
www.allitebooks.com

http://www.allitebooks.org

Learning Akka

Build fault-tolerant, concurrent, and distributed
applications with Akka

Jason Goodwin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Akka

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-300-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jason Goodwin

Reviewer
Taylor Jones

Commissioning Editor
Akram Hussain

Acquisition Editor
Nikhil Karkal

Content Development Editor
Dharmesh Parmar

Technical Editor
Gebin George

Copy Editor
Yesha Gangani

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jason Goodwin is a developer who is primarily self-taught. His entrepreneurial
spirit led him to study business at school, but he started programming when he was
15 and always had a high level of interest in technology. This interest led his career
to take a few major changes away from the business side and back into software
development. His journey has led him to working on high-scale distributed systems.
He likes to create electronic music in his free time.

He was first introduced to an Akka project at a Scala/Akka shop—mDialog—that
built video ad insertion software for major publishers. The company was acquired by
Google eventually. He has also been an influential technologist in introducing Akka
to a major Canadian telco to help them serve their customers with more resilient
and responsive software. He has experience of teaching Akka and functional and
concurrent programming concepts to small teams there. He is currently working via
Adecco at Google.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I wish to write a thank-you note here to a few people who have shaped and formed
my opinions, and supported me through my own journey.

First, to my wife Kate, thank you for the many, many months of support while
I wrote this book and worked on crazy projects. Without your constant support,
patience, and care, changing my career to do things that I love to do, and writing
this, would not be possible. We made it to the finish line. Time for painting, fixing
the house, and Netflix and chill!

To my parents and grandparents, who always told me that I can do anything that
I set my mind to: thank you for your advice. You were right.

To my mDialog/Google team, thanks for your reviews and discipline on my
journey—I feel lucky to have had the opportunity to work with you all. To Chris
especially, thanks for your faith that my interest would be enough to help me grow
into a decent engineer, and for always expecting that the team keep it clean.

To Craig and Herb, thanks for the early start. If I wasn't doing bubble sorts, drawing
pixelated circles, or converting customer databases when I was 17, I'm not sure I
would have been able to find my way to the work that I love to do so much today.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Taylor Jones is a full-stack software engineer specializing in Java-based webapp
development currently working at Cisco Systems. He enjoys designing and building
complex applications with open source technologies and playing with his dog, and is
semi-competent at DotA 2.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Starting Life as an Actor 1

What's in this book? 2
Chapter overview 2
What is Akka 3

Actor Model origins 3
What's an Actor anyway? 3
Actors and Message passing 4

The Evolution of supervision and fault tolerance in Erlang 8
The Evolution of distribution and location transparency 9

What we will build 10
Example 1 – handling distributed state 10
Example 2 – getting lots of work done 10

Setting up your environment 11
Choosing a language 11
Installing Java – Oracle JDK8 12

Installing on Windows 12
Installing on OS X 12
Installing on Linux or Unix (Universal instructions) 12

Ensuring Java is configured in your environment 13
Installing Scala 13
Installing Typesafe Activator 13

Windows 13
Linux/Unix/OS X 14
OS X 14

Creating a new project 15
Installing an IDE 16

Install IntelliJ CE 16
Eclipse 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating your first Akka application – setting up the SBT project 19
Adding Akka to build.sbt 20

A note on getting the right Scala version with %% 21
Adding other Dependencies from Maven Central 21

Creating your first Actor 21
Making the Message first 21
Defining Actor response to the Message 22

Validating the code with unit tests 25
Akka Testkit 25

Running the test 28
Homework 29
Summary 29

Chapter 2: Actors and Concurrency 31
Reactive system design 31
The 4 reactive tenets 32

Responsive 32
Elastic 32
Resilient 33
Event-driven/message-driven 33
Reactive Tenet Correlation 33

Anatomy of an Actor 34
Java Actor API 34
Scala Actor API 36

Creating an actor 38
Props 39

Promises, futures, and event-driven programming models 41
Blocking versus event-driven APIs 41

Skills check-point 45
Having an Actor respond via a future 45

Java example 46
Scala example 48
Blocking threads in tests 50

Understanding futures and promises 51
Future – expressing failure and latency in types 51

Preparing the DB and messages 60
The messages 61
Implementing the DB functionality 62
Enabling remoting 63
Main 64
Publishing the messages 64
Starting the DB 65

Table of Contents

[iii]

Producing the client 65
Scaffolding the project 65
Modifying build.sbt 66
Building the client 66
Testing 67

Homework 68
General learning 68
Project homework 68

Summary 69
Chapter 3: Getting the Message Across 71

Setting the stage with an example problem 71
Sketching the project 72

Core functionality 72
Messaging delivery 73

Messages should be immutable 73
Ask message pattern 77

Designing with Ask 78
Callbacks execute in another execution context 82
Timeouts are required 83
Timeout stacktraces aren't useful 84
Ask has overhead 85
Complexity of Actors and Ask 85

Tell 86
Designing with Tell 87
Forward 94
Pipe 96

Homework 97
General learning 97
Project homework 97

Summary 98
Chapter 4: Actor Lifecycle – Handling State and Failure 99

The 8 Fallacies of Distributed Computing 99
The network is reliable 100
Bandwidth is infinite 101
The network is secure 101
Network topology doesn't change 102
There is one administrator 102
Transport cost is zero 102
The network is homogeneous 103

Failure 103
Isolating failure 104

Redundancy 104

Table of Contents

[iv]

Supervision 104
Supervision hierarchies 105
Supervision strategies and the drunken sushi chef 106
Defining supervisor strategies 107
Actor lifecycle 109
Messages in restart, stop 110
Terminating or killing an Actor 111
Lifecycle monitoring and DeathWatch 111
Safely restarting 111

State 113
Online/Offline state 113

Transitioning state 114
Stashing messages between states 114

Conditional statements 115
Hotswap: Become/Unbecome 116

Stash leaks 118
Finite State Machines (FSM) 118
Defining states 120
Defining the state container 121
Defining behavior in FSMs 121

Using restarts to transition through states 124
Homework 124
Summary 125

Chapter 5: Scaling Up 127
Moore's law 127
Multicore architecture as a distribution problem 128
Choosing Futures or Actors for concurrency 129
Doing work in parallel 130

Doing work In parallel with futures 130
Doing work in parallel with Actors 132

Introducing Routers 133
Routing logic 134
Sending Messages to All Actors in a Router Group/Pool 135
Supervising the Routees in a Router Pool 135

Working with Dispatchers 136
Dispatchers explained 136
Executors 138
Creating Dispatchers 138
Deciding Which Dispatcher to use where 140
Default Dispatcher 143
Blocking IO dispatcher use with futures 144

Table of Contents

[v]

Article parsing dispatcher 147
Using a configured dispatcher with Actors 147
Using BalancingPool/BalancingDispatcher 149

Optimal parallelism 150
Homework 150
Summary 151

Chapter 6: Successfully Scaling Out – Clustering 153
Introducing Akka Cluster 153
One Giant Monolith or Many Micro Services? 154
Definition of a Cluster 155

Failure Detection 155
Gossiping an Eventually Consistent View 156

CAP Theorem 157
C – Consistency 157
A – Availability 157
P – Partition Tolerance 157
Compromises in CAP Theorem 158

CP System – Preferring Consistency 158
AP System – Preferring Availability 159
Consistency as a Sliding Scale 160

Building Systems with Akka Cluster 160
Creating the Cluster 161

Configuring the Project 161
Seed Nodes 162
Subscribing to Cluster Events 163
Starting the Cluster 165
Leaving the Cluster Gracefully 167

Cluster Member States 168
Failure Detection 168

Routing Messages to the Cluster 169
Producing a Distributed Article Parse Service 169
Cluster Client for Clustered Services 170

Setting up the Server Project 171
Setting up the Client Project 173
Sharing the Message Class between Client and Server 173
Sending Messages to the Cluster 174
Building a Distributed Key Value Store 176
Disclaimer – Distributed Systems are Hard 177

Designing the Cluster 177
Basic Key-Value Store Design 178
Coordinating Node 179
Redundant Nodes 181

Table of Contents

[vi]

Combining Sharding and Replication 183
Pre-Sharding And Redistributing Keys to New Nodes 184

Addressing Remote Actors 185
Using akka.actor.Identify to Find a Remote Actor 186

Homework 186
Summary 187

Chapter 7: Handling Mailbox Problems 189
Overwhelming your weakest link 189
Ballooning response times 191
Crashing 191

Resiliency 192
Mailboxes 192

Configuring mailboxes 193
Deciding which mailbox to use 194

Staying responsive under load 196
Circuit breakers 197

Circuit breaker listeners 198
Circuit breaker examples 199

Homework 203
Summary 203

Chapter 8: Testing and Design 205
Example problem 206
Approaching application design 206

High-Level design 208
Designing, building, and testing the Domain model 209

Specifications 209
Designing the Domain model 210
Testing and building the Domain model 211
Building by specification 213

Testing actors 216
Testing Actor behavior and state 216
Testing Message flow 219

Using the test Itself as an Actor 219
Using TestProbes as mock Actors 221

Testing Advice 222
Homework 223
Summary 224

Table of Contents

[vii]

Chapter 9: A Journey's End 225
Other Akka Features and Modules 226

Logging in Akka 226
Message Channels and EventBus 228
Agents 231
Akka Persistence 234
Akka I/O 235
Akka streams and HTTP 235

Deployment Tools 236
Monitoring Logs and Events 237

Writing some Actor Code 238
Coursera Courses 239

Summary 240
Index 241

[ix]

Preface
This book attempts to give both the introductory reader and the intermediate or
advanced reader an understanding of basic distributed computing concepts as
well as demonstrates how to use Akka to build fault-tolerant horizontally-scalable
distributed applications that communicate over a network. Akka is a powerful
toolkit that gives us options to abstract away whether a unit of work is handled
on the local machine or a remote machine on the network. Throughout this book,
concepts will be introduced to help the reader understand the difficulty of getting
systems to talk to each other over the network while introducing the solutions that
Akka offers to various problems.

Soaked in these pages is my own journey, my own discovery—and I hope that
you will share that with me. I have a fair amount of professional Akka experience
working with both Java8 and Scala, but I have learned a lot of the finer details of
Akka while writing this book. I feel that this work is a good introduction to how and
why to use Akka, and demonstrates how to start building scalable and distributed
applications with the Akka toolkit. It does not simply repeat the documentation,
but covers many of the important topics and approaches you should understand
to successfully approach building systems to handle the scale-related problems we
encounter as developers today.

What this book covers
Chapter 1, Starting Life as an Actor: Introduction to the Akka Toolkit and Actor Model.

Chapter 2, Actors and Concurrency: Reactive. Working with Actors and Futures.

Chapter 3, Getting the Message Across: Message Passing Patterns.

Chapter 4, Actor Lifecycle – Handling State and Failure: Actor Lifecycle, Supervision,
Stash/ Unstash, Become/ Unbecome, and FMSs.

Preface

[x]

Chapter 5, Scaling Up: Doing work concurrently, Router Groups/Pools, Dispatchers,
Handling Blocking I/O, and APIs.

Chapter 6, Successfully Scaling Out—Clustering: Clustering, CAP Theorem, and Akka
Cluster.

Chapter 7, Handling Mailbox Problems: Overwhelmed mailboxes, choosing different
mailboxes, Circuit Breakers.

Chapter 8, Testing and Design: Specification, Domain Driven Design, and Akka Testkit.

Chapter 9, A Journey's End: Other Akka Features. Next steps.

What you need for this book
You will need a PC with access to install tools such as Java JDK8 (for Java
development) or Java JDK6 (for Scala development). You will also require sbt
(Simple Build Tool) or Typesafe Activator, which contains sbt. Installation is
covered in this book.

Who this book is for
This book is intended for beginner to intermediate Java or Scala developers who
want to build applications to serve the high-scale user demands in computing today.
If you need your applications to handle the ever-growing user bases and datasets
with high performance demands, then this book is for you. Learning Akka will let you
do more for your users with less code and less complexity by building and scaling
your networked applications with ease.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xi]

A block of code is set as follows:

// The executor function used by our promise.
// The first argument is the resolver function,
// which is called in 1 second to resolve the promise.
function executor(resolve) {
 setTimeout(resolve, 1000);
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Select the folder and click Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.allitebooks.com

www.packtpub.com/authors
http://www.allitebooks.org

Preface

[xii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com

[1]

Starting Life as an Actor
This book is primarily intended for intermediate, to senior-level developers wishing
to explore Akka and build fault-tolerant, distributed systems in Scala or modern
versions of Java.

This book has been written for the engineer who is faced with building applications
that are fast, stable, and elastic, meaning they can scale to meet thousands or tens
of thousands concurrent users. With more users having access to the Internet with
faster devices and networks, today, more than ever, we need our applications to be
able to handle many concurrent users working with larger datasets and with higher
expectations of application stability and performance.

This book does not assume that you have a deep understanding of concurrency
concepts and does try to introduce all of the concepts needed to know how to start
a project from scratch, work with concurrency abstractions, and test and build
standalone or networked applications using Akka. While this book should give you
everything you need in those regards, it's not meant for an absolute beginner and
does assume some does assume some programming proficiency.

Here is a quick overview of what you'll need and what you'll get out of this book.

• Requirements:
 ° Intermediate Scala or Java experience
 ° A computer
 ° Internet connectivity

• Recommendations (but you can learn as you go):
 ° If using Java, Java8 lambda exposure
 ° Git and GitHub experience for assignments

Starting Life as an Actor

[2]

• What you'll learn:
 ° Learn to build distributed and concurrent application
 ° Learn techniques for building fault-tolerant systems
 ° Learn techniques for sharing code between projects and teams
 ° Learn several concepts and patterns to aid in distributed system design

What's in this book?
To meet the modern challenges a platform developer may face, this book puts a
strong focus not only on Akka but also on distributed and concurrent computing
concepts. It is my intention to give you a toolkit to understand the problems you'll
face while trying to scale these distributed and concurrent applications.

These pages are not a re-iteration of the Akka documentation. If you want a desk
reference or manual, the 460-page Akka documentation will serve that purpose well.
This book is not simply a book about Akka, it is a book about building concurrent
and distributed systems with Akka.

This book will take you on a journey to show you a new way of working
with distributed and concurrent applications. This book will arm you with an
understanding of the tools, and then will show you how to use them. It will
demonstrate how to build clusters of applications that talk to each other over the
network and can have new computing nodes added or removed to be able to scale
to meet the needs of your users. We'll learn how to do things like building pools
of workers to handle huge jobs at scale to show how it's done. We will talk about
important theorems and common approaches in distributed systems and show how
they affect our design decisions, and we will discuss problems you will encounter
related to network reliability and demonstrate how we can build our applications to
be resilient to those problems.

Chapter overview
At the heart of Akka is an implementation of the Actor Model, which is a theoretical
model of concurrent computation. In this, chapter we will introduce core concepts
in Akka by looking at the history of Akka and the actor model. This will give you
insight into what Akka is and help you understand what problems it tries to solve.
Then, the goals of this book will be introduced with recurring examples that will
be used.

Chapter 1

[3]

After covering these concepts, the chapter will move into setting up your development
environment with the tools you need to start building. We will set up our environment,
Integrated Development Environment (IDE), and our first Akka project, including
unit testing.

What is Akka
This section will introduce Akka and the actor model. Akka, purportedly named
after a mountain in Sweden, is often referred to as a distribution toolkit—a
collection of tools that are used to do work across remote computing resources.
Akka is a modern implementation of the actor model of concurrency. Akka today
could be seen as an evolution of other technologies, borrowing from Erlang's actor
model implementation while introducing many new features to aid with building
applications that can handle today's high-scale problems.

Actor Model origins
To better understand what Akka is and how it is used, we will take a brief trip through
time looking at the Actor model to understand what it is and how it has evolved into a
framework for building fault-tolerant distributed systems in Akka today.

The actor model of concurrency was originally a theoretical model of concurrent
computation proposed in a paper called A Universal Modular Actor Formalism for
Artificial Intelligence in 1973. We will look at the actor model's qualities here to
understand its benefits in aiding our ability to reason about concurrent computation
while protecting against common pitfalls in shared state.

What's an Actor anyway?
First, let's define what an Actor is. In the actor model, an actor is a concurrency
primitive; more simply stated, an actor can be thought of as a worker like a process
or thread that can do work and take action. It might be helpful to think of an actor
as a person in an organization that has a role and responsibility in that organization.
Let's say a sushi restaurant. Restaurant staff have to do various pieces of work
throughout the day such as preparing dishes for customers.

Starting Life as an Actor

[4]

Actors and Message passing
One of the qualities of an object in object oriented languages is that it can be can be
directly invoked–one object can examine or change another object's fields, or invoke
its methods. This is fine if a single thread is doing it, but if multiple threads are
trying to read and change values at the same time, then synchronization and locks
are needed.

Actors differ from objects in that they cannot be directly read, changed, and invoked.
Instead, Actors can only communicate with the world outside of them through
message passing. Message passing simply means that an actor can be sent a message
(object in our case) and can, itself, send messages or reply with a message. While you
may draw parallels to passing a parameter to a method, and receiving a return value,
message passing is fundamentally different because it happens asynchronously.
An actor begins processing a message, and replies to the message, on its own terms
when it is ready.

Actor
Mailbox

Message

The actor processes messages one at a time, synchronously. The mailbox is
essentially a queue of work outstanding for the worker to process. When an actor
processes a message, the actor can respond by changing its internal state, creating
more actors, or sending more messages to other actors.

The term Actor System is often used in implementations to describe a collection
of actors and everything related to them including addresses, mailboxes, and
configuration.

To reiterate these key concepts:

• Actor: A worker concurrency primitive, which synchronously processes
messages. Actors can hold state, which can change.

• Message: A piece of data used to communicate with processes
(for example, Actors).

• Message-passing: A software development paradigm where messages are
passed to invoke behavior instead of directly invoking the behavior.

• Mailing address: Where messages are sent for an actor to process when the
actor is free.

Chapter 1

[5]

• Mailbox: The place messages are stored until an actor is able to process
the message. This can be viewed as a queue of messages.

• Actor system: A collection of actors, their addresses, mailboxes,
and configuration, etc.

It might not be obvious yet, but the Actor Model is much easier to reason about
than imperative object oriented concurrent applications. Taking a real world example
and modeling it in an actor system will help to demonstrate this benefit. Consider a
sushi restaurant, We have three actors in this example: a customer, a waiter, and the
sushi chef.

Our example starts with the customer telling our waiter their order. The waiter writes
it down this onto a piece of paper and places this message in the chef's mailbox (sticks
it in the kitchen window). When the chef is free, the chef will pick up the message
(order) and start preparing the sushi. The chef will continue to process the message
until it's done. When the sushi is prepared, the chef will put this message (plate) in the
kitchen window (waiter's mailbox) for the waiter to pick up. The chef can go work on
other orders now.

When the waiter has a free minute, the waiter can pick up the food message from the
window and deliver it to the customer's mailbox (for example, the table). When the
customer is ready, they will process the message by eating the food.

Kitchen
Window

Customer
Table

Order

Food!

Chef

Ticket
Window

Wait Staff

Starting Life as an Actor

[6]

It's easy to reason about the restaurant using the actor model. If you take a moment
to imagine more customers coming into the restaurant, you can imagine the waiter
taking orders one at a time and handing them off to the chef, the chef processing
them, and the waiter delivering food, all concurrently. This is one of the great
benefits of the actor model; it's very easy to reason about concurrency when
everyone has their own tasks. Modeling real applications with the actor model is not
much different than what we have done in this example.

The next benefit to the actor model is elimination of shared state. Because actors
process one message at a time, state can be stored inside an actor safely. If you have
not worked on concurrent systems this may be harder to see immediately but we
can demonstrate it quite easily. If we try to do two operations that read, modify,
and write a value at the same time, then one of the operations will be lost unless we
carefully employ synchronization and locking. It's a very easy mistake to make.

Let's take a look at a non-atomic increment operation called from two threads
at the same time, to see what happens when state is shared across threads. We'll
have multiple threads read a value from memory, and then write an incremented
value back to memory. This is a race condition and can be partly solved by ensuring
mutually exclusive access to the value in memory. Let's actually demonstrate this
with a Scala example:

If we try to concurrently increment an integer 100000 times with multiple threads,
there is a good chance that we will lose some writes.

import concurrent.Future
import concurrent.ExecutionContext.Implicits.global
var i, j = 0
(1 to 100000).foreach(_ => Future{i = i + 1})
(1 to 100000).foreach(_ => j = j + 1)
Thread.sleep(1000)
println(s"${i} ${j}")

Both i and j are incremented 100000 times using this very simple function—x = x
+ 1. i is incremented from multiple threads concurrently while j is incremented by
only one thread. We wait for a second before printing to ensure all of the updates are
done. If you think the output is 100000 100000 you are very wrong.

Chapter 1

[7]

Shared state is not safe. Values are being read by two threads, and then saved
back incremented. Because the same value is read by multiple threads, increment
operations are lost along the way. This is a race-condition and is one of the
fundamental problems with shared-state concurrency models.

We can demonstrate what may be happening with the race condition more clearly
by reasoning about the reads and write operations:

[...]
Thread 2 reads value in memory - value read as 9
Thread 2 writes value in memory - value set to 10 (9 + 1)
Thread 1 reads value in memory - value read as 10
Thread 2 reads value in memory - value read as 10
Thread 1 writes value in memory - value set to 11 (10 + 1) !! LOST
INCREMENT !!
Thread 2 writes value in memory - value set to 11 (10 + 1)
Thread 1 reads value in memory - value read as 11
[...]

For shared state in memory to work correctly, we have to apply locks and
synchronization to stop threads from reading and writing from a value at the same
time. This introduces complexity and it's hard to reason about it and to ensure it is
done right.

The biggest threat is that often your code will appear correct in testing but it will fail
intermittently once you have a bunch of concurrent users working on it. The bugs
are easily missed because testing often excludes situations with lots of traffic. Dion
Almaer once blogged that most Java applications are so rife with concurrency bugs
that they only work by accident. Actors help safeguard against these problems by
reducing shared state. If you move state inside an actor, access to that state can be
limited only to the actor (effectively only one thread can access that state). If you
treat all messages as immutable, then you can effectively eliminate shared state in
your actor system and build safer applications.

The concepts in this section represent the core of the actor model. Chapter 2, Actors
and Concurrency and Chapter 3, Getting the Message Across, will cover concurrency,
actors, and message passing in greater detail.

www.allitebooks.com

http://www.allitebooks.org

Starting Life as an Actor

[8]

The Evolution of supervision and fault tolerance
in Erlang
The actor model evolved over time since its introduction in the aforementioned paper.
It was a noted influencer in programming language designs (Scheme for example).

There was a note-worthy appearance of the actor model when Ericsson produced an
implementation in the 80s in the Erlang programming language for use in embedded
TELECOM applications. The concept of fault tolerance through supervision was
introduced here. Ericsson, using Erlang and the actor model, produced an often cited
appliance, the AXD301. The AXD301 managed to achieve a remarkable nine nine's
of availability (99.9999999% uptime). That's about 3.1 seconds of downtime in 100
years. The team working on the AXD claimed to have done this through elimination
of shared state (as we have covered) and by introducing a fault-tolerance mechanism
in Erlang: Supervision.

Fault-tolerance is gained in the actor model through supervision. Supervision
is more or less moving the responsibility of responding to failure outside of the
thing that can fail. Practically speaking, this means that an actor can have other
child actors that it is responsible for supervising; it monitors the child actor for
failures and can take actions regarding the child actor's lifecycle. When an error
is encountered in an actor that is running, the default supervision behavior is to
restart (effectively recreate) the actor that encountered the failure. This response
to failure—the recreating the component that fails—assumes that if an unexpected
error is encountered that it could be a result of bad state, and so throwing away and
re-creating the failing piece of the application can restore it to working order. It is
possible to write custom responses as supervision strategies so almost any action can
be taken to restore working order to the application.

Child Parent

"Okay Stop.

I'll make a new you."

"I FAILED!"

Fault Tolerance in relation to distributed systems will be addressed as a general
cross-cutting concern throughout the book with an emphasis on fault tolerance in
Akka and distributed systems in Chapter 4, Actor Lifecycle – Handling State and Failure.

Chapter 1

[9]

The Evolution of distribution and location
transparency
Business today demands that the capable engineers be able to design systems that
can serve traffic to thousands of users concurrently and a single machine is not
enough to do that. Further, multi-core processors are becoming more prevalent so
distributing across those cores is becoming important to ensure our software can take
advantage of the hardware that it runs on.

Akka takes the actor model and continues to evolve it by introducing an important
capability for today's engineers: distribution across the network. Akka presents
itself as a toolkit for fault-tolerant distribution. That is, Akka is a tool kit for
working across the physical boundaries of servers to scale almost indefinitely while
maintaining high availability. In recent releases, many of the features added to
Akka are related to solving problems related to networked system. Akka clusters
was introduced recently which allows an actor system to span multiple machines
transparently, and Akka IO and Akka HTTP are now in the core libraries to help us
interact with other systems more easily. One of Akka's key contributions to the actor
model is the concept of location transparency—that is, an actor's mailing address
can actually be a remote location but the location is more or less transparent to the
developer so the code produced is more or less identical.

Akka extends on what Erlang did with the actor model and breaks down the
physical barriers of the actor system. Akka adds remoting and location transparency,
that is, the mailbox of an actor could suddenly be on a remote machine and Akka
would abstract away the transmission of the message over the network.

