
Karma-based
API on Apple
Platforms

Building Privacy Into iOS and
macOS Apps
—
Manuel Carrasco Molina

www.allitebooks.com

http://www.allitebooks.org

Karma-based API on
Apple Platforms

Building Privacy Into iOS and
macOS Apps

Manuel Carrasco Molina

www.allitebooks.com

http://www.allitebooks.org

Manuel Carrasco Molina
Düren, Nordrhein-Westfalen, Germany

Karma-based API on Apple Platforms: Building Privacy Into iOS and

macOS Apps

ISBN-13 (pbk): 978-1-4842-4290-2 ISBN-13 (electronic): 978-1-4842-4291-9
https://doi.org/10.1007/978-1-4842-4291-9

Copyright © 2019 by Manuel Carrasco Molina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4290-2.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4291-9
http://www.allitebooks.org

For the men of my life

My dad changed my life by having me realize many small
details when he was leaving us.

Steve is for many of us nerds like a common dad. I hope to
be one of the crazy ones.

David Servan-Schreiber wrote the most important book
I ever read in my life. Read it.

Manfred would be proud of me writing a book: a book,
on paper, from me, his digital friend.

It might sound weird to dedicate a book to people I lost, but
like I said when my 96-year-old grandma left us, “People
you love never really die — they live, inside of you”.

Those men left too young, but their time on this
planet was absolutely worth every second.

Thanks for building me.

Thanks to you also obviously, the woman of my life. Better
than any of the projects I will ever build, we built 4 amazing
beings. Thanks for letting me do all those crazy projects
those last 20 years of our common life.

I won’t be the 2019 version of me without you.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgement ��xvii

Introduction ���xix

Table of Contents

Chapter 1: Common API Elements ��1

Description Strings ���1

Authorizations Alerts ���3

Revocation of Allowances ���5

Always Check Authorization Status ���6

Ask Again ��7

All the Apps in the Settings ���9

Settings, General, Reset ��14

Review on the App Store ���15

Conclusion ��18

Chapter 2: Photos and Camera ���19

Full Access and Geolocation ���19

A Picture Worth 1000 Metadata ���20

Convenience vs� Privacy ��21

www.allitebooks.com

http://www.allitebooks.org

vi

Pick Only One or a Few Pictures ���22

Camera-Only Access ���24

Not for Your Simulator Yet ��26

Inside That info Dictionary ���26

Export Without Location? ��28

Write-Only Access ���28

Photos App Wants Access to Your Photo? ���32

Facial Recognition with Vision ��34

That Amazing TrueDepth Camera ��35

Conclusion ��36

Chapter 3: Location and MapKit ���39

What is Location on iOS? ��40

User Location ��41

Nothing Happens? ���43

When You First Start an App ��44

Always or When in Use? ��45

Provisional Always Authorization ���46

With Great Power… ��47

Core Location ��47

What Is a Coordinate? ���48

Geocoding and Decoding ��48

Show Me the Code ��51

Even Without Localization Services Enabled ���53

Fixed Location or Moving Location ���54

Elevation of Privileges ���55

Less Reasons to Use Always in iOS 13 ��57

Temporary Authorization iOS 13 ��57

Table of ConTenTsTable of ConTenTs

vii

MapKit Knows Your Country ��58

Note the Arrow ��59

One More Thing ���60

On the Mac ��62

Conclusion ��63

Chapter 4: Contacts ��65

The (Long) List of Properties ���65

Different Kinds of Developers ���66

The Good Developer ��67

The Bad Developer ��67

The Ugly Developer ��69

You Don’t Need to Ask Permission ��69

Select Multiple Contacts ��71

What Was That with Location? ��72

Managed Contacts ��74

On the Mac ��74

The Picker on the Mac ���76

Who’s Contact? My Contact! ���77

Conclusion ��78

Chapter 5: Calendar and Events ���79

The Models��79

Calendar Chooser ��81

What Have You Done? ���82

Geolocating Your Appointments ��83

What Exactly Is in the Structured Location? ��85

Table of ConTenTsTable of ConTenTs

viii

I’ll Show You Where You Were ���86

The Special Birthday Calendar ��88

EventKitUI Still Needs Access ���89

The List of Calendars ���91

The Event View Controller ��92

On the Mac ��94

Conclusion ��95

Chapter 6: Health and Fitness ��97

Adding the Framework ��97

Explain to the User ��98

Central Database ���98

The Core: Quantity & Unit ��99

The Source: Object Type ��99

The Stored Object ��99

All Properties Are Read-Only! ��99

Not Even in Your App’s Privacy Settings ��100

Getting the Permission ��100

Your Missing “me” Card from Contacts ��101

A Different Kind of Alert ��101

Proportional Collection ��105

A User Can Always Change His Mind in the Settings �����������������������������������107

Workouts — and Their Maps ��107

Deleting Objects ��113

Know Which Objects Were Deleted ��114

HealthKit on watchOS ���115

Requesting Access ��115

Fitzpatrick Skin Type ���117

Table of ConTenTsTable of ConTenTs

ix

Reproductive Health ��119

Sexual Activity ���119

Health Records ��120

Preparing Your Simulator ���121

Adding the Entitlements ��124

New Authorization Model ��125

The Full Monty ���129

Get Request Status ��131

The Argonaut Project ���132

Don’t Ask Too Much ���133

I’m Concerned About Preconditions, but… ���133

Apple Doesn’t Want Your Data ���135

Statistics ���136

Statistics Collection ���137

On the Mac ��137

Conclusion ��137

Chapter 7: Siri and Search ��139

The Machine Is Learning ���139

Suggestions ��140

Access to Your App ��141

Ask Again ���141

A New Capability ���143

Resolve ��146

Confirm, Optionally ��147

Handle ���149

Your App Has a Siri Menu… or Not ���150

Person ���152

A Connection to Your Contacts Database ��153

Table of ConTenTsTable of ConTenTs

x

Saving and Retrieving Contacts ��159

A Common Directory��160

Authentication! ��164

How to Fix This? ��165

NSUserActivity is Tracking You ��168

 Spotlight ��170

Proactive Suggestions ���170

The Call-Back ��171

So What Is a Shortcut?! ���172

The Siri Watch Face ��176

Relevant Shortcut ��177

Deleting Any Trace ��178

Spotlight ��178

NSUserActivity ���178

Intents ���179

Public Indexing ��179

Turning Off Siri ��180

Apps Using Your Data ��181

INInteraction and Custom Intents��182

Contact Integration ���185

AppleBot ��186

On the Mac ��186

Conclusion ��188

Chapter 8: HomeKit ���189

Smart Hack? ���189

Lights, Camera, Action ��190

Remotely? ��190

Table of ConTenTsTable of ConTenTs

xi

End-to-End Encryption ��192

The Key and the Permission ���193

The Home Manager and Simulator ���193

Name Your Home ���195

Rooms and Accessories ��196

Let’s Browse! ���196

HMAccessory ��198

Setup Code ��200

And in the Real World? ��201

Reachability ���202

Services and Characteristics: Bluetooth Anyone? ���203

Scenes and Automation ��205

User Management ���206

Presence ��207

Bridges ��207

Range Extenders ���208

Media Accessories ��208

Apple TV ��209

Siri on iOS ���209

On the Mac ��210

Cryptography and HAP ��212

Conclusion ��213

Index ���215

Table of ConTenTsTable of ConTenTs

xiii

About the Author

Manuel Carrasco Molina — better known as StuFF mc — started

programming with his C64 at age 11 in 1987. He entered professional

software development in 1997 and has been developing ever since. He

founded the first French podcast about Apple in 2005, and dove into

iOS development at the launch of the SDK in 2008. He ran ObjCGN.

com/SwiftConf.com from 2012 to 2017. He had the privilege of writing

Apps with Swift pre-1.0 at Seven Principles from 2014 on. They now run

the conference. From 2017 until 2019 Stuff worked at Certgate, a tech firm

specializing in security and privacy. In July 2019 he started working for

e.GO:Digital as Senior Lead Apple Technologist, building Apps around

Mobility. Although he likes Apple a lot, Stuff does prefer the environment

and ethics, so let him know if you need him as a regular iOS or macOS

Developer or to review a subject like Privacy or Energy Optimization. He

also speaks regularly at conferences about those subjects, and will be

happy to spread the word at any of your events. He has been involved with

the german Green Party since 2011, spent 4 years at the city council and

intends to stay at the crossing of politics, technology and activism. He feels

a tiny part of the people trying to protect the Hambach Forest and will keep

on fighting against big energy corporations for a greener future, which

makes him write a greener code.

xv

About the Technical Reviewer

Bruce Wade is a software engineer from British Columbia, Canada. He

started software development when he was 16 years old by coding his first

website. He went on to study Computer Information Systems at DeVry

Institute of Technology in Calgary, then to further enhance his skills he

studied Visual & Game Programming at The Art Institute of Vancouver.

Over the years he has worked for large corporations as well as several

startups. His software experience has led him to utilize many different

technologies, including C/C++, Python, Objective-C, Swift, Postgres, and

JavaScript. In 2012 he started the company Warply Designed to focus on

mobile 2D/3D and OS X development. Aside from hacking out new ideas,

he enjoys spending time hiking with his Boxer Rasco, working out, and

exploring new adventures.

xvii

Acknowledgement

I wouldn’t be writing a book on a series of Apple Technologies if Ben “The

Sheriff” hadn’t challenged me with his Mac in 1999, when I was still a

PC guy and Macs were mostly only for designers. He got me in love with

the Cupertino-based company. I wouldn’t have started Pomcast — the

podcast about Apple I started in 2005 — if it wasn’t for Vince and HpTroll.

From there I got to know and interview a bunch of awesome developers

like my very good friends Ken & Glen Aspeslagh (Ecamm); the magnificent

Jason Harris (of COTVNC fame); my preferred Bavarian, Ortwin Gentz

(FutureTap); as well as many awesome developers you’ll find in a

screenshot at the end of the chapter about Contacts.

Over the course of my career I’ve had several mentors. Denis was

probably the first one. We don’t agree much nowadays, but you were

important for me. Frans was the next one and boy was I not surprised

when I heard the news back in the day. More recently I’ve had two CTOs

named Andreas whom I always think of, as well as my great colleagues

from my two last companies: Seven Principles and Certgate.

Because this book is political and ethical I need to thank my friends

Todde, both Michaels, Antje, and Andreas as well as — obviously — the

set of amazing people defending the Hambach Forest. It was a smart idea

from Clumsy to settle there in 2012. Thanks Tim, thanks Jus, thanks all

the Hambis. 2019, Hambi Stays. It was mostly because of those folks that

I became vegan, and started to reconsider a lot of the world surrounding

us — also capitalism. Of course, without my political involvement for

the Greens in Germany I wouldn’t be interested in the ethics of IT, so I

obviously need to thank them and I will stay at this crossing of technology,

xviii

politics, and activism. Some of us need to shake up that sometimes so-slow

political area.

In a more anonymous way I want to acknowledge all the developers

working at Apple on the awesome set of API and Frameworks as well as

generally on the beauty and simplicity of the platform. It’s fascinating

how I haven’t been bored at all after 11 years — half of my career as a

developer — with UIKit and its brothers and sisters.

Finally, even though I’m not the biggest fan of Android, I have to

express my deep respect for Fairtrade, the relatively small company that

changed the whole industry. I’m sure Apple wouldn’t be what they are

without you or Greenpeace, and its “a greener Apple” form back in the day.

aCknowledgemenTaCknowledgemenT

xix

Introduction

More than a technical book, this is an ethical book. You’ll see a lot of Code

samples, discussions about APIs, and screenshots, but it’s not my intention

to cover every aspect of every API. We’ll only look at the parts that are

relevant to your privacy and that of users.

 The Importance of Privacy
I’m sure there are aspects of other platforms that are better than ours, but

everything I read seems to hint at a better respect for my privacy by Apple

than, say, Google.

The important part about this is that controlling the whole ecosystem

as Apple does is a big part of the challenge about privacy. As we will see,

they sadly still rely on other big companies for the servers — which really

annoys me — but in terms of software, hardware, and OS, they control it.

Or, at least, for the software, they control the ones they build. Yours, the

ones the third-party-developers build, they somehow control via the App

Store Review process, at least on iOS.

On the Mac it remains to be seen if the App Store will ever be

successful. I had big hopes in 2011 about this, and I would argue now that

it would be better for the privacy on your Mac. That being said, over 8 years

after the Mac App Store started, it still doesn’t have the success some of us

thought it would.

xx

I actually removed my own Mac apps from the App Store because I was

fighting for months with the review process1 but for various reasons (one

being that many things changed since I left), I’m considering updating

some of my apps2 or starting a new one to give it a chance again.

Let me finish by emphasizing again the importance of controlling the

whole chain. I’m a big fan (and a small investor) of Fairphone3, and I love

that this company that is willing to change the electronics world for the

better is still successful, while staying a small company in Amsterdam.

The problem with Fairphone is Android. The problem with Android,

privacy-wise, is Google. As one friend of mine says:

I would miss Photos (I don't want to give Google my photos),
iMessage (still no WhatsApp for me), Music, security, AirDrop,
how the phone works with my Mac, and so on. I cannot
change.4

I too am more confident having my Photos hosted at a company whose

business isn’t making money with advertising, but rather with over-priced

(for a reason) hardware. This cost is partly the price you pay for more

privacy. Decide if you want to pay for it or not.

Most likely you’re a developer if you bought this book, so you have

the advantage of knowing how most things work. You not only make

technical decisions, you also make ethical ones. At the end of the day, and

if a platform gives you the technical means to do so, you are responsible

for dealing with the private data of the user of an app (or indirectly of a

framework, for that matter). Some of the decisions you’ll need to make,

while others have been luckily made by Apple. In this book we will review

many details about how you can protect your user’s privacy but also what

you should keep in mind as a user.

1 And so I moved Disk Alarm to Paddle.com and simply removed the two others.
2 https://pomcast.biz
3 https://fairphone.com — As of 2019 still only selling in Europe though.
4 https://twitter.com/dasdom/status/1029626018196348928

InTroduCTIonInTroduCTIon

https://pomcast.biz/
https://fairphone.com/
https://twitter.com/dasdom/status/1029626018196348928

xxi

 My Privacy.app
To go along with this book, I wrote two sample apps, one for iOS and one

for macOS. The idea is to replicate many of the subjects that you can find

in Settings ➤ Privacy, with some sample code that illustrates what we

speak about in the book.

The iOS version displays a Table View with a list of themes covered

throughout the book (Figure 1). I then use some code, which allows me

to further develop it in words in the book (Figure 2). The source code for

this book is available on GitHub via the book’s product page, located at

www.apress.com/978-1-4842-4290-2.

Figure 1. A set of APIs I’m looking at in the book

InTroduCTIonInTroduCTIon

http://www.apress.com/978-1-4842-4290-2

xxii

The Mac version of the sample app is less detailed than the iOS

counterparts but it’s also independent (Figure 3). The API, however,

is luckily over the years more and more similar to iOS, which makes it

convenient.

Figure 2. The iOS Xcode project attached to this book

Figure 3. A simpler Mac app, which goes into some details as well

InTroduCTIonInTroduCTIon

xxiii

 Onward
The chapters in this book take a closer look at the different security options

given to you by the Apple frameworks, starting with a common part, and

then looking into the specifics of subjects like Photos, Location, Calendar.

I hope you enjoy the reading.

InTroduCTIonInTroduCTIon

1© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_1

CHAPTER 1

Common API Elements
There are a couple of things that are repeatedly the same in the different

frameworks that Apple provides.

In this chapter we’ll talk about description strings, the alerts shown by

the system — not you, the developer —, the possibility a user has to revoke

an allowance she previously gave you, and where this all happens in the

Settings app.

We’ll finish by speaking about the App Store review process, since

this is a common subject for the different topics — especially if you’re

developing for iOS where there’s barely another alternative.

 Description Strings
The Info.plist partly shown in Figure 1-1 is probably something you

know. This is where many things like the name of the app or the version

is stored. There is a whole list of privacy-related keys. This nice looking

version (in Xcode) will have a descriptive English text.

Figure 1-1. The Info.plist and its Photo Library usage description

2

Behind the scenes, as you can see in Listing 1-1, this .plist is

an XML file.

Listing 1-1. The XML That Is Used to Present the Previous List

<key>NSPhotoLibraryUsageDescription</key>

<string>To visualize your photos on a map</string>

If you don’t do this, in most cases, you will terribly and sadly crash

and see that in your Xcode console. If you’re not attached to the debugger,

you’ll most probably see nothing, so be sure to insert this in your plist.

App has crashed because it attempted to access privacy-
sensitive data without a usage description. The app’s Info.plist
must contain a UsageDescription key with a string value
explaining to the user how the app uses this data.

Also, this isn’t only necessary for your app to successfully run; it’s also

an obligation from Apple.

Supply a purpose string (sometimes called a usage description
string) in your app’s Info.plist file that the system can present
to a user explaining why your app needs access.

 — Protecting the User's Privacy1

Also in this document from Apple you’ll find the list of Description

Strings keys, but I’ll spare you the round trip and list some of it here as well.

• NSBluetoothPeripheralUsageDescription

• NSCalendarsUsageDescription

• NSCameraUsageDescription

1 https://developer.apple.com/documentation/uikit/core_app/
protecting_the_user_s_privacy

Chapter 1 Common apI elements

https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy
https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy

3

• NSContactsUsageDescription

• NSHealthShareUsageDescription

• NSHealthUpdateUsageDescription

• NSHomeKitUsageDescription

• NSLocationWhenInUseUsageDescription

• NSLocationAlwaysUsageDescription

• NSLocationAlwaysAndWhenInUsageDescription

• NSMicrophoneUsageDescription

• NSMotionUsageDescription

• NSAppleMusicUsageDescription

• NSPhotoLibraryUsageDescription

• NSRemindersUsageDescription

• NSSiriUsageDescription

• NSSpeechRecognitionUsageDescription

• NSVideoSubscriberAccountUsageDescription

Don’t be surprised if not all the keys are listed here. I found other ones

not listed here. My guess is that Apple doesn’t update this document each

time they add support for a key.

 Authorizations Alerts
Most APIs that are related to privacy on iOS will present a

UIAlertController that comes from the system, similar to what is shown

in Figure 1-2.

Chapter 1 Common apI elements

4

DetectLocation is an app built by the amazing Felix Krause,2 which

inspired me a lot to spend more time in the field of privacy on Apple Platforms.

This kind of system alert is what Steve Jobs meant3 in 2010 when he said:

Before any app can get location data we don’t make it a rule
that the developers must put up a panel and ask because they
might not follow that rule. They call our location services and
we put up the panel, saying “this app wants to use your loca-
tion data, is that OK with you?”

So, the very first time your app is going to call the code in Listing 1-2,

this panel will show up, and you don’t get to decide.

Listing 1-2. The Necessary Code for Asking the System for

Permission to Access the User’s Photo Library

PHPhotoLibrary.requestAuthorization { status in

 switch status {

 case .authorized:

2 http://krausefx.com/privacy is an amazing resource for checking iOS’s privacy.
3 https://esquire.com/uk/latest-news/a19614236/steve-jobs-warned-us-
all-about-the-facebook-data-scandal· https://youtu.be/39iKLwlUqBo?t=83

Figure 1-2. The app called “DetectLocation” will show this alert to
the user as soon as the developer uses the corresponding code

Chapter 1 Common apI elements

http://krausefx.com/privacy
http://esquire.com/uk/latest-news/a19614236/steve-jobs-warned-us-all-about-the-facebook-data-scandal
http://esquire.com/uk/latest-news/a19614236/steve-jobs-warned-us-all-about-the-facebook-data-scandal
https://youtu.be/39iKLwlUqBo?t=83

5

 case .denied:

 case .notDetermined: // User will make a choice

 case .restricted: // Parental control?

 }

}

The answer to that request is in the call-back, and by analyzing the

status variable you will know what you can and cannot do.

 Revocation of Allowances
If you’d run your code without this authorization you’d see (as a developer)

the message in Listing 1-3 in your console.

The previously mentioned authorization status is an enum described in

Listing 1-4 (see how CNAuthorizationStatus and PHAuthorizationStatus

are the same).

Listing 1-3. The Console Message Appearing When a Developer

Forgot to Ask for Permission

[Contacts] Access to Contacts denied with error:

Error Domain=CNErrorDomain Code=100 "Access Denied"

This application has not been granted permission to access Contacts.

Note In some cases, you won’t even have a nice message in the
console but instead the app will crash. We’ll see that later and
it’s perfectly fine for apple to do so. You as a developer forgot to
implement something, for which no nice user interface should be
displayed. When you develop a framework and a fatal error comes
because the user (developer) of your framework has wrongly used it,
feel free to crash as well.

Chapter 1 Common apI elements

6

Listing 1-4. The Statuses that Are Used in Many APIs, like Contacts

public enum CNAuthorizationStatus : Int {

 case notDetermined // User has not made a choice

 case restricted // Application not authorized

 case denied // User explicitly denied

 case authorized // Application is authorized

}

 Always Check Authorization Status
The problem is that once the user has made a choice (and for example

authorized the app to access the data), either the user or a system like an

MDM4 might close the door again afterwards.

What it means for you as the developer of an app accessing data is that

you should never rest on your laurels, and each time you need to access

the data, you should check if you still have the permission to do so.

You won’t always crash if you don’t do so, but you just won’t

have access to the data you think you have access to, and I’ll let your

imagination be filled with a few nils, nulls, NSNulls, and the like.

One technique I use — displayed in Listing 1-5 — is that I check the two

statuses, which means I’m either already authorized or it’s going to be the first

time I ask. These are, as of iOS 12 and macOS 10.14, the only two good statuses.

The two others (denied or restricted) aren’t much of a great thing

for you the developer, so you should display a message (worst case a

UIAlertController, best case some graphic with text) telling the user you

can’t fulfil your task until they (or their administrator) decides whether or

not the app is allowed to access the data.

4 Mobile Device Management: A server side architecture that controls the mobile
devices in an enterprise, usually. It might also be used for parental control, for
example. Speaking of which, the built-in parental controls on Apple devices act
the same.

Chapter 1 Common apI elements

7

Listing 1-5. The Code You Might Use to Check the Good or Bad

News for Being Able to Access the Data

if [. authorized, .notDetermined].contains(

 CNContactStore.authorizationStatus(for: .contacts)) {

 // You can proceed and/or ask for the first time

} else {

 // No access until some user/admin action happens

}

Apple mentions5 another approach in the documentation, with the

example of capturing Audio or Video:

Always test the AVCaptureDevice authorizationStatus(for:)
method before setting up a capture session. If the user has not
yet granted or denied capture permission, the authorization
status is AVAuthorizationStatus.notDetermined. In this case,
use the requestAccess(for:completionHandler:) method to tell
iOS to prompt the user.

This is surely an even better approach, but the very important thing

to understand is the difference between what you can and cannot do as a

programmer. One of the reasons I also ask (requestAccess) in the case of

.authorized is that I’ve had bad experiences in the past where it said it is

authorized, but in fact the question/alert hadn’t come yet.

 Ask Again
What do you do exactly when the user decides to deny you access? By all

means you should display something, where you can’t display the actual

data (contact, photo, current location, …). But as shown in Figure 1-3,

5 https://developer.apple.com/documentation/avfoundation/cameras_and_
media_capture/requesting_authorization_for_media_capture_on_macos

Chapter 1 Common apI elements

https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/requesting_authorization_for_media_capture_on_macos
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture/requesting_authorization_for_media_capture_on_macos

8

if you want to give your app more of a chance to do something, you can

also add a button that will exit the app while leaving a handy “Back” button

in the top left corner of the screen, as shown in Figure 1-4.

That button (Give Permission), when tapped, will call the code in

Listing 1-6, which will then display the Settings while having a Back button

like in Figure 1-4.

Listing 1-6. Open the iOS Settings at the Right Location

@IBAction func givePermission() {

 if let url =

URL(string: UIApplicationOpenSettingsURLString) {

 UIApplication.shared.open(url)

 }

}

Note as of now, we’ll use the demo app built to demonstrate the
different options the apI gives us. the app called “my privacy”
reflects many of the user interfaces found in the settings of your
iphone.

Figure 1-3. Provide a user interface to redirect the user to the privacy
settings

Chapter 1 Common apI elements

9

That Ask Again section can’t be finished without remembering

another quote from that same previously mentioned interview at the D8

Conference in 2010.

“Ask them. Ask them every time. Make them tell you to stop
asking them if they get tired of you asking them. Let them know
precisely what you’re going to do with their data."

 — Steve Jobs

 All the Apps in the Settings
There are two ways to see the privacy settings of an app. The first, as

displayed in Figure 1-5, is by first entering the general Privacy Menu of the

Settings app.

At the time of this writing, in iOS 11, 12 or 13, it’s the last item of the

third section if you don’t count the iCloud section, which I’d refer as

section 0 because I’m a developer.

Figure 1-4. At the top left corner of your iOS Device you’ll find the
back button

Chapter 1 Common apI elements

10

Once you tap on the Privacy row you’ll see a list of all the services

for which Apple has thought about protecting you, as you can see in

Figure 1- 6, which is the iPad version of the screenshot so you can see the

complete list.

Figure 1-5. The general Privacy section, which lists all apps

Chapter 1 Common apI elements

11

Once you tap, for example, Contacts, you’ll see a list of apps that

are trying to use the Contact API. Figure 1-7 shows what happens when

absolutely no apps on your phone have tried to access your contacts yet.

Figure 1-6. The list of services that can be covered by iOS

Figure 1-7. If no applications have requested access to your Contacts
database yet, iOS will have nothing to show

Chapter 1 Common apI elements

12

However, once an app has asked for access to, for example, your

location, then, it will appear in the list, as shown in Figure 1-8.

There is another way of accessing all this information, and that’s what

we show in Figures 1-9 and 1-10. The first time you have a cleanly installed

iOS device, the Settings app’s Table View stops after Game Center, or, if you

are a developer, after Developer.

Figure 1-8. Before doing this screenshot we had already started the
Calendar app, which, when starting, asks for permission to use our
location

Chapter 1 Common apI elements

13

The moment you install a third-party app (and by that we also count

apps from Apple, e.g., Numbers), you’ll see a new (a last) section listing

those apps that aren’t system apps.

The settings.bundle discussion is out of scope, but it’s basically a way

for an app to have its own settings menu. It does not have much to do with

privacy, although you sure could have privacy-related internal decisions

in your app listed here (e.g., reading only some groups of contacts) but

nothing API-wise would force you to respect this.

Figure 1-9. After the Game Center item, potentially a Developer item
(which isn’t on a normal user’s device), if you’ve already used an API
that have a setting to be displayed, or if you have a settings.bundle,
you’ll see its own section.

Chapter 1 Common apI elements

14

Before I was asked about the contacts, not even the Siri & Search menu

item would be reachable there, because My Privacy wouldn’t appear in the

list after (in our case) Developer.

 Settings, General, Reset
By now, if you were to do a simple iOS app and start it the first time, you’d

see an authorization request, as we mentioned. Then if you want to test

how this System request came about, you’d think you just need to delete

the app.

You’ll be surprised to not see the system request again and find in the

Settings of the app (or in the Privacy section) the same value you once had set.

This is because authorization requests are preserved, much like the

keychain elements when you delete an app.

If you want to reset its value and see the system request again, you’ll

have to reach the screen shown in Figure 1-11, which is in the Settings app

under General, Reset and then tap on Reset Location and Privacy.

Figure 1-10. Once tapped on the My Privacy icon (which is my Demo
app for the book), you can see I was asked for access to Contacts

Chapter 1 Common apI elements

15

Don’t be fooled by the noncoherent text that only speaks about

location warnings; this works just fine, for example, with Photo Library

permissions.

 Review on the App Store
No matter what you program, if you release on the App Store (or in some

circumstances on TestFlight6), you’ll be subject to App Store review.

This might be a pain for the developer, but in most of cases this is a

very good thing for the user. If you are reading this book, it probably means

you are concerned about privacy, but imagine the number of apps out

there that are not concerned at all with that matter.

