

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB
and its many features varies across reading devices and applications. Use your device
or app settings to customize the presentation to your liking. Settings that you can
customize often include font, font size, single or double column, landscape or portrait
mode, and figures that you can click or tap to enlarge. For additional information about
the settings and features on your reading device or app, visit the device manufacturer’s
Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to view
code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Sams Teach Yourself
JavaScript®
in 24 Hours

Sixth Edition

Phil Ballard

 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself JavaScript in 24 Hours, Sixth Edition
Copyright © 2015 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33738-3

ISBN-10: 0-672-33738-X

Library of Congress Control Number: 2015905614

Printed in the United States of America

First Printing June 2015

Executive Editor
Mark Taber

Managing Editor
Sandra Schroeder

Senior Development Editor
Chris Zahn

Senior Project Editor
Tonya Simpson

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Debbie Williams

Publishing Coordinator
Vanessa Evans

Technical Editor
Siddhartha Singh

Cover Designer
Mark Shirar

Compositor
Bronkella Publishing

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents at a Glance

Introduction

PART I: First Steps with JavaScript

HOUR 1 Introducing JavaScript

2 Writing Simple Scripts

3 Using Functions

4 DOM Objects and Built-in Objects

PART II: Cooking with Code

HOUR 5 Numbers and Strings

6 Arrays

7 Program Control

PART III: Objects

HOUR 8 Object-Oriented Programming

9 Scripting with the DOM

10 Meet JSON

PART IV: HTML and CSS

HOUR 11 JavaScript and HTML5

12 JavaScript and CSS

13 Introducing CSS3

PART V: Using JavaScript Libraries

HOUR 14 Using Libraries

15 A Closer Look at jQuery

16 The jQuery UI User Interface Library

17 Ajax with jQuery

PART VI: Advanced Topics

HOUR 18 Reading and Writing Cookies

19 Coming Soon to JavaScript

20 Using Frameworks

21 JavaScript Beyond the Web Page

PART VII: Learning the Trade

HOUR 22 Good Coding Practice

23 Debugging Your Code

24 JavaScript Unit Testing

PART VIII: Appendices

A Tools for JavaScript Development

B JavaScript Quick Reference

Index

Table of Contents

Introduction

Part I: First Steps with JavaScript

HOUR 1: Introducing JavaScript
Web Scripting Fundamentals
Server- Versus Client-Side Programming
JavaScript in a Nutshell
Where JavaScript Came From
The <script> Tag
Introducing the DOM
Talking to the User
Summary
Q&A
Workshop
Exercises

HOUR 2: Writing Simple Scripts
Including JavaScript in Your Web Page
JavaScript Statements
Variables
Operators
Capturing Mouse Events
Summary
Q&A
Workshop
Exercises

HOUR 3: Using Functions
General Syntax
Calling Functions
Passing Arguments to Functions

Returning Values from Functions
Scope of Variables
Summary
Q&A
Workshop
Exercises

HOUR 4: DOM Objects and Built-in Objects
Interacting with the User
Selecting Elements by Their ID
Accessing Browser History
Using the location Object
Browser Information—The navigator Object
Dates and Times
Simplifying Calculation with the Math Object
Summary
Q&A
Workshop
Exercises

Part II: Cooking with Code

HOUR 5: Numbers and Strings
Numbers
Strings
Boolean Values
Summary
Q&A
Workshop
Exercises

HOUR 6: Arrays
Arrays
Summary
Q&A

Workshop
Exercise

HOUR 7: Program Control
Conditional Statements
Loops and Control Structures
Setting and Using Timers
Summary
Q&A
Workshop
Exercises

Part III: Objects

HOUR 8: Object-Oriented Programming
What Is Object-Oriented Programming?
Object Creation
Extending and Inheriting Objects Using prototype
Encapsulation
Using Feature Detection
Summary
Q&A
Workshop
Exercises

HOUR 9: Scripting with the DOM
DOM Nodes
Selecting Elements with getElementsByTagName()
Reading an Element’s Attributes
Mozilla’s DOM Inspector
Summary
Q&A
Workshop
Exercises

HOUR 10: Meet JSON
What Is JSON?
Accessing JSON Data
Data Serialization with JSON
JSON Data Types
Simulating Associative Arrays
Creating Objects with JSON
JSON Security
Summary
Q&A
Workshop
Exercises

Part IV: HTML and CSS

HOUR 11: JavaScript and HTML5
New Markup for HTML5
Some Important New Elements
Drag and Drop
Local Storage
Working with Local Files
Summary
Q&A
Workshop
Exercises

HOUR 12: JavaScript and CSS
A Ten-Minute CSS Primer
The DOM style Property
Accessing Classes Using className
The DOM styleSheets Object
Summary
Q&A
Workshop

Exercises

HOUR 13: Introducing CSS3
Vendor-Specific Properties and Prefixes
CSS3 Borders
CSS3 Backgrounds
CSS3 Gradients
CSS3 Text Effects
CSS3 Transitions, Transformations, and Animations
Referencing CSS3 Properties in JavaScript
Setting CSS3 Properties with Vendor Prefixes
Summary
Q&A
Workshop
Exercises

Part V: Using JavaScript Libraries

HOUR 14: Using Libraries
Why Use a Library?
What Sorts of Things Can Libraries Do?
Some Popular Libraries
Introducing prototype.js
Summary
Q&A
Workshop
Exercises

HOUR 15: A Closer Look at jQuery
Including jQuery in Your Pages
jQuery’s $(document).ready Handler
Selecting Page Elements
Working with HTML Content
Showing and Hiding Elements
Animating Elements

Command Chaining
Handling Events
Summary
Q&A
Workshop
Exercises

HOUR 16: The jQuery UI User Interface Library
What jQuery UI Is All About
How to Include jQuery UI in Your Pages
Interactions
Using Widgets
Summary
Q&A
Workshop
Exercises

HOUR 17: Ajax with jQuery
The Anatomy of Ajax
Using jQuery to Implement Ajax
Summary
Q&A
Workshop
Exercises

Part VI: Advanced Topics

HOUR 18: Reading and Writing Cookies
What Are Cookies?
The document.cookie Property
Cookie Ingredients
Writing a Cookie
A Function to Write a Cookie
Reading a Cookie
Deleting Cookies

Setting Multiple Values in a Single Cookie
Summary
Q&A
Workshop
Exercises

HOUR 19: Coming Soon to JavaScript
Classes
Arrow Functions
Modules
Using let and const
Template Strings
Access Arrays with for-of
Transpilation
Summary
Q&A
Workshop
Exercises

HOUR 20: Using Frameworks
Software Frameworks
Model-View-Controller (MVC) Architecture
Using an MVC Framework for Web Apps
The AngularJS Framework
Building an AngularJS Application
Summary
Q&A
Workshop
Exercises

HOUR 21: JavaScript Beyond the Web Page
JavaScript Outside the Browser
Writing Google Chrome Extensions
Going Further

Summary
Q&A
Workshop
Exercises

Part VII: Learning the Trade

HOUR 22: Good Coding Practice
Don’t Overuse JavaScript
Writing Readable and Maintainable Code
Graceful Degradation
Progressive Enhancement
Unobtrusive JavaScript
Feature Detection
Handling Errors Well
Summary
Q&A
Workshop
Exercises

HOUR 23: Debugging Your Code
An Introduction to Debugging
More Advanced Debugging
Summary
Q&A
Workshop
Exercises

HOUR 24: JavaScript Unit Testing
What Is Unit Testing?
Writing JavaScript for Unit Testing
The QUnit Test Suite
Summary
Q&A
Workshop

Exercises

Part VIII: Appendices

APPENDIX A: Tools for JavaScript Development
Editors
Validators
Debugging and Verifying Tools

APPENDIX B: JavaScript Quick Reference

Index

About the Author

Phil Ballard, the author of various Sams Teach Yourself titles, graduated in 1980 with
an honors degree in electronics from the University of Leeds, England. Following an
early career as a research scientist with a major multinational, he spent a few years in
commercial and managerial roles within the high technology sector, later working full
time as a software engineering consultant.
Operating as “The Mouse Whisperer” (www.mousewhisperer.co.uk), Ballard has spent
recent years involved solely in website and intranet design and development for an
international portfolio of clients, as well as writing numerous technical books and
articles.

http://www.mousewhisperer.co.uk

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.
We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.
Please note that we cannot help you with technical problems related to the topic of
this book.
When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.
Email: feedback@samspublishing.com
Mail: Sams Publishing
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

mailto:feedback@samspublishing.com

Reader Services

Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

Introduction

This introduction walks you through a few basic things before you begin reading,
including who this book was written for, why it was written, the conventions employed
in this book and in the Sams Teach Yourself series, how the content is organized, and
the tools you need to create JavaScript.

Who This Book Is For
If you’re interested in learning JavaScript, chances are that you’ve already gained at
least a basic understanding of HTML and web page design in general, and want to move
on to adding some extra interactivity to your pages. Or maybe you currently code in
another programming language, and want to see what additional capabilities JavaScript
can add to your armory.
If you’ve never tinkered with HTML at all, nor done any computer programming, it
would be helpful to browse through an HTML primer before getting into the book. Don’t
worry—HTML is very accessible, and you don’t need to be an expert in it to start
experimenting with the JavaScript examples in this book.
JavaScript is an ideal language to use for your first steps in programming, and in case
you get bitten by the bug, pretty much all of the fundamental concepts that you learn in
JavaScript will later be applicable in a wide variety of other languages such as C, Java,
and PHP.

The Aims of This Book
When JavaScript was first introduced, it was somewhat limited in what it could do.
With basic features and rather haphazard browser support, it gained a reputation in
some quarters as being something of a toy or gimmick. Now, due to much better browser
support for W3C standards and improvement in the JavaScript implementations used in
recent browsers, JavaScript is finally being treated as a serious programming language.
Many advanced programming disciplines used in other programming languages can
readily be applied to JavaScript; for example, object-oriented programming promotes
the writing of solid, readable, maintainable, and reusable code.
So-called “unobtrusive” scripting techniques and the use of DOM scripting focus on
adding interaction to web pages while keeping the HTML simple to read and well
separated from the program code.
This book aims to teach the fundamental skills relevant to all of the important aspects of
JavaScript as it’s used today. In the course of the book, you start from basic concepts
and gradually learn the best practices for writing JavaScript programs in accordance
with current web standards.

Conventions Used
All of the code examples in the book are written as HTML5. For the most part, though,
the code avoids using HTML5-specific syntax, since at the time of writing its support in
web browsers is still not universal. The code examples should work correctly in
virtually any recent web browser, regardless of the type of computer or operating
system.
In addition to the main text of each lesson, you will find a number of boxes labeled as
Notes, Tips, and Cautions.

Note
These sections provide additional comments that might help you to understand the
text and examples.

Tip
These blocks give additional hints, shortcuts, or workarounds to make coding
easier.

Caution
Avoid common pitfalls by using the information in these blocks.

Try it Yourself
Each hour contains at least one section that walks you through the process of
implementing your own script. This will help you to gain confidence in writing
your own JavaScript code based on the techniques you’ve learned.

Q&A, Workshop, and Exercises
After each hour’s lesson, you’ll find three final sections.

 The “Q&A” section tries to answer a few of the more common questions about the
hour’s topic.
 The “Workshop” section includes a quiz that tests your knowledge of what you
learned in that lesson. Answers to the quiz items are conveniently provided
immediately following the quiz.
 The “Exercises” section offers suggestions for further experimentation, based on

the lesson, that you might like to try on your own.

How the Book Is Organized
The book is divided into seven parts, gradually increasing in the complexity of the
techniques taught.

 Part I—First Steps with JavaScript
An introduction to the JavaScript language and how to write simple scripts using
the language’s common functions. This part of the book is aimed mainly at readers
with little or no prior programming knowledge, and no knowledge of the
JavaScript language.
 Part II—Cooking with Code
Here JavaScript’s data types are introduced, such as numbers, strings, and arrays.
More sophisticated programming paradigms such as program control loops and
timers are also covered.
 Part III—Objects
This part of the book concentrates on creating and handling objects, including
navigating and editing the objects belonging to the DOM (Document Object
Model).
 Part IV—HTML and CSS
Here you learn in greater depth how JavaScript can interact with HTML
(including HTML5) and CSS (Cascading Style Sheets), including the latest CSS3
specification.
 Part V—Using JavaScript Libraries
In this part of the book you learn how to simplify cross-browser development
using third-party libraries such as jQuery.
 Part VI—Advanced Topics
This part of the book covers reading and writing cookies, looks at what’s new in
JavaScript via the ECMAScript 6 specification, introduces the use of frameworks
such as AngularJS, and shows examples of using JavaScript beyond its use in web
pages.
 Part VII—Learning the Trade
In the final part you explore aspects of professional JavaScript development such
as good coding practices, JavaScript debugging, and unit testing.

Tools You’ll Need
Writing JavaScript does not require any expensive and complicated tools such as

Integrated Development Environments (IDEs), compilers, or debuggers.
The examples in this book can all be created in a text-editing program, such as the
Windows Notepad program. At least one such application ships with just about every
operating system, and countless more are available for no or low cost via download
from the Internet.

Note
Appendix A, “Tools for JavaScript Development,” lists some additional, easily
obtainable tools and resources for use in JavaScript development.

To see your program code working, you’ll need a web browser such as Internet
Explorer, Mozilla Firefox, Opera, Safari, or Google Chrome. It is recommended that
you upgrade your browser to the latest current stable version.
The vast majority of the book’s examples do not need an Internet connection to function.
Simply storing the source code file in a convenient location on your computer and
opening it with your chosen browser is generally sufficient. The exceptions to this are
the hour on cookies and the examples in the book that demonstrate Ajax; to explore all
of the sample code will require a web connection (or a connection to a web server on
your local area network) and a little web space in which to post the sample code. If
you’ve done some HTML coding, you may already have that covered; if not, a hobby-
grade web hosting account costs very little and will be more than adequate for trying out
the examples in this book. (Check that your web host allows you to run scripts written in
the PHP language if you want to try out the Ajax examples in Part V. Nearly all hosts
do.)

Part I: First Steps with JavaScript

Hour 1. Introducing JavaScript

What You’ll Learn in This Hour:
 About server-side and client-side programming
 How JavaScript can improve your web pages
 The history of JavaScript
 The basics of the Document Object Model (DOM)
 What the window and document objects are
 How to add content to your web pages using JavaScript
 How to alert the user with a dialog box

The modern Web has little to do with its original, text-only ancestor. Modern web pages
can involve audio, video, animated graphics, interactive navigation, and much more—
and more often than not, JavaScript plays a big part in making it all possible.
In this first hour we describe what JavaScript is, briefly review the language’s origins,
and consider the kinds of things it can do to improve your web pages. You also dive
right in and write some working JavaScript code.

Web Scripting Fundamentals
Since you’ve picked up this book, there’s a pretty good chance that you’re already
familiar with using the World Wide Web and have at least a basic understanding of
writing web pages in some variant of HTML.
HTML (Hypertext Markup Language) is not a programming language but (as the name
indicates) a markup language; we can use it to mark parts of our page to indicate to the
browser that these parts should be shown in a particular way—bold or italic text, for
instance, or as a heading, a list of bullet points, arranged as a table of data, or using
many other markup options.
Once written, these pages by their nature are static. They can’t respond to user actions,
make decisions, or modify the display of their page elements. The markup they contain
will always be interpreted and displayed in the same way whenever the page is visited
by a user.
As you know from using the World Wide Web, modern websites can do much more; the
pages we routinely visit are often far from static. They can contain “live” data, such as
share prices or flight arrival times, animated displays with changing colors and fonts, or
interactive capabilities such as the ability to click through a gallery of photographs or
sort a column of data.

These clever capabilities are provided to the user by programs—often known as
scripts—operating behind the scenes to manipulate what’s displayed in the browser.

Note
The term script has no doubt been borrowed from the world of theater and TV,
where the script defines the actions of the presenters or performers. In the case of
a web page, the protagonists are the elements on the page, with a script provided
by a scripting language such as, in this case, JavaScript. Program and script are,
for our purposes, pretty much interchangeable terms, as are programming and
scripting. You’ll find all of these used in the course of the book.

Server- Versus Client-Side Programming
There are two fundamental ways of adding scripts to otherwise static web content:

 You can have the web server execute a script before delivering your page to the
user. Such scripts can define what information is sent to the browser for display to
the user—for example, by retrieving product prices from the database of an online
store, checking a user’s identity credentials before logging her into a private area
of the website, or retrieving the contents of an email mailbox. These scripts are
generally run at the web server before generating the requested web page and
serving it to the user. You won’t be surprised to learn that we refer to this as
server-side scripting.
 Alternatively, the scripts themselves, rather than being run on the server, can be
delivered to the user’s browser along with the code of the page. Such scripts are
then executed by the browser and operate on the page’s already-delivered content.
The many functions such scripts can perform include animating page sections,
reformatting page layouts, allowing the user to drag-and-drop items within a page,
validating user input on forms, redirecting users to other pages, and much more.
You have probably already guessed that this is referred to as client-side
scripting, and you’re correct.

This book is all about JavaScript, the most-used language for client-side scripting on the
Internet.

Note
There is, in fact, an elegant way to incorporate output from server-side scripts
into your client-side JavaScript programs. We look at this in Part V, “Using
JavaScript Libraries,” when we study a technique called Ajax.

JavaScript in a Nutshell

Note
Although the names are similar, JavaScript doesn’t have much, if anything, to do
with the Java language developed by Sun Microsystems. The two languages share
some aspects of syntax, but no more so than either of them do with a whole host
of other programming languages.

A program written in JavaScript can access the elements of a web page, and the
browser window in which it is running, and perform actions on those elements, as well
as create new page elements. A few examples of JavaScript’s capabilities include

 Opening new windows with a specified size, position, and style (for example,
whether the window has borders, menus, toolbars, and so on)
 Providing user-friendly navigation aids such as drop-down menus
 Validation of data entered into a web form to make sure that it is of an acceptable
format before the form is submitted to the web server
 Changing how page elements look and behave when particular events occur, such
as the mouse cursor moving over them
 Detecting and exploiting advanced features supported by the particular browser
being used, such as third-party plug-ins, or native support for new technologies

Because JavaScript code runs locally inside the user’s browser, the page tends to
respond quickly to JavaScript instructions, enhancing the user’s experience and making
the application seem more like one of the computer’s native applications rather than
simply a web page. Also, JavaScript can detect and utilize certain user actions that
HTML can’t, such as individual mouse clicks and keyboard actions.
Virtually every web browser in common use has support for JavaScript.

Where JavaScript Came From
The ancestry of JavaScript dates back to the mid 1990s, when version 1.0 was
introduced for Netscape Navigator 2.
The European Computer Manufacturers Association (ECMA) became involved,
defining ECMAScript, the great-granddaddy of the current language. At the same time,
Microsoft introduced jScript, its own version of the language, for use in its Internet
Explorer range of browsers.

Tip
ECMA continues to issue updated versions of the ECMAScript language

standard. At the time of writing, ECMAScript 6 is nearing its final version, and in
Part VI, “Advanced Topics,” you can read about some of the new language
features soon to become available.

Note
JavaScript is not the only client-side scripting language. Microsoft browsers
have supported (in addition to jScript, Microsoft’s version of JavaScript) a
scripting-oriented version of the company’s own Visual Basic language, called
VBScript.
JavaScript, however, has much better browser support; a version of JavaScript is
supported by nearly every modern browser.

The Browser Wars
In the late 1990s, Netscape Navigator 4 and Internet Explorer 4 both claimed to offer
major improvements over earlier browser versions in terms of what could be achieved
with JavaScript.
Unfortunately, the two sets of developers had gone in separate directions, each defining
its own additions to the JavaScript language, and how it interacted with your web page.
This ludicrous situation forced developers to essentially write two versions of each of
their scripts, and use some clumsy and often error-prone routines to try to determine
which browser was being used to view the page, and subsequently switch to the most
appropriate version of their JavaScript code.

Note
The World Wide Web Consortium (W3C) is an international community that
exists to develop open standards to support the long-term growth of the World
Wide Web. Its website at http://www.w3.org/ is a vast resource of information
and tools relating to web standards.

Thankfully, the World Wide Web Consortium (the W3C) worked hard with the
individual browser manufacturers to standardize the way web pages were constructed
and manipulated, by means of the Document Object Model (DOM). Level 1 of the new
standardized DOM was completed in late 1998, and Level 2 in late 2000.
Don’t worry if you’re not sure what the DOM is or what it does—you learn a lot about
it later this hour and through the course of this book.

The <script> Tag

http://www.w3.org/

The <script> Tag
Whenever the page is requested by a user, any JavaScript programs it contains are
passed to the browser along with page content.

Note
JavaScript is an interpreted language, rather than a compiled language such as
C++ or Java. The JavaScript instructions are passed to the browser as plain text
and are interpreted sequentially; they do not need to first be “compiled” into
condensed machine code only readable by the computer’s processor. This offers
big advantages in that JavaScript programs are easy to read, can be edited
swiftly, and their operation can be retested simply by reloading the web page in
the browser.

You can include JavaScript statements directly into your HTML code by placing them
between <script> and </script> tags within the HTML:
Click here to view code image

<script>
 ... JavaScript statements ...
</script>

The examples in this book are all written to validate correctly as HTML5, in which no
obligatory attributes are specified for the <script> element (the type attribute is
optional in HTML5, and has been excluded from the examples in this book to aid
clarity). However, if you write JavaScript for inclusion in HTML 4.x or XHTML pages,
you should add the type attribute to your <script> elements:
Click here to view code image

<script type="text/javascript">
 ... JavaScript statements ...
</script>

You’ll also occasionally see <script> elements having the attribute
language="JavaScript". This has long been deprecated, so unless you think you
need to support ancient browsers such as Navigator and Mosaic, there’s no need to
continue writing code like this.

Note
The term deprecated is applied to software features or practices to indicate that
they are best avoided, usually because they have been superseded.
Although still supported to provide backward compatibility, their deprecated
status often implies that such features will be removed in the near future.

The examples in this hour place their JavaScript code within the body section of the
document, but JavaScript code can appear elsewhere in the document too; you can also
use the <script> element to load JavaScript code saved in an external file. We
discuss how to include JavaScript in your pages in much more detail in Hour 2,
“Writing Simple Scripts.”

Introducing the DOM
A Document Object Model (DOM) is a conceptual way of visualizing a document and
its contents.
Each time your browser is asked to load and display a page, it needs to interpret (we
usually use the word “parse”) the source code contained in the HTML file comprising
the page. As part of this parsing process, the browser creates a type of internal model
known as a DOM representation based on the content of the loaded document. It is this
model that the browser then refers to when rendering the visible page. You can use
JavaScript to access and edit the various parts of the DOM representation, at the same
time changing the way the user sees and interacts with the page in view.
In the early days, JavaScript provided rather primitive access to certain parts of a web
page. JavaScript programs could gain access, for example, to the images and forms
contained in a web page; a JavaScript program could contain statements to select “the
second form on the page” or “the form called ‘registration’.”
Web developers sometimes refer to this as DOM Level 0, in backward-compatible
homage to the W3C’s subsequent Level 1 DOM definition. As well as DOM Level 0,
you might also see reference to the BOM, or Browser Object Model. Since then, the
W3C has gradually extended and improved the DOM specification. The W3C’s much
more ambitious definition has produced a DOM that is valid not just for web pages and
JavaScript, but for any programming language and for XML, in addition to HTML,
documents.

Note
In this book, we concentrate on the W3C’s DOM Levels 1 and 2 DOM
definitions. If you’re interested in the details of the various DOM levels, you can
find a good overview at https://developer.mozilla.org/en/DOM_Levels.

The W3C and Standards Compliance
The browser vendors have incorporated much-improved support for DOM in their most
recent versions. At the time of writing, Internet Explorer is shipping in version 11,
Netscape Navigator has been reborn as Mozilla Firefox (currently in version 35.0), and
other competitors in the market include Opera, Konqueror, Apple’s Safari, and

https://developer.mozilla.org/en/DOM_Levels

Google’s Chrome and Chromium. All of these offer excellent support for the DOM.
The situation has improved markedly for web developers. Apart from a few irritating
quirks, we can now largely forget about writing special code for individual browsers
provided that we follow the DOM standards.

Note
The use of early browsers such as Netscape Navigator (any version) and Internet
Explorer up to version 5.5 has now virtually disappeared. This book concentrates
on more modern browsers that are compatible with DOM Level 1 or better, such
as Internet Explorer 9+, Firefox, Google Chrome, Apple Safari, Opera, and
Konqueror. You are recommended to upgrade your browser to the latest stable
version.

The window and document Objects
Each time your browser loads and displays a page, it creates in memory an internal
representation of the page and all its elements, the DOM. In the DOM, elements of your
web page have a logical, hierarchical structure, like a tree of interconnected parent and
child objects. These objects, and their interconnections, form a conceptual model of the
web page and the browser that contains and displays it. Each object also has a list of
properties that describe it, and a number of methods we can use to manipulate those
properties using JavaScript.
Right at the top of the hierarchical tree is the browser window object. This object is a
parent or ancestor to everything else in the DOM representation of your page.
The window object has various child objects, some of which are visualized in Figure
1.1. The first child object shown in Figure 1.1, and the one we’ll use most in this book,
is the document object. Any HTML page loaded into the browser creates a
document object containing all of the HTML and other resources that go into making
up the displayed page. All of this information is accessible via JavaScript as a parent-
child hierarchy of objects, each with its own properties and methods.

FIGURE 1.1 The window object and some of its children

The other children of the window object visible in Figure 1.1 are the location
object (containing details of the URL of the currently loaded page), the history
object (containing details of the browser’s previously visited pages), and the
navigator object (which stores details of the browser type, version, and
capabilities). We look in detail at these objects in Hour 4, “DOM Objects and Built-In
Objects,” and use them again at intervals throughout the book, but for now let’s
concentrate on the document object.

Object Notation
The notation we use to represent objects within the tree uses the dot or period:

parent.child

As an example, referring to Figure 1.1, the location object is a child of the window
object, so in the DOM it is referred to like this:

window.location

Tip
This notation can be extended as many times as necessary to represent any object
in the tree. For example
object1.object2.object3

represents object3, whose parent is object2, which is itself a child of
object1.

The <body> section of your HTML page is represented in the DOM as a child element
of the document object; we would access it like this:

window.document.body

The last item in the sequence can also be, instead of another object, a property or
method of the parent object:

object1.object2.property
object1.object2.method

For example, let’s suppose that we want to access the title property of the current
document, as specified by the HTML <title>...</title> tags. We can simply
use

window.document.title

Note
Don’t worry if object hierarchy and dot notation don’t seem too clear right now.
You’ll be seeing many examples in the course of the book!

Tip
The window object always contains the current browser window, so you can
refer to window.document to access the current document. As a shortcut, you
can also simply use document instead of window.document—this also
refers to the current document.
If you have several windows open, or if you are using a frameset, there will be a
separate window and document object for each window or frame. To refer to
one of these documents, you need to use the relevant window name and document
name belonging to the window or frame in question.

Talking to the User
Let’s take a look at some of the methods associated with the window and document
objects. We begin with two methods, each of which provides a means to talk to the user.

window.alert()
Even if you don’t realize it, you’ve seen the results of the window object’s alert
method on many occasions. The window object, you’ll recall, is at the top of the DOM
hierarchy, and represents the browser window that’s displaying your page. When you
call the alert() method, the browser pops open a dialog displaying your message,
along with an OK button. Here’s an example:
Click here to view code image

<script>window.alert("Here is my message");</script>

This is our first working example of the dot notation. Here we are calling the alert()
method of the window object, so our object.method notation becomes
window.alert.

Tip
In practice, you can leave out the window. part of the statement. Because the
window object is the top of the DOM hierarchy (it’s sometimes referred to as
the global object), any methods called without direct reference to their parent
object are assumed to belong to window. So

Click here to view code image

<script>alert("Here is my message");</script>

works just as well.

Notice that the line of text inside the parentheses is contained within quotation marks.
These can be single or double quotes, but they must be there, or an error will be
produced.
This line of code, when executed in the browser, pops up a dialog like the one in Figure
1.2.

FIGURE 1.2 A window.alert() dialog

Tip
Figure 1.2 shows the alert generated by the Chrome browser running on Ubuntu
Linux. The appearance of the dialog changes in detail depending on the particular
browser, operating system, and display options you are using, but it always
contains the message along with a single OK button.

Tip
Until the user clicks OK, he is prevented from doing anything else with the page.

A dialog that behaves this way is known as a modal dialog.

document.write()
You can probably guess what the write method of the document object does, simply
from its name. This method, instead of popping up a dialog, writes characters directly
into the DOM of the document, as shown in Figure 1.3.
Click here to view code image

<script>document.write("Here is another message");</script>

FIGURE 1.3 Using document.write()

Note
In fact, document.write is a pretty dumb way to write content to the page—
it has a lot of limitations, both in terms of its function and in terms of coding style
and maintainability. It has largely fallen into disuse for “serious” JavaScript
programming. By the time you come to write more advanced JavaScript
programs, you’ll have learned much better ways to put content into your pages
using JavaScript and the DOM. However, we use document.write quite a
lot during Part I of the book, while you come to grips with some of the basic
principles of the language.

Try it Yourself: “Hello World!” in JavaScript
It seems almost rude to introduce a programming language without presenting the
traditional “Hello World” example. Have a look at the simple HTML document
of Listing 1.1.

LISTING 1.1 “Hello World!” in an alert() Dialog

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Hello from JavaScript!</title>
</head>
<body>
 <script>
 alert("Hello World!");
 </script>
</body>
</html>

Create a document called hello.html in your text editor, and enter the preceding
code. Save it to a convenient place on your computer, and then open it with your
web browser.

Caution
Some text editor programs might try to add a .txt extension to the filename you
specify. Be sure your saved file has the extension .html or the browser will
probably not open it correctly.

Many popular operating systems allow you to right-click on the icon of the
HTML file and choose Open With..., or similar wording. Alternatively, fire up
your chosen browser, and use the File > Open options from the menu bar to
navigate to your file and load it into the browser.
You should see a display similar to Figure 1.2, but with the message “Hello
World!” in the dialog. If you have more than one browser installed on your
computer, try them all, and compare the display—the dialogs will probably look
a little different, but the message, and the operation of the OK button, should be
just the same.

Caution
The default security settings in some browsers cause them to show a security
warning when they are asked to open local content, such as a file on your own
computer. If your browser does this, just choose the option that allows the content
to be shown.

Reading a Property of the document Object

You may recall from earlier in the hour that objects in the DOM tree have properties
and methods. You saw how to use the write method of the document object to
output text to the page—now let’s try reading one of the properties of the document
object. We’re going to use the document.title property, which contains the title as
defined in the HTML <title> element of the page.
Edit hello.html in your text editor, and change the call to the window.alert()
method:

alert(document.title);

Notice that document.title is NOT now enclosed in quotation marks—if it were,
JavaScript would infer that we wanted to output the string “document.title” as literal
text. Without the quote marks, JavaScript sends to the alert() method the value
contained in the document.title property. The result is shown in Figure 1.4.

FIGURE 1.4 Displaying a property of the document object

Summary
In this hour, you were introduced to the concepts of server-side and client-side scripting
and had a brief history lesson about JavaScript and the Document Object Model. You
had an overview of the sorts of things JavaScript can do to enhance your web pages and
improve the experience for your users.
Additionally, you learned about the basic structure of the Document Object Model, and
how JavaScript can access particular objects and their properties, and use the methods
belonging to those objects.
In the lessons that follow, we’ll build on these fundamental concepts to get into more
advanced scripting projects.

Q&A
Q. If I use server-side scripting (in a language such as PHP or ASP), can I still

use JavaScript on the client side?
A. Most definitely. In fact, the combination of server-side and client-side scripting

provides a potent platform, capable of producing powerful applications. Google’s
Gmail is a good example.

Q. How many different browsers should I test in?
A. As many as you practically can. Writing standards-compliant code that avoids

browser-specific features will go a long way toward making your code run
smoothly in different browsers. However, one or two minor differences between
browser implementations of certain features are likely to always exist.

Q. Won’t the inclusion of JavaScript code slow down the load time of my pages?
A. Yes, though usually the difference is small enough not to be noticeable. If you

have a particularly large piece of JavaScript code, you may feel it’s worthwhile
testing your page on the slowest connection a user is likely to have. Other than in
extreme circumstances, it’s unlikely to be a serious issue.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Is JavaScript a compiled or an interpreted language?

a. A compiled language
b. An interpreted language
c. Neither
d. Both

2. What extra tags must be added to an HTML page to include JavaScript
statements?
a. <script> and </script>
b. <type="text/javascript">
c. <!-- and -->

3. The top level of the DOM hierarchy is occupied by:
a. The document property
b. The document method
c. The document object

d. The window object

Answers
1. b. JavaScript is an interpreted language. The program code is written in plain

text, and the statements are read and executed one at a time.
2. a. JavaScript statements are added between <script> and </script> tags.
3. d. The window object is at the top of the DOM tree, and the document object

is one of its child objects.

Exercises
 In the “Try It Yourself” section of this hour, we used the line
alert(document.title);
to output the title property of the document object. Try rewriting that script
to instead output the document.lastModified property, which contains the
date and time that the web page was last changed. (Be careful—property names
are case sensitive. Note the capital M.) See whether you can then modify the code
to use document.write() in place of alert() to write the property
directly into the page, as in Figure 1.3.
 Try the example code from this hour in as many different browsers as you have
access to. What differences do you note in how the example pages are displayed?

Hour 2. Writing Simple Scripts

What You’ll Learn in This Hour:
 Various ways to include JavaScript in your web pages
 The basic syntax of JavaScript statements
 How to declare and use variables
 Using mathematical operators
 How to comment your code
 Capturing mouse events

You learned in Hour 1, “Introducing JavaScript,” that JavaScript is a scripting language
capable of making web pages more interactive.
In this hour you learn more about how JavaScript can be added to your web page, and
then about some of the fundamental syntax of your JavaScript programs such as
statements, variables, operators, and comments. You’ll also get your hands dirty with
more code examples.

Including JavaScript in Your Web Page
In the previous hour I said that JavaScript programs are passed to the browser along
with page content—but how do we achieve that? Actually there are two basic methods
for associating JavaScript code with your HTML page, both of which use the
<script></script> element introduced in Hour 1.
One method is to include the JavaScript statements directly into the HTML file, just like
we did in the previous hour:
Click here to view code image

<script>
 ... Javascript statements are written here ...
</script>

A second, and usually preferable way to include your code is to save your JavaScript
into a separate file, and use the <script> element to include that file by name using
the src (source) attribute:
Click here to view code image

<script src='mycode.js'></script>

The preceding example includes the file mycode.js, which contains our JavaScript
statements. If your JavaScript file is not in the same folder as the calling script, you can

also add a (relative or absolute) path to it:
Click here to view code image

<script src='/path/to/mycode.js'></script>

or
Click here to view code image

<script src='http://www.example.com/path/to/mycode.js'></script>

Placing your JavaScript code in a separate file offers some important advantages:
 When the JavaScript code is updated, the updates are immediately available to
any page using that same JavaScript file. This is particularly important in the
context of JavaScript libraries, which we look at later in the book.
 The code for the HTML page is kept cleaner, and therefore easier to read and
maintain.
 Performance is slightly improved because your browser caches the included file;
therefore, having a local copy in memory next time it is needed by this or another
page.

Note
It is customary to give files of JavaScript code the file extension .js, as in this
example. However, your included code files can have any extension, and the
browser will try to interpret the contents as JavaScript.

Caution
The JavaScript statements in the external file must NOT be surrounded by
<script> ... </script> tags, nor can you place any HTML markup
within the external file. Just include the raw JavaScript code.

Listing 2.1 shows the simple web page we used in Hour 1, but now with a file of
JavaScript code included in the <body> section. JavaScript can be placed in either the
head or body of the HTML page. In fact, it is more common—and generally
recommended—for JavaScript code to be placed in the head of the page, where it
provides a number of functions that can be called from elsewhere in the document. You
learn about functions in Hour 3, “Using Functions”; until then, we limit ourselves to
adding our example code into the body of the document.

LISTING 2.1 An HTML Document with a JavaScript File Included

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>A Simple Page</title>
</head>
<body>
 <p>Some content ...</p>
 <script src='mycode.js'></script>
</body>
</html>

When JavaScript code is added into the body of the document, the code statements are
interpreted and executed as they are encountered while the page is being rendered. After
the code has been read and executed, page rendering continues until the page is
complete.

Tip
You’re not limited to using a single script element—you can have as many of
them on your page as you need.

Note
You sometimes see HTML-style comment notation <!-- and --> inside
script elements, surrounding the JavaScript statements, like this:

Click here to view code image

<script>
 <!--
 ... Javascript statements are written here ...
 -->
</script>

This was for the benefit of ancient browsers that didn’t recognize the <script>
tag. This HTML “comment” syntax prevented such browsers from displaying the
JavaScript source code on the screen along with the page content. Unless you
have a reason to support very old browsers, this technique is no longer required.

JavaScript Statements
JavaScript programs are lists of individual instructions that we refer to as statements.
To interpret statements correctly, the browser expects to find each statement written on
a separate line:

this is statement 1
this is statement 2

Alternatively, they can be combined in the same line by terminating each with a
semicolon:
Click here to view code image

this is statement 1; this is statement 2;

To ease the readability of your code, and to help prevent hard-to-find syntax errors, it’s
good practice to combine both methods by giving each statement its own line and
terminating the statement with a semicolon:

this is statement 1;
this is statement 2;

Commenting Your Code
Some statements are not intended to be executed by the browser’s JavaScript
interpreter, but are there for the benefit of anybody who may be reading the code. We
refer to such lines as comments, and there are specific rules for adding comments to
your code.
A comment that occupies just a single line of code can be written by placing a double
forward slash before the content of the line:

// This is a comment

Note
JavaScript can also use the HTML comment syntax for single-line comments:
<!-- this is a comment -->

However, this is not commonly used in JavaScript programs.

To add a multiline comment in this way, we need to prefix every line of the comment:
// This is a comment
// spanning multiple lines

A more convenient way of entering multiline comments to your code is to prefix your
comment with /* and terminate it with */. A comment written using this syntax can
span multiple lines:

/* This comment can span
 multiple lines
 without needing
 to mark up every line */

Adding comments to your code is really a good thing to do, especially when you’re

writing larger or more complex JavaScript applications. Comments can act as
reminders to you, and also as instructions and explanations to anybody else reading your
code at a later date.

Note
It’s true that comments add a little to the size of your JavaScript source file, and
this can have an adverse effect on page-loading times. Generally the difference is
so small as to be barely noticeable, but if it really matters you can always strip
out all the comments from a “production” version of your JavaScript file—that is,
a version to use with live, rather than development, websites.

Variables
A variable can be thought of as a named “pigeon-hole” where we keep a particular
piece of data. Such data can take many different forms—an integer or decimal number, a
string of characters, or various other data types discussed later in this hour or in those
that follow. Our variables can be called pretty much anything we want, so long as we
only use alphanumeric characters, the dollar sign $, or underscores in the name.

Note
JavaScript is case sensitive—a variable called mypetcat is a different
variable from Mypetcat or MYPETCAT.
Many coders of JavaScript, and other programming languages, like to use the so-
called CamelCase convention (also called mixedCase, BumpyCaps, and various
other names) for variable names. In CamelCase, compound words or phrases
have the elements joined without spaces, with each element’s initial letter
capitalized except the first letter, which can be either upper- or lowercase. In this
example, the variable would be named MyPetCat or myPetCat.

Let’s suppose we have a variable called netPrice. We can set the value stored in
netPrice with a simple statement:

netPrice = 8.99;

We call this assigning a value to the variable. Note that we don’t have to declare the
existence of this variable before assigning a value, as we would have to in some other
programming languages. However, doing so is possible in JavaScript by using the var
keyword, and in most cases is good programming practice:

var netPrice;
netPrice = 8.99;

Alternatively we can combine these two statements conveniently and readably into one:
var netPrice = 8.99;

To assign a character string as the value of a variable, we need to include the string in
single or double quotes:
Click here to view code image

var productName = "Leather wallet";

We could then, for example, write a line of code sending the value contained in that
variable to the window.alert method:

alert(productName);

The generated dialog would evaluate the variable and display it (this time, in Mozilla
Firefox) as in Figure 2.1.

FIGURE 2.1 Displaying the value of variable productName

Tip
Choose readable variable names. Having variable names such as
productName and netPrice makes code much easier to read and maintain
than if the same variables were called var123 and myothervar49, even
though the latter names are entirely valid.

Operators
The values we have stored in our variables aren’t going to be much use to us unless we
can manipulate them in calculations.

Arithmetic Operations
First, JavaScript allows us to carry out operations using the standard arithmetic
operators of addition, subtraction, multiplication, and division.

var theSum = 4 + 3;

As you’ll have guessed, after this statement has been executed the variable theSum
will contain a value of 7. We can use variable names in our operations too:
Click here to view code image

var productCount = 2;
var subtotal = 14.98;
var shipping = 2.75;
var total = subtotal + shipping;

We can use JavaScript to subtract (-), multiply (*), and divide (/) in a similar manner:
Click here to view code image

subtotal = total – shipping;
var salesTax = total * 0.15;
var productPrice = subtotal / productCount;

To calculate the remainder from a division, we can use JavaScript’s modulus division
operator. This is denoted by the % character:
Click here to view code image

var itemsPerBox = 12;
var itemsToBeBoxed = 40;
var itemsInLastBox = itemsToBeBoxed % itemsPerBox;

In this example, the variable itemsInLastBox would contain the number 4 after the
last statement completes.
JavaScript also has convenient operators to increment (++) or decrement (--) the value
of a variable:

productCount++;

is equivalent to the statement
Click here to view code image

productCount = productCount + 1;

Similarly,
items--;

is just the same as
items = items – 1;

Tip
If you need to increment or decrement a variable by a value other than one,
JavaScript also allows you to combine other arithmetic operators with the =
operator; for example, += and -=.

The following two lines of code are equivalent:
total = total + 5;
total += 5;

So are these two:
counter = counter - step;
counter -= step;

We can use this notation for other arithmetic operators, such as multiplication and
division:

price = price * uplift;
price *= uplift;

A more comprehensive list of JavaScript’s arithmetic operators appears in Appendix B,
“JavaScript Quick Reference.”

Operator Precedence
When you use several operators in the same calculation, JavaScript uses precedence
rules to determine in what order the calculation should be done. For example, consider
the statement

var average = a + b + c / 3;

If, as the variable’s name implies, you’re trying to calculate an average, this would not
give the desired result; the division operation would be carried out on c before adding
the values of a and b to the result. To calculate the average correctly, we would have to
add parentheses to our statement, like this:
Click here to view code image

var average = (a + b + c) / 3;

If you have doubts about the precedence rules, I would recommend that you always use
parentheses liberally. There is no cost to doing so, it makes your code easier to read
(both for you and for anyone else who later has to edit or decipher it), and it ensures that
precedence issues don’t spoil your calculations.

Note
If you have programming experience in another language such as PHP or Java,
you’ll find that the precedence rules in JavaScript are pretty much identical to the
ones you’re used to. You can find detailed information on JavaScript precedence
at http://msdn.microsoft.com/en-us/library/z3ks45k7(v=vs.94).aspx.

Using the + Operator with Strings

http://msdn.microsoft.com/en-us/library/z3ks45k7(v=vs.94).aspx

Using the + Operator with Strings
Arithmetic operators don’t make much sense if the variables they operate on contain
strings rather than numeric values. The exception is the + operator, which JavaScript
interprets as an instruction to concatenate (join together sequentially) two or more
strings:
Click here to view code image

var firstname = "John";
var surname = "Doe";
var fullname = firstname + " " + surname;
// the variable fullname now contains the value "John Doe"

If you try to use the + operator on two variables, one of which is a string and the other
numeric, JavaScript converts the numeric value to a string and concatenates the two:

var name = "David";
var age = 45;
alert(name + age);

Figure 2.2 shows the result of using the + operator on a string and a numeric value.

FIGURE 2.2 Concatenating a string and a numeric value

We talk about JavaScript data types, and string operations in general, much more in
Hour 5, “Numbers and Strings.”

Try it Yourself: Convert Celsius to Fahrenheit
To convert a temperature in degrees Celsius to one measured in degrees
Fahrenheit, we need to multiply by 9, divide by 5, and then add 32. Let’s do that
in JavaScript:

Click here to view code image

var cTemp = 100; // temperature in Celsius
// Let's be generous with parentheses
var hTemp = ((cTemp * 9) /5) + 32;

In fact, we could have omitted all of the parentheses from this calculation and it
would still have worked fine:

var hTemp = cTemp*9/5 + 32;

However, the parentheses make the code easier to understand, and help prevent
errors caused by operator precedence.
Let’s test the code in a web page, as shown in Listing 2.2.

LISTING 2.2 Calculating Fahrenheit from Celsius

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Fahrenheit From Celsius</title>
</head>
<body>
 <script>
 var cTemp = 100; // temperature in Celsius
 // Let's be generous with parentheses
 var hTemp = ((cTemp * 9) /5) + 32;
 document.write("Temperature in Celsius: " + cTemp + "
degrees
");
 document.write("Temperature in Fahrenheit: " + hTemp + "
degrees");
 </script>
</body>
</html>

Save this code as a file temperature.html and load it into your browser.
You should get the result shown in Figure 2.3.

FIGURE 2.3 The output of Listing 2.2

Edit the file a few times to use different values for cTemp, and check that
everything works OK.

Capturing Mouse Events
One of the fundamental purposes of JavaScript is to help make your web pages more
interactive for the user. To achieve this, we need to have some mechanisms to detect
what the user and the program are doing at any given moment—where the mouse is in
the browser window, whether the user has clicked a mouse button or pressed a
keyboard key, whether a page has fully loaded in the browser, and so on.
All of these occurrences we refer to as events, and JavaScript has a variety of tools to
help us work with them. Let’s take a look at some of the ways we can detect a user’s
mouse actions using JavaScript.
JavaScript deals with events by using so-called event handlers. We are going to
investigate three of these: onClick, onMouseOver, and onMouseOut.

The onClick Event Handler
The onClick event handler can be applied to nearly all HTML elements visible on a
page. One way we can implement it is to add one more attribute to the HTML element:
Click here to view code image

onclick=" ...some JavaScript code... "

Note
While adding event handlers directly into HTML elements is perfectly valid, it’s
not regarded these days as good programming practice. It serves us well for the
examples in Part I of this book, but later in the book you learn more powerful and
elegant ways to use event handlers.

Let’s see an example; have a look at Listing 2.3.

LISTING 2.3 Using the onClick Event Handler

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>onClick Demo</title>
</head>
<body>
 <input type="button" onclick="alert('You clicked the button!')"
value="Click Me" />
</body>

</html>

The HTML code adds a button to the <body> element of the page, and supplies that
button with an onclick attribute. The value given to the onclick attribute is the
JavaScript code we want to run when the HTML element (in this case a button) is
clicked. When the user clicks on the button, the onclick event is activated (we
normally say the event has been “fired”) and the JavaScript statement(s) listed in the
value of the attribute are executed.
In this case, there’s just one statement:
Click here to view code image

alert('You clicked the button!')

Figure 2.4 shows the result of clicking the button.

FIGURE 2.4 Using the onClick event handler

Note
You may have noticed that we call the handler onClick, but that we write this
in lowercase as onclick when adding it to an HTML element. This convention
has arisen because, although HTML is case insensitive, XHTML is case sensitive
and requires all HTML elements and attribute names to be written in lowercase.

onMouseOver and onMouseOut Event Handlers
When we simply want to detect where the mouse pointer is on the screen with reference
to a particular page element, onMouseOver and onMouseOut can help us to do that.

The onMouseOver event is fired when the user’s mouse cursor enters the region of
the screen occupied by the element in question. The onMouseOut event, as I’m sure
you’ve already guessed, is fired when the cursor leaves that same region.
Listing 2.4 provides a simple example of the onMouseOver event in action.

LISTING 2.4 Using onMouseOver

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>onMouseOver Demo</title>
</head>
<body>
 <img src="image1.png" alt="image 1" onmouseover="alert('You entered
the image!')" />
</body>
</html>

The result of running the script is shown in Figure 2.5. Replacing onmouseover with
onmouseout in the code will, of course, simply fire the event handler—and therefore
pop up the alert dialog—as the mouse leaves the image, rather than doing so as it enters.

FIGURE 2.5 Using the onMouseOver event handler

Try it Yourself: Creating an Image Rollover
We can use the onMouseOver and onMouseOut events to change how an
image appears while the mouse pointer is above it. To achieve this, we use
onMouseOver to change the src attribute of the HTML element as the
mouse cursor enters, and onMouseOut to change it back as the mouse cursor
leaves. The code is shown in Listing 2.5.

LISTING 2.5 An Image Rollover Using onMouseOver and onMouseOut

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>OnMouseOver Demo</title>
</head>
<body>
 <img src="tick.gif" alt="tick" onmouseover="this.src='tick2.gif';"
onmouseout="this.src='tick.gif';" />
</body>
</html>

You may notice something new in the syntax we used here. Within the JavaScript
statements for onMouseOver and onMouseOut we use the keyword this.
When using this within an event handler added via an attribute of an HTML
element, this refers to the HTML element itself; in this case, you can read it as
“this image,” and this.src refers (using the “dot” notation that we’ve already
met) to the src (source) property of this image object.
In this example we used two images, tick.gif and tick2.gif—you can
use any images you have on hand, but the demonstration works best if they are the
same size, and not too large.
Use your editor to create an HTML file containing the code of Listing 2.5. You
can change the image names tick.gif and tick2.gif to the names of your two
images, if different; just make sure the images are saved in the same folder as
your HTML file. Save the HTML file and open it in your browser.
You should see that the image changes as the mouse pointer enters, and changes
back as it leaves, as depicted in Figure 2.6.

FIGURE 2.6 An image rollover using onMouseOver and onMouseOut

Note
There was a time when image rollovers were regularly done this way, but these
days they can be achieved much more efficiently using Cascading Style Sheets
(CSS). Still, it’s a convenient way to demonstrate the use of the onMouseOver
and onMouseOut event handlers.

Summary
You covered quite a lot of ground this hour.
First of all you learned various ways to include JavaScript code in your HTML pages.
You studied how to declare variables in JavaScript, assign values to those variables,
and manipulate them using arithmetic operators.
Finally, you were introduced to some of JavaScript’s event handlers, and you learned
how to detect certain actions of the user’s mouse.

Q&A
Q. Some of the listings and code snippets list opening and closing <script>

tags on the same line; other times they are on separate lines. Does it matter?
A. Empty spaces, such as the space character, tabs, and blank lines, are completely

ignored by JavaScript. You can use such blank space, which programmers usually

call whitespace, to lay out your code in such a way that it’s more legible and easy
to follow.

Q. Can I use the same <script> element both to include an external
JavaScript file and to contain JavaScript statements?

A. No. If you use the script element to include an external JavaScript file by
using the src attribute, you cannot also include JavaScript statements between
<script> and </script>—this region must be left empty.

Workshop
Try to answer the following questions before looking at the “Answers” section that
follows.

Quiz
1. What is an onClick event handler?

a. An object that detects the mouse’s location in the browser
b. A script that executes in response to the user clicking the mouse
c. An HTML element that the user can click

2. How many <script> elements are permitted on a page?
a. None
b. Exactly one
c. Any number

3. Which of these is NOT a true statement about variables?
a. Their names are case sensitive.
b. They can contain numeric or non-numeric information.
c. Their names may contain spaces.

Answers
1. b. An onClick event handler is a script that executes when the user clicks the

mouse.
2. c. You can use as many <script> elements as you need.
3. c. Variable names in JavaScript must not contain spaces.

Exercises
 Starting with Listing 2.4, remove the onMouseOver and onMouseOut
handlers from the element. Instead, add an onClick handler to set the

title property of the image to My New Title. (Hint: You can access the
image title using this.title.)
 Can you think of an easy way to test whether your script has correctly set the new
image title?

Hour 3. Using Functions

What You’ll Learn in This Hour:
 How to define functions
 How to call (execute) functions
 How functions receive data
 Returning values from functions
 About the scope of variables

Commonly, programs carry out the same or similar tasks repeatedly during the course of
their execution. For you to avoid rewriting the same piece of code over and over again,
JavaScript has the means to parcel up parts of your code into reusable modules, called
functions. Once you’ve written a function, it is available for the rest of your program to
use, as if it were itself a part of the JavaScript language.
Using functions also makes your code easier to debug and maintain. Suppose you’ve
written an application to calculate shipping costs; when the tax rates or haulage prices
change, you’ll need to make changes to your script. There may be 50 places in your
code where such calculations are carried out. When you attempt to change every
calculation, you’re likely to miss some instances or introduce errors. However, if all
such calculations are wrapped up in a few functions used throughout the application,
then you just need to make changes to those functions. Your changes will automatically
be applied all through the application.
Functions are one of the basic building blocks of JavaScript and will appear in virtually
every script you write. In this hour you see how to create and use functions.

General Syntax
Creating a function is similar to creating a new JavaScript command that you can use in
your script.
Here’s the basic syntax for creating a function:
Click here to view code image

function sayHello() {
 alert("Hello");
 // ... more statements can go here ...
}

You begin with the keyword function, followed by your chosen function name with
parentheses appended, then a pair of curly braces, {}. Inside the braces go the

JavaScript statements that make up the function. In the case of the preceding example,
we simply have one line of code to pop up an alert dialog, but you can add as many
lines of code as are necessary to make the function...well, function!

Caution
The keyword function must always be used in lowercase, or an error will be
generated.

To keep things tidy, you can collect together as many functions as you like into one
<script> element:

<script>
 function doThis() {
 alert("Doing This");
 }
 function doThat() {
 alert("Doing That");
 }
</script>

Calling Functions
Code wrapped up in a function definition will not be executed when the page loads.
Instead, it waits quietly until the function is called.
To call a function, you simply use the function name (with the parentheses) wherever
you want to execute the statements contained in the function:

sayHello();

For example, you may want to add a call to your new function sayHello() to the
onClick event of a button:
Click here to view code image

<input type="button" value="Say Hello" onclick="sayHello()" />

Tip
Function names, like variable names, are case-sensitive. A function called
MyFunc() is different from another called myFunc(). Also, as with variable
names, it’s really helpful to the readability of your code to choose meaningful
function names.

Tip
You’ve already seen numerous examples of using the methods associated with

JavaScript objects, such as document.write() and window.alert().
Methods are simply functions that “belong” to a specific object. You learn much
more about objects in Hour 4, “DOM Objects and Built-in Objects.”

Putting JavaScript Code in the Page <head>
Up to now, our examples have all placed the JavaScript code into the <body> part of
the HTML page. Using functions lets you employ the much more common, and usually
preferable, practice of storing your JavaScript code in the <head> of the page.
Functions contained within a <script> element in the page head, or in an external file
included via the src attribute of a <script> element in the page head, are available
to be called from anywhere on the page. Putting functions in the document’s head section
ensures that they have been defined prior to any attempt being made to execute them.
Listing 3.1 shows an example.

LISTING 3.1 Functions in the Page Head

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Calling Functions</title>
 <script>
 function sayHello() {
 alert("Hello");
 }
 </script>
</head>
<body>
 <input type="button" value="Say Hello" onclick="sayHello()" />
</body>
</html>

In this listing, you can see that the function definition itself has been placed inside a
<script> element in the page head, but the call to the function has been made from a
different place entirely—on this occasion, from the onClick event handler of a button
in the body section of the page.
The result of clicking the button is shown in Figure 3.1.

FIGURE 3.1 Calling a JavaScript function

Passing Arguments to Functions
It would be rather limiting if your functions could only behave in an identical fashion
each and every time they were called, as would be the case in the preceding example.
Fortunately, you can extend the capabilities of functions a great deal by passing data to
them. You do this when the function is called, by passing to it one or more arguments:

functionName(arguments)

Let’s write a simple function to calculate the cube of a number and display the result:
function cube(x) {
 alert(x * x * x);
}

Now we can call our function, replacing the variable x with a number. Calling the
function like the following results in a dialog box being displayed that contains the
result of the calculation, in this case 27:

cube(3);

Of course, you could equally pass a variable name as an argument. The following code
would also generate a dialog containing the number 27:

var length = 3;
cube(length);

Note
You’ll sometimes see or hear the word parameters used in place of arguments,
but it means exactly the same thing.

Multiple Arguments
Functions are not limited to a single argument. When you want to send multiple
arguments to a function, all you need to do is separate them with commas:

function times(a, b) {
 alert(a * b);
}
times(3, 4); // alerts '12'

You can use as many arguments as you want.

Caution
Make sure that your function calls contain enough argument values to match the
arguments specified in the function definition. If any of the arguments in the
definition are left without a value, JavaScript may issue an error, or the function
may perform incorrectly. If your function call is issued with too many arguments,
the extra ones will be ignored by JavaScript.

