graphics2D

B.	WindowListener

C.	JFrame

2.	Which	of	the	following	is	not	a	valid	Java	statement	to	create	a	Color	object?

A.	Color	c1	=	new	Color(0F,	0F,	0F);

B.	Color	c2	=	new	Color(0,	0,	0);

C.	Both	are	valid.

3.	What	does	getSize().width	refer	to?

A.	The	width	of	the	interface	component’s	window

B.	The	width	of	the	frame’s	window

C.	The	width	of	any	graphical	user	interface	component	in	Java

Answers
1.	A.	The	Graphics2D	object	is	cast	from	a	Graphics	object	and	represents	a
graphics	context	for	a	graphical	user	interface	component.

2.	C.	Both	are	valid	ways	to	create	the	object.	You	also	can	use	hexadecimal	values	to
create	a	Color,	as	in	this	example:

Click	here	to	view	code	image
Color	c3	=	new	Color(0xFF,	0xCC,	0x66);

3.	C.	You	can	call	getSize().width	and	getSize().height	on	any	user
interface	component.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.awt.*;
import	javax.swing.*;

public	class	Result	extends	JFrame	{
				public	Result()	{
								super(“Result”);
								JLabel	width	=	new	JLabel(“This	frame	is	“	+
												getSize().width	+	”	pixels	wide.”);
								add(“North”,	width);
								setSize(220,	120);
				}

				public	static	void	main(String[]	arguments)	{
								Result	r	=	new	Result();
								r.setVisible(true);
				}
}

What	will	be	the	reported	width	of	the	frame,	in	pixels,	when	the	application	runs?

A.	0	pixels

B.	120	pixels

C.	220	pixels

D.	The	width	of	the	user’s	monitor

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	13
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	an	application	that	draws	a	circle,	with	its	radius,	(x,y)	position,	and	color	all
determined	by	arguments.

2.	Create	an	application	that	draws	a	pie	graph.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	14.	Developing	Swing	Applications

The	first	exposure	many	people	had	to	the	Java	programming	language	was	applets—
small,	security-restricted	Java	programs	that	run	on	web	pages.	Java	Web	Start,	a	protocol
for	downloading	and	running	Java	programs,	makes	it	possible	to	launch	applications	from
a	web	page	as	if	they	were	applets.

Today,	you	learn	how	to	create	these	web-launched	Java	programs	as	you	explore	the
following	topics:

	How	to	install	and	run	Java	applications	in	a	web	browser

	How	to	publish	your	application’s	files	and	deploy	it

	How	Swing	applications	can	run	into	performance	slowdowns	on	time-consuming
tasks

	How	to	address	these	problems	using	SwingWorker,	a	class	that	performs	Swing
work	in	its	own	thread

Java	Web	Start
One	of	the	issues	you	must	deal	with	as	a	Java	programmer	is	how	to	make	your	software
available	to	your	users.

Java	applications	require	a	Java	Virtual	Machine	(JVM),	so	one	must	be	included	with	the
application,	previously	installed	on	a	computer,	or	installed	by	users.	The	easiest	solution
(for	you)	is	to	require	that	users	download	and	install	the	Java	Runtime	Environment	from
Oracle’s	website	at	www.java.com.

Regardless	of	how	you	deal	with	the	requirement	for	a	JVM,	you	distribute	an	application
like	any	other	program—making	it	available	for	download,	distributing	it	on	a	CD,	or
using	some	other	means.	A	user	must	run	an	installation	program	to	set	it	up,	if	one	is
available,	or	copy	the	files	and	folders	manually.

Java	eases	the	challenges	of	software	deployment	with	Java	Web	Start,	a	way	to	run	Java
applications	presented	on	a	web	page	and	stored	on	a	web	server.	Here’s	how	it	works:

1.	A	programmer	packages	an	application	and	all	the	files	it	needs	into	a	JAR	archive,
along	with	a	file	that	uses	the	Java	Network	Launching	Protocol	(JNLP),	part	of	Java
Web	Start.

2.	The	file	is	stored	on	a	web	server	with	a	web	page	that	links	to	that	file.

3.	A	user	loads	the	page	with	a	browser	and	clicks	the	link.

4.	If	the	user	does	not	have	the	Java	Runtime	Environment,	a	dialog	box	opens,	asking
whether	the	JRE	should	be	downloaded	and	installed.	The	full	installation	is	from	40
to	70MB	in	size	(depending	on	operating	system).

5.	The	Java	Runtime	Environment	installs	and	runs	the	program,	opening	new	frames
and	other	interface	components	like	any	other	application.	The	program	is	saved	in	a
cache,	so	it	can	be	run	again	later	without	requiring	installation.

http://www.java.com

To	see	Java	Web	Start	in	action,	visit	Oracle’s	Java	Web	Start	site	at
www.oracle.com/technetwork/java/javase/javawebstart.	Click	the	Code	Samples	&	Apps
link,	and	then	the	Demos	link.	The	Web	Start	Demos	page,	shown	in	Figure	14.1,	contains
pictures	of	several	Java	applications,	each	with	a	Click	to	Launch!	button	you	can	use	to
run	the	application.

FIGURE	14.1	Presenting	Web	Start	applications	on	a	web	page.

Click	the	Click	to	Launch!	button	of	one	of	the	applications.	If	you	don’t	have	the	Java
Runtime	Environment	yet,	a	dialog	box	opens,	asking	whether	you	want	to	download	and
install	it.

The	runtime	environment	includes	the	Java	Plug-in,	a	JVM	that	adds	support	for	the
current	version	of	the	language	to	browsers.	The	environment	also	can	be	used	to	run
applications,	regardless	of	whether	they	use	Java	Web	Start.

When	an	application	is	run	using	Java	Web	Start,	a	title	screen	appears	briefly,	and	then
the	application’s	graphical	user	interface	appears.

Note

If	you	have	installed	NetBeans	or	the	JDK,	you	probably	have	the	Java	Runtime
Environment	on	your	computer	already.

Figure	14.2	shows	one	of	the	demo	applications	that	Oracle	offers,	a	military	strategy
game	in	which	three	black	dots	attempt	to	keep	a	red	dot	from	moving	into	their	territory.

http://www.oracle.com/technetwork/java/javase/javawebstart

FIGURE	14.2	Running	a	Java	Web	Start	application.

As	you	can	see	in	Figure	14.2,	the	application	looks	no	different	from	any	other
application.	Unlike	applets,	which	are	presented	in	conjunction	with	a	web	page,
applications	launched	with	Java	Web	Start	run	in	their	own	windows,	as	if	they	were	run
from	a	command	line.

One	thing	that’s	different	about	a	Java	Web	Start	application	is	the	security	that	can	be
offered	to	users.	When	an	application	attempts	to	do	something,	such	as	read	or	write	files,
the	user	can	be	asked	for	permission.

For	example,	another	of	the	demo	programs	is	a	text	editor.	When	you	try	to	save	a	file	for
the	first	time	with	this	application,	the	Security	Warning	dialog	box	opens,	as	shown	in
Figure	14.3.

FIGURE	14.3	Choosing	an	application’s	security	privileges.

If	the	user	does	not	permit	something	that	requires	such	authorization,	the	application
cannot	function	fully.	The	kinds	of	things	that	trigger	a	security	dialog	box	are	reading	and

writing	files,	loading	network	resources	from	servers	other	than	the	one	hosting	the
program,	and	the	like.

After	Java	Web	Start	has	run	an	application,	it	is	stored	on	a	user’s	computer	in	a	cache,
enabling	it	to	be	run	again	later	without	installation.	The	only	exception	is	when	a	new
version	of	the	application	becomes	available.	In	this	case,	the	new	version	is	downloaded
and	installed	automatically	in	place	of	the	existing	one.

Note

Although	you	run	a	Java	Web	Start	application	for	the	first	time	using	a	web
browser,	that’s	not	a	requirement.	The	applications	can	be	run	from	a	desktop
shortcut.

The	default	security	restrictions	in	place	for	a	Java	Web	Start	application	can	be
overridden	if	it	is	stored	in	a	digitally	signed	Java	archive.	The	user	is	presented	with	the
signed	security	certificate,	which	documents	the	program’s	author	and	the	certificate-
granting	authority	vouching	for	its	identity,	and	is	asked	whether	to	accept	or	reject	it.	The
application	won’t	run	unless	the	certificate	has	been	accepted.

Using	Java	Web	Start
Any	Java	application	can	be	run	using	Java	Web	Start	as	long	as	the	web	server	that	offers
the	application	is	configured	to	work	with	the	technology	and	all	the	class	files	and	other
files	it	needs	have	been	packaged	together.

To	prepare	an	application	to	use	Java	Web	Start,	you	must	save	the	application’s	files	in	a
JAR	file	(Java	archive),	create	a	special	Java	Web	Start	configuration	file	for	the
application,	and	upload	the	files	to	the	web	server.

The	configuration	file	that	must	be	created	uses	JNLP,	an	Extensible	Markup	Language
(XML)	file	format	that	specifies	the	application’s	main	class	file,	its	JAR	archive,	and
other	things	about	the	program.

Note

XML	is	introduced	during	Day	20,	“XML	Web	Services.”	Because	the	format	of
JNLP	files	is	relatively	self-explanatory,	you	don’t	need	to	know	much	about	XML
to	create	a	JNLP	file.

The	next	project	you	will	undertake	is	using	Java	Web	Start	to	launch	and	run	PageData,
an	application	that	displays	information	about	web	pages.

Creating	a	JNLP	File
The	first	thing	you	must	do	is	package	all	of	an	application’s	class	files	into	a	JAR	file,
along	with	any	other	files	it	needs.	NetBeans	creates	a	JAR	file	automatically	for	each
project	you	build	in	the	IDE.

Because	you’ve	been	using	one	project	for	all	the	projects	in	the	preceding	13	days,	a	new

project	is	needed:

1.	Choose	File,	New	Project.	The	New	Project	dialog	appears.

2.	Choose	Java	in	the	Categories	pane	and	Java	Applications	in	the	Projects	pane,	and
then	click	Next.	The	New	Java	Application	dialog	opens.

3.	Enter	PageData	as	the	Project	Name.

4.	Select	the	Create	Main	Class	check	box.

5.	Enter	PageData	in	the	text	field	next	to	Create	Main	Class.

6.	Click	Finish.

The	file	PageData.java	opens	in	NetBeans’	source	code	editor	with	some	starter	code
entered	for	you.	Delete	all	this	code	and	enter	the	code	shown	in	Listing	14.1	as	the
PageData	class	in	the	com.java21days	package.

LISTING	14.1	The	Full	Text	of	PageData.java
Click	here	to	view	code	image

1:	package	com.java21days;
		2:
		3:	import	java.awt.*;
		4:	import	java.awt.event.*;
		5:	import	java.net.*;
		6:	import	java.io.*;
		7:	import	javax.swing.*;
		8:
		9:	public	class	PageData	extends	JFrame	implements	ActionListener,
	10:					Runnable	{
	11:
	12:					Thread	runner;
	13:					String[]	headers	=	{	“Content-Length”,	“Content-Type”,
	14:									“Date”,	“Public”,	“Expires”,	“Last-Modified”,
	15:									“Server”	};
	16:
	17:					URL	page;
	18:					JTextField	url;
	19:					JLabel[]	headerLabel	=	new	JLabel[7];
	20:					JTextField[]	header	=	new	JTextField[7];
	21:					JButton	readPage,	clearPage,	quitLoading;
	22:					JLabel	status;
	23:
	24:					public	PageData()	{
	25:									super(“Page	Data”);
	26:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
	27:									setLookAndFeel();
	28:									setLayout(new	GridLayout(10,	1));
	29:
	30:									JPanel	first	=	new	JPanel();
	31:									first.setLayout(new	FlowLayout(FlowLayout.RIGHT));
	32:									JLabel	urlLabel	=	new	JLabel(“URL:”);
	33:									url	=	new	JTextField(22);
	34:									urlLabel.setLabelFor(url);
	35:									first.add(urlLabel);
	36:									first.add(url);
	37:									add(first);
	38:

	39:									JPanel	second	=	new	JPanel();
	40:									second.setLayout(new	FlowLayout());
	41:									readPage	=	new	JButton(“Read	Page”);
	42:									clearPage	=	new	JButton(“Clear	Fields”);
	43:									quitLoading	=	new	JButton(“Quit	Loading”);
	44:									readPage.setMnemonic(‘r’);
	45:									clearPage.setMnemonic(‘c’);
	46:									quitLoading.setMnemonic(‘q’);
	47:									readPage.setToolTipText(“Begin	Loading	the	Web	Page”);
	48:									clearPage.setToolTipText(“Clear	All	Header	Fields	Below”);
	49:									quitLoading.setToolTipText(“Quit	Loading	the	Web	Page”);
	50:									readPage.setEnabled(true);
	51:									clearPage.setEnabled(false);
	52:									quitLoading.setEnabled(false);
	53:									readPage.addActionListener(this);
	54:									clearPage.addActionListener(this);
	55:									quitLoading.addActionListener(this);
	56:									second.add(readPage);
	57:									second.add(clearPage);
	58:									second.add(quitLoading);
	59:									add(second);
	60:
	61:									JPanel[]	row	=	new	JPanel[7];
	62:									for	(int	i	=	0;	i	<	7;	i++)	{
	63:													row[i]	=	new	JPanel();
	64:													row[i].setLayout(new	FlowLayout(FlowLayout.RIGHT));
	65:													headerLabel[i]	=	new	JLabel(headers[i]	+	“:”);
	66:													header[i]	=	new	JTextField(22);
	67:													headerLabel[i].setLabelFor(header[i]);
	68:													row[i].add(headerLabel[i]);
	69:													row[i].add(header[i]);
	70:													add(row[i]);
	71:									}
	72:
	73:									JPanel	last	=	new	JPanel();
	74:									last.setLayout(new	FlowLayout(FlowLayout.LEFT));
	75:									status	=	new	JLabel(“Enter	a	URL	address	to	check.”);
	76:									last.add(status);
	77:									add(last);
	78:									pack();
	79:									setVisible(true);
	80:					}
	81:
	82:					public	void	actionPerformed(ActionEvent	evt)	{
	83:									Object	source	=	evt.getSource();
	84:									if	(source	==	readPage)	{
	85:													try	{
	86:																	page	=	new	URL(url.getText());
	87:																	if	(runner	==	null)	{
	88:																					runner	=	new	Thread(this);
	89:																					runner.start();
	90:																	}
	91:																	quitLoading.setEnabled(true);
	92:																	readPage.setEnabled(false);
	93:													}
	94:													catch	(MalformedURLException	e)	{
	95:																	status.setText(“Bad	URL:	“	+	page);
	96:													}
	97:									}	else	if	(source	==	clearPage)	{
	98:													for	(int	i	=	0;	i	<	7;	i++)
	99:																	header[i].setText(””);
100:													quitLoading.setEnabled(false);
101:													readPage.setEnabled(true);

102:													clearPage.setEnabled(false);
103:									}	else	if	(source	==	quitLoading)	{
104:													runner	=	null;
105:													url.setText(””);
106:													quitLoading.setEnabled(false);
107:													readPage.setEnabled(true);
108:													clearPage.setEnabled(false);
109:									}
110:					}
111:
112:					public	void	run()	{
113:									URLConnection	conn;
114:									try	{
115:													conn	=	this.page.openConnection();
116:													conn.connect();
117:													status.setText(“Connection	opened	…”);
118:													for	(int	i	=	0;	i	<	7;	i++)
119:																	header[i].setText(conn.getHeaderField(headers[i]));
120:													quitLoading.setEnabled(false);
121:													clearPage.setEnabled(true);
122:													status.setText(“Done”);
123:													runner	=	null;
124:									}
125:									catch	(IOException	e)	{
126:													status.setText(“IO	Error:”	+	e.getMessage());
127:									}
128:					}
129:
130:					private	static	void	setLookAndFeel()	{
131:									try	{
132:													UIManager.setLookAndFeel(
133:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
134:);
135:									}	catch	(Exception	exc)	{
136:													//	ignore	error
137:									}
138:					}
139:
140:
141:					public	static	void	main(String[]	arguments)	{
142:									PageData	frame	=	new	PageData();
143:					}
144:	}

After	you’ve	saved	the	project,	build	it	in	NetBeans	by	choosing	Run,	Clean	and	Build
Project.	This	extra	step	is	required	because	you	will	deploy	this	application	on	the	Web
instead	of	simply	running	it	on	your	computer.

The	PageData	application	takes	a	web	address	(URL)	as	input	and	loads	data	associated
with	the	page	at	that	address.	This	program	uses	some	networking	techniques	that	will	be
explored	fully	during	Day	17,	“Communicating	Across	the	Internet.”

Next,	the	application	needs	an	icon	that	will	be	displayed	when	it	is	loaded	and	used	in
menus	and	desktops.	The	icon	for	a	Java	Web	Start	application	can	be	in	either	GIF	or
JPEG	format	and	should	be	64	pixels	wide	by	64	pixels	tall.

For	this	project,	if	you	don’t	want	to	create	a	new	icon,	you	can	download
pagedataicon.gif	from	the	book’s	website.	Go	to	www.java21days.com	and	open
the	Day	14	page.	Right-click	the	pagedataicon.gif	link	and	save	the	file	to	a	folder

http://www.java21days.com

on	your	computer.

Next,	click	the	Files	tab	to	bring	that	pane	to	the	front	in	NetBeans,	as	shown	in	Figure
14.4.

FIGURE	14.4	Adding	a	file	to	a	project	in	NetBeans.

Scroll	down	to	the	PageData	folder	icon,	and	drag	pagedataicon.gif	from	that
folder	into	NetBeans.	The	file	appears	in	the	Files	listing,	as	shown	in	Figure	14.4.

The	final	thing	you	must	do	is	create	the	JNLP	file	that	describes	the	application.	Listing
14.2	is	a	JNLP	file	used	to	distribute	the	PageData	application.

You	can	create	this	file	in	NetBeans:

1.	Choose	File,	New	File.	The	New	File	dialog	opens.

2.	Choose	Other	in	the	Categories	pane.

3.	Choose	JNLP	File	in	the	File	Types	pane.

4.	Click	Next.	The	New	JNLP	File	dialog	appears.

5.	Enter	PageData	in	the	File	Name	field.	In	the	Created	File	field,	you	see	that
NetBeans	automatically	adds	the	file	extension	.jnlp	to	the	filename.

6.	Click	Finish.

NetBeans	creates	a	new	JNLP	file	in	the	source	code	editor,	starting	you	with	some	text	in
XML	format.	Delete	all	this	text	and	enter	the	code	shown	in	Listing	14.2.	Then	save	the
file.

LISTING	14.2	The	Full	Text	of	PageData.jnlp
Click	here	to	view	code	image

	1:	<?xml	version=“1.0”	encoding=“utf-8”?>
	2:	<!—	JNLP	File	for	the	PageData	Application	—>
	3:	<jnlp
	4:			codebase=“http://cadenhead.org/book/java-21-days/java”
	5:			href=“PageData.jnlp”>
	6:			<information>
	7:					<title>PageData	Application</title>
	8:					<vendor>Rogers	Cadenhead</vendor>
	9:					<homepage	href=“http://www.java21days.com”/>
10:					<icon	href=“pagedataicon.gif”/>
11:					<offline-allowed/>

12:			</information>
13:			<resources>
14:					<j2se	version=“1.8”/>
15:					<jar	href=“PageData.jar”/>
16:			</resources>
17:			<security>
18:					<j2ee-application-client-permissions/>
19:			</security>
20:			<application-desc	main-class=“PageData”/>
21:	</jnlp>

Because	a	JNLP	file	is	structured	as	XML	data,	everything	within	the	<	and	>	symbols	is	a
tag.	Tags	are	placed	around	the	information	that	the	tag	describes.	There’s	an	opening	tag
before	the	information	and	a	closing	tag	after	it.

For	example,	line	7	of	Listing	14.2	contains	the	following	text:
Click	here	to	view	code	image

<title>PageData	Application</title>

In	order	from	left	to	right,	this	line	contains	the	opening	tag	<title>,	the	text
PageData	Application,	and	the	closing	tag	</title>.	The	text	between	the	tags,
“PageData	Application,”	is	the	application’s	title.	Java	Web	Start	will	display	the	title	as
the	application	is	being	loaded.	The	title	also	will	be	used	in	menus	and	shortcuts.

The	difference	between	opening	tags	and	closing	tags	is	that	closing	tags	begin	with	a
slash	character	(/),	and	opening	tags	do	not.	In	line	8,	<vendor>	is	the	opening	tag,
</vendor>	is	the	closing	tag,	and	these	tags	surround	the	name	of	the	vendor	who
created	the	application.	I’ve	used	my	name	here.	Delete	it	and	replace	it	with	your	own
name,	taking	care	not	to	alter	the	<vendor>	or	</vendor>	tags	around	it.

Some	tags	have	an	opening	tag	only,	such	as	line	11:
<offline-allowed/>

The	offline-allowed	tag	indicates	that	the	application	can	be	run	even	if	the	user	is
not	connected	to	the	Internet.	If	it	were	omitted	from	the	JNLP	file,	the	opposite	would	be
true,	and	the	user	would	be	forced	to	go	online	before	running	this	application.

In	XML,	all	tags	that	do	not	have	a	closing	tag	end	with	/>	instead	of	>.

Tags	also	can	have	attributes,	which	are	another	way	to	define	information	in	an	XML	file.
An	attribute	is	a	name	inside	a	tag	that	is	followed	by	an	equal	sign	and	some	text	within
quotes.

For	example,	consider	line	9	of	Listing	14.2:
Click	here	to	view	code	image

<homepage	href=“http://www.java21days.com”/>

This	is	the	homepage	tag,	and	it	has	one	attribute,	href.	The	text	between	the	quote
marks	is	used	to	set	the	value	of	this	attribute	to	“http://www.java21days.com”.	This
defines	the	application’s	home	page—the	web	page	that	users	should	visit	if	they	want	to
read	more	about	the	program	and	how	it	works.

The	PageData	JNLP	file	defines	a	simple	Java	Web	Start	application	that	runs	with

http://www.java21days.com

security	restrictions,	as	defined	in	lines	17–19:
Click	here	to	view	code	image

<security>
		<j2ee-application-client-permissions/>
</security>

In	addition	to	the	tags	that	have	already	been	described,	Listing	14.2	defines	other
information	required	by	Java	Web	Start.

Line	1	specifies	that	the	file	uses	XML	and	the	UTF-8	character	set.	This	same	line	can	be
used	on	any	of	the	JNLP	files	you	create	for	applications.

Line	2	is	a	comment.	Like	comments	in	Java	classes,	this	text	is	provided	solely	for	the
benefit	of	humans	looking	at	this	file.	Java	Web	Start	ignores	it.

The	jnlp	element,	which	begins	on	line	3	and	ends	on	line	21,	must	surround	all	the
other	tags	that	configure	Web	Start.

This	tag	has	two	attributes,	codebase	and	href,	which	indicate	where	the	JNLP	file	for
this	application	can	be	found.	The	codebase	attribute	is	the	uniform	resource	locator
(URL)	of	the	folder	that	contains	the	JNLP	file.	The	href	attribute	is	the	name	of	the	file
or	a	relative	URL	that	includes	a	folder	and	the	name	(such	as
"pub/PageData.jnlp").

In	Listing	14.2,	the	attributes	indicate	that	the	application’s	JNLP	file	is	at	the	following
web	address:
Click	here	to	view	code	image

http://cadenhead.org/book/java-21-days/java/PageData.jnlp

The	information	element	(lines	6–12)	defines	information	about	the	application.
Elements	can	contain	other	elements	in	XML,	and	in	Listing	14.2,	the	information
element	contains	title,	vendor,	homepage,	icon,	and	offline-allowed	tags.

The	title,	vendor,	homepage,	and	offline-allowed	elements	were	described
earlier.

The	icon	element	(line	10)	contains	an	href	attribute	that	indicates	the	name	(or	folder
location	and	name)	of	the	program’s	icon.	Like	all	file	references	in	a	JNLP	file,	this
element	uses	the	codebase	attribute	to	determine	the	full	URL	of	the	resource.	In	this
example,	the	icon	element’s	href	attribute	is	pagedataicon.gif,	and	the
codebase	is	"http://cadenhead.org/book/java21days/java",	so	the
icon	file	is	at	the	following	web	address:
Click	here	to	view	code	image

http://cadenhead.org/book/java21days/java/pagedataicon.gif

The	resources	element	(lines	13–16)	defines	resources	used	by	the	application	when	it
runs.

The	j2se	element	has	a	version	attribute	that	indicates	which	version	of	the	JVM
should	run	the	application.	This	attribute	can	specify	a	general	version	(such	as	"1.7"	or

http://cadenhead.org/book/java21days/java

"1.8"),	a	specific	version	(such	as	"1.8.0-ea"),	or	a	reference	to	multiple	versions.	A
general	version	number	can	be	followed	by	a	plus	sign.	The	tag	<j2se
version="1.6+">	sets	up	an	application	to	be	run	by	any	JVM	from	version	1.6
upward.

Note

When	you	use	the	j2se	element	to	specify	multiple	versions,	Java	Web	Start	does
not	use	a	beta	version	to	run	an	application.	The	only	way	to	run	an	application	with
a	beta	release	is	to	indicate	that	release	specifically.

The	jar	element	has	an	href	attribute	that	specifies	the	application’s	JAR	file.	This
attribute	can	be	a	filename	or	a	reference	to	a	folder	and	filename,	and	it	uses	codebase.
In	the	PageData	example,	the	JAR	file	is	in
http://cadenhead.org/book/java21days/java/PageData.jar.

The	application-desc	element	indicates	the	application’s	main	class	file	and	any
arguments	that	should	be	used	when	that	class	is	executed.

The	main-class	attribute	identifies	the	name	of	the	class	file,	which	is	specified
without	the	.class	file	extension.

If	the	class	should	be	run	with	one	or	more	arguments,	place	argument	elements	within
an	opening	<application-desc>	tag	and	a	closing	</application-desc>	tag.

The	following	XML	specifies	that	the	PageData	class	should	be	run	with	two
arguments:	http://java.com	and	yes:
Click	here	to	view	code	image

<application-desc	main-class=“PageData”>
		<argument>http://java.com</argument>
		<argument>yes</argument>
</application-desc>

You	can	test	the	PageData	application	from	my	web	server	or	upload	it	to	your	own	and
edit	the	JNLP	file	accordingly.

If	you	are	trying	it	on	your	own	server,	after	you	have	created	the	PageData.jnlp	file,
change	line	5	of	Listing	14.2	so	that	it	refers	to	the	folder	on	a	web	server	where	your
application’s	JAR	file,	icon	file,	and	JNLP	file	will	be	stored.

Upload	all	three	of	the	project’s	files	to	this	folder,	and	then	run	your	browser	and	load	the
JNLP	file	using	its	full	web	address.	If	your	web	server	is	configured	to	support	Java	Web
Start,	the	application	is	loaded	and	begins	running.,	Figure	14.5	shows	the	output	if	the
web	address	http://www.java.com/	is	requested.

http://cadenhead.org/book/java21days/java/PageData.jar
http://java.com
http://www.java.com/

FIGURE	14.5	Running	PageData	using	Java	Web	Start.

For	this	application	to	be	run	without	restriction,	the	PageData.jar	file	must	be
digitally	signed.	For	real-world	applications,	this	requires	the	services	of	a	certificate-
granting	authority.

For	testing	purposes,	there	are	two	programs	included	with	the	JDK	that	can	be	used	to
create	a	key	and	use	it	to	digitally	sign	a	JAR	file.	To	find	out	how	to	use	them,	read
Appendix	E,	“Programming	with	the	Java	Development	Kit.”

A	self-signed	JAR	file	only	is	suitable	for	your	own	testing	purposes.	No	current	web
browser	will	accept	that	the	JAR	file	is	secure	or	allow	users	to	run	it.

Note

The	only	way	to	establish	that	your	Java	Web	Start	application	is	trustworthy	is	to
go	through	one	of	the	professional	certificate-granting	companies,	prove	your
identity,	and	purchase	a	code-signing	certificate.	This	certificate	will	be	used	when
signing	your	JAR	files.	These	companies	are	called	certificate	authorities.

California	offers	a	list	of	digital	signature	certification	authorities	at
www.tinyurl.com/califsign	that’s	a	useful	resource	for	any	programmer	who	needs
code-signing	certificates,	not	just	in	that	state.

At	the	time	of	this	writing,	the	lowest-priced	code-signing	certificates	were	$95	per
year	from	K	Software	at	http://codesigning.ksoftware.net.	Most	other	authorities
charge	$200	or	more.

http://www.tinyurl.com/califsign
http://codesigning.ksoftware.net

Supporting	Web	Start	on	a	Server
If	your	server	does	not	support	Java	Web	Start,	you	might	see	the	text	of	your	JNLP	file
loaded	in	a	page,	and	the	application	will	not	open.

A	web	server	must	be	configured	to	recognize	that	JNLP	files	are	a	new	type	of	data	that
should	cause	a	Java	application	to	run.	This	is	usually	accomplished	by	setting	the	MIME
type	associated	with	files	that	have	the	extension	JNLP.

MIME,	which	is	an	acronym	for	Multipurpose	Internet	Mail	Extensions,	is	a	protocol	for
defining	Internet	content	such	as	email	messages,	attached	files,	and	any	file	that	can	be
delivered	by	a	web	server.

On	an	Apache	web	server,	the	server	administrator	can	support	JNLP	by	adding	the
following	line	to	the	server’s	mime.types	(or	.mime.types)	file:
Click	here	to	view	code	image

application/x-java-jnlp-file	JNLP

If	you	can’t	get	Java	Web	Start	working	on	your	server,	you	can	test	this	project	on	the
book’s	official	site.	Load	the	web	page	http://cadenhead.org/book/java-21-
days/java/PageData.jnlp.

Caution

Java	Web	Start	applications	should	look	exactly	like	applications	do	when	run	by
other	means.	However,	there	appear	to	be	a	few	bugs	in	how	much	space	is
allocated	to	components	on	a	graphical	user	interface.	On	a	Windows	system,	you
might	need	to	add	50	pixels	to	the	height	of	an	application	before	employing	it	in
Java	Web	Start.	Otherwise,	the	text	fields	are	not	tall	enough	to	display	numbers.

Additional	JNLP	Elements
The	JNLP	format	has	other	elements	that	can	affect	the	performance	of	Java	Web	Start.

It	can	be	used	to	change	the	title	graphic	that	appears	when	the	application	is	launched,
run	signed	applications	that	have	different	security	privileges,	run	an	application	using
different	versions	of	the	JVM,	and	other	options.

Security

By	default,	all	Java	Web	Start	applications	are	denied	access	to	some	features	of	a	user’s
computer	unless	the	user	has	given	permission.	This	is	similar	to	how	the	functionality	of
applets	is	limited.

If	your	application’s	JAR	file	has	been	digitally	signed	to	verify	its	authenticity,	you	can
run	it	without	these	security	restrictions	by	using	the	security	element.

This	element	is	placed	inside	the	jnlp	element,	and	it	contains	one	element	of	its	own:
all-permissions.	To	employ	the	normal	security	restrictions	for	an	application	run
by	Web	Start,	add	this	to	a	JNLP	file:
Click	here	to	view	code	image

http://cadenhead.org/book/java-21-days/java/PageData.jnlp

<security>
		<j2ee-application-client-permission/>
</security>

If	the	tag	all-permissions	had	been	used	instead,	the	application	would	have	no
security	restrictions.	This	has	major	implications	for	user	security,	so	it	should	be	done
with	care.

Descriptions

If	you	want	to	provide	more	information	about	your	application	for	users	of	Java	Web
Start,	you	can	place	one	or	more	description	elements	inside	the	information
element.

Four	kinds	of	descriptions	can	be	provided	using	the	kind	attribute	of	the
description	element:

	kind="one-line"—A	succinct	one-line	description,	used	in	lists	of	Web	Start
applications

	kind="short"—A	paragraph-long	description,	used	when	space	is	available

	kind="tooltip"—A	ToolTip	description

	No	kind	attribute—A	default	description,	used	for	any	other	descriptions	not
specified

All	these	are	optional.	Here’s	an	example	that	provides	descriptions	for	the	PageData
application:
Click	here	to	view	code	image

<description>The	PageData	application.</description>
<description	kind=“one-line”>An	application	to	learn	more	about	web
servers	and	pages.</description>
<description	kind=“tooltip”>Learn	about	web	servers	and
pages.</description>
<description	kind=“short”>PageData,	a	simple	Java	application	that
takes	a	URL	and	displays	information	about	the	URL	and	the	web
server	that	delivered	it.</description>

Icons

The	PageData	JNLP	file	includes	a	64×64	icon,	pagedataicon.gif,	used	in	two
different	ways:

	When	the	PageData	application	is	being	loaded	by	Java	Web	Start,	the	icon	is
displayed	in	a	window	next	to	the	program’s	name	and	author.

	If	a	PageData	icon	is	added	to	a	user’s	desktop,	the	icon	is	used	at	a	different	size:
32×32.

When	an	application	is	loading,	you	can	use	a	second	icon	element	to	specify	a	graphic
that	will	be	displayed	in	place	of	the	icon,	title,	and	author.	This	graphic	is	called	the
application’s	splash	screen,	and	it	is	specified	with	the	kind="splash"	attribute,	as	in
this	example:

Click	here	to	view	code	image
<icon	kind=“splash”	href=“pagedatasplash.gif”	width=“300”
height=“200”	/>

The	width	and	height	attributes,	which	also	can	be	used	with	the	other	kind	of	icon
graphic,	specify	the	image’s	display	size	in	pixels.

This	second	icon	element	should	be	placed	inside	the	information	element.

Note

For	more	information	on	using	the	technology	with	your	own	applications,	visit
Oracle’s	Java	Web	Start	site:
http://oracle.com/technetwork/java/javase/javawebstart

Improving	Performance	with	SwingWorker
The	responsiveness	of	a	Swing	application	depends	largely	on	how	well	the	software
handles	time-consuming	tasks	in	response	to	user	input.

Applications	ordinarily	execute	tasks	in	one	thread.	So	if	something	takes	a	long	time	to
accomplish,	such	as	loading	a	large	file	or	parsing	data	from	an	XML	document,	the	user
might	notice	a	lag	in	performance	while	this	is	taking	place.

Swing	programs	also	require	all	user-interface	components	to	be	running	within	the	same
thread.

The	best	way	to	take	care	of	both	requirements	is	to	use	SwingWorker,	a	class	in	the
javax.swing	package	that’s	designed	to	run	time-consuming	tasks	in	their	own	worker
thread	and	report	the	results.

SwingWorker	is	an	abstract	class	that	must	be	subclassed	by	applications	that	require	a
worker:
Click	here	to	view	code	image

public	class	DiceWorker	extends	SwingWorker	{
				//	body	of	class
}

The	doInBackground()	method	should	be	overridden	in	the	new	class	to	perform	the
task.

Today’s	next	project	is	a	Swing	application	that	rolls	three	six-sided	dice	a	user-selected
number	of	times	and	tabulates	the	results.	Sixteen	text	fields	represent	the	possible	values,
which	range	from	3	to	18.

The	application	is	developed	as	two	classes:	the	DiceRoller	frame,	which	holds	the
graphical	user	interface,	and	the	DiceWorker	Swing	worker,	which	handles	the	dice
rolls.

Because	the	application	allows	the	user	to	roll	the	dice	thousands	or	even	millions	of
times,	putting	this	task	in	a	worker	keeps	the	Swing	interface	responsive	to	user	input.

Listing	14.3	contains	the	worker	class,	DiceWorker.	Create	this	as	an	empty	Java	file	in

http://oracle.com/technetwork/java/javase/javawebstart

NetBeans	with	that	class	name	and	the	package	com.java21days.	In	the	New	File
dialog,	be	sure	the	Project	selected	is	Java21,	not	PageData.

LISTING	14.3	The	Full	Text	of	DiceWorker.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:
	5:	public	class	DiceWorker	extends	SwingWorker	{
	6:					int	timesToRoll;
	7:
	8:					//	set	up	the	Swing	worker
	9:					public	DiceWorker(int	timesToRoll)	{
10:									super();
11:									this.timesToRoll	=	timesToRoll;
12:					}
13:
14:					//	define	the	task	the	worker	performs
15:					protected	int[]	doInBackground()	{
16:									int[]	result	=	new	int[16];
17:									for	(int	i	=	0;	i	<	this.timesToRoll;	i++)	{
18:													int	sum	=	0;
19:													for	(int	j	=	0;	j	<	3;	j++)	{
20:																	sum	+=	Math.floor(Math.random()	*	6);
21:													}
22:													result[sum]	=	result[sum]	+	1;
23:									}
24:									//	transmit	the	result
25:									return	result;
26:					}
27:	}

There’s	no	way	to	do	anything	with	this	class	until	you	create	the	next	one,
DiceRoller.

A	Swing	worker	needs	only	one	method,	doInBackground(),	which	performs	the	task
in	the	background.	The	method	must	use	the	protected	level	of	access	control	and
return	a	value	produced	by	the	work.	DiceWorker	creates	a	16-element	integer	array
that	contains	dice-roll	results.

Another	class	can	use	this	worker	in	three	steps:

1.	Call	the	worker’s	DiceWorker(int)	constructor	with	the	number	of	rolls	as	the
argument.

2.	Call	the	worker’s	addPropertyChangeListener(Object)	method	to	add	a
listener	that	will	be	notified	when	the	task	is	complete.

3.	Call	the	worker’s	execute()	method	to	begin	the	work.

The	execute()	method	causes	the	worker’s	doInBackground()	method	to	be
called.

A	property	change	listener	is	an	event	listener	from	java.beans,	the	JavaBeans

package	that	establishes	ways	in	which	components	on	a	user	interface	can	interact	with
each	other.

In	this	case,	a	Swing	worker	wants	to	announce	that	its	work	is	finished,	which	could	take
place	long	after	the	worker	began	its	work.	Listeners	are	the	best	way	to	handle
notifications	of	this	kind	because	they	free	a	graphical	user	interface	to	handle	other
things.

The	property	change	listener	interface	has	one	method:
Click	here	to	view	code	image

public	void	propertyChange(PropertyChangeEvent	event)	{
				//	…
}

The	DiceRoller	class	in	the	com.java21days	package,	shown	in	Listing	14.4,
presents	a	graphical	user	interface	that	can	display	dice-roll	results	and	begin	a	set	of	rolls.

LISTING	14.4	The	Full	Text	of	DiceRoller.java
Click	here	to	view	code	image

1:	package	com.java21days;
		2:
		3:	import	java.awt.*;
		4:	import	java.awt.event.*;
		5:	import	java.beans.*;
		6:	import	javax.swing.*;
		7:
		8:	public	class	DiceRoller	extends	JFrame	implements	ActionListener,
		9:					PropertyChangeListener	{
	10:
	11:					//	the	table	for	dice-roll	results
	12:					JTextField[]	total	=	new	JTextField[16];
	13:					//	the	“Roll”	button
	14:					JButton	roll;
	15:					//	the	number	of	times	to	roll
	16:					JTextField	quantity;
	17:					//	the	Swing	worker
	18:					DiceWorker	worker;
	19:
	20:					public	DiceRoller()	{
	21:									super(“Dice	Roller”);
	22:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
	23:									setLookAndFeel();
	24:									setSize(850,	145);
	25:
	26:									//	set	up	top	row
	27:									JPanel	topPane	=	new	JPanel();
	28:									GridLayout	paneGrid	=	new	GridLayout(1,	16);
	29:									topPane.setLayout(paneGrid);
	30:									for	(int	i	=	0;	i	<	16;	i++)	{
	31:													//	create	a	textfield	and	label
	32:													total[i]	=	new	JTextField(“0”,	4);
	33:													JLabel	label	=	new	JLabel((i	+	3)	+	“:	“);
	34:													//	create	this	cell	in	the	grid
	35:													JPanel	cell	=	new	JPanel();
	36:													cell.add(label);
	37:													cell.add(total[i]);
	38:													//	add	the	cell	to	the	top	row

	39:													topPane.add(cell);
	40:									}
	41:
	42:									//	set	up	bottom	row
	43:									JPanel	bottomPane	=	new	JPanel();
	44:									JLabel	quantityLabel	=	new	JLabel(“Times	to	Roll:	“);
	45:									quantity	=	new	JTextField(“0”,	5);
	46:									roll	=	new	JButton(“Roll”);
	47:									roll.addActionListener(this);
	48:									bottomPane.add(quantityLabel);
	49:									bottomPane.add(quantity);
	50:									bottomPane.add(roll);
	51:
	52:									//	set	up	frame
	53:									GridLayout	frameGrid	=	new	GridLayout(2,	1);
	54:									setLayout(frameGrid);
	55:									add(topPane);
	56:									add(bottomPane);
	57:
	58:									setVisible(true);
	59:					}
	60:
	61:					//	respond	when	the	“Roll”	button	is	clicked
	62:					public	void	actionPerformed(ActionEvent	event)	{
	63:									int	timesToRoll;
	64:									try	{
	65:													//	turn	off	the	button
	66:													timesToRoll	=	Integer.parseInt(quantity.getText());
	67:													roll.setEnabled(false);
	68:													//	set	up	the	worker	that	will	roll	the	dice
	69:													worker	=	new	DiceWorker(timesToRoll);
	70:													//	add	a	listener	that	monitors	the	worker
	71:													worker.addPropertyChangeListener(this);
	72:													//	start	the	worker
	73:													worker.execute();
	74:									}	catch	(Exception	exc)	{
	75:													System.out.println(exc.getMessage());
	76:													exc.printStackTrace();
	77:									}
	78:					}
	79:
	80:					//	respond	when	the	worker’s	task	is	complete
	81:					public	void	propertyChange(PropertyChangeEvent	event)	{
	82:									try	{
	83:													//	get	the	worker’s	dice-roll	results
	84:													int[]	result	=	(int[])	worker.get();
	85:													//	store	the	results	in	text	fields
	86:													for	(int	i	=	0;	i	<	result.length;	i++)	{
	87:																	total[i].setText(””	+	result[i]);
	88:													}
	89:									}	catch	(Exception	exc)	{
	90:													System.out.println(exc.getMessage());
	91:													exc.printStackTrace();
	92:									}
	93:					}
	94:
	95:					private	static	void	setLookAndFeel()	{
	96:									try	{
	97:													UIManager.setLookAndFeel(
	98:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
	99:);
100:									}	catch	(Exception	exc)	{

101:													//	ignore	error
102:									}
103:					}
104:
105:					public	static	void	main(String[]	arguments)	{
106:									new	DiceRoller();
107:					}
108:	}

This	class	can	be	run	as	an	application.	Choose	Run,	Run	File	in	NetBeans.

Most	of	DiceRoller	creates	and	lays	out	the	user-interface	components:	16	text	fields,
a	Times	to	Roll	text	field,	and	a	Roll	button.

The	actionPerformed()	method	responds	to	a	click	of	the	Roll	button	by	creating	a
Swing	worker	that	will	roll	the	dice,	adding	a	property	change	listener	and	starting	work.

Calling	worker.execute()	in	line	73	causes	the	worker’s	doInBackground()
method	to	be	called.

When	the	worker	is	finished	rolling	the	dice,	the	propertyChange()	method	of
DiceRoller	receives	a	property	change	event.

This	method	receives	the	result	of	doInBackground()	by	calling	the	worker’s	get()
method	(line	84),	which	must	be	cast	to	an	integer	array:
Click	here	to	view	code	image

int[]	result	=	(int[]	worker.get();

The	application	is	shown	in	Figure	14.6.

FIGURE	14.6	Tabulating	dice-roll	results	prepared	by	DiceWorker.

Summary
The	topics	covered	today	are	two	capabilities	that	enhance	Java’s	capabilities	for
application	development:	browser-based	program	deployment	and	Swing	performance
improvements	through	the	use	of	threads.

With	Java	Web	Start,	users	no	longer	need	to	run	an	installation	program	to	set	up	a	Java
application	and	the	JVM	that	executes	the	class.	Web	Start	takes	care	of	this	automatically,
after	the	user’s	browser	has	been	equipped	to	use	the	Java	Runtime	Environment.

Support	for	Web	Start	is	offered	through	the	Java	Network	Launching	Protocol	(JNLP),	an
XML	file	format	used	to	define	and	set	up	Java	Web	Start.

The	SwingWorker	class	improves	Swing	application	performance	by	putting	a	time-
consuming	task	in	its	own	thread.	The	class	handles	all	the	work	required	to	start	and	stop

the	thread	behind	the	scenes.

When	you	create	a	subclass	of	SwingWorker,	you	can	focus	on	the	task	that	must	be
performed.

Q&A
Q	I	have	written	a	Java	applet	that	I	want	to	make	available	using	Java	Web
Start.	Should	I	convert	it	to	an	application	or	go	ahead	and	run	it	as	is?

A	If	you	would	be	converting	your	program	to	an	application	simply	to	run	it	with
Web	Start,	that’s	probably	unnecessary.	The	purpose	of	the	applet-desc	tag	is	to
make	it	possible	to	run	applets	without	modification	in	Java	Web	Start.	The	only
reason	to	undertake	the	conversion	is	if	you	want	to	change	other	things	about	your
program,	such	as	the	switch	from	init()	to	a	constructor	method.

Q	How	can	I	make	sure	that	a	SwingWorker	object	has	finished	working?

A	Call	the	worker’s	isDone()	method,	which	returns	true	when	the	task	has
finished	executing.

Note	that	this	method	returns	true	no	matter	how	the	task	completes.	So	if	it	is
canceled	or	interrupted	or	fails	in	some	other	manner,	it	returns	true.

The	isCancelled()	method	can	be	used	to	check	whether	the	task	was	canceled.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	interface	must	be	implemented	for	you	to	be	notified	when	a	SwingWorker
has	finished	executing?

A.	ActionListener

B.	PropertyChangeListener

C.	SwingListener

2.	Which	XML	element	is	used	to	identify	the	name,	author,	and	other	details	about	a
Java	Web	Start–run	application?

A.	jnlp

B.	information

C.	resources

3.	What	security	restrictions	apply	to	a	Java	Web	Start	application?

A.	There	are	no	restrictions.

B.	The	same	restrictions	that	are	in	place	for	applications

C.	The	restrictions	chosen	by	the	user

Answers
1.	B.	The	PropertyChangeListener	in	the	java.beans	package	receives	a
propertyChange()	event	when	the	worker	finishes.

2.	B.	The	application	is	described	using	elements	contained	within	an	opening
<information>	tag	and	a	closing	</information>	tag.

3.	C.	A	Java	Web	Start	application	has	few	restrictions.	They	are	limited	to	important
functionality	such	as	saving	files	or	opening	Internet	connections.	These	restrictions
are	dropped	if	a	user	explicitly	grants	those	privileges	as	the	application	runs.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.awt.*;
import	javax.swing.*;

public	class	SliderFrame	extends	JFrame	{
				public	SliderFrame()	{
								super();
								setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
								JSlider	value	=	new	JSlider(0,	255,	100);
								setSize(325,	150);
								setVisible(true);
				}

				public	static	void	main(String[]	arguments)	{
								new	SliderFrame();
				}
}

What	will	happen	when	you	attempt	to	compile	and	run	this	source	code?

A.	It	compiles	without	error	and	runs	correctly.

B.	It	compiles	without	error	but	does	not	display	anything	in	the	frame.

C.	It	does	not	compile	because	the	content	pane	is	empty.

D.	It	does	not	compile	because	of	the	new	SliderFrame()	statement.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	14
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Turn	one	of	the	applications	created	during	the	first	two	weeks	into	one	that	can	be

http://www.java21days.com

launched	with	Java	Web	Start.

2.	Create	a	new	JNLP	file	that	runs	the	PageData	application	using	version	1.3	of	the
JVM,	and	force	users	to	be	connected	to	the	Internet	when	it	is	run.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Week	III:	Java	Programming
15	Working	with	Input	and	Output

16	Using	Inner	Classes	and	Closures

17	Communicating	Across	the	Internet

18	Accessing	Databases	with	JDBC	4.2	and	Derby

19	Reading	and	Writing	RSS	Feeds

20	XML	Web	Services

21	Writing	Android	Apps	with	Java

Day	15.	Working	with	Input	and	Output

Many	of	the	programs	you	create	with	Java	need	to	interact	with	some	kind	of	data	source.
Information	can	be	stored	on	a	computer	in	many	ways,	including	files	on	a	hard	drive	or
DVD,	pages	on	a	website,	and	even	bytes	in	the	computer’s	memory.

You	might	expect	to	need	a	different	technique	to	handle	each	different	storage	device.
Fortunately,	that	isn’t	the	case.

In	Java,	information	can	be	stored	and	retrieved	using	a	communications	system	called
streams,	which	are	implemented	in	the	java.io	package	and	are	enhanced	by	the
java.nio.file	package.

Today,	you	learn	how	to	create	input	streams	to	read	information	and	output	streams	to
store	information.	You	work	with	the	following:

	Byte	streams,	which	are	used	to	handle	bytes,	integers,	and	other	simple	data	types

	Character	streams,	which	handle	text	files	and	other	text	sources

You	can	deal	with	all	data	in	the	same	way	when	you	know	how	to	work	with	an	input
stream,	whether	the	information	is	coming	from	a	disk,	the	Internet,	or	even	another
program.	The	same	is	true	of	using	output	streams	to	transmit	data.

Introduction	to	Streams
In	Java,	all	data	is	written	and	read	using	streams.	Streams,	like	the	bodies	of	water	that
share	the	same	name,	carry	something	from	one	place	to	another.

A	stream	is	a	path	traveled	by	data	in	a	program.	An	input	stream	sends	data	from	a	source
into	a	program,	and	an	output	stream	sends	data	from	a	program	to	a	destination.

You	will	deal	with	two	types	of	streams	today:	byte	streams	and	character	streams.	Byte
streams	carry	integers	with	values	that	range	from	0	to	255.	A	diverse	assortment	of	data
can	be	expressed	in	byte	format,	including	numeric	data,	executable	programs,	Internet
communications,	and	bytecode—the	class	files	run	by	a	Java	Virtual	Machine	(JVM).

In	fact,	every	kind	of	data	imaginable	can	be	expressed	using	either	individual	bytes	or	a
series	of	bytes	combined.

Character	streams	are	a	specialized	type	of	byte	stream	that	handles	only	textual	data.
They’re	distinguished	from	byte	streams	because	Java’s	character	set	supports	Unicode,	a
standard	that	includes	many	more	characters	than	could	be	expressed	easily	using	bytes.

Any	kind	of	data	that	involves	text	should	use	character	streams,	including	text	files,	web
pages,	and	other	common	types	of	text.

Using	a	Stream
The	procedure	for	using	either	a	byte	stream	or	character	stream	in	Java	is	largely	the
same.	Before	you	start	working	with	the	specifics	of	the	java.io	and
java.nio.file	classes,	it’s	useful	to	walk	through	the	process	of	creating	and	using
streams.

For	an	input	stream,	the	first	step	is	to	create	an	object	associated	with	the	data	source.	For
example,	if	the	source	is	a	file	on	your	hard	drive,	a	FileInputStream	object	could	be
associated	with	this	file.

After	you	have	a	stream	object,	you	can	read	information	from	that	stream	by	using	one	of
the	object’s	methods.	FileInputStream	includes	a	read()	method	that	returns	a
byte	read	from	the	file.

When	you’re	finished	reading	information	from	the	stream,	you	call	the	close()
method	to	indicate	that	you’re	finished	using	the	stream.

For	an	output	stream,	you	begin	by	creating	an	object	associated	with	the	data’s
destination.	One	such	object	can	be	created	from	the	BufferedWriter	class,	which
represents	an	efficient	way	to	create	text	files.

The	write()	method	is	the	simplest	way	to	send	information	to	the	output	stream’s
destination.	For	instance,	a	BufferedWriter	write()	method	can	send	individual
characters	to	an	output	stream.

As	with	input	streams,	the	close()	method	is	called	on	an	output	stream	when	you	have
no	more	information	to	send.

Filtering	a	Stream
The	simplest	way	to	use	a	stream	is	to	create	it	and	then	call	its	methods	to	send	or	receive
data,	depending	on	whether	it’s	an	output	stream	or	input	stream.

Many	of	the	classes	you	will	work	with	today	achieve	more	sophisticated	results	when	a
filter	is	associated	with	a	stream	before	reading	or	writing	any	data.

A	filter	is	a	type	of	stream	that	modifies	how	an	existing	stream	is	handled.	Think	of	a
dam	on	a	mountain	stream.	The	dam	regulates	the	flow	of	water	from	the	points	upstream
to	the	points	downstream.	The	dam	is	a	type	of	filter.	Remove	it,	and	the	water	would	flow
in	a	less-controlled	fashion.

The	procedure	for	using	a	filter	on	a	stream	is	as	follows:

1.	Create	a	stream	associated	with	a	data	source	or	data	destination.

2.	Associate	a	filter	with	that	stream.

3.	Read	data	from	or	write	data	to	the	filter	rather	than	the	original	stream.

The	methods	you	call	on	a	filter	are	the	same	as	the	methods	you	would	call	on	a	stream.
There	are	read()	and	write()	methods,	just	as	there	would	be	on	an	unfiltered
stream.

You	even	can	associate	a	filter	with	another	filter,	so	the	following	path	for	information	is
possible:	An	input	stream	associated	with	a	text	file	is	filtered	through	a	Spanish-to-
English	translation	filter,	which	is	then	filtered	through	a	no-profanity	filter.	Finally,	it	is
sent	to	its	destination—a	human	being	who	wants	to	read	it.

If	this	is	confusing	in	the	abstract,	you	will	have	opportunities	to	see	the	process	in
practice	in	the	following	sections.

Handling	Exceptions
Several	exceptions	in	the	java.io	package	might	occur	when	you	are	working	with	files
and	streams.	Two	common	ones	are	FileNotFoundException	and
EOFException.

A	FileNotFoundException	occurs	when	you	try	to	create	a	stream	or	file	object
using	a	file	that	couldn’t	be	located.

An	EOFException	indicates	that	the	end	of	a	file	has	been	reached	unexpectedly	as
data	was	being	read	from	the	file	through	an	input	stream.

These	exceptions	are	subclasses	of	IOException.	One	way	to	deal	with	all	of	them	is	to
enclose	all	input	and	output	statements	in	a	try-catch	block	that	catches
IOException	objects.	Call	the	exception’s	toString()	or	getMessage()
methods	in	the	catch	block	to	find	out	more	about	the	problem.

Byte	Streams
All	byte	streams	are	a	subclass	of	either	InputStream	or	OutputStream.	These
classes	are	abstract,	so	you	cannot	create	a	stream	by	creating	objects	of	these	classes
directly.	Instead,	you	create	streams	through	one	of	their	subclasses,	such	as	the	following:

	FileInputStream	and	FileOutputStream	are	byte	streams	stored	in	files
on	disk,	CD,	or	other	storage	devices.

	DataInputStream	and	DataOutputStream	are	a	filtered	byte	stream	from
which	data	such	as	integers	and	floating-point	numbers	can	be	read.

InputStream	is	the	superclass	of	all	input	streams.

File	Streams
The	byte	streams	you’ll	work	with	most	often	are	likely	to	be	file	streams.	They	are	used
to	exchange	data	with	files	on	your	disk	drives,	CDs,	or	other	storage	devices	you	can
refer	to	by	using	a	folder	path	and	filename.

You	can	send	bytes	to	a	file	output	stream	and	receive	bytes	from	a	file	input	stream.

File	Input	Streams

A	file	input	stream	can	be	created	with	the	FileInputStream(String)	constructor.
The	String	argument	should	be	the	filename.	You	can	include	a	path	reference	with	the
filename,	which	enables	the	file	to	be	in	a	different	folder	from	the	class	loading	it.	The
following	statement	creates	a	file	input	stream	from	the	file	scores.dat:
Click	here	to	view	code	image

FileInputStream	fis	=	new	FileInputStream(“scores.dat”);

Path	references	can	be	indicated	in	a	manner	specific	to	a	platform,	such	as	this	example
to	read	a	file	on	a	Windows	system:
Click	here	to	view	code	image

FileInputStream	f1	=	new	FileInputStream(“C:\data\calendar.txt”);

Note

Because	Java	uses	backslash	characters	in	escape	codes,	the	code	\\	must	be	used
in	place	of	\	in	path	references	in	Windows.

Here’s	a	Linux	example:
Click	here	to	view	code	image

FileInputStream	f2	=	new	FileInputStream(”/data/calendar.txt”);

A	better	way	to	refer	to	paths	is	to	use	the	class	variable	separator	in	the	File	class,
which	works	on	any	operating	system:
Click	here	to	view	code	image

char	sep	=	File.separator;
FileInputStream	f2	=	new	FileInputStream(sep	+	“data”
				+	sep	+	“calendar.txt”);

After	you	create	a	file	input	stream,	you	can	read	bytes	from	the	stream	by	calling	its
read()	method.	This	method	returns	an	integer	containing	the	next	byte	in	the	stream.
The	method	returns	–1,	which	is	not	a	possible	byte	value,	when	the	end	of	the	file	stream
has	been	reached.

To	read	more	than	one	byte	of	data	from	the	stream,	call	its	read(byte[],	int,
int)	method.	The	arguments	to	this	method	are	as	follows:

	A	byte	array	where	the	data	will	be	stored

	The	element	inside	the	array	where	the	data’s	first	byte	should	be	stored

	The	number	of	bytes	to	read

Unlike	the	other	read()	method,	this	does	not	return	data	from	the	stream.	Instead,	it
returns	either	an	integer	that	represents	the	number	of	bytes	read	or	–1	if	no	bytes	were
read	before	the	end	of	the	stream	was	reached.

The	following	statements	use	a	while	loop	to	read	the	data	in	a	FileInputStream
object	called	diskfile:

Click	here	to	view	code	image
int	newByte	=	0;
while	(newByte	!=	-1)	{
				newByte	=	diskfile.read();
				System.out.print(newByte	+	”	“);
}

This	loop	reads	the	entire	file	referenced	by	diskfile	one	byte	at	a	time	and	displays
each	byte,	followed	by	a	space	character.	It	also	displays	–1	when	the	end	of	the	file	is
reached;	you	could	guard	against	this	easily	with	an	if	statement.

The	ByteReader	application,	shown	in	in	Listing	15.1,	uses	a	similar	technique	to	read	a
file	input	stream.	The	input	stream’s	close()	method	is	used	to	close	the	stream	after
the	last	byte	in	the	file	is	read.	Always	close	streams	when	you	no	longer	need	them;
doing	so	frees	system	resources.	Create	the	ByteReader	class	in	the
com.java21days	package	as	an	empty	Java	file	in	NetBeans.

LISTING	15.1	The	Full	Text	of	ByteReader.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	ByteReader	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									try	(
	8:													FileInputStream	file	=	new
	9:																	FileInputStream(“save.gif”)
10:)	{
11:
12:													boolean	eof	=	false;
13:													int	count	=	0;
14:													while	(!eof)	{
15:																	int	input	=	file.read();
16:																	System.out.print(input	+	”	“);
17:																	if	(input	==	-1)
18:																					eof	=	true;
19:																	else
20:																					count++;
21:													}
22:													file.close();
23:													System.out.println(“\nBytes	read:	“	+	count);
24:									}	catch	(IOException	e)	{
25:													System.out.println(“Error	—	“	+	e.toString());
26:									}
27:					}
28:	}

This	application	reads	the	byte	data	from	the	save.gif	file	in	the	main	folder	of	the
Java21	project.	That	file	was	used	during	Day	10,	“Building	a	Swing	Interface.”

When	you	run	the	program,	each	byte	in	save.gif	is	displayed,	followed	by	a	count	of
the	total	number	of	bytes.	Figure	15.1	shows	the	output.

FIGURE	15.1	Reading	byte	data	from	a	file.

File	Output	Streams

A	file	output	stream	can	be	created	with	the	FileOutputStream(String)
constructor.	The	usage	is	the	same	as	with	the	FileInputStream(String)
constructor,	so	you	can	specify	a	path	along	with	a	filename.

You	have	to	be	careful	when	specifying	the	file	associated	with	an	output	stream.	If	it’s	the
same	as	an	existing	file,	the	original	is	wiped	out	when	you	start	writing	data	to	the
stream.

You	can	create	a	file	output	stream	that	appends	data	after	the	end	of	an	existing	file	with
the	FileOutputStream	(String,	boolean)	constructor.	The	string	specifies	the
file,	and	the	Boolean	argument	should	equal	true	to	append	data	instead	of	overwriting
existing	data.

The	file	output	stream’s	write(int)	method	is	used	to	write	bytes	to	the	stream.	After
the	last	byte	has	been	written	to	the	file,	the	stream’s	close()	method	closes	the	stream.

To	write	more	than	one	byte,	you	can	use	the	write(byte[],	int,	int)	method.
This	works	in	a	manner	similar	to	the	read(byte[],	int,	int)	method	described
previously.	The	arguments	to	this	method	are	the	byte	array	containing	the	bytes	to	output,
the	starting	point	in	the	array,	and	the	number	of	bytes	to	write.

The	ByteWriter	application,	shown	in	Listing	15.2,	writes	an	integer	array	to	a	file	output
stream.	Create	it	in	NetBeans	in	the	com.java21days	package.

LISTING	15.2	The	Full	Text	of	ByteWriter.java

Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	ByteWriter	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									int[]	data	=	{	71,	73,	70,	56,	57,	97,	13,	0,	12,	0,	145,
	8:													0,	0,	255,	255,	255,	255,	255,	0,	0,	0,	0,	0,	0,	0,	44,
	9:													0,	0,	0,	0,	13,	0,	12,	0,	0,	2,	38,	132,	45,	121,	11,
10:													25,	175,	150,	120,	20,	162,	132,	51,	110,	106,	239,	22,
11:													8,	160,	56,	137,	96,	72,	77,	33,	130,	86,	37,	219,	182,
12:													230,	137,	89,	82,	181,	50,	220,	103,	20,	0,	59	};
13:									try	(FileOutputStream	file	=	new
14:													FileOutputStream(“pic.gif”))	{
15:
16:													for	(int	i	=	0;	i	<	data.length;	i++)	{
17:																	file.write(data[i]);
18:													}
19:													file.close();
20:									}	catch	(IOException	e)	{
21:													System.out.println(“Error	—	“	+	e.toString());
22:									}
23:					}
24:	}

The	following	things	take	place	in	this	program:

	Lines	7–12	create	an	integer	array	called	data	and	fill	it	with	elements.

	Lines	13–14	create	a	file	output	stream	with	the	filename	pic.gif	in	the	main
project	folder	in	NetBeans.

	Lines	16–18	use	a	for	loop	to	cycle	through	the	data	array	and	write	each
element	to	the	file	stream.

	Line	19	closes	the	file	output	stream.

The	FileOutputStream	object	is	created	inside	the	parentheses	of	the	try	statement
to	make	sure	its	resources	are	freed	up	when	the	block	finishes	executing,	even	in	case	of
an	error.

After	you	run	this	program,	you	can	display	the	pic.gif	file	in	any	web	browser	or
graphics-editing	tool.	It’s	a	small	image	file	in	GIF	format,	as	shown	in	Figure	15.2.

FIGURE	15.2	The	pic.gif	file	(enlarged).

Filtering	a	Stream
Filtered	streams	are	streams	that	modify	the	information	sent	through	an	existing	stream.
They	are	created	using	the	subclasses	FilterInputStream	and
FilterOutputStream.

These	classes	do	not	handle	any	filtering	operations	themselves.	Instead,	they	have
subclasses,	such	as	BufferInputStream	and	DataOutputStream,	which	handle
specific	types	of	filtering.

Byte	Filters
Information	is	delivered	more	quickly	if	it	can	be	sent	in	large	chunks,	even	if	those
chunks	are	received	faster	than	they	can	be	handled.

For	example,	consider	which	of	the	following	book-reading	techniques	is	faster:

	A	friend	lends	you	a	book,	and	you	read	it.

	A	friend	lends	you	a	book	one	page	at	a	time	and	doesn’t	give	you	a	new	page	until
you	have	finished	the	previous	one.

Obviously,	the	first	technique	is	faster	and	more	efficient.	The	same	benefits	are	true	of
buffered	streams	in	Java.

A	buffer	is	a	storage	place	where	data	can	be	kept	before	it	is	needed	by	a	program	that
reads	or	writes	that	data.	By	using	a	buffer,	you	can	get	data	without	always	going	back	to
the	original	source	of	the	data.

Buffers	are	essential	when	reading	extremely	large	files.	Without	them,	the	data	from	the
file	could	take	up	all	of	a	Java	virtual	machine’s	memory.

Buffered	Streams

A	buffered	input	stream	fills	a	buffer	with	data	that	hasn’t	been	handled	yet.	When	a
program	needs	this	data,	it	looks	to	the	buffer	before	going	to	the	original	stream	source.

Buffered	byte	streams	use	the	BufferedInputStream	and
BufferedOutputStream	classes.

A	buffered	input	stream	is	created	using	one	of	the	following	constructors:

	BufferedInputStream(InputStream)	creates	a	buffered	input	stream	for
the	specified	InputStream	object.

	BufferedInputStream(InputStream,	int)	creates	the	specified
InputStream	buffered	stream	with	a	buffer	of	size	int.

The	simplest	way	to	read	data	from	a	buffered	input	stream	is	to	call	its	read()	method
with	no	arguments.	This	action	normally	returns	an	integer	from	0	to	255	representing	the
next	byte	in	the	stream.	If	the	end	of	the	stream	has	been	reached	and	no	byte	is	available,
–1	is	returned.

You	also	can	use	the	read(byte[],	int,	int)	method	available	for	other	input

streams,	which	loads	stream	data	into	a	byte	array.

A	buffered	output	stream	is	created	using	one	of	these	two	constructors:

	BufferedOutputStream(OutputStream)	creates	a	buffered	output	stream
for	the	specified	OutputStream	object.

	BufferedOutputStream(OutputStream,	int)	creates	the	specified
OutputStream	buffered	stream	with	a	buffer	of	size	int.

The	output	stream’s	write(int)	method	can	be	used	to	send	a	single	byte	to	the
stream,	and	the	write(byte[],	int,	int)	method	writes	multiple	bytes	from	the
specified	byte	array.	The	arguments	to	this	method	are	the	byte	array,	array	starting	point,
and	number	of	bytes	to	write.

Note

Although	the	write()	method	takes	an	integer	as	input,	the	value	should	be	from
0	to	255.	If	you	specify	a	number	higher	than	255,	it	is	stored	as	the	remainder	of
the	number	divided	by	256.	You	can	test	this	when	running	the	project	you	will
create	later	today.

When	data	is	directed	to	a	buffered	stream,	it	is	not	output	to	its	destination	until	the
stream	fills	or	the	buffered	stream’s	flush()	method	is	called.

The	next	project,	the	BufferDemo	application,	writes	a	series	of	bytes	to	a	buffered	output
stream	associated	with	a	text	file.	The	first	and	last	integers	in	the	series	are	specified	as
two	arguments.

After	writing	to	the	text	file,	BufferDemo	creates	a	buffered	input	stream	from	the	file	and
reads	the	bytes	back	in.	Listing	15.3	contains	the	source	code.	Put	this	class	in	the
com.java21days	package	when	creating	it	in	NetBeans.

LISTING	15.3	The	Full	Text	of	BufferDemo.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	BufferDemo	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									int	start	=	0;
	8:									int	finish	=	255;
	9:									if	(arguments.length	>	1)	{
10:													start	=	Integer.parseInt(arguments[0]);
11:													finish	=	Integer.parseInt(arguments[1]);
12:									}	else	if	(arguments.length	>	0)	{
13:													start	=	Integer.parseInt(arguments[0]);
14:									}
15:									ArgStream	as	=	new	ArgStream(start,	finish);
16:									System.out.println(“\nWriting:	“);
17:									boolean	success	=	as.writeStream();
18:									System.out.println(“\nReading:	“);

19:									boolean	readSuccess	=	as.readStream();
20:					}
21:	}
22:
23:	class	ArgStream	{
24:					int	start	=	0;
25:					int	finish	=	255;
26:
27:					ArgStream(int	st,	int	fin)	{
28:									start	=	st;
29:									finish	=	fin;
30:					}
31:
32:					boolean	writeStream()	{
33:									try	(FileOutputStream	file	=	new
34:																	FileOutputStream(“numbers.dat”);
35:													BufferedOutputStream	buff	=	new
36:																	BufferedOutputStream(file))	{
37:
38:													for	(int	out	=	start;	out	<=	finish;	out++)	{
39:																	buff.write(out);
40:																	System.out.print(”	“	+	out);
41:													}
42:													buff.close();
43:													return	true;
44:									}	catch	(IOException	e)	{
45:													System.out.println(“Exception:	“	+	e.getMessage());
46:													return	false;
47:									}
48:					}
49:
50:					boolean	readStream()	{
51:									try	(FileInputStream	file	=	new
52:																	FileInputStream(“numbers.dat”);
53:													BufferedInputStream	buff	=	new
54:																	BufferedInputStream(file))	{
55:
56:													int	in;
57:													do	{
58:																	in	=	buff.read();
59:																	if	(in	!=	-1)	{
60:																					System.out.print(”	“	+	in);
61:																	}
62:													}	while	(in	!=	-1);
63:													System.out.println();
63:													buff.close();
64:													return	true;
65:									}	catch	(IOException	e)	{
66:													System.out.println(“Exception:	“	+	e.getMessage());
67:													return	false;
68:									}
69:					}
70:	}

This	program’s	output	depends	on	the	two	arguments	specified	when	it	was	run.	If	you	use
3	and	19,	the	output	in	Figure	15.3	is	shown.

FIGURE	15.3	Reading	and	writing	buffered	streams.

It	also	can	be	run	without	arguments,	using	1	and	255	as	default	values.

This	application	consists	of	two	classes:	BufferDemo	and	a	helper	class	called
ArgStream.	BufferDemo	gets	the	two	arguments’	values,	if	they	are	provided,	and
uses	them	in	the	ArgStream()	constructor.

The	writeStream()	method	of	ArgStream	is	called	in	line	17	to	write	the	series	of
bytes	to	a	buffered	output	stream,	and	the	readStream()	method	is	called	in	line	19	to
read	back	those	bytes.

Even	though	they	are	moving	data	in	two	directions,	the	writeStream()	and
readStream()	methods	are	substantially	the	same.	They	take	the	following	format:

	The	filename,	numbers.dat,	is	used	to	create	a	file	input	or	output	stream.

	The	file	stream	is	used	to	create	a	buffered	input	or	output	stream.

	The	buffered	stream’s	write()	method	is	used	to	send	data,	or	the	read()
method	is	used	to	receive	data.

	The	buffered	stream	is	closed.

Because	file	streams	and	buffered	streams	throw	IOException	objects	if	an	error
occurs,	all	operations	involving	the	streams	are	enclosed	in	a	try-catch	block	for	this
exception.

Note

The	Boolean	return	values	in	writeStream()	and	readStream()	indicate
whether	the	stream	operation	was	completed	successfully.	They	aren’t	used	in	this
program,	but	it’s	good	practice	to	let	callers	of	these	methods	know	if	something
goes	wrong.	When	the	value	is	false,	the	operation	could	be	attempted	again.

Console	Input	Streams

One	of	the	things	many	experienced	programmers	miss	when	they	begin	learning	Java	is
the	ability	to	read	textual	or	numeric	input	from	the	console	while	running	an	application.
No	input	method	is	comparable	to	the	output	methods	System.out.print()	and
System.out.println().

Now	that	you	can	work	with	buffered	input	streams,	you	can	put	them	to	use	receiving
console	input.

The	System	class,	part	of	the	java.lang	package,	has	a	class	variable	called	in	that	is
an	InputStream	object.	This	object	receives	input	from	the	keyboard	through	the
stream.

You	can	work	with	this	stream	as	you	would	any	other	input	stream.	The	following
statement	creates	a	new	buffered	input	stream	associated	with	the	System.in	input
stream:
Click	here	to	view	code	image

BufferedInputStream	command	=	new	BufferedInputStream(System.in);

The	next	project,	the	ConsoleInput	class,	contains	a	class	method	you	can	use	to
receive	console	input	in	any	of	your	Java	applications.	Enter	the	code	shown	in	Listing
15.4	in	NetBeans,	making	sure	to	put	it	in	the	package	com.java21days.

LISTING	15.4	The	Full	Text	of	ConsoleInput.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	ConsoleInput	{
	6:					public	static	String	readLine()	{
	7:									StringBuilder	response	=	new	StringBuilder();
	8:									try	(BufferedInputStream	buff	=	new
	9:													BufferedInputStream(System.in))	{
10:
11:													int	in;
12:													char	inChar;
13:													do	{
14:																	in	=	buff.read();
15:																	inChar	=	(char)	in;
16:																	if	((in	!=	-1)	&	(in	!=	‘\n’)	&	(in	!=	‘\r’))	{
17:																					response.append(inChar);
18:																	}
19:													}	while	((in	!=	-1)	&	(inChar	!=	‘\n’)	&	(in	!=	‘\r’));
20:													buff.close();
21:													return	response.toString();
22:									}	catch	(IOException	e)	{
23:													System.out.println(“Exception:	“	+	e.getMessage());
24:													return	null;
25:									}
26:					}
27:
28:					public	static	void	main(String[]	arguments)	{
29:									System.out.print(“\nWhat	is	your	name?	“);
30:									String	input	=	ConsoleInput.readLine();
31:									System.out.println(“\nHello,	“	+	input);
32:					}
33:	}

The	ConsoleInput	class	includes	a	main()	method	that	demonstrates	how	it	can	be
used.	When	you	compile	and	run	it	as	an	application,	the	output	should	resemble	Figure

15.4.

FIGURE	15.4	Reading	keyboard	input	from	the	console	window.

ConsoleInput	reads	user	input	through	a	buffered	input	stream	using	the	stream’s
read()	method,	which	returns	–1	when	the	end	of	input	has	been	reached.	This	occurs
when	the	user	presses	the	Enter	key,	a	carriage	return	(character	‘\r’),	or	a	newline
(character	‘\n’).

Data	Streams

If	you	need	to	work	with	data	that	isn’t	represented	as	bytes	or	characters,	you	can	use
data	input	and	data	output	streams.	These	streams	filter	an	existing	byte	stream	so	that
each	of	the	following	primitive	types	can	be	directly	read	from	or	written	to	the	stream:
boolean,	byte,	double,	float,	int,	long,	and	short.

A	data	input	stream	is	created	with	the	DataInputStream(InputStream)
constructor.	The	argument	should	be	an	existing	input	stream	such	as	a	buffered	input
stream	or	a	file	input	stream.