6 https://developer.apple.com/testflight is Apple’s testing platform where
you can deploy builds of your app to beta testers or at a larger scale for apps you
don’t want on the App Store, or to test them before they go on the App Store.

Figure 1-11. The only way to see those system alerts again if you need
to test your code as a developer or see the question again as a user

Chapter 1 Common apI elements

https://developer.apple.com/testflight

16

The App Store Review Guidelines7 not only have a whole section about

privacy, they also refer to it in the Kids Category section.

You should also pay particular attention to privacy laws
around the world relating to the collection of data from chil-
dren online. Be sure to review the Privacy section of these
guidelines for more information.

I’ve done an app for kids in the past. It’s a pain to have to deal with the

privacy, but it’s a really good thing.

Reading at least the part on privacy will give you great links to further

reading like Protecting the User’s Privacy.8 There are also some parts that

I’d like to highlight here. The first one corresponds to a subject I touched

on already in a previous section.

Explain its data retention/deletion policies and describe how a
user can revoke consent and/or request deletion of the user’s data.

It’s also interesting to see a part about GDPR9 there. Although this is

only for your users residing in the European Union, it’s a good idea — and

if fact what Apple does — to practically apply GDPR to all your users, no

matter where they live.

There is a bit about always trying to find an alternative experience,

which I really like:

Where possible, provide alternative solutions for users who
don’t grant consent. For example, if a user declines to share
Location, offer the ability to manually enter an address.

Sure, it means more work for a developer — and a designer — but it

also means more potential customers for your app. I’m the example of

7 https://developer.apple.com/app-store/review/guidelines
8 https://developer.apple.com/documentation/uikit/core_app/
protecting_the_user_s_privacy

9 https://www.eugdpr.org

Chapter 1 Common apI elements

https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy
https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy
https://www.eugdpr.org

17

the consumer who rejects most apps that want access to my Contacts

database. If you provide me a way to save contacts in-app, without having

access to my Contacts, then I’ll be a happy customer of your app.

If, on the other hand, you don’t provide that option and simply don’t

allow me to use your app, there’s a good chance I’ll not only not use the

app but also speak badly about it around me. It’s a good idea to spare some

bad publicity by working a little bit harder.

Some of the paragraphs are more explicit than others:

(vi) Developers that use their apps to surreptitiously discover
passwords or other private data will be removed from the
Developer Program.

This is the whole point of doing an app review by humans: those things

can’t really be checked by a computer — at least at this state of artificial

intelligence.

Some of the points you really hope — as a privacy evangelist — will

evolve, because they’re not strict enough.

Data collected from apps may only be shared with third par-
ties to improve the app or serve advertising.

Time will tell if Apple will in the future completely ban advertising

from its platform. Some parts of this Guideline are so impossible to check

that you wonder if they only wanted to fill the paper.

Do not use information from Contacts, Photos, or other APIs
that access user data to build a contact database for your own
use or for sale/distribution to third parties, and don’t collect
information about which other apps are installed on a user’s
device for the purposes of analytics or advertising/marketing.

I don’t think there’s a way to check what a company does with

your data, once it’s in their hands. The traceability of your data is very

complicated. This is also why I recommend trying to use an e-mail scheme

Chapter 1 Common apI elements

18

like, for example, mail+website@example.com10 so you can trace that

website where you gave your mail@example.com e-mail address.

 Conclusion
Learning a new language like Italian is easier if you already speak French

and Spanish. Learning Swift is easier if you know C or Ruby already.

Learning a new Privacy-related API is very similar, since the concepts

barely change. Most of the APIs use the concept of the Authorization enum

with four values, and what really does change is the kind of access you want.

We’ll see later, for example, that a nuance was introduced a few years

ago between knowing your location all the time or only when the app is in

the foreground.

Privacy evangelists like me will probably want to have even more

fine-grained control, but I also understand that I don’t want the privacy

authorizations to be too much in the way of the user.

This is really a big challenge; and never forget that if some of the

privacy that Apple requires isn’t enough for you, you are welcome to add a

bit more fine grain. The problem with it is the exact same problem as with

anything that is voluntary: there are barely any controls to ensure that you

did it the right way.

If, on the contrary, you think Apple does too much about privacy,

I’m afraid you are out of luck. For Apple, the user will always be a priority

rather than the developer, and this is a good thing in my opinion.

10 Most e-mail providers will allow use of the + sign and the e-mail will land at
the e-mail address before the + sign. This allows you to identify who gave your
address or who got it stolen. Sadly, some apps and websites don’t allow this
usage. You should always accept “+” as a symbol pre-@ in the e-mail. Whether
this is actually supported by the user’s e-mail provider shouldn’t be your
concern.

Chapter 1 Common apI elements

19© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_2

CHAPTER 2

Photos and Camera
This chapter discusses the different options a developer and user have to

access the photo library as well as use the camera. Because a picture also

carries a lot of Metadata, we’ll spend some time looking at those.

We will look at the out-of-process picker as well as analyze which

information is in the dictionary received for each picture.

The second part of this chapter looks at technologies like Photos

extensions, and facial recognition.

 Full Access and Geolocation
From a user’s perspective, the “would like to access your Photos” request

should be alarming.

Literally, it should be shown with a big red stop sign. Depending on

what you answer — and what the developer asked — it means you’re

giving away all your images.

If the PHPhotoLibrary.requestAuthorization is accepted by the user,

or postaccepted afterward in the settings, the developer can do a lot.

Of course, they can display the images, change them however they

want, even upload them, but the Photo Library (meaning the photos in

your Photos.app) doesn’t only contain raw JPEG/HEIFF data.

20

 A Picture Worth 1000 Metadata
Metadata is added information. A picture often refers to it more specifically

as EXIF (exchangeable image file format),1 and the example shown in

Figure 2-1 displays the location where the pictures where taken.

If you know a little bit about how MapKit and PHAsset work, it’s trivial

to write the Model in Listing 2-1.

In a nutshell, it uses the location (and to some extent, creationDate)

that a picture has. The latter will always be present, whereas the

Figure 2-1. Using the geolocation part of pictures you take on your
iPhone

1 Exchangeable image file format: https://en.wikipedia.org/wiki/Exif

Chapter 2 photos and Camera

https://en.wikipedia.org/wiki/Exif

21

geolocation will only be present if you accepted the authorization (yes,

again) the first time you used the camera on your device. You can also turn

it off in the Privacy/Location Services of your app, as shown in Figure 2-2.

 Convenience vs. Privacy
Maybe you’ve heard about convenience over security. This is the same. It’s

more of an advantage that my pictures are geotagged, or face recognized.

Remember when we used to have a folder called Spain, another one called

Steve, and so on? Computers — in some cases more specifically, machine

learning — are taking away a lot of the boring work (or did you enjoy

creating those folders and moving files in them) but it’s important to think

about to which app you’d want to grant that freedom.

Listing 2-1. Adding This Image to the Map Is Enough for it to

Appear Placed and with the Date as a Title

class Image: NSObject, MKAnnotation {

 var asset: PHAsset

 var dateFormatter: DateFormatter

 init(asset: PHAsset, dateFormatter: DateFormatter) {

 self.asset = asset

 self.dateFormatter = dateFormatter

 super.init()

 }

Figure 2-2. Not showing “Never”? Your pictures are geotagged

Chapter 2 photos and Camera

22

 var coordinate: CLLocationCoordinate2D {

 get { return asset.location!.coordinate }

 }

 var title: String? {

 get { return

 dateFormatter.string(from:

 asset.creationDate!)}

 }

}

 Pick Only One or a Few Pictures
There are many cases where all you want is the ability for an app to browse

your pictures while not having control of them. Imagine, for example,

being able to select an avatar for your preferred social network. If this

social network understands anything about privacy, it shouldn’t ask for full

control of your Photo Library.

Instead, it could use the UIImagePickerController2 API, which is

demonstrated in Listing 2-2, by clicking Pick in the Demo App, instead of

Allow. I’m also showing you what I mean with those buttons in Figure 2-3.

Listing 2-2. The User Decides Which Picture They Give to the App

let picker = UIImagePickerController() // Out of Process!

picker.sourceType = .photoLibrary // or .camera

picker.delegate = self

present(picker, animated: true) { }

2 This API is in UIKit, so you don’t even need to add/import the Photos framework
to use it.

Chapter 2 photos and Camera

23

func imagePickerController(

 _ picker: UIImagePickerController,

 didFinishPickingMediaWithInfo info:

 [UIImagePickerController.InfoKey: Any]) {

 print(info)

}

If the user instead taps Pick, they won’t see the system request because

the out of process picker is used.

Be aware that you need to use NSPhotoLibraryUsageDescription in

your Info.plist, as mentioned in Chapter 1.

The App Store Review Guidelines3 encourage their usage, but they are

sadly not yet available for each API.

Figure 2-3. The user just tapped Allow, which uses the
requestAuthorization API and thus shows the corresponding
description from the Info.plist.

3 https://developer.apple.com/app-store/review/guidelines

Chapter 2 photos and Camera

https://developer.apple.com/app-store/review/guidelines

24

Where possible, use the out-of-process picker or a share sheet
rather than requesting full access to protected resources like
Photos or Contacts.

Note Before ios 11, the image picker wasn’t out-of-process. It
means it was showing the same “Would like” alert seen in Figures 2- 3
and 2-4. this book assumes you’re at least developing for ios 11, at
best for ios 12 or even 13; but if you develop for an earlier ios, don’t
be surprised.4

 Camera-Only Access
Once you understand how the picker works, it’s relatively trivial to use it

for the camera instead of the photo library. Be aware though that these

are two different permissions, so you’ll need NSCameraUsageDescription

instead and .camera as a type.

The first one goes in the info.plist and the second is the only line

you need to change from Listing 2-2.

4 The general recommendation for a developer working with Apple technologies is
to support the “-1” Operating System. It means if iOS 13 is the current system, you
should support iOS 12. Of course, if you have already an app supporting iOS 10
you don’t need to remove its support, but remember that users can always access
old versions of your app. My personal decision, whenever I develop a new app, is
to support only the current OS, even if I release the app the day the OS is released.
It allows you to use the latest APIs and Apple will be more likely to feature you.
One could argue that it’s ethically better to support old devices but you also must
think about the number of devices you’d need to test.

Chapter 2 photos and Camera

25

The call-back function imagePickerController is the same, since at

the end of the day you’ll get an image the same way as if you selected it.

Figure 2-4 shows the kind of system request access that comes after

the camera UI has been presented. Although it’s the same picker, it makes

sense for it to ask for permission for the camera that will produce a picture

the app will have access to. But more importantly, it will save this image to

your library, so at the bare minimum it would need write-only access. The

.photolibrary version of this code will make it clear to the user that the

app will have access to whatever picture they select.

The weird part about this mechanism of first showing the UI and then

asking is that if the user says Don’t Allow, the camera interface stays but

the picture is obviously black. If you can see the log, you’ll see:

This app is not authorized to use Back Dual Camera.

Figure 2-4. First the user interface appears and then the question is
asked

Chapter 2 photos and Camera

26

This is on my iPhone X. If you change to the front camera, you’ll see a

similar message about the front camera. As you know by now, I can’t ask

the user again (as a developer), so it’s only when this user goes into the

settings and moves the switch of Allow My Privacy to Access Camera to ON

that it’ll work again.

It’s easy to complain, but that’s without remembering that such view

controllers provided by Apple are simplifications of usage of another API

alternative. They are really useful in many ways and spare you a lot of

development time. If you need more control, though, there’s always a way

to reconstruct those UIs in a more custom manner for your app.

 Not for Your Simulator Yet
I like to work in the simulator because it’s convenient. At one point, sure,

you do have to intensively test on the device, but in most cases, it then

works as expected. The simulator doesn’t simulate everything, though.

Camera support, much like Bluetooth support, is something the simulator

doesn’t have.5

 Inside That info Dictionary
First of all, please note that we will use the newly introduced

UIImagePickerController.InfoKey that arrived with Swift 4.2.

In the past, for code written with Xcode up until 9.4.1 I’d have

referred to string constants like UIImagePickerControllerImageURL, but

nowadays we’ll simply use the shorter version because the signature of

didFinishPickingMediaWithInfo isn’t using [String:Any] anymore.

5 Or doesn’t have anymore, in the case of Bluetooth. The first iterations of Core
Bluetooth worked in the simulator, using the Mac’s Bluetooth. Camera Support
should work with the Mac Camera as well, so go ahead and write about it at
https://feedbackassistant.apple.com.

Chapter 2 photos and Camera

https://feedbackassistant.apple.com

27

So instead of info[UIImagePickerControllerImageURL], we now use

info[.imageURL]. There are different ways to access this picture now and

I’ll refer to some.

.imageURL

file:///path/to/F54AF01F-C12F-4DE9-9266-06D2DD799C05.jpeg

This is a direct file path to an image file. You use this with any API able

to use a file URL: for example, Data(contentsOf: url) or a better (async)

version of it. However, this isn’t a very useful example because you’ll see a

way to have a UIImage and from there you could simply use pngData() or

jpegData(compressionQuality:).

.phAsset

Enter the wonders of PHAsset and use any of its properties, like

.location for example.

Note that these wonders can only be entered if you previously have
been given access to the library. I know it kind of defies the purpose
of the picker, so I wrote a bug report about it. It’s also confusing
because the old UIImagePickerControllerReferenceURL,
which we’re not supposed to use anymore, will still give an assets-
library:// UrL…

.originalImage

<UIImage: 0x6040002a79e0>

 size {4288, 2848} orientation 0 scale 1.000000

These are probably the most used cases. In an app, as a developer, you

either want the UIImage directly or its data, in case you want to upload it to

your server.

Chapter 2 photos and Camera

28

Note that I’m not saying you should upload an image that belongs to
a user to your server. the technical reality, though, is that as soon as
the user gave access to this picture, the developer can’t be stopped
from doing so.

Also, check if there’s an .editedImage before using the original one. Be

aware that this will only work if you specified .allowsEditing = true.

 Export Without Location?
For whatever reason, Apple seems to think it’s perfectly fine to let the GPS

information of a photo be shared on iOS, whereas they give the user of the

Photos app on the Mac that decision (Figure 2-5).

It’s on by default but should you uncheck it, that information will not

only be removed before the export, it will also be respected by other APIs.

 Write-Only Access
If your app doesn’t need to get access to the user’s library but would still

like to save an image (e.g., downloaded from the web or built into the app)

to her Camera Roll,6 you can use the code in Listing 2-3. You can tell that

Figure 2-5. In the Photos.app on your Mac, you can choose not to
export the location (GPS) information. On iOS it will — if there’s any
— always be exported.

6 When used on an iOS device without a camera, this method adds the image to the
Saved Photos album rather than to the Camera Roll album.

Chapter 2 photos and Camera

29

code must be pretty old, since it’s still a C function. In fact it’s been there

since iOS 2.0, which is an interesting way for Apple to refer to iPhone OS

2.0 — the first SDK available to developers not working at Apple.7

Listing 2-3. This Simple Function, in Conjuction with an Info.Plist

Addition, Will Allow You to Save an Image to the User’s Camera Roll

let image = #imageLiteral(resourceName: "icon-photos")

// or

let image = UIImage(named: "icon-photos")

UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil)

Note three usages of nil? I’ll let you dig into the documentation and
discover why I didn’t need it in my example.

Be aware that this book was mostly finished when apple announced
swiftUI, which anyways is relatively new and fragile. It means all the
code in this book is written with general UIKit like it’s been done since
2008. this might change slowly, starting with the broader usage of
Xcode 11, but it seems that swiftUI will follow the same fragility that
swift had back in 2014…

The #imageLiteral usage in Xcode will show a placeholder which

might be what you want or not. On the iPad (Swift Playgrounds), it at least

shows a little preview of the image, not a generic icon.

7 https://en.wikipedia.org/wiki/IOS_version_history. The term iOS was
only coined when iOS 4 arrived. The original iPad was running iPhone OS 3.2 in
2010, which wasn’t running on iPhone or iPod touch, and iOS 4.0 and 4.1 weren’t
running on iPad. Finally, since iOS 4.2, the operating system is the same on both
device types. Or not, since Apple now calls the OS running on iPad “iPadOS,”
since June 2019. Oh, irony… This is more of a marketing than a technical term,
though.

Chapter 2 photos and Camera

https://en.wikipedia.org/wiki/IOS_version_history

30

To be able to use this function, you need to either have the previously

mentioned NSPhotoLibraryUsageDescription or the NSPhotoLibraryAdd

UsageDescription key in your Info.plist.

If you only have the latter, your Privacy settings will look like Figure 2- 6.

If you have the former, because it implies Read and Write you won’t see it

and it’s enough.

If you’d like to give the user the choice between Add Only and both

Read and Write (as well as Never, like always) you can use both keys and

then it will look like Figure 2-7.

Figure 2-6. Your app might only need to add photos

Figure 2-7. You can give more fine-grained permissions to your user

Sadly there’s no Read Only, which isn’t ideal. I think Apple is itself

restricted by its mechanism of using Enums (or constants) for every state,

where in this case it would probably make more sense to have a Boolean

for read and one for write.

Chapter 2 photos and Camera

31

Like with all the topics I’m going to cover, you could dream of giving

access to only certain albums or certain metadata, but I understand Apple

must make usability choices and might come up with a solution in a few years.

Note Whenever I’m unhappy about the current situation of ios, I think
about Copy and paste. It took apple many years to come up with
a solution that didn’t seem to be so complicated to implement. as
someone who has built a framework as part of my day job, though,
I know that internal decisions aren’t always as simple as they look
from the outside.

That previous function UIImageWriteToSavedPhotosAlbum might not

please you a lot, especially if you must have a call-back. A more modern

(but more complicated) version of it could be what is shown in Listing 2-4.

It uses the status described in Chapter 1, which we do not check here

because we want to focus on the call-back received when performing the

change.

Listing 2-4. This Is the Way You Can Combine a

requestAuthorization and a Call-Back

PHPhotoLibrary.requestAuthorization { (status) in

 // You should obviously check that status!

 PHPhotoLibrary.shared().performChanges({

 PHAssetChangeRequest.creationRequestForAsset

 (from: image)

 }, completionHandler: { (success, error) in

 // check success and optionally error.

 })

}

Chapter 2 photos and Camera

32

The problem here is that the code in Listing 2-4 will ask for full access,

not only “creation” access, since we requestAuthorization.

 Photos App Wants Access to Your Photo?
Not actually. What you see in Figure 2-8 is a Photos extension that I built

in my own “My Mac Privacy”8 app. Whenever the user wants to create

something with this for the first time, it will ask for access.

Remember, in this case it’s not the Photos app from Apple accessing

your picture but this app (or its database or API) providing those Photos to

your app.

From a privacy perspective it’s another deal, because you (the

developer) could do anything with those pictures.

The result of this is that your app will be listed in the System

Preferences under Security & Privacy — Privacy — Photos, as shown in

Figure 2-9.

Figure 2-8. The warning the system shows you the first time you want
to create a project with this extension

8 This is the Mac Version of “My Privacy”, our Demo app.

Chapter 2 photos and Camera

33

Because the user can change their mind later, if your app/extension

tries to access photos again you’ll see the error in Figure 2-10, which has a

beautiful Open Privacy Settings button.

That in itself is nice, but the problem is that tapping that button only

opens the System Preferences. Apple has fixed it in the latest macOS

Catalina 10.15 beta 4 (Build 19A512f) but this was true in macOS 10.13 and

is still true in macOS Mojave 10.14.6 (Build 18G84).9

Figure 2-9. This decision is persisted in the system preferences of your
Mac, and you can then decide to remove the permission.

9 Feel free to duplicate my radar at www.openradar.me/43240627 if you want it to be
fixed in a version prior to 10.15 but even though my report says “Recent Similar
Reports: Less than 10”, because it also says “Resolution: Open” I imagine Apple
will only fix this in 10.15, which is fair enough.

Chapter 2 photos and Camera

http://www.openradar.me/43240627

34

Since macOS 10.14 Mojave it goes even further because luckily, finally

any app (even such a System/Apple app like QuickTime) needs access to

the camera and the microphone from the user. Sure, on iOS, it has been

like that for many years, but on the Mac it just arrived. And then macOS

10.15 Catalina goes even further in asking permission to other folders.

 Facial Recognition with Vision
“We're privacy oriented” is what Apple says at the beginning of the 2018

WWDC session about Object Tracking in Vision.10

The Problem here is that it’s the only time they mention it. I’m not

sure what they mean except that the processing is on-device, but it

doesn’t mean the third-party developer isn’t storing a representation of

this information in the cloud. The only thing that Vision asks a user for is

access to the camera or Photo Roll, and it’s left to the developer to tell the

user it’s going to use facial (or else) recognition.

I’d personally prefer something warning the user that Vision is going to

be used, because used in the wrong hands this amazing framework could

potentially put certain lives in danger.

Figure 2-10. Don’t be surprised to see this error if the user has
revoked an access

10 https://developer.apple.com/videos/play/wwdc2018/716

Chapter 2 photos and Camera

https://developer.apple.com/videos/play/wwdc2018/716

35

 That Amazing TrueDepth Camera
The newly introduced iPhone X in 2017 brought a technology that will

surely be available on more and more Apple devices in the future. All three

new devices from 2018 (XS, XS Max, XR) have the camera as well. The iPad

Pro has it also since 2018.

It not only has a regular camera but (mostly in order to be used

by FaceID11) it has a special kind of camera that, combined with a Dot

Projector, will read 30,000 dots projected on your face.

It’s fascinating technology and such an easy API, which Apple

demonstrated at the 2018 WWDC,12 but it also begs the privacy question.

Sure, that information (FaceID at least) is in the secure-enclave, but do

I want at all as a user to have my face identified now, even in 3D?

This is another level of privacy, and who knows what kind of

technologies will arrive in the future that can potentially be used to make

us more and more transparent.

My point is that as long as there’s a big enough hint to the user what an

app is doing, I’m fine.

Those hints, though, must come from the system, and right now, same

as with Vision, there’s no hint that this amazing set of camera and sensor is

being used (except the global use of the camera).

That last bit is important, though. As far as I could find by looking

at the code samples in this WWDC session, and looking on the API,

it’s all based on AVFoundation, which makes sense. It means it uses

AVCaptureDevice.authorizationStatus and .requestAccess. That

means that even if you wouldn’t show the user but use the TrueDepth

11 https://apple.com/iphone-xs/face-id really shows the complexity of the
notch. Never in the past was there so much video-related sensing in an Apple
Device.

12 https://developer.apple.com/videos/play/wwdc2018/503

Chapter 2 photos and Camera

https://apple.com/iphone-xs/face-id
https://developer.apple.com/videos/play/wwdc2018/503

36

Camera for, say, a game where your hand would control a ball depending

on where you hand is (easier though weirder would be your face with the

Vision API), that would still require access to the camera.

That reminds me that it doesn’t matter which camera you are using,

and what kind of camera it is. This whole set of cameras and projectors

will be very useful in the future, and it would be inconvenient if a different

authorization was requested for every kind of camera.

What would be great, though, would be an indication somewhere that

a camera is being used, at least when it’s not obvious that it’s on screen.

 Conclusion
As with some other privacy-related fields, the camera and the photo library

don’t only imply your own privacy. It’s a tough decision you are making for

other people (and yourself) because it would be very complicated if you’d

have to ask every single person.

Getting access to your photos in itself isn’t the biggest problem. It’s the

analyzing of those pictures that is a problem. Figure 2-11 shows both the

amazingness of the Photos app as well as the dangerousness.

Chapter 2 photos and Camera

37

I love this app and I love that it crawls my Photos during the night, but

it’s because I trust Apple to do the right thing.

Whenever an app wants to access to your pictures, consider the kind of

information that you potentially have in them.

Figure 2-11. Each one of these items in your Photos library is
potentially a violation of your privacy

Chapter 2 photos and Camera

39© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_3

CHAPTER 3

Location and MapKit
This is what I consider as the most crucial information. It’s in many places

other than the Location and MapKit framework themselves.

This chapter starts by explaining how the location is gotten at all

from iOS. Then it gets deeper about the User location and generally the

asynchronousness of it.

We’ll also look at the difference between an app having access to your

location at any time (that is, in the background) or only when you app is

running in the foreground. Bear in mind, though, that foreground doesn’t

necessarily mean your app is displayed on the screen.1

1 But discussing this is out of scope. There’s this thing called the Internet where you
can find some information about that subject. Alternatively, read another book
on the subject.

40

 What is Location on iOS?
Getting a GPS position solely via satellite like regular GPS works takes time.

It’s because it needs to get answers from several satellites and if you’ve

read about the kind of latency that satellite-based Internet has, you’ll know

there’s a challenge to be solved.

Acquiring the exact location takes an original time called Time to First

Fix, which can take a while.2

Instead, the iPhone uses a technology called Assisted GPS, which uses

cellular towers to give you a position. It’s less precise, but pretty much

instantaneous. Between those two accuracies the iPhone also uses the

Wi-Fi router it finds, which are referenced in a database together with their

coordinates.

The other problem with GPS is that the signal won’t get inside

buildings or in a forest,3 so it’s not only a question of speed.

That accuracy translates into CLLocationAccuracy when the system

reports it has found a position. Possible values are:

• ThreeKilometers

• Kilometer

• HundredMeters

• NearestTenMeters

• Best

• BestForNavigation

2 One of the early Betas of iOS 12 had this terrible bug where only regular GPS
would work. The result was having to wait forever for navigation to become
useful.

3 Which in turn will have a hard time with Geo-Location at all anyway because
neither cell towers nor Wi-Fi are usually in a forest. If they are, move along; find a
real forest.

Chapter 3 LoCation and MapKit

41

Except for the last one, those values are self-explanatory. Let’s look at

what Apple’s documentation says for Best for navigation.

The highest possible accuracy that uses additional sensor data
to facilitate navigation apps.

There’s a property called desiredAccuracy, which you should set

if you don’t need the standard Best (iOS/macOS) or 100m (watchOS).

The less accurate, the faster it is and the less power it consumes. Be an

environmental hero if you can and save power, and so the planet.

Note there’s neither a way for the user to select this accuracy nor
a way to tell what an app requires. it would probably be a terrible Ui
and a few more edge cases for a developer, but feel free to make a
suggestion to apple4 about any of those privacy concerns.

 User Location
Core Location and MapKit are two frameworks that cooperate with each

other in various means.

The first time you start the Maps app you’ll see the authorization asked

in Figure 3-1. We’ll see in a bit why that is, but maybe you can already

discover from the screenshot that even though I didn’t give it access, the

map is already centered in Germany.

4 https://bugreport.apple.com doesn’t exist anymore since June 2019. Instead,
https://developer.apple.com/bug-reporting is where you can express you
concerns.

Chapter 3 LoCation and MapKit

https://bugreport.apple.com
https://developer.apple.com/bug-reporting

42

Apple doesn’t really communicate how it does that, and if we trust

them that they don’t have my exact location yet, we can only guess that

they use my IP address, which reveals that I must be in Germany.

On one side, it’s a privacy constraint. On the other, the whole Internet

is based on it5 to display location-based information that doesn’t need a

precise location.

Whenever you want to display the well-known blue dot that displays

the user’s current location, you can request so with a simple property on

an MKMapView element.

This property is also available via Interface Builder, as shown in

Figure 3-2.

Figure 3-1. Maps also asks for permission the first time you start it.
We will see later why this is different on iOS 13 (Right).

5 In fact, if you don’t live in the USA, Apple’s own website will offer you to go to
your country/language’s website when you go to apple.com

Chapter 3 LoCation and MapKit

http://apple.com

43

 Nothing Happens?
First, be patient. Wait. As we mentioned, getting a position takes time.

If you’re lucky it will only take a couple of milliseconds, but it can’t be

instantaneous. The asynchronous call-back, as shown in Listing 3-1, will

then be called when the fix has been found.

Don’t forget, you need to set the delegate on the MapView for it to

know where to expect the method to be found.

If you check userLocation.isUpdating you’ll know if you still need to

wait. The problem is that if you forgot (as a developer) to implement the

authorization request, you won’t see an error in your Xcode console — or

even a crash or any hint — but nothing will happen.