More recently, Akka introduced Cluster. Akka Cluster uses modern approaches
similar to what you might see in distributed systems influenced by the Amazon
Dynamo paper such as Dynamo, Cassandra, and Riak. With Cluster, an actor
system can exist across multiple machines and nodes will gossip and communicate
about state to other members to allow an elastic Akka cluster with no single point
of failure. The mechanism is similar to Dynamo style databases such as Riak and
Cassandra. This is an incredible feature that makes creating elastic, fault-tolerant
systems quite simple.

Typesafe , the company that provides technologies like Scala and Akka, are
continuing to push forward distributed computing with a plethora of networking
tools such as Akka IO and Akka HTTP. Further, Typesafe have been involved in
the Reactive Streams proposal and Akka has one of the first implementations for
producing non-blocking back-pressure for asynchronous processing.

Starting Life as an Actor

[10]

We will cover many of these items in detail throughout the course of this book.
Chapter 4, Actor Lifecycle – Handling State and Failure and Chapter 5, Scaling Up will
cover remoting in greater detail. Cluster will be covered in Chapter 6, Successfully
Scaling Out – Clustering. Reactive Streams will be covered in Chapter 7, Handling
Mailbox Problems.

What we will build
We will produce two primary services throughout the book and recommend that
you follow along. There is a homework section at the end of every chapter that will
give you exercises to help put the material to use— complete the activities before
you head on to the next chapter. Post them up to GitHub if you want to share your
progress or have a good open-source idea.

We can define two main pieces of software we will focus on developing in the book.
One example will be used to demonstrate how to handle state and distribution and
the other will be used to demonstrate how to get work done.

Example 1 – handling distributed state
We're going to look at how we would build a scalable distributed in memory database
that we will store data in from the other example. To be clear, we will build a highly
available key value store similar to Redis or memcached. The database that you build
will handle all of the concurrency, clustering, and distribution concerns needed for this
to really work. Many of the skills you build will be in learning how to separate and
distribute the data and load for our database in a cluster so we can take advantage of
the hardware, and scale out to utilize multiple machines, you'll get a real taste of the
design challenges and common solutions in real world situations. We're also going
to look at how to build a client library to interact with our Akka-based database so
anyone on the JVM can use it. It is highly recommended that you build a database like
this for yourself, put it on GitHub, and show it off on your resume.

If it sounds like a lot of work—good news, this will all actually be fairly simple to do
using the Akka toolkit. We will take you from zero to hero in no time.

Example 2 – getting lots of work done
For an example of doing lots of work at scale in this book, we will produce an article
reading an API that will take a blog or news article, rip out the main text body, and
store it in our database for later consumption.

Chapter 1

[11]

For a use case, imagine a mobile device will have a reader on it requesting articles
from popular RSS feeds from our service and presenting the main body text in a
nice reader experience that can reflow the text to fit the display. Our service will
do the extraction of that body text from major RSS feeds so the user has a nice fast
experience on the device and never has to wait. If you want to see a real example
of this on a device, check out Flipboard for iOS: it is a great example of what a
consumer of our service might look like.

HTML Article

Parse

Content

Now that we've covered the content that is in this book, let's get started by setting up
your environment, and building an actor!

Setting up your environment
Before we really dig into Akka, we're going to cover setting up your environment
and scaffolding a project. You can refer back to this section in later chapters of the
book as we will create a few projects along the way.

Choosing a language
The Scala and Java APIs are more or less 1 to 1 for Scala and Java so use whichever
language you are comfortable with. If you know both languages, Scala certainly has
a more idiomatic API but both are very serviceable choices. An Actor built in Java is
accessible from Scala through the Scala actor API and visa versa so there is no need
to decide which to build on immediately; do whatever will get you to where you are
going faster. Right now your focus is on learning Akka, not a language. You'll be able
to pick up the other API later without much effort once you know Akka.

Starting Life as an Actor

[12]

Installing Java – Oracle JDK8
This book will forego all older versions of Java and focus only on Java8. If you are
a Java developer but not familiar with Java8 features, you should take some time
to familiarize yourself with lambdas and the stream API as covered in this tutorial:
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/
Lambda-QuickStart/index.html.

You'll see lambdas are used heavily in this book. you will benefit from taking the
time to get acquainted.

Installing on Windows
Download and install the Windows JDK8 installer (dmg) from Oracle:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Follow the instructions.

Installing on OS X
Download and install the OS X JDK8 installer (dmg) from Oracle:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Follow the instructions.

Installing on Linux or Unix (Universal instructions)
There are a couple approaches that can be used for Nix installations. You can use the
Universal installer, or try to use a package manager like Yum for Red Hat Enterprise
Linux (RHEL) based distributions or Apt-Get for Debian-based distribution.
Instructions for the package manager can vary from distribution to distribution but
instructions can be found via Google if desired.

The Universal installer will work on all systems so will be covered here. This is the
most basic installation you can get away with. It will install the JDK and enable
it for your current user but will not change your system. If you want to change
your system's JDK/JRE you can follow the install instructions for your particular
distribution. This would be suitable for servers or desktop environments. If you're
working on a desktop environment, you can see if there are instructions for your
particular distribution if you want it available for other users as the default JDK/JRE.

Download the Linux tar.gz JDK distribution from Oracle: http://www.oracle.
com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[13]

It will likely be in a file named something like jdk-8u31-linux-x64.tar.gz
Decompress the tar.gz file in an appropriate location such as /opt:
sudo cp jdk-8u31-linux-x64.tar.gz /opt cd /opt sudo tar -xvf jdk-
8u31-linux-x64.tar.gz

You'll want to set your user's Java home to the Java8 folder:
echo 'export JAVA_HOME=/opt/jdk1.8.031' >> ~/.profile

Also ensure that Java bin is on the path:
echo 'export PATH=$PATH:/opt/jdk1.8.031' >> ~/.profile

Now your IDE and Sbt/Activator can use the JDK to build and run apps we build.

Ensuring Java is configured in your
environment
Regardless of the OS you're on, you'll want to ensure that JAVA_HOME is set and also
that the Java binary is on the path. You shouldn't need to do this unless you use the
universal installer but you should validate in a new terminal that JAVA_HOME is set in
the environment, and that the JDK bin folder is on the path.

Installing Scala
If you're using Scala, then you'll want to have Scala and the REPL installed on your
system. At the time of writing, the current Scala version (2.11) compiles to Java 1.6
byte-code so we can assume you do not need to install JDK8. There is talk of future
versions of Scala requiring JDK8 so this may change.

Scala does not need to be installed on its own. Typesafe Activator contains Scala
and all of the tools we will need to work with it; we will install next.

Installing Typesafe Activator
Typesafe Activator installation is a bundle that contains Scala, Akka, Play, Simple
Build Tool (SBT) and some extra features such as project scaffolding and templates.

Windows
Download Typesafe Activator from Typesafe—http://www.typesafe.com/
get-started.

Run the installer and follow the onscreen instructions.

http://www.typesafe.com/ get-started
http://www.typesafe.com/ get-started

Starting Life as an Actor

[14]

Linux/Unix/OS X
Download Typesafe Activator from Typesafe:

• http://www.typesafe.com/activator/download

• http://www.typesafe.com/get-started

Unzip the file in an appropriate location such as /opt cd /opt sudo unzip
typesafe-activator-1.2.12.zip.

Make the Activator executable: sudo chmod 755 /opt/activator-1.2.12/
activator

Add the Activator to your path: echo 'export PATH=$PATH:/opt/
activator-1.2.12'

Log out and back in. Ensure you can run the following on the command line:

activator --version

That should display text similar to this: sbt launcher version 0.13.5

OS X
Activator can either be installed with Linux or using brew. This section will cover the
brew installation:

Open a terminal.

Place the following in your terminal (copied from http://brew.sh). This will install
the Homebrew OS X Package manager.

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

Finally, place the following in your terminal and press Enter:

brew install typesafe-activator

Check that the Activator is available on the command line:

activator --version

http://www.typesafe.com/activator/download
http://www.typesafe.com/get-started
http://brew.sh

Chapter 1

[15]

Creating a new project
We will use the Activator to quickly scaffold projects in this book. We can generate
a project from any number of templates. We will only use the basic Java and Scala
templates in this book. Feel free to explore other options. Typesafe has many
user-submitted Activator templates that will demonstrate various technologies
and approaches used together.

To create a new Activator template, in a terminal/command prompt, type:

activator new

You will see the following.

Choose from these featured templates or enter a template name:

• minimal-akka-java-seed
• minimal-akka-scala-seed
• minimal-java
• minimal-scala
• play-java
• play-scala

You can hit Tab to view a list of all templates.

Select the minimal-scala or minimal-java project depending on your language
preference. You will be prompted to name your application next, call it akkademy-db.

Enter a name for your application (just press Enter for minimal-scala) > akkademy-db.

To confirm that the project and your environment are set up correctly, change into
the folder and run activator test.

cd akkademy-db activator test

You will see output indicating that the project compiled and the test ran. If there
are any problems, you may have to head to stack-overflow and sort out your
environment before proceeding.

Starting Life as an Actor

[16]

You will see the following success message if all went well:

[info] Passed: Total 1, Failed 0, Errors 0, Passed 1 [success] Total
time: 3 s, completed 22-Jan-2015 9:44:21 PM

Installing an IDE
We have our environment set up and running now and we can actually start to work
on the code. If you want to use a simple text editor, feel free to skip this section.
Emacs or Sublime are good choices for text editors and have syntax highlighting
and integrations that can provide autocomplete. If you want to get an IDE up and
running, we'll cover setting up Eclipse, and IntelliJ here.

Install IntelliJ CE
If you choose to use an IDE, IntelliJ is the recommended IDE. If you're using another
IDE, I still strongly recommend you attempt to use IntelliJ. While writing this book,
I've worked with many Java developers who transitioned to working with SBT
projects and almost all of them switched to IntelliJ and never looked back.

IntelliJ now has built-in SBT support, which makes it a fast IDE to use for your Akka
projects; setting up and configuring of the IDE is virtually non-existent—it will just
work with the technology we will use in this book.

Steps for getting the project up and running:

1. Download and install IntelliJ CE (free).
2. After installing choose to open a project. Select the akkademy-db folder.
3. Select Java 1.8 if you're using Java (or if Scala 2.12 requires it). You can use

Java 6 or 7 if using Scala 2.11. Turn on the Auto Import feature. Hit okay.

Eclipse
If using Eclipse, it is recommended that you download Scala-Ide, which contains all
of the required plugins to work with our sbt/Akka projects in either Java or Scala.
Even if you're only using Java, you may find you want to inspect some Scala along
the way.

Chapter 1

[17]

Installing Eclipse (Scala-Ide)
Download Scala-Ide from http://scala-ide.org which is a packaged version of
Eclipse with sbt and Scala plugins integrated.

Unzip the file that is downloaded. You can move the unzipped folder to another
location if desired such as /opt (linux) or ~/Applications (OSX).

Run the Eclipse binary. Choose a workspace folder or select the default.

Check that the Java JDK is correctly selected in Preferences: Java | Compiler.

Preparing the project for Eclipse
In order to open the project in eclipse, we must first generate an Eclipse project.

First we must add the eclipse sbt plugin to our environment. Open your global sbt
plugins file (create it if it's not there), is located in ~/.sbt/{version}/plugins/
plugins.sbt where version is the sbt version. It is 0.13 at the time of writing, so
~/.sbt/0.13/plugins/plugins.sbt

Include the following in the file, ensuring there is a blank line between each line in
the file if there are multiple lines.

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %
"3.0.0")

You may want to ensure this is current by checking the sbteclipse GitHub project:
https://github.com/typesafehub/sbteclipse/

Once you have the plugin installed, you need to generate the eclipse project:
https://github.com/typesafehub/sbteclipse/

In the terminal, navigate to the project we created earlier (akkademy-db). In the root
of the project, run Activator eclipsify to generate the eclipse project structure.

You will see the following success message if all went well:

[info] Successfully created Eclipse project files for project(s): [info]
akkademy-db

http://scala-ide.org
https://github.com/typesafehub/sbteclipse/
https://github.com/typesafehub/sbteclipse/

Starting Life as an Actor

[18]

Importing the project into Eclipse
In Eclipse, select File | Import.

Choose General | Existing Projects into Workspace.

Chapter 1

[19]

Select the folder and click Next.

Note if you change build.sbt you will need to re-generate the
project and may need to re-import it.

Creating your first Akka application –
setting up the SBT project
Now that we have covered setting up your environment and how to create a project,
we can proceed with creating some actor code in Akka, and then look at how to
validate that code. We will be using simple build tool(SBT), which is the preferred
build tool for Scala projects and is also the build tool that Play Framework and
Activator use under the hood. It's not complex and we will use it only for managing
dependencies and building a testing and running applications, so it should not be an
obstacle to learning Akka.

Starting Life as an Actor

[20]

Adding Akka to build.sbt
We will now open the application (either Java or Scala) in our favorite IDE. The
scaffolding Activator created is not for an Akka project, so we will need to add the
Akka dependencies first. We will add both the Akka core Akka module (akka-actor)
and the Akka test-kit, which contains tools to more easily allow us to test the actors.

In the build.sbt file, you will see something roughly like this for a Scala project. Note
the dependencies are actually Maven dependencies. Any Maven dependencies can
easily be added, as we'll cover shortly. The Java and Scala projects will be more or less
identical; however the Java project will have a Junit dependency instead of Scalatest:

name := """akkademy-db-java"""
version := "1.0"
scalaVersion := "2.11.1"
libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % "2.3.6",
 "com.typesafe.akka" %% "akka-testkit" % "2.3.6" % "test",
 "junit" % "junit" % "4.11" % "test",
 "com.novocode" % "junit-interface" % "0.10" % "test"
)

To Include Akka, we need to add a new dependency.

Your dependencies should look something like this for Java:

libraryDependencies ++= Seq(
 "com.typesafe.akka" % "akka-actor_2.11" % "2.3.6",
 "junit" % "junit" % "4.11" % "test",
 "com.novocode" % "junit-interface" % "0.10" % "test"
)

And something like this for Scala:

name := """akkademy-db-scala"""
version := "1.0"
scalaVersion := "2.11.1"
libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % "2.3.3",
 "com.typesafe.akka" %% "akka-testkit" % "2.3.6" % "test",
 "org.scalatest" %% "scalatest" % "2.1.6" % "test"
)

Chapter 1

[21]

A note on getting the right Scala version with %%
As Scala does not have binary compatibility across major versions, libraries will often
be built and published across several versions of Scala. To have SBT try to resolve the
dependency built for the correct Scala version for your project, you can change the
dependency declared in the build.sbt file to use two % symbols after the group ID
instead of specifying the Scala version in the artifact id.

For example, in a Scala 2.11 project, these two dependencies are equivalents as
shown in the following code:

 "com.typesafe.akka" % "akka-actor_2.11" % "2.3.3"
 "com.typesafe.akka" %% "akka-actor" % "2.3.3"

Adding other Dependencies from Maven Central
Any Maven dependencies can be added here—for example from http://www.
mvnrepository.com. You can see on this link that for any artifact there is an sbt tab
that will give you the line to add for the dependency.

Creating your first Actor
In this section, we will create an actor that receives a message and updates its
internal state by storing the values from the message into a map. This is the humble
beginnings of our distributed database.

Making the Message first
We're going to begin our in-memory database with a SetRequest message that
will store a key (String) and a value (any Object) in memory. You can think of it as
a combination of both an insert and an update in one, or like the set operation on a
Map.

Remember, our actor has to get the message from his mailbox and check what the
instruction is in that message. We use the class/type of the message to determine
what the instruction is. The contents of that message type describe the exact details of
how to fulfill the contract of the API; in this case we will describe the key as a String
and the value as an Object inside the message so that we know what to store.

Messages should always be immutable in order to avoid strange and unexpected
behavior, primarily by ensuring you and your team don't do unsafe things across
execution contexts/threads. Remember also that these messages may not be simply
destined for a local actor but for so another machine. If possible, mark everything
val (Scala) or final (Java) and use immutable collections and types such as those
found in Google Guava (Java) or the Scala Standard Library.

http://www.mvnrepository.com
http://www.mvnrepository.com

Starting Life as an Actor

[22]

Java
Here is our Set message in Java as an immutable object. This is a fairly standard
approach to immutable objects in Java. It will be a familiar sight to any skilled Java
developer; you should generally prefer immutability in all of your code.

package com.akkademy.messages;
public class SetRequest {
 private final String key;
 private final Object value;
 public Set(String key, Object value) {
 this.key = key;
 this.value = value;
 }
 public String getKey() {
 return key;
 } public Object getValue() {
 return value;
 }
}

Scala
In Scala we have a much more succinct way of defining immutable messages—the
case class. The case class lets us create an immutable message; values can only be set
once in the constructor and then are read from the fields:

package com.akkademy.messages
 case class SetRequest(key: String, value: Object)

That's it for the messages.

Defining Actor response to the Message
Now that we have the message created, we can create the actor and describe the
behavior that the actor will take in response to our message. In our very early
example here, we are going to do two things:

1. Log the message.
2. Store the contents of any Set message for later retrieval.

We will build on the example in future chapters to let us retrieve stored messages
so that this actor can be used as a thread-safe caching abstraction (and eventually
a full-on distributed key-value store).

We'll have a look at the Java8 actor first.

Chapter 1

[23]

Java – AkkademyDb.java
The following code denotes Actor response to the message in Java:

package com.akkademy;
import akka.actor.AbstractActor;
import akka.event.Logging;
import akka.event.LoggingAdapter;
import akka.japi.pf.ReceiveBuilder;
import com.akkademy.message.SetRequest;
import java.util.HashMap;
import java.util.Map;
public class AkkademyDb extends AbstractActor {
 protected final LoggingAdapter log = Logging.getLogger(context().
system(), this);
 protected final Map<String, Object> map = new HashMap<>();

 private AkkademyDb(){
 receive(ReceiveBuilder.
 match(SetRequest.class, message -> {
 log.info("Received set request – key: {}
value: {}", message.getKey(), message.getValue());
 map.put(message.getKey(), message.
getValue());
 }).
 matchAny(o -> log.info("received unknown
message {}", o)).build()
);
 }
}

The actor is a Java class that extends AbstractActor (a Java8 Akka Actor API).
We create the logger and the map in the class as protected members so we can
access them in test cases later in the chapter.

In the constructor we call receive. The receive method takes a ReceiveBuilder
which has several methods that we call chained together to produce the final
ReceiveBuilder. With this, we describe how the actor should behave in response to
different message types. We define two behaviors here and we will look at them one
at a time.

First, we define the behavior to respond to any SetRequest messages with:

match(SetRequest.class, message -> {
 log.info("Received Set request: {}",
message);
 map.put(message.getKey(), message.
getValue());
 }).

Starting Life as an Actor

[24]

The ReceiveBuilder match method in the Java8 API is somewhat similar to a case
statement except that we can match on class types. More formally, this is pattern
matching.

The match method call, then, says: if the message is of type SetRequest.class, take
that message, log it, and put a new record in the map using the key and value of that
Set message.

Second, we define a catch-all to simply log any unknown message.

matchAny(o -> log.info("received unknown message"))

Scala – AkkademyDb.scala
Scala is a natural fit as the language has pattern matching as a first-class language
construct. We'll have a look at the Scala equivalent code now:

package com.akkademy
import akka.actor.Actor
import akka.event.Logging
import scala.collection.mutable.HashMap
import com.akkademy.messages.SetRequest
class AkkademyDb extends Actor {
 val map = new HashMap[String, Object]
 val log = Logging(context.system, this)
 override def receive = {
 case SetRequest(key, value) => {
 log.info("received SetRequest - key: {} value: {}", key, value)
 map.put(key, value)
 }
 case o => log.info("received unknown message: {}", o);
 }
}

In the Scala API, we mix in the Actor trait, define the map and logger as we did in
Java, and then implement the receive method. The receive method on the Actor
super-type returns the Receive which, in the Akka source, is defined as a partial
function as follows:

type Receive = scala.PartialFunction[scala.Any, scala.Unit]

We define the behavior for the response to the SetRequest message using pattern
matching to produce the partial function. We can extract the key and the value
variables for clearer code using pattern matching semantics:

case SetRequest(key, value)

Chapter 1

[25]

The behavior is to simply log the request, and then to set the key/value in the map.

 case SetRequest(key, value) => {
 log.info("received SetRequest - key: {} value: {}", key, value)
 map.put(key, value)
 }

Finally, we add a catch-all case to simply log unknown messages:

 case o => log.info("received unknown message: {}", o);

That's it for the actor. Now we have to validate we did everything correctly.

Validating the code with unit tests
While books covering frameworks may print to the console or create web pages that
are suitable evidence that our code is working, we're going to be using unit tests to
validate code and to demonstrate its use. Library code and services often don't have
an API that is easy to interact with or to otherwise to observe, testing is generally
how these components are validated in almost every project. This is an important
skill for any serious developer to have under their belt.

Akka Testkit
Akka provides a test kit that provides almost anything you would ever need to test
your actor code. We included the test kit dependencies earlier when we set up our
project. For reference, the SBT dependency to place in build.sbt is as follows:

 "com.typesafe.akka" %% "akka-testkit" % "2.3.6" % "test"

We're going to use the TestActorRef generic here from the testkit instead of a
normal ActorRef (which we will look at in the next chapter). The TestActorRef
does two things: it makes the actor's API synchronous so we don't need to think
about concurrency in our tests, and it gives us access to the underlying Actor object.

To be clear, Akka hides the actual Actor (AkkademyDb) and instead gives a reference
to the actor that you send messages to. This encapsulates the actor to enforce
message passing as nobody can access the actual object instance.

Next we will look at the source code, and then explain it line by line.

Starting Life as an Actor

[26]

Java
This is the source code for Akka toolkit:

package com.akkademy;
import static org.junit.Assert.assertEquals;
import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.testkit.TestActorRef;
import com.akkademy.messages.SetRequest;
import org.junit.Test;
public class AkkademyDbTest {
 ActorSystem system = ActorSystem.create();

 @Test
 public void itShouldPlaceKeyValueFromSetMessageIntoMap() {
 TestActorRef<AkkademyDb> actorRef = TestActorRef.
create(system, Props.create(AkkademyDb.class));
 actorRef.tell(new SetRequest("key", "value"),ActorRef.
noSender());
 AkkademyDb akkademyDb = actorRef.underlyingActor();
 assertEquals(akkademyDb.map.get("key"), "value");
 }
}

Scala
The following source code represents interaction with the actor:

package com.akkademy
import akka.util.Timeout
import org.scalatest.{BeforeAndAfterEach, FunSpecLike, Matchers}
import akka.actor.ActorSystem
import com.akkademy.messages.SetRequest
import akka.testkit.TestActorRef
import scala.concurrent.duration.
class AkkademyDbSpec extends FunSpecLike with Matchers with
BeforeAndAfterEach {
 implicit val system = ActorSystem()
 describe("akkademyDb") {
 describe("given SetRequest"){
 it("should place key/value into map"){
 val actorRef = TestActorRef(new AkkademyDb)
 actorRef ! SetRequest("key", "value")
 val akkademyDb = actorRef.underlyingActor
 akkademyDb.map.get("key") should equal(Some("value"))
 }

Chapter 1

[27]

 }
 }
}

This is the first time we are looking at interacting with an actor so there is some
new code and behavior, some of it is test-specific and some related to interacting
with the actor.

We've described an Actor System as a place where actors and their addresses reside,
the first thing we need to do before creating the actor is to get a reference to an actor
system. We create one as a field in the test:

//Java
ActorSystem system = ActorSystem.create();
//Scala
implicit val system = ActorSystem()

After creating the actor system, we can now create our actor in the actor system.
As mentioned, we're going to use Akka Testkit to create a TestActorRef which
has a synchronous API, and lets us get at the underlying actor. We create the actor
in our actor system here:

//Java
TestActorRef<AkkademyDb> actorRef = TestActorRef.create(system, Props.
create(AkkademyDb.class));
//Scala
val actorRef = TestActorRef(new AkkademyDb)

We call the Akka Testkit TestActorRef create method, passing in the actor system
we created (it is implicitly passed in Scala) and a reference to the class. We will
look at actor creation in further chapters. Actor instances are hidden away so the
act of creating an actor in our actor system returns an ActorRef (in this case, a
TestActorRef) that we can send messages to. The system and class reference
is enough for Akka to create this simple actor in our actor system so we have
successfully created our first actor.

We communicate with an actor via message-passing. We place a message into an
actor's mailbox with 'tell' or '!' in Scala, which is still read as 'tell'. We define that
there is nobody to respond to for this message as a parameter of the tell method in
Java. In Scala, outside of an actor, this is implicit.

//Java
actorRef.tell(new SetRequest("key", "value"), ActorRef.noSender());
//Scala
actorRef ! SetRequest("key", "value")

www.allitebooks.com

http://www.allitebooks.org

Starting Life as an Actor

[28]

Because we are using TestActorRef, the call to tell will not continue until the
request is processed. This is fine for a look at our first actor but it's important to note
that this example does not expose the asynchronous nature of the Actor's API. This is
not the usual behavior; tell is an asynchronous operation that returns immediately in
normal usage.

Finally, we need to ensure that the behavior is correct by asserting that the actor
placed the value into its map. To do this, we get the reference to the underlying Actor
instance, and inspect the map by calling get("key") and ensuring the value is there.