A	data	output	stream	requires	the	DataOutputStream(OutputStream)
constructor,	which	indicates	the	associated	output	stream.

The	following	read	and	write	methods	apply	to	data	input	and	output	streams,
respectively:

	readBoolean(),	writeBoolean(boolean)

	readByte(),	writeByte(integer)

	readDouble(),	writeDouble(double)

	readFloat(),	writeFloat(float)

	readInt(),	writeInt(int)

	readLong(),	writeLong(long)

	readShort(),	writeShort(int)

Each	input	method	returns	the	primitive	data	type	indicated	by	the	method’s	name.	For
example,	the	readFloat()	method	returns	a	float	value.

There	also	are	readUnsignedByte()	and	readUnsignedShort()	methods	that
read	in	unsigned	byte	and	short	values.	Java	doesn’t	support	these	data	types,	so	they

are	returned	as	int	values.

Note

Unsigned	bytes	have	values	ranging	from	0	to	255.	This	differs	from	Java’s	byte
variable	type,	which	ranges	from	–128	to	127.	Along	the	same	lines,	an	unsigned
short	value	ranges	from	0	to	65,535,	instead	of	the	–32,768	to	32,767	range
supported	by	Java’s	short	type.

A	data	input	stream’s	different	read	methods	do	not	all	return	a	value	that	can	be	used	to
indicate	that	the	end	of	the	stream	has	been	reached.

As	an	alternative,	you	can	wait	for	an	EOFException	(end-of-file	exception)	to	be
thrown	when	a	read	method	reaches	the	end	of	a	stream.	The	loop	that	reads	the	data	can
be	enclosed	in	a	try	block,	and	the	associated	catch	statement	should	handle	only
EOFException	objects.	You	can	call	close()	on	the	stream	and	take	care	of	other
cleanup	tasks	inside	the	catch	block.

This	is	demonstrated	in	the	next	project.	Listings	15.5	and	15.6	contain	two	programs	that
use	data	streams.	The	PrimeWriter	application	writes	the	first	400	prime	numbers	as
integers	to	a	file	called	400primes.dat.	The	PrimeReader	application	reads	the
integers	from	this	file	and	displays	them.	Both	classes	are	in	the	com.java21days
package.

LISTING	15.5	The	Full	Text	of	PrimeWriter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	PrimeWriter	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									int[]	primes	=	new	int[400];
	8:									int	numPrimes	=	0;
	9:									//	candidate:	the	number	that	might	be	prime
10:									int	candidate	=	2;
11:									while	(numPrimes	<	400)	{
12:													if	(isPrime(candidate))	{
13:																	primes[numPrimes]	=	candidate;
14:																	numPrimes++;
15:													}
16:													candidate++;
17:									}
18:
19:									try	(
20:													//	Write	output	to	disk
21:													FileOutputStream	file	=	new
22:																	FileOutputStream(“400primes.dat”);
23:													BufferedOutputStream	buff	=	new
24:																	BufferedOutputStream(file);
25:													DataOutputStream	data	=	new
26:																	DataOutputStream(buff);
27:)	{

28:
29:													for	(int	i	=	0;	i	<	400;	i++)
30:																data.writeInt(primes[i]);
31:													data.close();
32:									}	catch	(IOException	e)	{
33:													System.out.println(“Error	—	“	+	e.toString());
34:									}
35:					}
36:
37:					public	static	boolean	isPrime(int	checkNumber)	{
38:									double	root	=	Math.sqrt(checkNumber);
39:									for	(int	i	=	2;	i	<=	root;	i++)	{
40:													if	(checkNumber	%	i	==	0)
41:																	return	false;
42:									}
43:									return	true;
44:					}
45:	}

LISTING	15.6	The	Full	Text	of	PrimeReader.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	PrimeReader	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									try	(FileInputStream	file	=	new
	8:																	FileInputStream(“400primes.dat”);
	9:													BufferedInputStream	buff	=	new
10:																	BufferedInputStream(file);
11:													DataInputStream	data	=	new
12:																	DataInputStream(buff))	{
13:
14:													try	{
15:																	while	(true)	{
16:																					int	in	=	data.readInt();
17:																					System.out.print(in	+	”	“);
18:																	}
19:													}	catch	(EOFException	eof)	{
20:																	buff.close();
21:													}
22:									}	catch	(IOException	e)	{
23:													System.out.println(“Error	—	“	+	e.toString());
24:									}
25:					}
26:	}

Most	of	the	PrimeWriter	application	is	taken	up	with	logic	to	find	the	first	400	prime
numbers.	After	you	have	an	integer	array	containing	the	first	400	primes,	it	is	written	to	a
data	output	stream	in	Listing	15.5	in	lines	19–34.

This	application	is	an	example	of	using	more	than	one	filter	on	a	stream.	The	stream	is
developed	in	a	three-step	process:

1.	A	file	output	stream	associated	with	a	file	called	400primes.dat	is	created.

2.	A	new	buffered	output	stream	is	associated	with	the	file	stream.

3.	A	new	data	output	stream	is	associated	with	the	buffered	stream.

The	writeInt()	method	of	the	data	stream	is	used	to	write	the	primes	to	the	file.

The	PrimeReader	application	is	simpler	because	it	doesn’t	need	to	do	anything	regarding
prime	numbers.	It	just	reads	integers	from	a	file	using	a	data	input	stream.

Lines	7–12	of	PrimeReader	are	nearly	identical	to	statements	in	the	PrimeWriter
application,	except	that	input	classes	are	used	instead	of	output	classes.

The	try-catch	block	that	handles	EOFException	objects	is	in	lines	14–21	of	Listing
15.6.	The	work	of	loading	the	data	takes	place	inside	the	try-with-resources	block,	which
was	introduced	during	Day	7,	“Exceptions	and	Threads.”	This	approach	ensures	the	input
stream	objects	will	be	closed	properly	when	no	longer	needed.

The	while(true)	statement	creates	an	endless	loop.	This	isn’t	a	problem;	an
EOFException	automatically	occurs	when	the	end	of	the	stream	is	encountered	at	some
point	as	the	data	stream	is	being	read.	The	readInt()	method	in	line	16	of	Listing	15.6
reads	integers	from	the	stream.

The	last	several	lines	of	the	PrimeReader	application’s	output	are	shown	in	Figure	15.5.

FIGURE	15.5	Reading	prime	numbers	written	to	a	file	as	integers.

Character	Streams
After	you	know	how	to	handle	byte	streams,	you	have	most	of	the	skills	needed	to	handle
character	streams	as	well.	Character	streams	are	used	to	work	with	any	text	represented	by
the	ASCII	character	set	or	Unicode,	an	international	character	set	that	includes	ASCII.

Examples	of	files	that	you	can	work	with	through	a	character	stream	are	plain	text	files,
Web	pages,	and	Java	source	files.

The	classes	used	to	read	and	write	these	streams	are	all	subclasses	of	Reader	and
Writer.	These	should	be	used	for	all	text	input	instead	of	dealing	directly	with	byte
streams.

Reading	Text	Files
FileReader	is	the	main	class	used	when	reading	character	streams	from	a	file.	This
class	inherits	from	InputStreamReader,	which	reads	a	byte	stream	and	converts	the
bytes	into	integer	values	that	represent	Unicode	characters.

A	character	input	stream	is	associated	with	a	file	using	the	FileReader(String)
constructor.	The	string	indicates	the	file,	and	it	can	contain	path	folder	references	in
addition	to	a	filename.

The	following	statement	creates	a	new	FileReader	called	look	and	associates	it	with
a	text	file	called	index.txt:
Click	here	to	view	code	image

FileReader	look	=	new	FileReader(“index.txt”);

After	you	have	a	file	reader,	you	can	call	the	following	methods	on	it	to	read	characters
from	the	file:

	read()	returns	the	next	character	on	the	stream	as	an	integer.

	read(char[],	int,	int)	reads	characters	into	the	specified	character	array
with	the	indicated	starting	point	and	number	of	characters	read.

The	second	method	works	like	similar	methods	for	the	byte	input	stream	classes.	Instead
of	returning	the	next	character,	it	returns	either	the	number	of	characters	that	were	read	or
–1	if	no	characters	were	read	before	the	end	of	the	stream	was	reached.

The	following	method	loads	a	text	file	using	the	FileReader	object	text	and	displays
its	characters:
Click	here	to	view	code	image

FileReader	text	=	new	FileReader(“readme.txt”);
int	inByte;
do	{
				inByte	=	text.read();
				if	(inByte	!=	-1)	{
								System.out.print((char)	inByte);
				}
}	while	(inByte	!=	-1);
System.out.println(””);
text.close();

Because	a	character	stream’s	read()	method	returns	an	integer,	you	must	cast	this	to	a
character	before	displaying	it,	storing	it	in	an	array,	or	using	it	to	form	a	string.	Every
character	has	a	numeric	code	that	represents	its	position	in	the	Unicode	character	set.	The
integer	read	from	the	stream	is	this	numeric	code.

If	you	want	to	read	an	entire	line	of	text	at	a	time	instead	of	reading	a	file	character	by
character,	you	can	use	the	BufferedReader	class	in	conjunction	with	a
FileReader.

The	BufferedReader	class	reads	a	character	input	stream	and	buffers	it	for	better
efficiency.	You	must	have	an	existing	Reader	object	of	some	kind	to	create	a	buffered
version.	The	following	constructors	can	be	used	to	create	a	BufferedReader:

	BufferedReader(Reader)	creates	a	buffered	character	stream	associated	with
the	specified	Reader	object,	such	as	FileReader.

	BufferedReader(Reader,	int)	creates	a	buffered	character	stream
associated	with	the	specified	Reader	and	with	a	buffer	of	size	int.

A	buffered	character	stream	can	be	read	using	the	read()	and	read(char[],	int,
int)	methods	described	for	FileReader.	You	can	read	a	line	of	text	using	the
readLine()	method.

The	readLine()	method	returns	a	String	object	containing	the	next	line	of	text	on
the	stream,	not	including	the	character	or	characters	that	represent	the	end	of	a	line.	If	the
end	of	the	stream	is	reached,	the	value	of	the	string	returned	equals	null.

An	end-of-line	is	indicated	by	any	of	the	following:

	A	newline	character	(‘\n’)

	A	carriage	return	character	(‘\r’)

	A	carriage	return	followed	by	a	newline	(“\n\r”)

The	project	contained	in	Listing	15.7	is	a	Java	application,	SourceReader,	that	reads	its
own	source	file	through	a	buffered	character	stream.	Create	it	in	the	com.java21days
package.

LISTING	15.7	The	Full	Text	of	SourceReader.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:
	5:	public	class	SourceReader	{
	6:					public	static	void	main(String[]	arguments)	{
	7:									try	(
	8:													FileReader	file	=	new
	9:																	FileReader(“SourceReader.java”);
10:													BufferedReader	buff	=	new
11:																	BufferedReader(file))	{
12:
13:													boolean	eof	=	false;
14:													while	(!eof)	{
15:																	String	line	=	buff.readLine();
16:																	if	(line	==	null)	{
17:																					eof	=	true;
18:																	}	else	{
19:																					System.out.println(line);
20:																	}
21:													}
22:													buff.close();
23:									}	catch	(IOException	e)	{
24:													System.out.println(“Error	—	“	+	e.toString());
25:									}
26:					}
27:	}

Much	of	this	program	is	comparable	to	projects	created	earlier	today:

	Lines	8–9:	An	input	source	is	created:	the	FileReader	object	associated	with	the
file	SourceReader.java.

	Lines	10–11:	A	buffering	filter	is	associated	with	that	input	source:	the
BufferedReader	object	buff.

	Lines	13–21:	A	readLine()	method	is	used	inside	a	while	loop	to	read	the	text
file	one	line	at	a	time.	The	loop	ends	when	the	method	returns	the	value	null.

Before	you	run	the	program,	make	a	copy	of	SourceReader.java	in	the	Java21
project’s	root	folder.	To	do	this,	follow	these	steps:

1.	In	the	Projects	pane,	right-click	SourceReader.java	and	choose	Copy.	The	file
is	copied	to	the	clipboard.

2.	Click	the	Files	pane	to	bring	it	to	the	front.

3.	Right-click	Java21	at	the	top	of	the	Files	pane;	then	choose	Paste.

A	copy	will	appear	in	that	folder.	Run	the	program	to	see	the	SourceReader	application’s
output—the	text	file	SourceReader.java.

Writing	Text	Files
The	FileWriter	class	is	used	to	write	a	character	stream	to	a	file.	It’s	a	subclass	of
OutputStreamWriter,	which	has	behavior	to	convert	Unicode	character	codes	to
bytes.

There	are	two	FileWriter	constructors:	FileWriter(String)	and
FileWriter(String,	boolean).	The	string	indicates	the	name	of	the	file	that	the
character	stream	will	be	directed	into,	which	can	include	a	folder	path.	The	optional
Boolean	argument	should	equal	true	if	the	file	is	to	be	appended	to	an	existing	text	file.
As	with	other	stream-writing	classes,	you	must	be	careful	not	to	accidentally	overwrite	an
existing	file	when	you’re	appending	data.

Three	methods	of	FileWriter	can	be	used	to	write	data	to	a	stream:

	write(int)	writes	a	character.

	write(char[],	int,	int)	writes	characters	from	the	specified	character	array
with	the	indicated	starting	point	and	number	of	characters	written.

	write(String,	int,	int)	writes	characters	from	the	specified	string	with	the
indicated	starting	point	and	number	of	characters	written.

The	following	example	writes	a	character	stream	to	a	file	using	the	FileWriter	class
and	the	write(int)	method:
Click	here	to	view	code	image

FileWriter	letters	=	new	FileWriter(“alphabet.txt”);
for	(int	i	=	65;	i	<	91;	i++)
				letters.write((char)	i);

letters.close();

The	close()	method	is	used	to	close	the	stream	after	all	characters	have	been	sent	to	the
destination	file.	The	following	is	the	alphabet.txt	file	produced	by	this	code:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The	BufferedWriter	class	can	be	used	to	write	a	buffered	character	stream.	This
class’s	objects	are	created	with	the	BufferedWriter(Writer)	or
BufferedWriter(Writer,	int)	constructors.	The	Writer	argument	can	be	any
of	the	character	output	stream	classes,	such	as	FileWriter.	The	optional	second
argument	is	an	integer	indicating	the	size	of	the	buffer	to	use.

BufferedWriter	has	the	same	three	output	methods	as	FileWriter:
write(int),	write(char[],	int,	int),	and	write(String,	int,	int).

Another	useful	output	method	is	newLine(),	which	sends	the	preferred	end-of-line
character	(or	characters)	for	the	platform	being	used	to	run	the	program.

Tip

The	different	end-of-line	markers	can	create	conversion	hassles	when	files	are
transferred	from	one	operating	system	to	another,	such	as	when	a	Windows	10	user
uploads	a	file	to	a	web	server	that’s	running	the	Linux	operating	system.	Using
newLine()	instead	of	a	literal	(such	as	‘\n’)	makes	your	program	more	user-
friendly	across	different	platforms.

The	close()	method	is	called	to	close	the	buffered	character	stream	and	make	sure	that
all	buffered	data	is	sent	to	the	stream’s	destination.

Files	and	Paths
In	all	the	examples	thus	far,	a	string	has	been	used	to	refer	to	the	file	that’s	involved	in	a
stream	operation.	This	often	is	sufficient	for	a	program	that	uses	files	and	streams,	but	if
you	want	to	copy	or	rename	files	or	handle	other	tasks,	you	can	use	a	Path	object	from
the	java.nio.file	package.

Path	represents	a	file	or	folder	reference.	It	is	an	improvement	on	the	File	class	in	the
java.io	package.	The	following	statement	gets	a	path	matching	the	specified	string:
Click	here	to	view	code	image

Path	source	=	FileSystems.getDefault().getPath(“essay.txt”);

This	is	a	two-step	process.	First,	a	class	method	of	the	FileSystems	class	is	called.	The
getDefault()	method	returns	a	FileSystem	object	that	represents	the	computer’s
way	of	storing	files.	Both	of	these	classes	also	are	in	the	java.nio.file	package.

As	soon	as	you	have	that	FileSystem	object,	its	getPath(String)	method	returns
a	Path	object	matching	that	specified	file	or	folder	reference.

A	File	object	can	be	created	from	a	Path	by	calling	the	toFile()	method	of	the
latter	class,	as	in	this	statement:

Click	here	to	view	code	image
File	sourceFile	=	source.toFile();

A	Path	object	can	be	created	from	a	File	by	calling	its	toPath()	method.

You	can	call	several	class	methods	of	the	Files	class	in	the	java.nio.file	package
when	working	with	files.

The	move	(Path,	Path)	class	method	renames	a	file	from	the	first	path	argument	to
the	second.

The	delete(Path)	class	method	deletes	that	file.

Just	like	any	file-handling	operation,	these	methods	must	be	handled	with	care	to	avoid
deleting	the	wrong	files	and	folders	or	wiping	out	data.

These	methods	throw	a	SecurityException	if	the	program	does	not	have	the
security	to	perform	the	file	operation	in	question,	a	NoSuchFileException	if	the
paths	do	not	exist,	and	an	IOException	for	other	IO	errors.	If	you	try	to	delete	a	folder
that	is	not	empty,	a	NoSuchFileException	exception	occurs.	Therefore,	these
exceptions	need	to	be	dealt	with	through	a	try-catch	block	or	a	throws	clause	in	a
method	declaration.

The	AllCapsDemo	application	shown	in	Listing	15.8	converts	all	the	text	in	a	file	to
uppercase	characters.	The	file	is	pulled	in	using	a	buffered	input	stream,	and	one	character
is	read	at	a	time.	After	the	character	is	converted	to	uppercase,	it	is	sent	to	a	temporary	file
using	a	buffered	output	stream.	File	objects	are	used	instead	of	strings	to	indicate	the
files	involved,	which	makes	it	possible	to	rename	and	delete	files	as	needed.	In	NetBeans,
create	an	empty	Java	file	called	AllCapsDemo	in	the	com.java21days	package.

LISTING	15.8	The	Full	Text	of	AllCapsDemo.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	java.nio.file.*;
	5:
	6:	public	class	AllCapsDemo	{
	7:					public	static	void	main(String[]	arguments)	{
	8:									if	(arguments.length	<	1)	{
	9:													System.out.println(“You	must	specify	a	filename”);
10:													System.exit(-1);
11:									}
12:									AllCaps	cap	=	new	AllCaps(arguments[0]);
13:									cap.convert();
14:					}
15:	}
16:
17:	class	AllCaps	{
18:					String	sourceName;
19:
20:					AllCaps(String	sourceArg)	{
21:									sourceName	=	sourceArg;
22:					}

23:
24:					void	convert()	{
25:									try	{
26:													//	Create	file	objects
27:													FileSystem	fs	=	FileSystems.getDefault();
28:													Path	source	=	fs.getPath(sourceName);
29:													Path	temp	=	fs.getPath(“tmp_”	+	sourceName);
30:
31:													//	Create	input	stream
32:													FileReader	fr	=	new	FileReader(source.toFile());
33:													BufferedReader	in	=	new	BufferedReader(fr);
34:
35:													//	Create	output	stream
36:													FileWriter	fw	=	new	FileWriter(temp.toFile());
37:													BufferedWriter	out	=	new
38:																	BufferedWriter(fw);
39:
40:													boolean	eof	=	false;
41:													int	inChar;
42:													do	{
43:																	inChar	=	in.read();
44:																	if	(inChar	!=	-1)	{
45:																					char	outChar	=	Character.toUpperCase(
46:																									(char)	inChar);
47:																					out.write(outChar);
48:																	}	else
49:																					eof	=	true;
50:													}	while	(!eof);
51:													in.close();
52:													out.close();
53:
54:													Files.delete(source);
55:													Files.move(temp,	source);
56:									}	catch	(IOException|SecurityException	se)	{
57:													System.out.println(“Error	—	“	+	se.toString());
58:									}
59:					}
60:	}

Before	running	the	program,	you	need	a	text	file	that	can	be	converted	to	all	capital	letters.
One	option	is	to	make	a	copy	of	AllCapsDemo.java	and	give	it	a	name	like
TempFile.java.	This	file	should	be	stored	in	the	root	project	folder	in	NetBeans	and
specified	as	a	command-line	argument.

This	program	does	not	produce	any	output.	Load	the	converted	file	into	a	text	editor	to	see
the	results	of	the	application.

Summary
Today	you	learned	how	to	work	with	streams	in	two	directions:	pulling	data	into	a
program	over	an	input	stream	and	sending	data	from	a	program	using	an	output	stream.

You	used	character	streams	to	handle	text	and	byte	streams	for	any	other	kind	of	data.
Filters	were	associated	with	streams	to	alter	how	information	was	delivered	through	a
stream,	or	to	alter	the	information	itself.

In	addition	to	these	classes,	java.io	offers	other	types	of	streams	you	might	want	to
explore.	Piped	streams	are	useful	when	communicating	data	among	different	threads,	and

byte	array	streams	can	connect	programs	to	a	computer’s	memory.

Because	the	stream	classes	in	Java	are	so	closely	coordinated,	you	already	possess	most	of
the	knowledge	you	need	to	use	these	other	types	of	streams.	The	constructors,	read
methods,	and	write	methods	are	largely	identical.

Streams	are	a	powerful	way	to	extend	the	functionality	of	your	Java	programs	because
they	offer	a	connection	to	any	kind	of	data	you	might	want	to	work	with.

Tomorrow,	you	will	use	streams	to	read	and	write	Java	objects.

Q&A
Q	The	C	program	that	I	use	creates	a	file	of	integers	and	other	data.	Can	I	read
this	using	a	Java	program?

A	You	can,	but	one	thing	you	have	to	consider	is	whether	your	C	program	represents
integers	in	the	same	manner	that	a	Java	program	represents	them.	As	you	might
recall,	all	data	can	be	represented	as	an	individual	byte	or	a	series	of	bytes.	An
integer	is	represented	in	Java	using	4	bytes	arranged	in	what	is	called	big-endian
order.	You	can	determine	the	integer	value	by	combining	the	bytes	from	left	to	right.
A	C	program	implemented	on	an	Intel	PC	is	likely	to	represent	integers	in	little-
endian	order,	which	means	that	the	bytes	must	be	arranged	from	right	to	left	to
determine	the	result.	You	might	have	to	learn	about	advanced	techniques,	such	as	bit
shifting,	to	use	a	data	file	created	with	a	programming	language	other	than	Java.

Q	Can	relative	paths	be	used	when	specifying	the	name	of	a	file	in	Java?

A	Relative	paths	are	determined	according	to	the	current	user	folder,	which	is	stored	in
the	system	properties	user.dir.	You	can	find	out	the	full	path	to	this	folder	by
using	the	System	class	in	the	main	java.lang	package,	which	does	not	need	to
be	imported.

Call	the	System	class	getProperty(String)	method	with	the	name	of	the
property	to	retrieve,	as	in	this	example:

Click	here	to	view	code	image
String	userFolder	=	System.getProperty(“user.dir”);

The	method	returns	the	path	as	a	string.

Q	The	FileWriter	class	has	a	write(int)	method	that’s	used	to	send	a
character	to	a	file.	Shouldn’t	this	be	write(char)?

A	The	char	and	int	data	types	are	interchangeable	in	many	ways;	you	can	use	an
int	in	a	method	that	expects	a	char,	and	vice	versa.	This	is	possible	because	each
character	is	represented	by	a	numeric	code	that	is	an	integer	value.	When	you	call
the	write()	method	with	an	int,	it	outputs	the	character	associated	with	that
integer	value.	When	calling	the	write()	method,	you	can	cast	an	int	value	to	a
char	to	ensure	that	it’s	being	used	as	you	intended.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	happens	when	you	create	a	FileOutputStream	using	a	reference	to	an
existing	file?

A.	An	exception	is	thrown.

B.	The	data	you	write	to	the	stream	is	appended	to	the	existing	file.

C.	The	existing	file	is	replaced	with	the	data	you	write	to	the	stream.

2.	What	two	primitive	types	are	interchangeable	when	you’re	working	with	streams?

A.	byte	and	boolean

B.	char	and	int

C.	byte	and	char

3.	In	Java,	what	is	the	maximum	value	of	a	byte	variable	and	the	maximum	value	of
an	unsigned	byte	in	a	stream?

A.	Both	are	255.

B.	Both	are	127.

C.	127	for	a	byte	variable	and	255	for	an	unsigned	byte

Answers
1.	C.	That’s	one	of	the	things	to	look	out	for	when	using	output	streams;	you	can	easily
wipe	out	existing	files.	Constructors	can	use	a	Boolean	value	to	append	data	to	a	file
instead	of	replacing	the	entire	thing.

2.	B.	Because	Java	represents	a	char	internally	as	an	integer	value,	you	often	can	use
the	two	interchangeably	in	method	calls	and	other	statements.

3.	C.	The	byte	primitive	data	type	has	values	ranging	from	–128	to	127,	whereas	an
unsigned	byte	can	range	from	0	to	255.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.io.*;

public	class	Unknown	{
				public	static	void	main(String[]	arguments)	{

								String	command	=	””;
								BufferedReader	br	=	new	BufferedReader(new
												InputStreamReader(System.in));
								try	{
												command	=	br.readLine();
								}
								catch	(IOException	e)	{	}
				}
}

Will	this	program	successfully	store	a	line	of	console	input	in	the	String	object	named
command?

A.	Yes.

B.	No,	because	a	buffered	input	stream	is	required	to	read	console	input.

C.	No,	because	it	won’t	compile	successfully.

D.	No,	because	it	reads	more	than	one	line	of	console	input.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	15
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Write	a	modified	version	of	the	HexReader	program	from	Day	7,	that	reads	two-
digit	hexadecimal	sequences	from	a	text	file	and	displays	their	decimal	equivalents.

2.	Write	a	program	that	reads	a	file	to	determine	the	number	of	bytes	it	contains	and
then	overwrites	all	those	bytes	with	0s.	(For	obvious	reasons,	don’t	test	this	program
on	any	file	you	intend	to	keep,	because	the	file’s	data	will	be	wiped	out.)

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	16.	Using	Inner	Classes	and	Closures

Each	new	version	of	the	Java	language	takes	it	further	from	its	humble	origins	in	1995.
When	it	was	first	released,	Java	had	only	250	classes	in	the	Java	Class	Library	and	was
primarily	used	to	put	interactive	programs	on	Web	pages.	These	applets,	as	they	were
dubbed,	brought	something	new	to	the	Web	and	inspired	several	hundred	thousand
programmers	to	learn	the	new	language.

Because	the	language	was	well-designed	and	offered	some	features	that	made	it	a	worthy
rival	to	C++	and	other	choices	for	software	development,	Java	quickly	outgrew	its	original
focus	to	become	a	general-purpose	programming	language.	Today	it	is	the	most	widely
implemented,	popular	language	in	the	world.

There	are	millions	of	Java	coders	today	putting	its	classes	on	several	billion	devices	as	the
language	turns	20.	Each	new	release	embraces	new	capabilities	that	bring	sophisticated
new	methodologies	to	Java	that	are	eagerly	anticipated	by	programmers.

Java	8	offers	a	new	feature	that	may	be	the	most	requested	ever:	closures.

Closures,	also	called	lambda	expressions,	make	it	possible	in	Java	to	employ	a
methodology	called	functional	programming.

Today	you	will	learn	about	closures	after	an	introduction	to	two	parts	of	the	language	that
are	prerequisites	to	their	use:	inner	classes	and	anonymous	inner	classes.

Inner	Classes
When	you	create	a	class	in	Java,	you	must	define	its	attributes	and	behavior.	The	attributes
are	the	class	and	instance	variables	that	hold	its	data,	and	the	behavior	is	the	methods	that
use	that	data	to	perform	tasks.

A	class	also	can	contain	a	third	element	that	combines	both	attributes	and	behavior—an
inner	class.

Inner	classes	are	like	helper	classes,	but	they	are	defined	inside	the	class	they	were	created
to	help.	Because	a	Java	program	can	have	as	many	classes	as	you	think	are	necessary,	you
might	be	questioning	the	point	of	inner	classes.	A	Scheduler	class	that	manages	work
schedules	at	your	restaurant	could	have	an	Employee	helper	class	for	each	worker	and	a
Day	helper	class	for	each	weekday	the	business	is	open.

Though	some	of	the	purpose	of	an	inner	class	can	be	accomplished	with	a	helper	class,	as
you	learn	more	about	them	you	will	encounter	situations	where	they’re	better	suited	to	a
particular	project.

Java	includes	inner	classes	for	several	reasons.

If	a	class	is	used	by	only	one	other	class,	it’s	a	good	idea	to	define	it	inside	that	class.	That
keeps	the	code	in	one	place	and	makes	clear	the	relationship	between	the	classes.

An	inner	class	can	access	private	methods	and	variables	of	its	enclosing	class	that	a	helper
class	could	not	access.	This	is	possible	for	the	same	reason	that	a	method	in	a	class	can
access	private	variables	of	that	class.

Note

Rules	governing	the	scope	of	an	inner	class	closely	match	those	governing
variables.	An	inner	class’s	name	is	not	visible	outside	its	scope,	except	in	a	fully
qualified	name	(the	enclosing	class	name	followed	by	a	period	and	inner	class
name).	This	helps	in	structuring	classes	within	a	package.	The	code	for	an	inner
class	can	use	simple	names	from	enclosing	scopes,	including	class	and	member
variables	of	enclosing	classes,	as	well	as	local	variables	of	enclosing	blocks.

To	create	an	inner	class,	use	the	class	keyword	and	a	class	declaration	like	any	other
class,	but	place	it	inside	the	containing	class.	An	inner	class	usually	is	put	in	the	same
place	that	class	and	instance	variables	are	defined.

Here’s	an	inner	class	called	InnerHello	in	a	class	called	Hello:
Click	here	to	view	code	image

public	class	Hello	{

				class	InnerHello	{
								InnerHello()	{
												System.out.println(
																“The	method	call	is	coming	from	inside	the	class!”
);
								}
				}

				public	Hello()	{
								//	empty	constructor
				}

				public	static	void	main(String[]	arguments)	{
								Hello	program	=	new	Hello();
								Hello.InnerHello	inner	=	program.new	InnerHello();
				}
}

The	inner	class	is	defined	just	like	any	other	class,	except	for	its	position:	It	is	placed
within	the	{	and	}	brackets	of	another	class.

Creating	an	object	of	an	inner	class	requires	an	object	of	the	outer	class.	The	new	operator
is	called	on	the	object,	as	in	this	statement	from	the	preceding	example:
Click	here	to	view	code	image

Hello.InnerHello	inner	=	program.new	InnerHello();

Look	at	both	halves	of	this	assignment	statement	to	learn	how	the	object	of	the	inner	class
is	created.

On	the	left,	the	name	of	the	inner	class	consists	of	the	name	of	the	outer	class,	a	period
character	(“.”)	and	the	inner	class	name.	So	Hello.InnerHello	is	the	name.

On	the	right,	program	refers	to	the	Hello	object.	The	reference	to	program	is
followed	by	a	period,	the	new	operator,	and	the	inner	class	constructor	InnerHello().

The	day’s	first	project	rewrites	the	ComicBook	application	from	Day	8,	“Data	Structures,”
to	use	an	inner	class.	That	project	managed	a	comic	book	collection	with	a	main	class

called	ComicBooks	and	a	helper	class	called	Comic	for	each	comic	in	a	collection.
Both	were	defined	in	the	same	source	code	file,	but	as	separate	classes.	The	compiler
turned	them	into	the	bytecode	files	ComicBooks.class	and	Comic.class.

This	time	around,	there’s	a	ComicBox	class	for	the	collection	and	an	InnerComic
inner	class.

The	ComicBox	application	is	shown	in	Listing	16.1.	Create	a	new	empty	Java	file	in	the
com.java21days	package	for	this	project	called	ComicBox.java.

LISTING	16.1	The	Full	Text	of	ComicBox.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.util.*;
	4:
	5:	public	class	ComicBox	{
	6:					class	InnerComic	{
	7:									String	title;
	8:									String	issueNumber;
	9:									String	condition;
10:									float	basePrice;
11:									float	price;
12:
13:									InnerComic(String	inTitle,	String	inIssueNumber,
14:													String	inCondition,	float	inBasePrice)	{
15:
16:													title	=	inTitle;
17:													issueNumber	=	inIssueNumber;
18:													condition	=	inCondition;
19:													basePrice	=	inBasePrice;
20:									}
21:
22:									void	setPrice(float	factor)	{
23:													price	=	basePrice	*	factor;
24:									}
25:					}
26:
27:					public	ComicBox()	{
28:									HashMap<String,	Float>	quality	=	new	HashMap<>();
29:									float	price1	=	3.00F;
30:									quality.put(“mint”,	price1);
31:									float	price2	=	2.00F;
32:									quality.put(“near	mint”,	price2);
33:									float	price3	=	1.50F;
34:									quality.put(“very	fine”,	price3);
35:									float	price4	=	1.00F;
36:									quality.put(“fine”,	price4);
37:									float	price5	=	0.50F;
38:									quality.put(“good”,	price5);
39:									float	price6	=	0.25F;
40:									quality.put(“poor”,	price6);
41:									InnerComic[]	comix	=	new	InnerComic[3];
42:									comix[0]	=	new	InnerComic(“Amazing	Spider-Man”,	“1A”,
43:													“very	fine”,	12_000.00F);
44:									comix[0].setPrice(quality.get(comix[0].condition));
45:									comix[1]	=	new	InnerComic(“Incredible	Hulk”,	“181”,
46:													“near	mint”,	680.00F);

47:									comix[1].setPrice(quality.get(comix[1].condition));
48:									comix[2]	=	new	InnerComic(“Cerebus”,	“1A”,	“good”,	190.00F);
49:									comix[2].setPrice(quality.get(comix[2].condition));
50:									for	(InnerComic	comix1	:	comix)	{
51:													System.out.println(“Title:	“	+	comix1.title);
52:													System.out.println(“Issue:	“	+	comix1.issueNumber);
53:													System.out.println(“Condition:	“	+	comix1.condition);
54:													System.out.println(“Price:	$”	+	comix1.price	+	“\n”);
55:									}
56:					}
57:
58:					public	static	void	main(String[]	arguments)	{
59:									new	ComicBox();
60:					}
61:	}

The	inner	class,	which	is	defined	in	Lines	6–25,	has	a	constructor	that	creates	a	comic
book	using	a	title,	issue	number,	condition,	and	base	price.	There’s	also	a	setPrice()
method	in	Lines	22–24.

The	ComicBox	class	uses	this	inner	class	in	Line	41,	creating	an	array	that	holds	three
InnerComic	objects.	The	inner	class	is	referred	to	as	InnerComic,	the	same	as	if	it
was	a	helper	class.

You	also	could	have	referred	to	the	inner	class	using	its	full	name,	which	includes	the
name	of	its	enclosing	class:
Click	here	to	view	code	image

ComicBox.InnerComic[]	comix	=	new	ComicBox.InnerComic[3];

The	output	of	the	application	is	displayed	in	Figure	16.1.

FIGURE	16.1	Using	inner	classes	to	collect	comic	books.

Anonymous	Inner	Classes
Often	in	Java	programming	you	need	to	create	an	object	in	one	statement	that	never	will
be	referred	to	again.	There’s	a	special	type	of	inner	class	well-suited	to	this	purpose:	an
anonymous	inner	class.	This	is	a	class	that	has	no	name	and	is	declared	and	created	in	the
same	statement.

To	use	an	anonymous	inner	class,	you	take	a	place	where	you’d	refer	to	an	object’s
variable	and	replace	it	with	the	new	keyword,	a	call	to	a	constructor	and	the	class
definition	inside	{	and	}	characters.

The	purpose	will	make	more	sense	when	you	see	how	it	replaces	code	that	doesn’t	use	one
of	these	classes.

The	following	code	creates	a	thread	and	starts	it	without	using	anonymous	inner	classes:
Click	here	to	view	code	image

ThreadClass	task	=	new	ThreadClass();
Thread	runner	=	new	Thread(task);
runner.start();

For	this	example,	assume	the	task	object	implements	the	Runnable	interface	to	be	run
as	a	thread.	Assume	as	well	that	the	code	in	ThreadClass	is	simple	and	the	class	needs
to	be	used	only	once.

In	this	situation,	it’s	efficient	to	get	rid	of	ThreadClass	and	put	its	code	inside	an
anonymous	inner	class.	This	code	rewrite	does	exactly	that:
Click	here	to	view	code	image

Thread	runner	=	new	Thread(new	Runnable()		{
				public	void	run()	{
								//	thread	does	its	work	here
				}
});
runner.start();

The	anonymous	inner	class	has	replaced	the	reference	to	task	with	the	following	code:
Click	here	to	view	code	image

new	Runnable()		{
				public	void	run()	{
								//	thread	does	its	work	here
				}
)

In	Java,	calling	the	new	operator	is	an	expression	that	returns	an	object.	So	putting	this
code	inside	the	Thread()	constructor	returns	an	unnamed	object	that	implements	the
Runnable	interface	and	overrides	the	run()	method.	The	statements	inside	that	method
do	the	work	that	has	been	put	in	its	own	thread.

For	a	deeper	look	at	this	concept,	the	next	project	will	be	a	full	demonstration	of	how
anonymous	inner	classes	are	created	and	why	they’re	so	useful.

On	Day	12,	“Responding	to	User	Input,”	you	learned	about	how	to	monitor	user	input	in	a
Swing	application	by	using	interfaces	called	event	listeners.	When	an	application	must
monitor	a	particular	type	of	input,	such	as	a	user	clicking	a	button,	moving	a	mouse,	or

typing	keys	on	the	keyboard,	it	must	have	a	class	that	implements	the	listener	interface	for
that	input.	These	classes	are	in	the	package	java.awt.event.

User	clicks	are	monitored	by	KeyListener,	for	instance.

One	event	listener	that	was	not	covered	is	WindowListener,	which	tracks	the	different
ways	a	user	can	interact	with	a	window.

There	are	methods	in	the	WindowListener	interface	for	when	a	window	has	been
opened	and	closed,	as	well	as	when	it	has	become	the	focus	or	lost	the	focus.

A	class	that	implements	the	interface	must	implement	10	methods:
windowActivated(),	windowClosed(),	windowClosing(),
windowDeactivated(),	windowDeiconified(),	windowGainedFocus(),
windowIconified(),	windowLostFocus(),	windowOpened(),	and
windowStateChanged().

That’s	a	lot	of	methods	to	implement,	especially	if	you	have	only	one	or	two	possible
window	interactions	that	your	class	is	interested	in.	A	frame	that	only	monitors	when	a
window	opened	would	have	code	that	looked	something	like	this:
Click	here	to	view	code	image

public	void	windowOpened(WindowEvent	event)	{
				Window	pane	=	event.getWindow();
				pane.setBackground(Color.CYAN);
}

public	void	windowClosed(WindowEvent	event)	{
				//	do	nothing
}

public	void	windowActivated(WindowEvent	event)	{
				//	do	nothing
}

public	void	windowDeactivated(WindowEvent	event)	{
				//	do	nothing
}

That’s	just	the	part	of	the	window	event	code	required.	There	are	another	six	do-nothing
methods	that	must	be	present	in	a	class	that	implements	the	WindowListener
interface.

After	all	10	methods	are	implemented	in	a	frame,	the	frame	can	add	a	listener	to	monitor
window	events:

addWindowListener(this);

There’s	a	better	way	to	create	the	listener	and	add	it	to	the	frame:	Use	a	subclass	of	the
WindowAdapter	class.

The	WindowAdapter	class	implements	the	WindowListener	interface	as	10
methods	that	each	do	nothing.	There	are	several	adapter	classes	in	the
java.awt.event	that	simplify	the	process	of	listening	to	a	particular	event.	You	can
create	a	subclass	of	the	adapter	class	that	overrides	the	method	(or	methods)	only	where
something	needs	to	happen.

Here’s	code	for	a	window	listener	that	uses	WindowAdapter	and	only	monitors	the
windowClosing()	event:
Click	here	to	view	code	image

public	class	WindowCloseListener	extends	WindowAdapter	{
				JFrame	frame;
				boolean	done;

				public	WindowCloseListener(JFrame	inFrame)	{
								this.frame	=	inFrame;
				}

				public	void	windowClosing(WindowEvent	event)	{
								//	user	has	tried	to	close	window
							if	(frame.done)	{
												//	allow	it
												frame.dispose();
												System.exit(0);
								}
				}
}

Calling	a	window’s	dispose()	method	closes	it.	This	code	waits	for	a	user	to	close	a
frame	and	does	it	only	when	the	Boolean	variable	done	equals	true.	That	variable	is	an
instance	variable	of	a	frame	in	another	class	(the	one	that	created	the	listener).

In	that	frame,	the	frame’s	default	behavior	must	be	set	to	ignore	attempts	to	close	the
window:
Click	here	to	view	code	image

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

Also,	the	frame	creates	the	listener	object	and	makes	a	listener:
Click	here	to	view	code	image

WindowCloseListener	closer	=	new	WindowCloseListener();
addWindowListener(closer);

An	object	of	the	helper	class	WindowCloseListener	is	assigned	to	a	variable	and	set
to	monitor	window	events.

This	approach	to	monitoring	one	window	event	requires	four	steps:

1.	Create	a	subclass	of	WindowAdapter.

2.	Implement	the	window	closing	method	in	that	class.

3.	Create	a	constructor	in	that	class	with	the	frame	that	needs	the	class	as	an	argument.

4.	Store	that	frame	in	an	instance	variable.

The	constructor	and	instance	variable	are	needed	to	link	the	two	classes.	The	adapter	must
be	able	to	access	the	frame’s	done	variable.

A	simpler	approach	can	be	accomplished	in	the	frame’s	class	through	the	use	of	an
anonymous	inner	class:
Click	here	to	view	code	image

setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);

addWindowListener(new	WindowAdapter()	{
				//	user	has	tried	to	close	window
				if	(frame.done)	{
								//	allow	it
								frame.dispose();
								System.exit(0);
				}
});

The	listener	is	created	anonymously	by	calling	new	WindowAdapter()	with	a
definition	of	the	class.	The	class	overrides	the	windowClosing()	method	so	that	when
a	user	closes	a	window,	an	action	can	be	taken.

This	anonymous	inner	class	can	do	something	that	a	separate	helper	class	could	not	do—
access	the	frame	instance	variable.	Inner	classes	are	able	to	access	the	methods	and
variables	of	their	enclosing	class,	just	like	instance	variables	and	methods.

Note

There	are	other	adapter	classes	in	the	java.awt.event	packages	that	make	it
convenient	to	implement	other	listeners.	The	KeyAdapter	class	has	empty
methods	for	keyboard	events,	MouseAdapter	for	mouse	events,	and
FocusAdapter	for	keyboard	focus	events.

During	Day	10,	“Building	a	Swing	Interface,”	you	created	a	ProgressMonitor	application
that	used	a	slider	as	a	progress	bar.	The	next	project	today	will	enhance	that	code	to
prevent	the	program’s	main	window	from	being	closed	if	the	progress	bar	has	not	reached
100	percent.

In	NetBeans,	create	a	new	empty	Java	file	named	ProgressMonitor2	in	the	class
com.java21days,	then	enter	the	text	of	Listing	16.2	into	that	file.	Save	your	work
when	you’re	done.

LISTING	16.2	The	Full	Text	of	ProgressMonitor2.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	ProgressMonitor2	extends	JFrame	{
	8:					JProgressBar	current;
	9:					int	num	=	0;
10:					boolean	done	=	false;
11:
12:					public	ProgressMonitor2()	{
13:									super(“Progress	Monitor	2”);
14:									setLookAndFeel();
15:									setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
16:									addWindowListener(new	WindowAdapter()	{
17:													@Override
18:													public	void	windowClosing(WindowEvent	event)	{
19:																	//	user	has	tried	to	close	window

20:																	if	(done)	{
21:																					//	allow	it
22:																					dispose();
23:																					System.exit(0);
24:																	}
25:													}
26:									});
27:									setSize(400,	100);
28:									setLayout(new	FlowLayout());
29:									current	=	new	JProgressBar(0,	2000);
30:									current.setValue(0);
31:									current.setStringPainted(true);
32:									current.setPreferredSize(new	Dimension(360,	48));
33:									add(current);
34:									setVisible(true);
35:									iterate();
36:					}
37:
38:					public	final	void	iterate()	{
39:									while	(num	<	2000)	{
40:													current.setValue(num);
41:													try	{
42:																	Thread.sleep(1000);
43:													}	catch	(InterruptedException	e)	{	}
44:													num	+=	95;
45:									}
46:									done	=	true;
47:					}
48:
49:					private	void	setLookAndFeel()	{
50:									try	{
51:													UIManager.setLookAndFeel(
52:																	”com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
53:);
54:													SwingUtilities.updateComponentTreeUI(this);
55:									}	catch	(Exception	e)	{
56:													System.err.println(“Couldn’t	use	the	system	“
57:																	+	“look	and	feel:	“	+	e);
58:									}
59:					}
60:
61:					public	static	void	main(String[]	arguments)	{
62:									new	ProgressMonitor2();
63:				}
64:	}

The	anonymous	inner	class	is	created	and	used	in	Lines	16–26.	It	monitors	window	input
using	windowClosing(),	the	only	method	in	the	WindowListener	interface	the
application	needs	to	check,	and	makes	sure	the	done	instance	variable	equals	true
before	closing	the	window.

See	Figure	16.2	for	the	program’s	output.

FIGURE	16.2	Stopping	a	program	from	closing	until	its	work	is	done.

Anonymous	inner	classes	cannot	have	a	constructor,	making	them	more	limited	than	other
inner	classes	and	helper	classes.

Anonymous	inner	classes	are	a	bit	more	complex	than	other	aspects	of	the	Java	language.
They	look	odd	in	the	source	code	of	a	program,	and	getting	the	punctuation	right	is	tricky
as	you	begin	working	with	them.	When	you’ve	added	them	to	your	skill	set,	you	will	find
that	they	are	a	powerful,	flexible,	and	concise	way	to	get	things	done.

Closures
Java	8	adds	the	most	highly	requested	language	feature	in	years:	closures.	Programmers	of
other	languages	that	offer	them,	such	as	Scala	and	Smalltalk,	have	clamored	for	them
during	the	development	of	the	past	several	releases.

Closures,	also	called	lambda	expressions,	enable	an	object	from	a	class	with	only	a	single
method	to	be	created	with	an	->	operator,	provided	that	other	conditions	are	met.

This	statement	is	an	example:
Click	here	to	view	code	image

Runnable	runner	=	()	->	{	System.out.println(“Eureka!”);	};

This	code	creates	an	object	that	implements	the	Runnable	interface	with	a	run()
method	equivalent	to	the	following	code:
Click	here	to	view	code	image

public	void	run()	{
				System.out.println(“Eureka!”);
}

In	a	closure,	the	statement	to	the	right	of	the	->	arrow	operator	defines	the	method	that
implements	the	interface.

This	is	possible	only	when	the	interface	has	a	single	method	to	implement,	as	Runnable
does	with	only	the	run()	method.	When	an	interface	in	Java	has	one	method,	it’s	now
called	a	functional	interface.

As	you	might	have	spotted,	a	closure	also	has	something	unusual	to	the	left	of	the	arrow
operator.	In	the	Runnable	example,	it’s	an	empty	set	of	parentheses.

This	part	of	the	expression	holds	the	arguments	to	send	the	method	of	the	functional
interface.	The	run()	takes	no	arguments	in	the	Runnable	interface,	so	no	arguments
are	required	in	that	expression.

Take	a	look	at	another	example	of	a	closure	that	does	have	something	inside	the
parentheses	on	the	left	side	of	the	expression:
Click	here	to	view	code	image

ActionListener	listen	=	(ActionEvent	act)	->	{
				System.out.println(act.getSource());
};

The	closure	provides	an	implementation	of	the	only	method	in	the	ActionListener
interface,	actionPerformed().	That	method	takes	one	argument,	an	ActionEvent
object.	ActionListener	is	in	the	java.awt.event	package.

Here’s	the	nonclosure	way	to	implement	the	same	functionality:
Click	here	to	view	code	image

public	void	actionPerformed(ActionEvent	act)	{
				System.out.println(act.getSource());
}

The	ActionListener	interface	handles	action	events	such	as	a	user’s	button	click	or
menu	item	selection.	The	only	method	in	the	functional	interface	is
actionPerformed(ActionEvent).	The	argument	contains	the	user	action	that
triggered	the	event.

The	right	half	of	the	closure	defines	the	actionPerformed()	method	as	a	statement
that	displays	information	about	the	interface	component	where	the	event	happened.	The
left	half	makes	an	ActionEvent	object	the	argument	to	the	method.

This	object,	act,	is	used	inside	the	body	of	the	method.	In	the	closure,	the	left-half
reference	to	act	appears	to	be	outside	the	scope	of	the	right-half	method	implementation.
Closures	allow	code	to	refer	to	variables	of	another	method	outside	the	scope	of	those
variables.

Like	anonymous	inner	classes,	closures	have	the	effect	of	making	code	shorter.	A	single
expression	creates	an	object	and	implements	an	interface.

Closures	can	make	code	even	shorter	through	Java’s	support	for	target	typing.

In	a	closure,	it’s	possible	to	infer	the	class	of	the	argument	(or	arguments)	sent	to	the
method.	In	the	ActionListener	example,	the	functional	interface	has	a	method	with
an	ActionEvent	object	as	its	only	argument.	For	this	reason,	the	name	of	the	class	can
be	omitted.

Here’s	a	simplified	version	of	the	closure	taking	this	into	account:
Click	here	to	view	code	image

ActionListener	listen	=	(act)	->	{
				System.out.println(act.getSource());
}

Today’s	final	two	programs	illustrate	the	difference	that	closures	bring	to	Java.

The	CursorMayhem	application	in	Listing	16.3	is	a	Swing	program	that	displays	three
buttons	in	a	panel	that	change	the	program’s	cursor.

Cursors	have	not	been	covered	up	to	this	point,	but	they’re	simple	to	use.	They’re
represented	by	the	Cursor	class	in	the	java.awt	package	and	can	be	changed	by
calling	a	container’s	setCursor(Cursor)	method.

The	type	of	cursor	is	determined	by	class	variables	of	the	class.	The	following	statements
create	a	panel	and	set	its	cursor	to	the	one	used	in	text	boxes:
Click	here	to	view	code	image

JPanel	panel	=	new	JPanel();
panel.setCursor(new	Cursor(Cursor.TEXT_CURSOR));

This	statement	sets	the	cursor	back	to	the	default:

Click	here	to	view	code	image
panel.setCursor(new	Cursor(Cursor.DEFAULT_CURSOR));

This	application	will	be	implemented	two	different	ways.	The	first	version	uses	an
anonymous	inner	class,	not	a	closure,	to	monitor	user	clicks	on	the	three	buttons.	Create	a
new	program	in	NetBeans	with	the	name	CursorMayhem	and	the	package
com.java21days,	then	type	in	the	text	in	Listing	16.3.

LISTING	16.3	The	Full	Text	of	CursorMayhem.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	CursorMayhem	extends	JFrame	{
	8:					JButton	harry,	wade,	hansel;
	9:
10:					public	CursorMayhem()	{
11:									super(“Choose	a	Cursor”);
12:									setLookAndFeel();
13:									setSize(400,	80);
14:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:									setLayout(new	FlowLayout());
16:									harry	=	new	JButton(“Crosshair”);
17:									add(harry);
18:									wade	=	new	JButton(“Wait”);
19:									add(wade);
20:									hansel	=	new	JButton(“Hand”);
21:									add(hansel);
22:									//	begin	anonymous	inner	class
23:									ActionListener	act	=	new	ActionListener()	{
24:													public	void	actionPerformed(ActionEvent	event)	{
25:																	if	(event.getSource()	==	harry)	{
26:																					setCursor(new	Cursor(Cursor.CROSSHAIR_CURSOR));
27:																	}
28:																	if	(event.getSource()	==	wade)	{
29:																					setCursor(new	Cursor(Cursor.WAIT_CURSOR));
30:																	}
31:																	if	(event.getSource()	==	hansel)	{
32:																					setCursor(new	Cursor(Cursor.HAND_CURSOR));
33:																	}
34:													}
35:									};
36:									//	end	anonymous	inner	class
37:									harry.addActionListener(act);
38:									wade.addActionListener(act);
39:									hansel.addActionListener(act);
40:									setVisible(true);
41:					}
42:
43:					private	void	setLookAndFeel()	{
44:									try	{
45:													UIManager.setLookAndFeel(
46:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
47:);
48:									}	catch	(Exception	exc)	{
49:													System.err.println(“Look	and	feel	error:	“	+	exc);

50:									}
51:					}
52:
53:					public	static	void	main(String[]	arguments)	{
54:									new	CursorMayhem();
55:					}
56:	}

This	program	is	shown	running	in	Figure	16.3.

FIGURE	16.3	Monitoring	action	events	with	an	anonymous	inner	class.

Lines	23–35	of	the	application	define	an	event	listener	for	the	CursorMayhem	class
using	an	anonymous	inner	class.	This	nameless	object	contains	an	implementation	of	the
only	method	in	the	ActionListener	interface:
actionPerformed(ActionEvent).

In	the	method,	the	frame’s	cursor	is	changed	by	calling	its	setCursor()	method.
Anonymous	inner	classes	have	access	to	the	methods	and	instance	variables	of	their
enclosing	class.	A	separate	helper	class	would	lack	that	access.

As	you	are	running	the	app,	move	your	cursor	over	the	title	bar	that	reads	“Choose	a
Cursor.”	It	changes	from	the	current	cursor	to	the	default.	Move	it	back	over	the	pane	and
it	becomes	the	cursor	that	you	selected	again.

Now	take	a	look	at	the	ClosureMayhem	application	in	Listing	16.4.

LISTING	16.4	The	Full	Text	of	ClosureMayhem.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.awt.*;
	4:	import	java.awt.event.*;
	5:	import	javax.swing.*;
	6:
	7:	public	class	ClosureMayhem	extends	JFrame	{
	8:					JButton	harry,	wade,	hansel;
	9:
10:					public	ClosureMayhem()	{
11:									super(“Choose	a	Cursor”);
12:									setLookAndFeel();
13:									setSize(400,	80);
14:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15:									setLayout(new	FlowLayout());
16:									harry	=	new	JButton(“Crosshair”);
17:									add(harry);
18:									wade	=	new	JButton(“Wait”);
19:									add(wade);
20:									hansel	=	new	JButton(“Hand”);
21:									add(hansel);
22:									//	begin	closure
23:									ActionListener	act	=	(event)	->	{

24:													if	(event.getSource()	==	harry)	{
25:																	setCursor(new	Cursor(Cursor.CROSSHAIR_CURSOR));
26:													}
27:													if	(event.getSource()	==	wade)	{
28:																	setCursor(new	Cursor(Cursor.WAIT_CURSOR));
29:													}
30:													if	(event.getSource()	==	hansel)	{
31:																	setCursor(new	Cursor(Cursor.HAND_CURSOR));
32:													}
33:									};
34:									//	end	closure
35:									harry.addActionListener(act);
36:									wade.addActionListener(act);
37:									hansel.addActionListener(act);
38:									setVisible(true);
39:					}
40:
41:					private	void	setLookAndFeel()	{
42:									try	{
43:													UIManager.setLookAndFeel(
44:																	“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
45:);
46:									}	catch	(Exception	exc)	{
47:													System.err.println(“Look	and	feel	error:	“	+	exc);
48:									}
49:					}
51:
52:					public	static	void	main(String[]	arguments)	{
53:									new	ClosureMayhem();
54:					}
55:	}

The	ClosureMayhem	application	implements	the	action	listener	in	lines	23–33.
Everything	else	is	the	same	as	in	CursorMayhem,	except	for	the	lines	that	refer	to	the
class	name.

In	ClosureMayhem,	you	don’t	need	to	know	the	name	of	the	method	in	the
ActionListener	interface	to	use	it	in	the	program.	You	also	don’t	need	to	specify	the
class	of	the	ActionEvent	that	is	the	method’s	only	argument.

Closures	support	functional	programming,	a	methodology	for	software	design	that	has
before	Java	8	been	unavailable	in	the	language.

With	the	basic	syntax	of	closures	and	two	common	ways	they	can	be	employed	in
programs,	you	can	begin	to	exploit	this	feature.	At	this	point	you	should	be	able	to
recognize	closures,	write	statements	involving	the	arrow	operator	=>,	and	use	it	to	create
an	object	for	any	single-method	interface.

These	single-method	interfaces	also	are	called	functional	interfaces.

Summary
Like	generics,	inner	classes,	anonymous	inner	classes,	and	closures	are	among	the	most
sophisticated	aspects	of	Java.	These	advanced	features	are	most	important	to	programmers
who	have	been	working	in	the	language	long	enough	to	develop	a	high	level	of	experience
in	its	use.	An	expert	coder	knows	how	to	employ	these	features	to	do	more	in	less	code.

Before	you	reach	a	point	where	you	are	comfortable	writing	closures,	you	ought	to	be	able
to	benefit	from	inner	classes	and	anonymous	inner	classes.

A	non-anonymous	inner	class	takes	the	form	of	a	helper	class,	situated	inside	a	class
instead	of	on	its	own.	The	class	is	defined	with	the	instance	variables,	class	variables,
instance	methods,	and	class	methods	that	make	up	the	behavior	and	attributes	of	the
enclosing	class.	Because	it’s	defined	inside	that	class,	the	inner	class	can	read	and	write	its
private	variables	and	methods	of	the	class.

An	anonymous	inner	class	is	created	without	needing	a	variable,	which	makes	sense	for	an
object	that	will	be	used	only	once	in	a	program.	These	classes	often	are	used	when	a
Swing	user	interface	component	needs	an	event	listener	to	monitor	user	input.

Closures	are	deceptively	similar	in	appearance,	requiring	only	the	new	->	arrow	operator
to	create,	but	offer	an	enormous	enhancement	to	a	Java	programmer’s	capabilities.

Q&A
Q	Is	it	necessary	to	use	anonymous	inner	classes?

A	Whenever	you	can	get	something	done	without	a	feature	of	the	Java	language,	you
don’t	have	to	use	that	feature.	Programmers	generally	can	accomplish	a	task	in	a
program	in	a	bunch	of	different	ways.	Though	any	sophisticated	new	technique	is
likely	to	work	in	fewer	lines	of	code	or	offer	other	advantages,	there’s	no	penalty	in
Java	for	doing	something	in	more	statements.

Generally,	what	matters	is	that	your	program	works,	not	how	many	lines	it	took	to
make	that	happen.

With	that	disclaimer,	you	should	become	conversant	in	features	such	as	anonymous
inner	classes	anyway.	They	are	something	you	are	going	to	find	in	Java	code.
Experienced	programmers	use	inner	classes,	anonymous	inner	classes,	and	closures.
Knowing	what	they	are	will	help	you	understand	what	someone	else’s	code	is	doing.

Q	Why	are	closures	also	called	lambda	expressions?

A	The	term	“lambda”	comes	from	the	system	of	math	logic	called	lambda	calculus,
where	the	Greek	letter	lambda	represents	an	anonymous	function.	The	choice	of	this
letter	was	arbitrary.

Lambda	calculus	has	proven	to	be	extremely	useful	in	math,	computation	theory,
and	computer	programming.

Closures	are	available	in	many	programming	languages	today	in	addition	to	Java.
They	include	JavaScript,	Python,	C#,	Scala,	Smalltalk,	and	Haskell.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	can	an	inner	class	access	that	a	separate	helper	class	could	not?

A.	Anonymous	inner	classes

B.	private	variables	of	another	class

C.	Threads

2.	What	makes	a	Java	interface	qualified	to	be	called	a	functional	interface?

A.	The	number	of	methods	in	that	interface

B.	The	arrow	operator

C.	Any	interface	can	be	functional.

3.	What	does	an	adapter	class	make	easier?

A.	The	use	of	closures

B.	Arranging	Swing	user	interface	components

C.	Implementing	an	event	listener

Answers
1.	B.	An	inner	class	can	access	the	private	variables	and	methods	of	its	enclosing
class.

2.	A.	An	interface	that	defines	only	one	method	is	a	functional	interface.

3.	C.	An	adapter	implements	all	the	methods	in	an	event	listener	interface	so	you	can
subclass	the	adapter	and	override	only	the	method	or	methods	that	are	useful.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	ClassType	{
				public	static	void	main(String[]	arguments)	{
								Class	c	=	String.class;
								try	{
												Object	o	=	c.newInstance();
												if	(o	instanceof	String)	{
																System.out.println(“True”);
												}	else	{
																System.out.println(“False”);
												}
								}	catch	(Exception	e)	{
												System.out.println(“Error”);
								}
				}
}

What	will	be	the	output	of	this	application?

A.	true

B.	false

C.	Error

D.	The	program	will	not	compile.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	16
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	a	new	version	of	the	DiceRoller	program	from	Day	14,	“Developing
Swing	Applications,”	that	makes	DiceWorker	an	inner	class.

2.	Extend	your	new	DiceRoller	program	to	monitor	action	events	with	a	closure.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	17.	Communicating	Across	the	Internet

Java	was	developed	initially	as	a	language	that	would	control	a	network	of	interactive
consumer	devices.	Connecting	machines	was	one	of	the	main	purposes	of	the	language
when	it	was	designed,	and	that	remains	true	today.

The	java.net	package	makes	it	possible	to	communicate	over	a	network,	providing
cross-platform	abstractions	to	make	connections,	transfer	files	using	common	web
protocols,	and	create	sockets.

Used	in	conjunction	with	input	and	output	streams,	reading	and	writing	files	over	the
network	becomes	as	easy	as	reading	or	writing	files	on	disk.

The	java.nio	package	expands	Java’s	input	and	output	classes.

Today	you	write	networking	Java	programs	that	do	each	of	the	following:

	Load	a	document	over	the	Web

	Mimic	a	popular	Internet	service

	Serve	information	to	clients

Networking	in	Java
Networking	allows	different	computers	to	make	connections	with	each	other	and	exchange
information.	In	Java,	basic	networking	is	supported	by	classes	in	the	java.net	package,
including	support	for	connecting	and	retrieving	files	through	Hypertext	Transfer	Protocol
(HTTP)	and	File	Transfer	Protocol	(FTP),	as	well	as	working	at	a	lower	level	with
sockets.

You	can	communicate	with	systems	on	the	Net	in	three	simple	ways:

	Load	a	web	page	and	any	other	resource	with	a	uniform	resource	locator	(URL).

	Use	the	socket	classes,	Socket	and	ServerSocket,	which	open	standard	socket
connections	to	hosts	and	read	to	and	write	from	those	connections.

	Call	getInputStream(),	a	method	that	opens	a	connection	to	a	URL	and	can
extract	data	from	that	connection.

Opening	a	Stream	Over	the	Net
As	you	learned	during	Day	15,	“Working	with	Input	and	Output,”	you	can	pull
information	through	a	stream	into	your	Java	programs	in	several	ways.	The	classes	and
methods	you	choose	depend	on	the	format	of	the	information	and	what	you	want	to	do
with	it.

One	of	the	resources	you	can	reach	from	your	Java	programs	is	a	text	document	on	the
Web,	whether	it’s	an	HTML	file,	XML	file,	or	some	other	kind	of	plain-text	document.

You	can	use	a	four-step	process	to	load	a	text	document	off	the	Web	and	read	it	line	by
line:

1.	Create	a	URL	object	that	represents	the	resource’s	web	address.

2.	Create	an	HttpURLConnection	object	that	can	load	the	URL	and	make	a
connection	to	the	site	hosting	it.

3.	Use	the	getContent()	method	of	that	HttpURLConnection	object	to	create
an	InputStreamReader	that	can	read	a	stream	of	data	from	the	URL.

4.	Use	that	input	stream	reader	to	create	a	BufferedReader	object	that	can
efficiently	read	characters	from	an	input	stream.

Much	interaction	occurs	between	the	web	document	and	your	Java	program.	The	URL	is
used	to	set	up	a	URL	connection,	which	is	used	to	set	up	an	input	stream	reader,	which	is
used	to	set	up	a	buffered	input	stream	reader.	The	need	to	deal	with	any	exceptions	that
occur	along	the	way	adds	more	complexity	to	the	process.

Before	you	can	load	anything,	you	must	create	a	new	instance	of	the	class	URL	that
represents	the	address	of	the	resource	you	want	to	load.	URL	is	an	acronym	for	uniform
resource	locator,	and	it	refers	to	the	unique	address	of	any	document	or	other	resource
accessible	on	the	Internet.

URL	is	part	of	the	java.net	package,	so	you	must	import	the	package	or	refer	to	the
class	by	its	full	name	in	your	programs.

To	create	a	new	URL	object,	use	one	of	four	constructors:

	URL(String)	creates	a	URL	object	from	a	full	web	address	such	as
"http://www.java21days.com"	or	"ftp://ftp.freebsd.org".

	URL(URL,	String)	creates	a	URL	object	with	a	base	address	provided	by	the
specified	URL	and	a	relative	path	provided	by	the	String.

	URL(String,	String,	int,	String)	creates	a	new	URL	object	from	a
protocol	(such	as	"http"	or	"ftp"),	hostname	(such	as	"www.cnn.com"	or
"web.archive.org"),	port	number	(80	for	HTTP),	and	filename	or	pathname.

	URL(String,	String,	String)	is	the	same	as	the	previous	constructor
minus	the	port	number.

When	you	use	the	URL(String)	constructor,	you	must	deal	with
MalformedURLException	exceptions,	which	are	thrown	if	the	string	does	not	appear
to	be	a	valid	URL.	These	objects	can	be	handled	in	a	try-catch	block:
Click	here	to	view	code	image

try	{
				URL	load	=	new	URL(“http://www.samspublishing.com”);
}	catch	(MalformedURLException	e)	{
				System.out.println(“Bad	URL”);
}

The	WebReader	application,	shown	in	Listing	17.1,	uses	the	four-step	technique	to	open	a
connection	to	a	website	and	read	a	text	document	from	it.	When	the	document	is	fully
loaded,	it	is	displayed	in	a	text	area.	Create	this	class	in	NetBeans	in	the

http://www.java21days.com
ftp://ftp.freebsd.org
http://www.cnn.com
http://web.archive.org

com.java21days	package.

LISTING	17.1	The	Full	Text	of	WebReader.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	javax.swing.*;
	4:	import	java.net.*;
	5:	import	java.io.*;
	6:
	7:	public	class	WebReader	extends	JFrame	{
	8:					JTextArea	box	=	new	JTextArea(“Getting	data	…”);
	9:
10:					public	WebReader()	{
11:									super(“Get	File	Application”);
12:									setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13:									setSize(600,	300);
14:									JScrollPane	pane	=	new	JScrollPane(box);
15:									add(pane);
16:									setVisible(true);
17:					}
18:
19:					void	getData(String	address)	throws	MalformedURLException	{
20:									setTitle(address);
21:									URL	page	=	new	URL(address);
22:									StringBuilder	text	=	new	StringBuilder();
23:									try	{
24:													HttpURLConnection	conn	=	(HttpURLConnection)
25:																	page.openConnection();
26:													conn.connect();
27:													InputStreamReader	in	=	new	InputStreamReader(
28:																	(InputStream)	conn.getContent());
29:													BufferedReader	buff	=	new	BufferedReader(in);
30:													box.setText(“Getting	data	…”);
31:													String	line;
32:													do	{
33:																	line	=	buff.readLine();
34:																	text.append(line);
35:																	text.append(“\n”);
36:													}	while	(line	!=	null);
37:													box.setText(text.toString());
38:									}	catch	(IOException	ioe)	{
39:													System.out.println(“IO	Error:”	+	ioe.getMessage());
40:									}
41:					}
42:
43:					public	static	void	main(String[]	arguments)	{
44:									if	(arguments.length	<	1)	{
45:													System.out.println(“Usage:	java	WebReader	url”);
46:													System.exit(1);
47:									}
48:									try	{
49:													WebReader	app	=	new	WebReader();
50:													app.getData(arguments[0]);
51:									}	catch	(MalformedURLException	mue)	{
52:													System.out.println(“Bad	URL:	“	+	arguments[0]);
53:									}
54:					}
55:	}

The	WebReader	application	requires	one	command-line	argument—a	web	address—that
can	be	set	in	NetBeans	in	the	project	configuration	(Run,	Set	Project	Configuration,
Customize).

You	can	choose	any	URL.	Try	http://www.timeapi.org/utc/now	to	read	a	simple	text	file
that	contains	the	current	time,	as	shown	in	Figure	17.1.

FIGURE	17.1	Running	the	WebReader	application.

Two	thirds	of	the	WebReader	class	is	devoted	to	running	the	application,	creating	the
user	interface,	and	creating	a	valid	URL	object.	The	web	document	is	loaded	over	a	stream
and	is	displayed	in	a	text	area	in	the	getData()	method.

Four	objects	are	used:	URL,	HttpURLConnection,	InputStreamReader,	and
BufferedReader.	These	objects	work	together	to	pull	the	data	from	the	Internet	to	the
Java	application.	In	addition,	two	objects	are	created	to	hold	the	data	when	it	arrives:	a
String	and	a	StringBuilder.

Lines	24–26	open	an	HTTP	URL	connection,	which	is	necessary	to	get	an	input	stream
from	that	connection.

Lines	27–28	use	the	connection’s	getContent()	method	to	create	a	new	input	stream
reader.	The	method	returns	an	input	stream	representing	the	connection	to	the	URL.

Line	29	uses	that	input	stream	reader	to	create	a	new	buffered	input	stream	reader—a
BufferedReader	object	called	buff.

After	you	have	this	buffered	reader,	you	can	use	its	readLine()	method	to	read	a	line
of	text	from	the	input	stream.	The	buffered	reader	puts	characters	in	a	buffer	as	they	arrive
and	pulls	them	out	of	the	buffer	when	requested.

The	do-while	loop	in	lines	32–36	reads	the	web	document	line	by	line,	appending	each
line	to	the	StringBuilder	object	created	to	hold	the	page’s	text.

After	all	the	data	has	been	read,	line	37	converts	the	string	builder	into	a	string	with	the
toString()	method.	Then	it	puts	that	result	in	the	program’s	text	area	by	calling	the
component’s	setText(String)	method.

The	HttpUrlConnection	class	includes	several	methods	that	affect	the	HTTP	request
or	provide	more	information:

	getHeaderField(int)	returns	a	string	containing	an	HTTP	header,	such	as
"Server"	(the	web	server	hosting	the	document)	or	“Last-Modified”	(the	date	the

http://www.timeapi.org/utc/now

document	was	last	changed).	Headers	are	numbered	from	0	upward.	When	the	end
of	the	headers	is	reached,	this	method	returns	null.

	getHeaderFieldKey(int)	returns	a	string	containing	the	name	of	the
numbered	header	(such	as	“Server”	or	“Last-Modified”)	or	null.

	getResponseCode()	returns	an	integer	containing	the	HTTP	response	code	for
the	request,	such	as	200	(for	valid	requests)	or	404	(for	documents	that	could	not	be
found).

	getResponseMessage()	returns	a	string	containing	the	HTTP	response	code
and	an	explanatory	message	(such	as	“HTTP/1.0	200	OK”).	The
HttpUrlConnection	class	contains	integer	class	variables	for	each	of	the	valid
response	codes,	including	“HTTP_OK”,	“HTTP_NOT_FOUND”,	and
“HTTP_MOVED_PERM”.

	getContentType()	returns	a	string	containing	the	MIME	type	of	the	web
document;	some	possible	types	are	“text/html”	for	web	pages	and	“text/xml”	for
XML	files.

	setFollowRedirects(boolean)	determines	whether	URL	redirection
requests	should	be	followed	(true)	or	ignored	(false).	When	redirection	is
supported,	a	URL	request	can	be	forwarded	by	a	web	server	from	an	obsolete	URL
to	its	correct	address.

The	following	code	could	be	added	to	WebReader’s	getData()	method	after	line	26	to
display	headers	along	with	the	text	of	a	document:
Click	here	to	view	code	image

String	key;
String	header;
int	i	=	0;
do	{
				key	=	conn.getHeaderFieldKey(i);
				header	=	conn.getHeaderField(i);
				if	(key	==	null)	{
								key	=	””;
				}	else	{
								key	=	key	+	“:	“;
				}
				if	(header	!=	null)	{
								text.append(key);
								text.append(header);
								text.append(“\n”);
				}
				i++;
}	while	(header	!=	null);
text.append(“\n”);

Sockets
For	networking	applications	beyond	what	the	URL	and	URLConnection	classes	offer
(for	example,	for	other	protocols	or	for	more	general	networking	applications),	Java
provides	the	Socket	and	ServerSocket	classes	as	an	abstraction	of	standard
Transmission	Control	Protocol	(TCP)	socket	programming	techniques.

The	Socket	class	provides	a	client-side	socket	interface	similar	to	standard	UNIX
sockets.	Create	a	new	instance	of	Socket	to	open	a	connection,	where	hostName	is	the
host	to	connect	to	and	portNumber	is	the	port	number:
Click	here	to	view	code	image

Socket	connection	=	new	Socket(hostName,	portNumber);

After	you	create	a	socket,	set	its	timeout	value,	which	determines	how	long	the	application
waits	for	data	to	arrive.	This	is	handled	by	calling	the	socket’s	setSoTimeOut(int)
method	with	the	number	of	milliseconds	to	wait	as	the	only	argument:
Click	here	to	view	code	image

connection.setSoTimeOut(50000);

When	you	use	this	method,	any	effort	to	read	data	from	the	socket	represented	by
connection	waits	for	only	50,000	milliseconds	(50	seconds).	If	the	timeout	is	reached,
an	InterruptedIOException	is	thrown,	which	gives	you	an	opportunity	in	a	try-
catch	block	to	either	close	the	socket	or	try	to	read	from	it	again.

If	you	don’t	set	a	timeout	in	a	program	that	uses	sockets,	it	might	hang	indefinitely,
waiting	for	data.

Tip

This	problem	is	usually	avoided	by	putting	network	operations	in	their	own	thread
and	running	them	separately	from	the	rest	of	the	program,	as	covered	during	Day	7,
“Exceptions	and	Threads.”