Listing 3-1. The Asynchronous Call That Is Called on the Delegate

func mapView(_ mapView : MKMapView,

 didUpdate userLocation: MKUserLocation) {

 mapView.setCenter(userLocation.coordinate,

 animated: true)

}

Figure 3-2. You can set .showsUserLocation in code or in Xcode

Chapter 3 LoCation and MapKit

44

 When You First Start an App
Many apps on iOS — after their first launch — ask for location permission.

For the user, this should be a hint that any apps accessing the data (e.g., of

the calendar like in Figure 3-3) will also access the geolocation if the record

(here, an Event) has such data.

Figure 3-3. When first launching the Calendar.app, you’ll be
prompted about the usage of your location. Should you accept, this
information will be found in events. This is for iOS 12. If you are
running iOS 13, you will have 3 options similarly to Figure 3-1.

Chapter 3 LoCation and MapKit

45

 Always or When in Use?
We’ve seen that most authorization requests are the same and respond

with a few different statuses like authorized or denied.

Core Location is a bit different, though, because there are two different

levels of using your location. In iOS 13 we’ll see that there is the concept of

“Allow Once”, so one could argue it’s three levels.

Depending on the call in your code, a different system UI will be shown.

In Listing 3-2 we show an example of a controller (e.g., a UIViewController

on iOS) having this code as part of the class.

Listing 3-2. How Often Does Your App Need to Know the User

Location

let locationManager = CLLocationManager()

func viewDidAppear(_ animated: Bool) {

 // ...

 locationManager.requestWhenInUseAuthorization()

 // or

 locationManager.requestAlwaysAuthorization()

Note that both of these methods require usage descriptions inside
info.plist in order for them to work. otherwise you get a message
printing in the output but don’t actually get the prompt.

This is effectively a choice only on iOS. On macOS6 your only choice is

Always, but there it kind of makes sense because there’s usually more than

one app on the screen.

6 And in very ancient versions of iOS, but this book assumes you are at least
developing for iOS 11 and for any 64-bit device from Apple.

Chapter 3 LoCation and MapKit

46

That means that iPad Apps running on the Mac (Refered since macOS

10.15 and iOS 13 as UIKit for Mac or Catalyst) should only think about it for

iOS. When they run on a Mac, it doesn’t matter if whenInUse was called, it

will always be Always.

On the contrary, on tvOS and watchOS, there’s no Always. Specifically

on watchOS if your app has a Complication it is InUse anyways and for

obvious battery reasons Apple doesn’t want your watch to constantly get

locations in the background. This is why you’ll have a hard time finding an

API that can use a background location call on those platforms.

That being said please note that When in Use doesn’t imply the app is

the front most, the one the user sees. All it means is that it’s running, but it

could be running in the background. The Always authorisation though will

restart your process whenever a location is sent from the system, even if

the app was killed by the user, or crashed.

Provisional Always Authorization
I’ll go into more details when speaking about elevation of privileges but for

now remember that since iOS 13 there is no way to directly ask Always.

You can still call requestAlways but the user will see the same prompt

as if you’d ask WhenInUse. The system will however remember / know

you (as the developer) wanted to have Always and gather the location

informations in the background.

It won’t however deliver those to you until the user is later prompted

by the system to Change to Always Allow or Keep only while using. In effect

Apple is enforcing the elevation of privilege, which is a very elegant way of

doing it.

Whatever the user then chooses, the Provisional Always Authorization

period then ends. It means as of now (and this is your only chance) the app

will have either one of the options. The user can however — as usual with

permissions — change her mind about this at a later time in the Settings

App on iOS.

Chapter 3 LoCation and MapKit

47

If you need a reason to explain your boss / company why your app

shouldn’t support iOS 12 anymore very soon (or shouldn’t at all if you

release the App after September 2019), this is a good reason.

Another one unrelated to Location are the new modal view controllers

which you’ll see in the Chapter about Health.

 With Great Power…
Ask yourself a couple of questions. As a developer, do you really need

access to the location of your user when they are not using the app? As

a user, do you really want this app to know where you are — all the time,

every time?

Also, as a side note, think about the battery consumption. We as

developers are also environmentally responsible for our acts, and the more

often hardware is used (sensors), the faster the battery gets drained.

 Core Location
MapKit only arrived in 2009, with iPhone OS 3.0. Core Location though,

which is the nongraphical version, was there from day one in iPhone OS 2.0.7

By nongraphical I mean that Core Location doesn’t display a map like

MapKit does but instead gets the coordinate of a user.

7 Remember that iPhone OS 1 didn’t have an SDK, so it wasn’t possible to develop,
even though some did reverse engineer and made some nice first apps. Also
remember the term iOS was only coined with version 4 of the OS, which is why I
refer to those previous versions as iPhone OS. Ironically the iOS running on iPad
since iOS 13 is called iPadOS.

Chapter 3 LoCation and MapKit

48

 What Is a Coordinate?
Let’s step back and take a broader picture, because a coordinate really

isn’t hard to understand — it’s essentially a latitude and longitude as you’d

expect from a world map.

More interesting though is a CLLocation object. This is, for example, a

property of a PHAsset, which allows you to locate a picture you took.

A location object doesn’t only have a coordinate but it has also an

altitude, because really only flat-earthers probably also think there’s no

such thing as mountains and valleys.8

Remember we spoke about accuracy at the beginning of this chapter?

Guess what: a location object doesn’t have only one, but two. One is

vertical, the other one horizontal.

It also has a course and a speed, which combined together can let you

know if a picture was taken in an airplane or not moving at all.9

On iOS you can even know in which floor of the building you are in the

picture (or any other object having a coordinate) was!

 Geocoding and Decoding
Let’s face it: if I tell you I’m at this place in Figure 3-4 while writing this

chapter, you’ll have a hard time finding where I was — if not for that hint in

the picture.

8 They also believe there are no such thing as satellites, so I guess that location thing is
a myth. https://therichest.com/shocking/15-stupid-things-flat-earthers-
believe-are-true

9 There are a lot of the things in this book inspired from the amazing research Felix
Krause did. You should check out https://krausefx.com/privacy.

Chapter 3 LoCation and MapKit

https://www.therichest.com/shocking/15-stupid-things-flat-earthers-believe-are-true
https://www.therichest.com/shocking/15-stupid-things-flat-earthers-believe-are-true
https://krausefx.com/privacy

49

Sanremo, Italy is where I am. Unless you’re a mathematical genius (or

a geography teacher), I think most of us will have a hard time mapping a

latitude and longitude to an actual place.

This is why we have geocoding, which will take an address and give

the corresponding lat/lon10 for it. Decoding is mostly called “reverse

geocoding” but I find it very confusing and prefer to think I’m decoding a

geographical coordinate. It will then translate that coordinate in the picture

to the actual location, which, as you can see in Figure 3-5, Photos.app

does wonderfully on the Mac.

Figure 3-4. This is where I am when writing this chapter. Can you
guess where I am?

10 This is short for latitude and longitude and is commonly used to spare the
repetive spelling. You can also use (like shown in the picture) lat/long.

Chapter 3 LoCation and MapKit

50

Now if you have paid attention to what I was saying, the pin shown

on the map isn’t a reverse geocoding. The name Bussana, Liguria, Italy,

though, is. We won’t get into the details of why it doesn’t say Sanremo,

but I can assure you that I’m in the Liguria region, which really is around

43.81/7.77.

If you enter Sanremo, Italy on a website for finding lat/lon11 you’ll have

43.819825 and 7.774883 as an answer. This is where the accuracy plays a

role. You won’t always be able to have that accuracy even if I would have

entered a specific street and number. It all depends on which hardware

was used when getting that location.

Figure 3-5. Photos.app on the Mac shows the exact location — near
the sea — where this picture was taken

11 E.g., https://latlong.net is a simple and useful website for that.

Chapter 3 LoCation and MapKit

https://latlong.net

51

 Show Me the Code
Let’s start with the simpler, reverse geocoding. Say you have a CLLocation

(with the previous coordinates) for which you’d want to know the actual

address. The code in Listing 3-3 will display the output in Listing 3-4.

The important object here is the CLGeocoder, which can be used for

both direction of geocoding.

Listing 3-3. This Is How You’d Simply Print the Found Placemarks

let coder = CLGeocoder()

let location = CLLocation(latitude: 43.819825,

 longitude: 7.774883)

coder.reverseGeocodeLocation(location) { (pms, error) in

 print(error ?? "no error")

 print(pms ?? "no placemarks")

}

Listing 3-4. This Is the Output the Previous Code Would Give

no error

[Giardini Regina Elena, Giardini Regina Elena,

18038 Sanremo, Province of Imperia, Italy @

<+43.81982500,+7.77488300> +/- 100.00m, region CLCircularRegion

(identifier:'<+43.81982499,+7.77488300> radius 141.68',

center:<+43.81982499,+7.77488300>, radius:141.68m)]

As you can see, the result is either an error or a list of places. It’s

important to have a look at the structure of a CLPlacemark. It has the

following properties:

• CLLocation

• CLRegion

• NSTimeZone

Chapter 3 LoCation and MapKit

52

And then there are the address dictionary properties, where it’s really

useful to look at Listing 3-5, being extracted from CLPlacemark.h.

Listing 3-5. Shows the Type (Mostly Strings, with the Last One Being

an Array) of Properties We Have, but Also an Example

NSString *name; // eg. Apple Inc.

NSString *thoroughfare; // street name, eg. Infinite Loop

NSString *subThoroughfare; // eg. 1

NSString *locality; // city, eg. Cupertino

NSString *subLocality;

 // neighborhood, common name, eg. Mission District

NSString *administrativeArea; // state, eg. CA

NSString *subAdministrativeArea;

 // county, eg. Santa Clara

NSString *postalCode; // zip code, eg. 95014

NSString *ISOcountryCode; // eg. US

NSString *country; // eg. United States

NSString *inlandWater; // eg. Lake Tahoe

NSString *ocean; // eg. Pacific Ocean

NSArray<NSString *> *areasOfInterest;

 // eg. Golden Gate Park

It’s important to be familiar with some uncommon names like

thoroughfare for the street or subThoroughfare for the number. I guess the

reason for those cryptic namings is that — like anything that has to do with

regional settings12 — not every address has a street.

Think about some countries not using a postal/zip code or streets

not having a number. This is a weird dictionary/set of properties

because — well — the earth is complicated. See inlandWater and ocean: I

don’t think we want to give them a street and number.

12 My friend Joachim Kurz gave a talk dealing with regional setting during
iOSDevUK 2018. www.youtube.com/watch?v=Y_YZg7qKUfE&t=16425s

Chapter 3 LoCation and MapKit

https://www.youtube.com/watch?v=Y_YZg7qKUfE&t=16425s

53

 Even Without Localization Services Enabled
Okay: the previous dictionary list of properties can only be obtained via a

coordinate. It might be your current coordinate (as a user) if you agreed

to give your user location, but bear in mind that it might also come from

an online database or — as we’ll see in a following chapters — from your

contacts or calendar database.

Now what if all we have is an address, and we’d like the coordinates.

As an example, I’m going to take that address that I just got, but here again

it could come from anywhere — even a free text entry.

There are a few convenient methods in CLGeocoder, so let’s see

one in Listing 3-6. This one shows the usage of postalAddress, which

is something we’ll develop in the chapter about the Contacts API, but

conveniently for our sample it should also be in a CLPlacemark object.

Listing 3-6. The pms Object from Listing 3-3 Is Used Here to Extract

the postalAddress, which Will Give Us Basically the Same Object at

the End

guard let placemark = pms?.first else {

 print("no placemarks")

 return

}

guard let address = placemark.postalAddress else {

 print("This placemark has no postalAddress")

 return

}

coder.geocodePostalAddress(address, completionHandler:

{ (placemarks, error) in

 print(error ?? "no error")

 print(placemarks ?? "no placemarks")

})

Chapter 3 LoCation and MapKit

54

Note that to be able to use postaladdress you’ll need to import the
Contacts framework.

The gist of this code is to find that exact same information (well, not

the same instance but they should retrieve the same data) that we found in

the previous example.

You obviously will always have an info (the actual address or the

coordinate) in the output that you already have/gave in the input.

By now, I hope that you can see the privacy concern here. It’s not only

that by giving your current location as a user it can be physically retrieved

(address) and shown on a map (MKAnnotation, see Chapter 2), but it’s also

that even if you don’t, if the developer has access to your address, he will

be able to retrieve your location.

 Fixed Location or Moving Location
I might have been too dramatic at the end of that last paragraph. There’s a

huge difference between getting one coordinate and getting access for an

app to your current location at any time.

It’s one thing to potentially know where I live (which might be a bigger

problem in terms of privacy), but it’s another to know all the time where I

am moving.

The delegate method didUpdateLocations is exactly that. As

the user moves around, it will be called, from the moment when the

app startUpdatingLocation() was called to when it then stops with

startUpdatingLocation().

You can exercise this in the Simulator via the menu Debug ➔ Location

and then choose, for example, a City Run.

Chapter 3 LoCation and MapKit

55

 Elevation of Privileges
Let’s start in Figure 3-6 by seeing what kind of alert the user will see if the

developer directly asks requestAlwaysAuthorization() until iOS 12. You

can learn a lot about the changes that were made in iOS 13 by watching

What’s New in Core Location from WWDC 2019 on Apple’s developer

portal13.

The user is more likely to tap on Don’t Allow than anything else, if you

ask me.

Instead, here’s how you should do it: the right way. Start by asking

requestWhenInUseAuthorization(). This will show the alert in Figure 3-7,

which is much more likely to be accepted. You see, it’s interesting that so

many developers think they’ll ask for the full Monty although they actually

don’t need it!

Figure 3-6. The alert that will be shown if you don’t elevate your
privileges in iOS 11 or 12. How it looks like in iOS 13 is shown in
shown in Figure 3-1.

13 https://developer.apple.com/wwdc19/705

Chapter 3 LoCation and MapKit

https://developer.apple.com/wwdc19/705

56

Later, when your app actually needs one of the APIs that

requires background location, you can then ask this time

requestAlwaysAuthorization() and you’ll see the alert in Figure 3-8,

which has as well only two options.

Figure 3-7. The nice Don’t Allow/Allow alert you might remember
from the old days. Valid only for until iOS 12 in that form but the
concept of elevation stays the same, except by any means forced.

Figure 3-8. That alert is stacked because of the length of the text, but
can you spot something in particular?

That last Don’t Allow from Figure 3-6 isn’t there anymore! Obviously,

since the user already told you it will be fine to get her location while using

the app, she can’t say no anymore. Except the user can — in the settings.

Chapter 3 LoCation and MapKit

57

In iOS 13 a similar prompt will appear that lets a user elevate an app’s

authorization to Always or stay When In Use.

As we mentioned in the chapter about the common API Elements,

never assume you got the authorization just because you already asked.

Less Reasons to Use Always in iOS 13
One of the reason developers had to use the mode Always was that some

API calls like for example Region Monitoring would require Always access

and wouldn’t be able to deliver events without this authorization, also if

those events would be delivered while the App was in use.

This sounds as obscure as it is and the only things that determines

if events are delivered now is the combination of the authorization level

and the app status. It means if I only have WhenInUse I will only get Region

Monitoring events delivered when my app is in use.

Remember that until iOS 12 I wouldn’t have received those, even

though the app was in used.

Temporary Authorization iOS 13
The button that says Allow Once in Figure 3-1 (for iOS 13) is that new

feature. It functions in Provisional way as well. Just like you can go from

WhenInUse to either Always or back to WhenInUse with Provisional Always

Authorization, this one will allow you to move from the .notDetermined

state to .authorizedWhenInUse and back to .notDetermined as soon as

your app isn’t in use anymore.

This means the next time the app is active, the user will get the prompt

again if the app asks again. The obvious advice here from a developer to

a developer is to not ask this multiple times but obviously if possible only

onces and by any means if possible after a user action.

Chapter 3 LoCation and MapKit

58

 MapKit Knows Your Country
Even if you don’t give an app access to your location services, even if the

whole OS doesn’t have access to location services, it will most probably get

it from your IP Address and center the Maps to your country.

Figure 3-9 shows that although I don’t even allow the system to localize

me, thus even less an app, it knows that at the time of this writing I’m

in this wonderful country in the south of Europe. When I’m at home in

Germany, the map is centered toward Germany.

Figure 3-9. The map is centered on my current approximate location,
probably based on IP tables

Chapter 3 LoCation and MapKit

59

Sure, it’s convenient, but from a privacy perspective this is concerning.

I think it should be considered that if I don’t allow an app (and/or the

system) to have the information about where I am, then it also shouldn’t

look up the geo-ip-databases instead.

 Note the Arrow
Figure 3-10 shows the iOS settings with the legend at the bottom

describing the role of the arrow. It can be full (two different colors) or

hollow and will show you what happened.

Figure 3-10. A hint at how the installed apps use your location

Chapter 3 LoCation and MapKit

60

Look what happens in Figure 3-11 when I then started My Privacy

again and it asked for my current position.

As a user, it would be smart to look at this list of apps now and then and

potentially revoke the allowances you gave.

 One More Thing
The system services, as shown in Figure 3-12, are a list of things that Apple

does with your location. At the time of this writing (iOS 12.4 and iOS 13

Beta 4), it’s in Settings / Privacy / Location Services / System Services, at

the very bottom.

Figure 3-11. Here’s a variation of the previous figure

Chapter 3 LoCation and MapKit

61

Figure 3-12. The long list of things that Apple does and you might
not know

Chapter 3 LoCation and MapKit

62

 On the Mac
There’s obviously no concept of When in Use (a Mac being very

multitasking) but other than that, as you can see on Figure 3-13, I get a

blue point — my MKUserLocation — where I am while writing this line. To

reach that, I used the exact same code. I’ll let the Catalyst (iPad App on a

Mac) part for you as an exercice.

The authorization looks a little bit different, as you can see in

Figure 3- 14. It’s a separate window. Sometimes on a Mac, a window like

this appears as a modal sheet.

Figure 3-13. Displaying where I am in a Mac app uses the same
technique as on iOS

Figure 3-14. This will be shown to the user of your app whenever
your code makes a request for its current location

Chapter 3 LoCation and MapKit

63

Again, the very good thing about such alerts from the system is that

they are from the system. You don’t get to decide if you show them or not.

 Conclusion
Location is a sensible topic because it tells others where you are, and

depending on who is other and what their purpose with this information is,

it might be a serious breach into your privacy.

Also, it’s one of the very few topics in this book that is related directly to

hardware: the GPS, the Wi-Fi chip, the GSM chip. It means it’s also not only

privacy-related but also an energy consumption subject.

Chapter 3 LoCation and MapKit

65© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_4

CHAPTER 4

Contacts
The Contacts framework, formerly called the AddressBook framework in

C, was probably my first real understanding of what can be done wrong

(and right) by developers.

Because contacts are an essential part of many apps, whenever

speaking about privacy, the most important thing is a single entity of data.

Therefore, we’ll start this chapter discussing the properties of a contact.

Another aspect of data is the people — or the amount of people we

select. To illustrate this I’ll use a comparison of the good, the bad, and the

ugly developer, and I’ll end the chapter by showing you how we do it using

the out-of-process pickers.

 The (Long) List of Properties
The following list gives you an idea of the many things a developer can

use whenever users grant access to the database with CNContactStore().

requestAccess(for: .contacts). Note that they are all prefixed with

CNContact.

66

NamePrefixKey GivenNameKey

MiddleNameKey FamilyNameKey

PreviousFamilyNameKey NameSuffixKey

NicknameKey OrganizationNameKey

DepartmentNameKey JobTitleKey

PhoneticGivenNameKey PhoneticMiddleNameKey

PhoneticFamilyNameKey PhoneticOrganizationNameKey

BirthdayKey NonGregorianBirthdayKey

NoteKey ImageDataKey

ThumbnailImageDataKey ImageDataAvailableKey

TypeKey PhoneNumbersKey

EmailAddressesKey PostalAddressesKey

DatesKey UrlAddressesKey

RelationsKey SocialProfilesKey

InstantMessageAddressesKey

Apple removed support for getting the notes from a Contact in iOS 13.

It means that any code using this will crash. I suggest not using this key in

your code anymore and release a new version soon or use it conditionally in

previous versions of iOS.

As you can see, this is a lot of information that is “let loose.” Now it doesn’t

mean you as a developer should ask for access to each of these properties.

 Different Kinds of Developers
Like the classic Clint Eastwood movie, “The Good, the Bad, and the Ugly,”

there can be three types of developers. Let’s quickly look at them now.

Chapter 4 ContaCts

67

 The Good Developer
You could simply... You should simply (as we show in Listing 4-1) access

only a few properties, and this for only one or two persons.

Listing 4-1. How You Can Be a Good Developer (Privacy-Wise,

Karma-Wise) and Only Access a Subset of the User’s Private Data

let predicate =

 CNContact.predicateForContacts(matchingName: "John")

let keys = [CNContactGivenNameKey, CNContactFamilyNameKey]

CNContactStore().unifiedContacts(matching: predicate,

 keysToFetch: keys)

Here we will only get John and Appleseed. You had the first already, so

I’m not going to finger point at you if you ask for a few more properties, or

a few more people, but you get the idea.

 The Bad Developer
The bad developer would simply not care about this keysToFetch property

and thus retrieve all the properties, as shown in Listing 4-2.

I won’t write the code here because it’s simply listing all the properties

we previously did, in the same way as Listing 4-1, but instead of 2 or 3 it

will be 20 or 30 properties. That is a lot of properties, but at least that is

only for one or two people.

Listing 4-2. The Pretty Huge Amount of Information a CNContact

Holds

<CNContact: givenName=John, familyName=Appleseed,

organizationName=(null), phoneNumbers=(

 <CNLabeledValue: label=_$!<Mobile>!$_, value=

 <CNPhoneNumber: stringValue=888-555-5512>,

Chapter 4 ContaCts

68

 <CNLabeledValue: label=_$!<Home>!$_, value=

 <CNPhoneNumber: stringValue=888-555-1212>

), emailAddresses=(

 <CNLabeledValue: label=_$!<Work>!$_,

 value=John-Appleseed@mac.com>

), postalAddresses=(

 <CNLabeledValue: label=_$!<Work>!$_,

 value=

<CNPostalAddress:

 street=3494 Kuhl Avenue, city=Atlanta, postalCode=30303,

country=USA, countryCode=us>>,

 <CNLabeledValue: label=_$!<Home>!$_, value=

<CNPostalAddress:

 street=1234 Laurel Street, city=Atlanta

postalCode=30303, country=USA, countryCode=us>>

)>

This is not even everything, because if you’d fill for example the

previously mentioned CNContactRelationsKey I could totally know as a

developer who is your mother, your spouse, and so on. As for everyone

saying “I have nothing to hide,” ask them if they really are never critical

of anyone and what if a bad person got their hands on some of this

information.

Note that you’ll only get the properties you request and those that
are filled in the contact; but also note that should you need after that
to access a property you didn’t retrieve, your app will crash unless
you retrieve this additional required property.

Chapter 4 ContaCts

69

 The Ugly Developer
Listing 4-3 shows you what many apps on the App Store do nowadays. This

is a terribly sad situation — and the worst is to come.

Listing 4-3. shows what Angel Eyes as a developer could have done

let store = CNContactStore()

let predicate = CNContact.predicateForContactsInContainer(

 withIdentifier: store.defaultContainerIdentifier()

)

That takes the whole database, all the properties. Even worse, there’s

no way to tell as a user what kind of information the developer has taken

and no way to protect some of the fields, contacts, or group of contacts.

I regularly write all sorts of reports at https://feedbackassistant.

apple.com, the replacement for retired Bug Reporter, and duplicate them

at http://openradar.me so others can see them.1

Sadly, Apple’s only way of indicating the importance of a bug report

someone wrote is with the “Recent Similar Reports” field, let alone having

access to the list of bugreports/reviewers. Even when they mark your bug

report as a duplicate of another one, all they give you is the number. You

can then use this number and see if you can find it on OpenRadar.

 You Don’t Need to Ask Permission
Remember what Apple says in its App Store Review Guidelines, (iii) Data

Minimization.2

Where possible, use the out-of-process picker or a share sheet
rather than requesting full access to protected resources like
Photos or Contacts.

1 You can find my reports on OpenRadar under the username mc or manuel
(changed e-mail at one point), and I regularly post them on Twitter as stuffmc.

2 https://developer.apple.com/app-store/review/guidelines

Chapter 4 ContaCts

https://feedbackassistant.apple.com
https://feedbackassistant.apple.com
http://openradar.me
https://developer.apple.com/app-store/review/guidelines

70

In short, the application asks to open a file, and the out-of-process

picker grants the application access to the file the user chooses and returns

a document portal path. In our case, the file is a contact and you can use

the out-of-process picker or a share sheet to select multiple contacts. At

the time of this writing though, note that there’s a bug with filtering the

selection in multiple mode.3 Let’s start with single selection, in Figure 4-1.

When you tap the button that says “1” the list of contacts appear. This is

then the out-of-process view controller.

3 http://openradar.me/45621483 — This 3 years old bug since iOS 9 seems like it
might stay in iOS 13. To be continued.

Figure 4-1. A single selection picker that only allows selecting one
contact

Chapter 4 ContaCts

https://openradar.me/45621483

71

Let’s see in Listing 4-4 how you can access one or multiple contacts

without the need of having access to the entire address book.

It also shows the delegate call-back that is part of your app. The

delegation concept is one that also helps protects your privacy by getting

(in this case) from the system only the contact that the user selected.

Listing 4-4. This Is How You’d Display a Picker and React When a

Contact Is Selected. This Is All Out-of-Process and Thus Requires No

Access or Authorization

let picker = CNContactPickerViewController()

picker.delegate = self

present(picker, animated: true) {

 // The first time, you might explain

 // the user he needs to select a contact

}

func contactPicker(_ picker: CNContactPickerViewController

 , didSelect contact: CNContact) {

 // Now use contact and its properties.

}

Note that this picker, as well as its delegate, are not in the Contacts
but rather in the ContactsUI framework.

 Select Multiple Contacts
All you have to do to select multiple contacts is to replace the delegate

method for single use with the one for multiple use like we see in Listing 4-5.

Figure 4-2 shows what this looks like. Very similar to the previous one

except you don’t tap a contact but you check it and then tap Done.

Chapter 4 ContaCts

72

The only drawback is that since it’s based on the delegate method,

as soon as you implement the multiple version, the single version will be

ignored.

It means that if you have a case where it’s sometimes multiple and

sometimes single, you’ll need 2 delegate objects. It’s a bit of a problem but

since it’s usually a good idea for the clarity of your code to not have the

delegate in the same class, it’s one we can live with.

Listing 4-5. Implementing the Following Delegate Method Will

Make the Previously One Shown Be Ignored

func contactPicker(_ picker: CNCPVC

 didSelect contacts: [CNContact]) {

 // Here you'll get an array of contacts.

}

 What Was That with Location?
Throughout this book you’ll see that if a developer can’t get information

with one door, he will try the next one. Contacts don’t really have a

geolocation themselves but they do have an address, usually.

Figure 4-2. The multiple selection picker

Chapter 4 ContaCts

73

The code in Listing 4-6 shows something mentioned also in the

chapter about location, but it’s useful to have this mentioned in both

chapters. You can take a postalAddress and geocode it, which will give

you coordinates you can place on a map.

Listing 4-6. This Is How I Can Geocode a postalAddress

CLGeocoder().geocodePostalAddress(address) { (pms, err) in

 pms?.forEach {

 mapView.addAnnotation($0)

 }

}

extension CLPlacemark: MKAnnotation {

 public var coordinate: CLLocationCoordinate2D {

 get { return location!.coordinate }

 }

}

Now I totally see you crying that location! is a terrible idea. You are

totally right, so we could write a code like in Listing 4-7 but that isn’t much

better. Instead, the caller of coordinate or the adder on the mapView should

check that the placemark has a non-nil location.

This way you either replace the (0,0) coordinate with an error

throwing, or you (developer) live with the risk of force-unwrapping, which

should never crash if you previously tested correctly!