//Java
AkkademyDb akkademyDb = actorRef.underlyingActor();
assertEquals(akkademyDb.map.get("key"), "value");
//Scala
val akkademyDb = actorRef.underlyingActor
akkademyDb.map.get("key") should equal(Some("value"))

That's it for the creation of our first simple test case. This basic pattern can be built
on for unit testing Actors synchronously. As we go through the book, we will look at
more extensive unit-testing examples as well as asynchronous integration testing of
our actors.

Running the test
We're almost there! Now that we've built our tests, we can go to the command line
and run 'activator' to start the activator cli. Next we can run 'clean' to tidy up any
garbage and then 'test' which will fire off the tests. To do this in one step, we can run
activator clean test.

You should see something like the following for the Java Junit test:

[INFO] [01/12/2015 23:09:24.893] [pool-7-thread-1] [akka://default/
user/$$a] Received Set request: Set{key='key', value=value}
[info] Passed: Total 1, Failed 0, Errors 0, Passed 1
[success] Total time: 7 s, completed 12-Jan-2015 11:09:25 PM

And if you're using Scala, then scala-test will give you a bit nicer output:

[info] AkkademyDbSpec:
[info] akkademyDb
[info] - should place key/value from Set message into map
[info] Run completed in 1 second, 990 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.

Chapter 1

[29]

The output will tell you some information about how many tests were run, how
many tests failed, and, if there are any errors, it will indicate where the failures
occurred so that you can investigate. Once you have a test in place on a behavior,
you can be confident that any changes or refactorings you apply did not break
the behavior.

Homework
To ensure you have a good grasp on the content, an assignment will be given at the
end of each chapter:

• Place the Akka documentation in your Bookmark bar. Also place Hacker
News there and read it every day.

• Come up with an idea for a service you want to build and provide on the
Internet. Preferably the service should involve processing some input and
storing it or returning it.

• Create a repository in GitHub for your project. Check your project into GitHub.
If you've never worked with Git or GitHub, now is a good time as the source
from this book is available there! You can use it to post and display the work
you do in this book. Tag your README with LEARNINGAKKAJG so others can
search for your project on GitHub to see what you've done.

• Create an actor. Have the actor store the last string that it was sent.
• Write a unit test to confirm the actor will receive a message correctly.
• Write a unit test to confirm the actor behaves correctly if it is sent two

messages.
• Push your project to GitHub.
• Check out the book source code from http://www.github.com/

jasongoodwin/learning-akka

Summary
We have officially started our journey into building a scalable and distributed
applications using Akka. In this chapter, we looked at a brief history of the actor model
to understand what Akka is and where it came from. We also learned how to set-up
an sbt project for our Akka code. We set up our environment to work with sbt projects
and created an actor. Then, we tested the behavior of our actor with a unit test

In the following few chapters, our example application will really start to take shape
as we expand it with a client and distribute it across cores and processes.

http://www.github.com/jasongoodwin/learning-akka
http://www.github.com/jasongoodwin/learning-akka

[31]

Actors and Concurrency
This chapter will focus on preparing you for the rest of this book by ensuring that
you have the necessary background in working with concurrent and asynchronous
code. This chapter is incredibly important to get down before you proceed. If you are
very comfortable working with Scala futures, Play promises, or Java8 completable
futures, you may skim through this chapter. If you have experience with Guava or
Spring Listenable Futures, you'll want to learn the differences in the APIs presented
here. If you have never worked with a monadic future, you'll want to take your
time here.

The chapter will cover the following topics:

• The anatomy of, creation of, and communication with an actor
• The tools and knowledge necessary to deal with asynchronous responses

from the Actor API
• Working with Futures—place-holders of results that will be available in the

future that can succeed or fail

Reactive system design
A book on Akka would not be complete without a description of the term "Reactive".
If you look at books being published or the names of new libraries and frameworks,
you may see the word "Reactive" in quite a few of the titles. Akka is also called a
Reactive platform or more specifically part of the Typesafe Reactive platform. In
this context, the term has become more popular, partially thanks to the Reactive
Manifesto, which is a document that attempts to distill the qualities required for a
web application to successfully grow while meeting the demands of users today.

Actors and Concurrency

[32]

At this point, the word is practically a piece of developer pop-culture. Of course,
then, there are a few out there that may grumble when they hear the word.

This section will briefly introduce the four tenets of the Reactive Manifesto. These
are the qualities that we will strive for in our applications so that they will scale and
be resilient to failure. We will refer back to these qualities throughout this book. The
Reactive Manifesto can be found at http://www.reactivemanifesto.org/.

The 4 reactive tenets
The reactive manifesto includes four tenets or design goals—responsiveness,
elasticity, resiliency, and event-driven design. The four tenets are outlined in
the following with examples of their application.

Responsive
Our applications should respond to requests as fast as possible.

If we have a choice between getting data in a serial manner or in parallel, we should
always choose to get the data in parallel in order to get a response back to a user
faster. Requests for unrelated data can be made at the same time. When requesting
unrelated non-dependent pieces of data, we should evaluate if it's possible to make
those requests at the same time.

If there is a potential error situation, we should return a notification of the problem
to the user immediately rather than having them wait for the timeout.

Elastic
Our applications should be able to scale under varying workload (especially
achieved by adding more computing resources). In order to achieve elasticity,
our systems should aim to eliminate bottlenecks.

If we have our in-memory database running on a virtual machine, adding a second
machine node could split the queries across the two servers, doubling potential
throughput. Adding additional nodes should allow performance to scale in a
near-linear manner.

Adding a second in-memory database node could double memory capacity by
splitting the data and moving half of it to the new node. Adding nodes should
expand capacity in a near-linear manner.

http://www.reactivemanifesto.org/

Chapter 2

[33]

Resilient
Our applications should expect faults to occur and react to them gracefully. If a
component of the system fails, it should not cause a lack of availability for requests
that do not touch that component. Failure is inevitable—that impact should be
isolated to the component that fails. If possible, failure of a component should not
cause any impact in behavior by employing replication and redundancy in critical
components and data.

Event-driven/message-driven
Using messages instead of method invocation prescribes a way in which we can meet
the other three reactive tenets. Message-driven systems move the control over how,
when, and where requests are responded, which allows routing and load balancing
of the responding component.

An asynchronous message-driven system can more efficiently utilize a system's
resources as it only consumes resources like threads when they are actually needed.
Messages can be delivered to remote machines as well (location transparency).
As messages are queued and delivered outside an actor, it's possible to self-heal
a failing system via supervision.

Reactive Tenet Correlation
The following figure shows Reactive Tenet Correlation:

Responsive Resilient

Elastic

Message
Driven

Actors and Concurrency

[34]

Reactive tenets are not completely independent of one another. Often an approach
that is used to meet one of the reactive tenets will aid a system in meeting others. For
example, if we note that one of our services is behaving slowly, we may stop sending
requests to that service for a short period of time to let it recover while giving users
an error message immediately. This improves resiliency of our system by reducing
risk of a slow service crashing under load, and also improves the responsiveness of
our system by indicating to a user that there is an issue right away.

Anatomy of an Actor
Before we move into a more relevant example, we'll cover the most basic features
of an Actor to understand the basic structure and methods. To demonstrate the
simplest case possible, for this example we'll build a simple actor that receives
a String—"Ping"—and gives a response—"Pong".

Java Actor API
We'll look at the Java implementation first. The Java and Scala APIs are different
enough that they each need their own introduction.

public class JavaPongActor extends AbstractActor {
 public PartialFunction receive() {
 return ReceiveBuilder.
 matchEquals("Ping", s ->
 sender().tell("Pong", ActorRef.
noSender())).
 matchAny(x ->
 sender().tell(
new Status.Failure(new Exception("unknown message")), self()
)).
 build();
 }
}

The preceding code shows the Java actorAPI. We'll look at this example in detail.

• AbstractActor: First, we extend AbstractActor class This is a
Java8-specific API that is meant to take advantage of the Java8 lambda
features. There is another base Actor API that can be used for Java if you
look at the documentation—UntypedActor. The UntypedActor is an older
model for working, which we won't cover in this book. In that API, you get
an object and must use if statements to match on the object. We will focus
on the Java8 specific API as it is more expressive, presenting a way to
pattern-match using lambdas.

Chapter 2

[35]

• Receive: The AbstractActor class has a method that must be implemented
or invoked via the constructor, which is the receive method. It returns a
PartialFunction, which is from the Scala API. In Java, we don't have
any native way of building a Scala PartialFunction (a function that does
not match all potential inputs), so Akka gives us a Builder abstraction for
producing the PartialFunction called ReceiveBuilder and that we use to
produce the return value. Don't worry, you won't need to understand Scala
PartialFunctions to use Akka!

• ReceiveBuilder: We call ReceiveBuilder methods, stringing together
match cases as needed to describe the response to each type of message we
need to handle, and then call build() to produce the PartialFunction that
we need to return.

• Match: There are a few match functions in the receive builder that are worth
noting. We'll show examples of how to match on ping with each:

 ° match(class, function): This describes behavior to apply to any
unmatched class instance.
match(String.class, s -> {if(s.equals("Ping"))
respondToPing(s);})

 ° match(class, predicate, function): This describes behavior
to apply to a message if it is the type of the class and the predicate
function is true.
match(String.class, s -> s.equals("Ping"), s ->
respondToPing(s))

 ° matchEquals(object, function): This describes behavior to apply
if the call to equals is true for the object supplied.
matchEquals("Ping", s -> respondToPing(s))

 ° matchAny(function): This matches any unmatched messages.
It's generally a good practice to respond with a failure, or at least
log in to aid in troubleshooting during development.

The match function will pattern-match from top to bottom, so you can
describe specific and then general cases:

ReceiveBuilder
 .matchEquals("Ping", s -> System.out.println("It's Ping: " +
s))
 .match(String.class, s -> System.out.println("It's a string: "
+ s))
 .matchAny(x -> System.out.println("It's something else: " +
x))
 .build

Actors and Concurrency

[36]

• Reply to sender(): Calling the sender() method will allow us to
reply to the message. This could be an actor or this could potentially
respond to an ask from outside an actor system. The first case is pretty
straightforward—the message will go back into the sending actor's inbox.
The second case we'll look at in more detail later.

• Tell(): sender() function gives us an ActorRef. In the example, we call
tell(); providing the sender. tell() is the most basic one-way message
pattern. The first argument is the message we want to place in the sender's
mailbox. The second argument is the sender that actor will see.
Similar to what we did in Chapter 1, Starting Life as an Actor we describe
behavior for messages of the String class. We're using a different match
method here—we include a predicate for the second argument as we need
to check that the string equals Ping. We then describe the behavior—we
send a message back to the sender() with tell(). We send back the
String Pong. The tell method in Java requires the sender of the message
to be identified—ActorRef.noSender() is used to indicate there is no
reply addresses.

• Replies with akka.actor.Status.Failure: To report an error back to
the sender, we need to send them a message. If an exception is thrown in
the actor, it will trigger the supervisor to be notified (covered in Chapter 3,
Getting the Message Across), but, in any case, if we want to notify of a failure,
we need to send back a failure to the sender. If there is a placeholder 'future'
for a response, then this will cause the future to fail. We'll cover this shortly.

This covers the basics of the Java AbstractActor API. We'll look at the Scala
API next.

Scala Actor API
The following code shows a Scala actor:

//Scala
class ScalaPongActor extends Actor {
 override def receive: Receive = {
 case "Ping" => sender() ! "Pong"
 case _ => sender() ! Status.Failure(new Exception("unknown
message"))
 }
}

Chapter 2

[37]

We'll look at the actor in detail now:

• Actor: To define an actor, we extend the Actor base class. This is the basic
Scala actor API. It's simple and a natural fit for Scala's language features.

• Receive: Override the receive method in the Actor and return a
PartialFunction. Note that Receive is the return type on the receive
method—it's just a type definition for scala. PartialFunction[scala.
Any, scala.Unit]. If you're not too familiar with PartialFunctions in
the Scala API, not to worry—you just need to build some pattern matching
cases that return Unit and know that you're free to make your statements
non-exhaustive. If you want to see what's going on under the hood with the
receive method, you can play with scala.PartialFunction on the REPL:
scala> val pf: PartialFunction[Any, Unit] = {
 case _: String => println("Got a String")
 }
pf: PartialFunction[Any,Unit] = <function1>

scala> pf("hey")
Got a String

• Reply to sender: In the example actor code, we then access the sender
ActorRef via the sender() method. We can reply to the sender by sending
it a message. We send back a "Pong" in this case.

• tell method (!): We send the message to the sender with the tell method
that is invoked via the ! method. You'll note if you read the Java section that
the sender must be specified, but here we are omitting any reference to a
sender as it's implicit. The tell method ! has an implicit ActorRef parameter
in the method signature. It defaults to noSender if you're using tell from
somewhere outside an actor. The following is the method signature:

def !(message: Any)(implicit sender: ActorRef = Actor.noSender):
Unit

The Actor has an implicit sender value through self, which is used in the actor,
so tell will always provide self as the sender.

implicit final val self = context.self

Actors and Concurrency

[38]

The sender is implicit so we never have to worry about it, but it's helpful to
understand where the values are coming from while comparing the Java and
Scala APIs.

• Reply with akka.actor.Status.Failure: The last piece to note is the reply with
akka.actor. Status.Failure in the case of an unknown message. The actor
will never reply with a failure—even if the actor itself fails—so you will
always need to ensure you send back a failure if you want to notify anyone
who is asking that there was an issue. Sending back a failure will cause a
placeholder future to be marked as a failure.

We'll look at the specifics of getting a reply from an actor shortly—first we need to be
able to create an actor.

Creating an actor
Actors are not accessed like ordinary objects. You never get an instance of an actor.
You do not call methods on actors or directly change their state—you pass them
messages. You do not access members of the actor—you request information about
its state through message-passing. Using message-passing instead of method
invocation enforces encapsulation. Alan Kay, who originally described Object-
Oriented programming, actually included message-passing as one of the definitions
of object-oriented programming. I'm sure Alan Kay looks at what OO has turned
into and shakes his head some days.

I made up the term 'object-oriented', and I can tell you I didn't have C++ in mind
-- Alan Kay, OOPSLA '97

Using a message-based approach allows us to encapsulate the instance of an actor
quite completely. If we only communicate through messages, then there is never
any need to access the actor instance. We only need a mechanism to send the actor
messages and to get responses.

In Akka, this reference to an actor is called an ActorRef. The ActorRef is an un-typed
reference that encapsulates the actor behind a layer of abstraction and gives us the
mechanisms to interact with the actor.

We've covered the fact that the actor system is where actors exist. It may be obvious
that this is also where we create actors and obtain references to them. The actorOf
method will produce a new actor and return a reference to it:

//Java
ActorRef actor = actorSystem.actorOf(Props.create(JavaPongActor.
class));

Chapter 2

[39]

//Scala
val actor: ActorRef =
actorSystem.actorOf(Props(classOf[ScalaPongActor]))

Note here that we don't actually create the actor—we don't, for example,
call actorOf(new PongActor).

The actors are encapsulated—they should not be accessible. We never want to be
able to access the Actor's state from our code. The creation pattern used ensures this;
we'll now look at this.

Props
To ensure we encapsulate the actor instance and never gain access to an instance of
it, we pass in a Props instance with all of the constructor args. Props lets us pass in
the class, and a variable lengle list of arguments:

//Java
Props.create(PongActor.class, arg1, arg2, argn);
//Scala
Props(classOf[PongActor], arg1, arg2, argn)

If the actor takes constructor arguments, it's recommended that the props is created
via a factory method. If we wanted our Pong actor to respond with a message other
than Pong, we might take that as a constructor arg. We can create a factory method to
produce the Props instance like so:

//Java
public static Props props(String response) {
 return Props.create(this.class, response);
}
//Scala
object ScalaPongActor {
 def props(response: String): Props = {
 Props(classOf[ScalaPongActor], response)
 }
}

Then we would create the actor using the props factory method:

//Java
ActorRef actor = actorSystem.actorOf(JavaPongActor.props("PongFoo"));
//Scala
val actor: ActorRef = actorSystem.actorOf(ScalaPongActor props
"PongFoo")

Actors and Concurrency

[40]

Creating the props factory method isn't required but moves the concern of creating
the Props object into one place so that any changes to the actor's constructor can be
isolated to avoid making breaking changes as the code changes over time.

actorOf creates an actor and gives you an ActorRef for the newly created actor.
There is another way to get a reference to an Actor—actorSelection.

To understand actorSelection, we first need to look at actor paths. Each actor is
created with a path that you can see at ActorRef.path. It might look something
like the following:

• akka://default/user/BruceWillis

It's a URI and it can even reference a remote actor with the akka.tcp protocol:

• akka.tcp://my-sys@remotehost:5678/user/CharlieChaplin

Note that the preceding path states akka.tcp as the protocol and specifies the host
and port of the remote actor system. If we know the path of an Actor, we can use
actorSelection to get a reference—an ActorSelection—for that Actor, even if it
is on a remote machine:

ActorSelection selection = system.actorSelection("akka.tcp://
actorSystem@host.jason-goodwin.com:5678/user/KeanuReeves");

The ActorSelection here is a reference to a remote actor—we can use the
ActorSelection like the ActorRef to communicate over the network. This
demonstrates how easy it is to send messages over the wire, and is an example
of Akka's location transparency in action. We're able to change an application to
communicate with remote services merely by configuring where an actor is located.

To recap this section, we can create an Actor and gain a reference to it by calling
system.actorOf and pass it a Props instance with the list of args. We can also give
the actor a name by passing that into the actorOf method. Finally, we can look up
an existing actor, even on a remote system, by using actorSelection.

Next we'll begin to look at how to write asynchronous and event-driven code.

akka://default/user/BruceWillis
akka.tcp://my-sys@remotehost:5678/user/CharlieChaplin

Chapter 2

[41]

Promises, futures, and event-driven
programming models
Before moving on to working with more complex Actor-based applications, we need
to understand some basic abstractions for working in an event-driven programming
model—Promises and Futures. In Chapter 1, Starting Life as an Actor we saw how
to send a message to an actor and have it invoke some behavior in response to that
event. But, what if we need to get some output from the actor in response to that
message? Let's say we need to get a record from our in-memory key-value store?

Blocking versus event-driven APIs
Blocking code is familiar to almost any developer. It's where we start when we begin
with IO. When we make a call to a synchronous API, the calling method does not
return immediately—the application waits for execution to complete. For example,
if you make an HTTP request, you'll get back a response object once the request is
completed. Code that waits for IO to complete is called blocking as a thread sits and
waits—it is blocked from doing any other work until the IO is complete. We can
demonstrate blocking code by showing a query using Java Database Connectivity
(JDBC):

 stmt = conn.createStatement();
 String sql = "select name from users where id='123'";
 ResultSet rs = stmt.executeQuery(sql);
 rs.next()
 String name = rs.getString("name");

Here we retrieve a user's name from a database using JDBC. The code looks very
simple but there are hidden effects that make this simple code less readable:

• Latency: It takes time to go over the network to get the result.
• Failure: The request can fail if, for example, the remote service is unavailable.

An exception might be thrown for any number of reasons.

When we call executeQuery, the thread that is executing this code has to wait for the
database query to complete. In a web application, where many users may be making
concurrent requests, the finite limit of the thread pool can be reached. There are a
limited number of threads in that thread pool, and if all of them are waiting on IO,
then you can't put any more traffic through the server even if you have free compute
resources as there are no threads available to use those resources. If you've done
any performance tuning on blocking Servlet-based web applications, you may have
witnessed the limitations of threadpool. Usually the CPU will be under-utilized
when the server is at capacity because all of the threads are just waiting.

Actors and Concurrency

[42]

This is potentially because the threadpool is exhausted, or it may also be because
the system is spending time loading and unloading the context of threads that need
the free CPU time instead of actually doing work on the CPU. Similarly, there are a
limited number of threads in the threadpool. So, if all of the threads are waiting, the
next calls that come into the server cannot be handled until a thread is freed, causing
latency to grow.

So you might ask why we don't simply use an unlimited threadpool (create one
new thread for every request). Creating a thread has a cost and maintaining many
active threads has a cost. When using many threads on a core, the operating system
has to context-switch between threads in order to ensure all of the threads are getting
CPU time. The CPU has to unload and store the current thread's state, and then load
in another thread's context that is waiting for CPU time. If there are 1,000 threads
actively working, you can imagine that this may represent a lot of overhead in
loading and unloading contexts.

To summarize, there are a few problems with using many threads to handle
blocking IO:

• Code does not obviously express failure in the response type
• Code does not obviously express latency in the response type
• Blocking models have throughput limitations due to fixed threadpool sizes
• Creating and using many threads has a performance overhead due to

context-switching

A non-blocking asynchronous event-driven system can run with only a handful
of threads and will not block those threads, only using them when computation is
needed. This gives the system better responsiveness at scale and can allow better
system resource utilization. Depending on the implementation, there can also be
a benefit in making effects such as failure and latency more clearly defined in the
types, as we'll see soon.

The downside is that it can take a bit of time to understand how to write code
using event-driven paradigms. We'll look at an example of each model to better
understand how the two design approaches work.

First, we'll look at a very simple call to a database using blocking IO.

//Java
String username = getUsernameFromDatabase(userId);
System.out.println(username);
//Scala
val username = getUsernameFromDatabase(userId)
println(username)

Chapter 2

[43]

The method is invoked and the thread continues into the method, returning once
there is a result.

If you were debugging, you could step into the method with the thread and see each
line of the method getUsernameFromDatabase method called. Once the actual IO is
executed, the thread will sleep until the result comes back. Then the thread returns
the method, and jumps back out of the method and continues to print the result.

Blocking IO

MethodGo into methodInvoke Method Return result Print Result

The event-driven equivalent will look different because we have to describe what
happens when the completion event occurs, and that code is executed in a different
context. To turn our example above into an event-driven equivalent, the code needs
to express the print statement as something that happens when the result comes back
from the database. It can take some time to adjust to this model, but you only have to
learn it once.

To move to an event-driven model, we have to express the result in code differently.
We have to use placeholders for values that will eventually be there—a future. The
printing of the result is registered as something to do when the completion event
occurs. We register some code that we to be invoked when the value the placeholder
represents becomes available. The term "event-driven" describes the way that we
express code to execute on certain events:

//Java
CompletableFuture<String> usernameFuture = getUsernameFromDatabaseAsy
nc(userId);
usernameFuture.thenRun(username ->
 //executed somewhere else
 System.out.println(username)
);
//Scala
val future = getUsernameFromDatabaseAsync(userId)
future.onComplete(username =>
 //executed somewhere else
 println(username)
)

Actors and Concurrency

[44]

From the thread's perspective, the code will call the method and go into the method,
and then return with a Future/Completable Future almost immediately. The result is
only a placeholder of the value that will eventually be there.

We won't look at the method invocation itself in too much detail—you should
understand that the method will return immediately and the database call and result
will happen somewhere else, on another thread. There is an ExecutionContext
that represents the threads where the other work is done, which we'll look at later
in this book. (In Akka, you'll see a dispatcher in the ActorSystem, which is an
ExecutionContext implementation.)

Note, there is a critical difference if you're trying to debug async code—you won't
see all of the details of the call to the database on the invoking thread, so you can't
step through the database call from the invoking thread using a debugger like you
can in a blocking model. Similarly, if you look at a stack trace from a failure, you may
not necessarily see the original calling code—you'll see references to another stack
where the code is being run.

After the method returns the future, we only have the promise of a value
that will eventually be there. We don't want to make the thread wait for the result,
but we want to take some action when the result becomes available (print it to the
console). The way we do work in an event-driven system is to describe the code to
run when an event happens. In an actor, we describe the behavior to use when a
message is received. Similarly, with a future, we describe the behavior to execute
when the future's value becomes available. The methods on a future to register code
to run on the successful completion event successfully with then Run (Java8) or on
Complete (Scala).

Non-Blocking IO

Query Executing (No

Thread Waits)

Register

callback

Method Returns

Placeholder

Method called to

call database

Call to database

begins

asynchronously

Call to database

completes

Callback

Triggered

Placeholder

fulfilled

Chapter 2

[45]

It's important to highlight again—the print statement will not run on the thread
that registers the event. It will run somewhere else, on another thread via the
ExecutionContext. Futures are always created with ExecutionContext,
so you can choose where to run them.

All of the variables in scope are available to the lambda registered. Methods,
however, should be invoked with special care, or simply should not be invoked
within the closures, as they won't be invoked in the same lexical scope. We'll look
at this gotcha in the next chapter.

Note that futures can fail and should always be bounded by a timeout (required
in the Scala API) so they will not hang around forever and will always finish—either
successfully or with failure. We'll take a closer look at handling futures now.

Skills check-point
Scala developers should be familiar with using higher order functions/lambdas.
It would be helpful for the developer to have some familiarity with the option
or try types to ensure the material is fast to understand.

If you're using Java8, it's a good time to check in and see if you're comfortable
reading the code examples so far. If you're unclear on the use of lambdas, you
should take the time now to go through the Oracle Java8 lambda primer, which can
be found at http://www.oracle.com/webfolder/technetwork/tutorials/obe/
java/Lambda-QuickStart/index.html.

You should get some experience working with them by exploring the Stream API
and the Optional type. The Optional type is helpful to learn as it's semantically
similar in its use to CompletableFuture.

Understanding the following material will be easier if you have some experience
to relate the material to first.