It’s important to note that the names given to arguments in the definition of your function
have nothing to do with the names of any variables whose values are passed to the
function. The variable names in the argument list act like placeholders for the actual
values that will be passed when the function is called. The names that you give to
arguments are only used inside the function definition to specify how it works.
We talk about this in more detail later in the hour when we discuss variable scope.

Try it Yourself: A Function to Output User Messages
Let’s use what we’ve learned so far in this hour by creating a function that can
send the user a message about a button he or she has just clicked. We place the
function definition in the <head> section of the page and call it with multiple
arguments.
Here’s our function:

Click here to view code image

function buttonReport(buttonId, buttonName, buttonValue) {

 // information about the id of the button
 var userMessage1 = "Button id: " + buttonId + "\n";
 // then about the button name
 var userMessage2 = "Button name: " + buttonName + "\n";
 // and the button value
 var userMessage3 = "Button value: " + buttonValue;
 // alert the user
 alert(userMessage1 + userMessage2 + userMessage3);
}

The function buttonReport takes three arguments, those being the id, name,
and value of the button element that has been clicked. With each of these three
pieces of information, a short message is constructed. These three messages are
then concatenated into a single string, which is passed to the alert() method to
pop open a dialog containing the information.

Tip
You may have noticed that the first two message strings have the element "\n"
appended to the string; this is a “new line” character, forcing the message within
the alert dialog to return to the left and begin a new line. Certain special
characters like this one must be prefixed with \ if they are to be correctly
interpreted when they appear in a string. Such a prefixed character is known as an
escape sequence. You learn more about escape sequences in Hour 5, “Numbers
and Strings.”

To call our function, we put a button element on our HTML page, with its id,
name, and value defined:

Click here to view code image

<input type="button" id="id1" name="Button 1" value="Something" />

We need to add an onClick event handler to this button from which to call our
function. We’re going to use the this keyword, as discussed in Hour 2,
“Writing Simple Scripts”:

Click here to view code image

onclick = "buttonReport(this.id, this.name, this.value)"

The complete listing is shown in Listing 3.2.

LISTING 3.2 Calling a Function with Multiple Arguments

Click here to view code image

<!DOCTYPE html>
<html>

<head>
 <title>Calling Functions</title>
 <script>
 function buttonReport(buttonId, buttonName, buttonValue) {
 // information about the id of the button
 var userMessage1 = "Button id: " + buttonId + "\n";
 // then about the button name
 var userMessage2 = "Button name: " + buttonName + "\n";
 // and the button value
 var userMessage3 = "Button value: " + buttonValue;
 // alert the user
 alert(userMessage1 + userMessage2 + userMessage3);
 }
 </script>
</head>
<body>
 <input type="button" id="id1" name="Left Hand Button" value="Left"
onclick ="buttonReport(this.id, this.name, this.value)"/>
 <input type="button" id="id2" name="Center Button" value="Center"
onclick ="buttonReport(this.id, this.name, this.value)"/>
 <input type="button" id="id3" name="Right Hand Button" value="Right"
onclick ="buttonReport(this.id, this.name, this.value)"/>
</body>
</html>

Use your editor to create the file buttons.html and enter the preceding code. You
should find that it generates output messages like the one shown in Figure 3.2, but
with different message content depending on which button has been clicked.

FIGURE 3.2 Using a function to send messages

Returning Values from Functions
OK, now you know how to pass information to functions so that they can act on that
information for you. But how can you get information back from your function? You
won’t always want your functions to be limited to popping open a dialog!
Luckily, there is a mechanism to collect data from a function call—the return value.
Let’s see how it works:

function cube(x) {
 return x * x * x;
}

Instead of using an alert() dialog within the function, as in the previous example,
this time we prefixed our required result with the return keyword. To access this
value from outside the function, we simply assign to a variable the value returned by
the function:

var answer = cube(3);

The variable answer will now contain the value 27.

Note
The values returned by functions are not restricted to numerical quantities as in
this example. In fact, functions can return values having any of the data types
supported by JavaScript. We discuss data types in Hour 5.

Tip
Where a function returns a value, we can use the function call to pass the return
value directly to another statement in our code. For example, instead of

var answer = cube(3);
alert(answer);

we could simply use
alert(cube(3));

The value of 27 returned from the function call cube(3) immediately becomes
the argument passed to the alert() method.

Scope of Variables
We have already seen how to declare variables with the var keyword. There is a
golden rule to remember when using functions:
“Variables declared inside a function only exist inside that function.”
This limitation is known as the scope of the variable. Let’s see an example:
Click here to view code image

// Define our function addTax()
function addTax(subtotal, taxRate) {
 var total = subtotal * (1 + (taxRate/100));
 return total;
}
// now let's call the function
var invoiceValue = addTax(50, 10);
alert(invoiceValue); // works correctly
alert(total); // doesn't work

If we run this code, we first see an alert() dialog with the value of the variable
invoiceValue (which should be 55, but in fact will probably be something like
55.000000001 because we have not asked JavaScript to round the result).
We will not, however, then see an alert() dialog containing the value of the variable
total. Instead, JavaScript simply produces an error. Whether you see this error
reported depends on your browser settings—you learn more about error handling later
in the book—but JavaScript will be unable to display an alert() dialog with the
value of your variable total.

This is because we placed the declaration of the variable total inside the
addTax() function. Outside the function the variable total simply doesn’t exist (or,
as JavaScript puts it, “is not defined”). We used the return keyword to pass back just
the value stored in the variable total, and that value we then stored in another
variable, invoice.
We refer to variables declared inside a function definition as being local variables; that
is, local to that function. Variables declared outside any function are known as global
variables. To add a little more confusion, local and global variables can have the same
name, but still be different variables!
The range of situations where a variable is defined is known as the scope of the
variable—we can refer to a variable as having local scope or global scope.

Try it Yourself: Demonstrating the Scope of Variables
To illustrate the issue of a variable’s scope, take a look at the following piece of
code:

Click here to view code image

var a = 10;
var b = 10;
function showVars() {
 var a = 20; // declare a new local variable 'a'
 b = 20; // change the value of global variable 'b'
 return "Local variable 'a' = " + a + "\nGlobal variable 'b' = " +
b;
}
var message = showVars();
alert(message + "\nGlobal variable 'a' = " + a);

Within the showVars() function we manipulate two variables, a and b. The
variable a we define inside the function; this is a local variable that only exists
inside the function, quite separate from the global variable (also called a) that
we declare at the very beginning of the script.
The variable b is not declared inside the function, but outside; it is a global
variable.
Listing 3.3 shows the preceding code within an HTML page.

LISTING 3.3 Global and Local Scope

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Variable Scope</title>

</head>
<body>
 <script>
 var a = 10;
 var b = 10;
 function showVars() {
 var a = 20; // declare a new local variable 'a'
 b = 20; // change the value of global variable 'b'
 return "Local variable 'a' = " + a + "\nGlobal variable 'b' =
" + b;
 }
 var message = showVars();
 alert(message + "\nGlobal variable 'a' = " + a);
 </script>
</body>
</html>

When the page is loaded, showVars() returns a message string containing
information about the updated values of the two variables a and b, as they exist
inside the function—a with local scope, and b with global scope.
A message about the current value of the other, global variable a is then
appended to the message, and the message displayed to the user.
Copy the code into the file scope.html and load it into your browser. Compare
your results with Figure 3.3.

FIGURE 3.3 Local and global scope

Summary
In this hour you learned about what functions are, and how to create them in JavaScript.

You learned how to call functions from within your code, and pass information to those
functions in the form of arguments. You also found out how to return information from a
function to its calling statement.
Finally, you learned about the local or global scope of a variable, and how the scope of
variables affects how functions work with them.

Q&A
Q. Can one function contain a call to another function?
A. Most definitely; in fact, such calls can be nested as deeply as you need them to be.
Q. What characters can I use in function names?
A. Function names must start with a letter or an underscore and can contain letters,

digits, and underscores in any combination. They cannot contain spaces,
punctuation, or other special characters.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Functions are called using

a. The function keyword
b. The call command
c. The function name, with parentheses

2. What happens when a function executes a return statement?
a. An error message is generated.
b. A value is returned and function execution continues.
c. A value is returned and function execution stops.

3. A variable declared inside a function definition is called
a. A local variable
b. A global variable
c. An argument

Answers
1. c. A function is called using the function name.
2. c. After executing a return statement, a function returns a value and then ceases

function execution.

3. a. A variable defined within a function has local scope.

Exercises
 Write a function to take a temperature value in Celsius as an argument, and return
the equivalent temperature in Fahrenheit, basing it on the code from Hour 2.
 Test your function in an HTML page.

Hour 4. DOM Objects and Built-in Objects

What You’ll Learn in This Hour:
 Talking to the user with alert(), prompt(), and confirm()
 Selecting page elements with getElementById()
 Accessing HTML content with innerHTML
 How to use the browser history object
 Reloading or redirecting the page using the location object
 Getting browser information via the navigator object
 Manipulating dates and times with the Date object
 Calculations made easier with the Math object

In Hour 1, “Introducing JavaScript,” we talked a little about the DOM and introduced
the top-level object in the DOM tree, the window object. We also looked at one of its
child objects, document.
In this hour, we introduce some more of the utility objects and methods that you can use
in your scripts.

Interacting with the User
Among the methods belonging to the window object, there are some designed
specifically to help your page communicate with the user by assisting with the input and
output of information.

alert()
You’ve already used the alert() method to pop up an information dialog for the user.
You’ll recall that this modal dialog simply shows your message with a single OK
button. The term modal means that script execution pauses, and all user interaction with
the page is suspended, until the user clears the dialog. The alert() method takes a
message string as its argument:

alert("This is my message");

alert() does not return a value.

confirm()
The confirm() method is similar to alert(), in that it pops up a modal dialog
with a message for the user. The confirm() dialog, though, provides the user with a

choice; instead of a single OK button, the user may select between OK and Cancel, as
shown in Figure 4.1. Clicking on either button clears the dialog and allows the calling
script to continue, but the confirm() method returns a different value depending on
which button was clicked—Boolean true in the case of OK, or false in the case of
Cancel. We begin to look at JavaScript’s data types in the next hour, but for the moment
you just need to know that a Boolean variable can only take one of two values, true or
false.

FIGURE 4.1 The confirm() dialog

The confirm() method is called in a similar way to alert(), passing the required
message as an argument:
Click here to view code image

var answer = confirm("Are you happy to continue?");

Note that here, though, we pass the returned value of true or false to a variable so
we can later test its value and have our script take appropriate action depending on the
result.

prompt()
The prompt() method is yet another way to open up a modal dialog. In this case,
though, the dialog invites the user to enter information.
A prompt() dialog is called in just the same manner as confirm():
Click here to view code image

var answer = prompt("What is your full name?");

The prompt method also allows for an optional second argument, giving a default
response in case the user clicks OK without typing anything:
Click here to view code image

var answer = prompt("What is your full name?", "John Doe");

The return value from a prompt() dialog depends on what option the user takes:
 If the user types in input and clicks OK or presses Enter, the user input string is
returned.
 If the user clicks OK or presses Enter without typing anything into the prompt
dialog, the method returns the default response (if any), as optionally specified in
the second argument passed to prompt().
 If the user dismisses the dialog (that is, by clicking Cancel or pressing Escape),
then the prompt method returns null.

Note
The null value is used by JavaScript on certain occasions to denote an empty
value. When treated as a number it takes the value 0, when used as a string it
evaluates to the empty string (“”), and when used as a Boolean value it becomes
false.

The prompt() dialog generated by the previous code snippet is shown in Figure 4.2.

FIGURE 4.2 The prompt() dialog

Selecting Elements by Their ID
In Part III, “Objects,” you’ll learn a lot about navigating around the DOM using the
various methods of the document object. For now, we limit ourselves to looking at
one in particular—the getElementById() method.
To select an element of your HTML page having a specific ID, all you need to do is call
the document object’s getElementById() method, specifying as an argument the
ID of the required element. The method returns the DOM object corresponding to the
page element with the specified ID.
Let’s look at an example. Suppose your web page contains a <div> element:
Click here to view code image

<div id="div1">
 ... Content of DIV element ...
</div>

In your JavaScript code, you can access this <div> element using
getElementById(), passing the required ID to the method as an argument:
Click here to view code image

var myDiv = document.getElementById("div1");

We now have access to the chosen page element and all of its properties and methods.

Caution
Of course, for this to work the page element must have its ID attribute set.
Because ID values of HTML page elements are required to be unique, the method
should always return a single page element, provided a matching ID is found.

The innerHTML Property
A handy property that exists for many DOM objects, innerHTML allows us to get or
set the value of the HTML content inside a particular page element. Imagine your HTML
contains the following element:
Click here to view code image

<div id="div1">
 <p>Here is some original text.</p>
</div>

We can access the HTML content of the <div> element using a combination of
getElementById() and innerHTML:
Click here to view code image

var myDivContents = document.getElementById("div1").innerHTML;

The variable myDivContents will now contain the string value:
Click here to view code image

"<p>Here is some original text.</p>"

We can also use innerHTML to set the contents of a chosen element:
Click here to view code image

document.getElementById("div1").innerHTML =
 "<p>Here is some new text instead!</p>";

Executing this code snippet erases the previous HTML content of the <div> element
and replaces it with the new string.

Accessing Browser History
The browser’s history is represented in JavaScript by the window.history object,
which is essentially a list of the URLs previously visited. Its methods enable you to use
the list, but not to manipulate the URLs explicitly.
The only property owned by the history object is its length. You can use this
property to find how many pages the user has visited:
Click here to view code image

alert("You've visited " + history.length + " web pages in this browser
session");

The history object has three methods.
forward() and back() are equivalent to pressing the Forward and Back buttons on
the browser; they take the user to the next or previous page in the history list.

history.forward();

There is also the method go, which takes a single parameter. This can be an integer,
positive or negative, and it takes the user to a relative place in the history list:
Click here to view code image

history.go(-3); // go back 3 pages
history.go(2); // go forward 2 pages

The method can alternatively accept a string, which it uses to find the first matching
URL in the history list:
Click here to view code image

history.go("example.com"); // go to the nearest URL in the history
 // list that contains 'example.com'

Using the location Object
The location object contains information about the URL of the currently loaded
page.
We can think of the page URL as a series of parts:
[protocol]//[hostname]:[port]/[pathname][search][hash]
Here’s an example URL: http://www.example.com:8080/tools/display.php?
section=435#list
The list of properties of the location object includes data concerning the various
parts of the URL. The properties are listed in Table 4.1.

TABLE 4.1 Properties of the location Object

Navigating Using the location Object
There are two ways to take the user to a new page using the location object.
First, we can directly set the href property of the object:
Click here to view code image

location.href = 'www.newpage.com';

Using this technique to transport the user to a new page maintains the original page in
the browser’s history list, so the user can return simply by using the browser Back
button. If you would rather the sending page were removed from the history list and
replaced with the new URL, you can instead use the location object’s replace()
method:
Click here to view code image

location.replace('www.newpage.com');

This replaces the old URL with the new one both in the browser and in the history list.

Reloading the Page
To reload the current page into the browser—the equivalent to having the user click the
“reload page” button—we can use the reload() method:

location.reload();

Tip
Using reload() without any arguments retrieves the current page from the
browser’s cache, if it’s available there. To avoid this and get the page directly
from the server, you can call reload with the argument true:

document.reload(true);

Browser Information—The navigator Object
While the location object stores information about the current URL loaded in the
browser, the navigator object’s properties contain data about the browser
application itself.

Try it Yourself: Displaying Information Using the navigator Object
We’re going to write a script to allow you to find out what the navigator
object knows about your own browsing setup. Use your editor to create the file
navigator.html containing the code from Listing 4.1. Save the file and open it in
your browser.

LISTING 4.1 Using the navigator Object

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>window.navigator</title>
 <style>
 td {border: 1px solid gray; padding: 3px 5px;}
 </style>
</head>
<body>
 <script>
 document.write("<table>");
 document.write("<tr><td>appName</td><td>"+navigator.appName + "
</td></tr>");
 document.write("<tr><td>appCodeName</td>
<td>"+navigator.appCodeName + "</td></tr>");
 document.write("<tr><td>appVersion</td><td>"+navigator.appVersion
+ "</td></tr>");
 document.write("<tr><td>language</td><td>"+navigator.language + "
</td></tr>");
 document.write("<tr><td>cookieEnabled</td>
<td>"+navigator.cookieEnabled + "</td></tr>");
 document.write("<tr><td>cpuClass</td><td>"+navigator.cpuClass + "
</td></tr>");
 document.write("<tr><td>onLine</td><td>"+navigator.onLine + "</td>
</tr>");
 document.write("<tr><td>platform</td><td>"+navigator.platform + "
</td></tr>");
 document.write("<tr><td>No of Plugins</td>
<td>"+navigator.plugins.length + "</td></tr>");
 document.write("</table>");

 </script>
</body>
</html>

Compare your results to mine, shown in Figure 4.3.

FIGURE 4.3 Browser information from the navigator object

Whoa, what’s going on here? I loaded the page into the Chromium browser on my
Ubuntu Linux PC. Why is it reporting the appName property as Netscape, and
the appCodeName property as Mozilla? Also, the cpuClass property has
come back as undefined; what’s that all about?
There’s a lot of history and politics behind the navigator object. The result is
that the object provides, at best, an unreliable source of information about the
user’s platform. Not all properties are supported in all browsers (hence the
failure to report the cpuClass property in the preceding example), and the
names reported for browser type and version rarely match what one would
intuitively expect. Figure 4.4 shows the same page loaded into Internet Explorer
9 on Windows 7.

FIGURE 4.4 Browser information from the navigator object

We now have a value for cpuClass, but the language property is not
supported in Internet Explorer, and has returned undefined.
Although cross-browser standards compliance is closer than it was a few years
ago, there still remain occasions when you need to know the capabilities of your
user’s browser. Querying the navigator object is nearly always the wrong
way to do it.

Note
Later in the book we talk about feature detection, a much more elegant and
cross-browser way to have your code make decisions based on the capabilities
of the user’s browser.

Dates and Times
The Date object is used to work with dates and times. There is no Date object
already created for you as part of the DOM, as was the case with the examples so far.
Instead, we create our own Date objects as and when we need them. Each Date
object we create can represent a different date and time.

Create a Date Object with the Current Date and Time
This is the simplest way to create a new Date object containing information about the

date and time:
var mydate = new Date();

The variable mydate is an object containing information about the date and time at the
moment the object was created. JavaScript has a long list of methods for retrieving,
setting, and editing data within Date objects. Let’s look at a few simple examples:
Click here to view code image

var year = mydate.getFullYear(); // four-digit year e.g. 2012
var month = mydate.getMonth(); // month number 0 - 11; 0 is Jan, etc.
var date = mydate.getDate(); // day of the month 1 - 31
var day = mydate.getDay(); // day of the week 0 - 6; Sunday = 0, etc.
var hours = mydate.getHours(); // hours part of the time, 0 - 23
var minutes = mydate.getMinutes(); // minutes part of time, 0 - 59
var seconds = mydate.getSeconds(); // seconds part of time, 0 - 59

Creating a Date Object with a Given Date and Time
We can easily create Date objects representing arbitrary dates and times by passing
arguments to the Date() statement. There are several ways to do this:
Click here to view code image

new Date(milliseconds) //milliseconds since January 1st 1970
new Date(dateString)
new Date(year, month, day, hours, minutes, seconds, milliseconds)

Here are a few examples.
Using a date string:
Click here to view code image

var d1 = new Date("October 22, 1995 10:57:22")

When we use separate arguments for the parts, trailing arguments are optional; any
missing will be replaced with zero:
Click here to view code image

var d2 = new Date(95,9,22) // 22nd October 1995 00:00:00
var d3 = new Date(95,9,22,10,57,0) // 22nd October 1995 10:57:00

Setting and Editing Dates and Times
The Date object also has an extensive list of methods for setting or editing the various
parts of the date and time:
Click here to view code image

var mydate = new Date(); // current date and time
document.write("Object created on day number " + mydate.getDay() + "

");
mydate.setDate(15); // change day of month to the 15th

document.write("After amending date to 15th, the day number is " +
mydate.getDay());

In the preceding code snippet, we initially created the object mydate representing the
date and time of its creation, but with the day of the month subsequently changed to the
15th; if we retrieve the day of the week before and after this operation, we’ll see that it
has been correctly recalculated to take account of the changed date:
Click here to view code image

Object created on day number 5
After amending date to 15th, the day number is 0

So in this example, the object was created on a Friday; whereas the 15th of the month
corresponded to a Sunday.
We can also carry out date and time arithmetic, letting the Date object do all the heavy
lifting for us:
Click here to view code image

var mydate=new Date();
document.write("Created: " + mydate.toDateString() + " " +
mydate.toTimeString() + "
");
mydate.setDate(mydate.getDate()+33); // add 33 days to the 'date' part
document.write("After adding 33 days: " + mydate.toDateString() + " " +
mydate.toTimeString());

The preceding example calculates a date 33 days in the future, automatically amending
the day, date, month, and/or year as necessary. Note the use of toDateString() and
toTimeString(); these are useful methods for converting dates into a readable
format. The preceding example produces output like the following:
Click here to view code image

Created: Fri Jan 06 2012 14:59:24 GMT+0100 (CET)
After adding 33 days: Wed Feb 08 2012 14:59:24 GMT+0100 (CET)

The set of methods available for manipulating dates and times is way too large for us to
explore them all here. A full list of the methods of the Date object is available in
Appendix B, “JavaScript Quick Reference.”

Simplifying Calculation with the Math Object
JavaScript’s Math object can save you a lot of work when performing many sorts of
calculations that frequently occur.
Unlike the Date object, the Math object does not need to be created before use; it
already exists, and you can call its methods directly.
A full list of the available methods is available in Appendix B, but Table 4.2 shows
some examples.

TABLE 4.2 Some Methods of the Math Object
Let’s work through some examples.

Rounding
The methods ceil(), floor(), and round() are useful for truncating the decimal
parts of numbers:
Click here to view code image

var myNum1 = 12.55;
var myNum2 = 12.45;
alert(Math.floor(myNum1)); // shows 12
alert(Math.ceil(myNum1)); // shows 13
alert(Math.round(myNum1)); // shows 13
alert(Math.round(myNum2)); // shows 12

Note that when you use round(), if the fractional part of the number is .5 or greater,
the number is rounded to the next highest integer. If the fractional part is less than .5, the
number is rounded to the next lowest integer.

Finding Minimum and Maximum
We can use min() and max() to pick the largest and smallest number from a list:
Click here to view code image

var ageDavid = 23;
var ageMary = 27;
var ageChris = 31;
var ageSandy = 19;
document.write("The youngest person is "
 + Math.min(ageDavid, ageMary, ageChris, ageSandy)
 + " years old
");
document.write("The oldest person is "
 + Math.max(ageDavid, ageMary, ageChris, ageSandy)
 + " years old
");

The output as written to the page looks like this:
Click here to view code image

The youngest person is 19 years old
The oldest person is 31 years old

Random Numbers
To generate a random number, we can use Math.random(), which generates a
random number between 0 and 1.
Normally we like to specify the possible range of our random numbers, for example, we
might want to generate a random integer between 0 and 100.
As Math.random() generates a random number between 0 and 1, it’s helpful to
wrap it in a small function that suits our needs. The following function takes the Math
object’s randomly generated number, scales it up by multiplying by the variable range
(passed to the function as an argument), and finally uses round() to remove any
fractional part:
Click here to view code image

function myRand(range) {
 return Math.round(Math.random() * range);
}

To generate a random integer between 0 and 100, we can then simply call
myRand(100);

Caution
You always use Math methods directly, for example, Math.floor(), rather
than as a method of an object you created. In other words, the following is wrong:

var myNum = 24.77;
myNum.floor();

The code would provoke a JavaScript error.
Instead you simply need

Math.floor(myNum);

Mathematical Constants
Various often-used mathematical constants are available as properties of Math. They
are listed in Table 4.3.

TABLE 4.3 Mathematical Constants
These constants can be used directly in your calculations:
Click here to view code image

var area = Math.PI * radius * radius; // area of circle
var circumference = 2 * Math.PI * radius; // circumference

The with Keyword
Although you can use the with keyword with any object, the Math object is an ideal
object to use an example. By using with you can save yourself some tedious typing.
The keyword with takes an object as an argument, and is followed by a code block
wrapped in braces. The statements within that code block can call methods without
specifying an object, and JavaScript assumes that those methods belong to the object
passed as an argument.
Here’s an example:
Click here to view code image

with (Math) {
 var myRand = random();
 var biggest = max(3,4,5);
 var height = round(76.35);
}

In this example, we call Math.random(), Math.max(), and Math.round()
simply by using the method names, because all method calls in the code block have been
associated with the Math object.

Try it Yourself: Reading the Date and Time
We put into practice some of what we covered in this hour by creating a script to
get the current date and time when the page is loaded. We also implement a

button to reload the page, refreshing the time and date information.
Take a look at Listing 4.2.

LISTING 4.2 Getting Date and Time Information

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Current Date and Time</title>
 <style>
 p {font: 14px normal arial, verdana, helvetica;}
 </style>
 <script>
 function telltime() {
 var out = "";
 var now = new Date();
 out += "
Date: " + now.getDate();
 out += "
Month: " + now.getMonth();
 out += "
Year: " + now.getFullYear();
 out += "
Hours: " + now.getHours();
 out += "
Minutes: " + now.getMinutes();
 out += "
Seconds: " + now.getSeconds();
 document.getElementById("div1").innerHTML = out;
 }
 </script>
</head>
<body>
 The current date and time are:

 <div id="div1"></div>
 <script>
 telltime();
 </script>
 <input type="button" onclick="location.reload()" value="Refresh" />
</body>
</html>

The first statement in the function telltime() creates a new Date object
called now. As you will recall, since the object is created without passing any
parameters to Date() it will have properties pertaining to the current date and
time at the moment of its creation.

var now = new Date();

We can access the individual parts of the time and date using getDate(),
getMonth(), and similar methods. As we do so, we assemble the output
message as a string stored in the variable out.

Click here to view code image

out += "
Date: " + now.getDate();
out += "
Month: " + now.getMonth();
out += "
Year: " + now.getFullYear();
out += "
Hours: " + now.getHours();
out += "
Minutes: " + now.getMinutes();
out += "
Seconds: " + now.getSeconds();

Finally, we use getElementById() to select the (initially empty) <div>
element having id="div1", and write the contents of variable out into it using
the innerHTML method.

Click here to view code image

document.getElementById("div1").innerHTML = out;

The function telltime() is called by a small script embedded in the <body>
part of the page:

<script>
 telltime();
</script>

To refresh the date and time information, we simply need to reload the page into
the browser. At that point the script runs again, creating a new instance of the
Date object with the current date and time. We could just hit Refresh on the
browser’s menu, but since we know how to reload the page using the location
object, we do that by calling

location.reload()

from a button’s onClick method.
Figure 4.5 shows the script in action. Note that the month is displayed as 0.
Remember that JavaScript counts months starting at 0 (January) and ending in 11
(December).

FIGURE 4.5 Getting date and time information

Summary
In this hour you looked at some useful objects either built into JavaScript or available
via the DOM, and how their properties and methods can help you write code more
easily.
You saw how to use the window object’s modal dialogs to exchange information with
the user.
You learned how to select page elements by their ID using the
document.getElementById method, and how to get and set the HTML inside a
page element using the innerHTML property.
You worked with browser information from the navigator object, and page URL
information from the location object.
Finally, you saw how to use the Date and Math objects.

Q&A
Q. Does Date() have methods to deal with time zones?
A. Yes, it does. In addition to the get...() and set...() methods discussed in

this hour (such as getDate(), setMonth(), etc.) there are UTC (Universal
Time, previously called GMT) versions of the same methods (getUTCDate(),
setUTCMonth(), and so on). You can retrieve the difference between your
local time and UTC time by using the getTimezoneOffset() method. See
Appendix B for a full list of methods.

Q. Why does Date() have the methods called getFullYear() and
setFullYear() instead of just getYear() and setYear()?

A. The methods getYear() and setYear() do exist; they deal with two-digit
years instead of the four-digit years used by getFullYear() and
setFullYear(). Because of the potential problems with dates spanning the
millennium, these functions have been deprecated. You should use
getFullYear() and setFullYear() instead.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. What happens when a user clicks OK in a confirm dialog?

a. A value of true is returned to the calling program.
b. The displayed message is returned to the calling program.
c. Nothing.

2. Which method of the Math() object always rounds a number up to the next
integer?
a. Math.round()
b. Math.floor()
c. Math.ceil()

3. If my loaded page is http://www.example.com/documents/letter.htm?page=2,
what will the location.pathname property of the location object
contain?
a. http
b. www.example.com
c. /documents/letter.htm
d. page=2

Answers
1. a. A value of true is returned when OK is clicked. The dialog is cleared and

control is returned to the calling program.
2. c. Math.ceil() always rounds a number up to the next higher integer.
3. c. The location.pathname property contains
/documents/letter.htm.

http://www.example.com/documents/letter.htm?page=2

Exercises
 Modify Listing 4.2 to output the date and time as a single string, such as:
25 Dec 2011 12:35

 Use the Math object to write a function to return the volume of a round chimney,
given its radius and height in meters as arguments. The volume returned should be
rounded up to the nearest cubic meter.
 Use the history object to create a few pages with their own Forward and Back
buttons. After you’ve navigated to these pages (to put them in your browser’s
history list), do your Forward and Back buttons operate exactly like the
browser’s?

Part II: Cooking with Code

Hour 5. Numbers and Strings

What You’ll Learn in This Hour:
 The numeric and string data types supported by JavaScript
 Conversion between data types
 How to manipulate strings

We use the term data type to talk about the nature of the data that a variable contains. A
string variable contains a string, a number variable, a numerical value, and so forth.
However, the JavaScript language is what’s called a loosely typed language, meaning
that JavaScript variables can be interpreted as different data types in differing
circumstances.
In JavaScript, you don’t have to declare the data type of a variable before using it, as
the JavaScript interpreter will make its best guess. If you put a string into your variable
and later want to interpret that value as a number, that’s OK with JavaScript, provided
that the variable actually contains a string that’s “like” a numerical value (for example,
“200px” or “50 cents”, but not something such as your name). Later you can use it as a
string again, if you want.
In this hour you learn about the JavaScript data types of number, string, and Boolean,
and about some built-in methods for handling values of these types. We also mention
escape sequences in strings, and two special JavaScript data types—null and
undefined.

Numbers
Mathematicians have all sorts of names for different types of numbers. From the so-
called natural numbers 1, 2, 3, 4 ..., you can add 0 to get the whole numbers 0, 1, 2, 3,
4 ..., and then include the negative values -1, -2, -3, -4 ... to form the set of integers.
To express numbers falling between the integers, we commonly use a decimal point
with one or more digits following it:
3.141592654
Calling such numbers floating point indicates that they can have an arbitrary number of
digits before and after the decimal point; that is, the decimal point can “float” to any
location in the number.
JavaScript supports both integer and floating-point numbers.

Integers

An integer is a whole number—positive, negative, or zero. To put it another way, an
integer is any numerical value without a fractional part.
All of the following are valid integers:

 33
 -1,000,000
 0
 -1

Floating-Point Numbers
Unlike integers, floating-point numbers have a fractional part, even if that fractional part
is zero. They can be represented in the traditional way, like 3.14159, or in exponential
notation, like 35.4e5.

Note
In exponential notation, e represents “times 10 to the power,” so 35.4e5 can be
read as 35.4 x 105.
Exponential notation provides a compact way to express numbers from the very
large to the very small.

All the following are valid floating-point numbers:
 3.0
 0.00001
 - 99.99
 2.5e12
 1e-12

Tip
JavaScript also has the ability to handle hexadecimal numbers. Hexadecimal
numbers begin with 0x, for instance 0xab0080.

Not a Number (NaN)
NaN is the value returned when your script tries to treat something non-numerical as a
number, but can’t make any sense of it as a numerical value. For example, the result of
trying to multiply a string by an integer is not numerical. You can test for non-numerical
values with the isNaN() function:

Click here to view code image

isNaN(3); // returns false
isNaN(3.14159); // returns false
isNaN("horse"); // returns true;

Using parseFloat() and parseInt()
JavaScript offers us two functions with which we can force the conversion of a string
into a number format.
The parseFloat() function parses a string and returns a floating-point number.
If the first character in the specified string is a number, it parses the string until it
reaches the end of that number, and returns the value as a number, not a string:
Click here to view code image

parseFloat("21.4") // returns 21.4
parseFloat("76 trombones") // returns 76
parseFloat("The magnificent 7") // returns NaN

Using parseInt() is similar, but returns either an integer value or NaN. This
function allows us to optionally include, as a second argument, the base (radix) of the
number system we’re using, and can therefore be used to return the base 10 values of
binary, octal, or other number formats:
Click here to view code image

parseInt(18.95, 10); // returns 18
parseInt("12px", 10); // returns 12
parseInt("1110", 2); // returns 14
parseInt("Hello") // returns NaN

Infinity
Infinity is a value larger than the largest number that JavaScript can represent. In
most JavaScript implementations, this is an integer of plus or minus 253. OK, that’s not
quite infinity, but it is pretty big.
There is also the keyword literal -Infinity to signify the negative infinity.
You can test for infinite values with the isFinite() function. The isFinite()
function takes the value to test as an argument and tries to convert that argument into a
number. If the result is NaN, positive infinity (Infinity), or negative infinity (-
Infinity), the isFinite() function returns false; otherwise it returns true. (False
and true are known as Boolean values, discussed later in this hour.)
Click here to view code image

isFinite(21); // true
isFinite("This is not a numeric value"); // false
isFinite(Math.sqrt(-1)); // false

Strings
A string is a sequence of characters from within a given character set (for example, the
ASCII or Unicode character sets) and is usually used to store text.
You define a string by enclosing it in single or double quotes:
Click here to view code image

var myString = "This is a string";

You can define an empty string by using two quote marks with nothing between them:
var myString = "";

Escape Sequences
Some characters that you want to put in a string may not have associated keys on the
keyboard, or may be special characters that for other reasons can’t occur in a string.
Examples include the tab character, the new line character, and the single or double
quotes that enclose the string itself. To use such a character in a string, it must be
represented by the character preceded by a backslash (\), a combination that
JavaScript interprets as the desired special character. Such a combination is known as
an escape sequence.
Suppose that you wanted to enter some “new line” characters into a string, so that when
the string is shown by a call to the alert() method, it will be split into several lines:
Click here to view code image

var message = "IMPORTANT MESSAGE:\n\nError detected!\nPlease check your
data";
alert(message);

The result of inserting these escape sequences is shown in Figure 5.1.

FIGURE 5.1 Using escape sequences in a string

The more common escape sequences are shown in Table 5.1.

TABLE 5.1 Some Common Escape Sequences

String Methods
A full list of the properties and methods of the string object is given in Appendix B,
“JavaScript Quick Reference,” but for now let’s look at some of the important ones,
listed in Table 5.2.

TABLE 5.2 Some Popular Methods of the string Object

concat()
You’ve already had experience in earlier hours of joining strings together using the +
operator. This is known as string concatenation, and JavaScript strings have a
concat() method offering additional capabilities:
Click here to view code image

var string1 = "The quick brown fox ";
var string2 = "jumps over the lazy dog";
var longString = string1.concat(string2);

indexOf()
We can use indexOf() to find the first place where a particular substring of one or
more characters occurs in a string. The method returns the index (the position) of the
searched-for substring, or -1 if it isn’t found anywhere in the string:
Click here to view code image

var string1 = "The quick brown fox ";
string1.indexOf('fox') // returns 16
string1.indexOf('dog') // returns -1

Tip
Remember that the index of the first character in a string is 0, not 1.

lastIndexOf()
As you’ll have guessed, lastIndexOf() works just the same way as indexOf(),
but finds the last occurrence of the substring, rather than the first.

replace()
Searches for a match between a substring and a string, and returns a new string with the
substring replaced by a new substring:
Click here to view code image

var string1 = "The quick brown fox ";
var string2 = string1.replace("brown", "orange"); // string2 is now
"the quick
orange fox"

split()
Used to split a string into an array of substrings and return the new array:
Click here to view code image

var string1 = "The quick brown fox ";
var newArray = string1.split(" ")

Tip
You learn about arrays in the next hour. Make a note to refer back to this method
after you’ve read about arrays.

substr()
The substr() method takes one or two arguments.
The first is the starting index—substr() extracts the characters from a string,

beginning at the starting index, for the specified number of characters, returning the new
substring. The second parameter (number of characters) is optional, and if omitted, all
of the remaining string will be extracted:
Click here to view code image

var string1 = "The quick brown fox ";
var sub1 = string1.substr(4, 11); // extracts "quick brown"
var sub2 = string1.substr(4); // extracts "quick brown fox"

toLowerCase() and toUpperCase()
Puts the string into all uppercase or all lowercase:
Click here to view code image

var string1 = "The quick brown fox ";
var sub1 = string1.toLowerCase(); // sub1 contains "the quick brown fox
"
var sub2 = string1.toUpperCase(); // sub2 contains "THE QUICK BROWN FOX
"

Boolean Values
Data of the Boolean type can have one of only two values, true or false. Boolean
variables are most often used to store the result of a logical operation in your code that
returns a true/false or yes/no result:
Click here to view code image

var answer = confirm("Do you want to continue?"); // answer will
contain
 true or false

Caution
When you want to assign a Boolean value of true or false, it’s important to
remember NOT to enclose the value in quotes, or the value will be interpreted as
a string literal:

Click here to view code image

var success = false; // correct
var success = "false"; // incorrect

If you write code that expects Boolean values in computations, JavaScript automatically
converts true to 1 and false to 0.
Click here to view code image

var answer = confirm("Do you want to continue?"); // answer will
contain
 true or false
alert(answer * 1); // will display either 0 or 1

It works the other way, too. JavaScript interprets any nonzero value as true, and zero as
false. JavaScript interprets all of the following values as false:

 Boolean false (you don’t say?)
 undefined
 null
 0 (zero)
 NaN
 “” (empty string)

Tip
The preceding values are often referred to as “falsy,” meaning “not exactly false,
but can be interpreted as false.” Values that JavaScript interprets as true are
likewise referred to as “truthy.”

Try it Yourself: A Simple Spam Detector Function
We’ll use two of these methods to write a simple function that detects the
presence in a given string of a particular word. In the example, we’ll use the
word “fake” as our target word. The function should return a zero or positive
value if it detects the word “fake” anywhere in a string passed in as a parameter;
otherwise, it should return a negative number. Here’s the “empty” function:

function detectSpam(input) {
}

You might use a function like this to examine email subject lines, for example, to
detect spam email selling “fake” designer items. In a practical application, the
code would be much more complex, but it’s the string manipulation that’s
important here.
First, we want to convert the string to lowercase:

Click here to view code image

function detectSpam(input) {
 input = input.toLowerCase();
}

This is necessary because we’ll then use indexOf() to look for the word
“fake,” and indexOf() differentiates between upper- and lowercase.

Click here to view code image

function detectSpam(input) {
 input = input.toLowerCase();
 return input.indexOf("fake");

}

Enter the code of Listing 5.1 into your editor and save it as an HTML file.

LISTING 5.1 Spam Detector Function

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Spam Detector</title>
</head>
<body>
<script>
 function detectSpam(input) {
 input = input.toLowerCase();
 return input.indexOf("fake");
 }

 var mystring = prompt("Enter a string");
 alert(detectSpam(mystring));
</script>
</body>
</html>

Open the page in your browser, and enter a string into the prompt dialog, as
depicted in Figure 5.2.

FIGURE 5.2 Entering a string

A new dialog will open, displaying the location in the input string where the
word “fake” was found, or “-1” if the word did not appear anywhere.
Figure 5.3 shows the target word being found at position 15, i.e. the 16th
character in the string.

FIGURE 5.3 Output from spam detection script

Tip
In Hour 7, “Program Control,” you’ll learn how to make decisions in your code
based on the results of tests such as this one.

The Negation Operator (!)
JavaScript interprets the ! character, when placed before a Boolean variable, as “not,”
that is, “the opposite value.” Take a look at this code snippet:
Click here to view code image

var success = false;
alert(!success); // alerts 'true'

In Hour 7 we use this and other operators to test the values of JavaScript variables, and
have our programs make decisions based on the results.

Note

JavaScript also has two keywords called object literals—null and
undefined.
Normally you assign the value null to something when you want it to have a
valid but nonexistent value. For a numeric value, null is equivalent to zero, for
a string it equates to the empty string (“”), and for a Boolean value it means false.
Unlike null, undefined is not a keyword. It is a predefined global variable
used to store the value of a variable whose name has been used in a statement, but
that does not have a value assigned to it. This means that it is not zero or null,
but it is undefined—JavaScript does not recognize it.

Summary
In this hour, you learned about the number and string data types supported by JavaScript
and saw some examples of how to manipulate data of these types using a variety of
JavaScript’s numerical and string methods.

Q&A
Q. What is the maximum length of a string in JavaScript?
A. The JavaScript Specification does not specify a maximum string length; instead, it

will be specific to your browser and operating system. For certain
implementations, it will be a function of available memory.

Q. Does JavaScript have a data type to represent a single character?
A. No, unlike some other languages JavaScript doesn’t have a specific data type to

represent a single character. To do this in JavaScript, you create a string that
consists of only one character.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. What statement would return a new string created by appending one string called
string2 to another string called string1?
a. concat(string1) + concat(string2);
b. string1.concat(string2);
c. join(string1, string2);

2. Which statement sets the value of variable paid to Boolean true?
a. var paid = true;

b. var paid = "true";
c. var paid.true();

3. For a string called myString containing the value “stupid is as stupid does,”
which of the following would return a value of -1?
a. myString.indexOf("stupid");
b. myString.lastIndexOf("stupid");
c. myString.indexOf("is stupid");

Answers
1. b. string1.concat(string2); returns a new string created by joining
string2 to the end of string1.

2. a. Boolean values should not be enclosed in quotes.
3. c. The substring “is stupid” does not appear in myString.

Exercises
 Write a JavaScript function to remove a given number of characters from the end
of a string.
 Write a JavaScript function to capitalize the first letter of each word in a given
string.

Hour 6. Arrays

What You’ll Learn in This Hour:
 What we mean by the array data type
 How to declare and populate arrays
 How to manage array contents

Sometimes it makes sense to store multiple variable values under a single variable
name. JavaScript has the array data type to help you do this.
In this hour you’ll see how JavaScript arrays are created and how the data stored in
these arrays can be manipulated in code.

Arrays
An array is a type of object used for storing multiple values in a single variable. Each
value has a numeric index that may contain data of any data type—Booleans, numbers,
strings, functions, objects, and even other arrays.

Creating a New Array
The syntax used for creating an array will already be familiar to you; after all, an array
is simply another object:

var myArray = new Array();

However, for arrays there is a shorthand version—simply use square brackets ([]) like
this:

var myArray = [];

Initializing an Array
You can optionally preload data into your array at the time it is created:
Click here to view code image

var myArray = ['Monday', 'Tuesday', 'Wednesday'];

Alternatively, items can be added after the array has been created:
var myArray = [];
myArray[0] = 'Monday';
myArray[1] = 'Tuesday';
myArray[2] = 'Wednesday';

array.length

array.length
All arrays have a length property that tells how many items the array contains. The
length property is automatically updated when you add items to or remove items
from the array. The following code returns the length of the preceding array:

myArray.length // returns 3

Caution
The length is always 1 higher than the highest index, even if there are actually
fewer items in the array. Suppose we add a new item to the preceding array:

Click here to view code image

myArray[50] = 'Ice cream day';

myArray.length now returns 51, even though the array only has four entries.

Array Methods

Caution
Some of the array methods have the same name—and almost the same function—
as string methods of the same name. Be aware of what data type you are working
with, or your script might not function as you would like.

Table 6.1 contains some of the more commonly used methods of the array object.

TABLE 6.1 Some Useful Array Methods

concat()
You’ve already had experience with string concatenation, and JavaScript arrays have a

concat() method too:
Click here to view code image

var myOtherArray = ['Thursday','Friday'];
var myWeek = myArray.concat(myOtherArray);
// myWeek will contain 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'

join()
To join all of an array’s elements together into a single string, we can use the join()
method:
Click here to view code image

var longDay = myArray.join(); // returns MondayTuesdayWednesday

Optionally, we can pass a string argument to this method; the passed string will then be
inserted as a separator in the returned string:
Click here to view code image

var longDay = myArray.join("-"); // returns Monday-Tuesday-Wednesday

toString()
toString() is almost a special case of join()—it returns the array as a string
with the elements separated by commas:
Click here to view code image

var longDay = myArray.toString(); // returns Monday,Tuesday,Wednesday

indexOf()
We can use indexOf() to find the first place where a particular element occurs in an
array. The method returns the index of the searched-for element, or -1 if it isn’t found
anywhere in the array:
Click here to view code image

myArray.indexOf('Tuesday') // returns 1 (remember, arrays start with
index 0)
myArray.indexOf('Sunday') // returns -1

lastIndexOf()
As you might expect, lastIndexOf() works just the same way as indexOf(), but
finds the last occurrence in the array of the search term, rather than the first occurrence.

slice()
When we need to create an array that is a subset of our starting array, we can use

slice(), passing to it the starting index and the number of elements we want to
retrieve:
Click here to view code image

var myShortWeek = myWeek.slice(1, 3);
//myShortWeek contains 'Tuesday', 'Wednesday', 'Thursday'

sort()
We can use sort() to carry out an alphabetical sort:
Click here to view code image

myWeek.sort() // returns 'Friday', 'Monday', 'Thursday', 'Tuesday',
'Wednesday'

splice()
To add or delete specific items from the array, we can use splice().
The syntax is a little more complex than that of the previous examples:
Click here to view code image

array.splice(index, howmany, [new elements]);

The first element sets the location in the array where we want to perform the splice; the
second element, how many items to remove (if set to 0, none are deleted), and
thereafter, an optional list of any new elements to be inserted.

myWeek.splice(2,1,"holiday")

The preceding line of code moves to the array item with index 2 (‘Wednesday’),
removes one element (‘Wednesday’), and inserts a new element (‘holiday’); so
myWeek now contains ‘Monday’, ‘Tuesday’, ‘holiday’, ‘Thursday’, ‘Friday’. The
method returns any removed elements.

Caution
Using splice() changes the original array! If you need to preserve the array
for use elsewhere in your code, copy the array to a new variable before executing
splice().

Try it Yourself: Array Manipulation
Let’s put some of these methods to work. In your text editor, create the script
listed in Listing 6.1 and save it as array.html.

LISTING 6.1 Array Manipulation

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Strings and Arrays</title>
<script>
 function wrangleArray() {
 var sentence = "JavaScript is a really cool language";
 var newSentence = "";
 //Write it out
 document.getElementById("div1").innerHTML = "<p>" + sentence + "
</p>";
 //Convert to an array
 var words = sentence.split(" ");
 // Remove 'really' and 'cool', and add 'powerful' instead
 var message = words.splice(3,2,"powerful");
 // use an alert to say what words were removed
 alert('Removed words: ' + message);
 // Convert the array to a string, and write it out
 document.getElementById("div2").innerHTML = "<p>" + words.join("
") + "</p>";
 }
</script>
</head>
<body>
 <div id="div1"></div>
 <div id="div2"></div>
 <script>wrangleArray();</script>
</body>
</html>

As we work through this listing, you may want to refer to the definitions of the
individual string and array methods given earlier in the hour, and the discussion
of getElementById() and innerHTML from Hour 4, “DOM Objects and
Built-in Objects.”
Stepping through the function wrangleArray(), we first define a string:

Click here to view code image

var sentence = "JavaScript is a really cool language";

After writing it out to any empty <div> element using innerHTML, we apply
the split() method to the string, passing to it a single space as an argument.
The method returns an array of elements, created by splitting the string wherever
a space occurs—that is to say, splits it into individual words. We store that array
in the variable words.
We next apply the splice() array method to the words array, removing two
words at array index 3, “really” and “cool”. Since the splice() method

returns any deleted words, we can display these in an alert() dialog:
Click here to view code image

var message = words.splice(3,2,"powerful");
alert('Removed words: ' + message);

Finally, we apply the join() method to the array, once more collapsing it into a
string. Since we supply a single space as the argument to join(), the individual
words are once more separated by spaces. Finally we output the revised sentence
to a second <div> element by using innerHTML.
The wrangleArray() function is called by a small script in the body of the
document:

Click here to view code image

<script>wrangleArray();</script>

The script operation is shown in Figure 6.1.

FIGURE 6.1 Output from array manipulation script

Summary
An array is a convenient means of storing multiple values in a single variable. In this
hour, you learned about some of the methods of creating and working with JavaScript
array objects.

Q&A

Q. Does JavaScript allow associative arrays?
A. JavaScript does not directly support associative arrays (arrays with named

indexes). However, there are ways to simulate their behavior by using objects.
You see examples of this later in the book.

Q. Can I create a multidimensional array in JavaScript?
A. You can create an array of arrays, which amounts to the same thing:

Click here to view code image

var myArray = [[1,2], [3,4], [5,6]];

alert(myArray[1][0]); // alerts '3'

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. If the element with highest index in array Foo is Foo[8], what value will be

returned by Foo.length?
2. You have an array called monthNames containing the names of all the months

of the year. How would you use join() to create a string name containing all of
these month names with a single space between names?

3. What value will be returned by indexOf() if it is passed a value that does not
appear in the array to which it is applied?

Answers
1. Foo.length will return 9.
2. var names = monthNames.join(" ");
3. It will return -1.

Exercise
 Review the array and string methods that share a method name. Familiarize
yourself with how the syntax and operation changes depending on whether these
methods are applied to a string or an array.

Hour 7. Program Control

What You’ll Learn in This Hour:
 Using conditional statements
 Comparing values with comparison operators
 Applying logical operators
 Writing loops and control structures
 Setting Timers in JavaScript

In Hour 5, “Numbers and Strings,” and Hour 6, “Arrays,” you took a quick trip through
the data types that JavaScript variables can contain. To create anything but the simplest
scripts, though, you’re going to need your code to make decisions based on those values.
In this hour we examine ways to recognize particular conditions and have our program
act in a prescribed way as a result.

Conditional Statements
Conditional statements, as the name implies, are used to detect particular conditions
arising in the values of the variables you are using in your script. JavaScript supports
various such conditional statements, as outlined in the following sections.

The if() Statement
In the previous hour we discussed Boolean variables, which we saw could take one of
only two values—true or false.
JavaScript has several ways to test such values, the simplest of which is the if
statement. It has the following general form:
Click here to view code image

if(this condition is true) then do this;

Let’s look at a trivial example:
Click here to view code image

var message = "";
var bool = true;
if(bool) message = "The test condition evaluated to TRUE";

First we declare a variable message, and assign an empty string to it as a value. We
then declare a new variable, bool, which we set to the Boolean value of true. The
third statement tests the value of the variable bool to see whether it is true; if so (as in

this case) the value of the variable message is set to a new string. Had we assigned a
value of false to bool in the second line, the test condition would not have been
fulfilled, and the instruction to assign a new value to message would have been
ignored, leaving the variable message containing the empty string.
Remember, we said that the general form of an if statement is
Click here to view code image

if(this condition is true) then do this.

In the case of a Boolean value, as in this example, we have replaced the condition with
the variable itself; since its value can only be true or false, the contents of the
parentheses passed back to if accordingly evaluate to true or false.
We can test for the Boolean value false by using the negation character (!):
Click here to view code image

if(!bool) message = "The value of bool is FALSE";

Clearly, for !bool to evaluate to true, bool must be of value false.

Comparison Operators
The if() statement is not limited to testing the value of a Boolean variable; instead,
we can enter a condition in the form of an expression into the parentheses of our if
statement, and JavaScript evaluates the expression to determine whether it is true or
false:
Click here to view code image

var message = "";
var temperature = 60;
if(temperature < 64) message = "Turn on the heating!";

The less-than operator (<) is one of a range of comparison operators available in
JavaScript. Some of the comparison operators are listed in Table 7.1.

TABLE 7.1 JavaScript Comparison Operators

Note
A more comprehensive list of comparison operators appears in Appendix B,
“JavaScript Quick Reference.”

Try it Yourself: Extending Our Spam Detector
In Hour 5, you developed a simple function to detect the word “fake” in a given
input string.
Now you can further develop that function using the if() statement.
Here’s the function from Hour 5:

Click here to view code image

function detectSpam(input) {
 input = input.toLowerCase();
 return input.indexOf("fake");
}

The function, you’ll recall, currently returns a number corresponding with the
location in the input string where the word “fake” has been located.
Let’s modify the function to instead return true or false depending on
whether the target word was found:

Click here to view code image

if(input.indexOf("fake") < 0) {
 return false;
}
return true;

Now we can see that, if the condition
input.indexOf("fake") < 0

is met, the function will terminate, returning false; otherwise, execution will
continue to the next line after the if() block, and the function will terminate,
returning true.
Listing 7.1 shows the modified code in a complete HTML file. Create this file in
your editor.

LISTING 7.1 Spam Detector Function

Click here to view code image

<!DOCTYPE html>
<html>

<head>
 <title>Spam Detector</title>
</head>
<body>
<script>
 function detectSpam(input) {
 input = input.toLowerCase();
 if(input.indexOf("fake") < 0) {
 return false;
 }
 return true;
 }

 var mystring = prompt("Enter a string");
 alert(detectSpam(mystring));
</script>
</body>
</html>

Now let’s see how the program performs when given the same string we used in
Hour 5, as shown in Figure 7.1.

FIGURE 7.1 Entering a string

As you can see from Figure 7.2, the alert dialog now simply reports true, rather
than showing the location in the string where the target word was found. Reload
the file in the browser and try it again with a string that doesn’t contain the word
“fake” to confirm that the detector returns false.

FIGURE 7.2 The spam detector reports true

Testing for Equality
In the previous example, how could we test to see whether the temperature exactly
equals 64 degrees? Remember that we use the equals sign (=) to assign a value to a
variable, so this code won’t work as might be expected:

if(temperature = 64)

Were we to use this statement, the expression within the parentheses would be
evaluated by JavaScript and our variable temperature would be assigned the value
of 64. If this value assignment terminates successfully—and why shouldn’t it?—then the
value assignment would return a value of true back to the if() statement, and the rest
of the statement would therefore be executed. This isn’t the behavior we want at all.
Instead, to test for equality we must use a double equals sign (==):
Click here to view code image

if(temperature == 64) message = "64 degrees and holding!";

Caution
If you need to test whether two items are equal both in value and in type,
JavaScript has an operator, ===, to perform this test. For example:

Click here to view code image

var x = 2; // assign a numeric value

if(x == "2") ... // true, as the string "2" is interpreted
if(x === "2") ...// false, a string is not numeric

This can be useful when testing to see whether a returned value is actually
false, or just a value that is “falsy” (can be interpreted as false):

Click here to view code image

var x = 0; // assign a value of zero
if(!x) ... // evaluates to true
if(x === false)..// evaluates to false

More about if()
The previous examples carry out only a single statement when the test condition is met.
What if we want to do more than this; for instance, carry out several statements?
To achieve this, we simply enclose in curly braces ({}) all of the code statements that
we want to execute if the condition is fulfilled:
Click here to view code image

if(temperature < 64) {
 message = "Turn on the heating!";
 heatingStatus = "on";
 // ... more statements can be added here
}

We can also add a clause to our if statement that contains code we want to execute if
the condition is not fulfilled. To achieve this we use the else construct:
Click here to view code image

if(temperature < 64) {
 message = "Turn on the heating!";
 heatingStatus = "on";
 // ... more statements can be added here
} else {
 message = "Temperature is high enough";
 heatingStatus = "off";
 // ... more statements can be added here too
}

Tip
There exists a shorthand form of the syntax for the if() statement:

Click here to view code image

(condition is true)? [do if true] : [do if false];

Here’s an example:
Click here to view code image

errorMessage = count + ((count == 1)? " error ":" errors ") + "found.";

In this example, if the number of errors stored in variable count is exactly 1, the
message variable will contain
1 error found.
If the value in count is 0 or a number greater than 1, the message variable will
contain a string such as
3 errors found.

Testing Multiple Conditions
You can use “nested” combinations of if and else to test multiple conditions before
deciding how to act. Let’s return to our heating system example, and have it switch on
the cooling fan if the temperature is too high:
Click here to view code image

if(temperature < 64) {
 message = "Turn on the heating!";
 heatingStatus = "on";
 fanStatus = "off";
} else if(temperature > 72){
 message = "Turn on the fan!";
 heatingStatus = "off";
 fanStatus = "on";
} else {
 message = "Temperature is OK";
 heatingStatus = "off";
 fanStatus = "off";
}

The switch Statement
When we’re testing for a range of different possible outcomes of the same conditional
statement, a concise syntax we can use is that of JavaScript’s switch statement:
Click here to view code image

switch(color) {
 case "red" :
 message = "Stop!";
 break;
 case "yellow" :
 message = "Pass with caution";
 break;
 case "green" :
 message = "Come on through";
 break;
 default :
 message = "Traffic light out of service. Pass only with great
care";
}

The keyword switch has in parentheses the name of the variable to be tested.
The tests themselves are listed within the braces, { and }. Each case statement (with
its value in quotes) is followed by a colon, then the list of actions to be executed if that
case has been matched. There can be any number of code statements in each section.
Note the break statement after each case. This jumps us to the end of the switch
statement after having executed the code for a matching case. If break is omitted, it’s
possible that more than one case will have its code executed.
The optional default case has its code executed if none of the specified cases were
matched.