After	the	socket	is	open,	you	can	use	input	and	output	streams	to	read	from	and	write	to
that	socket:
Click	here	to	view	code	image

BufferedInputStream	bis	=	new
				BufferedInputStream(connection.getInputStream());
DataInputStream	in	=	new	DataInputStream(bis);

BufferedOutputStream	bos	=	new
				BufferedOutputStream(connection.getOutputStream());
DataOutputStream	out	=	new	DataOutputStream(bos);

You	don’t	need	names	for	all	these	objects;	they	are	used	only	to	create	a	stream	or	stream
reader.	For	an	efficient	shortcut,	combine	several	statements,	as	in	this	example	using	a
Socket	object	named	sock:
Click	here	to	view	code	image

DataInputStream	in	=	new	DataInputStream(
				new	BufferedInputStream(

								sock.getInputStream()));

In	this	statement,	the	call	to	sock.getInputStream()	returns	an	input	stream
associated	with	that	socket.	This	stream	is	used	to	create	a	BufferedInputStream,
and	the	buffered	input	stream	is	used	to	create	a	DataInputStream.

The	only	variables	you	are	left	with	are	sock	and	in,	the	two	objects	needed	as	you
receive	data	from	the	connection	and	close	it	afterward.	The	intermediate	objects—a
BufferedInputStream	and	an	InputStream—are	needed	only	once.

After	you’re	finished	with	a	socket,	don’t	forget	to	close	it	by	calling	the	close()
method.	This	also	closes	all	the	input	and	output	streams	you	might	have	set	up	for	that
socket.	For	example:

connection.close();

Socket	programming	can	be	used	for	many	services	delivered	using	TCP/IP	networking,
including	telnet,	Simple	Mail	Transfer	Protocol	(SMTP)	for	incoming	mail,	WHOIS
protocol	for	requesting	domain	name	records,	and	Finger.

The	last	of	these,	Finger,	is	a	protocol	for	asking	a	system	about	one	of	its	users.	By
setting	up	a	Finger	server,	a	system	administrator	enables	an	Internet-connected	machine
to	answer	requests	for	user	information.	Users	can	provide	information	about	themselves
by	creating	.plan	files,	which	are	sent	to	anyone	who	uses	Finger	to	find	out	more	about
them.

Although	it	has	fallen	into	disuse	because	of	security	concerns,	Finger	was	once	a	popular
way	for	Internet	users	to	share	facts	about	themselves	and	their	activities	before	blogs	and
social	media.	You	could	use	Finger	on	a	friend’s	account	at	another	college	or	company	to
see	whether	that	person	was	online	and	read	the	person’s	current	.plan	file.

As	an	exercise	in	socket	programming,	the	Finger	application	is	a	rudimentary	Finger
client.	Enter	Listing	17.2	as	a	new	class	named	Finger	in	NetBeans.

LISTING	17.2	The	Full	Text	of	Finger.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	java.net.*;
	5:	import	java.util.*;
	6:
	7:	public	class	Finger	{
	8:					public	static	void	main(String[]	args)	{
	9:									String	user;
10:									String	host;
11:									if	((args.length	==	1)	&&	(args[0].indexOf(“@”)	>	-1))	{
12:													StringTokenizer	split	=	new	StringTokenizer(args[0],
13:																	“@”);
14:													user	=	split.nextToken();
15:													host	=	split.nextToken();
16:									}	else	{
17:													System.out.println(“Usage:	java	Finger	user@host”);
18:													return;
19:									}

20:									try	(Socket	digit	=	new	Socket(host,	79);
21:													BufferedReader	in	=	new	BufferedReader(
22:																	new	InputStreamReader(digit.getInputStream()));
23:)	{
24:
25:													digit.setSoTimeout(20000);
26:													PrintStream	out	=	new	PrintStream(
27:																	digit.getOutputStream());
28:													out.print(user	+	“\015\012”);
29:
30:													boolean	eof	=	false;
31:													while	(!eof)	{
32:																	String	line	=	in.readLine();
33:																	if	(line	!=	null)	{
34:																					System.out.println(line);
35:																	}	else	{
36:																					eof	=	true;
37:																	}
38:													}
39:													digit.close();
40:									}	catch	(IOException	e)	{
41:													System.out.println(“IO	Error:”	+	e.getMessage());
42:									}
43:					}
44:	}

When	making	a	Finger	request,	specify	a	username	followed	by	an	at	sign	@	and	a
hostname,	the	same	format	as	an	email	address.	One	of	the	last	examples	that	still	works	is
icculus@icculus.org,	the	Finger	address	of	game	developer	Ryan	Gordon.	You	can	request
his	.plan	file	by	running	the	Finger	application	with	that	address	as	the	only	command-
line	argument.

If	icculus	has	an	account	on	the	icculus.org	Finger	server,	running	the	Finger	application
displays	his	.plan	file	and	perhaps	other	information.	The	server	also	lets	you	know
when	a	user	can’t	be	found.

The	output	of	this	request	is	shown	in	Figure	17.2.

FIGURE	17.2	Making	a	Finger	request	using	a	socket.

The	Finger	application	uses	the	StringTokenizer	class	to	convert	an	address	in
user@host	format	into	two	String	objects:	user	and	host	(lines	12–15).

The	following	socket	activities	are	taking	place:

	Line	20—A	new	Socket	is	created	using	the	hostname	and	port	79,	the	port
traditionally	reserved	for	Finger	services.

	Line	21–23—The	socket	is	used	to	create	an	InputStream,	which	in	turn	is	used
to	create	a	BufferedReader.

	Line	25—A	timeout	of	20	seconds	is	set	for	the	socket.

	Line	26–27—The	socket	is	used	to	get	an	OutputStream,	which	feeds	into	a	new
PrintStream	object.

	Line	28—The	Finger	protocol	requires	that	the	username	be	sent	through	the	socket,
followed	by	a	carriage	return	(\015)	and	linefeed	(\012).	This	is	handled	by
calling	the	print()	method	of	the	new	print	stream.

	Lines	31–38—The	program	loops	as	lines	are	read	from	the	buffered	reader.	The
end	of	output	from	the	server	causes	in.readLine()	to	return	null,	ending	the
loop.

The	same	techniques	used	to	communicate	with	a	Finger	server	through	a	socket	can	be
used	to	connect	to	other	popular	Internet	services.	You	could	turn	it	into	a	telnet	or	web-
reading	client	with	a	port	change	in	Line	20	and	little	other	modification.

Note

The	Finger	application	makes	use	of	the	try-with-resources	capability	of	Java	in
lines	20–23	of	Listing	17.2.	Declaring	the	socket	and	reader	within	the	try
statement’s	parentheses	ensures	that	both	of	these	resources	will	be	closed	even
when	the	connection	fails	with	an	exception.	This	makes	the	explicit	call	to
close()	the	socket	in	Line	39	unnecessary.

Socket	Servers
Server-side	sockets	work	similarly	to	client	sockets,	with	the	exception	of	the	accept()
method.	A	server	socket	listens	on	a	TCP	port	for	a	connection	from	a	client;	when	a	client
connects	to	that	port,	the	accept()	method	accepts	a	connection	from	that	client.	By
using	both	client	and	server	sockets,	you	can	create	applications	that	communicate	with
each	other	over	the	network.

To	create	a	server	socket	and	bind	it	to	a	port,	create	a	new	instance	of	ServerSocket
with	a	port	number	as	an	argument	to	the	constructor,	as	in	the	following	example:
Click	here	to	view	code	image

ServerSocket	servo	=	new	ServerSocket(8888);

Use	the	accept()	method	to	listen	on	that	port	(and	to	accept	a	connection	from	any
clients	if	one	is	made):

servo.accept();

After	the	socket	connection	is	made,	you	can	use	input	and	output	streams	to	read	from
and	write	to	the	client.

To	extend	the	behavior	of	the	socket	classes—for	example,	to	allow	network	connections
to	work	across	a	firewall	or	proxy—you	can	use	the	abstract	class	SocketImpl	and	the
interface	SocketImplFactory	to	create	a	new	transport-layer	socket	implementation.
This	approach	allows	those	classes	to	be	portable	to	other	systems	with	different	transport
mechanisms.	The	problem	with	this	mechanism	is	that	although	it	works	for	simple	cases,
it	prevents	you	from	adding	other	protocols	on	top	of	TCP	and	from	having	multiple
socket	implementations	for	each	Java	runtime.

Because	the	Socket	and	ServerSocket	classes	are	not	final,	you	can	create
subclasses	of	these	classes	that	use	either	the	default	socket	implementation	or	your	own
implementation.	This	allows	much	more	flexible	network	capabilities.

Designing	a	Server	Application

Here’s	an	example	of	a	Java	program	that	uses	the	Socket	classes	to	implement	a	simple
network-based	server	application.

The	TimeServer	application	makes	a	connection	to	any	client	that	connects	to	port	4415,
displays	the	current	time,	and	then	closes	the	connection.

For	an	application	to	act	as	a	server,	it	must	monitor	at	least	one	port	on	the	host	machine

for	client	connections.	Port	4415	was	chosen	arbitrarily	for	this	project,	but	it	could	be	any
number	from	1024	to	65,535.

Note

The	Internet	Assigned	Numbers	Authority	controls	the	usage	of	ports	0	to	1023,	but
claims	are	staked	to	the	higher	ports	on	a	more	informal	basis.	When	choosing	port
numbers	for	your	own	client/server	applications,	it’s	a	good	idea	to	do	research	on
what	ports	others	are	using.	Search	the	Web	for	references	to	the	port	you	want	to
use,	and	then	search	for	the	phrases	“registered	port	numbers”	and	“well-known
port	numbers”	to	find	lists	of	in-use	ports.	A	good	guide	to	port	usage	is	available	at
www.sockets.com/services.htm.

When	a	client	is	detected,	the	server	creates	a	Date	object	that	represents	the	current	date
and	time	and	then	sends	it	to	the	client	as	a	String.

In	this	exchange	of	information	between	the	server	and	client,	the	server	does	almost	all
the	work.	The	client’s	only	responsibility	is	to	establish	a	connection	to	the	server	and
display	messages	received	from	the	server.

Although	you	could	develop	a	simple	client	for	a	project	like	this,	you	also	can	use	any
telnet	application	to	act	as	the	client,	as	long	as	it	can	connect	to	a	port	you	designate.
(Windows	includes	a	command-line	application	called	telnet	that	you	can	use	for	this
purpose.)

Listing	17.3	contains	the	full	source	code	for	the	server	application,	a	class	called
TimeServer.

LISTING	17.3	The	Full	Text	of	TimeServer.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	java.net.*;
	5:	import	java.util.*;
	6:
	7:	public	class	TimeServer	extends	Thread	{
	8:					private	ServerSocket	sock;
	9:
10:					public	TimeServer()	{
11:									super();
12:									try	{
13:													sock	=	new	ServerSocket(4415);
14:													System.out.println(“TimeServer	running	…”);
15:									}	catch	(IOException	e)	{
16:													System.out.println(“Error:	couldn’t	create	socket.”);
17:													System.exit(1);
18:									}
19:					}
20:
21:					public	void	run()	{
22:									Socket	client	=	null;
23:

http://www.sockets.com/services.htm

24:									while	(true)	{
25:													if	(sock	==	null)
26:																	return;
27:													try	{
28:																	client	=	sock.accept();
29:																	BufferedOutputStream	bb	=	new	BufferedOutputStream(
30:																					client.getOutputStream());
31:																	PrintWriter	os	=	new	PrintWriter(bb,	false);
32:																	String	outLine;
33:
34:																	Date	now	=	new	Date();
35:																	os.println(now);
36:																	os.flush();
37:
38:																	os.close();
39:																	client.close();
40:													}	catch	(IOException	e)	{
41:																	System.out.println(“Error:	couldn’t	connect.”);
42:																	System.exit(1);
43:													}
44:									}
45:					}
46:
47:					public	static	void	main(String[]	arguments)	{
48:									TimeServer	server	=	new	TimeServer();
49:									server.start();
50:					}
51:
52:	}

The	TimeServer	application	creates	a	server	socket	on	port	4415.	When	a	client	connects,
a	PrintWriter	object	is	constructed	from	a	buffered	output	stream	so	that	a	string—the
current	time—can	be	sent	to	the	client.

After	the	string	has	been	sent,	the	writer’s	flush()	and	close()	methods	end	the	data
exchange	and	close	the	socket	to	await	new	connections.

Testing	the	Server
The	TimeServer	application	must	be	running	for	a	client	to	be	able	to	connect	to	it.	The
server	displays	only	one	line	of	output	if	the	application	is	running	successfully,	as	shown
in	Figure	17.3.

FIGURE	17.3	Launching	an	Internet	server	in	a	ServerSocket.

With	the	server	running,	you	can	connect	to	the	server	on	port	4415	of	your	computer
using	a	telnet	program.

Do	the	following	to	run	telnet	on	Windows:

	With	Windows	8	and	Windows	10,	choose	Start,	choose	the	Search	icon,	and	search
for	telnet.	Click	the	telnet	item	to	run	it.

	With	Windows	7	and	Windows	Vista,	choose	Start,	All	Programs,	Accessories,	Run
to	open	the	Run	dialog	box.	Type	telnet	to	run	that	program.	Then	type	the
command	open	localhost	4415	in	the	Open	field	and	press	Enter.

	With	Windows	XP	and	2003,	choose	Start,	Run	to	open	the	Run	dialog	box.	Type
telnet	to	run	that	program.	Then	type	the	command	open	localhost	4415
in	the	Open	field	and	press	Enter.

	With	earlier	versions	of	Windows,	choose	Start,	Run	to	open	the	Run	dialog	box,
and	then	type	telnet	in	the	Open	field	and	press	Enter.	A	telnet	window	opens.

To	make	a	telnet	connection	using	this	program,	select	Connect,	Remote	System.	A
Connect	dialog	box	opens.	Enter	localhost	in	the	Host	Name	field,	enter	4415
in	the	Port	field,	and	leave	the	default	value	vt100	in	the	TermType	field.

Caution

The	telnet	program	may	be	disabled	by	default	on	Windows	Vista	and	Windows	7.
To	enable	it,	open	the	Control	Panel,	choose	Programs	and	Features,	and	click	Turn
Windows	features	on	or	off.	The	Windows	Features	dialog	opens.	Select	the	Telnet
Client	check	box,	and	click	OK.

The	hostname	localhost	represents	your	own	computer—the	system	running	the
application.	You	can	use	it	to	test	server	applications	before	deploying	them	permanently
on	the	Internet.

Depending	on	how	Internet	connections	have	been	configured	on	your	system,	you	might
need	to	log	on	to	the	Internet	before	a	successful	socket	connection	can	be	made	between
a	telnet	client	and	the	TimeServer	application.

If	the	server	is	on	another	computer	connected	to	the	Internet,	you	would	specify	that
computer’s	hostname	or	IP	address	rather	than	localhost.

When	you	use	telnet	to	make	a	connection	with	the	TimeServer	application,	it	displays	the
server’s	current	time	and	closes	the	connection.	The	output	of	the	telnet	program	should
resemble	Figure	17.4.

FIGURE	17.4	Making	a	telnet	connection	to	your	TimeServer.

The	java.nio	Package
The	java.nio	package	expands	the	language’s	networking	capabilities	with	classes
useful	for	reading	and	writing	data;	working	with	files,	sockets,	and	memory;	and
handling	text.

Two	related	packages	also	are	used	often	when	you	are	working	with	the	new	input/output
features:	java.nio.channels	and	java.nio.charset.

Buffers
The	java.nio	package	includes	support	for	buffers—objects	that	represent	data	streams
stored	in	memory.

Buffers	often	are	used	to	improve	the	performance	of	programs	that	read	input	or	write
output.	They	enable	a	program	to	put	a	lot	of	data	in	memory,	where	it	can	be	read,
written,	and	modified	more	quickly.

A	buffer	corresponds	with	each	of	the	primitive	data	types	in	Java:

	ByteBuffer

	CharBuffer

	DoubleBuffer

	FloatBuffer

	IntBuffer

	LongBuffer

	ShortBuffer

Each	of	these	classes	has	a	static	method	called	wrap()	that	can	be	used	to	create	a
buffer	from	an	array	of	the	corresponding	data	type.	The	only	argument	to	the	method
should	be	the	array.

For	example,	the	following	statements	create	an	array	of	integers	and	an	IntBuffer	that
holds	the	integers	in	memory	as	a	buffer:
Click	here	to	view	code	image

int[]	temperatures	=	{	90,	85,	87,	78,	80,	75,	70,	79,	85,	92	};
IntBuffer	tempBuffer	=	IntBuffer.wrap(temperatures);

A	buffer	keeps	track	of	how	it	is	used,	storing	the	position	where	the	next	item	will	be	read
or	written.	After	the	buffer	is	created,	its	get()	method	reads	the	data	at	the	current
position	in	the	buffer.	The	following	statements	extend	the	previous	example	and	display
everything	in	the	integer	buffer:
Click	here	to	view	code	image

for	(int	i	=	0;	tempBuffer.remaining()	>	0;	i++)
				System.out.println(tempBuffer.get());

Another	way	to	create	a	buffer	is	to	set	up	an	empty	buffer	and	then	put	data	in	it.	To
create	the	buffer,	call	the	static	method	allocate	(int)	of	the	desired	buffer	class

with	the	size	of	the	buffer	as	an	argument.

You	can	use	five	put()	methods	to	store	data	in	a	buffer	(or	replace	the	data	already
there).	The	arguments	used	with	these	methods	depend	on	the	kind	of	buffer	you’re
working	with.	These	methods	are	used	with	an	integer	buffer:

	put(int)	stores	the	integer	at	the	current	position	in	the	buffer	and	then
increments	the	position.

	put(int,	int)	stores	an	integer	(the	second	argument)	at	a	specific	position	in
the	buffer	(the	first	argument).

	put(int[])	stores	all	the	elements	of	the	integer	array	in	the	buffer,	beginning	at
the	first	position	in	the	buffer.

	put(int[],	int,	int)	stores	all	or	a	portion	of	an	integer	array	in	the	buffer.
The	second	argument	specifies	the	position	in	the	buffer	where	the	first	integer	in	the
array	should	be	stored.	The	third	argument	specifies	the	number	of	elements	from
the	array	to	store	in	the	buffer.

	put(IntBuffer)	stores	the	contents	of	an	integer	buffer	in	another	buffer,
beginning	at	the	first	position	in	the	buffer.

As	you	put	data	in	a	buffer,	you	often	must	keep	track	of	the	current	position	so	that	you
know	where	the	next	data	will	be	stored.

To	find	out	the	current	position,	call	the	buffer’s	position()	method.	An	integer	is
returned	that	represents	the	position.	If	this	value	is	0,	you’re	at	the	start	of	the	buffer.

Call	the	position(int)	method	to	change	the	position	to	the	argument	specified	as	an
integer.

Another	important	position	to	track	when	using	buffers	is	the	limit—the	last	place	in	the
buffer	that	contains	data.

It	isn’t	necessary	to	figure	out	the	limit	when	the	buffer	is	always	full;	in	that	case,	you
know	the	buffer’s	last	position	has	something	in	it.

However,	if	there’s	a	chance	your	buffer	might	contain	less	data	than	you	have	allocated,
you	should	call	the	buffer’s	flip()	method	after	reading	data	into	the	buffer.	This	sets
the	current	position	to	the	start	of	the	data	you	just	read	and	sets	the	limit	to	the	end.

If	the	buffer	is	1,024	bytes	in	size	and	the	page	contains	1,500	bytes,	the	first	attempt	to
read	data	loads	the	buffer	with	1,024	bytes,	filling	it.

The	second	attempt	to	read	data	loads	the	buffer	with	only	476	bytes,	leaving	the	rest
empty.	If	you	call	flip()	afterward,	the	current	position	is	set	to	the	beginning	of	the
buffer,	and	the	limit	is	set	to	476.

The	following	code	creates	an	array	of	Fahrenheit	temperatures,	converts	them	to	Celsius,
and	then	stores	the	Celsius	values	in	a	buffer:
Click	here	to	view	code	image

int[]	temps	=	{	90,	85,	87,	78,	80,	75,	70,	79,	85,	92,	99	};
IntBuffer	tempBuffer	=	IntBuffer.allocate(temps.length);

for	(int	i	=	0;	i	<	temps.length;	i++)	{
				float	celsius	=	((float)	temps[i]	-	32)	/	9	*	5;
				tempBuffer.put((int)	celsius);
}
tempBuffer.position(0);
for	(int	i	=	0;	tempBuffer.remaining()	>	0;	i++)	{
				System.out.println(tempBuffer.get());
}

After	the	buffer’s	position	is	set	back	to	the	start,	the	buffer’s	contents	are	displayed.

Byte	Buffers

You	can	use	the	buffer	methods	introduced	so	far	with	byte	buffers,	but	byte	buffers	also
offer	additional	useful	methods.

For	starters,	byte	buffers	have	methods	to	store	and	retrieve	data	that	isn’t	a	byte:

	putChar(char)	stores	2	bytes	in	the	buffer	that	represent	the	specified	char
value.

	putDouble(double)	stores	8	bytes	in	the	buffer	that	represent	a	double
value.

	putFloat(float)	stores	4	bytes	in	the	buffer	that	represent	a	float	value.

	putInt(int)	stores	4	bytes	in	the	buffer	that	represent	an	int	value.

	putLong(long)	stores	8	bytes	in	the	buffer	that	represent	a	long	value.

	putShort(short)	stores	2	bytes	in	the	buffer	that	represent	a	short	value.

Each	of	these	methods	puts	more	than	1	byte	in	the	buffer,	moving	the	current	position
forward	by	the	same	number	of	bytes.

There	also	are	methods	to	retrieve	nonbytes	from	a	byte	buffer:	getChar(),
getDouble(),	getFloat(),	getInt(),	getLong(),	and	getShort().

Character	Sets

Character	sets,	which	are	offered	in	the	java.nio.charset	package,	are	a	set	of
classes	used	to	convert	data	between	byte	buffers	and	character	buffers.

The	three	main	classes	are	as	follows:

	Charset	is	a	Unicode	character	set	with	a	different	byte	value	for	each	different
character	in	the	set.

	CharsetDecoder	is	a	class	that	transforms	a	series	of	bytes	into	a	series	of
characters.

	CharsetEncoder	is	a	class	that	transforms	a	series	of	characters	into	a	series	of
bytes.

Before	you	can	perform	any	transformations	between	byte	and	character	buffers,	you	must
create	a	Charset	object	that	maps	characters	to	their	corresponding	byte	values.

To	create	a	character	set,	call	the	forName(String)	static	method	of	the	Charset
class,	specifying	the	name	of	the	set’s	character	encoding.

Java	supports	six	character	encodings:

	US-ASCII—The	128-character	ASCII	set	that	makes	up	the	Basic	Latin	block	of
Unicode	(also	called	ISO646-US)

	ISO-8859-1—The	256-character	ISO	Latin	Alphabet	No.	1	character	set	(also
called	ISO-LATIN-1)

	UTF-8—A	character	set	that	includes	US-ASCII	and	the	Universal	Character	Set
(also	called	Unicode),	a	set	composed	of	thousands	of	characters	used	in	the	world’s
languages

	UTF-16BE—The	Universal	Character	Set	represented	as	16-bit	characters	with
bytes	stored	in	big-endian	byte	order

	UTF-16LE—The	Universal	Character	Set	represented	as	16-bit	characters	with
bytes	stored	in	little-endian	byte	order

	UTF-16—The	Universal	Character	Set	represented	as	16-bit	characters	with	the
order	of	bytes	indicated	by	an	optional	byte-order	mark

The	following	statement	creates	a	Charset	object	for	the	ISO-8859-1	character	set:
Click	here	to	view	code	image

Charset	isoset	=	Charset.forName(“ISO-8859-1”);

After	you	have	a	character	set	object,	you	can	use	it	to	create	encoders	and	decoders.	Call
the	object’s	newDecoder()	method	to	create	a	CharsetDecoder	and	the
newEncoder()	method	to	create	a	CharsetEncoder.

To	transform	a	byte	buffer	into	a	character	buffer,	call	the	decoder’s
decode(ByteBuffer)	method,	which	returns	a	CharBuffer	containing	the	bytes
transformed	into	characters.

To	transform	a	character	buffer	into	a	byte	buffer,	call	the	encoder’s
encode(CharBuffer)	method.	A	ByteBuffer	is	returned	containing	the
characters’	byte	values.

The	following	statements	convert	a	byte	buffer	called	netBuffer	into	a	character	buffer
using	the	ISO-8859-1	character	set:
Click	here	to	view	code	image

ByteBuffer	netBuffer	=	ByteBuffer.allocate(20480);
//	code	to	fill	byte	buffer	would	be	here
Charset	set	=	Charset.forName(“ISO-8859-1”);
CharsetDecoder	decoder	=	set.newDecoder();
netBuffer.position(0);
CharBuffer	netText	=	decoder.decode(netBuffer);

Caution

Before	the	decoder	is	used	to	create	the	character	buffer,	the	call	to	position(0)
resets	the	current	position	of	the	netBuffer	to	the	start.	When	you’re	working
with	buffers	for	the	first	time,	it’s	easy	to	overlook	this,	resulting	in	a	buffer	with
much	less	data	than	you	expected.

Channels
A	common	use	for	a	buffer	is	to	associate	it	with	an	input	or	output	stream.	You	can	fill	a
buffer	with	data	from	an	input	stream	or	write	a	buffer	to	an	output	stream.

To	do	this,	you	must	use	a	channel—an	object	that	connects	a	buffer	to	the	stream.
Channels	are	part	of	the	java.nio.channels	package.

You	can	associate	channels	with	a	stream	by	calling	the	getChannel()	method
available	in	some	of	the	stream	classes	in	the	java.io	package.

The	FileInputStream	and	FileOutputStream	classes	have	getChannel()
methods	that	return	a	FileChannel	object.	This	file	channel	can	be	used	to	read,	write,
and	modify	the	data	in	the	file.

The	following	statements	create	a	file	input	stream	and	a	channel	associated	with	that	file:
Click	here	to	view	code	image

try	{
				String	source	=	“prices.dat”;
				FileInputStream	inSource	=	new	FileInputStream(source);
				FileChannel	inChannel	=	inSource.getChannel();
}	catch	(FileNotFoundException	fne)	{
				System.out.println(fne.getMessage());
}

After	you	have	created	the	file	channel,	you	can	find	out	how	many	bytes	the	file	contains
by	calling	its	size()	method.	This	is	necessary	if	you	want	to	create	a	byte	buffer	to
hold	the	file’s	contents.

Bytes	are	read	from	a	channel	into	a	ByteBuffer	with	the	read(ByteBuffer,
long)	method.	The	first	argument	is	the	buffer.	The	second	argument	is	the	current
position	in	the	buffer,	which	determines	where	the	file’s	contents	will	begin	to	be	stored.

The	following	statements	extend	the	last	example	by	reading	a	file	into	a	byte	buffer	using
the	inChannel	file	channel:
Click	here	to	view	code	image

long	inSize	=	inChannel.size();
ByteBuffer	data	=	ByteBuffer.allocate((int)	inSize);
inChannel.read(data,	0);
data.position(0);
for	(int	i	=	0;	data.remaining()	>	0;	i++)	{
				System.out.print(data.get()	+	”	“);
}

The	attempt	to	read	from	the	channel	generates	an	IOException	error	if	a	problem

occurs.	Although	the	byte	buffer	is	the	same	size	as	the	file,	this	isn’t	a	requirement.	If	you
are	reading	the	file	into	the	buffer	so	that	you	can	modify	it,	you	can	allocate	a	larger
buffer.

The	next	project	you	undertake	incorporates	the	new	input/output	features	you	have
learned	about	so	far:	buffers,	character	sets,	and	channels.

The	BufferConverter	application	reads	a	small	file	into	a	byte	buffer,	displays	the	contents
of	the	buffer,	converts	it	to	a	character	buffer,	and	then	displays	the	characters.

Enter	the	code	shown	in	Listing	17.4	as	the	new	Java	class	BufferConverter	in	the
com.java21days	package.

LISTING	17.4	The	Full	Text	of	BufferConverter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.nio.*;
	4:	import	java.nio.channels.*;
	5:	import	java.nio.charset.*;
	6:	import	java.io.*;
	7:
	8:	public	class	BufferConverter	{
	9:					public	static	void	main(String[]	arguments)	{
10:									try	{
11:													//	read	byte	data	into	a	byte	buffer
12:													String	data	=	“friends.dat”;
13:													FileInputStream	inData	=	new	FileInputStream(data);
14:													FileChannel	inChannel	=	inData.getChannel();
15:													long	inSize	=	inChannel.size();
16:													ByteBuffer	source	=	ByteBuffer.allocate((int)	inSize);
17:													inChannel.read(source,	0);
18:													source.position(0);
19:													System.out.println(“Original	byte	data:”);
20:													for	(int	i	=	0;	source.remaining()	>	0;	i++)	{
21:																	System.out.print(source.get()	+	”	“);
22:													}
23:													//	convert	byte	data	into	character	data
24:													source.position(0);
25:													Charset	ascii	=	Charset.forName(“US-ASCII”);
26:													CharsetDecoder	toAscii	=	ascii.newDecoder();
27:													CharBuffer	destination	=	toAscii.decode(source);
28:													destination.position(0);
29:													System.out.println(“\n\nNew	character	data:”);
30:													for	(int	i	=	0;	destination.remaining()	>	0;	i++)	{
31:																	System.out.print(destination.get());
32:													}
33:													System.out.println();
34:									}	catch	(FileNotFoundException	fne)	{
35:													System.out.println(fne.getMessage());
36:									}	catch	(IOException	ioe)	{
37:													System.out.println(ioe.getMessage());
38:									}
39:					}
40:	}

Before	you	run	the	file,	you	need	a	copy	of	friends.dat,	the	small	file	of	byte	data

used	in	the	application.	To	download	it	from	the	book’s	website	at	www.java21days.com,
open	the	Day	17	page,	right-click	the	friends.dat	hyperlink,	and	save	the	file	in	a
folder	on	your	computer.

To	copy	that	file	into	the	same	place	as	the	application,	follow	these	steps	in	NetBeans:

	In	the	folder	where	you	downloaded	friends.dat,	right-click	the	file	and	choose
Copy.

	In	NetBeans,	click	the	Files	pane	to	bring	it	to	the	front.

	Right-click	Java21	(the	top	folder	in	the	pane)	and	choose	Paste.

The	file	will	be	stored	in	the	project’s	main	folder.

Tip

You	also	can	create	your	own	file.	In	NetBeans,	choose	File,	New	File.	In	the	New
File	dialog,	choose	the	category	Other	and	the	file	type	Empty	File.	Give	it	the
filename	friends.dat.	In	the	source	code	editor,	type	a	sentence	or	two	in	the
document,	and	save	the	file.

If	you	use	the	copy	of	friends.dat	from	the	book’s	website,	the	output	of	the
BufferConverter	application	is	shown	in	Figure	17.5.

FIGURE	17.5	Reading	character	data	from	a	buffer.

The	BufferConverter	application	uses	the	techniques	introduced	today	to	read	data	and
represent	it	as	bytes	and	characters,	but	you	could	have	accomplished	the	same	thing	with
the	original	input/output	package,	java.io.

For	this	reason,	you	might	wonder	why	it’s	worth	learning	the	new	package	at	all.

One	reason	is	that	buffers	enable	you	to	manipulate	large	amounts	of	data	much	more
quickly.	You’ll	find	out	another	reason	in	the	next	section.

Network	Channels

A	popular	feature	of	the	java.nio	package	is	its	support	for	nonblocking	input	and
output	over	a	networking	connection.

In	Java,	blocking	refers	to	a	statement	that	must	complete	execution	before	anything	else

http://www.java21days.com

happens	in	the	program.	All	the	socket	programming	you	have	done	up	to	this	point	has
used	blocking	methods	exclusively.	For	example,	in	the	TimeServer	application,	when	the
server	socket’s	accept()	method	is	called,	nothing	else	happens	in	the	program	until	a
client	makes	a	connection.

As	you	can	imagine,	it’s	problematic	for	a	networking	program	to	wait	until	a	particular
statement	is	executed,	because	numerous	things	can	go	wrong.	Connections	can	be
broken.	A	server	could	go	offline.	A	socket	connection	could	appear	to	be	stalled	because
a	blocked	statement	is	waiting	for	something	to	happen.

For	example,	a	client	application	that	reads	and	buffers	data	over	HTTP	might	be	waiting
for	a	buffer	to	be	filled	even	though	no	more	data	remains	to	be	sent.	The	program	will
appear	to	have	halted,	because	the	blocked	statement	never	finishes	executing.

With	the	java.nio	package,	you	can	create	networking	connections	and	read	to	and
write	from	them	using	nonblocking	methods.

Here’s	how	it	works:

	Associate	a	socket	channel	with	an	input	or	output	stream.

	Configure	the	channel	to	recognize	the	kind	of	networking	events	you	want	to
monitor,	such	as	new	connections,	attempts	to	read	data	over	the	channel,	and
attempts	to	write	data.

	Call	a	method	to	open	the	channel.

	Because	the	method	is	nonblocking,	the	program	continues	executing	so	that	you
can	handle	other	tasks.

	If	one	of	the	networking	events	you	are	monitoring	takes	place,	your	program	is
notified—a	method	associated	with	the	event	is	called.

This	is	comparable	to	how	user-interface	components	are	programmed	in	Swing.	An
interface	component	is	associated	with	one	or	more	event	listeners	and	is	placed	in	a
container.	If	the	interface	component	receives	input	being	monitored	by	a	listener,	an
event-handling	method	is	called.	Until	that	happens,	the	program	can	handle	other	tasks.

To	use	nonblocking	input	and	output,	you	must	work	with	channels	instead	of	streams.

Nonblocking	Socket	Clients	and	Servers

The	first	step	in	developing	a	nonblocking	client	or	server	is	creating	an	object	that
represents	the	Internet	address	to	which	you	are	connecting.	This	task	is	handled	by	the
InetSocketAddress	class	in	the	java.net	package.

If	the	server	is	identified	by	a	hostname,	call	InetSocketAddress(String,	int)
with	two	arguments:	the	server’s	name	and	port	number.

If	the	server	is	identified	by	its	IP	address,	use	the	InetAddress	class	in	java.net	to
identify	the	host.	Call	the	static	method	InetAddress.getByName(String)	with
the	host’s	IP	address	as	the	argument.	The	method	returns	an	InetAddress	object
representing	the	address,	which	you	can	use	in	calling

InetSocketAddress(InetAddress,	int).	The	second	argument	is	the	server’s
port	number.

Nonblocking	connections	require	a	socket	channel,	another	of	the	classes	in	the
java.nio	package.	Call	the	open()	static	method	of	the	SocketChannel	class	to
create	the	channel.

A	socket	channel	can	be	configured	for	blocking	or	nonblocking	communication.	To	set
up	a	nonblocking	channel,	call	the	channel’s	configureBlocking	(boolean)
method	with	an	argument	of	false.	Calling	it	with	true	makes	it	a	blocking	channel.

After	the	channel	is	configured,	call	its	connect(InetSocketAddress)	method	to
connect	the	socket.

On	a	blocking	channel,	the	connect()	method	attempts	to	establish	a	connection	to	the
server	and	waits	until	it	is	complete,	returning	a	value	of	true	to	indicate	success.

On	a	nonblocking	channel,	the	connect()	method	returns	immediately	with	a	value	of
false.	To	figure	out	what’s	going	on	over	the	channel	and	respond	to	events,	you	must
use	a	channel-listening	object	called	a	Selector.

A	Selector	is	an	object	that	keeps	track	of	things	that	happen	to	a	socket	channel	(or
another	channel	in	the	package	that	is	a	subclass	of	SelectableChannel).

To	create	a	Selector,	call	its	open()	method,	as	in	the	following	statement:
Click	here	to	view	code	image

Selector	monitor	=	Selector.open();

When	you	use	a	Selector,	you	must	indicate	the	events	you	want	to	monitor.	You	do	so
by	calling	a	channel’s	register(Selector,	int,	Object)	method.

The	three	arguments	to	register()	are	the	following:

	The	Selector	object	you	have	created	to	monitor	the	channel

	An	int	value	that	represents	the	events	being	monitored	(also	called	selection
keys)

	An	Object	that	can	be	delivered	along	with	the	key,	or	null	otherwise

Instead	of	using	an	integer	value	as	the	second	argument,	it’s	easier	to	use	one	or	more
class	variables	from	the	SelectionKey	class:	SelectionKey.OP_CONNECT	to
monitor	connections,	SelectionKey.OP_READ	to	monitor	attempts	to	read	data,	and
SelectionKey.OP_WRITE	to	monitor	attempts	to	write	data.

The	following	statements	create	a	Selector	to	monitor	a	socket	channel	called	wire
for	reading	data:
Click	here	to	view	code	image

Selector	spy	=	Selector.open();
channel.register(spy,	SelectionKey.OP_READ,	null);

To	monitor	more	than	one	kind	of	key,	add	together	the	SelectionKey	class	variables.

For	example:
Click	here	to	view	code	image

Selector	spy	=	Selector.open();
channel.register(spy,	SelectionKey.OP_READ	+	SelectionKey.OP_WRITE,
				null);

After	the	channel	and	selector	have	been	set	up,	you	can	wait	for	events	by	calling	the
selector’s	select()	or	select(long)	methods.

The	select()	method	is	a	blocking	method	that	waits	until	something	has	happened	on
the	channel.

The	select(long)	method	is	a	blocking	method	that	waits	until	something	has
happened	or	the	specified	number	of	milliseconds	has	passed,	whichever	comes	first.

Both	select()	methods	return	the	number	of	events	that	have	taken	place,	or	0	if
nothing	has	happened.	You	can	use	a	while	loop	with	a	call	to	the	select()	method	as
a	way	to	loop	until	something	happens	on	the	channel.

After	an	event	has	taken	place,	you	can	find	out	more	about	it	by	calling	the	selector’s
selectedKeys()	method,	which	returns	a	Set	object	containing	details	on	each	of	the
events.

Use	this	Set	object	as	you	would	any	other	set,	creating	an	Iterator	to	move	through
the	set	by	using	its	hasNext()	and	next()	methods.

The	call	to	the	set’s	next()	method	returns	an	object	that	should	be	cast	to	a
SelectionKey.	This	object	represents	an	event	that	took	place	on	the	channel.

Three	methods	in	the	SelectionKey	class	can	be	used	to	identify	the	key	in	a	client
program:	isReadable	(),	isWritable	(),	and	isConnectible	().	Each
returns	a	boolean	value.	(A	fourth	method	is	used	when	you’re	writing	a	server:
isAcceptable	().)

After	you	retrieve	a	key	from	the	set,	call	the	key’s	remove()	method	to	indicate	that
you	will	do	something	with	it.

The	last	thing	to	find	out	about	the	event	is	the	channel	on	which	it	took	place.	Call	the
key’s	channel()	method,	which	returns	the	associated	SocketChannel.

If	one	of	the	events	identifies	a	connection,	you	must	make	sure	that	the	connection	has
been	completed	before	using	the	channel.	Call	the	key’s	isConnectionPending()
method,	which	returns	true	if	the	connection	is	still	in	progress	and	false	if	it	is
complete.

To	deal	with	a	connection	that	is	still	in	progress,	you	can	call	the	socket’s
finishConnect()	method,	which	attempts	to	complete	the	connection.

Using	a	nonblocking	socket	channel	involves	the	interaction	of	numerous	new	classes
from	the	java.nio	and	java.net	packages.

To	give	you	a	more	complete	picture	of	how	these	classes	work	together,	the	day’s	final

project	is	FingerServer,	a	web	application	that	uses	a	nonblocking	socket	channel	to
handle	Finger	requests.
Enter	the	code	shown	in	Listing	17.5	as	the	class	FingerServer	in	the	package
com.java21days	and	save	the	application.

LISTING	17.5	The	Full	Text	of	FingerServer.java
Click	here	to	view	code	image

1:	package	com.java21days;
		2:
		3:	import	java.io.*;
		4:	import	java.net.*;
		5:	import	java.nio.channels.*;
		6:	import	java.util.*;
		7:
		8:	public	class	FingerServer	{
		9:
	10:					public	FingerServer()	{
	11:									try	{
	12:													//	Create	a	non-blocking	server	socket	channel
	13:													ServerSocketChannel	sock	=	ServerSocketChannel.open();
	14:													sock.configureBlocking(false);
	15:
	16:													//	Set	the	host	and	port	to	monitor
	17:													InetSocketAddress	server	=	new	InetSocketAddress(
	18:																	“localhost”,	79);
	19:													ServerSocket	socket	=	sock.socket();
	20:													socket.bind(server);
	21:
	22:													//	Create	the	selector	and	register	it	on	the	channel
	23:													Selector	selector	=	Selector.open();
	24:													sock.register(selector,	SelectionKey.OP_ACCEPT);
	25:
	26:													//	Loop	forever,	looking	for	client	connections
	27:													while	(true)	{
	28:																	//	Wait	for	a	connection
	29:																	selector.select();
	30:
	31:																	//	Get	list	of	selection	keys	with	pending	events
	32:																	Set	keys	=	selector.selectedKeys();
	33:																	Iterator	it	=	keys.iterator();
	34:
	35:																	//	Handle	each	key
	36:																	while	(it.hasNext())	{
	37:
	38:																					//	Get	the	key	and	remove	it	from	the	iteration
	39:																					SelectionKey	sKey	=	(SelectionKey)	it.next();
	40:
	41:																					it.remove();
	42:																					if	(sKey.isAcceptable())	{
	43:
	44:																									//	Create	a	socket	connection	with	client
	45:																									ServerSocketChannel	selChannel	=
	46:																													(ServerSocketChannel)	sKey.channel();
	47:																									ServerSocket	sSock	=	selChannel.socket();
	48:																									Socket	connection	=	sSock.accept();
	49:
	50:																									//	Handle	the	Finger	request
	51:																									handleRequest(connection);

	52:																									connection.close();
	53:																					}
	54:																	}
	55:														}
	56:										}	catch	(IOException	ioe)	{
	57:														System.out.println(ioe.getMessage());
	58:										}
	59:						}
	60:
	61:					private	void	handleRequest(Socket	connection)
	62:									throws	IOException	{
	63:
	64:									//	Set	up	input	and	output
	65:									InputStreamReader	isr	=	new	InputStreamReader	(
	66:													connection.getInputStream());
	67:									BufferedReader	is	=	new	BufferedReader(isr);
	68:									PrintWriter	pw	=	new	PrintWriter(new
	69:													BufferedOutputStream(connection.getOutputStream()),
	70:													false);
	71:
	72:									//	Output	server	greeting
	73:									pw.println(“Nio	Finger	Server”);
	74:									pw.flush();
	74:
	75:									//	Handle	user	input
	76:									String	outLine	=	null;
	77:									String	inLine	=	is.readLine();
	78:
	79:									if	(inLine.length()	>	0)	{
	80:													outLine	=	inLine;
	81:									}
	82:									readPlan(outLine,	pw);
	83:
	84:									//	Clean	up
	85:									pw.flush();
	86:									pw.close();
	87:									is.close();
	88:					}
	89:
	90:					private	void	readPlan(String	userName,	PrintWriter	pw)	{
	91:									try	{
	92:													FileReader	file	=	new	FileReader(userName	+	“.plan”);
	93:													BufferedReader	buff	=	new	BufferedReader(file);
	94:													boolean	eof	=	false;
	95:
	96:													pw.println(”\nUser	name:	“	+	userName	+	“\n”);
	97:
	98:													while	(!eof)	{
	99:																	String	line	=	buff.readLine();
100:
101:																	if	(line	==	null)	{
102:																					eof	=	true;
103:																	}	else	{
104:																				pw.println(line);
105:																	}
106:													}
107:
108:													buff.close();
109:									}	catch	(IOException	e)	{
110:													pw.println(“User	“	+	userName	+	”	not	found.”);
111:									}
112:					}
113:

114:					public	static	void	main(String[]	arguments)	{
115:									FingerServer	nio	=	new	FingerServer();
116:					}
117:	}

The	Finger	server	requires	one	or	more	user	.plan	files	stored	in	text	files.	These	files
should	have	names	that	take	the	form	username.plan—for	example,	linus.plan,
lucy.plan,	and	franklin.plan.	Before	running	the	server,	create	one	or	more	plan
files	in	the	root	folder	of	the	Java21	project.

When	you’re	done,	run	the	Finger	server.	The	application	waits	for	incoming	Finger
requests,	creating	a	nonblocking	server	socket	channel	and	registering	one	kind	of	key	for
a	selector	to	look	for:	connection	events.

Inside	a	while	loop	that	begins	on	Line	27,	the	server	calls	the	Selector	object’s
select()	method	to	see	whether	the	selector	has	received	any	keys,	which	would	occur
when	a	Finger	client	makes	a	connection.	When	it	has,	select()	returns	the	number	of
keys,	and	the	statements	inside	the	loop	are	executed.

After	the	connection	is	made,	a	buffered	reader	is	created	to	hold	a	request	for	a	.plan
file.	The	syntax	for	the	command	is	the	username	of	the	.plan	file	being	requested.

While	the	Finger	server	is	running,	you	can	test	this	application	with	the	Finger	client.
Create	a	custom	project	configuration	in	NetBeans	to	set	the	command-line	argument	of
the	Finger	user:

	Choose	Run,	Set	Project	Configuration,	Customize.	The	Project	Properties	dialog
opens.

	In	the	Main	Class	text	field,	enter	Finger.

	In	the	Arguments	text	field,	enter	franklin@localhost,	and	click	OK.

	Run	the	application	by	choosing	Run,	Run	Project.

The	output	is	shown	in	Figure	17.6	when	you	request	the	user	franklin	on	the	computer
localhost.

FIGURE	17.6	Making	a	Finger	request	from	your	Finger	server.

Run	the	application	again	with	lucy@localhost	to	see	Lucy’s	.plan	file,	and	finally
with	linus@localhost	to	look	for	Linus.

When	you’re	done	with	the	Finger	server,	press	the	Stop	button	on	the	left	edge	of	the
Output	pane	to	shut	it	down.

Caution

The	plan	files	must	be	in	the	root	folder	of	the	Java21	project	for	the	FingerServer
application	to	find	them.	If	they	were	saved	somewhere	else,	you	can	move	them	by
dragging	and	dropping	in	NetBeans.	Click	the	Files	tab	in	the	Projects	pane	to	see	a
list	of	the	project’s	files.	Find	the	plan	files,	and	drag	them	to	the	same	folder	that
holds	friends.dat.

Summary
Today	you	learned	how	to	use	URLs,	URL	connections,	and	input	streams	in	combination
to	pull	data	from	the	Web	into	your	program.

Networking	can	be	extremely	useful.	The	WebReader	project	is	a	rudimentary	web
browser.	It	can	load	a	web	page	or	RSS	file	into	a	Java	program	and	display	it.	However,	it
doesn’t	do	anything	to	make	sense	of	the	markup	tags,	presenting	the	raw	text	delivered	by
a	web	server.

You	created	a	socket	application	that	implements	the	basics	of	the	Finger	protocol,	a
method	for	retrieving	user	information	on	the	Internet.

You	also	learned	how	client	and	server	programs	are	written	in	Java	using	the	nonblocking
techniques	in	the	java.nio	package.

To	use	nonblocking	techniques,	you	learned	about	the	fundamental	classes	of	Java’s	new
networking	package:	buffers,	character	encoders	and	decoders,	socket	channels,	and
selectors.

Q&A
Q	Can	other	computers	connect	to	my	Finger	server	over	the	Internet?

A	Probably	not.	Most	computers	have	firewall	settings	and	router	security	settings	that
would	not	accept	incoming	requests	on	port	79,	the	one	used	by	the	Finger	protocol.

If	you	create	a	server	that	isn’t	just	for	testing	purposes,	you	must	figure	out	how	to
configure	the	firewall	and	router	to	allow	the	server	to	access	all	the	ports	that	it
requires.

Because	Internet	servers	are	frequent	targets	of	attack,	you	must	make	sure	your
server	can	handle	malformed	client	requests	and	other	hacking	attempts.	You	also
should	run	the	server	with	a	user	account	that	only	has	access	to	the	files	and	system
resources	it	needs	and	no	others.	This	prevents	a	hacker	from	compromising	the
server	and	using	it	to	read	confidential	data,	infect	the	computer	with	viruses,	and
launch	other	harmful	exploits.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	of	the	following	is	not	an	advantage	of	the	new	java.nio	package	and	its
related	packages?

A.	Large	amounts	of	data	can	be	manipulated	quickly	with	buffers.

B.	Networking	connections	can	be	nonblocking	for	more	reliable	use	in	your
applications.

C.	Streams	are	no	longer	necessary	to	read	and	write	data	over	a	network.

2.	In	the	Finger	protocol,	which	program	makes	a	request	for	information	about	a	user?

A.	The	client

B.	The	server

C.	Both	can	make	that	request.

3.	Which	method	is	preferred	for	loading	the	data	from	a	web	page	into	your	Java
application?

A.	Creating	a	Socket	and	an	input	stream	from	that	socket

B.	Creating	a	URL	and	an	HttpURLConnection	from	that	object

C.	Loading	the	page	using	the	method	toString()

Answers
1.	C.	The	java.nio	classes	work	in	conjunction	with	streams.	They	don’t	replace
them.

2.	A.	The	client	requests	information,	and	the	server	sends	back	something	in	response.
This	is	traditionally	how	client/server	applications	function,	although	some
programs	can	act	as	both	client	and	server.

3.	B.	Sockets	are	good	for	low-level	connections,	such	as	when	you	are	implementing
a	new	protocol.	For	existing	protocols	such	as	HTTP,	some	classes	are	better	suited
to	that	protocol—URL	and	HttpURLConnection,	in	this	case.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

import	java.nio.*;

public	class	ReadTemps	{
				public	ReadTemps()	{
								int[]	temperatures	=	{	78,	80,	75,	70,	79,	85,	92,	99,	90	};
								IntBuffer	tempBuffer	=	IntBuffer.wrap(temperatures);
								int[]	moreTemperatures	=	{	65,	44,	71	};
								tempBuffer.put(moreTemperatures);
								System.out.println(“First	int:	“	+	tempBuffer.get());
				}
}

What	will	be	the	output	when	this	application	is	run?

A.	First	int:	78

B.	First	int:	71

C.	First	int:	70

D.	None	of	the	above

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	17
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Write	an	application	that	stores	some	of	your	favorite	web	pages	on	your	computer
so	that	you	can	read	them	while	you	are	not	connected	to	the	Internet.

2.	Modify	the	FingerServer	application	to	use	the	try-with-resources	improvement	to
try-catch	blocks	in	Java.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	18.	Accessing	Databases	with	JDBC	4.2	and	Derby

Almost	all	Java	programs	deal	with	data	in	some	way.	So	far	you	have	used	primitive
types,	objects,	arrays,	hash	maps,	and	other	data	structures.

Today,	you	work	with	data	in	a	more	sophisticated	way	by	exploring	Java	Database
Connectivity	(JDBC),	a	class	library	that	connects	Java	programs	to	relational	databases.

Java	includes	Java	DB,	a	compact	relational	database	that	makes	it	easier	than	ever	to
incorporate	a	database	into	your	applications.	Java	DB	is	Oracle’s	name	for	Apache
Derby,	an	open	source	database	maintained	by	the	Apache	Software	Foundation.

Today,	you	explore	JDBC	in	the	following	ways:

	Using	JDBC	drivers	to	work	with	different	relational	databases

	Accessing	a	database	with	Structured	Query	Language	(SQL)

	Reading	records	from	a	database	using	SQL	and	JDBC

	Adding	records	to	a	database	using	SQL	and	JDBC

	Creating	a	new	Java	DB	database	and	reading	its	records

Java	Database	Connectivity
Java	Database	Connectivity	(JDBC)	is	a	set	of	classes	that	can	be	used	to	develop
client/server	applications	that	work	with	databases	developed	by	Microsoft,	Sybase,
Oracle,	IBM,	and	other	sources.

With	JDBC,	you	can	use	the	same	methods	and	classes	in	Java	programs	to	read	and	write
records	and	perform	other	kinds	of	database	access.	A	class	called	a	driver	acts	as	a	bridge
to	the	database	source.	There	are	drivers	for	each	of	the	popular	databases.

Client/server	software	connects	a	user	of	information	with	a	provider	of	that	information,
and	it’s	one	of	the	most	common	forms	of	programming.	You	use	it	every	time	you	use	the
Web:	A	web	browser	client	requests	pages,	image	files,	and	other	documents	using	a
uniform	resource	locator	(URL).	Web	servers	provide	the	requested	information,	if	it	can
be	found,	for	the	client.

One	of	the	biggest	obstacles	faced	by	database	programmers	is	the	wide	variety	of
database	formats	in	use,	each	with	its	own	proprietary	method	of	accessing	data.

To	simplify	using	relational	database	programs,	a	standard	language	called	Structured
Query	Language	(SQL)	was	developed.	This	language	supplants	the	need	to	learn
different	database-querying	languages	for	each	database	format.	Java	DB	supports	SQL.

In	database	programming,	a	request	for	records	in	a	database	is	called	a	query.	Using
SQL,	you	can	send	complex	queries	to	a	database	and	get	the	records	you’re	looking	for	in
any	order	you	specify.

Consider	the	example	of	a	database	programmer	at	a	student	loan	company	who	has	been
asked	to	prepare	a	report	on	the	most	delinquent	loan	recipients.	The	programmer	could
use	SQL	to	query	a	database	for	all	records	in	which	the	last	payment	was	more	than	180

days	ago	and	the	amount	due	is	more	than	$0.00.	SQL	also	can	be	used	to	control	the
order	in	which	records	are	returned,	so	the	programmer	can	get	the	records	in	the	order	of
Social	Security	number,	recipient	name,	amount	owed,	or	another	field	in	the	loan
database.

All	this	is	possible	with	SQL.	The	programmer	doesn’t	need	any	of	the	proprietary
languages	associated	with	popular	database	formats.

Caution

SQL	is	supported	by	many	database	tools,	so,	in	theory,	you	should	be	able	to	use
the	same	SQL	commands	for	each	database	tool	that	supports	the	language.
However,	you	will	still	need	to	learn	the	idiosyncrasies	of	a	specific	database	tool
when	accessing	it	through	SQL.

SQL	is	the	industry-standard	approach	to	accessing	relational	databases.	JDBC	supports
SQL,	enabling	developers	to	use	a	wide	range	of	database	formats	without	knowing	the
specifics	of	the	underlying	database.	JDBC	also	supports	the	use	of	database	queries
specific	to	a	database	format.

The	JDBC	class	library’s	approach	to	accessing	databases	with	SQL	is	comparable	to
existing	database-development	techniques,	so	interacting	with	a	SQL	database	by	using
JDBC	isn’t	much	different	from	using	traditional	database	tools.	Java	programmers	who
already	have	some	database	experience	can	hit	the	ground	running	with	JDBC.

The	JDBC	library	includes	classes	for	each	of	the	tasks	commonly	associated	with
database	usage:

	Making	a	connection	to	a	database

	Creating	a	statement	using	SQL

	Executing	that	SQL	query	in	the	database

	Viewing	the	resulting	records

These	JDBC	classes	all	are	part	of	the	java.sql	package.

Database	Drivers
Java	programs	that	use	JDBC	classes	can	follow	the	familiar	programming	model	of
issuing	SQL	statements	and	processing	the	resulting	data.	The	format	of	the	database	and
the	platform	it	was	prepared	on	don’t	matter.

This	platform	and	database	independence	is	made	possible	by	a	driver	manager.	The
classes	of	the	JDBC	library	are	largely	dependent	on	driver	managers,	which	keep	track	of
the	drivers	required	to	access	database	records.	You	need	a	different	driver	for	each
database	format	that’s	used	in	a	program,	and	sometimes	you	might	need	several	drivers
for	versions	of	the	same	format.	Java	DB	includes	its	own	driver.

JDBC	also	includes	a	driver	that	bridges	JDBC	and	another	database-connectivity
standard,	ODBC.

Examining	a	Database
NetBeans	has	extensive	support	for	database	programming.	Before	you	begin	writing
code,	you	can	use	it	to	connect	to	a	database,	learn	about	the	tables	it	contains,	and	see	the
data	in	those	tables.

To	connect	to	a	Java	DB	database,	first	you	must	start	the	database	server.

In	the	Projects	pane,	click	the	Services	tab	to	bring	it	to	the	front,	as	shown	in	Figure	18.1.
The	Databases	item	includes	a	Java	DB	item.	Right-click	it	and	choose	Start	Server.

FIGURE	18.1	Starting	the	Java	DB	database	server.

The	first	time	you	start	a	Java	DB	server	in	NetBeans,	it	might	fail	with	a	security	error.	In
that	circumstance,	NetBeans	displays	a	balloon	dialog	reporting	a	Security	Manager
Problem	(Figure	18.2).

FIGURE	18.2	Dealing	with	a	Security	Manager	error.

There	are	no	significant	security	risks	when	running	Java	DB	to	develop	and	test	JDBC
applications	in	this	chapter.	Click	the	Disable	Security	Manager	button;	then	start	Java	DB
again	in	the	Services	tab	of	the	Projects	pane.	Right-click	Java	DB	and	choose	Start
Server.

When	Java	DB	launches	after	any	security	issues	are	resolved,	it	launches	and	displays	a
few	lines	of	text	to	indicate	what	it’s	doing.	This	output	is	shown	in	Figure	18.3.

FIGURE	18.3	Launching	a	Java	DB	server	with	NetBeans.

This	database	server	calls	itself	the	Apache	Derby	Network	Server,	a	reflection	of	the	fact
that	Oracle’s	Java	DB	is	an	implementation	of	Derby.

The	server’s	output	indicates	that	the	server	is	running	on	port	1527	and	is	ready	to	take
connections.	Keep	this	window	open	so	that	you	can	monitor	the	server	while	it	runs.

In	the	Services	pane	under	Java	DB	is	a	sample	database	named	sample.	Connect	to	this
database	by	right-clicking	sample	and	choosing	Connect.

An	item	in	the	Services	pane	changes	from	a	broken	icon	into	an	unbroken	one:
jdbc:derby://localhost:1527/sample.

This	is	an	active	connection	to	the	database.	Expand	this	item,	and	then	expand	APP,
Tables,	and	CUSTOMER.	A	list	of	fields	in	the	CUSTOMER	table	appears,	as	shown	in
Figure	18.4.

FIGURE	18.4	Examining	tables	in	a	Java	DB	database.

You	can	view	the	records	in	this	table	by	right-clicking	CUSTOMER	and	choosing	View
Data.	Two	things	appear	in	other	panes	on	NetBeans.

A	SQL	command	appears	where	the	source	code	editor	normally	appears:
select	*	from	APP.CUSTOMER

This	command,	which	is	called	a	SQL	query,	selects	all	fields	from	APP.CUSTOMER.	The
asterisk	character	*	could	be	replaced	with	the	name	of	one	or	more	fields,	separated	by
commas.

Another	pane	displays	the	result	of	this	command:	all	the	data	in	this	table,	organized	into
rows	and	columns.	Each	column	is	a	field,	and	each	row	is	a	record	in	the	table.

Figure	18.5	shows	the	contents	of	the	CUSTOMER	table.	This	is	the	table	you’ll	be	writing
Java	code	to	access.

FIGURE	18.5	Displaying	database	records	in	a	table.

Reading	Records	from	a	Database
Your	first	project	today	is	a	Java	application	that	connects	to	a	sample	Java	DB	database
included	with	NetBeans	and	that	reads	records	from	a	table.

Working	with	a	database	in	a	Java	program	is	relatively	easy	if	you	are	conversant	with
SQL.

The	first	task	in	a	JDBC	program	is	to	load	the	driver	(or	drivers)	that	will	be	used	to
connect	to	a	data	source.	A	driver	is	loaded	with	the	Class.forName(String)
method.	Class,	part	of	the	java.lang	package,	can	be	used	to	load	classes	into	the
Java	Virtual	Machine	(JVM).	The	forName(String)	method	loads	the	class	named	by
the	specified	string.	This	method	can	throw	a	ClassNotFoundException.

Programs	that	use	Java	DB	can	use	org.apache.derby.jdbc.ClientDriver,	a
driver	included	with	the	database.	Loading	this	class	into	the	JVM	requires	the	following
statement:
Click	here	to	view	code	image

Class.forName(“org.apache.derby.jdbc.ClientDriver”);

After	the	driver	has	been	loaded,	you	can	establish	a	connection	to	the	data	source	by
using	the	DriverManager	class	in	the	java.sql	package.

The	getConnection(String,	String,	String)	method	of	DriverManager
can	be	used	to	set	up	the	connection.	It	returns	a	reference	to	a	Connection	object
representing	an	active	data	connection.

This	method	has	three	arguments:

	A	string	identifying	the	data	source	and	the	type	of	database	connectivity	used	to
reach	it

	A	username

	A	password

The	last	two	items	are	needed	only	if	the	data	source	is	secured	with	a	username	and
password.	If	it	isn’t,	these	arguments	can	be	null	strings	("").

Here’s	the	string	to	use	when	connecting	to	the	sample	database:
Click	here	to	view	code	image

jdbc:derby://localhost:1527/sample

You’ve	already	seen	this	string	in	the	Services	tab	of	the	Projects	pane,	where	it	is	an	item
that	represents	a	database	connection.

This	string	identifies	the	type	of	database	(jdbc:derby:),	the	host	and	port	of	the	database
server	(localhost:1527),	and	the	name	of	the	database	(sample).	Note	the	two	slash
characters	(//)	after	the	database	type	and	the	one	slash	after	the	host	and	port.

The	second	and	third	arguments	to	use	are	app	and	APP,	capitalized	as	shown.	They’re	the
username	and	password.

The	following	statement	could	be	used	to	connect	to	a	database	called	payroll	with	a
username	of	doc	and	a	password	of	1rover1:
Click	here	to	view	code	image

Connection	payday	=	DriverManager.getConnection(
				“jdbc:derby://localhost:1527/payroll”,
				“doc”,	“1rover1”);

After	you	have	a	connection,	you	can	reuse	it	each	time	you	want	to	retrieve	information
from	or	store	information	to	that	connection’s	data	source.

The	getConnection()	method	and	all	others	called	on	a	data	source	throw
SQLException	errors	if	something	goes	wrong	as	the	data	source	is	being	used.	SQL
has	its	own	error	messages,	and	they	are	passed	along	as	part	of	SQLException	objects.

Tip

NetBeans	shows	the	information	required	to	connect	to	a	database,	including	the
driver	class,	database	connection	string,	username,	and	password.	Right-click	the
database	connection,	such	as	jdbc:derby://localhost:1527/sample,
and	choose	Properties	from	the	pop-up	menu.	A	dialog	containing	the	class	and
other	information	about	the	connection	appears.

A	SQL	statement	is	represented	in	Java	by	a	Statement	object.	Statement	is	an

interface,	so	it	can’t	be	instantiated	directly.	However,	an	object	that	implements	the
interface	is	returned	by	the	createStatement()	method	of	a	Connection	object,
as	in	the	following	example:
Click	here	to	view	code	image

Statement	lookSee	=	payday.createStatement();

After	you	have	a	Statement	object,	you	can	use	it	to	conduct	a	SQL	query	by	calling
the	object’s	executeQuery(String)	method.	The	String	argument	should	be	a
SQL	query	that	follows	the	syntax	of	that	language.

Caution

It’s	beyond	the	scope	of	today’s	lesson	to	teach	SQL,	a	rich	data-retrieval	and
storage	language	that	has	its	own	new	book	from	this	publisher:	Sams	Teach
Yourself	SQL	in	24	Hours,	6th	Edition,	by	Ryan	Stephens,	Arie	D.	Jones,	and	Ron
Plew	(ISBN:	0-672-33759-2).	Although	you	need	to	learn	SQL	to	do	extensive
work	with	it,	much	of	the	language	is	easy	to	pick	up	from	any	examples	you	can
find,	such	as	those	you	will	work	with	today.

The	following	is	an	example	of	a	SQL	query	that	could	be	used	on	the	sample	database:
Click	here	to	view	code	image

select	NAME,	CITY	from	APP.CUSTOMER	where	(STATE	=	‘FL’)
				order	by	CITY;

This	SQL	query	retrieves	several	fields	for	each	record	in	the	database	for	which	the
STATE	field	equals	“FL”.	The	records	returned	are	sorted	according	to	their	CITY	field.
The	lowercase	parts	of	the	command	are	SQL	keywords.	The	uppercase	parts	are	aspects
of	the	table.

The	following	Java	statement	executes	that	query	on	a	Statement	object	named
looksee:
Click	here	to	view	code	image

ResultSet	set	=	looksee.executeQuery(
				“select	NAME,	CITY	from	APP.CUSTOMER	“
				+	”	where	(STATE	=	‘FL’)	order	by	CITY”;
);

Although	SQL	queries	end	with	a	semicolon	character	(;),	one	is	not	needed	in	the
argument	to	executeQuery().

If	the	SQL	query	has	been	phrased	correctly,	the	executeQuery()	method	returns	a
ResultSet	object	holding	all	the	records	that	have	been	retrieved	from	the	data	source.

Note

To	add	records	to	a	database	instead	of	retrieving	them,	you	should	call	the
statement’s	executeUpdate()	method.	You’ll	work	with	this	method	later.

When	a	ResultSet	is	returned	from	executeQuery(),	it	is	positioned	at	the	first

record	that	has	been	retrieved.	The	following	methods	of	ResultSet	can	be	used	to	pull
information	from	the	current	record:

	getDate(String)	returns	the	Date	value	stored	in	the	specified	field	name
(using	the	Date	class	in	the	java.sql	package,	not	java.util.Date).

	getDouble(String)	returns	the	double	value	stored	in	the	specified	field
name.

	getFloat(String)	returns	the	float	value	stored	in	the	specified	field.

	getInt(String)	returns	the	int	value	in	the	field.

	getLong(String)	returns	the	long	value	in	the	field.

	getString(String)	returns	the	String	in	the	field.

These	are	just	the	simplest	methods	available	in	the	ResultSet	interface.	The	methods
you	should	use	depends	on	the	form	that	the	field	data	takes	in	the	database.	But	methods
such	as	getString()	and	getInt()	can	be	more	flexible	in	the	information	they
retrieve	from	a	record.

You	also	can	use	an	integer	as	the	argument	to	any	of	these	methods,	such	as
getString(5),	instead	of	a	string.	The	integer	indicates	which	field	to	retrieve	(1	for
the	first	field,	2	for	the	second	field,	and	so	on).

A	SQLException	is	thrown	if	a	database	error	occurs	as	you	try	to	retrieve	information
from	a	resultset.	You	can	call	this	exception’s	getSQLState()	and
getErrorCode()	methods	to	learn	more	about	the	error.

After	you	have	pulled	the	information	you	need	from	a	record,	you	can	move	to	the	next
record	by	calling	the	next()	method	of	the	ResultSet	object.	This	method	returns	a
false	Boolean	value	when	it	tries	to	move	past	the	end	of	a	resultset.

Normally,	you	can	move	through	a	resultset	once	from	start	to	finish,	after	which	you
can’t	retrieve	its	contents	again.

When	you’re	finished	using	a	connection	to	a	data	source,	you	can	close	it	by	calling	the
connection’s	close()	method	with	no	arguments.

Listing	18.1	presents	the	CustomerReporter	application,	which	uses	the	Java	DB	driver
and	a	SQL	statement	to	retrieve	records	from	a	table	in	the	sample	database.	Four	fields
are	retrieved	from	each	record	indicated	by	the	SQL	statement:	TABLEID,	TABLENAME,
TABLETYPE,	and	SCHEMAID.	The	resultset	is	sorted	according	to	the	TABLENAME	field,
and	these	fields	are	displayed.

Before	creating	this	application,	you	must	add	the	JavaDB	library	to	the	project	in
NetBeans:

1.	Click	the	Projects	tab	in	the	Projects	pane	to	bring	it	to	the	front.

2.	Scroll	down	to	the	bottom	of	the	pane	and	right-click	the	Libraries	folder.

3.	Click	Add	Library	from	the	pop-up	menu	that	appears.	The	Add	Library	dialog

opens.

4.	Choose	JavaDB	under	Available	Libraries	and	click	Add	Library.

The	library	now	appears	in	the	Libraries	folder.	Three	new	JAR	files	will	appear	in	the
Libraries	item	in	the	Projects	pane:	derby.jar,	derbyclient.jar,	and
derbynet.jar.	The	driver	necessary	to	access	the	sample	database	on	the	Java	DB
server	will	be	available	to	the	CustomerReporter	application.

Create	the	CustomerReporter	class	in	the	com.java21days	package	in	NetBeans
with	the	source	code	of	the	listing.

LISTING	18.1	The	Full	Text	of	CustomerReporter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.sql.*;
	4:
	5:	public	class	CustomerReporter	{
	6:					public	static	void	main(String[]	arguments)	{
	7:								String	data	=	“jdbc:derby://localhost:1527/sample”;
	8:								try	(
	9:												Connection	conn	=	DriverManager.getConnection(
10:																data,	“app”,	“APP”);
11:												Statement	st	=	conn.createStatement())	{
12:
13:												Class.forName(“org.apache.derby.jdbc.ClientDriver”);
14:
15:													ResultSet	rec	=	st.executeQuery(
16:																	“select	CUSTOMER_ID,	NAME,	CITY,	STATE	“	+
17:																	“from	APP.CUSTOMER	“	+
18:																	“order	by	CUSTOMER_ID”);
19:													while	(rec.next())	{
20:																	System.out.println(“CUSTOMER_ID:\t”
21:																					+	rec.getString(1));
22:																	System.out.println(“NAME:\t”	+	rec.getString(2));
23:																	System.out.println(“CITY:\t”	+	rec.getString(3));
24:																	System.out.println(“STATE:\t”	+	rec.getString(4));
25:																	System.out.println();
26:													}
27:													st.close();
28:									}	catch	(SQLException	s)	{
29:													System.out.println(“SQL	Error:	“	+	s.toString()	+	”	“
30:																	+	s.getErrorCode()	+	”	“	+	s.getSQLState());
31:									}	catch	(Exception	e)	{
32:													System.out.println(“Error:	“	+	e.toString()
33:																	+	e.getMessage());
34:									}
35:					}
36:	}

When	this	program	is	run	with	the	starting	data	from	the	sample	database,	part	of	the
output	is	shown	in	Figure	18.6.

FIGURE	18.6	Reading	records	from	a	Java	DB	database.

Caution

If	you	run	this	application	and	it	fails	with	an	SQL	error	stating	“Connection
authentication	failure	occurred.	Reason:	Userid	or	password	invalid,”	it	may	be	due
to	a	bug	in	NetBeans.	Change	the	password	used	as	the	final	argument	to	the
getConnection()	method	in	Lines	9–10	from	“APP”	to	“app”	and	run	the
program	again	to	see	if	it	resolves	the	problem.

Writing	Records	to	a	Database
In	the	CustomerReporter	application,	you	retrieved	data	from	a	database	using	a	SQL
statement	prepared	as	a	string:
Click	here	to	view	code	image

select	CUSTOMER_ID,	NAME,	CITY,	STATE	from	APP.CUSTOMER
				order	by	CUSTOMER_ID;

This	is	a	common	way	to	use	SQL.	You	could	write	a	program	that	asks	a	user	to	enter	a
SQL	query	and	then	displays	the	result.	(However,	this	would	be	a	terrible	idea,	because
SQL	queries	can	be	used	to	delete	records,	tables,	and	even	entire	databases.)

The	java.sql	package	also	supports	another	way	to	create	a	SQL	statement:	a	prepared
statement.

A	prepared	statement,	which	is	represented	by	the	PreparedStatement	class,	is	a

SQL	statement	that	is	compiled	before	it	is	executed.	This	enables	the	statement	to	return
data	more	quickly	and	is	a	better	choice	if	you	are	executing	a	SQL	statement	repeatedly
in	the	same	program.
To	create	a	prepared	statement,	call	a	connection’s	prepareStatement(String)
method	with	a	string	that	indicates	the	structure	of	the	SQL	statement.

To	indicate	the	structure,	you	write	a	SQL	statement	in	which	parameters	have	been
replaced	with	question	marks.

Here’s	an	example	for	a	connection	object	called	cc:
Click	here	to	view	code	image

PreparedStatement	ps	=	cc.prepareStatement(
				“select	*	from	APP.CUSTOMER	where	(ZIP=?)	“
				+	“order	by	NAME”);

Here’s	another	example	with	more	than	one	question	mark:
Click	here	to	view	code	image

PreparedStatement	ps	=	cc.prepareStatement(
				“insert	into	APP.CUSTOMER	“	+
				“VALUES(?,	?,	?,	?,	?,	?,	?,	?,	?,	?,	?,	?,	?)”);

The	question	marks	in	these	SQL	statements	are	placeholders	for	data.	Before	you	can
execute	the	statement,	you	must	put	data	in	each	of	these	places	using	one	of	the	methods
of	the	PreparedStatement	class.

To	put	data	into	a	prepared	statement,	you	must	call	a	method	with	the	position	of	the
placeholder	followed	by	the	data	to	insert.

For	example,	to	put	the	string	“Acme	Corp.”	in	the	fifth	field	of	the	prepared	statement,
call	the	setString(int,	String)	method:

ps.setString(5,	“Acme	Corp.”);

The	first	argument	indicates	the	placeholder’s	position,	numbered	from	left	to	right.	The
first	question	mark	is	1,	the	second	is	2,	and	so	on.

The	second	argument	is	the	data	to	put	in	the	statement	at	that	position.

The	following	methods	are	available:

	setAsciiStream(int,	InputStream,	int)—At	the	position	indicated	by
the	first	argument,	insert	the	specified	InputStream,	which	represents	a	stream	of
ASCII	characters.	The	third	argument	indicates	how	many	bytes	from	the	input
stream	to	insert.

	setBinaryStream(int,	InputStream,	int)—At	the	position	indicated
by	the	first	argument,	insert	the	specified	InputStream,	which	represents	a
stream	of	bytes.	The	third	argument	indicates	how	many	bytes	to	insert	from	the
stream.

	setCharacterStream(int,	Reader,	int)—At	the	position	indicated	by
the	first	argument,	insert	the	specified	Reader,	which	represents	a	character	stream.
The	third	argument	indicates	how	many	characters	to	insert	from	the	stream.

	setBoolean(int,	boolean)—Inserts	a	boolean	value	at	the	position
indicated	by	the	integer.

	setByte(int,	byte)—Inserts	a	byte	value	at	the	indicated	position.

	setBytes(int,	byte[])—Inserts	an	array	of	bytes	at	the	indicated	position.

	setDate(int,	Date)—Inserts	a	Date	object	(from	the	java.sql	package)
at	the	indicated	position.

	setDouble(int,	double)—Inserts	a	double	value	at	the	indicated	position.

	setFloat(int,	float)—Inserts	a	float	value	at	the	indicated	position.

	setInt(int,	int)—Inserts	an	int	value	at	the	indicated	position.

	setLong(int,	long)—Inserts	a	long	value	at	the	indicated	position.

	setShort(int,	short)—Inserts	a	short	value	at	the	indicated	position.

	setString(int,	String)—Inserts	a	String	value	at	the	indicated	position.