Having an Actor respond via a future
We looked at a hypothetical example of an asynchronous database call, where the
result of a call to the database completes a future. We'll introduce a real example now
by communicating with the example actors that we built earlier in this chapter—the
PongActor. We'll have a way of communicating with actors from outside the
actor system after this so that we can use Akka to build the core of an application
or library and use it from plain Java or Scala code.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Actors and Concurrency

[46]

While the test case here does introduce the asynchronous API, the test cases are
still blocking by awaiting the result. This is useful in demonstrating another way
of handling Akka in your test cases. We need the test cases to block because, if we
don't wait for the result, the test case will always return immediately and, hence,
will always pass.

You should build these test cases and use them to explore the future API introduced
in the next section to understand it well. By building these examples, you'll always
have a sandbox you can return to if you need to further examine how futures work.
They are included in the source code for this book as well.

Java example
We'll cover the Java8 examples first. Akka is built in Scala, and, generally, the
Scala and Java APIs are one to one. There is a notable exception and that is
that all asynchronous methods that return a future will return the Scala
scala.concurrent.Future.

Working with Scala futures
For the Java examples, we need a way to handle Scala futures—in this book,
we'll convert them to the Java8 CompletableFuture.

The Play Promise API is also a good choice if you're building a Play application.
I personally prefer the semantics used in the Play Promise API over the Java8
CompletableFuture API, but the Java8 API may be more readable for those not
accustomed to working with asynchronous code yet. It's recommended if your code
may be placed into a library that you use the Java8 CompletableFuture so you do
not have a dependency on Play in your code outside the controller.

To start, we need to add this dependency from the Scala team to your build.sbt
to be able to convert between Scala and Java8 Futures:

"org.scala-lang.modules" %% "scala-java8-compat" % "0.6.0"

Test case
The following is the complete test case. Next, we'll look at each element of the APIs
in detail:

package pong;
//[...imports]
import static scala.compat.java8.FutureConverters.*;
public class PongActorTest {
 ActorSystem system = ActorSystem.create();
 ActorRef actorRef =
 system.actorOf(Props.create(JavaPongActor.class));

Chapter 2

[47]

 @Test
 public void shouldReplyToPingWithPong() throws Exception {
 Future sFuture = ask(actorRef, "Ping", 1000);
 final CompletionStage<String> cs = toJava(sFuture);
 final CompletableFuture<String> jFuture =
(CompletableFuture<String>) cs;
 assert(jFuture.get(1000, TimeUnit.MILLISECONDS).
equals("Pong"));
 }
 @Test(expected = ExecutionException.class)
 public void shouldReplyToUnknownMessageWithFailure() throws
Exception {
 Future sFuture = ask(actorRef, "unknown", 1000);
 final CompletionStage<String> cs = toJava(sFuture);
 final CompletableFuture<String> jFuture =
(CompletableFuture<String>) cs;
 jFuture.get(1000, TimeUnit.MILLISECONDS);
 }
}

Our Pong Actor test has a test for both the success case and failure case.

Actor creation
We begin by creating an ActorSystem, and then an actor in that actor system with
actorOf, as previously covered:

ActorSystem system = ActorSystem.create();
ActorRef actorRef =
system.actorOf(Props.create(JavaPongActor.class));

Now, we ask the actor for a response to a message:

final Future sFuture = ask(actorRef, "Ping", 1000);

This is fairly straightforward—we call the ask method, passing:

• The actor ref to send the message to
• The message we want to send the actor
• The timeout for the future—how long to wait for a result before considering

it a failure

Actors and Concurrency

[48]

This gives us back the placeholder of the response we'll get in the future—a Scala
Future. In the actor code, the actor will send a message back to sender(), which
we will receive as the response to this future.

We can't use the Scala Future from Java8, but we can convert it with the library
we imported earlier:

final CompletionStage<String> cs = toJava(sFuture);
 final CompletableFuture<String> jFuture =
(CompletableFuture<String>) cs;

We first convert the Scala future with scala.compat.java8.FutureConverters.
toJava, which gives us a CompletionStage. The CompletionStage is the interface
for the CompletableFuture—specifically it is a read-only interface. In this case,
we cast the future to gain access to the get method. You won't need to cast the
CompletionStage outside of test cases.

Note that we're placing a String type on the future. Actors are untyped and return
an Object, so you may find the unchecked casting a little iffy. Certainly, some care is
needed when talking to Actors from outside of the ActorSystem in this regard. We
know that the Actor will always return a String on this message, though, so it's a safe
assertion that the type of the future is a String.

Finally, we call the get() method to block the thread in the tests and get the result.
In the failure test, the get method will throw an exception—it will throw the akka.
status.Failure message's exception, which is sent from the actor.

You now have an example of a successful and failing future to experiment with!

Scala example
Next, we'll cover the Scala example. Akka gives Scala futures, so the test is
a bit simpler.

Test case
The following is the complete Scala test case. Next, we'll cover the test in detail:

package pong
//[...imports]
import akka.pattern.ask
import scala.concurrent.duration._
class ScalaAskExamplesTest extends FunSpecLike with Matchers {
 val system = ActorSystem()
 implicit val timeout = Timeout(5 seconds)
 val pongActor = system.actorOf(Props(classOf[ScalaPongActor]))
 describe("Pong actor") {

Chapter 2

[49]

 it("should respond with Pong") {
 val future = pongActor ? "Ping" //uses the implicit timeout
 val result = Await.result(future.mapTo[String], 1 second)
 assert(result == "Pong")
 }
 it("should fail on unknown message") {
 val future = pongActor ? "unknown"
 intercept[Exception]{
 Await.result(future.mapTo[String], 1 second)
 }
 }
 }
}

Actor creation
We begin by creating an ActorSystem and then creating an actor in that actor system
with actorOf, as previously covered.

We also create an implicit Timeout for the future creation (note that the import of
scala.concurrent.duration is needed for the duration passed in to the Timeout):

 implicit val system = ActorSystem()
 implicit val timeout = Timeout(5 seconds)
 val pongActor = system.actorOf(Props(classOf[ScalaPongActor]))

Now, we ask the actor for a response to a message:

val future = pongActor ? "Ping"

We need to import akka.pattern.ask for this to work.

The call to ask references:

• The actor ref to send the message to pongActor
• The message we want to send the actor
• Implicitly, the timeout for the future—how long to wait for a result before

considering it a failure

This gives us back a placeholder—a Future—that represents the actor's reply. In the
actor code, the actor will send a message back to sender(), which we will receive as
the response to this future.

Actors and Concurrency

[50]

Finally, we want to block the test until we have the result available. We use Await.
result on the future with a timeout value:

val result = Await.result(future.mapTo[String], 1 second)

The Actor is untyped, so we get back a Future[AnyRef]. We call future.
mapTo[String] to change the future's type to the expected type of the result.

You can build on this example now—play around with the Future API as we
continue through the next sections of this chapter.

Blocking threads in tests
Asking an actor for a response demonstrates how to talk to an actor from outside the
actor system by getting a response via a future. In this test case, we sleep/block the
test thread by calling get Await.result in order to get the result out of the future
synchronously.

This is fine in test cases—it's actually necessary or the test will complete before the
result is available—however, blocking is a bad practice anywhere other than in test
cases. You should only have non-blocking code outside of the test context.

Don't sleep or block outside tests.

In tests, the preferred way to block with the Java8 completable future is to call the
get() method on the Future. The get() method will block the thread until the result
is available:

jFuture.get().equals("Pong")

While get() will sleep forever if you don't specify a timeout, the Scala future
requires a timeout (specified in the ask method), so the future will fail if the timeout
is violated.

Getting the result from the Scala Future can be accomplished by using scala.
concurrent.Await.result:

import scala.concurrent.duration._
val result: String = Await.result(future.mapTo[String], 1 second)

Here the timeout is required—it's redundant as the ask method has already placed
a timeout on the future.

Chapter 2

[51]

In both the Java and Scala examples, if the future fails, blocking will result in the
exception that the future failed with being thrown. The Java8 CompletableFuture
will throw an ExecutionException caused by the Throwable the future fails with.
The Scala API will throw the actual Throwable. (Scala has no checked exceptions,
so the API can do this—Java throws an unchecked exception type here.)

You now have an example of a future that you can work with and mechanisms to
build test cases to examine the results. We will begin to cover the future APIs in
depth now as they are crucial to understand when working with asynchronous code.
It is highly recommended you explore the future API inside these test cases. To save
some typing, the examples are available in the Chapter 2, Actors and Concurrency code
bundle available online.

Understanding futures and promises
Modern futures make two effects implicit: failure and latency. To see how we can
move from blocking IO to non-blocking IO, we must learn some abstractions that
express handling with failure and latency in different ways. It may seem difficult
at first, but most developers find they take to the paradigm once they begin to
understand it.

Future – expressing failure and latency in types
An asynchronous API, such as the ask pattern, will return one of the placeholder
future types mentioned previously. We can try to demonstrate how the code
becomes clearer by looking at different ways in which we can work with our
PongActor in the test case. It's very strongly advised that you do follow along
in this section with the test case we built previously.

Preparing for the Java example
First, for the Java8 examples, we'll simplify the ask by placing it into a method to
eliminate duplication. This now looks like a real asynchronous API:

public CompletionStage<String> askPong(String message){
 Future sFuture = ask(actorRef, "Ping", 1000);
 CompletionStage<String> cs = toJava(sFuture);
 return cs;
}

Actors and Concurrency

[52]

Then we'll build simple test cases:

@Test public void printToConsole() throws Exception {
 askPong("Ping").
 thenAccept(x -> System.out.println("replied with: " + x));
 Thread.sleep(100);
}

Preparing for Scala examples
We'll start by defining a simple method to remove any redundancy and make the
examples a bit easier to read:

def askPong(message: String): Future[String] = (pongActor ? message).
mapTo[String]

We're going to look at asynchronous work running on multiple threads, so you'll
need to import an implicit ExecutionContext now.

We can make a test case like the following to play around in:

describe("FutureExamples"){
 import scala.concurrent.ExecutionContext.Implicits.global
 it("should print to console"){
 (pongActor ? "Ping").onSuccess({
 case x: String => println("replied with: " + x)
 })
 Thread.sleep(100)
 }
}

Note on sleeping
This test doesn't yet make any assertions, but shows a test with real asynchronous
behavior now. This test isn't helpful, but we can see if it works by looking for the
effects (we expect to print to the console in this case). If you want events to occur
asynchronously, you may occasionally need to sleep tests. As with blocking,
sleeping is OK in tests but should never be done in real code.

While these tests don't actually test anything, they're useful for experimenting
to see the effects occur asynchronously. We'll look at how to make assertions in
asynchronous code after taking some time to understand futures.

Chapter 2

[53]

Anatomy of a future
A Future[T]/CompletableFuture<T> can either be successful with a value of type
T or a failure of type Throwable. We'll look at how to handle each case—success and
failure—and how to transform the future's value to be able to do useful things with
the result.

Handling success cases
As we saw in our test, the PongActor will reply with "Pong" if it receives "Ping."
We'll work with this example to demonstrate different ways we can interact
with the future.

Executing code with the result
Sometimes we need to simply "do something" with the result. Maybe we want to log
the event or maybe we want to send a response over the network. We can "register"
events to occur once the result becomes available.

As demonstrated, we can use thenAccept to consume the value in Java8:

askPong("Ping").thenAccept(x -> System.out.println("replied with: " +
x));

And, in Scala, we can use onSuccess:

(pongActor ? "Ping").onSuccess(){
 case x: String => println("replied with: " + x)
 })

Note that onSuccess takes a partial function, so it fits well with the
Akka untyped responses—pattern matching takes care of determining
the type of the result.

Transforming the result
The most common use case is the need to transform a response asynchronously
before doing something with it. For example, we may need to get data from a
database and then transform that into an HTTP response to give back to a client.

Transformation of a value is done with map in most APIs, as it is with Scala's Future:

askPong("Ping").map(x => x.charAt(0))

In Java8, we call thenApply:

askPong("Ping").thenApply(x -> x.charAt(0))

Actors and Concurrency

[54]

These will give you back new Futures of type Char. You can transform the result
and then pass the modified future on to other methods for further processing.

Transforming the result asynchronously
If we need to make an asynchronous call, and then make another asynchronous call
with the result of the first, it could start to look a little bit messy:

//Java
CompletionStage<CompletionStage<String>> futureFuture =
askPong("Ping").thenApply(x -> askPong(x));
//Scala
val futureFuture: Future[Future[String]] =
 askPong("Ping").map(x => {
 askPong(x)
 })

Very often you'll need to make an asynchronous call, and then make another
asynchronous call as we have done in this example. However, right now, our result
is buried inside a future inside another future! This is very difficult to work
with—what we want to do instead is to flatten that out so the result is inside of
a single future, we want a Future[String]/CompletionStage[String].

There are ways to compose our futures to make these chained asynchronous
operations. using thenCompose in Java:

CompletionStage<String> cs = askPong("Ping").thenCompose(x ->
askPong("Ping"));

Orpredictably, flatMap in Scala:

val f: Future[String] = askPong("Ping").flatMap(x => askPong("Ping"))

Once the first "Ping" is responded to, then we send a second "Ping" and return the
response as the value of the future.

Note you can continue to string together asynchronous computation like this. This is
a very powerful way of handling pipelines of data processing. You can make a call
to a remote service and then make a call to a second service with the result.

A failure on either call will cause the entire future to fail. We'll look at failure
cases next.

Chapter 2

[55]

Handling failure cases
Failures can occur and we need to handle those failures as well. Failures always have
a cause represented by a Throwable. Similar to the success cases, there are methods
that allow us to handle the failure or even recover from it.

Executing code in the failure case
Very often you will want to do something with a failure. The most basic case is to log
something in the case of failure.

In Scala, there is a simple way to do this—onFailure. This method accepts a partial
function accepting a Throwable:

 askPong("causeError").onFailure{
 case e: Exception => println("Got exception")
 }
 }

Unfortunately, in Java8, there is no consumer-based method for failure, so we will
introduce handle() here for this case:

askPong("cause error").handle((x, t) -> {
 if(t!=null){
 System.out.println("Error: " + t);
 }
 return null;
 });

Handle takes a BiFunction that transforms either the success or failure case.
The function in handle will provide you with either the successful result or the
Throwable, so we have to check to see if the Throwable is present (only the result
or the Throwable will be not null). If the Throwable is present, then we log the
statement. We have to return a value on the function, so we simply return null as
we're not doing anything with the value in the failure case.

Recovering from failure
Often we want to use a value if there is an error. If you want to recover from failure,
you transform the future to have a successful value.

In Java, we can use exceptionally to take the Throwable and transform it into a
usable value:

 CompletionStage<String> cs = askPong("cause error").
exceptionally(t -> {
 return "default";
 });

Actors and Concurrency

[56]

In Scala, there is a recover method that is the equivalent. Again, this takes a
PartialFunction, so we can pattern match on the exception type:

 val f = askPong("causeError").recover{
 case t: Exception => "default"
 }

Recovering from failure asynchronously
Often we'll need to recover from failure with another asynchronous operation.
A few use cases could be:

• Retrying a failed operation
• A cold hit to a cache requires making an operation to another service

We'll demonstrate a retry as follows:

askPong("cause error")
 .handle((pong, ex) -> ex == null
 ? CompletableFuture.completedFuture(pong)
 : askPong("Ping")
).thenCompose(x -> x);

We have to do this in two steps. First, we check if the exception is not null and return
either a future of the result or the new retry future. Then we call thenCompose to
flatten the CompletionState[CompletionStage[String]].

In Scala, recoverWith is the function we want to invoke—this is like flatMap for the
error case, so is considerably more readable and succinct than the Java equivalent:

askPong("causeError").recoverWith({
 case t: Exception => askPong("Ping")
 })

Composing futures
Often we'll have multiple operations we need to do and maybe we'll want to do
them in different places in the codebase. Each call to the methods covered returns
a new future that can have additional operations applied to it.

Chaining operations together
We've covered the basics of working with futures. One of the benefits of working
with latency and failure in a functional style is that it's easy to compose together
multiple operations without having to handle exceptions along the way. We can
focus on the happy path and then collect errors at the end of the chain of operations.

Chapter 2

[57]

Each of the methods that transforms a value covered returns a new future that can
then be dealt with and chained into more operations.

Putting it all together, we may have several operations and then one recovery
function at the end to deal with any errors that may have occurred. It's possible
to combine these functions (aka combinators) in any order you can dream up to
accomplish the work you need to get done.

In Java:

askPong("Ping").
 thenCompose(x -> askPong("Ping" + x)).
 handle((x, t) -> {
 if(t != null){
 return "default";
 }else{
 return x;
 }
 });

In Scala:

val f = askPong("Ping").
 flatMap(x => askPong("Ping" + x)).
 recover({ case Exception => "There was an error" })

In these examples, we get a future, then call thenCompose/flatMap to asynchronously
make a call when the first completes, and then, in the case of an error, we recover with
a String value to ensure the future is successful.

Any failure along the way becomes the failure at the end of the chain. This leaves
us with an elegant pipeline of operations where exceptions are handled at the end
regardless of which operation caused the failure. We can focus on describing the
happy path without extraneous error checking throughout the pipeline. At the end,
failure as an effect is described separately.

Combining futures
You'll often have multiple futures executing that you need to get access to. There
are facilities for handling these cases as well. In Java, the thenCombine method on
CompletableFuture will let you access the values of two futures once they are
available:

askPong("Ping").
 thenCombine(askPong("Ping"), (a,b) -> {
 return a + b; //"PongPong"
 });

Actors and Concurrency

[58]

In Scala, for comprehensions offer an alternative syntax for composing together
several futures. We're able to extract the results of two futures and handle them
together like we would with any other collection. (Note that this is syntactic sugar
for flatMap—I prefer this notation over flatMap.):

val f1 = Future{4}
 val f2 = Future{5}

 val futureAddition: Future[Int] =
 for(
 res1 <- f1;
 res2 <- f2
) yield res1 + res2

These examples yield simple mechanisms for handling multiple futures of varying
types. In this way, we can parallelize work, making multiple requests at the same
time to get responses back to users faster. This use of parallelization can help us
improve system responsiveness.

Dealing with lists of futures
If you have a collection and you execute an asynchronous method on each element,
you'll end up with a list of Futures.

For example, in Scala, if we take a list of messages, and ask the Pong actor to reply
to each method, we end up with a list of futures like the following:

val listOfFutures = List[Future[String]] = List("Pong", "Pong",
"failed").map(x => askPong(x))

If you try to work with that, you'll see it's not easy. What we want is to get at the
list of results—really, we want to flip the types so the List[Future] becomes
Future[List]. This is a job for sequence, which is a member of Future:

val futureOfList: Future[List[String]] = Future.
sequence(listOfFutures)

Now we have a usable type. If we call map on futureOfList, for example, we get
a List[String], which is what we want to work with. There is a problem here
though. The future generated by sequence will fail if any of the futures in the list fail.
We can recover each future before sequencing if we want to get any successful values
instead of failing everything:

Future.sequence(listOfFutures.map(future => future.recover{case
Exception => ""}))

Chapter 2

[59]

There is no equivalent in the Java8 core library, but there are gists around that cover
the functionality for sequencing futures in the same manner.

Future cheat-sheet
The following is a small chart outlining the basic operations covered:

Operation Scala Future Java CompletableFuture
Transform Value .map(x => y) .thenApply(x -> y)
Transform Value Async .flatMap(x => futureOfY) .thenCompose(x -> futureOfY)
Return Value if Error .recover(t => y) .exceptionally(t -> y)
Return Value Async if
Error

.recoverWith(t =>
futureOfY)

.handle(t,x -> futureOfY).
thenCompose(x->x)

This section gives a good overview of the future and promises APIs. It's necessary
to understand this abstraction, so it's recommended that you work with some
asynchronous code and futures to get a better grasp on this. In the next section, we
will introduce how to interact with actors by getting futures back—you should take
some time to practice this to see how to handle multiple future results to ensure you
have a good foundation to build on.

Composing a Distributed System – AkkademyDb and client
The purpose of this book is to teach you how to build distributed applications,
so we're going to put everything we've covered in this chapter together into a
small distributed application. While the code is fairly simple, this example is a bit
advanced in its structure in that it jumps right in to showing you how two remote
systems can use Akka to talk, but I think it's important to see the power of Akka
right away to keep you interested in the material. If you get a taste for what Akka
can do for you now, you'll want to keep going through the remaining chapters.

We'll be building a client and a service—our database—and then a database client
to talk to it. In order to send messages over the wire between the client and service,
we need to share messages between the projects.

Actors and Concurrency

[60]

We could put the messages in their own project, but to keep the examples shorter,
we'll put the messages in the server project and import the server project (and, hence,
the messages) into the client project.

DB Project (Server)

Client

Client Project

DB Messages dependency

We'll start by extending the server project from the first chapter and producing all of
the messages we want the database to expose. Then we'll implement the features for
those messages in the database.

After building these basic operations, we'll produce a main() to make the store
runnable. We'll start the application by producing an ActorSystem and the
Actor in the ActorSystem, creating our first Akka "micro-service."

To consume the service and demonstrate how we can get futures from our remote
actors, we'll create the database client to use the service. We'll expose the service
in the client by returning futures. At this point, we'll have built a usable key-value
datastore, much like redis, and a remote client to consume it.

Preparing the DB and messages
We want to expose a few messages to start with.

• Get message: Return a key if it exists
• Key Not Found exception: If a key isn't found, return this failure
• Set message: Sets a value and reply with a status

In the server, we'll implement these messages, their behavior, and a main so that the
datastore can run. Note, we'll use the project from Chapter 1, Starting Life as an Actor,
adding features introduced in this chapter such as replying and replying with failure.

Chapter 2

[61]

The messages
As we'll be using remoting to send messages between separate networked
applications, we need all of the messages to be serializable so that Akka can
turn them into representations of the objects as they transfer over the networks
between the applications. We'll implement SetRequest, GetRequest, and
KeyNotFoundException.

The Java messages:

public class SetRequest implements Serializable {
 public final String key;
 public final Object value;
 public SetRequest(String key, Object value) {
 this.key = key;
 this.value = value;
 }
}
public class GetRequest implements Serializable {
 public final String key;
 public GetRequest(String key) {
 this.key = key;
 }
}
public class KeyNotFoundException extends Exception implements
Serializable {
 public final String key;
 public KeyNotFoundException(String key) {
 this.key = key;
 }
}

The Scala messages:

case class SetRequest(key: String, value: Object)
case class GetRequest(key: String)
case class KeyNotFoundException(key: String) extends Exception

These are simple objects. We omit the Java getter as the message is immutable
anyway—you can include one if you like.

Messages should always be immutable.

(The Scala case class is serializable.)

Actors and Concurrency

[62]

Implementing the DB functionality
We've covered how to reply to messages with sender() tell/!. We also covered
how to reply with Status.Failure(Exception). We'll implement replies to all
messages and we'll also add failure responses if the GetRequest encounters
a miss in the key/value store.

The Java code's receive statements:

 receive(ReceiveBuilder.
 match(SetRequest.class, message -> {
 log.info("Received Set request: {}",
message);
 map.put(message.key, message.value);
 sender().tell(new Status.Success(message.
key), self());
 }).
 match(GetRequest.class, message -> {
 log.info("Received Get request: {}",
message);
 String value = map.get(message.key);
 Object response = (value != null)
 ? value
 : new Status.Failure(new
KeyNotFoundException(message.key));
 sender().tell(response, self());
 }).
 matchAny(o ->
 sender().tell(new Status.Failure(new
ClassNotFoundException()), self())
).build()
);

The Scala code's receive method:

 override def receive = {
 case SetRequest(key, value) =>
 log.info("received SetRequest - key: {} value: {}", key, value)
 map.put(key, value)
 sender() ! Status.Success
 case GetRequest(key) =>
 log.info("received GetRequest - key: {}", key)
 val response: Option[String] = map.get(key)
 response match{
 case Some(x) => sender() ! x
 case None => sender() ! Status.Failure(new
KeyNotFoundException(key))
 }
 case o => Status.Failure(new ClassNotFoundException)
 }

Chapter 2

[63]

These are both roughly equivalent, languages aside. If the actor receives a SetRequest,
the actor stores the value in the map. The behavior has been updated from the first
chapter to send back a Success message. For the GetRequest, the actor tries to retrieve
the value from the map. If it's found, it sends back the value. If it's not found, the
actor sends back a Failure containing the KeyNotFoundException. Finally, we've
changed the behavior for unknown messages to reply with a failure—we stuck a
ClassNotFound exception in, but you could make a custom one for greater clarity.

Enabling remoting
We need to enable remote access to the actor from a remote application over the
network. This is a trivial task fortunately. We need to add the remoting dependency
to the build.sbt file:

"com.typesafe.akka" %% "akka-remote" % "2.3.6"

Then we simply add configuration to enable remote access to our actor. Add a new
file in the src/main/resources file called application.conf and put the following
configuration in the file with the interface and port to listen on. The application.
conf file is recognized by Akka. It is a typesafe-config HOCON file, which is a JSON
like format that is quite usable relative to other configuration formats—you'll see
the configuration file referenced in the Akka documentation often and I personally
find the HOCON format is quite a nice alternative to properties files if more than
a few properties are needed. Note that properties files are usable as well if desired
simply by naming the file application.properties and using the properties
format (for example, keypath.key=value).Here is the application.conf::

akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }
 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = "127.0.0.1"
 port = 2552
 }
 }
}

Actors and Concurrency

[64]

Main
Finally, for the datastore, we need to add a main method to start the actor system
and create the actor.