Logical Operators
There will be occasions when we want to test a combination of criteria to determine
whether a test condition has been met, and doing so with if ... else or switch
statements becomes unwieldy.
Let’s return once more to our temperature control program. JavaScript allows us to
combine conditions using logical AND (&&) and logical OR (||). Here’s one way:
Click here to view code image

if(temperature >= 64 && temperature <= 72) {
 message = "The temperature is OK";
} else {
 message = "The temperature is out of range!";
}

We can read the preceding condition as “If the temperature is greater than or equal to 64
AND the temperature is less than or equal to 72.”
We can achieve exactly the same functionality using OR instead of AND:
Click here to view code image

if(temperature < 64 || temperature > 72) {
 message = "The temperature is out of range!";
} else {
 message = "The temperature is OK";
}

Here we have reversed the way we carry out the test; our conditional statement is now
fulfilled when the temperature is out of range, and can be read as “If the temperature is
less than 64 OR greater than 72.”

Loops and Control Structures
The if statement can be thought of as a junction in program execution. Depending on
the result of the test performed on the data, the program may go down one route or
another with its execution of statements.

There are many occasions, though, when we might want to execute some operation a
number of times before continuing with the rest of our program. If the number of repeats
is fixed, we could perhaps achieve this with multiple if statements and incrementing
counter variables, though the code would be messy and hard to read. But what if we
don’t know how many times we need to repeat our piece of code, because the number of
repeats depends upon, for example, the changing value of a variable?
JavaScript has various built-in loop structures that allow us to achieve such goals.

while
The syntax of the while statement is very much like the syntax for the if statement:
Click here to view code image

while(this condition is true) {
 carry out these statements ...
}

The while statement works just like if, too. The only difference is that, after
completing the conditional statements, while goes back and tests the condition again.
All the time the condition keeps coming up true, while keeps right on executing the
conditional code. Here’s an example:

var count = 10;
var sum = 0;
while(count > 0) {
 sum = sum + count;
 count--;
}
alert(sum);

Each time while evaluates the condition as true, the statements in the curly braces are
executed over and over, adding the current value of count to the variable sum on each
trip around the loop.
When count has been decremented to zero, the condition fails and the loop stops;
program operation then continues from after the closing brace. By this time, the variable
sum has a value of
Click here to view code image

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55

do ... while
The do ... while structure is similar in operation to while, but with one
important difference. Here’s the syntax:
Click here to view code image

do {
 ... these statements ...

} while(this condition is true)

The only real difference here is that, since the while clause appears after the braces,
the list of conditional statements is executed once before the while clause is
evaluated. The statements in a do ... while clause will therefore always be
executed at least once.

for
The for loop is another loop similar in operation to while, but with a more
comprehensive syntax. With the for loop, we can specify an initial condition, a test
condition (to end the loop), and a means of changing a counter variable for each pass
through the loop, all in one statement. Have a look at the syntax:
Click here to view code image

for(x=0; x<10; x++) {
 ... execute these statements ...
}

We interpret this as follows:
“For x initially set to zero, and while x is less than 10, and incrementing x by 1 on each
pass through the loop, carry out the conditional statements.”
Let’s rewrite the example we gave when looking at the while loop, but this time using
a for loop:
Click here to view code image

var count;
var sum = 0;
for(count = 10; count > 0; count--) {
 sum = sum + count;
}

If the counter variable has not previously been declared, it is often convenient to
declare it with the var keyword within the for statement instead of outside:
Click here to view code image

var sum = 0;
for(var count = 10; count > 0; count--) {
 sum = sum + count;
}
alert(sum);

As in the previous example, after the loop terminates the variable sum has a value of
Click here to view code image

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55

Leaving a Loop with break

The break command works within a loop pretty much as it does in a switch
statement—it kicks us out of the loop and returns operation to the line of code
immediately after the closing brace.
Here’s an example:

var count = 10;
var sum = 0;
while(count > 0) {
 sum = sum + count;
 if(sum > 42) break;
 count--;
}
alert(sum);

We saw previously that, without the break instruction, the value of sum evolved like
this:
Click here to view code image

10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55

Now, we find that when the value of sum reaches
10 + 9 + 8 + 7 + 6 + 5 = 45

the conditional clause of the if(sum > 42) statement will come up true, and cause
the loop to terminate due to the break command.

Caution
Beware accidentally creating an infinite loop. Here’s a loop we used earlier:

while(count > 0) {
 sum = sum + count;
 count--;
}

Imagine, for example, that we omitted the line
count--;
Now every time while tests the variable count, it finds it to be greater than
zero, and the loop never ends. An infinite loop can stop the browser from
responding, cause a JavaScript error, or cause the browser to crash.

Looping Through Objects with for ... in
The for...in loop is a special sort of loop intended for stepping through the
properties of an object. Let’s see it in action applied to an array object in Listing 7.2.

LISTING 7.2 The for ... in Loop

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Loops and Control</title>
</head>
<body>
 <script>
 var days = ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'];
 var message = "";
 for (i in days) {
 message += 'Day ' + i + ' is ' + days[i] + '\n';
 }
 alert(message);
 </script>
</body>
</html>

In this sort of loop, we don’t need to worry about maintaining a loop counter or devising
a test to see when the loop should complete. The loop will occur once for every
property of the supplied object (in our example, once for every array item) and then
terminate.
The result of running this example is shown in Figure 7.3.

FIGURE 7.3 Result of running our for ... in loop

Note
You’ll recall that an array is one type of JavaScript object. You can use the for
... in loop to investigate the properties of any object, whether it’s a DOM
object, a JavaScript built-in object, or one you’ve created yourself (as you’ll be
doing in Hour 8, “Object-Oriented Programming”).

Setting and Using Timers
There are some situations in which you’ll want to program a specific delay into the
execution of your JavaScript code. This is especially common when writing user
interface routines; for instance, you may want to display a message for a short period
before removing it.
To help you, JavaScript provides two useful methods, setTimeout() and
setInterval().

Note
setTimeout() and clearTimeout() are both methods of the HTML
DOM window object.

setTimeout()
The setTimeout(action, delay) method calls the function (or evaluates the
expression) passed in its first argument after the number of milliseconds specified in its
second argument. You can use it, for example, to display an element in a given
configuration for a fixed period of time:
Click here to view code image

<div id="id1">I'm about to disappear!</div>

Let’s suppose your page contains the preceding <div> element. If you put the
following code into a <script> element in the page <head> section, the function
hide() will be executed 3 seconds after the page finishes loading, making the <div>
element invisible:
Click here to view code image

function hide(elementId) {
 document.getElementById(elementId).style.display = 'none';
}
window.onload = function() {
 setTimeout("hide('id1')", 3000);
}

The setTimeout() method returns a value. If later you want to cancel the timer
function, you can refer to it by passing that returned value to the clearTimeout()
method:
Click here to view code image

var timer1 = setTimeout("hide('id1')", 3000);
clearTimeout(timer1);

setInterval()

The setInterval(action, delay) method works similarly to
setTimeout(), but instead of imposing a single delay before executing the statement
passed to it as its first argument, it executes it repeatedly, with a delay between
executions corresponding to the number of milliseconds specified in the second
argument.
Like setTimeout(), setInterval() returns a value that you can later pass to
the clearInterval() method to stop the timer:
Click here to view code image

var timer1 = setInterval("updateClock()", 1000);
clearInterval(timer1);

Summary
In this hour you learned a lot about testing conditions and controlling program flow
based on the values of variables, and how to write various kinds of program loops
controlled by conditions.
You also learned a little about using timers in your programs.

Q&A
Q. Is there any particular reason why I should use one sort of loop over

another?
A. It’s true that there is usually more than one type of loop that will solve any

particular programming problem. You can use the one you feel most comfortable
with, though it’s usually good practice to use whichever loop makes the most
sense (in conjunction with your chosen variable names) in the context of what your
code sets out to do.

Q. Is there a way to stop the current trip around a loop and move straight to the
next iteration?

A. Yes, you can use the continue command. It works pretty much like break, but
instead of canceling the loop and continuing code execution from after the closing
brace, continue only cancels the current trip around the loop and moves on to
the next one.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. How is “greater than or equal to” expressed in JavaScript?

a. >
b. >=
c. >==

2. What command forces the cancellation of a loop, and moves code operation to the
statement after the closing brace?
a. break;
b. loop;
c. close;

3. Which of the following is likely to cause an infinite loop to occur?
a. The wrong sort of loop has been used.
b. The condition to terminate the loop is never met.
c. There are too many statements in the loop.

Answers
1. b. JavaScript interprets >= as “greater than or equal to.”
2. a. The break command ends loop execution.
3. b. An infinite loop occurs if the condition to terminate the loop is never met.

Exercises
 In Hour 4, “DOM Objects and Built-in Objects,” you learned how to get the
current day of the week. Write a program using a switch statement to output a
different message to the user, depending on what day it is today.
 Modify Listing 7.2 to list the months of the year rather than the days of the week.
How can you modify the code to list the months starting with January as Month 1
rather than Month 0?

Part III: Objects

Hour 8. Object-Oriented Programming

What You’ll Learn in This Hour:
 What object-oriented programming is
 Two ways to create objects
 Instantiating an object
 Extending and inheriting objects using prototype
 Accessing object methods and properties
 Using feature detection

As your programs become more complex, you need to use coding techniques that help
you to maintain control and ensure that your code remains efficient, readable, and
maintainable. In this hour you learn the basics of object-oriented programming (OOP),
an important technique for writing clear and reliable code that you can reuse over and
over.

What Is Object-Oriented Programming?
The code examples to date have been so-called procedural programming. Procedural
programming is characterized by having data stored in variables, which are operated on
by lists of instructions. Each instruction (or list of instructions, such as a function) can
create, destroy, or modify the data, yet the data always remains somehow “separate”
from the program code.
In object-oriented programming (OOP), the program instructions and the data on which
they operate are more intertwined. OOP is a way of conceptualizing a program’s data
into discrete “things” referred to as objects—each having its own properties (data) and
methods (instructions).
Suppose, for example, you wanted to write a script to help manage a car rental business.
You might design a general-purpose object called Car. The Car object would have
certain properties (color, year, odometerReading, and make) and perhaps a
few methods (e.g., a method setOdometer(newMiles) to update the
odometerReading property to the current figure newMiles).
For each car in the rental fleet, you would create an instance of the Car object.

Note
An instance of an object is a particular application of an object “template” to
create a working object based on specific data. For example, the general object

template Car might have a specific instance where a Car object has been
created with specific data identifying it as a “blue 1998 Ford,” and another
instance describing a “yellow 2004 Nissan.” In most discussions of object-
oriented programming, such an object template is referred to as a class. I’ve
resisted the temptation to use that term, as JavaScript doesn’t really use classes,
but the JavaScript concept called a constructor function is similar. You learn
about constructor functions during this hour.

Writing OOP code offers several advantages over procedural methods:
 Code reuse—First, OOP allows you to reuse your code in a variety of scripts.
You could achieve this with regular functions, but it would soon become difficult
to keep track of all the variables that needed to be passed, their scope, and
meaning. For objects, in contrast, you only need to document the properties and
methods for each object. Providing they adhere to these rules, other programs—
and even other programmers—can easily use your object definitions.
 Encapsulation—You can define the way objects interact with other parts of your
scripts by carefully controlling the properties and methods that the rest of the
program can “see.” The internal workings of the object can be hidden away,
forcing code external to the object to access that object’s data only through the
documented interfaces that the object offers.
 Inheritance—Often when coding you will have a need for some code that is
nearly, but not quite, the same as something that’s been coded before—maybe
even something already coded in the same application. Using inheritance, new
objects can be created based on the design of previously defined objects,
optionally with additions or modifications to their methods and properties; the
new object inherits properties and methods from the old.

In the previous hours you often used objects; either those built into JavaScript, or those
that make up the DOM. However, you can also create your own objects, with their own
properties and functions, to use in your programs.

Note
Some programming languages such as C++ and Smalltalk lean heavily toward
OOP, and are often referred to as object-oriented languages. JavaScript is not
one of these, but it does support enough of the essentials to allow you to write
useful OOP code. We could easily fill the whole book with theory and practice of
OOP, but we just look at the basics here.

Object Creation

JavaScript offers several ways to create an object. Let’s look first at how to declare a
direct instance of an object; later we create an object by using a constructor function.

Create a Direct Instance
JavaScript has a built-in object simply called Object that you can use as a kind of
blank canvas for creating your own objects:

myNewObject = new Object();

OK, you now have a brand new object, myNewObject. For the moment, it doesn’t
actually do anything, as it doesn’t have any properties or methods. You can begin to
rectify that by adding a property:
Click here to view code image

myNewObject.info = 'I am a shiny new object';

Now your object owns a property—in this case a text string containing some
information about the object and called info. You can also easily add a method to the
object too, by first defining a function, and then attaching it to myNewObject as one of
the object’s methods:
Click here to view code image

function myFunc() {
 alert(this.info);
 };
myNewObject.showInfo = myFunc;

Caution
Notice that you use just the name of the function here without the parentheses.
You do so because you are trying to assign to method newObject.showInfo
the definition of the function myFunc().
Had you used the code

Click here to view code image

myNewObject.showInfo = myFunc();

you would have been asking JavaScript to execute myFunc() and assign its
return value to newObject.showInfo.

To call the new method, you can simply use the now-familiar dot notation:
myNewObject.showInfo();

Using the this Keyword

Note the use of the this keyword in the previous function definition. You may recall
that you used such a keyword in Hour 2, “Writing Simple Scripts,” and Hour 3, “Using
Functions.” In those previous examples, you used this in an inline event handler:
Click here to view code image

When used in that way, this refers to the HTML element itself—in the preceding case
the element. When you use this inside a function (or method), the keyword
this refers to the function’s parent object.
Upon the first declaration of the function myFunc(), its parent is the global object; that
is, the window object. The window object does not have a property called info, so
if you were to call the myFunc() function directly, an error would occur.
However, you go on to create a method called showInfo of myNewObject and you
assign myFunc() to that method:
Click here to view code image

myNewObject.showInfo = myFunc;

In the context of the showInfo() method, myNewObject is the parent object, so
this.info refers to the property myNewObject.info.
Let’s see if we can clarify this a little with the code in Listing 8.1.

LISTING 8.1 Creating an Object

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Object Oriented Programming</title>
 <script>
 myNewObject = new Object();
 myNewObject.info = 'I am a shiny new object';
 function myFunc(){
 alert(this.info);
 }
 myNewObject.showInfo = myFunc;
 </script>
</head>
<body>
 <input type="button" value="Good showInfo Call"
onclick="myNewObject.showInfo()" />
 <input type="button" value="myFunc Call" onclick="myFunc()" />
 <input type="button" value="Bad showInfo Call" onclick="showInfo()" />
</body>
</html>

Notice that in the <head> section of the page, you create the object myNewObject
and assign it the property info and the method showInfo, as described earlier.
Loading this page into your browser, you are confronted with three buttons.
Clicking on the first button makes a call to the showInfo method of the newly created
object:
Click here to view code image

<input type="button" value="Good showInfo Call"
onclick="myNewObject.showInfo()" />

As you would hope, the value of the info property is passed to the alert() dialog,
as shown in Figure 8.1.

FIGURE 8.1 The info property is correctly called

The second button attempts to make a call directly to the function myFunc():
Click here to view code image

<input type="button" value="myFunc Call" onclick="myFunc()" />

Because myFunc() is a method of the global object (having been defined without
reference to any other object as parent), it attempts to pass to the alert() dialog the
value of a nonexistent property window.info, with the result shown in Figure 8.2.

FIGURE 8.2 The global object has no property called info

Finally, your third button attempts to call showInfo without reference to its parent

object:
Click here to view code image

<input type="button" value="Bad showInfo Call" onclick="showInfo()" />

Because the method does not exist outside the object myNewObject, JavaScript
reports an error, as shown in Figure 8.3.

FIGURE 8.3 JavaScript reports that showInfo is not defined

Note
We’ll talk more about showing JavaScript errors using your browser’s
JavaScript Console or Error Console later in the book.

Anonymous Functions
There is a more convenient and elegant way to assign a value to your object’s
showInfo method, without having to create a separate, named function and then later
assign it by name to the required method. Instead of this code:
Click here to view code image

function myFunc() {
 alert(this.info);
 };
myNewObject.showInfo = myFunc;

you could simply have written the following:
Click here to view code image

myNewObject.showInfo = function() {
 alert(this.info);
}

Because you haven’t needed to give a name to your function prior to assigning it, this
technique is referred to as using an anonymous function.
By using similar assignment statements you can add as many properties and methods as
you need to your instantiated object.

Tip
JavaScript offers a further way to create a direct instance of an object; the
technique uses JSON (JavaScript Object Notation). It isn’t covered here, as we
explore JSON in detail in Hour 10, “Meet JSON.”

Using a Constructor Function
Directly creating an instance of an object is fine if you think you’ll only need one object
of that type. Unfortunately, if you need to create another instance of the same type of
object, you’ll have to go through the same process again—creating the object, adding
properties, defining methods, and so on.

Tip
An object with only one global instance is sometimes called a singleton object.
These objects are useful sometimes; for example, a user of your program might
have only one associated userProfile object, perhaps containing his or her
user name, URL of last page viewed, and similar properties.

A better way to create objects that will have multiple instances is by using an object
constructor function. An object constructor function creates a kind of “template” from
which further objects can be instantiated.
Take a look at the following code. Instead of using new Object(), you first declare
a function, myObjectType(), and in its definition you can add properties and
methods using the this keyword.
Click here to view code image

function myObjectType(){
 this.info = 'I am a shiny new object';
 this.showInfo = function(){
 alert(this.info); // show the value of the property info
 }
 this.setInfo = function (newInfo) {
 this.info = newInfo; // overwrite the value of the property

info
 }
}

In the preceding code you added a single property, info, and two methods:
showInfo, which simply displays the value currently stored in the info property,
and setInfo. The setInfo method takes an argument, newInfo, and uses its value
to overwrite the value of the info property.

Instantiating an Object
You can now create as many instances as you want of this object type. All will have the
properties and methods defined in the myObjectType() function. Creating an object
instance is known as instantiating an object.
Having defined your constructor function, you can create an instance of your object
simply by using the constructor function:
Click here to view code image

var myNewObject = new myObjectType();

Note
Note that this syntax is identical to using new Object(), except you use your
purpose-designed object type in place of JavaScript’s general-purpose
Object(). In doing so, you instantiate the object complete with the properties
and methods defined in the constructor function.

Now you can call its methods and examine its properties:
Click here to view code image

var x = myNewObject.info // x now contains 'I am a shiny new object'
myNewObject.showInfo(); // alerts 'I am a shiny new object'
myNewObject.setInfo("Here is some new information"); // overwrites the
info
property

Creating multiple instances is as simple as calling the constructor function as many
times as you need to:
Click here to view code image

var myNewObject1 = new myObjectType();
var myNewObject2 = new myObjectType();

Let’s see this in action. The code in Listing 8.2 defines an object constructor function
the same as the one described previously.
Two instances of the object are instantiated; clearly, both objects are initially identical.
You can examine the value stored in the info property for each object by clicking on

one of the buttons labeled Show Info 1 or Show Info 2.
A third button calls the setInfo method of object myNewObject2, passing a new
string literal as an argument to the method. This overwrites the value stored in the info
property of object myNewObject2, but of course leaves myNewObject unchanged.
The revised values can be checked by once again using Show Info 1 and Show Info 2.

LISTING 8.2 Creating Objects with a Constructor Function

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Object Oriented Programming</title>
 <script>
 function myObjectType(){
 this.info = 'I am a shiny new object';
 this.showInfo = function(){
 alert(this.info);
 }
 this.setInfo = function (newInfo) {
 this.info = newInfo;
 }
 }
 var myNewObject1 = new myObjectType();
 var myNewObject2 = new myObjectType();
 </script>
</head>
<body>
 <input type="button" value="Show Info 1"
onclick="myNewObject1.showInfo()" />
 <input type="button" value="Show Info 2"
onclick="myNewObject2.showInfo()" />
 <input type="button" value="Change info of object2"
onclick="myNewObject2.setInfo('New Information!')" />
</body>
</html>

Using Constructor Function Arguments
There is nothing to stop you from customizing your objects at the time of instantiation,
by passing one or more arguments to the constructor function. In the following code, the
definition of the constructor function includes one argument, personName, which is
assigned to the name property by the constructor function. As you instantiate two
objects, you pass a name as an argument to the constructor function for each instance.
Click here to view code image

function Person(personName){

 this.name = personName;
 this.info = 'I am called ' + this.name;
 this.showInfo = function(){
 alert(this.info);
 }
}
var person1 = new Person('Adam');
var person2 = new Person('Eve');

Tip
You can define the constructor function to accept as many or as few arguments as
you want:

Click here to view code image

function Car(Color, Year, Make, Miles) {
 this.color = Color;
 this.year = Year;
 this.make = Make;
 this.odometerReading = Miles;
 this.setOdometer = function(newMiles) {
 this.odometerReading = newMiles;
 }
var car1 = new Car("blue", "1998", "Ford", 79500);
var car2 = new Car("yellow", "2004", "Nissan", 56350);
car1.setOdometer(82450);

Extending and Inheriting Objects Using prototype
A major advantage of using objects is the capability to reuse already written code in a
new context. JavaScript provides a means to modify objects to include new methods
and/or properties or even to create brand-new objects based on ones that already exist.
These techniques are known, respectively, as extending and inheriting objects.

Extending Objects
What if you want to extend your objects with new methods and properties after the
objects have already been instantiated? You can do so using the keyword prototype.
The prototype object allows you to quickly add a property or method that is then
available for all instances of the object.

Try it Yourself: Extend an Object Using prototype
Let’s extend the Person object of the previous example with a new method,
sayHello:

Click here to view code image

Person.prototype.sayHello = function() {

 alert(this.name + " says hello");
}

Create a new HTML file in your editor, and enter the code from Listing 8.3.

LISTING 8.3 Adding a New Method with prototype

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Object Oriented Programming</title>
 <script>
 function Person(personName){
 this.name = personName;
 this.info = 'This person is called ' + this.name;
 this.showInfo = function(){
 alert(this.info);
 }
 }
 var person1 = new Person('Adam');
 var person2 = new Person('Eve');
 Person.prototype.sayHello = function() {
 alert(this.name + " says hello");
 }
 </script>
</head>
<body>
 <input type="button" value="Show Info on Adam"
onclick="person1.showInfo()" />
 <input type="button" value="Show Info on Eve"
onclick="person2.showInfo()" />
 <input type="button" value="Say Hello Adam"
onclick="person1.sayHello()" />
 <input type="button" value="Say Hello Eve"
onclick="person2.sayHello()" />
</body>
</html>

Let’s walk through this code and see what’s happening.
First, you define a constructor function that takes a single argument,
personName. Within the constructor, two properties, name and info, and
one method, showInfo, are defined.
You create two objects, instantiating each with a different name property.
Having created these two person objects, you then decide to add a further
method, sayHello, to the person object definition. You do so using the
prototype keyword.

Load the HTML file into your browser. Clicking on the four buttons visible on the
page shows that the initially defined showInfo method is still intact, but the
new sayHello method operates too, and is available for both of the existing
instances of the object type.

Inheritance
Inheritance is the capability to create one object type from another; the new object type
inherits the properties and methods of the old, as well as optionally having further
properties and methods of its own. This can save you a lot of work, as you can first
devise “generic” classes of objects and then refine them into more specific classes by
inheritance.
JavaScript uses the prototype keyword to emulate inheritance, too.
Because object.prototype is used to add new methods and properties, you can
utilize it to add ALL of the methods and properties of an existing constructor function to
your new object.
Let’s define another simple object:
Click here to view code image

function Pet() {
 this.animal = "";
 this.name = "";
 this.setAnimal = function(newAnimal) {
 this.animal = newAnimal;
 }
 this.setName = function(newName) {
 this.name = newName;
 }
}

A Pet object has properties that contain the type of animal and the name of the pet, and
methods to set these values:

var myCat = new Pet();
myCat.setAnimal = "cat";
myCat.setName = "Sylvester";

Now suppose you want to create an object specifically for dogs. Rather than starting
from scratch, you want to inherit the Dog object from Pet, but add an additional
property, breed, and an additional method, setBreed.
First, let’s create the Dog constructor function and in it define the new property and
method:
Click here to view code image

function Dog() {
 this.breed = "";

 this.setBreed = function(newBreed) {
 this.breed = newBreed;
 }
}

Having added the new property, breed, and the new method, setBreed, you can
now additionally inherit all the properties and methods of Pet. You do so using the
prototype keyword:

Dog.prototype = new Pet();

You can now access the properties and methods of Pet in addition to those of Dog:
Click here to view code image

var myDog = new Dog();
myDog.setName("Alan");
myDog.setBreed("Greyhound");
alert(myDog.name + " is a " + myDog.breed);

Try it Yourself: Extending JavaScript’s Own Objects
Prototype can also be used to extend JavaScript’s built-in objects. You can
implement the String.prototype.backwards method, for instance, that
will return a reversed version of any string you supply, as in Listing 8.4.

LISTING 8.4 Extending the String Object

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Object Oriented Programming</title>
 <script>
 String.prototype.backwards = function(){
 var out = '';
 for(var i = this.length-1; i >= 0; i--){
 out += this.substr(i, 1);
 }
 return out;
 }
 </script>
</head>
<body>
 <script>
 var inString = prompt("Enter your test string:");
 document.write(inString.backwards());
 </script>
</body>
</html>

Save the code of Listing 8.4 as an HTML file and open it in your browser. The
script uses a prompt() dialog to invite you to enter a string, and then shows the
string reversed on the page.
Let’s see how the code works.

Click here to view code image

String.prototype.backwards = function(){
 var out = '';
 for(var i = this.length-1; i >= 0; i--){
 out += this.substr(i, 1);
 }
 return out;
}

First, you declare a new variable, out, within the anonymous function that you
are creating. This variable will hold the reversed string.
You then begin a loop, starting at the end of the input string (remember that
JavaScript string character indexing starts at 0, not 1, so you need to begin at
this.length - 1) and decrementing one character at a time. As you loop
backwards through the string, you add characters one at a time to your output
string stored in out.
When you reach the beginning of the input string, the reversed string is returned.
The result is shown in Figure 8.4.

FIGURE 8.4 Method to reverse a string

Encapsulation

Encapsulation is the name given to OOP’s capability to hide data and instructions inside
an object. How this is achieved varies from language to language, but in JavaScript any
variables declared inside the constructor function are available only from within the
object; they are invisible from outside. The same is true of any function declared inside
the constructor function.
Such variables and functions become accessible to the outside world only when they are
assigned with the this keyword; they then become properties and methods of the
object.
Let’s look at an example:
Click here to view code image

function Box(width, length, height) {
 function volume(a,b,c) {
 return a*b*c;
 }
 this.boxVolume = volume(width, length, height);
}
var crate = new Box(5,4,3);
alert("Volume = " + crate.boxVolume); // works correctly
alert(volume(5,4,3)); // fails as function volume() is invisible

In the preceding example, the function volume(a,b,c) cannot be called from
any place outside the constructor function as it has not been assigned to an object
method by using this. However, the property crate.boxVolume is available
outside the constructor function; even though it uses the function volume() to
calculate its value, it only does so inside the constructor function.
If you don’t “register” methods and properties using this, they are not available
outside. Such methods and properties are referred to as private.

Using Feature Detection
Back in the dark days before the W3C DOM evolved to its current state, JavaScript
developers were forced into horrible code contortions to try to cope with browsers’
different DOM implementations. It was not uncommon for scripts to be written almost
as two or more separate programs, the version to be executed only being decided after
an attempt to detect the browser in use.
As you saw in your work with the navigator object in Hour 4, “DOM Objects and
Built-in Objects,” browser detection is a tricky business. The navigator object
contains information that can be misleading at best (and sometimes downright
incorrect). Also, when a new browser or version is introduced with new capabilities
and features, your browser-detecting code is usually broken once again.
Thankfully a much better way to write cross-browser code has emerged, based on
objects. Instead of attempting browser detection, it’s a much better idea to have

JavaScript examine whether the particular feature you need is supported. You can do
this by testing for the availability of a specific object, method, or property. In many
cases it’s sufficient to try to use the object, method, or property in question, and detect
the value JavaScript returns.
Here’s an example of testing for browser support of the
document.getElementById() method, which you’ve already met. While
getElementById() has been supported by all new browsers for some time now,
very early browsers do not support this method. You can test for the availability of the
getElementById() method (or any similar method or property) by using if():
Click here to view code image

if(document.getElementById) {
 myElement = document.getElementById(id);
} else {
 // do something else
}

If document.getElementById is not available, the if() conditional statement
will switch code operation to avoid using that method.
Another, related method uses the typeof operator to check whether a JavaScript
function exists before calling it:
Click here to view code image

if(typeof document.getElementById == 'function') {
 // you can use getElementById()
} else {
 // do something else
}

A number of possible values can be returned by typeof, as listed in Table 8.1.

TABLE 8.1 Values Returned by typeof

You can use this technique to check for the existence not only of DOM and built-in
objects, methods, and properties, but also those created within your scripts.
Note that at no point in this exercise have you tried to determine what browser your user

has—you simply want to know whether it supports the objects, properties, or methods
you are about to try to use. Not only is such feature detection much more accurate and
elegant than so-called browser sniffing (trying to infer the browser in use by
interpreting properties of the navigator object), but it’s also much more future proof
—the introduction of new browsers or browser versions won’t break anything in your
code’s operation.

Summary
In this hour you learned about object-oriented programming (OOP) in JavaScript,
starting with the basic concepts behind OOP, and how it can help your code
development, especially for more complex applications.
You learned a way to directly instantiate an object and add properties and methods to it.
You then learned to create an object constructor function, from which you can instantiate
multiple similar objects.
You also learned about the prototype keyword, and how it can be used to extend
objects or create new objects via inheritance.

Q&A
Q. Should I always write object-oriented code?
A. It’s a matter of personal preference. Some coders prefer to always think in terms

of objects, methods, and properties, and write all their code with those principles
in mind. Others feel that, particularly for smaller and simpler programs, the level
of abstraction provided by OOP is too much, and that procedural coding is OK.

Q. How would I use my objects in other programs?
A. An object’s constructor function is quite a portable entity. If you link into your

page a JavaScript file containing an object constructor function, you have the
means to create objects and use their properties and methods throughout your
code.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. A new object created from a constructor function is known as:

a. an instance of the object
b. a method of the object
c. a prototype

2. Deriving new objects by using the design of currently existing objects is known
as:
a. Encapsulation
b. Inheritance
c. Instantiation

3. Which of the following is a valid way to create a direct instance of an object?
a. myObject.create();
b. myObject = new Object;
c. myObject = new Object();

Answers
1. a. A new object created from a constructor function is known as an instance.
2. b. New objects are derived from existing ones through inheritance.
3. c. myObject = new Object();

Exercises
 Write a constructor function for a Card object with properties of suit
(diamonds, hearts, spades, or clubs) and face (ace, 2, 3 ...king). Add methods to
set the values of suit and face.
Can you include a shuffle method to set the suit and face properties to
represent a random card from the deck? (Hint: Use the Math.random() method
described in Hour 4, “DOM Objects and Built-in Objects.”)
 Extend JavaScript’s Date object using the prototype keyword to add a new
method, getYesterday(), that returns the name of the previous day to that
represented by the Date object.

Hour 9. Scripting with the DOM

What You’ll Learn in This Hour:
 The concept of nodes
 The different types of nodes
 Using nodeName, nodeType, and nodeValue
 Using the childNodes collection
 Selecting elements with getElementsByTagName()
 How to use Mozilla’s DOM Inspector
 How to create new elements
 Ways to add, edit, and remove child nodes
 Dynamically loading JavaScript files
 Changing element attributes

You’ve already learned about the W3C DOM and, in the code examples of previous
hours, you used various DOM objects, properties, and methods.
In this hour you begin exploring how JavaScript can directly interact with the DOM. In
particular, you learn some new ways to navigate around the DOM, selecting particular
DOM objects that represent parts of the page’s HTML contents. You see how to create
new elements, how to add, edit, and remove nodes of the DOM tree, and how to
manipulate elements’ attributes.

DOM Nodes
In Part I, “First Steps with JavaScript,” you were introduced to the W3C Document
Object Model (DOM) as a hierarchical tree of parent-child relationships that together
form a model of the current web page. By using appropriate methods, you can navigate
to any part of the DOM and retrieve details about it.
You probably recall that the top-level object in the DOM hierarchy is the window
object, and that one of its children is the document object. In this hour we mainly deal
with the document object and its properties and methods.
Take a look at the simple web page of Listing 9.1.

LISTING 9.1 A Simple Web Page

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>To-Do List</title>
</head>
<body>
 <h1>Things To Do</h1>
 <ol id="toDoList">
 Mow the lawn
 Clean the windows
 Answer your email

 <p id="toDoNotes">Make sure all these are completed by 8pm so you can
watch the game on TV!</p>
</body>
</html>

Figure 9.1 shows the page displayed in Mozilla Firefox.

FIGURE 9.1 Our simple web page displayed in Firefox

When page loading has completed, the browser has a full, hierarchical DOM
representation of this page available for us to examine. Figure 9.2 shows a simplified
version of how part of that representation might look.

FIGURE 9.2 The DOM’s tree model of our page

Caution
Remember, the DOM is not available until the page has finished loading. Don’t
try to execute any statements that use the DOM until then, or your script is likely
to produce errors.

Look at how the tree diagram of Figure 9.2 relates to the code in Listing 9.1.
The <html> element contains all the other markup of the page. It is the parent element
to two immediate child elements, the <head> and <body> elements. These two
elements are siblings, as they share a parent. They are also parents themselves; the
<head> element has one child element, <title>, and the <body> element three
children: the <h1> heading, the ordered list , and a paragraph, <p>. Of these
three siblings, only has children, those being three line item elements.
Various of these elements of the tree contain text, shown represented in the gray boxes
in Figure 9.2.
The DOM is constructed as a hierarchy of such relationships. The boxes that make up
the junctions and terminating points of the tree diagram are known as nodes.

Types of Nodes
Figure 9.2 shows various element nodes, each of which represents an HTML element
such as a paragraph element, <p>, along with some text nodes, representing the text
content of such page elements.

Tip
Where they exist, text nodes are always contained within element nodes.
However, not every element node contains a text node.

There are a number of other node types, representing such information as each element’s
attributes, HTML comments, and other information relevant to the page. Many node
types can, of course, contain other nodes as children.
Each different type of node has an associated number known as its nodeType
property. The nodeType properties for the various types of nodes are listed in Table
9.1.

TABLE 9.1 nodeType Values

Tip
You’ll likely do most of your work using node types 1, 2, and 3, as you
manipulate page elements, their attributes, and the text that those elements
contain.

The childNodes Property
A useful DOM property for each node is a collection of its immediate children. This
array-like list is called childNodes, and it enables you to access information about
the children of any DOM node.
The childNodes collection is a so-called NodeList, in which the items are
numerically indexed. A collection looks and (for the most part) behaves like an array—
you can refer to its members like those of an array, and you can iterate through them like

you would for an array. However, there are a few array methods you can’t use, such as
push() and pop(). For all the examples here, you can treat the collection like you
would a regular array.
A node list is a live collection, which means that any changes to the collection to which
it refers are immediately reflected in the list; you don’t have to fetch it again when
changes occur.

Try it Yourself: Using the childNodes Property
You can use the collection returned by the childNodes property to examine
the ordered list element that appears in Listing 9.1. You’re going to write a
small function to read the child nodes of the element and return the total
number present in the list.
First, you can retrieve the element via its ID.

Click here to view code image

var olElement = document.getElementById("toDoList");

The child nodes of the element will now be contained in the object
olElement.childNodes

You only want to select the elements in the list, so you now want to step
through the childNodes collection, counting just those nodes for which
nodeType==1 (i.e., those corresponding to HTML elements), ignoring anything
else contained in the ordered list element such as comments and whitespace.
Remember, you can treat the collection pretty much like an array; here you use the
length property as you would for an array:

Click here to view code image

var count = 0;
for (var i=0; i < olElement.childNodes.length; i++) {
 if(olElement.childNodes[i].nodeType == 1) count++;
}

Caution
Whitespace (such as the space and tab characters) in HTML code is generally
ignored by the browser when rendering the page. However, the presence of
whitespace within a page element—for example, within your ordered list element
—will in many browsers create a child node of type text (nodeType == 3)
within the element. This makes simply using childNodes.length a risky
business.

Let’s cook up a little function to carry out this task when the page has loaded, and

output the result with an alert dialog:
Click here to view code image

function countListItems() {
 var olElement = document.getElementById("toDoList");
 var count = 0;
 for (var i=0; i < olElement.childNodes.length; i++) {
 if(olElement.childNodes[i].nodeType == 1) count++;
 }
 alert("The ordered list contains " + count + " items");
}
window.onload = countListItems;

Create a new HTML page in your editor and enter the code of Listing 9.1.
Incorporate the preceding JavaScript code into a <script> element in the page
head, and load the page into the browser.
Figure 9.3 shows the result of loading the page in Mozilla Firefox.

FIGURE 9.3 Using the childNodes array

firstChild and lastChild
There is a handy shorthand for selecting the first and last elements in the childNodes
array.
firstChild is, unsurprisingly, the first element in the childNodes array. Using
firstChild is equivalent to using childNodes[0].
To access the last element in the collection, you gain a big advantage by using
lastChild. To access this element you would otherwise have to do something like
this:

Click here to view code image

var lastChildNode = myElement.childNodes[myElement.childNodes.length - 1];

That’s pretty ugly. Instead, you can simply use
Click here to view code image

var lastChildNode = myElement.lastChild;

The parentNode Property
The parentNode property, unsurprisingly, returns the parent node of the node to
which it’s applied. In the previous example, you used
Click here to view code image

var lastChildNode = myElement.lastChild;

Using parentNode you can go one step back up the tree. The line
Click here to view code image

var parentElement = lastChildNode.parentNode;

would return the parent element of lastChildNode, which is, of course, the object
myElement.

nextSibling and previousSibling
Sibling nodes are nodes that share a parent node. When applied to a specified parent
node, these read-only properties return the next and previous sibling nodes,
respectively, or null if there is no such node.
Click here to view code image

var olElement = document.getElementById("toDoList");
var firstOne = olElement.firstChild;
var nextOne = firstOne.nextSibling;

Caution
Remember that, depending on which browser you use, whitespace in your HTML
code may create text nodes in the DOM. The node you’re working with may have
more siblings than you thought!

Node Value
In addition to nodeType, the DOM offers the property nodeValue to return the
value stored in a node. You generally want to use this to return the text stored in a text
node.

Let’s suppose that instead of counting the list items in the previous example, you wanted
to extract the text contained in the <p> element of the page. To do this you need to
access the relevant <p> node, find the text node that it contains, and then use
nodeValue to return the information:
Click here to view code image

var text = '';
var pElement = document.getElementById("toDoNotes");
for (var i=0; i < pElement.childNodes.length; i++) {
 if(pElement.childNodes[i].nodeType == 3) {
 text += pElement.childNodes[i].nodeValue;
 };
}
alert("The paragraph says:\n\n" + text);

Node Name
The nodeName property returns the name of the specified node as a string value. The
values returned by the nodeName value are summarized in Table 9.2. The nodeName
property is read-only—you can’t change its value.

TABLE 9.2 Values Returned by the nodeName Property
Where nodeName returns an element name, it does so without the surrounding < and >
that you would use in HTML source code:
Click here to view code image

var pElement = document.getElementById("toDoNotes");
alert(pElement.nodeName); // alerts 'P'

Selecting Elements with getElementsByTagName()
You already know how to access an individual page element using the document
object’s getElementById() method. Another method of the document object,
getElementsByTagName(), allows you to build an array populated with all of the
occurrences of a particular tag.
Like getElementById(), the getElementsByTagName() method accepts a
single argument. However, in this case it’s not the element ID but the required tag name
that is passed to the method as an argument.

Caution

Make careful note of the spelling. Elements (plural) is used in
getElementsByTagName(), whereas Element (singular) is used in
getElementById().

As an example, suppose you wanted to work with all of the <div> elements in a
particular document. You can populate a variable with an array-like collection called
myDivs by using
Click here to view code image

var myDivs = document.getElementsByTagName("div");

Tip
Even if there is only one element with the specified tag name,
getElementsByTagName() still returns a collection, although it will
contain only one item.

You don’t have to use getElementsByTagName() on the entire document. It can
be applied to any individual object and return a collection of elements with the given
tag name contained within that object.

Try it Yourself: Using getElementsByTagName()
Earlier you wrote a function to count the list items () inside an ordered list
() element:

Click here to view code image

function countListItems() {
 var olElement = document.getElementById("toDoList");
 var count = 0;
 for (var i=0; i < olElement.childNodes.length; i++) {
 if(olElement.childNodes[i].nodeType == 1) count++;
 }
alert("The ordered list contains " + count + " items");
}

You used the childNodes array to get all the child nodes and then selected
those corresponding to elements by testing for nodeType == 1.
You can easily implement the same function by using
getElementsByTagName().
You start the same way by selecting the element based on its id:

Click here to view code image

var olElement = document.getElementById("toDoList");

Now you can create an array called listItems and populate it with all if the
 elements contained in your object olElement:

Click here to view code image

var listItems = olElement.getElementsByTagName("li");

All that remains is to display how many items are in the array:
Click here to view code image

alert("The ordered list contains " + listItems.length + " items");

Listing 9.2 contains the complete code for the page, including the revised function
countListItems().

LISTING 9.2 Using getElementsByTagName()

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>To-Do List</title>
 <script>
 function countListItems() {
 var olElement = document.getElementById("toDoList");
 var listItems = olElement.getElementsByTagName("li");
 alert("The ordered list contains " + listItems.length + "
items");
 }
 window.onload = countListItems;
 </script>
</head>
<body>
 <h1>Things To Do</h1>
 <ol id="toDoList">
 Mow the lawn
 Clean the windows
 Answer your email

 <p id="toDoNotes">Make sure all these are completed by 8pm so you can
watch the game on TV!</p>
</body>
</html>

Save this listing as an HTML file and load it into your browser. Check that the
result is the same as in Figure 9.3.

Note

A further useful method for getting a collection of elements is
Click here to view code image

document.getElementsByClassName()

As you’ll have worked out from the method name, this method returns all the page
elements having a particular value of the class attribute. However, this was not
supported in Internet Explorer until IE9.

Reading an Element’s Attributes
HTML elements often contain a number of attributes with associated values:
Click here to view code image

<div id="id1" title="report">Here is some text.</div>

The attributes are always placed within the opening tag, each attribute being of the form
attribute=value. The attributes themselves are child nodes of the element node in
which they appear, as depicted in Figure 9.4.

FIGURE 9.4 Attribute nodes

Having navigated to the element node of interest, you can read the value of any of its
attributes using the getAttribute() method:
Click here to view code image

var myNode = document.getElementById("id1");
alert(myNode.getAttribute("title"));

The previous code snippet would display “report” within the alert dialog. If you try
to retrieve the value of a nonexistent attribute, getAttribute() will return null.
You can use this fact to efficiently test whether an element node has a particular
attribute defined:

Click here to view code image

if(myNode.getAttribute("title")) {
 ... do something ...
}

The if() condition will only be met if getAttribute() returns a non-null value,
since null is interpreted by JavaScript as a “falsy” value (not Boolean false, but
considered as such).

Caution
There also exists a property simply called attributes that contains an array
of all of a node’s attributes. In theory you can access the attributes as
name=value pairs in the order they appear in the HTML code, by using a
numerical key; so attributes[0].name would be id and
attributes[1].value would be 'report'. However, its
implementation in Internet Explorer and some versions of Firefox is buggy. It’s
safer to use getAttribute() instead.

Mozilla’s DOM Inspector
One of the easiest ways to view node information is by using the DOM Inspector
available for Mozilla Firefox. If you use Firefox, you may find the DOM Inspector
already installed, though since Firefox 3 it’s been available as a separate add-on. You
can download it at https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-
6622/.
Once installed, you can open the DOM Inspector for any page you have loaded in the
browser by pressing Ctrl+Shft+I. The window that opens is shown in Figure 9.5,
displaying the DOM representation of the web page of Listing 9.1.

https://addons.mozilla.org/en-US/firefox/addon/dom-inspector-6622/

FIGURE 9.5 Mozilla’s DOM Inspector

A DOM node is selected from the tree structure in the left-hand display pane, and
details about it can be examined in the right-hand pane. As well as the viewer for the
DOM tree, other viewers are included for viewing CSS rules, style sheets, computed
style, JavaScript objects, and more.
The interface can seem a little daunting at first, but it’s well worth exploring the
program’s capabilities.

Tip
When you amend the DOM using the methods described in this hour, you change
the way a page appears in the browser. Bear in mind, though, that you’re not
changing the document itself. If you ask your browser to display the source code
of the page, you won’t see any changes there.
That’s because the browser is actually displaying the current DOM
representation of the document. Change that, and you change what appears
onscreen.

Creating New Nodes
Adding new nodes to the DOM tree is a two-stage process:

1. First, you create a new node. Once created, the node is initially in a kind of

“limbo”; it exists, but it’s not actually located anywhere in the DOM tree, and
therefore doesn’t appear on the visible page in the browser window.

2. Next, you add the new node to the tree, in the desired location. At this point it
becomes part of the visible page.

Let’s look at some of the methods of the document object that are available for
creating nodes.

createElement()
You can call on the createElement() method to create new HTML elements
having any of the standard HTML element types—paragraphs, spans, tables, lists, and
so on.
Let’s suppose you’ve decided to create a new <div> element for your document. To
do so, you simply need to pass the relevant nodeName value—in this case "div"—to
the createElement method:
Click here to view code image

var newDiv = document.createElement("div");

The new <div> element now exists, but currently has no contents, no attributes, and no
location in the DOM tree. You see how to solve these issues shortly.

createTextNode()
Many of the HTML elements in your page need some content in the form of text. The
createTextNode() method takes care of that. It works pretty much like
createElement(), except that the argument it accepts is not a nodeName value,
but a string containing the desired text content of the element:
Click here to view code image

var newTextNode = document.createTextNode("Here is some text content.");

As with createElement(), the newly created node is not yet located in the DOM
tree; JavaScript has it stored in the newTextNode variable while it waits for you to
place it in its required position.

cloneNode()
There’s no point in reinventing the wheel. If you already have a node in your document
that’s just like the new one you want to create, you can use cloneNode() to do so.
Unlike createElement() and createTextNode(), cloneNode() takes a
single argument—a Boolean value of true or false.
Passing true to the cloneNode() function tells JavaScript that you want to clone not

only the node, but all of its child nodes:
Click here to view code image

var myDiv = document.getElementById("id1");
var newDiv = myDiv.cloneNode(true);

In this example, I’ve asked JavaScript to clone the element’s child nodes too; for
example, any text that myDiv contained (which would be contained in a child text node
of the element) will be faithfully reproduced in the new <div> element.
Had I called
Click here to view code image

var newDiv = myDiv.cloneNode(false);

then the new <div> element would be identical to the original, except that it would
have no child nodes. It would, for instance, have any attributes belonging to the original
element (provided that the original node was an element node, of course).

Caution
Remember that the id of an element is one of its attributes. When you clone a
node, remember to then change the id of your new element, since id values
should be unique within a document.

As with new nodes created by createElement() and createTextNode(), the
new node created by cloneNode() is initially floating in space; it does not yet have
a place in the DOM tree.
You see how to achieve that next.

Manipulating Child Nodes
The new nodes you’ve created aren’t yet of any practical value, as they don’t yet appear
anywhere in the DOM. A few methods of the document object are specifically
designed for placing nodes in the DOM tree, and they are described in the following
sections.

appendChild()
Perhaps the simplest way of all to attach a new node to the DOM is to append it as a
child node to a node that already exists somewhere in the document. Doing so is just a
matter of locating the required parent node and calling the appendChild() method:
Click here to view code image

var newText = document.createTextNode("Here is some text content.");
var myDiv = document.getElementById("id1");

myDiv.appendChild(newText);

In the preceding code snippet, a new text node has been created and added as a child
node to the currently existing <div> element having an id of id1.

Tip
Remember that appendChild() always adds a child node after the last child
node already present, so the newly appended node becomes the new
lastChild of the parent node.

Of course, appendChild() works equally well with all types of nodes, not just text
nodes. Suppose you needed to add another <div> element within the parent <div>
element:
Click here to view code image

var newDiv = document.createElement("div");
var myDiv = document.getElementById("id1");
myDiv.appendChild(newDiv);

Your originally existing <div> element now contains a further <div> element as its
last child; if the parent <div> element already contained some text content in the form
of a child text node, then the parent div (as represented in the newly modified DOM,
not in the source code) would now have the following form:
Click here to view code image

<div id="id1">
 Original text contained in text node
 <div></div>
</div>

insertBefore()
Whereas appendChild() always adds a child element to the end of the list of
children, with insertBefore() you can specify a child element and insert the new
node immediately before it.
The method takes two arguments: the new node, and the child before which it should be
placed. Let’s suppose that your page contains the following HTML snippet:
Click here to view code image

<div id="id1">
 <p id="para1">This paragraph contains some text.</p>
 <p id="para2">Here's some more text.</p>
</div>

To insert a new paragraph between the two that are currently in place, first create the
new paragraph:

Click here to view code image

var newPara = document.createElement("p");

Identify the parent node, and the child node before which you want to make the
insertion:
Click here to view code image

var myDiv = document.getElementById("id1");
var para2 = document.getElementById("para2");

Then pass these two as arguments to insertBefore():
Click here to view code image

myDiv.insertBefore(newPara, para2);

replaceChild()
You can use replaceChild() when you want to replace a current child node of a
specific parent element with another node. The method takes two arguments—a
reference to the new child element followed by a reference to the old one.

Try it Yourself: Replacing Child Elements
Take a look at the code of Listing 9.3.

LISTING 9.3 Replacing Child Elements

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Replace Page Element</title>
</head>
<body>
 <div id="id1">
 <p id="para1">Welcome to my web page.</p>
 <p id="para2">Please take a look around.</p>
 <input id="btn" value="Replace Element" type="button" />
 </div>
</body>
</html>

Suppose that you want to use the DOM to remove the first paragraph in the
<div> and replace it instead with an <h2> heading as follows:

<h2>Welcome!</h2>

First create the new node representing the <h2> heading:

Click here to view code image

var newH2 = document.createElement("h2");

This new element needs to contain a text node for the heading text. You can either
create it and add it now, or do it later when you’ve added your new <h2>
element to the DOM. Let’s do it now:

Click here to view code image

var newH2Text = document.createTextNode("Welcome!");
newH2.appendChild(newH2Text);

Now you can swap out the unwanted child node of the <div> element and
replace it with the new one:

Click here to view code image

var myDiv = document.getElementById("id1");
var oldP = document.getElementById("para1");
myDiv.replaceChild(newH2, oldP);

Finally, you need to add an onclick event handler to the button element, so that
when the button is clicked, your element replacement function is executed. We do
that with an anonymous function assigned to the window.onload method:

Click here to view code image

window.onload = function() {
 document.getElementById("btn").onclick = replaceHeading;
}

Listing 9.4 shows the code for the page with the JavaScript added.

LISTING 9.4 The Completed Code to Replace Child Elements

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Replace Page Element</title>
 <script>
 function replaceHeading() {
 var newH2 = document.createElement("h2");
 var newH2Text = document.createTextNode("Welcome!");
 newH2.appendChild(newH2Text);
 var myDiv = document.getElementById("id1");
 var oldP = document.getElementById("para1");
 myDiv.replaceChild(newH2, oldP);
 }
 window.onload = function() {
 document.getElementById("btn").onclick = replaceHeading;
 }
 </script>

</head>
<body>
 <div id="id1">
 <p id="para1">Welcome to my web page.</p>
 <p id="para2">Please take a look around.</p>
 <input id="btn" value="Replace Element" type="button" />
 </div>
</body>
</html>

Create a new HTML file with your editor and insert the code listed in Listing 9.4.
On loading the page into your browser, you should see the two single-line
paragraphs of text with the button beneath. If all has gone according to plan,
clicking the button should swap the first <p> element for your <h2> heading, as
depicted in Figure 9.6.

FIGURE 9.6 The element-replacement script in action

removeChild()
There is a DOM method specifically provided for removing child nodes from the DOM
tree.

Referring once more to Listing 9.3, if you wanted to remove the <p> element with
id="para2" you can just use
Click here to view code image

var myDiv = document.getElementById("id1");
var myPara = document.getElementById("para2");
myDiv.removeChild(myPara);

Tip
If you don’t have a handy reference to the element’s parent, just use the
parentNode property:

Click here to view code image

myPara.parentNode.removeChild(myPara);

The return value from the removeChild() method contains a reference to the
removed node. If you need to, you can use this to further process the child node that has
just been removed:
Click here to view code image

var removedItem = myDiv.removeChild(myPara);
alert('Item with id ' + removedItem.getAttribute("id") + ' has been
removed.');

Editing Element Attributes
In the previous hour you saw how to read element attributes using the
getAttribute() method.
There is a corresponding method named setAttribute() to allow you to create
attributes for element nodes and assign values to those attributes. The method takes two
arguments; unsurprisingly, these are the attribute to be added and the value it should
have.
In the following example, the title attribute is added to a <p> element and assigned the
value “Opening Paragraph”:
Click here to view code image

var myPara = document.getElementById("para1");
myPara.setAttribute("title", "Opening paragraph");

Setting the value of an attribute that already exists effectively overwrites the value of
that attribute. You can use that knowledge to effectively edit existing attribute values:
Click here to view code image

var myPara = document.getElementById("para1");
myPara.setAttribute("title", "Opening paragraph"); // set 'title'
attribute

myPara.setAttribute("title", "New title"); // overwrite 'title'
attribute

Dynamically Loading JavaScript Files
On occasion you’ll want to load JavaScript code on the fly to a page that’s already
loaded in the browser. You can use createElement() to dynamically create a new
<script> element containing the required code, and then add this element to the
page’s DOM:
Click here to view code image

var scr = document.createElement("script");
scr.setAttribute("src", "newScript.js");
document.head.appendChild(scr);

Remember that the appendChild() method places the new child node after the last
child currently present, so the new <script> element will go right at the end of the
<head> section of the page.
Take note, though, that if you dynamically load JavaScript source files using this
method, the JavaScript code contained in those files will not be available to your page
until the external file has finished loading.
You would be well advised to have your program check that this is so before attempting
to use the additional code.
Nearly all modern browsers implement an onload event when the script has
downloaded. This works just like the window.onload event you’ve already met, but
instead of firing when the main page has finished loading, it does so when the external
resource (in this case a JavaScript source file) is fully downloaded and available for
use:
Click here to view code image

src.onload = function() {
 ... things to do when new source code is downloaded ...
}

Caution
This won’t work in older versions of Internet Explorer, but onload has been
supported for script elements since IE8. To be sure, you may prefer to use object
detection of the resources contained in your newly loaded file instead.

Try it Yourself: A Dynamically Created Menu
In this exercise you’re going to use the techniques learned in this and the previous
hour to create page menus on the fly.

Our example HTML page has a top-level <h1> heading, followed by a number
of short articles each consisting of an <h2> heading followed by some
paragraphs of text. This is similar to a format you might see in a blog, a news
page, or the output from an RSS reader, among other examples.
What you are going to do is employ DOM methods to automatically generate a
menu at the page head, having links that allow the user to jump to any of the
articles on the page. The HTML file is shown in Listing 9.5. Create your own
HTML file based on this script. Feel free to use your own content for the
headings and text, so long as the section titles are contained in <h2> elements.

LISTING 9.5 HTML File for Dynamic Menu Creation

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Scripting the DOM</title>
 <script src="menu.js"></script>
 <script>window.onload = makeMenu;</script>
</head>
<body>
 <h1>The Extremadura Region of Western Spain</h1>
 <h2>Geography Of The Region</h2>
 <p>The autonomous community of Extremadura is in western Spain
alongside the
Portuguese border. It borders the Spanish regions of Castilla y Leon,
Castilla La
Mancha and Andalucía as well as Portugal (to the West). Covering over
40,000 square
kilometers it has two provinces: Cáceres in the North and Badajoz in the
South.</p>
 <h2>Where To Stay</h2>
 <p>There is a wide range of accommodation throughout Extremadura
including
small inns and guest houses ('Hostals') or think about renting a 'casa
rural'
(country house)if you are traveling in a group.</p>
 <h2>Climate</h2>
 <p>Generally Mediterranean, except for the north, where it is
continental.
Generally known for its extremes, including very hot and dry summers with
frequent
droughts, and its long and mild winters.</p>
 <h2>What To See</h2>
 <p>Extremadura hosts major events all year round including theater,
music,
cinema, literature and folklore. Spectacular venues include castles,

medieval town
squares and historic centers. There are special summer theater festivals
in the
Mérida, Cáceres, Alcántara and Alburquerque.</p>
 <h2>Gastronomy</h2>
 <p>The quality of Extremaduran food arises from the fine quality of
the local
ingredients. In addition to free-range lamb and beef, fabulous cheeses,
red and
white wines, olive oil, honey and paprika, Extremadura is particularly
renowned for
Iberian ham. The 'pata negra' (blackfoot) pigs are fed on acorns in the
cork-oak
forests, the key to producing the world's best ham and cured sausages. .
</p>
</body>
</html>

The page is shown in Figure 9.7.