There’s	also	a	setNull(int,	int)	method	that	stores	SQL’s	version	of	a	null	(empty)
value	at	the	position	indicated	by	the	first	argument.

The	second	argument	to	setNull()	should	be	a	class	variable	from	the	Types	class	in
java.sql	to	indicate	what	kind	of	SQL	value	belongs	in	that	position.

There	are	class	variables	for	each	of	the	SQL	data	types.	This	list,	which	is	not	complete,
includes	some	of	the	most	commonly	used	variables:	BIGINT,	BIT,	CHAR,	DATE,
DECIMAL,	DOUBLE,	FLOAT,	INTEGER,	SMALLINT,	TINYINT,	and	VARCHAR.

The	following	code	puts	a	null	CHAR	value	at	the	fifth	position	in	a	prepared	statement
called	ps:

ps.setNull(5,	Types.CHAR);

The	next	project	demonstrates	the	use	of	a	prepared	statement	to	add	stock	quote	data	to	a
database.	Quotes	are	collected	from	Yahoo!.

As	a	service	to	people	who	follow	the	stock	market,	Yahoo!	offers	a	Download
Spreadsheet	link	on	its	main	stock	quote	page	for	each	ticker	symbol.

To	see	this	link,	look	up	a	stock	quote	on	Yahoo!	or	go	directly	to	a	page	such	as	this	one:
Click	here	to	view	code	image

http://quote.yahoo.com/q?s=fb&d=v1

At	the	bottom	of	the	page	under	the	Toolbox	heading,	you	can	find	a	Download	Data	link.
Here’s	what	the	link	to	Facebook	looks	like:
Click	here	to	view	code	image

http://download.finance.yahoo.com/d/quotes.csv?s=FB&f=sl1d1t1c1ohgv&e=.csv

You	can	click	this	link	to	open	the	file	or	save	it	to	a	folder	on	your	system.	The	file,
which	is	only	one	line	long,	contains	the	stock’s	price	and	volume	data	saved	at	the	last
market	close.	Here’s	an	example	of	what	Facebook’s	data	looked	like	on	Sept.	25,	2015:

Click	here	to	view	code	image
“FB”,92.77,“9/25/2015”,“4:00pm”,-1.64,95.85,95.85,92.06,28961622

The	fields	in	this	data,	in	order,	are	the	ticker	symbol,	closing	price,	date,	time,	price
change	since	yesterday’s	close,	daily	low,	daily	high,	daily	open,	and	volume.

The	QuoteData	application	uses	each	of	these	fields	except	one—the	time,	which	isn’t
particularly	useful	because	it’s	always	the	time	the	market	closed.

The	following	takes	place	in	the	program:

	A	stock’s	ticker	symbol	is	used	as	a	command-line	argument.

	A	QuoteData	object	is	created	with	the	ticker	symbol	as	an	instance	variable
called	ticker.

	The	object’s	retrieveQuote()	method	is	called	to	download	the	stock	data
from	Yahoo!	and	return	it	as	a	String.

	The	object’s	storeQuote()	method	is	called	with	that	String	as	an	argument.
It	saves	the	stock	data	to	a	database	using	a	JDBC-ODBC	connection.

Before	you	can	run	the	application,	you	must	have	a	database	table	designed	to	hold	these
stock	quotes.

You	can	create	a	new	table	for	this	purpose	in	the	sample	database	in	NetBeans	by
following	these	steps:

1.	In	the	Services	tab	of	the	Projects	pane,	open	the	APP	item	under	the
jdbc:derby://localhost:1527/sample	item.

2.	Right-click	this	item’s	Tables	folder	and	choose	Create	Table	from	the	pop-up
menu.	The	Create	Table	dialog	opens,	as	shown	in	Figure	18.7.

FIGURE	18.7	Creating	a	new	database	table	in	NetBeans.

3.	In	the	Table	Name	field,	enter	STOCKS.

4.	Click	Add	column.	The	Add	Column	dialog	opens.

5.	In	the	Name	field,	enter	TICKER.

6.	In	the	Type	field,	choose	VARCHAR.

7.	In	the	Size	field,	enter	10.

8.	Click	OK.	The	new	field	appears	in	the	dialog.

9.	Repeat	steps	4–8	for	fields	named	PRICE,	DATE,	CHANGE,	LOW,	HIGH,
PRICEOPEN,	and	VOLUME.	The	type	and	size	are	always	VARCHAR	and	10,
respectively.

10.	Click	OK.	The	STOCKS	table	appears	in	the	Tables	folder.

Now	that	you	have	a	database	table,	you	can	create	the	QuoteData	application,	shown	in
Listing	18.2,	to	store	stock	data	in	a	new	record	of	that	table.	Create	the	class
QuoteData	in	the	com.java21days	package	in	NetBeans.

LISTING	18.2	The	Full	Text	of	QuoteData.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	java.net.*;
	5:	import	java.sql.*;
	6:	import	java.util.*;
	7:
	8:	public	class	QuoteData	{
	9:					private	String	ticker;
10:
11:					public	QuoteData(String	inTicker)	{
12:									ticker	=	inTicker;
13:					}
14:
15:					private	String	retrieveQuote()	{
16:									StringBuilder	builder	=	new	StringBuilder();
17:									try	{
18:													URL	page	=	new	URL(
19:																	“http://quote.yahoo.com/d/quotes.csv?s=”	+
20:																	ticker	+	“&f=sl1d1t1c1ohgv&e=.csv”);
21:													String	line;
22:													URLConnection	conn	=	page.openConnection();
23:													conn.connect();
24:													InputStreamReader	in	=	new	InputStreamReader(
25:																	conn.getInputStream());
26:													BufferedReader	data	=	new	BufferedReader(in);
27:													while	((line	=	data.readLine())	!=	null)	{
28:																	builder.append(line);
29:																	builder.append(“\n”);
30:													}
31:									}	catch	(MalformedURLException	mue)	{
32:													System.out.println(“Bad	URL:	“	+	mue.getMessage());
33:									}	catch	(IOException	ioe)	{
34:													System.out.println(“IO	Error:”	+	ioe.getMessage());
35:									}
36:									return	builder.toString();

37:					}
38:
39:					private	void	storeQuote(String	data)	{
40:									StringTokenizer	tokens	=	new	StringTokenizer(data,	“,”);
41:									String[]	fields	=	new	String[9];
42:									for	(int	i	=	0;	i	<	fields.length;	i++)	{
43:													fields[i]	=	stripQuotes(tokens.nextToken());
44:									}
45:									String	datasource	=	“jdbc:derby://localhost:1527/sample”;
46:									try	(
47:													Connection	conn	=	DriverManager.getConnection(
48:																	datasource,	“app”,	“app”)
49:)	{
50:
51:													Class.forName(“org.apache.derby.jdbc.ClientDriver”);
52:													PreparedStatement	prep2	=	conn.prepareStatement(
53:																	“insert	into	“	+
54:																	“APP.STOCKS(TICKER,	PRICE,	DATE,	CHANGE,	LOW,	“	+
55:																	“HIGH,	PRICEOPEN,	VOLUME)	”	+
56:																	“values(?,	?,	?,	?,	?,	?,	?,	?)”);
57:													prep2.setString(1,	fields[0]);
58:													prep2.setString(2,	fields[1]);
59:													prep2.setString(3,	fields[2]);
60:													prep2.setString(4,	fields[4]);
61:													prep2.setString(5,	fields[5]);
62:													prep2.setString(6,	fields[6]);
63:													prep2.setString(7,	fields[7]);
64:													prep2.setString(8,	fields[8]);
65:													prep2.executeUpdate();
66:													prep2.close();
67:													conn.close();
68:									}	catch	(SQLException	sqe)	{
69:													System.out.println(“SQL	Error:	“	+	sqe.getMessage());
70:									}	catch	(ClassNotFoundException	cnfe)	{
71:													System.out.println(cnfe.getMessage());
72:									}
73:					}
74:
75:					private	String	stripQuotes(String	input)	{
76:									StringBuilder	output	=	new	StringBuilder();
77:									for	(int	i	=	0;	i	<	input.length();	i++)	{
78:													if	(input.charAt(i)	!=	‘"’)	{
79:																	output.append(input.charAt(i));
80:													}
81:									}
82:									return	output.toString();
83:					}
84:
85:					public	static	void	main(String[]	arguments)	{
86:									if	(arguments.length	<	1)	{
87:													System.out.println(“Usage:	java	QuoteData	ticker”);
88:													System.exit(0);
89:									}
90:									QuoteData	qd	=	new	QuoteData(arguments[0]);
91:									String	data	=	qd.retrieveQuote();
92:									qd.storeQuote(data);
93:					}
94:	}

Before	you	run	the	application,	you	must	set	a	command-line	argument.	Choose	Run,	Set
Project	Configuration,	Customize,	and	then	enter	the	main	class	QuoteData	and	the

argument	of	a	valid	ticker	symbol,	such	as	FB	(Facebook),	GOOG	(Google),	or	PSO
(Pearson	PLC).

The	application	stores	the	stock	data	but	does	not	display	any	output.

To	see	that	it	worked,	right-click	the	STOCKS	table	in	the	Services	tab	and	choose	View
Data.	The	table	records	are	displayed;	they	should	include	at	least	one	day’s	data	for	the
requested	stock	ticker	symbol,	as	shown	in	Figure	18.8.

FIGURE	18.8	Records	in	the	STOCKS	table.

The	retrieveQuote()	method	(lines	15–37)	downloads	the	quote	data	from	Yahoo!
and	saves	it	as	a	string.	The	techniques	used	in	this	method	were	covered	on	Day	17,
“Communicating	Across	the	Internet.”

The	storeQuote()	method	(lines	39–73)	uses	the	SQL	techniques	covered	in	this
section.

The	method	begins	by	using	the	StringTokenizer	class	to	split	the	quote	data	into	a
set	of	tokens,	using	the	comma	character	(,)	as	the	delimiter	between	each	token.	The
tokens	then	are	stored	in	a	String	array	with	nine	elements.

The	array	contains	the	same	fields	as	the	Yahoo!	data	in	the	same	order:	ticker	symbol,
closing	price,	date,	time,	price	change,	low,	high,	open,	and	volume.

Next,	a	data	connection	to	the	QuoteData	data	source	is	created	using	the	Java	DB
database	driver	(lines	45–49).

This	connection	then	is	used	to	create	a	prepared	statement	(lines	52–56).	This	statement
uses	the	insert	into	SQL	statement,	which	causes	data	to	be	stored	in	a	database.	In
this	case,	the	database	is	sample,	and	the	insert	into	statement	refers	to	the
APP.STOCKS	table	in	that	database.

The	prepared	statement	has	eight	placeholders.	Only	eight	are	needed,	instead	of	nine,
because	the	application	does	not	use	the	time	field	from	the	Yahoo!	data.

A	series	of	setString()	methods	puts	the	elements	of	the	String	array	into	the
prepared	statement,	in	the	same	order	that	the	fields	exist	in	the	database:	ticker	symbol,
closing	price,	date,	price	change,	low,	high,	open,	and	volume	(lines	57–64).

Because	some	fields	in	the	Yahoo!	data	are	dates,	floating-point	numbers,	and	integers,
you	might	think	that	it	would	be	better	to	use	setDate(),	setFloat(),	and
setInt()	for	that	data.	This	application	stores	all	the	stock	data	as	strings	because	that’s

more	likely	to	work	regardless	of	the	database	software	being	used.

Caution

Some	databases	you	could	use	in	Java	programs,	including	Microsoft	Access,	do
not	support	some	of	these	methods	when	you	are	using	SQL	to	work	with	the
database,	even	though	they	exist	in	Java.	If	you	try	to	use	an	unsupported	method,
such	as	setFloat(),	a	SQLException	error	occurs.

It’s	easier	to	send	a	database	strings	and	let	the	database	program	automatically
convert	them	into	the	correct	format.	This	is	likely	to	be	true	when	you	are	working
with	other	databases;	the	level	of	SQL	support	varies	based	on	the	product	and
driver	involved.

After	the	statement	has	been	prepared	and	all	the	placeholders	are	filled,	the	statement’s
executeUpdate()	method	is	called	in	line	65.	This	either	adds	the	quote	data	to	the
database	or	throws	a	SQL	error.

The	private	method	stripQuotes()	is	used	to	remove	quotation	marks	from	Yahoo!’s
stock	data.	This	method	is	called	in	line	43	to	take	care	of	three	fields	that	contain
extraneous	quotes:	the	ticker	symbol,	date,	and	time.

Moving	Through	Resultsets
The	default	behavior	of	resultsets	permits	one	trip	through	the	set	using	its	next()
method	to	retrieve	each	record.

By	changing	how	statements	and	prepared	statements	are	created,	you	can	produce
resultsets	that	support	these	additional	methods:

	afterLast()	moves	to	a	place	immediately	after	the	last	record	in	the	set.

	beforeFirst()	moves	to	a	place	immediately	before	the	first	record	in	the	set.

	first()	moves	to	the	first	record	in	the	set.

	last()	moves	to	the	last	record	in	the	set.

	previous()	moves	to	the	previous	record	in	the	set.

These	actions	are	possible	when	the	resultset’s	policies	have	been	specified	as	arguments
to	a	database	connection’s	createStatement()	and	prepareStatement()
methods.

Normally,	createStatement()	takes	no	arguments,	as	in	this	example:
Click	here	to	view	code	image

Connection	payday	=	DriverManager.getConnection(
				“jdbc:derby://localhost:1527/sample”,	“Doc”,	“1rover1”);
Statement	lookSee	=	payday.CreateStatement();

For	a	more	flexible	resultset,	call	createStatement()	with	three	integer	arguments
that	set	up	how	it	can	be	used.	Here’s	a	rewrite	of	the	preceding	statement:

Click	here	to	view	code	image
Statement	lookSee	=	payday.createStatement(
				ResultSet.TYPE_SCROLL_INSENSITIVE,
				ResultSet.CONCUR_READ_ONLY,
				ResultSet.CLOSE_CURSORS_AT_COMMIT);

The	same	three	arguments	can	be	used	in	the	prepareStatement(String,	int,
int,	int)	method	after	the	text	of	the	statement.

The	ResultSet	class	includes	other	class	variables	that	offer	more	options	in	how	sets
can	be	read	and	modified.

Summary
Today	you	learned	to	read	and	write	database	records	using	classes	that	work	with	any	of
the	popular	relational	databases.	The	techniques	used	to	work	with	Java	DB	can	be	used
with	Microsoft	Access,	MySQL,	and	other	programs.	The	only	thing	that	needs	to	be
changed	is	the	database	driver	class	and	the	strings	used	to	create	a	connection.

Using	Java	Database	Connectivity	(JDBC),	you	can	incorporate	existing	data-storage
solutions	into	your	Java	programs.

You	can	connect	to	several	different	relational	databases	in	your	Java	programs	by	using
JDBC	and	Structured	Query	Language	(SQL),	a	standard	language	for	reading,	writing,
and	managing	a	database.

Q&A
Q	What’s	the	difference	between	Java	DB	and	more	well-known	databases	such
as	Access	and	MySQL?	Which	should	I	use?

A	Java	DB	is	intended	for	database	applications	that	have	simpler	needs	than	Access
and	comparable	databases.	The	entire	application	takes	up	under	4MB	of	space,
making	it	easy	to	bundle	with	Java	applications	that	require	database	connectivity.

Oracle	employs	Java	DB	in	several	parts	of	the	Java	Enterprise	Edition,	which
demonstrates	that	it	can	deliver	strong,	reliable	performance	on	important	tasks.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	does	a	Statement	object	represent	in	a	database	program?

A.	A	connection	to	a	database

B.	A	database	query	written	in	Structured	Query	Language

C.	A	data	source

2.	Which	Java	class	represents	SQL	statements	that	are	compiled	before	they	are
executed?

A.	Statement

B.	PreparedStatement

C.	ResultSet

3.	What	does	the	Class.forName(String)	method	accomplish?

A.	It	provides	the	name	of	a	class.

B.	It	loads	a	database	driver	that	can	be	used	to	access	a	database.

C.	It	deletes	an	object.

Answers
1.	B.	The	class,	part	of	the	java.sql	package,	represents	a	SQL	statement.

2.	B.	Because	it	is	compiled,	PreparedStatement	is	a	better	choice	when	you
need	to	execute	the	same	SQL	query	numerous	times.

3.	B.	This	static	method	loads	a	database	driver.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	ArrayClass	{

				public	static	ArrayClass	newInstance()	{
								count++;
								return	new	ArrayClass();
				}

				public	static	void	main(String	arguments[])	{
								new	ArrayClass();
				}

				int	count	=	-1;
}

Which	line	in	this	program	prevents	it	from	compiling	successfully?

A.	count++;

B.	return	new	ArrayClass();

C.	public	static	void	main(String	arguments[])	{

D.	int	count	=	-1;

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	18
page	and	click	the	Certification	Practice	link.

http://www.java21days.com

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Modify	the	CustomerReporter	application	to	pull	fields	from	another	table	in	APP.

2.	Write	an	application	that	reads	and	displays	records	from	the	Yahoo!	stock	quote
database.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com

Day	19.	Reading	and	Writing	RSS	Feeds

Today,	you	work	with	Extensible	Markup	Language	(XML),	a	popular	and	widely
implemented	formatting	standard	that	enables	data	to	be	portable.

You	explore	XML	in	the	following	ways:

	Representing	data	as	XML

	Discovering	why	XML	is	a	useful	way	to	store	data

	Using	XML	to	publish	web	content

	Reading	and	writing	XML	data

The	XML	format	employed	throughout	the	day	is	Really	Simple	Syndication	(RSS),	a
popular	way	to	publish	web	content	and	share	information	on	site	updates.	RSS	has	been
adopted	by	millions	of	sites.

Using	XML
One	of	Java’s	main	selling	points	is	that	the	language	produces	programs	that	can	run	on
different	operating	systems	without	modification.	The	portability	of	software	is	a	big
convenience	in	today’s	computing	world,	where	Windows,	Linux,	Mac	OS,	iOS,	Android,
and	other	operating	systems	are	in	wide	use	and	many	people	work	with	multiple	systems.

XML	is	a	format	for	storing	and	organizing	data	that	is	independent	of	any	software
program	that	works	with	the	data.

Data	that	is	compliant	with	XML	is	easier	to	reuse	for	several	reasons.

First,	the	data	is	structured	in	a	standard	way,	making	it	possible	for	software	to	read	and
write	the	data	as	long	as	it	supports	XML.	If	you	create	an	XML	file	that	represents	your
company’s	employee	database,	several	dozen	XML	parsers	can	read	the	file	and	make
sense	of	its	contents.

This	is	true	no	matter	what	kind	of	information	you	collect	about	each	employee.	If	your
database	contains	only	the	employee’s	name,	ID	number,	and	salary,	XML	parsers	can
read	it.	If	it	contains	25	items,	including	birthday,	blood	type,	and	hair	color,	parsers	can
read	that,	too.

Second,	the	data	is	self-documenting,	making	it	easier	for	people	to	understand	a	file’s
purpose	by	looking	at	it	in	a	text	editor.	Anyone	who	opens	your	XML	employee	database
should	be	able	to	figure	out	the	structure	and	content	of	each	employee	record	without	any
assistance	from	you.

This	is	evident	in	Listing	19.1,	which	contains	an	RSS	file.	Because	RSS	is	an	XML
dialect,	it	is	structured	under	the	rules	of	XML.	Enter	this	code	in	NetBeans	(category
Other,	type	Empty	File)	and	save	it	as	workbench.rss.	(You	also	can	download	a	copy
of	it	from	the	book’s	website	at	www.java21days.com	on	the	Day	19	page.)

LISTING	19.1	The	Full	Text	of	workbench.rss
Click	here	to	view	code	image

http://www.java21days.com

	1:	<?xml	version=“1.0”	encoding=“utf-8”?>
	2:	<rss	version=“2.0”>
	3:			<channel>
	4:					<title>Workbench</title>
	5:					<link>http://workbench.cadenhead.org/</link>
	6:					<description>Programming,	publishing,	and	popes</description>
	7:					<docs>http://www.rssboard.org/rss-specification</docs>
	8:					<item>
	9:							<title>Programming	Confidence	Pool	for	the	World	Cup</title>
10:							<link>http://workbench.cadenhead.org/news/739</link>
11:							<pubDate>Wed,	11	Jun	2015	11:49:47	-0400</pubDate>
12:							<guid	isPermaLink=“false”>tag:cadenhead.org,2015:w.739</guid>
13:							<enclosure	length=“2498623”	type=“audio/mpeg”
14:											url=“http://mp3.cadenhead.org/3679.mp3”	/>
15:					</item>
16:					<item>
17:							<title>Ghost	of	Computer	Author	Past</title>
18:							<link>http://workbench.cadenhead.org/news/737</link>
19:							<pubDate>Mon,	24	Mar	2014	17:00:13	-0400</pubDate>
20:							<guid	isPermaLink=“false”>tag:cadenhead.org,2015:w.737</guid>
21:					</item>
22:					<item>
23:							<title>Interview	with	Zoe	Zolbrod</title>
24:							<link>http://workbench.cadenhead.org/news/736</link>
25:							<pubDate>Fri,	21	Mar	2014	11:12:55	-0400</pubDate>
26:							<guid	isPermaLink=“false”>tag:cadenhead.org,2015:w.736</guid>
27:					</item>
28:			</channel>
29:	</rss>

Can	you	tell	what	the	data	represents?	Although	the	?xml	tag	at	the	top	might	be
indecipherable,	the	rest	is	clearly	a	website	database	of	some	kind.

The	?xml	tag	in	the	first	line	of	the	file	has	a	version	attribute	with	a	value	of	“1.0”
and	an	encoding	attribute	of	“utf-8”.	This	establishes	that	the	file	follows	the	rules	of
XML	1.0	and	is	encoded	with	the	UTF-8	character	set.

Data	in	XML	is	surrounded	by	tag	elements	that	describe	the	data.	Opening	tags	begin
with	a	<	character	followed	by	the	name	of	the	tag	and	a	>	character.	Closing	tags	begin
with	the	</	characters	followed	by	a	name	and	a	>	character.	In	Listing	19.1,	for	example,
<item>	on	line	8	is	an	opening	tag,	and	</item>	on	line	15	is	a	closing	tag.	Everything
within	those	tags	is	considered	to	be	the	value	of	that	element.

Elements	can	be	nested	within	other	elements,	creating	a	hierarchy	of	XML	data	that
establishes	relationships	within	that	data.	In	Listing	19.1,	everything	in	lines	9–14	is
related;	each	element	defines	something	about	the	same	website	item.

Elements	also	can	include	attributes,	which	are	made	up	of	data	that	supplements	the	rest
of	the	data	associated	with	the	element.	Attributes	are	defined	within	an	opening	tag
element.	The	name	of	an	attribute	is	followed	by	an	equal	sign	and	text	within	quotation
marks.

In	line	12	of	Listing	19.1,	the	guid	element	includes	an	isPermaLink	attribute	with	a
value	of	“false”.	This	indicates	that	the	element’s	value,	tag:cadenhead.org,2015:w.739,	is
not	a	permalink,	the	URL	at	which	the	item	can	be	loaded	in	a	browser.

XML	also	supports	elements	defined	by	a	single	tag	rather	than	a	pair	of	tags.	The	tag
begins	with	a	<	character	followed	by	the	name	of	the	tag	and	ends	with	the	/>	characters.
The	RSS	file	includes	an	enclosure	element	in	lines	13–14	that	describes	an	MP3
audio	file	associated	with	the	item.

XML	encourages	the	creation	of	data	that’s	understandable	and	usable	even	if	the	user
doesn’t	have	the	program	that	created	it	and	cannot	find	any	documentation	that	describes
it.

For	the	most	part,	you	can	understand	the	purpose	of	the	RSS	file	shown	in	Listing	19.1
simply	by	looking	at	it.	Each	item	represents	a	web	page	that	has	been	updated	recently.

Tip

Publishing	new	site	content	with	RSS	and	a	similar	format,	Atom,	has	become	one
of	the	best	ways	to	build	readership	on	the	Web.	Thousands	of	people	subscribe	to
RSS	files,	which	are	called	feeds,	using	reader	software	such	as	Feedly	and	My
Yahoo!.

Rogers	Cadenhead,	the	author	of	this	book,	is	the	chairman	of	the	RSS	Advisory
Board,	the	group	that	publishes	the	RSS	2.0	specification.	For	more	information	on
the	format,	visit	the	board’s	website	at	www.rssboard.org	or	subscribe	to	its	RSS
feed	at	www.rssboard.org/rss-feed.

There’s	also	another	version	of	RSS,	RDF	Site	Summary,	that’s	used	on	some	sites
for	its	feeds.	Find	out	more	at	http://web.resource.org/rss/1.0.

Data	that	follows	XML’s	formatting	rules	is	said	to	be	well-formed.	Any	software	that	can
work	with	XML	reads	and	writes	well-formed	XML	data.

By	insisting	on	well-formed	markup,	XML	simplifies	the	task	of	writing	programs	that
work	with	the	data.	RSS	makes	website	updates	available	in	a	form	that	software	can
easily	process.	The	RSS	feed	for	Workbench	at	http://feeds.cadenhead.org/workbench	has
two	distinct	audiences:	humans	reading	the	blog	through	their	preferred	RSS	reader,	and
computers	that	do	something	with	this	data.	Twitter,	Facebook,	and	many	other	sites	can
pull	data	from	an	RSS	feed	and	present	it	to	users.

Designing	an	XML	Dialect
Although	XML	is	described	as	a	language	and	is	compared	to	Hypertext	Markup
Language	(HTML),	it’s	actually	much	larger	in	scope.	XML	is	a	markup	language	that
defines	how	to	define	a	markup	language.

That’s	an	odd	distinction	to	make,	and	probably	sounds	like	something	you’d	encounter	in
a	philosophy	textbook.	This	concept	is	important	to	understand	because	it	explains	how
XML	can	be	used	to	define	data	as	varied	as	health-care	claims,	genealogical	records,
newspaper	articles,	and	molecules.

The	X	in	XML	stands	for	Extensible,	and	it	refers	to	organizing	data	for	your	own
purposes.	Data	that’s	organized	using	the	rules	of	XML	can	represent	anything	you	want:

http://www.rssboard.org
http://www.rssboard.org/rss-feed
http://web.resource.org/rss/1.0
http://feeds.cadenhead.org/workbench

	A	programmer	at	a	telemarketing	company	can	use	XML	to	store	data	on	each
outgoing	call,	saving	the	time	of	the	call,	the	number,	the	operator	who	made	the
call,	and	the	result.

	A	hobbyist	can	use	XML	to	keep	track	of	the	annoying	telemarketing	calls	she
receives,	noting	the	time	of	the	call,	the	company,	and	the	product	being	peddled.

	A	programmer	at	a	government	agency	can	use	XML	to	track	complaints	about
telemarketers,	saving	the	name	of	the	marketing	firm	and	the	number	of	complaints.

Each	of	these	examples	uses	XML	to	define	a	new	language	that	suits	a	specific	purpose.
Although	you	could	call	them	XML	languages,	they’re	more	commonly	described	as
XML	dialects	or	XML	document	types.

An	XML	dialect	can	be	designed	using	a	document	type	definition	(DTD)	that	indicates
the	potential	elements	and	attributes	it	covers.

A	special	!DOCTYPE	declaration	can	be	placed	in	XML	data,	right	after	the	initial	?xml
tag,	to	identify	its	DTD.	Here’s	an	example:
Click	here	to	view	code	image

<!DOCTYPE	Library	SYSTEM	“librml.dtd”>

The	!DOCTYPE	declaration	is	used	to	identify	the	DTD	that	applies	to	the	data.	When	a
DTD	is	present,	many	XML	tools	can	read	XML	created	for	that	DTD	and	determine
whether	the	data	follows	all	the	rules.	If	it	doesn’t,	it	is	rejected	with	a	reference	to	the	line
that	caused	the	error.	This	process	is	called	validating	the	XML.

One	thing	you	run	into	as	you	work	with	XML	is	data	that	has	been	structured	as	XML	but
wasn’t	defined	using	a	DTD.	Most	versions	of	RSS	files	do	not	require	a	DTD.	This	data
can	be	parsed	(presuming	it’s	well-formed),	so	you	can	read	it	into	a	program	and	do
something	with	it,	but	you	can’t	check	its	validity	to	make	sure	that	it’s	organized
correctly	according	to	the	rules	of	its	dialect.

Tip

To	give	you	an	idea	of	what	kinds	of	XML	dialects	have	been	created,	Cover	Pages
offers	a	list	at	http://xml.coverpages.org/xmlApplications.html.

Processing	XML	with	Java
Java	supports	XML	through	the	Java	API	for	XML	Processing,	a	set	of	packages	for
reading,	writing,	and	manipulating	XML	data.

The	javax.xml.parsers	package	is	the	entry	point	to	the	other	packages.	These
classes	can	be	used	to	parse	and	validate	XML	data	using	two	techniques:	the	Simple	API
for	XML	(SAX)	and	the	Document	Object	Model	(DOM).	However,	they	can	be	difficult
to	implement,	which	has	inspired	other	groups	to	offer	their	own	class	libraries	to	work
with	XML.

You	spend	the	remainder	of	the	day	working	with	one	of	these	alternatives:	the	XML
Object	Model	(XOM)	library,	an	open	source	Java	class	library	that	makes	it	extremely

http://xml.coverpages.org/xmlApplications.html

easy	to	read,	write,	and	transform	XML	data.

Note

To	find	out	more	about	the	Java	API	for	XML	Processing,	visit	Oracle’s	Java
website	at	http://docs.oracle.com/javase/8/docs/technotes/guides/xml.

Processing	XML	with	XOM
One	of	the	most	important	skills	you	can	develop	as	a	Java	programmer	is	the	ability	to
find	suitable	packages	and	classes	that	can	be	employed	in	your	own	projects.	For	obvious
reasons,	using	a	well-designed	class	library	is	much	easier	than	developing	one	on	your
own.

Although	the	Java	Class	Library	contains	thousands	of	well-designed	classes	that	cover	a
comprehensive	range	of	development	needs,	Oracle	isn’t	the	only	supplier	of	classes	that
may	prove	useful	to	your	efforts.

Other	companies,	groups,	and	individuals	offer	dozens	of	Java	packages	under	a	variety	of
commercial	and	open	source	licenses.	Some	of	the	most	notable	come	from	the	Apache
Software	Foundation,	whose	Java	projects	include	the	web	application	framework	Struts,
the	Java	servlet	container	Tomcat,	and	the	Log4J	logging	class	library.

Another	terrific	open	source	Java	class	library	is	the	XOM	library.	This	tree-based
package	for	XML	processing	strives	to	be	simple	to	learn,	easy	to	use,	and
uncompromising	in	its	adherence	to	well-formed	XML.

The	library	was	developed	by	the	programmer	and	author	Elliotte	Rusty	Harold	based	on
his	experience	with	XML	processing	in	Java.

XOM	originally	was	envisioned	as	a	fork	of	JDOM,	a	popular	tree-based	model	for
representing	an	XML	document.	Harold	contributed	code	to	that	open	source	project	and
participated	in	its	development.	But	instead	of	forking	the	JDOM	code,	Harold	decided	to
start	from	scratch	and	adopt	some	of	its	core	design	principles	in	XOM.

The	library	embodies	the	following	principles:

	XML	documents	are	modeled	as	a	tree,	with	Java	classes	representing	nodes	on	the
tree	such	as	elements,	comments,	processing	instructions,	and	document	type
definitions.	A	programmer	can	add	and	remove	nodes	to	manipulate	the	document	in
memory,	a	simple	approach	that	can	be	implemented	gracefully	in	Java.

	All	XML	data	produced	by	XOM	is	well-formed	and	has	a	well-formed	namespace.

	Each	element	of	an	XML	document	is	represented	as	a	class	with	constructors.

	Object	serialization	is	not	supported.	Instead,	programmers	are	encouraged	to	use
XML	as	the	format	for	serialized	data,	enabling	it	to	be	readily	exchanged	with	any
software	that	reads	XML,	regardless	of	the	programming	language	in	which	it	was
developed.

	The	library	relies	on	another	XML	parser	to	read	XML	documents	and	fill	trees.
XOM	uses	a	SAX	parser	that	must	be	downloaded	and	installed	separately.	Apache

http://docs.oracle.com/javase/8/docs/technotes/guides/xml

Xerces	2.6.1	and	later	versions	should	work.

XOM	is	available	for	download	from	www.xom.nu.	The	current	version	is	1.2.10,	which
includes	Xerces	2.8	in	its	distribution.

Caution

XOM	is	released	under	the	open	source	GNU	Lesser	General	Public	License
(LGPL),	which	grants	permission	to	distribute	the	library	without	modification	with
Java	programs	that	use	it.

You	also	can	make	changes	to	the	XOM	class	library	as	long	as	you	offer	them
under	the	LGPL.	The	full	license	is	published	online	at	www.xom.nu/license.xhtml.

XOM	can	be	downloaded	as	a	ZIP	or	TAR.GZ	archive.	Download	the	library	and	extract
the	files	on	a	folder	on	your	computer;	then	follow	these	steps	to	add	it	to	NetBeans:

1.	Choose	Tools,	Libraries.	The	Ant	Library	Manager	opens.

2.	Click	New	Library.	The	New	Library	dialog	appears.

3.	Enter	XOM	1.2.10	as	the	Library	Name,	and	click	OK.

4.	Back	in	the	Ant	Library	Manager,	click	Add	JAR/Folder.

5.	Browse	to	the	folder	where	you	extracted	the	XOM	archive,	and	open	it.

6.	In	that	folder,	choose	the	file	xom-1.2.10.jar.

7.	Click	Add	JAR/Folder.

8.	In	the	Ant	Library	Manager,	click	OK.

After	you	have	added	the	library	to	NetBeans,	you	need	to	add	it	to	the	current	project	so
that	you	can	use	XOM	classes	in	your	programs:

1.	In	the	Projects	pane,	scroll	down	past	the	.java	files	until	you	see	a	folder	named
Libraries.

2.	Right-click	this	folder	and	choose	Add	Library.	The	Add	Library	dialog	appears.

3.	Choose	XOM	1.2.10,	and	click	OK.

An	item	for	XOM	appears	under	Libraries	in	the	Projects	pane.

Creating	an	XML	Document
The	first	application	you	develop	today,	RssWriter,	creates	an	XML	document	that
contains	the	start	of	an	RSS	feed.	The	document	is	shown	in	Listing	19.2.	(You	don’t	have
to	type	in	this	listing.)

LISTING	19.2	The	Full	Text	of	feed.rss
Click	here	to	view	code	image

1:	<?xml	version=“1.0”?>
2:	<rss	version=“2.0”>

http://www.xom.nu
http://www.xom.nu/license.xhtml

3:			<channel>
4:					<title>Workbench</title>
5:					<link>http://workbench.cadenhead.org/</link>
6:			</channel>
7:	</rss>

The	base	nu.xom	package	contains	classes	for	a	complete	XML	document	(Document)
and	the	nodes	a	document	can	contain	(Attribute,	Comment,	DocType,	Element,
ProcessingInstruction,	and	Text).

The	RssStarter	application	uses	several	of	these	classes.	First,	an	Element	object	is
created	by	specifying	the	element’s	name	as	an	argument:
Click	here	to	view	code	image

Element	rss	=	new	Element(“rss”);

This	statement	creates	an	object	for	the	root	element	of	the	document,	rss.	Element’s
one-argument	constructor	can	be	used	because	the	document	does	not	employ	a	feature	of
XML	called	namespaces;	if	it	did,	a	second	argument	would	be	necessary:	the	element’s
namespace	uniform	resource	identifier	(URI).	The	other	classes	in	the	XOM	library
support	namespaces	in	a	similar	manner.

In	the	XML	document	in	Listing	19.2,	the	rss	element	includes	an	attribute	named
version	with	the	value	“2.0”.	An	attribute	can	be	created	by	specifying	its	name	and
value	in	consecutive	arguments:
Click	here	to	view	code	image

Attribute	version	=	new	Attribute(“version”,	“2.0”);

Attributes	are	added	to	an	element	by	calling	its	addAttribute()	method	with	the
attribute	as	the	only	argument:

rss.addAttribute(version);

The	text	contained	within	an	element	is	represented	by	the	Text	class,	which	is
constructed	by	specifying	the	text	as	a	String	argument:
Click	here	to	view	code	image

Text	titleText	=	new	Text(“Workbench”);

When	an	XML	document	is	composed,	all	its	elements	end	up	inside	a	root	element	that	is
used	to	create	a	Document	object—a	Document	constructor	is	called	with	the	root
element	as	an	argument.	In	the	RssStarter	application,	this	element	is	called	rss.	Any
Element	object	can	be	the	root	of	a	document:
Click	here	to	view	code	image

Document	doc	=	new	Document(rss);

In	XOM’s	tree	structure,	the	classes	representing	an	XML	document	and	its	constituent
parts	are	organized	into	a	hierarchy	below	the	generic	superclass	nu.xom.Node.	This
class	has	three	subclasses	in	the	same	package:	Attribute,	LeafNode,	and
ParentNode.

To	add	a	child	to	a	parent	node,	call	the	parent’s	appendChild()	method	with	the	node

to	add	as	the	only	argument.	The	following	code	creates	two	elements—a	parent	called
channel	and	one	child	element,	link:
Click	here	to	view	code	image

Element	channel	=	new	Element(“channel”);
Element	link	=	new	Element(“link”);
Text	linkText	=	new	Text(“http://workbench.cadenhead.org/”);
link.appendChild(linkText);
channel.appendChild(link);

The	appendChild()	method	appends	a	new	child	below	all	other	children	of	that
parent.	The	preceding	statements	produce	this	XML	fragment:
Click	here	to	view	code	image

<channel>
			<link>http://workbench.cadenhead.org/</link>
</channel>

The	appendChild()	method	also	can	be	called	with	a	String	argument	instead	of	a
node.	A	Text	object	representing	the	string	is	created	and	added	to	the	element:
Click	here	to	view	code	image

link.appendChild(“http://workbench.cadenhead.org/”);

After	a	tree	has	been	created	and	filled	with	nodes,	it	can	be	displayed	by	calling	the
Document	method	toXML(),	which	returns	the	complete	and	well-formed	XML
document	as	a	String.

Listing	19.3	shows	the	complete	application.	Create	the	RssStarter	class	in	the
com.java21days	package	in	NetBeans	with	this	listing	as	the	source.

LISTING	19.3	The	Full	Text	of	RssStarter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	nu.xom.*;
	5:
	6:	public	class	RssStarter	{
	7:					public	static	void	main(String[]	arguments)	{
	8:									//	create	an	<rss>	element	to	serve	as	the	document’s	root
	9:									Element	rss	=	new	Element(“rss”);
10:
11:									//	add	a	version	attribute	to	the	element
12:									Attribute	version	=	new	Attribute(“version”,	“2.0”);
13:									rss.addAttribute(version);
14:									//	create	a	<channel>	element	and	make	it	a	child	of	<rss>
15:									Element	channel	=	new	Element(“channel”);
16:									rss.appendChild(channel);
17:									//	create	the	channel’s	<title>
18:									Element	title	=	new	Element(“title”);
19:									Text	titleText	=	new	Text(“Workbench”);
20:									title.appendChild(titleText);
21:									channel.appendChild(title);
22:									//	create	the	channel’s	<link>
23:									Element	link	=	new	Element(“link”);
24:									Text	lText	=	new	Text(“http://workbench.cadenhead.org/”);

25:									link.appendChild(lText);
26:									channel.appendChild(link);
27:
28:									//	create	a	new	document	with	<rss>	as	the	root	element
29:									Document	doc	=	new	Document(rss);
30:
31:									//	Save	the	XML	document
32:									try	(
33:													FileWriter	fw	=	new	FileWriter(“feed.rss”);
34:													BufferedWriter	out	=	new	BufferedWriter(fw);
35:)	{
36:													out.write(doc.toXML());
37:									}	catch	(IOException	ioe)	{
38:													System.out.println(ioe.getMessage());
39:									}
40:									System.out.println(doc.toXML());
41:					}
42:	}

The	RssStarter	application	displays	the	XML	document	it	creates	on	standard	output	and
saves	it	to	a	file	called	feed.rss.	The	output	is	shown	in	Figure	19.1.

FIGURE	19.1	Creating	an	XML	document	with	XOM.

XOM	automatically	precedes	a	document	with	an	XML	declaration.

As	you	can	see	in	Figure	19.1,	the	XML	produced	by	this	application	contains	no
indentation;	elements	are	stacked	on	the	same	line.

Caution

XOM	preserves	significant	white	space	only	when	representing	XML	data.	The
spaces	between	elements	in	the	RSS	feed	contained	in	Listing	19.2	are	strictly	for
presentation	purposes	and	are	not	produced	automatically	when	XOM	creates	an
XML	document.	A	subsequent	example	demonstrates	how	to	control	indentation.

Modifying	an	XML	Document
The	next	project,	the	DomainEditor	application,	makes	several	changes	to	the	XML
document	that	was	just	produced	by	the	RssStarter	application,	feed.rss.	The	text
enclosed	by	the	link	element	is	changed,	and	a	new	item	element	is	added:
Click	here	to	view	code	image

<item>
		<title>Free	the	Bound	Periodicals</title>

</item>

Using	the	nu.xom	package,	XML	documents	can	be	loaded	into	a	tree	from	several
sources:	a	File,	InputStream,	Reader,	or	URL	(which	is	specified	as	a	String
instead	of	a	java.net.URL	object).

The	Builder	class	represents	a	SAX	parser	that	can	load	an	XML	document	into	a
Document	object.	Constructors	can	be	used	to	specify	a	particular	parser	or	to	let	XOM
use	the	first	available	parser	from	this	list:	Xerces	2,	Crimson,	Piccolo,	GNU	Aelfred,
Oracle,	XP,	Saxon	Aelfred,	or	Dom4J	Aelfred.	If	none	of	these	is	found,	the	parser
specified	by	the	system	property	org.xml.sax.driver	is	used.	Constructors	also
determine	whether	the	parser	is	validating	or	nonvalidating.

The	Builder()	and	Builder(true)	constructors	both	use	the	default	parser—most
likely	a	version	of	Xerces.	The	presence	of	the	Boolean	argument	true	in	the	second
constructor	configures	the	parser	to	be	validating.	It	would	be	nonvalidating	otherwise.	A
validating	parser	throws	a	nu.xom.ValidityException	if	the	XML	document
doesn’t	validate	according	to	the	rules	of	its	document	type	definition.

The	Builder	object’s	build()	method	loads	an	XML	document	from	a	source	and
returns	a	Document	object:
Click	here	to	view	code	image

Builder	builder	=	new	Builder();
File	xmlFile	=	new	File(“feed.rss”);
Document	doc	=	builder.build(xmlFile);

These	statements	load	an	XML	document	from	the	file	feed.rss	barring	one	of	two
problems:	A	nu.xom.ParseException	is	thrown	if	the	file	does	not	contain	well-
formed	XML,	and	a	java.io.IOException	is	thrown	if	the	input	operation	fails.

Elements	are	retrieved	from	the	tree	by	calling	a	method	of	their	parent	node.

A	Document	object’s	getRootElement()	method	returns	the	document’s	root
element:
Click	here	to	view	code	image

Element	root	=	doc.getRootElement();

In	the	XML	document	feed.rss,	the	root	element	is	domains.

Elements	with	names	can	be	retrieved	by	calling	their	parent	node’s
getFirstChildElement()	method	with	the	name	as	a	String	argument:
Click	here	to	view	code	image

Element	channel	=	root.getFirstChildElement(“channel”);

This	statement	retrieves	the	channel	element	contained	in	the	rss	element	(or	null	if
that	element	could	not	be	found).	Like	other	examples,	this	is	simplified	by	the	lack	of	a
namespace	in	the	document;	there	also	are	methods	where	a	name	and	namespace	are
arguments.

When	several	elements	within	a	parent	have	the	same	name,	the	parent	node’s
getChildElements()	method	can	be	used	instead:

Click	here	to	view	code	image
Elements	children	=	channel.getChildElements();

The	getChildElements()	method	returns	an	Elements	object	containing	each	of
the	elements.	This	object	is	a	read-only	list	and	does	not	change	automatically	if	the	parent
node’s	contents	change	after	getChildElements()	is	called.

Elements	has	a	size()	method	containing	an	integer	count	of	the	elements	it	holds.
This	can	be	used	in	a	loop	to	cycle	through	each	element	in	turn,	beginning	with	the	one	at
position	0.	There’s	a	get()	method	to	retrieve	each	element;	call	it	with	the	integer
position	of	the	element	to	be	retrieved:
Click	here	to	view	code	image

for	(int	i	=	0;	i	<	children.size();	i++)	{
				Element	link	=	children.get(i);
}

This	for	loop	cycles	through	each	child	element	of	the	channel	element.

Elements	without	names	can	be	retrieved	by	calling	their	parent	node’s	getChild()
method	with	one	argument:	an	integer	indicating	the	element’s	position	within	the	parent
node:
Click	here	to	view	code	image

Text	linkText	=	(Text)	link.getChild(0);

This	statement	creates	the	Text	object	for	the	text
"http://workbench.cadenhead.org/"	found	within	the	link	element.	Text
elements	always	are	at	position	0	within	their	enclosing	parent.

To	work	with	this	text	as	a	string,	call	the	Text	object’s	getValue()	method,	as	in	this
statement:
Click	here	to	view	code	image

if	(linkText.getValue().equals(“http://workbench.cadenhead.org/”))
				//	…
}

The	DomainEditor	application	only	modifies	a	link	element	enclosing	the	text
"http://workbench.cadenhead.org/".	The	application	makes	the	following
changes:	The	text	of	the	link	element	is	deleted,	the	new	text
"http://www.cadenhead.org/"	is	added	in	its	place,	and	then	a	new	item
element	is	added.

A	parent	node	has	two	removeChild()	methods	to	delete	a	child	node	from	the
document.	Calling	the	method	with	an	integer	deletes	the	child	at	that	position:
Click	here	to	view	code	image

Element	channel	=	domain.getFirstChildElement(“channel”);
Element	link	=	dns.getFirstChildElement(“link”);
link.removeChild(0);

These	statements	would	delete	the	Text	object	contained	within	the	channel’s	first	link
element.

http://workbench.cadenhead.org/
http://workbench.cadenhead.org/
http://www.cadenhead.org/

Calling	the	removeChild()	method	with	a	node	as	an	argument	deletes	that	particular
node.	Extending	the	previous	example,	the	link	element	could	be	deleted	with	this
statement:

channel.removeChild(link);

Listing	19.4	shows	the	source	code	of	the	DomainEditor	application.	Create	this	class	in
NetBeans	in	the	com.java21days	package.

LISTING	19.4	The	Full	Text	of	DomainEditor.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	nu.xom.*;
	5:
	6:	public	class	DomainEditor	{
	7:					public	static	void	main(String[]	args)	throws	IOException	{
	8:									try	{
	9:													//	create	a	tree	from	the	XML	document	feed.rss
10:													Builder	builder	=	new	Builder();
11:													File	xmlFile	=	new	File(“feed.rss”);
12:													Document	doc	=	builder.build(xmlFile);
13:
14:													//	get	the	root	element	<rss>
15:													Element	root	=	doc.getRootElement();
16:
17:													//	get	its	<channel>	element
18:													Element	channel	=	root.getFirstChildElement(“channel”);
19:
20:													//	get	its	<link>	elements
21:													Elements	children	=	channel.getChildElements();
22:													for	(int	i	=	0;	i	<	children.size();	i++)	{
23:
24:																	//	get	a	<link>	element
25:																	Element	link	=	children.get(i);
26:
27:																	//	get	its	text
28:																	Text	linkText	=	(Text)	link.getChild(0);
29:
30:																	//	update	any	link	matching	a	URL
31:																	if	(linkText.getValue().equals(
32:																					“http://workbench.cadenhead.org/”))	{
33:
34:																					//	update	the	link’s	text
35:																					link.removeChild(0);
36:																					link.appendChild(“http://www.cadenhead.org/”);
37:																	}
38:													}
39:
40:													//	create	new	elements	and	attributes	to	add
41:													Element	item	=	new	Element(“item”);
42:													Element	itemTitle	=	new	Element(“title”);
43:
44:													//	add	them	to	the	<channel>	element
45:													itemTitle.appendChild(
46:																	”Free	the	Bound	Periodicals”
47:);
48:													item.appendChild(itemTitle);

49:													channel.appendChild(item);
50:
51:													//	Save	the	XML	document
52:													try	(
53:																	FileWriter	fw	=	new	FileWriter(“feed2.rss”);
54:																	BufferedWriter	out	=	new	BufferedWriter(fw);
55:)	{
56:																	out.write(doc.toXML());
57:													}	catch	(IOException	ioe)	{
58:																	System.out.println(ioe.getMessage());
59:													}
60:													System.out.println(doc.toXML());
61:									}	catch	(ParsingException	pe)	{
62:													System.out.println(“Parse	error:	“	+	pe.getMessage());
63:													pe.printStackTrace();
64:													System.exit(-1);
65:									}
66:					}
67:	}

The	DomainEditor	application	displays	the	modified	XML	document	to	standard	output
and	saves	it	to	a	file	named	feeds2.rss.	You	can	see	the	program’s	output	in	Figure
19.2.

FIGURE	19.2	Loading	and	modifying	an	XML	document.

Formatting	an	XML	Document
As	described	earlier,	XOM	does	not	retain	insignificant	white	space	when	representing
XML	documents.	This	is	in	keeping	with	one	of	XOM’s	design	goals—to	disregard
anything	that	has	no	syntactic	significance	in	XML.	(Another	example	of	this	is	how	text
is	treated	identically	whether	it	is	created	using	character	entities,	CDATA	sections,	or
regular	characters.)

Today’s	next	project	is	the	DomainWriter	application.	This	program	adds	a	comment	to
the	beginning	of	the	XML	document	feed2.rss	and	serializes	it	with	indented	lines,
producing	the	version	shown	in	Listing	19.5.

LISTING	19.5	The	Full	Text	of	feed2.rss
Click	here	to	view	code	image

	1:	<?xml	version=“1.0”	encoding=“ISO-8859-1”?>
	2:	<!—File	created	Sat	Sep	26	23:17:49	EDT	2015—>
	3:	<rss	version=“2.0”>

	4:			<channel>
	5:					<title>Workbench</title>
	6:					<link>http://www.cadenhead.org/</link>
	7:					<item>
	8:							<title>Free	the	Bound	Periodicals</title>
	9:					</item>
10:			</channel>
11:	</rss>

The	Serializer	class	in	nu.xom	offers	control	over	how	an	XML	document	is
formatted	when	it	is	displayed	or	stored	serially.	Indentation,	character	encoding,	line
breaks,	and	other	formatting	are	established	by	objects	of	this	class.

You	can	create	a	Serializer	object	by	specifying	an	output	stream	and	character
encoding	as	arguments	to	the	constructor:
Click	here	to	view	code	image

FileOutputStream	fos	=	new	FileOutputStream(“feed3.rss”);
Serializer	output	=	new	Serializer(fos,	“ISO-8859-1”);

These	statements	serialize	a	file	using	the	ISO-8859-1	character	encoding.

Serializer	supports	22	encodings,	including	ISO-10646-UCS-2,	ISO-8859-1	through	ISO-
8859-10,	ISO-8859-13	through	ISO-8859-16,	UTF-8,	and	UTF-16.	There’s	also	a
Serializer()	constructor	that	takes	only	an	output	stream	as	an	argument;	this	uses
the	UTF-8	encoding	by	default.

You	set	indentation	by	calling	the	serializer’s	setIndentation()	method	with	an
integer	argument	specifying	the	number	of	spaces:

output.setIndentation(2);

You	can	write	an	entire	XML	document	to	the	serializer	destination	by	calling	the
serializer’s	write()	method	with	the	document	as	an	argument:

output.write(doc);

The	DomainWriter	application	inserts	a	comment	atop	the	XML	document	instead	of
appending	it	at	the	end	of	a	parent	node’s	children.	This	requires	another	method	of	the
parent	node,	insertChild(),	which	is	called	with	two	arguments—the	element	to	add
and	the	integer	position	of	the	insertion:
Click	here	to	view	code	image

Builder	builder	=	new	Builder();
Document	doc	=	builder.build(arguments[0]);
Comment	timestamp	=	new	Comment(“File	created	“	+
				new	java.util.Date());
doc.insertChild(timestamp,	0);

The	comment	is	placed	at	position	0	atop	the	document,	moving	the	domains	tag	down
one	line	but	remaining	below	the	XML	declaration.

Listing	19.6	is	the	application’s	source	code.

LISTING	19.6	The	Full	Text	of	DomainWriter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	nu.xom.*;
	5:
	6:	public	class	DomainWriter	{
	7:					public	static	void	main(String[]	args)	throws	IOException	{
	8:									try	{
	9:													//	Create	a	tree	from	an	XML	document
10:													//	specified	as	a	command-line	argument
11:													Builder	builder	=	new	Builder();
12:													File	xmlFile	=	new	File(“feed2.rss”);
13:													Document	doc	=	builder.build(xmlFile);
14:
15:													//	Create	a	comment	with	the	current	time	and	date
16:													Comment	timestamp	=	new	Comment(“File	created	“
17:																	+	new	java.util.Date());
18:
19:													//	Add	the	comment	above	everything	else	in	the
20:													//	document
21:													doc.insertChild(timestamp,	0);
22:
23:													//	Create	a	file	output	stream	to	a	new	file
24:													FileOutputStream	f	=	new	FileOutputStream(“feed3.rss”);
25:
26:													//	Using	a	serializer	with	indention	set	to	2	spaces,
27:													//	write	the	XML	document	to	the	file
28:													Serializer	output	=	new	Serializer(f,	“ISO-8859-1”);
29:													output.setIndent(2);
30:													output.write(doc);
31:									}	catch	(ParsingException	pe)	{
32:													System.out.println(“Parsing	error:	“	+	pe.getMessage());
33:													pe.printStackTrace();
34:													System.exit(-1);
35:									}
36:					}
37:	}

The	DomainWriter	application	reads	the	file	feed2.rss	as	input	and	creates	a	new
modified	version	called	feed3.rss.

Evaluating	XOM
The	applications	you’ve	created	cover	the	core	features	of	the	main	XOM	package	and	are
representative	of	its	straightforward	approach	to	XML	processing.

There	also	are	smaller	nu.xom.canonical,	nu.xom.converters,
nu.xom.xinclude,	and	nu.xom.xslt	packages	to	support	XInclude,	Extensible
Stylesheet	Language	Transformations	(XSLT),	canonical	XML	serialization,	and
conversions	between	the	XOM	model	for	XML	and	the	one	used	by	DOM	and	SAX.

Listing	19.7	is	an	application	that	works	with	XML	from	a	dynamic	source:	RSS	feeds	of
recently	updated	web	content	from	the	feed’s	producer.	The	RssFilter	application	searches
the	feed	for	specified	text	in	headlines,	producing	a	new	XML	document	that	contains
only	the	matching	items	and	shorter	indentation.	It	also	modifies	the	feed’s	title	and	adds
an	RSS	0.91	document	type	declaration	if	one	is	needed	in	an	RSS	0.91	format	feed.

Create	the	RssFilter	application	in	the	com.java21days	package	in	NetBeans.

LISTING	19.7	The	Full	Text	of	RssFilter.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	nu.xom.*;
	4:
	5:	public	class	RssFilter	{
	6:					public	static	void	main(String[]	arguments)	{
	7:
	8:									if	(arguments.length	<	2)	{
	9:													System.out.println(“Usage:	java	RssFilter	file	term”);
10:													System.exit(-1);
11:									}
12:
13:									//	Save	the	RSS	location	and	search	term
14:									String	rssFile	=	arguments[0];
15:									String	term	=	arguments[1];
16:
17:									try	{
18:													//	Fill	a	tree	with	an	RSS	file’s	XML	data
19:													//	The	file	can	be	local	or	something	on	the
20:													//	Web	accessible	via	a	URL.
21:													Builder	bob	=	new	Builder();
22:													Document	doc	=	bob.build(rssFile);
23:
24:													//	Get	the	file’s	root	element	(<rss>)
25:													Element	rss	=	doc.getRootElement();
26:
27:													//	Get	the	element’s	version	attribute
28:													Attribute	rssVersion	=	rss.getAttribute(“version”);
29:													String	version	=	rssVersion.getValue();
30:
31:													//	Add	the	DTD	for	RSS	0.91	feeds,	if	needed
32:													if	((version.equals(“0.91”))	&
33:																	(doc.getDocType()	==	null))	{
34:
35:																	DocType	rssDtd	=	new	DocType(“rss”,
36:																	“http://my.netscape.com/publish/formats/rss-0.91.dtd”);
37:																	doc.insertChild(rssDtd,	0);
38:													}
39:
40:													//	Get	the	first	(and	only)	<channel>	element
41:													Element	channel	=	rss.getFirstChildElement(“channel”);
42:
43:													//	Get	its	<title>	element
44:													Element	title	=	channel.getFirstChildElement(“title”);
45:													Text	titleText	=	(Text)	title.getChild(0);
46:
47:													//	Change	the	title	to	reflect	the	search	term
48:													titleText.setValue(titleText.getValue()	+
49:																	“:	Search	for	“	+	term	+	”	articles”);
50:
51:													//	Get	all	of	the	<item>	elements	and	loop	through	them
52:													Elements	items	=	channel.getChildElements(“item”);
53:													for	(int	i	=	0;	i	<	items.size();	i++)	{
54:																	//	Get	an	<item>	element
55:																	Element	item	=	items.get(i);
56:

57:																	//	Look	for	a	<title>	element	inside	it
58:																	Element	iTitle	=	item.getFirstChildElement(“title”);
59:
60:																	//	If	found,	look	for	its	contents
61:																	if	(iTitle	!=	null)	{
62:																					Text	iTitleText	=	(Text)	iTitle.getChild(0);
63:
64:																					//	If	the	search	text	is	not	found	in	the	item,
65:																					//	delete	it	from	the	tree
66:																					if	(iTitleText.toString().indexOf(term)	==	-1)	{
67:																									channel.removeChild(item);
68:																					}
69:																	}
70:													}
71:
72:													//	Display	the	results	with	a	serializer
73:													Serializer	output	=	new	Serializer(System.out);
74:													output.setIndent(2);
75:													output.write(doc);
76:									}	catch	(Exception	exc)	{
77:													System.out.println(“Error:	“	+	exc.getMessage());
78:													exc.printStackTrace();
79:									}
80:					}
81:	}

Run	the	application	after	setting	the	command-line	arguments	by	selecting	Run,	Set
Project	Configuration,	Customize.	The	first	argument	is	the	feed	to	check,	and	the	second
is	the	word	to	search	for	in	its	titles.	One	feed	that	can	be	used	to	test	the	application	is
http://feeds.sportsfilter.com/sportsfilter	from	the	SportsFilter	weblog.	Check	it	for	a	word
such	as	soccer,	NFL,	Yankees,	or	Cowboys.

Partial	output	of	using	RssFilter	to	look	for	“NFL”	in	SportsFilter’s	RSS	feed	is	displayed
in	Figure	19.3.

FIGURE	19.3	Reading	XML	data	from	a	website’s	RSS	feed.

Comments	in	the	application’s	source	code	describe	its	functionality.

XOM’s	design	is	strongly	informed	by	one	overriding	principle:	enforced	simplicity.

On	the	website	for	the	class	library,	Elliotte	Rusty	Harold	states	that	XOM	“should	help
inexperienced	developers	do	the	right	thing	and	keep	them	from	doing	the	wrong	thing.
The	learning	curve	needs	to	be	really	shallow,	and	that	includes	not	relying	on	best
practices	that	are	known	in	the	community	but	are	not	obvious	at	first	glance.”

http://feeds.sportsfilter.com/sportsfilter

The	new	class	library	is	useful	for	Java	programmers	whose	programs	require	a	steady
diet	of	XML.

Summary
Today	you	learned	the	basics	of	another	popular	format	for	data	representation,	Extensible
Markup	Language	(XML),	by	exploring	one	of	the	most	popular	uses	of	XML—RSS
feeds.

In	some	ways,	XML	is	the	data	equivalent	of	the	Java	language.	It	liberates	data	from	the
software	used	to	create	it	and	the	operating	system	the	software	runs	on,	just	as	Java	can
liberate	software	from	a	particular	operating	system.

By	using	a	class	library	such	as	the	open	source	XML	Object	Model	(XOM)	library,	you
can	easily	create	and	retrieve	data	from	an	XML	file.

A	big	advantage	of	representing	data	using	XML	is	that	you	can	always	get	that	data	back.
If	you	decide	to	move	the	data	into	a	relational	database	or	some	other	form,	you	can
easily	retrieve	the	information.	The	data	being	produced	as	RSS	feeds	can	be	mined	by
software	in	countless	ways,	today	and	in	the	future.

You	also	can	transform	XML	into	other	forms	such	as	HTML	through	a	variety	of
technology,	both	in	Java	and	through	tools	developed	in	other	languages.

Q&A
Q	What’s	the	difference	between	RSS	1.0,	RSS	2.0,	and	Atom?

A	RSS	1.0	is	a	syndication	format	that	employs	the	Resource	Description	Framework
(RDF)	to	describe	items	in	the	feed.	RSS	2.0	shares	a	common	origin	with	RSS	1.0
but	does	not	make	use	of	RDF.	Atom	is	another	syndication	format	that	was	created
after	RSS	1.0	and	RSS	2.0.	The	Internet	Engineering	Task	Force	(IETF)	has	adopted
Atom	as	an	Internet	standard.

All	three	formats	are	suitable	for	offering	web	content	in	XML	that	can	be	read	with
a	reader	such	as	Feedly	or	My	Yahoo!	or	that	can	be	read	by	software	and	stored,
manipulated,	or	transformed.

Q	Why	is	Extensible	Markup	Language	called	XML	instead	of	EML?

A	None	of	the	founders	of	the	language	appears	to	have	documented	the	reason	for
choosing	XML	as	the	acronym.	The	general	consensus	in	the	XML	community	is
that	it	was	chosen	because	it	“sounds	cooler”	than	EML.	Before	you	snicker	at	that
explanation,	the	creator	of	the	language	you	are	learning	chose	the	name	Java	for	its
programming	language	using	the	same	criteria,	turning	down	more	technical-
sounding	alternatives	such	as	DNA	and	WRL.	(The	name	Ruby	also	was	considered
and	rejected,	but	later	was	chosen	for	another	language.)

It’s	possible	that	the	founders	of	XML	were	trying	to	avoid	confusion	with	a
programming	language	called	EML	(Extended	Machine	Language),	which	predates
XML.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	does	RSS	stand	for?

A.	Really	Simple	Syndication

B.	RDF	Site	Summary

C.	Both

2.	What	method	cannot	be	used	to	add	text	to	an	XML	element	using	XOM?

A.	addAttribute(String,	String)

B.	appendChild(Text)

C.	appendChild(String)

3.	When	all	the	opening	element	tags,	closing	element	tags,	and	other	markup	are
applied	consistently	in	a	document,	what	adjective	describes	the	document?

A.	Validating

B.	Parsable

C.	Well-formed

Answers
1.	C.	One	version,	RSS	2.0,	claims	Really	Simple	Syndication	as	its	name.	The	other,
RSS	1.0,	claims	RDF	Site	Summary.

2.	A.	Answers	B	and	C	both	work.	One	adds	the	contents	of	a	Text	element	as	the
element’s	character	data,	and	the	other	adds	the	string.

3.	C.	For	data	to	be	considered	XML,	it	must	be	well-formed.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	NameDirectory	{
				String[]	names;
				int	nameCount;

				public	NameDirectory()	{
								names	=	new	String[20];
								nameCount	=	0;
				}

				public	void	addName(String	newName)	{
								if	(nameCount	<	20)	{
												//	answer	goes	here
								}
				}
}

The	NameDirectory	class	must	be	able	to	hold	20	different	names.	What	statement
should	replace	//	answer	goes	here	for	the	class	to	function	correctly?

A.	names[nameCount]	=	newName;

B.	names[nameCount]	==	newName;

C.	names[nameCount++]	=	newName;

D.	names[++nameCount]	=	newName;

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	19
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Create	a	simple	XML	format	to	represent	a	book	collection	with	three	books	and	a
Java	application	that	searches	for	books	with	George	R.	R.	Martin	as	the	author,
displaying	any	that	it	finds.

2.	Create	two	applications:	one	that	retrieves	records	from	a	database	and	produces	an
XML	file	that	contains	the	same	information,	and	a	second	application	that	reads
data	from	that	XML	file	and	displays	it.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Day	20.	XML	Web	Services

Over	the	years,	numerous	attempts	have	been	made	to	create	a	standard	protocol	for
remote	procedure	calls	(RPC).	These	are	a	way	for	one	computer	program	to	call	a
procedure	in	another	program	over	a	network	such	as	the	Internet.

Often,	these	protocols	are	completely	language-agnostic.	This	allows	a	client	program
written	in	a	language	such	as	C++	to	call	a	remote	database	server	written	in	Java	or
something	else	without	either	side	knowing	(or	caring)	about	its	partner’s	implementation
language.

Web	services—networking	programs	that	use	the	Web	to	offer	data	in	a	form	easily
digested	by	other	software—are	being	employed	to	share	account	authentication	between
sites,	facilitate	e-commerce	transactions	between	stores,	provide	business-to-business
information	exchange,	and	other	innovative	offerings.

A	simple,	useful	example	of	this	idea	is	XML-RPC,	a	protocol	for	using	Hypertext
Transfer	Protocol	(HTTP)	and	Extensible	Markup	Language	(XML)	for	remote	procedure
calls.	Today,	you	learn	how	to	implement	it	in	Java	as	the	following	topics	are	covered:

	How	to	communicate	with	another	computer	using	XML-RPC

	How	to	structure	an	XML-RPC	request	and	an	XML-RPC	response

	How	to	use	XML-RPC	in	Java	programs

	How	to	send	an	XML-RPC	request

	How	to	receive	an	XML-RPC	response

Introduction	to	XML-RPC
Java	supports	one	well-established	technique	for	remote	procedure	calling:	remote	method
invocation	(RMI).

RMI	is	designed	to	be	a	complex,	robust	solution	to	a	large	variety	of	remote	computing
tasks.	This	sophistication	has	been	one	of	the	hindrances	to	the	adoption	of	RPC.	The
complexity	required	to	implement	some	of	these	solutions	can	be	more	than	a	programmer
wants	to	take	on	simply	to	exchange	information	over	a	network.

A	much	simpler	alternative,	XML-RPC,	has	become	adopted	for	web	services.

Client/server	implementations	of	XML-RPC	are	available	for	most	platforms	and
programming	languages	in	widespread	use.

XML-RPC	exchanges	information	using	a	combination	of	HTTP,	the	protocol	of	the	Web,
and	XML.

XML-RPC	supports	the	following	data	types:

	array—A	data	structure	that	holds	multiple	elements	of	any	of	the	other	data
types,	including	arrays

	base64—Binary	data	in	Base	64	format

	boolean—True-false	values	that	are	either	1	(true)	or	0	(false)

	dateTime.iso8601—A	string	containing	the	date	and	time	in	ISO	8601	format,
such	as	20150927T12:01:15	for	12:01	a.m.	(and	15	seconds)	on	September	27,	2015

	double—8-byte	signed	floating-point	numbers

	int	(also	called	i4)—Signed	integers	ranging	in	value	from	–2,147,483,648	to
2,147,483,647,	the	same	size	as	int	values	in	Java

	string—Text

	struct—Name-value	pairs	of	associated	data	where	the	name	is	a	string	and	the
value	can	be	any	of	the	other	data	types	(comparable	to	the	HashMap	class	in	Java)

One	thing	noticeably	absent	from	XML-RPC	is	a	way	to	represent	data	as	an	object.	The
protocol	wasn’t	designed	with	object-oriented	programming	in	mind,	but	you	can
represent	reasonably	complex	objects	with	the	array	and	struct	types.

By	design,	XML-RPC	is	a	simple	protocol	for	programming	across	a	network.	The
protocol	has	been	implemented	on	web	services	running	on	Windows,	Macintosh,	and
Linux	systems.

Note

The	full	XML-RPC	specification	is	available	on	XML-RPC.com	at
www.xmlrpc.com/spec.

After	the	release	of	XML-RPC,	the	specification	was	extended	to	create	another	RPC
protocol	called	Simple	Object	Access	Protocol	(SOAP).

SOAP	shares	design	goals	of	XML-RPC	and	has	been	expanded	to	better	support	objects,
user-defined	data	types,	and	other	advanced	features,	resulting	in	a	significantly	more
complex	protocol.	SOAP	also	has	become	widely	popular	for	web	services	and	other
decentralized	network	programming.

Note

Because	SOAP	is	an	extension	of	XML-RPC,	it	raises	the	question	of	why	the	latter
protocol	is	still	in	use.	When	SOAP	came	out	and	was	considerably	more	complex
than	XML-RPC,	some	programmers	chose	to	stick	with	the	simpler	protocol.

To	find	out	more	about	SOAP	and	public	servers	that	can	be	used	with	SOAP
clients,	visit	the	website	www.xmethods.com.

Communicating	with	XML-RPC
XML-RPC	is	a	protocol	transmitted	via	HTTP,	the	standard	for	data	exchange	between
web	servers	and	web	browsers.	The	information	it	transmits	is	not	web	pages.	Instead,	it	is
XML	data	encoded	in	a	specific	way.

Two	kinds	of	data	exchanges	are	conducted	using	XML-RPC:	client	requests	and	server

http://XML-RPC.com
http://www.xmlrpc.com/spec
http://www.xmethods.com

responses.

Sending	a	Request
An	XML-RPC	request	is	XML	data	sent	to	a	web	server	as	part	of	an	HTTP	post
request.

A	post	request	normally	is	used	to	transmit	data	from	a	web	browser	to	a	web	server.
Java	servlets,	CGI	programs,	and	other	software	collect	the	data	from	a	post	request	and
send	back	HTML	in	response.	When	you	submit	an	email	from	a	web	page	or	vote	in	an
online	poll,	you’re	using	either	post	or	a	similar	HTTP	request	called	get.

XML-RPC	simply	uses	HTTP	as	a	convenient	protocol	for	communicating	with	a	server
and	receiving	a	response.

The	request	consists	of	two	parts:	the	HTTP	headers	required	by	the	post	transmission,
and	the	XML-RPC	request,	which	is	expressed	as	XML.

Listing	20.1	is	an	example	of	an	XML-RPC	request.

LISTING	20.1	An	XML-RPC	Request
Click	here	to	view	code	image

	1:	POST	/XMLRPC	HTTP/1.0
	2:	Host:	www.advogato.org
	3:	Connection:	Close
	4:	Content-Type:	text/xml
	5:	Content-Length:	151
	6:	User-Agent:	OSE/XML-RPC
	7:
	8:	<?xml	version=“1.0”?>
	9:	<methodCall>
10:				<methodName>test.square</methodName>
11:				<params>
12:							<param>
13:										<value>
14:													<int>13</int>
15:										</value>
16:							</param>
17:				</params>
18:	</methodCall>

In	Listing	20.1,	lines	1–6	are	the	HTTP	headers,	and	lines	8–18	are	the	XML-RPC
request.	This	listing	tells	you	the	following:

	The	XML-RPC	server	is	at	www.advogato.org/XMLRPC	(lines	1	and	2).

	The	remote	method	being	called	is	test.square	(line	10).

	The	method	is	being	called	with	one	argument,	an	integer	with	a	value	of	13	(lines
12–16).

Unlike	their	counterparts	in	Java,	method	names	in	an	XML-RPC	request	do	not	include
parentheses.	They	consist	of	the	name	of	an	object	followed	by	a	period	and	the	name	of
the	method,	or	simply	the	name	of	the	method,	depending	on	the	XML-RPC	server.

http://www.advogato.org/XMLRPC

Caution

XML-RPC,	which	has	been	implemented	in	numerous	computer-programming
languages,	has	differences	in	terminology	from	Java:	Methods	are	called
procedures,	and	method	arguments	are	called	parameters.	The	Java	terms	are	used
often	during	today’s	lesson	when	Java	programming	techniques	are	discussed.

Responding	to	a	Request
An	XML-RPC	response	is	XML	data	that	is	sent	back	from	a	web	server	like	any	other
HTTP	response.	Again,	XML-RPC	piggybacks	on	an	established	process—a	web	server
sending	data	via	HTTP	to	a	web	browser—and	uses	it	in	a	new	way.

The	response	also	consists	of	HTTP	headers	and	an	XML-RPC	response	in	XML	format.

Listing	20.2	is	an	example	of	an	XML-RPC	response.

LISTING	20.2	An	XML-RPC	Response
Click	here	to	view	code	image

	1:	HTTP/1.0	200	OK
	2:	Date:	Sat,	27	Sep	2015	04:44:13	GMT
	3:	Server:	Apache/2.2.3·(CentOS)
	4:	ETag:	“PbT9cMgXsXnw52OqREFNAA==”
	5:	Content-MD5:	PbT9cMgXsXnw52OqREFNAA==
	6:	Content-Length:	157
	7:	Connection:	close
	8:	Content-Type:	text/xml
	9:
10:	<?xml	version=“1.0”?>
11:	<methodResponse>
12:			<params>
13:					<param>
14:							<value>
15:									<int>169</int>
16:							</value>
17:					</param>
18:			</params>
19:	</methodResponse>

In	Listing	20.2,	lines	1–8	are	the	HTTP	headers,	and	lines	10–19	are	the	XML-RPC
response.	You	can	learn	the	following	things	from	this	listing:

	The	response	is	157	bytes	in	size	and	is	in	XML	format	(lines	6	and	8).

	The	value	returned	by	the	remote	method	is	an	integer	that	equals	169	(line	15).

An	XML-RPC	response	contains	only	one	argument,	contrary	to	what	you	might	expect
from	the	params	tag	in	line	12.	If	the	remote	method	does	not	return	a	value—for
example,	it	might	be	a	Java	method	that	returns	void—an	XML-RPC	server	still	returns
something.

This	return	value	can	be	primitive	data,	strings,	arrays	of	varying	dimensions,	and	more
sophisticated	data	structures	such	as	key/value	pairs	(the	kind	of	thing	you	could

implement	in	Java	using	HashMap).

Note

The	XML-RPC	request	and	response	examples	were	generated	by	a	server	run	by
the	Advogato	open	source	advocacy	site.	You	can	find	out	more	about	its	XML-
RPC	server	at	www.advogato.org/xmlrpc.html.