In Java, we'll add a class: com.akkademy.Main:

public class Main {
 public static void main(String... args) {
 ActorSystem system = ActorSystem.create("akkademy");
 system.actorOf(Props.create(AkkademyDb.class), "akkademy-db");
 }
}

In Scala, we can put a Main object in the com.akkademy.AkkademyDb.scala file:

object Main extends App {
 val system = ActorSystem("akkademy")
 system.actorOf(Props[AkkademyDb], name = "akkademy-db")
}

We simply need to create an ActorSystem, and then create the actor in it. Note we
give the actor a name—akkademy-db—we use a name to be able to easily look up
the actor in the client, and also to ease debugging as Akka will log the Actor's name
in error scenarios.

Publishing the messages
We need to publish the messages locally now so that we can use them in the
client project. To publish to Nexus or Artifactory, we would set up the repository
information in the build.sbt, but we'll simply publish them locally.

We need to add an organization and version to the build.sbt file like the following:

name := "akkademy-db"
organization := "com.akkademy-db"
version := "0.0.1-SNAPSHOT"

'-SNAPSHOT' indicates that the version is unstable and can change. As we will
probably republish the server, we should add this tag to the version. If we were
to release the code, then we would remove the '-SNAPSHOT' tag from the version
to indicate that it will not (and cannot) change again.

Chapter 2

[65]

Lastly, we need to exclude the application.conf file so that the client doesn't
try to start a remote server. Again, it's better to put the messages in a standalone
library—we're cutting corners for brevity. Put this in your build.sbt file to
exclude the application.conf when publishing:

mappings in (Compile, packageBin) ~= { _.filterNot { case (_, name) =>
 Seq("application.conf").contains(name)
}}

If we put the messages in a separate library (and you certainly can), we wouldn't
have needed to exclude the configuration from the build. We're done with the build
configuration. From the command line, in the root of our project, we simply run the
activator publish-local target to publish the project:

$activator publish-local

Starting the DB
We're going to build the client next, and to demonstrate integration, we're going
to write some integration tests, so we need the server to be running. We can start
the database now:

$activator run

Akka will log that it is listening for remote connections and tells us the address
(which we will use shortly in the client):

[Remoting] Remoting now listens on addresses: [akka.tcp://
akkademy@127.0.0.1:2552]

Producing the client
We've published our messages, and have the key-value store running. We're ready
to wrap up our first distributed application by consuming the service with a client.

Scaffolding the project
The first thing we need to do is create a project for the client and have it import the
server project for the messages. We'll scaffold the project as we did in Chapter 1,
Starting Life as an Actor —you can review the material if needed. Run activator-new
and choose minimal-java or minimal-akka project. Call the project akkademy-db-
client.

Actors and Concurrency

[66]

Modifying build.sbt
We need to add the dependency for our project into the build.sbt file. In the new
project, add the following dependencies for our messages in build.sbt:

"com.akkademy-db" %% "akkademy-db" % "0.0.1-SNAPSHOT"

Apart from the testing frameworks included in the scaffolding, this dependency
includes the dependencies we need to get going with the Scala project.

In the Java project, we need to also add the scala-java8-compat library to be able
to convert the futures the actor will produce:

"org.scala-lang.modules" %% "scala-java8-compat" % "0.6.0"

Building the client
In this section, we'll build the client to connect to the remote actor, and then
implement methods for the SetRequest and GetRequest messages.

First, the Java code can be placed in com.akkademy.JClient:

public class JClient {
 private final ActorSystem system = ActorSystem.
create("LocalSystem");
 private final ActorSelection remoteDb;
 public JClient(String remoteAddress){
 remoteDb = system.actorSelection("akka.tcp://akkademy@" +
remoteAddress + "/user/akkademy-db");
 }
 public CompletionStage set(String key, Object value) {
 return toJava(ask(remoteDb, new SetRequest(key, value),
2000));
 }
 public CompletionStage<Object> get(String key){
 return toJava(ask(remoteDb, new GetRequest(key), 2000));
 }
}

The Scala code can be placed in com.akkademy.SClient:

class SClient(remoteAddress: String){
 private implicit val timeout = Timeout(2 seconds)
 private implicit val system = ActorSystem("LocalSystem")
 private val remoteDb = system.actorSelection(s"akka.tcp://
akkademy@$remoteAddress/user/akkademy-db")
 def set(key: String, value: Object) = {
 remoteDb ? SetRequest(key, value)
 }

Chapter 2

[67]

 def get(key: String) = {
 remoteDb ? GetRequest(key)
 }
}

The code is fairly simple. First, we create a local ActorSystem, and then get a reference
to the remote actor at the address provided in the constructor. Next, we create a
method for each of the behaviors—get and set. We ask the actor using the messages we
imported into our project, and then we return the future. Note we're using an arbitrary
timeout value in the asks. Ideally, the timeout should be configurable.

For the Java code, we convert the scala.concurrent.Future to CompletionStage
and return that. This gives us a better Java API for the consumer of our library to
work with.

Next, to test that it all fits together, we'll write a small test case.

Testing
We need to make sure the db is running as these are integration tests. Here we'll
simply create and then retrieve a record from the remote database.

The Java example:

public class JClientIntegrationTest {
 JClient client = new JClient("127.0.0.1:2552");
 @Test
 public void itShouldSetRecord() throws Exception {
 client.set("123", 123);
 Integer result = (Integer) ((CompletableFuture) client.
get("123")).get();
 assert(result == 123);
 }
}

And the Scala example:

class SClientIntegrationSpec extends FunSpecLike with Matchers {
 val client = new SClient("127.0.0.1:2552")
 describe("akkademyDbClient") {
 it("should set a value"){
 client.set("123", new Integer(123))
 val futureResult = client.get("123")
 val result = Await.result(futureResult, 10 seconds)
 result should equal(123)
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Actors and Concurrency

[68]

This takes the knowledge we gained about working with Futures to be able to test
our API. We use Awaits/get as it's just a test case, but we now have definitive proof
that building distributed applications is feasible with Akka. And we're only on
Chapter2, Actors and Concurrency

Homework
Doing the homework is very important in this chapter as it covers the core skill
set needed. The example had fairly simple code, but was a touch advanced in
introducing remoting—in the next few chapters we will only work on local Actor
systems, so the examples will be simpler. Running the example outlined here will
give some insight into exactly what problems Akka tries to solve, though, so I would
recommend you take a few minutes to study them. This chapter—in particular the
future API—is the foundation for everything that follows. We need to have a solid
base to build on in the topics covered in this chapter.

General learning
Here are some tasks you should complete to ensure you understand how to work
with the information presented in this chapter.

• Build a small service that has an actor that reverses a string. Have it fail if an
unknown message type is sent.

• Build a service for the actor that exposes the functionality through a plain
Java/ScalaAPI, returning a future.

• Build test cases for success and failure cases.
• Write a test that will send a list of strings to the actor, and validate all of the

results. You should use sequence—a Java8 sequence implementation can be
found at
http://www.nurkiewicz.com/2013/05/java-8-completablefuture-in-
action.html.

Project homework
Expand on the example code:

• Add an atomic SetIfNotExists and Delete messages to the Akkademy
DB App.

• If you need some sbt experience, move the messages to their own project
and publish it.

http://www.nurkiewicz.com/2013/05/java-8-completablefuture-in-action.html
http://www.nurkiewicz.com/2013/05/java-8-completablefuture-in-action.html

Chapter 2

[69]

• Complete Tests for the Client—we don't have tests for the failure cases such
as getting a missing message. You should complete this.

• Start building your own project.
• Build an actor that delivers some piece of functionality from your

project—have the actor reply to messages with the work done.
• Write unit tests to cover success and failure cases it by asking the actor.

Summary
This chapter laid down the foundation for building applications with Akka. All of
the prerequisites are now covered for us to begin doing real work with distributed
applications. We looked in depth at actor code—creating an instance of an actor,
looking up an actor, responding to a message in an actor, getting a response
from an actors from outside the ActorSystem—and working with futures.

We have enough knowledge now to give our asynchronous event-driven Akka
applications to the rest of the world—we can build libraries and services with Akka
and expose them with the core Scala and Java8 future APIs. This is what we will be
doing in the next chapter.

Chapter 3

[71]

Getting the Message Across
In this chapter, we will cover all of the details of message delivery mechanisms in
Akka. We'll look at different messaging patterns—different ways in which we can
get messages between Actors to get work done. We'll look at scheduling message
delivery as well—a way of delaying or repeating delivery of messages. We'll cover
how these messaging patterns can be used to compose Actors together to get work
done in this chapter.

To demonstrate all the ways in which we can get messages between Actors, a new
example service will be introduced as a consumer of Akkademy-DB as well—a simple
article parsing component.

This chapter will cover some of the essential mechanics around handling Messages:

• Making Messages Immutable
• Asking an Actor for a Reply
• Forwarding Messages
• Piping Futures

Setting the stage with an example
problem
Imagine you are on a team asked to create a mobile news reader. Someone will
produce the application that runs on the device. It will comb RSS feeds from major
news sites, presenting the new articles on the feeds to the user. When the user selects
an article that they would like to read, they will be shown a simple representation of
the text optimized for consumption on a mobile device.

Getting the Message Across

[72]

You need to produce a service that will accept the URL of an article and will return
back the article's body text. It should contain only the body text and no HTML tags.
Because many people will be reading new articles, it should cache all parsed articles
so that they can be returned quickly to the user. The articles should be cached in an
Akkademy-DB instance running on another machine.

Requirement Overview:

• Expose an HTTP Endpoint that accepts the URL of an article
• Return the main body of text from the article
• Cache the article in Akkademy DB

Sketching the project
We will use Activator again to create another project. Refer to Chapter 1, Starting Life
as an Actor if you need more details.

Perform the following steps:

1. Run—Activator run

2. Select a minimal-java or minimal-scala project.
3. Call the akkademaid project.
4. Add the akkademy-db and boilerpipe dependencies to build.sbt:

libraryDependencies ++= Seq(
"com.syncthemall" % "boilerpipe" % "1.2.2",
"com.akkademy-db" %% "akkademy-db-scala" % "0.0.1-SNAPSHOT",
"com.syncthemail" % "boilerpipe" % "1.2.2"
)

Akkademy-DB is added as a dependency for Akka and the messages needed
to communicate with it. We add the boilerpipe Java library to help with our
requirement of getting the body text from a web page. Test frameworks will be
included in build.sbt by default.

Core functionality
The boilerpipe library takes care of the article parsing for us. We simply need to
call ArticleExtractor.getInstance.getText(input) where input is a Stream
or String.

We'll revisit the example and Akkademy-DB as we work through different approaches
to solving the problem.

Chapter 3

[73]

Messaging delivery
In this next section, we're going to look at ways of getting messages to an Actor.
We're going to cover core messaging patterns, and we'll also introduce scheduling
along the way.

There are four core Actor messaging patterns: tell, ask, forward, and pipe. We have
looked at tell and ask where the sender is not an Actor. We will introduce all
message passing concepts here from the perspective of an Actor sending messages to
another Actor:

• Ask: Send a message to an Actor, and get a response back via a future.
When the Actor replies, it completes the future. No messages are sent to the
sender's mailbox

• Tell: Send a message to an Actor. Any replies to sender() are sent back to
the sending Actor

• Forward: Take a message that has been received and send it to another
Actor. Any replies to sender() are delivered back to the sender of the
original message

• Pipe: This is used to send the result of a future back to sender() or another
Actor. If using Ask or handling a future, using Pipe is the correct way to
reply with the result of the future

We'll cover these patterns and the basic principles of messages in Akka in the
following section.

Messages should be immutable
As mentioned earlier, messages should be immutable. Because Akka is built on
the JVM, where Java and Scala have mutable types, it's possible to send mutable
messages but you may lose many of the advantages Akka gives in eliminating
shared state. By having messages that are mutable, you introduce the risk that
a developer may one day start mutating messages in ways that can break the
application. It's certainly possible to use mutable messages safely by not changing
state, but it's better to use immutable messages to ensure that no errors are
introduced in future changes.

Getting the Message Across

[74]

There are two ways in which messages can be mutable—references and types. I saw
Jamie Allen present recently and he demonstrated a matrix of mutable references
and types in relation to a message like so:

References Mutable Type Immutable Type

Mutable Reference LL L

Immutable Reference L J

If both your references and types are mutable, then that's the worst case scenario.
The following is an example:

public class Message{
public StringBuffer mutableBuffer;
public Message(StringBuffer: mutableBuffer){
this.mutableBuffer = mutableBuffer;
}
}
class Message(var mutableBuffer: StringBuffer = new StringBuffer);

Here, both the objects are referenced, and the object's state can also change, which is
the worst case in our grid.

Variables referenced in the message (for example, fields) can either be mutable or
immutable. In Scala, field members marked val are immutable references and field
members marked var are mutable—the reference can be changed to point to a new
object/primitive. In Java, members marked with final are immutable references and
those without are mutable. All fields in messages should be of the immutable variety.
The field members should be passed in via constructor arguments to be able to fulfill
the immutability contract.

We can demonstrate how the references can change:

Messagemessage=newMessage(newStringBuffer("original"));
message.mutableBuffer=newStringBuffer("new");

valmessage=newMessage(newStringBuffer("original"))
message.mutableBuffer=newStringBuffer("new")

Chapter 3

[75]

Here we create a new message, and then we change the StringBuffer reference to
point to a new StringBuffer. The message is created with StringBuffer(original)
but is mutated to StringBuffer(new). This shows how the message can be changed
because of the change in its reference.

MutableMessage

mutableReference:
StringBuffer

StringBuffer

StringBuffer

"original"

"new"

reference
changed

We want to eliminate the possibility of someone changing the reference in the
message, so we need to make the references val/final. The following is an example
of immutable references in the message, improving on our previous example:

public class Message {

 public final StringBuffer mutableBuffer;

Message(StringBuffer mutableBuffer) {

 this.mutableBuffer = mutableBuffer;

 }
}

In Scala, if no access modifiers are supplied in the declaration, the field reference
will be an immutable val. In Java, we use the final modifier to make the reference
immutable. Now we can't change the mutableBuffer reference to point at a
new object—we can be sure the message will always point toward the same
StringBuffer. There is still a problem with this though—we can change the
StringBuffer object itself as it is a mutable type. We can append new characters
to a reference. If multiple Actors have a reference to that message, then it's possible
that concurrency errors can occur. The following is an example of us changing the
StringBuffer:

Message message = new Message(new StringBuffer())
message.mutableBuffer.append("appended");
val message = new Message(StringBuffer("original"))
message.mutableBuffer.append("appended")

Getting the Message Across

[76]

This demonstrates that even though the message's mutableBuffer reference is
immutable, the StringBuffer in memory can still be modified as it is a mutable
type as shown in the following figure:

MutableMessage

mutableType:
StringBuffer

StringBuffer

"original"

MutableMessage

mutableType:
StringBuffer

StringBuffer

"originalappended"

st
ar

t

M
ut

ab
le

 T
yp

es

en
d

For a message to truly be immutable, it needs to have both immutable references
and use immutable types. String is an immutable type, so we can make this message
immutable by using String instead of StringBuffer. An example of the ideal
immutable message is as follows:

public class ImmutableMessage{
 public final String immutableType;
public ImmutableMessage(String immutableType) {
 this.immutableType = immutableType;
 }
}
class ImmutableMessage(immutableType: String)

Now we cannot change the message in any way—it's thread safe and can be sent
across threads or machines without any risk of that message changing in any way in
its life:

new ImmutableMessage("can't be changed");

There is one more improvement we can make—use a case class instead of a class
in Scala. Case classes are preferred as they give useful members like a default
toString() and copy() method. They can be serialized for use in Akka remoting
as well. In Java, we will often declare our messages as Serializable as well in case we
want to send them over the wire:

public class ImmutableMessage implements Serializable {
public final String string;
public ImmutableMessage(String string) {

Chapter 3

[77]

this.string = string;
}
}
case class ImmutableMessage(String: String)

Understanding immutability is essential not only in Akka messages but also in
safe and concurrent computing in general. Any time data is to be shared between
threads, therefore, aim for immutability first. Now that we know how to make
immutable messages, we can look at how to compose actors together with various
messaging patterns.

Ask message pattern
The Ask pattern produces a future that represents the reply from an Actor. This is
often used to talk to Actors from plain objects outside of an Actor system. We looked
at Ask, we get a future back that represents the response, but it may not be obvious
exactly how Akka knows which message fulfills the future.

When you ask an Actor, Akka actually creates a temporary Actor in the Actor
system. The sender() reference that the Actor replies to becomes this temporary
Actor. When an Actor replies to the message it receives from an ask, this temporary
Actor completes the future with the response as shown in the following figure:

/user/receiver

Temporary Actor Completes Future then Terminates
/temp/tempAskActor

complete future with reply

ask creates a future
placeholder

ask(receiverRef, msg, timeout)

tell(reply, sender())

Akka knows which message fulfills the future because the sender() reference
becomes that temporary Actor's path. It's important to know this so we can
compose together multiple Actors and ensure we're replying to the correct place
to fulfill any asks.

Asks always require a timeout be defined and if the ask is not replied to, then
the future will fail with the timeout. The ask/? method requires a timeout to be
supplied to it—either a long one in milliseconds or an akka.util.Timeout, which
offers some more expressive descriptions of time.

Getting the Message Across

[78]

In Java, you can Ask with a Timeout constructed with a TimeUnit like the following:

static import akka.pattern.Patterns.ask; Timeout timeout = new akka.
util.Timeout(1,
java.util.concurrent.TimeUnit.SECONDS);
Future future = ask(actor, message, timeout);

In Scala, you can use scala.concurrent.duration for defining a timeout with the
attractive scala duration Domain Specific Languages(DSL), which lets you describe
a duration as, for example, 1 second. In Scala, the timeout supplied to the ask is
implicit, which helps to simplify the ask semantics to a concise statement:

actorRef ? message

For example, with the timeout and imports, your code would look like the following:

import scala.concurrent.duration._
import akka.pattern.ask
implicit val timeout = akka.util.Timeout(1 second)
val future = actorRef ? "message"

We'll look at an example of a design using ask to demonstrate how we can compose
together asks. Because Ask gives Futures, this is essentially composing together
Futures that the Actors produce with Ask.

Designing with Ask
We'll demonstrate our example application design using the Ask pattern first.
This is the most naive approach. The example we'll show here is for the article
parse service using ask that will check the cache, and, if the parsed article is not in
the cache, it will ask an HttpClientActor and then have the result parsed by an
ArtcileParserActor. After retrieving the results, it will attempt to cache the article
and then return the article to the user as shown the following figure:

Chapter 3

[79]

Sender

Sender

Service

Service

Cache

Cache

Http

Http

Parser

Parser

ask for parsed article from URL

return parsed article if cached

return parsed article

ask for cached article

cache hit/miss

respond with html

ask for parsed article

respond with parsed article

send article to be cached

return response or failure

ask for raw article from source

This is a useful example to look at but it's not an optimal design. This is very much
how we would have done this using a synchronous API, so it's a good starting point
to build on. We'll examine some code before proceeding.

For brevity, we'll omit the Actor code except for the service Actor. The full code
examples are in the GitHub examples in the folder in this chapter. For the context of
reading the code, each of the Actors sends back either a failure or a success—a String
representing the article (raw or parsed).

The following is the Scala source:

packagecom.akkademy.askdemo
class AskDemoArticleParser(cacheActorPath: String,
httpClientActorPath: String, acticleParserActorPath: String,implicit
val timeout: Timeout
)
extends Actor {
 val cacheActor = context.actorSelection(cacheActorPath)
 val httpClientActor = context.actorSelection(httpClientActorPath)
 val articleParserActor = context.actorSelection(
 acticleParserActorpath)

Getting the Message Across

[80]

 import scala.concurrent.ExecutionContext.Implicits.global

 override def receive: Receive = {
 case ParseArticle(uri) =>
 val senderRef = sender() //sender ref needed for closure

 val cacheResult = cacheActor ? GetRequest(uri) //ask cache actor

 val result = cacheResult.recoverWith { //if request fails, then
ask the articleParseActor
 case _: Exception =>
 val fRawResult = httpClientActor ? uri

 fRawResult flatMap {
 case HttpResponse(rawArticle) =>
 articleParserActor ? ParseHtmlArticle(uri, rawArticle)
 case x =>
 Future.failed(new Exception("unknown response"))
 }
 }

 result onComplete { //could use Pipe (covered later)
 case scala.util.Success(x: String) =>
 println("cached result!")
 senderRef ! x //cached result
 case scala.util.Success(x: ArticleBody) =>
 cacheActor ! SetRequest(uri, x.body)
 senderRef ! x
 case scala.util.Failure(t) =>
 senderRef ! akka.actor.Status.Failure(t)
 case x =>
 println("unknown message! " + x)
 }
 }
}

The following is the equivalent Java8 code:

public class AskDemoArticleParser extends AbstractActor {

 private final ActorSelection cacheActor;
 private final ActorSelection httpClientActor;
 private final ActorSelection artcileParseActor;
 private final Timeout timeout;

 public AskDemoArticleParser(String cacheActorPath, String
httpClientActorPath, String artcileParseActorPath, Timeout timeout) {
 this.cacheActor = context().actorSelection(cacheActorPath);
 this.httpClientActor = context().actorSelection(httpClientAct
orPath);

Chapter 3

[81]

 this.artcileParseActor = context().actorSelection(artcilePars
eActorPath);
 this.timeout = timeout;
 }

public PartialFunction receive() {
 return ReceiveBuilder.
 match(ParseArticle.class, msg -> {
 final CompletionStage cacheResult =
toJava(ask(cacheActor, new GetRequest(msg.url), timeout));
 final CompletionStage result = cacheResult.
handle((x, t) -> {
 return (x != null)
 ? CompletableFuture.completedFuture(x)
 : toJava(ask(httpClientActor, msg.url,
timeout)).
 thenCompose(rawArticle -> toJava(
 ask(artcileParseActor,
 new
ParseHtmlArticle(msg.url,

((HttpResponse) rawArticle).body), timeout))
);
 }).thenCompose(x -> x);

 final ActorRef senderRef = sender();
 result.handle((x,t) -> {
 if(x != null){
 if(x instanceof ArticleBody){
 String body = ((ArticleBody) x).body;
//parsed article
 cacheActor.tell(body, self()); //cache
it
 senderRef.tell(body, self()); //reply
 } else if(x instanceof String) //cached
article
 senderRef.tell(x, self());
 } else if(x == null)
 senderRef.tell(new akka.actor.Status.
Failure((Throwable)t), self());
 return null;
 });

 }).build();
 }
}

Getting the Message Across

[82]

Both the Scala and Java8 examples have the same functionality—the Actor
constructor takes strings with the Actor paths and looks up each of the Actors with
actorSelection as we have done previously. Injecting the paths are dependencies.
This lets us configure where our actors are. For example, the cached b would be local
in test and on a remote machine in production.

Once we receive a message, we try to get a cached article. If the cacheResult
misses or fails for any reason, we compose together two more asks in a recover/
exceptionally block:

• Ask the HTTP client Actor for the raw article
• Ask the article parser to parse the raw article from the HTTP Actor

If the cache request fails, we don't care what the issue is with the cache result—we
can still give the user a result if the cache is offline for example. We would, however,
log the unexpected error or capture the cause of the error in a metric.

Finally, we register what to do when we have the result or error at the end of
processing—we either send back the success or send a failure with the cause of
the error.

The use of ask is a simple solution, but there are a few "gotchas" and issues to look
out for when using ask as the primary message patterns in Actors. Ask is a good
place to start with for building simple solutions, but it can sometimes be better to
design with tell as we'll look at shortly. Let's look at a few of the elements of using
ask that we need to be aware of.

Callbacks execute in another execution context
Note that in the preceding example, a local ActorRef variable is created to store
the sender()method's result. This is very important: this is necessary here and
you will no doubt bump into this at least once when you start working with
Akka. Because the lambdas are executed somewhere else, in another execution
context on another thread, the sender()method will return an unexpected value
when the code block in the lambda is running. This is a non-obvious issue to
beginners. In older Scala Akka examples, sender() was often written without the
brackets. It's recommended that sender()always be expressed with the brackets
in Scala as it does not have referential transparency (it doesn't return the same
value every time it's called)—it's clearer that this is a method call when you add
the brackets. In order for the correct ActorRef to be referred to, sender()must be
called in the main thread and the reference stored into a variable. That variable
will correctly be passed into the lambda's closure when it is executed. There is a
better way to handle the reply called Pipe, which we'll look at shortly, but this is
an important quality of closures to understand.

Chapter 3

[83]

Timeouts are required
Note that the example uses a single timeout and passes it to several asks. You cannot
ask an Actor for a reply without creating a bounded timeout. If the Actor that is
asked does not reply to the future before the timeout ends, the future will be failed.

Selecting the correct timeout value can be difficult without real data from
production systems under load. Setting the timeout too low will cause failures
to be reported for operations that would have succeeded. Setting the timeout
too high will force users to wait too long when operations might have failed due
to anomalies. To set timeouts, you'll want to have statistics on the operations in
production. You can't control the performance of systems you depend on, so it can
be difficult to get this correct.