FIGURE 9.7 Page that is to have a dynamically created menu

The first thing to do is make a collection of all the <h2> elements from the page.
These will form the items in your menu. For each of these headings make a link to
an anchor element that you place right next to the corresponding <h2> element.
The menu links will be arranged as links in an unordered list () element.
This list will be placed in a <div> container that you insert at the page head.
First, get the collection of <h2> elements:

Click here to view code image

var h2s = document.getElementsByTagName("h2");

You need to create the <div> container to hold your menu; inside that <div>,
there’ll be a list element to contain the menu items:

Click here to view code image

var menu = document.createElement("div");
var menuUl = document.createElement("ul");
menu.appendChild(menuUl);

Now you can cycle through the collection of <h2> headings:
Click here to view code image

for(var i = 0; i < h2s.length; i++) {
 ... do things for each heading ...
}

For each heading you find in the document, you have a number of tasks to
perform:

 Collect the content of the heading’s child text node, which forms the text of the
heading:

Click here to view code image

var itemText = h2s[i].childNodes[0].nodeValue;

 Create a new list item () element for the menu:
Click here to view code image

var menuLi = document.createElement("li");

 Add that element to the menu:
menuUl.appendChild(menuLi);

 Each list item must contain a link to an anchor located next to the heading to
which the menu item points:

Click here to view code image

var menuLiA = document.createElement("a");
menuLiA = menuLi.appendChild(menuLiA);

 Set an appropriate href attribute of the link (remember that variable i
increments as you count through the headings in the array). These links will
have the form

Click here to view code image

[Title Text]

where X is the index number of the menu item:
Click here to view code image

menuLiA.setAttribute("href", "#item" + i);

 Create a matching anchor element just before each <h2> heading. The anchor
elements have the form

so you need to add the name attribute, and locate the link just before the
associated heading:

Click here to view code image

var anc = document.createElement("a");
anc.setAttribute("name", "item" + i);
document.body.insertBefore(anc, h2s[i]);

When all that has been completed for each <h2> heading, you can add your new
menu to the page:

Click here to view code image

document.body.insertBefore(menu, document.body.firstChild);

The content of the JavaScript source file menu.js is shown in Listing 9.6. The
code has been incorporated into a function named makeMenu() that is called
by the window.onload event handler, building your menu as soon as the page
has loaded and the DOM is therefore available.

LISTING 9.6 JavaScript Code for menu.js

Click here to view code image

function makeMenu() {
 // get all the H2 heading elements
 var h2s = document.getElementsByTagName("h2");
 // create a new page element for the menu
 var menu = document.createElement("div");
 // create a UL element and append to the menu div
 var menuUl = document.createElement("ul");
 menu.appendChild(menuUl);
 // cycle through h2 headings
 for(var i = 0; i < h2s.length; i++) {
 // get text node of h2 element
 var itemText = h2s[i].childNodes[0].nodeValue;
 // add a list item
 var menuLi = document.createElement("li");
 // add it to the menu list
 menuUl.appendChild(menuLi);
 // the list item contains a link
 var menuLiA = document.createElement("a");
 menuLiA = menuLi.appendChild(menuLiA);
 // set the href of the link
 menuLiA.setAttribute("href", "#item" + i);
 // set the text of the link
 var menuText = document.createTextNode(itemText);

 menuLiA.appendChild(menuText);
 // create matching anchor element
 var anc = document.createElement("a");
 anc.setAttribute("name", "item" + i);
 // add anchor before the heading
 document.body.insertBefore(anc, h2s[i]);
 }
 // add menu to the top of the page
 document.body.insertBefore(menu, document.body.firstChild);
}

Figure 9.8 shows the script in action.
By examining the modified DOM using your browser tools, you can see the
additional DOM elements added to the page to form the menu and the anchors.
Figure 9.9 shows how this is displayed in Google Chromium’s Developer Tools,
highlighting the additional elements.

FIGURE 9.8 The automatic menu script in action

FIGURE 9.9 The additional DOM elements

Summary
In this hour you learned about DOM nodes and how to navigate the DOM using a variety
of node-related methods. You also learned about using Mozilla’s DOM Inspector to
examine the DOM of your page.
In addition, you learned how to create new nodes to add to the DOM, and how to edit
page content dynamically by adding, editing, and removing DOM nodes.

Q&A
Q. Is there a quick way to determine whether a node has any child nodes?
A. Yes, you can use the hasChildNodes() method. This method returns a

Boolean value of true if the node has one or more child nodes, or false if not.
Remember that attribute nodes and text nodes cannot have child nodes, so the
method will always return false if applied to these types of node.

Q. Is Mozilla’s DOM Inspector the only tool of its type?
A. Not at all. Just about every browser has some DOM inspection tools built into the

developer tools. However, Mozilla’s DOM Inspector gives a particularly clear
view of the DOM hierarchy and the parameters of individual nodes; that’s why I
presented it here.

Q. Is it better to use the DOM to insert and retrieve HTML, or innerHTML?
A. Each has its advantages and disadvantages. To insert a chunk of HTML into a

document, using innerHTML is quick and easy. However, it returns no
references to the code you’ve inserted, so you can’t carry out operations on that
content very easily. DOM methods offer finer-grained control for manipulating
page elements.
Wherever you use innerHTML, the same result is achievable using DOM
methods, though usually with a little more code.
Remember, too, that innerHTML is not a W3C standard. It is well supported
currently, but there’s no guarantee that that will always be so.

Q. I’ve seen references on the Web to DOM Core and HTML DOM. What are
these, and what are the differences between them?

A. The DOM Core describes a basic nucleus of DOM methods that are applicable
not just to HTML pages, but also pages written in any similar markup language—
XML, for example. HTML DOM is a larger collection of additional methods
relating specifically to HTML pages. They do offer some shorthand ways of
carrying out certain tasks, at the expense of making your code a little less portable
to non-HTML applications.
The examples in this book generally use DOM Core methods to be more general.
In Listing 9.6, for example, I used the statement

Click here to view code image

menuLiA.setAttribute("href", "#item" + i);

I could equally have used the HTML DOM statement
menuLiA.href = "#item" + i;

which is a little shorter.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of the following is NOT a type of node?

a. Element
b. Attribute

c. Array
2. The getElementsByTagName() method returns:

a. An array-like collection of element objects
b. An array-like collection of nodeType values
c. An array-like collection of tag names

3. In some browsers the whitespace within a page element will cause the creation of
a. A text node
b. A JavaScript error
c. An attribute node

4. To create a new element, you could use
a. document.createElement("span");
b. document.createElement(span);
c. document.appendChild("span");

5. To copy a node, including all of its child nodes, you could use
a. cloneNode(false);
b. copyNode();
c. cloneNode(true);

6. To set the alt attribute of an element to “Company Logo,” you can use
a. setAttribute(alt, "Company Logo");
b. setAttribute("alt", "Company Logo");
c. setAttribute(alt = "Company Logo");

Answers
1. c. An array is not a type of node.
2. a. An array-like collection of element objects is returned.
3. a. Whitespace within an element usually creates a text node as a child node of the

element.
4. a. Use document.createElement("span");
5. c. Use cloneNode(true);
6. b. Use setAttribute("alt", "Company Logo");

Exercises
 Using the nodeType information listed in Table 9.1, write a function to find all

the HTML comments in the body section of a page, and concatenate them into a
single string. Add some comments to the code listed in Listing 9.2; then introduce
and test your new function.
 If you have Firefox, download and install the DOM Inspector and familiarize
yourself with its interface. Use the program to investigate the DOM of some of
your favorite web pages.
 Having used the insertBefore() method, you might reasonably expect that
there would be an insertAfter() method available. Unfortunately, that’s not
so. Can you write an insertAfter() function to do this task? Use similar
arguments to insertBefore(); that is, insertAfter(newNode,
targetNode).
(Hint: Use insertBefore() and the nextSibling property.)
 When you click on a menu item generated by the code in Listing 9.6, the page
scrolls to the relevant item. To return to the menu, you have to manually scroll
back up.
Can you modify the script such that, as well as inserting an anchor, it inserts a
Back to Top link before each H2 element? (Hint: You don’t need to add a new
link, just add an href and some link text to each anchor.)

Hour 10. Meet JSON

What You’ll Learn in This Hour:
 What JSON is
 How to simulate associative arrays
 About JSON and objects
 Accessing JSON data
 Data serialization with JSON
 How to keep JSON secure

Earlier in the book you saw how to directly instantiate an object using the new
Object() syntax. In this hour you learn about JavaScript Object Notation (JSON),
which, as its name implies, offers another way to create object instances, and which can
also act as a general-purpose data exchange syntax.

Note
The official home of JSON is at http://json.org/, which also has links to a wide
variety of JSON resources on the Web.

What Is JSON?
JSON (pronounced “Jason”) is a simple and compact notation for JavaScript objects.
Once expressed in JSON, objects can easily be converted to strings to be stored and
transmitted (across networks or between applications, for instance).
However, the real beauty of JSON is that an object expressed in JSON is really just
expressed in normal JavaScript code. You therefore take advantage of “automatic”
parsing in JavaScript; you can just have JavaScript interpret the contents of a JSON
string as code, with no extra parsers or converters.

JSON Syntax
JSON data is expressed as a sequence of parameter and value pairs, each pair using a
colon character to separate parameter from value. These "parameter":"value"
pairs are themselves separated by commas:
Click here to view code image

"param1":"value1", "param2":"value2", "param3":"value3"

http://json.org/

Finally, the whole sequence is enclosed between curly braces to form a JSON object
representing your data:

var jsonObject = {
 "param1":"value1",
 "param2":"value2",
 "param3":"value3"
}

The object jsonObject defined here uses a subset of standard JavaScript notation—
it’s just a little piece of valid JavaScript code.
Objects written using JSON notation can have properties and methods accessed directly
using the usual dot notation:
Click here to view code image

alert(jsonObject.param1); // alerts 'value1'

More generally, though, JSON is a general-purpose syntax for exchanging data in a
string format. Not only objects, but ANY data that can be expressed as a series of
parameter:value pairs can be expressed in JSON notation. It is then easy to
convert the JSON object into a string by a process known as serialization; serialized
data is convenient for storage or transmission around networks. You’ll see how to
serialize a JSON object later in this hour.

Note
As a general-purpose data exchange syntax, JSON can be used somewhat like
XML, though JSON can be simpler for humans to read. Also, the parsing of large
XML files can be a slow process, whereas JSON gives your script a JavaScript
object, ready to use.

JSON has gathered momentum recently because it offers several important advantages.
JSON is

 Easy to read for both people and computers
 Simple in concept—a JSON object is nothing more than a series of
parameter:value pairs enclosed by curly braces
 Largely self-documenting
 Fast to create and parse
 A subset of JavaScript, meaning that no special interpreters or other additional
packages are necessary

A number of leading online services and APIs including Flickr, Twitter, and several
services from Google and Yahoo! now offer data encoded using JSON notation.

Note
See http://www.flickr.com/services/api/response.json.html for details of how
Flickr supports JSON.

Accessing JSON Data
To recover the data encoded into the JSON string, you need to somehow convert the
string back to JavaScript code. This is usually referred to as deserializing the string.

Using eval()
Only more recent browsers have native support for JSON syntax (we talk about using
native browser support in just a moment). However, since JSON syntax is a subset of
JavaScript, the JavaScript function eval() can be used to convert a JSON string into a
JavaScript object.

Note
The JavaScript eval() function evaluates or executes whatever is passed as an
argument. If the argument is an expression, eval() evaluates the expression; for
example,

var x = eval(4 * 3); // x=12

If the argument comprises one or more JavaScript statements, eval() executes
those statements:

Click here to view code image

eval("a=1; b=2; document.write(a+b);"); // writes 3 to the page

The eval() function uses the JavaScript interpreter to parse the JSON text and
produce a JavaScript object:
Click here to view code image

var myObject = eval ('(' + jsonObjectString + ')');

You can then use the JavaScript object in your script:
Click here to view code image

var user = '{"username" : "philb1234","location" : "Spain","height" :
1.80}';
var myObject = eval ('(' + user + ')');
alert(myObject.username);

Caution
The string must be enclosed in parentheses like this to avoid falling foul of an

http://www.flickr.com/services/api/response.json.html

ambiguity in the JavaScript syntax.

Using Native Browser Support
All recent browsers offer native support for JSON, making the use of eval()
unnecessary.

Note
Browsers natively supporting JSON include

 Firefox (Mozilla) 3.5+
 Internet Explorer 8+
 Google Chrome
 Opera 10+
 Safari 4+

Browsers with native JSON support create a JavaScript object called JSON to manage
JSON encoding and decoding. The JSON object has two methods, stringify() and
parse().

JSON.parse()
You can interpret a JSON string using the method JSON.parse(), which takes a
string containing a JSON-serialized object and breaks it up, creating an object with
properties corresponding to the "parameter":"value" pairs found in the string:
Click here to view code image

var Mary = '{ "height":1.9, "age":36, "eyeColor":"brown" }';
var myObject = JSON.parse(Mary);
var out = "";
for (i in myObject) {
 out += i + " = " + myObject[i] + "\n";
}
alert(out);

You can see the result in Figure 10.1.

FIGURE 10.1 Using JSON.parse()

Data Serialization with JSON
In the context of data storage and transmission, serialization is the name given to the
process of converting data into a format that can be stored or transmitted across a
network and recovered later into the same format as the original.
In the case of JSON, a string is the chosen format of the serialized data. To serialize
your JSON object (for instance, to send it across a network connection), you need to
express it as a string.
In later browsers, those having JSON support, you can simply use the
JSON.stringify() method.

JSON.stringify()
You can create a JSON-encoded string of an object using the JSON.stringify()
method.
Let’s create a simple object and add some properties:

var Dan = new Object();
Dan.height = 1.85;
Dan.age = 41;
Dan.eyeColor = "blue";

Now you can serialize the object using JSON.stringify:
alert(JSON.stringify(Dan));

The serialized object is shown in Figure 10.2.

FIGURE 10.2 Using JSON.stringify()

Try it Yourself: Parsing a JSON String
Create an HTML file using your editor, and enter the code of Listing 10.1.

LISTING 10.1 Parsing a JSON String

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Parsing JSON</title>
 <script>
 function jsonParse() {
 var inString = prompt("Enter JSON object");
 var out = "";
 myObject = JSON.parse(inString);
 for (i in myObject) {
 out += "Property: " + i + " = " + myObject[i] + '\n';
 }
 alert(out);
 }
 </script>
</head>
<body onload="jsonParse()">
</body>
</html>

The function jsonParse() is called when the page finishes loading, by using
the onload event handler of the window object attached to the <body>
element of the page.
The first line of code inside the function invites you to enter a string
corresponding to a JSON object:

Click here to view code image

var inString = prompt("Enter JSON object");

Type it carefully, remembering to enclose any strings in quotation marks, as in
Figure 10.3.

FIGURE 10.3 Entering a JSON string

The script then declares an empty string variable called out, which later holds
the output message:

var out = "";

The JSON.parse() method is then used to create an object based on the input
string:

Click here to view code image

myObject = JSON.parse(inString);

You can now build your output message string by looping around the object
methods:

Click here to view code image

for (i in myObject) {
 out += "Property: " + i + " = " + myObject[i] + '\n';
}

Finally, display the result:
alert(out);

The output message should look like the one in Figure 10.4.

FIGURE 10.4 The object created by parsing a JSON string

Reload the page and retry the script with a different number of
"parameter":"value" pairs.

JSON Data Types
The parameter part of each parameter:value pair must follow a few simple
grammatical rules:

 It must not be a JavaScript reserved keyword.
 It must not start with a number.
 It must not include any special characters except the underscore or dollar sign.

The values in JSON objects can contain any of the following data types:
 Number
 String
 Boolean
 Array
 Object
 null (empty)

Caution
JavaScript syntax has several data types that are not included in the JSON
standard, including Date, Error, Math, and Function. These data types must be
represented as some other data format, with the encoding and decoding programs
following the same encoding and decoding rules.

Simulating Associative Arrays
In Hour 6, “Arrays,” we discussed the JavaScript array object and looked at its various
properties and methods.
You may recall that the elements in JavaScript arrays have unique numeric identifiers:

var myArray = [];
myArray[0] = 'Monday';
myArray[1] = 'Tuesday';
myArray[2] = 'Wednesday';

In many other programming languages, you can use textual keys to make the arrays more
descriptive:
Click here to view code image

myArray["startDay"] = "Monday";

Unfortunately, JavaScript does not directly support such so-called associative arrays.
However, using objects it is easy to go some way toward simulating their behavior.
Using JSON notation makes the code easy to read and understand:

Click here to view code image

var conference = { "startDay" : "Monday",
 "nextDay" : "Tuesday",
 "endDay" : "Wednesday"
}

You can now access the object properties as if the object were an associative array:
Click here to view code image

alert(conference["startDay"]); // outputs "Monday"

Tip
This works because the two syntaxes

object["property"]

and
object.property

are equivalent in JavaScript.

Caution
Remember that this is not really an associative array, although it looks like one. If
you loop through the object, you will get, in addition to these three properties,
any methods that have been assigned to the object.

Creating Objects with JSON
You might recall from Hour 6 that one convenient way to express an array is with
square brackets:
Click here to view code image

var categories = ["news", "sport", "films", "music", "comedy"];

JSON provides us with a somewhat similar shorthand for defining JavaScript objects.

Tip
Although it was developed for describing JavaScript objects, JSON is
independent of any language or platform. JSON libraries and tools exist for many
programming languages, including Java, PHP, C, and others.

Properties
As you’ve already seen, to express an object in JSON notation, you enclose the object

in curly braces, rather than square ones, and list object properties as
"property":"value" pairs:

var user = {
 "username" : "philb1234",
 "location" : "Spain",
 "height" : 1.80
}

Tip
You may recall that using the statement

var myObject = new Object();

creates an “empty” instance of an object with no properties or methods. The
equivalent in JSON notation, unsurprisingly, is

var myObject = {};

The object properties are immediately available to access in the usual fashion:
Click here to view code image

var name = user.username; // variable 'name' contains 'philb1234'

Methods
You can add methods this way too, by using anonymous functions within the object
definition:
Click here to view code image

var user = {
 "username" : "philb1234",
 "location" : "Spain",
 "height" : 1.80,
 "setName":function(newName){
 this.username=newName;
 }
}

Then you can call the setName method in the usual way:
Click here to view code image

var newname = prompt("Enter a new username:");
user.setName(newname);

Caution
While adding methods in this manner works fine in a JavaScript context, it is not
permitted when using JSON as a general-purpose data interchange format.

Functions declared this way will not be parsed correctly in a browser using
native JSON parsing, though eval() will work. However, if you simply need to
instantiate objects for use within your own script, you can add methods this way.
See the following section on JSON security.

Arrays
Property values themselves can be JavaScript arrays:
Click here to view code image

var bookListObject = {
 "booklist": ["Foundation",
 "Dune",
 "Eon",
 "2001 A Space Odyssey",
 "Stranger In A Strange Land"]
}

In the preceding example, the object has a property named booklist, the value of
which is an array. You can access the individual items in the array by passing the
required array key (remember that the array keys begin at zero):
Click here to view code image

var book = bookListObject.booklist[2]; // variable book has value "Eon"

The preceding line of code assigns to the variable book the second item in the
booklist array object, which is a property of the object named bookListObject.

Objects
The JSON object can even incorporate other objects. By making the array elements
themselves JSON encoded objects, you can access them using dot notation.
In the following example code, the value associated with the property booklist is an
array of JSON objects. Each JSON object has two "parameter":"value" pairs,
holding the title and author respectively of the book in question.
After retrieving the array of books, as in the previous example, it is easy to then access
the title and author properties:
Click here to view code image

var bookListObject = {
 "booklist": [{"title":"Foundation", "author":"Isaac Asimov"},
 {"title":"Dune", "author":"Frank Herbert"},
 {"title":"Eon", "author":"Greg Bear"},
 {"title":"2001 A Space Odyssey", "author":"Arthur C. Clarke"},
 {"title":"Stranger In A Strange Land", "author":"Robert A.
Heinlein"}]

 }
 //show the author of the third book
 alert(bookListObject.booklist[2].author); // displays "Greg Bear"

Try it Yourself: Manipulating JSON Objects
Let’s take the previous JSON object bookListObject and construct a user
message that lists the books and authors in an easily read format. Create an
HTML file and enter the code from Listing 10.2. Your JSON object is identical to
the one in the previous example, but this time you’re going to access the array of
books, and step through it with a loop, building a message string by appending the
books and authors as you go. Finally you’ll display the book information to the
user.

LISTING 10.2 Handling JSON Multilevel Objects

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Understanding JSON</title>
 <script>
 var booklistObject = {
 "booklist": [{"title":"Foundation", "author":"Isaac Asimov"},
 {"title":"Dune", "author":"Frank Herbert"},
 {"title":"Eon", "author":"Greg Bear"},
 {"title":"2001 A Space Odyssey", "author":"Arthur C.
Clarke"},
 {"title":"Stranger In A Strange Land", "author":"Robert A.
Heinlein"}]
 }

 // a variable to hold our user message
 var out = "";

 // get the array
 var books = booklistObject.booklist;

 //Loop through array, getting the books one by one
 for(var i =0; i<books.length;i++) {
 var booknumber = i+1;
 out += "Book " + booknumber +
 " is: '" + books[i].title +
 "' by " + books[i].author +
 "\n";
 }
 </script>
</head>
<body onload="alert(out)">

</body>
</html>

After designing the JSON object, you declare a variable and assign an empty
string. This variable will hold the output message as you build it:

var out = "";

Now you extract the array of books, assigning this array to a new variable,
books, to avoid a lot of long-winded typing later:

Click here to view code image

var books = booklistString.booklist;

Afterward, you simply need to loop through the books array, reading the title
and author properties of each book object, and constructing a string to append
to your output message:

Click here to view code image

for(var i =0; i<books.length;i++) {
 var booknumber = i+1; // array keys start at zero!
 out += "Book " + booknumber +
 " is: '" + books[i].title +
 "' by " + books[i].author +
 "\n";
}

Finally, show your message to the user:
alert(out);

The result of running this script is shown in Figure 10.5.

FIGURE 10.5 Your book information is displayed to the user

JSON Security
Using JavaScript’s eval() function can execute any JavaScript command. This could
represent a potential security problem, especially when working with JSON data from

untrusted sources.
It is safer to use a browser with a native JSON parser to convert a JSON string into a
JavaScript object. A JSON parser will recognize only JSON text and will not execute
script commands. Native JSON parsers are generally faster than using eval(), too.
Native JSON support is implemented in the newer browsers and in the latest
ECMAScript (JavaScript) standard.

Summary
In this hour you learned about JSON notation, a simple data interchange syntax that can
also be used to create instances of JavaScript objects.
You learned how to use the native JSON support of modern browsers to serialize
objects into JSON strings, and parse JSON strings into JavaScript objects.

Q&A
Q. Where can I read the official JSON documentation?
A. The JSON syntax is formally described in RFC 4627. You can read it at

http://www.ietf.org/rfc/rfc4627. There is also a good deal of information at the
official home of JSON, http://json.org/.

Q. How can I find out whether my browser supports JSON natively?
A. You can check for the existence of the JSON object using the typeof operator,

as described in Hour 8, “Object-Oriented Programming.”
Click here to view code image

if(typeof JSON == 'object') {
 // you have JSON support, go ahead!
} else {
 // find another way to work, e.g. using eval()
}

Of course, you must be sure that your script hasn’t defined its own object called
JSON, or this won’t work as expected.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. JSON is an acronym standing for

a. JavaScript Object Notation
b. Java String Object Notation

http://www.ietf.org/rfc/rfc4627
http://json.org/

c. JavaScript Serial Object Notation
2. Which of these can you do with JSON?

a. Create a constructor function.
b. Parse XML data.
c. Directly instantiate an object.

3. What character is normally used to enclose the series of parameter:value pairs in
a JSON object?
a. Curly braces, {}
b. Square braces, []
c. Parentheses, ()

Answers
1. a. JavaScript Object Notation
2. c. Directly instantiate an object
3. a. Curly braces, {}

Exercises
 Load your file containing Listing 10.1 back into your browser. Try entering some
JSON strings using arrays as property values, for example:
{"days":["Mon","Tue","Wed"] }

How does the program react? Is its behavior as you would expect?
 Instantiate an object using the new Object() syntax you learned in Hour 8, and
add some properties with values of type array. Use the stringify() method to
turn the object into a JSON string and display it.

Part IV: HTML and CSS

Hour 11. JavaScript and HTML5

What You’ll Learn in This Hour:
 About the new HTML5 markup tags
 How to handle video and audio
 Using the <canvas> element
 Drag and drop in HTML5
 Working with local storage
 How to interface with the local file system

The previous version of HTML, HTML 4.01, has been around since 1999.
The XML-based version of HTML, XHTML, had been the subject of various recent
W3C efforts, the latest having been moves toward XHTML2. In 2009 the W3C
announced that XHTML2 was to be dumped in favor of diverting resources to a new
version of HTML, HTML5.

Tip
Note how it’s written: HTML5. There’s no space between the L and the 5.

This latest incarnation of HTML concentrates on developing HTML as a front end for
web applications, extending the markup language via semantically rich elements,
introducing some new attributes, and adding the possibility to use brand-new APIs in
conjunction with JavaScript.
The HTML5 standard was finalized as the new standard for HTML in the fall of 2014,
and the major browsers already support many of the new HTML5 elements and APIs.
In this hour, you learn how to control some of these powerful new features with
JavaScript.

New Markup for HTML5
Even HTML pages that are well-formed are more difficult to read and interpret than
they could be, because the markup contains very little semantic information.
Page sections such as sidebars, headers and footers, and navigation elements are all
contained in general-purpose page elements such as divs, and only identifiable by the ID
and class names invented by the page’s developer.
HTML5 adds new elements to more easily identify each of these, and more, types of

content. Some of the new tags are listed in Table 11.1.

TABLE 11.1 Some New HTML5 Tags

Some Important New Elements
While HTML5 introduces a wide variety of interesting new capabilities, this section
concentrates on the new tags that help ease some long-standing difficulties.

Video Playback with <video>
Video on the Web is extremely popular. However, the methods for implementing video
are generally proprietary, reproduction happening via plug-ins such as Flash, Windows
Media, and Apple QuickTime. Markup that works for embedding these elements in one
browser doesn’t always work in the others.
HTML5 contains a new <video> element, the aim of which is to enable the
embedding of any and all video formats.
Using the new <video> tag, you can implement your favorite QuickTime movie like
this:

<video src="video.mov" />

So far there has been much debate about which video formats (codecs) should be
supported by the video element; at the time of writing, the search continues for a codec
that requires no special licensing terms, though WebM (http://www.webmproject.org/)
is currently looking like the favorite. For the time being, quoting multiple sources gets
around the problem and avoids the need for browser sniffing; there are currently three
widely supported video formats—MP4, WebM, and Ogg.
Click here to view code image

<video id="vid1" width="400" height="300" controls="controls">

http://www.webmproject.org/

 <source src="movie.mp4" type="video/mp4" />
 <source src="movie.ogg" type="video/ogg" />
 <source src="movie.webm" type="video/webm" />
 <p>Video tag not supported.</p>
</video>

It is also a good practice to include width and height attributes for the <video>
element. If height and width are not set, the browser doesn’t know how much screen
space to reserve, resulting in the page layout changing as the video loads.
You are also recommended to place some suitable text between the <video> and
</video> tags to display in browsers that don’t support the <video> tag.
Some important properties of the <video> tag are listed in Table 11.2.

TABLE 11.2 Some Attributes of the <video> Element
Note that the appearance of the controls added using the controls property will
depend on the browser in use, as shown in Figure 11.1.

FIGURE 11.1 The appearance of controls varies between browsers

You can access these properties in the same way as any other JavaScript or DOM
object. For the previous video definition, you might use
Click here to view code image

var myVideo = document.getElementById("vid1").volume += 0.1;

to marginally increase the volume, or
Click here to view code image

if(document.getElementById("vid1").paused) {
 alert(message);
}

to pass a message to the user indicating that video playback is currently paused.

Testing Format Support with canPlayType()
You can check for support for a particular codec using the JavaScript method

media.canPlayType(type)

In the preceding example, type is a string containing the media type, for example,
“video/webm”. This method must return an empty string if the browser knows it cannot
play the content. The method might also return “probably” if the browser is confident it
can support the format, or “maybe” otherwise.

Controlling Playback
Playback can also be controlled programmatically using the pause() and play()
commands, as in the following code snippet:
Click here to view code image

var myVideo = document.getElementById("vid1").play();
var myVideo = document.getElementById("vid1").pause();

Playing Sound with the <audio> Tag
Pretty much everything stated previously about the <video> tag applies equally well
to the <audio> tag. The simple way to use the <audio> tag is like this:
Click here to view code image

<audio src="song.mp3"></audio>

You can add further attributes to achieve more control over playback, such as loop and
autoplay:
Click here to view code image

<audio src="song.mp3" autoplay loop></audio>

Tip
Don’t abuse loop and autoplay, or you may find that many of your site
visitors don’t return!

As with the earlier examples for video files, you can include alternative formats to help
ensure that a user’s browser will find one that it can play, as in the following code:
Click here to view code image

<audio controls="controls">
 <source src="song.ogg" type="audio/ogg" />
 <source src="song.mp3" type="audio/mpeg" />
 Your browser does not support the audio element.
</audio>

MP3, WAV, and Ogg are typically supported file formats for the <audio> element.
Controlling an audio file in JavaScript uses the same methods as for the <video> tag.
To add and play an audio file via JavaScript, you can treat it just like any other
JavaScript or DOM object:
Click here to view code image

var soundElement = document.createElement('audio');
soundElement.setAttribute('src', 'sound.ogg');
soundElement.play();
soundElement.pause();

The <audio> and <video> tags have many useful properties that you can access via
JavaScript. Here are a few useful ones, the meaning of which will be immediately
apparent:

mediaElement.duration
mediaElement.currentTime
mediaElement.playbackRate
mediaElement.muted

For example, to move to a point 45 seconds into a song you might use
Click here to view code image

soundElement.currentTime = 45;

Tip
You can find a comprehensive reference to these tags and their properties and
methods at http://www.whatwg.org/specs/web-apps/current-work/multipage/the-
video-element.html.

Drawing on the Page with <canvas>
The new <canvas> tag gives you just that: a rectangular space in your page where you
can draw shapes and graphics, as well as load and display image files and control their
display via JavaScript. The many practical uses for the element include dynamic charts,
JavaScript/HTML games, and instructional animations.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html

Using the <canvas> tag simply allows you to define a region by setting its width
and height parameters; everything else related to creating the graphical content is
done via JavaScript. There is an extensive set of drawing methods known as the Canvas
2D API.

Try it Yourself: Moving a Ball Using <canvas>
You’re going to make a simple animation in a <canvas> element—just a red
disc (to represent a ball) moving in a circle on the page.
The only HTML markup required in the body of the page is the <canvas>
element itself:

Click here to view code image

<canvas id="canvas1" width="400" height="300"></canvas>

All the drawing and animation will be done in JavaScript.

Tip
If you don’t set width and height parameters, the canvas defaults to 300
pixels wide by 150 pixels high.

You first need to specify the rendering context. At the time of writing, 2D is the
only widely supported context, though a 3D context is under development.

Click here to view code image

context = canvas1.getContext('2d');

The only primitive shapes supported by <canvas> are rectangles:
Click here to view code image

fillRect(x,y,width,height); //draw a filled rectangle
strokeRect(x,y,width,height); //draw an outlined rectangle
clearRect(x,y,width,height); // clear the rectangle

All other shapes must be created by using one or more path-drawing functions.
Since you want to draw a colored disc, that’s what you need here.
Several different path-drawing functions are offered by <canvas>.
Move to x, y without drawing anything:

moveTo(x, y)

Draw a line from the current location to x, y:
lineTo(x, y)

Draw a circular arc of radius r, having circle center x, y, from startAngle to
endAngle.

Click here to view code image

arc(x, y, r, startAngle, endAngle, anti)

Setting the last parameter to Boolean true makes the arc draw
counterclockwise instead of the default clockwise.
To create shapes using these basic commands, you need some additional
methods:

Click here to view code image

object.beginPath();
object.closePath(); //complete a partial shape
object.stroke(); //draw an outlined shape
object.fill(); //draw a filled shape

Tip
If you use the fill method, an open shape will be closed automatically without
you having to use closePath().

To make the ball you’re going to generate a filled circle. Let’s make it red, of
radius 15, and centered on canvas coordinates 50, 50:

Click here to view code image

context.beginPath();
context.fillStyle="#ff0000";
context.arc(50, 50, 15, 0, Math.PI*2, true);
context.closePath();

To animate the ball, you need to alter the x and y coordinates of the ball center
using a timer. Take a look at the animate() function:

Click here to view code image

function animate() {
 context.clearRect(0,0, 400,300);
 counter++;
 x += 20 * Math.sin(counter);
 y += 20 * Math.cos(counter);
 paint();
}

This function is called repeatedly via the setInterval() method. Each time
it’s called, the canvas is cleared by using the clearRect() method across the
full size of the canvas element. The variable counter is incremented on each loop,
and its new value is then used to redefine the position of the disc’s center.
The complete code is listed in Listing 11.1.

LISTING 11.1 Moving a Ball Using <canvas>

Click here to view code image

<!DOCTYPE HTML>
<html>
<head>
 <title>HTML5 canvas</title>
<script>
 var context;
 var x=50;
 var y=50;
 var counter = 0;
 function paint() {
 context.beginPath();
 context.fillStyle="#ff0000";
 context.arc(x, y, 15, 0, Math.PI*2, false);
 context.closePath();
 context.fill();
 }
 function animate() {
 context.clearRect(0,0, 400,300);
 counter++;
 x += 20 * Math.sin(counter);
 y += 20 * Math.cos(counter);
 paint();
 }
 window.onload = function() {
 context= canvas1.getContext('2d');
 setInterval(animate, 100);
 }
</script>
</head>
<body>
 <canvas id="canvas1" width="400" height="300">
 <p>Your browser doesn't support the canvas element.</p>
 </canvas>
</body>
</html>

Create this file and load it into your browser. If your browser supports the
<canvas> element, you should see a red disc following a circular route on the
page, as in Figure 11.2.

FIGURE 11.2 An animation using <canvas>

Drag and Drop
Drag and drop is a part of the HTML5 standard. Just about any element can be made
draggable.
To make an element draggable, all that’s required is to set its draggable attribute to
true:

Dragging something, though, isn’t much use by itself. To employ a draggable object to
achieve something useful, you’re probably going to want to be able to drop it
somewhere.
To define where an object can be dropped, and control the dragging and dropping
process, you need to write event listeners to detect and control the various parts of the
drag-and-drop process.
There are a few different events you can utilize to control your drag and drop:

 dragstart
 drag
 dragenter
 dragleave

 dragover
 drop
 dragend

To control your drag and drop, you need to define a source element (where the drag
starts), the data payload (what it is you’re dragging), and a drop target (an area to catch
the dropped item).

Tip
Not all items can be drop targets—an , for example, cannot accept drops.

The dataTransfer property contains a piece of data sent in a drag action. The value
of dataTransfer is usually set in the dragstart event and read/handled in the
drop event.
Calling setData(format, data) or getData(format, data) will
(respectively) set or read this piece of data.

Try it Yourself: Drag and Drop in HTML5
You’re going to build a demonstrator for the HTML5 drag-and-drop interface.
Fire up your editor and create a file containing the code listed in Listing 11.2.

LISTING 11.2 HTML5 Drag and Drop

Click here to view code image

<!DOCTYPE HTML>
<html>
<head>
 <title>HTML5 Drag and Drop</title>
 <style>
 body {background-color: #ddd; font-family: arial, verdana, sans-
serif;}
 #drop1 {width: 200px;height: 200px;border: 1px solid
black;background-color:white}
 #drag1 {width: 50px;height: 50px;}
 </style>
 <script>
 function allowDrop(ev) {
 ev.preventDefault();
 }

 function drag(ev) {
 ev.dataTransfer.setData("Text",ev.target.id);
 }

 function drop(ev) {
 var data = ev.dataTransfer.getData("Text");
 ev.target.appendChild(document.getElementById(data));
 ev.preventDefault();
 }

 window.onload = function() {
 var dragged = document.getElementById("drag1");
 var drophere = document.getElementById("drop1");
 dragged.ondragstart = drag;
 drophere.ondragover = allowDrop;
 drophere.ondrop = drop;
 }
 </script>
</head>
<body>
 <div id="drop1" ></div>
 <p>Drag the image below into the box above:</p>

</body>
</html>

To get the party started, you define a couple of HTML elements on your page.
The <div> element with ID of drop1 is the target area for catching the drop,
and the image with ID of drag1 is to become your draggable item.
Three important functions are defined in the code. Each of these functions is
passed the current event to process. Behind the scenes, ev.target changes
automatically for each type of event, depending on where you are in the drag-and-
drop process:

 A function named drag(ev) is executed when the drag starts. This function
sets the value of the dataTransfer property for the drag to the ID of the
dragged object:

Click here to view code image

function drag(ev) {
 ev.dataTransfer.setData("Text",ev.target.id);
}

 Another function named allowDrop(ev) is executed when the drag passes
over the intended drop area. All that this function must achieve is to prevent
the drop area’s default behavior from taking place (as the default behavior
prevents dropping):

function allowDrop(ev) {
 ev.preventDefault();
}

 Finally, a function named drop(ev) is executed when the dragged item is

dropped. In this function, the value of the dataTransfer property is read to
determine the ID of the dragged object; then that object is appended as a child
object to the drop area object. Once again, the default operation needs to be
prevented from taking place:

Click here to view code image

function drop(ev) {
 var data = ev.dataTransfer.getData("Text");
 ev.target.appendChild(document.getElementById(data));
 ev.preventDefault();
}

The loaded page should look something like the one shown in Figure 11.3;
dragging the small image and dropping it over the white drop area, you should
see it “dock” into the <div> element, as shown in the figure.

FIGURE 11.3 HTML5 drag and drop

Local Storage
HTML5 pages can store even large amounts of data within the user’s browser, without
any negative effect on the website’s performance. Web storage is more secure and faster

than doing this via cookies. Like when using cookies, the data is stored in key/value
pairs, and a web page can only access the data it has itself stored.
The two new objects for storing data locally in the browser are

 localStorage—Stores data with no expiration date
 sessionStorage—Stores data just for the current session

If you’re unsure about your browser’s support for local storage, once again you can use
feature detection:
Click here to view code image

if(typeof(Storage)!=="undefined") {
 ... both objects are available ...
}

To store a value you can invoke the setItem method, passing to it a key and a value:
Click here to view code image

localStorage.setItem("key", "value");

Alternatively, you can use the localStorage object like an associative array:
Click here to view code image

localStorage["key"] = "value";

Retrieving the values can use either of these methods too:
Click here to view code image

alert(localStorage.getItem("key"));

or
alert(localStorage["key"]);

Working with Local Files
At last HTML provides a standard way to interact with the user’s local files, using
HTML5’s File API specification. There are several ways to access external files:

 File provides information including name, size, and MIME type, and gives a
reference to the file handle.
 FileList is an array-like sequence of File objects.
 The FileReader interface uses File and FileList to asynchronously read
a file. You can check on read progress, catch any errors, and find out when a file
is completely loaded.

Checking for Browser Support

Once more, you can check whether your browser supports the File API by the usual
feature-detection method:
Click here to view code image

if (window.File && window.FileReader && window.FileList) {
 // we're good
}

Try it Yourself: Interacting with the Local File System
In this example you’re going to modify the previous drag-and-drop example to
allow a list of files to be dragged into a web page from the local file system. To
do so, you’re going to use the FileList data structure.
Take a look at the modified drop(ev) function:

Click here to view code image

function drop(ev) {
 var files = ev.dataTransfer.files;
 for (var i = 0; i < files.length; i++) {
 var f = files[i];
 var pnode = document.createElement("p");
 var tnode = document.createTextNode(f.name + " (" +
f.type + ") " + f.size + " bytes");
 pnode.appendChild(tnode);
 ev.target.appendChild(pnode);
 }
 ev.preventDefault();
 }

Here, the array-like FileList containing information about the dragged files is
extracted from the dataTransfer object:

Click here to view code image

var files = ev.dataTransfer.files;

Then, each file is processed in turn by iterating through them individually:
Click here to view code image

for (var i = 0; i < files.length; i++) {
 var f = files[i];
 ...statements to process each file ...
}

The complete listing is shown in Listing 11.3.

LISTING 11.3 Interacting with the Local File System

Click here to view code image

<!DOCTYPE HTML>

<html>
<head>
 <title>HTML5 Local Files</title>
 <style>
 body {background-color: #ddd; font-family: arial, verdana, sans-
serif;}
 #drop1 {
 width: 400px;
 height: 200px;
 border: 1px solid black;
 background-color: white;
 padding: 10px;
 }
 </style>
 <script>
 function allowDrop(ev) {
 ev.preventDefault();
 }

 function drop(ev) {
 var files = ev.dataTransfer.files;
 for (var i = 0; i < files.length; i++) {
 var f = files[i]
 var pnode = document.createElement("p");
 var tnode = document.createTextNode(f.name + " (" + f.type
+ ") " + f.size + " bytes");
 pnode.appendChild(tnode);
 ev.target.appendChild(pnode);
 }
 ev.preventDefault();
 }

 window.onload = function() {
 var drophere = document.getElementById("drop1");
 drophere.ondragover = allowDrop;
 drophere.ondrop = drop;
 }
 </script>
</head>
<body>
 <div id="drop1" ></div>
</body>
</html>

After creating this file in your editor and loading the resulting page into the
browser, you should be able to drag files into the drop area from your local
system, and see filename, MIME type, and size listed, as shown in Figure 11.4.

FIGURE 11.4 Interfacing with local files

Summary
HTML5 offers a whole array of new facilities to HTML, enabling the markup language
to be used as a much better basis for web applications and allowing JavaScript to
exploit some brand-new APIs.
In this hour, you had a whistle-stop tour of these new capabilities, including some
hands-on coding experience using some of these new APIs.

Q&A
Q. What is the best way for me to learn HTML5?
A. Learn HTML5 by using it. Jump right in and start building pages using HTML5

features. Use the semantic tags; try video and audio playback; play with drag and
drop, and the file API; and build animations using <canvas>. When you have
questions, many Internet-based tutorials, blogs, and code examples are available.

Q. Are there already real live sites using HTML5?
A. Sure, lots of them. Take a look at http://html5gallery.com/ for some examples.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of the following is NOT a valid HTML5 semantic element?

a. <header>

b. <sidebar>
c. <nav>

2. Which of the following is NOT a valid method for <audio> and <video>
elements?
a. play()
b. pause()
c. stop()

3. Which of the following is NOT a standard drag-and-drop event?
a. drag
b. dragover
c. dragout

Answers
1. b. <sidebar> is not a valid HTML5 element.
2. c. There is no stop() method.
3. c. There is no dragout event; use dragleave.

Exercises
 Review some of the examples of previous hours, and try to rewrite them using
some of the new HTML5 interfaces.
 HTML5 is pretty new at the time of writing. Check out the current state of browser
support for the various aspects of HTML5 at http://caniuse.com/ or
http://html5readiness.com/.

http://caniuse.com/
http://html5readiness.com/

Hour 12. JavaScript and CSS

What You’ll Learn in This Hour:
 Separating style from content
 The DOM style property
 Retrieving styles
 Setting styles
 Accessing classes using className
 The DOM styleSheet object
 Enabling, disabling, and switching stylesheets in JavaScript
 Changing the mouse cursor

In the early days of the World Wide Web, pages were all about their text content. Early
browsers had rudimentary support for graphic effects—some didn’t even support
images. Styling a web page was largely a matter of using the few style-related attributes
and tags allowed by the early incarnations of HTML.
Things improved markedly with the introduction of browser support for Cascading Style
Sheets (CSS), which allowed the styling of a page to be treated independently from its
HTML markup.
Earlier in the book, you learned how to edit the structure of your page using
JavaScript’s DOM methods. However, JavaScript can also be used to access and
amend CSS styles for the current page. In this hour you learn how.

A Ten-Minute CSS Primer
If you’ve decided to learn JavaScript there’s a pretty good chance that you’re already
familiar with CSS styling. Just in case it’s managed to pass you by, let’s review the
basics.

Separating Style from Content
Before CSS came along, most styling in HTML pages was carried out using HTML tags
and/or their attributes. To change the font color of a piece of text, for example, you
would have used something like this:
Click here to view code image

<p>This text is in red!</p>

This was pretty awful for a number of reasons:
 Every single piece of text in the page that we wanted to be colored red had to be
marked up with these extra tags.
 The created style could not be carried over to other pages; they too had to be
marked up individually with additional HTML.
 To later change pages’ styles, you had to edit each and every page and sift through
the HTML, changing every style-related tag and attribute individually.
 With all this extra markup, the HTML became very hard to read and maintain.

CSS attempts to separate the styling of an HTML element from the markup function of
that element. This is done by defining individual style declarations and then applying
these to HTML elements or collections of elements.
You can use CSS to style the visual properties of a page element, such as color, font,
and size, as well as format-related properties such as positioning, margins, padding, and
alignment.
Separating style from content in this way brings with it a lot of benefits:

 Style declarations can be applied to more than one element or even (when using
external stylesheets) more than one page.
 Changes to style declarations affect all associated HTML elements, making
updating your site’s style more accurate, quick, and efficient.
 Sharing styles encourages more consistent styling through your site.
 HTML markup is clearer to read and maintain.

CSS Style Declarations
The syntax of CSS style declarations is not unlike that of JavaScript functions. Suppose
you want to declare a style for all paragraph elements in a page, causing the font color
inside the paragraphs to be colored red:

p {
 color: red
}

You can apply more than one style rule to your chosen element or collection of
elements, separating them with semicolons:

p {
 color: red;
 text-decoration: italic;
}

Since you have used the selector p, the preceding style declarations affect every
paragraph element on the page. To select just one specific page element, you can do so
by using its ID. To do so, the selector you use for your CSS style declaration is not the

name of the HTML element, but the ID value prefixed by a hash character. For instance,
the HTML element
Click here to view code image

<p id="para1">Here is some text.</p>

could be styled by the following style declaration:
#para1 {
 font-weight: bold;
 font-size: 12pt;
 color: black;
}

To style multiple page elements using the same style declaration, you can simply
separate the selectors with commas. The following style declaration affects all <div>
elements on the page, plus whatever element has the id value para1:

div, #para1 {
 color: yellow;
 background-color: black;
}

Alternatively, you can select all elements sharing a particular class attribute, by
prefixing the class name with a dot to form your selector:
Click here to view code image

<p class="info">Welcome to my website.</p>
Please log in or register using the form below.

We can style these elements with one declaration:
Click here to view code image

.info {
 font-family: arial, verdana, sans-serif;
 color: green;
}

Where to Place Style Declarations
Somewhat similarly to JavaScript statements, CSS style declarations can either appear
within the page or be saved in an external file and referenced from within the HTML
page.
To reference an external stylesheet, normal practice is to add a line to the page
<head> like this:
Click here to view code image

<link rel="stylesheet" type="text/css" href="style.css" />

Alternatively, you can place style declarations directly in the <head> of your page

between <style> and </style> tags:
<style>
 p {
 color: black;
 font-family: tahoma;
 }
 h1 {
 color: blue;
 font-size: 22pt;
 }
</style>

Finally, it’s possible to add style declarations directly into an HTML element by using
the style attribute:
Click here to view code image

<p style="color:red; font-size: 12px;">Please see our terms of service.
</p>

Tip
Styles defined in external stylesheets have the advantage that they can easily be
applied to multiple pages, whereas styles defined within the page can’t.

The DOM style Property
You saw in previous hours how the HTML page is represented by the browser as a
DOM tree. The DOM nodes—individual “leaves and branches” making up the DOM
tree—are objects, each having its own properties and methods.
You’ve seen various methods that allow you to select individual DOM nodes, or
collections of nodes, such as document.getElementById().
Each DOM node has a property called style, which is itself an object containing
information about the CSS styles pertaining to its parent node. Let’s see an example:
Click here to view code image

<div id="id1" style="width:200px;">Welcome back to my site.</div>
<script>
 var myNode = document.getElementById("id1");
 alert(myNode.style.width);
</script>

In this case the alert would display the message “200px.”

Note
In addition to the syntax

myNode.style.width

you can also use the equivalent
myNode.style["width"]

This is sometimes necessary, such as when passing a property name as a
variable:

Click here to view code image

var myProperty = "width";
myNode.style[myProperty] = "200px";

Unfortunately, while this method works fine with inline styles, if you apply a style to a
page element via a <style> element in the head of your page, or in an external
stylesheet, the DOM style object won’t be able to access it.

Note
In Hour 13, “Introducing CSS3,” you’ll read about another way to access style
properties in JavaScript that avoids the limitation of only working for inline
styles.

The DOM style object, though, is not read-only; you can set the values of style
properties using the style object, and properties you’ve set this way will be returned
by the DOM style object.

Note
CSS contains many properties with names that contain hyphens, such as
background-color, font-size, text-align, and so on. Since the
hyphen is not allowed in JavaScript property and method names, we need to
amend the way these properties are written. To access such a property in
JavaScript, remove the hyphen from the property name and capitalize the
character that follows, so font-size becomes fontSize, text-align
becomes textAlign, and so on.

Try it Yourself: Setting Style Properties
Let’s write a function to toggle the background color and font color of a page
element between two values, using the DOM style object:

Click here to view code image

function toggle() {
 var myElement = document.getElementById("id1");
 if(myElement.style.backgroundColor == 'red') {
 myElement.style.backgroundColor = 'yellow';

 myElement.style.color = 'black';
 } else {
 myElement.style.backgroundColor = 'red';
 myElement.style.color = 'white';
 }
}

The function toggle() first finds out the current background-color CSS
property of a page element, and then compares that color to red.
If the background-color property currently has the value of red, it sets the
style properties of the element to show the text in black on a yellow background;
otherwise, it sets the style values to show white text on a red background.
We use this function to toggle the colors of a element in an HTML
document.
The complete listing is shown in Listing 12.1.

LISTING 12.1 Styling Using the DOM style Object

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Setting the style of page elements</title>
 <style>
 span {
 font-size: 16pt;
 font-family: arial, helvetica, sans-serif;
 padding: 20px;
 }
 </style>
 <script>
 function toggle() {
 var myElement = document.getElementById("id1");
 if(myElement.style.backgroundColor == 'red') {
 myElement.style.backgroundColor = 'yellow';
 myElement.style.color = 'black';
 } else {
 myElement.style.backgroundColor = 'red';
 myElement.style.color = 'white';
 }
 }
 window.onload = function() {
 document.getElementById("btn1").onclick = toggle;
 }
 </script>
</head>
<body>
 Welcome back to my site.

 <input type="button" id="btn1" value="Toggle" />
</body>
</html>

Create the HTML file in your editor and try it out.
You should see that when the page originally loads, the text is in the default black
and has no background color. That happens because these style properties are
initially not set in the <style> instructions in the page head, as an inline style,
or via the DOM.
Executing when the button is clicked, the toggle() function checks the current
background color of the element. On finding that its value is not
currently red, toggle() sets the background color to red and the text color to
white.
The next time the button is clicked, the test condition

Click here to view code image

if(myElement.style.backgroundColor == 'red')

returns a value of true, causing the colors to be set instead to black on a yellow
background.
Figure 12.1 shows the program in action.

FIGURE 12.1 Setting style properties in JavaScript

Accessing Classes Using className
Earlier in this hour we discussed separating style from content, and the benefits that this
can bring.
Using JavaScript to edit the properties of the style object, as in the previous exercise,
works well—but it does carry with it the danger of reducing this separation of style and
content. If your JavaScript code routinely changes elements’ style declarations, the
responsibility for styling your pages is no longer lodged firmly in CSS. If you later
decide to change the styles your JavaScript applies, you’ll have to go back and edit all
of your JavaScript functions.
Thankfully, we have a mechanism by which JavaScript can restyle pages without
overwriting individual style declarations. By using the className property of the
element, we can switch the value of the class attribute and with it the associated style
declarations for the element. Take a look at Listing 12.2.

LISTING 12.2 Changing Classes Using className

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Switching classes with JavaScript</title>
 <style>
 .classA {
 width: 180px;
 border: 3px solid black;
 background-color: white;
 color: red;
 font: normal 24px arial, helvetica, sans-serif;
 padding: 20px;
 }
 .classB {
 width: 180px;
 border: 3px dotted white;
 background-color: black;
 color: yellow;
 font: italic bold 24px "Times New Roman", serif;
 padding: 20px;
 }
 </style>
 <script>
 function toggleClass() {
 var myElement = document.getElementById("id1");
 if(myElement.className == "classA") {
 myElement.className = "classB";
 } else {
 myElement.className = "classA";

 }
 }
 window.onload = function() {
 document.getElementById("btn1").onclick = toggleClass;
 }
 </script>

</head>
<body>
 <div id="id1" class="classA"> An element with a touch of class.</div>
 <input type="button" id="btn1" value="Toggle" />
</body>
</html>

The <style> element in the page <head> lists style declarations for two classes,
classA and classB. The JavaScript function toggleClass() uses similar logic
to the earlier function toggle() of Listing 12.1, except that toggleClass() does
not work with the element’s style object. Instead, toggleClass() gets the class
name associated with the <div> element and switches its value between classA and
classB.
Figure 12.2 shows the script in action.

FIGURE 12.2 Switching classes in JavaScript

Note
As an alternative to using className, you could try setting the class attribute
for an element to the value classA by using

Click here to view code image

element.setAttribute("class", "classA");

Unfortunately, various versions of Internet Explorer have trouble when trying to
set the class attribute, but work fine with className. The statement

element.className = "classA";

seems to work in all browsers.

The DOM styleSheets Object
The styleSheets property of the document object contains an array of all the
stylesheets on the page, whether they are contained in external files and linked into the
page head, or declared between <style> and </style> tags in the page head. The
items in the styleSheets array are indexed numerically, starting at zero for the
stylesheet appearing first.

Tip
You can access the total number of spreadsheets on your page by using
document.styleSheets.length

Enabling, Disabling, and Switching Stylesheets
Each stylesheet in the array has a property called disabled, containing a value of
Boolean true or false. This is a read/write property, so we are able to effectively
switch individual stylesheets on and off in JavaScript:
Click here to view code image

document.styleSheets[0].disabled = true;
document.styleSheets[1].disabled = false;

The preceding code snippet “switches on” the second stylesheet in the page (index 1)
while “switching off” the first stylesheet (index 0).
Listing 12.3 has a working example. The script on this page first declares the variable
whichSheet, initializing its value at zero:

var whichSheet = 0;

This variable keeps track of which of the two stylesheets is currently active. The second
line of code initially disables the second of the two stylesheets on the page:
Click here to view code image

document.styleSheets[1].disabled = true;

The function sheet(), which is attached to the onClick event handler to the button
on the page when the page loads, carries out three tasks when the button is clicked:

 Disable the stylesheet whose index is stored in variable whichSheet:
Click here to view code image

document.styleSheets[whichSheet].disabled = true;

 Toggle variable whichSheet between one and zero:
Click here to view code image

whichSheet = (whichSheet == 1) ? 0 : 1;

 Enable the stylesheet corresponding to the new value of whichSheet:
Click here to view code image

document.styleSheets[whichSheet].disabled = false;

The combined effect of these activities is to toggle between the two active stylesheets
for the page. The script is shown in action in Listing 12.3 and Figure 12.3.

FIGURE 12.3 Switching stylesheets with the styleSheets property

LISTING 12.3 Toggling Between Stylesheets Using the styleSheets Property

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Switching Stylesheets with JavaScript</title>
 <style>
 body {
 background-color: white;

 color: red;
 font: normal 24px arial, helvetica, sans-serif;
 padding: 20px;
 }
 </style>
 <style>
 body {
 background-color: black;
 color: yellow;
 font: italic bold 24px "Times New Roman", serif;
 padding: 20px;
 }
 </style>
 <script>
 var whichSheet = 0;
 document.styleSheets[1].disabled = true;
 function sheet() {
 document.styleSheets[whichSheet].disabled = true;
 whichSheet = (whichSheet == 1) ? 0 : 1;
 document.styleSheets[whichSheet].disabled = false;
 }
 window.onload = function() {
 document.getElementById("btn1").onclick = sheet;
 }
 </script>
</head>
<body>
 Switch my stylesheet with the button below!