Listing 4-7. What We Could Do to Avoid Force Unwrapping. Not So

Much Better

guard let location = self.location else {

 return CLLocationCoordinate2D(latitude: 0, longitude: 0)

}

return location.coordinate

Chapter 4 ContaCts

74

 Managed Contacts
Mobile Device Management (MDM) is a server-side set of rules that manages

how a device is used, usually in an Enterprise environment. The MAM part

(Mobile Application Manager) decides for example which Managed Apps are

installed on a device.

In the same way, a mail server like Microsoft Exchange can be

configured for its contacts to be qualified as Managed Contacts. The same

way as there is an “Open In” rule that doesn’t allow data to be lost from an

Enterprise App to a non-Enterprise app, there is, finally since a release just

before iOS 12, a mini revolution for privacy.

This shows to a consumer app (let’s take a Messenger app you use to

talk to your family as an example) only those contacts who are private. This

way, your business contacts will never land on some random server.

The beauty of this is that it’s totally transparent for the API — and

there’s nothing the user can do, except being itself a Managed App,

to circumvent this.

 On the Mac
Hey! Good news again! It’s literally the same code on the Mac. As you can

see on Figure 4-3, the authorization window (which uses the string I added

in Info.plist) shows whenever my app asks for full access to the contacts

database.

Chapter 4 ContaCts

75

Here again I did some experimenting by displaying the amount of

contacts in the console (basically the code in Listings 4-1 and 4-3) and the

second button displays the persons having my last name, which ended up

being some people where I was born and raised and others where I live

and raise my kids.

You can see the result in Figure 4-4, which is from the Demo/Sample

Mac app My Mac Privacy that goes with this book.

Figure 4-3. The alert that the system displays, which is luckily not in
the control of the developer

Figure 4-4. The map with two members of my family: one in the
town in which I was born in Belgium, one where I usually live in
Germany

Chapter 4 ContaCts

76

 The Picker on the Mac
It’s a little bit different than on iOS but not so much, as you can see in

Listing 4-8. Basically CNContactPicker is an NSObject instead of being a

View Controller, so you don’t present it but instead use a method that does

it as a popup.

Listing 4-8. The Mac Version of the Contact Picker and Its Delegate

Method

let picker = CNContactPicker()

picker.delegate = self

picker.showRelative(to: NSZeroRect,

 of: view, preferredEdge: .maxX)

func contactPicker(_ picker: CNContactPicker,

 didSelect contact: CNContact) {

 print(contact)

}

That allows me to show a list of contacts like in Figure 4-5. Since there’s

no Mac simulator and most developers won’t do it, a word of advice: you’re

most probably going to work with your real database when developing, so

be careful.

Chapter 4 ContaCts

77

Figure 4-5. When I tap the button “Select Contacts,” I display a list of
contacts from which I can pick

This not only for the data (after all, this is a book about privacy) but

for the amount of data. I have over 2,000 contacts. It’s way too much and I

need to sort, but I’m pretty sure it’s pretty common to have built such a list

after many years.

By the way, this works for photos as well. If you work with your library,

be ready — mine is over 120,000 photos!

 Who’s Contact? My Contact!
Here is a proposition I’m making to Apple: the idea of the ownership of

my data. There are countless websites where I’m myself responsible for

maintaining my contact data, yet on iOS it’s my friend who decides which

phone number is the current one I have.

Chapter 4 ContaCts

78

Worse than that, they get to decide when an app accesses my contact

information. I would like to be able to be notified when an app is going to

read my contact, whether it’s the full access to the database or using an

out-of-process picker. I do not accept that the decision is left to someone else.

Alternatively, I could imagine that there are some people (loved one,

family, etc.) who have my full trust, but for the rest I would want to know.

To me, the current situation is like if my kids would be allowed to install any

app on their iOS device. I’m glad they’re not, yet, as long as they are kids.

 Conclusion
When the contacts framework first appeared, there was no asking of

permission at all. While Apple has always asked you to have your location,

some engineers at Apple seemed to think it was okay to steal your whole

list of friends, family, and professional contacts.

It’s gotten better — way better — and we have the out-of-process

pickers nowadays, but there’s still so many fine-grained options that I’d like

to see arise.

Chapter 4 ContaCts

79© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_5

CHAPTER 5

Calendar and Events
The Calendar Framework is called EventKit, and its corresponding user

interfaces are in EventKitUI. The basic underlying model allows you to

describe a calendar as well as a single event.

The hierarchy is that the central database has a set of calendars, while

each calendar has the events representing the actual entry (e.g., every

Monday at 10 am).

Events, just like Contacts, can be augmented with geolocation

information; or if they only have an address, this can be used to geocode it.

This chapter digs deep into this, as well as taking note of the special

case about the birthday calendar. It wraps up by showing the set of user

interfaces that the system has built in that will make your task easier.

 The Models
At the heart of every query that will be made is the Calendar Entity. We

have the models; in fact, it’s the same as for Contact. But since many

things/ideas are common, I’m purposely not always being repetitive.

As you can see in Listing 5-1, there’s not much interesting in there, or at

least that’s what one could believe.

80

Listing 5-1. A Single Calendar. Standard on iOS Is, e.g., Home & Work

EKCalendar {

 title = Calendar;

 type = Local;

 allowsModify = YES;

 color = #FF1493;

}

Sadly, the API still doesn’t allow the user to decide to give access

to some calendars and not others. Also, like the Contact API, it doesn’t

provide a way to access only some groups.

Listing 5-2 shows that there are different types and you can choose

one, but there’s no real option for the user to give specific permission to

one calendar and not another one.

Listing 5-2. The Different Types (Sources Actually) of Calendar

public enum EKCalendarType : Int {

 case local

 case calDAV

 case exchange

 case subscription

 case birthday

}

The calendar type birthday is very interesting from a privacy

perspective because it’ll contain a list of contacts for which you have

entered a birthday.

Chapter 5 Calendar and events

81

 Calendar Chooser
You might have found EKCalendarChooser but this is — to me — just a

joke. Sure, it allows a user to select a calendar and the developer can do as

shown in Listing 5-3, but there’s no hint that this is done.

Listing 5-3. The Usage of a Calendar Chooser

let store = EKEventStore()

let cal = EKCalendarChooser(selectionStyle: .single,

 displayStyle: .allCalendars,

 entityType: .event,

 eventStore: store)

cal.delegate = self

navigationController?.pushViewController(cal, animated: true)

func calendarChooserSelectionDidChange(

 _ calendarChooser: EKCalendarChooser)

{

 let cals = calendarChooser.selectedCalendars

 let pred = store.predicateForEvents(withStart: from, end:

 to, calendars: cals)

 // You could use that predicate...

}

That last line of code says could. It means that even though the

developer might ask you, for example, which calendar you’d want to use

(e.g., to display the list of events), it could still grab any of the others (or all)

of the calendars in the back of the user which couldn’t know.

Chapter 5 Calendar and events

82

 What Have You Done?
The power of the calendar API is basically to know what you have done in

the past. Luckily — and it really isn’t for privacy reasons1 — if you wanted

to know what I’ve done since my birth, you’d need more than one query;

but hey, performance won’t be a problem with today’s hardware.

So there’s sadly nothing that prevents us from doing — in practice — the

query in Listing 5-4. In actual practice this will return only what I’ve done

while Jesus wasn’t at Kindergarten yet, but all it takes is an easy loop. So, if

you see 0 events returned in this case, always remember your result might

not be the one you think.

Listing 5-4. The Maximum Span Will Always Be 4 Years

store.predicateForEvents(withStart: Date.distantPast,

 end: Date.distantFuture,

 calendars: calendar)

Keep in mind that Date.distantPast is 0000-12-30 00:00:00 +0000

(Year 0…), while Date.distantFuture is 4001-01-01 00:00:00 +0000,

which should be good until the release of iOS 1993. Yes, that is a version

number.

For this Book I first did a very rough computation of 4 years, like in

Listing 5-5, but if you ever need to compute this you really should look at

the dateByAdding methods in Calendar, which I did in Listing 5-6. It’s not

only nicer, but it accounts for the years where we have 366 days. (And did

you know our years weren’t always 365 days and our months 28/29/30/31

1 For performance reasons, this method matches only those events within a
4-year time span. If the date range between startDate and endDate is greater
than 4 years, it is shortened to the first 4 years. — Thanks @michel_fortin on
coreint.slack.com for the hint. https://developer.apple.com/documentation/
eventkit/ekeventstore/1507479-predicateforevents

Chapter 5 Calendar and events

http://coreint.slack.com
https://developer.apple.com/documentation/eventkit/ekeventstore/1507479-predicateforevents
https://developer.apple.com/documentation/eventkit/ekeventstore/1507479-predicateforevents

83

days?) Never underestimate Date and Time2 algorithms or, for example,

right to left languages. Those things aren’t trivial at all and you should

always rely on the API that Apple already provided for you.

Listing 5-5. A First Attempt at Computing 4 Years Ago. Pretty Wrong

let years = Date(timeIntervalSinceNow: -60*60*24*365*4)

let pred = store.predicateForEvents(withStart: years,

 end: Date(),

 calendars: local)

store.events(matching: predicate).forEach {

 // Now $0 is a single EKEvent

 print($0.title)

}

Listing 5-6. A Better Approach to Compute 4 Years

var components = DateComponents()

components.year = -4

let years = NSCalendar.current.date(byAdding: components,

 to: Date())

 Geolocating Your Appointments
As mentioned in the chapter about Locations, many system apps — when

they first run — ask if it’s okay to use your location. In the case of the

2 Watch “Solutions to Common Date and Time Challenges”, a session from WWDC
2013 at https://developer.apple.com/wwdc13/227. It might be over 6 years old,
but it’s still very much relevant — and now to iOS as well.

Chapter 5 Calendar and events

https://developer.apple.com/wwdc13/227

84

Calendar app (or really any app that would save an event in your location

database3), this might be used like in Listing 5-7 to retrieve your location.

Listing 5-7. Each Event Might Directly Have a Latitude and

Longitude

store.events(matching: predicate).forEach {

 if $0.structuredLocation?.geoLocation != nil {

 // do something with that CLLocation

 }

}

That being said, even if you didn’t give access to your current location

(and really, most events you enter in your calendar aren’t at the current

location anyway), the Calendar app will offer you a list of places and will

then directly add the latitude and longitude. Even if it didn’t do it,

Listing 5-8 shows you how the beautiful — yet not privacy-friendly — APIs

from Apple allow you to geocode an address.

Listing 5-8. Need to Geocode An Address String?

if let location = event.location {

 CLGeocoder().geocodeAddressString(location) {

 (placemarks, error) in

 if let location = placemarks?.first?.location {

 self.annotate(location: location)

 }

 }

}

3 The difference here being that such an app would also need access to your
calendar, which the calendar doesn’t ask. The Camera doesn’t ask for access to
your camera either!

Chapter 5 Calendar and events

85

 What Exactly Is in the Structured Location?
It is also important to know what kinds of information are stored there

(and this is what is shown in Listing 5-9). You can tell, for example, that

a geolocation (which is a standard CLLocation) is always a bit more than

just a latitude and longitude. It also has information about the speed, the

course, and many things that could, for example, tell someone if I was just

walking, not moving, or in a rapid train.4

Listing 5-9. The EKStructuredLocation Has Some Interesting

Information

{

 title = Lima;

 address = ;

 geo = <-12.05929000,-77.03006000>

 +/- 0.00m (speed -1.00 mps / course -1.00)

 @ 5/27/18,

 5:26:17 PM Central European Summer Time;

 abID = (null);

 routing = (null);

 radius = 9178.047384;

}

So even if I didn’t use the geolocation of images, I would be able to

show you the images here by simply matching the date and time of the

images with the date and time of the event. The general idea here is that if

we don’t get the information from one side or one API, we might be able to

get it from the other side.

4 This is in fact what Felix Krause does to detect.location at https://krausefx.
com/privacy. He finds the fastest photos, but can also tell if a user has attended
college. Frightening, isn’t it?! Felix is a great inspiration for the community of
people interested in the ethics behind Privacy.

Chapter 5 Calendar and events

https://krausefx.com/privacy
https://krausefx.com/privacy

86

 I’ll Show You Where You Were
Most of the demo app turns around location, because it’s a central part of

privacy, and probably the oldest concern in iOS land.

This is what I’m demoing in Figure 5-1, where I display in a map where

you were (and when), without having access to your current location.

Figure 5-1. Displaying the locations I found in your calendar is easy

Chapter 5 Calendar and events

87

That is, I and my app don’t have access but the Calendar app does, and

we ricochet to your location this way.

Again and again, the hardest thing for Apple to decide here is what is

fine-grained enough to respect your privacy and not too much, to make

apps still usable.

Once I have access to an event, as described in Listing 5-10, there is

also much other information that we can show.

I could also open the URL attached to the event, e-mail all your friends

who are invited to this event, and so on and so on…

Listing 5-10. This is What an Event Looks Like

EKEvent <0x608000110bc0>

{

 title = Hanging Around;

 location = Lima;

 calendar = EKCalendar;

 alarms = (null);

 URL = http://apple.com;

 lastModified = 2018-05-27 14:06:12;

 startTimeZone = America/Lima;

 location = Lima;

 structuredLocation = EKStructuredLocation <...>;

 startDate = 2018-05-23;

 endDate = 2018-05-23 15:00:00;

 allDay = 0;

 floating = 0;

 recurrence = (null);

 attendees = (null);

 travelTime = (null);

 startLocation = (null);

};

Chapter 5 Calendar and events

88

As you can tell, I have a few convenient properties like attendees that

would give me a list of contacts (name and e-mail address) without having

access to your Contacts database.

I could also learn a lot about your habits by analyzing the recurrence

property. For this book, I do have to play the bad guy. It’s obviously a risk

that a (hopefully small) amount of people use this book for bad purposes,

but it’s a necessary step in evangelizing for Apple platforms to be the best

in terms of user privacy.

 The Special Birthday Calendar
The problem with this calendar type is that it will display events like we see

in Listing 5-11.

If you look closely you can probably find a pattern in the title, which

allows us to retrieve a name although we don’t have access to the Contacts

database.

This is a serious enough breach of your privacy to decide not to save

the birthdate of your friends, which is sad, since this is a very convenient

way of being reminded and I prefer to have this information in the hands

of Apple rather than a social network.

Listing 5-11. Remove the Title’s Suffix and You Have a Name

EKEvent <0x600002d254d0>

{

 title = Kate Bell's Birthday;

 startDate = 2018-01-19 23:00:00 +0000;

 endDate = 2018-01-20 22:59:59 +0000;

 allDay = 1;

 recurrence = sRRULE FREQ=YEARLY;INTERVAL=1;

}

Chapter 5 Calendar and events

89

We are omitting some of the properties but you can see that if we

remove `s Birthday, we have the name of one of our contacts, as well as her

birthday, without the user giving access to the Contacts database.

 EventKitUI Still Needs Access
Like the Contacts framework, there’s a corresponding set of view

controllers that can be used.

The weird part of the EventKitUI framework, though, is that it is

not out-of-process and it thus needs access to your calendar to display

anything.

This heavily defies the purpose of such a UI framework, since in my

opinion a big chunk of the benefits of ContactsUI resides in the fact that

it allows a user to select a contact without giving the developer of this app

full access.

Transfer that knowledge to events and I would expect that a user could

allow an app access to a single event — or, for example, a day — but if your

app doesn’t have full access to your calendar you’re left with that terrible

message in Figure 5-2.

Chapter 5 Calendar and events

90

What’s even sadder is that — as mentioned in the introduction of this

chapter — you can tell as a developer how old the framework is because

there’s no link to open the Privacy Settings.

I’m not sure you can expect all users to understand where Privacy

Settings are — let alone where the Settings app is.

It’s another discussion, but I think the fact that the Settings app is

an app is a problem. You should be able to go to the settings with some

shortcut, or at least the app shouldn’t be allowed to be placed in a folder,

for example.

I’ve known some users to move their Settings app into a “Useless”

Folder because — believe it or not — some people never ever go into

Settings.

At least for highly privacy-related matters like Events and Reminders

you’d hope that Apple makes a small update and allows a direct link.

Figure 5-2. One of the in-app-process pickers

Chapter 5 Calendar and events

91

 The List of Calendars
We already displayed the code in Listing 5-3 of what we now

announce to you as part of the not so amazing EventKitUI. This is the

EKCalendarChooser, which has to be either pushed on a view controller or

if presented, you should add it to a navigation controller so you have the

bottom buttons.

Figure 5-3. The EKCalendarChoose that can display the list of
calendars

The button Add Calendar surely is neat but, since your app can

actually also do it (remember you can’t show EKCalendarChooser if you

don’t have full access!), it’s a gimmick we’d rather swap for real privacy.

Chapter 5 Calendar and events

92

I’ll show you what it does though, in Figure 5-4.

 The Event View Controller
There’s one thing that is useful for editing a single event: it’s

EKEventViewController. I decided that in the sample app I would show

it when the “i” button is tapped. I show how it can look (only the data will

change on your side, obviously) in Figure 5-5.

Figure 5-4. The user can add a calendar while staying in your app

Chapter 5 Calendar and events

93

The code in Listing 5-12 is what it takes to display it. The optional

allowsEditing is a way to have an Edit button at the top right, which does

what it says.

Listing 5-12. This Is What It Takes to Use This Other Controller from

EventKitUI

let eventVC = EKEventViewController()

eventVC.event = events?.first

eventVC.allowsEditing = true

navController?.pushViewController(eventVC, animated: true)

Figure 5-5. How the Event View Controller looks

Chapter 5 Calendar and events

94

You can also directly jump to the Editing mode by using

EKEventEditViewController, which works similar to the read-only

version.

From a privacy perspective it should be clear to users that the app has

access to their calendars. I’m not sure though that it is always clear that the

app can read anything — and not only what it shows.

 On the Mac
You can do the same with the Event framework that you do on iOS, with

the obvious difference that the request looks a bit different, as shown in

Figure 5-6, but it uses the same mechanism with the Info.plist as on iOS.

Figure 5-6. The Mac permission request for calendar access

There’s no EventKitUI to display an event, so you’re left on your own

for this.

There’s really nothing more to say about the Mac side of things, except

I deeply miss this UI part, but if it come we should all hope that it will be

out-of-process.

Chapter 5 Calendar and events

95

 Conclusion
You are now knowledgeable about the API working with Calendars and

Events. You can do a lot with them: like, for example, a totally revamped

calendar app better than the system one (some have done it) or integrate it

into your app.

You could, for example, set up a reminder tomorrow to pick up some

food, if you have a food app. However, do not confuse the Calendar

API with a local or remote notification, which can be helpful to use as a

reminder.

Speaking of reminders, the Reminder apps on iOS and macOS use

the same set of APIs, because after all, a reminder is just a calendar entry.

All you have to do to apply what you’ve learned is to use the entity type

.reminder. It’s that easy.

Chapter 5 Calendar and events

97© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_6

CHAPTER 6

Health and Fitness
Especially if you wear an Apple watch, Apple knows potentially a lot about

you. It’s important to know how you can use it as a developer if your use

case justifies it.

The same as you have the Contacts app or the Calendar app for the

corresponding API we already developed in this book, the Health app is

where you can see if your code worked.

This chapter essentially discusses two topics: health, as in medical

health; and fitness, sport, workouts, which obviously have something to do

with health like, for example, heart rate.

Apple talks a lot about privacy — and does a lot for it as well. When

there’s a talk about HealthKit they always have a part about privacy.

They don’t just speak for 30 seconds about it, but always remember how

authorizations and the users’ trust are linked to each other.

 Adding the Framework
By going into your iOS Target, in the Capabilities tab, and turning that

switch on, Xcode will add an .entitlements file in your project if you

have none. Xcode 11 changes this a bit in that the tab is called “Signing &

Capabilities” and instead of a list of checkboxes you use the + button to

add a capability.

This XML file contains a set of <key> items that either have a

<true/>/<false/> or, in this case, for example, an empty <array />. We’ll see

later that this might not stay empty, if your app will work with Health Records.

98

Xcode will also add the HealthKit.framework, without which you

won’t be able to import HealthKit into your .swift files.

Note that if you ever change the location of this file, you’ll probably
have to update the Build Setting CODE_SIGN_ENTITLEMENTS, which
is a relative path to this file — relative to your .xcodeproj file.

 Explain to the User
As a reminder, although this is explained in Chapter 1, you’ll need here as

well to specify a string for your .plist.

Listing 6-1 shows the indication from HealthKit that this is needed.

As you can see, it’s very descriptive about what kind of properties we want

access to, although the string itself is the same for all types.

Listing 6-1. The Log Shown in the Console if I Forget the Important

String

2018-11-27 12:37:48.681296+0100 My Privacy[26896:8395709]

∗∗∗ Terminating app due to uncaught exception
'NSInvalidArgumentException', reason:

'NSHealthShareUsageDescription must be set in the app's

Info.plist in order to request read authorization for the

following types: HKCharacteristicTypeIdentifierDateOfBirth,

HKQuantityTypeIdentifierHeight'

 Central Database
Before HealthKit was introduced in 2014, there already were a lot of health-

related apps.

ChapTEr 6 hEaLTh aND FITNESS

99

They couldn’t really communicate with each other, though. Imagine

a Contact app or a Calendar app (also from third-party developers) that

couldn’t access a central database. That wouldn’t be great.

 The Core: Quantity & Unit
The simplest piece of information that should stay private is a quantity

per unit.

A Unit is used to described, for example, grams, or pounds, or
meters, or inches, …

 The Source: Object Type
HKObjectType includes things like heart rate, blood pressure, different kind

of vitamins, etc. There are over 60 kinds, each one represent something

personal from the user, which is why it’s important they see it from a

privacy perspective.

 The Stored Object
Every combination of a quantity and a type — so, an instance — is stored

as an HKObject. A child class from it, HKSample, combines:

• Sample type

• Start Date

• End Date

 All Properties Are Read-Only!
Yes, you read it right — because it doesn’t make a lot of sense to change the

data that was recorded yesterday.

ChapTEr 6 hEaLTh aND FITNESS

100

It’s also a good decision to have immutable properties so nothing can

be changed by a mean app.

That being said, you can observe when a property changes,

for example, when the user became taller. For that, you can use

HKObserverQuery. Speaking of which, at the core of some code, we’ll show

there’s going to be an HKQuery.

 Not Even in Your App’s Privacy Settings
I’m not sure if it’s for a privacy reason, but tapping on the My Privacy

Settings row in the sample app that goes with this book won’t show you an

entry for Health, although there’s a Health section in the Privacy section of

the Settings, and the app will be shown there.

 Getting the Permission
Before doing anything check isHealthDataAvailable, because your code

might be running on an iPad, which doesn’t support HealthKit.

You only get the chance to show the UI once, but you can always ask

for authorization with the method and enum in Listing 6-2.

Also, the reason the enum doesn’t contain any hint for read

authorizations is a privacy concern.

This is because for some data, knowing that the user has
blocked access to an app can be just [as] private as knowing
the data itself.

“Introducing HealthKit”1, WWDC 2014

1 https://developer.apple.com/wwdc14/203

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/wwdc14/203

101

Think of an app asking the user to read its blood sugar. If they refuse, it

might indicate that they are diabetic.

Listing 6-2. The Method and the Enum, Which Aren’t Giving Any

Info About Read Authorizations

if store.authorizationStatus(for: objectType) {

 ...

}

enum HKAuthorizationStatus : Int {

 case notDetermined

 case sharingDenied

 case sharingAuthorized

}

 Your Missing “me” Card from Contacts
HealthKit has methods to give you, for example, your birthday. As we

will soon see in a sample code, HKHealthStore has an instance method:

dateOfBirthComponents.

HealthKit even has information that you wouldn’t put in your Contacts

app, like: how tall are you or what is your weight?

For some use cases, for example, ordering a T-shirt, it could even

be useful to have this information for your friends. Let’s see how long it

takes for Apple to produce an app similar to Find my Friends or Find my

Phone… Find their Weight? Speaking of which, those 2 apps are now one

single app called “Find My” in iOS 13, with 2 tabs: People and Devices.

 A Different Kind of Alert
You may be used to seeing simple alerts like the access to the Camera,

where the only choice is Yes or No. HealthKit does it differently.

ChapTEr 6 hEaLTh aND FITNESS

102

This alert is displayed when I use the requestAuthorization method,

as I do in Listing 6-3 where I’m simply asking permission to read those two

parameters. Hence, the screen at Figure 6-1 appears — mind you, with a

nice transition.

Listing 6-3. Asking for Access to Date of Birth and Height of the User

guard let dateOfBirth = HKObjectType.characteristicType(

 forIdentifier: .dateOfBirth),

 let height = HKObjectType.quantityType(

 forIdentifier: .height) else {

 return

}

store.requestAuthorization(toShare: nil, read:

 [dateOfBirth, height]) { (success, error) in

 if (success) {

 // We’ll see later...

 }

}

ChapTEr 6 hEaLTh aND FITNESS

103

Keep in mind that the user might change the authorization they gave,

at a later time.

If you have nil or zero samples for a given data, like date of birth or
height, it could be that the user didn’t give access to it, or didn’t add
the data. There’s no way to know, for privacy reasons, but you can of
course ask your users to change it, manually.

Now let’s get a little deeper with the code in Listing 6-4. This one

defines two methods, one for the birthdate, which can throw an exception;

and one for how tall (or not) the user is.

The birthdate call on the store can produce an error, can even throw a

nilError, and can return a nil value.

Figure 6-1. The authorization panel shown by the app the first time

ChapTEr 6 hEaLTh aND FITNESS

104

Gathering the height requires a little more code, because it involves a

query.

Listing 6-4. Inside the Positive Authorization

do {

 try self.updateDateOfBirth()

 self.updateHeight()

} catch2 {

 print(error)

}

func updateDateOfBirth() throws {

 if let bd = try self.store.dateOfBirthComponents().date,

 let y = NSCalendar.current.dateComponents([.year],

 from: bd, to: Date()).year {

 DispatchQueue.main.async {

 self.bdLabel.text = "You are \(y) years old"

 } }

}

func updateHeight() {

 guard let height = height else { return }

 let query = HKSampleQuery(sampleType: height)

 { (query, samples, eror) in

 DispatchQueue.main.async {

 if let sample = samples?.first as? HKQuantitySample {

 self.hLabel.text = "You are \(sample.quantity)"

 }

 }

2 Wondering where this error variable is coming from? You don’t declare it, but it’s
implicitly declared by Swift. You can change the name or catch a more specific
Error but this is out of scope for now.

ChapTEr 6 hEaLTh aND FITNESS

105

 self.store.execute(query)

}

You might be wondering where the simple initialization method
for hKSampleQuery, which only takes two parameters, comes from.
It’s an extension I defined, to make my life easier when all I want is
the latest value. It’s in the sample app; you can find the code there.
also, I was obviously inspired by apple’s sample app “Fit.”3

 Proportional Collection
Coining a term is hard sometimes. Apple got it absolutely right with

this one. They not only emphasize that it’s important to build trust with

the user, but they remind developers constantly — and so will I,

obviously — that you shouldn’t collect more data than you need.4

Remember you can always escalate the permissions. You can start by

asking for some permissions and at a later time add more.

It means Apple wants to draw your attention to three things about

privacy, namely that you have to ask for:

• Only what you need

• Only when you need it

• Every time you need it

“New Ways to Work with Workouts”

Niharika Bedekar, Fitness Software Engineer.

3 https://developer.apple.com/library/ios/fit_sample
4 https://developer.apple.com/videos/play/wwdc2018/707/?time=177 •
https://developer.apple.com/videos/play/wwdc2019/708/?time=84

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/library/ios/fit_sample
https://developer.apple.com/videos/play/wwdc2018/707/?time=177
https://developer.apple.com/videos/play/wwdc2019/708/?time=84

106

We’ll discuss more on this in a very special way when we develop the

delicate subject of Health Records later.

It means that if my app starts by asking only the information in

Figure 6-1 but I then decide (once the user used a UI to start a Workout)

that I not only want to read that information but I also need to write

others, I could replace the toShare: nil from Listing 6-3 with toShare:

[.workoutType(), distanceType] and I’ll have the screen shown in

Figure 6-2 appear.

Figure 6-2. The birthday and height won’t be asked again, just the
new authorizations

Note that if your user kills the app — or if you restart your code in
Xcode — before taking the decision to accept or refuse authorization,
they will appear again.