Because every ask requires a timeout, if Actors are asking Actors that are asking
Actors, it's not easy to enforce a single timeout. If an error occurs at some point, it's
possible you'll see several timeouts in your logs, which can make debugging quite
difficult as shown in the following figure:

/user/myActor /user/myActor

CallingObject

actorRef: ActorRef ask,
2 second
timeout

ask,
4 second
timeout

In the preceding image, it's possible that the 2-second timeout causes the future to
fail, even if all of the code is working correctly and all systems are responding.

It may seem like a good idea to place a large timeout to avoid errors from occurring.
Placing arbitrary and large timeouts should be considered an anti-pattern as it
violates the responsive tenet of reactive design we try to adhere to when building
our applications. A 30-second timeout offers very little value in reality as a user
waiting for data has likely given up by the time the timeout has occurred. In most
use cases, if your users legitimately need to wait for more than 10 seconds for an
operation, it's possible your users won't be using your software for long. Obviously,
there are exceptions, but studies from Microsoft and Google have shown that user
behavior is impacted negatively if they have to wait for more than 2 seconds for a
page to appear in web applications.

Getting the Message Across

[84]

Timeout stacktraces aren't useful
Each ask you use has a timeout. In our example, the operation spans multiple asks,
so there are multiple places where timeouts can occur. The ask timeouts will throw
exceptions from Akka's scheduler thread rather than a thread local to the Actor,
so you won't be able to tell from printing the AskTimeoutExceptions stacktrace
specifically which ask operation timed out. It can be difficult to debug an application
when all you have is an exception like the following:

akka.pattern.AskTimeoutException: Ask timed out on [Actor[akka://
system/user/actor#778114812]] after [2000 ms]
 at akka.pattern.PromiseActorRef$$anonfun$1.
applymcVsp(AskSupport.scala:335)
 at akka.actor.Scheduler$$anon$7.run(Scheduler.scala:117)

One more thing to watch out for is if your actor throws an unexpected exception
and doesn't reply with the failure. It may appear that the error occurred due to the
timeout, but the cause might be elsewhere.

The lesson here is that when using ask, you should always reply to messages
with failures when errors are encountered in your code. If an Actor throws an
exception, the Actor will not reply with a message. In an Actor, you're responsible
for implementing all message handling behavior—if an actor expects a reply, Akka
will not implicitly handle any replies for you—you must always reply to messages
yourself when a reply is expected.

Ask is a pattern built on top of Akka—it's a useful helper, but there is no mechanism
in Akka to automatically reply to messages or fail Futures generated by the Ask
pattern. The Ask pattern creates a Scala Promise and a temporary (extra) Actor to
receive a reply that it uses to fulfill the Promise. There is no mechanism to make the
temporary Actor aware of an exception encountered in another Actor, so if you don't
reply to the temporary Actor the Ask creates, it will not fulfill the Promise, and the
timeout will fail the corresponding Future as in the following figure:

Chapter 3

[85]

/user/myActor /user/myActor

/user/myActor

/user/myActor

ask,
4 second
timeout

ask,
4 second
timeout

ask,
4 second
timeout

ask,
4 second
timeout

timeout error
cause is unclear

CallingObject

actorRef: ActorRef

Ask has overhead
The ask pattern may seem simple but it has some hidden overhead. First, Ask
causes Akka to create a new temporary Actor in the/temp path. That Actor awaits
the response from the Actor that receives the Ask message. Next, there is also the
overhead of the future. Ask creates a future that the temporary Actor completes.
It's not a huge overhead, but it is worth considering if your ask operations occur
with extremely high frequency. Ask can be simpler, but there are more efficient
solutions using only tell where performance matters.

Complexity of Actors and Ask
If you're simply asking your Actors, and they don't contain state, then you may
be better off using Futures alone. In the preceding examples Actors are used as an
asynchronous API by invoking them with ask. We could replace the Actors with
methods that give back Futures and our code would be equivalent and simpler to read.

For quite a while, I was of the opinion that it's better to not use Actors if you don't
have either:

• State and concurrency; or
• Distribution

If you aren't using Akka for remoting or you aren't using Akka for concurrent access
to state by encapsulating state in Actors, then it may not be obvious what the benefits
are compared to stateless classes that are asynchronous and non-blocking.

Getting the Message Across

[86]

However, I believe this is because I was writing Actor code with poor designs. It is
true that if you have no state, an asynchronous API is simpler than using Ask with
Actors. However, if you are designing with the "Tell Don't Ask" principle, then you
can have code that is simpler, better performing, and can be easier to debug when
using Actors. We'll look at tell next.

Tell
Tell is the simplest messaging pattern—however, it can take some time to learn
how to use it best, which is why it is being presented here after Ask. It is often
viewed as a "fire and forget" message delivery mechanism as no sender is specified;
however, request/reply style messaging can be completed with tell
when a little ingenuity is applied.

/user/receiver

CallingObject

actor:ActorRef

/user/sender

tell(receiver)

tell(receiver)

tell(sender())

Tell is a method of the ActorRef/ActorSelection classes. It can take a reply to as
an argument as well which becomes sender()in the Actor that receives the Message.
By default, in Scala, the sender is implicitly defined as the Actor that sent the message.
If there is no sender—for example, invoking ask from outside of an Actor—then the
response address default is no mailbox (called DeadLetters).

In Java, there are no implicits or default values, so you have to supply the sender.
If you don't want to supply any specific sender to reply to, you should use the
following convention:

• Use self() if sending from an actor:
actor.tell(message, self());

• Use noSender if sending from outside of the actor system:
actor.tell("message", akka.actor.ActorRef.noSender());

Chapter 3

[87]

• As covered in Scala, this is all default/implicit, so you get this for free
implicitly with the simple syntax:

actor ! "message"

This is the expected behavior with tell—the reply reference should be the Actor
sending the message or it should be none if it's not an Actor sending the message.
However, using a different sender can be quite important when using tell—we can
actually eliminate asks through some creative use of reply addresses and storing
state in Actors, as we'll see soon:

Designing with Tell
It may seem odd to have put ask before tell, as, theoretically, tell is a much simpler
message delivery mechanism. In building applications, it may seem natural to ask
several Actors and compose the Futures similar to what we did in the ask design
example. We covered several of the problems with ask, as well as the timeouts and
overhead associated with it, so there is motivation to look at other solutions. We can
do better by using tell.

Tell is often viewed as a fire-and-forget messaging pattern, but when designing,
changing how you think about objects and actors and how they interact can yield
better designs. If you're coming from Scala, you might find your designs become
simpler if you store a bit of state in Actors and if you create some temporary Actors
to handle certain tasks. This is counter-intuitive for the functional programmer who
avoids state. Object-oriented languages were originally message-driven and so we
can get a few hints about the lessons learned in design by reviewing some of the
good practices from SmallTalk culture.

Handling replies with Tell
Because the sender reference is available to send back a message, it's easy to reply to
a message. However, to handle a reply, we need to have the ability to recall which
message the Actor is replying to. If we store some state in the Actor about messages
that it expects a response to, then we can effectively "ask" an Actor without the
pitfalls of ask described earlier.

Getting the Message Across

[88]

For a very simple example of designing with tell, we can store some context in an
Actor with a map with a key and send the key in the message. Then, when a message
comes back with that key, we can restore that context and complete handling the
message. This allows us to use semantics similar to ask without the overhead of ask.

ClientActor

ServiceActorRef
Map[id: String, context: Any]

RequestMsg

ResponseMsg

id: String
request: Any

id: String
response: Any

ServiceActor

onRequest

tell

tell

This may seem like a lot of overhead when you can use ask, but if you're trying to
compose together many Actors, it removes the timeouts and extra Actor creation that
ask incurs. This lets us control where the timeout occurs.

Because there is no timeout with tell, we generally want to produce our own timeout
at some point in time.

Scheduling a Tell Timeout
We'll introduce the scheduler here as a minor element. The scheduler is capable of
repeating messages at an interval; however, it is most commonly used as a way of
deferring a tell. For example, if an Actor wants to send itself a "check-for-timeout"
message after 3 seconds, the scheduler is the mechanism that can be used to
accomplish that.

Very often in our Actors, we expect some event to occur before a certain period of
time elapses, and if that event has not occurred, then we want to fail in some manner.
The scheduler can be used to schedule such an event (for example, a timeout). The
following is an example of sending an Actor a timeout message after 3 seconds:

//Java
context().system().scheduler().scheduleOnce(Duration.create(3,
TimeUnit.SECONDS), actor, "timeout");

//Scala
context.system.scheduler.scheduleOnce(3 seconds, actor, "timeout")

We'll see how this comes into play shortly.

Tell Don't Ask–Procedural code gets information then makes decisions. Object-oriented code
tells objects to do things—Alec Sharp, SmallTalk by Example.

Chapter 3

[89]

The OO designers who worked in SmallTalk delivered a very important principle
in Object-oriented design, which translates quite well into the Actor paradigm—Tell,
Don't Ask.

This is saying that messages should be commands and that your Actors should be
combinations of state and behavior instead of invocations of procedures—just like
good object-oriented design. When you're designing, I'd recommend you take that a
step farther and consider avoiding ask between Actors to see what your designs look
like. This is a heuristic, so evaluate your designs, and the costs and benefits. You'll
often find tell will produce simpler, leaner flows.

Tell Don't Ask is actually more of an object-oriented design heuristic, but given some
of the pitfalls of the ask pattern covered, we may want consider this rule of thumb in
designing with Actors as well. Ask can be simple, so evaluate it when working with
Akka, but be aware of the alternative solutions as well.

Avoiding Ask with an Anonymous Actor
If you're invoking tell from outside of an Actor in plain objects, there is no immediately
obvious way to receive and handle a response apart from ask. As we've looked at,
between Actors, you can handle a response by capturing some state specific to the
current message in an Actor (for example, an ID). There is another option for handling
a reply as well—by using a new temporary Actor, we can describe the response to a
single message.

We'll cover using tell instead of ask in an example. In this example, we'll create a
temporary Actor to handle the response to a message. Note that this is very similar
to how Akka handles ask under the hood—it creates a temporary Actor to handle the
response sent to the sender to complete the future.

We'll demonstrate the receive block only (Java and then Scala):

//Java
public PartialFunction receive() {
 return ReceiveBuilder.
 match(ParseArticle.class, msg -> {
 ActorRef extraActor = buildExtraActor(sender(),
msg.url);
 cacheActor.tell(new GetRequest(msg.url),
extraActor);
 httpClientActor.tell(msg.url, extraActor);
 context().system().scheduler().
scheduleOnce(timeout.duration(),
 extraActor, "timeout", context().system().
dispatcher(), ActorRef.noSender());
 }).build();

Getting the Message Across

[90]

 }

//Scala
 override def receive: Receive = {
 case msg @ ParseArticle(uri) =>

 val extraActor = buildExtraActor(sender(), uri)

 cacheActor.tell(GetRequest(uri), extraActor)
 httpClientActor.tell("test", extraActor)

 context.system.scheduler.scheduleOnce(timeout.duration,
extraActor, "timeout")
 }

This looks a bit simpler because we're not composing any Futures, but there is an
extra actor that is created in the buildExtraActor method.

We'll demonstrate the buildExtraActor method in a moment, but we'll walk
through this first. The block gets the ParseArticle message and begins by creating
the extraActor. The term extra is a term attributed to Jamie Allen in his book
Effective Akka from O'Reilly publications where he demonstrates a similar pattern
which he refers to as the Extra Pattern.

After creating the extraActor, the receive block continues to send three messages:

• Send a message to the cache actor requesting the cached article that causes a
String to be sent back to the sender. Here, sender is supplied to the tell as the
extraActor

• Send a message to the httpClientActor requesting the raw article that
causes an HttpResponse to be sent to the extraActor

• Schedule a timeout message to be sent to the extraActor

This is different than the ask example because we don't wait for the cache to respond
in this particular example. It's possible to compose the requests in the extra Actor's
behavior, but for simplicity, here we'll send them both off and have the extra Actor
respond to whichever message is received first.

Chapter 3

[91]

The extraActor is an anonymous Actor that describes the response to the three
possible messages above:

• If it gets a response from the cache, respond with that to the originalSender
• If it gets an HTTP response, send that to the ArticleParser to parse and

have the article parser reply back with the ArticleBody
• If it gets an ArticleBody, the HttpResponse has been parsed, so we want to

cache the result and reply to the originalSender
• If it gets a timeout, send a failure back to the originalSender

The extraActor describes the response to the three messages, including how to get
the raw HTML article and then how to parse it. By putting all of this behavior into
a single anonymous Actor, which can only handle one of each type of the messages,
we can describe the response to the behavior in each case.

ServiceActor

ExtraActor

Akka's Scheduler

ArticleParseActor

CacheActor

HttpClientActor

Service Actor sends initial
requests

Extra Actor handles any
responses in its lifecycle

ExtraActor will request
parse of response from

HttpClient

Here is the code for the factory method for the extra Actor:

//Java
private ActorRef buildExtraActor(ActorRef senderRef, String uri){

 class MyActor extends AbstractActor {
 public MyActor() {
 receive(ReceiveBuilder
 .matchEquals(String.class, x ->
x.equals("timeout"), x -> { //if we get timeout, then fail

Getting the Message Across

[92]

 senderRef.tell(new Status.Failure(new
TimeoutException("timeout!")), self());
 context().stop(self());
 })
 .match(HttpResponse.class, httpResponse -> {
//If we get the cache response first, then we handle it and shut down.
 //The cache response will come back before
the HTTP response so we never parse in this case.
 artcileParseActor.tell(new
ParseHtmlArticle(uri, httpResponse.body), self());
 })
 .match(String.class, body -> { //If we get the
cache response first, then we handle it and shut down.
 //The cache response will come back before
the HTTP response so we never parse in this case.
 senderRef.tell(body, self());
 context().stop(self());
 })
 .match(ArticleBody.class, articleBody -> {//If
we get the parsed article back, then we've just parsed it
 cacheActor.tell(new
SetRequest(articleBody.uri, articleBody.body), self());
 senderRef.tell(articleBody.body, self());
 context().stop(self());
 })
 .matchAny(t -> { //We can get a cache miss
 System.out.println("ignoring msg: " +
t.getClass());
 })
 .build());
 }
 }

 return context().actorOf(Props.create(MyActor.class, () -> new
MyActor()));
 }

//Scala
 private def buildExtraActor(senderRef: ActorRef, uri: String):
ActorRef = {
 return context.actorOf(Props(new Actor{
 override def receive = {
 case "timeout" => //if we get timeout, then fail
 senderRef ! Failure(new TimeoutException("timeout!"))
 context.stop(self)

Chapter 3

[93]

 case HttpResponse(body) => //If we get the http response
first, we pass it to be parsed.
 articleParserActor ! ParseHtmlArticle(uri, body)

 case body: String => //If we get the cache response first,
then we handle it and shut down.
 //The cache response will come back before the HTTP response
so we never parse in this case.
 senderRef ! body
 context.stop(self)

 case ArticleBody(uri, body) => //If we get the parsed article
back, then we've just parsed it
 cacheActor ! SetRequest(uri, body) //Cache it as we just
parsed it
 senderRef ! body
 context.stop(self)

 case t => //We can get a cache miss
 println("ignoring msg: " + t.getClass)
 }
 }))
 }

Note that there are three possible outcomes:

• The cache responds with the body
• The http article comes back, is parsed and then cached
• Neither of these events occur before the timeout message

All three of these outcomes cause the extraActor to be stopped by executing
context().stop(self()); this Actor is short lived, then—it will not live more
than 3 seconds.

There is the case where the cache fails and the article comes back—this is a special
case because we need to parse the article still, so we send this message to the article
parser and then handle the response.

This looks like a bit more code, and it is, but it's actually lighter than the ask example
believe it or not:

• The ask example causes a future to be created for each ask
• The ask example causes a temporary Actor to be created for each ask

Getting the Message Across

[94]

Our example has no Futures and only one extra Actor. It's also simpler to
analyze errors:

• The ask example has three separate timeouts that can fail

Our example has only one timeout which we control - the timeout is either
encountered or else the success case occurs. In this approach, we can also log any
state in the temporary Actor when the timeout is encountered to understand exactly
what occurred. Future timeouts are not very helpful in comparison.

At the expense of a bit more code than the ask example, we're taking control over
the behavior instead of relying on Akka's ask implementation details, and in turn,
we're able to construct the solution to fit the exact use case. I've worked in teams that
prefer simple terse code so which solution you choose – tell or ask – will be up to you
and your team to decide. Explore both and understand their pros and cons. For any
performance critical areas of your code, tell can be more performant.

A good exercise here would be to change the extra Actor code only request or only
parse the article if the cache request fails to return a result. Don't be afraid to keep
state in the extra Actor to understand where it is in its lifecycle.

This demonstrates how a design can be changed from composing asks to a design
that avoids ask completely by using an extra Actor to deal with responses and
control the flow of messages between Actors. There are no panaceas, but you should
try to evaluate a few different designs when building and see which works best in
your use case.

Forward
While tell semantically sends a message to another Actor with the reply address
being the current Actor, forward is much like the case in forwarding mail—the
original sender stays the same but there is a new recipient.

Where tell lets you specify the reply address and it is implicit that the Actor that sends
the message, forward delivers a message with the reply address equal to sender.

Chapter 3

[95]

This is useful where a message received will be delegated to another actor to fulfill,
and the product of that Actor is needed by the original requester.

The intermediate Actor hands off the message, or possibly a new one, but the
original sender is passed with the new message. An example use case could be
getting a history from a bank account. There may be one History Actor who
then delegates the request for account history to either a ChequingAccount or
CreditCardAccount Actor. The message requesting the account history would be
forwarded to the more specific Actor to complete.

There is nothing special about forward, and you can accomplish the same thing
with ActorRef.tell (message, sender) by supplying the sender. It is semantically
clearer to use forward where it makes sense (especially in Scala where the ! method
is generally used):

//Java
actor.forward(result, getContext());

//Scala
actor forward message

Note that the context is implicit in Scala.

Getting the Message Across

[96]

Pipe
Very often you will have a future in your Actor that you want to send back to the
sender. We've covered that sender() is a method, so you have to store a reference to
sender when using callbacks in Futures:

//Java
final ActorRef senderRef = sender();
future.map(x -> {senderRef.tell(x, ActorRef.noSender()}));

//Scala
val senderRef = sender();
future.map(x => senderRef ! ActorRef.noSender);

Callbacks registered on a future, such as map in this example, will execute in another
thread, so they don't have access to the correct value from sender(). It's very
unclear why the sender is stored and it is hard to understand code like this. It likely
won't make sense to anyone who hasn't encountered this issue on their own. Quite
possibly, as you read this, you may wonder why you don't just call sender() in the
lambda. Try it out and you'll see unexpected results as sender() returns something
different when it's called from the lambda.

We can skirt around this entire confusing mess by using the Pipe pattern. Pipe
will take the result of a future and reply to the sender with the result of the future,
whether success or failure, which is exactly what we want:

//Java
pipe(future, system.dispatcher()).to(sender());

//Scala
future pipeTo sender()
pipe(future) to sender()

Again, pipe takes the result of the future and pipes it to the Actor ref provided.
In these examples, we show sender(), and because sender() is executed on the
current thread, it all behaves as expected without doing anything strange like storing
a reference in a variable. Much better!

Chapter 3

[97]

If this is at all unclear, trust me you will run into this problem sooner or later and
ask yourself what is wrong once you start seeing dead-letter messages in your logs.
Once you've gone through this once, you can pat yourself on the back and welcome
yourself to the async club. This is an important lesson and you will learn it as you
work with the APIs, especially when using ask.

Homework
A short recap on what was discussed in the chapter.

General learning
Before looking at the supplied source on GitHub, take the examples in this chapter
and try building them.

Using Ask designs, produce some Actors that do work and a cache for the results:

• Improve upon the design using pipe.
• Using Tell Don't Ask Principles, eliminate asks, and do the same work.
• Try to use Tell Don't Ask principles to compose requests to multiple Actors

from the extra Actor.

You'll likely need an anonymous Actor:

• In the previous design, schedule a timeout.
• Do the preceding but with the caching actor set up as a remote Actor.

Project homework
You'll have the ability to handle many types of data flows now.

Pick one piece of functionality and try implementing with ask:

• Try changing the behavior to avoid asking.
• Was the design better or worse? Hit the forums such as

http://www.codereview.stackexchange.com and discuss!

http://www.codereview.stackexchange.com

Getting the Message Across

[98]

Summary
This chapter covered relatively basic messaging concepts in Akka but has given
enough heuristics to help you grow into a competent designer overtime.

You should now have a basic understanding of the messaging patterns:

• Ask
• Tell
• Forward
• Pipe

Some of the more advanced pieces that have been included, include how Ask
works, and a few of the pitfalls you might encounter when using Ask, how to
simplify working with Futures with Pipe, and how to simplify redirecting
messages with Forward. In the next chapter, we'll look at different ways we
can handle state in Actors.

Chapter 4

[99]

Actor Lifecycle – Handling
State and Failure

In this chapter, we're going to cover the actor's life cycle—what happens when an
actor encounters an exceptional state and how we can change its state to modify its
behavior. We've looked at fault tolerance as a reactive tenet and covered how to store
state in an actor—we're going to expand on those topics here.

Before we get into failure and state, we're going to introduce what is known as
The Fallacies of Distributed Computing—a list of common misconceptions that
developers hold about systems communicating over the network.

This chapter will cover the following topics:

• The Fallacies of Distributed Computing
• What happens to an actor when it fails
• How an Actor can be supervised to handle failure
• How an Actor can change behavior with become()

and as Finite State Machines

The 8 Fallacies of Distributed Computing
Before we look at the examples, we'll have a quick look at the Fallacies of Distributed
Computing. The Fallacies of Distributed Computing are a set of incorrect assumptions
that a team from Sun Microsystems asserted inexperienced developers make about
systems working over a network. Let us have a look at the eight fallacies in detail.

Actor Lifecycle – Handling State and Failure

[100]

The network is reliable
The fallacy we hear is most often cited, and that seems to come into play the most
in systems today, is that the network is reliable. It is not. It's easy to think of a
remote system in the same way we would think of a local one—Akka further helps
us with this false assumption through location transparency by raising the level of
abstraction when talking over the network—and we interact with remote actors
exactly as we would with local ones.

We can reason that a service may be up or down, but what really constitutes a
service being available? Even if a service is running, traffic has to be able to make
it to the service. If you have two servers on a small network, it's very easy to think
that they will be connected and talking successfully all of the time. But something
will eventually fail between them. A router can crash and restart, the power can fail,
someone can unplug the wrong cable in the datacenter, and so on. When you start
to scale up, and you're talking about a thousand or ten thousand servers, the chance
of things being unavailable become more common and more likely. In Amazon
Web Server (AWS), it's actually extremely common for temporary network failures
to occur. In the system we are working on today, in AWS, we see disconnects and
periods of network failure daily.

Latency is zero
It takes time for messages to travel over the network and it takes time for responses
to come back. A remote Actor will incur a lot more latency overhead than one in
local memory. Before any data begins to be sent over the network, there are several
things that happen.

Hostnames are resolved to IPs (via DNS), IP addresses are resolved to their receiver's
MAC address (via ARP), a TCP connection is established by a handshake, and then
data starts to move. Data transferred over TCP is sent in sequenced packets, which
receive an acknowledgment back. With this complexity, you can imagine that
making a request to Google search takes some time just to leave your machine
and to get to Google.

Given the overhead of network communication, we can make an assumption that
it is better to make less calls with larger messages than it is to make more requests
with smaller messages. To put this into practice in our example database, we may
want to add a feature to send multiple SetRequests or multiple GetRequests in a
single message.

Chapter 4

[101]

Remember that testing with components in memory on your local machine is fine
in development, but you always need to consider the latency that the network
introduces and the impact that it has on the user's experience. This refers back to
one of the reactive tenets: responsiveness. It's not only real-time systems that this is
important for—the responsiveness of web applications is just as important as it is in
first-person shooters and stock-trading systems.

Bandwidth is infinite
Bandwidth is increasing quite steadily in our networking technology today, so this
is a bit less of a concern. Still, we don't want to send more over the network than
we have to. A network has a capacity as well, which must be considered. The more
traffic on a network, the more that communication is impacted by the noise. Also, the
more you have to move over the network, the longer it will take.

For latency, we discussed how our database should handle multiple SetRequests
and GetRequests in a single message to eliminate the number of requests made over
the network. For bandwidth, we strive to reduce the size of the messages sent over
the network. Gzip is often used in HTTP communication to reduce how much data
is sent on each request. In large-scale distributed systems, compression algorithms
that are easy on CPU (fast) are often used such as Snappy and LZO (for example,
Cassandra uses LZO for intra-node communication).

For our database to take this fallacy's consideration into effect, we would want to
reduce the size of the messages by using compression. Compression isn't free—it
has a cost on CPU resources. There are some specialized algorithms that focus on
performance rather than compression ratio—we could use one of these, such as
Snappy, to deflate the serialized messages before they are sent to the remote actor
and then inflate them again before de-serializing them.

The network is secure
It's easy to forget that the networks we operate on are not secure.

In a public space like a shared Wi-Fi network, any HTTP traffic can be intercepted
and read with minimal technical knowledge. The MySpace sign-on page used to
be sent over un-encrypted HTTP, so it was very common for people to sit in cafes
on Wi-Fi and steal your credentials. Even HTTPS can be intercepted and read via a
Man-In-The-Middle attack using ARP Spoofing—you'll get a certificate error still,
so humans are the weak point in the system.