 <input type="button" id="btn1" value="Toggle" />
</body>
</html>

Try it Yourself: Selecting a Particular Stylesheet
Having your stylesheets indexed by number doesn’t make it easy to select the
stylesheet you need. It would be easier if you had a function to allow you to title
your stylesheets and select them by their title attribute.
You need your function to respond in a useful manner if you ask for a stylesheet
that doesn’t exist; you want it to maintain the previous stylesheet and send the
user a message.
First, declare a couple of variables and initialize their values:

var change = false;
var oldSheet = 0;

The Boolean variable change keeps track of whether you’ve found a stylesheet
with the requested name; once you do so, you change its value to true,
indicating that you intend to change stylesheets.
The integer oldSheet, originally set to zero, will eventually be assigned the

number of the currently active sheet; in case you don’t find a new stylesheet
matching the requested title, you set this back to active before returning from the
function.
Now you need to cycle through the styleSheets array:

Click here to view code image

for (var i = 0; i < document.styleSheets.length; i++) {
 ...
}

For each stylesheet:
 If you find that this is the currently active stylesheet, store its index in the
variable oldSheet:

Click here to view code image

if(document.styleSheets[i].disabled == false) {
 oldSheet = i;
}

 As you cycle through, make sure all sheets are disabled:
Click here to view code image

document.styleSheets[i].disabled = true;

 If the current sheet has the title of the requested sheet, make it enabled by
setting its disabled value to false, and immediately set your variable
change to true:

Click here to view code image

if(document.styleSheets[i].title == mySheet) {
 document.styleSheets[i].disabled = false;
 change = true;
}

When you’ve cycled through all sheets, you can determine from the state of the
variables change and oldSheet whether you are in a position to change the
stylesheet. If not, reset the prior stylesheet to be enabled again:

Click here to view code image

if(!change) document.styleSheets[oldSheet].disabled = false;

Finally, the function returns the value of variable change—true if the change
has been made, or false if not.
The code is listed in Listing 12.4. Save this code in an HTML file and load it into
your browser.

LISTING 12.4 Selecting Stylesheets by Title

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Switching stylesheets with JavaScript</title>
 <style title="sheet1">
 body {
 background-color: white;
 color: red;
 }
 </style>
 <style title="sheet2">
 body {
 background-color: black;
 color: yellow;
 }
 </style>
 <style title="sheet3">
 body {
 background-color: pink;
 color: green;
 }
 </style>
 <script>
 function ssEnable(mySheet) {
 var change = false;
 var oldSheet = 0;
 for (var i = 0; i < document.styleSheets.length; i++) {
 if(document.styleSheets[i].disabled == false) {
 oldSheet = i;
 }
 document.styleSheets[i].disabled = true;
 if(document.styleSheets[i].title == mySheet) {
 document.styleSheets[i].disabled = false;
 change = true;
 }
 }
 if(!change) document.styleSheets[oldSheet].disabled = false;
 return change;
 }
 function sheet() {
 var sheetName = prompt("Stylesheet Name?");
 if(!ssEnable(sheetName)) alert("Not found - original
stylesheet retained.");
 }
 window.onload = function() {
 document.getElementById("btn1").onclick = sheet;
 }
 </script>
</head>
<body>
 Switch my stylesheet with the button below!

 <input type="button" id="btn1" value="Change Sheet" />
</body>

</html>

The small function sheet() is added to the button’s onClick event handler
when the page loads. Each time the button is clicked, sheet() prompts the user
for the name of a stylesheet:

Click here to view code image

var sheetName = prompt("Stylesheet Name?");

Then it calls the ssEnable() function, passing the requested name as an
argument.
If the function returns false, indicating that no change of stylesheet has taken
place, you alert the user with a message:

Click here to view code image

if(!ssEnable(sheetName)) alert("Not found - original stylesheet
retained.");

The script is shown operating in Figure 12.4.

FIGURE 12.4 Selecting a new stylesheet by name

Summary
In this hour you learned a number of ways in which JavaScript can be put to work on the
CSS styles of your page. You learned how to use the style property of page elements,
how to work with CSS classes, and how to manipulate entire stylesheets.

Q&A
Q. Is it possible for JavaScript to work with individual CSS style rules?
A. Yes it is, but at the time of writing this does not work very well cross-browser.

Mozilla browsers support the cssRules array, while Internet Explorer calls the
equivalent array Rules. There is also considerable difference among browsers
in how the notion of a “rule” is interpreted. It’s to be hoped that future browser
versions will resolve these differences.

Q. Is it possible to alter the mouse cursor in JavaScript?
A. Yes, it is. The style object has a property called cursor that can take various

values. Popular cursors include the following:
 Crosshair—Pointer renders as a pair of crossed lines like a gun sight.
 Pointer—Usually a pointing finger.
 Text—Text entry caret.
 Wait—The program is busy.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. To set the font-family property for element myElement to Verdana, you

would use:
a. myElement.style.font-family = "verdana";
b. myElement.style.fontFamily = "verdana";
c. myElement.style.font-family("verdana");

2. The property className can be used:
a. To access the value of the class attribute of an element
b. To access the value of the name attribute of an element
c. To add the attribute classname to an element

3. How can you enable the stylesheet with index n in the styleSheets array?
a. document.styleSheets[n].active = true;

b. document.styleSheets[n].enabled = true;
c. document.styleSheets[n].disabled = false;

Answers
1. b. myElement.style.fontFamily = "verdana";
2. a. To access the value of the class attribute of an element.
3. c. document.styleSheets[n].disabled = false;

Exercises
 Edit the program of Listing 12.1 to change other style properties such as font face
and decoration, element borders, padding, and margins.
 Change the program of Listing 12.4 so that some of the stylesheets are externally
linked, rather than situated between <style> and </style> tags in the page
<head>. Does everything work the same?

Hour 13. Introducing CSS3

What You’ll Learn in This Hour:
 Some of the new abilities CSS3 brings to CSS
 Using vendor-specific prefixes and extensions
 Cross-browser setting of CSS3 properties
 Setting CSS3 properties efficiently in JavaScript

Using CSS3 you can easily achieve plenty of cool new effects without having to use lots
of JavaScript code and/or external graphics applications such as Photoshop. You can
create rounded borders, add shadows to boxes, use an image as a border, and more.
CSS3 contains several new background properties that give you more control over
background elements, including multiple background images, while CSS3 gradients let
you display smooth transitions between two or more specified colors. New text features
include text shadows and word wrap, as well as easy use of web fonts. And CSS3 lets
you easily build really cool transitions, transformations, and animations.
In this hour you’ll get a flavor of what CSS3 can do for your web pages, and you’ll see
how to effectively control CSS3’s capabilities using JavaScript.

Vendor-Specific Properties and Prefixes
CSS vendor prefixes are a way for the browser companies to add support for new or
experimental CSS features before they become part of the formal CSS3 specification, or
to implement features of a specification that hasn’t yet been finalized. In due course,
these prefixes usually become unnecessary as the features become fully supported via
their standard CSS3 nomenclature. To make sure that your pages render as you want
them to in the maximum number of browsers, though, it pays to use prefixes.
The CSS3 browser prefixes you’re likely to need appear in Table 13.1.

TABLE 13.1 Vendor Prefixes for CSS3
In most cases, where a prefix is necessary you take the CSS3 property as listed in the
CSS3 specification and add the relevant prefix from Table 13.1 for the browser in use.
For example, later in this hour you’ll read about CSS3 transitions. There you’ll see that,
if you want to add a CSS3 transition to your page, you use the transition property
with the prefixes added first:
Click here to view code image

-webkit-transition: background 0.5s ease;
-moz-transition: background 0.5s ease;
-o-transition: background 0.5s ease;
transition: background 0.5s ease;

The user’s browser will respond to whichever version of the transition feature it
understands, ignoring the rest.
Thankfully, browser manufacturers are working hard at fully implementing all of the
CSS3 features, and for most modern browsers the number of properties requiring a
prefix is falling quickly.

Tip
At the time of writing there’s a really useful roundup of which feature/browser
combinations require a prefix at http://shouldiprefix.com/.
For a frequently updated list of which features are supported by a particular
browser and version, visit
http://www.w3schools.com/cssref/css3_browsersupport.asp.

Caution
The prefixed version of a property might not always be exactly the same as the
property as described in the CSS3 specification.

http://shouldiprefix.com/
http://www.w3schools.com/cssref/css3_browsersupport.asp

Even though vendor-specific extensions usually avoid conflicts (as each vendor
has a unique prefix), please remember that such extensions may also be subject to
change by the vendor, as they do not form part of the CSS3 specifications, even
though they try to behave like the forthcoming CSS3 properties.
Remember, too, that the vendor-specific extensions will almost certainly fail CSS
validation.

CSS3 Borders
CSS3 lets you do some really cool things with borders that were only previously
possible with lots of ugly, hard-to-maintain code hacks.
In this section we’ll look at two examples: box shadows and rounded corners.

Create Box Shadows
The box-shadow property lets you add drop shadows to your page’s box elements.
As Table 13.2 shows, you can separately specify values for color, size, blur, and offset:

TABLE 13.2 Parameters for the box-shadow Property
Here’s an example using a 10px-wide shadow heading down and to the right, blurred
across its full width, and colored mid-grey:
Click here to view code image

#div1 {
background-color: #8080ff;
width: 400px;
height: 250px;
box-shadow: 10px 10px 10px #808080;
-webkit-box-shadow: 10px 10px 10px #808080;
-moz-box-shadow: 10px 10px 10px #808080;
}

In Figure 13.1 you can see an example of this style applied to a <div> element in a
web page.

FIGURE 13.1 A CSS3 box shadow

Rounding Corners with the border-radius property
The border-radius property lets you add rounded corners to your page elements
without the need for specially created corner images, and is perhaps one of the most
popular features new to CSS3.
The border-radius property already has widespread browser support, though
Mozilla Firefox required the -moz- prefix for a little longer than some of its rivals;
therefore, if you need to support Firefox back several versions you should consider
including the prefixed version too:

#div1 {
-moz-border-radius: 25px;
border-radius: 25px;
}

In Figure 13.2 you can see an example of a <div> element styled with radiused
corners.

FIGURE 13.2 A CSS3 border radius

Rounded corners can be specified independently using the individual properties
border-bottom-left-radius, border-top-left-radius, border-
bottom-right-radius, and border-bottom-right-radius, or for all
four corners in one statement by using the border-radius property, as we’ve done
here.

CSS3 Backgrounds
CSS3 contains several new background properties that allow more control of the
background element.
In this section you’ll learn about the background-size and background-
origin properties, as well as how to use multiple background images.

The background-size Property
The background-size property adds a new feature to CSS that allows you to set
the size of your background images using lengths, percentages, or either of two
keywords, contain or cover.
Specifying the background size using lengths and percentages behaves as you might
expect. For each background image, two lengths or percentages can be supplied,
relating to the width and height, respectively. (When you use percentages, these relate to
the space available for the background, not to the width and height of the background
image.)
The auto keyword can be used in place of either the width or the height value. If you

specify only one value for background-size, this will be assumed to be the width.
The height will then default to auto.
Click here to view code image

#div1 {
background-size: 400px;
background-image: url(lake.png);
width: 400px;
height: 250px;
border-radius: 25px;
}

Here I’ve set the background width equal to the size of the <div> element (I’ve also
rounded the corners for good measure). The result is shown in Figure 13.3.

FIGURE 13.3 Setting background size in CSS3

The background-origin Property
The background-origin property is used to set how the position of a background
in a box is calculated.
It takes one of three values: padding-box, border-box, or content-box.
When you supply a value of padding-box, the position is relative to the upper-left
corner of the padding edge. With border-box it’s relative to the upper-left corner of
the border, and content-box means the background is positioned relative to the
upper-left corner of the content.

Multiple Background Images

CSS3 lets you use multiple background images for box elements, simply by employing a
comma-separated list. The order of the list is important, with the first value supplied
representing the layer closest to the user, and subsequent entries in the list being
rendered as layers successively further behind it. Here’s an example:
Click here to view code image

#div1 {
width: 600px;
height: 350px;
background-image: url(boat.png), url(lake.png);
background-position: center bottom, left top;
background-repeat: no-repeat;
}

Here, boat.png is a drawing of a yacht upon a transparent background, while lake.png is
a photograph. In Figure 13.4 you can see the result when applied to a <div> element
within a web page.

FIGURE 13.4 Using multiple images in CSS3 backgrounds

Browser support for the multiple backgrounds feature is already quite established, with
Mozilla Firefox (3.6+), Safari/Chrome (1.0/1.3+), Opera (10.5+), and Internet Explorer
(9.0+) offering support.

CSS3 Gradients

CSS3 Gradients
CSS3 gradients allow you to generate smooth transitions between two or more specified
colors, where previously you had to employ images to achieve these effects. With CSS3
gradients you can reduce the download time, cache memory, and bandwidth usage that
these images would have cost. CSS3 gradients perform better when zoomed, too.
CSS3 offers two types of gradient: Linear Gradients, directed
down/up/left/right/diagonally, and Radial Gradients, directed outwards from a defined
center.

Linear Gradients
To create a linear gradient in CSS3, you must define at least two colors to serve as the
end points of the gradient. You can also define a starting point and a direction (that is,
top to bottom, left to right, or an angle) for the gradient effect.
Click here to view code image

#div1 {
 width: 600px;
 height: 350px;
 background: -webkit-linear-gradient(red, #6699cc);
 background: -o-linear-gradient(red, #6699cc);
 background: -moz-linear-gradient(red, #6699cc);
 background: linear-gradient(red, #6699cc);
}

Here I’ve mixed the ways the colors are defined, using both color names (here red) and
#rrggbb notation. I haven’t specified a direction for the gradient, so the default top-to-
bottom will be used by the browser, as shown in Figure 13.5.

FIGURE 13.5 A CSS3 linear gradient

You can also enter a direction for the gradient; for instance, suppose you want the
gradient to be directed left-to-right instead of top-to-bottom, like so:
Click here to view code image

background: linear-gradient(to right, red , #6699cc);

The following line defines a diagonal gradient:
Click here to view code image

background: linear-gradient(to bottom right, red , #6699cc);

If you want total control over the direction of the gradient, define an angle:
Click here to view code image

background: linear-gradient(135deg, red, #6699cc);

Radial Gradients
A radial gradient is defined by its center and (like its linear counterpart) must have at
least two colors defined to act as end points for the gradient effect:
Click here to view code image

background: radial-gradient(red, #6699cc);

A radial gradient specified this way displays as shown in Figure 13.6.

FIGURE 13.6 A CSS3 radial gradient

You can also set a location parameter for the center of the radial gradient, using the at
keyword:
Click here to view code image

background: radial-gradient(at top left, red, #6699cc);

The result is shown in Figure 13.7.

FIGURE 13.7 Moving the center of the radial gradient

Tip
CSS3 gradients can do much more than I have space to describe here, including
the use of more than two colors, transparency, and modifications to the shape and
size of the gradient. You can even add multiple gradients to the same element.
Full details are in the W3C documentation: http://www.w3.org/TR/2011/WD-
css3-images-20110217/

CSS3 Text Effects
CSS3 contains some new features to help you manipulate text.

Text Shadow
In CSS3, the text-shadow property applies shadow to text in a way almost identical
to the box-shadow property for block elements. You specify the horizontal and
vertical shadow distances and optionally the blur distance and the color of the shadow:
Click here to view code image

h3 {
 text-shadow: 10px 10px 3px #333;

http://www.w3.org/TR/2011/WD-css3-images-20110217/

 font-size: 26px;
}

You can see an example displayed in Figure 13.8.

FIGURE 13.8 CSS3 text shadow

Word Wrap
If a word is too long to fit within the block element containing it, it overflows beyond its
container. In CSS3, you can use the word-wrap property to force the text to wrap,
even if has to wrap in the middle of a word:

p {
 word-wrap: break-word;
}

CSS3 Transitions, Transformations, and Animations
Traditionally, programmers have used custom JavaScript code to create movement in
page elements, which can be tricky to implement in a cross-browser way. It would be
better if there were easier ways to add simple effects to elements on the page.
These capabilities are currently being introduced in CSS3, in the form of transitions,
transformations, and animations. They already have support to varying degrees in most
browsers.
In the following simple example, we add a transition effect (in those browsers that
support it) to change the background color on link hover. As the background color
changes, a transition effect will smooth out the transformation.
Here’s the code for our example link:
Click here to view code image

Show Me

Following are the CSS declarations showing the original and hover background colors,
and the declarations used to carry out the transition effect in the various different
browsers. Note the range of different prefixes required, as discussed earlier in this
hour. The last declaration, without a prefix, will be the one required once the
technology moves from an experimental to a finished status.
Click here to view code image

a.trans {
 background: #669999;
 -webkit-transition: background 0.5s ease;
 -moz-transition: background 0.5s ease;
 -o-transition: background 0.5s ease;
 transition: background 0.5s ease;
}
a.trans:hover {
 background: #999966;
}

Note
You can find comprehensive information about CSS3 transitions, transformations,
and animations at http://css3.bradshawenterprises.com/all/.

Referencing CSS3 Properties in JavaScript
The combination of CSS3 and JavaScript promises some great effects with slick
performance, high reliability, and minimum code complexity. In this section we look at
some ways to get and set CSS3 properties successfully from within your JavaScript
code.

Converting CSS Property Names to JavaScript
As I mentioned in Hour 12, “JavaScript and CSS,” to make the names of CSS properties
compatible with JavaScript naming conventions, CSS property names need a small
conversion from the format they have in stylesheets.
Instead of using lowercase names and hyphens as they do in CSS, the JavaScript
versions have the hyphens removed and the following characters capitalized. Hence,
border-radius becomes borderRadius. Property names having no hyphens,
such as width, are unchanged.
You saw in Hour 12 how to access element style properties using this naming
convention along with the DOM style property:
Click here to view code image

http://css3.bradshawenterprises.com/all/

var bRad = document.getElementById("div1").style.borderRadius;

As I mentioned at that time, while this can be useful, it is limited to elements with inline
styles; for elements with CSS declarations grouped in <style> elements in the page
head, or in external files, it won’t work. Luckily, there’s a better way, which I’ll discuss
now.

The DOM getComputedStyle() Method
Nowadays nearly all browsers support the DOM getComputedStyle() method,
which accesses the final (that is, computed) style of an element. By final style, we mean
the style in which the browser finally displays the element after applying (in their
appropriate order) all of the styling rules relevant to that element, be they inline,
external, or inherited from container elements.
The getComputedStyle() method returns an object having various methods,
including getPropertyValue(property), which returns the current value for
the given CSS property name:
Click here to view code image

var myDiv = document.getElementById("div1");
var bRad = getComputedStyle(myDiv).getPropertyValue("borderRadius");

Try it Yourself: Controlling Lighting Effects
Let’s create a small application to use box-shadow and radial-
gradient, both controlled by JavaScript, to control lighting effects in a simple
HTML page. The code is shown in Listing 13.1.

LISTING 13.1 Controlling CSS3 Effects

Click here to view code image

<!DOCTYPE html>
<html>
 <title>Controlling CSS3 Effects</title>
<style>
 #div1 {
 width: 600px;
 height: 350px;
 background-color: #6699cc;
 }
 #div2 {
 background-color: #aaaaff;
 width: 80px;
 height: 80px;
 padding: 20px;
 position: relative;

 left: 240px;
 top: 105px;
 }
</style>
<script>
 window.onload = function() {
 document.getElementById("btn1").onclick = function() {
 document.getElementById("div1").style.background = "radial-
gradient(at top left, white, #6699cc)" ;
 document.getElementById("div2").style.boxShadow = "10px 10px
10px #808080" ;
 }
 document.getElementById("btn2").onclick = function() {
 document.getElementById("div1").style.background = "radial-
gradient(at top right, white, #6699cc)" ;
 document.getElementById("div2").style.boxShadow = "-10px 10px
10px #808080" ;
 }
 document.getElementById("btn3").onclick = function() {
 document.getElementById("div1").style.background = "radial-
gradient(at bottom, white, #6699cc)" ;
 document.getElementById("div2").style.boxShadow = "0px -10px
10px #808080" ;
 }
 }
</script>
</head>
<body>
 <div id="div1">
 <div id="div2">
 LIGHTS:

 <input type="button" id="btn1" value="Top Left">

 <input type="button" id="btn2" value="Top Right">

 <input type="button" id="btn3" value="Bottom">
 </div>
 </div>
</body>
</html>

First, take a look at the <body> section of the page. It’s very simple, containing
just two nested <div> elements, the inner one containing three buttons, labeled
Top Left, Top Right, and Bottom, respectively.
Returning to the <head> section of the page, you’ll see that the
window.onload event causes the attachment of an onclick event handler to
each of these buttons. In each case, the event handler changes the gradient of the
outer <div> element’s background and the direction of the box-shadow style
of the inner <div> element. The combined effect is to simulate a light source
emanating from one of three directions.
You can see the page in action in Figure 13.9.

FIGURE 13.9 Controlling CSS3 with JavaScript

Note how there are no images used to create these effects—something that
wouldn’t have been possible prior to CSS3.

Setting CSS3 Properties with Vendor Prefixes
So you’ve seen how to get a CSS property, but how can you set a CSS3 property using
JavaScript when different browsers support different variations of the property (that is,
having different prefixes)?
When a browser supports a particular CSS property, it returns a string value when you
request the property from a page element. (This will be an empty string if the property
has not yet been set.) If your browser doesn’t support the property, the value
undefined is returned instead. So you can easily carry out a test before setting a
CSS3 property to determine which variant of the property is supported.
Let’s write code that accepts an array of potential CSS3 properties and returns the one
supported by the browser.
Click here to view code image

function getCss3Property(properties){
 // loop through all possible property names
 for (var i=0; i<properties.length; i++) {

 // if the property exists for this element
 if (properties[i] in document.documentElement.style) {
 // return the associated string
 return properties[i];
 }
 }
}

With this we can return the appropriate version of the feature.
Let’s see how that might work for the transition used earlier in this hour:
Click here to view code image

//get the correct CSS3 transition property
var myTrans = getCss3Property(['transition', 'MozTransition',
'WebkitTransition',
'msTransition', 'OTransition'])

//set CSS transition for "link1"
document.getElementById("link1").style[myTrans] = "background 0.5s
ease" ;

Let’s suppose that I’m using a version of Firefox that doesn’t support the CSS3
transition property, but does support Mozilla’s own version, MozTransition
(corresponding to -moz-transition).
When called, the getCss3Property() function will begin to loop through the list
of transition properties corresponding to the various vendor types. Having returned a
value of undefined for the property transition (as the browser does not support it) it
will, on the following trip through the loop, exit the function, returning a string value of
MozTransition. We now know which version of the property to set in the following
line of code.

Summary
In this hour you learned about some of the new capabilities that CSS3 brings to web
design. You saw how different browser manufacturers implement new or experimental
CSS3 features via custom prefixes, and saw how you can access and set these custom
features using JavaScript.

Q&A
Q. What browsers currently support CSS3 transitions, transforms, and

animations?
A. At the time of writing, 2D transforms are available in all popular current

browsers, while 3D transforms are supported in Safari, Chrome/Chromium, and
Firefox. Transitions and 3D transforms were added in IE10. Most of these effects
degrade sensibly, so a user having a browser without support will still be OK, but

will see the page elements without animation.
Q. Why do several different browser vendors use the -webkit- prefix?
A. WebKit is a layout engine used for rendering web pages in web browsers. The

webkit engine is the basis of a number of popular browsers, including Safari,
Chrome/Chromium, and various other browsers for both desktop and mobile
platforms.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of the following will correctly specify a linear gradient from lower left to

upper right?
a. linear-gradient(upper right, #112244 , #6699cc);
b. linear-gradient(top right, #112244 , #6699cc);
c. linear-gradient(to top right, #112244 , #6699cc);

2. How would you reference the text-shadow property in JavaScript?
a. textShadow
b. text-Shadow
c. text-shadow

3. Which of the following would correctly render multiple background images with
image cactus.png visible in front of image desert.jpg?
a. background-image: cactus.png, desert.jpg
b. background-image: url(cactus.png), url(desert.jpg);
c. background-image: url(desert.jpg), url(cactus.png);

Answers
1. c. linear-gradient(to top right, #112244 , #6699cc);
2. a. textShadow
3. b. background-image: url(cactus.png), url(desert.jpg);

Exercises
 Using the individual properties border-bottom-left-radius, border-
top-left-radius, border-bottom-right-radius, and border-
bottom-right-radius, use JavaScript to style a <div> element to be

completely elliptical in shape. (Hint: Set the radius sizes such that all of the
element’s border is within the radius of exactly one corner.) Use
getComputedStyle() on your elliptical <div> to then report these border
radii to the console.
 In this hour’s “Try It Yourself” section, the box shadow direction was set
manually, while you were writing the code, to be appropriate to the simulated
lighting direction. Can you write a function in JavaScript to set the shadow
properties based on the detected value of the background gradient?

Part V: Using JavaScript Libraries

Hour 14. Using Libraries

What You’ll Learn in This Hour:
 Why using a library can be a good idea
 The sorts of things libraries can help you do
 Library extensions from the user community
 Introducing some popular libraries
 A quick overview of prototype.js

Libraries are reusable collections of JavaScript code that let you do complicated things
by adding only a few lines of extra code to your program.
There are many freely available JavaScript libraries that can help you quickly develop
capable, cross-browser applications.
Several of the more popular libraries are introduced in this hour.

Why Use a Library?
You’ll often see opinions expressed, mainly on the Internet, by JavaScript developers
who strongly advocate writing your own code instead of using one of the many
available libraries. Popular objections include

 You won’t ever really know how the code works because you’re simply
employing someone else’s algorithms and functions.
 JavaScript libraries contain a lot of code you’ll never use but that your users have
to download anyway.

Like many aspects of software development, these are matters of opinion. Personally, I
believe that there are some very good reasons for using libraries sometimes:

 Why invent code that somebody else has already written? Popular JavaScript
libraries tend to contain the sorts of abstractions that programmers need often—
which means you’ll likely need those functions too from time to time. The
thousands of downloads and pages of online comment generated by the most-used
libraries pretty much guarantee that the code they contain will be more thoroughly
tested and debugged than your own, home-cooked code would be.
 Take inspiration from other coders. There are some really clever programmers
out there; take their work and use it to improve your own.
 Using a well-written library can really take away some of the headaches of
writing cross-browser JavaScript. You won’t have every browser always at your

disposal, but the library writers—and their communities of users—test on every
leading browser.
 Download size for most libraries is not horrific. For the few occasions where you
need the shortest of download times, compressed versions are available for most
of the popular libraries that you can use in your “production” websites. There’s
also the possibility of examining the library code and extracting just the parts you
need.

What Sorts of Things Can Libraries Do?
The specifics differ depending on the library concerned and the needs and intentions of
its creator. However, there are certain recurring themes that most libraries include:

 Encapsulation of DOM methods—As you see later in this hour when you look at
prototype.js, JavaScript libraries can offer appealing shorthand ways to select and
manage page elements and groups of elements.
 Animation—In Hour 7, “Program Control,” you learned about the use of timers.
Timers can be used to animate page elements, but writing such code can be tricky
and the resulting code complicated to maintain. Many of the popular libraries
wrap these sorts of operations into convenient functions to slide, fade, shake,
squish, fold, snap, and pulsate parts of your page’s interface, all in a cross-
browser way and with just a few lines of code.
 Drag and drop—A truly cross-browser drag and drop has always been one of the
trickiest effects to code for all browsers. Libraries can make it easy.
 Ajax—Easy methods to update page content without needing to worry about the
nitty-gritty of instantiating XMLHttpRequest objects and managing callbacks
and status codes.

Some Popular Libraries
New libraries are popping up all the time; others have seen continual development over
a number of years. This is by no means a complete list; it simply attempts to point out
some of the more popular current players.

Prototype Framework
The Prototype Framework (http://www.prototypejs.org) has been around for a few
years now and is currently in version 1.7. Prototype’s major strengths lie in its DOM
extensions and Ajax handling, though it has many more tricks up its sleeve, including
JSON support and methods to help with creating and inheriting classes.
Prototype is distributed as a standalone library but also as part of larger projects, such
as Ruby on Rails and the script.aculo.us JavaScript library.

http://www.prototypejs.org

Note
You look in more detail at the Prototype Framework later in the hour, including
some hands-on coding.

Dojo
Dojo (http://www.dojotoolkit.org/) is an open-source toolkit that adds power to
JavaScript to simplify building applications and user interfaces. It has features ranging
from extra string and math functions to animation and AJAX. The latest versions support
not only all major desktop browsers, but also mobile environments, including Apple
iOS, Android, and Blackberry with their “Dojo Mobile” HTML5 mobile JavaScript
framework.
At the time of writing, Dojo is at version 1.7.

The Yahoo! UI Library
The Yahoo! UI Library (http://developer.yahoo.com/yui/) was developed by Yahoo!
and made available to everyone under an open-source license. It includes features for
animation, DOM features, event management, and easy-to-use user interface elements
such as calendars and sliders.

MooTools
MooTools (http://mootools.net/) is a compact, modular JavaScript framework allowing
you to build powerful, flexible, and cross-browser code using a simple-to-understand,
well documented API (application programming interface).

jQuery
jQuery (http://jquery.com/) is a fast and compact JavaScript library that simplifies
various development tasks, including HTML document traversing, event handling,
animation, and Ajax calls for rapid development of interactive websites.

Tip
You find out a lot about the jQuery library and its associated user interface
library, jQueryUI, in the following two hours.

Introducing prototype.js
Sam Stephenson’s prototype.js is a popular JavaScript library containing an array of
functions useful in the development of cross-browser JavaScript applications, and

http://www.dojotoolkit.org/
http://developer.yahoo.com/yui/
http://mootools.net/
http://jquery.com/

including specific support for Ajax. Shortly you’ll see how your JavaScript code can be
simplified by using this library’s powerful support for DOM manipulation, HTML
forms, and the XMLHttpRequest object.
The latest version of the prototype.js library can be downloaded from
http://prototypejs.org/.
Including the library in your web application is simple; just include in the <head>
section of your HTML document the following line:
Click here to view code image

<script src="prototype.js"></script>

The prototype.js library contains a broad range of functions that can make writing
JavaScript code quicker and the resulting scripts cleaner and easier to maintain.
The library includes general-purpose functions providing shortcuts to regular
programming tasks, a wrapper for HTML forms, an object to encapsulate the
XMLHttpRequest object, methods and objects for simplifying DOM tasks, and more.
Let’s take a look at some of these tools.

Caution
At the time of writing, prototype.js is at version 1.7.2. If you download a
different version, check the documentation to see whether there are differences
between your version and the one described here.

The $() Function
$() is essentially a shortcut to the getElementById() DOM method. Normally, to
return the value of a particular element you would use an expression such as
Click here to view code image

var mydata = document.getElementById('someElementID');

The $() function simplifies this task by returning the value of the element whose ID is
passed to it as an argument:
Click here to view code image

var mydata = $('someElementID');

Furthermore, $() (unlike getElementById()) can accept multiple element IDs as
an argument and return an array of the associated element values. Consider this line of
code:
Click here to view code image

http://prototypejs.org/

mydataArray = $('id1','id2','id3');

In this example:
 mydataArray[0] contains value of element with ID id1.
 mydataArray[1] contains value of element with ID id2.
 mydataArray[2] contains value of element with ID id3.

The $F() Function
The $F() function returns the value of a form input field when the input element or its
ID is passed to it as an argument. Take a look at the following HTML snippet:
Click here to view code image

<input type="text" id="input1" name="input1">
<select id="input2" name="input2">
 <option value="0">Option A</option>
 <option value="1">Option B</option>
 <option value="2">Option C</option>
</select>

Here we could use
$F('input1')

to return the value in the text box and
$F('input2')

to return the value of the currently selected option of the select box. The $F() function
works equally well on check box and text area input elements, making it easy to return
the element values regardless of the input element type.

The Form Object
prototype.js defines a Form object having several useful methods for simplifying
HTML form manipulation.
You can return an array of a form’s input fields by calling the getElements()
method:
Click here to view code image

inputs = Form.getElements('thisform');

The serialize() method allows input names and values to be formatted into a
URL-compatible list:
Click here to view code image

inputlist = Form.serialize('thisform');

Using the preceding line of code, the variable inputlist would now contain a string
of serialized parameter and value pairs:
Click here to view code image

field1=value1&field2=value2&field3=value3...

Form.disable('thisform') and Form.enable('thisform') each do
exactly what the name implies.

Try it Yourself: Using the getElements() Method
Let’s gather some information about an HTML form using the getElements()
method. As I mentioned earlier, this method returns an array containing the
elements of a particular form.
Here’s the code for our simple form:

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Prototype.js example</title>
</head>
<body>
 <form id="exampleForm" action="#" onsubmit="return false">
 Username: <input type="text" name="username" />

 Telephone: <input type="text" name="telephone" />

 Message: <input type="text" name="message" />

 </form>
 <input type="button" value="Result" onclick="showFormFields();"/>
</body>
</html>

For this example, we just have three text fields, as shown in Figure 14.1.

FIGURE 14.1 The simple HTML form

After including prototype.js in the head section of the HTML, we need to write a
function to be executed when the form’s button is clicked. This function will use
the getElements() method to build an array of the form’s elements. It will
then read back the names and the entered values from the form via a JavaScript
alert.
The code is shown in Listing 14.1.

LISTING 14.1 Prototype.js Example Form

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Prototype.js example</title>
 <script src="prototype.js"></script>
 <script>

 function showFormFields() {
 var form = $('exampleForm');
 var message = '';
 var fields = form.getElements();
 for(var x=0; x<fields.length;x++) {
 message += "Field Name : " + fields[x].name + " Value : " +
fields[x].value + "\n";

 }
 alert(message);
 }

 </script>
</head>

<body>

 <form id="exampleForm" action="#" onsubmit="return false">
 Username: <input type="text" name="username" />

 Telephone: <input type="text" name="telephone" />

 Message: <input type="text" name="message" />

 </form>

 <input type="button" value="Result" onclick="showFormFields();"/>

</body>
</html>

In Figure 14.2 you can see the result of running the example and entering some
sample data.

FIGURE 14.2 Form information retrieved using getElements()

Summary
In many instances, writing JavaScript can be made a whole lot easier by using libraries.
Such libraries wrap many of the commonly used objects and methods into more user-
friendly forms; no longer do you have to remember cross-browser methods to, for

example, add or remove an event listener or access form elements. In this hour you
learned a little about some of the more popular JavaScript libraries.

Q&A
Q. How do I include a third-party JavaScript library into my pages?
A. The process varies slightly from library to library. Usually it’s simply a matter of

including one or more external .js files into the <head> part of your web page.
See the documentation supplied with your chosen library for specific details.

Q. Can I use more than one third-party library in the same script?
A. Yes, in theory: If the libraries are well written and designed not to interfere with

each other, there should be no problem combining them. In practice, this depends
on the libraries you need and how they were written.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of the following objects is not a JavaScript library?

a. MooTools
b. Prototype
c. Ajax

2. How can you extend jQuery yourself?
a. jQuery can’t be extended.
b. By writing server-side scripts.
c. By writing a plug-in, or using a prewritten one.

3. What other JavaScript third-party library does script.aculo.us employ?
a. Prototype
b. Dojo
c. jQuery

Answers
1. c. Ajax is a programming technique enabling your scripts to use resources hosted

on your server. There are many libraries to help you employ Ajax functionality,
but Ajax itself is not a library.

2. c. jQuery has a well-documented way to write and use plug-ins.

3. a. Script.aculo.us uses the prototype.js library.

Exercises
 Write a simple script using the Prototype library, or use a sample script from the
Prototype website at http://www.prototypejs.org.
 Visit the Script.aculo.us page at http://script.aculo.us/ and review the complete
list of effects made available by this library.

http://www.prototypejs.org
http://script.aculo.us/

Hour 15. A Closer Look at jQuery

What You’ll Learn in This Hour:
 Including jQuery in your pages
 jQuery’s $(document).ready handler
 Selecting page elements
 Working with HTML content
 Showing and hiding elements
 Animating elements
 Command chaining
 Handling events
 Using jQuery for Ajax applications

Many JavaScript libraries are available, but jQuery is arguably the most popular and
also the most extensible. A huge number of developers contribute open source plug-ins
for jQuery, and you can find a suitable plug-in for almost any application you might
have. The wide range of plug-ins and the simple syntax make jQuery such a great
library. In this hour you learn the basics of jQuery and get a taste of how powerful it is.

Including jQuery in Your Pages
Before you can use jQuery, you need to include it in your pages. There are two main
options, as detailed in the following sections.

Download jQuery
You can download jQuery from the official website at
http://docs.jquery.com/Downloading_jQuery, where you find both Compressed and
Uncompressed versions of the code. The Compressed version is for your live pages, as
it has been compressed to the smallest possible file size to download as quickly as
possible.
For development purposes, choose the Uncompressed version. Thanks to the well-
formatted, commented source, you can read the jQuery code to see how it works.
You need to include the jQuery library in the <head> section of your pages, using a
<script> tag. The easiest way is to place the downloaded jquery.js file in the same
directory as the page from where you want to use it and then reference it like this:
Click here to view code image

http://docs.jquery.com/Downloading_jQuery

<script src="jquery-1.11.2.js"></script>

Of course, if you place jQuery in another directory, you’ll have to change the (relative
or absolute) path in the value you give to the src attribute to reflect the location of the
file.

Note
The actual filename depends on the version you download. At the time of writing,
1.11.2 is the current release.

Use a Remote Version
Instead of downloading and hosting jQuery yourself, you can include it from a so-called
Content Delivery Network, or CDN. In addition to saving you from having to download
the jQuery library, using a CDN version has a further advantage: It’s quite likely that
when users visit your page and their browser requests jQuery, it’ll already be in their
browser cache. Additionally, CDNs generally ensure that they serve the file from the
server geographically closest to them, further cutting the loading time.
The official jQuery site currently lists the following CDNs:

 Google Ajax API
CDN—http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js
 Microsoft CDN—http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.2.min.js
 jQuery CDN—http://code.jquery.com/jquery-1.11.2.min.js (Minified version),
http://code.jquery.com/jquery-1.11.2.js (Source version)

You can then modify your <script> tag to suit the chosen CDN, for example:
Click here to view code image

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/
jquery.min.js"></script>

Unless you have a particular reason for hosting jQuery yourself, this is usually the best
way.

Tip
If you want to make sure your code is always using the latest release of jQuery,
simply link to http://code.jquery.com/jquery-latest.min.js.

jQuery’s $(document).ready Handler
At various places through this book you used the window.onload handler. jQuery
has its own equivalent:

http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.2.min.js
http://code.jquery.com/jquery-1.11.2.min.js
http://code.jquery.com/jquery-1.11.2.js
http://code.jquery.com/jquery-latest.min.js

Click here to view code image

$(document).ready(function() {
 // jQuery code goes here
});

Pretty much all the jQuery code you write will be executed from within a statement like
this.
Like window.onload, it accomplishes two things:

 It ensures that the code does not run until the DOM is available—that is, that any
elements your code may be trying to access already exist—so your code doesn’t
return any errors.
 It helps make your code unobtrusive, by separating it from the semantic (HTML)
and presentation (CSS) layers.

The jQuery version, though, has an advantage over the window.onload event; it
doesn’t block code execution until the entire page has finished loading, as would be the
case with window.onload. With jQuery’s (document).ready, the code begins
to execute as soon as the DOM tree has been constructed, before all images and other
resources have finished loading, speeding up performance a little.

Selecting Page Elements
jQuery lets you select elements in your HTML by enclosing them in the jQuery wrapper
$("").

Tip
You can also use single quotes in the wrapper function, $('').

Here are some examples of sets of page elements wrapped with the $ operator:
Click here to view code image

$("span"); // all HTML span elements
$("#elem"); // the HTML element having id "elem"
$(".classname"); // HTML elements having class "classname"
$("div#elem"); // <div> elements with ID "elem"
$("ul li a.menu"); // anchors with class "menu" that are nested in list
items
$("p > span"); // spans that are direct children of paragraphs
$("input[type=password]"); // inputs that have specified type
$("p:first"); // the first paragraph on the page
$("p:even"); // all even numbered paragraphs

So much for DOM and CSS selectors. But jQuery also has its own custom selectors,
such as the following:
Click here to view code image

$(":header"); // header elements (h1 to h6)
$(":button"); // any button elements (inputs or buttons)
$(":radio"); // radio buttons
$(":checkbox"); // checkboxes
$(":checked"); // selected checkboxes or radio buttons

The jQuery statements shown in the preceding examples each return an object containing
an array of the DOM elements specified by the expression inside the wrapper function.
Note that in none of the preceding lines of code have you specified an action; you are
simply getting the required elements from the DOM. In the sections that follow you learn
how to work with these selected elements.

Working with HTML Content
One of jQuery’s most useful time-saving tricks is to manipulate the content of page
elements. The html() and text() methods allow you to get and set the content of
any elements you’ve selected using the previous statements, while attr() lets you get
and set the values of individual element attributes. Let’s see some examples.

html()
The html() method gets the HTML of any element or collection of elements. It works
pretty much like JavaScript’s innerHTML:
Click here to view code image

var htmlContent = $("#elem").html();
/* variable htmlContent now contains all HTML
(including text) inside page element
with id "elem" */

Using similar syntax, you can set the HTML content of a specified element or collection
of elements:
Click here to view code image

$("#elem").html("<p>Here is some new content.</p>");
/* page element with id "elem"
has had its HTML content replaced*/

text()
If you only want the text content of an element or collection of elements, without the
HTML, you can use text():
Click here to view code image

var textContent = $("#elem").text();
/* variable textContent contains all the
text (but not HTML) content from inside a
page element with id "elem" */

Once more you can change the text content of the specified element(s):

Click here to view code image

$("#elem").text("Here is some new content.");
/* page element with id "elem"
has had its text content replaced*/

If you want to append content to an element, rather than replacing it, you can use the
following:
Click here to view code image

$("#elem").append("<p>Here is some new content.</p>");
/* keeps current content intact, but
adds the new content to the end */

And likewise:
Click here to view code image

$("div").append("<p>Here is some new content.</p>");
/* add the same content to all
<div> elements on the page. */

attr()
When passed a single argument, the attr() method gets the value for the specified
attribute:
Click here to view code image

var title = $("#elem").attr("title");

If applied to a set of elements, it returns the value for only the first element in the
matched set.
You can also pass a second argument to attr() to set an attribute value:
Click here to view code image

$("#elem").attr("title", "This is the new title");

Showing and Hiding Elements
Using plain old JavaScript, showing and hiding page elements usually means
manipulating the value of the display and visibility properties of the element’s
style object. While that works OK, it can lead to pretty long lines of code:
Click here to view code image

document.getElementById("elem").style.visibility = 'visible';

You can use jQuery’s show() and hide() methods to carry out these tasks with
rather less code. The jQuery methods also offer some useful additional functionality, as
you see in the following code examples.

show()

show()
A simple way to make an element or set of elements visible is to call the show()
method:
Click here to view code image

$("div").show(); // makes all <div> elements visible

However, you can also add some additional parameters to spice up the transition.
In the following example, the first parameter "fast" determines the speed of the
transition. As an alternative to "fast" or "slow", jQuery is happy to accept a
number of milliseconds for this argument, as the required duration of the transition. If no
value is set, the transition will occur instantly, with no animation.

Tip
The value "slow" corresponds to 600ms, while "fast" is equivalent to
200ms.

The second argument is a function that operates as a callback; that is, it executes once
the transition is complete:
Click here to view code image

$("#elem").show("fast", function() {
 // do something once the element is shown
});

Here we have used an anonymous function, but a named function works just fine too.

hide()
The hide() method is, of course, the exact reverse of show(), allowing you to make
page elements invisible with the same optional arguments as you saw for hide():
Click here to view code image

$("#elem").hide("slow", function() {
 // do something once the element is hidden
});

toggle()
The toggle() method changes the current state of an element or collection of
elements; it makes visible any element in the collection that is currently hidden and
hides any currently being shown. The same optional duration and callback function
parameters are also available to toggle().
Click here to view code image

$("#elem").toggle(1000, function() {

 // do something once the element is shown/hidden
});

Tip
Remember that the show(), hide(), and toggle() methods can be applied
to collections of elements, so the elements in that collection will appear or
disappear all at once.

Animating Elements
Some of the standard effects that jQuery offers are powerful. Animation of page
elements once had to be done by tricky hand-coded routines using JavaScript timers.
Those capabilities are neatly wrapped into a few jQuery methods that you can call for
your elements or collections of elements.

Fading
You can fade an element in or out, optionally setting the transition duration and adding a
callback function.
To fade out to invisibility:
Click here to view code image

$("#elem").fadeOut("slow", function() {
 // do something after fadeOut has finished executing
});

Or to fade in:
Click here to view code image

$("#elem").fadeIn(500, function() {
 // do something after fadeIn has finished executing
});

You can also fade an element only partially, either in or out:
Click here to view code image

$("#elem").fadeTo(3000, 0.5, function() {
 // do something after fade has finished executing
});

The second parameter (here set to 0.5) represents the target opacity. Its value works
similarly to the way opacity values are set in CSS. Whatever the value of opacity before
the method is called, the element will be animated until it reaches the value specified in
the argument.

Sliding

You can slide elements, or collections of elements, upward or downward. The jQuery
methods for sliding an element are direct corollaries to the fading methods you’ve just
seen, and their arguments follow exactly the same rules:
Click here to view code image

$("#elem").slideDown(150, function() {
 // do something when slideDown is finished executing
});

And to slide up:
Click here to view code image

$("#elem").slideUp("slow", function() {
 // do something when slideUp is finished executing
});

In case you need to slide an element up or down depending on its current state, jQuery
also provides a handy slideToggle() method:
Click here to view code image

$("#elem").slideToggle(1000, function() {
 // do something when slide up/down is finished executing
});

Animation
To animate an element, you do so by using jQuery to specify the CSS styles that the item
should have applied. jQuery will impose the new styles, but can do so gradually
(instead of applying them instantly as in plain CSS/JavaScript), thus creating an
animation effect.
You can use animate() on a wide range of numerical CSS properties. In this
example the width and height of an element are animated to a size of 400 x 500 pixels;
once the animation is complete, the callback function is used to fade the element to
invisibility:
Click here to view code image

$("#elem").animate(
 {
 width: "400px",
 height: "500px"
 }, 1500, function() {
 $(this).fadeOut("slow");
 }
);

Command Chaining
A further handy behavior of jQuery is that most jQuery methods return a jQuery object
that can then be used in your call to another method. You could combine two of the

previous examples, like this:
Click here to view code image

$("#elem").fadeOut().fadeIn();

The preceding code will fade out all the chosen elements, and then fade them back in.
The number of items you can chain is arbitrarily large, allowing for several commands
to successively work on the same collection of elements:
Click here to view code image

$("#elem").text("Hello from jQuery").fadeOut().fadeIn();

Try it Yourself: A Simple jQuery Animation
Let’s use some of what you’ve learned so far to do a simple animation exercise
with jQuery.
Your HTML page will initially display a <div> element, styled via CSS, but
with no content. Here’s the HTML for the page:

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <style>
 #animateMe {
 position:absolute;
 width: 100px;
 height: 400px;
 top: 100px;
 left: 100px;
 border: 2px solid black;
 background-color: red;
 padding: 20px;
 }
 </style>
</head>
<body>
 <div id="animateMe"></div>
</body>
</html>

First you need to add to your page a <script> element to link to the jQuery
library—in this case, via a CDN:

Click here to view code image

<script src="http://code.jquery.com/jquery-latest.min.js"></script>

The first thing to do is add a little text to the <div> element using jQuery’s
text() method:

Click here to view code image

$("#animateMe").text("Changing shape...")

You can then call animate() to change the size (and therefore the shape) of the
element:

$("#animateMe").animate(
 {
 width: "400px",
 height: "200px"
 }, 5000, function() {
 // callback function
 }
);

Of course, since the text() and animate() methods operate on the same
element, you can use command chaining to concatenate the two:

Click here to view code image

$("#animateMe").text("Changing shape...").animate(
 {
 width: "400px",
 height: "200px"
 }, 5000, function() {
 // callback function
 }
);

When the animation has completed, let’s change the text in the element, and then
have the element fade slowly away. We’ll chain these two commands, and use the
callback function of the previous call to the animate() method to execute
these additional commands once the animation is complete:

Click here to view code image

$("#animateMe").text("Changing shape...").animate(
 {
 width: "400px",
 height: "200px"
 }, 5000, function() {
 $(this).text("Fading away ...").fadeOut(4000);
 }
);

Note the use of this. Because you’re currently carrying out methods on the
$("#animateMe") parent element, using this inside the code block refers
to that parent element.
Finally, you need to carry out all of this activity when the DOM is ready, by
wrapping the code inside jQuery’s $(document).ready handler.
The complete listing is shown in Listing 15.1. Create this page using your text
editor, and load it into your browser.

Caution
To use a version of jQuery stored on a CDN, you need your computer to be
connected to the Internet. If you have no Internet connection, you need to use a
local copy of jQuery to try out these examples.

LISTING 15.1 A Simple jQuery Animation

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <style>
 #animateMe {
 position:absolute;
 width: 100px;
 height: 400px;
 top: 100px;
 left: 100px;
 border: 2px solid black;
 background-color: red;
 padding: 20px;
 }
 </style>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#animateMe").text("Changing shape...").animate(
 {
 width: "400px",
 height: "200px"
 }, 5000, function() {
 $(this).text("Fading away ...").fadeOut(4000);
 }
);
 });
 </script>
</head>
<body>
 <div id="animateMe"></div>
</body>
</html>

When the page has loaded, you should see a red <div> element with a black
border, and containing the words “Changing shape....” Once animated to its new
width and height, the wording changes to “Fading away...,” and the element fades
out to nothing. Figure 15.1 shows the animation taking place.

FIGURE 15.1 A simple jQuery animation

Handling Events
You can attach event handlers to elements or collections of elements a number of ways
in jQuery. First, you can add event handlers directly, like this:
Click here to view code image

$("a").click(function() {
 // execute this code when any anchor element is clicked
});

Alternatively, you can use a named function, like this:
Click here to view code image

function hello() {
 alert("Hello from jQuery");
}
$("a").click(hello);

In these two examples the function will be executed when an anchor is clicked. Some
other common events you might use in jQuery include blur, focus, hover,
keypress, change, mousemove, resize, scroll, submit, and select.
To help you add multiple event handlers, jQuery wraps the attachEvent and
addEventListener JavaScript methods in a cross-browser way:

$("a").on('click', hello);

The on() method can be used to attach handlers both to elements already present in the
original HTML page and to elements that have been dynamically added to the DOM.

Note
The on() method was introduced in jQuery 1.7 and is the recommended
replacement for several previous event-handling methods, including bind(),
delegate(), and live(). See the jQuery documentation for complete
details.

Summary
jQuery is a feature-rich and very popular JavaScript library with an easy-to-use API
that works across the vast majority of popular browsers. In this hour you took a good
look at the basics of jQuery and learned how it can help you to write concise cross-
browser JavaScript applications.

Q&A
Q. Where did jQuery come from?
A. jQuery was written by John Resig and launched in 2006. There are currently

several jQuery projects, including jQuery Core (used in this hour) and jQuery UI
(which you learn about in Hour 16, “The jQuery UI User Interface Library”).
These projects are under active development by John and a team of volunteers.
You can read about the team and the projects at jquery.org.

Q. Is it possible to use jQuery alongside other libraries? Will there be conflicts?
A. Yes, jQuery can be used with other libraries. jQuery provides a means to prevent

conflicts with the jQuery.noConflict() method. You can read about it at
http://docs.jquery.com/Using_jQuery_with_Other_Libraries.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. How could you select all page elements having class = "sidebar"?

a. $(".sidebar")
b. $("class:sidebar")
c. $(#sidebar)

http://docs.jquery.com/Using_jQuery_with_Other_Libraries

2. The expression $("p:first").show() does what?
a. Displays paragraph elements before displaying any other elements
b. Makes the first paragraph element on the page visible
c. Makes the first line of all paragraph elements visible

3. When applied to fades, slides, and animations, the value “fast” is equivalent to
a. 1 second
b. 600 milliseconds
c. 200 milliseconds

Answers
1. a. $(".sidebar")
2. b. Makes the first paragraph element on the page visible
3. c. 200 milliseconds

Exercises
 Review some of the sample programs from earlier in the book. Pick a few to
rewrite using jQuery, and try to do so.
 Visit the jQuery site at jquery.com and take a look at the documentation and
examples, especially for the many jQuery methods that we didn’t have space to
discuss here.

Hour 16. The jQuery UI User Interface Library

What You’ll Learn in This Hour:
 What jQuery UI is all about
 Using the ThemeRoller
 How to include jQuery UI in your pages
 Interactions: drag, drop, resize, and sort
 Using widgets: accordions, date pickers, and tabs

In the previous hour you learned about the jQuery open source JavaScript library. In this
hour you see how to use its companion library jQuery UI.
jQuery UI provides advanced effects and theme-able widgets that help you to build
interactive web applications.

What jQuery UI Is All About
The jQuery development team decided to launch an “official” collection of plug-ins for
jQuery, bringing together a wide range of popular user interface components and giving
them a common interface style. Using these components you can build highly interactive
and attractively styled web applications with a minimum of code.
Using jQuery UI in your programs gives you access to

 Interactions—The jQuery UI library provides support for dragging and dropping,
resizing, selecting, and sorting page elements.
 Widgets—These are feature-rich controls including accordion, autocomplete,
button, date picker, dialog, progress bar, slider, and tabs.
 Theme building—Give your site a coherent look-and-feel across all of the user
interface components. A ThemeRoller tool is available at
http://jqueryui.com/themeroller/. The ThemeRoller online tool allows you to
choose a theme from the gallery of prewritten designs or create a custom theme
based on an existing theme as a starting point.

In this hour, you see how to use a selection of the more popular plug-ins. Thanks to the
consistent user interface of jQuery UI, it will then be easy to explore the many other
available plug-ins by using the jQuery documentation.

How to Include jQuery UI in Your Pages
The first step is to visit the jQuery ThemeRoller online application at

http://jqueryui.com/themeroller/

http://jqueryui.com/themeroller/.

Using the ThemeRoller
The jQuery UI CSS Framework is a set of classes covering a wide range of user
interface requirements. Using the ThemeRoller tool, you can build your own interface
styles, either from scratch or based on any of the extensive collection of examples
available in the gallery at http://jqueryui.com/themeroller/.
Once you’ve decided on a style, jQuery UI provides a download builder that packages
only the components you need. It also handles any dependencies for your selected items,
so you can’t download a widget or interaction without all the ancillary files it requires.
All you need to do is then download and unpack the zip file.
Once you’ve unpacked the download, you have the following directories:

/css/
/development-bundle/
/js/

The development-bundle directory holds the jQuery UI source code, demos, and
documentation. If you don’t intend to change any of the jQuery UI code, you can safely
delete it.
Generally, you need to include from the remaining files your theme, jQuery, and jQuery
UI on any page that is to use jQuery UI widgets and interactions:
Click here to view code image

<link rel="stylesheet" type="text/css" href="jquery-ui.min.css"/>
<script src="http://code.jquery.com/jquery-latest.min.js"></script>
<script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>

If you use one of the standard gallery themes, you can alternatively link to all of the files
you need on a Content Delivery Network:
Click here to view code image

<link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
<script src="http://code.jquery.com/jquery-latest.min.js"></script>
<script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>

Interactions
Let’s take a look at some of the things you can do with jQuery UI to improve how page
elements interact with the user.

Drag and Drop

http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

Making an element draggable couldn’t be simpler with jQuery UI:
$("#draggable").draggable();

Listing 16.1 shows how you could achieve this in an HTML page.

LISTING 16.1 Making a Page Element Draggable

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
 <style>
 #dragdiv {
 width: 100px;
 height: 100px;
 background-color: #eeffee;
 border: 1px solid black;
 padding: 5px;
 }
 </style>
 <title>Drag and Drop</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>
 <script>
 $(function() {
 $("#dragdiv").draggable();
 });
 </script>
</head>
<body>
 <div id="dragdiv"> Drag this element around the page!</div>
</body>
</html>

When the page has loaded, the element <div id="dragdiv"> is made draggable:
Click here to view code image

$(function() {
 $("#dragdiv").draggable();
});

You can then drag the item around the page by clicking the mouse on any part of the
element, as depicted in Figure 16.1.

FIGURE 16.1 Dragging a page element

Try it Yourself: Drag and Drop with jQuery UI
To make an element capable of receiving another element that is dropped on it,
you need to use the droppable() method. This method can be specified to act
on various events, such as draggable items being dropped, being over the
droppable area, or leaving the droppable area.
You’re going to modify the code from Listing 16.1 to add a further, larger <div>
element as the drop area:

Click here to view code image

<div id="dropdiv">This is the drop zone ...</div>

In addition to making the draggable item draggable, you need to specify that the
new <div> element is a drop area, like this:

$("#dropdiv").droppable();

In addition, you’re going to make the text on the draggable item change in
response to being dropped, or to leaving the droppable area, by adding methods
to the handlers of the drop and out events:

Click here to view code image

$("#dropdiv").droppable({
 drop: function() { $("#dragdiv").text("Dropped!"); },
 out: function() { $("#dragdiv").text("Off and running again ...");

}
});

Create an HTML page containing the code of Listing 16.2.