ChapTEr 6 hEaLTh aND FITNESS

107

 A User Can Always Change His Mind
in the Settings
It’s worth saying it again and again. You should always ask for

authorization even if your user previously accepted (or rejected) an

authorization. In the case of HealthKit, though, it’s a bit trickier since you

won’t know if a read-only authorization was rejected.

 Workouts — and Their Maps
There are various aspects of the HealthKit API. The sport one is probably

the most used, especially in combination with the Apple Watch.

Although the class HKWorkoutSession is only available on Apple

Watch,5 HKWorkoutRoute and its corresponding HKWorkoutRouteBuilder

are luckily available on both. Don’t be confused like I was by the generated

Headers in Swift.6

The reason for my confusion came from the fact that the My Privacy

sample app has — like Apple recommends in its 2017 WWDC Session

What’s new in Health — a common HealthManager helper class.

You should know the difference between looking for the

HKWorkoutRoute.h file and clicking on the HKWorkoutRoute class in your

code. The latter will generate an interface specifically for the platform it thinks

this class belongs to. It’s confusing but, long story short, not being afraid of

Objective-C is still an advantage as a developer for Apple Technologies.

Sadly, this session from 2017 hasn’t updated the sample code, so you

can only follow the slides and watchOS development was still a major pain

in 2019, if you ask me. I haven’t worked much with watchOS 6 so there’s

5 For whatever reason, maybe simply a commercial one.
6 https://twitter.com/StuFFmc/status/1074016881420484608

ChapTEr 6 hEaLTh aND FITNESS

https://twitter.com/StuFFmc/status/1074016881420484608

108

hope that many things are better — for one thing, independent Watch

Apps and thus independent Simulator might be great! There’s a wonderful

set of APIs, but the tools for debugging are terrible, would be my quote

until WWDC 2019. I might revise my opinion hopefully by the end of 2019.

Note that when I started writing this chapter it was still smarter to
develop your watchOS extension in Objective-C instead of Swift 4.2
because, since the Swift libraries weren’t yet ship with the OS, they
needed to be deployed (and that is probably over Bluetooth) from the
Watch app (Extension) on the phone to the Watch. Since we now have
Swift 5, a stabilized aBI and many new things with Xcode 11 and
watchOS 6, things might be nicer in the near future7

Listing 6-5 will suppose that you use Core Location to get the location

data, but you sure could use historical data and even create a CLLocation

without CLLocationManager.

This code saves geographical information in the HealthKit database,

which is in turn displayed in the Health app as shown in Figure 6-3.

More later on that device parameter used to create the route…

Listing 6-5. The Steps to Create a Workout Route

// Step 1: Create the route and start CoreLocation

let builder = HKWorkoutRouteBuilder(healthStore: store,

 device: nil)

// Step 2: Add locations as the workout is ongoing

func locationManager(_ manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

7 Reminds me of Daniel Steinberg’s talk at SwiftConf 2018 — https://youtube.
com/watch?v=GzP2oaZRi7Q

ChapTEr 6 hEaLTh aND FITNESS

https://youtube.com/watch?v=GzP2oaZRi7Q
https://youtube.com/watch?v=GzP2oaZRi7Q

109

 builder.insertRouteData(locations) { (success, error) in

 // Deal with success & errors...

 }

}

// Step 3: After the workout is saved, save the route data

builder.finishRoute(with: workout, metadata: nil) {

 (workoutRoute, error) in

 // Handle errors...

}

Figure 6-3. The finished route displayed in the Health app, Workout
section

ChapTEr 6 hEaLTh aND FITNESS

110

iOS 12

Figure 6-4. In iOS 12: It must be clear to the user of a Workout app that
both Apple and the app maker have their location data, which they can
find in “Show All Data”; In iOS 13: The Health App changed quite a lot
on iOS 13 — this is the way to reach your Workout Data.

ChapTEr 6 hEaLTh aND FITNESS

111

Figure 6-4. (continued)

ChapTEr 6 hEaLTh aND FITNESS

112

I’m a little bit worried, though, that there are all those companies

worldwide that gather location and probably know exactly where we live,

because it’s trivial to see how many photos you post from the same place

or — in this case — the neighborhood where you always run.

Did you know that some fitness apps are a serious matter for the
military? Some of those people doing their morning run, where they
are supposed not to be found, are publicly publishing their GpS data,
which can be relatively easily found by enemies…

I promised earlier to develop the HKDevice parameter (being nil in

Listing 6-5). This is simply a class defining a device with a set of strings

describing it.

Probably the most cryptic but interesting is udiDeviceIdentifier,

which goes defined this way:

Represents the device identifier portion of a device's FDA UDI
(Unique Device Identifier). The device identifier can be used to
reference the FDA's GUDID (Globally Unique Device Identifier
Database). Note that for user privacy concerns this field
should not be used to persist the production identifier portion
of the device UDI. HealthKit clients should manage the pro-
duction identifier independently, if needed.8

Apple Documentation (HKDevice.h)

Figure 6-5 is another example of information found in Details like we

showed already in Figure 6-3, except this is specifically the part about a

device.

8 www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
UniqueDeviceIdentification

ChapTEr 6 hEaLTh aND FITNESS

https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification
https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification

113

Passing nil is the way for HealthKit to know it will use the local device

where the code is running. You can get that same device with HKDevice.

local(). Alternatively, you can pass your own object describing potentially

a Bluetooth device your company builds. Note that data can also always be

entered manually via the Health app.

 Deleting Objects
What is probably the third thing forgotten in most apps after security and

testing? It could be deleting and/or cleaning data.

Either when the user asks you to do so, or when you technically need

to do (e.g., to migrate to a newer API), you have a few different options in

your toolbox.

Listing 6-6 shows a couple of different methods; especially the last

one is crucial because it’s efficient, because we don’t have to query for the

objects previously but simply pass a predicate.

Figure 6-5. The details of the device that recorded the data, and a
few very nerdy metadata keys

ChapTEr 6 hEaLTh aND FITNESS

114

I cannot emphasize enough how important it is to have an option in

your UI that gives the ability to delete stuff. This isn’t only a good-karma

approach, but this will definitely build up trust between you and your user.

Listing 6-6. The Different Methods, Without Going Too Much into

the Usage Detail

HKHealthStore().deleteObject

 .deleteObjects

 .deleteObjectOfTypes

They might never use it, and you are free to remember that deleting

some data will mean your app won’t be able to display the same level of

information, but at least the option shouldn’t be left aside.

 Know Which Objects Were Deleted
Because HealthKit — as with many other examples like the Contacts

API — uses a central database shared by all other apps (also the Health

app, itself), you should be prepared for some objects being deleted in

your back.

To that purpose, there’s an API in HKAnchoredObjectQuery that has a

list of HKDeletedObject in its resultsHandler. That handler can also be

specified separately, at which point that query will keep running and the

handler will be called when further samples are deleted in the future.

Note that — to save space — those deleted objects are only
persisted for a limited amount of time, as mentioned in What’s New in
HealthKit.9

9 https://developer.apple.com/wwdc15/203

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/wwdc15/203

115

Of course, it would be great if you could be notified when a specific

object was deleted, since it might not be your code doing it. Well,

throw your hands up in the air; there’s a very handy function called

enableBackgroundDeliveryForType that does exactly that.

You probably want to closely follow those types that are used to display

data on your UI. Beware, though, that this is not available on Apple Watch.

Speaking of which…

 HealthKit on watchOS
More and more of the API set from Apple is becoming available with the

same method signatures on multiple, if not all, of their platforms.

HealthKit is only half on iOS (because it’s not on iPad), but on watchOS

it has the same APIs as iOS — or I should say iPhone.10

Because of performance though, only a limited amount of historical

data will be available on the Watch.

 Requesting Access
The requests are made on the Phone, not the Watch. Imagine a small

authorization UI on the Watch; that wouldn’t make a lot of sense.

This is why, as you can see on Figure 6-6, the Watch will only display

a message that can be dismissed, while the Phone will display a way to

dismiss the message or open your app.

The authorizations themselves are shared — your watch will see

everything your Phone sees and the other way around.

10 Oh, look, Health is even available on iPod touch: https://support.apple.com/
en-us/HT203037

ChapTEr 6 hEaLTh aND FITNESS

https://support.apple.com/en-us/HT203037
https://support.apple.com/en-us/HT203037

116

Figure 6-6. Allowing access to HealthKit always happens on the Phone

The data saved on the Watch (for example, when you’re out for a

Workout without your Phone) will then be synchronized.

There is a very good talk called App Extension Best Practices11 from
the 2015 WWDC, given by Sophia Teutschler and Ian Baird. In this,
they show you that you should create an app framework with shared
code between the extension and the app.

For the purpose of simplicity I added the class healthManager to both
Targets in Xcode instead, but their approach is definitely better — but
also out of scope for this book.

11 https://developer.apple.com/wwdc15/224

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/wwdc15/224

117

Listing 6-7 shows the call that will be received by the iPhone app when

tapped. Mind you that tapping Close on the Watch doesn’t do anything

(besides dismissing the dialog), the same as Not Now on the Watch not

doing anything.

Listing 6-7. The Call-Back in Your Application Delegate When

“Open” Is Tapped

func applicationShouldRequestHealthAuthorization(

 _ application: UIApplication) {

 HKHealthStore().handleAuthorizationForExtension {

 (success, error) in

 // In bad cases, report in the UI…

 }

}

 Fitzpatrick Skin Type
If you are like me, you might have wondered why Apple provides six

different variations of many emojis. It’s not only Apple, it’s a standard

emoji variation.

The first one, yellow, isn’t real (and comes from the original yellow

emoticons) but the five others are actually medically real.

ChapTEr 6 hEaLTh aND FITNESS

118

Those cute babies have five different skin types, or actually six, but the

emoji representation groups I and II skins are relatively similar.12

The Fitzpatrick scale13 uses a different way of computing your resistance

to UV light. By asking you a series of questions, you end up being classified

in the Von Luschan’s chromatic scale,14 which is what the emojis represent.

There is a method fitzpatrickSkinType() that returns an

HKFitzpatrickSkinTypeObject, which in turn has a single property

skinType being an enum with value from 0 (not set) to 6, corresponding to

the type.

The UVExposure quantity type is a good combination with it, because

depending on those two parameters (one with which you were born, the

other one being the timely exposure) an app can warn you.

The warning is a good thing. I’m concerned about the skin type itself,

because even though it’s technically not the same as your skin color, not

everyone would want that kind of data to be on some database.

You see, protecting privacy here might also be protecting your user from

a potential breach into your database that would allow a crazy team of racists

to decide that they will gather data on some type of skin. This really isn’t

what you need, so I urge you to really only ask for access to that information

if your app is related to anything that has to do with UV exposure.

It’s also your job — our job — to educate users (e.g., people in

your family) to not allow access to certain types if they feel it’s wrong.

Remember, they can always change their mind later in the Settings App.

I wonder if Apple would be critical of an app asking for this. I hope

they’d look for a specific functionality in the app justifying the access to

this personal data.

12 https://en.wikipedia.org/wiki/Emoji#Skin_color
13 https://en.wikipedia.org/wiki/Fitzpatrick_scale
14 https://en.wikipedia.org/wiki/Von_Luschan%27s_chromatic_scale

ChapTEr 6 hEaLTh aND FITNESS

https://en.wikipedia.org/wiki/Emoji#Skin_color
https://en.wikipedia.org/wiki/Fitzpatrick_scale
https://en.wikipedia.org/wiki/Von_Luschan%27s_chromatic_scale

119

 Reproductive Health
…and for many couples who are trying to conceive and for
many couples who are trying not to conceive, monitoring fer-
tile times and understanding hormonal changes or irregulari-
ties is critical information.

What’s New in HealthKit15

Shannon Tan iOS Software Engineer

Apple says this was the #1 developer request for HealthKit, back in 2015.

In 2019, with the Cycle Tracking App on watchOS 6 Apple doubles down on

that important matter.

I cannot think of anything more private than this, but it’s important

that Apple takes it seriously for many reasons, one being that a new life (or

not) might be implied. You’ll find various types like OvulationTestResult

in HKTypeIdentifier.h — or, obviously, the English documentation. I

prefer the headers, a lot of time.

 Sexual Activity
While most of the previous information is only relevant and private to the

women entering that data, it gets even more private for a type like sexual

activity, where the other person (if we are speaking about an identifiable

relationship) is being tracked at the same time.

This is the problem of people letting an app access their contact

database (in which you or I may be listed), but on a way more personal scale.

Ideally, from a privacy perspective, the other person should always be asked.

To use that very low comparison of the Contact database, I would

want to find a way for me as a user to hide my contact sheet to an app.

15 https://developer.apple.com/wwdc15/203

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/wwdc15/203

120

In other words, this is my data and I want to keep it mine, and decide if

people will implicate me in their decision to share my data — in the case of

reproductive health, potentially, our common privacy.

 Health Records
The Health app has had this feature since iOS 11.3,16 and although in

iOS 12.1 it was advertised as a Beta feature, the API for external developers

arrived just after the front facing.

This is because Apple obviously needs third-party developers (e.g.,

hospitals and doctors) to fill in the database. Since iOS 13 it’s not anymore

described as Beta although still only available in the US, one can hope it

will soon arrive to other parts of the world.

Since I hope we can trust our doctors and the health systems

worldwide to be aware of the basic concept of privacy, there’s hope this is

going to be a very helpful technology.

One of the first things that will make you realize how different this is

will be the authorization mechanism. HealthKit in itself is already different

in that it has a very fine-grained UI for authorization (the dream of any of

the other chapters in this book17), but the Health Records go beyond this.

16 https://support.apple.com/en-us/HT208680
17 To be fair, whenever there’s at least a question (Yes/No) asked, this is already

a win. I’m old enough to remember when any developer could read the user’s
contact list without the user even knowing. In 2019, in iOS 13, Apple also finally
added a Yes/No for access to Bluetooth — and suddently we all discovered a few
Apps who had been using Bluetooth without the user knowing it.

ChapTEr 6 hEaLTh aND FITNESS

https://support.apple.com/en-us/HT208680

121

 Preparing Your Simulator
As a developer, the first thing you want to do is to avoid working with your

personal device for everything. For Health Records this is especially true,

but also if you are like me in a country where Health Records isn’t available

yet, Apple has prepared a set of fake/test data.

As shown in Figure 6-7, in iOS 12, you would do that by going to the

Health Data tab of the Health app and tap the Health Records tab. On iOS 13

that changed a bit: You need to tap your Icon/Profile Photo on the top

right, then Accounts, Health Records. The text before the “Get Started”

button is a bit different in iOS 13, as well as the Location prompt. It’s a

perfect example of when you want to accept location only Once, since all it

does is lookinf for hospitals in your surroundings. The first time, the setup

process will appear.

ChapTEr 6 hEaLTh aND FITNESS

122

Figure 6-7. In iOS 12: The process it takes to add a fake sample
instituation and location; In iOS 13: As you can see Apple changed its
color scheme and a bit of the introduction. Also you can see the new
iOS 13 way of displaying modal windows as sheets with the view in
the background shown at the top.

ChapTEr 6 hEaLTh aND FITNESS

123

Figure 6-7. (continued)

ChapTEr 6 hEaLTh aND FITNESS

124

That location access, although well described (to find hospitals), is

a bit of a privacy concern to me because — as you might have learned

previously — there’s no other way than the App Store Review process

(brought to you by humans: those who can also miss a detail), for a user to

know that it’s only used for that.

After all, those purpose strings are just that: strings. None are really

attached (strings) to what they really do. This got me thinking that:

• There should be an API to ungrant (or temporarily

grant) access to the location. Hey, look, temporary

grant arrived in iOS 13! Thanks, Apple!

• As a user, I would recommend in such cases to remove

that grant just after the app has done what it wanted

to do. That’s a good trick by the way to get some apps

working at all. That’s the purpose of “Once” in iOS 13,

but if you run an older OS, this is still a valid comment.

Also, “Once” means the grant will stay until you leave

the app. When you later return, you’ll be asked again.

As long as you are using the app, the grant is active.

 Adding the Entitlements
First of all do not forget to add this capability to your app, as shown

in Figure 6-8, by going into the Project settings in Xcode, in the

Capabilities tab.

Figure 6-8. The newly introduced (in 2018, iOS 12) Health Records API

ChapTEr 6 hEaLTh aND FITNESS

125

Then you’ll need to check supportsHealthRecords on your

HKHealthStore. Listing 6-8 is what the console will report if you forgot that

checkbox. At the end of the day, the only thing Xcode does when you click

that checkbox is add information to your entitlement file.

Listing 6-8. The Console Output When You Forget to Add the

Health Records Entitlement

[health_records] Failed to determine Health Records

availability with error: Error Domain=com.apple.healthkit

Code=4 "Missing health-records entitlement."

It’s important to note that Health Records isn’t supported in every

region; if applicable, you should start by sadly telling your new customer

it’s not supported in their country.

This is where releasing an app only in certain parts of the world

might make sense. Did you know your app doesn’t have to be available

worldwide, but you can fine-tune your distribution?

Also, as usual when it’s a privacy subject, do not forget to set

NSHealthClinicalHealthRecordsShareUsageDescription in your

Info.plist. Otherwise, even though supportsHealthRecords will be true,

the moment you try to requestAuthorization it will crash your app — but

you should be used to it by now.

 New Authorization Model
Apple is being very picky on privacy with Health Records — luckily. As

Figure 6-9 shows, there’s first a general Health Records panel, even before

the types are shown. Listing 6-9 shows the way I’m asking for access to

Medication, but as Apple says, it doesn’t matter which specific part of

Health Records I’m asking for; this is a very special case.

ChapTEr 6 hEaLTh aND FITNESS

126

Figure 6-9. The first step for general usage of Health Records and
the second displaying the list of access request. This is how this looks
under iOS 12.

ChapTEr 6 hEaLTh aND FITNESS

127

After the standard Health Records panel we present your
authorization panel — this is your chance to explain [to] the
user (thanks to the info.plist keys) why you need this access.

(…)

You should be sure that your request is proportional to what
you need.

Accessing Health Records18

You might recognize that there’s no “Allow all” button. Granted, here

I’m only asking for one access, but even with more the user would have

to go over each one. Figure 6-10 displays the last part of this process,

where the user is given the choice to be asked each time new records are

available.

18 https://developer.apple.com/wwdc18/706

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/wwdc18/706

128

The single requestAuthorization call in Listing 6-9 will be that long

the first time (3 parts, from 1 of 3 to 3 of 3). That last part is important

because you’ll only be able to use background deliveries if the user has

granted continuous access.

Listing 6-9. The Basic Request for the Medication Type

guard let medication = HKObjectType.clinicalType(

 forIdentifier: .medicationRecord) else {

 return

}

Figure 6-10. The third part of the workflow, which asks the user
about continuous access or not

ChapTEr 6 hEaLTh aND FITNESS

129

let store = HealthManager.shared.store

store.requestAuthorization(toShare: nil,

 read: [medication]) { (success, error) in

 let query = HKSampleQuery(sampleType: medication,

 predicate: nil,

 limit: HKObjectQueryNoLimit,

 sortDescriptors: []) {

 (query, samples, error) in

 guard let sample = samples?.first as? HKClinicalRecord

 else { return

 }

 label.text = sample.displayName

 }

 store.execute(query)

}

Which brings me to the fact that as of now, you’re dealing with regular

HealthKit stuff, like HKQuery, for example. In Listing 6-9 I’m also getting

those HKClinicalRecord that I’m authorized to query. In a very cheap

manner I’m then displaying the first medication in a label — mostly to

show you that you’ll have to cast that standard HKSample.

 The Full Monty
I’ll get into more details later when speaking about the Argonaut project,

but for the moment let me show you in Listing 6-10 what’s actually

behind that record. Apple extracts the nice displayName for you but it’s

also interesting from the privacy angle to see the actual/full JSON. You

can simply get it with the other property on that object. It’s a Data object,

though, so you’ll have to convert it to a valid JSON object, which is out of

scope for this book.

ChapTEr 6 hEaLTh aND FITNESS

130

Listing 6-10. The Full JSON from the FHIR (Fast Healthcare

Interoperability Resources)

{

 "status": "active",

 "note": "Please let me know if you need to use this more

 than three times per day",

 "id": "24",

 "medicationCodeableConcept": {

 "text": "Albuterol HFA 90 mcg",

 "coding": [

 {

 "system": "http://nlm.nih.gov/research/umls/rxnorm",

 "code": "329498"

 }

]

 },

 "patient": {

 "display": "Candace Salinas",

 "reference": "Patient/1"

 },

 "prescriber": {

 "display": "Daren Estrada",

 "reference": "Practitioner/20"

 },

 "dateWritten": "1985-10-11",

 "resourceType": "MedicationOrder",

 "dosageInstruction": [

 {

 "text": "2 puffs every 2-4 hours"

 }

]

}

ChapTEr 6 hEaLTh aND FITNESS

131

 Get Request Status
Because you might not want to have an imposed UI always shown to you,

Apple introduced a new API that will indicate whether your app needs to

request authorization from the user.

It’s not saying if the user accepted or denied, and Apple proudly

reminds us of that. Listing 6-10 shows you how you avoid displaying the

system UI directly. In essence, it’s your designer-in-the middle attack…

The HKAuthorizationRequestStatus given can be

• Unknown: The authorization request status could not

be determined because an error occurred.

• shouldRequest: The application has not yet requested

authorization for all the specified data types.

• Unnecessary: The application has already requested

authorization for all the specified data types.

This slightly begs the question whether this isn’t already telling an app

too much, but this is at the acceptable middle of convenience over strict

privacy. Often refered as the sweet spot.

Listing 6-11. This Is a Way for You to Know HealthKit Will Present a UI

store.getRequestStatusForAuthorization(toShare: [],

 read: [medication]) { (status, error) in

 switch status {

 case .unnecessary:

 // go ahead with the query!

 case .shouldRequest:

 // maybe display your own "pre-UI" for explanation

ChapTEr 6 hEaLTh aND FITNESS

132

 case .unknown:

 // maybe you can add a retry button?

 }

}

Furthermore, there’s another way to “half know” if users gave

access — or not — to a specific category. If you put these in the key

NSHealthRequiredReadAuthorizationTypeIdentifiers in the

Info.plist, the request will potentially fail with a new HKError:

errorRequiredAuthorizationDenied.

Apple doesn’t recommend you to use this, because your app should
be able to work without it. They recognize cases, though, where you
will need to know if the user decided.

 The Argonaut Project
There’s one thing that gives me a good feeling about HealthKit. That is that

people from the medical industries are a big backbone of support behind it.

Users interact with multiple healthcare institutions over the
course of their lives and these are often running different elec-
tronic health record systems that don't always represent data
in the same way.

To address this the healthcare community came together in an
effort called the Argonaut Project19; this uses FHIR, a flexible

19 https://argonautwiki.hl7.org

ChapTEr 6 hEaLTh aND FITNESS

https://argonautwiki.hl7.org

133

JSON representation of health records and OAuth 2 as defined
by the Smart Authorization Guide to allow connections, con-
sistent connections to healthcare institutions and to allow
data to be downloaded in a common format and related
across those multiple institutions.

Jason Morley — Apple Health

Now that speaks to me. Also the fact that private companies like Apple

will do what governments and politicians worldwide seem to not be able to

do: uniformize data. It’s out of scope to see if this system scales worldwide,

though.

 Don’t Ask Too Much
When speaking about HealthRecords, Apple reminds us again that you

should provide the user with information about how you store their data

and you should provide a way for them to do delete it.

By any means, there’s a privacy policy that needs to be somewhere on

some website — and at best, directly in your app like Apple does with the

Privacy logo.

Also, always ask for data proportionally: never ask for more than you need!

 I’m Concerned About Preconditions, but…
While researching this topic, I was reading an article20 that got me thinking

about the ability for an insurance company to have a look at your records

and determine preconditions faster.

20 https://imore.com/health-records

ChapTEr 6 hEaLTh aND FITNESS

https://imore.com/health-records

134

Although they surely have an economic interest to do so, it also means

they’ll be able to get to that earlier.

It surely makes sense from a computer scientist point of view, but it’s a

bit frightening from a privacy perspective.

Then again — and let me be a bit polemic — a governments might

decide they need access to your data. In general, this is why the technical

side of things, and your ability to act as a responsible developer, isn’t

enough.

We need laws around the technicalities. There are many things we can

do, like driving at 190mph, but we luckily have laws that prevent it, at least

in most countries where sanity lives...

In Europe — and hopefully in many other countries soon — this might

be in the form of GDPR21 or another form. HealthKit and HealthRecords,

like many other technologies, need to be looked into by politicians — in the

hope that we find some who can somewhat understand the technicalities

behind them.

I’m hopeful, as is this passage in the aforementioned article.

Being able to reach for your phone to share details of your last
blood test or prescription list with any care provider is incred-
ibly powerful. It makes their job easier, but it also puts you in
control of the information. It removes obstacles like calling a
busy office or worrying that the information was faxed to the
wrong number.

Health Records: Everything you need to know!

21 https://eugdpr.org

ChapTEr 6 hEaLTh aND FITNESS

https://eugdpr.org

135

22 This amazing technology allows you to control the time you spend on your
iOS device, or the time your kids spend. Check it out at https://apple.
com/newsroom/2018/06/ios-12-introduces-new-features-to-reduce-
interruptions-and-manage-screen-time

 Apple Doesn’t Want Your Data
I was recently on the phone with Apple Support for a problem I was having

with Screen Time.22

The Apple employee on the other side asked me to send a screencast of

my problem so they can investigate. The first thing he told me was:

Please make sure you’re not showing your password or pin
code in the video. We don’t want to see it.

I mentioned at the very beginning of this book that in a lot of cases you

don’t want to store the data on your site.

This is even truer when this data comes from another source anyway,

like with the FHIR implementation.

Because we’re on the subject of trust, here’s a tip when writing your
privacy policy or your purpose strings: Imagine that your user knows
your app as well as someone working on it. Obviously not from a
technological point of view, but from a data flow point. Explain in
plain English — and/or other languages — where the data is stored,
and remember: the less you store, the fewer privacy-related problems
you have to deal with.

ChapTEr 6 hEaLTh aND FITNESS

https://apple.com/newsroom/2018/06/ios-12-introduces-new-features-to-reduce-interruptions-and-manage-screen-time
https://apple.com/newsroom/2018/06/ios-12-introduces-new-features-to-reduce-interruptions-and-manage-screen-time
https://apple.com/newsroom/2018/06/ios-12-introduces-new-features-to-reduce-interruptions-and-manage-screen-time

136

 Statistics
I’m unsure how much the word “statistics” itself is related to privacy, but

I’m sure it is. After all, it’s a completely different thing if an app knows how

many steps I walked today compared with how much I walked in total.

Listing 6-12 shows what it would take for an app to produce this kind of

statistic. It starts — in this case — with a request to access my steps count.

It’s important to note that statistics only work with quantity type, which

sounds obvious. It’s even more important to differentiate two kinds of

quantity type.

• Discrete: You can ask for a min, max, or average, but

it doesn’t make sense to ask for a sum. Weight is a

good example, where adding 7 days of my weight

isn’t interesting data. Note that Apple expanded the

HKQuantityAggregationStyle enum to be more specific

about Discrete as of iOS 13.

• Cumulative: They sum up. Steps count is a very good

example. It makes sense to know how many steps I

walked this week.

Listing 6-12. The Statistics That Retrieve the Sum of Steps I Walked

guard let stepType = HKObjectType.quantityType(

 forIdentifier: .stepCount) else { return

}

let qry = HKStatisticsQuery(quantityType: stepType,

 quantitySamplePredicate: nil,

 options: .cumulativeSum,

 completionHandler: { (_, res, _) in

 if let sum = res?.sumQuantity() {

 let value = sum.doubleValue(for: HKUnit.count())

 DispatchQueue.main.async {

ChapTEr 6 hEaLTh aND FITNESS

137

 label.text = "\(Int(value)) steps"

 }

 }

})

store.execute(qry)

 Statistics Collection
If you want to show my average heart rate from the last week, this is when you’d

use HKStatisticsCollection. This is technically a bit out of scope, but I wanted

to mention it so you look at it deeper in the Introduction to HealthKit session

from WWDC 2014 mentioned at the beginning of this chapter. Also watch the

WWDC 2019 Session Exploring New Data Representations in HealthKit.