Actor Lifecycle – Handling State and Failure

[102]

Just remember people can always read what you're sending on the network, so you
need to ensure that if it's sensitive information in transit, it's protected with secure
encryption such as AES-256 and that the keys are handled very carefully.

To apply this to our database, we'd want to allow encrypted communications to
occur and we would want to validate the identity of the sender.

Network topology doesn't change
When you build an application and deploy it into your company's infrastructure or
on the cloud, today your IPs looks one way but it is out of your control. Depending
on specific IPs asserts that the network will never change. This problem is exacerbated
when you move to the cloud, where stopping and starting your machine means it gets
a new IP.

You can work to reduce this impact by using DNS or service registries built with
technologies like Zookeeper, but it's important to assume your network will change.

There is one administrator
I've been in trusted positions with access to production systems for major brands
on a few occasions—often because I needed to do work in them. You, as the
developer, may not realize how many people will walk in and out of your network
and machines. It's possible you work with an external datacenter or in cloud
infrastructure—remember people can leave the company and different disciplines
require multiple people access the box, and so on.

Why would you care? The other day I deployed some software in test and
immediately found it was broken after the application started. I was not aware
that someone had logged into the system and changed some configuration. While
managing your software, you should try to eliminate as many touch points as
you can—especially around configuration. Not everyone will have the tools or
the understanding of the impacts that changes can incur. A simple change to one
component can have unexpected outcomes for other systems.

Transport cost is zero
There are costs in pushing data down to the transport layer. There is a resource cost
in serialization of data, compression of that data, pushing it to TCP buffers, and to
establish connections. No chatter over the network is free.

Chapter 4

[103]

Both in networks and in cloud infrastructure, there is an actual money cost to use the
network as well. There is a cost in maintenance in infrastructure, and there is a cost
incurred in use in the cloud.

The network is homogeneous
In your mind, imagine a network. It has communications coming into a firewall from
the Internet, which is forwarded to a load balancer. That traffic is then forwarded to
your application running on a Virtual Machine (VM). Now imagine you build and
deploy the exact same application in another environment.

Is the second network the same? Likely, every last component is different. Your
firewall might be from Cisco or it might be a home router. Your load balancer might
be from F5 or it might be a copy of nginx running on a VM. Your application may be
running on an IBM P595 or it may be running on a VMare ESXi host. The VM might
be running Ubuntu for an OS or it might be running IBM AIX Unix.

Does the load balancer round robin or does it sticky sessions? Does the load
balancer even support sticky sessions? These are all important questions to ask.
I've seen an application deployed into production where a load balancer in an early
cloud provider didn't support sticky sessions. A stateful application was deployed
without state replication. This was unplanned for as we assumed the network was
homogeneous; we assumed all load balancers were the same—they do NOT all have
the same feature sets.

Failure
The first fallacy of distributed computing is that the network is reliable. It is not.
It can and will fail. So all of our code has to correctly assume things will fail: that
the network will glitch; that a message will drop.

Remember the Reactive Manifesto? One of the tenets is that we React to Failure.
That is, we have to assume error cases will be encountered. A secondary benefit of
using Akka is fault tolerance. In this section, we will take a good look at how Akka
helps us handle failure.

For the example in this section, we will look at different ways we can react to failure
with our database.

Actor Lifecycle – Handling State and Failure

[104]

Isolating failure
Before we look at how Akka responds to failure, we'll look at some strategies we
should generally try to adhere to in our distributed applications: isolation of failures.

If every component was a ticking time bomb, you would want to ensure that if one
exploded, it didn't blow up, causing a chain reaction with other components going
down in the explosion. You might say, then, that we want to isolate the failure or
compartmentalize the component that can fail.

I think a better analogy is bulk-heading, which I first saw used as an example in
Reactive Design Patterns by Jamie Allen and Roland Khun. Ships and planes are
often compartmentalized in their hulls—they have many individual vertical walls
in the body of the ship. If there is a breach of the hull, only that one compartment is
compromised, so even if a ship hits a rock or ice, it may stay afloat as all of the other
compartments will not fill with water. This is an excellent example of how we want
to design our systems to respond to failure.

Redundancy
One of the ways we can keep a system up in the face of failure is to make components
redundant and ensuring that there is no single point of failure. If we have a service,
there are a few ways in which we can design the service for high availability with
redundancy.

One example is by using a broker. A broker is often used to allow new service nodes
to come online or to allow a service node to go offline without taking down the
system. Services will connect to the broker and pick up messages from the queue
and process them. JMS or RabbitMQ might be examples of a broker. Databases can
be used to broker messages. Note that a single broker is itself a single point of failure
and can also be a bottleneck. We'll look at clustering services without a broker later
in this book.

BrokerClient Service

Supervision
Erlang introduced fault tolerance into the Actor Model through a concept known as
supervision. At its core, the idea is to separate the response to failure from the thing
that can fail and to organize things that can fail into hierarchies that can be managed.

Chapter 4

[105]

Supervision hierarchies
Supervision is described in terms of Actor hierarchies—when Actors are created,
they are created as children of another actor that supervises them. The actor
hierarchies are shown as path structures and the hierarchies can be thought of much
like folders in a filesystem.

At the very top of the actor hierarchy is the root Actor at /. There is then an actor called
the guardian whose path is /user. Any actor created with actorSystem.actorOf()
function will be created as a child of this guardian actor (/user/yourActor).

If you create an actor from inside of an actor, you can create the actor as a child of the
actor by calling context().actorOf, which would make this actor in the next leaf of
the tree (/user/yourActor/newChild)

There are other actor hierarchies under the root as well. Supporting system actors
go under the system guardian at /system. There is a temporary actor hierarchy
under /temp where actors that complete futures go. You won't need to worry
about these too much—they are mostly transparent to the developer as used by
Akka's internals.

Remember the sushi restaurant example? Assuming that the restaurant has
an owner who oversees a manager and a manager who oversees the line staff
(chefs and waiters), then, we may have a hierarchy that looks like the following:

/user/owner/manager/waitor /user/owner/manager/chef

/user/owner/manager

/user/owner

Each actor that oversees other actors can then define its supervision strategy. We will
look at supervision strategies next.

Actor Lifecycle – Handling State and Failure

[106]

Supervision strategies and the drunken sushi chef
To understand supervision strategies, we'll look at an example. We have a sushi chef
who likes to drink a lot. His drinking often gets himself in trouble, and his manager
has to take action. There are a few different actions the manager can take. We'll look
at each in the following.

• Resume: The actor will continue with the next message
• Stop: Will stop the actor and take no further action
• Restart: Will create a new actor to replace the old one
• Escalate: Will pass the exception up to the next supervisor

To demonstrate these, imagine our sushi chef actor has to make sushi. He is very
skilled and to celebrate his beautiful dishes, he takes a drink every time he makes
a plate. The waiting staff pile up menu chits for the sushi chef to fill and he keeps
making sushi and drinking. If the sushi chef works all day, eventually he will get
into a bad state (to put it lightly).

If the actor makes a mistake—if he cuts his finger or drops a plate—this is probably
acceptable. The actor will be told to resume() in this case.

If the chef gets tired and makes an error indicating he may need to take a break,
then the supervisor may tell the actor to stop processing messages and let the actor
take a break. It's often up to the supervisor to take necessary actions in this case, for
example, the supervisor would need to tell the actor when to go back to work.

Once the sushi chef is drunk, he makes a really bad looking plate and starts hitting
on some customers. The manager—who is the supervisor of the chef—responds to
the exception. The manager declares the chef drunk and sends him home for the
day. The supervisor calls in another chef who picks up the next ticket and continues
with the orders. Retiring the old chef and bringing on a new one is the equivalent
to restart.

This next chef is young and can't handle his liquor. He gets particularly intoxicated
and knocks over a candle and sets fire to the place. The manager can't handle the
error—the roaring flame can't be fixed by sending this chef home drunk and putting
another chef in the burning kitchen! The manager calls his supervisor—the owner—
who tells him to shut down the restaurant and call the police immediately. This is
escalate, where the manager's boss (the owner) makes the decision. If an throwable is
escalated through the hierarchy to the guardian, then the application will shutdown.

Chapter 4

[107]

Defining supervisor strategies
Actors have a default supervisor strategy. If an actor is supervised without changing
the supervision strategy, the behavior will roughly be the same as in the drunken
chef example:

• Exception in a running actor: restart()
• Error in a running actor: escalate()
• Exception in an actor during initialization: stop()

There is one other case defined in the default behavior—ActorKilledException.
If an actor is killed, its supervisor will receive an ActorKilledException—the
behavior when receiving this exception is to stop().

Remember that /system path? All of the supervision events actually happen
in actors over there—the exception events are not your normal messages—it's
important to understand this if you're trying to reason about message delivery order.

We'll look at how we would define the manager's supervision strategy if we wanted
to describe the behavior.

In Java:

Following code denotes manager's supervision strategy in Java:

@Override
 public akka.actor.SupervisorStrategy supervisorStrategy() {
 return new OneForOneStrategy(5, Duration.create("1 minute"),
 akka.japi.pf.DeciderBuilder.
 match(BrokenPlateException.class,
 e -> SupervisorStrategy.resume()).
 match(DrunkenFoolException.class,
 e -> SupervisorStrategy.restart()).
 match(RestaurantFireError.class,
 e -> SupervisorStrategy.escalate()).
 match(TiredChefException.class,
 e -> SupervisorStrategy.stop()).
 matchAny(e -> SupervisorStrategy.escalate()).
 build()
);
 }

Actor Lifecycle – Handling State and Failure

[108]

We override the supervisorStrategy method in an actor returning a new strategy
(OneForOneStrategy, which we'll look at more closely shortly.) In Java8, we use
a DeciderBuilder to create a Scala PartialFunction for the strategy similar to
how we use the ReceiveBuilder for the PartialFunction for the receive block.
While Java lacks the pattern matching semantics that Scala has for producing Scala
PartialFunctions, the DeciderBuilder alleviates this, giving us a nice API for
pattern matching in Java8. We describe each case outlined in the scenarios in our
Sushi restaurant example and we also include a matchAny case at the end—if an
unknown Throwable is received, we have the manager call his boss.

Scala has pattern matching so it needs less boilerplate to express the same:

override def supervisorStrategy = {
 OneForOneStrategy(){
 case BrokenPlateException => Resume
 case DrunkenFoolException => Restart
 case RestaurantFireError =>Escalate
 case TiredChefException => Stop
 case _ => Escalate
 }
 }

In the Scala example, we override the supervisorStrategy method of the actor
again, and then define a PartialFunction matching on Throwables and returning
Directives. Here we describe all of the scenarios outlined in the example and any
unknown cases, we escalate.

In both Scala and Java, we describe how to handle each of the different Throwable
cases if they are thrown by the actor: if the chef breaks a plate, we tell them to resume
the next plate; if a chef is a drunken fool, we tell them to go home and bring on a new
chef; if the chef lights the restaurant on fire, we have the manager call his boss; if the
chef is tired, we tell him to take a break.

Note that the default behavior is generally suitable—if a running actor throws an
exception, we will restart the actor, and if it throws an error, we will escalate and
stop the application. If your actor can throw exceptions in the constructor, however,
this will cause the ActorInitializationException, which causes the Actor to stop.
Special care must be taken in these cases as your application will not resume.

Chapter 4

[109]

Actor lifecycle
We introduced restart, which is like sending a worker home and replacing him
with a new one. We'll look at what happens through the actor's lifecycle now.

There are a few methods/hooks that are called through an actor's lifecycle,
which you can override as needed.

• preStart(): After constructor
• postStop(): Before restart
• preRestart(reason,message): Calls postStop by default
• postRestart(): Calls preStart by default

The order of events in an Actor's lifecycle is as given in the following image:

start running

stop

restart

The supervisor sees any
Throwables thrown normally.

Actor is Running
4. receive

Actor is Killed
5. preRestart
6. postStop

Actor Starts:
1. Constructor
2. postRestart

3. preStart

Any throwables thrown here
cause

"ActorInitializationException"
to be encountered in

supervisor.

Restart starts a new Actor

Note that the preRestart and postRestart are only called on
restart. And they are called instead of the preStart and postStop
methods but by default call preStart and postStop. This lets you
decide whether you want to call the preStart and postStop methods
only once (when an actor starts or stops) or every time an actor restarts.

Actor Lifecycle – Handling State and Failure

[110]

This can be very helpful when designing. Imagine a chat application where each
user is represented by an actor that sends messages to an actor representing the chat.
When a user joins the room, an actor starts and sends a message so that the list of
users in the room can be updated. When an actor stops, it sends another message
so that the user can be removed from the list of users displayed as currently active
in the chat. With the default implementation, if the actor encounters an exception
and restarts, it will unpublish and republish the user in the chat window. We can
override preRestart and postRestart so that the user will only add itself to the list
and remove itself from the list when the user actually joins and leaves the chat.

chat

(unused methods)

preRestart()

postRestart()users:
- fred
- jane

fred: lol
jane: you funny!

postStart() postStop()publish remove

Messages in restart, stop
It's important to understand what happens to a message when an exception is
encountered and to take an appropriate position depending on your application.
Supervision strategies can be defined to retry failed messages any number of times
before raising the exception to the supervision strategy. You can also time bound
the failures so that you can retry up to 10 times or retry for 1 minute—whichever
comes first:

new OneForOneStrategy(2,
 Duration.create("1 minute"), PartialFunction)

 OneForOneStrategy(
 maxNrOfRetries = 2) {
 case _: IOException Restart
 })

Once a message raises an exception, it will be dropped. It will not be tried again—the
Supervisor will execute the supervision strategy, and in the case of resume or restart,
the next message will be processed.

In the case of a worker queue, you likely want to retry the job a few times and then
have it fail completely.

Chapter 4

[111]

Terminating or killing an Actor
Actors can be stopped in a few different ways. You can stop an actor by doing any of
the following:

• Call ActorSystem.stop(actorRef)
• Call ActorContext.stop(actorRef)
• Send a PoisonPill message to the actor, which will stop the actor

when processed.
• Send a Kill message to the actor, which will stop the actor when processed.

Calling context.stop or system.stop will cause the actor to stop immediately.
PoisonPill will cause the actor to stop when the message is processed. By
contrast, Kill will not stop the actor directly, but will cause the actor to throw an
ActorKilledException which is handled by the supervision behavior—you can
decide how you want to respond in those cases.

Lifecycle monitoring and DeathWatch
Supervision describes a mechanism for responding to a child actor's states—it's also
possible for an actor to monitor any other actor. Calling context.watch(actorRef)
will register an actor for monitoring another actor for termination and calling
context.unwatch(actorRef) will unregister. If the watched actor stops, a
Terminated(ActorRef) message will be sent to the watcher.

Safely restarting
When we build reactive systems, we design them anticipating failure. We need to
ensure our systems respond to failure correctly. One of the mistakes that I've seen
out in the wild is to initialize an actor's state after it has started without handling the
failure case. If you send an actor some initialization messages, with information that
is important to its state, you have to be very careful because that information may be
be lost in a restart.

Let's demonstrate: Imagine if we make a database client actor with no arguments,
and then we tell the actor where to connect. This doesn't seem unreasonable—very
often in Java, we set fields in objects after creating them. We also know that Actors
can safely store state, so nothing seems wrong with this scenario yet:

ActorRef db = system.actorOf(DbActor.props());
 db ! Connect(host = "10.0.8.14", port = "9001");

 val actor = createActor(DbActor.props);
 actor.tell(new Connect("10.0.8.14", "9001");

Actor Lifecycle – Handling State and Failure

[112]

Now we have an actor, and, once it processes that first message, it's initialized and
connected to a remote database.

We send messages to the actor for a bit, and then the actor encounters an exception
caused by network reliability. The actor will restart at this point. When the actor
restarts, it will call preRestart(), and then the original actor will stop. All of the
state in that actor will go away with it. Then a new object is created for the Actor.
That actor's constructor will run, then postRestart will be called, and then the actor
will be up and running.

That Connect message is now lost. You can write some extra code to handle this
scenario. You could write a supervision strategy or use Akka's lifecycle monitoring
(DeathWatch) to respond to these failure conditions. But, the point is, for this simple
initialization message, you have to handle this case now and risk making an error
in handling the client. A much better implementation is to pass the initialization
information into the constructor of the actor via Props:

ActorRef db = system.actorOf(DbActor.props(host = "10.0.8.14", port =
"9001"));

 val actor = createActor(DbActor.props("10.0.8.14", "9001"));

This seems better—the actor now gets all of the information in its constructor and
it connects automatically. If we start sending the actor messages and it restarts, it
will recover correctly because it has the connection information in its constructor
arguments..` But, if the actor encounters an exception during initialization, perhaps
trying to connect to the remote database, then the default supervision behavior is
to stop. So, we have a scenario where the actor can restart safely if running, but, if
it can't initialize, we have to write extra code in supervision behavior to handle the
scenario where the actor can't connect to the database on startup.

It is common to have an actor send itself an initialization message and to have it handle
changing its state while running, instead of potentially failing during initialization.
To do this, on postStart, an actor might send itself a Connect message:

public void postStart(){
 self().ask(new Connect(), null);
 }

 override def postStart = self ! Connect

Now that actor can only fail when it's running, and it will restart successfully,
continuing to try to connect to the database until it's available.

Chapter 4

[113]

If you're paying attention, you might reason that you could have the actor send itself
the Connect(host, port) message on the preRestart event. If the actor were to
drop that message for any reason, maybe because its mailbox was full or because a
restart caused it to be dropped, then that Connect message could be lost—it's simpler
and safer to use the constructor for an actor that is critical to the actor's functioning.

This is a quick and dirty look at building an actor that will just continually retry
its connection.

It's important to note that there are some missing details and problems with this
still. The first is that we have no way to handle the messages the actor will receive
before it connects. And the second is that the mailbox will be flooded if the actor
can't connect for a large period of time.

We'll cover handing state in this chapter. Mailbox problems are covered in
Chapter 7, Handling Mailbox Problems.

State
We have looked at how it is safe to store state in an Actor—how Actors give us a
lock-free way to deal with state in concurrency. We're going to look at how an actor
can change its behavior in the face of different states now.

There are a few mechanisms you can use to change behavior in an actor:

• Conditionals based on an Actor's state
• Hotswap: become() and unbecome()
• Finite State Machine (FSM)

We'll look at each after introducing the example that builds on our key-value
datastore example.

Online/Offline state
Let's revisit the first fallacy of distributed computing. Not only is the network not
reliable, but the components that we try to talk to over the network could be down.
We want our application to handle network misses gracefully without dropping too
many messages.

To continue to develop our database example, we'll improve the remote client so that
it deals with network partitions such as temporary failure of network components or
database service restarts as gracefully as possible in the case of a client-server model.

Actor Lifecycle – Handling State and Failure

[114]

What we looked at in Chapter 2, Actors and Concurrency was an example where we
had a remote key-value datastore, which we connected to from a client. We did an
actorSelection to get a reference to the remote actor and then started sending it
messages. What if the database isn't ready when we start our application? Or, what if
the database goes offline for a moment?

Transitioning state
One of the most common examples I have seen of the use of state is to determine if
a service is online or offline. We examined this in the section on failure, and looking
at what happens to actors when they restart. We'll continue with the example of a
database client actor connecting to a remote database.

Stashing messages between states
If the bartender at our sushi restaurant gets a request to pour a beer while the keg is
being changed, he won't be able to take care of that order. But he will be able to at
a later point in time, once the new keg is ready. The bartender won't simply throw
away the order because the keg isn't ready—he will set aside the order for a minute
and process other orders that he is able to (like pouring more sake for the chef).
Once the keg is ready, then he'll put any beer orders back in his queue to process.

Similar to this example, it's very common for an Actor to be in a state where it can't
process certain messages. If the database client is offline, it isn't going to be able to
handle any messages until it is online. We could have the client connection continue
to restart until it connects, in which case it will drop every message it encounters
until it's able to connect successfully. Or we could have the client set the messages it
cannot handle aside while waiting for the client to enter a connected state.

Akka has a mechanism called stash to do this. Stashing messages puts the message
off to the side in a separate queue that it cannot currently handle:

if(cantHandleMessage){
 stash();
 }else{
 handleMessage(message);
 }

Unstash puts the messages that were set aside back into the mailbox queue for the
actor to handle.

changeStateToOnline();
 unstash();

Chapter 4

[115]

To use stash in Java, your Actor will extend AbstractActorWithStash:
class RemoteActorProxy extends AbstractActorWithStash {
 [...]
 }
To use stash in Scala, you mix in the stash trait:
class RemoteActorProxy extends Actor with Stash {
 [...]
 }

We'll use this mechanism now to demonstrate how to make a client switch between
online and offline states.

NOTE that stash() and unstash() can be handy when you
expect state to change quickly, but states where messages are
stashed should always be time-bound or else you risk flooding
your mailboxes.

Conditional statements
The most naive approach is to store state in the actor and then have a conditional
statement decide what behavior the actor should take.

You can store a Boolean to say if you're connected to the database, and if you're
connected, try to handle the message. If you're not, you can fail.

The following is a Java example of storing state and handling behavior with
conditional statements:

private Boolean online = false;
 public PartialFunction receive() {
 return RecieveBuilder.
 match(GetRequest.class, x -> {
 if(online) {
 processMessage(x);
 } else {
 stash();
 }
 }).
 match(Connected.class, x -> {
 online = true;
 unstash();
).
 match(Disconnected.class, x -> online = false).
 build();

Actor Lifecycle – Handling State and Failure

[116]

Here is the Scala equivalent to storing state and changing behavior
with conditionals:

 var online = false
 def receive = {
 case x: GetRequest =>
 if(online)
 processMessage(x)
 else
 stash()
 case _: Connected =>
 online = true
 unstash()
 case _: Disconnected =>
 online = false
 }

This conditional statement is the most basic way to express different behavior based
on state stored in an actor. We store a Boolean called online that represents if the
actor is connected or not. If the actor is connected, it processes the message. If it is not
connected, it stashes the messages, as covered previously. If it receives a Connected
message, then it changes its state to be online and unstashes all of the messages.
Because of the use of stash/unstash, once it comes online, the actor will then
process any messages it stashed.

It's very common for an actor to store state and behave differently depending on that
state. Using conditionals is a very procedural approach to dealing with behavior and
state. Fortunately, Akka gives us a couple of better options.

Hotswap: Become/Unbecome
The code with conditionals was not very pretty. It certainly was not very declarative.
Akka gives us become() and unbecome() to manage behavior that can improve the
clarity of the code considerably. In the actor's context(), there are a two methods:

• become(PartialFunction behavior): This changes the actor's behavior
from the behavior defined in the receive block to a new PartialFunction.

• unbecome(): This reverts the actor's behavior back to the default behavior.

Chapter 4

[117]

Let's look at how using this mechanism can improve our previous example:

public PartialFunction receive() {
 return RecieveBuilder.
 match(GetRequest.class, x -> stash()).
 match(Connected.class, x -> {
 context().become(online);
 unstash();
 }).
 build();
 }

 final private PartialFunction<Object, BoxedUnit> online(final
ActorRef another) {
 return RecieveBuilder.
 match(GetRequest.class, x -> processMessage(x)).
 build();
 }

Here is the Scala equivalent:

 def receive = {
 case x: GetRequest =>
 stash()
 case _: Connected =>
 become(online)
 unstash()
 }

 def online: Receive = {
 case x: GetRequest =>
 processMessage(x)
 case _: Disconnected =>
 unbecome()
 }

This has better readability than conditional statements. Each state's behavior is
described in its own PartialFunction where pattern matching and behavior
are described. This lets us read the behavior of the actor in its different states
independently.

The actor starts in the offline state where it will stash messages it is not able to
respond to (GetRequest). Those messages get set aside until the Connected
message is received. Once the Connected message is received, then the actor calls
become to change its behavior to the online state described in the online method.
At this time, the actor also calls unstash to put the messages set aside, back into the
queue. Now all of the messages will be processed with the new behavior.

Actor Lifecycle – Handling State and Failure

[118]

If the actor receives a Disconnected message, then it calls unbecome, which will
revert the actor to its default behavior. Note that any number of receive blocks can be
defined and swapped between. Hotswap can handle mostly any behavior changes
that might need to be handled in an actor as it changes behavior. This is a nice easy
abstraction for producing readable actors.

Stash leaks
The examples covered so far using stash have a problem—if the connect message
takes too long to be received, or is not received, then messages will continually be
stashed until the application runs out of memory or the mailbox starts dropping
messages (mailboxes are covered further in a later chapter). Wherever using
stash(), it's a good idea to put a boundary on how much time can pass or how
many messages can be received before taking action.

The most basic way to do this is to schedule a timeout message to be sent to the actor
after a certain period of time.

We can schedule one message in the actor's constructor or postStart hook, and
then when it is received, check that the actor is connected. If it's not connected, then
the actor can escalate the problem and have the supervisor take action:

system.scheduler().scheduleOnce(Duration.create(1000, TimeUnit.
MILLISECONDS),
 self(), CheckConnected, system.dispatcher(), null);

If the actor receives the message and it is online, it will be ignored. If the actor
receives the message and it is not online, then it will throw an exception:

 .match(CheckConnected.class, msg -> throw new
ConnectTimeoutException())
case _: CheckConnected => throw new ConnectTimeoutException

Finite State Machines (FSM)
There is another tool for handling state in actors: Finite State Machine (FSM). Much
like hotswap, FSMs have state and behavior that changes based on state. FSM is a bit
heavier of an abstraction than hotswap and requires more code and types to get up
and running, so hotswap will usually be a simpler and more readable option.