LISTING 16.2 Drag and Drop with jQuery UI

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
<style>
 div {
 font: 12px normal arial, helvetica;
 }
 #dragdiv {
 width: 150px;
 height: 50px;
 background-color: #eeffee;
 border: 1px solid black;
 padding: 5px;
 }
 #dropdiv {
 position: absolute;
 top: 80px;
 left: 100px;
 width: 300px;
 height: 200px;
 border: 1px solid black;
 padding: 5px;
 }
 </style>
 <title>Drag and Drop</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>
 <script>
 $(function() {
 $("#dragdiv").draggable();
 $("#dropdiv").droppable({
 drop: function() { $("#dragdiv").text("Dropped!"); },
 out: function() { $("#dragdiv").text("Off and running
again ...");
}
 });
 });
 </script>
</head>
<body>

 <div id="dropdiv">This is the drop zone ...</div>
 <div id="dragdiv">Drag this element around the page!</div>
</body>
</html>

With the page loaded in your browser, you should now find that the draggable
page element can be dropped within the droppable <div>, changing its text in
response to the drop event.
The text changes once again as you drag the draggable item outside the border of
the drop container, as shown in Google Chrome in Figure 16.2.

FIGURE 16.2 Drag and drop with jQuery UI

Resize
To add a resizing handle to a block element is equally trivial thanks to jQuery UI (see
Figure 16.3):

$("#resizable").resizable();

FIGURE 16.3 Adding a resizing handle

To demonstrate, you can chain the resizable() method to the droppable container
of Listing 16.2:
Click here to view code image

$(function() {
 $("#dragdiv").draggable();
 $("#dropdiv").droppable({
 drop: function() { $("#dragdiv").text("Dropped!"); },
 out: function() { $("#dragdiv").text("Off and running again
..."); }
 }).resizable();
});

Sort
A further wrapper for drag-and-drop functionality is the sortable() method, which
you can add to items in a list to make the list sortable:

$("#sortMe").sortable();

Listing 16.3 demonstrates how you might apply this method to an unordered list element.

LISTING 16.3 Making Elements Sortable

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
 <title>Sortable</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>
 <script>

 $(function() {
 $("#sortMe").sortable();
 });
 </script>
</head>
<body>
 <ul id="sortMe">
 One
 Two
 Three
 Four
 Five

</body>
</html>

Dragging elements to a new location in the list causes the list to sort, “snapping” the list
into a new order when the drop is made, as in Figure 16.4.

FIGURE 16.4 Sorting a list

Using Widgets
Widgets are interface items you can drop into your application with a minimum of fuss
and complication.

Accordion

The accordion widget lets a user expand a list of <div> elements by opening just one
at a time, leaving the remaining ones reduced to just a title bar.
First you need to add the data in the semantic layer, using pairs of headers and content
panels:
Click here to view code image

<div id="accordion">
 <h3>First header</h3>
 <div>First content</div>
 <h3>Second header</h3>
 <div>Second content</div>
</div>

Next you can activate the accordion by calling the accordion() method on the outer
container element:
Click here to view code image

$(function() {
 $("#accordion").accordion();
});

Listing 16.4 shows a sample application, here dividing the lunch options of a restaurant
menu into separate folds of an accordion.

LISTING 16.4 Using the Accordion Widget

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
 <title>Menu Choices</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
 </script>
 <script>
 $(function() {
 $("#accordion").accordion();
 });
 </script>

</head>
<body>
 <h2>Choose from the following menu options:</h2>

<div id="accordion">
 <h3>Starters</h3>
 <div>

 Clam Chowder
 Ham and Avocado Salad
 Stuffed Mushrooms
 Chicken Liver Pate

 </div>
 <h3>Main Courses</h3>
 <div>

 Scottish Salmon
 Vegetable Lasagne
 Beef and Kidney Pie
 Roast Chicken

 </div>
 <h3>Desserts</h3>
 <div>

 Chocolate Sundae
 Lemon Sorbet
 Fresh Fruit Salad
 Strawberry Cheesecake

 </div>
</div>
</body>
</html>

Figure 16.5 shows the accordion widget in action. An accordion doesn’t allow multiple
content panels to be open at the same time; clicking on the Starters heading will open
that section, at the same time closing Main Courses.

FIGURE 16.5 The accordion widget

Date Picker
Expecting visitors to correctly fill out date fields has always been a tricky business,
mainly due to the wide range of possible date formats that may be used.
A date picker is a pop-up calendar widget that allows the user to simply click on the
required day, leaving the widget to format the selected date and enter the appropriate
data into the correct input field.
Suppose you have a form field to accept a date:
Click here to view code image

<input type="text" id="datepicker">

You can implement a date picker widget for that field with a single line of code:
Click here to view code image

$("#datepicker").datepicker();

Listing 16.5 has a complete example you can try.

LISTING 16.5 Using a Date Picker Widget

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
 <title>Date Picker</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>
 <script>
 $(function() {
 $("#datepicker").datepicker();
 });
 </script>
</head>
<body>
 Date: <input type="text" id="datepicker">
</body>
</html>

Figure 16.6 shows the date picker in action.

FIGURE 16.6 A date picker widget

Tabs

In the previous section you saw how to use an accordion widget to save some page area
by showing just one panel of information from a list of options.
Another common way to achieve such a saving of space is by using a tabbed interface.
Once again jQuery makes it a snap. Take a look at the code in Listing 16.6.

LISTING 16.6 A Tabbed Interface

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css"
href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/themes/smoothness/
jquery-ui.css"/>
 <title>Tabs</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script src="http://codeorigin.jquery.com/ui/1.10.3/jquery-ui.min.js">
</script>
 <script>
 $(function() {
 $("#tabs").tabs();
 });
 </script>
</head>
<body>
 <div id="tabs">

 Home
 About Us
 Products

 <div id="tabs-1">
 <p>Welcome to our online store....</p>
 </div>
 <div id="tabs-2">
 <p>We've been selling widgets for 5 years ...</p>
 </div>
 <div id="tabs-3">
 <p>We sell all kinds of widgets ...</p>
 </div>
 </div>
</body>
</html>

The tabs are contained in an unordered list:
Click here to view code image

 Home

 ...

The title of each tab is wrapped inside an anchor element, the href of which points to
the ID of the <div> containing the content for that panel:
Click here to view code image

<div id="tabs-1">
 <p>Welcome to our online store....</p>
</div>

The whole of the preceding is wrapped within a div container with id="tabs", and
to activate the tabbed interface all you need to do is call the tabs() method against
this container element:

$("#tabs").tabs();

Once activated, the interface looks like the one shown in Figure 16.7.

FIGURE 16.7 Tabs

Summary
In this hour you learned how to build slick user interfaces using the jQuery UI library in
addition to jQuery. You saw how to quickly add interactions and widgets to your pages,
and how to set an overall style for your interface items using the ThemeRoller
application.

Q&A
Q. Can I further customize these interface elements?
A. Yes you can. Due to the limited space in this book, each of the interactions and

widgets demonstrated in this hour used the default settings. In reality, each has a
host of customization options to make it work just how you want. You’ll find
extensive documentation and examples at http://docs.jquery.com/UI/.

Q. How can I make the other elements on my page have the same styles as
those generated by jQuery UI?

A. When jQuery UI generates markup, it applies classes to the newly created markup
items. These classes correspond to CSS declarations in the jQuery UI CSS
Framework. Full details for each widget are given in the jQuery UI
documentation.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. To use the jQuery UI in your pages, each page must contain as a minimum:

a. The jQuery and jQuery UI JavaScript libraries and a link to a jQuery UI theme
CSS file

b. Just the jQuery and jQuery UI libraries
c. Just the jQuery UI JavaScript library and a link to a jQuery UI theme CSS file

2. How can you make a <div> element with id = "parking" capable of
accepting items that are dropped on to it?
a. $("#parking").drop()
b. $("#parking").dropzone()
c. $("#parking").droppable()

3. An accordion widget is capable of displaying:
a. One content section at a time
b. A definable number of content sections all at once
c. All content sections at once

Answers
1. a. The jQuery and jQuery UI JavaScript libraries and a link to a jQuery UI theme

CSS file
2. c. $("#parking").droppable()
3. a. An accordion can display one content section at a time.

Exercises

Exercises
 Use the ThemeRoller to download a jQuery UI theme of your choice. Use it to
reproduce some of the sample scripts of this hour, and compare the appearance of
your pages with those displayed in the figures.
 Visit the jQuery UI documentation at http://docs.jquery.com/UI/ to investigate how
some of these widgets can be further customized with options, and try out some
examples using the listings in this hour as a starting point.

http://docs.jquery.com/UI/

Hour 17. Ajax with jQuery

What You’ll Learn in This Hour:
 What Ajax is and how it helps the user experience
 How Ajax is implemented in raw JavaScript
 How to implement Ajax smoothly and simply using jQuery

JavaScript is a client-side scripting language, and all of the examples you’ve used so far
have been limited entirely to client-side coding. Ajax allows you to communicate with
the server in the background and display the results on your page without having to carry
out a page refresh. This lets you create pages that interact more smoothly with the user.
In this hour, you’ll learn the basics of the technology that underpins Ajax, and how you
can use jQuery to make the whole process slick and simple.

The Anatomy of Ajax
So far we’ve discussed only the traditional page-based model of a website user
interface.
When you interact with such a website, individual pages containing text, images, data
entry forms, and so forth are presented to you one at a time. Each page must be dealt
with individually before navigating to the next.
For instance, you may complete the data entry fields of a form, editing and re-editing
your entries as much as you want, knowing that the data will not be sent to the server
until the form is finally submitted.
This interaction is summarized in Figure 17.1.

FIGURE 17.1 Traditional client–server interaction

After you submit a form or follow a navigation link, you then must wait while the
browser screen refreshes to display the new or revised page that has been delivered by
the server.
Unfortunately, interfaces built using this model have quite a few drawbacks. First, there
is a significant delay while each new or revised page is loaded. This interrupts what
we, as users, perceive as the “flow” of the application.
Furthermore, a whole page must be loaded on each occasion, even when most of its
content is identical to that of the previous page. Items common to many pages on a
website, such as header, footer, and navigation sections, can amount to a significant
proportion of the data contained in the page.
This unnecessary download of data wastes bandwidth and further exacerbates the delay
in loading each new page.
The combined effect of the issues just described is to offer a much inferior user
experience compared to that provided by the vast majority of desktop applications. On
the desktop, you expect the display contents of your programs to remain visible, and the
interface elements to continue responding to your commands, while the computing
processes occur quietly in the background.

Introducing Ajax
Ajax enables you to add to your web application interfaces some of this functionality

more commonly seen in desktop applications. To achieve this, Ajax builds an extra
“layer” of processing between the web page and the server.
This layer, often referred to as an Ajax Engine or Ajax Framework, intercepts requests
from the user and in the background handles server communications quietly,
unobtrusively, and asynchronously. This means that server requests and responses no
longer need to coincide with particular user actions but may happen at any time
convenient to the user and to the correct operation of the application. The browser does
not freeze and await the completion by the server of the last request, but instead lets you
carry on scrolling, clicking, and typing in the current page.
The updating of page elements to reflect the revised information received from the
server is also looked after by Ajax, happening dynamically while the page continues to
be used.
Figure 17.2 represents how these interactions take place.

FIGURE 17.2 Ajax client-server interaction

The XMLHttpRequest Object
When you click on a hyperlink or submit an HTML form, you send an HTTP request to
the server, which responds by serving to you a new or revised page. For your web
application to work asynchronously, however, you must have a means to send HTTP
requests to the server without an associated request to display a new page.
We can do so by means of the XMLHttpRequest object. This JavaScript object is

capable of making a connection to the server and issuing an HTTP request without the
necessity of an associated page load.

Tip
As a security measure, the XMLHttpRequest object can generally only make
calls to URLs within the same domain as the calling page, and cannot directly
call a remote server.

Different Rules for Different Browsers
Since you don’t know in advance which browser, version, or operating system your
users have, you must have your code adapt its behavior on the fly to ensure that the
instance of the object will be created successfully.
For the majority of browsers that support XMLHttpRequest as a native object
(Firefox, Opera, and the rest, as well as later versions of Internet Explorer), creating an
instance of this object is straightforward. The following line creates an
XMLHttpRequest object called request:
Click here to view code image

var request = new XMLHttpRequest();

To achieve the equivalent result in some earlier versions of Microsoft Internet Explorer,
you need to create an ActiveX object. Here’s an example:
Click here to view code image

var request = new ActiveXObject("Microsoft.XMLHTTP");

Once again, this assigns the name request to your new object.
To complicate matters a little more, some earlier versions of Internet Explorer have a
different version of the Microsoft XML parser installed; in those cases you need to use
the following instruction:
Click here to view code image

var request = new ActiveXObject("Msxml2.XMLHTTP");

Methods and Properties
Now that you have created an instance of your XMLHttpRequest object, let’s look at
some of the object’s properties and methods, by referring to Table 17.1.

TABLE 17.1 XMLHttpRequest Objects and Methods
Over the next few lessons we examine how these methods and properties are used to
create the functions that form the building blocks of your Ajax applications.

Talking with the Server
In the traditional style of web page, when you issue a server request via a hyperlink or a
form submission, the server accepts that request, carries out any server-side processing
required, and subsequently serves to you a new page with content appropriate to the
action you’ve taken.
While this processing takes place, your user interface is effectively frozen. You are
made aware when the server has completed its task by the appearance in the browser of

the new or revised page.
With asynchronous server requests, however, such communications occur in the
background, and the completion of such a request does not necessarily coincide with a
screen refresh or a new page being loaded. You must therefore make other arrangements
to find out what progress the server has made in dealing with your request.
The XMLHttpRequest object possesses a convenient property to report on the
progress of the server request. You can examine this property using JavaScript routines
to determine the point at which the server has completed its task, and the results are
available for you to use.
Your Ajax armory must therefore include a routine to monitor the status of your request
and act accordingly. We look at this in more detail later in the hour.

What Happens at the Server?
So far as the server-side script is concerned, the communication from your
XMLHttpRequest object is just another HTTP request. Ajax applications care little
about what languages or operating environments exist at the server; provided that the
client-side Ajax layer receives a timely and correctly formatted HTTP response from
the server, everything will work just fine.

Dealing with the Server Response
Once notified that an asynchronous request has been successfully completed, you may
then use the information returned by the server.
Ajax allows for this information to be returned to you in a number of formats, including
ASCII text and XML data.
Depending on the nature of the application, you may then translate, display, or otherwise
process this information within your current page.

But There’s an Easier Way, Right?
Luckily, there are plenty of JavaScript libraries out there that make a good job of
packaging these rather complicated procedures into easy-to-use functions and methods.
In the remainder of this hour you’ll see how the jQuery library can make writing Ajax
scripts a piece of cake.

Using jQuery to Implement Ajax
As you probably now realize, Ajax programming from scratch can be a little
cumbersome. Fortunately, jQuery solves this for you, letting you write Ajax routines in
few lines of code.

There are a number of jQuery methods for performing Ajax calls to the server; the more
frequently used ones are described here.

load()
When you simply want to grab a document from the server and display it in a page
element, load() might be all you require. The following code snippet gets the file
newContent.html and adds its content to the element with id="elem":
Click here to view code image

$(function() {
 $("#elem").load("newContent.html");
});

A neat trick is that you can pass a selector along with the URL, and only get the part of
the page corresponding to that selector:
Click here to view code image

$(function() {
 $("#elem").load("newContent.html #info");
});

Here you have added a jQuery selector after the URL, separated by a space. This causes
jQuery to pass back only the content of the container specified by the selector; in this
case, the element with ID of info.
When load() gives you too little control, jQuery offers methods to send GET and
POST requests too.

get() and post()
The two methods are similar, simply invoking different request types. You don’t need to
select a jQuery object (such as a page element or set of elements); instead, you can call
get() or post() directly using $.get() or $.post(). In its simplest form, the
get() or post() method takes a single argument, the target URL.
You’ll often want to send data to the server using get() or post(). Such data is sent
as a set of parameter and value pairs in an encoded string.

Tip
If you are collecting data from form fields, jQuery offers the handy
serialize() method that can assemble the form data for you:

Click here to view code image

var formdata = $('#form1').serialize();

In most cases, though, you’ll want to do something with the returned data. To do that,

you pass a callback function as an argument:
Click here to view code image

$.get("serverScript.php",
 {param1: "value1", param2: "value2"},
 function(data) {
 alert("Server responded: " + data);
});

The syntax for post() is essentially the same:
Click here to view code image

$.post("serverScript.php",
 {param1: "value1", param2: "value2"},
 function(data) {
 alert("Server responded: " + data);
});

ajax()
For the ultimate flexibility, the ajax() method allows you to set virtually every aspect
of the Ajax call and how to handle the response. For full details of using ajax() see
the documentation at http://api.jquery.com/jQuery.ajax/.

Try it Yourself: An Ajax Form with jQuery
Let’s round off this hour with an example of a simple Ajax form submission
powered by jQuery.
We’ll work with this simple HTML form:

Click here to view code image

<form id="form1">
 Name<input type="text" name="name" id="name">

 Email<input type="text" name="email" id="email">

 <input type="submit" name="submit" id="submit" value="Submit
Form">
</form>

You’re going to use jQuery to carry out the following tasks:
 Check that both input fields contain text.
 Submit the form via Ajax using HTTP POST.
 Print the data returned from the server into a <div> element on the page.

To check that both fields have had data entered, you use a simple function:
Click here to view code image

function checkFields(){
 return ($("#name").val() && $("#email").val());
}

http://api.jquery.com/jQuery.ajax/

For the function to return Boolean true, the value attribute of both form fields
must contain some text data; if either field is empty, the blank field will be
interpreted as “falsy” and the logical AND (&&) operator will cause false to be
returned from the function.
Next, apply jQuery’s submit() event handler to detect form submission. If
your function checkFields() returns false, the default behavior will be
canceled and the form won’t be submitted; otherwise, jQuery serializes the data
and sends a post() request to the server script.
The jQuery serialize() method is used to collect the form information into a
serialized string to send as a data payload with the Ajax call.
For this example, the server script test.php doesn’t do anything except format the
information it receives and send it back as a little piece of HTML:

Click here to view code image

<?php
echo "Name: " . $_REQUEST['name'] . "
Email: " .
$_REQUEST['email'];
?>

Finally, the callback function displays the returned information on the page:
function(data){
 $("#div1").html(data);
}

The code is shown in Listing 17.1.

LISTING 17.1 An Ajax Form

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Ajax Form Submission</title>
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script>
 $(document).ready(function(){
 function checkFields(){
 return ($("#name").val() && $("#email").val());
 }

 $("#form1").submit(function(){
 if(checkFields()){
 $.post(
 'test.php', $("#form1").serialize(),
 function(data){
 $("#div1").html(data);

 }
);
 }
 else alert("Please fill in name and email fields!");
 return false;
 });
 });
 </script>
</head>
<body>
 <form id="form1">
 Name<input type="text" name="name" id="name">

 Email<input type="text" name="email" id="email">

 <input type="submit" name="submit" id="submit" value="Submit
Form">
 </form>
 <div id="div1"></div>
</body>
</html>

To run this example you need to upload both the file listed in Listing 17.1 and the
server file test.php to a web server with PHP support.
Trying to submit the form with one or both of the input fields left blank will cause
the script to issue an alert message and prevent the form submission.
A successful form submission should result in the formatted data being presented
on the page, as shown in Figure 17.3. The figure also shows Firebug Lite
displaying details of the Ajax call and response.

FIGURE 17.3 An Ajax form using jQuery

Summary
In this hour you took a good look at the basics of Ajax programming and learned how
you can use the jQuery library to make the whole process much more slick and
straightforward.

Q&A
Q. How did Ajax get its name?
A. Ajax is an acronym for Asynchronous JavaScript And XML. In practice, though,

Ajax is by no means limited to returning just XML data.
Q. Do other libraries besides jQuery implement Ajax?
A. Certainly. There are many libraries and frameworks that help you implement

Ajax, some popular ones being Dojo, MooTools, and Prototype.

Workshop

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of these will grab element with id=source from server file

examples.html and insert it into a page element with id=target?
a. $("#target").load("examples.html #source");
b. $("#source").load("examples.html #target");
c. $(#source).load("examples.html #info");

2. A function used to process the data returned from an Ajax call is called:
a. An anonymous function
b. A callback function
c. An Ajax request

3. The jQuery serialize() method:
a. Encodes a set of form elements as a string for submission.
b. Encodes a set of form elements as a JSON object for submission.
c. Encodes a set of form elements as a JavaScript array for submission.

Answers
1. a. $("#target").load("examples.html #source");
2. b. A callback function
3. a. The jQuery serialize() method encodes a set of form elements as a string

for submission.

Exercises
 Upload some plain text in a .txt file to your server. Create an HTML page that
uses jQuery’s load() method to return the text and display it in a <div>
element of your page.
 Amend the code of this hour’s “Try It Yourself” exercise to disallow form
submission if either data entry field is blank or contains data less than four
characters long.

Part VI: Advanced Topics

Hour 18. Reading and Writing Cookies

What You’ll Learn in This Hour:
 What cookies are
 All about cookie attributes
 How to set and retrieve cookies
 About cookie expiration dates
 How to save multiple data items in a single cookie
 Deleting cookies
 Escaping and unescaping data
 Limitations of cookies

Something that the JavaScript techniques that you have seen so far can’t do is transfer
information from one page to another. Cookies provide a convenient way to give your
web pages the means to store and retrieve small pieces of information on a user’s own
computer, allowing your website to save details such as a user’s preferences or dates of
his or her prior visits to your site.
In this hour you learn how to create, save, retrieve, and delete cookies using JavaScript.

What Are Cookies?
The HTTP protocol that you use to load web pages into your browser is a so-called
stateless protocol. This means that once the server has delivered the requested page to
your browser, it considers the transaction complete and retains no memory of it. This
makes it difficult to maintain certain sorts of continuity during a browsing session (or
between one session and the next) such as keeping track of which information the visitor
has already read or downloaded, or of his or her login status to a private area of the
site.
Cookies are a way to get around this problem; you could, for example, use cookies to
remember a user’s last visit, save a list of that user’s preferences, or keep track of
shopping cart items while he or she continues to shop. Correctly used, cookies can help
improve the experience perceived by the user while using your site.
The cookies themselves are small strings of information that can be stored on a user’s
computer by the web pages he or she visits, to be later read by any other web pages
from within the correct domain and path. Cookies are set to expire after a specified
length of time.

Caution
Be aware that many users do not allow websites to leave cookies on their
computers, so be sure not to make your websites depend on them.
The usual reason is that some websites use cookies as part of advertising
systems, using them to track users’ online activities with a view to selecting
appropriate advertisements. It may be advisable to show an explanation of why
you are going to use the cookie and what you’ll use it for.

Limitations of Cookies
Your browser may have a limit to how many cookies it can store—normally a few
hundred cookies or more. Usually, 20 cookies per domain name are permitted. A total
of 4KB of cookie information can be stored for an individual domain.
In addition to the potential problems created by these size limitations, cookies can also
vanish from a hard disk for various reasons, such as the cookie’s expiry date being
reached or the user clearing cookie information or switching browsers. Cookies should
therefore never be used to store critical data, and your code should always be written to
cope with situations where an expected cookie cannot be retrieved.

The document.cookie Property
Cookies in JavaScript are stored and retrieved by using the cookie property of the
document object.
Each cookie is essentially a text string consisting of a name and a value pair, like this:

username=sam

When a web page is loaded into your browser, the browser marshals all of the cookies
available to that page into a single string-like property, which is available as
document.cookie. Within document.cookie, the individual cookies are
separated by semicolons:
Click here to view code image

username=sam;location=USA;status=fullmember;

Tip
I refer to document.cookie as a string-like property, because it isn’t really
a string—it just behaves like one when you’re trying to extract cookie
information, as you see during this hour.

Escaping and Unescaping Data

Escaping and Unescaping Data
Cookie values may not include certain characters. Those disallowed include
semicolons, commas, and whitespace characters such as space and tab. Before storing
data to a cookie, you need to encode the data in such a way that it will be stored
correctly.
You can use the JavaScript escape() function to encode a value before storing it, and
the corresponding unescape() function to later recover the original cookie value.
The escape() function converts any non-ASCII character in the string to its
equivalent two- or four-digit hexadecimal format—so a blank space is converted into
%20, and the ampersand character (&) to %26.
For example, the following code snippet writes out the original string saved in variable
str followed by its value after applying the escape() function:
Click here to view code image

var str = 'Here is a (short) piece of text.';
document.write(str + '
' + escape(str));

The output to the screen would be
Click here to view code image

Here is a (short) piece of text.
Here%20is%20a%20%28short%29%20piece%20of%20text.

Notice that the spaces have been replaced by %20, the opening parenthesis by %28, and
the closing parenthesis by %29.
All special characters, with the exception of *, @, -, _, +, ., and /, are encoded.

Cookie Ingredients
The cookie information in document.cookie may look like a simple string of name
and value pairs, each in the form of

name=value;

but really each cookie has certain other pieces of information associated with it, as
outlined in the following sections.

Note
The definitive specification for cookies was published in 2011 as RFC6265. You
can read it at http://tools.ietf.org/html/rfc6265.

cookieName and cookieValue
These are the name and value visible in each name=value pair in the cookie string.

http://tools.ietf.org/html/rfc6265

domain
The domain attribute tells the browser to which domain the cookie belongs. This
attribute is optional, and when not specified its value defaults to the domain of the page
setting the cookie.
The purpose of the domain attribute is to control cookie operation across subdomains.
If the domain is set to www.example.com, then pages on a subdomain such as
code.example.com cannot read the cookie. If, however, domain is set to example.com,
then pages in code.example.com will be able to access it.
You cannot set the domain attribute to any domain outside the one containing your
page.

path
The path attribute lets you specify a directory where the cookie is available. If you
want the cookie to be only set for pages in directory documents, set the path to
/documents. The path attribute is optional, the usual default path being /, in which
case the cookie is valid for the whole domain.

secure
The optional and rarely used secure flag indicates that the browser should use SSL
security when sending the cookie to the server.

expires
Each cookie has an expires date after which the cookie is automatically deleted. The
expires date should be in UTC time (Greenwich Mean Time, or GMT). If no value is
set for expires, the cookie will only last as long as the current browser session and
will be automatically deleted when the browser is closed.

Writing a Cookie
To write a new cookie, you simply assign a value to document.cookie containing
the attributes required:
Click here to view code image

document.cookie = "username=sam;expires=15/06/2013 00:00:00";

To avoid having to set the date format manually, we could do the same thing using
JavaScript’s Date object:
Click here to view code image

var cookieDate = new Date (2013, 05, 15);
document.cookie = "username=sam;expires=" + cookieDate.toUTCString();

This produces a result identical to the previous example.

Tip
Note the use of
cookieDate.toUTCString();

instead of
cookieDate.toString();

because cookie dates always need to be set in UTC time.

In practice, you should use escape() to ensure that no disallowed characters find
their way into the cookie values:
Click here to view code image

var cookieDate = new Date (2013, 05, 15);
var user = "Sam Jones";
document.cookie = "username=" + escape(user) + ";expires=" +
cookieDate.toUTCString();

A Function to Write a Cookie
It’s fairly straightforward to write a function to write your cookie for you, leaving all
the escaping and the wrangling of optional attributes to the function. The code for such a
function appears in Listing 18.1.

LISTING 18.1 Function to Write a Cookie

Click here to view code image

function createCookie(name, value, days, path, domain, secure) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime() + (days*24*60*60*1000));
 var expires = date.toGMTString();
 }
 else var expires = "";
 cookieString = name + "=" + escape (value);
 if (expires) cookieString += "; expires=" + expires;
 if (path) cookieString += "; path=" + escape (path);
 if (domain) cookieString += "; domain=" + escape (domain);
 if (secure) cookieString += "; secure";
 document.cookie = cookieString;
}

The operation of the function is straightforward. The name and value arguments are

assembled into a name=value string, after escaping the value part to avoid errors
with any disallowed characters.
Instead of specifying a date string to the function, we are asked to pass the number of
days required before expiry. The function then handles the conversion into a suitable
date string.
The remaining attributes are all optional and are appended to the string only if they exist
as arguments.

Caution
Your browser security may prevent you from trying out the examples in this hour
if you try simply loading the files from your local machine into your browser. To
see the examples working, you may need to upload the files to a web server on
the Internet or elsewhere on your local network.

Try it Yourself: Writing Cookies
Let’s use this function to set the values of some cookies. The code for our simple
page is shown in Listing 18.2. Create a new file named testcookie.html and enter
the code as listed. Feel free to use different values for the name and value pairs
that you store in your cookies.

LISTING 18.2 Writing Cookies

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Using Cookies</title>
<script>
 function createCookie(name, value, days, path, domain, secure) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime() + (days*24*60*60*1000));
 var expires = date.toGMTString();
 }
 else var expires = "";
 cookieString = name + "=" + escape (value);
 if (expires) cookieString += "; expires=" + expires;
 if (path) cookieString += "; path=" + escape (path);
 if (domain) cookieString += "; domain=" + escape (domain);
 if (secure) cookieString += "; secure";
 document.cookie = cookieString;
 }
 createCookie("username","Sam Jones", 5);

 createCookie("location","USA", 5);
 createCookie("status","fullmember", 5);
</script>
</head>
<body>
Check the cookies for this domain using your browser tools.
</body>
</html>

Upload this HTML file to an Internet host or a web server on your local area
network, if you have one. The loaded page displays nothing but a single line of
text:

Click here to view code image

Check the cookies for this domain using your browser tools.

In the Chromium browser, I can open Developer Tools using Shift+Ctrl+I—if you
are using a different browser, check the documentation for how to view cookie
information.
My result is shown in Figure 18.1.

FIGURE 18.1 Displaying our cookies

Tip
Note that each time the function is called, it sets a new value for
document.cookie, yet this value does not overwrite the previous one;

instead, it appends your new cookie to the cookie values already present. As I
said, document.cookie sometimes appears to act like a string, but it isn’t
one really.

Reading a Cookie
The function to read the value of a cookie relies heavily on JavaScript’s split()
string method that you learned about in Hour 5, “Numbers and Strings.” You may recall
that split() takes a string and splits it into an array of items, using a specified
character to determine where the string should be divided:
Click here to view code image

myString = "John#Paul#George#Ringo";
var myArray = myString.split('#');

The preceding statement would divide string myString into a series of separate parts,
cutting the string at each occurrence of the hash (#) character; myArray[0] would
contain “John,” myArray[1] would contain “Paul,” and so forth.
Since in document.cookie the individual cookies are divided by the semicolon
character, this character is initially used to break up the string returned by
document.cookie:
Click here to view code image

var crumbs = document.cookie.split(';');

You want to search for a cookie of a specific name, so the resulting array crumbs is
next searched for any items having the appropriate name= part.
The indexOf() and substring() methods are combined to return the value part
of the cookie, which is then returned by the function after using unescape() to
remove any encoding:
Click here to view code image

function getCookie(name) {
 var nameEquals = name + "=";
 var crumbs = document.cookie.split(';');
 for (var i = 0; i < crumbs.length; i++) {
 var crumb = crumbs[i];
 if (crumb.indexOf(nameEquals) == 0) {
 return unescape(crumb.substring(nameEquals.length,
crumb.length));
 }
 }
 return null;
}

Deleting Cookies
To delete a cookie, all that is required is to set it with an expiry date before the current
day. The browser infers that the cookie has already expired and deletes it.

function deleteCookie(name) {
 createCookie(name,"",-1);
}

Caution
Some versions of some browsers maintain the cookie until you restart your
browser even if you have deleted it in the script. If your program depends on the
deletion definitely having happened, do another getCookie test on the deleted
cookie to make sure it has really gone.

Try it Yourself: Using Cookies
Let’s put together all you’ve learned so far about cookies by building some pages
to test cookie operation.
First, collect the functions createCookie(), getCookie(), and
deleteCookie() into a single JavaScript file and save it as cookie.js, using
the code in Listing 18.3.

LISTING 18.3 cookies.js

Click here to view code image

function createCookie(name, value, days, path, domain, secure) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime() + (days*24*60*60*1000));
 var expires = date.toGMTString();
 }
 else var expires = "";
 cookieString = name + "=" + escape (value);
 if (expires) cookieString += "; expires=" + expires;
 if (path) cookieString += "; path=" + escape (path);
 if (domain) cookieString += "; domain=" + escape (domain);
 if (secure) cookieString += "; secure";
 document.cookie = cookieString;
}

function getCookie(name) {
 var nameEquals = name + "=";
 var crumbs = document.cookie.split(';');
 for (var i = 0; i < crumbs.length; i++) {
 var crumb = crumbs[i].trim();

 if (crumb.indexOf(nameEquals) == 0) {
 return unescape(crumb.substring(nameEquals.length,
crumb.length));
 }
 }
 return null;
}

function deleteCookie(name) {
 createCookie(name,"",-1);
}

This file will be included in the <head> of your test pages so that the three
functions are available for use by your code.
The code for the first test page, cookietest.html, is listed in Listing 18.4, and that
for a second test page, cookietest2.html, in Listing 18.5. Create both of these
pages in your text editor.

LISTING 18.4 cookietest.html

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Cookie Testing</title>
 <script src="cookies.js"></script>
 <script>
 window.onload = function() {
 var cookievalue = prompt("Cookie Value:");
 createCookie("myCookieData", cookievalue);
 }
 </script>
</head>
<body>
 Go to Cookie Test Page 2
</body>
</html>

LISTING 18.5 cookietest2.html

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Cookie Testing</title>
 <script src="cookies.js"></script>

 <script>
 window.onload = function() {
 document.getElementById("output").innerHTML = "Your cookie
value: " + getCookie("myCookieData");
 }
 </script>
</head>
<body>
 Back to Cookie Test Page 1

 <div id="output"></div>
</body>
</html>

The only visible page content in cookietest.html is a link to the second page
cookietest2.html. However, the window.onload event is captured by the code
on the page and used to execute a function that launches a prompt() dialog as
soon as the page has finished loading. The dialog asks you for a value to be saved
to your cookie, and then calls createCookie() to set a cookie of name
myCookieData with the value that you just entered.
The page cookietest.html is shown working in Figure 18.2.

FIGURE 18.2 Enter a value for your cookie.

After setting your cookie, use the link to navigate to cookietest2.html.
When this page loads, the window.onload event handler executes a function
that retrieves the stored cookie value using getCookie() and writes it to the
page, as shown in Figure 18.3.

FIGURE 18.3 Retrieving the value of your cookie

To try it out for yourself, you need to upload the files cookietest.html,
cookietest2.html, and cookies.js to a web server on the Internet (or one on your
local network, if you have one) as browser security will probably prevent you
from setting cookies when using the file:// protocol to view a file on your
own computer.

Setting Multiple Values in a Single Cookie
Each cookie contains one name=value pair, so if you need to store several separate
pieces of data such as a user’s name, age, and membership number, you need three
different cookies.
However, with a little ingenuity you can make your cookie store all three values by
concatenating the required values into a single string, which becomes the value stored
by your cookie.
This way, instead of having three separate cookies for name, age, and membership
number, you could have just one, perhaps named user, containing all three pieces of
data. To separate the details later, you place in your value string a special character
called a delimiter to separate the different pieces of data:
Click here to view code image

var userdata = "Sandy|26|A23679";
createCookie("user", userdata);

Here the | (pipe) character acts as the delimiter. When you later retrieve the cookie
value, you can split it into its separate variable values by using the | delimiter:
Click here to view code image

var myUser = getCookie("user");
var myUserArray = myUser.split('|');
var name = myUserArray[0];
var age = myUserArray[1];
var memNo = myUserArray[2];

Cookies that store multiple values use up fewer of the 20 cookies per domain allowed
by some browsers, but remember that your use of cookies is still subject to the 4KB
overall limit for cookie information.

Note
This is a further example of serialization, which you learned about in Hour 10,
“Meet JSON.”

Summary
In this hour you learned about cookies, and how to set, retrieve, and delete them using
JavaScript. You also learned how to concatenate multiple values into a single cookie.

Q&A
Q. When concatenating multiple values into a single cookie, can you use any

character as a delimiter?
A. You can’t use any character that might appear in your escaped data (except as the

delimiter character), nor can you use equals (=) or the semicolon (;) as these are
used to assemble and concatenate the name=value pairs in
document.cookie. Additionally, cookies may not include whitespace or
commas, so naturally they cannot be used as delimiters either.

Q. Are cookies safe?
A. Questions are often raised over the security of cookies, but such fears are largely

unfounded. Cookies can help website owners and advertisers track your browsing
habits, and they can (and do) use such information to select advertisements and
promotions to show on web pages that you visit. Website owners and advertisers
can’t, however, find out personal information about you or access other items on
your hard disk simply through the use of cookies.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Cookies are small pieces of text information stored

a. On a user’s hard disk
b. On the server
c. At the user’s Internet service provider

2. Encoding a string to store it safely in a cookie can be carried out by using
a. escape()
b. unescape()
c. split()

3. A character used to separate multiple values in a single cookie is known as
a. An escape sequence
b. A delimiter
c. A semicolon

Answers
1. a. Cookies are stored on a user’s hard disk.
2. a. You can use escape() to safely encode string values for storage in a cookie.
3. b. Multiple values are separated by a character called a delimiter.

Exercises
 Find out how to view cookie information in your favorite browser. Use the
browser tools to examine the cookie set by the code of Listing 18.4.
 Rewrite the code for cookietest.html and cookietest2.html to write multiple values
to the same cookie and separate them on retrieval, displaying the values on
separate lines. Use the hash character (#) as your delimiter.
 Add a button to cookietest2.html to delete the cookie set in cookietest.html and
check that it works as requested. (Hint: Use the button to call
deleteCookie().)

Hour 19. Coming Soon to JavaScript

What You’ll Learn in This Hour:
 About some of the most important new additions coming soon to JavaScript
 How to find out which features are supported by which browsers
 How to use some of the new language features right away

ECMAScript 6 (codenamed Harmony) is the forthcoming version of the ECMAScript
standard that underpins the JavaScript language. This new standard should be ratified
sometime in 2015.
ECMAScript 6 is a significant update to the specification, and the first major update to
the language since ECMAScript 5 became standardized in 2009. The major browser
manufacturers are already working on implementing the new features in their JavaScript
engines.
In this hour we’ll take a look at a few of the most important new features, some of which
you can already use.

Tip
At the time of writing, Google’s Chrome browser has support for ECMAScript 6
turned off by default. You can turn it on by visiting the chrome://flags/ page and
finding the Enable Experimental JavaScript entry.

Note
You can check out the current compatibility status for various browsers and
ECMAScript 6 features at http://kangax.github.io/compat-table/es6/.

Classes
In Hour 8, “Object-Oriented Programming,” you read about OOP and saw examples of
how to create and manipulate objects, including this one:
Click here to view code image

function Car(Color, Year, Make, Miles) {
 this.color = Color;
 this.year = Year;
 this.make = Make;
 this.odometerReading = Miles;
 this.setOdometer = function(newMiles) {

http://kangax.github.io/compat-table/es6/

 this.odometerReading = newMiles;
 }
}

If you’ve come to JavaScript from another programming language you may already be
familiar with classes. A class is a representation of an object.
Click here to view code image

class Car {
 constructor(Color, Year, Make, Miles) {
 this.color = Color;
 this.year = Year;
 this.make = Make;
 this.odometerReading = Miles;
 }

 setOdometer(newMiles) {
 this.odometerReading = newMiles;
 }
}

This syntax also allows you to extend classes, creating a new class that inherits the
properties of the parent. Here’s an example:
Click here to view code image

class Sportscar extends Car {
 constructor(Color, Year, Make, Miles) {
 super(Color, Year, Make, Miles);
 this.doors = 2;
 }
}

Here I’ve used the super keyword in my constructor, allowing me to call the
constructor of a parent class and inherit all of its properties. In truth, this is just
syntactic sugar; everything using classes can be rewritten in functions and prototypes,
just like you learned in Hour 8. However, it’s much more compatible with other popular
languages, and somewhat easier to read.

Arrow Functions
The arrow function (=>) is a shorthand syntax for an anonymous function.
Click here to view code image

param => statements or expression

Let’s explicate this a bit more:
 param—The name of an argument or arguments. If the function has zero
arguments, this needs to be indicated with (). For only one argument the
parentheses are not required.
 statements or expression—Multiple statements need to be enclosed in curly

braces. A single expression, though, doesn’t need braces. The expression is also
the return value of that function.

Click here to view code image

var overTen = x => x > 10 ? 10 : x;
overTen(8); // returns 8
overTen(12); // returns 10

Note that the function keyword isn’t required, and that the parentheses can be
omitted since there is a single argument. The following example has two arguments:
Click here to view code image

var higher = (x, y) => {
 if (x > y) {
 return x;
 } else {
 return y;
 }
}
higher(7, 9); // returns 9
higher(12, 3); // returns 12

As well as being a little simpler to write, arrow functions also have the feature that they
inherit the value of this from the container. This is really handy when using objects.
Previously we needed to assign this to a variable to pass it into a function:
Click here to view code image

function myObject() {
 this.height = 13;
 var self = this;

 setTimeout(function fiveSecondsLater() {
 console.log(self.height);
 }, 5000)
}
var o = new myObject();

In the preceding example, we couldn’t simply use
console.log(this.height);

because this would refer to its immediate container, here the function
fiveSecondsLater(). However, by using arrow functions the use of a variable
like self can be avoided:
Click here to view code image

function myObject() {
 this.height = 13;

 setTimeout(() => {
 console.log(this.height); // 'this' here refers to myObject
 }, 5000)

}
var o = new myObject();

Modules
As JavaScript applications grow in complexity, a means needs to be found to make
objects declared in one file available in others. By this means, larger projects can be
written in a modular fashion.
By default, anything you declare in one file is not available outside of that file. In
ECMAScript 6, though, you can use the export keyword to make it available.
Here’s an example of how to export a class:
Click here to view code image

// this code appears in file1.js
export default function Car(Color, Year, Make, Miles) {
 this.color = Color;
 this.year = Year;
 this.make = Make;
 this.odometerReading = Miles;
 this.setOdometer = function(newMiles) {
 this.odometerReading = newMiles;
 }
 // this object can be imported by other files

And in the receiving file:
Click here to view code image

// this code appears in file2.js
import Car from 'file1';
var ferrari = new Car('red', 1986, 'Dino', 75500);

Using let and const
Before ECMAScript 6, JavaScript had only two types of scope—namely, function
scope and global scope. (The scope of a variable, as you learned in Hour 3, “Using
Functions,” depends on whereabouts in the code the variable was declared using the
var keyword.)
To the frustration of many developers coming to JavaScript from other languages,
JavaScript lacked a so-called block scope, defining that a variable is only accessible
within the block in which it’s defined. (A block is everything inside a pair of curly
braces.)
The new keyword let allows you to declare a variable while limiting its scope to the
block, statement, or expression on which it is declared.
The var keyword, in contrast, defines a variable either globally or locally to an entire
function, taking no account of block scope:
Click here to view code image

function myFunc() {
 {
 let x;
 if(y == 0)
 {
 // this is ok, x has block scope
 let x = "inner";
 }
 // this is an error, x already declared in block
 let x = "outer";
 }
}

The const declaration creates a constant—that is, a read-only named variable. The
value of a constant cannot change through reassignment, nor can a constant be re-
declared later.
Click here to view code image

function myFunc() {
 {
 const x = "foo";

 // this is an error, x is constant, can't be re-defined
 x = "bar";
 }
}

Try it Yourself: Checking Out const
Let’s have a look at how const operates. At the time of writing, it works in
most browsers, but I’m going to use Google Chrome.
Instead of writing code in a text file, open the JavaScript Console for your
browser. In the case of Chrome, I can do that with Ctrl+Shift+J as shown in
Figure 19.1.

FIGURE 19.1 Chrome’s JavaScript Console

First, define a constant using the const keyword. You can call it anything you
like and choose any value. Mine is called MYCONST and I’ve given it a value of
10 (see Figure 19.2).

FIGURE 19.2 Setting a constant

The console issues undefined because the declaration of a const does not return
a value.
In Figure 19.3 I try to redefine the value of MYCONST.

FIGURE 19.3 The constant can’t be reassigned

As you can see, the constant MYCONST couldn’t be reassigned a new value. Let’s
try to re-declare it instead (see Figure 19.4).

FIGURE 19.4 Redeclaration of a constant doesn’t work

Nope, we can’t do that either. Finally, let’s try to reinitialize it (see Figure 19.5).

FIGURE 19.5 Trying to reinitialize throws an error

JavaScript throws an error.
Values declared using the const keyword, as we can see, cannot be
reinitialized, re-declared, or reassigned.

Template Strings
Template strings provide help in constructing strings and are similar to string
interpolation features in some other programming languages such as Perl and Python
(among others).
Click here to view code image

var name = "John";
var course = "Mathematics III";
var myString = 'Hello ${name}, welcome to ${course}.';

You can substitute more complex expressions too:
Click here to view code image

var total = 20;
var tax = 4;
msg = 'Total is ${total} (or ${total + tax}, including tax)';
alert(msg); // "Total is 20 (or 24, including tax)"

Access Arrays with for-of
JavaScript has various methods for handling arrays, as you read about in Hour 6,
“Arrays.” Apart from while and for loops, you can also use for-in. Unfortunately,
this loop visits all of an array’s named properties, not just the actual array values:

Click here to view code image

"use strict";
let arr1 = [6, 5, 7, 9];
arr1.greeting = "hi";

for (var x in arr1) {
 console.log(x); // logs "0", "1", "2", "3", "greeting"
}

To get around this problem, ECMAScript 6 introduces the for-of construct, which
iterates over just the property values:
Click here to view code image

for (var y of arr1) {
 console.log(y); // logs "6", "5", "7", "9"
}

Note
Note the use of the directive "use strict" in the preceding code snippet.
This directive, introduced in ECMAScript 5, indicates that JavaScript should
execute in strict mode, a more rigid set of interpreter rules, and is currently
necessary to use certain ECMAScript 6 features.

Transpilation
The examples presented so far in this hour are fine for testing ECMAScript 6 features,
but at the time of writing they are not ready for use in your production code. Few
visitors to your website will be using a browser with strong ECMAScript 6 support.
You can start preparing for the future, though.
Traceur is a Google project intended to take ECMAScript 6 code and process it into
ECMAScript 5 code that is compatible with most browsers using their default settings.
It doesn’t support all of the ECMAScript 6 features, but new features are being added
all the time.
You can read about the project at https://code.google.com/p/traceur-
compiler/wiki/GettingStarted, and also download the code to try for yourself at
https://github.com/google/traceur-compiler.

Summary
In this hour, you’ve read about just some of the important new changes coming to the
JavaScript language in the ECMAScript 6 specification.
The new language features bring the JavaScript syntax more into line with other popular
languages, as well as making code more concise and readable.

https://code.google.com/p/traceur-compiler/wiki/GettingStarted
https://github.com/google/traceur-compiler

Browser vendors have already begun to implement these and other ECMAScript 6
features into their offerings, and more of the specification will doubtless be supported
in upcoming browser versions.

Q&A
Q. How can I follow the progress of the ECMAScript 6 specification?
A. Probably the best online resource is the official ECMAScript wiki

(http://wiki.ecmascript.org/).
Q. Who or what is Ecma?
A. Ecma is an international, membership-based, non-profit standards organization,

originally called the European Computer Manufacturers Association (ECMA).
The organization was founded in 1961 to standardize computer systems throughout
Europe.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. A value declared as a const:

a. Can later be reassigned but not re-declared
b. Can later be re-declared but not reassigned
c. Can later neither be re-declared nor reassigned

2. You can use the export keyword to
a. Save all your program data into another file
b. Make something you declare in one file available outside of that file
c. Make something you declared in another file available inside of the current file

3. Which of the following is a correct arrow function to turn a Centigrade
temperature into Fahrenheit?
a. var fahr = cent => cent * 1.8 + 32;
b. var fahr => cent = cent * 1.8 + 32;
c. function fahr = cent => cent * 1.8 + 32;

Answers
1. c. A const can later neither be re-declared nor reassigned.
2. b. Make something you declare in one file available outside of that file

http://wiki.ecmascript.org/

3. a. var fahr = cent => cent * 1.8 + 32;

Exercises
 Check out how many ECMAScript6 features are supported in your current
browser, by using one of the online resources mentioned earlier. Write some
small code examples to check the operation of any supported features described in
this hour.
 Check out the documentation on the official Ecma wiki for the other ECMAScript
6 features not discussed in this hour.

Hour 20. Using Frameworks

What You’ll Learn in This Hour:
 What frameworks are, and why they’re useful
 About the Model-View-Controller (MVC) architecture
 How to get started with Google’s AngularJS framework
 Details of some other popular frameworks

If you’ve already written a number of applications, chances are you’ve had to solve
some of the same coding problems over and over again. One of the techniques you can
use to cut down on such re-invention of the wheel is to use a software framework.
In this hour you’ll learn about a popular style of network called an MVC (Model-View-
Controller) framework, and see how to implement such a framework for single-page
JavaScript applications by using Google’s AngularJS.

Software Frameworks
The purpose of a framework is to improve the efficiency with which you can write
software applications, at the same time adding consistency, quality, reliability, and
robustness to your application.
Choosing a well-written and appropriate framework can leave you more time to focus
on the unique requirements of your application rather than spending lots of valuable time
on the application’s infrastructure.

Why Use a Framework?
Frameworks help you to reuse code that has been previously built and tested, improving
your application’s reliability and reducing the coding and testing work required in its
creation.
A framework can also encourage better programming practices, due to the structure it
imposes on your application.
Finally, a framework usually provides you with the means to extend its functionality,
making it better suited to your application’s needs.

Frameworks Are Not the Same as Libraries
Many people confuse the term software framework with a software library, like the
ones discussed in Part V of this book.

However, there is a fundamental difference between frameworks and libraries; when
you use a library, the objects and methods available within that library already exist,
waiting to be invoked by your custom application. You need to know which objects and
methods to employ in your code in order to create your application.
When you use a framework, it’s you that designs and codes the objects and methods
used by your application. The framework provides a consistent structure in which you
can do this.

Model-View-Controller (MVC) Architecture
The concept of the Model-View-Controller (MVC) software architecture is fairly
simple: to separate our application into units, each of which conforms to one of the
following parts.

Models
Models represent the part of the application dealing with business data and business
logic. A model might be a single object, or it could be some structure made up from a
variety of objects.

Views
A view is a representation of a model used to present information to the user. It usually
acts as a presentation filter, showing only certain aspects of the data contained in a
model while suppressing others.
A view interrogates its model to obtain the data necessary for presentation. It might also
change the data in the model by sending appropriate commands. Such questions and
commands all have to be in semantics defined within the model.

Controllers
A controller forms the link between the user and the application, arranging for views to
be displayed on the screen, or reading user input by presenting menus, input fields,
buttons, or other page elements. The controller interprets user input before passing it to
one or more of the views.
The operation of the various parts of the MVC framework is shown in Figure 20.1.

FIGURE 20.1 Model-View-Controller framework interactions

A Real-World Example
Watching TV can be analogous to an MVC framework.
The broadcaster makes available various channels, each containing different
data; these channels can be thought of as the models of the MVC system.
The view is provided by the TV’s screen.
You can interact with the TV by using the functions of the remote control(ler).

Using an MVC Framework for Web Apps
The MVC architecture lends itself very well to web applications.

 Model—The page content is stored in the models that underpin the application.
The technical details may vary—the text and images may be stored in a database,
as server files, or in some other way—but the content, and the rules of how it all
fits together, are encoded into the model part of the framework.
 View—The HTML and CSS add one or more visual display layers to the content
—the veneer we apply to give our web application a particular appearance and
style. We can change how the content is displayed without altering the original

content, as stored in the model(s), at all.
 Controller—The controller element consists of program code linked to the
interactive elements on the page, such as form fields, buttons, and links. Such code
interprets user input and communicates with models and views.

The AngularJS Framework
AngularJS is an MVC framework developed by Google that lets you build well-
structured, easily testable, and maintainable JavaScript web applications. It is designed
to help you produce powerful, reliable, single-page web applications.

An Overview of AngularJS
AngularJS is an MVC framework that binds your HTML code (corresponding to the
views part of the MVC paradigm) to JavaScript objects (the models part of MVC).
In one direction, any changes to your models update the page automatically. The
opposite is also true—a model, for instance associated with a text field, is updated
when the content of the field is changed. In the same manner, any changes in the view—
such as a user entering informtion in a field, or clicking on a button—make the required
changes to the appropriate model(s).
Behind the scenes, AngularJS handles all the logic, so you don’t have to write code to
update your page’s HTML code, or to listen for and act upon user events.

Including AngularJS in your page
To use AngularJS you have to include it in your page. Perhaps the easiest way to do that
is via Google’s CDN:
Click here to view code image

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/
angular.min.js"></script>

Extending HTML with ng- directives
AngularJS employs a number of directives that help you associate your page’s HTML
elements to models in the MVC architecture. These directives each start with ng- and
can be added to any element.
The key attribute that you have to include in any page is ng-app, which defines an
AngularJS application. You need to apply this to an element that contains the rest of the
page elements bearing ng- directives. You can apply it to the page’s <body> element
(making the whole page part of the application), or a <div> element enclosing the
application:

<body ng-app>

AngularJS finds this element when the page loads and processes all ng- directives it
sees on its child elements.
Two further important ng- directives are ng-model and ng-bind.
The ng-model directive connects the value of HTML controls such as input fields,
select boxes, text areas and so on, to application data stored in models.
The ng-bind directive binds that application data, in the MVC models, to elements in
the HTML view.
A trivial example is shown in Listing 20.1.

LISTING 20.1 A Simple AngularJS Example

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>AngularJS Example</title>
<style>
 #output {
 font: 28px bold helvetica, arial, sans-serif;
 color: red;
 }
</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">
</script>
</head>
<body ng-app>
 <p>Name: <input type="text" ng-model="name"></p>

</body>
</html>

AngularJS begins work as soon as the web page has loaded. The ng-app directive
tells AngularJS that, in this case, it is the <body> element of the page that contains an
AngularJS application.
The ng-model directive then binds the value contained by the input field to the
variable name.
Similarly, the ng-bind directive binds the HTML content of the element to
the variable name. In this way, the element becomes a view in our MVC
framework.
Now, any changes in the input field will be immediately reflected in the
element, as shown in Figure 20.2.

FIGURE 20.2 A simple AngularJS application

That’s it. We already have a dynamic application that would ordinarily have taken much
more code to build. We didn’t have to worry about writing code for data binding and
updating, nor specify any models. In fact, we haven’t yet written any JavaScript of our
own! The application—simple as it is—already works because of AngularJS’s design.

Scopes
A scope is an object that links a DOM element (the view part of the MVC architecture)
to a controller; in MVC terms, this object becomes the model.
The controller and the view both have access to the scope model, so it can be used to
communicate between them. This scope object will house the data and the methods to be
used in the view.
All AngularJS applications have a $rootScope. The $rootScope is the top-most
scope and belongs to the DOM element that contains the ng-app directive.
When explicit scopes are not set in the application, this is the scope used by AngularJS
to bind data and functions. This is why the preceding example works.
To get a better idea of how scopes work, let’s attach a controller to a particular DOM
element, creating a scope for that element, and then interact with it.

Directives
You saw a few directives in the previous example. In AngularJS a directive is a
function attached to a DOM element that has the capability to run methods, attach
controllers and scope objects, and manipulate the DOM.
When an AngularJS application is launched and Angular starts stepping through the
DOM (starting from the DOM element having attribute ng-app), it will parse the code
collecting and running these directives.
Directives handle all of the hard work of making AngularJS applications dynamic.
We’ve seen a few examples of directives previously, including ng-model and ng-

bind:
Click here to view code image

<body ng-app>
 <p>Name: <input type="text" ng-model="name"></p>

</body>

There are many default directives built into AngularJS, some of which we’ll look at
next.

Expressions
A double set of curly braces is used to encase an expression directive:

{{ expression }}

AngularJS expressions are rather like JavaScript expressions, in that they can contain
literals, operators, and variables. These are all valid AngularJS expressions:
Click here to view code image

{{ 3 + 9 }}

{{ quantity * cost }}

{{ firstName + " " + lastName }}

AngularJS expressions are interpreted as data in the exact location where the expression
is written.

ng-init
The ng-init directive runs at startup, before AngularJS has run any application code.
With it you can set default variables prior to running any other functions.

ng-click
The ng-click directive attaches a listener to a DOM element. When the element is
clicked, AngularJS executes the expression defined in the directive.

ng-repeat
The ng-repeat directive iterates through a collection and loads a template for each
item. The template it copies is the element having the attribute ng-repeat.