 On the Mac
It’s pretty simple: there’s no HealthKit on the Mac. There’s no Health app

on the Mac. Move along, or move into the future, when Catalyst23 might

support HealthKit and the Health App will be ported.

 Conclusion
With all the privacy concerns justified, I think it’s probably inevitable that

one day our doctor might retrieve our data with one click. That’s okay-ish,

leaks aside.24

23 For now, as mentionned at https://developer.apple.com/design/human-
interface-guidelines/ios/overview/ipad-apps-for-mac, HealthKit is one of
the frameworks not supported — but neither is it on the iPad, btw, and Catalyst
Apps can’t be built from iPhone apps.

24 https://www.mayoclinic.org/data-breach

ChapTEr 6 hEaLTh aND FITNESS

https://developer.apple.com/design/human-interface-guidelines/ios/overview/ipad-apps-for-mac
https://developer.apple.com/design/human-interface-guidelines/ios/overview/ipad-apps-for-mac
https://www.mayoclinic.org/data-breach

138

Where it becomes more concerning is if this data is stored on some

servers. Luckily, it’s not on Apple’s servers. Although one could argue it’s

better there than anywhere else, it’s better when it’s not duplicated. The

more data (in this case your health information) is replicated, the more

chances it has to leak at one point.

ChapTEr 6 hEaLTh aND FITNESS

139© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_7

CHAPTER 7

Siri and Search
Apple has been working on making Siri better over the years by potentially

using the kind of information you have in an app. Rumors of an offline

version of Siri aside, we are still looking at a year 2019 where millions

(billions?) of queries are sent to Apple servers.

 The Machine Is Learning
Siri is more than the name of the voice that speaks to you — if you have it

on at all. The ability to look/search in your app is the crucial part.

Never before in history have there been objects that know so
much about us. About how we spend money.

About the emails we send, and the photos we take. About our
messages. From our quickest hellos to our most intimate
conversations.

When you think of it that way, you realize that protecting the
security of all that information is so much more than just
about technology.1

Ivan Krstić, Security @ Apple.

1 https://developer.apple.com/videos/play/wwdc2016/705

https://developer.apple.com/videos/play/wwdc2016/705

140

The title of the paragraph doesn’t mean I’ll be speaking generally about

machine learning or more specifically about CoreML and CreateML,2 but

you can imagine that analyzing some of your data can reveal a lot about

you.

We give a lot of data to our devices, and although I personally rarely

speak to Siri, I have to admit I do it more often lately and this is probably

where the future goes. Now it’s speaking, but imagine how it could be

about watching (glasses or alike), or even thinking. I know what you’re

thinking: the year is 1984…

 Suggestions
The first time I ran my sample app My Privacy, I was surprised to discover

it in the Siri & Search item of Settings of iOS, as you can see in Figure 7-1.

The thing is, I had done nothing about Siri in my app. I didn’t have that

in the plan yet.

Figure 7-1. The Suggestion part of Siri is on by default for all apps

2 https://developer.apple.com/documentation/coreml, https://developer.
apple.com/documentation/createml — both of which have seen great additions
in the iOS 13 SDK.

Chapter 7 Siri and SearCh

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/createml
https://developer.apple.com/documentation/createml

141

More particularly, I was surprised to read

Siri may learn from and make suggestions based on how you
use this app.

I couldn’t find a lot on what this actually means, and there’s no precise

“list all apps” settings or alike. Sure, it’s convenient to say launch XYZ to

avoid having to look for the XYZ.app, but this should be a different thing

than may learn.

 Access to Your App
The very first thing we’ll show you in Figure 7-2 is that the first time an app

is called from Siri, it will require the user to give access to their data.

Figure 7-2. Siri will ask for permission to access your user’s data the
first time

 Ask Again
As you might know, when permission is asked (e.g., to access the user’s

contacts or location), the app has only one chance, though this isn’t really

true anymore for location since iOS 13 and the “Allow Once” permission.

Chapter 7 Siri and SearCh

142

It means if I answer No to that question, Siri won’t be able to access my

app. That is reflected in Figure 7-3, and a user can change the value of this

switch.

If I ask Siri again about sending a message, it will ask me again, and so

it’s like if the UIAlertController asking for permission for other APIs like

contacts or location would show up again.

My guess is that Apple could argue that the user actually triggered this

request, but tapping a button in a UI would be the same. The problem is

that Apple doesn’t have control over what you actually do with that button,

whereas Send a message is clearly an intent first dealt from the operating

system itself.

That’s the “I talk to Siri” part, but the two other switches are on by default.

It means if you don’t want those things to appear, you’ll have to opt out.

From a privacy perspective I’d rather see a clear mention of that

fact when someone starts an app, but we’re probably back again in that

discussion about usability. Imagine the nightmare if you were told about

Figure 7-3. The setting Use with Siri is what is controlled by that
previous question

Chapter 7 Siri and SearCh

143

this for every app you start. Maybe Apple could tell it for the first three

Apps started, for example.

Siri & Suggestions cannot be really turned off globally. You only have

the option to turn that off app by app, which makes me sad. Of course you

can globally ask to not see it in Search, Look Up and the Lock Screen, but

does that mean it’s actually turned off or only not displayed?

So what did I do or add at all to have this show up in my app? Here, I’m

using Apple’s sample app called MessagingIntents.3

Note don’t be confused where the sample code from apple
sometimes is. it’s sometimes in a very handy location like https://
developer.apple.com/library/archive/samplecode/
IntentHandling and sometimes in a .zip file in a WWdC Session.
there’s room for improvement in their organization.

 A New Capability
You are probably familiar with the Capabilities tab in the Xcode app target.

As we see in Figure 7-4, turning this on adds the necessary entitlements

in your app but also adds the feature to your app on the developer portal.

That is an Xcode 10 Screenshot. If you use Xcode 11, you’ll have to click on

“+ Capability” on the top left of the “Signing & Capabilities” tab. Don’t look

for the On/Off Switch and also not for the Steps.

Then, by following the steps in the corresponding WWDC session

you’ll find that you have to add an extension and the corresponding code,

which partly looks like Listing 7-1.

3 https://github.com/doronkatz/MessagingIntent-Sample-Code is an updated
version of the code written in June 2017, for Swift 3.0, from https://developer.
apple.com/wwdc17/228. Someone might update it to Swift 5.1 by the time you
read this book.

Chapter 7 Siri and SearCh

https://developer.apple.com/library/archive/samplecode/IntentHandling
https://developer.apple.com/library/archive/samplecode/IntentHandling
https://developer.apple.com/library/archive/samplecode/IntentHandling
https://github.com/doronkatz/MessagingIntent-Sample-Code
https://developer.apple.com/wwdc17/228
https://developer.apple.com/wwdc17/228

144

There are many different intents4 (and many are about your privacy)

and the process of using a request made with Siri is always the same order

of things a user/Siri interaction will look like.

It would look like Figure 7-5 if you didn’t even configure your project to

use that specific Siri intent you’re asking to use.

Figure 7-5. This is the standard answer that indicates that the app
hasn’t implemented the “Send Message” intent

4 https://developer.apple.com/sirikit lists some, https://developer.apple.
com/documentation/sirikit all, although it’s good to look at both pages to
understand the conversion from the marketing to the developer language.

Figure 7-4. Turning this on in your project

Chapter 7 Siri and SearCh

https://developer.apple.com/sirikit
https://developer.apple.com/documentation/sirikit
https://developer.apple.com/documentation/sirikit

145

Before we dive into the three steps of generally processing an intent,

it’s important to check some intents we have at our hands, API-wise, at the

current state of iOS 12.4 and iOS 13 Beta 4.

• Lists, notes: Siri can write to your notes, add

list items, and alike. It can, for example, use

INCreateTaskListIntent.

• Ride booking: Siri might know where you are and by

any means where you want to go.

• Messaging: Could request access to your contacts. We’ll

use it in our examples.

• Photo search: Obviously — with the number of APIs for

searching and identifying photos — this is an intent you

should look at very carefully before implementing it.

• Payments: Apps that support payment, like your banking

app, know a lot about you. Because as a developer

you are tight to Apple (it could be worse), you might

have to “share” some information with them. Things

like INSearchForAccountsIntents5 have properties like

accountType (Savings, Mortgage, …), for example.

• Workouts: The chapter about Health and Fitness

discusses dealing with that very personal information.

• Restaurant reservation: I hope you don’t book too often

at the local fast-food joint; Apple might want to sell you

an Apple Watch to help you take care of your health.

iOS 13 adds a Media Intent that allows apps to play Music, for example.

There is also the custom intent, which we’ll see later. Let’s now look at

what it takes to process those queries.

5 https://developer.apple.com/videos/play/wwdc2017/214/?time=342

Chapter 7 Siri and SearCh

https://developer.apple.com/videos/play/wwdc2017/214/?time=342

146

 Resolve
The very first step(s) is for Siri to have all the information to send.

INSendMessageIntentHandling, which is used by an app to send a

message, will need to resolve the recipient(s) of a message as well as the

actual message.

Listing 7-1. A Few Things That Can Be Done to Have iOS Reply to

the User’s Wishes. A Message Needs Two Pieces of Essential Info: to

Whom and What?

func resolveRecipients(for intent: INSendMessageIntent,

 with completion: @escaping

 ([INPersonResolutionResult]) -> Void) {

 if let recipients = intent.recipients {

 if recipients.count == 0 {

 completion([INPersonResolutionResult.needsValue()])

 return

 }

 var results = [INPersonResolutionResult]()

 for recipient in recipients {

 let matching = [recipient]

 switch matching.count {

 case 2 ... Int.max:

 results += [.disambiguation(with: matching)]

 case 1:

 results += [.success(with: recipients)]

 case 0:

 results += [.unsupported()]

Chapter 7 Siri and SearCh

147

 default:

 break

 }

 }

 completion(resolutionResults)

 }

}

func resolveContent(for intent: INSendMessageIntent,

 with completion: @escaping

 (INStringResolutionResult) -> Void) {

 if let text = intent.content, !text.isEmpty {

 completion(.success(with: text))

 } else {

 completion(.needsValue())

 }

}

From a privacy perspective, the first concern, this is where an app uses

whatever permission you gave it.

Note that we don’t develop matching, which shouldn’t just be an
array of one recipient but rather a function looking for either your
local database of users or the system contacts.

 Confirm, Optionally
This part is when your app (or I should say extension in this case) has all

the information it needs to process the data, but it will still present that to

the user to confirm it worked.

Chapter 7 Siri and SearCh

148

Listing 7-2 is dealing with an IMSendMessageIntent again, but this is

applicable to other intents as well.

Seen from a privacy orientation, it’s the only chance the user has to

ask the system to not do anything. It’s too late already for the extension not

doing anything, though, because there’s no obligation to do whatever the

UI (or voice) says.

For example, I could be an app sending messages but would actually

look for who’s your wife and always send her a copy of any message you

send. That would be interesting if you message your lover but there’s

someone else knowing in Cc, and you don’t know it.

Listing 7-2. The Confirmation That Shows When Siri Is Just

Between Resolving Your Query and Handling/Processing It

func confirm(intent: INSendMessageIntent,

 completion: @escaping (INSendMessageIntentResponse)

-> Void) {

 let response: INSendMessageIntentResponse

 if messagesProvider.isUserAuthenticated {

 response = INSendMessageIntentResponse(code: .ready,

 userActivity: nil)

 } else {

 let ua = NSUserActivity(activityType: "login")

 response = INSendMessageIntentResponse(code:

 .failureRequiringAppLaunch, userActivity: activity)

 }

 completion(response)

}

You don’t need to confirm, but you’d be surprised if you’re about to

handle your request and the user hasn’t logged into your messaging app.

Chapter 7 Siri and SearCh

149

 Handle
This is the actual doing of the action — like sending a message, creating a

note, searching for photos, or what not.

In Listing 7-3 the Siri extension really does the requested job. Once it’s

done, an actual confirmation — this time not a question but an affirmation

— will be shown or said.

Don’t focus too much on what an INPerson is, we will see that later.

Listing 7-3. Describes the Process of Filling a List of Messages (Here

only 1), with Them Always Having One Sender and One or More

Recipients.

func handle(intent: INSearchForMessagesIntent,

 completion: @escaping (INSearchForMessagesIntent

Response) -> Void) {

 let userActivity = NSUserActivity(activityType "search")

 let response = INSearchForMessagesIntentResponse(code:

 .success, userActivity: userActivity)

 let handle1 = INPersonHandle(value: "steve@example.com",

 type: .emailAddress)

 let handle2 = INPersonHandle(value: "+1-415-555-5555",

 type: .phoneNumber),

 response.messages = [INMessage(

 identifier: "identifier",

 content: "I am so excited about SiriKit!",

 dateSent: Date(),

 sender: INPerson(personHandle:handle,

 nameComponents: nil,

 displayName: "Sarah",

Chapter 7 Siri and SearCh

150

 image: nil,

 contactIdentifier: nil,

 customIdentifier: nil),

 recipients: [INPerson(personHandle: handle2,

 nameComponents: nil,

 displayName: "John",

 image: nil,

 contactIdentifier: nil,

 customIdentifier: nil)]

)]

 completion(response)

}

That (Resolve and Handle, with most probably a Confirm in between)

is all you need to do to have your app give an answer to

Hey Siri, Send a message to John using My Privacy.

 Your App Has a Siri Menu… or Not
As mentioned and shown in Figure 7-1, even before having the intention as

a developer to do anything with Siri, your app will be in the list of Apps in

the main Siri & Search menu in Settings.

As for every subject of the privacy theme, your app also has dedicated

authorizations listed in its own item in the Settings app. It means if you scroll

on your Phone until My Privacy appears — as shown in Figure 7- 6 — and

tap, you’ll have, for example, the Contacts authorization you gave already.

With Siri, you might see it — or not. I cannot yet find a pattern that tells

me when it’s there and when not. By any means, your app doesn’t appear

in the Settings list until you have done another request/authorization or

asked Siri to do something, after which you’ll have the question again like

in Figure 7-2.

Chapter 7 Siri and SearCh

151

Figure 7-6. That menu having the name of your app only appears
whenever you either did a Siri request (and accepted) or you have
asked for another permission

Figure 7-7. That Siri menu in the list of Privacy subjects for your app
might appear or not

Chapter 7 Siri and SearCh

152

 Person
In the example of recipients, we’re talking about the app internal list

of Contacts and/or the actual system Contacts database, from the

Contacts app. If so, an access to the contacts database will be required for

references to it.

When an INPerson is instantiated, it needs an INPersonHandle. This,

in turn, is instantiated with a type, which is either an emailAddress, a

phoneNumber, or unknown. The INPersonHandle can have a label and a

value — although I really don’t see another use case than “single user

apps.” Usually this handle will have a value, which is the basic way you

identify a user. Hence, it’s called a handle.

The INPerson can also have any combination of those parameters

when being initialized.

• nameComponents of type PersonNameComponents

• displayName is a simple string.

• image is an INImage, similar to a UIImage or NSImage.

• contactIdentifier is the string obtained from a

contact’s identifier. We’ll discuss this later.

• customIdentifier is also a string for identifying.

As I demonstrate in Listing 7-4 though, nothing prevents me from

doing that kind of silly initialization of nothing.

Chapter 7 Siri and SearCh

153

Listing 7-4. A Bare Minimum Initialization of An INPerson but

Which Obviously Doesn’t Make Sense. Some Combination of Those

Parameters Needs to Make Those Users Unique, or Make Sense for

the Task It’s Meant to. If You Tried to Use This INPerson for Sending

a Message, Obviously, It Wouldn’t Work!

INPerson(personHandle: INPersonHandle(value: nil,

 type: .phoneNumber)

 , nameComponents: nil

 , displayName: nil

 , image: nil

 , contactIdentifier: nil

 , customIdentifier: nil)

 A Connection to Your Contacts Database
Because your intent is a regular piece of code running on iOS, you can do

all kind of things you shouldn’t. One of these examples is that if you’re

going to call asynchronous code, you need to use a special technique

telling Siri your request will need some time.

Another thing you should be careful of is anything that calls a system

UI. Take the example in Figure 7-8. I decided — to be purposely wrong —

to have a CNContactStore().requestAccess in my resolveRecipients

method.

Chapter 7 Siri and SearCh

154

In this case, I asked Siri to send with message to My Privacy, which

asked me to whom, and just after I said John, I got this UI. It’s not only

wrong because of the bad superposition of GUIs, it’s foremost bad because

the only UI for this request is a graphical one.

Siri didn’t speak to me saying the app (in this case, really, the intent)

wanted access to my Contacts, which means if I’m not looking at the

screen, I won’t know it.

Also, to wrap on this, if the user has said Don’t allow — or if they change

their mind afterward in Settings — you’ll get a crash saying [Rx] A promise

was finished with a nil error. Really, don’t call this from your intent.

Figure 7-8. Here is why you shouldn’t have a request call in your
resolve methods

Chapter 7 Siri and SearCh

155

Instead I would recommend, as shown in Listing 7-5, to just check the

authorization and return any of those two options, which are illustrated as

the two results in Figure 7-9:

• unsupported, which appears on the left

• needsValue, which appears on the right

Listing 7-5. The Possible Acts When Looking for a Contact

if CNContactStore.authorizationStatus(for: .contacts)

 == .authorized {

 let pre = CNContact.predicateForContacts(matchingName:

 recipient.spokenPhrase)

 if let person = person(with: pre, for: descriptors) {

 results += [.success(with: person)]

 } else {

 results += [.needsValue()]

 }

} else {

 results += [.unsupported()]

}

Chapter 7 Siri and SearCh

156

The only problem I’m seeing here is that if I’m relying on access to the

Contacts and the user didn’t gave me that, I cannot find a way to say to the

user that I can’t find John because I’m not able to browse her contacts.

Potentially, Apple wants me to do this querying of the address book in

the app and then I’d have access to an App-centralized list of contacts, but

now let’s look at what we can do when we have access.

Listing 7-6 shows you what a replacement for some of the code in

Listing 7-1 could be, specifically in the resolveRecipients method. I also

need a helper method that will translate a CNContact from my database to

an INPerson, much like we did in Listing 7-4.

Figure 7-9. The two options you have when not finding a
contact

Chapter 7 Siri and SearCh

157

Listing 7-6. The Exclusive Usage of Fetching Information from the

Contact Database

var matching = [INPerson]()

let a = CNContactStore.authorizationStatus(for: .contacts)

if a == .authorized {

 let pre = CNContact.predicateForContacts(matchingName:

 recipient.spokenPhrase)

 if let person = person(with: pre, for: descriptors) {

 matchingContacts.append(person)

 }

}

switch matching.count {

case 2 ... Int.max:

 results += [.disambiguation(with: matching)]

case 1:

 results += [.success(with: matching.first!)]

case 0:

 results += [.unsupported()]

default:

 break

}

func person(with predicate: NSPredicate,

 for descri: [CNKeyDescriptor]) -> INPerson? {

 do {

 if let contact = try

 CNContactStore().unifiedContacts(matching: predicate,

 keysToFetch: descri

Chapter 7 Siri and SearCh

158

).first, let em = contact.emailAddresses.first {

 let handle = INPersonHandle(value: em.value as String,

 type: .emailAddress)

 let image = contact.imageData == nil ? nil :

 INImage(imageData: contact.imageData!)

 return INPerson(personHandle: handle,

 nameComponents: nil,

 displayName: contact.familyName,

 image: image,

 contactIdentifier: contact.identifier,

 customIdentifier: nil)

 }

 } catch {

 print(error)

 }

 return nil

}

Note that the displayname will now be used in the GUi of Siri.
it means if you search for Kate, it will then display the image in
Figure 7-10, because Kate’s family name is Bell. You shouldn’t rely
solely on the address book access being given to you, but this is all
business logic.

Chapter 7 Siri and SearCh

159

Also don’t think that because a recipient/person/user is internal to

your app you should treat it as less private, because you might have an app

that people use for the good reason of not mixing contacts all together in

their address book.

 Saving and Retrieving Contacts
There are surely different ways of succeeding in this task and I speak about

it partly in the chapter about Contacts, but as you might have understood,

this chapter deals a lot with communicating from your app to an extension.

Speaking of which, there are many things you can keep here that are

equally usable for other kinds of extensions like a Today extension, for

example.

Figure 7-10. Because our code uses the family name as the display
name, the request to Kate is translated to Bell

Chapter 7 Siri and SearCh

160

 A Common Directory
You probably know about the Documents directory where you can save

files that your app will have access to. If I wrote Listing 7-7 using this

Documents directory, only your app, and not your extension, would see it.

This is a model class that I can put in a common framework (best

option) or in a file that is in both targets (easier for the sample app; fewer

things to understand).

Listing 7-7. How to Retrieve Files in the Same Location for an App

Group

class Contact : Codable {

 var name: String

 var identifier: String

 static var url: URL? {

 let fm = FileManager.default

 guard let url =

 fm.containerURL(forSecurityApplicationGroupIdentifier:

 "group.com.carrascomolina.privacy") else {

 return nil

 }

 return url.appendingPathComponent("contacts.json")

 }

 init(with contact: CNContact) {

 name = contact.givenName

 identifier = contact.identifier

 }

}

Chapter 7 Siri and SearCh

161

Tip Use that containerUrL in combination with activating app
Groups.6 these are some of the tips i got from watching the WWdC
2015 session App Extension Best Practices.

The beauty of the Codable protocol… Wait, I mean, of the Decodable

and Encodable protocols, is that I can then use them to save like in

Listing 7-8, which is in my Contacts View Controller, whenever a user

selected a few contacts.

Listing 7-8. Saving the Selected Contacts to JSON

let encoder = JSONEncoder()

encoder.outputFormatting = .prettyPrinted7

var convertedContacts = [Contact]()

contacts?.forEach {

 convertedContacts.append(Contact(with: $0))

}

guard let url = Contact.url else { return }

do {

 let data = try encoder.encode(convertedContacts)

 try data.write(to: url, options: .atomicWrite)

} catch { print(error) }

This allows me to save the selected contacts in a JSON file like is shown

in Listing 7-9. There are many ways to save records, and you should never

store anything confidential (e.g., a password) in this text file, but gone are

the days of using nonstandard formats for saving data.

6 https://developer.apple.com/wwdc15/224
7 This is useful for debug purposes, and my demo app really only is a debug app.

Chapter 7 Siri and SearCh

https://developer.apple.com/wwdc15/224

162

Listing 7-9. Contacts.json Saved in the Group Container Folder

[

 {

 "name" : "John",

 "identifier" : "410FE041-5C4E-48DA-B4DE-04C15EA3DBAC"

 },

 {

 "name" : "Kate",

 "identifier" : "177C371E-701D-42F8-A03B-C61CA31627F6"

 },

 {

 "name" : "Anna",

 "identifier" : "F57C8277-585D-4327-88A6-B5689FF69DFE"

 }

]

When Siri is being called, I then get access to this .JSON like in

Listing 7-10, and I have a solution that works with or without

authorization. In essence I augment the basic data that I recorded (here

only the name) with the saved contactIdentifier, if the user gave access

to the Contacts database.

Listing 7-10. Based on the Code in Listing 7-1, but Making a Few

Changes

// (...)

if recipients.count == 0 {

 completion([INPersonResolutionResult.needsValue()])

 return

}

let coder = JSONDecoder()

guard let url = Contact.url else { return }

Chapter 7 Siri and SearCh

163

var contacts = [Contact]()

do {

 let data = try Data(contentsOf: url)

 contacts = try coder.decode(Array.self, from: data)

} catch {

 print(error)

}

for recipient in recipients {

 var matchingContacts = [INPerson]()

 if let contact = contacts.filter({

 return $0.name.contains(recipient.spokenPhrase)

 }).first {

 do {

 let name = contact.name

 let id = contact.identifier

 if authorized {

 let uC = try CNContactStore().unifiedContact(

 withIdentifier: id, keysToFetch: descriptors)

 matchingContacts.appendPerson(handleValue: name,

 displayName: uC.familyName, contactIdentifier: id)

 } else {

 matchingContacts.appendPerson(handleValue: name,

 displayName: name, contactIdentifier: id)

 }

 } catch { print(error) }

 } else {

 let p = CNContact.predicateForContacts(matchingName:

 recipient.spokenPhrase)

 if let person = person(with: p, for: descriptors),

 authorized {

Chapter 7 Siri and SearCh

164

 matchingContacts.append(person)

 }

 }

 switch matchingContacts.count {

// (...)

Note that i’m using a function appendperson, which i added via an
extension to array where element == inperson. i’ll leave this as an
exercise, but you’ll find it in the My privacy iOS app as well.

 Authentication!
All of this, until now, and by default, works totally without the user needing

to log in. In fact, Apple’s own messaging app on the phone can be used

without any authentication.

Read that again… Grab my phone, start Siri (e.g., by holding the side

button on an iPhone X) and tell it

Send a message to my wife

Now be creative with the message. If this isn’t a security and/or privacy

concern, I don’t know what is.

I understand it’s more convenient this way, and I don’t think I myself

would configure it another way.8 There are ways to disallow this, but it’s

mostly opt-out, again, so this is quite tricky from a security/privacy point

of view.

8 As usual, feel free to duplicate www.openradar.me/46204420. I was pointed out
the way to disable this in the past, but can you find it? See, it’s not really obvious
how dangerous this is.

Chapter 7 Siri and SearCh

https://www.operadar.me/46204420

165

 How to Fix This?
Other than the user completely turning off Siri on the Lock screen,9 it turns

out Apple thought about this and offers a way for an intent to be Restricted

While Locked. As shown in Figure 7-11, start by adding a new SiriKit Intent

Definition file to your project then clicking the + to add a Send Message

intent.

By default, there is no authentication required. Change this to

Restricted While Locked.

The result is that you won’t be able to use Siri to use your app (in our

case My Privacy) without the phone knowing it’s you. Figure 7-12 shows

the two states in which this happens.

Figure 7-11. This is how you configure an intent to not work while
locked

9 Setting ➤ Siri & Search ➤ Suggestions on Lock Screen.

Chapter 7 Siri and SearCh

166

First it was looking for my face, and then it still gave me the

opportunity to enter my passcode.

Figure 7-12. If Face ID works, you won’t be asked a Passcode

Chapter 7 Siri and SearCh

167

Figure 7-13. First, a third version of unlocking. Second, the
successfully unlocked phone

There’s another version of that unlock that I’m not willing to hide from

you. It’s when you restart and the phone needs your passcode to unlock,

because Face ID hasn’t been authorized yet. That, together with the result

of the conversation with Siri, is in Figure 7-13.

Chapter 7 Siri and SearCh

168

 NSUserActivity is Tracking You
The year is 1984… Okay, it’s more like 2019, but there’s a 19 in it! Seriously

though, this is most probably what Apple really means with

Siri may learn from and make suggestions based on how you
use this app.

As mentioned at the beginning of the chapter, I’m not repeating this to

grab your attention on one way developers can track their users, but for the

sake of providing a feature.

When we look at shortcuts it will be clearer to you, but basically (and

if the user allows it, but it’s opt out, so most will), the system will look

for a pattern. Talking about tracking you… This isn’t the app developer

anymore, this is the system.

As a developer you are responsible for the fact that however you

contribute a shortcut, the system will try to find patterns in the user’s life.

As a user, you either refuse it or live with it. The third option is to read this

book, evangelize for even more privacy at Apple, and file bug reports!

Yes, i often write bug reports that i later on realize i didn’t understand
the problem, but i prefer to write a few useless bug reports instead of
not writing an important one.

Listing 7-11 shows the way to mark that a new page (or actually View

Controller) of the app has been opened. It could do the exact same thing

for when a button is clicked.

Listing 7-11. The Necessary Code to Mark That I’m Opening a New

View Controller

let uA = NSUserActivity(activityType: "com.example.cont")

uA.title = "Privacy with my Contacts"

uA.isEligibleForSearch = true

Chapter 7 Siri and SearCh

169

userActivity = uA

uA.becomeCurrent()

We first create an NSUserActivity with a string that will be useful later.