Several	XML-RPC	debuggers	on	the	Web	can	be	used	to	call	remote	methods,
which	makes	it	much	easier	to	determine	if	a	client	or	server	is	working	correctly.
One	is	available	at	http://w3future.com/html/xmlrpcdebugger.html.

Choosing	an	XML-RPC	Implementation
Although	you	can	work	with	XML-RPC	by	creating	your	own	classes	to	read	and	write
XML	and	exchange	data	over	the	Internet,	an	easier	route	is	to	use	a	preexisting	Java
Class	Library	that	supports	XML-RPC.

One	of	the	most	popular	is	Apache	XML-RPC,	an	open	source	project	managed	by	the
developers	of	the	Apache	web	server,	Tomcat	Java	servlet	engine,	and	other	popular	open
source	software.

The	Apache	XML-RPC	project,	which	consists	of	the	org.apache.xmlrpc	package
and	three	related	packages,	contains	classes	that	can	be	used	to	implement	an	XML-RPC
client	and	server	with	a	small	amount	of	your	own	code.

The	project	has	a	home	page	at	the	web	address	http://xml.apache.org/xmlrpc.	Today’s
projects	employ	release	3.1.3.	To	use	this	project,	you	must	download	and	install	it.

Apache	XML-RPC	can	be	downloaded	as	either	a	ZIP	archive	or	TAR.GZ	archive.

Caution

If	you	have	trouble	downloading	Apache	XML-RPC	from	the	Apache	website,	you
can	get	it	from	the	book’s	website.	Visit	www.java21days.com,	go	to	the	page	for
Day	20	and	click	the	“Apache	XML-RPC	Library	version	3.1.3”	link.	This	is	a	ZIP
archive	containing	all	the	project’s	files.	The	software	is	open	source	and	can	be
shared	under	the	Apache	License.

Download	the	library	and	extract	the	files	on	a	folder	on	your	computer.	When	that’s	done,
follow	these	steps	to	add	Apache	XML-RPC	to	NetBeans:

1.	Choose	Tools,	Libraries.	The	Ant	Library	Manager	opens.

2.	Click	New	Library.	The	New	Library	dialog	appears.

3.	Enter	Apache	XML-RPC	3.1.3	as	the	Library	Name,	and	click	OK.

4.	Back	in	the	Library	Manager,	click	Add	JAR/Folder.

5.	Browse	to	the	folder	where	you	extracted	the	archive,	and	open	it.

6.	Open	the	lib	subfolder	and	choose	all	five	JAR	files	it	contains:	commons-

http://www.advogato.org/xmlrpc.html
http://w3future.com/html/xmlrpcdebugger.html
http://xml.apache.org/xmlrpc
http://www.java21days.com

logging-1.1.jar,	ws-commons-util-1.0.2.jar,	xmlrpc-client-
3.1.3.jar,	xmlrpc-common-3.1.3.jar,	and	xmlrpc-server-
3.1.3.jar.	(To	select	multiple	files,	hold	down	the	Shift	key	as	you	click	each
file.)

7.	Click	Add	JAR/Folder.

8.	Back	in	the	Library	Manager,	click	OK.

After	you	have	added	the	library	to	NetBeans,	you	need	to	add	it	to	the	current	project	so
that	you	can	use	the	Apache	XML-RPC	classes	in	today’s	programs:

1.	In	the	Projects	pane,	look	for	the	folder	named	Libraries	below	the	.java	files	for
the	classes	you	have	created.

2.	Right-click	the	Libraries	folder	and	choose	Add	Library.	The	Add	Library	dialog
appears.

3.	Choose	Apache	XML-RPC	3.1.3,	and	click	OK.

The	five	JAR	files	composing	this	class	library	appear	under	Libraries	in	the	pane.

After	the	library	is	set	up,	an	import	statement	makes	it	easy	to	refer	to	the	classes	in	a
package,	as	in	this	example:

import	org.apache.xmlrpc.*;

This	makes	it	possible	to	refer	to	the	classes	in	the	main	package,
org.apache.xmlrpc,	without	using	the	full	package	name.	You’ll	work	with	this
package	in	the	next	two	sections.

Using	an	XML-RPC	Web	Service
An	XML-RPC	client	is	a	program	that	connects	to	a	server,	calls	a	method	on	a	program
on	that	server,	and	stores	the	result.

Using	Apache	XML-RPC,	the	process	is	comparable	to	calling	any	other	method	in	Java.
You	don’t	have	to	create	an	XML	request,	parse	an	XML	response,	or	connect	to	the
server	using	one	of	Java’s	networking	classes.

In	the	org.apache.xmlrpc.client	package,	the	XmlRpcClient	class	represents
a	client.	The	client	is	set	up	with	the	XmlRpcClientConfigImpl	class,	which	holds
the	configuration	settings	for	the	client.

The	server	is	set	by	calling	the	configuration	object’s	setServerURL(URL)	method
with	a	URL	object	that	contains	the	server’s	address	and	port	number.

After	configuration	is	complete,	the	client’s	setConfig()	method	is	called	with	that
configuration	as	the	only	argument.

The	following	statements	create	a	client	to	an	XML-RPC	client	on	the	host
cadenhead.org	at	the	port	4413:
Click	here	to	view	code	image

XmlRpcClientConfigImpl	config	=	new	XmlRpcClientConfigImpl();

URL	server	=	new	URL(“http://cadenhead.org:4413/”);
config.setServerURL(server);
XmlRpcClient	client	=	new	XmlRpcClient();
client.setConfig(config);

If	you	are	calling	a	remote	method	with	any	arguments,	they	should	be	stored	in	an
ArrayList	object,	a	data	structure	that	holds	objects	of	different	classes.

Note

Array	lists	were	covered	on	Day	8,	“Data	Structures.”	They	are	part	of	the
java.util	package.

To	work	with	array	lists,	call	the	ArrayList()	constructor	with	no	arguments,	and	call
its	add(Object)	method	with	each	object	that	should	be	added	to	the	list.	Objects	can
be	of	any	class	and	must	be	added	to	the	list	in	the	order	in	which	they	are	called	in	the
remote	method.

The	following	data	types	can	be	arguments	to	a	remote	method:

	byte[]	arrays	for	base64	data

	Boolean	objects	for	boolean	values

	Date	objects	for	dateTime.iso8601	values

	Double	objects	for	double	values

	Integer	objects	for	int	values

	String	objects	for	string	values

	HashMap	objects	for	struct	values

	ArrayList	objects	for	arrays

The	Date,	HashMap,	and	ArrayList	classes	are	in	the	java.util	package.

For	example,	if	an	XML-RPC	server	has	a	method	that	takes	String	and	Double
arguments,	the	following	code	creates	an	array	list	that	holds	each	argument:
Click	here	to	view	code	image

String	code	=	“conical”;
Double	xValue	=	new	Double(175);
ArrayList	parameters	=	new	ArrayList();
parameters.add(code);
parameters.add(xValue);

To	call	the	remote	method	on	the	XML-RPC	server,	call	the	XmlRpcClient	object’s
execute()	method	with	two	arguments:

	The	name	of	the	method

	The	array	list	that	holds	the	method’s	arguments

The	name	of	the	method	should	be	specified	without	any	parentheses	or	arguments.	An
XML-RPC	server	usually	documents	the	methods	that	it	makes	available	to	the	public.

The	execute()	method	returns	an	Object	that	contains	the	response.	This	object
should	be	cast	to	one	of	the	data	types	sent	to	a	method	as	arguments:	Boolean,
byte[],	Date,	Double,	Integer,	String,	HashMap,	or	ArrayList.

Like	other	networking	methods	in	Java,	execute()	throws	an	XmlRpcException
exception	if	the	server	reports	an	XML-RPC	error.

Objects	returned	by	the	execute()	method	have	the	following	data	types:	Boolean
for	boolean	XML-RPC	values,	byte[]	for	base64	data,	Date	for
dateTime.iso8601	data,	Double	for	double	values,	Integer	for	int	(or	i4)
values,	String	for	strings,	HashMap	for	struct	values,	and	ArrayList	for	arrays.

To	see	all	this	in	a	working	program,	enter	the	code	shown	in	Listing	20.3	into	the
NetBeans	editor	as	the	class	SiteClient	in	the	package	com.java21days.

LISTING	20.3	The	Full	Text	of	SiteClient.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	java.net.*;
	5:	import	java.util.*;
	6:	import	org.apache.xmlrpc.*;
	7:	import	org.apache.xmlrpc.client.*;
	8:
	9:	public	class	SiteClient	{
10:					public	static	void	main(String	arguments[])	{
11:									SiteClient	client	=	new	SiteClient();
12:									try	{
13:													HashMap<String,	String>	resp	=	client.getRandomSite();
14:													//	Report	the	results
15:													if	(resp.size()	>	0)	{
16:																	System.out.println(“URL:	“	+	resp.get(“url”)
17:																					+	“\nTitle:	“	+	resp.get(“title”)
18:																					+	“\nDescription:	“	+	resp.get(“description”));
19:													}
20:									}	catch	(IOException	ioe)	{
21:													System.out.println(“Exception:	“	+	ioe.getMessage());
22:									}	catch	(XmlRpcException	xre)	{
23:													System.out.println(“Exception:	“	+	xre.getMessage());
24:									}
25:					}
26:
27:					public	HashMap	getRandomSite()
28:									throws	IOException,	XmlRpcException	{
29:
30:													//	Create	the	client
31:													XmlRpcClientConfigImpl	config	=	new
32:																	XmlRpcClientConfigImpl();
33:													URL	server	=	new	URL(“http://localhost:4413/”);
34:													config.setServerURL(server);
35:													XmlRpcClient	client	=	new	XmlRpcClient();
36:													client.setConfig(config);
37:													//	Create	the	parameters	for	the	request
38:													ArrayList	params	=	new	ArrayList();
39:													//	Send	the	request	and	get	the	response
40:													HashMap	result	=	(HashMap)	client.execute(

41:																	“dmoz.getRandomSite”,	params);
42:													return	result;
43:					}
44:	}

The	SiteClient	application	connects	to	the	XML-RPC	server	and	calls	the
dmoz.getRandomSite()	method	on	the	server	with	no	arguments.	When	it	works,
this	method	returns	a	HashMap	that	contains	the	site’s	URL,	title,	and	description	in
strings	with	the	keys	“url”,	“title”,	and	“description”.

This	class	can	be	run,	but	it	won’t	work	because	the	XML-RPC	server	hasn’t	been
implemented	yet.

Note

These	random	sites	are	culled	from	the	database	of	the	Open	Directory	Project,	a
directory	of	more	than	five	million	sites	at	www.dmoz.org.	The	project’s	data	is
available	for	redistribution	by	others	at	no	cost	under	the	terms	of	the	Open
Directory	License.	For	more	information,	visit	www.dmoz.org/help/getdata.html.

Creating	an	XML-RPC	Web	Service
An	XML-RPC	server	is	a	program	that	receives	a	request	from	a	client,	calls	a	method	in
response	to	that	request,	and	returns	the	result.	The	server	maintains	a	list	of	methods	that
it	allows	clients	to	call;	these	are	different	Java	classes	called	handlers.

Apache	XML-RPC	handles	all	the	XML	and	networking	itself,	enabling	you	to	focus	on
the	task	you	want	a	remote	method	to	accomplish.

There	are	several	ways	to	serve	methods	remotely.	The	simplest	is	to	use	the	WebServer
class	in	the	org.apache.xmlrpc.webserver	package,	which	represents	a	simple
HTTP	web	server	that	responds	to	only	XML-RPC	requests.

This	class	has	two	constructors:

	WebServer\(int)	creates	a	web	server	listening	on	the	specified	port	number.

	WebServer(int,	InetAddress)	creates	a	web	server	at	the	specified	port
and	IP	address.	The	second	argument	is	an	object	of	the
java.net.InetAddress	class.

Both	constructors	throw	IOException	exceptions	if	an	input/output	problem	occurs
with	creating	and	starting	the	server.

The	web	server	has	an	XmlRpcServer	object	associated	with	it	that	handles	tasks
related	to	the	protocol.	This	class	is	in	another	package,
org.apache.xmlrpc.server.	Call	the	web	server’s	getXmlRpcServer()
method	with	no	arguments	to	retrieve	it.

The	following	statements	create	a	web	server	on	port	4413	and	an	object	for	its	XML-RPC
server:
Click	here	to	view	code	image

http://www.dmoz.org
http://www.dmoz.org/help/getdata.html

WebServer	server	=	new	WebServer(4413);
XmlRpcServer	xmlRpcServer	=	server.getXmlRpcServer();

The	web	server	does	not	contain	the	remote	methods	that	clients	call	via	XML-RPC.
These	reside	in	handlers.

Handlers	are	set	up	by	another	class	in	the	org.apache.xmlrpc.server	package,
PropertyHandlerMapping.	This	class	contains	configuration	settings	for	an	XML-
RPC	server,	which	can	be	set	with	a	properties	file	or	by	calling	its	methods.	It	can	be
created	with	no	arguments	to	the	constructor:
Click	here	to	view	code	image

PropertyHandlerMapping	phm	=	new	PropertyHandlerMapping();

To	add	a	handler,	call	the	mapping	object’s	addHandler(String,	Object)	method
with	two	arguments.

The	first	argument	to	addHandler()	is	a	name	to	give	the	handler,	which	can	be
anything	you	choose.	Naming	an	XML-RPC	method	is	comparable	to	naming	a	variable.
Clients	will	use	this	name	when	calling	remote	methods.

The	SiteClient	application	created	earlier	today	called	the	remote	method
dmoz.getRandomSite().	The	first	part	of	this	call—the	text	preceding	the	period—
refers	to	a	handler	given	the	name	dmoz.

The	second	argument	to	addHandler()	is	a	Class	object	for	the	handler’s	class.

These	statements	add	a	handler	named	dmoz	to	the	XML-RPC	server’s	property	mapping
and	then	set	the	server	to	use	that	configuration:
Click	here	to	view	code	image

phm.addHandler(“dmoz”,	DmozHandlerImpl.class);
xmlRpcServer.setHandlerMapping(phm);

The	DmozHandlerImpl	class	is	the	one	that	implements	the	getRandomSite()
method	and	any	others	that	can	be	called	remotely	over	XML-RPC.	You’ll	create	this	class
in	a	moment.

A	class	that	handles	remote	method	calls	can	be	any	Java	class	that	contains	public
methods	that	return	a	value,	as	long	as	the	methods	take	arguments	that	correspond	with
data	types	supported	by	Apache	XML-RPC:	boolean,	byte[],	Date,	double,
HashMap,	int,	String,	and	ArrayList.

You	can	put	existing	Java	classes	to	use	as	XML-RPC	handlers	without	modification	as
long	as	they	do	not	contain	public	methods	that	should	not	be	called	and	each	public
method	returns	a	suitable	value.

Caution

The	suitability	of	return	values	relates	to	the	Apache	XML-RPC	implementation
rather	than	XML-RPC	itself.	Other	implementations	of	the	protocol	are	likely	to
have	some	differences	in	the	data	types	of	the	arguments	they	take	in	remote
method	calls	and	the	values	they	return.

Using	Apache	XML-RPC,	the	web	server	allows	any	public	method	in	the	handler	to	be
called,	so	you	should	use	access	control	to	keep	prying	clients	out	of	methods	that	should
remain	off	limits.

As	the	first	step	toward	creating	an	XML-RPC	service,	the	following	code	creates	a
simple	web	server	that	takes	XML-RPC	requests.	In	NetBeans,	use	Listing	20.4	to	create
the	DmozServer	application.

LISTING	20.4	The	Full	Text	of	DmozServer.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.io.*;
	4:	import	org.apache.xmlrpc.*;
	5:	import	org.apache.xmlrpc.server.*;
	6:	import	org.apache.xmlrpc.webserver.*;
	7:
	8:	public	class	DmozServer	{
	9:					public	static	void	main(String[]	arguments)	{
10:										try	{
11:														startServer();
12:										}	catch	(IOException	ioe)	{
13:														System.out.println(“Server	error:	“	+
14:																		ioe.getMessage());
15:										}	catch	(XmlRpcException	xre)	{
16:														System.out.println(“XML-RPC	error:	“	+
17:																		xre.getMessage());
18:										}
19:					}
20:
21:					public	static	void	startServer()	throws	IOException,
22:									XmlRpcException	{
23:
24:									//	Create	the	server
25:									System.out.println(“Starting	Dmoz	server	…”);
26:									WebServer	server	=	new	WebServer(4413);
27:									XmlRpcServer	xmlRpcServer	=	server.getXmlRpcServer();
28:									PropertyHandlerMapping	phm	=	new	PropertyHandlerMapping();
29:
30:									//	Register	the	handler
31:									phm.addHandler(“dmoz”,	DmozHandlerImpl.class);
32:									xmlRpcServer.setHandlerMapping(phm);
33:
34:									//	Start	the	server
35:									server.start();
36:									System.out.println(“Accepting	requests	…”);
37:					}
38:	}

This	class	can’t	be	compiled	successfully	until	you	have	created	the	handler	class
DmozHandlerImpl	and	a	DmozHandler	interface	that	it	implements.

The	DmozServer	application	creates	a	web	server	at	port	4413	and	an	associated	XML-
RPC	server	in	lines	26–27.

Using	the	server’s	property	mapping,	a	handler	is	added	to	the	server:	a
DmozHandlerImpl	object	given	the	name	"dmoz".	The	server’s	start()	method	is

called	to	begin	listening	for	requests.

That’s	all	the	code	required	to	implement	a	functional	XML-RPC	server.	Most	of	the	work
is	in	the	remote	methods	you	want	a	client	to	call.	They	don’t	require	any	special
techniques	as	long	as	they	are	public	and	return	a	suitable	value.

To	give	you	a	complete	example	you	can	test	and	modify	to	suit	your	own	needs,	the
DmozHandler	interface	and	DmozHandlerImpl	class	are	provided	in	the	next	two
listings.

The	DmozHandler	interface	defines	the	public	methods	that	can	be	called	remotely	over
XML-RPC.	Create	a	new	empty	Java	file	of	this	class	name,	and	fill	it	with	Listing	20.5.

LISTING	20.5	The	Full	Text	of	DmozHandler.java
Click	here	to	view	code	image

1:	package	com.java21days;
2:
3:	import	java.util.*;
4:
5:	public	interface	DmozHandler	{
6:					public	HashMap	getRandomSite();
7:	}

This	interface	contains	one	method,	getRandomSite(),	which	returns	a	HashMap.
No	other	methods	can	be	called.

The	DmozHandlerImpl	class	is	an	implementation	of	the	DmozHandler	interface.

The	techniques	employed	in	this	class	were	covered	during	Day	18,	“Accessing	Databases
with	JDBC	4.2	and	Derby.”	They	are	a	good	review	of	how	to	use	JDBC	to	retrieve
records	from	a	database—in	this	example,	a	MySQL	database	called	cool.

Enter	the	code	shown	in	Listing	20.6	in	NetBeans	as	the	class	DmozHandlerImpl.

LISTING	20.6	The	Full	Text	of	DmozHandlerImpl.java
Click	here	to	view	code	image

	1:	package	com.java21days;
	2:
	3:	import	java.sql.*;
	4:	import	java.util.*;
	5:
	6:	public	class	DmozHandlerImpl	implements		DmozHandler	{
	7:
	8:					public	HashMap	getRandomSite()	{
	9:									Connection	conn	=	getMySqlConnection();
10:									HashMap<String,	String>	response	=	new	HashMap<>();
11:									try	{
12:													Statement	st	=	conn.createStatement();
13:													ResultSet	rec	=	st.executeQuery(
14:																	“SELECT	*	FROM	cooldata	ORDER	BY	RAND()	LIMIT	1”);
15:													if	(rec.next())	{
16:																	response.put(“url”,	rec.getString(“url”));
17:																	response.put(“title”,	rec.getString(“title”));
18:																	response.put(“description”,

19:																					rec.getString(“description”));
20:													}	else	{
21:																	response.put(“error”,	“no	database	record	found”);
22:													}
23:													st.close();
24:													rec.close();
25:													conn.close();
26:									}	catch	(SQLException	sqe)	{
27:													response.put(“error”,	sqe.getMessage());
28:									}
29:									return	response;
30:					}
31:
32:					private	Connection	getMySqlConnection()	{
33:									Connection	conn	=	null;
34:									String	data	=	“jdbc:mysql://localhost/cool”;
35:									try	{
36:													Class.forName(“com.mysql.jdbc.Driver”);
37:													conn	=	DriverManager.getConnection(
38:																	data,	“cool”,	“mrfreeze”);
39:									}	catch	(SQLException	s)	{
40:													System.out.println(“SQL	Error:	“	+	s.toString()	+	”	“
41:																	+	s.getErrorCode()	+	”	“	+	s.getSQLState());
42:									}	catch	(Exception	e)	{
43:													System.out.println(“Error:	“	+	e.toString()
44:																	+	e.getMessage());
45:									}
46:									return	conn;
47:					}
48:	}

Lines	34–38	of	the	DmozHandlerImpl	application	should	be	changed	to	reflect	your	own
database,	username,	and	password.	In	this	class,	a	MySQL	database	named	cool	is
accessed	on	the	local	computer	with	the	username	“cool”	and	the	password	“mrfreeze”.
You	also	might	need	to	change	the	rest	of	the	string	used	to	connect	to	the	database,
depending	on	your	driver.

When	the	server	is	up	and	running,	you	can	run	SiteClient	to	see	the	data	from	a
randomly	selected	website,	as	shown	in	Figure	20.1.

FIGURE	20.1	Receiving	Dmoz	website	data	over	XML-RPC.

Note

Running	this	particular	XML-RPC	server	also	requires	a	database.	To	download	a
MySQL	database	containing	information	on	1,000	websites	from	the	Open
Directory	Project,	visit	this	book’s	website	at	www.java21days.com	and	open	the
Day	20	page.	The	database	is	in	a	file	named	dmozdata.dat	and	is	a	text	file	of
SQL	commands	that	can	be	used	to	create	the	database	on	a	MySQL	server.

Summary
XML-RPC	has	been	described	as	the	“lowest	common	denominator”	of	remote	procedure
call	protocols,	but	this	isn’t	considered	an	insult	by	its	originators.	Most	attempts	to
facilitate	software	communication	over	a	network	have	been	sophisticated,	scaring	off
developers	who	have	simpler	needs.

The	XML-RPC	protocol	can	be	used	to	exchange	information	with	any	software	that
supports	HTTP,	the	lingua	franca	of	the	Web,	and	XML,	a	highly	popular,	structured
format	for	data.

By	looking	at	XML-RPC	requests	and	responses,	you	should	be	able	to	figure	out	how	to
use	the	protocol	even	without	reading	the	protocol	specification.

However,	as	implementations	such	as	Apache	XML-RPC	become	more	extensive,	you
can	begin	using	it	quickly	without	ever	looking	at	the	protocol.

Q&A
Q	When	I	try	to	return	a	String	array	from	a	remote	method,	Apache	XML-
RPC	responds	with	an	XmlRpcException	that	states	that	the	object	is	not
supported.	Which	objects	does	it	support?

A	Apache	XML-RPC	returns	the	following	data	types:	Boolean	for	boolean
XML-RPC	values,	byte[]	for	base64	data,	Date	for	dateTime.iso8601
data,	Double	for	double	values,	Integer	for	int	(or	i4)	values,	String	for
strings,	HashMap	for	struct	values,	or	ArrayList	for	arrays.

These	are	specific	to	Apache	XML-RPC.	Other	class	libraries	that	support	this
format	may	work	with	different	data	types	and	classes	in	Java.	Consult	the
documentation	for	those	libraries.

Q	I’m	writing	an	XML-RPC	client	to	call	a	method	that	returns	binary	data
(base64,	in	other	words).	The	execute()	method	of	XmlRpcClient
returns	an	object	instead	of	an	array	of	bytes.	How	do	I	convert	this?

A	Arrays	are	objects	in	Java,	so	you	can	use	casting	to	convert	the	object	returned	by
execute()	to	an	array	of	bytes	(assuming	that	the	object	really	is	an	array).	The
following	statement	accomplishes	this	on	an	object	named	fromServer	that
contains	a	byte	array:

Click	here	to	view	code	image

http://www.java21days.com

byte[]	data	=	(byte[])	fromServer;

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	Which	popular	Internet	protocol	does	XML-RPC	not	require?

A.	HTML

B.	HTTP

C.	XML

2.	Which	XML-RPC	data	type	would	be	best	suited	to	hold	the	number	8.67?

A.	boolean

B.	double

C.	int

3.	Which	XML	tag	indicates	that	the	data	is	an	XML-RPC	request?

A.	methodCall

B.	methodResponse

C.	params

Answers
1.	A.	XML-RPC	uses	HTTP	(Hypertext	Transfer	Protocol)	to	transport	data	that	is
formatted	as	XML	(Extensible	Markup	Language).	HTML	(Hypertext	Markup
Language)	is	not	used.

2.	B.	All	floating-point	numbers	such	as	8.67	are	represented	by	the	double	type	in
XML-RPC.	There	are	not	two	different	floating-point	types,	as	there	are	in	Java
(float	and	double).

3.	A.	The	methodCall	tag	is	used	only	in	requests,	methodResponse	is	used
only	in	responses,	and	params	is	used	in	both.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	Operation	{
				public	static	void	main(String[]	arguments)	{
								int	x	=	1;

								int	y	=	3;
								if	((x	!=	1)	&&	(y++	==	3))	{
												y	=	y	+	2;
								}
				}
}

What	is	the	final	value	of	y?

A.	3

B.	4

C.	5

D.	6

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	20
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	The	programming	site	Advogato	offers	an	XML-RPC	interface	to	read	member
diaries	at	http://www.advogato.org/xmlrpc.html.	Write	an	application	that	reads	a
member’s	last	10	diary	entries.

2.	The	XML-RPC	interface	for	the	weblog	update	service	Weblogs.com	is	at
www.weblogs.com/api.html.	Write	a	client	and	server	that	can	send	and	receive	the
weblogUpdates.ping	method.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.advogato.org/xmlrpc.html
http://Weblogs.com
http://www.weblogs.com/api.html
http://www.java21days.com

Day	21.	Writing	Android	Apps	with	Java

Once	viewed	primarily	as	a	language	for	programs	on	a	web	page,	Java	has	established
itself	as	a	powerful	general-purpose	programming	language	that	can	be	run	on	desktop
computers,	Internet	servers,	tablets,	appliances,	and	many	other	platforms.	One	platform
in	particular	has	in	the	past	decade	become	an	exciting	and	commercially	lucrative	area
for	new	Java	development:	Android.

The	Android	operating	system	began	on	cell	phones	and	quickly	became	the	brains	for	a
large	number	of	other	devices.	All	programs	on	Android	are	written	in	Java.

These	programs,	which	are	called	apps,	are	developed	on	a	free	open	source	mobile	OS
that’s	enormously	popular.	Android	does	not	require	costly	development	tools,	licensing
fees,	or	approval	by	the	OS	developer.	Anyone	can	create,	distribute,	and	sell	apps.

On	this	final	day	of	the	book,	you	learn	about	the	history	of	Android,	the	things	that	have
made	it	a	success,	and	what	it	takes	to	develop	programs	for	this	OS.	You	learn	how	to
create	apps	and	run	them	on	Android	devices	and	emulators.

Today,	these	topics	are	covered:

	Why	Android	was	created

	How	to	code	your	first	app

	How	to	organize	an	app

	How	to	design	the	app’s	user	interface

	How	to	deploy	an	app	on	emulators

	How	to	deploy	an	app	on	an	Android	phone

The	History	of	Android
In	2007,	Google	launched	Android	in	collaboration	with	several	other	tech	companies	and
mobile	phone	manufacturers.	The	company	hoped	to	establish	a	new	mobile	platform	to
challenge	the	dominance	of	the	Apple	iPhone	and	RIM	BlackBerry	in	that	space.	Unlike
those	devices,	Android	was	designed	to	be	open,	nonproprietary,	and	easy	for	third	parties
to	participate	in.	Google,	Intel,	Nvidia,	Samsung,	Sprint	Nextel,	and	29	other	companies
formed	the	Open	Handset	Alliance	to	promote	the	new	platform.

Google	released	at	no	cost	the	Android	Software	Development	Kit	(SDK),	a	set	of	tools
for	developing	apps	that	run	on	the	OS.	The	T-Mobile	G1,	which	was	released	in	2008,
was	the	first	phone	running	Android	to	hit	the	market.

Once	considered	an	also-ran	in	mobile	computing,	Android	exploded	in	popularity	within
two	years	to	rival	the	iPhone	and	has	far	surpassed	it	in	market	share	today.	All	major
phone	carriers	offer	Android	phones,	and	the	market	for	tablets	and	e-book	readers	is
growing	rapidly.	The	research	firm	IDC	estimates	that	79	percent	of	all	smartphones	are
running	Android,	compared	to	16.4	percent	using	iPhone.

Before	Android	came	along,	mobile	software	development	required	expensive

programming	tools	and	private	developer	programs.	The	phone	makers	had	the	power	to
decide	who	could	create	apps	for	them	and	what	apps	could	be	sold	to	their	users.

Because	of	Android’s	open-source,	nonproprietary	nature,	anyone	can	create	and
distribute	apps	on	the	platform.	There’s	a	nominal	cost	to	submit	apps	to	Google’s	app
marketplace,	but	everything	else	is	free.

The	central	hub	of	Android	programming	is	the	Android	Developer	site	at
http://developer.android.com.	The	site	offers	extensive	tutorials	and	reference	material
about	writing	software	for	the	OS.	This	site	provides	documentation	for	every	class	in
Android’s	Java	Class	Library,	tutorials	for	beginners,	and	an	online	reference.

Writing	Android	apps	requires	an	integrated	development	environment	(IDE)	that	supports
the	Android	SDK.	Although	NetBeans	from	Oracle	can	be	used	to	create	apps,	Google
encourages	programmers	to	use	another	free	IDE	called	Android	Studio,	which
incorporates	the	SDK’s	functionality.

Android	Studio	can	be	used	to	write	Android	apps,	test	them	in	an	emulator	that	acts	like
an	Android	device,	and	deploy	them	on	the	real	thing.

The	Java	language	has	been	used	primarily	to	write	software	that	runs	on	a	desktop
computer,	web	server,	or	web	browser.	Android	puts	the	language	everywhere.	The	apps
you	create	can	be	deployed	on	phones,	tablets,	and	other	mobile	devices,	going	with	your
users	everywhere	they	go.

When	James	Gosling	created	Java	while	he	worked	at	Sun	Microsystems	in	the	’90s,	the
company	wanted	it	to	be	a	language	for	devices	such	as	phones,	smart	cards,	and
appliances.	Its	slogan	was	“Write	once,	run	everywhere.”

That	lofty	goal	was	set	aside	when	the	language	rose	to	prominence—first	as	a	way	to	put
interactive	programs	on	web	pages	and	then	as	a	general-purpose	language	for	desktop
computers	and	servers.

Thanks	to	Android,	that	goal	has	been	met.	One	industry	estimate	is	that	the	operating
system	is	running	on	three	billion	devices	around	the	world.

Let’s	make	that	count	three	billion	and	one.

Writing	an	Android	App
Android	apps	are	Java	programs	that	use	an	application	framework,	a	set	of	classes	and
files	that	make	the	job	easier	as	long	as	you	follow	all	the	rules.	You’ve	already	used	a
framework,	Swing,	to	create	graphical	user	interfaces.	The	Android	SDK	provides	a
framework	that	lays	down	a	set	of	rules	for	how	apps	must	be	structured	to	run	properly
on	Android	devices.

Before	you	can	write	apps,	you	must	install	and	configure	three	things:	the	Android	SDK,
Android	Studio,	and	Android	Plug-in	for	Eclipse.

Android	Studio	will	set	up	the	SDK	and	Plug-in	during	installation.	To	get	Android
Studio,	visit	the	website	developer.android.com/sdk	and	click	the	Download	button	(or
link)	on	this	page.	The	software	requires	1.1GB	of	disk	space.

http://developer.android.com
http://developer.android.com/sdk

You	will	be	asked	what	components	to	install	along	with	Android	Studio.	Options	include
the	Android	SDK	and	Android	Virtual	Device,	a	simulator	that	acts	like	a	phone	or	tablet
running	the	mobile	OS.	Install	both	of	these	components	and	any	others	the	installation
wizard	recommends.

Note

If	you	can’t	find	a	version	of	Android	Studio	for	your	operating	system	on	the	main
download	page,	there’s	another	download	page	for	developers	at
http://tools.android.com/download/studio.	Go	to	the	Stable	releases	page	and
choose	version	1.3.1	(the	one	used	for	this	book).	You	will	be	presented	with
several	versions	for	Windows,	Mac	OS,	and	Linux.

After	the	installation	wizard	downloads	the	Android	SDK	and	other	components,	you	are
asked	to	choose	a	theme	for	the	Android	Studio	user	interface	(Figure	21.1).

FIGURE	21.1	Choosing	the	user	interface	theme	in	Android	Studio.

The	IntelliJ	theme	resembles	the	user	interface	of	NetBeans,	so	you	may	prefer	it	while
you’re	getting	started.	This	can	be	changed	at	any	time.

As	soon	as	you	have	Android	Studio	installed,	you	can	get	started.

Today’s	first	project	is	Palindrome,	an	app	that	displays	a	line	of	text	on	an	Android
device.

http://tools.android.com/download/studio

The	Android	Studio	Setup	Wizard	has	a	quick	start	menu	that	includes	the	comment	Start
a	New	Android	Studio	Project.	Choose	it,	and	the	Create	New	Project	wizard	opens,	as
shown	in	Figure	21.2.

FIGURE	21.2	Starting	a	new	Android	project	in	Android	Studio.

1.	In	the	Application	Name	field,	enter	Palindrome.

2.	In	the	Company	Domain	field,	enter	java21days.com	or	a	domain	name	that
you	own.	The	Package	Name	field	automatically	reflects	your	choice,	forming	a
package	name	such	as	com.java21days.palindrome.

3.	The	Project	Location	field	indicates	the	folder	where	project	files	will	be	stored.	To
change	this,	click	the	...	button	to	the	right	of	this	field	or	enter	a	location.

4.	Click	Next.	You’ll	be	asked	which	type	of	Android	devices	to	target	with	your	app.
The	default	is	Phone	and	Tablet.	Keep	this	default.

5.	The	Minimum	SDK	field	determines	the	oldest	version	of	Android	OS	that	can	run
the	app.	The	default	is	API	15:	Android	4.0.3	(IceCreamSandwich).	Keep	this
default	and	click	Next.

6.	You	are	asked	whether	to	create	an	Activity,	which	is	a	class	that	performs	a	task.
Choose	Blank	Activity;	then	click	Next.

7.	This	activity	must	be	customized.	In	the	Activity	Name	field,	enter
PalindromeActivity.	Accept	all	other	defaults.

8.	Click	Finish.

Android	Studio	creates	the	new	app	and	opens	the	new	project	in	the	IDE’s	user	interface.

Note

Android	Studio	is	a	special	version	of	IntelliJ	IDEA,	a	commercial	IDE	for	Java
programmers	that’s	now	in	its	14th	major	release.	Though	some	versions	of	IntelliJ
IDEA	are	sold	commercially,	Android	Studio	is	free.	If	you	like	creating	Java
programs	with	this	IDE,	you	can	find	out	more	about	it	at	www.jetbrains.com/idea.

Organizing	an	Android	Project
The	Java	programs	you	created	in	past	days	were	made	up	primarily	of	class	files.
Sometimes	a	class	needed	the	data	in	a	file,	such	as	a	graphics	file	that	contained	a	button
icon	or	a	text	file	read	from	an	input	stream.

Android	projects	always	require	external	files.	A	new	project	is	composed	of	about	20
files	and	folders,	which	are	organized	into	a	fixed	folder	structure.	You	can	add	files	to
those	folders,	but	the	starting	files	and	folders	must	be	present,	or	the	app	won’t	compile.

You	can	use	the	Android	Studio	Project	pane,	shown	in	Figure	21.3,	to	examine	how	a
new	Android	project	is	organized.	If	the	Project	pane	is	not	shown,	click	the	Project	tab
along	the	left	edge	of	the	user	interface	to	open	it.

http://www.jetbrains.com/idea

FIGURE	21.3	Viewing	the	components	of	an	Android	project.

In	the	Project	pane,	expand	folders	to	familiarize	yourself	with	the	files	and	folders	that	a
starting	project	contains.	A	new	app	such	as	Palindrome	has	these	starting	components:

	/java	folder—The	app’s	Java	source	code	that	you	create.

	/java/com.java21days.palindrome/PalindromeActivity—The
activity	class	created	along	with	the	project.

	/res—Application	resources,	which	include	animation,	graphics,	layout	files,
numbers,	and	strings.	Subfolders	layout,	values,	drawable,	menu,	and
midmap	hold	specific	resource	types.	These	folders	contain	10	resource	files:	four
versions	of	ic_launcher.png,	two	versions	of	dimens.xml,
activity_palindrome.xml,	menu_palindrome.xml,	strings.xml,
and	styles.xml.

	/manifests/AndroidManifest.xml—The	app’s	configuration	file.

These	files	and	folders	compose	the	app	framework.	The	first	thing	an	Android
programmer	must	learn	is	what	each	of	these	components	does	and	how	they	can	be	edited
to	create	an	app.

You	can	add	files	to	the	folders	of	the	framework	to	create	new	functionality.	For	example,
if	an	app	has	additional	screens,	they	are	added	to	the	/res/layout	folder.

Creating	the	Program
This	framework	can	be	run	successfully	as	an	app,	but	it	wouldn’t	be	much	to	look	at,
because	nothing	has	been	done	to	it	yet.

The	Palindrome	app	needs	to	be	edited	to	display	a	palindrome,	a	sentence	that	reads	the
same	forward	and	backward.

Java	programs	can	display	strings	with	the	method	System.out.println(String),
where	literals	and	variables	can	be	used	as	the	argument.	In	Android	apps,	strings	to	be
displayed	are	first	saved	in	the	resource	file	strings.xml,	which	is	in	the	folder
/res/values.

In	the	Project	pane,	find	and	expand	this	folder.	Then	double-click	strings.xml	to
open	it	in	the	Resources	editor.	The	file	opens	as	an	XML	file.	Above	the	contents	of	the
file,	a	blue	Open	Editor	link	appears.	Click	this	link	to	open	strings.xml	in	the	Translations
editor,	which	is	shown	in	Figure	21.4.

FIGURE	21.4	Creating	an	app’s	string	resources.

Strings	and	other	resources	have	a	name	and	a	value,	comparable	to	Java	variables.	Three
string	resources	appear	in	the	editor	with	keys	named	action_settings,	app_name,
and	hello_world.	Resource	keys	must	be	lowercase,	can	contain	no	spaces,	and	can
use	only	the	underscore	character	(_)	as	punctuation.

To	edit	the	value	of	one	of	these	strings,	click	its	table	cell	in	the	Default	Value	column	of
the	editor.

In	Figure	21.4,	the	app_name	string	resource	defines	the	app’s	display	name	and	was	set
by	the	Create	New	Project	wizard.	You	can	change	it	at	any	time	by	opening	this	resource
and	editing	its	value.

The	hello_world	string	resource	contains	text	that	is	displayed	on	the	app’s	main
screen,	which	at	this	point	is	its	only	screen.	Change	it	from	Hello	world!	to	Sit	on
a	Potato	Pan,	Otis!.

Android	app	resources	such	as	app_name	and	hello_world	are	stored	in	XML	files.
The	Resources	editor	is	a	simple	XML	editor.	You	also	can	directly	edit	the	XML	itself.
Click	the	strings.xml	tab	at	the	top	of	the	editor,	shown	in	Figure	21.4,	to	load	this	file	for
direct	editing.

The	XML	file	strings.xml	is	open	for	editing	in	Figure	21.5.

FIGURE	21.5	Editing	an	app’s	string	resources	as	an	XML	file.

Everything	in	this	XML	file	can	be	edited.	You	can	give	app_name	a	new	value	by
replacing	Palindrome	with	new	text.	You	also	can	change	the	XML	tags	within	the	<
and	>	characters.	Each	string	element’s	name	attribute	defines	the	name	of	a	string
resource.	The	value	is	the	character	data	contained	within	the	opening	and	closing
string	tags.

Caution

Editing	XML	directly	like	this	is	much	more	error-prone	than	using	the	Translations
editor.	Making	one	typo	in	a	tag	causes	the	app	to	fail	to	compile.	The	only	time
you	might	want	to	edit	XML	is	when	Android	Studio	doesn’t	support	something
you	need	to	define	in	a	resource.	This	is	never	the	case	with	strings,	so	use	the
Translations	editor	to	create	and	modify	them.

Click	the	Save	All	button	in	the	Android	Studio	toolbar	or	choose	File,	Save	All	to	save
the	change	you	made	to	strings.xml.

Running	the	App
To	run	your	first	app,	choose	the	menu	command	Run,	Run	App.	The	Android	emulator
loads	in	its	own	window,	which	may	take	a	minute	or	more,	depending	on	how	fast	your
computer	is.	The	first	thing	that	loads	is	a	screen	that	displays	an	animated	Android	logo
while	the	emulator	continues	to	load	the	OS.

The	emulator	displays	“Palindrome”	in	the	app’s	title	bar	and	one	line	of	text	on	the	app’s
screen,	“Sit	on	a	Potato	Pan,	Otis!,”	as	shown	in	Figure	21.6.	Controls	to	the	right	of	the
screen	let	you	use	the	emulator	like	a	phone	with	the	mouse.	You	also	can	click	the	screen,
although	in	this	app	there’s	nothing	to	click.

FIGURE	21.6	Running	an	app	in	an	emulator.

Click	the	Back	button	to	close	the	Palindrome	app	and	try	out	your	new	fake	Android
phone.

An	emulator	can	simulate	many	things,	such	as	connecting	to	the	Internet	over	the
computer’s	current	connection	and	receiving	phone	calls	and	SMS	messages.

If	the	emulator	fails	when	you	attempt	to	run	the	app,	there’s	an	error	that	occurs	on	some
Windows	and	Mac	OS	computers.	The	following	error	message	is	displayed	in	Android
Studio:

Output	

Click	here	to	view	code	image

ERROR:	x86	emulation	currently	requires	hardware	acceleration!
Please	ensure	Intel	HAXM	is	properly	installed	and	usable.	CPU
acceleration	status:	HAX	kernel	module	is	not	installed!

This	error	occurs	on	computers	with	an	Intel	processor	when	a	program	called	the	Intel
Hardware	Accelerated	Execution	Manager	(HAXM)	has	not	been	installed.	This	program
can	be	downloaded	as	part	of	the	Android	SDK.	Before	you	go	any	further	today,	read
Appendix	C,	“Fixing	a	Problem	with	the	Android	Studio	Emulator.”

Designing	an	Android	App
Android	apps	can	make	use	of	SMS	messaging,	location-based	services,	touch	screen
input,	and	the	rest	of	the	device’s	functionality.	For	a	final	programming	project,	you’ll
create	an	app	that	can	make	a	phone	call,	visit	a	website	with	the	browser,	and	load	a
location	using	Google	Maps.

After	closing	the	Palindrome	project	with	the	menu	command	File,	Close	Project,	create	a
new	project	in	Android	Studio	by	following	these	steps:

1.	On	the	quick	start	menu,	select	Start	a	New	Android	Studio	Project.	The	Create
New	Project	wizard	appears.

2.	In	the	Application	Name	field,	enter	Santa.

3.	Accept	the	other	defaults	and	click	Next.	A	Target	Android	Device	pane	appears.

4.	Accept	these	defaults	also	and	click	Next.	An	activity	pane	appears.

5.	Choose	Blank	Activity,	and	then	click	Next.	You	will	be	given	a	chance	to
customize	the	activity.

6.	In	the	Activity	Name	field,	enter	SantaActivity.

7.	Click	Finish.

The	project	opens	in	the	main	Android	Studio	user	interface.

Preparing	Resources
Although	Android	apps	are	Java	programs,	a	lot	of	the	work	required	to	create	them	is
done	in	the	Android	Studio	interface.	You	can	accomplish	many	things	in	an	Android	app
without	writing	Java	code.

One	thing	you	accomplish	without	programming	is	creating	resources	the	app	needs.

As	shown	earlier	today,	every	new	Android	project	begins	with	several	folders	and
subfolders	that	contain	resources.	To	examine	these	folders,	expand	the	Project	pane,	and
then	expand	/res	and	all	its	subfolders,	as	shown	in	Figure	21.7.

FIGURE	21.7	Examining	an	app’s	resources.

The	project’s	starting	resources	are	several	graphics	files,	strings	in	strings.xml,	and
graphical	user	interface	layout	files	that	also	are	in	XML	format.	Graphics	must	be	in
PNG,	JPG,	or	GIF	format.	Two	additional	XML	files	that	often	are	added	to	apps	are
styles.xml,	which	defines	fonts,	colors,	and	other	visuals	used	in	the	app,	and
dimens.xml,	which	holds	dimensional	measurements	for	text	and	other	things	that	can
be	displayed	in	the	app.

The	/res/mipmap	folder	contains	four	versions	of	the	file	ic_launcher.png.	This
is	the	app’s	icon,	the	small	graphic	that	represents	it	in	application	menus	on	an	Android
device.	Each	folder	is	for	graphics	of	different	screen	resolutions.

The	default	icon	for	the	app	won’t	be	used.	A	new	graphics	file,	santa.png,	will	be
brought	into	the	project	and	designated	as	its	icon	in	AndroidManifest.xml,	the	file
that	holds	the	app’s	configuration	settings.

This	book’s	website	contains	santa.png	and	four	other	graphics	files	needed	by	this
app:	browser.png,	maps.png,	northpole.png,	and	phone.png.	Load
www.java21days.com	in	your	browser,	open	the	site	for	this	edition	of	the	book,	and	click
the	Day	21	link.	The	graphics	files	are	linked	on	this	page.	Download	all	five	and	save
them	to	a	folder	on	your	computer	(or	the	desktop).

Android’s	support	for	multiple	resolutions	is	important	for	optimizing	an	app	for	different
devices,	but	for	this	project	it	would	be	overkill.

You	can	add	files	to	an	Android	project	using	drag	and	drop.	Outside	of	Android	Studio,
open	the	folder	where	the	five	files	for	this	app	were	downloaded	from	the	book’s	website
and	copy	them.	Return	to	Android	Studio,	right-click	drawable	in	the	Project	pane,	and
choose	Paste.

http://www.java21days.com

Caution

Resource	filenames	can	contain	only	lowercase	letters,	numbers,	the	underscore
character	_,	and	the	period	character	(.).

Android	apps	identify	resources	using	their	filenames	with	the	extension	removed.
This	becomes	the	resource’s	ID,	which	is	how	it	will	be	referred	to	in	code.	The
files	dragged	into	this	project	have	the	IDs	browser,	maps,	northpole,
phone,	and	santa.	No	two	resources	can	have	the	same	ID,	except	for	versions
of	the	same	graphics	file	in	the	four	ic_launcher.png	folders,	which	are
treated	as	a	single	resource.	An	app	can’t	be	compiled	in	Android	Studio	if	two
resources	have	the	same	ID.

Configuring	a	Manifest	File
You	can	designate	santa.png	as	the	Santa	app’s	icon	by	editing	the	resource	file
AndroidManifest.xml.

This	file	contains	the	app’s	configuration	settings.	Like	strings.xml,	this	is	an	XML
file	that	can	be	edited	manually,	but	there’s	no	special	editor	that	can	be	used	instead.

To	choose	the	proper	icon	for	the	app,	follow	these	steps:

1.	In	the	Project	pane,	double-click	AndroidManifest.xml.	The	XML	file	opens
for	editing,	as	shown	in	Figure	21.8.

FIGURE	21.8	Editing	an	app’s	AndroidManifest.xml	file.

2.	Find	the	line	where	the	attribute	android:icon	is	set	to	the	value
“@mipmap/ic_launcher”.

3.	Change	the	value	to	“@drawable/santa”.

The	app’s	icon	becomes	a	Santa	icon.

Designing	the	Graphical	User	Interface
The	graphical	user	interface	for	an	Android	app	does	not	use	Swing,	because	Android	has
its	own	library	of	user	interface	widgets.	An	app’s	graphical	user	interface	is	created	as	a
collection	of	layouts,	which	are	containers	that	hold	text	fields,	buttons,	graphics,	and
other	widgets.

Each	screen	displayed	to	a	user	can	have	a	single	layout	or	multiple	layouts.	There	are
layouts	that	organize	widgets	into	a	table,	stack	them	vertically	or	horizontally,	and
arrange	them	in	other	ways.

The	Santa	app	has	a	single	screen	with	buttons	to	contact	Santa.

An	app	could	be	presented	as	multiple	screens:

	A	splash	screen	displays	while	the	app	loads.

	A	menu	screen	contains	buttons	to	access	the	other	screens.

	A	help	screen	explains	how	to	use	the	app.

	A	credits	screen	names	the	app’s	developer.

	A	main	screen	accomplishes	the	app’s	purpose.

All	of	an	app’s	screens	are	stored	in	the	/res/layout	folder.	This	new	project	was
created	with	an	activity_santa.xml	file	in	this	folder	that’s	set	up	to	display	when
the	app	loads.

To	work	on	this	screen	layout,	double-click	activity_santa.xml	in	the	Project
pane.	The	screen	opens	for	editing,	as	shown	in	Figure	21.9.

FIGURE	21.9	Editing	an	activity’s	graphical	user	interface.

Along	the	left	side	of	the	screen	editor	is	a	Palette	pane	with	user	interface	widgets	that
can	be	dragged	onto	the	screen.

Three	graphical	buttons,	which	are	called	ImageButton	widgets	in	Android,	must	be
added	to	the	screen.	Follow	these	steps:

1.	On	the	app	screen,	click	the	widget	that	contains	the	text	“Hello	World”;	a	blue
rectangle	appears	around	the	widget.

2.	Press	your	keyboard’s	Delete	key.	The	widget	is	removed.

3.	Drag	the	layout	widget	LinearLayout	(Horizontal)	to	the	screen.	This	will	cause
components	you	place	inside	it	to	be	arranged	horizontally	from	left	to	right.

4.	Drag	an	ImageButton	widget	(shown	in	Figure	21.9)	from	the	Palette	to	the
screen.	A	blue	rectangle	appears	where	the	widget	has	been	placed.

5.	Double-click	the	rectangle.	A	dialog	appears	with	the	fields	Src,	which	is	empty,

and	ID,	which	is	set	to	the	value	“imageButton”.

6.	Click	the	…	button	next	to	the	Src	field.	A	Resources	dialog	appears.

7.	Scroll	down	and	choose	the	resource	phone;	then	click	OK.	An	image	button	with
a	Dialer	icon	appears.

8.	Drag	another	ImageButton	widget	to	the	screen	and	place	it	immediately	to	the
right	of	the	Dialer	button.

9.	Use	the	same	procedure	in	steps	4–6	to	assign	it	the	resource	browser.	Click	OK.
A	Browser	button	appears.

10.	Drag	a	third	ImageButton	to	the	screen	to	the	right	of	the	Browser	button.
Repeat	steps	4–6	to	assign	it	the	resource	maps.	Click	OK.	A	Maps	icon	appears.
All	three	icons	are	lined	up	from	left	to	right.

11.	In	the	Component	Tree	pane	to	the	right	of	the	screen	editor,	click	the	LinearLayout
item.	The	screen’s	properties	appear	in	the	Properties	pane	below	the	Component
Tree	pane.

12.	In	the	Properties	pane,	click	the	value	for	Background;	then	click	the	…	button	next
to	it.	The	Reference	dialog	opens.

13.	Choose	northpole	and	click	OK.	The	screen’s	background	becomes	a	photo	of
Santa	and	his	sled.

14.	Click	the	Dialer	button.	The	Properties	pane	loads	this	widget’s	properties.

15.	Scroll	down	to	the	On	Click	property.	In	its	Value	field,	enter	processClicks
(capitalized	as	shown).

16.	Do	the	same	for	the	Browser	button,	setting	its	On	Click	property	to
processClicks.

17.	Do	the	same	for	the	Maps	button.

18.	Click	the	Save	All	button.

The	finished	screen	is	shown	in	Figure	21.10.

FIGURE	21.10	Viewing	an	app’s	user	interface.

Placing	the	image	buttons	inside	the	linear	layout	widget	and	making	them	align	properly
takes	practice.	If	your	screen	doesn’t	exactly	match	Figure	21.10,	that’s	okay,	as	long	as
all	three	buttons	can	be	seen.

You	can	start	over,	if	desired,	by	clicking	the	LinearLayout	item	in	the	Component	Tree
and	pressing	the	Delete	key.	All	of	the	image	buttons	disappear	along	with	the	layout
manager.

Writing	Code
Without	writing	any	Java	code,	you	have	completed	most	of	this	project.	Android	app
development	is	much	easier	when	you	have	learned	how	to	exploit	the	features	of	Android
Studio	that	require	no	programming.

Apps	are	organized	into	activities,	which	are	the	tasks	an	app	can	perform.	Every	Activity
is	a	Java	class.	When	you	created	the	Santa	app,	one	of	the	options	you	specified	was	that
an	activity	named	SantaActivity	should	be	created.	This	class	runs	when	the	app
loads.

The	source	code	for	SantaActivity.java	is	in	the
/java/com.java21days.santa	folder	in	the	Project	pane.	Double-click	this	file	to
open	it	in	the	source	code	editor.

The	class	starts	out	with	the	code	shown	in	Listing	21.1.

LISTING	21.1	The	Starting	Text	of	SantaActivity.java
Click	here	to	view	code	image

	1:	package	com.java21days.santa;
	2:
	3:	import	android.support.v7.app.AppCompatActivity;
	4:	import	android.os.Bundle;
	5:	import	android.view.Menu;
	6:	import	android.view.MenuItem;
	7:
	8:	public	class	SantaActivity	extends	AppCompatActivity	{
	9:
10:					@Override
11:					protected	void	onCreate(Bundle	savedInstanceState)	{
12:									super.onCreate(savedInstanceState);
13:									setContentView(R.layout.activity_santa);
14:					}
15:
16:					@Override
17:					public	boolean	onCreateOptionsMenu(Menu	menu)	{
18:									//	Inflate	the	menu;	this	adds	items	to	the	action	bar
19:									getMenuInflater().inflate(R.menu.menu_santa,	menu);
20:									return	true;
21:					}
22:
23:					@Override
24:					public	boolean	onOptionsItemSelected(MenuItem	item)	{
25:									//	Handle	action	bar	item	clicks	here.	The	action	bar	will
26:									//	automatically	handle	clicks	on	Home/Up	button,	so	long
27:									//	as	you	specify	a	parent	activity	in	AndroidManifest.xml.
28:									int	id	=	item.getItemId();
29:
30:									//	noinspection	SimplifiableIfStatement
31:									if	(id	==	R.id.action_settings)	{
32:													return	true;
33:									}
34:
35:									return	super.onOptionsItemSelected(item);
36:					}
37:	}

If	you	can’t	see	all	the	import	statements	in	the	editor,	click	the	+	character	next	to
import….

All	activities	are	subclasses	of	AppCompatActivity	in	the
android.support.v7.app	package,	which	contains	the	behavior	to	display	a
screen,	receive	user	input,	and	save	user	preferences.

The	onCreate()	method	defined	in	lines	11–14	is	called	when	the	class	loads.	The	first
thing	this	method	does	is	call	the	same	method	in	its	superclass.

Next,	it	calls	setContentView()	to	select	the	layout	to	display	on	the	screen.	The
method’s	argument	is	the	instance	variable	R.layout.activity_santa,	which
refers	to	the	file	activity_santa.xml	in	/res/layout.	The	ID	has	the	name
activity_santa	because	each	resource	ID	is	its	filename	with	the	extension	removed.

The	R	in	R.layout.main	refers	to	R.java,	a	class	that	Android	Studio	creates

automatically.

While	you	were	creating	this	app’s	screen,	you	set	the	On	Click	property	for	all	three
buttons	to	the	value	processClicks.	This	causes	a	method	called
processClicks()	to	be	called	when	a	user	clicks	those	widgets.

That	method	must	be	implemented	in	SantaActivity.	Below	the	last	line	of	the
onCreate()	method	on	line	14,	add	these	statements:
Click	here	to	view	code	image

public	void	processClicks(View	display)	{
				Intent	action	=	null;
				int	id	=	display.getId();
}

When	you	enter	this	code,	the	Android	Studio	source	code	editor	detects	that	the	classes
View	and	Intent	have	not	been	imported.	A	blue	dialog	appears,	inviting	you	to	hit
Alt+Enter	to	import	each	class.	Press	Alt+Enter	to	do	this.

The	processClicks()	method	takes	one	argument,	a	View	object	from	the
android.view	package.	Views	are	visual	displays	in	an	app.	This	particular	View	is
the	screen	containing	the	Dialer,	Browser,	and	Maps	buttons.

The	View	object’s	getId()	method	returns	the	ID	of	the	button	that	was	clicked:
imageButton1,	imageButton2,	or	imageButton3.

This	ID,	which	is	saved	in	an	integer	variable	named	id,	can	be	used	in	a	switch
conditional	that	takes	action	based	on	what	the	user	clicks:

switch	(id)	{
				case	(R.id.imageButton):
								//	…
								break;
				case	(R.id.imageButton2):
								//	…
								break;
				case	(R.id.imageButton3):
								//	…
								break;
				default:
								break;
}

The	first	statement	in	the	processClicks()	method	declares	a	variable	for	an
Intent	object:

Intent	action;

The	Intent	class	in	the	android.content	package	is	how	one	Activity	tells
another	Activity	to	do	something.	An	Intent	also	can	be	used	to	communicate	with
the	device	running	the	app.

Three	intents	are	created	in	the	processClicks()	method,	each	in	a	case	section	of
the	switch	conditional:
Click	here	to	view	code	image

action	=	new	Intent(Intent.ACTION_DIAL,	Uri.parse(

				“tel:877-446-6723”));
action	=	new	Intent(Intent.ACTION_VIEW,	Uri.parse(
				“http://www.noradsanta.org”));
action	=	new	Intent(Intent.ACTION_VIEW,	Uri.parse(
				“geo:0,0?q=101	Saint	Nicholas	Dr.,	North	Pole,	AK”));

An	Intent()	constructor	takes	two	arguments:

	The	action	to	take,	selected	by	a	class	variable

	The	data	associated	with	the	action

The	three	Intents	tell	the	Android	device	to	set	up	an	outgoing	phone	call	to	Santa’s
NORAD	hotline	at	877-446-6723,	visit	the	website	www.noradsanta.org,	and	load	Google
Maps	with	an	address	at	the	North	Pole.

The	startActivity	(Intent)	statement	turns	an	intent	into	action:
startActivity(action);

For	security	reasons,	the	call	is	not	made	by	the	first	intent.	Instead,	the	device’s	dialer	is
opened	with	that	number	ready	to	be	called.

Listing	21.2	contains	the	full	text	of	the	SantaActivity	class.	Double-check	the
listing	to	be	sure	your	code	matches	this	listing.

LISTING	21.2	The	Full	Text	of	SantaActivity.java
Click	here	to	view	code	image

	1:	package	com.java21days.santa;
	2:
	3:	import	android.content.Intent;
	4:	import	android.net.Uri;
	5:	import	android.support.v7.app.AppCompatActivity;
	6:	import	android.os.Bundle;
	7:	import	android.view.Menu;
	8:	import	android.view.MenuItem;
	9:	import	android.view.View;
10:
11:	public	class	SantaActivity	extends	AppCompatActivity	{
12:
13:					@Override
14:					protected	void	onCreate(Bundle	savedInstanceState)	{
15:									super.onCreate(savedInstanceState);
16:									setContentView(R.layout.activity_santa);
17:					}
18:
19:					public	void	processClicks(View	display)	{
20:									Intent	action	=	null;
21:									int	id	=	display.getId();
22:
23:									switch	(id)	{
24:													case	(R.id.imageButton):
25:																	action	=	new	Intent(Intent.ACTION_DIAL,
26:																					Uri.parse(“tel:877-446-6723”));
27:																	break;
28:													case	(R.id.imageButton2):
29:																	action	=	new	Intent(Intent.ACTION_VIEW,
30:																					Uri.parse(“http://www.noradsanta.org”));
31:																	break;

http://www.noradsanta.org

32:													case	(R.id.imageButton3):
33:																	action	=	new	Intent(Intent.ACTION_VIEW,
34:																					Uri.parse(“geo:0,0?q=101	Saint	Nicholas	Dr.,	North
Pole,	AK”));
35:																					break;
36:													default:
37:																	break;
38:													}
39:									startActivity(action);
40:					}
41:
42:					@Override
43:					public	boolean	onCreateOptionsMenu(Menu	menu)	{
44:									//	Inflate	the	menu;	this	adds	items	to	the	action	bar
45:									getMenuInflater().inflate(R.menu.menu_santa,	menu);
46:									return	true;
47:					}
48:
49:					@Override
50:					public	boolean	onOptionsItemSelected(MenuItem	item)	{
51:									//	Handle	action	bar	item	clicks	here.	The	action	bar	will
52:									//	automatically	handle	clicks	on	Home/Up	button,	so	long
53:									//	as	you	specify	a	parent	activity	in	AndroidManifest.xml.
54:									int	id	=	item.getItemId();
55:
56:									//noinspection	SimplifiableIfStatement
57:									if	(id	==	R.id.action_settings)	{
58:													return	true;
59:									}
60:
61:									return	super.onOptionsItemSelected(item);
62:					}
63:	}

As	you	save	the	file,	Android	Studio	automatically	compiles	the	class	if	there	are	no
errors.	Otherwise,	red	Xs	appear	in	the	Project	pane	in	any	file	where	an	error	has	been
detected.

To	run	the	app,	choose	the	menu	command	Run,	Run	App.	The	emulator	loads	Android
OS	and	then	runs	the	Santa	app.

In	the	emulator,	the	app’s	Dialer,	Browser,	and	Map	buttons	all	should	work.

The	app	running	in	an	emulator	will	look	like	it	did	when	you	were	creating	it	in	Android
Studio.

Click	the	Back	button	to	exit	the	app.	If	you	look	at	the	list	of	applications	on	your	fake
phone,	it	now	includes	a	Santa	icon	(Figure	21.11).	Click	it	to	run	the	app	again.

FIGURE	21.11	Calling	Santa	Claus.

Note

For	more	on	Android,	refer	to	Sams	Teach	Yourself	Android	Application
Development	in	24	Hours,	Fourth	Edition,	by	Carmen	Delessio,	Lauren	Darcey	and
Shane	Conder	(Sams,	2011,	ISBN	0-672-33739-8).	The	Android	Developer	site
also	has	tutorials	and	reference	material	at	http://developer.android.com.

The	apps	you	create	and	test	in	Android	Studio	also	can	be	run	on	your	Android	phone.
The	process	to	make	this	happen	varies,	depending	on	the	phone’s	manufacturer	and	its
Android	version.

To	run	apps	currently	under	development,	the	phone	must	be	set	to	developer	mode	and
have	USB	debugging	turned	on.	Open	the	phone’s	Settings	app	and	look	for	the	setting
titled	Developer	Options	(or	something	similar).

Turn	on	Developer	Options	and	turn	on	USB	debugging,	one	of	several	options	that	can	be
chosen	when	the	phone	is	in	developer	mode.	Plug	in	your	phone’s	USB	cord	and	connect
it	to	the	PC.

In	Android	Studio,	choose	Run,	Run	App.	If	the	phone	is	set	up	properly,	the	Choose
Device	dialog	now	has	a	new	option,	as	you	can	see	in	Figure	21.12.

FIGURE	21.12	Running	your	app	on	a	real	Android	phone.

Your	phone	will	be	listed	in	Choose	Device,	along	with	its	name,	Android	version,	and
API	version.	Select	the	option	Choose	a	Running	Device,	select	your	phone,	and	click
OK.

The	app	will	load	in	the	phone	and	can	be	run	like	any	other	app.	This	is	a	permanent

http://developer.android.com

change,	so	even	after	you	disconnect	the	USB	cord,	the	app	will	still	be	there	and	you	can
run	it	by	clicking	its	icon.

If	your	phone	doesn’t	show	up	in	the	Choose	Device	dialog,	the	most	likely	cause	is	that
your	computer	doesn’t	have	the	right	USB	driver.

There’s	a	help	page	on	the	Android	Developer	site	that	documents	how	to	find	and	install
the	proper	driver.	Visit	http://developer.android.com/tools/extras/index.html.	There	are
links	for	each	of	the	manufacturers	of	Android	phones	that	go	to	their	driver	download
pages.

Follow	the	manufacturer’s	instructions	for	how	to	install	the	driver,	making	sure	to
uninstall	an	older	driver	version	if	you’re	asked	to	do	that	first.

Summary
For	the	past	three	weeks,	you’ve	had	a	chance	to	work	with	the	syntax	and	the	core	classes
that	make	up	the	Java	language	and	the	Java	Class	Library.	You’ve	ventured	into
sophisticated	topics	such	as	JDBC,	Internet	networking,	and	data	structures,	and	you’ve
explored	class	libraries	such	as	the	XML	Object	Model	library	and	Android.

Now	you	are	ready	to	tackle	the	biggest	challenge	yet:	Turning	an	empty	source	code	file
into	a	robust	and	reliable	program	implemented	as	a	set	of	Java	classes	using	object-
oriented	programming.

This	book	has	an	official	website	at	www.java21days.com	with	answers	to	frequently
asked	questions,	source	code	for	the	entire	book,	error	corrections,	and	supplementary
material.

Now	get	to	work	on	the	next	billion-dollar	tech	startup.	In	your	IPO,	don’t	forget	the
author	who	was	there	when	you	taught	yourself	Java.

Q&A
Q	Do	I	need	to	create	Android	virtual	devices	for	older	versions	of	the	Android
SDK	in	Android	Studio?

A	Probably,	because	you	want	an	app	to	run	on	as	many	versions	of	the	Android
operating	system	as	possible.	A	large	variety	of	Android	devices	are	in	use	today,
and	not	all	are	being	updated	to	the	current	OS.	Some	can’t	be	updated.

To	ensure	that	your	app	has	the	widest	possible	audience,	use	the	Android	SDK
Manager—available	as	one	of	the	buttons	in	the	Android	Studio	toolbar—to	install
older	versions	of	Android.

More	than	94	percent	of	devices	are	running	Android	version	2.3	(Gingerbread)	or
later,	and	more	than	99	percent	are	running	version	2.2	(Froyo)	or	later.	Writing	an
app	that	works	in	early	versions	of	Android	will	restrict	the	features	it	can	use,
because	new	Android	capabilities	that	came	out	in	subsequent	releases	won’t	be
available.

http://developer.android.com/tools/extras/index.html
http://www.java21days.com

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	Android	object	enables	an	app	to	communicate	with	the	device	running	the
app?

A.	Intent

B.	View

C.	Activity

2.	Which	resource	file	contains	an	app’s	string	resources?

A.	main.xml

B.	strings.xml

C.	R.java

3.	Can	an	app	have	resource	files	named	icon.gif	and	icon.png?

A.	Yes

B.	No

C.	Ask	again	later.

Answers
1.	A.	The	Intent	also	can	be	used	for	one	Activity	to	tell	another	to	take	an
action.

2.	B.	The	main.xml	file	is	a	screen,	and	R.java	defines	resource	IDs.

3.	B.	No,	because	both	files	would	be	given	the	same	identifier,	icon.

Certification	Practice
The	following	question	is	the	kind	of	thing	you	could	expect	to	be	asked	on	a	Java
programming	certification	test.	Answer	it	without	looking	at	today’s	material	or	using	the
Java	compiler	to	test	the	code.

Given:
Click	here	to	view	code	image

public	class	CharCase	{
				public	static	void	main(String[]	arguments)	{
								float	x	=	9;
								float	y	=	5;
								char	c	=	‘1’;
								switch	(c)	{
												case	1:
																x	=	x	+	2;
												case	2:

																x	=	x	+	3;
												default:
																x	=	x	+	1;
								}
								System.out.println(“Value	of	x:	“	+	x);
				}
}

What	will	be	the	value	of	x	when	it	is	displayed?

A.	9.0

B.	10.0

C.	11.0

D.	The	program	will	not	compile.

The	answer	is	available	on	the	book’s	website	at	www.java21days.com.	Visit	the	Day	21
page	and	click	the	Certification	Practice	link.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	Modify	the	Palindrome	app	to	display	a	different	palindrome	and	show	a	graphic	as
the	screen’s	background.

2.	Modify	the	Santa	app	with	the	phone	number,	website	address,	and	map	location	of
another	famous	person.

Exercise	solutions	are	offered	on	the	book’s	website	at	www.java21days.com.

http://www.java21days.com
http://www.java21days.com

Week	IV:	Appendices
A	Using	the	NetBeans	Integrated	Development	Environment

B	This	Book’s	Web	Site

C	Fixing	a	Problem	with	the	Android	Studio	Emulator

D	Using	the	Java	Development	Kit

E	Programming	with	the	Java	Development	Kit

Appendix	A.	Using	the	NetBeans	Integrated	Development
Environment

Although	it’s	possible	to	create	Java	programs	with	nothing	more	than	the	Java
Development	Kit	and	a	text	editor,	the	experience	is	considerably	more	pleasant	when	you
use	an	integrated	development	environment	(IDE).

The	first	20	days	of	this	book	employ	NetBeans,	a	free	IDE	that	Oracle	offers	to	Java
programmers.	NetBeans	is	a	program	that	makes	it	easier	to	organize,	write,	compile,	and
test	Java	software.	It	includes	a	project	and	file	manager,	graphical	user	interface	designer,
and	many	other	tools.	One	killer	feature	is	a	code	editor	that	automatically	detects	Java
syntax	errors	as	you	type.

Now	in	version	8.0.2,	NetBeans	has	become	a	favorite	of	professional	Java	developers,
offering	functionality	and	performance	that	used	to	be	available	only	in	commercial
development	tools	at	no	cost.	It’s	also	one	of	the	easiest	IDEs	for	Java	novices	to	use.

In	this	appendix,	you	install	NetBeans	and	learn	how	to	use	it	in	projects	created	in	this
book.

Installing	NetBeans
From	inauspicious	beginnings,	the	NetBeans	IDE	has	grown	to	become	one	of	the	leading
programming	tools	for	Java	developers.	James	Gosling,	creator	of	the	Java	language,
wrote	in	the	Foreword	to	NetBeans	Field	Guide:	“I	use	NetBeans	for	all	my	Java
development.”	I’ve	become	a	convert	as	well.

NetBeans	supports	all	facets	of	Java	programming	for	the	three	editions	of	the	language—
Java	Standard	Edition	(JSE),	Java	Enterprise	Edition	(JEE),	and	Java	Micro	Edition
(JME).	It	also	supports	web	application	development,	web	services,	JavaBeans,	and
Android	development.

You	can	download	NetBeans	for	Windows,	Mac	OS,	and	Linux,	from	www.netbeans.org.
NetBeans	is	available	for	download	bundled	with	the	Java	Development	Kit,	but	it’s	easy
to	install	them	separately.

If	you’d	like	to	ensure	that	you’re	downloading	the	same	version	of	NetBeans	used	to
write	this	book,	visit	the	book’s	website	at	www.java21days.com.	Click	the	book’s	cover
to	open	the	site	for	this	edition,	and	then	look	for	the	Download	JDK	8	and	Download
NetBeans	8.0.2	links.	You’ll	be	steered	to	the	proper	files.

Tip

After	you	have	installed	NetBeans,	you	can	use	the	IDE	to	get	the	latest	version	of
the	software.	Choose	the	menu	command	Help,	Check	for	Updates.	(On	Windows,
you	might	need	to	run	NetBeans	as	an	administrator.	To	do	this,	right-click	the
NetBeans	icon	in	a	folder	and	choose	Run	as	Administrator.)

http://www.netbeans.org
http://www.java21days.com

Creating	a	New	Project
The	JDK	and	NetBeans	are	downloaded	as	installation	wizards	that	set	up	the	software	on
your	system.	You	can	install	the	software	in	any	folder	and	menu	group	you	like,	but	it’s
best	to	stick	with	the	default	setup	options	unless	you	have	a	good	reason	to	do	otherwise.

When	you	run	NetBeans	for	the	first	time	after	installation,	you	see	a	start	page	that
displays	links	to	news,	programming	tutorials,	and	blogs,	as	shown	in	Figure	A.1.	You	can
read	these	within	the	IDE	using	NetBeans’	built-in	web	browser.

FIGURE	A.1	The	NetBeans	user	interface.

A	NetBeans	project	consists	of	a	set	of	related	Java	classes,	files	used	by	those	classes,
and	Java	class	libraries.	Each	project	has	its	own	folder.	You	can	explore	and	modify	the
files	in	the	folder	outside	of	NetBeans	using	text	editors	and	other	programming	tools,	like
any	other	Java	source	code	you	create	outside	of	NetBeans.

To	begin	a	new	project,	click	the	New	Project	button	shown	in	Figure	A.1	or	select	File,
New	Project.	The	New	Project	Wizard	opens,	as	shown	in	Figure	A.2.

FIGURE	A.2	The	New	Project	Wizard.

NetBeans	can	create	several	types	of	Java	projects,	but	during	this	book	you	can	focus	on
just	one:	Java	Application.

For	your	first	project	(and	most	of	the	projects	in	this	book),	choose	the	Java	category	and
the	project	type	Java	Application;	then	click	Next.	The	wizard	asks	you	to	choose	a	name
and	location	for	the	project.

The	Project	Location	text	field	identifies	the	root	folder	of	the	programming	projects	you
create	with	NetBeans.	In	Windows,	this	is	a	subfolder	of	My	Documents	called
NetBeansProjects.	All	projects	you	create	are	stored	inside	this	folder,	each	in	its	own
subfolder.

In	the	Project	Name	text	field,	enter	Java21.	The	Create	Main	Class	text	box	changes	in
response	to	the	input,	recommending	java21.Java21	as	the	name	of	the	main	Java
class	in	the	project.	Change	this	to	Spartacus	and	click	Finish,	accepting	all	other
defaults.	NetBeans	creates	the	project	and	its	first	class.

Creating	a	New	Java	Class
When	NetBeans	creates	a	new	project,	it	sets	up	all	the	necessary	files	and	folders	and
creates	starting	code	for	the	main	class.	Figure	A.3	shows	the	first	class	in	your	project,
Spartacus.java,	open	in	the	source	editor.

FIGURE	A.3	The	NetBeans	source	editor.