$scope.departments = [
 { name: 'Sales'},
 { name: 'Support'},
 { name: 'Production'},
 { name: 'Shipping'}
];

You can iterate through them using ng-repeat:
Click here to view code image

 <li ng-repeat="dept in departments">{{ dept.name }}

Here the element will be cloned four times to produce the list sent to the view.

Filters
The job of a filter is to select a subset of items from an array and return it as a new
array. Here are a few things you might do with an array:

 Format a number to a currency format, using currency.
 Select a subset of items from an array, using filter.
 Format a string to lowercase, using lowercase.
 Order an array by an expression, using orderBy.
 Format a string to uppercase, using uppercase.

Here’s the general syntax for a filter in AngularJS:
Click here to view code image

{{ filter_expression | filter : expression : comparator }}

Let’s suppose you want to apply a currency filter to some numeric data:
Click here to view code image

<div ng-app>
Total: <input type="number" ng-model="netTotal">
Tax: <input type="number" ng-model="tax">
<p>Invoice Total = {{ (netTotal + tax) | currency }}</p>
</div>

In this example, the expression {{ netTotal + tax }} will be evaluated, and the
result formatted as currency.

Adding a Filter to a Directive
A filter can also be added to any ng- directive by using the pipe character (|)
followed by a filter description:
Click here to view code image

 <li ng-repeat="dept in departments | filter: uppercase">{{ dept.name
}}

This example will display all list entries in uppercase.

Building an AngularJS Application
You now know enough to put together a basic AngularJS application.

Try it Yourself: A Basic AngularJS Application
We’ll start with a basic HTML page containing a text input field to accept a
user’s search string and a <div> element to contain a list of search results
containing the entered string.
Listing 20.2 shows the basic HTML of the page, with the AngularJS framework
already included.

LISTING 20.2 HTML code of the AngularJS Application

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>AngularJS Example</title>
 <script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">
</script>
</head>
<body>
 <p>Search Departments: <input type="text"></p>
 <div id="list-container">

 </div>
</body>
</html>

Next, we’ll apply the necessary ng- directives to the page:
 The ng-app directive to the <body> element, defining this as the container
for the AngularJS application.
 The ng-model directive to the search field, defining it as a model in our
MVC framework.
 The ng-repeat directive to the element in our list of search results.
The element will be repeated once for each search result.

We’ll also use the ng-init directive to set up some initial data for the
application. In a real-world case, this data is more likely to be brought instead
from an external source such as a server-side database, but this will serve for our
example.

Click here to view code image

ng-init = "departments = [
 { name: 'Sales', contact: 'Marsha Brown'},
 { name: 'Support', contact: 'Dave Price'},
 { name: 'Production', contact: 'Grant Wales'},
 { name: 'Service', contact: 'Sherry Dell'},
 { name: 'Administration', contact: 'Sally Bennett'},
 { name: 'Accounting', contact: 'Kim Sutherland'},
 { name: 'Shipping', contact: 'Sandy Connell'}]"

Our initial data comprises an array of fictional departments, each including the
department name and the name of the staff contact in charge of it.
Listing 20.3 shows the revised HTML, which also includes a little CSS styling
for good measure.

LISTING 20.3 Revised Code of the AngularJS Application

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>AngularJS Example</title>
<style>
 body {
 background-color: #ddf;
 font: 16px bold helvetica, arial, sans-serif;
 }
 input {
 padding: 10px;
 }
 #list-container {
 background-color: white;
 color: #448;
 border-radius: 25px;
 border: 1px solid black;
 padding: 25px;
 }
</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">
</script>
</head>
<body ng-app ng-init = "departments = [
 { name: 'Sales', contact: 'Marsha Brown'},
 { name: 'Support', contact: 'Dave Price'},
 { name: 'Production', contact: 'Grant Wales'},
 { name: 'Service', contact: 'Sherry Dell'},
 { name: 'Administration', contact: 'Sally Bennett'},
 { name: 'Accounting', contact: 'Kim Sutherland'},
 { name: 'Shipping', contact: 'Sandy Connell'}]">

 <p>Search Departments: <input type="text" placeholder="Enter search
string" ng-model="searchString"></p>
 <div id="list-container">

 <li ng-repeat="dept in departments">{{ dept.name }}

 </div>
</body>
</html>

Save this code to an .html file and open it in your browser. You should see the
departments and contacts listed in a page looking something like the one in Figure
20.3.

FIGURE 20.3 Our AngularJS app ready for use

All well and good, but the search field doesn’t currently do anything. We’ll fix
that by adding a filter to the ng-repeat directive, based on the data entered in
the search field, as shown in Listing 20.4.

LISTING 20.4 The Finalized AngularJS Application

Click here to view code image

<!DOCTYPE html>
<html>
<head>

<title>AngularJS Example</title>
<style>
 body {
 background-color: #ddf;
 font: 16px bold helvetica, arial, sans-serif;
 }
 input {
 padding: 10px;
 }
 #list-container {
 background-color: white;
 color: #448;
 border-radius: 25px;
 border: 1px solid black;
 padding: 25px;
 }
</style>
<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">
</script>
</head>
<body ng-app>
 <p>Search Departments: <input type="text" placeholder="Enter search
string"
ng-model="searchString"></p>
 <div ng-init = "departments = [
 { name: 'Sales', contact: 'Marsha Brown'},
 { name: 'Support', contact: 'Dave Price'},
 { name: 'Production', contact: 'Grant Wales'},
 { name: 'Service', contact: 'Sherry Dell'},
 { name: 'Administration', contact: 'Sally Bennett'},
 { name: 'Accounting', contact: 'Kim Sutherland'},
 { name: 'Shipping', contact: 'Sandy Connell'}]"></div>
 <div id="list-container">

 <li ng-repeat="dept in departments | filter: searchString">{{
dept.name + " (" + dept.contact + ")" }}

 </div>
</body>
</html>

And that’s all we need to do! AngularJS handles the data binding so the filter acts
in real time as a user types (see Figure 20.4).

FIGURE 20.4 The filter directive acts as you type

Summary
In this hour, you learned the basics about the Model-View-Controller framework
architecture, and how that can be usefully applied to web applications.
You were introduced to Google’s AngularJS framework, and used it to build a simple
web application with little or no additional code.
In truth, we’ve barely touched the surface of what AngularJS can do. Take a look at the
official website at https://angularjs.org/ to learn more.

Q&A
Q. What is the background of AngularJS?
A. AngularJS was developed in 2009 by a company called Brat Tech LLC as part of

a commercial JSON storage service. It was later released as an open-source
library, which Google employees continue to maintain and support.

Q. Where can I get AngularJS documentation and help?
A. The official website at https://angularjs.org/ has links to extensive documentation,

tutorials, developer guides, and much more.

Workshop

https://angularjs.org/
https://angularjs.org/

Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. What does the M stand for in an MVC framework?

a. Mirror
b. Managed
c. Model

2. In an AngularJS application, ng- directives are added:
a. To the document head
b. To page elements
c. In a separate file linked into the document

3. The ng-init directive runs:
a. On application startup, before the AngularJS application code
b. When called by the user
c. After the application terminates

Answers
1. c. Model
2. b. To page elements
3. a. On application startup, before the AngularJS application code

Exercises
 Modify the code of the “Try It Yourself” example to search only within the
department name, but still to report both department name and contact name in the
displayed list.
 Check out the AngularJS API docs at https://docs.angularjs.org/api and discover
just how much more you can do with AngularJS.

https://docs.angularjs.org/api

Hour 21. JavaScript Beyond the Web Page

What You’ll Learn in This Hour:
 Some examples of applications for JavaScript outside straightforward web pages
 How to write a browser extension for Google Chrome

Up to now you’ve learned a wide range of uses for JavaScript in the writing of web
pages. However, JavaScript can also be used for extending browsers by building add-
ons and extensions. Also, JavaScript interpreters are embedded in a number of tools
apart from web browsers. Such applications often provide their own object model
representing the host environment, although the core JavaScript language may remain
essentially the same in each instance.
In this hour, you learn about uses for JavaScript above and beyond writing simple web
content. You also write your own extension for Google’s Chrome browser.

JavaScript Outside the Browser
There are a number of applications for JavaScript to control the actions of other
applications in addition to web pages:

 Browser extensions for Google’s Chrome, Opera, and Apple’s Safari 5 browsers,
and widget/gadget collections for Apple’s Dashboard, Microsoft, Yahoo!, and
Google Desktop can all be written using JavaScript.
 JavaScript is supported in PDF files used by Adobe’s Acrobat and Adobe
Reader, as well as many third-party applications.
 Adobe tools such as Photoshop, Illustrator, Dreamweaver, and others allow
scripting via JavaScript.
 The OpenOffice.org office application suite (and its sibling LibreOffice) have
JavaScript as one of the included macro scripting languages. These suites are
written largely in Java and provide a JavaScript implementation based on Mozilla
Rhino. JavaScript macros can access the application’s variables and objects,
much like web browsers host scripts that access the browser’s Document Object
Model (DOM) for a web page.
 Sphere, an open source and cross-platform program for writing role-playing
games, and the Unity game engine support JavaScript for scripting.
 Google Apps Script allows users access and control over Google Spreadsheets
and other products using JavaScript.
 ActionScript, the programming language used in Adobe Flash, is another

implementation of the ECMAScript standard.
 The Mozilla platform, which is the basis of Firefox, Thunderbird, and other
projects, uses JavaScript for the graphical user interface of these applications.

In this hour of the book, you’re going to try your hand at one of these—writing an
extension for Google’s Chrome web browser.

Writing Google Chrome Extensions
Extensions are small applications that run inside a web browser and provide additional
services, integrate with third-party websites or data sources, and customize the user’s
experience of the browser application. A Google Chrome extension is nothing more or
less than a collection of files (HTML, CSS, JavaScript, images, and so on) bundled into
a .zip file (although it’s renamed as a .crx file).
The extension basically creates a web page that can use all the interface elements that
the browser provides to regular web pages, including JavaScript libraries, CSS style
sheets, XMLHttpRequest objects, and so on.
Extensions can interact with web pages or servers, and can also interact via program
code with browser features such as bookmarks and tabs.

Building a Simple Extension
The first step is to create a folder on your computer to contain the code for your
extension.
Each extension has a manifest file, named manifest.json, that is formatted in JSON and
provides important information.
The manifest file can contain a wide range of parameters and options, but here we’ll
begin with a basic example. In your new folder create a text file called manifest.json
and edit it like this:
Click here to view code image

{
 "name": "My First Extension",
 "version": "1.0",
 "manifest_version": 2,
 "description": "Hello World extension.",
 "browser_action": {
 "default_icon": "icon.png",
 "default_popup": "popup.html"
 },
 "web_accessible_resources": [
 "icon.png",
 "popup.js"
]
}

Put an icon called icon.png in the same folder—I used a small graphic image of a star,
but you can use whatever you want. Create the file popup.html listed in Listing 21.1 and
put that in the folder too.

LISTING 21.1 popup.html Google Chrome Extension

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <style>
 body {
 width: 350px;
 }
 div {
 border: 1px solid black;
 padding: 20px;
 font: 20px normal helvetica, verdana, sans-serif;
 }
 </style>
 <script src="popup.js"></script>
</head>
<body>
</body>
</html>

Here is the JavaScript code contained in popup.js:
Click here to view code image

function sayHello() {
 var message = document.createTextNode("Hello World!");
 var out = document.createElement("div");
 out.appendChild(message);
 document.body.appendChild(out);
}
window.onload = sayHello;

All this does is, on page load, create a <div> element containing the message “Hello
World!” and append it to the DOM’s <body> element.
Now display Chrome’s Extensions page by clicking the settings icon and selecting
More Tools > Extensions.
Click the box next to Developer Mode to show a little more information.
Then click the Load Unpacked Extensions button. Navigate to the folder containing your
extension and select it. You should see something like Figure 21.1.

FIGURE 21.1 Your new extension visible on the Extensions page

Make sure the extension is enabled by checking the box next to it. You can now run your
extension by clicking on the toolbar icon, as shown in Figure 21.2.

FIGURE 21.2 Hello World as a Google Chrome extension

Debugging the Extension
Right-click on the icon that launches your extension, and you see a content menu
containing options to enable and disable the extension, plus an option called Inspect
popup. Click on that and Chrome’s Developer Tools pop open to let you examine the
pop-up window, as shown in Figure 21.3.

FIGURE 21.3 Inspecting the pop-up window

Try it Yourself: A Chrome Extension to Get Airport Information
This time you’re going to make a Chrome extension that’s a little more useful.
With the help of the jQuery library, your pop-up is going to retrieve current
information about U.S. airports.

Tip
Refer to Hour 15, “A Closer Look at jQuery,” if you need a refresher on the
jQuery library.

To do that, you’re going to have your code make an Ajax call to an information
feed at http://services.faa.gov/. To demonstrate how this service works, open
your browser and navigate to http://services.faa.gov/airport/status/SFO?
format=application/json.
“SFO” is the three-letter code for San Francisco International airport; you can
replace it in the preceding URL with the code for another U.S. airport; for
example, you could use LAX for Los Angeles International or SEA for Seattle-

http://services.faa.gov/
http://services.faa.gov/airport/status/SFO?format=application/json

Tacoma International.

Tip
You can read the airport codes and see their locations at
http://www.fly.faa.gov/flyfaa/usmap.jsp.

The format parameter tells the service that you want the information returned as a
JSON string:

Click here to view code image

{"name":"San Francisco
International","ICAO":"KSFO","state":"California","status":
{"avgDelay":"",
"closureEnd":"", "closureBegin":"","type":"","minDelay":"","trend":"",
"reason":"No known delays for this
airport.","maxDelay":"","endTime":""},
"delay":"false","IATA":"SFO","city":"San Francisco","weather":
{"weather":"Partly
Cloudy",
"meta":{"credit":"NOAA's National Weather
Service","url":"http://weather.gov/",
"updated":"1:56 AM Local"},"wind":"Southwest at 9.2mph","temp":"44.0 F
(6.7 C)",
"visibility":"10.00"}}

Your code will parse this returned information and use it to construct a more
user-friendly display.
To begin the project, create a new directory somewhere on your computer and
call it “airport.” In this directory, you need three files, as in the previous
example.

An Icon File
Choose an icon to display on your Chrome toolbar and from which to launch the
extension. I used a 20 × 20 pixel airplane icon in a file called plane.png, but you
can use any icon you have on hand.

The manifest.json File
The manifest file will be pretty familiar from the previous example, but with one
notable addition: a new parameter, permissions. You are going to make an
Ajax call to services.faa.gov to retrieve the information you want, and Ajax calls
can only be made to pages on the same domain as the caller; adding a
permissions entry allows Chrome to fulfil this requirement by sending a
suitable header to the server. The manifest.json file is shown in Listing 21.2.

http://www.fly.faa.gov/flyfaa/usmap.jsp

LISTING 21.2 The manifest.json File

Click here to view code image

{
 "name": "Airport Information",
 "version": "1.0",
 "manifest_version": 2,
 "description": "Information on US airports",
 "browser_action": {
 "default_icon": "plane.png",
 "default_popup": "popup.html"
 },
 "web_accessible_resources": [
 "plane.png",
 "popup.js"
],
 "permissions": [
 "http://services.faa.gov/"
]
}

The HTML File
Once again the main HTML file will be called popup.html. You can call it
something else if you want to, so long as you edit manifest.json and suitably set
the value of the “popup” parameter.
The simple HTML page is shown listed in Listing 21.3.

LISTING 21.3 The Basic HTML File popup.html

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Airport Information</title>
 <style>
 body {
 width:350px;
 font: 12px normal arial, verdana, sans-serif;
 }
 #info {
 border: 1px solid black;
 padding: 10px;
 }
 </style>
</head>
<body>

 <h2>Airport Information</h2>
 <input type=Text id="airportCode" value="SFO" size="6" />
 <input id="btn" type="button" value="Get Information" />
 <div id="info"></div>
</body>
</html>

Apart from a little CSS styling, the page only contains a few items: an input field
to accept the airport code, with default value set to SFO, a button to request that
data is fetched, and a <div> to hold the returned results.
Now you need to start adding JavaScript to the page.
You’re going to use jQuery to simplify things, so first you need to include that.
The Google Chrome security policy doesn’t allow the use of a content delivery
network, so we need to download and include a copy of the jQuery library:

Click here to view code image

<script src="jquery-1.11.2.min.js" /></script>

When the page has fully loaded, you need to attach code to the Get Information
button. The button needs to assemble the required URL based on the airport code
value entered in the input field and instigate the Ajax call. Since the remote
service may take some moments to respond, it would also be good if the user
received a little message to indicate that the program was working.
Here’s the code to carry out these tasks:

Click here to view code image

$(document).ready(function(){
 $("#btn").click(function(){
 $("#info").html("Getting information ...");
 var code = $("#airportCode").val();
 $.get("http://services.faa.gov/airport/status/" + code + "?
format=application/json",
 '',
 function(data){
 displayData(data);
 }
);
 });
});

Once the page has loaded, jQuery adds code to the onclick event handler of
the button.
First it uses jQuery’s html() method to add a user message to the output
<div> element. This message will later be overwritten when the “real”
information is received.

Click here to view code image

$("#info").html("Getting information ...");

Next, the desired airport code is retrieved from the input field:
Click here to view code image

var code = $("#airportCode").val();

Then the Ajax call is assembled, here using GET:
Click here to view code image

$.get("http://services.faa.gov/airport/status/" + code + "?
format=application/
json",
 '',
 function(data){
 displayData(data);
 }
);

The callback function specified for the Ajax call is displayData(), which
will format the returned data and display it to the user. Here’s the complete
contents of popup.js. including the callback function:

Click here to view code image

function displayData(data) {
 var message = "Airport: " + data.name + "
";
 message += "<h3>STATUS:</h3>";
 for (i in data.status) {
 if(data.status[i] != "") message += i + ": " + data.status[i] + "

";
 }
 message += "<h3>WEATHER:</h3>";
 for (i in data.weather) {
 if(i != "meta") message += i + ": " + data.weather[i] + "
";
 }
 $("#info").html(message);
}
$(document).ready(function(){
 $("#btn").click(function(){
 $("#info").html("Getting information ...");
 var code = $("#airportCode").val();
 $.get("http://services.faa.gov/airport/status/" + code + "?
format=application/json",
 '',
 function(data){
 displayData(data);
 }
);
 });
});

Recall from Hour 10, “Meet JSON,” that JSON data can be interpreted directly
as a hierarchy of JavaScript objects. The displayData(data) function takes

the returned JSON object data and picks out data.name (a string),
data.status, and data.weather (themselves objects) from which to
construct the message.

Tip
Look back a few pages to the JSON data returned from the remote server to see
how these values were encoded.

The complete HTML page with code included is in Listing 21.4.

LISTING 21.4 The Complete popup.html for the Extension

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Airport Information</title>
 <style>
 body {
 width:350px;
 font: 12px normal arial, verdana, sans-serif;
 }
 #info {
 border: 1px solid black;
 padding: 10px;
 }
 </style>
 <script src="jquery-1.11.2.min.js" /></script>
 <script src="popup.js"></script>
</head>
<body>
 <h2>Airport Information</h2>
 <input type=Text id="airportCode" value="SFO" size="6" />
 <input id="btn" type="button" value="Get Information" />
 <div id="info"></div>
</body>
</html>

Having assembled the required files in their allocated directory, you can add the
extension to Google Chrome exactly as in the previous example.
Clicking on the associated icon brings up a small form where you can enter the
airport code of your choice. Clicking the Get Information button will cause the
program to consult the remote service, assemble the returned information into a
readable form, and present it in the pop-up window.

Figure 21.4 shows the extension in operation.

FIGURE 21.4 The Airport Information extension

Packaging the Extension
When you’ve finished developing your extension, click on the Pack Extension
button in the Extensions page. Your extension will be packed into a .crx file for
you. You can serve the .crx file from your web pages, and your visitors will be
able to install it on their own copy of Google Chrome.

Going Further
The exercises of this hour barely scratched the surface of what can be done with
Chrome extensions. Because Chrome has good support for HTML5 and CSS3, you can
use the latest web technologies such as canvas, localStorage, and CSS
animations in your extensions, as well as access to external APIs and data sources.
Your extensions can even add buttons to the Chrome browser’s user interface, or create
pop-up notifications that exist outside the browser window.

Summary
In this hour, you learned about some applications of JavaScript beyond its use in HTML

web pages. As an example, you wrote a small extension for Google’s Chrome browser
using JavaScript.

Q&A
Q. Can I write a Firefox extension in a similar way to the Chrome extension

described here?
A. The Mozilla way of creating extensions is a little more complex; in addition to

JavaScript, you’ll have to mess a little with XML too. You’ll find some good
information to help you get started at
https://developer.mozilla.org/en/XUL_School/Getting_Started_with_Firefox_Extensions

Q. Is it possible to write whole applications in JavaScript that don’t have to run
inside a browser?

A. Yes it is. As an example, take a look at Node.js (http://www.nodejs.org). Node.js
is a platform built on top of Google Chrome’s JavaScript runtime engine and
designed for building server-side network applications such as web servers, chat
applications, network monitoring tools, and much more.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Information about a Google Chrome extension is contained in a file called:

a. manifest.json
b. manifest.js
c. manifest.txt

2. A Google Chrome extension is distributed as which type of file?
a. .js
b. .xml
c. .crx

Answers
1. a. manifest.json
2. c. Google Chrome extensions can be distributed as a .crx file.

Exercises
 Browse the available JSON APIs listed at

https://developer.mozilla.org/en/XUL_School/Getting_Started_with_Firefox_Extensions
http://www.nodejs.org

http://www.programmableweb.com/apitag/weather?format=JSON and try writing
your own simple Chrome extension to display the data.
 Take a look at the documentation for Node js (http://www.nodejs.org) to see how
JavaScript can be used to write server-side scripts.

http://www.programmableweb.com/apitag/weather?format=JSON
http://www.nodejs.org

Part VII: Learning the Trade

Hour 22. Good Coding Practice

What You’ll Learn in This Hour:
 How to avoid overuse of JavaScript
 Writing readable and maintainable code
 About graceful degradation
 About progressive enhancement
 How to separate style, content, and code
 Writing unobtrusive JavaScript
 Using feature detection
 Avoiding inline code such as event handlers
 How to handle errors well

JavaScript has gained an unfortunate reputation in certain circles. Since its main goal as
a scripting language was to add functionality to web page designs, accessibility for
first-time programmers has always been an important aspect of the language.
Unfortunately, that has often led to poorly written code being allowed into web pages,
leading to frustration for more software-savvy users.
Throughout the book so far I’ve made reference to aspects of coding that are good and
bad. In this hour we pull all that together to form some general guidelines for good
coding practice.

Don’t Overuse JavaScript
How much JavaScript do you need? There’s often a temptation to include JavaScript
code and enhanced interaction where it’s not strictly necessary or advisable.

 It’s important to remember that your users are likely to spend most of their Internet
time on sites other than yours. Experienced Internet users become accustomed to
popular interface components such as menus, breadcrumb trails, and tabbed
browsing. These elements are popular, in general, because they work well, can be
made to look good, and don’t require the user to read a manual first. Is familiarity
with a site’s operation likely to increase a user’s productivity more than the
potential benefits of your all-new whizz-bang design?
 Many of the visual effects that once needed to be coded in JavaScript can now be
achieved perfectly well using CSS. Where both approaches are possible (image
rollovers and some types of menus come immediately to mind), CSS is usually

preferable. It’s well supported across browsers (despite a few variations) and
isn’t as commonly turned off by the user. In the rare case that CSS isn’t supported,
the page is rendered as standard HTML, usually leaving a page that’s at least
perfectly functional, even if it’s not so pretty.
 Users in many areas of the world are still using outdated, underpowered, hand-
me-down computers and may also have slow and/or unreliable Internet access.
The CPU cycles taken up by your unnecessary code may be precious to them.
 In some cases you may cost yourself a degree of search engine page rank, since
their spiders don’t always correctly index content that’s been generated by
JavaScript, or designs that require it for navigation.

Used carefully and with forethought, JavaScript can be a great tool, but sometimes you
can have too much of a good thing.

Writing Readable and Maintainable Code
There is no way of knowing who will one day need to read and understand your code.
Even if that person is you, several years and many projects may have intervened; the
code that is so familiar to you at the time of writing can seem mystifying further down
the line. If somebody else has to interpret your code, they may not share your coding
style, naming conventions, or areas of expertise, and you may not be available to help
them out.

Use Comments Sensibly
Well-chosen comments at critical places in your code can make all the difference in
such situations. Comments are your notes and pointers for those who come later. The
trick is in deciding what comments are likely to be helpful. The subject has often raised
debate, and opinions vary widely, so what follows is largely my own opinion.
It’s perhaps reasonable to assume that the person who ends up reading your code has an
understanding of JavaScript, so a commentary on the way the language itself works is
going too far; JavaScript developers may vary widely in their styles and abilities, but
the one thing we do all share is the language syntax!
Harder to interpret when reading code are the thought processes and algorithms that lie
behind the code’s operation. Personally, when reading code written by others I find it
helpful to see

 A prologue to any object or function containing more than a few lines of simple
code.

Click here to view code image

function calculateGroundAngle(x1, y1, z1, x2, y2, z2) {
 /**

 * Calculates the angle in radians at which
 * a line between two points intersects the
 * ground plane.
 * @author Phil Ballard phil@www.example.com
 */
 if(x1 > 0) {
 more statements

 Inline comments wherever the code would otherwise be confusing or prone to
misinterpretation.

Click here to view code image

// need to use our custom sort method for performance reasons
var finalArray = rapidSort(allNodes, byAngle) {
 more statements

 A comment wherever the original author can pass on specialist knowledge that the
reader is unlikely to know.

Click here to view code image

// workaround for image onload bug in browser X version Y
if(!loaded(image1)) {
 more statements

 Instructions for commonly used code modifications.
Click here to view code image

// You can change the following dimensions to your preference:
var height = 400px;
var width = 600px;

Tip
Various schemes use code comments to help you generate documentation for your
software. See, for example, http://code.google.com/p/jsdoc-toolkit/.

Choose Helpful File, Property, and Method Names
The amount of comments required in your source code can be greatly reduced by making
the code as self-commenting as possible. You can go some way toward this by choosing
meaningful human-readable names for methods and properties.
JavaScript has rules about the characters allowed in the names of methods (or functions)
and properties (or variables), but there’s still plenty of scope to be creative and
concise.
A popular convention is to put the names of constants into all uppercase:

MONTHS_PER_YEAR = 12;

For regular function, method, and variable names, so-called CamelCase is a popular

option; names constructed from multiple words are concatenated with each word except
the first initialized. The first letter can be upper- or lowercase:

var memberSurname = "Smith";
var lastGroupProcessed = 16;

It’s recommended that constructor functions for instantiating objects have the first
character capitalized:
Click here to view code image

function Car(make, model, color) {
 statements
}

The capitalization provides a reminder that the new keyword needs to be used:
Click here to view code image

var herbie = new Car('VW', 'Beetle', 'white');

Reuse Code Where You Can
Generally, the more you can modularize your code, the better. Take a look at this
function:
Click here to view code image

function getElementArea() {
 var high = document.getElementById("id1").style.height;
 var wide = document.getElementById("id1").style.width;
 return high * wide;
}

The function attempts to return the area of screen covered by a particular HTML
element. Unfortunately it can only ever work with an element having id = "id1",
which is really not very helpful at all.
Collecting your code into modules such as functions and objects that you can use and
reuse throughout your code is a process known as abstraction. We can give the function
a higher level of abstraction to make its use more general by passing as an argument
the ID of the element to which the operation should be applied:
Click here to view code image

function getElementArea(elementId) {
 var elem = document.getElementById(elementId);
 var high = elem.style.height;
 var wide = elem.style.width;
 return parseInt(high) * parseInt(wide);
}

You could now call your function into action for any element having an ID:
Click here to view code image

var area1 = getElementArea("id1");

var area2 = getElementArea("id2");

Don’t Assume
What happens in the previous function when we pass a value for elementId that
doesn’t correspond to any element on the page? The function causes an error, and code
execution halts.
The error is to assume that an allowable value for elementId will be passed. Let’s
edit the function getElementArea() to carry out a check that the page element does
indeed exist, and also that it has a numeric area:
Click here to view code image

function getElementArea(elementId) {
 if(document.getElementById(elementId)) {
 var elem = document.getElementById(elementId);
 var high = elem.style.height;
 var wide = elem.style.width;
 var area = parseInt(high) * parseInt(wide);
 if(!isNaN(area)) {
 return area;
 } else {
 return false;
 }
 } else {
 return false;
 }
}

That’s an improvement. Now the function will return false if it cannot return a
numeric area, either because the relevant page element couldn’t be found, or because the
ID corresponded to a page element without accessible width and height properties.

Graceful Degradation
Among the earliest web browsers were some that didn’t even support the inclusion of
images in HTML. When the element was introduced, a way was needed to
allow those text-only browsers to present something helpful to the user whenever such a
nonsupported tag was encountered.
In the case of the tag, that facility was provided by the alt (alternative text)
attribute. Web designers could assign a string of text to alt, and text-only browsers
would display this text to the user instead of showing the image. At the whim of the page
designer, the alt text might be simply a title for the image, a description of what the
picture would have displayed, or a suggestion for an alternative source of the
information that would have been carried in the graphic.
This was an early example of graceful degradation, the process by which a user whose
browser lacks the required technical features to make full use of a web page’s design—

or has those features disabled—can still benefit as fully as possible from the site’s
content.
Let’s take JavaScript itself as another example. Virtually every browser supports
JavaScript, and few users turn it off. So do you really need to worry about visitors who
don’t have JavaScript enabled? The answer is probably yes. One type of frequent
visitor to your site will no doubt be the spider program from one of the search engines,
busy indexing the pages of the Web. The spider will attempt to follow all the navigation
links on your pages to build a full index of your site’s content; if such navigation
requires the services of JavaScript, you may find some parts of your site not being
indexed. Your search ranking will probably suffer as a result.
Another important example lies in the realm of accessibility. No matter how capable a
browser program is, there are some users who suffer with other limitations, such as
perhaps the inability to use a mouse, or the necessity to use screen-reading software. If
your site does not cater to these users, they’re unlikely to return.

Progressive Enhancement
When we talk about graceful degradation, it’s easy to imagine a fully functional web
page with all the bells and whistles providing charitable assistance to users whose
browsers have lesser capabilities.
Supporters of progressive enhancement tend to look at the problem from the opposite
direction. They favor the building of a stable, accessible, and fully functional website,
the content of which can be accessed by just about any imaginable user and browser, to
which they can later add extra layers of additional usability for those who can take
advantage of them.
This ensures that the site will work for even the most basic browser setup, with more
advanced browsers simply gaining some additional enhancements.

Separate Style, Content, and Code
The key resource of a web page employing progressive enhancement techniques is the
content. HTML provides markup facilities to allow you to describe your content
semantically; the markup tags themselves identify page elements as being headings,
tables, paragraphs, and so on. We might refer to this as the semantic layer.
What this semantic layer should ideally not contain is any information about how the
page should appear. You can add this additional information afterwards, using CSS
techniques to form the presentation layer. By linking external CSS stylesheets into the
document, you avoid any appearance-related information from appearing in the HTML
markup itself. Even a browser having no understanding of CSS, however, can still
access and display all of the page’s information, even though it might not look so pretty.

When you now come to add JavaScript into the mix, you do so as yet another notional
layer—you might think of it as the behavior layer. Users without JavaScript still have
access to the page content via the semantic markup; if their browser understands CSS,
they’ll also benefit from the enhanced appearance of the presentation layer. If the
JavaScript of the behavior layer is applied correctly, it will offer more functionality to
those who can use it, without prejudicing the abilities of the preceding layers.
To achieve that, you need to write JavaScript that is unobtrusive.

Unobtrusive JavaScript
There is no formal definition of unobtrusive JavaScript, but the concepts upon which
it’s built all involve maintaining the separation between the behavior layer and the
content and presentation layers.

Leave That HTML Alone
The first and perhaps most important consideration is the removal of JavaScript code
from the page markup. Early applications of JavaScript clutter the HTML with inline
event handlers such as the onClick event handler in this example:
Click here to view code image

<input type="button" style="border: 1px solid blue;color: white"
onclick="doSomething()" />

Inline style attributes, such as the one in the preceding example, can make the situation
even worse.
Thankfully you can effectively remove the style information to the style layer, for
example, by adding a class attribute to the HTML tag referring to an associated style
declaration in an external CSS file:
Click here to view code image

<input type="button" class="blueButtons" onclick="doSomething()" />

And in the associated CSS definitions:
.blueButtons {
 border: 1px solid blue;
 color: white;
}

Tip
You could, of course, define your style rule for the button via any one of a number
of different selectors, including the input element or via an id instead of a
class attribute.

To make your JavaScript unobtrusive you can employ a similar technique to the one we
just used for CSS. By adding an id attribute to a page element within the HTML
markup, you can attach the required onClick event listener from within your external
JavaScript code, keeping it out of the HTML markup altogether. Here’s the revised
HTML element:
Click here to view code image

<input type="button" class="blueButtons" id="btn1" />

The onClick event handler is attached from within your JavaScript code:
Click here to view code image

function doSomething() {
 statements
}
document.getElementById("btn1").onclick = doSomething;

Caution
Remember that you can’t use DOM methods until the DOM is available, so any
such code must be attached via a method such as window.onload to guarantee
DOM availability. There are plenty of examples throughout this book.

Use JavaScript Only as an Enhancement
In the spirit of progressive enhancement, you want your page to work even if JavaScript
is turned off. Any improvements in the usability of the page that JavaScript may add
should be seen as a bonus for those users whose browser setup permits them.
Let’s imagine you want to write some form validation code—a popular use for
JavaScript. Here’s a little HTML search form:
Click here to view code image

<form action="process.php">
<input id="searchTerm" name="term" type="text" />

<input type="button" id="btn1" value="Search" />
</form>

You want to write a routine to prevent the form from being submitted if the search field
is blank. You might write this function checkform(), which will be attached to the
onClick handler of the search button:
Click here to view code image

function checkform() {
 if(document.forms[0].term.value == "") {
 alert("Please enter a search term.");
 return false;
 } else {

 document.forms[0].submit();
 }
}
window.onload = function() {
 document.getElementById("btn1").onclick = checkform;
}

That should work just fine. But what happens when JavaScript is switched off? The
button now does nothing at all, and the form can’t be submitted by the user. Your users
would surely prefer that the form could be used, albeit without the enhancement of input
checking.
Let’s change the form slightly to use an input button of type="submit" rather than
type="button", and edit the checkform() function:
Click here to view code image

<form action="process.php">
 <input id="searchTerm" name="term" type="text" />

 <input type="submit" id="btn1" value="Search" />
</form>

Here’s the modified checkform() function:
Click here to view code image

function checkform() {
 if(document.forms[0].term.value == "") {
 alert("Please enter a search term.");
 return false;
 } else {
 return true;
 }
}
window.onload = function() {
 document.getElementById("btn1").onclick = checkform;
}

If JavaScript is active, returning a value of false to the submit button will prevent the
default operation of the button, preventing form submission. Without JavaScript,
however, the form will still submit when the button is clicked.

Feature Detection
Where possible, try to directly detect the presence or absence of browser features, and
have your code use those features only where available.
As an example, let’s look at the clipboardData object, which at the time of writing
is only supported in Internet Explorer. Before using this object in your code, it’s a good
idea to perform a couple of tests:

 Does JavaScript recognize the object’s existence?
 If so, does the object support the method you want to use?

The following function setClipboard() attempts to write a particular piece of text
directly to the clipboard using the clipboardData object:
Click here to view code image

function setClipboard(myText){
 if((typeof clipboardData != 'undefined') &&
(clipboardData.setData)){
 clipboardData.setData("text", myText);
 } else {
 document.getElementById("copytext").innerHTML = myText;
 alert("Please copy the text from the 'Copy Text' field to your
clipboard");
 }
}

First it tests for the object’s existence using typeof:
Click here to view code image

if((typeof clipboardData != 'undefined')

Note
The typeof operator returns one of the following, depending on the type of the
operand:
"undefined", "object", "function", "boolean", "string", or
"number"

Additionally, the function insists that the setData() method must be available:
Click here to view code image

... && (clipboardData.setData)){

If either test fails, the user is offered an alternative, if less elegant, method of getting the
text to the clipboard; it is written to a page element and the user is invited to copy it:
Click here to view code image

document.getElementById("copytext").innerHTML = myText;
alert("Please copy the text from the 'copytext' field to your
clipboard");

At no point does the code try to explicitly detect that the user’s browser is Internet
Explorer (or any other browser); should some other browser one day implement this
functionality, the code should detect it correctly.

Handling Errors Well
When your JavaScript program encounters an error of some sort, a warning or error
will be created inside the JavaScript interpreter. Whether and how this is displayed to

the user depends on the browser in use and the user’s settings; the user may see some
form of error message, or the failed program may simply remain silent but inactive.
Neither situation is good for the user; he or she is likely to have no idea what has gone
wrong, or what to do about it.
As you try to write your code to handle a wide range of browsers and circumstances,
it’s possible to foresee some areas in which errors might be generated. Examples
include

 The uncertainty over whether a browser fully supports a certain object, and
whether that support is standards compliant
 Whether an independent procedure has yet completed its execution, such as an
external file being loaded

Using try and catch
A useful way to try to intercept potential errors and deal with them cleanly is by using
the try and catch statements.
The try statement allows you to attempt to run a piece of code. If the code runs without
errors, all is well; however, should an error occur you can use the catch statement to
intervene before an error message is sent to the user, and determine what the program
should then do about the error.

try {
 doSomething();
}
catch(err) {
 doSomethingElse();
}

Note the syntax:
catch(identifier)

Here identifier is an object created when an error is caught. It contains
information about the error; for instance, if you wanted to alert the user to the nature of a
JavaScript runtime error, you could use a code construct like

catch(err) {
 alert(err.description);
}

to open a dialog containing details of the error.

Try it Yourself: Converting Code into Unobtrusive Code
From time to time you may find yourself in the position of having to modernize
code to make it less obtrusive. Let’s do that with some code we wrote way back

in Hour 4, “DOM Objects and Built-in Objects,” presented once again here in
Listing 22.1.

LISTING 22.1 An Obtrusive Script

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Current Date and Time</title>
 <style>
 p {font: 14px normal arial, verdana, helvetica;}
 </style>
 <script>
 function telltime() {
 var out = "";
 var now = new Date();
 out += "
Date: " + now.getDate();
 out += "
Month: " + now.getMonth();
 out += "
Year: " + now.getFullYear();
 out += "
Hours: " + now.getHours();
 out += "
Minutes: " + now.getMinutes();
 out += "
Seconds: " + now.getSeconds();
 document.getElementById("div1").innerHTML = out;
 }
 </script>
</head>
<body>
 The current date and time are:

 <div id="div1"></div>
 <script>
 telltime();
 </script>
 <input type="button" onclick="location.reload()" value="Refresh" />
</body>
</html>

As it stands, this script has a number of areas of potential improvement:
 The JavaScript statements are placed between <script> and </script>
tags on the page; they would be better in a separate file.
 The button has an inline event handler.
 A user without JavaScript would simply see a page with a nonfunctioning
button.

First, let’s move all the JavaScript to a separate file and remove the inline event
handler. We also give the button an id value, so we can identify it in JavaScript
to add the required event handler via our code.

Next, we need to address the issue of users without JavaScript enabled. We use
the <noscript> page element so that users without JavaScript enabled will
see, instead of the button, a short message with a link to an alternative source of
time information:

Click here to view code image

<noscript>
 Your browser does not support JavaScript

 Please consult your computer's operating system for local date and
time information or click HERE
to read the server time.
</noscript>

Tip
The <noscript> element provides additional page content for users with
disabled scripts or with a browser that can’t support client-side scripting. Any of
the elements that you can put in the <body> element of an HTML page can go
inside the <noscript> element, and will automatically be displayed if scripts
cannot be run in the user’s browser.

The HTML file after modification is listed in Listing 22.2.

LISTING 22.2 The Modified HTML Page

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Current Date and Time</title>
 <style>
 p {font: 14px normal arial, verdana, helvetica;}
 </style>
 <script src="datetime.js"></script>
</head>
<body>
 The current date and time are:

 <div id="div1"></div>
 <input id="btn1" type="button" value="Refresh" />
 <noscript>
 <p>Your browser does not support JavaScript.</p>
 <p>Please consult your computer's operating system for local date
and time

information or click HERE to read
the server

time.</p>
 </noscript>
</body>
</html>

Within our JavaScript source file telltime.js, we use window.onload to add
the event listener for the button. Finally we call telltime() to generate the
date and time information to display on the page. The JavaScript code is shown
in Listing 22.3.

LISTING 22.3 datetime.js

Click here to view code image

function telltime() {
 var out = "";
 var now = new Date();
 out += "
Date: " + now.getDate();
 out += "
Month: " + now.getMonth();
 out += "
Year: " + now.getFullYear();
 out += "
Hours: " + now.getHours();
 out += "
Minutes: " + now.getMinutes();
 out += "
Seconds: " + now.getSeconds();
 document.getElementById("div1").innerHTML = out;
}

window.onload = function() {
 document.getElementById("btn1").onclick= function()
{location.reload();}
 telltime();
}

With JavaScript enabled, the script works just as it did in Hour 4. However, with
JavaScript disabled, the user now sees the page as shown in Figure 22.1.

FIGURE 22.1 Extra information for users without JavaScript

Summary
In this hour we rounded up and presented various examples of good practice in writing
JavaScript. Used together they should help you deliver your code projects more quickly,
with higher quality and much easier maintenance.

Q&A
Q. Why would a user turn off JavaScript?
A. Remember that the browser might have been set up by the service provider or

employer with JavaScript turned off by default, in an effort to improve security.
This is particularly likely in an environment such as a school or an Internet cafe.
Additionally, some corporate firewalls, ad-blocking, and personal antivirus
software prevent JavaScript from running, and some mobile devices have web
browsers without complete JavaScript support.

Q. Are there any other options besides <noscript> for dealing with users who
don’t have JavaScript enabled?

A. An alternative that avoids <noscript> is to send users who do have
JavaScript support to an alternative page containing JavaScript-powered
enhancements:

Click here to view code image

<script>window.location="enhancedPage.html";</script>

If JavaScript is available and activated, the script redirects the user to the
enhanced page. If the browser doesn’t have JavaScript support, the script won’t
be executed, and the user is left viewing the more basic version.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. The modularization of code into reusable blocks for more general use is called:

a. Abstraction
b. Inheritance
c. Unobtrusive JavaScript

2. The CSS for your page should be confined as much as possible to the:
a. Semantic layer
b. Presentation layer
c. Behavior layer

3. Unobtrusive JavaScript code should, wherever possible, be placed
a. In an external file
b. Between <script> and </script> tags in the page <head>
c. Inline

Answers
1. a. Abstraction
2. b. Where possible, all CSS goes in the presentation layer.
3. a. Use external JavaScript files where it’s feasible to do so.

Exercises
 Pick some Try It Yourself sections from earlier in the book and see what you can
do to make the code more unobtrusive, without adversely affecting the script’s
operation.
 Can you work out how to further modify the code of Listing 22.2 and Listing 22.3
to ensure that users without JavaScript enabled see just the content of the
<noscript> tag, without the additional text and button being present? (Hint:
Write these items to the page with innerHTML or via DOM methods.)

Hour 23. Debugging Your Code

What You’ll Learn in This Hour:
 The types of errors common in JavaScript code
 How to carry out simple debugging with alert()
 Using the browser console and console.log()
 Grouping messages in the console
 Using breakpoints

As you delve into more advanced scripting, you’re going to now and then create
JavaScript programs that contain errors.
JavaScript errors can be caused by a variety of minor blunders, such as mismatched
opening and closing parentheses, mistyping of variable names or keywords, making
calls to nonexistent methods, and so on. This hour aims to offer some straightforward
tips and suggestions for diagnosing errors and correcting your code, making your
programming hours more pleasurable and productive.

An Introduction to Debugging
The process of locating and correcting bugs is known as debugging, and it can be one of
the most tricky and frustrating parts of the development process.

Types of Errors
The errors that can crop up in your code usually conform to one of three types:

 Syntax errors—These can include typographical and spelling errors, missing or
mismatched quote marks, missing or mismatched parentheses/braces, and case-
sensitivity errors.
 Runtime errors—Errors that occur when the JavaScript interpreter tries to do
something it can’t make sense of. Examples include trying to treat a string as if it
were a numerical value and trying to divide a number by zero.
 Faulty program logic—These mistakes don’t always generate error messages—
the code may be perfectly valid—but your script doesn’t do what you want it to.
These are usually problems associated with algorithms or logical flow within the
script.

Choosing a Programmer’s Editor

Whatever platform you work on, and whatever your browser of choice, it makes sense
to have a good code editor. While it’s certainly possible to write code in simple
programs like the Windows Notepad text editor, a dedicated editor makes life a lot
easier.
Many such programs are available, often free of charge under open source and similar
licenses. Here I list a small selection of no-cost editors, but look around for one that
suits your platform, your working style, and your pocket.

 Notepad++ (Windows)
 JEdit (should work on any platform that has Java installed)
 PSPad (Windows)
 JuffEd (Windows, Linux)
 Geany (Windows, Linux)

Editors offer a range of features and capabilities, but as a minimum I would suggest
looking for an editor with the following:

 Line numbering—This is especially useful if you store your JavaScript in
external files (and is yet another reason you should do so, wherever feasible).
That way the line numbers of any error messages generated by your browser’s
debugger will usually match those in the source file open in the editor.
 Syntax highlighting—When you become familiar with your editor’s scheme of
syntax highlighting, you can on many occasions spot coding errors simply because
the code in the editor “looks wrong.” It’s surprising how quickly you get used to
the colors of keywords, variables, string literals, objects, and so on in your
favorite editing program. Many editors let you alter the syntax highlighting color
scheme to your own taste.
 Parentheses matching—As an error-seeking missile, parentheses matching is
invaluable. Good editors will show matching pairs of open/close occurrences and
for all types of brackets, braces, and parentheses. When your code has several
levels of nested parentheses it’s easy to lose count.
 Code completion or tooltip-style syntax help—Some editors offer pop-up
tooltip-style help for command functions and expressions. This can save you
having to take your eyes from the editor window to look up an external reference.

Simple Debugging with alert()
Sometimes you want a really simple and quick way to read a variable’s value, or to
track the order in which your code executes.
Perhaps the easiest way of all is to insert JavaScript alert() statements at
appropriate points in the code. Let’s suppose you want to know whether an apparently

unresponsive function is actually being called, and if so, with what parameters:
Click here to view code image

function myFunc(a, b) {
 alert("myFunc() called.\na: " + a + "\nb: " + b);
 // .. rest of function code here ...
...}

When the function is called at runtime, the alert() method executes, producing a
dialog like the one in Figure 23.1.

FIGURE 23.1 Using a JavaScript alert()

Remember to put a little more information in the displayed message than just a variable
value or one-word comment; in the heat of battle, you’ll likely forget to what variable or
property the value in the alert() refers.

More Advanced Debugging
Placing alert() calls in your code is perhaps OK for a quick-and-dirty debug of a
short piece of code. The technique does, however, have some serious drawbacks:

 You have to click OK on each dialog to allow processing to continue. This can be
demoralizing, especially when dealing with long loops!
 The messages received are not stored anywhere, and disappear when the dialog is
cleared; you can’t go back later and review what was reported.
 You need to go back into the editor and erase all the alert() calls before your
code can “go live.”

In this section, we’ll look at some more advanced debugging techniques.

The Console
Thankfully, most modern browsers provide a JavaScript Console that you can use to
better effect for logging debugging messages. How to open the console varies from
browser to browser:

 In Internet Explorer, to open the Developer Tools: F12

 For Chrome’s Developer Tools and Opera’s Dragonfly Debugger: Ctrl+Shift+I
 Using Firefox with the Firebug extension: F12

The examples in this section assume that you’re using one of the previous debuggers. If
not, you may have to consult your debugger’s documentation to see how to carry out
some of the tasks I describe. How your browser presents such errors to you differs from
browser to browser.

Try it Yourself: Using Your Browser’s Debugging Tools
Have a look at the code in Listing 23.1.

LISTING 23.1 A Program with Errors

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Strings and Arrays</title>
</head>
<body>
 <script>
 function sayHi() {
 alert("Hello!);
 }
 </script>
 <input type="button" value="good" onclick="sayHi()" />
 <input type="button" value="bad" onclick="sayhi()" />
</body>
</html>

This code listing has two different types of errors. First, in the call to the
alert() method, our argument is missing its closing quotation mark.
Second, the onclick handler of the second button calls the function
sayhi()—remember that function names are case sensitive, so in fact there is
no function defined with the name sayhi().
Loading the page into Firefox, we can see the expected two buttons, one labeled
“good” and the other “bad.” Neither seems to do anything. I can open Firefox’s
Error Console by pressing Ctrl+Shft+J, and the result is shown in Figure 23.2.

FIGURE 23.2 The Firefox Error Console

That’s a helpful start. Firefox tells me it found an unterminated string literal,
gives me the line number, and even shows me the line of code with an arrow
pointed at the section where it has a problem.
With the error corrected and the file saved again, I’m ready to try again. First I
click Clear on the toolbar of the Error Console to remove the old error message;
then I reload my test page.
That looks better. My page comes up again, and the Error Console stays blank.
Clicking on the button labeled “good” opens the expected alert() dialog—so
far, so good.
But clicking on the button labeled “bad” doesn’t seem to do anything—so I refer
again to the Error Console, as shown in Figure 23.3.

FIGURE 23.3 The second error

Firefox again identifies the problem: “sayhi is not defined.” Now we’re well on
the way to having our code fully debugged and working correctly.
Every browser has its own way of dealing with errors. Figure 23.4 shows how
the Chromium browser reports the initial error of the unterminated string literal.

FIGURE 23.4 Google Chromium JavaScript console

Note
Google Chrome and Chromium are almost identical browsers, differing mainly in
how they are packaged and distributed. Essentially, Google Chrome is the
Chromium open source browser packaged and distributed by Google.

Chromium’s message is a slightly more cryptic “Uncaught syntax error:
Unexpected token ILLEGAL,” but it also gives the line number in a clickable link
that shows me the faulty line of code.

To open Internet Explorer’s developer tools, press F12 or select Developer Tools from
the IE9 Tools menu. Select the Console tab to view error messages returned by
JavaScript.

Tip
It’s worth getting to know the debugging tools in your favorite browser, and even
think about switching browsers if you particularly prefer the tools on offer in
another. If you plan to regularly write JavaScript code, it makes sense to do so in
a development environment in which you feel comfortable, where you’ll be more

productive and less frustrated.

Try it Yourself: A Banner-Cycling Script
Let’s put to use some of what you learned in this hour by writing a script to cycle
images on the page. I’m sure you have seen this sort of program before, either as
an image slideshow, or perhaps to rotate advertisement banners.
First, I want to introduce you to two new items. The first is an event handler that
you haven’t met before—the onLoad method of the window object. Its
operation is simple: We can attach it to the <body> element like this:

Click here to view code image

<body onload="somefunction()" >

When the page has finished loading completely, the onLoad event fires, and the
code specified in the event handler runs. We use this event handler to run our
banner rotator as soon as the page has loaded.
Second, we are going to use JavaScript’s setInterval() function. This
function allows us to run a JavaScript function repeatedly, with a preset delay
between successive executions.
The setInterval() function takes two arguments. The first is the name of the
function we want to run, the second the delay (in milliseconds) between
successive executions of the function. As an example, the line

setInterval(myFunc, 5000);

would execute the function myFunc() every five seconds.
We use setInterval() to rotate the banner image at a regular interval.
Create a new file named banner.html and enter the code from Listing 23.2.

LISTING 23.2 A Banner Rotator

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Banner Cycler</title>
 <script>
 var banners = ["banner1.jpg", "banner2.jpg", "banner3.jpg"];
 var counter = 0;
 function run() {
 setInterval(cycle, 2000);
 }
 function cycle() {

 counter++;
 if(counter == banners.length) counter = 0;
 document.getElementById("banner").src = banners[counter];
 }
 </script>
</head>
<body onload = "run();">

</body>
</html>

The HTML part of the page could hardly be simpler—the body of the page just
contains an image element. This image will form the banner, which will be
“rotated” by changing its src property.
Now let’s take a look at the code.
The function run() contains only one statement, the setInterval()
function. This function executes another function, cycle(), every two seconds
(2000 milliseconds).
Every time the function cycle() executes, we carry out three operations:
1. Increment a counter.

counter++;

2. Use a conditional statement to check whether the counter has reached the
number of elements in the array of image names; if so, reset the counter to zero.

Click here to view code image

if(counter == banners.length) counter = 0;

3. Set the src property of the displayed image to the appropriate file name
selected from the array of images file names.

Click here to view code image

document.getElementById("banner").src = banners[counter];

The operation of the script is shown in Figure 23.5.

FIGURE 23.5 Our banner cycler

Now let’s examine the script operation using browser-based debug tools. I’m
using Chromium, so I open the Developer Tools console again like I did in Figure
23.4. In Chromium that’s Settings > More Tools > Developer Tools or the
shortcut Ctrl+Shift+I.
This time I select the Scripts tab in the lower pane. To the left of the lower pane,
the code is listed; I’m going to click on the line number of line 15 to set a
breakpoint, as shown in Figure 23.6.

FIGURE 23.6 Setting a breakpoint

While this breakpoint remains set, code execution will halt every time this line of
code is reached, before executing the code in the line—in this case, before
completing the current execution of the function cycle().
On the right-hand side of the same pane, our breakpoint now appears in the
Breakpoints panel. In the same pane, I can click in the Watch Expressions panel
and add the names of any variables or expressions whose values I want to
examine each time the program pauses; I’m going to enter counter and
getElementById("Banner").src to see what values they contain.
Figure 23.7 shows the display when the program next pauses, showing the values
of my two chosen expressions.

FIGURE 23.7 Showing variable values at a breakpoint

Pressing the Play icon above the panel allows the script to restart.
Try using your own browser’s debugging tools to explore the program’s
operation.

Tip
I have only scratched the surface here of the capabilities of the debugger in
Google Chrome/Chromium. To learn more, there is a good tutorial at
https://developer.chrome.com/devtools/docs/javascript-debugging to get you
started.
If Firefox is your browser of choice for development work, you would do well to
install the popular Firebug extension, which you can read about at
http://getfirebug.com/javascript and which has broadly similar capabilities.
Those using Microsoft Internet Explorer will find good information on debugging
with the F12 Developer Tools at https://msdn.microsoft.com/en-
us/library/ie/gg589512(v=vs.85).aspx.
Opera contains the Dragonfly debugging tool, which you can read about at
http://www.opera.com/dragonfly/documentation/.

The console provides a number of methods you can use in your code in place of the
cumbersome and limited alert() call, perhaps the most well-known being
console.log():
Click here to view code image

function myFunc(a, b) {

https://developer.chrome.com/devtools/docs/javascript-debugging
http://getfirebug.com/javascript
https://msdn.microsoft.com/en-us/library/ie/gg589512(v=vs.85).aspx
http://www.opera.com/dragonfly/documentation/

 console.log("myFunc() called.\na: " + a + "\nb: " + b);
 // .. rest of function code here ...
...}

Rather than interrupt program operation, console.log() operates invisibly to the
user unless he or she happens to be looking at the console. Figure 23.8 shows the result
of running the preceding code with the console open in Firefox with the Firebug
extension installed.

FIGURE 23.8 A message logged in the console

In addition to console.log(), you can also take advantage of console.warn(),
console.info(), and console.error(). These all record messages at the
console in slightly different styles, allowing you to build up a picture of how your script
is running.
Figure 23.9 shows how Firebug’s console displays each one; the display will be
slightly different in other browsers.

FIGURE 23.9 Different types of console messages

Grouping Messages
Sorting console debugging messages into groups makes them even more readable. You
can name the individual message groups any way you like:
Click here to view code image

function myFunc(a, b) {
 console.group("myFunc execution");
 console.log("Executing myFunc()");
 if(isNaN(a) || isNaN(b)) {
 console.warn("One or more arguments non-numeric");
 }
 console.groupEnd();
 myOtherFunc(a+b);
}

function myOtherFunc(c) {
 console.group("myOtherFunc execution");
 console.log("Executing myOtherFunc()");
 if(isNaN(c)) {
 console.info("Argument is not numeric");
 }
 console.groupEnd();
 // .. rest of function code here ...
}

In this code snippet I’ve defined two console.group() sections, and named them
to associate them with the functions in which they execute. Each group ends with a
console.groupEnd() statement. When the code runs, any console messages
display in groups, as shown in Figure 23.10.