Then, we give a basic title that will be shown when searching in Spotlight.

This is why it’s EligibleForSearch.

That next line, where I assign uA to userActivity might be confusing

if I didn’t remind you that this code is in a viewDidLoad of the ContactsVC

class of our sample app. You need to set this.

Finally, this instance needs to be current. As of now, as shown in

Figure 7-14, whenever the user looks for the word “contact,” they will be

prompted with this searchable activity, which, mind you, isn’t a shortcut yet.

Figure 7-14. Now that I declared the user activity, when I search for
contacts, I can land directly there in the app

Chapter 7 Siri and SearCh

170

 Spotlight
Listing 7-12 shows how you can index data, instead of activities, or actions.

For that we’ll use the Search API. We need to import CoreSpotlight for

most of the code and MobileCoreServices only for that constant.10

Listing 7-12. The Other Way of Making Your App Searchable

let set = CSSearchableItemAttributeSet(

itemContentType: kUTTypeImage as String)

set.title = "Sunset with Privacy"

set.contentDescription = "August, 1999 Vimoutiers, France"

let item = CSSearchableItem(uniqueIdentifier: "1",

 domainIdentifier: "album-1",

 attributeSet: set)

let index = CSSearchableIndex.default()

index.indexSearchableItems([item]) { error in

 if error != nil {

 print(error!.localizedDescription)

 } else {

 print("Item indexed!")

 }

}

 Proactive Suggestions
Depending on how you configured NSUserActivity (and you can even

attach an attributeSet to it), the system will offer to not only hand off

10 Thanks goes to Ellen Shapiro for her talk about Siri Shortcuts: https://vimeo.
com/290292060

Chapter 7 Siri and SearCh

https://vimeo.com/290292060
https://vimeo.com/290292060

171

(e.g., if you have a webpageURL associated with an activity) but also offer to

give you the directions for an activity having a location.

The example Apple gave in 2016 shows11 the implications of it. Pretty

quickly Uber will know about the location I was looking at in Yelp. It’s not

that those two apps or companies communicate with each other, but they

speak to the same interface in the middle.

All they had to do was set the mapItem property of the NSUserActivity

and voilà!

Spotlight, via its CSSearchableItemAttributeSet, can set a bunch

of properties like city, country, latitude, etc., which you probably

recognize from Core Location.

 The Call-Back
So what happens when the user taps that link? Our app is called and lands

in Listing 7-13. In the didFinishLaunchingWithOptions of the app I’m

getting nc, which is a pointer to the main NavigationController in the app.

Listing 7-13. This Is Why the Activity Identifer Is Important

func application(_ application: UIApplication,

 continue userActivity: NSUserActivity,

 restorationHandler

: @escaping ([UIUserActivityRestoring]?) -> Void) -> Bool {

 switch userActivity.activityType {

 case "com.example.cont":

 if let nc = nc, let tvc = nc.topViewController,

 let vc = nc.storyboard?.instantiateViewController(

 withIdentifier: "ContactsVC") {

11 https://developer.apple.com/videos/play/wwdc2016/240/?time=820

Chapter 7 Siri and SearCh

https://developer.apple.com/videos/play/wwdc2016/240/?time=820

172

nc.viewControllers = [tvc, vc]

 }

 case CSSearchableItemActionType:

 print("activityType CSSearchableItemActionType")

 default:

 print(userActivity.activityType)

 }

 return true

}

This allows me to directly jump to the Contacts section of the My

Privacy app.

 So What Is a Shortcut?!
By enhancing the code in Listing 7-11 just before we assign uA to the view

controller’s userActivity, we can provide a shortcut.

Listing 7-14 shows the iOS 12 way of doing this. As a reminder, I really

think of this book for iOS 12 upward (ideally iOS 13), but if your app

supports an older OS, you will need to use #available.

Listing 7-14. What Used to Be a Simple Activity and the Ability to

Search It Is Now a Fully Fledged (and Standalone!) Shortcut

let uA = NSUserActivity(activityType: "com.example.cont"

uA.title = "Privacy with my Contacts"

uA.isEligibleForSearch = true

if #available(iOS 12.0, ∗) {

 uA.isEligibleForPrediction = true

 uA.suggestedInvocationPhrase = "Privacontact!"

}

userActivity = uA

uA.becomeCurrent()

Chapter 7 Siri and SearCh

173

Note that an activity needs to be eligible for search for it to be at
all able to be eligible for prediction. the flag for prediction will be
ignored if the activity can’t be searched. i guess the underlying
implementation of suggestions actually searches.

The result of this is shown in Figure 7-16. To reach that list of shortcuts

you go into Settings, Siri & Search, as shown in Figure 7-15.

Figure 7-15. The Siri Settings lists my shortcuts but also suggested
shortcuts as well as the list of all shortcuts available

Chapter 7 Siri and SearCh

174

Now if you tap the + button, the Siri UI will appear and you the user

can record anything, for example, the suggested invocation phrase.

Figure 7-17 shows that nice UI. Since iOS 13 there’s also a way to enter with

text in addition to audio the “trigger text” that is used for the shortcut.

Figure 7-16. Here is our shortcut. You can also use it as a workflow in
the shortcuts app, combined with other shortcuts

Chapter 7 Siri and SearCh

175

Siri Shortcuts clearly learns about your habits, because that shortcut

will never happen until I go into the part of My Privacy that deals with

contacts.

A user might not want you to track them. So, because the system

doesn’t do it, consider asking the user if it’s okay to track her, or at least

indicate where this can be changed, by providing the ability to open

UIApplication.openSettingsURLString.

Figure 7-17. That “Privacontact!” phrase I had in my code now
appears. Note that this is an iOS 12 screenshot. It’s slightly different
in iOS 13.

Chapter 7 Siri and SearCh

176

 The Siri Watch Face
Even the watch benefits from that. Look at the Siri watch face in

Figure 7- 18. It’s convenient that it remembers what (and potentially when)

I turned on some lights or made tea, but it’s also a bit creepy isn’t it?

So yeah, it doesn’t know I made green tea, but I know what those 2

minutes are for. Now already there are cups that can analyze what you

drink, so the general question here is: Do we want to live in this world?

As someone stuck right between politics/ethics and technology, I don’t

know. What I do know, though, is that we developers have a huge role to

play in respecting the privacy of our users.

It even predicts what’s relevant for you based on your location. That

being said, note that the user can configure which datasource she wants.

Figure 7-18. The Siri Watch face knows what I might wanna do
next

Chapter 7 Siri and SearCh

177

 Relevant Shortcut
The concept of a relevance provider is what starts it all, and I highly

recommend watching the corresponding session from WWDC ‘16.12 They

can come both from iOS or watchOS. Aside from a different icon (if it’s

from iOS or watchOS), the user won’t see a difference — also because the

API is similar.13

From a privacy perspective, there’s a good thing about those running

from iOS: they can’t use protected data. Protected data is a piece of

information your app can only have when your phone is unlocked.

For those running on the Watch, it would be very inconvenient if you

needed to unlock your phone (you might first need to find it!) before a

Shortcut could be displayed.

An INRelevantShortcut is created based on the potential relevance

provider. There are different types:

• INDateRelevanceProvider, with a start and end date

• INLocationRelevanceProvider, with a CLRegion

• INDailyRoutineRelevanceProvider, which is

automatically determined by the system such as:

• morning

• evening

• home

• work

• school

• gym

12 https://developer.apple.com/wwdc18/217
13 Except for WKIntentDidRunRefreshBackgroundTask.

Chapter 7 Siri and SearCh

https://developer.apple.com/wwdc18/217

178

Once configured, the developer adds those by calling the

method INRelevantShortcutStore.default.setRelevantShortcuts

and the machine learning in watchOS will then present those to you at the

right time.

As mentioned in the WWDC 2018 session, there’s always a great benefit

about many things on the Apple Platform, one of which is the on-device

approach.

It’s also worth noting that this model is secure and personal-
ized to each user. All of our learning happens on-device, and
we're building a model for each and every single user of the
Siri watch face.

Josh Ford, watchOS Engineer

 Deleting Any Trace
 Spotlight
It is highly important that you don’t forget to delete. For that,

CSSearchableIndex has a few deleteSearchableItems methods that will

take care of cleaning some parts from Spotlight’s index.

It is very important for the respect of your users Privacy.

 NSUserActivity
If an NSUserActivity has a relatedUniqueIdentifier (via its

contentAttributeSet), it will be automatically removed when the

corresponding item is deleted.

If your NSUserActivity has no Spotlight item attached, you can

always use the persistentIdentifier property and the corresponding

deleteSavedUserActivities.

Chapter 7 Siri and SearCh

179

You can also call deleteAllSavedUserActivities when, for example,

the user logs out of your app.

 Intents
Since an INInteraction object can have an identifier and

groupIndentifier, you can user the methods delete with a specific

identifier or deleteAll.

 Public Indexing
Let’s add yet another detail on Listing 7-14: another small eligibility. By

using .isEligibleForPublicIndexing (setting it true; it’s false by default,

unlike handoff), a developer has a very good advertising method, as well

as a good discovery method for users of an app.

Now that I’ve had you freak out, I can tell you this was explained in a

very good manner when the Search APIs where introduced in 2015 at the

WWDC.14

The way this works is that a hashed object is sent to Apple for public

indexing of activities that aren’t private to a user. Think of it as of a certain

product of a catalogue from an online store. What you shouldn’t set for

public indexing is, for example, the preferences of a user.

Whenever a certain threshold (no numbers given, but let’s imagine

1,000 requests) has been reached, Apple assumes this is successful enough

to make it public to the other users of the app but also to people not having

your app who can query something you’ve indexed publicly.

In our previous example of the store, it could be that rain jacket you’re

willing to search on the web, but hey, maybe there’s an app for that.15

14 https://developer.apple.com/wwdc15/709
15 Or maybe it was on the iPhone 3G — https://youtube.com/watch?v=szrsfeyLzyg

Chapter 7 Siri and SearCh

https://developer.apple.com/wwdc15/709
https://youtube.com/watch?v=szrsfeyLzyg

180

 Turning Off Siri
It might be a little bit extreme, but I do know people who turn Siri off, for

various reasons. What I want you to read from Figure 7-19 is the part about

deleting your information.

Figure 7-19. How the user can turn off Siri

Note that for this warning to appear you need to turn off both
“press home” (or “Side Button” on the newer iphones) and “hey
Siri.” that by the way will need to be reconfigured if you turn it off,
which really is a good hint at your data being deleted from the device
when you turn it off.

Chapter 7 Siri and SearCh

181

 Apps Using Your Data
Even if it doesn’t always mean that a third-party developer has access to

raw data, the OS doesn’t need many of those accesses and so, depending

on the user’s level of privacy he solely determines, those apps might not

have the data they expect.

Figure 7-20 shows you four examples of apps that have relevant

information about a user and who can share that information.

Figure 7-20. The inclusion of some of the Apps from Apple

Chapter 7 Siri and SearCh

182

 INInteraction and Custom Intents
The Siri & Search APIs are pretty confusing, because they offer a ton of very

useful technologies — although always frightening.

One of these is the ability to create custom intents. They won’t have

resolve methods, but they can have a confirmation and will need a handle,

like any intent.

To create them, we should have an .intentdefinition file. In this,

we’ll add a new intent, instead of the previously mentioned customized

system item. Figure 7-21 shows how I’ve configured it to be able to have

a person parameter. I could also pass the number of contacts the user has

— or anything else — but I’ll stick to using the INPerson class.

Figure 7-21. The custom intent definition where I’ll be able to pass a
person

Chapter 7 Siri and SearCh

183

Once this is done, as shown in Listing 7-15, we have the ability to create

an interaction that has an implied user activity. This is a piece of code

I could run every time the user picks a contact from the corresponding

contactPicker:didSelect contact method:

Listing 7-15. The Code That Will Generate a

Shortcut — Independent as Well

let intent = MyPrivacyIntent()

let pH = INPersonHandle(value: contact.identifier,

 type: .unknown)

intent.person = INPerson(personHandle: pH,

 nameComponents: nil,

 displayName: contact.familyName,

 image: nil,

 contactIdentifier: contact.identifier,

 customIdentifier: nil)

INInteraction(intent: intent,

 response: nil).donate(completion: nil)

Beware that this code needs to be running only on iOS 12 or later so

you need to use #available if your app still runs on older OSes. If it’s a

new app you’re starting after August 2019, you really should start with

iOS 13 support, nothing earlier. This will automatically produce a

shortcut that can be used. Using/calling this shortcut will then call our

Siri extension and the code in Listing 7-16. It shows that the times where

intents were just those defined by Apple are gone.

Chapter 7 Siri and SearCh

184

Listing 7-16. The Custom Intent with which We Can Do Custom

Things

func handle(intent: MyPrivacyIntent, completion:

@escaping (MyPrivacyIntentResponse) -> Void) {

 // Do something with the intent.

 let response = MyPrivacyIntentResponse(code: .success,

 userActivity: nil)

 completion(response)

}

Because we didn’t ask for any confirmation (checkbox unchecked in

Figure 7-21), calling this (e.g., with a short phrase) would execute it in the

background; no need to open your app.

The user can still open your app, though, by tapping on the app icon

or the shortcut banner. This will simply send him to the aforementioned

application: continue userActivity: restorationHandler: method

in your App Delegate.

The little piece of magic here is that you will have a user activity that

has an activityType of “MyPrivacyIntent” (the string derived from the class

name) but as I’m showing you in Listing 7-17, you could even spare using

this string checking.

Listing 7-17. Retrieving the Intent from the Activity’s Interaction

if let intent =

 userActivity.interaction?.intent as? MyPrivacyIntent {

 print(intent.person ?? "no person found")

}

Chapter 7 Siri and SearCh

185

 Contact Integration
If you have a messaging or video/audio app you can integrate directly

in the Contacts app by using a similar code to Listing 7-18, based on

Listing 7-15. It basically declares your service to the system. An app that

does this should ask the user if it’s okay to be integrated in the Contacts

app, but there’s no API for asking.

Listing 7-18. How to Integrate with the Contacts App

let mI = INSendMessageIntent(recipients: [intent.person!],

 content: nil,

 speakableGroupName: nil,

 conversationIdentifier: nil,

 serviceName: "PrivzApp",

 sender: intent.person)

let response = INIntentResponse()

let interaction = INInteraction(intent: mI,

 response: response)

interaction.direction = .outgoing

interaction.donate { (error) in

 print(error ?? "no error")

}

Chapter 7 Siri and SearCh

186

 AppleBot
Although Apple might not yet be like Google in terms of searches, I like

the fact that they describe this very well in the Session Making the Most of

Search APIs.16

This is more a job for web developers or admins than mobile developers,

but with server-side Swift arising, it might be a job for you as well. Check

what is sent to bots, in general, and be sure it’s nothing private to a user.

Independently from the privacy subject, I’m always concerned when

search engines recommend something. It’s really hard to tell how much of

this is actual math and how much is marketing.

Speaking of search engines, if besides being interested in privacy

you’re also interested in protecting the environment (two very ethical

subjects), you might want to use Ecosia17 as your default search engine.

They don’t track you and they plant trees. I have no other interest in

promoting them other than the purpose of this book: karma. When I speak

about the subject of privacy in public, I subtitle my talk “A look at the

karma-oriented APIs.”. I was pleasantly surprised when Apress decided it

was going to be the main Title of this book, not the original way around.

 On the Mac
You and I got lucky lately, when it comes to speaking of iOS and macOS. If

I’d have done the same book a few years ago, it would be double the size.

You’d want to make an app for both, double the amount of time. Since the

project Catalyst in iOS 13 and macOS 10.15, it’s even less work because you

can make a lot of your iPad app working on the Mac.

16 https://developer.apple.com/wwdc16/223
17 https://ecosia.org. Over 60 million trees planted just with search requests.

Chapter 7 Siri and SearCh

https://developer.apple.com/wwdc16/223
https://ecosia.org

187

Spotlight is yet another API that is similar on the Mac and on

iOS. Hooray! The code in Listing 7-12 is absolutely similar and as you can

see in Figure 7-22, when I type the phrase that I indexed, it shows up in the

category “Images”. Clicking on it will open the Mac app, obviously, with

an activityType com.apple.corespotlightitem, which is defined by the

constant CSSearchableItemActionType.

Without going too much into the details, much of what there is in

NSUserActivity is also similar, although there are no shortcuts per se on

macOS, for example.

Figure 7-22. The Spotlight User interface which reacts to the contact
in the Searchable Item

Chapter 7 Siri and SearCh

188

 Conclusion
When I started working on this chapter, I thought it would be hard to write

10 pages about Siri & Search. I was wrong; so wrong. You could write a

whole book about it. You could write a whole book about privacy with Siri.

Many people think of the term UI as something graphical, visual.

That would be a GUI. Siri, mostly the audio version of it, is a fully fledged

UI. The way you use your Watch in combination (or not) with AirPods is a

UI. You can even imagine a scaled down version of the Watch (without the

visual elements like the screen) in your earpiece, or say, in the box where

you charge your headphones.

Sure, this is convenient. Sure, we’re helping the user with app shortcuts

like the Vision framework can recognize eyes and mouth, or CoreML can

tell if it’s me or my wife in a picture.

But I won’t hide that I am a bit concerned about where this could

all lead. I trust Apple, and I’m happy they’re almost not in the business

of making money out of data, but there’s always a concern that this data

could leak at some point and could be used to target some people.

The key thing to take away here is that most of the code runs on the

device and the parts that are sent to Apple are encrypted and by any means

anonymized.

Chapter 7 Siri and SearCh

189© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9_8

CHAPTER 8

HomeKit
Ever since I was a kid I’ve been dreaming of home automation. Back in the

day (I’m the Commodore 64 generation, which should tell you my age) it

was only thinkable if you had a lot of money.

Nowadays it’s not cheap, but it’s also not impossible to afford. But my

dream has evolved, in many ways. Sure, I do have some home automation,

but I’m also concerned about something I wouldn’t even think of in the past.

Potentially it’s because we now call it IoT (Internet of Things), and in

the 80s, at our level, there were a lot of things but no Internet. The gist of

this introduction is that a smart home — in terms of privacy — isn’t such a

big deal as long as it’s not connected.

 Smart Hack?
This brings me to another kind of introduction. For the second year in a

row I was at the Chaos Communication Congress. This is an annual event

since 1984 (no kidding, they really started that year), organized by the

Chaos Computer Club in Germany.

Among other things, it’s a conference about security, but it’s also a very

practical one where there’s as much soldering as programming happening.

There was a session called “Smart Home, Smart Hack.”1 It was sadly in

German, but the conference always provides audio translation in English.

1 https://vtrust.de/35c3

https://vtrust.de/35c3

190

At this moment I have no confirmation from either Apple2 or the

author of this talk that these kinds of privacy concerns would happen on a

certified HomeKit product.

This is important because it goes to show you what is feasible, and why

I can totally imagine some companies giving away smart light bulbs for

free in the future.

 Lights, Camera, Action
Well, actually, it’s more like light bulb, garage door, door lock. These were

the first accessories that Apple supported in HomeKit in 2014 when they

announced it.3

The only reason I mention it is to make you take in account everything

they support nowadays (mid 2019 is when I write this). It’s actually

impressive,4 and also frightening, considering the fact that you can reach

all of these remotely.

 Remotely?
Yes, if you have what Apple calls a Home hub, then it doesn’t matter where

you are in the world; as long as one of these hubs is online, you’ll be able to

open your door, turn on your lights, or make the room warmer.

2 https://twitter.com/StuFFmc/status/1085581546092924928
3 Introducing HomeKit, which was at https://developer.apple.com/wwdc14/213
seems to have been removed from Apple’s website. I guess Apple now only wants
you to watch https://developer.apple.com/wwdc18/231 although there’s a
“What’s New in HomeKit” Session from WWDC 2015, 2016 and 2017. I usually
watch the videos from the beginning and then watch the “What’s New” from the
years after. There was no session about HomeKit in 2019.

4 https://apple.com/ios/home/accessories

Chapter 8 homeKit

https://twitter.com/StuFFmc/status/1085581546092924928
https://developer.apple.com/wwdc14/213
https://developer.apple.com/wwdc18/231
https://apple.com/ios/home/accessories

191

A hub is either an Apple TV,5 an iPad, or a HomePod. The iPad sure is

mobile, but it’s more likely to stay home than your phone and there are

more people with an iPad than the two other devices.

I don’t know about you, but I turn off my Apple TV with a hard power

switch when I don’t use it, and I don’t have a HomePod, so for me the iPad

would be doing this.

Figure 8-1 shows the Mac version of the Home app where the settings

of a Home also show which Hubs are present. See, I do not kid you; my

Apple TV (Living) is turned off, but sure enough my iPad isn’t.

5 Starting with the 3rd generation, that’s the thin one just before the fat one with
apps arrived.

Figure 8-1. The hubs used are listed in the settings of your Home

Chapter 8 homeKit

192

Note that homeKit is one of four apps that apple brought in 2018
from ioS to the mac. it uses a technology called Catalyst, which
brings UiKit to the mac. the apps are very similar to their ipad version
and when you resize your window they become similar to the
iphone version.

 End-to-End Encryption
It blows my mind that we have to constantly repeat this, and that

apparently some software engineers still think they should store decrypted

data on their servers, but it’s also good that those who do it state it.

HomeKit is end-to-end encrypted6 so Apple cannot know what your

setup is. The communication happens between a device and an accessory,

and since all the hubs are running a version or another of iOS, it’s surely

the same code base. No cloud needs to be involved, since the Internet is

solely used to transport the encrypted commands.

Also, HomeKit uses perfect forward secrecy7: for every communication,

a new key is generated, and so there is no way to reuse a key that has been

used and it’s useless to save a key for a future use.

Finally, the keys are local to the device, so it’s completely private and

secure. I always breathe easy when I hear that nothing is saved on a server.

It’s much more complicated for a bad person to attack every single user

of a platform — especially iOS, secured by things like sandboxing — than

attacking a server that has centralized all the information for all the users.

6 https://en.wikipedia.org/wiki/End-to-end_encryption
7 https://en.wikipedia.org/wiki/Forward_secrecy

Chapter 8 homeKit

https://en.wikipedia.org/wiki/End-to-end_encryption
https://en.wikipedia.org/wiki/Forward_secrecy

193

 The Key and the Permission
The privacy key you need in your Info.plist is called

NSHomeKitUsageDescription, and you will then get a prompt asking you in

a very simple OK/Don’t allow manner.

By now you probably understand the mechanism behind it: the String

in your plist will be displayed to the user, your app will crash without it,

and nothing will be doable if the user revokes his allowance at a later time.

 The Home Manager and Simulator
Most of us only have one home, but many have either an office they also

control or potentially a holiday home.

Listing 8-1. A Basic HomeManager

import HomeKit

class HomeVC: PrivacyVC, HMHomeManagerDelegate {

 let manager = HMHomeManager()

 override func viewDidLoad()

 {

 super.viewDidLoad()

 manager.delegate = self

 }

 func homeManagerDidUpdateHomes(_ manager: HMHomeManager)

 {

 print(manager.homes)

 print(manager.primaryHome ?? "no primary home")

 }

}

Chapter 8 homeKit

194

Speaking of managing your home, you don’t have to buy every

HomeKit device to start developing for HomeKit. You can use the HomeKit

Simulator (shown in Figure 8-2) if you manage to find it…

Xcode gives this weird URL,8 which is like finding a needle in a

haystack and the documentation9 sadly doesn’t gives a better information.

In it there’s a link Testing Your App with the HomeKit Accessory Simulator10

which sends to the same needle.

Optionally in the browser, you can simply search for “HomeKit” and

download the “Additional Tools for Xcode” .dmg file. Keep in mind this

Home Kit Simulator is there.

8 https://developer.apple.com/download/more/?=for%20Xcode
9 https://developer.apple.com/documentation/homekit
10 https://developer.apple.com/documentation/homekit/testing_your_
app_with_the_homekit_accessory_simulator

Figure 8-2. The HomeKit Accessory Simulator from the comfort of
your Mac

Chapter 8 homeKit

https://developer.apple.com/download/more/?=for%20Xcode
https://developer.apple.com/documentation/homekit
https://developer.apple.com/documentation/homekit/testing_your_app_with_the_homekit_accessory_simulator
https://developer.apple.com/documentation/homekit/testing_your_app_with_the_homekit_accessory_simulator

195

 Name Your Home
Let me show you in Listing 8-2 one simple way I’d ask a user to name her

home. Please, oh please, do not ask with Core Location where the house is,

as this is not of interest for you. The user knows where she lives. You could

provide it as an alternative, but in most cases a simple string for the name

is enough.

Listing 8-2. A Simple Approach to Asking for a Name for Your Home

func homeManagerDidUpdateHomes(_ manager: HMHomeManager) () {

 if manager.homes.isEmpty {

 alert = UIAlertController(title: "Name your Home",

 message: "I suggest `Home`...",

 text: "Home",

 action: "OK") {

 let name = self.alert?.textFields?.first?.text

 self.manager.addHome(withName: name ?? "<home>",

 completionHandler: { (home, error) in

 print(error ?? "no errors")

 if let home = home, errors == nil {

 self.whatsInTheRoom(home)

 }

 })

 }

 if alert != nil {

 present(alert!, animated: true, completion: nil)

 }

}

The result of this code is shown in Figure 8-3. As you might have

guessed, I have a little extension UIAlertController behind the scenes.

You can find it in the source code of the sample app.

Chapter 8 homeKit

196

HomeKit itself doesn’t provide a way to attach a home to a location,

but obviously you could easily do it with either extending or compositing

with HMHome. As always, just because you can doesn’t mean you should.

 Rooms and Accessories
If you are lucky enough to have a home with more than one room, you’ll

be happy to learn you can assign the accessories to different rooms.

By default, though, the Home app will create a Default room, but you

can always add a room with addRoomWithName.

 Let’s Browse!
A room has accessories, or, actually, we should say that a home has

accessories, since it’s at that level that you can work. There is, however, an

array of accessories for a room, as well as a pointer from the accessory to

the room it belongs to.

Listing 8-3 shows you how you should browse for devices that aren’t

yet added to your home. It’s a process that one of the apps connected to

the shared database does. After that, all the other apps won’t have to do it.

Figure 8-3. The My Privacy app asks for a home name when it
doesn’t find one

Chapter 8 homeKit

197

Listing 8-3. The Browsing Part of the Class

class HomeVC: UIViewController, HMAccessoryBrowserDelegate {

 let browser = HMAccessoryBrowser()

 override func viewDidLoad() {

 super.viewDidLoad()

 browser.delegate = self

 }

 @IBAction func browse() {

 label.text = "Browsing Accessories"

 buttonSwap(title: "Tap to stop",

 target: self,

 action: #selector(stopSearching))

 browser.startSearchingForNewAccessories()

 }

 @objc func stopSearching() {

 browser.stopSearchingForNewAccessories()

 label.text = "New accessory?"

 buttonSwap(title: "Tap to browse",

 target: self,

 action: #selector(browse))

 }

 func accessoryBrowser(_ browser: HMAccessoryBrowser,

 didFindNewAccessory accessory: HMAccessory) {

 print(accessory)

 }

}

Chapter 8 homeKit

198

People got the power. Consuming more energy than
needed is a karma-less activity. help me save our environment
by using the right api, in this case stopping searching for new
accessories. it’s comparable to stopUpdatingLocation with
CoreLocation — it’s like a radio working when it’s not necessary.
also, the user will thank you for not draining their battery. as a
speaker at conferences one of the current talk i give is called “Save
the environment with Xcode” where i discuss things like the energy
organizer in Xcode or the energy logs — these are tools that helps
produce a better energy-optimized app.

 HMAccessory
Listing 8-4 shows the result in the Xcode console that the print in

didFindNewAccessory will produce, based on our configuration in

Figure 8-2.

Listing 8-4. Our Simulated Configuration

<HMAccessory, Name = Light,

Identifier = F887C510-2FDE-5E31-B013-5216405FEE28, Reachable = YES>

<HMAccessory, Name = Camera,

Identifier = FBDC9FE0-98F5-59D9-BC20-14096F7375B7, Reachable = YES>

By now you should understand that an accessory is a physical device,

assigned to a room (which can change). That accessory has a pointer back

to a room and an array of services.