Spartacus.java	is	a	bare-bones	Java	class	that	consists	of	only	a	main()	method.
All	the	light	gray	lines	of	code	in	the	class	are	comments	that	exist	to	explain	the	class’s
purpose	and	function.	Comments	are	ignored	when	the	class	is	run.

To	make	the	new	class	do	something,	add	the	following	line	of	code	on	a	new	line	right
below	the	comment	//	TODO	code	application	logic	here:
Click	here	to	view	code	image

System.out.println(“I	am	Spartacus!”);

The	method	System.out.println()	displays	a	string	of	text—in	this	case,	the
sentence	“I	am	Spartacus!”

Be	sure	to	enter	this	code	exactly	as	it	is	shown	here.	As	you	type,	the	source	editor
figures	out	what	you’re	doing	and	displays	helpful	information	related	to	the	System
class,	the	out	instance	variable,	and	the	println()	method.	You’ll	love	this	stuff	later,
but	for	now,	try	your	best	to	ignore	it.

After	you	ensure	that	you	typed	the	line	correctly	and	ended	it	with	a	semicolon,	click	the
Save	All	Files	button	on	the	toolbar	to	save	the	class.

Java	classes	must	be	compiled	into	executable	bytecode	before	you	can	run	them.	This
bytecode	will	be	run	by	an	interpreter	called	the	Java	Virtual	Machine	(JVM).	NetBeans
tries	to	compile	classes	automatically.	You	also	can	manually	compile	this	class	in	two

ways:

	Select	Run,	Compile	File.

	Right-click	Spartacus.java	in	the	Projects	pane	to	open	a	pop-up	menu,	and
choose	Compile	File.

If	NetBeans	doesn’t	allow	you	to	choose	either	of	these	options,	NetBeans	already	has
compiled	the	class.

If	the	class	does	not	compile	successfully,	a	white	exclamation	point	in	a	red	circle
appears	next	to	the	filename	Spartacus.java	in	the	Projects	pane.	To	fix	the	error,
compare	what	you’ve	typed	in	the	text	editor	to	the	full	source	code	of
Spartacus.java,	shown	in	Listing	A.1,	and	resave	the	file.

LISTING	A.1	The	Full	Text	of	Spartacus.java
Click	here	to	view	code	image

	1:	/*
	2:		*	To	change	this	template,	choose	Tools	|	Templates
	3:		*	and	open	the	template	in	the	editor.
	4:		*/
	5:
	6:	/**
	7:		*
	8:		*	@author	User
	9:		*/
10:	public	class	Spartacus	{
11:
12:					/**
13:						*	@param	args	the	command	line	arguments
14:						*/
15:					public	static	void	main(String[]	args)	{
16:									//	TODO	code	application	logic	here
17:									System.out.println(“I	am	Spartacus!”);
18:
19:					}
20:
21:	}

The	class	is	defined	in	lines	10–21.	Lines	1–9	are	comments	that	NetBeans	includes	in
every	new	class.

Running	the	Application
After	you’ve	created	the	Java	application	Spartacus	and	compiled	it	successfully,	you	can
run	it	in	the	Java	Virtual	Machine	within	NetBeans	in	two	ways:

	Choose	Run,	Run	File.

	Right-click	Spartacus.java	in	the	Projects	pane,	and	choose	Run	File.

When	you	run	a	Java	class,	the	JVM	calls	its	main()	method.	In	the	Spartacus	class,
the	string	“I	am	Spartacus!”	appears	in	the	Output	pane,	as	shown	in	Figure	A.4.

FIGURE	A.4	Viewing	program	output	in	the	NetBeans	Output	pane.

A	Java	class	must	have	a	main()	method	to	be	run.	If	you	attempt	to	run	a	class	that
lacks	a	main()	method,	NetBeans	responds	with	an	error.

Fixing	Errors
Now	that	the	Spartacus	application	has	been	written,	compiled,	and	run,	it’s	time	to	break
something	to	get	some	experience	with	how	NetBeans	responds	when	things	go	terribly
wrong.	Like	any	Java	programmer,	you’ll	soon	get	plenty	of	practice	screwing	up	things
on	your	own,	but	pay	attention	here	anyway.

Return	to	Spartacus.java	in	the	source	editor,	and	remove	the	semicolon	from	the
end	of	the	line	that	calls	System.out.println()	(line	17	in	Listing	A.1).	Even
before	you	save	the	file,	NetBeans	spots	the	error	and	displays	a	red	stop	sign	icon	to	the
left	of	the	line,	as	shown	in	Figure	A.5.

FIGURE	A.5	Flagging	errors	in	the	source	editor.

Hover	the	mouse	cursor	over	the	stop	sign	icon	to	see	a	dialog	that	describes	the	error
NetBeans	thinks	it	has	spotted.

In	this	situation,	the	error	message	is	simple:	“‘;’	expected.”

The	NetBeans	source	editor	can	identify	many	common	programming	errors	and	typos	it
encounters	as	you	write	a	Java	program.	It	stops	the	file	from	being	compiled	until	the
errors	have	been	removed.

Put	the	semicolon	back	at	the	end	of	the	line.	The	error	icon	disappears,	and	you	can	save
and	run	the	class	again.

Expanding	and	Shrinking	a	Pane
As	you	use	NetBeans,	several	panes	usually	will	be	open	at	the	same	time,	including	the
source	editor,	Projects	pane,	and	Output	pane.	They	all	compete	for	a	limited	amount	of
space	on	the	program’s	user	interface.

You	can	make	one	pane	take	up	the	entire	NetBeans	interface:	Double-click	the	pane’s	tab.

To	see	this	in	action,	double-click	the	tab	Spartacus.java.	The	source	editor	expands,
giving	you	more	room	to	view	the	source	code	and	make	changes	(Figure	A.6).

FIGURE	A.6	Editing	source	code	in	a	larger	window.

The	other	panes	close	and	are	listed	vertically	along	the	left	edge	of	the	pane.	Figure	A.6
lists	four	panes:	Navigator,	Projects,	Files,	and	Services.

To	shrink	the	source	editor	and	go	back	to	the	normal	appearance	of	NetBeans,	double-
click	the	tab	Spartacus.java	again.

As	you	begin	using	NetBeans,	it’s	common	to	accidentally	expand	a	pane	to	fill	the	entire
interface.	You	always	can	shrink	it	by	double-clicking	the	pane’s	tab.

Exploring	NetBeans
These	basic	features	of	NetBeans	are	all	you	need	to	create	and	compile	the	Java	programs
in	this	book.

NetBeans	is	capable	of	a	lot	more	than	the	features	described	here,	but	you	should	focus
on	learning	Java	before	diving	too	deeply	into	the	IDE.	Use	NetBeans	as	if	it	were	just	a
simple	project	manager	and	text	editor.	Write	classes,	flag	errors,	and	make	sure	you	can
compile	and	run	each	project	successfully.

When	you’re	ready	to	learn	more	about	NetBeans,	Oracle	offers	training	and
documentation	resources	at	www.netbeans.org/kb.	You	also	will	see	links	to	the	latest
tutorials	on	the	page	that	loads	each	time	you	start	NetBeans.

http://www.netbeans.org/kb

Appendix	B.	This	Book’s	Website

As	much	as	I’d	like	to	think	otherwise,	there	are	undoubtedly	things	you’re	unclear	about
after	completing	the	21	days	of	this	book.	Programming	is	a	specialized,	technical	field
that	throws	strange	concepts	and	jargon	at	new	learners,	such	as	“instantiation,”	“ternary
operators,”	and	“big-	and	little-endian	byte	order.”

If	you	have	a	question	about	any	topic	covered	in	the	book,	visit	the	book’s	website	at
www.java21days.com	for	assistance.	Click	the	cover	matching	this	edition	of	the	book	to
visit	its	site.

The	book’s	website	offers	the	following:

	Error	corrections	and	clarifications—When	errors	are	brought	to	my	attention,
they	are	described	on	the	site	with	the	corrected	text	and	any	other	material	that	will
help.

	Answers	to	reader	questions—If	readers	have	questions	that	aren’t	covered	in	this
book’s	Q&A	sections,	they	may	be	presented	on	the	site.

	Sample	files—The	source	code	and	class	files	for	all	the	programs	you	create
during	the	book	are	available.

	Sample	Java	programs—Working	versions	of	the	programs	featured	in	this	book
are	available.

	End-of-chapter	features—Solutions,	including	source	code,	for	activities
suggested	at	the	end	of	each	day	and	the	answers	to	each	day’s	certification	practice
question	are	available.

	Updated	links	to	the	sites	mentioned	in	this	book—If	sites	mentioned	in	the	book
have	moved	to	a	new	address,	they	are	listed.

You	can	email	me	by	visiting	the	book’s	website.	Click	the	Feedback	link	to	be	taken	to	a
page	where	you	can	send	email	directly	from	the	website.	I	also	have	a	Twitter	account	at
@rcade	where	I	can	be	contacted	to	talk	about	the	book,	Java	programming,	and	a	wide
variety	of	other	topics—including	Minecraft,	the	Jacksonville	Jaguars,	Sheffield
Wednesday,	science	fiction,	and	popes.

—Rogers	Cadenhead

http://www.java21days.com

Appendix	C.	Fixing	a	Problem	with	the	Android	Studio
Emulator

The	free	Android	Studio	integrated	development	environment	(IDE)	has	become	the
official	tool	for	creating	Android	apps	since	its	release	in	2014.	You	learned	how	to	create
mobile	apps	in	Java	with	this	IDE	during	Day	21,	“Writing	Android	Apps	with	Java.”

If	you	have	read	that	chapter	and	have	successfully	run	an	app	in	an	Android	emulator,
you	don’t	need	to	read	this	appendix.

But	if	you	couldn’t	make	the	emulator	work	at	all,	you’re	in	the	right	place.

Problems	Running	an	App
When	you	are	working	on	an	Android	project	in	Android	Studio	and	you	want	to	run	the
app,	you	can	choose	the	menu	command	Run,	Run	App.

This	command	opens	a	Choose	Device	dialog	that	asks	for	the	device	where	the	app
should	be	executed.	The	device	can	be	a	real	Android	phone	or	tablet,	if	it’s	connected	to
your	computer	over	a	USB	cord	and	configured	to	test	apps.	The	device	also	can	be	an
Android	emulator.

The	Android	emulator	can	act	like	actual	phones	and	tablets	that	run	the	mobile	OS.	A
virtual	device	can	be	set	up	for	multiple	Android	virtual	devices.	When	you	install
Android	Studio,	there’s	just	one	choice,	which	currently	is	Nexus	5	API	23	x86.	This
emulates	a	Nexus	5	phone	from	LG	running	version	23	of	the	Android	API	on	an	x86
processor.

Some	users	experience	problems	running	an	Android	app	for	the	first	time	with	an
emulator	in	Android	Studio.	The	emulator	crashes	with	this	ominous	message:

Output	
Click	here	to	view	code	image

ERROR:	x86	emulation	currently	requires	hardware	acceleration!
Please	ensure	Intel	HAXM	is	properly	installed	and	usable.	CPU
acceleration	status:	HAX	kernel	module	is	not	installed!

This	error	occurs	on	Windows	computers	and	indicates	that	they	need	a	hardware
acceleration	program	from	Intel	called	the	Hardware	Accelerated	Execution	Manager
(HAXM)	before	the	emulator	will	work.	This	program	can	be	downloaded	in	Android
Studio,	but	you	must	install	it	outside	of	the	IDE.

HAXM	is	a	hardware	virtualization	engine	for	computers	with	Intel	processors	that	speeds
up	Android	development	by	making	emulators	run	faster.	One	of	the	biggest	bottlenecks
in	app	programming	for	Android	is	how	slowly	emulators	load.

Before	you	set	up	HAXM,	you	must	add	it	to	the	Android	SDK	in	Android	Studio.

Caution

HAXM	only	should	be	installed	on	computers	with	an	Intel	processor.	This
appendix	resolves	a	problem	where	Android	Studio	indicates	that	it	needs	HAXM
to	run	the	Android	emulator.	If	the	emulator	is	failing	with	an	error	message	that
does	not	mention	HAXM,	don’t	use	this	appendix	to	fix	it.

Install	HAXM	in	Android	Studio
HAXM	can	be	downloaded	and	added	to	the	Android	SDK	as	you’re	running	Android
Studio.	Click	the	Android	SDK	Manager	button	in	the	Android	Studio	toolbar,	which	is
identified	in	Figure	C.1.

FIGURE	C.1	Running	the	Android	SDK	Manager.

The	Android	SDK	Manager	is	used	to	enhance	the	SDK	with	additional	versions	of
Android	and	useful	SDK	tools.	Click	the	SDK	Tools	tab	to	bring	it	to	the	front.

The	tools	available	for	the	SDK	will	be	listed	along	with	a	check	mark	next	to	the	ones
you	already	have	installed.	Look	for	the	item	Intel	x86	Emulator	Accelerator	(HAXM
Installer).

If	there’s	no	check	mark	next	to	this	item,	it	hasn’t	been	added	to	the	Android	SDK	in
your	copy	of	Android	Studio.	(If	there	is	a	check	mark,	it	already	has	been	installed,	so
you	should	proceed	to	the	next	section,	“Install	HAXM	on	Your	Computer.”)

The	Android	SDK	Manager	is	shown	in	Figure	C.2.

FIGURE	C.2	Running	the	Android	SDK	Manager.

Select	Intel	x86	Emulator	Accelerator	(HAXM	Installer)	and	click	OK.	You	will	be	asked
to	confirm	this	change.	Click	OK.

Android	Studio	will	download	HAXM	and	report	its	progress.	If	it	installs	correctly,
you’re	ready	to	proceed	to	the	next	step	and	install	it	on	your	computer.

Install	HAXM	on	Your	Computer
To	begin	setting	up	HAXM	on	your	computer,	first	close	Android	Studio.

In	your	file	system,	find	the	folder	where	you	told	the	Android	Studio	installation	wizard
to	store	the	Android	SDK.

If	you	don’t	remember	where	you	put	it,	the	default	on	Windows	is	to	put	the	SDK	in	your
personal	user	folder	in	a	subfolder	called	AppData\Local\Android\sdk.	So	if	your
Windows	username	is	Catniss,	the	suggested	SDK	location	is
\Users\Catniss\AppData\Local\Android\sdk.

If	you	find	the	SDK’s	folder	on	your	computer,	open	that	folder,	and	then	open	the
subfolder	extra\intel\Hardware_Accelerated_Execution_Manager.

The	folder	contains	a	program	called	intelhaxm-android.	This	is	the	HAXM
installation	program.

HAXM	requires	a	computer	with	an	Intel	processor,	1GB	of	disk	space,	and	a	Windows	7
or	later,	Windows	Vista,	or	the	64-bit	Mac	OS	X	versions	10.8	through	10.10.	A	text	file

called	Release	Notes	in	this	folder	contains	detailed	information	on	the	software
requirements.

After	you’ve	reviewed	the	Release	Notes	file,	if	you	are	ready	to	install	HAXM,	run	the
program	intelhaxm-android.	The	installer	checks	whether	your	computer	can	run
HAXM	and	exits	if	it	can’t.

During	installation	you’ll	be	asked	how	much	memory	to	allow	HAXM	to	use.	The
default	value	of	2GB	should	be	sufficient.	Complete	the	installation.

Tip

If	you	decide	later	that	you’ve	allocated	too	much	or	too	little	memory	for	HAXM,
you	can	change	this	setting	by	running	the	installation	program	again.

After	HAXM	has	been	installed,	you	should	reboot	your	computer.

When	that’s	complete,	load	Android	Studio	and	try	to	run	your	Android	app	again	by
choosing	Run,	Run	App.

The	app	should	run	in	an	emulator.	The	Android	emulator	looks	like	a	phone,	displays	an
“Android”	boot	screen	while	it’s	loading,	and	then	runs	the	app.	Figure	C.3	shows	what
the	Palindrome	app	looks	like	when	it	has	been	run	successfully.

FIGURE	C.3	Success!	The	emulator	loads	and	runs	an	app.

If	it	worked,	you’re	ready	to	go	back	to	Day	21.

If	it	failed	with	the	same	error	message	asking	you	to	“ensure	Intel	HAXM	is	properly
installed	and	usable,”	there’s	one	more	thing	you	can	check.	However,	it	requires	checking
your	computer’s	BIOS	settings	and	making	changes	to	them.

Checking	BIOS	Settings
For	HAXM	to	work,	your	computer’s	BIOS	must	have	Intel	Virtualization	Technology
enabled	in	its	settings.	If	you	are	an	experienced	computer	user	who	is	comfortable
making	changes	to	BIOS,	this	is	a	straightforward	thing	to	check	and	change.

Because	changes	to	BIOS	can	affect	how	your	computer	boots—or	even	stop	it	from
booting	Windows	at	all—you	should	poke	around	in	BIOS	only	if	you	have	made	BIOS
changes	to	a	computer	before.	Otherwise,	you	should	recruit	the	help	of	someone	else	who
is	an	expert	and	can	guide	you	through	the	process.

BIOS	is	the	software	that	controls	a	Windows	computer	when	you	turn	it	on,	taking	care
of	booting	the	computer	and	other	necessary	hardware	functions.

While	your	computer	is	booting,	you	briefly	see	a	message	about	hitting	a	function	key	to
check	your	BIOS	settings.

If	you	don’t	hit	this	key,	BIOS	completes	its	work	and	Windows	loads.

If	you	do	hit	the	key,	you	see	a	screen	like	the	one	in	Figure	C.4.

FIGURE	C.4	Looking	at	a	computer’s	BIOS	settings.

Your	computer’s	main	menu	for	BIOS	might	look	different	from	the	one	in	Figure	C.4.	It
varies	depending	on	your	computer	manufacturer	and	the	version	of	BIOS	it	uses.

On	my	Dell	PC,	I	found	out	whether	Intel	Virtualization	Technology	was	enabled	by
choosing	BIOS	Setup,	Advanced,	Processor	Configuration.	A	list	of	processor	settings
was	presented	with	[Enabled]	or	[Disabled]	next	to	each	one.	These	could	be	toggled	from
one	setting	to	the	other.

If	you	enable	Intel	Virtualization	Technology	in	BIOS	and	save	the	change,	your	computer
should	be	able	to	run	HAXM,	and	the	emulator	problem	should	be	resolved.

Appendix	D.	Using	the	Java	Development	Kit

In	addition	to	the	integrated	development	environment	NetBeans,	Oracle	offers	the	Java
Development	Kit	(JDK),	a	free	set	of	command-line	programs	that	are	used	to	create,
compile,	and	run	Java	programs.	Every	new	release	of	Java	is	accompanied	by	a	new
release	of	the	development	kit.	The	current	version	is	JDK	version	8.

Although	NetBeans	and	other	programs	such	as	IntelliJ	IDEA	and	Eclipse	are	more
sophisticated,	some	programmers	continue	to	use	the	Java	Development	Kit.	This
appendix	covers	how	to	download	and	install	the	Java	Development	Kit,	set	it	up	on	your
computer,	and	use	it	to	create,	compile,	and	run	a	simple	Java	program.

It	also	describes	how	to	fix	a	common	configuration	problem	faced	by	JDK	users.

Choosing	a	Java	Development	Tool
If	you’re	using	a	Microsoft	Windows	or	Apple	Mac	OS	system,	you	probably	have	a	Java
Virtual	Machine	(JVM)	installed	that	can	run	Java	programs.

To	develop	Java	programs,	you	need	more	than	a	JVM.	You	also	need	a	compiler	and
other	tools	that	are	used	to	create,	run,	and	test	programs.

The	Java	Development	Kit	includes	a	compiler,	JVM,	debugger,	file	archiving	program,
and	several	other	programs.

The	kit	is	simpler	than	other	development	tools.	It	does	not	offer	a	graphical	user
interface,	text	editor,	or	other	features	that	many	programmers	rely	on.

To	use	the	kit,	you	type	commands	at	a	text	prompt.	MS-DOS,	Linux,	and	UNIX	users
will	be	familiar	with	this	prompt,	which	also	is	called	a	command	line.

Here’s	an	example	of	a	command	you	might	type	while	using	the	Java	Development	Kit:
javac	RetrieveMail.java

This	command	tells	the	javac	program—the	Java	compiler	included	with	the	kit—to
read	a	source	code	file	called	RetrieveMail.java	and	create	one	or	more	class	files.
These	files	contain	compiled	bytecode	that	a	JVM	can	execute.

When	RetrieveMail.java	is	compiled,	one	of	the	files	will	be	named
RetrieveMail.class.	If	the	class	file	was	set	up	to	function	as	an	application,	a
JVM	can	run	it.

People	who	are	comfortable	with	command-line	environments	will	be	at	home	using	the
Java	Development	Kit.	Everyone	else	must	become	accustomed	to	the	lack	of	a	graphical
point-and-click	environment	as	they	develop	programs.

If	you	have	NetBeans	or	another	Java	development	tool	compatible	with	Java	8,	you	don’t
need	to	use	the	Java	Development	Kit.	Many	different	development	tools	can	be	used	to
create	the	tutorial	programs	in	this	book.

Installing	the	Java	Development	Kit
You	can	download	the	Java	Development	Kit	from	Oracle’s	Java	website	at
www.oracle.com/technetwork/java.

The	website’s	Downloads	section	offers	links	to	several	versions	of	the	Java	Development
Kit.	It	also	offers	the	NetBeans	development	environment	and	other	products	related	to	the
language.	The	product	you	should	download	is	in	the	Java	Standard	Edition	(Java	SE)	and
is	called	the	Java	Software	Development	Kit	version	8.

The	kit	is	available	for	Windows,	Mac	OS,	Linux,	and	Solaris	SPARC	systems.

The	kit	requires	a	computer	with	a	Pentium	2	processor	that	is	266MHz	or	faster,	128MB
of	memory,	and	300MB	of	free	disk	space.

When	you’re	looking	for	this	product,	you	might	find	that	the	Java	Development	Kit’s
version	number	has	a	number	after	8,	such	as	“JDK	8.0.”	To	fix	bugs	and	address	security
problems,	Oracle	periodically	issues	new	releases	of	the	kit	and	numbers	them	with	a
period	and	digit	after	the	main	version	number.	Choose	the	most	current	version	of	JDK	8
that’s	offered,	whether	it’s	numbered	8.0,	8.1,	8.2,	or	higher.

Caution

Take	care	not	to	download	two	similarly	named	products	from	Oracle	by	mistake:
the	Java	Runtime	Environment	(JRE)	8.0	or	the	Java	Standard	Edition	8.0	Source
Release.

To	set	up	the	kit,	you	must	download	and	run	an	installation	program.	On	the	Java
website,	after	you	choose	the	version	of	the	kit	that’s	designed	for	your	operating	system,
you	can	download	it	as	a	single	file.

After	you	have	downloaded	the	file,	you’ll	be	ready	to	set	up	the	kit.

Windows	Installation

Before	installing	the	kit,	make	sure	that	no	other	Java	development	tools	are	installed	on
your	system	(assuming,	of	course,	that	you	don’t	need	any	other	tool	at	the	moment).
Having	more	than	one	Java	programming	tool	installed	on	your	computer	can	often	cause
configuration	problems	with	the	kit.

To	set	up	the	program	on	a	Windows	system,	double-click	the	installation	file	or	choose
Start	from	the	Windows	taskbar	to	find	and	run	the	file.

The	installation	wizard	guides	you	through	the	process	of	installing	the	software.	If	you
accept	the	terms	and	conditions	for	using	the	kit,	you’ll	be	asked	where	to	install	the
program,	as	shown	in	Figure	D.1.

http://www.oracle.com/technetwork/java

FIGURE	D.1	Installing	the	JDK.

The	wizard	suggests	a	folder	where	the	kit	should	be	installed.	In	Figure	D.1,	the	wizard
suggests	the	folder	C:\Program	Files\Java\jdk1.8.0_60.	When	you	install	the
kit,	the	suggested	name	might	be	different.

To	choose	a	different	folder,	click	the	Change	button.	Either	select	or	create	a	new	folder,
and	click	OK.	The	wizard	returns	to	the	Custom	Setup	options.

Tip

Before	continuing,	make	note	of	the	folder	you	have	chosen.	You’ll	need	it	later	to
configure	the	kit	and	fix	any	configuration	problems	that	may	occur.

You	also	are	asked	what	parts	of	the	kit	to	install.	By	default,	the	wizard	installs	all
components	of	the	JDK:

	Development	tools—The	executable	programs	needed	to	create	Java	software

	Source	code—The	source	code	for	the	thousands	of	classes	that	make	up	the	Java
Class	Library

	Public	JRE—A	JVM	you	can	distribute	with	the	programs	you	create	(also	called	a
Java	Runtime	Environment)

If	you	accept	the	default	installation,	you	need	about	300MB	of	free	hard	disk	space.	You
can	save	space	by	omitting	everything	but	the	program	files.	However,	the	source	code
and	Java	Runtime	Environment	can	be	useful,	so	it’s	a	good	idea	to	install	them.

To	prevent	a	component	from	being	installed,	click	the	hard	drive	icon	next	to	its	name,
and	then	choose	the	This	Feature	Will	Not	Be	Available	option.

After	you	choose	the	components	to	install,	click	the	Next	button	to	continue.	You	may	be
asked	whether	to	set	up	the	Java	Plug-in	to	work	with	the	web	browsers	on	your	system.

The	Java	Plug-in	is	a	JVM	that	runs	Java	programs	incorporated	into	web	pages.	These
programs,	which	are	called	applets,	can	work	with	different	virtual	machines,	but	most
browsers	do	not	include	one	that	supports	the	current	version	of	the	Java	language.	Oracle
offers	the	plug-in	to	provide	full	language	support	to	Microsoft	Internet	Explorer,
Microsoft	Edge,	Mozilla	Firefox,	Google	Chrome,	Safari,	and	other	browsers.

After	you	complete	the	configuration,	the	wizard	installs	the	kit	on	your	system.

Configuring	the	Java	Development	Kit
After	the	wizard	installs	the	kit,	you	must	edit	your	computer’s	environment	variables	to
include	references	to	the	kit.

Experienced	MS-DOS	users	can	finish	setting	up	the	kit	by	adjusting	two	variables:

	Edit	the	computer’s	PATH	variable	and	add	a	reference	to	the	kit’s	bin	folder
(which	is	C:\Program	Files\Java\jdk1.8.0_60\bin	if	you	installed	the
kit	into	the	C:\Program	Files\Java\jdk1.8.0_60	folder).

	Edit	or	create	a	CLASSPATH	variable	so	that	it	contains	a	reference	to	the	current
folder—a	period	and	semicolon	(.;)—followed	by	a	reference	to	the	tools.jar
file	in	the	kit’s	lib	folder	(which	is	C:\Program
Files\Java\jdk1.8.0_60\lib\tools.jar	if	the	kit	was	installed	into
C:\Program	Files\Java\jdk1.8.0_60).

For	Windows	users	unfamiliar	with	MS-DOS,	later	sections	cover	in	detail	how	to	set	the
PATH	and	CLASSPATH	variables	on	a	Windows	system.

Users	of	other	operating	systems	should	follow	the	instructions	provided	by	Oracle	on	its
Java	Development	Kit	download	page.

Using	a	Command-Line	Interface
The	kit	requires	the	use	of	a	command	line	to	compile	Java	programs,	run	them,	and
handle	other	tasks.

A	command	line	is	a	way	to	operate	a	computer	entirely	by	typing	commands	using	the
keyboard,	rather	than	by	using	the	mouse.	Very	few	programs	designed	for	Windows	users
require	the	command	line	today.

Note

To	get	to	a	command	line	in	Windows,	do	the	following:

	On	Windows	8	and	10,	choose	Start,	click	the	Search	magnifying	glass	icon	at
upper	right,	enter	Command	Prompt	in	the	search	box,	and	click	the	Command
Prompt	icon.

	On	Windows	7,	Vista,	XP,	or	Server	2003,	choose	Start,	All	Programs,
Accessories,	Command	Prompt.

	On	Windows	98	or	Me,	choose	Start,	Programs,	MS-DOS	Prompt.

	On	Windows	NT	or	2000,	choose	Start,	Programs,	Accessories,	Command
Prompt.

When	you	open	a	command	line	in	Windows,	a	new	window	opens	in	which	you	can	type
commands,	as	shown	in	Figure	D.2.

FIGURE	D.2	Using	a	newly	opened	command-line	window.

The	command	line	in	Windows	uses	commands	adopted	from	MS-DOS,	the	Microsoft
operating	system	that	preceded	Windows.	MS-DOS	supports	the	same	functions	as
Windows—copying,	moving,	and	deleting	files	and	folders;	running	programs;	scanning
and	repairing	a	hard	drive;	formatting	a	floppy	disk;	and	so	on.

In	the	window,	a	cursor	blinks	on	the	command	line	whenever	you	can	type	in	a	new
command.	In	Figure	D.2,	C:\Users\caden_000>	is	the	command	line.

Because	MS-DOS	can	be	used	to	delete	files	and	even	format	your	hard	drive,	you	should
learn	something	about	the	operating	system	before	experimenting	with	its	commands.

Note

If	you’d	like	to	learn	a	lot	about	MS-DOS,	a	good	book	is	Special	Edition	Using
MS-DOS	6.22,	3rd	Edition	(ISBN	978-0-78972-573-8),	published	by	Que.	The
emphasis	is	on	the	words	“a	lot,”	because	this	book	is	1,056	pages	long.

However,	you	need	to	know	only	a	few	things	about	MS-DOS	to	use	the	kit:	how	to	create
a	folder,	how	to	open	a	folder,	and	how	to	run	a	program.

Opening	Folders	in	MS-DOS
When	you	are	using	MS-DOS	on	a	Windows	system,	you	have	access	to	all	the	folders
you	normally	use	in	Windows.	For	example,	if	you	have	a	Windows	folder	on	your	C:
hard	drive,	the	same	folder	is	accessible	as	C:\Windows	from	a	command	line.

To	open	a	folder	in	MS-DOS,	type	the	command	CD,	followed	by	the	name	of	the	folder,
and	press	Enter.	Here’s	an	example:

CD	C:\TEMP

When	you	enter	this	command,	the	TEMP	folder	on	your	system’s	C:	drive	is	opened,	if	it
exists.	After	you	open	a	folder,	the	command	line	is	updated	with	the	name	of	that	folder,
as	shown	in	Figure	D.3.

FIGURE	D.3	Opening	a	folder	in	a	command-line	window.

You	also	can	use	the	CD	command	in	other	ways:

	Type	CD	\	to	open	the	root	folder	on	the	current	hard	drive.

	Type	CD	foldername	to	open	a	subfolder	matching	the	name	you’ve	used	in
place	of	foldername,	if	that	subfolder	exists.

	Type	CD	..	to	open	the	folder	that	contains	the	current	folder.	For	example,	if	you
are	in	C:\Windows\Fonts	and	you	use	the	CD	..	command,	C:\Windows	is
opened.

It’s	helpful	to	create	a	folder	for	the	projects	you	create	in	this	book,	such	as	one	named
J21work.	If	you	already	have	done	this,	you	can	switch	to	that	folder	by	using	the
following	commands:

CD	\
CD	J21work

If	you	haven’t	created	that	folder	yet,	you	can	do	so	using	an	MS-DOS	command.

Creating	Folders	in	MS-DOS
To	create	a	folder	from	a	command	line,	type	the	command	MD	followed	by	the	folder’s
name,	and	press	Enter,	as	in	the	following	example:

MD	C:\STUFF

The	STUFF	folder	is	created	in	the	root	folder	of	the	system’s	C:	drive.	To	open	a	newly
created	folder,	use	the	CD	command	followed	by	that	folder’s	name,	as	shown	in	Figure
D.4.

FIGURE	D.4	Creating	a	new	folder	in	a	command-line	window.

If	you	haven’t	already	created	a	J21work	folder,	you	can	do	so	from	a	command	line:

1.	Change	to	the	root	folder	(using	the	CD	\	command).

2.	Type	the	command	MD	J21work	and	press	Enter.

After	J21work	has	been	created,	you	can	go	to	it	at	any	time	from	a	command	line	by
using	this	command:

CD	\J21work

The	last	thing	you	need	to	learn	about	MS-DOS	to	use	the	Java	Development	Kit	is	how	to
run	programs.

Running	Programs	in	MS-DOS
The	simplest	way	to	run	a	program	at	the	command	line	is	to	type	its	name	and	press
Enter.	For	example,	type	DIR	and	press	Enter	to	see	a	list	of	files	and	subfolders	in	the
current	folder.

You	also	can	run	a	program	by	typing	its	name	followed	by	a	space	and	some	options	that
control	how	the	program	runs.	These	options	are	called	arguments.

To	see	an	example	of	this,	change	to	the	root	folder	(using	CD	\)	and	type	DIR
J21work.	You’ll	see	a	list	of	files	and	subfolders	contained	in	the	J21work	folder,	if	it
contains	any.

After	you	have	installed	the	kit,	run	the	JVM	to	see	that	it	works.	Type	the	following
command	at	a	command	line:

java	-version

java	is	the	name	of	the	JVM,	and	-version	is	an	argument	that	tells	it	to	display	its
version	number.

You	can	see	an	example	of	this	in	Figure	D.5,	but	your	version	number	might	be	different,
depending	on	what	version	of	the	kit	you	have	installed.

FIGURE	D.5	Running	the	Java	Virtual	Machine	in	a	command-line	window.

If	java	-version	works	and	you	see	a	version	number,	it	should	begin	with	1.8.
Oracle	tacks	on	a	third	number,	but	as	long	as	the	version	number	begins	with	1.8,	you	are
using	the	correct	version	of	the	Java	Development	Kit.

If	you	see	an	incorrect	version	number	or	a	“Bad	command	or	filename”	error	after
running	java	-version,	you	need	to	make	some	changes	to	how	the	Java
Development	Kit	is	configured	on	your	system.

Caution

Since	Java	8	is	the	current	version,	you	might	be	confused	about	the	references	to
version	1.8.

Although	the	language	is	called	Java	8	and	the	JDK	is	designated	JDK	8.0,	the	kit’s
internal	version	number	is	1.8.0.	This	internal	number	shows	up	in	the	-version
command	as	well	as	in	your	choice	of	installation	folder	for	the	kit.

When	all	else	fails,	run	the	java	-version	command	to	make	sure	the	right
development	tool	has	been	installed	on	your	system.	If	it	begins	with	1.8,	you’ve
got	the	right	tool	to	develop	programs	for	Java	8.

Correcting	Configuration	Errors
When	you	are	writing	Java	programs	for	the	first	time,	the	most	likely	source	of	problems
is	not	typos,	syntax	errors,	or	other	programming	mistakes.	Most	errors	result	from	a
misconfigured	Java	Development	Kit.

If	you	type	java	-version	at	a	command	line	and	your	system	can’t	find	the	folder
that	contains	java.exe,	you	see	one	of	the	following	error	messages	or	something
similar	(depending	on	your	operating	system):

	Bad	command	or	file	name

	'java'	is	not	recognized	as	an	internal	or	external
command,	operable	program,	or	batch	file

To	correct	this,	you	must	configure	your	system’s	PATH	variable.

Setting	the	Path	on	Most	Windows	Versions

On	most	versions	of	Windows,	including	Windows	7,	8,	and	10,	you	configure	the	Path
variable	using	the	Environment	Variables	dialog,	one	of	the	features	of	the	system’s
Control	Panel.

To	open	this	dialog	on	Windows	7,	8,	or	10,	follow	these	steps:

1.	Click	the	Start	button	on	the	taskbar.

2.	Click	the	Search	icon	(a	magnifying	glass)	at	the	upper	right.

3.	Type	Environment	Variables	in	the	search	box.

4.	Click	the	result	Edit	the	System	Environment	Variables.	The	System	Properties
dialog	opens	with	the	Advanced	tab	in	front.

5.	Click	the	Environment	Variables	button.	The	Environment	Variables	dialog	opens,
as	shown	in	Figure	D.6.

FIGURE	D.6	Setting	environment	variables	in	Windows	NT,	XP,	2000,	and	2003.

To	open	this	dialog	in	other	versions	of	Windows,	follow	these	steps:

1.	Right-click	the	Computer	icon	on	your	desktop	or	the	Start	menu,	and	choose
Properties.	The	System	Properties	dialog	opens.

2.	Click	the	Advanced	tab	or	the	Advanced	System	Settings	link.

3.	Click	the	Environment	Variables	button.	The	Environment	Variables	dialog	opens,
as	shown	in	Figure	D.6.

You	can	edit	two	kinds	of	environment	variables:	system	variables,	which	apply	to	all
users	on	your	computer,	and	user	variables,	which	apply	only	to	you.

Path	is	a	system	variable	that	helps	MS-DOS	find	programs	when	you	run	them	at	a
command	line.	It	contains	a	list	of	folders	separated	by	semicolons.

To	set	up	the	kit	correctly,	the	folder	that	contains	the	Java	Virtual	Machine	must	be
included	in	the	Path.	The	virtual	machine	has	the	filename	java.exe.	If	you	installed
the	kit	in	the	C:\Program	Files\Java\jdk1.8.0_60	folder	on	your	system,
java.exe	is	in	C:\Program	Files\Java\jdk1.8.0_60\bin.

If	you	can’t	remember	where	you	installed	the	kit,	you	can	look	for	java.exe	by
choosing	Start,	Search	(or	Start	and	the	Search	icon)	and	typing	the	filename	in	the	search
box.	You	might	find	several	copies	in	different	folders.	To	see	which	one	is	correct,	open	a
command-line	window	and	do	the	following	for	each	copy	you	have	found:

1.	Use	the	CD	command	to	open	a	folder	that	contains	java.exe.

2.	Run	the	command	java	-version	in	that	folder.

When	you	know	the	correct	folder,	return	to	the	Environment	Variables	dialog,	select
Path	in	the	System	Variables	list,	and	click	Edit.	The	Edit	System	Variable	dialog	opens
with	Path	in	the	Variable	Name	field	and	a	list	of	folders	in	the	Variable	Value	field,	as
shown	in	Figure	D.7.

FIGURE	D.7	Changing	your	system’s	Path	variable.

To	add	a	folder	to	the	Path,	click	the	Variable	Value	field	and	move	the	cursor	to	the	end
without	changing	anything.	At	the	end,	add	a	semicolon	followed	by	the	name	of	the
folder	that	contains	the	Java	Virtual	Machine.

For	example,	if	C:\Program	Files\Java\jdk1.8.0_60\bin	is	the	correct
folder,	add	the	following	text	to	the	end	of	the	Path	variable:
Click	here	to	view	code	image

;c:\Program	Files\Java\jdk1.8.0_60\bin

After	making	the	change,	click	OK	twice:	once	to	close	the	Edit	System	Variable	dialog,
and	another	time	to	close	the	Environment	Variables	dialog.

Try	it:	Open	a	command-line	window	and	type	the	command	java	-version.

If	it	displays	the	correct	version	of	the	Java	Development	Kit,	your	system	is	probably
configured	correctly,	although	you	won’t	know	for	sure	until	you	try	to	use	the	kit	later	in
this	appendix.

Setting	the	PATH	on	Windows	98	or	Me

On	a	Windows	98	or	Me	system,	you	configure	the	PATH	variable	by	editing	the
AUTOEXEC.BAT	file	in	the	root	folder	of	your	main	hard	drive.	MS-DOS	uses	this	file	to
set	environment	variables	and	configure	how	some	command-line	programs	function.

AUTOEXEC.BAT	is	a	text	file	you	can	edit	with	Windows	Notepad.	Start	Notepad	by
choosing	Start,	Programs,	Accessories,	Notepad	from	the	Windows	taskbar.

The	Notepad	text	editor	opens.	Choose	File,	Open	from	Notepad’s	menu	bar,	go	to	the
root	folder	on	your	main	hard	drive,	and	then	open	the	file	AUTOEXEC.BAT.

When	you	open	the	file,	you	see	a	series	of	MS-DOS	commands,	each	on	its	own	line.

The	only	commands	you	need	to	look	for	are	any	that	begin	with	PATH.

The	PATH	command	is	followed	by	a	space	and	a	series	of	folder	names	separated	by
semicolons.	It	sets	up	the	PATH	variable,	a	list	of	folders	that	contain	command-line
programs	you	use.

PATH	helps	MS-DOS	find	programs	when	you	run	them	at	a	command	line.

You	can	see	what	PATH	has	been	set	to	by	typing	the	following	command	at	a	command
line:

PATH

To	set	up	the	kit	correctly,	the	folder	that	contains	the	Java	Virtual	Machine	must	be
included	in	the	PATH	command	in	AUTOEXEC.BAT.

The	virtual	machine	has	the	filename	java.exe.	If	you	installed	JDK	8	in	the
C:\Program	Files\Java\jdk1.8.0_60	folder	on	your	system,	java.exe	is	in
C:\Program	Files\Java\jdk1.8.0_60\bin.

If	you	can’t	remember	where	you	installed	the	kit,	you	can	look	for	java.exe	by
choosing	Start,	Find,	Files	or	Folders.	You	might	find	several	copies	in	different	folders.
To	see	which	one	is	correct,	open	a	command-line	window	and	do	the	following	for	each
copy	you	have	found:

1.	Use	the	CD	command	to	open	a	folder	that	contains	java.exe.

2.	Run	the	command	java	-version	in	that	folder.

When	you	know	the	correct	folder,	create	a	blank	line	at	the	bottom	of	the
AUTOEXEC.BAT	file	and	add	the	following:

PATH	rightfoldername;%PATH%

For	example,	if	C:\Program	Files\Java\jdk1.8.0_60\bin	is	the	correct
folder,	add	the	following	line	at	the	bottom	of	AUTOEXEC.BAT:
Click	here	to	view	code	image

PATH	c:"Program	Files”\Java\jdk1.8.0_60\bin;%PATH%

The	addition	of	the	text	%PATH%	keeps	you	from	wiping	out	any	other	PATH	commands
in	AUTOEXEC.BAT.	Quotation	marks	appear	around	the	folder	name	Program	Files
because	some	versions	of	Windows	require	this	to	handle	folder	names	that	contain
spaces.

After	making	changes	to	AUTOEXEC.BAT,	save	the	file	and	reboot	your	computer.	When
this	is	done,	try	the	java	-version	command.

If	it	displays	the	correct	version	of	the	kit,	your	system	is	probably	configured	correctly.
You’ll	find	out	for	sure	when	you	try	to	create	a	sample	program	later	in	this	appendix.

Using	a	Text	Editor
Unlike	more	sophisticated	Java	development	tools	such	as	NetBeans,	the	Java
Development	Kit	does	not	include	a	text	editor	to	use	when	you	create	source	files.

For	an	editor	or	word	processor	to	work	with	the	kit,	it	must	be	able	to	save	text	files	with
no	formatting.

This	feature	has	different	names	in	different	editors.	Look	for	a	format	option	such	as	one
of	the	following	when	you	save	a	document	or	set	the	properties	for	a	document:

	Plain	text

	ASCII	text

	DOS	text

	Text-only

If	you’re	using	Windows,	several	editors	are	included	with	the	operating	system.

Windows	Notepad	is	a	no-frills	text	editor	that	works	only	with	plain-text	files.	It	can
handle	only	one	document	at	a	time.	On	Windows	7,	8,	or	10,	choose	Start,	click	the
Search	icon	at	the	upper	right,	search	for	Notepad,	and	click	the	search	result	Notepad.	On
earlier	versions	of	Windows,	choose	Start,	Programs,	Accessories,	Notepad.

Windows	WordPad	is	a	step	above	Notepad.	It	can	handle	more	than	one	document	at	a
time	and	can	handle	both	plain-text	and	Microsoft	Word	formats.	It	also	remembers	the
last	several	documents	it	has	worked	on	and	makes	them	available	from	the	File	menu.	It’s
on	the	Accessories	menu	along	with	Notepad.

Windows	users	also	can	use	Microsoft	Word,	but	you	must	save	files	as	text	rather	than	in
Word’s	proprietary	format.	(UNIX	and	Linux	users	can	author	programs	with	emacs,	pico,
and	vi;	Macintosh	users	have	SimpleText	or	any	of	the	previously	mentioned	UNIX	tools
available	for	Java	source	file	creation.)

One	disadvantage	of	using	simple	text	editors	such	as	Notepad	or	WordPad	is	that	they	do
not	display	line	numbers	as	you	edit.

Seeing	the	line	number	helps	in	Java	programming	because	many	compilers	indicate	the
line	number	where	an	error	occurred.	Take	a	look	at	the	following	error	generated	by	the
JDK	compiler:
Click	here	to	view	code	image

Palindrome.java:2:	Class	Font	not	found	in	type	declaration.

The	number	2	after	the	name	of	the	Java	source	file	indicates	the	line	that	triggered	the
compiler	error.	With	a	text	editor	that	supports	numbering,	you	can	go	directly	to	that	line
and	start	looking	for	the	error.

Usually	there	are	better	ways	to	debug	a	program	with	a	Java	integrated	development
environment.	But	kit	users	must	search	for	compiler-generated	errors	using	the	line
number	indicated	by	the	javac	tool.	This	is	one	of	the	best	reasons	to	move	on	to	an
advanced	Java	development	program	after	learning	the	language	with	the	kit.

Tip

Another	alternative	is	to	use	the	kit	with	a	programmer’s	text	editor	that	offers	line
numbering	and	other	features.	One	of	the	most	popular	for	Java	is	jEdit,	a	free
editor	available	for	Windows,	Linux,	and	other	systems	at	www.jedit.org.

I	use	UltraEdit,	an	excellent	programmer	and	web	designer’s	editor	that	currently
sells	for	$79.95.	To	find	out	more	and	download	a	trial	version,	visit
www.ultraedit.com.

http://www.jedit.org
http://www.ultraedit.com

Creating	a	Sample	Program
Now	that	you	have	installed	and	set	up	the	Java	Development	Kit,	you’re	ready	to	create	a
sample	Java	program	to	make	sure	it	works.

Java	programs	begin	as	source	code—a	series	of	statements	created	using	a	text	editor	and
saved	as	a	text	file.	You	can	use	any	program	you	like	to	create	these	files,	as	long	as	it
can	save	the	file	as	plain,	unformatted	text.

The	kit	does	not	include	a	text	editor,	but	most	other	Java	development	tools	include	a
built-in	editor	for	creating	source	code	files.

Load	your	editor	of	choice	and	enter	the	Java	program	shown	in	Listing	D.1.	Be	sure	to
correctly	enter	all	the	parentheses,	braces,	brackets,	and	quotation	marks	in	the	listing,	and
capitalize	everything	in	the	program	exactly	as	shown.	If	your	editor	requires	a	filename
before	you	start	entering	anything,	call	it	HelloUser.java.

LISTING	D.1	Source	Code	of	HelloUser.java
Click	here	to	view	code	image

1:	public	class	HelloUser	{
2:					public	static	void	main(String[]	arguments)	{
3:									String	username	=	System.getProperty(“user.name”);
4:									System.out.println(“Hello	“	+	username);
5:					}
6:	}

The	line	numbers	and	colons	at	the	beginning	of	each	line	are	not	part	of	the	program.
They’re	included	so	that	I	can	refer	to	specific	lines	by	number	in	each	program	as	you
read	this	book.	If	you’re	ever	unsure	about	the	source	code	of	a	program	in	this	book,	you
can	compare	it	to	a	copy	on	the	book’s	official	website	at	www.java21days.com.

After	you	finish	typing	in	the	program,	save	the	file	somewhere	on	your	hard	drive	with
the	name	HelloUser.java.	Java	source	files	must	be	saved	with	the	extension
.java.

Tip

If	you	have	created	a	folder	called	J21work,	you	can	save	HelloUser.java	in
that	folder.	This	makes	it	easier	to	find	the	file	while	using	a	command-line
window.

If	you’re	using	Windows,	a	text	editor	such	as	Notepad	might	add	an	extra	.txt	file
extension	to	the	filename	of	any	Java	source	files	you	save.	For	example,
HelloUser.java	is	saved	as	HelloUser.java.txt.	As	a	workaround	to	avoid
this	problem,	place	quotation	marks	around	the	filename	when	saving	a	source	file.

http://www.java21days.com

Tip

A	better	solution	is	to	permanently	associate	.java	files	with	the	text	editor	you’ll
be	using.	In	Windows,	open	the	folder	that	contains	HelloUser.java,	and
double-click	the	file.	If	you	have	never	opened	a	file	with	the	.java	extension,
you’re	asked	what	program	to	use	when	opening	files	of	this	type.	Choose	your
preferred	editor,	and	select	the	option	to	make	your	choice	permanent.	From	this
point	on,	you	can	open	a	source	file	for	editing	by	double-clicking	the	file.

The	purpose	of	this	project	is	to	test	the	Java	Development	Kit.	None	of	the	Java
programming	concepts	used	in	the	six-line	HelloUser	program	are	described	in	this
appendix.

You	learn	the	basics	of	the	language	during	the	first	several	days	of	Week	1,	“The	Java
Language.”	If	you	have	figured	out	anything	about	Java	simply	by	typing	in	Listing	D.1,
it’s	your	own	fault.

Compiling	and	Running	the	Program	in	Windows
Now	you’re	ready	to	compile	the	source	file	with	the	kit’s	Java	compiler,	a	program	called
javac.	The	compiler	reads	a	.java	source	file	and	creates	one	or	more	.class	files
that	can	be	run	by	a	Java	Virtual	Machine.

Open	a	command-line	window;	then	open	the	folder	where	you	saved
HelloUser.java.

If	you	saved	the	file	in	the	J21work	folder	inside	the	root	folder	on	your	main	hard	drive,
the	following	MS-DOS	command	opens	the	folder:

cd	\J21work

When	you	are	in	the	correct	folder,	you	can	compile	HelloUser.java	by	entering	the
following	at	a	command	prompt:

javac	HelloUser.java

Figure	D.8	shows	the	MS-DOS	commands	used	to	switch	to	the	\J21work	folder	and
compile	HelloUser.java.

FIGURE	D.8	Compiling	a	Java	program	in	a	command-line	window.

The	kit’s	compiler	does	not	display	a	message	if	the	program	compiles	successfully.	If
there	are	problems,	the	compiler	tells	you	by	displaying	a	message	explaining	each	error
along	with	the	number	of	the	line	that	triggered	the	error.

If	the	program	compiles	without	any	errors,	a	file	called	HelloUser.class	is	created
in	the	same	folder	that	contains	HelloUser.java.

The	class	file	contains	the	Java	bytecode	that	a	Java	Virtual	Machine	will	execute.	If	you
get	any	errors,	go	back	to	your	original	source	file	and	make	sure	that	you	typed	it	in
exactly	as	it	appears	in	Listing	D.1.

After	you	have	a	class	file,	you	can	run	that	file	using	a	JVM.	The	kit’s	JVM	is	called
java,	and	it	also	is	run	from	the	command	line.

Run	the	HelloUser	program	by	switching	to	the	folder	containing	HelloUser.class
and	entering	the	following:

java	HelloUser

You	see	the	text	“Hello”	followed	by	a	space	and	your	username.

Caution

When	running	a	Java	class	with	the	kit’s	JVM,	don’t	specify	the	.class	file
extension	after	the	class’s	name.	If	you	do,	you’ll	see	an	error	such	as	the	following:

Click	here	to	view	code	image
Exception	in	thread	“main”
java.lang.NoClassDefFoundError:	HelloUser/class

Figure	D.8	shows	the	successful	output	of	the	HelloUser	application	along	with	the
commands	used	to	get	to	that	point.

If	you	can	compile	the	program	and	run	it	successfully,	your	kit	is	working,	and	you	are
ready	to	start	Day	1,	“Getting	Started	with	Java.”

If	you	cannot	get	the	program	to	compile	successfully	even	though	you	have	typed	it	in
exactly	as	it	appears	in	the	book,	there	may	be	one	last	problem	with	how	the	kit	is
configured	on	your	system:	The	CLASSPATH	environment	variable	might	need	to	be
configured.

Setting	Up	the	CLASSPATH	Variable
All	the	Java	programs	you	write	rely	on	two	kinds	of	class	files:	the	classes	you	create,
and	the	Java	Class	Library,	a	set	of	hundreds	of	classes	that	represent	the	functionality	of
the	Java	language.

The	kit	needs	to	know	where	to	find	Java	class	files	on	your	system.	In	many	cases,	the	kit
can	figure	this	out	on	its	own	by	looking	in	the	folder	where	it	was	installed.

You	also	can	set	it	up	yourself	by	creating	or	modifying	another	environment	variable:
CLASSPATH.

Setting	the	Classpath	on	Most	Windows	Versions
If	you	have	compiled	and	run	the	HelloUser	program	successfully,	the	kit	has	been
configured	successfully.	You	don’t	need	to	make	any	more	changes	to	your	system.

On	the	other	hand,	if	you	see	a	Class	not	found	error	or	NoClassDefFound	error
whenever	you	try	to	run	a	program,	you	need	to	make	sure	your	Classpath	variable	is
set	up	correctly.

On	most	versions	of	Windows,	including	Windows	7	through	10,	you	configure	the
Classpath	variable	using	the	Environment	Variables	dialog.	(Skip	to	the	next	section	if
you’re	using	Windows	98	or	Me.)

To	open	this	dialog	on	Windows	7,	8,	or	10,	follow	these	steps:

1.	Click	the	Start	button	on	the	taskbar.

2.	Click	the	Search	icon	(a	magnifying	glass)	at	the	upper	right.

3.	Type	Environment	Variables	in	the	search	box.

4.	Click	the	result	Edit	the	System	Environment	Variables.	The	System	Properties
dialog	opens	with	the	Advanced	tab	in	front.

5.	Click	the	Environment	Variables	button.	The	Environment	Variables	dialog	opens,
as	shown	in	Figure	D.9.

FIGURE	D.9	Setting	environment	variables	in	most	Windows	versions.

To	open	it	in	other	versions,	do	the	following:

1.	Right-click	the	My	Computer	icon	on	your	desktop	or	Start	menu,	and	choose
Properties.	The	System	Properties	dialog	opens.

2.	Click	the	Advanced	tab	to	bring	it	to	the	front.

3.	Click	the	Environment	Variables	button.	The	Environment	Variables	dialog	opens,
seen	in	Figure	D.9.

If	your	system	has	a	Classpath	variable,	it	probably	is	one	of	the	system	variables.
Your	system	may	not	have	a	Classpath	variable	set.	Normally	the	kit	can	find	class
files	without	the	variable.

However,	if	your	system	has	a	Classpath,	it	must	be	set	up	with	at	least	two	things:	a
reference	to	the	current	folder	(a	period)	and	a	reference	to	a	file	that	contains	the	Java
Class	Library,	tools.jar.

If	you	installed	the	kit	in	the	C:\Program	Files\Java\jdk1.8.0_60	folder,
tools.jar	is	in	the	folder	C:\Program	Files\Java\jdk1.8.0_60\lib.

If	you	can’t	remember	where	you	installed	the	kit,	you	can	look	for	tools.jar	by
choosing	Start,	Search	(or	Start,	Search	icon)	from	the	Windows	taskbar.	If	you	find
several	copies,	you	should	be	able	to	find	the	correct	one	using	this	method:

1.	Use	CD	to	open	the	folder	that	contains	the	JJVM	(java.exe).

2.	Enter	the	command	CD	...

3.	Enter	the	command	CD	lib.

The	lib	folder	normally	contains	the	right	copy	of	tools.jar.

When	you	know	the	correct	folder,	return	to	the	Environment	Variables	dialog,	shown	in
Figure	D.9.

If	your	system	does	not	have	a	Classpath,	click	the	New	button	under	the	System
Variables	list.	The	New	System	Variable	dialog	opens.

If	your	system	has	a	Classpath,	choose	it	and	click	the	Edit	button.	The	Edit	System
Variable	dialog	opens.

Both	dialogs	contain	the	same	thing:	a	Variable	Name	field	and	a	Variable	Value	field.

Enter	Classpath	in	the	Variable	Name	field	and	the	correct	value	for	your
Classpath	in	the	Variable	Value	field.

For	example,	if	you	installed	the	kit	in	C:\Program	Files\Java\jdk1.8.0_60,
your	Classpath	should	contain	the	following:
Click	here	to	view	code	image

.;C:"Program	Files”\Java\jdk1.8.0_60\lib\tools.jar

After	setting	up	your	Classpath,	click	OK	twice:	once	to	close	the	Edit	or	New	System
Variable	dialog,	and	again	to	close	the	Environment	Variables	dialog.

To	see	whether	this	change	has	fixed	your	problem,	open	a	new	command-line	window
and	type	the	command	java	-version.

If	it	displays	the	correct	version	of	the	kit,	your	system	should	be	configured	correctly	and
require	no	more	adjustments.	Try	creating	the	sample	HelloUser	program	again.	It	should
work	after	the	CLASSPATH	variable	has	been	set	up	correctly.

Setting	the	CLASSPATH	on	Windows	98	or	Me
If	you	are	using	Windows	98	or	Me	and	the	HelloUser	program	fails	with	a	Class	not
found	or	NoClassDefFound	error	when	you	run	it,	you	need	to	make	sure	your
CLASSPATH	variable	is	set	up	correctly.

To	do	this,	run	Windows	Notepad	and	choose	File,	Open.	Go	to	the	root	folder	on	your
system,	and	then	open	the	file	AUTOEXEC.BAT.	A	file	containing	several	MS-DOS
commands	is	loaded	in	the	editor.

Look	for	a	line	in	the	file	that	contains	the	text	SET	CLASSPATH=	command	followed
by	a	series	of	folders	and	filenames	separated	by	semicolons.

CLASSPATH	is	used	to	help	the	Java	compiler	find	the	class	files	it	needs.	A	CLASSPATH
can	contain	folders	or	files.	It	also	can	contain	a	period	character	(.),	which	is	another
way	to	refer	to	the	current	folder	in	MS-DOS.

You	can	see	your	system’s	CLASSPATH	variable	by	typing	the	following	command	at	a
command	line:

ECHO	%CLASSPATH%

If	your	CLASSPATH	includes	folders	or	files	that	you	know	are	no	longer	on	your
computer,	you	should	remove	the	references	to	them	on	the	SET	CLASSPATH=	line	in
AUTOEXEC.BAT.	Be	sure	to	remove	any	extra	semicolons	also.

To	set	up	the	kit	correctly,	you	must	include	the	file	containing	the	Java	Class	Library	in
the	SET	CLASSPATH=	command.	This	file	has	the	filename	tools.jar.	If	you
installed	the	kit	in	the	C:\Program	Files\Java\jdk1.8.0_60	folder	on	your
system,	tools.jar	is	probably	in	the	folder	C:\Program
Files\Java\jdk1.8.0_60\lib.

If	you	can’t	remember	where	you	installed	the	kit,	you	can	look	for	tools.jar	by
choosing	Start,	Find,	Files	or	choosing	Folders	from	the	Windows	taskbar.	If	you	find
several	copies,	you	should	be	able	to	find	the	correct	one	using	this	method:

1.	Use	CD	to	open	the	folder	that	contains	the	Java	Virtual	Machine	(java.exe).

2.	Enter	the	command	CD	...

3.	Enter	the	command	CD	lib.

The	lib	folder	normally	contains	the	right	copy	of	tools.jar.

When	you	know	the	correct	location,	create	a	blank	line	at	the	bottom	of	the
AUTOEXEC.BAT	file	and	add	the	following:
Click	here	to	view	code	image

SET	CLASSPATH=%CLASSPATH%;.;rightlocation

For	example,	if	the	tools.jar	file	is	in	the	C:\Program
Files\Java\jdk1.8.0_60\lib	folder,	add	the	following	line	at	the	bottom	of
AUTOEXEC.BAT:
Click	here	to	view	code	image

SET	CLASSPATH=%CLASSPATH%;.;c:"Program	Files”\Java\jdk1.8.0_60\lib\tools.jar

After	making	changes	to	AUTOEXEC.BAT,	save	the	file	and	reboot	your	computer.	After
this	is	done,	try	to	compile	and	run	the	HelloUser	sample	program	again.	You	should	be
able	to	accomplish	this	after	the	CLASSPATH	variable	has	been	set	up	correctly.

Appendix	E.	Programming	with	the	Java	Development	Kit

The	Java	Development	Kit	(JDK)	can	be	used	throughout	this	book	to	create,	compile,	and
run	Java	programs.

The	tools	that	make	up	the	kit	contain	numerous	features	that	many	programmers	don’t
explore.	Some	of	the	tools	themselves	might	be	new	to	you.

This	appendix	covers	features	of	the	kit	that	you	can	use	to	create	more	reliable,	better-
tested,	and	faster-running	Java	programs.

Overview	of	the	JDK
Although	you	can	use	numerous	integrated	development	environments	to	create	Java
programs,	the	most	widely	used	may	still	be	the	Java	Development	Kit	(JDK)	from
Oracle,	the	set	of	command-line	tools	that	are	used	to	develop	software	with	the	Java
language.

There	are	two	main	reasons	for	the	kit’s	popularity:

	It’s	free.	You	can	download	a	copy	at	no	cost	from	the	official	Java	website	at
www.oracle.com/technetwork/java.

	It’s	first.	Whenever	a	new	version	of	the	language	is	released,	the	first	tools	that
support	the	new	version	are	in	the	kit.

The	kit	uses	the	command	line.	This	is	also	called	the	MS-DOS	prompt,	command
prompt,	or	console	under	Windows	and	the	shell	prompt	under	UNIX.	You	enter
commands	using	the	keyboard,	as	in	this	example:

javac	VideoBook.java

This	command	compiles	a	Java	program	called	VideoBook.java	using	the	kit’s
compiler.	The	command	has	two	elements:	the	name	of	the	compiler,	javac,	and	the
name	of	the	program	to	compile,	VideoBook.java.	A	space	character	separates	the
two	elements.

Each	kit	command	follows	the	same	format:	the	name	of	the	tool	to	use,	followed	by	one
or	more	elements	indicating	what	the	tool	should	do.	These	elements	are	called	arguments.

The	following	illustrates	the	use	of	command-line	arguments:
Click	here	to	view	code	image

java	VideoBook	add	DVD	“Broadcast	News”

This	command	tells	the	Java	Virtual	Machine	(JVM)	to	run	a	class	file	called
VideoBook	with	three	command-line	arguments:	the	strings	“add”,	“DVD”,	and
“Broadcast	News.”

http://www.oracle.com/technetwork/java

Note

You	might	think	there	are	more	than	three	command-line	arguments	because	of	the
spaces	in	the	string	“Broadcast	News”.	The	quotation	marks	around	that	string
cause	it	to	be	considered	one	command-line	argument,	which	makes	it	possible	to
include	spaces	in	an	argument.

Some	arguments	used	with	the	kit	modify	how	a	tool	functions.	These	arguments	are
preceded	by	a	hyphen	character	and	are	called	options.

The	following	command	shows	the	use	of	an	option:
java	-version

This	command	tells	the	JVM	to	display	its	version	number	rather	than	trying	to	run	a	class
file.	It’s	a	good	way	to	find	out	whether	the	kit	is	correctly	configured	to	run	Java
programs	on	your	system.	Here’s	an	example	of	the	output	run	on	a	system	equipped	with
Java	8:

Output	
Click	here	to	view	code	image

java	version	“1.8.0_60”
Java(TM)	SE	Runtime	Environment	(build1.8.0_60-b27)
Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.60-b23,	mixed	mode)

The	version	reflects	Oracle’s	internal	number	for	Java	8,	which	is	1.8.

In	some	instances,	you	can	combine	options	with	other	arguments.	For	example,	if	you
compile	a	Java	class	that	uses	deprecated	methods,	you	can	see	more	information	on	these
methods	by	compiling	the	class	with	a	-deprecation	option,	as	in	the	following:
Click	here	to	view	code	image

javac	-deprecation	OldVideoBook.java

The	java	Virtual	Machine
java,	the	Java	Virtual	Machine,	is	used	to	run	Java	applications	from	the	command	line.
It	takes	as	an	argument	the	name	of	a	class	file	to	run,	as	in	the	following	example:

java	BidMonitor

Although	Java	class	files	end	with	the	.class	extension,	this	extension	is	not	specified
when	the	JVM	is	used.	The	machine	also	is	called	the	Java	interpreter.

The	class	loaded	by	the	JVM	must	contain	a	class	method	called	main()	that	takes	the
following	form:
Click	here	to	view	code	image

public	static	void	main(String[]	arguments)	{
				//	method	here
}

Some	simple	Java	programs	might	consist	of	only	one	class—the	one	containing	the

main()	method.	In	more	complex	programs	that	use	other	classes,	the	JVM
automatically	loads	any	other	classes	that	are	needed.

The	JVM	runs	bytecode,	compiled	instructions	that	the	machine	executes.	After	a	Java
program	is	saved	in	bytecode	as	a	.class	file,	it	can	be	run	by	different	JVMs	without
modification.	If	you	have	compiled	a	Java	program,	it	will	be	compatible	with	any	JVM
that	fully	supports	Java.

Note

Interestingly,	Java	is	not	the	only	language	that	you	can	use	to	create	Java	bytecode.
NetRexx,	JPython,	JRuby,	JudoScript,	and	several	dozen	other	languages	compile
into	.class	files	of	executable	bytecode	through	the	use	of	compilers	specific	to
those	languages.	Robert	Tolksdorf	maintains	a	comprehensive	list	of	these
languages	at	www.is-research.de/info/vmlanguages.

You	can	specify	the	class	file	that	the	JVM	will	run	in	two	different	ways.	If	the	class	is
not	part	of	any	package,	you	can	run	it	by	specifying	the	class’s	name,	as	in	the	preceding
java	BidMonitor	example.	If	the	class	is	part	of	a	package,	you	must	specify	the
class	by	using	its	full	package	and	class	name.

For	example,	consider	a	SellItem	class	that	is	part	of	the
org.cadenhead.auction	package.	To	run	this	application,	you	would	use	the
following	command:
Click	here	to	view	code	image

java	org.cadenhead.auction.SellItem

Each	element	of	the	package	name	corresponds	to	its	own	subfolder.	The	JVM	looks	for
the	SellItem.class	file	in	several	different	places:

	The	org\cadenhead\auction	subfolder	of	the	folder	where	the	java
command	was	entered	(If	the	command	was	entered	from	the	C:\J21work	folder,
for	example,	the	SellItem.class	file	can	be	run	successfully	if	it	is	in	the
C:\J21work\org\cadenhead\auction	folder.)

	The	org\cadenhead\auction	subfolder	of	any	folder	in	your	Classpath
setting

If	you’re	creating	your	own	packages,	an	easy	way	to	manage	them	is	to	add	a	folder	to
your	Classpath	that’s	the	root	folder	for	any	packages	you	create,	such	as
C:\javapackages	or	something	similar.	After	creating	subfolders	that	correspond	to
the	name	of	a	package,	place	the	package’s	class	files	in	the	correct	subfolder.

You	can	specify	a	Classpath	when	running	a	Java	application	with	the	command-line
option	-cp.	Here’s	an	example:
Click	here	to	view	code	image

java	-cp	.	org.cadenhead.auction.SellItem

This	command	sets	the	Classpath	to	“.”,	which	represents	the	current	folder.

http://www.is-research.de/info/vmlanguages

Java	supports	assertions,	a	debugging	feature	that	works	only	when	requested	as	a
command-line	option.	To	run	a	program	using	the	JVM	and	make	use	of	any	assertions	it
contains,	use	the	command-line	option	-ea,	as	in	the	following	example:

java	-ea	Outline

The	JVM	executes	all	assert	statements	in	the	application’s	class	and	all	other	class
files	it	uses,	with	the	exception	of	classes	from	the	Java	Class	Library.

To	remove	that	exception	and	make	use	of	all	assertions,	run	a	class	with	the	-esa	option.

If	you	don’t	specify	one	of	the	options	that	turns	on	the	assertions	feature,	the	JVM
ignores	all	assert	statements.

The	javac	Compiler
The	Java	compiler,	javac,	converts	Java	source	code	into	one	or	more	class	files	of
bytecode	that	a	JVM	can	run.

Java	source	code	is	stored	in	a	file	with	the	.java	file	extension.	This	file	can	be	created
with	any	text	editor	that	can	save	a	document	without	any	special	formatting	codes.	The
terminology	varies	depending	on	the	text-editing	software	being	used,	but	these	files	are
often	called	plain	text,	ASCII	text,	DOS	text,	or	something	similar.

A	Java	source	code	file	can	contain	more	than	one	class,	but	only	one	of	the	classes	can	be
declared	to	be	public.	A	class	can	contain	no	public	classes	at	all	if	desired,	although	this
isn’t	possible	with	applets	because	of	the	rules	of	inheritance.

If	a	source	code	file	contains	a	class	that	has	been	declared	to	be	public,	the	filename	must
match	the	name	of	that	class.	For	example,	the	source	code	for	a	public	class	called
BuyItem	must	be	stored	in	a	file	called	BuyItem.java.

To	compile	a	file,	you	run	the	javac	tool	with	the	name	of	the	source	code	file	as	an
argument,	as	in	the	following:

javac	BuyItem.java

You	can	compile	more	than	one	source	file	by	including	each	separate	filename	as	a
command-line	argument,	such	as	this	command:
Click	here	to	view	code	image

javac	BuyItem.java	SellItem.java

You	also	can	use	wildcard	characters	such	as	*	and	?.	Use	the	following	command	to
compile	all	.java	files	in	a	folder:

javac	*.java

When	you	compile	one	or	more	Java	source	code	files,	a	separate	.class	file	is	created
for	each	Java	class	that	compiles	successfully.

Another	useful	option	when	running	the	compiler	is	-deprecation,	which	causes	the
compiler	to	describe	any	deprecated	methods	that	are	being	employed	in	a	Java	program.

A	deprecated	method	is	one	that	Oracle	has	replaced	with	a	better	alternative,	either	in	the

same	class	or	in	a	different	class.	Although	the	deprecated	method	works,	at	some	point
Oracle	may	decide	to	remove	it	from	the	class.	The	deprecation	warning	is	a	strong
suggestion	to	stop	using	that	method	as	soon	as	you	can.
Normally,	the	compiler	issues	a	single	warning	if	it	finds	any	deprecated	methods	in	a
program.	The	-deprecation	option	causes	the	compiler	to	list	each	method	that	has
been	deprecated,	as	in	the	following	command:
Click	here	to	view	code	image

javac	-deprecation	SellItem.java

If	you’re	more	concerned	with	the	speed	of	a	Java	program	than	the	size	of	its	class	files,
you	can	compile	its	source	code	with	the	-O	option.	This	creates	class	files	that	have	been
optimized	for	faster	performance.	Methods	that	are	static,	final,	or	private	might	be
compiled	inline,	a	technique	that	makes	the	class	file	larger	but	causes	the	methods	to	be
executed	more	quickly.

If	you	plan	to	use	a	debugger	to	look	for	bugs	in	a	Java	class,	compile	the	source	with	the
-g	option	to	put	all	debugging	information	in	the	class	file,	including	references	to	line
numbers,	local	variables,	and	source	code.	(To	keep	all	this	out	of	a	class,	compile	with	the
-g:none	option.)

Normally,	the	Java	compiler	doesn’t	provide	a	lot	of	information	as	it	creates	class	files.	In
fact,	if	the	source	code	compiles	successfully	and	no	deprecated	methods	are	employed,
you	won’t	see	any	output	from	the	compiler.	No	news	is	good	news	in	this	case.

If	you	want	to	see	more	information	on	what	the	javac	tool	is	doing	as	it	compiles
source	code,	use	the	-verbose	option.	The	more	verbose	compiler	describes	how	long	it
takes	to	complete	different	functions,	the	classes	that	are	being	loaded,	and	the	overall
time	required.

The	appletviewer	Browser
The	appletviewer	tool	runs	Java	programs	that	require	a	web	browser	and	are
presented	as	part	of	a	Hypertext	Markup	Language	(HTML)	document.	It	takes	an	HTML
document	as	a	command-line	argument,	as	in	the	following	example:

appletviewer	NewAuctions.html

If	the	argument	is	a	web	address	instead	of	a	reference	to	a	file,	appletviewer	loads
the	HTML	document	at	that	address.	For	example:
Click	here	to	view	code	image

appletviewer	http://www.javaonthebrain.com

Figure	E.1	shows	an	applet	loaded	from	this	page,	a	site	developed	by	cartoonist	and	Java
game	programmer	Karl	Hörnell.

FIGURE	E.1	Viewing	Java	web	applets	outside	of	a	browser.

When	appletviewer	loads	an	HTML	document,	every	applet	on	that	document	begins
running	in	its	own	window.	The	size	of	these	windows	depends	on	the	height	and
width	attributes	that	were	set	in	the	applet’s	html	tag.

Unlike	a	web	browser,	appletviewer	cannot	be	used	to	view	the	HTML	document
itself.	If	you	want	to	see	how	the	applet	is	laid	out	in	relation	to	the	other	contents	of	the
document,	you	must	use	a	Java-capable	web	browser.

Caution

The	Java	Plug-in	from	Oracle	enables	web	browsers	to	run	Java	applets.	The	Plug-
in	is	included	in	the	Java	Runtime	Environment,	a	JVM	for	running	Java	programs
that	is	installed	along	with	the	Java	Development	Kit.	If	it	isn’t	already	present	on
your	system,	you	can	download	it	from	Oracle’s	website	at	www.java.com.

Using	appletviewer	is	reasonably	straightforward,	but	you	might	be	unfamiliar	with
some	of	the	menu	options	that	are	available	as	the	viewer	runs	an	applet.

The	following	menu	options	are	available:

	The	Restart	and	Reload	options	are	used	to	restart	the	applet’s	execution.	The
difference	between	these	two	options	is	that	Restart	does	not	unload	the	applet
before	restarting	it,	whereas	Reload	does.	The	Reload	option	is	equivalent	to	closing
the	applet	viewer	and	opening	it	again	on	the	same	web	page.

	The	Start	and	Stop	options	are	used	to	call	the	applet’s	start()	and	stop()
methods	directly.

	The	Clone	option	creates	a	second	copy	of	the	same	applet	running	in	its	own
window.

	The	Tag	option	displays	the	program’s	applet	or	object	tag,	along	with	the
HTML	for	any	param	tags	that	configure	the	applet.

Another	option	on	the	Applet	pull-down	menu	is	Info,	which	calls	the	applet’s
getAppletInfo()	and	getParameterInfo()	methods.	A	programmer	can
implement	these	methods	to	provide	more	information	about	the	applet	and	the	parameters
it	can	handle.

The	getAppletInfo()	method	returns	a	string	that	describes	the	applet.	The
getParameterInfo()	method	returns	an	array	of	string	arrays	that	specify	the	name,
type,	and	description	of	each	parameter.

http://www.java.com

Listing	E.1	contains	a	Java	applet	that	demonstrates	the	use	of	these	methods.