FIGURE 23.10 Grouped messages

Using Breakpoints to Halt Code Execution
As your scripts grow in complexity, you’re likely to find that even console logging isn’t

enough to let you debug effectively.
To perform more detailed debugging, you can set so-called breakpoints in the code at
places of interest. When code execution arrives at a breakpoint, it pauses; while time
remains frozen you can examine how your code is operating, check variable values,
read logged messages, and so on.
To set a breakpoint in most popular debuggers you need to go to the Scripts panel,
where you’ll see your code listed. Click on a line number (or just to the left of it) to set
a breakpoint at that line. In Figure 23.11, a breakpoint has been set on line 8 of the code.
The execution has stopped at this point, and you can see the current values of the
individual variables in the right panel. You can remove breakpoints by clicking again on
the breakpoint icon in the left margin.

FIGURE 23.11 Execution stopped at a breakpoint

Conditional Breakpoints
Sometimes it helps to break code execution only when a particular situation occurs. You
can set a conditional breakpoint by right-clicking the breakpoint icon in the left column
and entering a conditional statement.
Your code will execute without interruption until the condition is fulfilled, at which
point execution will halt. For instance, in Figure 23.12, the code will halt if the sum of a
and b is less than 12. You can edit the expression at any time just by right-clicking once
more on the breakpoint icon.

FIGURE 23.12 A conditional breakpoint

When code execution halts at a breakpoint you can choose to continue code execution,
or step through your code one statement at a time, by using one of the code execution
buttons; these usually look something like VCR controls, and appear at the top of one of
the panels in the debugger. In most debuggers, the options are:

 Continue—Resume execution and only pause again if/when another breakpoint is
reached.
 Step Over—Execute the current line, including any functions that are called, then
move to the next line.
 Step Into—Move to the next line, as with Step Over, unless the line calls a
function; in that case jump to the first line of the function.
 Step Out—Leave the current function and return to the place from which it was
called.

Launching the Debugger from Your Code
It’s also possible, and often useful, to set breakpoints from within the JavaScript code.
We can do this by using the keyword debugger:
Click here to view code image

function myFunc(a, b) {
 if(isNaN(a) || isNaN(b)) {
 debugger;
 }
// .. rest of function code here ...
}

In this example, code execution will be halted and the debugger opened only if the
conditional expression evaluates to true.
The debugging tools allow you to halt code execution in other circumstances too, such
as when the DOM has been altered, or when an uncaught exception has been detected,
but these are more advanced cases outside the scope of this discussion.

Watch Expressions
A watch expression is a valid JavaScript expression that the debugger continuously
evaluates, making the value available for you to inspect. Any valid expression can be
used, ranging from a simple variable name to a formula containing logical and
arithmetic expressions or calls to other functions.
You can enter a new watch expression via the right-hand panel of the Script tab, as
shown in Figure 23.13 (Firefox/Firebug).

FIGURE 23.13 A watch expression

Validating JavaScript
A different and complementary approach to checking your JavaScript code for problems
is to use a validation program. This will check that it conforms to the correct syntax
rules of the language. These programs are sometimes bundled with commercial
JavaScript editors, or you can simply use Douglas Crockford’s JavaScript Lint, which
is available free online at http://www.jslint.com/.
Here you can simply paste your code into the displayed window and click the button.
Don’t be too dismayed if the program reports a lot of errors—just work through them

http://www.jslint.com/

one at a time. JSLint is very thorough and will even report various issues of coding style
that wouldn’t affect your code’s running at all, but do help to improve how you
program!

Summary
In this hour you learned a lot about debugging your JavaScript code, including using the
browser console, as well as setting breakpoints and stepping through code in the
debugger.

Q&A
Q. How should I choose a programmer’s editor?
A. It’s completely up to personal choice. Many are free or have a free version, so

there’s nothing to stop you from trying several before deciding.
Q. Where can I find out more about JavaScript debugging?
A. Many tutorials exist online. Start with the one published by W3Schools, at

http://www.w3schools.com/js/js_debugging.asp.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. Which of these error types are you not likely to find in your JavaScript programs?

a. Syntax errors
b. Compilation errors
c. Runtime errors

2. What does a breakpoint do?
a. Pauses code execution at a given place
b. Causes JavaScript to step out of a loop
c. Produces a JavaScript error

3. What line in your code will launch the debugger?
a. debug;
b. debugger;
c. pause;

Answers

http://www.w3schools.com/js/js_debugging.asp

1. b. JavaScript is an interpreted, rather than a compiled, language, so you won’t
encounter compilation errors.

2. a. Pauses code execution at a given place.
3. b. To launch the debugger, type
debugger;

Exercises
 How would you modify the banner-cycling script to add links to the banners, such
that each image displayed linked to a different external page?
 Using your knowledge of random number generation using the Math object, can
you rewrite the banner-cycling script to show a random banner at each change,
instead of cycling through them in order? Use your browser’s built-in debugging
tools to help you.

Hour 24. JavaScript Unit Testing

What You’ll Learn in This Hour:
 What unit testing is and why it’s used
 How to make your JavaScript code more easily testable
 Some examples of JavaScript test suites
 About the QUnit test suite and the CommonJS unit testing specification

Often, a little JavaScript hack that started out as just a few lines of code subsequently
grows to ten, then twenty, then fifty. Meanwhile, functions are tweaked to do a little
more, conditional statements gain a few extra conditions, or a couple extra variables are
created.
When such an application (inevitably) breaks, it can be a nightmare to unravel the code
and find the problem.
As you already read in Hour 22, “Good Coding Practice,” good coding practice can
help to make your code easier to understand and to maintain, but there’s something else
you can do, too. As your JavaScript applications grow in size, complexity, and
sophistication, it becomes even more important to write code that can be easily tested.
In this hour you’ll learn some ways to write your code to make it suitable for unit
testing, and how to write and perform such tests.

What Is Unit Testing?
If you’re unfamiliar with the concept of unit testing, don’t worry, as it’s not too
complicated to understand.
Usually when somebody thinks about testing a JavaScript application, they imagine
testing the completed system to see if it works as expected. This is essentially a test to
see if the various pieces of the application work correctly together, and is often known
as integration testing.
Unit testing is a software verification and validation method in which an application is
broken down into its smallest testable parts, called units, then these units are
individually examined and tested for proper operation. A unit is the smallest testable
part of an application, such as an individual function or method.
Unit testing can be done manually, but such testing is usually automated.
Essentially, you write a series of tests for each fundamental element of your code, to test
that unit’s performance under all conceivable types of input. If all of these tests are
passed, you can be confident that each tested element is fit for purpose.

Try it Yourself: A Home-Cooked Unit Test
Let’s jump right in and perform a unit test from scratch.
In this example we’ll write some tests, perform them on a sample unit, and send a
summary of the results to the browser console.
Let’s look at a function we wrote way back in Hour 3, “Using Functions,” to add
tax at a given percentage to a net figure and return the gross amount:

Click here to view code image

function addTax(subtotal, taxRate) {
 var total = subtotal * (1 + (taxRate/100));
 return total;
}

This function forms the unit that we’ll subject to some tests.
We’ll save this function in a file tax.js, and include it in the HTML page that will
serve as a test suite. In the real world, it’s more likely that tax.js would contain a
number of different functions, perhaps as part of a financial application, but for
this example it’ll do just fine. The HTML code is shown in Listing 24.1.

LISTING 24.1 HTML Code for the Test Suite

Click here to view code image

<!DOCTYPE html>
<html>
<head>
 <title>Manual Unit Testing Examples</title>
 <script src="tax.js"></script>
 <script>
 function test(amount, rate, expected) {
 results.total++;
 var result = addTax(amount, rate);
 if (result !== expected) {
 results.failed++;
 console.log("Expected " + expected + ", but instead got " + result);
 }
 }
 var results = {
 total: 0,
 failed: 0
 };

 // Our unit tests
 test(1, 10, 1.1);
 test(5, 12, 5.6);
 test(100, 17.5, 117.5);

 // Output results to the console
 console.log(results.total + " tests carried out, " + results.failed + "
failed, " +(results.total - results.failed) + " passed.");
 </script>
</head>
<body>
</body>
</html>

In a script element on this page I’ve defined a function called test(), which
takes three arguments. The parameters amount and rate are the values to be
passed to the function under test (in this case addTax()) while the third
parameter, expected, is the result we expect to have returned if the
addTax() function is working the way we want it to.
If the function under test returns the expected result, the test() function
increments a counter of successful tests; if not, it increments a counter of failed
tests and also logs a message to the console indicating which test failed, and the
incorrect value that was returned.
To run the test I can simply save the code as an .html file and load this page into
my browser. The result is shown in Figure 24.1.

FIGURE 24.1 The results of our unit tests

As you can see, one of our tests failed; JavaScript added a small rounding error.
This result is a starting point from which I can reexamine the code of the function

addTax() to remove this anomaly—perhaps by using rounding on the output
value before returning it.
Of course, you don’t have to log the results to the console; they could just as
easily be printed to the page, saved to a database, and so on. Later we’ll look at
QUnit, an open source unit testing application that displays a nicely formatted test
result directly in the HTML of the test page.

Writing JavaScript for Unit Testing
Looking again at the preceding example, some things immediately become clear:

 The function addTax() was, of course, a named function. Had it been an
anonymous function, it would have been much harder—perhaps impossible—to
test this way.
 The function having been contained in an external JavaScript file (here tax.js) also
aided in its inclusion in our test suite.

These are just a couple of examples of how coding style can affect the testability of your
JavaScript code.
Applications written in the old-fashioned procedural manner of coding can be hard to
unit test. However, if you write your code with unit testing in mind, you’ll not only make
it easier to write those tests, but also write code that’s so much easier to read, maintain,
and extend.
In the next section I’ll round up a few coding techniques that will make your code easier
to test.

Refactoring Code
The process of reorganizing your JavaScript code into a different form, but without
modifying its operation, is known as refactoring. Refactoring is a great method of
improving the design of a program, as it generally involves separating the program logic
from the user interaction and display elements.
Where your code is based around a library such as jQuery and/or a framework such as
AngularJS, some of that discipline might already have been imposed on your code.
Where JavaScript has been written from scratch, however, there’s more likelihood that
a lot of refactoring will be needed. This is especially true where code has been initially
written with little or no concern for separating HTML and program logic—for instance,
where inline event handlers have been used.
Here are a few of the things you can do to make your code easier to test.

Externalize Scripts

JavaScript code collected into external files and later linked into your application is
generally easier to test. In an ideal case, the same JavaScript file to be included in your
production application can simply be linked into your test harness instead in order to
have the tests performed.

Keep Functions and Methods Simple
The more you try to do with a single procedure, the more complex and numerous your
tests will have to be, and the more difficult it may be to untangle that function from the
code around it in order to test it.

The QUnit Test Suite
The previous example shows that you can run practical unit tests without a huge amount
of code. However, for more than just a few tests it’s much more productive to use a
purpose-designed unit testing framework providing more advanced tools for writing and
running your tests. In this section we’ll look at one such framework, QUnit.
QUnit is a powerful, open source JavaScript unit testing framework. It’s written by
members of the jQuery team, and is used in the jQuery, jQuery UI, and jQuery Mobile
projects. However, QUnit is capable of testing any regular JavaScript code.

Installing QUnit
QUnit is a self-contained library, needing only one JavaScript file (qunit.js) and
one CSS file (qunit.css), both of which you can download from the QUnit website.
Alternatively, you can use versions that are hosted on a CDN, as in the following
examples.

A Minimal QUnit Setup
Once again, our test setup will be a simple HTML page, as shown in Listing 24.2. This
time, QUnit is included from a CDN.

LISTING 24.2 Code for QUnit Test Suite

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Hello QUnit Example</title>
<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-
1.16.0.css">
</head>
<body>

<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="http://code.jquery.com/qunit/qunit-1.16.0.js"></script>
<script src="tests.js"></script>
</body>
</html>

Note the layout of this file, and how similar it is to our manual test suite used in the
previous section. There are a few differences, however:

 Instead of logging information to the console, QUnit outputs nicely formatted
results into the <div> having ID #qunit.
 The #qunit-fixture element is required in instances where you need to set
up a so-called mock DOM of elements that are used during testing, usually things
like form elements. The mock DOM is reset after every unit test. QUnit expects the
mock DOM to be in the #qunit-fixture element.

We include the CSS file in the head, while the body includes the QUnit JavaScript file,
followed by a further file called tests.js that contains just the following code:
Click here to view code image

QUnit.test("Hello QUnit test", function(assert) {
assert.ok(1 == "1", "Passed!");
});

Let’s see what’s happening here. The test method is called, giving a name to the test as
the first argument, and passing a function as the second argument. It’s this function that
will run our test.
Click here to view code image

assert.ok(1 == "1", "Passed!");

In this trivial example the test will always be passed. The ok method is one of several
assertions that QUnit provides, and returns a value of true if the first parameter passed
to it returns something that itself evaluates to true.

QUnit Assertions
An assertion evaluates expressions to true or false. QUnit’s assert has a
number of additional methods you can use to build your tests. Examples include
equal(), which unsurprisingly, tests equality; notEqual(), which tests for
inequality; and strictEqual(), which once again tests equality, but this time
with a strict type and value comparison.
Check out all of the assertions in QUnit’s documentation at
http://api.qunitjs.com/category/assert/.

http://api.qunitjs.com/category/assert/

The result is shown in Figure 24.2.

FIGURE 24.2 The result of our sample unit test

Retesting Our addTax() Function
Now let’s modify the preceding example to retest our function addTax(), this time
using QUnit. The test harness is similar to before, except it now includes the file tax.js:
Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Test of addTax Function with QUnit</title>
<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-
1.16.0.css">
<script src="tax.js"></script>
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="http://code.jquery.com/qunit/qunit-1.16.0.js"></script>
<script src="tests.js"></script>
</body>

</html>

Now we need to modify the file tests.js to include the tests we want to run. Here, I’ve
used a different assertion, assert.equal, which is passed if the two parameters
offered to it are equal. The first parameter in each test is the value returned from the
addTax() function being tested, while the second parameter is our expected result:
Click here to view code image

QUnit.test("addTax test", function(assert) {
 assert.equal(addTax(1, 10), 1.1);
 assert.equal(addTax(5, 12), 5.6);
 assert.equal(addTax(100, 17.5), 117.5);
}};

When the test harness is loaded into a browser, the output is as shown in Figure 24.3.

FIGURE 24.3 Testing our addTax function with QUnit

You’ll notice that the formatting is much more user-friendly than our previous home-
cooked version, but the result is identical; one test of the three failed.

Summary

In this hour, you learned some methods for unit testing your JavaScript code.
Testing JavaScript often requires some important changes in the structure of your code,
and you read about some of the coding techniques you might employ to make code
testing easier.
You saw how to run some tests with a home-cooked testing framework, then replaced
that with the purpose-designed QUnit framework to carry out further testing.

Q&A
Q. Is there a common standard for unit testing?
A. Although there is no universal standard, the CommonJS project

(http://en.wikipedia.org/wiki/CommonJS) has a unit testing specification
(http://wiki.commonjs.org/wiki/Unit_Testing), which is the one utilized by the
QUnit test suite described in this hour.

Q. Where did QUnit come from?
A. Originally, QUnit was developed by John Resig as part of the jQuery library. In

2008 it became a self-contained project, allowing non-jQuery users to use it for
their own unit testing. A rewrite in 2009 removed its dependence on jQuery, and
now QUnit runs standalone.

Workshop
Try to answer all the questions before reading the subsequent “Answers” section.

Quiz
1. In unit testing, the term unit refers to:

a. The smallest testable part of an application, such as an individual function or
method

b. All of the JavaScript code active on a single web page
c. All of the JavaScript code in a .js file included in your web page

2. An assertion:
a. Always declares a test experssion to be true
b. Evaluates a test expression as being true or false
c. Sets the value of a JavaScript variable

3. Reworking your JavaScript code to make it more testable is usually referred to
as:
a. Restructuring your code

http://en.wikipedia.org/wiki/CommonJS
http://wiki.commonjs.org/wiki/Unit_Testing

b. Refactoring your code
c. Recompiling your code

Answers
1. a. The smallest testable part of an application, such as an individual function or

method
2. b. Evaluates an expression as being true or false
3. b. Refactoring your code

Exercises
 Modify the “home cooked” unit testing code to display a neatly formatted report
into the HTML page instead of logging it to the console (as QUnit does).
 Pick some other functions from throughout the book and subject them to unit tests
using QUnit. Do they all work as you expected?

Part IX: Appendices

Appendix A. Tools for JavaScript Development

JavaScript development doesn’t require any special tools or software other than a text
editor and a browser.
Most operating systems come bundled with at least one of each, and in many cases these
tools will be more than sufficient for you to write your code.
However, many alternative and additional tools are available, some of which are
described here.

Tip
Be sure to check the license terms on the individual websites and/or included in
the download package.

Editors
The choice of an editor program is a personal thing, and most programmers have their
favorite. Listed in the following sections are some popular, free editors that you can try.

Notepad++
If you develop on the Windows platform, you’re probably already aware of the Notepad
editor usually bundled with Windows. Notepad++ (http://notepad-plus-plus.org/) is a
free application that aims to be a more powerful replacement, while still being light and
fast.
Notepad++ offers line numbering, syntax and brace highlighting, macros, search and
replace, and a whole lot more.

jEdit
jEdit is a free editor written in Java. It can therefore be installed on any platform having
a Java virtual machine available, such as Windows, Mac OS X, OS/2, Linux, and so on.
A fully featured editor in its own right, jEdit can also be extended via 200+ available
plug-ins to become, for example, a complete development environment or an advanced
XML/HTML editor.
Download jEdit from www.jedit.org.

SciTE
Initially developed as a demonstrator for the Scintilla editing component, SciTE has
developed into a complete and useful editor in its own right.

http://notepad-plus-plus.org/
http://www.jedit.org

A free version of SciTE is available for Windows and Linux users via download from
www.scintilla.org/SciTE.html, while a commercial version is available via the Mac
Apps Store for Mac OS X users.

Geany
Geany (www.geany.org/) is a capable editor that can also be used as a basic integrated
development environment (IDE). It was developed to provide a small and fast IDE, and
can be installed on pretty much any platform supported by the GTK toolkit, including
Windows, Linux, Mac OS X, and FreeBSD.
Geany is free to download and use under the terms of the GNU General Public License.

Validators
To make sure your pages work as intended regardless of the user’s browser and
operating system, it’s always advisable to check your HTML code for correctness and
conformance to standards.
A number of online tools and facilities are available to help you, as discussed next.

The W3C Validation Services
The W3C offers an online validator at http://validator.w3.org/ that will check the
markup validity of web documents in HTML, XHTML, SMIL, MathML, and other
markup languages. You can enter the URL of the page to be checked, or cut-and-paste
your code directly into the validator.
CSS can be validated in a similar way at http://jigsaw.w3.org/css-
validator/validator.html.en.

Web Design Group (WDG)
WDG also offers an online validation service at www.htmlhelp.com/tools/validator/.
This is similar to the W3C validator, but in some circumstances gives slightly more
helpful information, such as warnings about valid but dangerous code, or highlighting
undefined references rather than simply listing them as errors.

Debugging and Verifying Tools
Debugging tools can save you hours when trying to track down elusive problems in your
JavaScript code and help you speed up your scripts by analyzing execution timing.
Verifying tools help you to write tidy, concise, readable, and problem-free code.
Numerous debugging and verifying tools are available, including the following.

Firebug

http://www.scintilla.org/SciTE.html
http://www.geany.org/
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/validator.html.en
http://www.htmlhelp.com/tools/validator/

Firebug
Firebug integrates with the Mozilla Firefox browser to offer excellent debugging,
editing, and profiling tools. Go to http://getfirebug.com/javascript.

JSLint
JSLint (http://www.jslint.com/), written by Douglas Crockford, analyzes your
JavaScript source code and reports potential problems, including both style conventions
and coding errors.

http://getfirebug.com/javascript
http://www.jslint.com/

Appendix B. JavaScript Quick Reference

Table B.1, Table B.2, Table B.3, and Table B.4 in this appendix contain a quick look-
up for some of the more commonly used elements of JavaScript syntax, along with
properties and methods for a selection of the built-in objects.

TABLE B.1 The JavaScript Operators

TABLE B.2 String Methods

TABLE B.3 The Math Object

TABLE B.4 The Date Object

Index

Symbols
$() function, 225
$(“”) wrapper, 233-234
$(document).ready handler, 233
$F() function, 225
&& (logical AND), 96
+ operator, 29
! character, 79

A
accessing

browser history, 55
classes with className property, 192-193
JSON data

eval() function, 153-154
native browser support, 154

accordion widget, 253-254
ActiveX objects, creating, 264
adding comments to code, 24-25
addTax() function, testing, 365-366
advantages

of JSON, 152-153
of OOP, 106

Ajax, 261-262
asynchronous requests, 265-266
browser support, 264
client-server interaction, 262-263
form submission, 268-270
implementing with jQuery, 266-270

ajax() method, 268
get() method, 267
load() method, 266-267
post() method, 267

XMLHttpRequest object, 263
ajax() method, 268
alert() method, 51-52, 343
AngularJS, 300-304

building an application, 305-308
directives, 302-304
filters, 304
ng- directives, 300-302
scopes, 302

animate() function, 173
animation

CSS3, 213-214
fading, 237
jQuery, 238-241
sliding elements, 237-238

anonymous functions, 110-111, 289-290
arguments

for constructor functions, 113-114
multiple arguments, passing to functions, 41
passing to functions, 40-43

arithmetic operators, 27-28
+ operator, 29
incrementing/decrementing value of variables, 27-28
modulus division operator, 27
precedence, 28

arrays
associative arrays, simulating, 158-159
creating, 81
initializing, 81-82
length property, 82
manipulating, 84-86
methods, 82-86

arrow functions, 289-290
<article> tag (HTML5), 168
<aside> tag (HTML5), 168
assigning values to variables, 25-26

associative arrays, simulating, 158-159
asynchronous requests (Ajax), 265-266
attaching event handlers to elements, 239-243
attr() method, 235
attributes (HTML5)

of <video> tag, 169
reading, 133-134

<audio> tag (HTML5), 171-172

B
background-origin property (CSS3), 208
background-size property (CSS3), 207
backgrounds, 207-209

multiple background images, 208-209
banner-cycling script, writing, 347-351
beginPath() method, 173
best practices for writing JavaScript code, 325-326, 329

commenting, 326-327
error handling, 335-338
feature detection, 333-334
graceful degradation, 329-330
naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

Boolean values, 75-79
negation operator, 79

border-radius property (CSS3), 206-207
box-shadow property (CSS3), 205
break command, 99
breakpoints, 353
browsers

Ajax support, 264
cookies, 273-274

deleting, 280-281
document.cookie property, 274

domain attribute, 276
escaping and unescaping data, 275
expires date, 276
limitations of, 274
path attribute, 276
reading, 280
secure flag, 276
testing, 281-284
value, 276
writing, 276-279

CSS3 vendor prefixes, 203-205
debugging tools, 344-347
ECMAScript 6 compatibility, 287
feature detection, 119-120
Google Chrome extensions, writing, 312-316

launching the extension, 315
manifest.json file, 316-317

history, accessing, 55
JavaScript console, 351-352

grouping messages, 352-353
opening, 344, 347-351

Mozilla Firefox, DOM Inspector, 134-147
child nodes, manipulating, 136-141
dynamic menu creation, 142-147
loading JavaScript files, 141-147
nodes, creating, 135-136

native browser support, accessing JSON data, 154
navigator object, 57-59
reloading current page, 57

building
AngularJS application, 305-308
extensions, 312-314

built-in objects, extending, 117-118

C
calculations, simplifying with Math object, 62-66

finding minimum and maximum, 62-63

rounding, 62
calling functions, 38-40
CamelCase convention, 25
canPlayType() method, 170
<canvas> tag (HTML5), 172-175
capabilities of JavaScript, 7
CDNs (Content Delivery Networks), jQuery, 232
Celsius, converting to Fahrenheit, 29-30
Changing Classes Using className listing, 192
character strings, assigning as value of variable, 26
child nodes, manipulating, 136-141
childNodes property, 126-129
classes, 288

accessing with className property, 192-193
className property, accessing classes, 192-193
clearRect() method, 174
client-side scripting, 6
closePath() method, 173
code

debugging, 341
alert() method, 343
breakpoints, 353
conditional breakpoints, 354-355
editor, selecting, 342-343
types of errors, 341-342
watch expressions, 355

libraries
Dojo, 223
jQuery, 224, 231
MooTools, 223
Prototype Framework, 223
prototype.js, 224-228
purpose of, 222
reasons for using, 221-222

refactoring, 363
writing, best practices, 325-326, 329

commenting, 326-327
error handling, 335-338
feature detection, 333-334
graceful degradation, 329-330
naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

combining
conditions, 96
JavaScript statements, 24

command chaining, 238-242
commenting, 24-25

best practices, 326-327
comparison operators, 90
concat() method, 74, 83
concatenating strings, 29
conditional breakpoints, 354-355
conditional statements

comparison operators, 90
if() statement, 89-90, 94-95
libraries, Yahoo! UI library, 223
logical operators, 96
switch statement, 95-96
testing for equality, 91-94
testing multiple conditions, 95

confirm() method, 52
const keyword, 290-293
constructor functions, 111-114

for-of construct, 294
content, separating from style with CSS, 186
controllers, 298
controlling lighting effects, 214-217
converting

Celsius to Fahrenheit, 29-30
CSS3 property names to JavaScript, 214

data serialization, 155
strings to numbers, 71

cookies, 273-274
deleting, 280-281
document.cookie property, 274
domain attribute, 276
escaping and unescaping data, 275
expires date, 276
limitations of, 274
path attribute, 276
reading, 280
secure flag, 276
testing, 281-284
value, 276

retrieving, 283
setting multiple values, 284

writing, 276-279
creating

arrays, 81
date object

with current date and time, 60
with given date and time, 60

gradients
linear gradients, 209-210
radial gradients, 210-212

image rollovers, 33-35
nodes, 135-136
objects, 107-114

anonymous functions, 110-111
constructor functions, 111-114
direct instances, 107-110
with JSON, 159-163

CSS (Cascading Style Sheets)
classes, accessing, 192-193
DOM nodes

style property, 188-191
stylesheets, 194-199

naming conventions, 191
separating style and content, 186
style declarations

syntax of, 186-187
where to place, 187-188

CSS3
background-origin property, 208
background-size property, 207
backgrounds, 207-209

multiple background images, 208-209
border-radius property, 206-207
box-shadow property, 205
gradients, 209-212
gradients, creating

linear gradients, 209-210
radial gradients, 210-212

lighting effects, controlling, 214-217
properties

converting to JavaScript, 214
setting with vendor prefixes, 215-218

text effects
text shadow, 212
word wrap, 213

transitions, 204, 213-214
vendor prefixes, 203-205

D
data serialization, 155
data types

Boolean values, 75-79
JSON, 157-158
numbers, 69-72

floating-point numbers, 70
integers, 70
NaN, 71

strings, 72-75
empty strings, 72

escape sequences, 72-73
dataTransfer property (HTML5), 176
Date object, 276

creating with current date and time, 60
creating with given date and time, 60
editing dates and times, 61
methods, 377

date picker widget, 255-256
debugging

browser debugging tools, 344-347
code, 341

alert() method, 343
breakpoints, 353
conditional breakpoints, 354-355
editor, selecting, 342-343
grouping messages, 352-353
types of errors, 341-342
watch expressions, 355

extensions, 315
Firebug, 371
JSLint, 371

decrementing value of variables, 27-28
deleting cookies, 280-281
detecting browser features, 119-120
direct instances, 107-110
directives (AngularJS), 302-304
disabling stylesheets (DOM object), 194-195
do...while statement, 98
document object (DOM), 11

reading properties of, 16-17
document.cookie property, 274
document.write() method, 15-16
Dojo, 223
DOM (Document Object Model), 10-13

browser support for, 11
Date object, 60-61

methods, 377
document object, 11

reading properties, 16-17
document.write() method, 15-16
getComputedStyle() method, 214-217
history object, 55
location object, 56-57
Math object, 62-66

finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62

navigator object, 57-59
nodeName property, 130
nodes, 123-130

childNodes property, 126-129
types of, 125-126
values, 129-130

object notation, 12-13
parentNode property, 129
scripting, 123
window object, 11
window.alert() method, 13-14

DOM Inspector, 134-147
child nodes, manipulating, 136-141
dynamically loading JavaScript files, 141-147
editing element attributes, 141
nodes, creating, 135-136

DOM Level 0, 10
DOM nodes

style property, 188-191
stylesheets, 194

enabling, disabling, switching, 194-195
selecting, 195-199

dot notation, 12-13

downloading
jQuery, 231-232

drag and drop
in HTML5, 175-178
with jQuery UI, 247-250

draggable attribute (HTML5), 175
drawing with <canvas> tag (HTML5), 172-175
dynamic menu, creating, 142-147

E
ECMA (European Computer Manufacturers Association), 8
ECMAScript 6, 287
editor program, selecting, 369-370
elements

attributes
editing, 141
reading, 133-134

selecting
with getElementsByTagName() method, 130-132
by ID, 54-55

empty strings, 72
enabling stylesheets (DOM object), 194-195
encapsulation, 118-119
error handling, 335-338
escape() function, 275
escape sequences, 41, 72-73
eval() function, 153-154
event handlers, 31-35

jQuery, 239-243
onClick event handler, 31-32
onMouseOut, 32-33
onMouseOver, 32-33

events
for drag and drop, 175-178
mouse events, creating image rollovers, 33-35

expires date (cookies), 276

exponential notation, 70
extending

objects with prototype, 114-115
extensions

debugging, 315
Google Chrome extensions, writing, 312-316
launching, 315
packaging, 321

external stylesheets (CSS), referencing, 187-188
externalizing scripts, 363

F
fading elements, 237
“falsy” values, 76
faulty program logic, 342
feature detection, 119-120, 333-334
<figcaption> tag (HTML5), 168
<figure> tag (HTML5), 168
file access in HTML5, 179-182
File API (HTML5), 179-182
fill() method, 173
filters (AngularJS), 304
Firebug, 371
flickr.com, 153
floating-point numbers, 70
<footer> tag (HTML5), 168
for loops, 98
for...in loops, 99-100
for-of construct, 294
forms, Ajax, 268-270
frameworks, 297-298. See also libraries

AngularJS, 300-304
building an application, 305-308
directives, 302-304
filters, 304
ng- directives, 300-302

scopes, 302
MVC architecture, 298

example of, 298
for web apps, 299-300

functions, 37
$(), 225
$F(), 225
addTax(), testing, 365-366
anonymous functions, 110-111
arrow functions, 289-290
calling, 38-40
constructor functions, 111-114
escape(), 275
eval(), 153-154
getCss3Property(), 218
isFinite(), 71-72
jsonParse(), 156
parseFloat(), 71
parseInt(), 71
passing arguments to, 40-43

multiple arguments, 41
returning values from, 42-45
sending messages with, 41-43
simplicity in, 363
spam detector, 76-78, 91-93
storing JavaScript in head section, 39-40
syntax, 38
variables

global, 47
local, 46
scope of, 45-47

wrapper function (jQuery), 233-234

G
Geany, 370
generating random numbers, 63
get() method, 267

getComputedStyle() method, 214-217
getCss3Property() function, 218
getData() method, 176
getElements() method, 226-228
getElementsByTagName() method, 130-132
global variables, 47
Google Ajax API CDN, 232
Google Chrome extensions, writing, 312-316

HTML file, 317-320
launching the extension, 315
manifest.json file, 316-317
packaging the extension, 321

graceful degradation, 329-330
gradients, 209-212
gradients, creating

linear gradients, 209-210
radial gradients, 210-212

grouping messages, 352-353

H
<header> tag (HTML5), 168
“Hello World!” example, 15-16
hide() method, 236
history object, 55
history of JavaScript, 8-9
HTML (Hypertext Markup Language), 5

separating style and content with CSS, 186
html() method, 234
HTML5, 167

drag and drop, 175-178
element attributes, reading, 133-134
file access, 179-182
local storage, 178-179
src attribute, 22-23
tags

<article>, 168

<aside>, 168
<audio>, 171-172
<canvas>, 172-175
<figcaption>, 168
<figure>, 168
<footer>, 168
<header>, 168
<nav>, 168
new tags, 168
<script>, 9-10, 21
<section>, 168
<summary>, 168
<video>, 168-170

HTML5 Drag and Drop listing, 176

I
if() statement, 89-90, 94-95
image rollovers, creating, 33-35
implementing Ajax with jQuery, 266-270

ajax() method, 268
get() method, 267
load() method, 266-267
post() method, 267

incrementing value of variables, 27-28
indexOf() method, 74, 83
inheritance, 115-117
initializing arrays, 81-82
innerHTML property, 54-55
installing

QUnit test suite, 363
instances, 106
integers, 70
Interacting with the Local File System listing, 181
interactions, 247-252

drag and drop, 247-250
resize, 251

sort, 251-252
interpreted languages, 9
isFinite() function, 71-72

J
JavaScript

adding to HTML documents, 22-23
applications, 311-312
capabilities of, 7
dynamically loading files, 141-147
“Hello World!” example, 15-16
history of, 8-9
new features

arrow functions, 289-290
classes, 288
const keyword, 290-293
for-of construct, 294
let keyword, 290-293
modules, 290
template strings, 293-294
transpilation, 294-295

statements, 24-25
combining, 24
commenting, 24-25

storing in head section, 39-40
validating, 356

jEdit, 369
join() method, 83
jQuery, 224, 231. See also jQuery UI

$(document).ready handler, 233
Ajax, implementing, 266-270
animation, 238-241

fading elements, 237
sliding elements, 237-238

attr() method, 235
command chaining, 238-242
downloading, 231-232

event handlers, 239-243
hide() method, 236
html() method, 234
page elements, selecting, 233-234
remote versions, 232
show() method, 236
text() method, 234-235
toggle() method, 236-237

jQuery UI, 245-246
interactions, 247-252

drag and drop, 247-250
resize, 251
sort, 251-252

ThemeRoller, 246
widgets, 253-258

accordion, 253-254
date picker, 255-256
tabs, 256-258

JSLint, 371
JSON (JavaScript Object Notation), 151

accessing data
eval() function, 153-154
native browser support, 154

advantages of, 152-153
associative arrays, simulating, 158-159
data serialization, 155
data types, 157-158
objects

creating, 159-163
manipulating, 161-163

parameter/value pairs, 152
security, 163
strings, parsing, 155-157
syntax, 152-153
website, 151

jsonParse() function, 156
JSON.parse() method, 154

JSON.stringify() method, 155

K
keywords

const, 290-293
function, 38
let, 290-293
null, 79
object literals, 79
prototype keyword

extending objects, 114-115
inheritance, 115-117

return, 42
undefined, 79
var, 25
with, 64

L
lastIndexOf() method, 74, 83
launching Google Chrome extensions, 315
length property, 82
let keyword, 290-293
libraries

Dojo, 223
versus frameworks, 298
jQuery, 224, 231

$(document).ready handler, 233
animation, 238-241
attr() method, 235
command chaining, 238-242
downloading, 231-232
event handlers, 239-243
hide() method, 236
html() method, 234
page elements, selecting, 233-234
remote versions, 232
show() method, 236

text() method, 234-235
toggle() method, 236-237

MooTools, 223
Prototype Framework, 223
prototype.js, 224-228

$() function, 225
$F() function, 225
Form object, 226
getElements() method, 226-228

purpose of, 222
reasons for using, 221-222
Yahoo! UI library, 223

lighting effects, controlling, 214-217
limitations of cookies, 274
linear gradients, 209-210
listings

Changing Classes Using className, 192
HTML5 Drag and Drop, 176
Interacting with the Local File System, 181
Moving a Ball Using <canvas>, 174
Selecting Stylesheets by Title, 197
Styling Using the DOM style Object, 190
Toggling Between Stylesheets Using the styleSheets Property, 199

load() method, 266-267
local files, accessing in HTML5, 179-182
local storage in HTML5, 178-179
local variables, 46
location object (DOM), 56-57
logical operators, 96
loops

do...while statement, 98
for loop, 98
for...in, 99-100
terminating, 99
while statement, 97

loosely typed languages, 69

M
manifest.json file for Google Chrome extension, 316-317
manipulating

arrays, 84-86
child nodes, 136-141
JSON objects, 161-163

markup languages, 5
Math object, 62-66

finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62

messages, sending with functions, 41-43
methods

ajax(), 268
alert(), 51-52
attr(), 235
concat(), 74, 83
confirm(), 52
for Date object, 377
document.write() method, 15-16
get(), 267
getComputedStyle(), 214-217
getElements(), 226-228
getElementsByTagName(), 130-132
hide(), 236
html(), 234
indexOf(), 74, 83
join(), 83
JSON.parse(), 154
JSON.stringify(), 155
lastIndexOf(), 74, 83
load(), 266-267
on(), 243

post(), 267
prompt(), 52-53
replace(), 74
serialize(), 226
setInterval(), 101-102
setTimeout(), 101
show(), 236
simplicity in, 363
slice(), 84
sort(), 84
sortable(), 251-252
splice(), 84-86
split(), 74-75
string methods, 375
substr(), 75
text(), 234-235
toggle(), 236-237
toLowerCase(), 75
toString(), 83
toUpperCase(), 75
window.alert() method, 13-14

Microsoft CDN, 232
minimum and maximum, finding, 62-63
models, 298
modules, 290
modulus division operator, 27
MooTools, 223
mouse events

drag and drop, 247-250
event handlers, 31-35

onClick, 31-32
onMouseOut, 32-33
onMouseOver, 32-33

image rollovers, creating, 33-35
Moving a Ball Using <canvas> listing, 174
Mozilla Firefox, DOM Inspector, 134-147

attributes, editing, 141
dynamically loading JavaScript files, 141-147
nodes

child nodes, manipulating, 136-141
creating, 135-136

multiline comments, adding to statements, 24-25
multiple arguments, passing to functions, 41
multiple conditions

testing, 95
MVC (Model-View-Controller) architecture, 298

example of, 298
for web apps, 299-300

N
naming conventions

CSS (Cascading Style Sheets), 191
naming variables, 26
NaN (not a number), 71
native browser support, accessing JSON data, 154
<nav> tag (HTML5), 168
navigating with location object, 56
navigator object, 57-59
negation operator, 79
ng- directives, 300-302
nodeName property, 130
nodes (DOM), 123-130

child nodes, manipulating, 136-141
childNodes property, 126-129
creating, 135-136
nodeName property, 130
parentNode property, 129
types of, 125-126
values, 129-130

Notepad++, 369
null keyword, 79
numbers, 69-72

floating-point numbers, 70
Infinity, 71-72
integers, 70
NaN, 71

O
object-oriented languages, 106
objects

ActiveX, creating, 264
creating, 107-114

anonymous functions, 110-111
constructor functions, 111-114
direct instances, 107-110
with JSON, 159-163

Date object, 276
methods, 377

date object
creating with current date and time, 60
editing dates and times, 61

encapsulation, 118-119
extending with prototype, 114-115
Form, 226
history object, 55
inheritance, 115-117
instances, 106
JSON, manipulating, 161-163
location object, 56-57
looping through, 99-100
Math object, 62-66

finding minimum and maximum, 62-63
generating random numbers, 63
with keyword, 64
mathematical constants, 64
properties, 376
rounding, 62

navigator object, 57-59
serializing, 155

syntax, 12-13
XMLHttpRequest object, 263

properties, 264-265
on() method, 243
onClick event handler, 31-32
onMouseOut event handler, 32-33
onMouseOver event handler, 32-33
OOP (object-oriented programming), 105-106

advantages of, 106
encapsulation, 118-119

opening
JavaScript console, 347-351

opening JavaScript console, 344
OpenOffice.org, 312
operators, 26-30, 373

arithmetic operators, 27-28
incrementing/decrementing value of variables, 27-28
modulus division operator, 27

comparison operators, 90
logical operators, 96
negation operator, 79
precedence, 28

P
packaging Google Chrome extension, 321
parameters

for box-shadow property (CSS), 205
JSON, 152
passing to functions, 40-43

parentNode property, 129
parseFloat() function, 71
parseInt() function, 71
parsing JSON strings, 155-157
passing arguments to functions, 40-43

multiple arguments, 41
pause() command, 170

play() command, 170
playing

sound, <audio> tag (HTML5), 171-172
videos

pause() and play() commands, 170
<video> tag (HTML5), 168-170

post() method, 267
precedence rules for operators, 28
prefixes, CSS3, 203-205
procedural programming, 105
progressive enhancement, 330-331
prompt() method, 52-53
properties

of arrays, length, 82
background-origin property (CSS3), 208
background-size property (CSS3), 207
border-radius property (CSS3), 206-207
box-shadow property (CSS3), 205
childNodes property, 126-129
CSS3

setting with vendor prefixes, 215-218
CSS3, converting to JavaScript, 214
document.cookie property, 274
innerHTML, 54-55
of Math object, 376
nodeName property, 130
of objects, reading, 16-17
parentNode property, 129
prefixed versions, 205
text-shadow (CSS3), 212
word-wrap (CSS3), 213
of XMLHttpRequest object, 264-265

properties (HTML5). See attributes (HTML5)
Prototype Framework library, 223
prototype keyword

extending objects, 114-115

inheritance, 115-117
prototype.js, 224-228

$() function, 225
$F() function, 225
Form object, 226
getElements() method, 226-228

purpose of libraries, 222

Q
QUnit test suite, 363-366

addTax() function, testing, 365-366
installing, 363
setup, 364-365

R
radial gradients, creating, 210-212
random numbers, generating, 63
reading

cookies, 280
date and time, 64-66
element attributes, 133-134
properties of document object, 16-17

refactoring code, 363
referencing external stylesheets (CSS), 187-188
reloading current browser page, 57
remote versions of jQuery, 232
replace() method, 74
resize interaction, 251
return keyword, 42
returning values from functions, 42-45
reusing code, 328-329
rounding with Math object, 62
runtime errors, 342

S
SciTE, 370

scope of variables, 45-47
scopes (AngularJS), 302
<script> tag, 9-10, 21

src attribute, 22-23
scripts, 6

array manipulation script, 84-86
banner-cycling script, writing, 347-351
client-side scripting, 6
DOM, 123
externalizing, 363
server-side scripting, 6

<section> tag (HTML5), 168
security, JSON, 163
selecting

editor program, 369-370
elements

with getElementsByTagName() method, 130-132
by ID, 54-55

program editor, 342-343
stylesheets (DOM object), 195-199

Selecting Stylesheets by Title listing, 197
selectors (jQuery), 234
sending messages with functions, 41-43
separating style and content with CSS, 186
serialization, 155
serialize() method, 226
server-side scripting, 6
setData() method, 176
setInterval() method, 101-102, 174
setTimeout() method, 101
setting up

QUnit test suite, 364-365
show() method, 236
simulating associative arrays, 158-159
slice() method, 84
sliding elements, 237-238

software frameworks, 297-298
sort interaction, 251-252
sort() method, 84
sortable() method, 251-252
sound, playing, 171-172
spam detector function, 76-78, 91-93
splice() method, 84-86
split() method, 74-75
src attribute, 22-23
statements, 24-25

combining, 24
commenting, 24-25
conditional statements

if() statement, 89-90, 94-95
switch statement, 95-96
testing for equality, 91-94
testing multiple conditions, 95

do...while statement, 98
while statement, 97

storing
data in HTML5, 178-179
JavaScript in head section, 39-40

strings, 72-75
concatenating, 29
converting to numbers, 71
empty strings, 72
escape sequences, 72-73
JSON strings, parsing, 155-157
template strings, 293-294

stroke() method, 173
style, separating from content with CSS, 186
style declarations (CSS)

syntax of, 186-187
where to place, 187-188

style property (DOM nodes), 188-191
stylesheets (DOM object), 194

enabling, disabling, switching, 194-195
selecting, 195-199

Styling Using the DOM style Object listing, 190
substr() method, 75
<summary> tag (HTML5), 168
switch statement, 95-96
switching stylesheets (DOM object), 194-195
syntax

CamelCase convention, 25
DOM object notation, 12-13
errors, 341
functions, 38
JSON, 152-153

T
tabs widget, 256-258
tags, HTML5

<article>, 168
<aside>, 168
<audio>, 171-172
<canvas>, 172-175
<figcaption>, 168
<figure>, 168
<footer>, 168
<header>, 168
<nav>, 168
new tags, 168
<script>, 9-10, 21
<section>, 168
src attribute, 22-23
<summary>, 168
<video>, 168-170

template strings, 293-294
terminating loops, 99
testing

cookies, 281-284

for equality, 91-94
multiple conditions, 95
unit testing

explained, 359-360, 362
QUnit test suite, 363-366
refactoring code, 363
simple example, 360-362

video format support, canPlayType() method, 170
text effects

text shadow, 212
word wrap, 213

text() method, 234-235
text-shadow property (CSS3), 212
ThemeRoller, 246
timers

setInterval() method, 101-102
setTimeout() method, 101

toggle() method, 236-237
Toggling Between Stylesheets Using the styleSheets Property listing, 199
toLowerCase() method, 75
toString() method, 83
toUpperCase() method, 75
Traceur, 294-295
transformations, 213-214
transitions, 204, 213-214
transpilation, 294-295
“truthy” values, 76

U
undefined keyword, 79
unescaping data, 275
unit testing

explained, 359-360, 362
QUnit test suite, 363-366

addTax() function, testing, 365-366
installing, 363

setup, 364-365
refactoring code, 363
simple example, 360-362

V
validating JavaScript, 356
validators, 370
values

assigning to variables, 25-26
of cookies, 276

retrieving, 283
setting multiple values, 284

“falsy,” 76
in JSON objects, 157-158
of nodes, 129-130
returning from functions, 42-45
“truthy,” 76

var keyword, 25
variables, 25-26

arrays
associative arrays, simulating, 158-159
creating, 81
initializing, 81-82
length property, 82
manipulating, 84-86
methods, 82-86

assigning values to, 25-26
global variables, 47
incrementing/decrementing value of, 27-28
local variables, 46
naming, 26
scope of, 45-47

vendor prefixes, setting CSS3 properties, 215-218
<video> tag (HTML5), 168-170
videos

playing
pause() and play() commands, 170

<video> tag (HTML5), 168-170
testing format support, canPlayType() method, 170

views, 298

W
W3C (World Wide Web Consortium), 8

validation services, 370
watch expressions, 355
WDG (Web Design Group), 370
web apps, MVC architecture, 299-300
WebM website, 169
websites

CDNs, 232
Dojo, 223
flickr.com, 153
jQuery, 224
JSON, 151
MooTools, 223
Prototype Framework, 223
prototype.js, 224
ThemeRoller, 246
Traceur, 294-295
Yahoo! UI library, 223

while statement, 97
widgets (jQuery UI), 253-258

accordion widget, 253-254
date picker, 255-256
tabs, 256-258

window object (DOM), 11
window.alert() method, 13-14
with keyword, 64
word wrap, 213
word-wrap property (CSS3), 213
wrappers, $(“”), 233-234
writing

banner-cycling script, 347-351

code, best practices, 311-312, 329
commenting, 326-327
error handling, 335-338
feature detection, 333-334
graceful degradation, 329-330
naming conventions, 327-328
progressive enhancement, 330-331
reusing code, 328-329
writing unobtrusively, 331-333

cookies, 276-279
Google Chrome extensions, 312-316

HTML file, 317-320
manifest.json file, 316-317
packaging the extension, 321

X-Y-Z
XHTML, 167
XMLHttpRequest object, 263

properties, 264-265
Yahoo! UI library, 223

Code Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	We Want to Hear from You!
	Reader Services
	Introduction
	Who This Book Is For
	The Aims of This Book
	Conventions Used
	Q&A, Workshop, and Exercises
	How the Book Is Organized
	Tools You’ll Need

	Part I: First Steps with JavaScript
	Hour 1. Introducing JavaScript
	Web Scripting Fundamentals
	Server- Versus Client-Side Programming
	JavaScript in a Nutshell
	Where JavaScript Came From
	The Browser Wars

	The <script> Tag
	Introducing the DOM
	The W3C and Standards Compliance
	The window and document Objects
	Object Notation

	Talking to the User
	window.alert�⠀)
	document.write�⠀)
	Reading a Property of the document Object

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 2. Writing Simple Scripts
	Including JavaScript in Your Web Page
	JavaScript Statements
	Commenting Your Code

	Variables
	Operators
	Arithmetic Operations
	Operator Precedence
	Using the + Operator with Strings

	Capturing Mouse Events
	The onClick Event Handler
	onMouseOver and onMouseOut Event Handlers

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 3. Using Functions
	General Syntax
	Calling Functions
	Putting JavaScript Code in the Page <head>

	Passing Arguments to Functions
	Multiple Arguments

	Returning Values from Functions
	Scope of Variables
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 4. DOM Objects and Built-in Objects
	Interacting with the User
	alert�⠀)
	confirm�⠀)
	prompt�⠀)

	Selecting Elements by Their ID
	The innerHTML Property

	Accessing Browser History
	Using the location Object
	Navigating Using the location Object
	Reloading the Page

	Browser Information—The navigator Object
	Dates and Times
	Create a Date Object with the Current Date and Time
	Creating a Date Object with a Given Date and Time
	Setting and Editing Dates and Times

	Simplifying Calculation with the Math Object
	Rounding
	Finding Minimum and Maximum
	Random Numbers
	Mathematical Constants
	The with Keyword

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part II: Cooking with Code
	Hour 5. Numbers and Strings
	Numbers
	Integers
	Floating-Point Numbers
	Not a Number �⠀一愀一)
	Using parseFloat�⠀) and parseInt�⠀)
	Infinity

	Strings
	Escape Sequences
	String Methods

	Boolean Values
	The Negation Operator �⠀℀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 6. Arrays
	Arrays
	Creating a New Array
	Initializing an Array
	Array Methods

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercise

	Hour 7. Program Control
	Conditional Statements
	The if�⠀) Statement
	Comparison Operators
	Testing for Equality
	More about if�⠀)
	Testing Multiple Conditions
	The switch Statement
	Logical Operators

	Loops and Control Structures
	while
	do ... while
	for
	Leaving a Loop with break
	Looping Through Objects with for ... in

	Setting and Using Timers
	setTimeout�⠀)
	setInterval�⠀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part III: Objects
	Hour 8. Object-Oriented Programming
	What Is Object-Oriented Programming?
	Object Creation
	Create a Direct Instance
	Anonymous Functions
	Using a Constructor Function

	Extending and Inheriting Objects Using prototype
	Extending Objects
	Inheritance

	Encapsulation
	Using Feature Detection
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 9. Scripting with the DOM
	DOM Nodes
	Types of Nodes
	The childNodes Property
	firstChild and lastChild
	The parentNode Property
	nextSibling and previousSibling
	Node Value
	Node Name

	Selecting Elements with getElementsByTagName�⠀)
	Reading an Element’s Attributes
	Mozilla’s DOM Inspector
	Creating New Nodes
	Manipulating Child Nodes
	appendChild�⠀)
	insertBefore�⠀)
	replaceChild�⠀)
	removeChild�⠀)
	Editing Element Attributes
	Dynamically Loading JavaScript Files

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 10. Meet JSON
	What Is JSON?
	JSON Syntax

	Accessing JSON Data
	Using eval�⠀)
	Using Native Browser Support

	Data Serialization with JSON
	JSON.stringify�⠀)

	JSON Data Types
	Simulating Associative Arrays
	Creating Objects with JSON
	Properties
	Methods
	Arrays
	Objects

	JSON Security
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part IV: HTML and CSS
	Hour 11. JavaScript and HTML5
	New Markup for HTML5
	Some Important New Elements
	Video Playback with <video>
	Testing Format Support with canPlayType�⠀)
	Controlling Playback
	Playing Sound with the <audio> Tag
	Drawing on the Page with <canvas>

	Drag and Drop
	Local Storage
	Working with Local Files
	Checking for Browser Support

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 12. JavaScript and CSS
	A Ten-Minute CSS Primer
	Separating Style from Content
	CSS Style Declarations
	Where to Place Style Declarations

	The DOM style Property
	Accessing Classes Using className
	The DOM styleSheets Object
	Enabling, Disabling, and Switching Stylesheets

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 13. Introducing CSS3
	Vendor-Specific Properties and Prefixes
	CSS3 Borders
	Create Box Shadows
	Rounding Corners with the border-radius property

	CSS3 Backgrounds
	The background-size Property
	The background-origin Property
	Multiple Background Images

	CSS3 Gradients
	Linear Gradients
	Radial Gradients

	CSS3 Text Effects
	Text Shadow
	Word Wrap

	CSS3 Transitions, Transformations, and Animations
	Referencing CSS3 Properties in JavaScript
	Converting CSS Property Names to JavaScript
	The DOM getComputedStyle�⠀) Method

	Setting CSS3 Properties with Vendor Prefixes
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part V: Using JavaScript Libraries
	Hour 14. Using Libraries
	Why Use a Library?
	What Sorts of Things Can Libraries Do?
	Some Popular Libraries
	Prototype Framework
	Dojo
	The Yahoo! UI Library
	MooTools
	jQuery

	Introducing prototype.js
	The $�⠀) Function
	The $F�⠀) Function
	The Form Object

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 15. A Closer Look at jQuery
	Including jQuery in Your Pages
	Download jQuery
	Use a Remote Version

	jQuery’s $�⠀搀漀挀甀洀攀渀琀).ready Handler
	Selecting Page Elements
	Working with HTML Content
	html�⠀)
	text�⠀)
	attr�⠀)

	Showing and Hiding Elements
	show�⠀)
	hide�⠀)
	toggle�⠀)

	Animating Elements
	Fading
	Sliding
	Animation

	Command Chaining
	Handling Events
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 16. The jQuery UI User Interface Library
	What jQuery UI Is All About
	How to Include jQuery UI in Your Pages
	Using the ThemeRoller

	Interactions
	Drag and Drop
	Resize
	Sort

	Using Widgets
	Accordion
	Date Picker
	Tabs

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 17. Ajax with jQuery
	The Anatomy of Ajax
	Introducing Ajax
	The XMLHttpRequest Object
	Different Rules for Different Browsers
	Methods and Properties
	Talking with the Server
	What Happens at the Server?
	Dealing with the Server Response
	But There’s an Easier Way, Right?

	Using jQuery to Implement Ajax
	load�⠀)
	get�⠀) and post�⠀)

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part VI: Advanced Topics
	Hour 18. Reading and Writing Cookies
	What Are Cookies?
	Limitations of Cookies

	The document.cookie Property
	Escaping and Unescaping Data

	Cookie Ingredients
	cookieName and cookieValue
	domain

	Writing a Cookie
	A Function to Write a Cookie
	Reading a Cookie
	Deleting Cookies
	Setting Multiple Values in a Single Cookie
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 19. Coming Soon to JavaScript
	Classes
	Arrow Functions
	Modules
	Using let and const
	Template Strings
	Access Arrays with for-of
	Transpilation
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 20. Using Frameworks
	Software Frameworks
	Why Use a Framework?
	Frameworks Are Not the Same as Libraries

	Model-View-Controller �⠀䴀嘀䌀) Architecture
	Models
	Views
	Controllers

	Using an MVC Framework for Web Apps
	The AngularJS Framework
	An Overview of AngularJS
	Including AngularJS in your page
	Extending HTML with ng- directives
	Scopes
	Directives
	Filters

	Building an AngularJS Application
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 21. JavaScript Beyond the Web Page
	JavaScript Outside the Browser
	Writing Google Chrome Extensions
	Building a Simple Extension
	Debugging the Extension

	Going Further
	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part VII: Learning the Trade
	Hour 22. Good Coding Practice
	Don’t Overuse JavaScript
	Writing Readable and Maintainable Code
	Use Comments Sensibly
	Choose Helpful File, Property, and Method Names
	Reuse Code Where You Can
	Don’t Assume

	Graceful Degradation
	Progressive Enhancement
	Separate Style, Content, and Code

	Unobtrusive JavaScript
	Leave That HTML Alone
	Use JavaScript Only as an Enhancement

	Feature Detection
	Handling Errors Well
	Using try and catch

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 23. Debugging Your Code
	An Introduction to Debugging
	Types of Errors
	Choosing a Programmer’s Editor
	Simple Debugging with alert�⠀)

	More Advanced Debugging
	The Console
	Grouping Messages
	Using Breakpoints to Halt Code Execution
	Conditional Breakpoints
	Launching the Debugger from Your Code
	Watch Expressions
	Validating JavaScript

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Hour 24. JavaScript Unit Testing
	What Is Unit Testing?
	Writing JavaScript for Unit Testing
	Refactoring Code

	The QUnit Test Suite
	Installing QUnit
	A Minimal QUnit Setup
	Retesting Our addTax�⠀) Function

	Summary
	Q&A
	Workshop
	Quiz
	Answers

	Exercises

	Part IX: Appendices
	Appendix A. Tools for JavaScript Development
	Editors
	Notepad++
	jEdit
	SciTE
	Geany

	Validators
	The W3C Validation Services
	Web Design Group �⠀圀䐀䜀)

	Debugging and Verifying Tools
	Firebug
	JSLint

	Appendix B. JavaScript Quick Reference

	Index
	Code Snippets