Let’s see in Figure 8-4 what we can do with that found accessory. The

warning about the accessory being uncertified will be shown as long as

the hardware accessory hasn’t been certified by Apple — it means in the

simulator, always.

Chapter 8 homeKit

199

In an unusual manner for this book (I usually first show the code), let’s

now look in Listing 8-5 at what it takes to add the accessory. Note that it’s

added to the house, regardless of which room. This could be your chance

to add a back reference to your home in a custom (probably composed)

class, since HMAccessory sadly doesn’t provide that back reference pointer.

Listing 8-5. A Way You Can Ask Your Users if They Want to Add

Accessories

func accessoryBrowser(_ browser: HMAccessoryBrowser,

 didFindNewAccessory accessory: HMAccessory) {

 present(UIAlertController(title: accessory.name,

 message: "Do you want...") {

 self.home?.addAccessory(accessory) { (error) in

 print(error)

 }

 })

}

Figure 8-4. The process of adding an element

Chapter 8 homeKit

200

That wouldn’t scale for more than one accessory found, because by
the time i’m in the call-back the second accessory has been skipped.
in your real code you should save that array and process it at a later
time. For us, because i want to only turn on/off a light, it’s good
enough — although i hate to say or hear “good enough.”

 Setup Code
So you think we made it?! Nope, and that’s a good thing for your security,

privacy, and foremost safety! We need a code, as shown in Figure 8-5. That

dialog comes directly from HomeKit.

Only when the right code is entered will the accessory be installed.

Figure 8-5. The code you can find either physically on your device or
in the HomeKit Accessory Simulator shown in Figure 8-2

Chapter 8 homeKit

201

Listing 8-6 shows what happens in the console if I run a code showing

me the rooms in my home and the accessories. The debug description of

rooms isn’t super exciting (just the memory pointer)

Did you know that whatever the console prints is the result of the
implementation of either description or debugDescription?
this is also why you really should avoid displaying a raw print of an
object (simply represented by %@ in the objC days) to the user but
instead use a property such as name.

 And in the Real World?
For now we’ve only worked with the simulator, but let me show you what

some of the accessories in a real home look like. Listing 8-6 is a more

realistic representation of what a household might look like.

Listing 8-6. Printing the List of Rooms and Accessories a Home Has

[<HMRoom: 0x2817d0f40>, <HMRoom: 0x2817d7780>, <HMRoom:

0x2817cdf00>, <HMRoom: 0x2817ce700>

[<HMAccessory, Name = Philips hue - 01E807, Identifier =

43EEA8E7-62D6-56CF-ACF3-9CF2DB86E423, Reachable = YES>,

<HMAccessory, Name = Hue Dimmer, Identifier = E780B6AE-

9470- 529B-B34C-2E599FEAFE9D, Reachable = YES>, <HMAccessory,

Name = Hue ambiance lamp, Identifier = EE1DAC3E-0FF7-541C-

9569-7A85C3D434B2, Reachable = YES>, <HMAccessory, Name =

Hue ambiance candle, Identifier = D96399D6-FF26-5EDC-A239-

855DF24A522F, Reachable = YES>, <HMAccessory, Name = Hue color

lamp, Identifier = DFDB4EA0-C7EC-57F5-B60A-A6C8B1A7B8F6,

Chapter 8 homeKit

202

Reachable = YES>, <HMAccessory, Name = Hue white lamp,

Identifier = 010AC899-F740-5952-B86A-443F852F639D, Reachable =

YES>, <HMAccessory, Name = FIBARO Single Switch , Identifier =

6E36D81F-1FA0-560D-A9EF-F9FB79E06906, Reachable = YES>,

<HMAccessory, Name = TJ HomeBridge-A964, Identifier = F2B84B60-

F6F4- 570E-9DA1-1EAC02023C0C, Reachable = NO>, <HMAccessory,

Name = Fibaro Switch (#6), Identifier = 07AC997F-7244-5863-

93E4-DBCBE7AAC707, Reachable = NO>]

You can see there we have a couple of Philips Hue lamps. They are very

popular in the HomeKit world, but you shouldn’t necessary go for them.

Ikea also has some, as well as most of the well-known light bulb makers.

What you definitely should do is your own research on the privacy of it. I

couldn’t get a statement from Philips or Ikea about the “SmartHack” talk.

The reason I mention it again is that no matter how much security

and privacy there is on Apple’s side,11 the software/hardware/firmware

(accessory direct) sniffing data is probably the highest concern here.

 Reachability
Before you do anything concrete with an accessory, don’t forget to check

its isReachable property. Most lamps, for example, will be controlled by

a physical switch. If one is turned off, and you don’t have something like a

Fibaro module,12 you’ll be out of luck.

Luckily, most smart bulbs nowadays remember the state at which they

were turned off, so if you dimmed it, when you turn it back on it should be

at the same level.

11 I also don’t really have a confirmation from them that they analyze the products
they certify.

12 https://fibaro.com/us/products/switches — Bosch has a similar product
which I’m keen to try soon.

Chapter 8 homeKit

https://fibaro.com/us/products/switches

203

Finally, a word of warning about paranoia: you might be bitten by your

own automation. So before you think a random hacker has taken control of

your home, check if it’s not your own rule that turns off the lights at 10pm

every evening. Been there, thought that.

 Services and Characteristics: Bluetooth
Anyone?
If you’ve worked with the Bluetooth specs, or with CoreBluetooth, the concept

behind services and their characteristics will be familiar. Speaking of which by

the way, any app that requires access to Bluetooth will see an Authorization

Prompt as of iOS 13 like with other authorization. That is a great addition for

privacy that will make you discover which app is using Bluetooth.

Beyond an accessory being a physical device, there will be one or more

services, and each one will have one or more characteristics.

First of all every accessory has an “Accessory Information” service,

which simply identifies it. To explain the rest, it’s always convenient to take

the example of a garage door or a fan. Both of them have the obvious service

to open/close or start/stop, but both of them might also have a light bulb.

You first need to define what you want to know: interact with the lamp,

or with the primary service? Then you’ll use the characteristics on that

service to control the behavior.

Listing 8-7 shows the way I can turn on and off a lamp. If you know a

bit about how Bluetooth works, you’ll remember that characteristics are

defined with UUID. Conveniently, HomeKit has a set of constants for it.

Listing 8-7. How I Browse the Services to Find the Bulb and Then

Its Characteristics to Find the Power

buttonSwap(title: "Turn it on",

 target: self,

 action: #selector(turnOnOff))

Chapter 8 homeKit

204

@objc func turnOnOff() {

 let services = accessory?.services.filter {

 $0.serviceType == HMServiceTypeLightbulb

 }

 if let service = services?.filter({

 return $0.serviceType == HMServiceTypeLightbulb

 }).first, let power = service.characteristics.filter({

 return $0.characteristicType ==

 HMCharacteristicTypePowerState

 }).first, let value = power.value as? Int {

 power.writeValue(value == 0 ? 1 : 0) {

 print($0)

 }

 }

}

Without those two constants (which will hopefully be part of an enum

at some point), we would have to look for

• “00000043-0000-1000-8000-0026BB765291”: Light Bulb

• “00000025-0000-1000-8000-0026BB765291”: Power State

Imagine the nightmare of having to remember these. Also, from a

privacy point of view this is already obfuscating the information a little bit,

since it takes a little bit of knowledge to do something with them.

It’s obviously not enough, since these are documented, but it means

anyone wanting to read my home would not only need to have access to

my device and let me install their app, but they would have to take the time

needed to be familiar with those constants and/or this API.

Chapter 8 homeKit

205

 Scenes and Automation
The power of home automation relies not only on acting on a single

accessory but on grouping those not only in rooms but in Scenes, like the

typical example of saying “good night” and all your lights turn off.

This is represented by HMActionSet. I really dislike it when there’s a

dichotomy between the technical term and the user language, but for now

remember a Scene is an ActionSet.

Figure 8-6 shows a few simple Scenes that would turn off all lamps

(Good night) where you can see that an icon has been chosen (not part of

HomeKit, only of the Home app) and two others, which associates a few

lamps together.

Figure 8-6. The scenes associated with the entrance, although they
really affect other lamps

Automation wanted to bring the same dichotomy, so here is your new

technical term to remember: HMTrigger.

Chapter 8 homeKit

206

Figure 8-7 shows the power outlet being “woken up” every morning so

my wife doesn’t hate me for the rest of the day.

 User Management
You might not live alone; you might have a family, for example. So you’d

want to give others the ability to turn on/off the lights, for example.

This is achieved with HMUser as well as HMHomeAccessControl.

Listing 8-8 shows you the way to have the HomeKit-managed UI

appearing in Figure 8-8. The cumbersome way to check if the

currentUser is an administrator is also documented in this code. Feel

free to create an isAdministrator function in an extension of HMUser.

Listing 8-8. The Way to Display the User Management UI

if home.homeAccessControl(for: home.currentUser)

 .isAdministrator {

 home.manageUsers { (error) in

 print(error)

 }

}

Figure 8-7. The automation reusing a scene or acting on a single
accessory

Chapter 8 homeKit

207

 Presence
Speaking of users, automation allows you to do things whenever the last

user leaves home or the first arrives at home... This is a serious privacy

concern because, if in the hands of the wrong people, this means the house

is ready to be robbed.

I’m not going into the technical details of how this is being done

because this is the less trivial part of HomeKit and this isn’t a book about

HomeKit, but I want you to know those privacy-involved possibilities exist.

 Bridges
Many accessories out there use technologies that aren’t directly supported

by HomeKit. If it’s not over Bluetooth or WiFi, HomeKit itself won’t see it.

I can think of two off the top of my head: ZigBee and Z-Wave. The first

one is used by the Philips or Ikea lamps, for example, and the other one

by the Fibaro accessories. Both of them have a separate hub that then

implements the HomeKit Accessory Protocol.13

13 https://developer.apple.com/support/homekit-accessory-protocol

Figure 8-8. The UI that will be shown once you call
manageUsers

Chapter 8 homeKit

https://developer.apple.com/support/homekit-accessory-protocol

208

This is the same protocol that an accessory uses directly. This is also

why you shouldn’t see a Works with HomeKit logo on the accessory itself

(bulb, for example) but only on the bridge, for some of the providers. For

a user, it’s a bit confusing — also the fact that if you have one bridge it can

control all lamps, since it’s the same technology.

One would hope that in the future Apple will support more

technologies, by simply having the necessary component in their hubs.

One of the reasons to use the other technologies is the range. Bluetooth

isn’t ideal when it comes to range. Apple has an idea about that…

 Range Extenders
A range extender, as its name says, is here to help your hub or device reach

a device that would be too far away.

The important thing to note here is that this accessory won’t see any

unencrypted data but rather just further send the encrypted packets,

which only the final receiver will be allowed to decrypt.

 Media Accessories
Although it’s totally understandable to be worried about someone being

able to turn off your lights or transform your living room into a sauna,

the concern about privacy grows when an accessory has a camera and/

or a microphone. Luckily in 2019 Apple announced HomeKit Secure

Video — Check it out at https://developer.apple.com/videos/play/

wwdc2019/101/?time=2572.

HomeKit has supported these since 2016. It can control many settings

as well as display live stream and still images, so they’d better be good

about protecting my privacy!

This is done with HMCameraProfile or HMCameraAudioControl. Please,

from a privacy perspective, do not do anything that the user isn’t informed

about (e.g., do not record while showing a UI where you don’t announce it).

Chapter 8 homeKit

https://developer.apple.com/videos/play/wwdc2019/101/?time=2572
https://developer.apple.com/videos/play/wwdc2019/101/?time=2572

209

 Apple TV
Although there isn’t a Home App (as in, a GUI) on the Apple TV, there’s

Siri, which allows you to do some things.

There is one major limitation: Apple TV and Siri Remote don’t
have Touch ID or heart-rate sensors to authenticate you the
way iPhone, iPad, and Apple Watch do, so you can’t control
anything that requires authentication. That includes garage
door openers or door locks.

It might sound inconvenient but it’s really about security. If
someone gets ahold of your Siri remote and changes the colors
of your lights, it’s annoying. If they open your doors to intruders,
it’s potentially life-threatening.

tvOS 10 review, iMore14

The Apple TV — or I should say tvOS — does have HomeKit, though,

so obviously a few solutions from third parties reconstructed the iOS &

Mac app. It’s interesting that Apple hasn’t done it themselves.

 Siri on iOS
It’s important from a Privacy aspect to remember that Siri will know about

your Home configuration, and it won’t ask you that.

We can see, however, in Figure 8-9 that the section Face ID & Passcode15

has a set of Allow Access When Locked.

14 https://imore.com/tvos — https://imore.com/why-isnt-home-app-apple-tv
15 If your device doesn’t have FaceID, that will be another name.

Chapter 8 homeKit

https://imore.com/tvos
https://imore.com/why-isnt-home-app-apple-tv

210

It is therefore your responsibility to decide where you want your

“convenience over security/privacy” level.

 On the Mac
The very first image in this chapter was from the Mac version of the Home

app added to macOS in 2018 in the form of a — as we now know — a

Catalyst App. It’s also called “UIKit for Mac” or “iPad App for Mac”. You can

imagine this app uses HomeKit itself, and so you can imagine… Well, no,

I’m sorry, move along….

Macintosh HD > Applications > Xcode.app > Contents > Developer

> Platforms > MacOSX.platform > Developer > SDKs > MacOSX.sdk >

System > Library > PrivateFrameworks > HomeKit.framework

Figure 8-9. Home control is one of these things you can decide as a
user to be able to control with or without authentication

Chapter 8 homeKit

211

For now, as of macOS 10.14.6 Mojave or macOS 10.15 Beta 4, it’s a

private framework. Which brings me to the fact that Apple specifically

mentioned HomeKit won’t be supported in an iPad app running on the

Mac.16

Figure 8-10 is a consolation for you since HomeKit isn’t there

yet — unless you’d like to play with private APIs — and shows the Home

app. It’s basically the opposite of tvOS, where we have HomeKit but no app.

16 Same procedure as every year: Hope for the next WWDC. 2020 it would be?

Figure 8-10. The Home app on the Mac, most probably using an
iOS- similar private API

Chapter 8 homeKit

212

 Cryptography and HAP
Usually, before the conclusion, I finish with On the Mac. Here I wanted

you to know that Apple is seriously doing stuff to ensure your accessories

can’t be controlled by anyone walking down the street. In the Designing

Accessories for iOS and OS X17 session, they have a couple of very

interesting slides that describe those very important elements.

• The Encryption Boundary is between HTTP and

Transmission Control Protocol (TCP) or between HAP

and Generic Attribute Profile (GATT).

• Apple is using bidirectional authentication & per-

session encryption

In this session they also give an insight into how the HAP (HomeKit

Accessory Protocol) speaks to your accessory/to the Apple platform. I’m

showing an example of this in Listing 8-9. This is the practical example of a

garage door also having a light bulb, which they usually have.

If you think your lamp stays on too long and the provider doesn’t allow

you to change it, if it’s HomeKit enabled, as a developer you could write a

pretty simple app that turns of this light sooner.

Listing 8-9. An Example of the Services an Accessory Has

accessory : {

 service1 : "public.hap.accessory-information" {

 characteristic : "serial-number"

 characteristic : "identify"

 }

17 https://developer.apple.com/wwdc14/701 — Well, not sure how/if you will
find it, but I’m lucky enough to have it on my hard drive. Apple took it offline, for
whatever reason.

Chapter 8 homeKit

https://developer.apple.com/wwdc14/701

213

 service2 : "public.hap.garage-door-opener" {

 characteristic : "target-state"

 characteristic : "current-state"

 characteristic : "obstruction-detected"

 }

 service3 : "public.hap.lightbulb" {

 characteristic : "on"

 }

}

 Conclusion
Home automation is one of the fields that will be with us in the future in a

manner that a non-technical person might not get, in terms of privacy.

People will not analyze their network traffic with Wireshark18 like you

and I might do it. So they won’t notice if a light bulb is sending your geo-

coordinates when you register it, and sending a signal in the cloud every

time you switch it on or off.

You as a software developer should work — together with Apple when

they certify your hardware — to not spy on your users.

18 https://wireshark.org is a widely-used network protocol analyzer.

Chapter 8 homeKit

https://wireshark.org

215© Manuel Carrasco Molina 2019
M. Carrasco Molina, Karma-based API on Apple Platforms,
https://doi.org/10.1007/978-1-4842-4291-9

Index

A
Access and Geolocation

convenience vs.
privacy, 21, 22

metadata, 20, 21
AppleBot, 186
Apple TV, 191, 209
App Store review, 15–17
Artificial intelligence, 17
Assisted GPS, 40
Authentication

Lock screen, 165
passcode, 167
SiriKit file, 165
unlock, 167

Authorizations
alerts, 3–5
status, 6, 7

B
Bluetooth specs, 203

C
Calendar

Mac request, 94
maximum span, 82

models, 79
types, 80

Camera, 208
Camera-only access

imagePickerController, 25
info dictionary, 26, 27
simulator, 26
user interface, 25
view controllers, 26

CLLocationManager, 108
CNAuthorizationStatus, 5
CNContactStore().request

Access, 65, 153
Common API elements

database, 11
developer item, 13
iCloud section, 9
iOS services, 11
iOS settings, 8, 9
system request, 14, 15

Contact framework
access, 78
list of properties, 65, 66
Mac, 74–77

Contact integration, 185
Contacts

address book, 158
asynchronous code, 153

https://doi.org/10.1007/978-1-4842-4291-9

216

authorization, 155
CNContact, 156
common framework, 160

access, JSON, 162, 164
Contacts View

Controller, 161
JSON file, 161

fetching information, 157
options, 156
resolve methods, 154
retrieving, 159

Cryptography and
HAP, 212, 213

CSSearchableIndex, 178
CSSearchableItem

ActionType, 187
CSSearchableItem

AttributeSet, 171

D
dateByAdding methods, 82
dateOfBirthComponents, 101
desiredAccuracy, 41
DetectLocation, 4
Developers

bad, 67, 68
good, 67
ugly, 69

didFinishLaunching
WithOptions, 171

Documents directory, 160

E
EventKitUI

EKCalendarChooser, 91, 92
event view controller, 92–94
in-app-process

pickers, 90

F
FaceID, 35
Facial recognition, 34
fitzpatrickSkinType(), 118

G
Geolocation

EKStructuredLocation, 85
latitude/longitude, 84

GPS information, 28

H
Health app

Argonaut Project, 132, 133
authorization

model, 125, 127–129
entitlements, 124, 125
full JSON, FHIR, 130
get request status, 131, 132
location access, 124
medication type, 128
privacy policy, 133
setup process, 121

Contacts (cont.)

INDEX

217

HealthKit
authorization, 101, 103–105
central database, 98, 99
Contacts app, 101
date of birth and height, 102
deleting objects, 113–115
Fitzpatrick skin type, 117, 118
framework, 97
HKObserverQuery, 100
on the Mac, 137
permissions, 105
privacy settings, 100, 105
read-only authorization, 107
statistics, 136, 137
user, 98
watchOS, 115–117
workouts and maps, 107–113

HealthKit.framework, 98
HealthManager helper class, 107
HKAuthorization

RequestStatus, 131
HKHealthStore, 101, 125
HKStatisticsCollection, 137
HKWorkoutRouteBuilder, 107
HKWorkoutRoute class, 107
HKWorkoutRoute.h file, 107
HKWorkoutSession, 107
HMAccessory

add accessories, 199
physical device, 198
setup code, 200, 201
uncertified, 198
Xcode console, 198

HMCameraProfile/HMCamera
AudioControl, 208

HMHomeAccessControl, 206
Home app, 191
Home hub, 190
HomeKit

Apple TV, 209
automation, 189
bluetooth, 203, 204
bridges, 208
cryptography and HAP, 212, 213
door lock, 190
end-to-end encryption, 192
garage door, 190
home hubs, 190, 191
home manager and

simulator, 193, 194
IoT, 189
isReachable property, 202
light bulb, 190
Mac, 211
media accessories, 208
network traffic with

Wireshark, 213
Philips Hue lamps, 202
privacy key, 193
rooms and accessories, 196, 197
scenes and automation, 205, 206
Siri on iOS, 209, 210
smart bulbs, 202
Smart Home, Smart Hack, 189
user management UI, 206, 207
warning, 203

Index

218

HomeKitHMAccessory,
see HMAccessory

Home manager and simulator
basic, 193
HomeKit Accessory

Simulator, 194
HomeKit device, 194
name, 195, 196

HomePod, 191

I, J
IMSendMessageIntent, 148
INPerson, 152, 153
INPersonHandle, 152
INRelevantShortcut, 177
INRelevantShortcutStore

method, 178
INSendMessageIntentHandling, 146
iPad version, 10
isHealthDataAvailable, 100

K
Key and permission, 193
keysToFetch property, 67

L
Location

asynchronous call-back, 43
authorization, 41, 42
calendar app, 44
controller, 45
coordinate, 48

CoreLocation, 45
didUpdateLocations method, 54
elevation of privileges, 55, 56
geocoding and decoding

CLLocation, 51
CLPlacemark, 51, 52
latitude and longitude, 49, 50
Photos.app, 49, 50
postalAddress, 53
thoroughfare, 52

role of arrow, 59, 60
sensors, 47

M
Mac app, 62, 63
Managed contacts, 74
MapKit, 58, 59
Media accessories, 208
MessagingIntents, 143
Microphone, 34, 208
Mobile device management

(MDM), 74

N
NSCameraUsageDescription, 24
NSUserActivity

Activity Identifer, 171, 172
new view controller, 168, 169
shortcut, 172–175
spotlight, 170
suggestions, 170, 171
user activity, 169

INDEX

219

O
Out-of-process picker/share

sheet, 69
delegation concept, 71
document portal path, 70
multiple contacts,

selection, 71, 72
single selection picker, 70

P, Q
PHAuthorizationStatus, 5
Philips/Ikea lamps, 207
Photo access

error, 33, 34
macOS Mojave, 33, 34
My Mac Privacy, 32
system preferences, 32, 33

Pictures, pick
out-of-process picker, 24
requestAuthorization

API, 22, 23
UIImagePickerController

API, 22
Privacy key, 193
Protected data, 177
Public indexing, 179

R
Reproductive health, 119, 120
requestAuthorization method, 102
ResolveRecipients

method, 153, 156

Reverse geocoding, 49, 50
Rooms and accessories, 196, 197, 201

S
Scenes and automation, 205, 206
Siri

database contacts (see Database
contacts, Siri)

data usage, 181
iOS, 209, 210
Mac, 186, 187
menu, 150, 151
suggestion, 140
trace, delete

INInteraction, 179
NSUserActivity, 178
spotlight, 178

turn off, 180
watch face, 176–178

Siri access
asking for permission, 141–143
confirm option, 147, 148
handle, 149, 150
new capability, 143

intents, 144, 145
lists, notes, 145
messaging, 145
payments, 145
photo search, 145
restaurant reservation, 145
ride booking, 145
workouts, 145

resolve, 146, 147

Index

220

Siri & Search APIs
activity’s interaction, 184
custom intents, 182, 184
.intentdefinition file, 182
shortcut banner, 184

Smart bulbs, 202
Special birthday calendar, 88, 89
Strings description, 1–3
System services, 60, 61

T
Time to First Fix, 40
TrueDepth camera, 35, 36

U, V
UIAlertController, 3, 142
Usage description string, 2

W
Wi-Fi router, 40
Write-only access

call-back, 31
C function, 29
#imageLiteral, 29
permissions, 30
privacy settings, 30
user’s camera roll, 29

X, Y
Xcode console, 2

Z
ZigBee, 207
Z-Wave, 207

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgement
	Introduction
	Chapter 1: Common API Elements
	Description Strings
	Authorizations Alerts
	Revocation of Allowances
	Always Check Authorization Status

	Ask Again
	All the Apps in the Settings
	Settings, General, Reset
	Review on the App Store
	Conclusion

	Chapter 2: Photos and Camera
	Full Access and Geolocation
	A Picture Worth 1000 Metadata
	Convenience vs. Privacy

	Pick Only One or a Few Pictures
	Camera-Only Access
	Not for Your Simulator Yet
	Inside That info Dictionary

	Export Without Location?
	Write-Only Access
	Photos App Wants Access to Your Photo?
	Facial Recognition with Vision
	That Amazing TrueDepth Camera
	Conclusion

	Chapter 3: Location and MapKit
	What is Location on iOS?
	User Location
	Nothing Happens?

	When You First Start an App
	Always or When in Use?
	Provisional Always Authorization
	With Great Power…

	Core Location
	What Is a Coordinate?

	Geocoding and Decoding
	Show Me the Code
	Even Without Localization Services Enabled

	Fixed Location or Moving Location
	Elevation of Privileges
	Less reasons to use Always in iOS 13
	Temporary Authorization iOS 13

	MapKit Knows Your Country
	Note the Arrow
	One More Thing
	On the Mac
	Conclusion

	Chapter 4: Contacts
	The (Long) List of Properties
	Different Kinds of Developers
	The Good Developer
	The Bad Developer
	The Ugly Developer

	You Don’t Need to Ask Permission
	Select Multiple Contacts

	What Was That with Location?
	Managed Contacts
	On the Mac
	The Picker on the Mac

	Who’s Contact? My Contact!
	Conclusion

	Chapter 5: Calendar and Events
	The Models
	Calendar Chooser
	What Have You Done?
	Geolocating Your Appointments
	What Exactly Is in the Structured Location?

	I’ll Show You Where You Were
	The Special Birthday Calendar
	EventKitUI Still Needs Access
	The List of Calendars
	The Event View Controller

	On the Mac
	Conclusion

	Chapter 6: Health and Fitness
	Adding the Framework
	Explain to the User
	Central Database
	The Core: Quantity & Unit
	The Source: Object Type
	The Stored Object

	All Properties Are Read-Only!
	Not Even in Your App’s Privacy Settings

	Getting the Permission
	Your Missing “me” Card from Contacts
	A Different Kind of Alert
	Proportional Collection
	A User Can Always Change His Mind in the Settings

	Workouts — and Their Maps
	Deleting Objects
	Know Which Objects Were Deleted

	HealthKit on watchOS
	Requesting Access

	Fitzpatrick Skin Type
	Reproductive Health
	Sexual Activity

	Health Records
	Preparing Your Simulator
	Adding the Entitlements
	New Authorization Model
	The Full Monty
	Get Request Status
	The Argonaut Project
	Don’t Ask Too Much
	I’m Concerned About Preconditions, but…

	Apple Doesn’t Want Your Data
	Statistics
	Statistics Collection

	On the Mac
	Conclusion

	Chapter 7: Siri and Search
	The Machine Is Learning
	Suggestions
	Access to Your App
	Ask Again
	A New Capability
	Resolve
	Confirm, Optionally
	Handle

	Your App Has a Siri Menu… or Not
	Person
	A Connection to Your Contacts Database
	Saving and Retrieving Contacts
	A Common Directory

	Authentication!
	How to Fix This?

	NSUserActivity is Tracking You
	Spotlight
	Proactive Suggestions
	The Call-Back
	So What Is a Shortcut?!

	The Siri Watch Face
	Relevant Shortcut

	Deleting Any Trace
	Spotlight
	NSUserActivity
	Intents

	Public Indexing
	Turning Off Siri
	Apps Using Your Data
	INInteraction and Custom Intents
	Contact Integration
	AppleBot
	On the Mac
	Conclusion

	Chapter 8: HomeKit
	Smart Hack?
	Lights, Camera, Action
	Remotely?

	End-to-End Encryption
	The Key and the Permission
	The Home Manager and Simulator
	Name Your Home

	Rooms and Accessories
	Let’s Browse!

	HMAccessory
	Setup Code

	And in the Real World?
	Reachability

	Services and Characteristics: Bluetooth Anyone?
	Scenes and Automation
	User Management
	Presence

	Bridges
	Range Extenders

	Media Accessories
	Apple TV
	Siri on iOS
	On the Mac
	Cryptography and HAP
	Conclusion

	Index