LISTING	E.1	The	Full	Text	of	AppInfo.java
Click	here	to	view	code	image

	1:	import	java.awt.*;
	2:
	3:	public	class	AppInfo	extends	javax.swing.JApplet	{
	4:					String	name,	date;
	5:					int	version;
	6:
	7:					public	String	getAppletInfo()	{
	8:									String	response	=	“This	applet	demonstrates	the	“
	9:													+	“use	of	the	Applet’s	Info	feature.”;
10:									return	response;
11:					}
12:
13:					public	String[][]	getParameterInfo()	{
14:									String[]	p1	=	{	“Name”,	“String”,	“Programmer’s	name”	};
15:									String[]	p2	=	{	“Date”,	“String”,	“Today’s	date”	};
16:									String[]	p3	=	{	“Version”,	“int”,	“Version	number”	};
17:									String[][]	response	=	{	p1,	p2,	p3	};
18:									return	response;
19:					}
20:
21:					public	void	init()	{
22:									name	=	getParameter(“Name”);
23:									date	=	getParameter(“Date”);
24:									String	versText	=	getParameter(“Version”);
25:									if	(versText	!=	null)	{
26:													version	=	Integer.parseInt(versText);
27:									}
28:					}
29:
30:					public	void	paint(Graphics	screen)	{
31:									Graphics2D	screen2D	=	(Graphics2D)	screen;
32:									screen2D.drawString(“Name:	“	+	name,	5,	50);
33:									screen2D.drawString(“Date:	“	+	date,	5,	100);
34:									screen2D.drawString(“Version:	“	+	version,	5,	150);
35:					}
36:	}

The	main	function	of	this	applet	is	to	display	the	value	of	three	parameters:	Name,	Date,
and	Version.	The	getAppletInfo()	method	returns	the	following	string:
Click	here	to	view	code	image

This	applet	demonstrates	the	use	of	the	Applet’s	Info	feature.

The	getParameterInfo()	method	is	a	bit	more	complicated	if	you	haven’t	worked
with	multidimensional	arrays.	The	following	things	are	taking	place:

	Line	13	defines	the	return	type	of	the	method	as	a	two-dimensional	array	of
String	objects.

	Line	14	creates	an	array	of	String	objects	with	three	elements:	“Name”,	“String”,
and	“Programmer’s	name”.	These	elements	describe	one	of	the	parameters	that	can
be	defined	for	the	AppInfo	applet.	They	describe	the	name	of	the	parameter
(“Name”	in	this	case),	the	type	of	data	that	the	parameter	will	hold	(a	string),	and	a

description	of	the	parameter	(“Programmer’s	name”).	The	three-element	array	is
stored	in	the	p1	object.

	Lines	15	and	16	define	two	more	String	arrays	for	the	Date	and	Version
parameters.

	Line	17	uses	the	response	object	to	store	an	array	that	contains	three	string
arrays:	p1,	p2,	and	p3.

	Line	18	uses	the	response	object	as	the	method’s	return	value.

Listing	E.2	contains	a	web	page	that	can	be	used	to	load	the	AppInfo	applet.

LISTING	E.2	The	Full	Text	of	AppInfo.html
Click	here	to	view	code	image

1:	<applet	code=“AppInfo.class”	height=“200”	width=“170”>
2:	<param	name=“Name”	value=“Rogers	Cadenhead”>
3:	<param	name=”Date”	value=“08/15/15”>
4:	<param	name=”Version”	value=“7”>
5:	</applet>

Figure	E.2	shows	the	applet	running	with	appletviewer,	and	Figure	E.3	is	a	screen
capture	of	the	dialog	box	that	opens	when	the	viewer’s	Info	menu	option	is	selected.

FIGURE	E.2	The	AppInfo	applet	running	in	appletviewer.

FIGURE	E.3	The	Info	dialog	box	of	the	AppInfo	applet.

These	features	require	a	browser	that	makes	this	information	available	to	users.	The	kit’s
appletviewer	handles	this	through	the	Info	menu	option,	but	actual	browsers	do	not
offer	anything	like	it.

The	javadoc	Documentation	Tool
The	Java	documentation	creator,	javadoc,	takes	a	.java	source	code	file	or	package
name	as	input	and	generates	detailed	documentation	in	HTML	format.

For	javadoc	to	create	full	documentation	for	a	program,	a	special	type	of	comment
statement	must	be	used	in	the	program’s	source	code.	Tutorial	programs	in	this	book	use
//,	/*,	and	*/	in	source	code	to	create	comments—information	for	people	who	are
trying	to	make	sense	of	the	program.

Java	also	has	a	more	structured	type	of	comment	that	the	javadoc	tool	can	read.	This
comment	is	used	to	describe	program	elements	such	as	classes,	variables,	objects,	and
methods.	It	takes	the	following	format:
Click	here	to	view	code	image

/**	A	descriptive	sentence	or	paragraph.
		*	@tag1	Description	of	this	tag.
		*	@tag2	Description	of	this	tag.
	*/

A	Java	documentation	comment	should	be	placed	immediately	above	the	program	element
it	is	documenting	and	should	succinctly	explain	what	the	program	element	is.	For
example,	if	the	comment	precedes	a	class	statement,	it	describes	the	class’s	purpose.

In	addition	to	the	descriptive	text,	different	items	can	be	used	to	document	the	program
element	further.	These	items,	called	tags,	are	preceded	by	an	at	sign	(@)	and	are	followed
by	a	space	and	a	descriptive	sentence	or	paragraph.

Listing	E.3	contains	a	thoroughly	documented	version	of	the	AppInfo	applet	called
AppInfo2.	The	following	tags	are	used	in	this	program:

	@author—The	program’s	author.	This	tag	can	be	used	only	when	a	class	is
documented.	It	is	ignored	unless	the	-author	option	is	used	when	javadoc	is
run.

	@version	text—The	program’s	version	number.	This	also	is	restricted	to	class
documentation.	It	requires	the	-version	option	when	you’re	running	javadoc,
or	the	tag	will	be	ignored.

	@return	text—The	variable	or	object	returned	by	the	method	being
documented.

	@serial	text—A	description	of	the	data	type	and	possible	values	for	a	variable
or	object	that	can	be	serialized—saved	to	disk	along	with	the	values	of	its	variables
and	retrieved	later.

LISTING	E.3	The	Full	Text	of	AppInfo2.java
Click	here	to	view	code	image

	1:	import	java.awt.*;
	2:
	3:	/**	This	class	displays	the	values	of	three	parameters:
	4:			*	Name,	Date	and	Version.
	5:			*	@author	Rogers	Cadenhead
	6:			*	@version	7.0
	7:		*/
	8:	public	class	AppInfo2	extends	javax.swing.JApplet	{
	9:					/**
10:							*	@serial	The	programmer’s	name.
11:						*/
12:					String	name;
13:					/**
14:							*	@serial	The	current	date.
15:						*/
16:					String	date;
17:					/**
18:							*	@serial	The	program’s	version	number.
19:						*/
20:					int	version;
21:
22:					/**
23:							*	This	method	describes	the	applet	for	any	browsing	tool	that
24:							*	requests	information	from	the	program.
25:							*	@return	A	String	describing	the	applet.
26:						*/
27:					public	String	getAppletInfo()	{
28:									String	response	=	“This	applet	demonstrates	the	“
29:													+	“use	of	the	Applet’s	Info	feature.”;
30:									return	response;
31:					}
32:
33:					/**
34:							*	This	method	describes	the	parameters	that	the	applet	can	take
35:							*	for	any	browsing	tool	that	requests	this	information.
36:							*	@return	An	array	of	String[]	objects	for	each	parameter.
37:						*/
38:					public	String[][]	getParameterInfo()	{
39:									String[]	p1	=	{	“Name”,	“String”,	“Programmer’s	name”	};
40:									String[]	p2	=	{	“Date”,	“String”,	“Today’s	date”	};
41:									String[]	p3	=	{	“Version”,	“int”,	“Version	number”	};
42:									String[][]	response	=	{	p1,	p2,	p3	};
43:									return	response;
44:					}
45:

46:					/**
47:							*	This	method	is	called	when	the	applet	is	first	initialized.
48:						*/
49:					public	void	init()	{
50:									name	=	getParameter(“Name”);
51:									date	=	getParameter(“Date”);
52:									String	versText	=	getParameter(“Version”);
53:									if	(versText	!=	null)	{
54:													version	=	Integer.parseInt(versText);
55:									}
56:					}
57:
58:					/**
59:							*	This	method	is	called	when	the	applet’s	display	window	is
60:							*	being	repainted.
61:						*/
62:					public	void	paint(Graphics	screen)	{
63:									Graphics2D	screen2D	=	(Graphics2D)	screen;
64:									screen.drawString(“Name:	“	+	name,	5,	50);
65:									screen.drawString(“Date:	“	+	date,	5,	100);
66:									screen.drawString(“Version:	“	+	version,	5,	150);
67:					}
68:	}

The	following	command	creates	HTML	documentation	from	the	source	code	file
AppInfo2.java:
Click	here	to	view	code	image

javadoc	-author	-version	AppInfo2.java

The	Java	documentation	tool	creates	several	different	web	pages	in	the	same	folder	as
AppInfo2.java.	These	pages	document	the	program	in	the	same	manner	as	Oracle’s
official	documentation	for	the	Java	Class	Library.

Tip

To	see	the	official	documentation	for	Java	8	and	the	Java	Class	Library,	visit
http://docs.oracle.com/javase/8/docs/api.

To	see	the	documentation	that	javadoc	has	created	for	AppInfo2,	load	the	newly	created
web	page	index.html	on	your	web	browser.	Figure	E.4	shows	this	page	loaded	with
Google	Chrome.

http://docs.oracle.com/javase/8/docs/api

FIGURE	E.4	Java	documentation	for	the	AppInfo2	program.

The	javadoc	tool	produces	extensively	hyperlinked	web	pages.	Navigate	through	the
pages	to	see	where	the	information	in	your	documentation	comments	and	tags	shows	up.

If	you’re	familiar	with	HTML	markup,	you	can	use	HTML	tags	such	as	A,	TT,	and	B
within	your	documentation	comments.	Line	5	of	the	AppInfo2	program	uses	an	A	tag	to
turn	the	text	“Rogers	Cadenhead”	into	a	hyperlink	to	this	book’s	website.

The	javadoc	tool	also	can	be	used	to	document	an	entire	package	by	specifying	the
package	name	as	a	command-line	argument.	HTML	files	are	created	for	each	.java	file
in	the	package,	along	with	an	HTML	file	indexing	the	package.

If	you	want	the	Java	documentation	to	be	produced	in	a	different	folder	than	the	default,
use	the	-d	option	followed	by	a	space	and	the	folder	name.

The	following	command	creates	Java	documentation	for	AppInfo2	in	a	folder	called
C:\JavaDocs\:
Click	here	to	view	code	image

javadoc	-author	-version	-d	C:\JavaDocs\	AppInfo2.java

The	following	list	details	the	other	tags	you	can	use	in	Java	documentation	comments:

	@deprecated	text	provides	a	note	that	indicates	that	the	class,	method,	object,
or	variable	has	been	deprecated.	This	causes	the	javac	compiler	to	issue	a
deprecation	warning	when	the	feature	is	used	in	a	program	that’s	being	compiled.

	@exception	class	description	is	used	with	methods	that	throw
exceptions.	This	tag	documents	the	exception’s	class	name	and	its	description.

	@param	name	description	is	used	with	methods.	This	tag	documents	the

name	of	an	argument	and	a	description	of	the	values	the	argument	can	hold.

	@see	class	indicates	the	name	of	another	class,	which	will	be	turned	into	a
hyperlink	to	the	Java	documentation	for	that	class.	This	can	be	used	without
restriction	in	comments.

	@see	class#method	indicates	the	name	of	a	method	of	another	class,	which	will
be	used	for	a	hyperlink	directly	to	the	documentation	for	that	method.	This	can	be
used	without	restriction.

	@since	text	indicates	a	note	describing	when	a	method	or	feature	was	added	to
Java’s	class	library.

The	jar	Java	File	Archival	Tool
When	you	deploy	a	Java	program,	keeping	track	of	all	the	class	files	and	other	files
required	by	the	program	can	be	cumbersome.

To	make	this	easier,	the	kit	includes	a	tool	called	jar	that	can	pack	all	a	program’s	files
into	a	Java	archive—also	called	a	JAR	file.	The	jar	tool	also	can	be	used	to	unpack	the
files	in	one	of	these	archives.

JAR	files	can	be	compressed	using	the	zip	format	or	packed	without	using	compression.

To	use	the	tool,	type	the	command	jar	followed	by	command-line	options	and	a	series	of
filenames,	folder	names,	or	wildcards.

The	following	command	packs	all	of	a	folder’s	class	and	GIF	image	files	into	a	single	Java
archive	called	Animate.jar:
Click	here	to	view	code	image

jar	cf	Animate.jar	*.class	*.gif

The	argument	cf	specifies	two	command-line	options	that	can	be	used	when	running	the
jar	program.	The	c	option	indicates	that	a	Java	archive	file	should	be	created,	and	f
indicates	that	the	name	of	the	archive	file	will	follow	as	one	of	the	next	arguments.

You	also	can	add	specific	files	to	a	Java	archive	with	a	command	such	as	the	following:
Click	here	to	view	code	image

jar	cf	MusicLoop.jar	MusicLoop.class	muskratLove.mp3	shopAround.mp3

This	creates	a	MusicLoop.jar	archive	containing	three	files:	MusicLoop.class,
muskratLove.mp3,	and	shopAround.mp3.

Run	jar	without	any	arguments	to	see	a	list	of	options	that	can	be	used	with	the	tool.

One	use	of	jar	is	to	put	all	files	necessary	to	run	a	Java	applet	in	a	single	JAR	file.	This
makes	it	much	easier	to	deploy	the	applet	on	the	Web.

The	standard	way	of	placing	a	Java	applet	on	a	web	page	is	to	use	an	applet	or	object
tag	to	indicate	the	applet’s	primary	class	file.	A	Java-enabled	browser	then	downloads	and
runs	the	applet.	Any	other	classes	and	any	other	files	that	the	applet	needs	are	downloaded
from	the	web	server.

The	problem	with	running	applets	in	this	way	is	that	every	file	an	applet	requires—helper
classes,	images,	audio	files,	text	files,	or	anything	else—requires	a	separate	connection
from	a	web	browser	to	the	server	containing	the	file.	This	can	significantly	increase	the
amount	of	time	it	takes	to	download	an	applet	and	everything	it	needs	to	run.

If	you	can	reduce	the	number	of	files	the	browser	has	to	load	from	the	server	by	putting
many	files	into	one	Java	archive,	a	web	browser	can	download	and	run	your	applet	more
quickly.	If	the	files	in	a	Java	archive	are	compressed,	it	loads	even	more	quickly.

After	you	create	a	Java	archive,	the	archive	attribute	is	used	with	the	applet	tag	to
show	where	the	archive	can	be	found.	You	can	use	Java	archives	with	an	applet	with	tags
such	as	the	following:
Click	here	to	view	code	image

<applet	code=“MusicLoop.class”	archive=“MusicLoop.jar”	width=“45”
height=“42”>
</applet>

This	tag	specifies	that	an	archive	called	MusicLoop.jar	contains	files	used	by	the
applet.	Browsers	and	browsing	tools	that	support	JAR	files	will	look	inside	the	archive	for
files	that	are	needed	as	the	applet	runs.

Caution

Although	a	Java	archive	can	contain	class	files,	the	archive	attribute	does	not
remove	the	need	for	the	code	attribute.	A	browser	still	needs	to	know	the	name	of
the	applet’s	main	class	file	to	load	it.

When	you	use	an	object	tag	to	display	an	applet	that	uses	a	JAR	file,	the	applet’s
archive	file	is	specified	as	a	parameter	using	the	param	tag.	The	tag	should	have	the
name	attribute	“archive”	and	a	value	attribute	with	the	name	of	the	archive	file.

The	following	example	is	a	rewrite	of	the	preceding	example	to	use	object	instead	of
applet:
Click	here	to	view	code	image

<object	code=“MusicLoop.class”	width=“45”	height=“42”>
				<param	name=“archive”	value=“MusicLoop.jar”>
</object>

The	jdb	Debugger
jdb,	the	Java	debugger,	is	a	sophisticated	tool	that	helps	you	find	and	fix	bugs	in	Java
programs.	You	also	can	use	it	to	better	understand	what	is	taking	place	behind	the	scenes
in	the	JVM	as	a	program	is	running.	It	has	a	large	number	of	features,	including	some	that
might	be	beyond	the	expertise	of	a	Java	programmer	who	is	new	to	the	language.

You	don’t	need	to	use	the	debugger	to	debug	Java	programs.	This	is	fairly	obvious,
especially	if	you’ve	been	creating	your	own	Java	programs	as	you	read	this	book.	After
the	Java	compiler	generates	an	error,	the	most	common	response	is	to	load	the	source	code
into	an	editor,	find	the	line	cited	in	the	error	message,	and	try	to	spot	the	problem.	You

repeat	this	dreaded	compile-curse-find-fix	cycle	until	the	program	compiles	without
complaint.

After	using	this	debugging	method	for	a	while,	you	might	think	that	the	debugger	is
unnecessary	to	the	programming	process	because	it’s	such	a	complicated	tool	to	master.
This	reasoning	makes	sense	when	you’re	fixing	problems	that	cause	compiler	errors.
Many	of	these	problems	are	simple	things	such	as	a	misplaced	semicolon,	unmatched	{
and	}	braces,	or	the	use	of	the	wrong	type	of	data	as	a	method	argument.	However,	when
you	start	looking	for	logic	errors—more	subtle	bugs	that	don’t	stop	the	program	from
compiling	and	running—a	debugger	is	an	invaluable	tool.

The	Java	debugger	has	two	features	that	are	useful	when	you’re	searching	for	a	bug	that
can’t	be	found	by	other	means:	single-step	execution	and	breakpoints.	Single-step
execution	pauses	a	Java	program	after	every	line	of	code	is	executed.	Breakpoints	are
points	where	execution	of	the	program	pauses.	Using	the	Java	debugger,	these	breakpoints
can	be	triggered	by	specific	lines	of	code,	method	calls,	or	caught	exceptions.

The	Java	debugger	works	by	running	a	program	using	a	version	of	the	JVM	over	which	it
has	complete	control.

Before	you	use	the	Java	debugger	with	a	program,	you	compile	the	program	with	the	-g
option,	which	causes	extra	information	to	be	included	in	the	class	file.	This	information
greatly	aids	in	debugging.	Also,	you	shouldn’t	use	the	-O	option,	because	its	optimization
techniques	might	produce	a	class	file	that	does	not	directly	correspond	with	the	program’s
source	code.

Debugging	Applications
If	you’re	debugging	an	application,	you	can	run	the	jdb	tool	with	a	Java	class	as	an
argument.	This	is	shown	in	the	following:

jdb	WriteBytes

This	example	runs	the	debugger	with	WriteBytes.class,	an	application	that’s
available	from	the	book’s	website	at	www.java21days.com.	Visit	the	site,	select	the
Appendix	E	page,	and	then	save	the	files	WriteBytes.class	and
WriteBytes.java	in	the	same	folder	from	which	you	run	the	debugger.

The	WriteBytes	application	writes	a	series	of	bytes	to	disk	to	produce	the	file	pic.gif.

The	debugger	loads	this	program	but	does	not	begin	running	it,	displaying	the	following
output:

Initializing	jdb…
>

You	control	the	debugger	by	typing	commands	at	the	>	prompt.

To	set	a	breakpoint	in	a	program,	you	use	the	stop	in	or	stop	at	commands.	The
stop	in	command	sets	a	breakpoint	at	the	first	line	of	a	specific	method	in	a	class.	You
specify	the	class	and	method	name	as	an	argument	to	the	command,	as	in	the	following
example:

http://www.java21days.com

stop	in	SellItem.SetPrice

This	command	sets	a	breakpoint	at	the	first	line	of	the	SetPrice()	method.	Note	that
no	arguments	or	parentheses	are	needed	after	the	method	name.

The	stop	at	command	sets	a	breakpoint	at	a	specific	line	number	within	a	class.	You
specify	the	class	and	number	as	an	argument	to	the	command,	as	in	the	following
example:

stop	at	WriteBytes:14

If	you’re	trying	this	with	the	WriteBytes	class,	you	see	the	following	output	after
entering	this	command:
Click	here	to	view	code	image

Deferring	breakpoint	WriteBytes:14
It	will	be	set	after	the	class	is	loaded.

You	can	set	as	many	breakpoints	as	you	want	within	a	class.	To	see	the	breakpoints	that
are	currently	set,	use	the	clear	command	without	any	arguments.	The	clear	command
lists	all	current	breakpoints	by	line	number	rather	than	method	name,	even	if	they	were	set
using	the	stop	in	command.

By	using	clear	with	a	class	name	and	line	number	as	an	argument,	you	can	remove	a
breakpoint.	If	the	hypothetical	SellItem.SetPrice	method	were	located	at	line	215
of	SellItem,	you	could	clear	this	breakpoint	with	the	following	command:

clear	SellItem:215

Within	the	debugger,	you	can	begin	executing	a	program	with	the	run	command.	The
following	output	shows	what	the	debugger	displays	after	you	begin	running	the
WriteBytes	class:
Click	here	to	view	code	image

run	WriteBytes
VM	Started:	Set	deferred	breakpoint	WriteBytes:14

Breakpoint	hit:	“thread=main”,	WriteBytes.main(),	line=14	bci=413
14																for	(int	i	=	0;	i	<	data.length;	i++)

After	you	have	reached	a	breakpoint	in	the	WriteBytes	class,	experiment	with	the
following	commands:

	list—At	the	point	where	execution	stopped,	this	command	displays	the	source
code	of	the	line	and	several	lines	around	it.	This	requires	access	to	the	.java	file	of
the	class	where	the	breakpoint	has	been	hit,	so	you	must	have	WriteBytes.java
in	either	the	current	folder	or	one	of	the	folders	in	your	Classpath.

	locals—This	command	lists	the	values	for	local	variables	that	are	currently	in	use
or	will	soon	be	defined.

	print	text—This	command	displays	the	value	of	the	variable,	object,	or	array
element	specified	by	text.

	step—This	command	executes	the	next	line	and	stops	again.

	cont—This	command	continues	running	the	program	at	the	point	it	was	halted.

	!!—This	command	repeats	the	previous	debugger	command.

After	trying	out	these	commands	within	the	application,	you	can	resume	running	the
program	by	clearing	the	breakpoint	and	using	the	cont	command.	Use	the	exit
command	to	end	the	debugging	session.

The	WriteBytes	application	creates	a	file	called	pic.gif.	You	can	verify	that	this	file	ran
successfully	by	loading	it	with	a	web	browser	or	image-editing	software.	You’ll	see	a
small	letter	J	in	black	and	white.

After	you	have	finished	debugging	a	program	and	you’re	satisfied	that	it	works	correctly,
recompile	it	without	the	-g	option.

Debugging	Applets
You	can’t	debug	an	applet	by	loading	it	using	the	jdb	tool.	Instead,	use	the	-debug
option	of	appletviewer,	as	in	the	following	example:
Click	here	to	view	code	image

appletviewer	-debug	AppInfo.html

This	loads	the	Java	debugger,	and	when	you	use	a	command	such	as	run,
appletviewer	begins	running	also.	Try	this	example	to	see	how	these	tools	interact.

Before	you	use	the	run	command	to	execute	the	applet,	set	a	breakpoint	in	the	program	at
the	first	line	of	the	getAppletInfo	method.	Use	the	following	command:
Click	here	to	view	code	image

stop	in	AppInfo.getAppletInfo

After	you	begin	running	the	applet,	the	breakpoint	won’t	be	hit	until	you	cause	the
getAppletInfo()	method	to	be	called.	You	do	so	by	selecting	Applet,	Info	from
appletviewer’s	menu.

Advanced	Debugging	Commands
With	the	features	you	have	learned	about	so	far,	you	can	use	the	debugger	to	stop
execution	of	a	program	and	learn	more	about	what’s	taking	place.	This	might	be	sufficient
for	many	of	your	debugging	tasks,	but	the	debugger	also	offers	many	other	commands.
These	include	the	following:

	up	moves	up	the	stack	frame	so	that	you	can	use	locals	and	print	to	examine
the	program	at	the	point	before	the	current	method	was	called.

	down	moves	down	the	stack	frame	so	that	you	can	examine	the	program	after	the
method	call.

A	Java	program	often	has	places	where	a	chain	of	methods	is	called.	One	method	calls
another	method,	which	calls	another	method,	and	so	on.	At	each	point	where	a	method	is
being	called,	Java	keeps	track	of	all	the	objects	and	variables	within	that	scope	by
grouping	them.	This	grouping	is	called	a	stack,	as	if	you	were	stacking	these	objects	like	a

deck	of	cards.	The	various	stacks	in	existence	as	a	program	runs	are	called	the	stack
frame.

By	using	up	and	down	along	with	commands	such	as	locals,	you	can	better	understand
how	the	code	that	calls	a	method	interacts	with	that	method.

You	also	can	use	the	following	commands	within	a	debugging	session:

	classes	lists	the	classes	currently	loaded	into	memory.

	methods	lists	the	methods	of	a	class.

	memory	shows	the	total	amount	of	memory	and	the	amount	that	isn’t	currently	in
use.

	threads	lists	the	threads	that	are	executing.

The	threads	command	numbers	all	the	threads.	This	enables	you	to	use	the	suspend
command	followed	by	a	number	to	pause	that	thread,	as	in	suspend	1.	You	can	resume
a	thread	by	using	the	resume	command	followed	by	the	thread’s	number.

Another	convenient	way	to	set	a	breakpoint	in	a	Java	program	is	to	use	the	catch	text
command,	which	pauses	execution	when	the	Exception	class	named	by	text	is
caught.

You	also	can	cause	an	exception	to	be	ignored	by	using	the	ignore	text	command	with
the	Exception	class	named	by	text.

Using	System	Properties
One	handy	feature	of	the	kit	is	that	the	command-line	option	-D	can	modify	the
performance	of	the	Java	Class	Library.

If	you	have	used	other	programming	languages	before	learning	Java,	you	might	be
familiar	with	environment	variables,	which	provide	information	about	the	operating
system	in	which	a	program	is	running.	An	example	is	the	Classpath	setting,	which
indicates	the	folders	where	the	JVM	should	look	for	a	class	file.

Because	different	operating	systems	have	different	names	for	their	environment	variables,
a	Java	program	cannot	read	them	directly.	Instead,	Java	includes	a	number	of	different
system	properties	that	are	available	on	any	platform	with	a	Java	implementation.

Some	properties	are	used	only	to	get	information.	The	following	system	properties	are
among	those	that	should	be	available	on	any	Java	implementation:

	java.version	is	the	version	number	of	the	JVM.

	java.vendor	is	a	string	identifying	the	vendor	associated	with	the	JVM.

	os.name	is	the	operating	system	in	use.

	os.version	is	the	version	number	of	that	operating	system.

Other	properties	can	affect	how	the	Java	Class	Library	performs	when	being	used	inside	a
Java	program.	An	example	is	the	java.io.tmpdir	property,	which	defines	the	folder

that	Java’s	input	and	output	classes	use	as	a	temporary	workspace.

You	can	set	a	property	at	the	command	line	by	using	the	-D	option	followed	by	the
property	name,	an	equal	sign,	and	the	property’s	new	value,	as	in	this	command:
Click	here	to	view	code	image

java	-Duser.timezone=Asia/Jakarta	Auctioneer

The	use	of	the	system	property	in	this	example	sets	the	default	time	zone	to	Asia/Jakarta
before	running	the	Auctioneer	class.	This	affects	any	Date	objects	in	a	Java	program
that	do	not	set	their	own	zone.

These	property	changes	are	not	permanent;	they	apply	only	to	that	particular	execution	of
the	class	and	any	classes	it	uses.

Tip

In	the	java.util	package,	the	TimeZone	class	includes	a	class	method	called
getProperties()	that	returns	a	string	array	containing	all	the	time	zone
identifiers	that	Java	supports.

The	following	code	displays	these	identifiers:
Click	here	to	view	code	image

String[]	ids	=	java.util.TimeZone.getAvailableIDs();
for	(int	i	=	0;	i	<	ids.length;	i++)	{
				System.out.println(ids[i]);
}

You	also	can	create	your	own	properties	and	read	them	using	the	getProperty()
method	of	the	System	class,	which	is	part	of	the	java.lang	package.

Listing	E.4	contains	the	source	code	of	a	simple	program	that	displays	the	value	of	a	user-
created	property.

LISTING	E.4	The	Full	Text	of	ItemProp.java
Click	here	to	view	code	image

1:	class	ItemProp	{
2:					public	static	void	main(String[]	arguments)	{
3:									String	n	=	System.getProperty(“item.name”);
4:									System.out.println(“The	item	is	named	“	+	n);
5:					}
6:	}

If	you	run	this	program	without	setting	the	item.name	property	on	the	command	line,
the	output	is	the	following:

The	item	is	named	null

You	can	set	the	item.name	property	using	the	-D	option,	as	in	this	command:
Click	here	to	view	code	image

java	-Ditem.name=“Microsoft	Bob”	ItemProp

The	output	is	the	following:
Click	here	to	view	code	image

The	item	is	named	Microsoft	Bob

The	-D	option	is	used	with	the	JVM.	To	use	it	with	appletviewer	as	well,	all	you
have	to	do	differently	is	precede	the	-D	with	-J.	The	following	command	shows	how	this
can	be	done:
Click	here	to	view	code	image

appletviewer	-J-Dtimezone=Asia/Jakarta	AppInfo.html

This	example	causes	appletviewer	to	use	the	default	time	zone	Asia/Jakarta	with	all
applets	on	the	web	page	AppInfo.html.

The	keytool	and	jarsigner	Code	Signing	Tools
On	Day	14,	“Developing	Swing	Applications,”	the	process	of	packaging	an	application
into	a	JAR	file	that	can	be	run	from	a	web	page	is	described.	This	requires	that	the	JAR	be
signed	with	a	digital	certificate.	For	testing	purposes,	the	keystore	and	jarsigner
tools	in	the	KIT	can	be	used	to	create	a	key	and	use	it	to	digitally	sign	a	JAR	file.

The	first	step	is	to	use	keytool	to	create	a	key	and	assign	it	an	alias	and	password:
Click	here	to	view	code	image

keytool	-genkey	-alias	examplekey	-keypass	swordfish

The	-genkey	argument	generates	a	new	key,	which	in	this	example	is	named
“examplekey”	and	has	the	password	“swordfish”.	If	this	is	the	first	time	keytool	has
been	used,	you’re	prompted	for	a	password	that	protects	access	to	the	key	database,	which
is	called	a	keystore.

After	a	key	has	been	placed	in	the	keystore,	it	can	be	used	with	the	jarsigner	tool	to
sign	an	archive	file.	This	tool	requires	the	keystore	and	key	passwords	and	the	key’s	alias.
Here’s	how	the	Animate.jar	archive	could	be	signed	with	the	examplekey	key:
Click	here	to	view	code	image

jarsigner	-storepass	bazinga	-keypass	swordfish	Animate.jar	examplekey

The	keystore	password	in	this	example	is	“bazinga”.	The	security	certificate	used	to	sign
the	archive	will	last	90	days	and	will	be	described	as	an	“untrusted	source”	when	an
application	is	run	through	Java	Web	Start	or	when	an	applet	is	run	in	a	web	browser.

Because	running	a	Java	program	in	a	browser	from	an	untrusted	source	violates	Java’s
default	security	policy,	the	only	way	to	run	a	self-signed	JAR	file	is	to	add	an	exception	to
the	Java	Control	Panel.	Run	the	control	panel,	which	on	Windows	is	part	of	the	Windows
Control	Panel.	Choose	the	Security	tab	to	bring	it	to	the	front;	then	click	Edit	Site	List	to
add	the	domain	name	of	the	source	of	the	applet	(such	as	http://cadenhead.org	if
you	wanted	to	run	the	PageData	Java	Web	Start	application	from	the	book’s	website	at
www.java21days.com).

http://cadenhead.org
http://www.java21days.com

Index

Symbols
$	(dollar	sign)	in	variable	names,	41

&	(ampersand),	AND	operators,	57

->	(arrow	operator),	460

*	(asterisk)	multiplication	operator,	52

*=	(asterisk	equal)	assignment	operator,	54

^	(caret)	XOR	operator,	58

!!	command	(jdb),	654

/*	comment	notation,	46

/**	comment	notation,	47

//	comment	notation,	46

{}	(curly	braces),	38

block	statements,	103

<>	(diamond	operator),	247

&&	(double	ampersand),	AND	operators,	57

||	(double	pipe	character),	OR	operators,	58

==	(equal)	comparison	operator,	57,	88

=	(equal	sign)	assignment	operator,	40,	43,	54-55

!	(exclamation	point)	NOT	operator,	58

/	(forward	slash)	division	operator,	52

/=	(forward	slash	equal)	assignment	operator,	54

>	(greater	than)	comparison	operator,	57

>=	(greater	than	or	equal	to)	comparison	operator,	57

<	(less	than)	comparison	operator,	57

<=	(less	than	or	equal	to)	comparison	operator,	57

-=	(minus	equal)	assignment	operator,	54

-	(minus	sign)

decrement	operator	(—),	55-56

negative	numbers,	48

subtraction	operator,	52

!=	(not	equal)	comparison	operator,	57,	88

()	(parentheses)

arguments,	68

grouping	expressions,	59-60

%	(percent	sign)	modulus	operator,	52

.	(period)

accessing	methods	and	variables,	59

dot	notation,	73

|	(pipe	character)	OR	operators,	58

+=	(plus	equal)	assignment	operator,	54

+	(plus	sign)

addition	operator,	52

concatenation	operator,	82

increment	operator	(++),	55-56

string	concatenation,	60-61

?	(question	mark)	in	SQL	statements,	514

“”	(quotation	marks)	in	arguments,	137

;	(semicolon)	statement	termination	character,	38

/	(slash	character),	XML	tags,	401

[]	(square	brackets),	arrays,	59,	96

_	(underscore)	in	large	number	literals,	48

2D	graphics.	See	Java2D

A
absolute	component	placement,	334

abstract	classes,	169

abstract	methods,	169,	187

abstract	modifier,	158,	169

Abstract	Windowing	Toolkit	(AWT).	See	java.awt	package

accept()	method,	479

access	control,	159

accessor	methods,	164

comparison	of	types,	163

default	access,	159,	175

inheritance,	163

interfaces,	179

packages,	175

private	access,	159-161

protected	access,	162

public	access,	161,	175

Access	databases,	Java	DB	versus,	523

accessing

array	elements,	98-99,	233

class	methods,	165

class	variables,	75,	165

databases,	505

instance	variables,	72-73

accessor	methods,	164,	187

action	events,	340,	345-346

ActionListener	interface,	330,	340,	345,	460

actionPerformed()	method,	330,	342,	345

activities	(Android	apps),	585

acyclic	gradients,	378

adapter	classes,	357-359,	456-457

addActionListener()	method,	330,	341,	345

addAttribute()	method,	533

addFocusListener()	method,	341

addHandler()	method,	560

adding

Apache	XML-RPC	to	NetBeans,	555

child	nodes	to	parent	nodes,	533

classes	to	packages,	175

components

to	containers,	256,	262-263

to	panels,	325

to	toolbars,	298

JavaDB	library	to	projects,	512

separators	to	menus,	304

stack	elements,	239

white	space	to	XML	documents,	540-542

XOM	to	NetBeans,	532

addItemListener()	method,	341

addItem()	method,	275

addition	operator,	52

add()	method

array	lists,	233-234

border	layouts,	323

card	layouts,	326

check	boxes/radio	buttons,	273

containers,	262

menus,	304

addMouseListener()	method,	341

addMouseMotionListener()	method,	341

addSeparator()	method,	304

addTab()	method,	307

addTextListener()	method,	341

addWindowListener()	method,	341

adjustment	events,	340

AdjustmentListener	event	listener,	340

Advogato,	554

afterLast()	method,	521

aligning

components

border	layouts,	322-324

box	layouts,	317-319

card	layouts,	325-333

flow	layouts,	315-317

grid	layouts,	320-321

panels,	325

labels,	267

AllCapsDemo.java,	442

allocate()	method,	485

allocating	memory,	71

all-permissions	tag,	406

Alphabet.java,	316

ampersand	(&),	AND	operators,	57

AND	operators,	57

Android,	569

apps,	569

closing	projects	in	Android	Studio,	579

configuring	manifest	files	in	Android	Studio,	581

creating	projects	in	Android	Studio,	572-574,	579

designing	GUI	in	Android	Studio,	581-584

installing	and	configuring	Android	Studio,	571-572

organizing	projects	in	Android	Studio,	574-575

preparing	resources	in	Android	Studio,	579-580

running,	577-578,	589-591

strings	in,	575-577

troubleshooting,	578,	610-614

writing	in	Android	Studio,	575-577

writing	Java	code	in	Android	Studio,	584-591

history	of,	570-571

versions	of,	592

android.content	package,	587

Android	Developer	site,	570

AndroidManifest.xml,	579-581

Android	SDK	Manager,	592

installing	HAXM,	611-612

Android	Software	Development	Kit	(SDK),	570

Android	Studio,	13,	570

closing	projects,	579

configuring	manifest	files,	581

creating	projects,	572-574,	579

designing	GUI,	581-584

installing	and	configuring,	571-572

organizing	projects,	574-575

preparing	resources,	579-580

running	apps	in,	577-578,	589-591

troubleshooting,	578,	610

checking	BIOS	settings,	614

installing	HAXM,	611-613

writing	apps	in,	575-577

writing	Java	code	in,	584-591

android.support.v7.app	package,	586

angle	brackets	(<>),	diamond	operator,	247

anonymous	inner	classes,	454-459,	466

antialiasing,	372

Apache	Derby,	503

Apache	Project	class	libraries,	279

Apache	XML-RPC

clients,	556-559

data	types	supported,	565

installing,	554-556

servers,	559-564

AppCompatActivity	class,	586

appendChild()	method,	533

append()	method,	269

AppInfo.html,	645

AppInfo.java,	644

AppInfo2.java,	647

applet-desc	tag,	413

applets,	391

converting	to	applications,	413

debugging,	655

Java	Web	Start	applications	versus,	393

linking,	URL	objects,	471

appletviewer	browser,	642-646

application-desc	tag,	403

applications	(Java),	136

arguments

handling,	138-139

passing	to,	137

Buttons.java,	263

converting	applets	to,	413

creating,	135-136

debugging,	653-655

deployment

configuring	web	servers	for	Java	Web	Start,	405

creating	JNLP	files,	396-404

description	tag,	406

icon	tag,	406-407

Java	Web	Start,	392-395

JNLP	security,	405-406

digital	signatures,	404

multitasking.	See	threads

performance	improvements,	407-412

running,	602-603,	639

server	applications

designing,	480-482

testing,	482-483

splash	screens,	407

Storefront,	181-187

Swing

creating	interface,	257-259

developing	framework,	260-261

threaded

example,	213-217

writing,	211-213

apps	(Android),	569

closing	projects	in	Android	Studio,	579

configuring	manifest	files	in	Android	Studio,	581

creating	projects	in	Android	Studio,	572-574,	579

designing	GUI	in	Android	Studio,	581-584

installing	and	configuring	Android	Studio,	571-572

organizing	projects	in	Android	Studio,	574-575

preparing	resources	in	Android	Studio,	579-580

running,	577-578,	589-591

strings	in,	575-577

troubleshooting,	578,	610

checking	BIOS	settings,	614

installing	HAXM,	611-613

writing	in	Android	Studio,	575-577

writing	Java	code	in	Android	Studio,	584-591

Arc2D.Float	class,	382-383

archiving	files,	650-652

arcs,	drawing	with	Arc2D.Float	class,	382-383

arguments

command-line	arguments,	638

setting,	109

storing,	111

troubleshooting,	139

creating	objects,	68

grouping,	137

handling	in	applications,	138-139

passing

to	applications,	137

to	methods,	132-134

quotation	marks	in,	137

running	programs,	623

in	XML-RPC,	553

argument	tag,	403

arithmetic,	string,	60-61

arithmetic	operators,	52-54

ArrayCopier.java,	117

array	data	type	(XML-RPC),	550

ArrayIndexOutofBounds	exception,	194

ArrayList	class,	227,	233-235

ArrayList()	constructor,	556

ArrayList	object,	556

array	lists

accessing	elements,	233

creating,	233

looping	through,	235-238

arrays,	96,	226.	See	also	loops

Boolean	arrays,	data	structures	versus,	251

boundaries,	99

of	bytes,	casting	objects	to,	565

of	command-line	arguments,	111

compilation	errors,	99

elements

accessing,	98-99

changing,	99-102

data	types,	98

in	grids,	102

limitations,	226

multidimensional,	102

objects,	creating,	97-98

references,	99

subscripts,	98-99

troubleshooting,	99

variables,	declaring,	96-97

arrow	operator	(->),	460

ASCII	character	set,	437,	487

assigning	values	to	variables,	40,	43,	62

assignment	operators,	54-55

equal	sign	(=),	40,	43

associating

components	with	event	listeners,	341-342

filters,	421

.java	files	with	text	editor,	630

MIME	types,	405

asterisk	(*)	multiplication	operator,	52

asterisk	equal	(*=)	assignment	operator,	54

Atom,	528,	546

attributes,	17-18

in	class	hierarchies,	29

creating,	533

defining,	17-18

XML	tags,	401,	527

Authenticator.java,	269

Authenticator2.java,	272

author	contact	information,	608

@author	tag	(javadoc),	647

autoboxing,	87,	247

AUTOEXEC.BAT,	627-628

Averager.java,	138

AWT	(Abstract	Windowing	Toolkit).	See	java.awt	package

B
background	color,	setting,	377

base-2	numbering	system,	48

base-8	numbering	system,	48

base-16	numbering	system,	49

base64	data	type	(XML-RPC),	550

BasicStroke	class,	380-381

beforeFirst()	method,	521

behavior,	18-19

shared,	31-32

binary	numbers,	48

BIOS	settings,	checking,	614

bits,	227-232

BitSet	class,	227-232

bitwise	operators,	59

block	statements,	38,	103

scope,	121

try	and	catch,	196-199

finally	clause,	199-202

book	website,	607

Boolean	arrays,	data	structures	versus,	251

boolean	data	type,	42

casting,	83

XML-RPC,	550

Boolean	literals,	49

Border.java,	323

BorderLayout	class,	298,	322

BorderLayout()	constructor,	322

border	layout	manager,	322-324

boundaries,	arrays,	99

Box.java,	141

Box2.java,	146

BoxLayout	class,	317

box	layout	manager,	317-319

braces.	See	curly	braces	({})

brackets.	See	square	brackets	([])

breaking	loops,	119

break	keyword,	107,	119-120

breakpoints,	652

deleting,	654

setting,	653-655

browser	(appletviewer),	642-646

BufferConverter.java,	490

BufferDemo.java,	429

buffered	character	streams

reading,	438

writing,	440

BufferedInputStream	class,	427

BufferedInputStream()	constructor,	428

BufferedOutputStream	class,	427

BufferedOutputStream()	constructor,	428

BufferedReader	class,	438

BufferedReader()	constructor,	438

buffered	streams,	427-431

BufferedWriter	class,	440

BufferedWriter()	constructor,	440

buffers,	427,	484-486

byte	buffers,	486

channels,	488-491

character	sets,	487-488

nonblocking	I/O	network	connections,	492-499

Builder	class,	536

Builder()	constructor,	536

build()	method,	536

built-in	fonts,	371

Bunch.java,	320

ButtonFrame.java,	262

ButtonGroup	object,	273

buttons,	255,	261

differentiating	in	mouse	events,	362

event	handling

action	events,	345-346

item	events,	349-351

fonts,	changing,	281

ImageButton	widgets	(Android),	582-584

Buttons.java,	263

ByteBuffer	object,	489

byte	buffers,	486-488

bytecode,	11,	639

byte	data	type,	42,	83

byte	filters,	427

ByteReader.java,	424

bytes

arrays	of,	casting	objects	to,	565

multiple,	writing,	425

unsigned,	434

byte	streams,	419-422

file	input	streams,	422-425

file	output	streams,	425-427

ByteWriter.java,	426

C
C	programs,	reading,	444

C++,	Java	versus,	11

Calculator.java,	347

calling

constructors,	144,	151

from	another	constructor,	145-146

methods,	18,	75-77

class	methods,	80

nesting	calls,	78-79

in	superclasses,	150

CardLayout	class,	326

card	layout	manager,	325-333

cards,	326

caret	(^),	XOR	operator,	58

case	keyword,	107

case-sensitivity	of	Java,	41

casting.	See	also	converting

definition	of,	83

destinations,	83

explicit	casts,	84

objects,	82-85,	565

primitive	types,	82-84

sources,	83

catching	exceptions,	194-196

try	and	catch	blocks,	196-199

finally	clause,	199-202

CD	command	(MS-DOS),	621-622

certificate	authorities,	404

chaining	methods,	655

changing.	See	also	modifying

array	elements,	99-102

button	fonts,	281

channel()	method,	495

channels,	488-499

character	buffers,	converting	to	byte	buffers,	487-488

character	encodings,	541

character	literals,	49-50

character	sets

buffers,	487-488

Unicode,	40

escape	codes,	49-50

character	streams,	419-420,	437

reading	text	files,	437-440

writing	text	files,	440-441

charAt()	method,	77,	91

char	data	type,	42

casting,	83

int	data	type	versus,	445

Charset	class,	487

CharsetDecoder	class,	487

CharsetEncoder	class,	487

charWidth()	method,	373

check	boxes,	255,	272-274

event	handling

action	events,	345-346

item	events,	349-351

nonexclusive,	273

checked	exceptions,	204,	195

child	nodes,	adding	to	parent	nodes,	533

.class	extensions,	639

classes,	11,	14-16.	See	also	packages

abstract	classes,	169

adapter	classes,	357-359,	456-457

adding	to	packages,	175

AppCompatActivity,	586

Arc2D.Float,	382-383

ArrayList,	227,	233-235

attributes,	17-18

BasicStroke,	380-381

behavior,	18-19

BitSet,	227-232

BorderLayout,	298,	322

BoxLayout,	317

BufferedInputStream,	427

BufferedOutputStream,	427

BufferedReader,	438

BufferedWriter,	440

Builder,	536

CardLayout,	326

Charset,	487

CharsetDecoder,	487

CharsetEncoder,	487

Color,	32,	375

ColorSpace,	375

compiling,	21,	601

Component,	335

ConfirmDialog,	286-288

constants,	43-44

Container,	256

creating,	19-22,	600-602

Cursor,	461

DataInputStream,	422

DataOutputStream,	422

defining,	126

Dictionary,	227

Dimension,	258

DriverManager,	509

Ellipse2D.Float,	382

Error,	194

Exception,	194-195,	198

exception	classes,	208

File,	441

FileInputStream,	422

FileOutputStream,	422

FileReader,	437

Files,	442

FileSystems,	441

FileWriter,	440,	445

FilterInputStream,	427

FilterOutputStream,	427

final	classes,	167-169

FlowLayout,	314-315

FocusAdapter,	358,	457

FontMetrics,	373

Graphics,	368

Graphics2D,	368

coordinate	system,	369-370

creating	drawing	surface,	368-369

GridLayout,	320

grouping,	32

HashMap,	227,	241-246

helper	classes,	136,	450

hierarchies,	26-27

creating,	27-29

methods	in,	30

HttpUrlConnection,	474

identifying,	170

importing,	171-173

InetAddress,	493

InetSocketAddress,	493

inheritance,	176

inner	classes,	359-362,	388,	450-453

anonymous	inner	classes,	454-459,	466

creating,	450

scope,	450

InputDialog,	286-289

InputStream,	422

InputStreamReader,	437

Insets,	334

instances	of,	creating,	16

Integer,	86

Intent,	587

interfaces	versus,	176.	See	also	interfaces

IOException,	195

Java	Class	Library,	16,	159,	225,	278-281

JButton,	16,	261

JCheckBox,	272

JComboBox,	274-275

JComponent,	256,	264

JFrame,	257

JLabel,	267

JList,	276

JMenu,	303

JMenuBar,	303

JMenuItem,	303

JOptionPane,	286

JPanel,	262,	325,	368

JPasswordField,	268

JProgressBar,	300

JRadioButton,	272

JScrollBar,	297

JScrollPane,	271,	296

JSlider,	294

JTabbedPane,	307

JTextComponent,	268

JTextField,	268

JToggleButton,	272

JToolBar,	297

Key,	388

KeyAdapter,	358,	457

libraries.	See	libraries

Line2D.Float,	381

listeners.	See	listeners

loading,	508

main	classes,	designating,	136

Math,	79,	280

MessageDialog,	286,	289

methods,	18

MouseAdapter,	358,	457

MouseMotionAdapter,	358

name	conflicts,	172-173

NamedPoint,	151

Node,	533

Object,	26

objects,	casting,	84-85

object	wrappers,	86

of	objects,	determining,	89-90

OptionDialog,	286,	290-291

organizing,	25,	158,	170

creating	hierarchies,	27-29

inheritance,	25-31

interfaces,	31-32

packages,	32,	45

OutputStream,	422

OutputStreamWriter,	440

PreparedStatement,	514

PrintStream,	79

programs	versus,	125

PropertyHandlerMapping,	560

protecting,	170

Reader,	437

Rectangle2D.Float,	382

RenderingHint.Key,	388

R.java,	586

RuntimeException,	195

SelectionKey,	494

Serializer,	540

ServerSocket,	479

Socket,	475

SocketChannel,	493

SocketImpl,	480

Stack,	227,	238-239

String,	79,	201

StringTokenizer,	69

subclasses,	25-26

superclasses,	25

indicating,	126

modifying,	27

SwingWorker,	407-413

System,	79,	657

class	methods,	134

in	variable	(input	stream),	431

Text,	533

Thread,	191,	211

Throwable,	194-195

TimeZone,	657

UIManager,	259

URL,	471

variables,	126-127

Vector,	235

WebServer,	559

WindowAdapter,	358,	456

wrapper	classes,	134

Writer,	437

XmlRpcClient,	556

XmlRpcServer,	559

classes	command	(jdb),	656

class	files,	specifying,	640

class	keyword,	126,	450

class	methods,	19,	79-80,	134-135

accessing,	165

calling,	80

defining,	134

Class	not	found	error,	633-635

CLASSPATH	variable	(MS-DOS)

Windows	7-10,	633-635

Windows	98/Me,	635-636

class	types,	43

class	variables,	18,	39,	72,	127

accessing,	165

defining,	74

initial	values,	40

instance	variables	versus,	33,	74

troubleshooting,	75

values,	accessing/modifying,	75

clear	command	(jdb),	654

clear()	method

array	lists,	235

hash	maps,	242

clients	(XML-RPC),	556-559

client-side	sockets

closing,	476

nonblocking	clients,	493-499

opening,	475

Clone	command	(appletviewer),	644

close()	method

buffered	character	streams,	441

character	streams,	440

client-side	sockets,	476

data	source	connections,	512

data	streams,	434

file	output	streams,	425

streams,	420-421

closePath()	method,	384

closing

data	source	connections,	512

frames,	259-260

projects	in	Android	Studio,	579

socket	connections,	476

closing	tags	(XML),	401,	527

ClosureMayhem.java,	464

closures,	449,	460-466

codebase	attribute,	402

CodeKeeper.java,	236

CodeKeeper2.java,	248

code	listings.	See	listings

code	signing,	658-659

color,	375

background	colors,	377

Color	objects,	creating,	376

dithering,	375

drawing	colors,	setting,	376-377

finding	current	color,	377

sRGB	color	system,	375

XYZ	color	system,	375

Color	class,	32,	375

Color	objects,	creating,	376

ColorSpace	class,	375

color	spaces,	375

combining	layout	managers,	324-325

combo	boxes,	274-276

action	events,	345-346

item	events,	349-351

ComicBooks.java,	243

ComicBox.java,	452

command	line,	12,	638-639

command-line	arguments

setting,	109

storing,	111

troubleshooting,	139

command-line	interfaces,	619-621

command-line	tools,	javac,	631

commands.	See	also	keywords;	statements

import,	32-34

java	-version,	624

jdb	(debugger)

!!,	654

classes,	656

clear,	654

cont,	654

down,	655

exit,	655

ignore,	656

list,	654

locals,	654

memory,	656

methods,	656

print,	654

run,	654

step,	654

stop	at,	653

stop	in,	653

suspend,	656

threads,	656

up,	655

menu	commands,	appletviewer	browser,	643-644

MS-DOS

CD,	621-622

CLASSPATH	variable,	633-636

MD,	622

PATH	variable,	625-628

comments,	46

notation,	46-47

in	source	code,	646

Comparable	interface,	32

comparing

objects,	87-89

strings,	88-89

comparison	operators,	56-57,	88

compiler	errors,	210

about	generics,	251

for	arrays,	99

runtime	errors	versus,	247

compilers,	21,	641-642

compiling

classes,	21,	601

files,	641-642

Java	programs	in	Windows,	631-632

troubleshooting,	601,	633

Component	class,	335

components.	See	also	names	of	specific	components

associating	with	event	listeners,	341-342

Swing,	256,	264

absolute	placement,	334

adding	to	containers,	256,	262-263

adding	to	panels,	325

AWT	components	versus,	256

check	boxes,	272-274

combo	boxes,	274-276

creating,	256,	261-262

dialog	boxes,	286-293

disabled,	264

drop-down	lists,	274-276

hiding,	264

image	icons,	265-267

labels,	267

layout	managers.	See	layout	managers

lists,	276-278

menus,	303-307

progress	bars,	300-303

radio	buttons,	272-274

resizing,	264

scrolling	panes,	271-272,	296-297

sliders,	294-296

tabbed	panes,	307-310

text	areas,	269-271

text	fields,	268

toolbars,	297-300

windows,	frames,	257

concatenating	strings,	60-61

concatenation	operator	(+),	82

conditional	operator.	See	ternary	operator

conditionals

if,	104-106

switch,	105-111,	121

ternary	operator,	112

configureBlocking()	method,	493

configuring

Android	Studio,	571-572

Java	Development	Kit	(JDK),	619

command-line	interface,	619-621

creating	folders,	622-623

opening	folders,	621-622

running	programs,	623

setting	CLASSPATH	variable,	633-636

setting	PATH	variable,	624-628

manifest	files	in	Android	Studio,	581

scrollbars,	271

web	servers	for	Java	Web	Start	applications,	405

confirm	dialog	boxes,	287-288

ConfirmDialog	class,	286-288

conflicts,	name

classes,	172-173

reducing,	170

connecting

to	databases,	505-510

troubleshooting,	514

viewing	connection	information,	510

to	Internet.	See	networking

connect()	method,	493

consistency	checking	(exceptions),	195-196

ConsoleInput.java,	432

console.	See	command	line

console	input	streams,	431-432

constant	variables.	See	final	variables

constants,	43

declaring,	44

enumerations,	249-250

naming,	44

constructors,	69,	144-145

ArrayList(),	556

BorderLayout(),	322

BufferedInputStream(),	428

BufferedOutputStream(),	428

BufferedReader(),	438

BufferedWriter(),	440

Builder(),	536

calling,	144-146,	151

DataInputStream(),	433

DataOutputStream(),	433

definition	of,	71

Dimension(),	258

exception	classes,	208

FileInputStream(),	422

FileOutputStream(),	425

FileReader(),	437

FileWriter(),	440

FlowLayout(),	315

GridLayout(),	320

Intent(),	587

JCheckBox(),	272

JComboBox(),	275

JFrame(),	257

JList(),	276

JMenuBar(),	305

JMenuItem(),	303

JProgressBar(),	301

JScrollPane(),	271,	296

JSlider(),	294

JTabbedPane(),	307

JTextArea(),	269

JTextField(),	268

JToolBar(),	298

naming,	144

overloading,	146-147

overriding,	150-152

Serializer(),	541

URL(),	471

WebServer(),	559

Container	class,	256

containers,	255

absolute	component	placement,	334

adding	components	to,	256,	262-263

cards,	326

layout	managers.	See	layout	managers

menus,	creating,	304

panels,	262,	325-326

contains()	method,	235

containsKey()	method,	242

containsValue()	method,	242

cont	command	(jdb),	654

continue	keyword,	119-120

controlling	access.	See	access	control

converting.	See	also	casting

applets	to	applications,	413

character	and	byte	buffers,	487-488

primitive	types	and	objects,	86-87

source	code,	641

strings	to	numbers,	86

coordinate	systems

Java2D,	369-370

user	versus	device	coordinate	spaces,	378

Cover	Pages,	530

createFont()	method,	371

createStatement()	method,	510,	522

creating.	See	also	constructors

array	lists,	233

array	objects,	97-98

attributes,	533

buffered	input	streams,	428

buffered	output	streams,	428

character	sets,	487

classes,	19-22,	600-602

components,	Swing,	256,	261-262

confirm	dialog	boxes,	287-288

database	tables,	517

data	input	streams,	433

data	output	streams,	433

drawing	surfaces,	368-369

exceptions,	207

file	input	streams,	422

File	objects,	441

file	output	streams,	425

folders	in	MS-DOS,	622-623

frames,	368

frameworks	(GUI),	260-261

hash	maps,	241

inner	classes,	450

input	dialog	boxes,	288-289

input	streams,	420

instances,	16

intents,	587

interfaces,	178-179

interfaces	(GUI),	257-259

Java	applications,	135-136,	629-631

JNLP	files,	396-404

labels,	267

layout	managers,	314

menu	containers,	304

message	dialog	boxes,	289

methods,	overloaded,	140-143

objects,	68

arguments,	68

with	closures,	460-465

Color,	376

with	constructors,	71

Document,	533

Element,	533

Font,	370-372

GeneralPath,	384

ImageIcon,	265

with	new	operator,	68-70

Serializer,	540

String,	21

StringTokenizer	objects,	69-70

URL,	471

online	storefronts,	181-187

option	dialog	boxes,	290-291

output	streams,	420

overridden	methods,	148-149

packages,	640

panels,	325,	368

Path	objects,	442

projects,	19

Android	Studio,	572-574,	579

NetBeans,	598-600

scrolling	panes,	296

Selector	objects,	493

server	sockets,	479

source	files,	629

stacks,	238

system	properties,	657

threads,	212

variables,	39-40,	44-45

XML	documents,	532-535

XML-RPC	servers,	559-564

curly	braces	({}),	38

block	statements,	103

current	objects,	referring	to,	130

Cursor	class,	461

CursorMayhem.java,	462

cursors,	461

CustomerReporter.java,	512

custom	packages

access	control,	175

classes,	adding,	175

folder	structure,	174

naming,	173-174

cyclic	gradients,	378

D
data,	storing,	427

databases

accessing,	505

Apache	Derby,	503

connecting	to,	505-510

troubleshooting,	514

viewing	connection	information,	510

data	source	connections

closing,	512

opening,	508-510

drivers,	504-505,	508

Java	DB,	503,	523

JDBC.	See	JDBC

queries,	504,	508-511

records

navigating,	511,	521-522

reading,	508-513

writing,	514-521

tables

creating,	517

viewing,	507-508

for	XML-RPC	servers,	564

DataInputStream	class,	422

DataInputStream()	constructor,	433

data	input	streams,	433

DataOutputStream	class,	422

DataOutputStream()	constructors,	433

data	output	streams,	433

data	source	connections

closing,	512

opening,	508-510

data	streams,	433-436

data	structures,	226

ArrayList	class,	227,	233-235

arrays.	See	arrays

BitSet	class,	227-232

Boolean	arrays	versus,	251

Enumeration	interface,	227

generics,	246-250

HashMap	class,	227,	241-246

Iterator	interface,	227-229,	235-238

looping	through,	235-238

Map	interface,	240-241

Stack	class,	227,	238-239

Vector	class,	235

data	types,	42-43

Apache	XML-RPC	support,	565

array	elements,	98

boolean	values,	42

casting,	83-84

characters,	42

char	versus	int	data	types,	445

enumerations,	249-250

floating-point	numbers,	42

integers,	42

objects	versus,	91

primitive,	42-43

to	remote	methods,	557

void,	43

XML-RPC	support,	550

dateTime.iso8601	data	type	(XML-RPC),	550

DayCounter.java,	108

deallocating	memory,	71

debugger	(jdb),	642,	652-653

advanced	commands,	655-656

applet	debugging,	655

application	debugging,	653-655

debuggers	(XML-RPC),	554

debugging,	652.	See	also	troubleshooting

advanced	commands,	655-656

applets,	655

applications,	653-655

breakpoints,	652

deleting,	654

setting,	653-655

single-step	execution,	652

declarations

import,	171-172

package,	175

declaring

array	variables,	96-97

arrays	of	arrays,	102

constants,	44

interfaces,	176-179

variables,	39-40

decode()	method,	488

decrementing	variables,	55-56

decrement	operator	(—),	55-56

default	access,	159

packages,	175

protected	access	versus,	162

default	package,	63

defining

attributes,	17-18

classes,	126

hierarchies,	169

instance	variables,	21

methods,	21,	128-130

class	methods,	134

this	keyword,	130-131

variable	scope,	131-132

subclasses,	26

values,	shared,	43

variables

class	variables,	74

instance	variables,	126-127

delete()	method,	442

deleting

breakpoints,	654

files,	442

deploying	applications	(Java	Web	Start),	392-395

configuring	web	servers	for,	405

creating	JNLP	files,	396-404

description	tag,	406

icon	tag,	406-407

security,	405-406

@deprecated	tag	(javadoc),	650

deprecated	methods,	642

description	tag,	406

designing.	See	also	creating

GUI	in	Android	Studio,	581-584

server	applications,	480-482

XML	dialects,	528-529

destinations	(casting),	83

development	tools,	selecting,	12-13,	616

device	coordinate	space,	378

dialects	(XML),	designing,	528-529

dialog	boxes,	286

confirm	dialog	boxes,	287-288

example,	291-293

input	dialog	boxes,	288-289

message	dialog	boxes,	289

option	dialog	boxes,	290-291

diamond	operator,	247

DiceRoller.java,	410

DiceWorker.java,	408

Dictionary	class,	227

differentiating	buttons	in	mouse	events,	362

digital	signatures,	404

Dimension	class,	258

Dimension()	constructor,	258

Dimension	object,	264,	296

dimens.xml,	579

disabled	components,	264

displaying	frames,	258

dithering,	375

division	operator,	52

DmozHandlerImpl.java,	563

DmozHandler.java,	562

DmozServer.java,	561

dockable	toolbars,	298

!DOCTYPE	declaration,	529

documentation

Java	Class	Library,	279

viewing,	47

documentation	tool	(javadoc),	646-650

Document	object,	creating,	533

Document	Object	Model	(DOM),	530

documents

HTML,	viewing,	643

XML

creating,	532-535

formatting,	540-542

modifying,	536-540

Document	Type	Definition	(DTD),	529

doInBackground()	method,	408

dollar	sign	($)	in	variable	names,	41

do	loops,	118-119

DomainEditor.java,	538

DomainWriter.java,	541

DOM	(Document	Object	Model),	530

dot	notation,	72-73

calling	class	methods,	80

calling	methods,	75

evaluating,	73

double	ampersand	(&&),	AND	operators,	57

double	data	type,	42

casting,	83

XML-RPC,	550

double	pipe	character	(||),	OR	operators,	58

down	command	(jdb),	655

downloading

Apache	XML-RPC,	554

JDK,	638

drawing

lines,	377

Line2D.Float	class,	381

rendering	attributes,	378-381

maps,	385-387

objects,	384

polygons,	377,	383-384

arcs,	382-383

ellipses,	382

rectangles,	381

rendering	attributes,	378-381

strokes,	380-381

text,	370-372

antialiasing,	372

finding	font	information,	372-375

drawing	colors,	setting,	376-377

drawing	surfaces,	creating,	368-369

draw()	method,	384

drawString()	method,	370

DriverManager	class,	509

drivers

for	databases,	504-505,	508

USB,	installing,	591

drop-down	lists,	255,	274-276

DTD	(Document	Type	Definition),	529

dynamic	garbage	collection,	72

E
Eclipse	website,	13

editing.	See	also	changing;	modifying

system	properties,	656-658

XML	files,	576-577

editors	(text).	See	text	editors

Element	object,	creating,	533

elements	(arrays)

accessing,	98-99,	233

changing,	99-102

data	types,	98

grids,	102

elements	(stack)

adding,	239

popping	off,	239

searching,	239

elements	(XML).	See	tags	(XML)

Ellipse2D.Float	class,	382

ellipses,	drawing,	382

else	keyword,	104

email	address	of	author,	608

EML	(Extended	Machine	Language),	546

empty()	method,	239

empty	statements	in	loops,	114

emulators.	See	Android	Studio

enabling	Intel	Virtualization	Technology	in	BIOS	settings,	614

encapsulation,	159-161

enclosure	tag,	528

encode()	method,	488

endcap	styles	(drawing	strokes),	380

ending.	See	stopping

end-of-line	characters,	438,	441

Enumeration	interface,	227

enumerations,	249-250

enum	keyword,	249

environment	variables,	656

EOFException	(end-of-file	exception),	195

data	streams,	434

I/O	streams,	422

equal	sign	(=)	assignment	operator,	40,	43,	54-55

equals()	method,	88,	242

EqualsTester.java,	88

equal	symbol	(==)	comparison	operator,	57,	88

Error	class,	194

error-handling.	See	also	errors

catching	exceptions,	196

finally	clause,	199-202

try	and	catch	blocks,	196-199

consistency	checking,	195-196

passing	exceptions,	204-205

throwing	exceptions,	202,	207

checked,	204

inheritance,	206

nested	handlers,	208-209

throws	clause,	203

unchecked,	204

traditional	method,	192-193

errors,	218.	See	also	debugging;	error-handling;	exceptions;	troubleshooting

Class	not	found,	633-635

compiler	errors,	210

about	generics,	251

for	arrays,	99

runtime	errors	versus,	247

Error	class,	194

Exception	class,	194

fatal,	troubleshooting,	196

NoClassDef,	633-635

runtime	errors,	compiler	errors	versus,	247

escape	codes	(Unicode	character	set),	49-50

evaluating

dot	notation,	73

XOM,	542-545

event-handling,	339.	See	also	event	listeners

action	events,	345-346

components,	associating	with	event	listeners,	341-342

focus	events,	346-349

item	events,	349-351

keyboard	events,	351-352

methods,	342-345

mouse	events,	352

mouse	movement	events,	352-357

window	events,	357

event	listeners,	330,	340

ActionListener,	340,	345

adapter	classes	and,	357-359

AdjustmentListener,	340

associating	components	with,	341-342

FocusListener,	340,	346

importing,	341

inner	classes	and,	359-362

ItemListener,	340

KeyListener,	340,	351

MouseListener,	340,	352

MouseMotionListener,	340,	352

property	change	listeners,	409

WindowListener,	340,	357,	455

events

action	events,	340,	345-346

adjustment	events,	340

focus	events,	346-349

item	events,	340,	349-351

keyboard	events,	340,	351-352

keyboard	focus	events,	340

mouse	events,	340,	352,	362

mouse	movement	events,	340,	352-357

window	events,	340,	357

example	code.	See	listings

Exception	class,	194-195,	198

exception	classes,	constructors,	208

@exception	tag	(javadoc),	650

exceptions,	191-195.	See	also	debugging;	error-handling;	errors;	troubleshooting

ArrayIndexOutofBounds,	194

catching,	194-196

finally	clause,	199-202

try	and	catch	blocks,	196-199

checked,	195

compiler	errors,	210

consistency	checking,	195-196

creating,	207

EOFException,	195,	422,	434

Error	class,	194

Exception	class,	194-195

file	operations,	442

inheritance,	207

InterruptedIOException,	475

IOException,	195,	489,	536

I/O	streams,	421-422

limitations,	210

MalformedURLException,	195,	471

non-runtime,	219

NullPointerException,	194

ParseException,	536

passing,	204-205

runtime,	194,	219

RuntimeException,	195

SQLException,	509-511

Throwable	class,	194-195

throwing,	194,	202,	207

checked	exceptions,	204

inheritance	issues,	206

nested	handlers,	208-209

throws	clause,	203

unchecked	exceptions,	204

exclamation	point	(!),	NOT	operator,	58

exclusive	radio	buttons,	273

execute()	method,	557

executeQuery()	method,	510-511

exit	command	(jdb),	655

exiting	loops,	119

expanding	NetBeans	panes,	604

explicit	casts,	84

exponents	in	floating-point	literals,	48

expressions,	51-52

definition	of,	38

dot	notation,	73

grouping,	59

operators.	See	operators

readability,	improving,	60

return	values,	38,	52

extending	interfaces,	180-181

extends	keyword,	126,	180

Extensible	Markup	Language.	See	XML

extensions

.class,	639

.java,	641

F
false	value	(Boolean),	49

fatal	errors,	troubleshooting,	196

feed2.rss,	540

FeedBar.java,	299

FeedBar2.java,	305

FeedInfo.java,	291

FileChannel	objects,	488

File	class,	441

file	extensions.	See	extensions

FileInputStream	class,	422

FileInputStream()	constructor,	422

file	input	streams,	422-425

FileNotFoundException,	421

File	objects,	creating,	441

FileOutputStream	class,	422

FileOutputStream()	constructor,	425

file	output	streams,	425-427

FileReader	class,	437

FileReader()	constructor,	437

files

archiving,	650-652

compiling,	641-642

deleting,	442

JAR	files,	signing,	658-659

JNLP	files

associating	MIME	types,	405

creating,	396-404

description	tag,	406

icon	tag,	406-407

security,	405-406

multiple,	compiling,	641

Path	object,	441-444

relative	paths,	444

renaming,	442

text	files

reading,	437-440

writing,	440-441

XML	files,	editing,	576-577

Files	class,	442

FileSystems	class,	441

FileWriter	class,	440,	445

FileWriter()	constructor,	440

fill()	method,	384

fill	patterns	(Java2D),	378-380

filtering	streams,	421,	427

FilterInputStream	class,	427

FilterOutputStream	class,	427

filters	(streams),	421

final	abstract	methods,	187

final	classes,	167-169

final	keyword,	44

final	methods,	167-168

final	modifier,	158,	167

final	variable,	167

finally	statement,	199-202

finding	font	information,	372-375

Finger.java,	477

Finger	protocol,	476

FingerServer.java,	495

finishConnect()	method,	495

first()	method,	521

flags,	227-232

flip()	method,	485

float	data	type,	42,	83

floating-point	numbers,	42

exponents,	48

hexadecimal	numbers	versus,	376

Java2D,	388

as	literals,	48

floor()	method,	280

FlowLayout	class,	314-315

FlowLayout()	constructor,	315

flow	layout	manager,	315-317

flush()	method,	428

FocusAdapter	class,	358,	457

focus	events,	346-349

focusGained()	method,	346

FocusListener	event	listener,	340,	346

focusLost()	method,	346

folders

MS-DOS

creating,	622-623

opening,	621-622

structure	(packages),	174

FontMetrics	class,	373

Font	objects,	creating,	370-372

fonts

antialiasing,	372

built-in,	371

on	buttons,	changing,	281

finding	information,	372-375

Font	objects,	creating,	370-372

styles,	selecting,	371

for	loops,	113-116

format	commands	(JDK),	638-639

FormatChooser.java,	349

FormatFrame.java,	273

FormatFrame2.java,	275

formatting

strings,	77-78

XML	documents,	540-542

forName()	method

character	sets,	487

database	drivers,	508

forward	slash	(/)

comment	notation,	46

division	operator,	52

forward	slash	equal	(/=)	assignment	operator,	54

frames,	255-257

absolute	component	placement,	334

closing,	259-260

creating,	368

developing	framework,	260-261

displaying,	258

locations,	258

resizing,	310

sizing,	257

visible,	258

frameworks	(GUI),	creating,	260-261

functional	interfaces,	460

functional	programming,	449,	465

functions	of	tools,	modifying,	638

G
GeneralPath	objects,	creating,	384

generics,	246-251

getActionCommand()	method,	345

getAppletInfo()	method,	644-645,	655

getChannel()	method,	488

getChar()	method,	486

getChildElements()	method,	537

getChild()	method,	537

getClass()	method,	90

getClickCount()	method,	352

getColor()	method,	377

getConnection()	method,	509

getContentType()	method,	474

getDate()	method,	511

getDefault()	method,	441

getDouble()	method

byte	buffers,	486

database	records,	511

getErrorCode()	method,	511

getFirstChildElement()	method,	537

getFloat()	method

byte	buffers,	486

database	records,	511

getFontMetrics()	method,	373

getHeaderFieldKey()	method,	474

getHeaderField()	method,	474

getHeight()	method,	373

getIcon()	method,	267

getId()	method,	586

getInsets()	method,	334

getInt()	method

byte	buffers,	486

database	records,	511

getItemAt()	method,	275

getItemCount()	method,	275

getItem()	method,	349

getKeyChar()	method,	351

getLong()	method

byte	buffers,	486

database	records,	511

getMessage()	method,	197

get()	method

array	lists,	233

buffers,	484

elements,	537

Map	interface,	241

getParameterInfo()	method,	644-645

getPath()	method,	441

getPoint()	method,	352

getProperties()	method,	657

getProperty()	method,	657

get	requests,	551

getResponseCode()	method,	474

getResponseMessage()	method,	474

getRootElement()	method,	536

getSelectedIndex()	method,	275

getSelectedItem()	method,	275

getSelectedText()	method,	268

getSelectedValuesList()	method,	277

getShort()	method,	486

getSize()	method,	264

getSource()	method,	342,	345

getSQLState()	method,	511

getStateChange()	method,	349

getString()	method,	511

getText()	method,	267-268

getX()	method,	352

getXmlRpcServer()	method,	559

getY()	method,	352

GiftShop.java,	185

GNU	Lesser	General	Public	License	(LGPL),	531

Google,	history	of	Android,	570

Gosling,	James,	9-10,	571,	598

gradient	fills,	378

graphical	user	interface.	See	GUI

graphics.	See	also	image	icons

2D	graphics.	See	Java2D

in	Android	apps,	579

Java2D	graphics,	casting	objects,	85

organizing	in	NetBeans,	266

Graphics2D	class,	368

coordinate	system,	369-370

creating	drawing	surface,	368-369

drawing	objects,	384

Graphics2D	objects,	casting,	85

Graphics	class,	368

Graphics	objects,	casting,	85

greater	than	or	equal	to	symbol	(>=)	comparison	operator,	57

greater	than	symbol	(>)	comparison	operator,	57

GridLayout	class,	320

GridLayout()	constructor,	320

grid	layout	manager,	320-321

grids,	array	elements,	102

grouping

arguments,	137

classes,	32

expressions,	59

interfaces,	32

methods,	79

packages	in	NetBeans,	183

guid	tag,	527

GUI	(graphical	user	interface)

designing	in	Android	Studio,	581-584

Swing.	See	Swing

H
HalfDollars.java,	100

HalfLooper.java,	115

handling

arguments	in	applications,	138-139

errors.	See	error-handling

Hardware	Accelerated	Execution	Manager.	See	HAXM

hardware	requirements	for	HAXM,	612

Harold,	Elliotte	Rusty,	531,	545

hashCode()	method,	242

HashMap	class,	227,	241-246

hash	maps,	creating,	241

hasNext()	method,	228

HAXM	(Hardware	Accelerated	Execution	Manager),	610

checking	BIOS	settings,	614

installing,	611-613

requirements,	612

HelloUser.java,	630

helper	classes,	136,	450

hexadecimal	numbers,	49

floating-point	literals	versus,	376

HexReader.java,	200

hiding	components,	264

hierarchies,	26-27

creating,	27-29

defining,	169

interface,	181

methods	in,	30

history

of	Android,	570-571

of	Java,	10-11

HolidaySked.java,	231

homepage	tag,	401

href	attribute,	402

HTML	documents,	viewing,	643

HTTP,	XML-RPC	requests

responding	to,	553-554

sending,	551-552

HttpUrlConnection	class,	474

hyphen	(-).	See	minus	sign	(-)

I
icon	tag,	402,	406-407

IconFrame.java,	265

icons

for	Android	apps,	579-581

image	icons,	255,	265-267

Java	Web	Start	applications,	399

IDEA	website,	13

identifying	classes,	170

IDEs	(integrated	development	environments)

Android	Studio.	See	Android	Studio

NetBeans.	See	NetBeans

selecting,	12-13

if	statements,	104-106

ignore	command	(jdb),	656

ImageButton	widgets	(Android),	582-584

image	icons,	255,	265-267

ImageIcon	objects,	265

implementing	interfaces,	177-178

implements	keyword,	177,	212

import	declaration,	171-172

import	statement,	32-34,	175,	256

importing

Apache	XML-RPC,	555

classes,	171-173

event	listeners,	341

packages,	171

improving

application	performance,	407-412

readability

of	expressions,	60

of	programs,	46

increment	operator	(++),	55-56

incrementing	variables,	55-56

increments	in	loops,	113

indexOf()	method,	77,	235

index	values	of	loops,	114

InetAddress	class,	493

InetSocketAddress	class,	493

Info	command	(appletviewer),	644

Info.java	application,	292

information	tag,	402

inheritance,	25-31

access	control,	163

class	hierarchies,	creating,	27-29

exceptions,	creating,	207

multiple,	31,	176

single,	31,	176

throwing	exceptions,	206

initializing

loops,	113

objects,	71

inner	classes,	359-362,	388,	450-453

anonymous	inner	classes,	454-459,	466

creating,	450

scope,	450

input	dialog	boxes,	288-289

InputDialog	class,	286-289

input/output.	See	I/O	streams

InputStream	class,	422

InputStreamReader	class,	437

input	streams,	371,	420.	See	also	streams

buffered	input	streams,	428

console	input	streams,	431-432

creating,	420

data	input	streams,	433

file	input	streams,	422-425

insertChild()	method,	541

insert()	method,	269

insets,	333-334

Insets	class,	334

installing

Android	Studio,	571-572

Apache	XML-RPC,	554-556

HAXM,	611-613

JDK	(Java	Development	Kit),	616-619

JRE	(Java	Runtime	Environment),	392

NetBeans,	598

InstanceCounter.java,	165

instance	methods,	135.	See	also	methods

instanceof	operator,	59,	90,	343

instances,	15-16.	See	also	objects

instance	variables,	17,	39,	72

class	variables	versus,	33,	74

defining,	21,	126-127

initial	values,	40

length,	99

nesting	with	method	calls,	79

values

accessing,	72-73

modifying,	73-74

instantiation,	15

int	data	type,	42

casting,	83

char	data	type	versus,	445

XML-RPC,	550

Integer	class,	86

integer	literals,	47-49

integers,	data	types,	42

integrated	development	environments.	See	IDEs

IntelliJ	IDEA,	574

Intel	Virtualization	Technology,	enabling	in	BIOS	settings,	614

Intent	class,	587

Intent()	constructor,	587

intents,	creating,	587

interface	hierarchy,	181

interfaces,	31-32,	176

access	control,	179

ActionListener,	330,	460

adapter	classes,	357-359

classes	versus,	176

command-line,	619-621

Comparable,	32

creating,	178-179

declaring,	176-179

Enumeration,	227

event	listeners.	See	event	listeners

extending,	180-181

functional	interfaces,	460

grouping,	32

implementing,	177

Iterator,	227-229,	235-238

Map,	240-241

methods,	179-180

multiple	interfaces,	implementing,	177-178

objects,	casting,	85

Paint,	378

Runnable,	191,	212

ScrollPaneConstants,	271,	297

SocketImplFactory,	480

Statement,	510

SwingConstants,	267,	294,	309

as	variable	type,	178

variables,	179

WindowListener,	455

interfaces	(GUI)

creating,	257-259

event	listeners.	See	event	listeners

interface	libraries,	310

wizard	interface,	327

Internet	Assigned	Numbers	Authority,	480

Internet	connections.	See	networking

interpreter	(java),	639-641

InterruptedIOException	errors,	475

in	variable	(input	stream),	431

invoking.	See	calling

I/O	(input/output)	streams,	419-420

buffered,	427-431

buffers,	484-486

byte	streams,	420-422

channels,	488-491

character	sets,	487-488

character	streams,	420,	437-441

console	input,	431-432

creating,	420

data	streams,	433-436

exception	handling,	421-422

file	input	streams,	422-425

file	output	streams,	425-427

filtering,	421,	427

nonblocking	I/O	network	connections,	492-499

Path	objects,	441-444

reading,	420

writing	to,	421

IOException,	195,	489,	536

file	operations,	442

I/O	streams,	422

isAcceptable()	method,	494

isCancelled()	method,	413

isConnectible()	method,	494

isConnectionPending()	method,	495

isDone()	method,	413

isEditable()	method,	268

isEmpty()	method,	241

ISO-LATIN-1	character	set,	487

isReadable()	method,	494

isWritable()	method,	494

item	events,	340,	349-351

Item.java,	181

ItemListener	event	listener,	340

ItemProp.java,	658

itemStateChanged()	method,	349

Iterator	interface,	227-229,	235-238

iterator()	method,	235-238

J
j2se	tag,	403

JAR	files

creating	as	JNLP	files,	396-404

signing,	658-659

jarsigner,	658-659

jar	tag,	403

jar	utility,	650-652

Java

applications,	136

compiling	in	Windows,	631-632

creating,	135-136

handling	arguments,	138-139

passing	arguments	to,	137

running,	602-603,	631-632,	639

sample	program,	629-631

speed,	642

case-sensitivity,	41

C++	versus,	11

development	tools,	selecting,	12-13,	616

documentation,	47

explained,	11

fonts,	built-in,	371

history	of,	10-11

Java2D,	367

arcs,	drawing,	382-383

casting	objects,	85

color.	See	color

ellipses,	drawing,	382

Graphics2D	class,	368

coordinate	system,	369-370

creating	drawing	surface,	368-369

lines

drawing,	377,	381

rendering	attributes,	378-381

maps,	drawing,	385-387

polygons

drawing,	377,	383-384

rendering	attributes,	378-381

rectangles,	drawing,	381

text

antialiasing,	372

drawing,	370-372

finding	font	information,	372-375

user	versus	device	coordinate	spaces,	378

java21days	website,	23

Java	API	for	XML	Processing,	530

java.awt.color	package,	375

java.awt.event	package,	256,	340

ActionListener	interface,	330,	460

adapter	classes,	358,	456-457

event	listeners,	455

java.awt.geom	package,	381

java.awt	package,	256

BorderLayout	class,	322

CardLayout	class,	326

Color	class,	32,	375

Cursor	class,	461

FlowLayout	class,	315

Font	class,	370

FontMetrics	class,	373

JavaBeans,	409

java.beans	package,	409

javac	compiler,	631,	641-642

Java	Class	Library,	16,	159,	225,	278-281

Java	DB,	503

Access	and	MySQL	versus,	523

connecting	to,	505-510

JavaDB	library,	adding	to	projects,	512

Java	Development	Kit.	See	JDK

Javadoc	comments,	47

javadoc	documentation	tool,	646-650

.java	extensions,	641

.java	files,	associating	with	text	editor,	630

/java	folder	(Android),	574

JavaFX,	310

java	interpreter,	639-641

java.io	package,	279,	419.	See	also	streams

File	class,	441

IOException	class,	195

PrintStream	class,	79

java.io.tmpdir	system	property,	657

java.lang	package,	32

exception	classes,	195

Math	class,	79

primitive	type	classes,	86

Runnable	interface,	212

System	class,	79,	431,	657

Thread	class,	211

Java	Look	and	Feel	Graphics	Repository,	267

java.net	package,	469-470.	See	also	networking

InetAddress	class,	493

InetSocketAddress	class,	493

URL	class,	471

java.nio.channels	package,	484,	488

java.nio.charset	package,	484,	487

java.nio.file	package,	419

Files	class,	442

Path	objects,	441

java.nio	package,	469,	484.	See	also	I/O	(input/output)	streams

buffers,	484-486

channels,	488-491

nonblocking	I/O	network	connections,	492-499

Java	Plug-in,	393,	643

Java	Runtime	Environment	(JRE),	installing,	392

Java	SE	Development	Kit	8,	12

java.sql	package,	505.	See	also	JDBC	(Java	Database	Connectivity)

DriverManager	class,	509

java.time	package,	279

java.util	package,	159.	See	also	data	structures

StringTokenizer	class,	69

TimeZone	class,	657

java.vendor	system	property,	657

java	-version	command,	624

java.version	system	property,	657

Java	Virtual	Machine	(JVM),	11,	392,	601,	623

Java	Web	Start,	392-395

configuring	web	servers	for,	405

description	tag,	406

icon	tag,	406-407

JNLP	files,	creating,	396-404

security,	405-406

javax.swing	package,	159,	256

BoxLayout	class,	317

JButton	class,	16

JComponent	class,	264

JPanel	class,	325,	368

SwingConstants	interface,	309

SwingWorker	class,	407

javax.xml.parsers	package,	530

JButton	class,	16,	261

JCheckBox	class,	272

JCheckBox()	constructor,	272

JComboBox	class,	274-275

JComboBox()	constructor,	275

JComponent	class,	256,	264

JDBC	(Java	Database	Connectivity),	504-505

data	source	connections

closing,	512

opening,	508-510

databases,	accessing,	505

drivers,	505

jdb	debugger,	652-653

advanced	commands,	655-656

applet	debugging,	655

application	debugging,	653-655

JDK	(Java	Development	Kit),	12,	616,	637-638

command	line,	638-639

configuring,	619

command-line	interface,	619-621

creating	folders,	622-623

opening	folders,	621-622

running	programs,	623

setting	CLASSPATH	variable,	633-636

setting	PATH	variable,	624-628

downloading,	638

installing,	616-619

system	properties,	656-658

utilities

appletviewer	browser,	642-646

jar,	650-652

jarsigner,	658-659

javac	compiler,	641-642

javadoc	documentation	tool,	646-650

java	interpreter,	639-641

jdb	debugger,	652-656

keytool,	658-659

version	number,	624

JDOM,	531

jEdit,	629

JFrame	class,	257

JFrame()	constructor,	257

JLabel	class,	267

JLabel()	methods,	267

JList	class,	276

JList()	constructor,	276

JMenuBar	class,	303

JMenuBar()	constructor,	305

JMenu	class,	303

JMenuItem	class,	303

JMenuItem()	constructor,	303

JNLP	files

associating	MIME	types,	405

creating,	396-404

description	tag,	406

icon	tag,	406-407

security,	405-406

jnlp	tag,	402

JOptionPane	class,	286

JPanel	class,	262,	325,	368

JPasswordField	class,	268

JProgressBar	class,	300

JProgressBar()	constructor,	301

JPython	language,	640

JRadioButton	class,	272

JRE	(Java	Runtime	Environment),	installing,	392

JRuby	language,	640

JScrollBar	class,	297

JScrollPane	class,	271,	296

JScrollPane()	constructor,	271,	296

JSlider	class,	294

JSlider()	constructor,	294

JTabbedPane	class,	307

JTabbedPane()	constructor,	307

JTextArea()	constructors,	269

JTextComponent	class,	268

JTextField	class,	268

JTextField()	constructor,	268

JToggleButton	class,	272

JToolBar	class,	297

JToolBar()	constructor,	298

JudoScript	language,	640

juncture	styles	(drawing	strokes),	380

JUnit,	219

JVM	(Java	Virtual	Machine),	11,	392,	601,	623

K
Key	class,	388

KeyAdapter	class,	358,	457

keyboard	events,	340,	351-352

keyboard	focus	events,	340

KeyChecker.java,	358

KeyChecker2.java,	360

KeyListener	event	listener,	340,	351

key-mapped	data	structures

Dictionary	class,	227

HashMap	class,	241-246

Map	interface,	240-241

keyPressed()	method,	351

keyReleased()	method,	351

keystores,	658

keytool,	658-659

keyTyped()	method,	351

keywords.	See	also	commands;	statements

abstract,	169

break,	107,	119-120

case,	107

class,	126,	450

continue,	119-120

else,	104

enum,	249

extends,	126,	180

final,	44,	167

implements,	177,	212

modifiers.	See	modifiers

new,	454

null,	97

private,	159-161

protected,	162

public,	161

return,	129

static,	24,	74,	126-127,	134,	164

super,	150

this,	130-131,	145,	327

throws,	203-205

L
labeled	loops,	120

labels,	255,	267

aligning,	267

creating,	267

menus,	304

progress	bars,	301

sliders,	294-295

lambda	expressions,	origin	of	term,	466.	See	also	closures

languages

JPython,	640

JRuby,	640

JudoScript,	640

NetRexx,	640

SQL	(Structured	Query	Language),	504-505

lastElement()	method,	233

last()	method,	522

layout	managers,	314-315

alternatives	to,	334

border	layout,	322-324

box	layout,	317-319

card	layout,	325-333

combining,	324-325

creating,	314

flow	layout,	315-317

grid	layout,	320-321

insets,	333-334

length	instance	variable,	99

length()	method,	76,	91

less	than	or	equal	to	symbol	(<=)	comparison	operator,	57

less	than	symbol	(<)	comparison	operator,	57

lexical	scope,	121

LGPL	(GNU	Lesser	General	Public	License),	531

libraries

Apache	Project,	279

for	interfaces	(GUI),	310

Java	Class	Library.	See	Java	Class	Library

XOM.	See	XOM

licensing

Open	Directory	License,	559

for	XOM,	531

Line2D.Float	class,	381

line	numbers	in	text	editors,	629

lines,	drawing,	377

Line2D.Float	class,	381

rendering	attributes,	378-381

lineTo()	method,	384

linked	lists,	91

linking

applets,	URL	objects,	471

node	objects,	91

list	command	(jdb),	654

listeners.	See	event	listeners

listings

AllCapsDemo.java,	442

Alphabet.java,	316

AppInfo.html,	645

AppInfo.java,	644

AppInfo2.java,	647

ArrayCopier.java,	117

Authenticator.java,	269

Authenticator2.java,	272

Averager.java,	138

Border.java,	323

Box.java,	141

Box2.java,	146

BufferConverter.java,	490

BufferDemo.java,	429

Bunch.java,	320

ButtonFrame.java,	262

Buttons.java,	263

ByteReader.java,	424

ByteWriter.java,	426

Calculator.java,	347

ClosureMayhem.java,	464

CodeKeeper.java,	236

CodeKeeper2.java,	248

ComicBooks.java,	243

ComicBox.java,	452

ConsoleInput.java,	432

CursorMayhem.java,	462

CustomerReporter.java,	512

DayCounter.java,	108

DiceRoller.java,	410

DiceWorker.java,	408

DmozHandlerImpl.java,	563

DmozHandler.java,	562

DmozServer.java,	561

DomainEditor.java,	538

DomainWriter.java,	541

EqualsTester.java,	88

feed2.rss,	540

FeedBar.java,	299

FeedBar2.java,	305

FeedInfo.java,	291

feed.rss,	532

Finger.java,	477

FingerServer.java,	495

FormatChooser.java,	349

FormatFrame.java,	273

FormatFrame2.java,	275

GiftShop.java,	185

HalfDollars.java,	100

HalfLooper.java,	115

HelloUser.java,	630

HexReader.java,	200

HolidaySked.java,	231

IconFrame.java,	265

Info.java	application,	292

InstanceCounter.java,	165

Item.java,	181

ItemProp.java,	658

KeyChecker.java,	358

KeyChecker2.java,	360

Map.java,	385

MarsApplication.java,	23

MarsRobot.java,	20

MousePrank.java,	353

NamedPoint	class,	151

PageData.java,	396

PageData.jnlp,	400

Passer.java,	133

PointSetter.java,	73

PrimeFinder.java,	213

PrimeReader.java,	435

PrimeThreads.java,	215

PrimeWriter.java,	434

Printer.java,	148

ProgressMonitor.java,	302

ProgressMonitor2.java,	458

QuoteData.java,	518

RangeLister.java,	129

RefTester.java,	80

RssFilter.java,	543

RssStarter.java,	534

SantaActivity.java

full	text,	588

starting	text,	585

SimpleFrame.java,	260

SiteClient.java,	558

Slider.java,	295

SourceReader.java,	439

Spartacus.java,	601

Stacker.java,	318

Storefront.java,	184

StringChecker.java,	76

Subscriptions.java,	277

SurveyFrame.java,	333

SurveyWizard.java,	331

TabPanels.java,	308

TextFrame.java,	373

TimeServer.java,	481

TitleBar.java,	343

TokenTester.java,	69

Variables.java,	45

Weather.java,	53

WebReader.java,	471

workbench.rss,	526

XML-RPC	request,	552

XML-RPC	response,	553

lists,	276-278

literals,	47

Boolean,	49

character,	49-50

integer,	47-49

string,	50-51

load	factor	(hash	maps),	241

loading

classes,	508

database	drivers,	508

locals	command	(jdb),	654

local	scope,	131

local	variables,	39

locations,	frames,	258

logical	fonts,	371

logical	operators,	57-58

long	data	type,	42,	83

look	and	feel,	256

looping	through	data	structures,	235-238

loops

breaking,	119

do,	118-119

for,	113-116

increments,	113

index	values,	114

initialization,	113

labeling,	120

restarting,	119-120

run()	method,	stopping	threads,	217-218

tests,	113

while,	116-118

M
main-class	attribute,	403

main	classes,	designating,	136

main()	method,	24,	135-136,	639

importance	of,	603

as	public,	161

MalformedURLException,	195,	471

managing

errors.	See	error-handling

exceptions.	See	error-handling

memory,	71-72

manifest	files,	configuring	in	Android	Studio,	581

/manifests/AndroidManifest.xml,	574

Map	interface,	240-241

Map.java,	385

maps,	drawing,	385-387

MarsApplication.java,	23

MarsRobot.java,	20

Math	class,	79,	280

math	operators.	See	arithmetic	operators

MD	command	(MS-DOS),	622

member	variables.	See	instance	variables

memory

allocating,	71

deallocating,	71

managing,	71-72

reclaiming,	72

memory	command	(jdb),	656

menu	commands,	appletviewer	browser,	643-644

menus,	303-307

creating,	304

labels,	304

separators,	adding,	304

message	dialog	boxes,	289

MessageDialog	class,	286,	289

methods,	18

abstract	methods,	169

accept(),	479

access	control,	159

accessor	methods,	164,	187

comparison	of	types,	163

default	access,	159

inheritance,	163

private	access,	159-161

protected	access,	162

public	access,	161

actionPerformed()

action	events,	342,	345

buttons,	330

adapter	classes,	357-359

add()

array	lists,	233-234

border	layouts,	323

card	layouts,	326

check	boxes/radio	buttons,	273

containers,	262

menus,	304

addActionListener(),	330,	341,	345

addAttribute(),	533

addFocusListener(),	341

addHandler(),	560

addItem(),	275

addItemListener(),	341

addMouseListener(),	341

addMouseMotionListener(),	341

addSeparator(),	304

addTab()panes,	307

addTextListener(),	341

addWindowListener(),	341

afterLast(),	521

allocate(),	485

append(),	269

appendChild(),	533

beforeFirst(),	521

build(),	536

calling,	18,	75-79

chaining,	655

channel(),	495

charAt(),	77,	91

charWidth(),	373

in	class	hierarchy,	30

class	methods,	19,	79-80,	134-135

accessing,	165

calling,	80

defining,	134

clear()

array	lists,	235

hash	maps,	242

close()

buffered	character	streams,	441

character	streams,	440

client-side	sockets,	476

data	source	connections,	512

data	streams,	434

file	output	streams,	425

streams,	420-421

closePath(),	384

configureBlocking(),	493

connect(),	493

constructors,	69,	144-145

calling,	144,	151

calling	from	another	constructor,	145-146

definition	of,	71

naming,	144

overloading,	146-147

overriding,	150-152

contains(),	235

containsKey(),	242

containsValue(),	242

createFont(),	371

createStatement(),	510,	522

decode(),	488

defining,	21,	128-130

this	keyword,	130-131

variable	scope,	131-132

delete(),	442

deprecated	methods,	642

doInBackground(),	408

draw(),	384

drawString(),	370

empty(),	239

encode(),	488

equals(),	88,	242

event-handling	methods,	342-345

execute(),	557

executeQuery(),	510-511

fill(),	384

final	abstract	methods,	187

final	methods,	167-168

finishConnect(),	495

first(),	521

flip(),	485

floor(),	280

flush(),	428

focusGained(),	346

focusLost(),	346

forName()

character	sets,	487

database	drivers,	508

get()

array	lists,	233

buffers,	484

elements,	537

Map	interface,	241

getActionCommand(),	345

getAppletInfo(),	644-645,	655

getChannel(),	488

getChar(),	486

getChild(),	537

getChildElements(),	537

getClass(),	90

getClickCount(),	352

getColor(),	377

getConnection(),	509

getContentType(),	474

getDate(),	511

getDefault(),	441

getDouble()

byte	buffers,	486

database	records,	511

getErrorCode(),	511

getFirstChildElement(),	537

getFloat()

byte	buffers,	486

database	records,	511

getFontMetrics(),	373

getHeaderField(),	474

getHeaderFieldKey(),	474

getHeight(),	373

getIcon(),	267

getId(),	586

getInsets(),	334

getInt()

byte	buffers,	486

database	records,	511

getItem(),	349

getItemAt(),	275

getItemCount(),	275

getKeyChar(),	351

getLong()

byte	buffers,	486

database	records,	511

getMessage(),	197

getParameterInfo(),	644-645

getPath(),	441

getPoint(),	352

getProperties(),	657

getProperty(),	657

getResponseCode(),	474

getResponseMessage(),	474

getRootElement(),	536

getSelectedIndex(),	275

getSelectedItem(),	275

getSelectedText(),	268

getSelectedValuesList(),	277

getShort(),	486

getSize(),	264

getSource(),	342,	345

getSQLState(),	511

getStateChange(),	349

getString(),	511

getText(),	267-268

getX(),	352

getXmlRpcServer(),	559

getY(),	352

grouping,	79

hashCode(),	242

hasNext(),	228

indexOf(),	77,	235

insert(),	269

insertChild(),	541

instance	methods,	135

in	interfaces,	31,	179-180

isAcceptable(),	494

isCancelled(),	413

isConnectible(),	494

isConnectionPending(),	495

isDone(),	413

isEditable(),	268

isEmpty(),	241

isReadable(),	494

isWritable(),	494

itemStateChanged(),	349

iterator(),	235-238

JLabel(),	267

keyPressed(),	351

keyReleased(),	351

keyTyped(),	351

last(),	522

lastElement(),	233

length(),	76,	91

lineTo(),	384

main(),	24,	135-136,	639

importance	of,	603

as	public,	161

mouseClicked(),	352,	362

mouseDragged(),	353

mouseEntered(),	352

mouseExited(),	352

mouseMoved(),	353

mousePressed(),	352

mouseReleased(),	352

move(),	442

moveTo(),	384

newDecoder(),	488

newEncoder(),	488

newLine(),	441

next()

Iterator	interface,	228

resultsets,	521

socket	channels,	494

onCreate(),	586

open(),	493

overloading,	128

advantages,	139

creating	overloaded	methods,	140-143

definition	of,	139

troubleshooting,	140

overriding,	30-31,	147-149

advantages,	149-150

super	keyword,	150

pack(),	258,	310

paintComponent(),	368,	377

parameter	lists,	128

parseInt(),	86

passing	arguments	to,	132-134

peek(),	239

pop(),	239

position(),	485

prepareStatement(),	514

previous(),	522

print(),	46

println(),	46,	79

printStackTrace(),	199

private	abstract	methods,	187

private	methods	as	final,	168

processClicks(),	586

protecting,	170

push(),	239

put()

buffers,	485

Map	interface,	240

putChar(),	486

putDouble(),	486

putFloat(),	486

putInt(),	486

putLong(),	486

putShort(),	486

random(),	280

read()

buffered	character	streams,	438

buffered	input	streams,	428

byte	buffers,	489

character	streams,	437

file	input	streams,	423

filters,	421

streams,	420

readBoolean(),	433

readByte(),	433

readDouble(),	433

readFloat(),	433

readInt(),	433

readLine(),	438

readLong(),	433

readShort(),	433

readUnsignedByte(),	433

readUnsignedShort(),	433

register(),	493

remove()

array	lists,	234-235

Map	interface,	241

socket	channels,	495

removeChild(),	538

requestFocus(),	346

return	types,	128-129

run(),	213,	217-218

search(),	239

select(),	494

selectedKeys(),	494

set(),	234

setActionCommand(),	346

setAsciiStream(),	515

setBackground(),	377

setBinaryStream(),	515

setBoolean(),	515

setBounds()

components,	335

frames,	258

setByte(),	515

setBytes(),	515

setCharacterStream(),	515

setColor(),	376

setConfig(),	556

setContentView(),	586

setCursor(),	461

setDate(),	515

setDefaultCloseOperation(),	259

setDouble(),	515

setEchoChar(),	268

setEditable()

combo	boxes,	275

text	fields,	268

setEnabled(),	264

setFloat(),	515

setFollowRedirects(),	474

setFont(),	281,	371

setHgap(),	320

setIcon(),	267

setIndentation(),	541

setInt(),	515

setJMenuBar(),	305

setLayout()

card	layouts,	326

containers,	314

panels,	325

setLineWrap(),	269

setListData(),	277

setLong(),	515

setLookAndFeel()

dialog	boxes,	293

GUIs,	259

setMajorTickSpacing(),	294

setMaximum(),	301

setMinimum(),	301

setMinorTickSpacing(),	294

setNull(),	516

setPaint(),	378

setPaintLabels(),	295

setPaintTicks(),	295

setPreferredSize(),	296

setRenderingHint(),	372

setSelected(),	272

setSelectedIndex(),	275

setServerURL(),	556

setShort(),	515

setSize()

components,	264

frames,	257

setSoTimeOut(),	475

setString(),	515

setStringPainted(),	301

setStroke(),	380

setText(),	267-268

setValue(),	301

setVgap(),	320

setVisible()

components,	264

frames,	258

setVisibleRowCount(),	277

setWrapStyleWord(),	269

show(),	326

showConfirmDialog(),	287

showInputDialog(),	288

showMessageDialog(),	289

showOptionDialog(),	290

signatures,	128,	139

size()

array	lists,	235

elements,	537

file	channels,	489

Map	interface,	241

start(),	212

startActivity(),	587

static,	164-167

stringWidth(),	373

substring(),	77,	201

super(),	151

in	superclasses,	calling,	150

System.out.format(),	77-78

throwing	exceptions,	202,	207

checked,	204

inheritance,	206

nested	handlers,	208-209

throws	clause,	203

unchecked,	204

toFile(),	441

toPath(),	442

toUpperCase(),	77

toXML(),	534

trimToSize(),	235

valueOf(),	79

windowActivated(),	357

windowClosed(),	357

windowClosing(),	357

windowDeactivated(),	357

windowDeiconified(),	357

windowIconified,	357

windowOpened(),	357

wrap(),	484

write()

buffered	character	streams,	441

buffered	output	streams,	428

character	streams,	440

char	versus	int	data	types,	445

file	output	streams,	425

filters,	421

streams,	421

XML	documents,	541

writeBoolean(),	433

writeByte(),	433

writeDouble(),	433

writeFloat(),	433

writeInt(),	433

writeLong(),	433

writeShort(),	433

in	XML-RPC,	552

zero-based,	77

methods	command	(jdb),	656

Microsoft	Word,	629

MIME	types,	associating,	405

minus	equal	(-=)	assignment	operator,	54

minus	sign	(-)

decrement	operator	(—),	55-56

negative	numbers,	48

subtraction	operator,	52

modifiers,	158

abstract,	169

access	control,	159

accessor	methods,	164

comparison	of	types,	163

default	access,	159

inheritance,	163

private	access,	159-161

protected	access,	162

public	access,	161

final,	167

multiple,	158

private,	159-161

protected,	162

public,	161

return	types	versus,	158

static,	164

modifying.	See	also	changing;	editing

class	variable	values,	75

functions,	638

instance	variable	values,	73-74

operator	precedence,	60

superclasses,	27

XML	documents,	536-540

modulus	operator,	52

MouseAdapter	class,	358,	457

mouseClicked()	method,	352,	362

mouseDragged()	method,	353

mouseEntered()	method,	352

MouseEvent	objects,	352

mouse	events,	340,	352,	362

mouseExited()	method,	352

MouseListener,	340,	352

MouseMotionAdapter	class,	358

MouseMotionListener,	340,	352

mouseMoved()	method,	353

mouse	movement	events,	340,	352-357

MousePrank.java,	353

mousePressed()	method,	352

mouseReleased()	method,	352

move()	method,	442

moveTo()	method,	384

MS-DOS,	620

CLASSPATH	variable

Windows	7-10,	633-635

Windows	98/Me,	635-636

commands,	621-622

folders

creating,	622-623

opening,	621-622

PATH	variable

Windows	7-10,	625-627

Windows	98/Me,	627-628

programs,	running,	623

prompt.	See	command	line

multidimensional	arrays,	102

multiline	comments,	46

multiple	bytes,	writing,	425

multiple	files,	compiling,	641

multiple	inheritance,	31,	176

multiple	interfaces,	implementing,	177-178

multiple	modifiers,	158

multiplication	operator,	52

multitasking.	See	threads

MySQL	databases,	Java	DB	versus,	523

N
NamedPoint	class,	151

naming

class	variables,	127

conflicts,	reducing,	170-172

constants,	44

methods,	constructors,	144

packages,	173-174

resources,	580

variables,	40-41

navigating

database	records,	521-522

records,	511

negative	numbers,	as	literals,	48

nesting

exception	handlers,	208-209

if	statements,	106

method	calls,	78-79

XML	tags,	527

NetBeans,	12,	597

adding

Apache	XML-RPC	to,	555

JavaDB	library	to	projects,	512

XOM	to,	532

connecting	to	databases,	505-508

database	connection	information,	viewing,	510

database	tables,	creating,	517

grouping	packages,	183

installing,	598

Java	applications,	running,	602-603

Java	classes

compiling,	601

creating,	600-602

importing,	173

main	classes,	designating,	136

organizing	graphics,	266

panes,	expanding/shrinking,	604

projects,	creating,	19,	598-600

resources	for	information,	605

Run	File	versus	Run	Project	commands,	134

setting	command-line	arguments,	109

troubleshooting	in,	603

updating,	598

NetRexx	language,	640

networking,	470

nonblocking	I/O	connections,	492-499

security,	499

sockets,	475-479

client-side,	475-476

server-side,	479-483

streams,	470-475

web	services,	549

XML-RPC.	See	XML-RPC

newDecoder()	method,	488

newEncoder()	method,	488

new	keyword,	454

newLine()	method,	441

new	operator,	59,	68

creating	objects	with,	68-70

instantiating	arrays,	97

next()	method

Iterator	interface,	228

resultsets,	521

socket	channels,	494

NoClassDef	error,	633-635

Node	class,	533

node	objects,	linking,	91

nodes,	adding	children	to	parents,	533

nonblocking	I/O	network	connections,	492-499

nonexclusive	check	boxes,	273

non-runtime	exceptions,	219

NoSuchFileException,	442

NotePad,	628

not	equal	symbol	(!=)	comparison	operator,	57,	88

NOT	operator,	58

null	keyword,	97

NullPointerException,	194

number	literals,	47-49

numbers

binary,	48

converting	strings	to,	86

floating-point,	42

formatting	display,	77-78

hexadecimal,	49

integers,	42

octal,	48

nu.xom.canonical	package,	542

nu.xom.converters	package,	542

nu.xom	package,	533

nu.xom.xinclude	package,	542

nu.xom.xslt	package,	542

O
Object	class,	26

object-oriented	programming	(OOP),	11-14.	See	also	classes;	objects

objects,	14.	See	also	instances

ArrayList,	556

arrays,	creating,	97-98

attributes,	17-18

in	class	hierarchies,	29

defining,	17

behavior,	18-19

ButtonGroup,	273

ByteBuffer,	489

casting,	82-85,	565

classes	and,	14-16

Color,	creating,	376

comparing,	87-89

creating,	68

arguments,	68

with	closures,	460-465

with	constructors,	71

with	new	operator,	68-70

StringTokenizer	objects,	69-70

current,	referring	to,	130

determining	class	of,	89-90

Dimension,	264,	296

Document,	533

drawing,	384

Element,	creating,	533

encapsulating,	161

File,	creating,	441

FileChannel,	488

Font,	creating,	370-372

GeneralPath,	creating,	384

ImageIcon,	265

inheritance,	29-31

initializing,	71

memory,	allocating/deallocating,	71

MouseEvent,	352

nodes,	linking,	91

Path,	441-444

primitive	types,	91

converting,	86-87

Rectangle,	frame	boundaries,	258

references,	80-82

ResultSet,	511

reusing,	15-16

Selector,	493

Serializer,	540

Set,	494

String,	creating,	21

URL,	creating,	471

object	variables.	See	instance	variables

object	wrappers,	86

obscuring	password	fields,	268

octal	numbers,	48

offline-allowed	tag,	401

onCreate()	method,	586

online	storefronts,	creating,	181-187

OOP	(object-oriented	programming),	11-14.	See	also	classes;	objects

Open	Directory	License,	559

Open	Directory	Project,	559

opening

data	source	connections,	508-510

folders	in	MS-DOS,	621-622

socket	connections,	475

sockets,	493

streams	over	Internet,	470-475

opening	tags	(XML),	401,	527

open()	method,	493

operators,	52

arithmetic,	52-54

assignment,	40,	43,	54-55

bitwise,	59

comparison,	56-57,	88

concatenation,	82

decrement	(—),	55-56

diamond	operator,	247

increment	(++),	55-56

instanceof,	59,	90,	343

list	of,	61

logical,	57-58

new,	59,	68

creating	objects	with,	68-70

instantiating	arrays,	97

postfix,	55-56

precedence,	58-60

prefix,	55-56

string	concatenation,	60-61

ternary,	59,	112

option	dialog	boxes,	290-291

OptionDialog	class,	286,	290-291

options	(commands),	638-639

order	of	precedence,	58-60

organizing

classes,	25,	158,	170

creating	hierarchies,	27-29

inheritance,	25-31

interfaces,	31-32

packages,	32,	45

graphics	in	NetBeans,	266

projects	in	Android	Studio,	574-575

org.apache.xmlrpc	package,	554

org.apache.xmlrpc.client	package,	556

org.apache.xmlrpc.server	package,	559

org.apache.xmlrpc.webserver	package,	559

orientation

progress	bars,	301

sliders,	294

toolbars,	297

OR	operators,	58

os.name	system	property,	657

os.version	system	property,	657

OutputStream	class,	422

output	streams,	420.	See	also	streams

buffered	output	streams,	428

creating,	420

data	output	streams,	433

file	output	streams,	425-427

OutputStreamWriter	class,	440

overflow	(variable	assignment),	62

overloading

constructors,	146-147

methods,	128

advantages,	139

creating,	140-143

definition	of,	139

troubleshooting,	140

overriding

constructors,	150-152

methods,	30-31,	147-150

scrollbars,	297

P
package	declaration,	175

package	statement,	32,	63

packages,	32,	45,	169

access	control,	175

advantages,	170

android.content,	587

android.support.v7.app,	586

creating,	173-175,	640

grouping	in	NetBeans,	183

importing,	171

java.awt,	256

BorderLayout	class,	322

CardLayout	class,	326

Color	class,	32,	375

Cursor	class,	461

FlowLayout	class,	315

Font	class,	370

FontMetrics	class,	373

java.awt.color,	375

java.awt.event,	256,	340

ActionListener	interface,	330,	460

adapter	classes,	358,	456-457

event	listeners,	455

java.awt.geom,	381

java.beans,	409

java.io,	279,	419

File	class,	441

IOException	class,	195

PrintStream	class,	79

java.lang,	32

exception	classes,	195

Math	class,	79

primitive	type	classes,	86

Runnable	interface,	212

System	class,	79,	431,	657

Thread	class,	211

java.net,	469-470

InetAddress	class,	493

InetSocketAddress	class,	493

URL	class,	471

java.nio,	469,	484

buffers,	484-486

channels,	488-491

nonblocking	I/O	network	connections,	492-499

java.nio.channels,	484,	488

java.nio.charset,	484,	487

java.nio.file,	419,	441-442

java.sql,	505,	509

java.time,	279

java.util,	159.	See	also	data	structures

StringTokenizer	class,	69

TimeZone	class,	657

javax.swing,	159,	256

BoxLayout	class,	317

JButton	class,	16

JComponent	class,	264

JPanel,	368

JPanel	class,	325

SwingConstants	interface,	309

SwingWorker	class,	407

javax.xml.parsers,	530

nu.xom,	533

nu.xom.canonical,	542

nu.xom.converters,	542

nu.xom.xinclude,	542

nu.xom.xslt,	542

org.apache.xmlrpc,	554

org.apache.xmlrpc.client,	556

org.apache.xmlrpc.server,	559

org.apache.xmlrpc.webserver,	559

referencing,	170

pack()	method,	258,	310

PageData.java,	396

PageData.jnlp,	400

paintComponent()	method,	368,	377

Paint	interface,	378

panels,	262,	325

absolute	component	placement,	334

card	layouts,	326

components,	adding,	325

creating,	325,	368

insets,	333-334

scrolling	panes,	255,	271-272,	296-297

tabbed	panes,	307-310

panes	(NetBeans),	expanding/shrinking,	604

@param	tag	(javadoc),	650

parameter	lists	(methods),	128

parameters	(XML-RPC),	553

parentheses	()

arguments,	68

grouping	expressions,	59-60

parent	nodes,	adding	child	nodes	to,	533

ParseException	errors,	536

parseInt()	method,	86

Passer.java,	133

passing

arguments

to	applications,	137

to	methods,	132-134

exceptions,	204-205

password	fields,	obscuring,	268

Path	objects,	441-444

paths,	relative,	444

PATH	variable	(MS-DOS)

Windows	7-10,	625-627

Windows	98/Me,	627-628

peek()	method,	239

percent	sign	(%)	modulus	operator,	52

performance

improving,	407-412

Java	programs,	642

period	(.)

accessing	methods	and	variables,	59

dot	notation,	73

permalinks,	527

pipe	character	(|)	OR	operator,	58

platform	neutrality,	11

plus	equal	(+=)	assignment	operator,	54

plus	sign	(+)

addition	operator,	52

concatenation	operator,	82

increment	operator	(++),	55-56

string	concatenation,	60-61

pointers	(C/C++),	82,	91.	See	also	arrays;	references

PointSetter.java,	73

polygons,	drawing,	377,	383-384

arcs,	382-383

ellipses,	382

rectangles,	381

rendering	attributes,	378-381

pop()	method,	239

port	numbers,	selecting,	480

position()	method,	485

postfix	operators,	55-56

post	requests,	551

precedence	of	operators,	58-60

prefix	operators,	55-56

prepared	statements,	514-516

PreparedStatement	class,	514

prepareStatement()	method,	514

preparing	resources	in	Android	Studio,	579-580

previous()	method,	522

PrimeFinder.java,	213

PrimeReader.java,	435

PrimeThreads.java,	215

PrimeWriter.java,	434

primitive	types,	42-43

casting,	82-84

objects,	91

converting,	86-87

print	command	(jdb),	654

Printer.java,	148

println()	method,	46,	79

print()	method,	46

printStackTrace()	method,	199

PrintStream	class,	79

private	abstract	methods,	187

private	access,	159-161

private	methods,	as	final,	168

private	modifier,	158-161

problem-solving.	See	troubleshooting

procedural	programming,	13

procedures	(XML-RPC),	553

processClicks()	method,	586

processing	XML

with	Java,	530

with	XOM,	530-532

creating	XML	documents,	532-535

evaluating	XOM,	542-545

formatting	XML	documents,	540-542

modifying	XML	documents,	536-540

programming

object-oriented,	11-14

procedural,	13

programs

classes	versus,	125

Java.	See	Java	applications

MS-DOS,	running,	623

readability,	improving,	46

running,	22-25

progress	bars,	300-303

labels,	301

orientation,	301

updating,	301

ProgressMonitor.java,	302

ProgressMonitor2.java,	458

projects

adding	JavaDB	library	to,	512

closing	in	Android	Studio,	579

creating,	19

in	Android	Studio,	572-574,	579

in	NetBeans,	598-600

organizing	in	Android	Studio,	574-575

properties,	system,	656-658

property	change	listeners,	409

PropertyHandlerMapping	class,	560

protected	access,	162

protected	modifier,	158,	162

protecting	classes/methods/variables,	170.	See	also	access	control

public	access,	161,	175

public	modifier,	158,	161

push()	method,	239

putChar()	method,	486

putDouble()	method,	486

putFloat()	method,	486

putInt()	method,	486

putLong()	method,	486

put()	method

buffers,	485

Map	interface,	240

putShort()	method,	486

Q
queries,	504,	508-511

question	mark	(?)	in	SQL	statements,	514

quitting.	See	stopping

quotation	marks	(“”)	in	arguments,	137

QuoteData.java,	518

R
radio	buttons,	255,	272-274

event	handling

action	events,	345-346

item	events,	349-351

exclusive,	273

random()	method,	280

RangeLister.java,	129

RDF	Site	Summary,	528

readability,	improving

expressions,	60

programs,	46

readBoolean()	method,	433

readByte()	method,	433

readDouble()	method,	433

Reader	class,	437

readFloat()	method,	433

reading

buffered	character	streams,	438

buffered	input	streams,	428

C	programs,	444

database	records,	508-513

data	input	streams,	433

streams,	420

text	files,	437-440

readInt()	method,	433

readLine()	method,	438

readLong()	method,	433

read()	method

buffered	character	streams,	438

buffered	input	streams,	428

byte	buffers,	489

character	streams,	437

file	input	streams,	423

filters,	421

streams,	420

readShort()	method,	433

readUnsignedByte()	method,	433

readUnsignedShort()	method,	433

Really	Simple	Syndication.	See	RSS

reclaiming	memory,	72

records

in	databases

navigating,	521-522

reading,	508-513

writing,	514-521

navigating,	511

Rectangle2D.Float	class,	382

Rectangle	objects,	frame	boundaries,	258

rectangles,	drawing,	381

reducing	name	conflicts,	170

references,	80-82

arrays,	99

to	current	objects,	130

passing	arguments	by,	132

to	packages,	170

RefTester.java,	80

register()	method,	493

relative	paths,	444

Reload	command	(appletviewer),	643

remote	method	invocation	(RMI),	550

remote	procedure	calls	(RPC),	549-550.	See	also	XML-RPC

removeChild()	method,	538

remove()	method

array	lists,	234-235

Map	interface,	241

socket	channels,	495

removing	stack	elements,	239

renaming	files,	442

rendering	attributes	(Java2D),	378-381

RenderingHint.Key	class,	388

requestFocus()	method,	346

requests	(XML-RPC)

responding	to,	553-554

sending,	551-552

requirements	for	HAXM,	612

/res	folder	(Android),	574,	579

/res/layout	folder	(Android),	582

/res/mipmap	folder	(Android),	579

reserved	words.	See	keywords;	modifiers

resizing

components,	264

frames,	310

NetBeans	panes,	604

scrolling	panes,	296

resources

for	information

author	contact	information,	608

book	website,	607

NetBeans,	605

naming,	580

preparing	in	Android	Studio,	579-580

resources	tag,	402

responding	to	XML-RPC	requests,	553-554

Restart	command	(appletviewer),	643

restarting	loops,	119-120

ResultSet	object,	511

resultsets,	navigating,	521-522

return	keyword,	129

@return	tag	(javadoc),	647

return	types,	128

methods,	void,	129

modifiers	versus,	158

return	values,	38,	52

reusing	objects,	15-16

R.java	class,	586

RMI	(remote	method	invocation),	550

RPC	(remote	procedure	calls),	549-550.	See	also	XML-RPC

RSS	(Really	Simple	Syndication),	525,	528

evaluating	XOM,	542-545

versions	1.0	and	2.0,	546

well-formed	XML,	528

XML	and,	526

XML	documents

creating,	532-535

formatting,	540-542

modifying,	536-540

RSS	Advisory	Board,	528

RssFilter.java,	543

RssStarter.java,	534

run	command	(jdb),	654

Run	File	command,	Run	Project	command	versus,	134

run()	method,	213,	217-218

Runnable	interface,	191,	212

running

Android	apps,	577-578,	589-591

applications,	639

bytecode,	639

Java	applications,	602-603

in	Windows,	631-632

JVM,	623

programs,	22-25

in	MS-DOS,	623

self-signed	JAR	files,	659

telnet,	482

threads,	213

Run	Project	command,	Run	File	command	versus,	134

runtime	errors,	compiler	errors	versus,	247

RuntimeException	class,	195

runtime	exceptions,	194,	204,	219

S
Sams	Teach	Yourself	Android	Application	Development	in	24	Hours	(Delessio,	Darcey,
Conder),	589

Sams	Teach	Yourself	SQL	in	24	Hours	(Stephens,	Jones,	Plew),	510

SantaActivity.java

full	text,	588

starting	text,	585

saving	source	files,	630

SAX	(Simple	API	for	XML),	530

scope

inner	classes,	450

lexical	scope,	121

variables,	103,	131-132

scrollbars,	296

configuring,	271

overriding,	297

scrolling

panes,	255,	271-272,	296-297

tabbed	panes,	307

ScrollPaneConstants	interface,	271,	297

searching	stacks,	239

search()	method,	239

security

digital	signatures,	404

Java	DB,	506

Java	Web	Start	applications,	394-395

networking,	499

SecurityException,	442

security	tag,	405-406

@see	tag	(javadoc),	650

selectedKeys()	method,	494

selecting

development	tools,	12-13,	616

font	styles,	371

port	numbers,	480

substrings,	201

text	editors,	628-629

SelectionKey	class,	494

select()	method,	494

Selector	object,	493

self-signed	JAR	files,	running,	659

semicolon	(;),	statement	termination	character,	38

sending	XML-RPC	requests,	551-552

separators	(menus),	adding,	304

@serial	tag	(javadoc),	647

Serializer	class,	540

Serializer()	constructor,	541

servers,	XML-RPC,	559-564

server-side	sockets,	479-480

designing	server	applications,	480-482

nonblocking	servers,	493-499

testing	server	applications,	482-483

ServerSocket	class,	479

setActionCommand()	method,	346

setAsciiStream()	method,	515

setBackground()	method,	377

setBinaryStream()	method,	515

setBoolean()	method,	515

setBounds()	method

components,	335

frames,	258

setByte()	method,	515

setBytes()	method,	515

setCharacterStream()	method,	515

setColor()	method,	376

setConfig()	method,	556

setContentView()	method,	586

setCursor()	method,	461

setDate()	method,	515

setDefaultCloseOperation()	method,	259

setDouble()	method,	515

setEchoChar()	method,	268

setEditable()	method

combo	boxes,	275

text	fields,	268

setEnabled()	method,	264

setFloat()	method,	515

setFollowRedirects()	method,	474

setFont()	method,	281,	371

setHgap()	method,	320

setIcon()	method,	267

setIndentation()	method,	541

setInt()	method,	515

setJMenuBar()	method,	305

setLayout()	method

card	layouts,	326

containers,	314

panels,	325

setLineWrap()	method,	269

setListData()	method,	277

setLong()	method,	515

setLookAndFeel()	method

dialog	boxes,	293

GUIs,	259

setMajorTickSpacing()	method,	294

setMaximum()	method,	301

set()	method,	234

setMinimum()	method,	301

setMinorTickSpacing()	method,	294

setNull()	method,	516

Set	object,	494

setPaintLabels()	method,	295

setPaint()	method,	378

setPaintTicks()	method,	295

setPreferredSize()	method,	296

setRenderingHint()	method,	372

setSelected()	method,	272

setSelecteIndex()	method,	275

setServerURL()	method,	556

setShort()	method,	515

setSize()	method

components,	264

frames,	257

setSoTimeOut()	method,	475

setString()	method,	515

setStringPainted()	method,	301

setStroke()	method,	380

setText()	method.	267-268

setting

background	color,	377

breakpoints,	653-655

drawing	colors,	376-377

system	properties,	657

setValue()	method,	301

setVgap()	method,	320

setVisible()	method

components,	264

frames,	258

setVisibleRowCount()	method,	277

setWrapStyleWord()	method,	269

shared	behavior,	31-32

shared	values,	defining,	43

shell	prompt.	See	command	line

short	data	type,	42

showConfirmDialog()	method,	287

showInputDialog()	method,	288

showMessageDialog()	method,	289

show()	method,	326

showOptionDialog()	method,	290

shrinking	NetBeans	panes,	604

signatures	(digital),	404

signatures	(methods),	128,	139

signing	code,	658-659

Simple	API	for	XML	(SAX),	530

SimpleFrame.java,	260

Simple	Object	Access	Protocol	(SOAP),	551

@since	tag	(javadoc),	650

single	inheritance,	31,	176

single-step	execution,	652

SiteClient.java,	558

size()	method

array	lists,	235

elements,	537

file	channels,	489

Map	interface,	241

sizing

components,	264

frames,	257,	310

scrolling	panes,	296

slash	character	(/),	XML	tags,	401

Slider.java,	295

sliders,	294-296

advantages,	294

labels,	294-295

orientation,	294

SOAP	(Simple	Object	Access	Protocol),	551

SocketChannel	class,	493

Socket	class,	475

SocketImpl	class,	480

SocketImplFactory	interface,	480

sockets,	475-479

client-side

closing,	476

nonblocking	clients,	493-499

opening,	475

opening,	493

server-side,	479-480

designing	server	applications,	480-482

nonblocking	servers,	493-499

testing	server	applications,	482-483

timeout	values,	475

solving	problems.	See	troubleshooting

source	code.	See	also	listings

comments	in,	646

converting,	641

writing	in	Android	Studio,	584-591

source	files

creating,	629

saving,	630

SourceReader.java,	439

sources	(casting),	83

Spartacus.java,	601

specifying	class	files,	640

speed	of	Java	programs,	642

splash	screens,	407

SQLException,	509-511

SQL	(Structured	Query	Language),	504-505

prepared	statements,	514-516

queries,	508-511

square	brackets	([]),	arrays,	59,	96

sRGB	color	system,	375

Stack	class,	227,	238-239

Stacker.java,	318

stack	frames,	656

stacks,	227,	238-239,	656

Standard	Widget	Toolkit	(SWT),	310

startActivity()	method,	587

Start	command	(appletviewer),	643

start()	method,	212

Statement	interface,	510

statements,	38.	See	also	commands;	keywords;	modifiers

block	statements,	38,	103,	121

conditionals

if,	104-105

nested	if,	106

switch,	105-111,	121

ternary	operator,	112

empty,	in	loops,	114

expressions,	51-52

definition	of,	38

operators.	See	operators

return	values,	38,	52

finally,	199-202

import,	171-172,	175,	256

loops

breaking,	119

do,	118-119

for,	113-116

index	values,	114

labeling,	120

restarting,	119-120

while,	116-118

package,	32,	63,	175

termination	character,	38

static	keyword,	24,	74,	126-127,	134

static	methods,	164-167.	See	also	class	methods

static	modifier,	158,	164

static	variables,	75,	164-167

step	command	(jdb),	654

stop	at	command	(jdb),	653

Stop	command	(appletviewer),	643

stop	in	command	(jdb),	653

stopping	threads,	217-218

Storefront	application,	181-187

Storefront.java,	184

storefronts	(online),	creating,	181-187

storing

command-line	arguments,	111

data,	427

streams,	419-420

buffers,	427-431,	484-486

byte	buffers,	486

character	sets,	487-488

byte	streams,	420-422

file	input	streams,	422-425

file	output	streams,	425-427

channels,	488-491

nonblocking	I/O	network	connections,	492-499

character	streams,	420,	437

reading	text	files,	437-440

writing	text	files,	440-441

console	input,	431-432

creating,	420

data	streams,	433-436

exception	handling,	421-422

filtering,	421,	427

input,	371

opening	over	Internet,	470-475

Path	objects,	441-444

reading,	420

writing	to,	421

string	arithmetic,	60-61

StringChecker.java,	76

String	class

selecting	substrings,	201

valueOf()	method,	79

string	data	type	(XML-RPC),	550

string	literals,	50-51

String	objects

concatenation	operator,	82

creating,	21

strings

in	Android	apps,	575-577

comparing,	88-89

concatenating,	60-61

converting	to	numbers,	86

dividing	into	tokens,	69-70

formatting,	77-78

handling,	82

length	of,	91

switch	statements,	121

strings.xml,	575-579

StringTokenizer	class,	69

StringTokenizer	objects,	creating,	69-70

stringWidth()	method,	373

strokes	(drawing),	380-381

struct	data	type	(XML-RPC),	550

Structured	Query	Language.	See	SQL

structures,	data.	See	data	structures

styles	(fonts),	selecting,	371

styles.xml,	579

subclasses,	25

casting	objects,	84-85

defining,	26

final	classes	and,	168

method	inheritance,	163

overriding	methods,	148-149

protected	versus	default	access,	162

variable	scope,	132

Subscriptions.java,	277

subscripts	(arrays),	98-99

substring()	method,	77,	201

substrings,	selecting,	201

subtraction	operator,	52

superclasses,	25

casting	objects,	84-85

indicating,	126

methods	in,	calling,	150

modifying,	27

overriding	methods,	148-149

variable	scope,	132

super	keyword,	150

super()	method,	151

surfaces	for	drawing,	creating,	368-369

SurveyFrame.java,	333

SurveyWizard.java,	331

suspend	command	(jdb),	656

Swing,	255,	285,	310

applications

creating	interface,	257-259

developing	framework,	260-261

improving	performance,	407-412

components,	256,	264

adding	to	containers,	256,	262-263

AWT	components	versus,	256

check	boxes,	272-274

combo	boxes,	274-276

creating,	256,	261-262

dialog	boxes,	286-293

disabled,	264

drop-down	lists,	274-276

hiding,	264

image	icons,	265-267

labels,	267

lists,	276-278

menus,	303-307

progress	bars,	300-303

radio	buttons,	272-274

resizing,	264

scrolling	panes,	271-272,	296-297

sliders,	294-296

tabbed	panes,	307-310

text	areas,	269-271

text	fields,	268

toolbars,	297-300

containers,	panels,	262

event-handling,	339.	See	also	event	listeners

action	events,	345-346

component	setup,	341-342

focus	events,	346-349

item	events,	349-351

keyboard	events,	351-352

methods,	342-345

mouse	events,	352

mouse	movement	events,	352-357

window	events,	357

Info	application,	292

layout	managers,	314-315

alternatives	to,	334

border	layout,	322-324

box	layout,	317-319

card	layout,	325-333

combining,	324-325

creating,	314

flow	layout,	315-317

grid	layout,	320-321

insets,	333-334

SwingConstants	interface,	267,	294,	309

SwingWorker	class,	407-413

switch	statements,	105-111,	121

SWT	(Standards	Widget	Toolkit),	310

synchronized	modifier,	158

System	class,	79,	657

class	methods,	134

in	variable	(input	stream),	431

System.out	class	variable,	79

System.out.format()	method,	77-78

System.out.println()	method,	46

System.out.print()	method,	46

system	properties,	656-658

T
tabbed	panes,	307-310

tables	in	databases

creating,	517

viewing,	507-508

TabPanels.java,	308

Tag	command	(appletviewer),	644

tags

javadoc,	647,	650

XML,	401,	527-528

TCP	sockets,	475-479

client-side

closing,	476

opening,	475

server-side,	479-480

designing	server	applications,	480-482

testing	server	applications,	482-483

telnet,	running,	482

terminating.	See	stopping

termination	character,	38

ternary	operator,	59,	112

test	variables,	switch	statements,	106

testing

with	loops,	113

server	applications,	482-483

unit	testing,	219

text,	drawing,	370-372

antialiasing,	372

finding	font	information,	372-375

text	areas,	255,	269-271

Text	class,	533

text	editors

associating	.java	files	with,	630

selecting,	628-629

text	fields,	255,	268

event	handling

action	events,	345-346

item	events,	349-351

password	fields,	obscuring,	268

text	files

reading,	437-440

writing,	440-441

TextFrame.java,	373

this	keyword,	130-131,	145,	327

Thread	class,	191,	211

threaded	applications

example,	213-217

writing,	211-213

threads,	191,	211

creating,	212

running,	213

stopping,	217-218

threads	command	(jdb),	656

Throwable	class,	194-195

throwing	exceptions,	194,	202,	207

checked,	204

inheritance	issues,	206

nested	handlers,	208-209

throws	clause,	203

unchecked,	204

throws	keyword,	203-205

timeout	values	(sockets),	475

TimeServer.java,	481

TimeZone	class,	657

TitleBar.java,	343

title	tag,	401

T-Mobile	G1,	570

toFile()	method,	441

tokens,	69-70

TokenTester.java,	69

Tolksdorf,	Robert,	640

toolbars,	297-300

tools

development,	selecting,	616

functions,	modifying,	638

toPath()	method,	442

toUpperCase()	method,	77

toXML()	method,	534

Translations	editor,	576

Transmission	Control	Protocol.	See	TCP	sockets

transport-layer	sockets,	480

trimToSize()	method,	235

troubleshooting.	See	also	debugging

Android	apps,	578,	610

checking	BIOS	settings,	614

installing	HAXM,	611-613

arrays,	99

command-line	arguments,	139

compiled	classes,	601

compiling,	633

database	connections,	514

errors,	fatal,	196

for	loops,	114

Java	Development	Kit	(JDK)	configuration,	624-628

methods,	overloaded,	140

in	NetBeans,	603

running	Android	apps,	591

variables

class	variables,	75

scope,	131

true	value	(Boolean),	49

try	and	catch	blocks,	196-199

finally	clause,	199-202

Twitter,	author	contact	information,	608

U
UIManager	class,	259

UltraEdit,	629

unboxing,	87

unchecked	exceptions,	194,	204

underscore	(_),	in	large	number	literals,	48

Unicode	character	set,	40,	49-50,	420,	437,	487

Unicode	Consortium	website,	51

unit	testing,	219

unsigned	bytes,	434

up	command	(jdb),	655

updating

NetBeans,	598

progress	bars,	301

URL	(uniform	resource	locator),	471

URL	class,	471

URL()	constructor,	471

URL	objects,	creating,	471

USB	drivers,	installing,	591

user	coordinate	space,	378

user	interface.	See	GUI

UTF-8	character	set,	487

UTF-16	character	set,	487

UTF-16BE	character	set,	487

UTF-16LE	character	set,	487

utilities

appletviewer,	642-646

command	line,	638-639

jar,	650-652

jarsigner,	658-659

javac	compiler,	641-642

javadoc,	646-650

java	interpreter,	639-641

jdb	debugger,	652-653

advanced	commands,	655-656

applet	debugging,	655

application	debugging,	653-655

keytool,	658-659

V
validating	XML,	529

valueOf()	method,	79

values

assigning	to	variables,	43

class	variables,	modifying,	75

of	instance	variables,	modifying,	73-74

passing	arguments	by,	132

shared	values,	defining,	43

variables

access	control,	159

comparison	of	types,	163

default	access,	159

private	access,	159-161

protected	access,	162

public	access,	161

array	variables,	96-97

assigning	values,	40,	43

casting,	definition	of,	83

CLASSPATH

Windows	7-10,	633-635

Windows	98/Me,	635-636

class	variables,	18,	39,	72,	127

accessing,	165

accessing	values,	75

defining,	74

initial	values,	40

instance	variables	versus,	33,	74

modifying	values,	75

troubleshooting,	75

constant	variables,	43-44

creating,	39-40,	44-45

declaring,	39-40

decrementing,	55-56

definition	of,	38

encapsulation,	159

environment	variables,	656

final	variables,	167

incrementing,	55-56

in	(input	stream),	431

instance	variables,	17,	39,	72

accessing	values,	72-73

class	variables	versus,	33,	74

defining,	21,	126-127

initial	values,	40

length,	99

modifying	values,	73-74

nesting	with	method	calls,	79

interface	type,	178

in	interfaces,	179

local	variables,	39

naming,	40-41

overflow,	62

PATH

Windows	7-10,	625-627

Windows	98/Me,	627-628

protecting,	170

scope,	103,	131-132

lexical	scope,	121

troubleshooting,	131

static,	164-167

test	variables,	switch	statements,	106

types,	41

array	elements,	98

casting,	82-84

class	types,	43

converting	to/from	objects,	86-87

data	types,	42-43

objects	versus,	91

Variables.java,	45

Vector	class,	235

vendor	tag,	401

verbose	compiler,	642

version	numbers

Android,	592

Java	Development	Kit	(JDK),	624

@version	tag	(javadoc),	647

viewing

database	connection	information,	510

documents	(HTML),	643

Java	documentation,	47

tabbed	panes,	307

tables	in	databases,	507-508

visible	frames,	258

void	data	type,	43

void	return	type	(methods),	129

volatile	modifier,	158

W
Weather.java,	53

web-launched	applications	(Java	Web	Start),	392-395

configuring	web	servers	for,	405

creating	JNLP	files,	396-404

description	tag,	406

icon	tag,	406-407

security,	405-406

WebReader.java,	471

WebServer	class,	559

WebServer()	constructor,	559

web	services,	549.	See	also	XML-RPC

well-formed	XML,	528

while	loops,	116-118

white	space,	adding	to	XML	documents,	540-542

windowActivated()	method,	357

WindowAdapter	class,	358,	456

windowClosed()	method,	357

windowClosing()	method,	357

windowDeactivated()	method,	357

windowDeiconified()	method,	357

window	events,	340,	357

windowIconified()	method,	357

WindowListener	event	listener,	340,	357

WindowListener	interface,	455

windowOpened()	method,	357

windows

absolute	component	placement,	334

frames

closing,	259-260

developing	framework,	260-261

displaying,	258

locations,	258

sizing,	257

visible,	258

layout	managers.	See	layout	managers

Windows

command-line	interface,	619-621

creating	folders,	622-623

opening	folders,	621-622

running	programs,	623

installing	Java	Development	Kit	(JDK),	617-619

Java	programs

compiling	in,	631-632

running	in,	631-632

Windows	7-10

CLASSPATH	variable,	633-635

PATH	variable,	625-627

Windows	98/Me

CLASSPATH	variable,	635-636

PATH	variable,	627-628

wizard	interfaces,	327

Word,	629

WordPad,	628

word	processors.	See	text	editors

workbench.rss,	526

wrap()	method,	484

wrapper	classes,	134

writeBoolean()	method,	433

writeByte()	method,	433

writeDouble()	method,	433

writeFloat()	method,	433

writeInt()	method,	433

writeLong()	method,	433

write()	method

buffered	character	streams,	441

buffered	output	streams,	428

character	streams,	440

char	versus	int	data	types,	445

file	output	streams,	425

filters,	421

streams,	421

XML	documents,	541

Writer	class,	437

writeShort()	method,	433

writing

applications,	threaded,	211-217

apps	in	Android	Studio,	575-577

buffered	character	streams,	440

to	buffered	output	streams,	428

bytes,	multiple,	425

database	records,	514-521

data	output	streams,	433

Java	code	in	Android	Studio,	584-591

to	streams,	421

text	files,	440-441

X–Z
XML	(Extensible	Markup	Language),	525

advantages,	526

dialects,	designing,	528-529

documents

creating,	532-535

formatting,	540-542

modifying,	536-540

files,	editing,	576-577

processing

evaluating	XOM,	542-545

with	Java,	530

with	XOM,	530-532

reason	for	name,	546

RSS	and,	526

tags,	401,	527-528

validating,	529

well-formed	XML,	528

XML	Object	Model.	See	XOM

XML-RPC,	549-551

Apache	XML-RPC

data	types	supported,	565

installing,	554-556

clients,	556-559

data	types	supported,	550

debuggers,	554

requests

responding	to,	553-554

sending,	551-552

servers,	559-564

XmlRpcClient	class,	556

XmlRpcServer	class,	559

?xml	tag,	527

XOM	(XML	Object	Model),	530-532

adding	to	NetBeans,	532

creating	XML	documents,	532-535

evaluating,	542-545

formatting	XML	documents,	540-542

licensing,	531

modifying	XML	documents,	536-540

principles,	531

XOR	operator,	58

XYZ	color	system,	375

zero-based	methods,	77

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	How This Book Is Organized
	Who Should Read This Book
	Conventions Used in This Book

	Week I: The Java Language
	Day 1. Getting Started with Java
	The Java Language
	History of the Language
	Introduction to Java
	Selecting a Development Tool

	Object-Oriented Programming
	Objects and Classes
	Attributes and Behavior
	Attributes of a Class of Objects
	Behavior of a Class of Objects
	Creating a Class
	Running the Program

	Organizing Classes and Class Behavior
	Inheritance
	Creating a Class Hierarchy
	Inheritance in Action
	Interfaces
	Packages

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 2. The ABCs of Programming
	Statements and Expressions
	Variables and Data Types
	Creating Variables
	Naming Variables
	Variable Types
	Assigning Values to Variables
	Constants

	Comments
	Literals
	Number Literals
	Boolean Literals
	Character Literals
	String Literals

	Expressions and Operators
	Arithmetic
	More About Assignment
	Incrementing and Decrementing
	Comparisons
	Logical Operators
	Operator Precedence

	String Arithmetic
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 3. Working with Objects
	Creating New Objects
	Using new
	How Objects Are Constructed
	A Note on Memory Management

	Using Class and Instance Variables
	Getting Values
	Setting Values
	Class Variables

	Calling Methods
	Formatting Strings
	Nesting Method Calls
	Class Methods

	References to Objects
	Casting Objects and Primitive Types
	Casting Primitive Types
	Casting Objects
	Converting Primitive Types to Objects and Vice Versa

	Comparing Object Values and Classes
	Comparing Objects
	Determining the Class of an Object

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 4. Lists, Logic, and Loops
	Arrays
	Declaring Array Variables
	Creating Array Objects
	Accessing Array Elements
	Changing Array Elements
	Multidimensional Arrays
	Block Statements

	If Conditionals
	Switch Conditionals
	The Ternary Operator
	For Loops
	While and Do Loops
	While Loops
	Do-While Loops

	Breaking Out of Loops
	Labeled Loops

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 5. Creating Classes and Methods
	Defining Classes
	Creating Instance and Class Variables
	Defining Instance Variables
	Class Variables

	Creating Methods
	Defining Methods
	The this Keyword
	Variable Scope and Method Definitions
	Passing Arguments to Methods
	Class Methods

	Creating Java Applications
	Helper Classes

	Java Applications and Arguments
	Passing Arguments to Java Applications
	Handling Arguments in Your Java Application

	Creating Methods with the Same Name
	Constructors
	Basic Constructors
	Calling Another Constructor
	Overloading Constructors

	Overriding Methods
	Creating Methods That Override Existing Methods
	Calling the Original Method
	Overriding Constructors

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 6. Packages, Interfaces, and Other Class Features
	Modifiers
	Access Control for Methods and Variables

	Static Variables and Methods
	Final Classes, Methods, and Variables
	Variables
	Methods
	Classes

	Abstract Classes and Methods
	Packages
	The import Declaration
	Class Name Conflicts

	Creating Your Own Packages
	Picking a Package Name
	Creating the Folder Structure
	Adding a Class to a Package
	Packages and Class Access Control

	Interfaces
	The Problem of Single Inheritance
	Interfaces and Classes
	Implementing and Using Interfaces
	Implementing Multiple Interfaces
	Other Uses of Interfaces

	Creating and Extending Interfaces
	New Interfaces
	Methods Inside Interfaces
	Extending Interfaces
	Creating an Online Storefront

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 7. Exceptions and Threads
	Exceptions
	Exception Classes

	Managing Exceptions
	Exception Consistency Checking
	Protecting Code and Catching Exceptions
	The finally Clause

	Declaring Methods That Might Throw Exceptions
	The throws Clause
	Which Exceptions Should You Throw?
	Passing on Exceptions
	throws and Inheritance

	Creating and Throwing Exceptions
	Throwing Exceptions
	Creating Your Own Exceptions
	Combining throws, try, and throw

	When Not to Use Exceptions
	Bad Style Using Exceptions

	Threads
	Writing a Threaded Program
	A Threaded Application
	Stopping a Thread

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Week II: The Java Class Library
	Day 8. Data Structures
	Moving Beyond Arrays
	Java Structures
	Iterator
	Bit Sets
	Array Lists
	Looping Through Data Structures
	Stacks
	Map
	Hash Maps

	Generics
	Enumerations
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 9. Working with Swing
	Creating an Application
	Creating an Interface
	Developing a Framework
	Creating a Component
	Adding Components to a Container

	Working with Components
	Image Icons
	Labels
	Text Fields
	Text Areas
	Scrolling Panes
	Check Boxes and Radio Buttons
	Combo Boxes

	Lists
	The Java Class Library
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 10. Building a Swing Interface
	Swing Features
	Standard Dialog Boxes
	Using Dialog Boxes
	Sliders
	Scroll Panes
	Toolbars
	Progress Bars
	Menus
	Tabbed Panes

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 11. Arranging Components on a User Interface
	Basic Interface Layout
	Laying Out an Interface
	Flow Layout
	Box Layout
	Grid Layout
	Border Layout

	Mixing Layout Managers
	Card Layout
	Using Card Layout in an Application
	Cell Padding and Insets

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 12. Responding to User Input
	Event Listeners
	Setting Up Components
	Event-Handling Methods

	Working with Methods
	Action Events
	Focus Events
	Item Events
	Key Events
	Mouse Events
	Mouse Motion Events
	Window Events
	Using Adapter Classes
	Using Inner Classes

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 13. Creating Java2D Graphics
	The Graphics2D Class
	The Graphics Coordinate System

	Drawing Text
	Improving Fonts and Graphics with Antialiasing
	Finding Information About a Font

	Color
	Using Color Objects
	Testing and Setting the Current Colors

	Drawing Lines and Polygons
	User and Device Coordinate Spaces
	Specifying the Rendering Attributes
	Creating Objects to Draw
	Drawing Objects

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 14. Developing Swing Applications
	Java Web Start
	Using Java Web Start
	Creating a JNLP File
	Supporting Web Start on a Server
	Additional JNLP Elements

	Improving Performance with SwingWorker
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Week III: Java Programming
	Day 15. Working with Input and Output
	Introduction to Streams
	Using a Stream
	Filtering a Stream
	Handling Exceptions

	Byte Streams
	File Streams

	Filtering a Stream
	Byte Filters

	Character Streams
	Reading Text Files
	Writing Text Files

	Files and Paths
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 16. Using Inner Classes and Closures
	Inner Classes
	Anonymous Inner Classes

	Closures
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 17. Communicating Across the Internet
	Networking in Java
	Opening a Stream Over the Net
	Sockets
	Socket Servers
	Testing the Server

	The java.nio Package
	Buffers
	Channels

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 18. Accessing Databases with JDBC 4.2 and Derby
	Java Database Connectivity
	Database Drivers
	Examining a Database
	Reading Records from a Database
	Writing Records to a Database
	Moving Through Resultsets

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 19. Reading and Writing RSS Feeds
	Using XML
	Designing an XML Dialect
	Processing XML with Java
	Processing XML with XOM
	Creating an XML Document
	Modifying an XML Document
	Formatting an XML Document
	Evaluating XOM

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 20. XML Web Services
	Introduction to XML-RPC
	Communicating with XML-RPC
	Sending a Request
	Responding to a Request

	Choosing an XML-RPC Implementation
	Using an XML-RPC Web Service
	Creating an XML-RPC Web Service
	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Day 21. Writing Android Apps with Java
	The History of Android
	Writing an Android App
	Organizing an Android Project
	Creating the Program

	Running the App
	Designing an Android App
	Preparing Resources
	Configuring a Manifest File
	Designing the Graphical User Interface
	Writing Code

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

	Week IV: Appendices
	Appendix A. Using the NetBeans Integrated Development Environment
	Installing NetBeans
	Creating a New Project
	Creating a New Java Class
	Running the Application
	Fixing Errors
	Expanding and Shrinking a Pane
	Exploring NetBeans

	Appendix B. This Book’s Website
	Appendix C. Fixing a Problem with the Android Studio Emulator
	Problems Running an App
	Install HAXM in Android Studio
	Install HAXM on Your Computer
	Checking BIOS Settings

	Appendix D. Using the Java Development Kit
	Choosing a Java Development Tool
	Installing the Java Development Kit

	Configuring the Java Development Kit
	Using a Command-Line Interface
	Opening Folders in MS-DOS
	Creating Folders in MS-DOS
	Running Programs in MS-DOS
	Correcting Configuration Errors

	Using a Text Editor
	Creating a Sample Program
	Compiling and Running the Program in Windows

	Setting Up the CLASSPATH Variable
	Setting the Classpath on Most Windows Versions
	Setting the CLASSPATH on Windows 98 or Me

	Appendix E. Programming with the Java Development Kit
	Overview of the JDK
	The java Virtual Machine
	The javac Compiler
	The appletviewer Browser
	The javadoc Documentation Tool
	The jar Java File Archival Tool
	The jdb Debugger
	Debugging Applications
	Debugging Applets
	Advanced Debugging Commands

	Using System Properties
	The keytool and jarsigner Code Signing Tools

	Index
	Code Snippets