Chapter 4

[119]

We have a good example for connected/disconnected to use in the client—we'll keep
that in place for the basic client and look for other ways we can improve the client/
server communication.

The Fallacies of Distributed Computing were introduced earlier in this chapter.
One of the points is that there is a cost in latency for every request and response over
the network (fallacy: latency is zero). Because there is a cost to every request and
response, reducing the number of times messages are sent and responded to can cut
down on total time spent waiting. To improve our client and server behavior, we
can reduce how many messages are sent over the network by combining them into a
smaller number of requests.

Using traditional request/response protocols, an application will make a request
over the network and then wait for the response to continue processing messages. In
an application where we need to read multiple records from a database, the typical
flow may look something like the following:

1. Client: Send GetRequest(user) over network.
2. Server: Reply to client with user data.
3. Client: Wait for Success response.
4. Client: Send GetRequest(article) to server.
5. Server: Reply to client with article data.
6. Client: Wait for Success response.
7. Client: Return Success response to create user profile request

The time taken for a signal to be sent plus the acknowledgment to be received is
called Round-trip Delay Time (RTD or RTT). One of the Reactive Tenets is to
be responsive to our users, so we want to eliminate the amount of time we spend
waiting for messages to travel over the network.

One way we can improve our datastore API is to allow the datastore to accept a list.
This would let us send multiple operations in a single request:

ask(remoteActorSelection,
 Arrays.asList(
 new SetRequest(id, user, sender),
 new SetRequest("profile-" + id, profile, sender)),
 timeout);

 remoteActorSelection ? List(
 SetRequest(id, user, sender),
 SetRequest("profile-"+id, profile, sender)
)

Actor Lifecycle – Handling State and Failure

[120]

Note that on the preceding snippet showing the list, we've included a sender in the
messages to allow us to complete futures or reply to Actors.

Trying to create a single list in an application request could prove to be inconvenient
to the users of our library. We can improve the client API to handle this concern.

We'll create an actor to use in our datastore client that sends messages to a
remote database actor once several messages have accumulated or once a Flush
message is received. By doing this, we put the concern of gathering and sending
messages in one actor to adhere to single responsibility principle. (Note that
this example is similar to the one in the Akka documentation for FSM—you can
see the documentation if you need a quick reference or want to see a different
implementation.)

The FSM types have two parameters: State and Container. We'll look at defining
those and then we'll look at building the FSM.

Defining states
The FSM describes its state a bit differently than other actors we have looked at.

For our FSMs, we will improve on the hotswap example to store messages in the
actor instead of stashing them:

• Disconnected: Not online and no messages are queued
• Disconnected and Pending: Not online and messages are queued
• Connected: Online and no messages are queued
• Connected and Pending: Online and Messages are Pending

We use an enum in Java for the states:

enum State{
 DISCONNECTED,
 CONNECTED,
 CONNECTED_AND_PENDING,
 }

In Scala, we can use case objects instead:

sealed trait State
 case object Disconnected extends State
 case object Connected extends State
 case object ConnectedAndPending extends State

Chapter 4

[121]

Defining the state container
We've described the states, now we need to define the state container for the actor.
The state container is where we will store the messages. The FSM allows us to define
the state container and change it between states, so our use case maps quite nicely to
the FSM as we'll change the state container when we change between states.

For our state container, we'll store a list of requests to be processed on a flush event:

public class EventQueue extends LinkedList<Request> {}

In Scala, we'll use a type definition for this purpose:

object StateContainerTypes {
 type RequestQueue = List[Request]
 }
public class Flush {}
case object Flush

Now we're ready to build the actor's behavior.

Defining behavior in FSMs
First, FSMs must extend the base traits.

In Java8, we extend akka.actor.AbstractFSM<S, D>

public class BunchingAkkademyClient extends AbstractFSM<State,
RequestQueue>{
 {//init block
 }
 }

Note that we create an init block—we describe the behavior in this init block.

In Scala, we extend akka.actor.FSM[S, D]:

class BunchingAkkademyClient extends FSM[State, RequestQueue]{
 }

In the actors, we can now use the FSM API to describe the behavior in different
states. First, we call the startWith method to describe how the actor starts:

{
 startWith(DISCONNECTED, null);

 }
 startWith(Disconnected, null) //scala needs no init block!

Actor Lifecycle – Handling State and Failure

[122]

Then we describe how different messages are responded to in different states and
how the state changes depending on the message. There are a few ways to describe
the behavior. The one that you'll be most comfortable with is calling when (S state,
PartialFunction pf). We can build the behavior for each case by calling the when
statement several times.

In Java, we can build a partial function again using tools that Akka gives us similar
to the ReceiveBuilder.

We'll describe each of the states and the response to Flush, Connected, and Request
messages:

 when(DISCONNECTED,
 matchEvent(FlushMsg.class, (msg, container) ->
stay())
 .event(GetRequest.class, (msg, container) ->
{
 container.add(msg);
 return stay();
 }).event(Tcp.Connected.class, (msg,
container) -> {
 if(container.getFirst() == null){
 return goTo(CONNECTED);
 }else{
 return goTo(CONNECTED_AND_PENDING);
 }
 }));

 when(CONNECTED,
 matchEvent(FlushMsg.class, (msg, container) ->
stay())
 .event(GetRequest.class, (msg, container) ->
{
 container.add(msg);
 return goTo(CONNECTED_AND_PENDING);
 }));

 when(CONNECTED_AND_PENDING,
 matchEvent(FlushMsg.class, (msg, container) -> {
 container = new EventQueue();
 return stay();
 })
 .event(GetRequest.class, (msg, container) ->
{
 container.add(msg);
 return goTo(CONNECTED_AND_PENDING);
 }));

Chapter 4

[123]

 scala.PartialFunction pf = ReceiveBuilder.match(String.class,
x -> System.out.println(x)).build();
 when(CONNECTED, pf);

And for Scala, we use pattern matching to describe the PartialFunction in each
state with when(state):

 when(Disconnected){
 case (_: Connected, container: RequestQueue) =>
 if (container.headOption.isEmpty)
 goto(Connected)
 else
 goto(ConnectedAndPending)
 case (x: GetRequest, container: RequestQueue) =>
 stay using(container :+ x)
 }

 when (Connected) {
 case (x: GetRequest, container: RequestQueue) =>
 goto(ConnectedAndPending) using(container :+ x)
 }

 when (ConnectedAndPending) {
 case (Flush, container) =>
 remoteDb ! container;
 container = Nil
 goto(Connected)
 case (x: GetRequest, container: RequestQueue) =>
 stay using(container :+ x)
 }

In Both the Java and Scala examples, we describe the three states. The Disconnected
state will store messages or go online. It will ignore messages other than Connected
or GetRequest.

In the Connected state, we only care about messages that make us transition to the
ConnectedAndPending state.

Finally, the ConnectedAndPending state can either flush or add a request to the
container. In Scala, the container is an immutable type, so we pass a new container
through the state changes.

Note that we ignore messages in some states or process them in others. We'll ignore
the Flush command if there are no messages to flush, but we'll process it and move
back to the Connected state with no pending messages after a flush.

Actor Lifecycle – Handling State and Failure

[124]

The actor has to return a description of states that it either stays in or moves to in the
FSM, which means that, compared to hotswap, the FSM requires a more descriptive
actor. There is some boilerplate to using FSM, but it can produce clearer actor code
in some cases. It's possible to use either hotswap or FSM for actor with different
behavior in states. You can evaluate which will produce more usable code for your
use case. FSM is another tool in your toolbelt—in many cases, hotswap will be
enough and simpler, but FSMs might have maintainability benefits in some cases.

The last thing we do in the block is call initialize():

initialize();

Using restarts to transition through states
Note that the actor does not have any disconnect message or behavior. If we
encounter an exception in our actor's state, the easiest way to transition back to
disconnected is to simply throw an exception and have the actor restart. Very often
this will be the simplest and most reliable way to respond to an exceptional case.
Once your actor is running, do not be afraid to restart your actors! You know that the
piece of the actor system that is encountering the problem will simply be recreated.
The Akka team's blog is called "Let IT Crash" because of the attitude that Akka takes
to the reliability of our software. If an exception is thrown, Akka takes care of it for
us by recreating the piece of our software that fails.

The best way to handle understanding if the actor is connected is to get a message
from the remote actor every couple of seconds. This is called a "heartbeat." We could
build a heartbeat that checks that the actor is responding, and, if it is not, then we
could restart the actor and log the exception. In our FSM example, if we restarted
after a couple of missed heartbeats, the actor would dump any pending messages,
which, while it would drop them, would mean that the application wouldn't leak
too much memory. When the remote database finally becomes available, then the
application will resume behavior as normal.

Homework
• Take the Akkademy DB from Chapter 2, Actors and Concurrency and

implement a Connected Message—Have the client send a Ping and
respond with Connected

• Returning from the previous chapter, Instead of Ping and Connected
messages, use Akka's Identify message using the preStart hook to determine
if the remote actor is available. (See documentation.) Use this to acquire an
ActorRef for a remote actor and use this instead of the ActorSelection.

Chapter 4

[125]

• Continuing to use Identity and an ActorRef, implement a connected state in
the client using hotswap.

• Every 2 seconds with the Identity message. Have the client restart if it misses
2 response

• Instead of sending a ping and receiving a response, is it possible to have the
client subscribe to a heartbeat message that is sent every two seconds?

• Update the client to bunch messages using FSM. Do you think hotswap
or FSM is more appropriate for this?

• Implement supervision to have the actor log any restarts it encounters
(such as two missed heartbeats)

Summary
We looked at the Fallacies of Distributed Computing to better understand some
of the characteristics that the network has and which will affect our application's
reliability and performance.

Because our actors can encounter problems—both in the network and in their
internal state—we examined how actors move through their lifecycle. We looked at
how supervision can be used to build responses to failures and to customize how
actors respond when starting, stopping, and restarting.

We also covered different ways in which an actor's behavior can change depending
on its state. We covered how Hotswap and FSM can improve the readability of an
actor that does have behavior that changes through state instead of simply using
conditionals.

At this point, we can build resilient applications that react to errors and can clearly
describe behavior in response to state.

In the next chapter, we will cover scaling up an application to better utilize the
hardware it is running on.

[127]

Scaling Up
Scaling up refers to making better use of hardware from a single machine. Akka
can help us scale up more easily to make better use of our hardware, with very little
effort. In fact, generally, to efficiently utilize your hardware, you will not need to do
much, but it's important to understand a few basic techniques.

We will cover the following topics in this chapter:

• The emergence of multicore computing
• Utilizing multiple cores with futures
• Utilizing multiple cores with routers and actors
• Utilizing dispatchers to isolate performance risk

Note that while this chapter does talk about using Akka for distribution problems,
it will only cover a single application running on a single node and will not look at
how to utilize multiple servers to scale your application. However, the next chapter
will cover scaling out, utilizing multiple machines, and will look at how to build
clusters of applications that communicate over the network using Akka.

Moore's law
Moore's law states that, every 18 months or so, transistors per square inch in
integrated circuits double. This used to be correlated to CPU clock speed doubling
every couple of years, but CPU clock speeds are no longer increasing at the same rate
that they once were.

www.allitebooks.com

http://www.allitebooks.org

Scaling Up

[128]

What we see today is that processors in environments—for example, servers,
computers, and phones—are hitting the market with more and more CPUs and
cores. My phone has 6 cores, my workstation at work has 12 virtual cores via a
Xeon CPU, and the VMs in AWS can have up to 40 virtual cores. These changes
in consumer and server hardware mean that we need to design our software
differently—if your application runs on a single thread on an 8 core PC, you'll only
be able to utilize one core effectively. Our applications need to be able to utilize these
resources—if we're running an application on a single thread, then we're only able
to use one of those cores. Today, as software engineers, we need to write concurrent
software to be able to take advantage of the hardware our software runs on.

The term "scaling up" means that, when we provide additional resources to a single
system—such as additional CPU cores or memory—the application will utilize them.
If we have a single server and we give an application more resources, it should be
able to utilize those resources running. In cloud services, if we need it to serve more
traffic, we might replace the instance with a larger one with more cores. Assuming
our application can utilize the resources, we have scaled up our application.
(Conversely, when we say scaling out, we mean that we are adding resources to a
system by adding more machines or VMs instead of just using bigger machines or
bigger VMs.)

Given that most environments we deploy our code to today are going to have several
virtual CPUs available, we need to change how we think about writing code to
utilize the hardware effectively. It is your duty as a modern engineer to be able to
tackle these problems safely and effectively. Given that we are getting more cores
instead of more processing speed on a core, we need to design our applications to
utilize multiple cores by handling multiple streams of work in parallel.

Multicore architecture as a distribution
problem
Utilizing multiple cores in an application can seem like a difficult problem to
approach. Traditional thread-based abstractions were very difficult to get right.
When threads share access to mutable state, it's easy to build in race conditions that
don't present themselves until you've deployed and are running your app at scale.
Tim Sweeny has said before that, in a concurrent world, imperative is the wrong
default. Fortunately, for us today we have different abstractions that we can use
to utilize all of those cores available to us, and they're much easier to build correct
concurrent software on than thread abstractions using synchronization and locking.

Chapter 5

[129]

It turns out that utilizing multicore architecture can be looked at as a distribution
problem—we want to take some work and run it somewhere else, either on another
CPU or another machine. When working with actors in Akka, the differences
between scaling up and scaling out can begin to blur. We can start to ignore the
differences between another machine or another core, and instead only think
about the problem as sending a message to an actor. We want to send some work
somewhere else to be done, and then, at some point in time, we'll receive a response
to the request. Looking at scaling up is a great way to begin to understand how you
might eventually scale out—if you can do work across 8 cores with Actors, doing
work across 8 machines is a small step from there.

The focus of this chapter is on specifically utilizing multiple cores rather than
utilizing multiple machines, so we'll highlight the details in that context. The primary
mechanism for utilizing multiple cores is parallelism—our applications must do
multiple things at the same time. Essentially, we want to separate work into discrete
pieces and run the work in different places at the same time to utilize all of the cores
that are available.

There are two abstractions in Akka that you can use to do work in parallel across
cores: Futures and Actors. We'll look at both of these abstractions in relation to doing
heavy computation in parallel at this point. We will still look at how we can better
utilize our hardware using both of these abstractions. We'll also talk about when one
might be better to use than the other in this context.

Choosing Futures or Actors for
concurrency
Both Actors and Futures can be used for concurrency, but which is the correct
abstraction to use?

After working with Akka a bit, in the beginning of your journey toward creating
highly scalable event-driven systems, you may likely start using Actors everywhere
in your design. You may think that the correct way to approach every problem is to
use an actor. As the old proverb goes, if you have a hammer, everything can start to
look like a nail.

It turns out that deciding whether to use Actors or Futures is actually not
a simple question to answer. There is a common rule of thumb I've heard
people citing—"Futures for Concurrency, Actors for State."

Scaling Up

[130]

That is to say that, if you have any state, then you might immediately think of using
actors, and if you have no state and only want concurrency, then you can look at
futures. While that's a good rule of thumb, it's actually an oversimplification of the
problem as there are several use cases where actors can give you designs that are
easier to debug and maintain. You'll often want to evaluate both for your use case
and consider the design simplicity.

Doing work in parallel
To demonstrate how we can do work in parallel with Actors and Futures, we'll start
with a simple use case. We need to do some long-running work and we need to do it
many times. Earlier in this book, we looked at an example of parsing article body text
from a web page. We'll revisit this example using the BoilerPipe library to parse
the contents of a page. The article parsing logic might look like the following:

public class ArticleParser {
 public static Try<String> apply(String html) {
 return Try.ofFailable(
 () -> de.l3s.boilerpipe.extractors.ArticleExtractor.
INSTANCE.getText(html)
);
 }
}

object ArticleParser {
def apply(html: String) : String = de.l3s.boilerpipe.extractors.
ArticleExtractor.INSTANCE.getText(html)
}

This gives us some work that we can do in parallel to examine how we can scale up
to better use a multicore environment using futures and actors.

Doing work In parallel with futures
Futures are highly composable and can be a good fit for parallel processing.
Using future function composition techniques examined in Chapter 2, Actors and
Concurrency, we know that we can do asynchronous work safely and with fairly
minimal effort. If we have a collection of items we need to process, we can do it in
parallel with futures in very little code.

Chapter 5

[131]

In the following, we have a List of Strings called articleList containing web pages
from articles and an HTML page of an article. We want to process the list with
Futures for higher concurrency to better utilize system resources. We'll look at how
we can do this using Java first:

 List<ComposableFuture<String>> futures = articleList
 .stream()
 .map(article ->CompletableFuture.supplyAsync(()
->ArticleParser.apply(article)))
 .collect(Collectors.toList());
 Future<List<String>>articlesFuture = com.jasongoodwin.monads.
Futures.sequence(futures).get();

Note that we'll use the sequence function from the better-java monads library to help
us work with multiple futures—it contains a sequence method that will turn a list of
futures into a single future containing a list of the results. Include it into your project
by adding the following to build.sbt:

"com.jason-goodwin" % "better-monads" % "0.2.1"

In the Java example, we have a list of articles, which we map into futures that will
contain the completed article body. This kicks off the processing of all of the articles
in the articleList in parallel. We use sequence to turn the List of Futures into a
Future containing a list of the articles. Using Scala is similar, if more terse. Scala has
its own sequence method for transforming the list of futures.

 import scala.concurrent.ExecutionContext.Implicits.global
val futures = articleList.map(artlice => {
 Future(ArticleParser.apply(article))
 })
val articlesFuture: Future[List[String]] =
Future.sequence(futures)

We take the list of articles and execute the parsing work in parallel by running it
in futures. We take the List of Futures and then sequence them into a more usable
single future containing the list of our articles. These examples show how simple it is
to parallelize with futures.

Scaling Up

[132]

Doing work in parallel with Actors
We've looked at using futures to do work in parallel. Now we'll look at how we can
similarly do work in parallel using actors. Note that, for our example case, the code
is very succinct using futures. Depending on your use case, using actors specifically
for concurrency can result in more complicated code. We'll look at an equivalent
example using actors to do the work.

Using the ArticleParser static apply method from the Future's example, we'll first
create an actor that will do the work.

The following is the Java actor and message:

public class ParseArticle {
 public final String htmlBody;
 public ParseArticle(String url) {
 this.htmlBody = url;
 }
}
public class ArticleParseActor extends AbstractActor {
 private ArticleParseActor() {
 receive(ReceiveBuilder.
 match(ParseArticle.class, x ->{
 sender().tell(ArticleParser.apply(x.htmlBody),
self());
 }
).
 build());
 }
}

The following is the Scala actor and message:

case class ParseArticle(htmlString: String)
class ArticleParseActor extends Actor{
 override def receive: Receive = {
 case ParseArticle(htmlString) =>
 val body: String = ArticleParser(htmlString)
 sender() ! body
 }
}

To do the work in parallel, we need to introduce a "Router" to distribute the work
across several actors; we will look at this next.

Chapter 5

[133]

Introducing Routers
In Akka, a Router is a load-balancing/routing abstraction. When a Router is created,
it is given a group of actors or is asked to create a pool of actors.

Note the use of the words group and pool. While creating routers with actors, it's
important to understand that there are two ways in which the collection of actors
behind the router can be created. Either the router can create the actors (a Pool) or
the router can be provided with the list of actors (a Group).

After the creation of the router, if the router receives a message, then it will pass
that message on to one or more of the actors in its Group/Pool. There are different
strategies that determine the order in which the Router selects an actor to forward its
next message to.

In our case, all of our actors are local and we want a router with several actors to
allow the CPU's cores to do more of our work in parallel. Routers can also be used to
distribute load across clusters of servers if the actors are remote.

Message Router

Actor1

Actor1

Actor1

For our use case with local actors, we can create the router as a pool, having the
router produce all of the actors for us. It's simple to use routers in this use case—we
instantiate an actor as usual, and then call the withRouter method, passing in the
routing strategy and how many actors we want. This is the same for either Scala
or Java:

ActorRef workerRouter =
 system.actorOf(
 Props.create(ArticleParseActor.class).
withRouter(new RoundRobinPool(8)));

Scaling Up

[134]

val workerRouter: ActorRef =
 system.actorOf(
 Props.create(classOf[ArticleParseActor]).
withRouter(new RoundRobinPool(8)))

If we had a list of actors that we wanted to make a router from, then we would create
the Router from a group, providing a list of the actor's paths:

ActorRef router = system.actorOf(new RoundRobinGroup(actors.map(actor
->actor.path()).props());
 val router = system.actorOf(new RoundRobinGroup(actors.map(actor
=>actor.path).props())

At this point, we have the router and actors we need to be able to distribute the load
across cores. Taking our list of messages and asking the router to process each of the
messages will process them in parallel. We'll continue to look at the more advanced
features of routers now to understand how they work in greater detail.

Routing logic
You'll note that we used RoundRobinPool/RoundRobinGroup—this covers the order
in which the messages will be delivered to the routers. There are several routing
strategies that Akka comes bundled with—we'll look at a few here. RoundRobin or
Random are fine choices for general purpose.

Routing Strategies Functioning
Round Robin Sends a message to each node in the Pool/Group in order and

then starts over. Random—sends messages in a random order.
Smallest Mailbox Sends messages to the actor with the fewest messages. Remote

actors have unknown mailbox sizes, so they are assumed to
have messages queued—free local Actors will be addressed first.

Scatter Gather Sends the message to all Actors in the Group/Pool and uses the
first response received, dropping any other responses received.
If you need to ensure you get a response, and you want to get it
as fast as possible, you can use scatter/gather.

Tail Chopping Similar to Scatter/Gather but, instead of sending a message
to all actors in the group/pool at once, the router waits for a
small period of time for each subsequent message. Has similar
benefits to scatter/gather, but can potentially reduce the load in
comparison.

Chapter 5

[135]

Routing Strategies Functioning
Consistent Hashing A key is provided to the router, which is then hashed. The

hashed key is used to determine which node to send the data
to. Hashing is used when assigning a particular "slice" of data
to a particular destination. It's used in working with clusters of
servers. We will look at consistent hashing strategies more in the
next chapter.

BalancingPool This is a bit of a unique router. BalancingPool can only be
used for local actors. The actors share a single mailbox and take
work from it in a work-stealing manner. This helps to ensure
that all actors stay busy. For local clustering, this will often be
the preferred routing mechanism.

You can also roll your own Routing Logic, but it's unlikely you'll need to do so.

Sending Messages to All Actors in a Router
Group/Pool
Regardless of the type of Group or Pool you use, you can always send a message to
all actors with the broadcast message. For example, if your actors are connecting to a
remote database and you need to change the database used in a live system during a
failover, you could update all the actors in the pool/group with a broadcast message:

router.tell(new akka.routing.Broadcast(msg));
router !akka.routing.Broadcast(msg)

Supervising the Routees in a Router Pool
If you're creating a Pool, where the Router creates the actors, the routees will be
created as children of the router. While creating the router, you can provide a custom
supervision strategy for the router to use.

When building a router, there is a withSupervisorStrategy method that you call to
create the Pool with your strategy. The Scala and Java API are the same. Assuming
we have a SupervisorStrategy instantiated called "strategy", we do the following
when creating our router:

ActorRefworkerRouter = system.actorOf(Props.create(ArticleParseActor.
class).
 withRouter(new RoundRobinPool(8).
 withSupervisorStrategy(strategy)));

Scaling Up

[136]

valworkerRouter: ActorRef =
 system.actorOf(
 Props.create(classOf[ArticleParseActor]).
 withRouter(new RoundRobinPool(8).
 withSupervisorStrategy(strategy)))

As Groups are created from pre-existing actors, there is no way to supervise a group
using a Router.

Apart from the primary use case of supervising a pool of actors, there is another
use case for using routers with a supervision strategy. If you have a top-level actor
(created with an ActorSystem's actorOf method), then it will be supervised by the
Gaurdian Actor. If you need to have a custom supervision strategy, you can create
an actor to supervise that actor or you could simply create a router and pass it your
custom SupervisorStrategy to have the router act as the supervisor. As you don't
need to define any actor behavior, this is a brief and simple approach to giving a
top-level actor custom supervision.

Working with Dispatchers
As we start to try to improve throughput and response times of our applications,
we need to understand all bottlenecks and where time is being spent in the
request/response cycle. Once we apply load to an application, the threads that are
available will be trying to serve all requests—understanding how those resources
are used will help you improve how much throughput a service can handle with
minimum latency.

Dispatchers explained
A dispatcher decouples a task from how and where the task will be run. Dispatchers
will generally contain some threads and will handle scheduling and running events
such as actor message handling and future events in those threads. Dispatchers are
really what make Akka tick—they are the mechanism that gets the work done.

Any time an actor or a future does work, the resources allocated by an
executor/dispatcher are what does that work.

Chapter 5

[137]

thread

assigned

work

executordoAsyncWork()

thread

thread

Dispatchers control assigning work to actors. They also can assign resources
to handle callbacks on futures. You'll note that future APIs accept Executors/
ExecutionContexts as parameters. Because Akka dispatchers extend these APIs,
the dispatchers can pull double duty.

In Akka, dispatchers implement the scala.concurrent.
ExecutionContextExecutor interface, which, in turn, extends java.util.
concurrent.Executor and scala.concurrent.ExecutionContext. Executors can
be passed to Java futures and ExecutionContexts can be passed to Scala futures.

For use with futures, dispatchers can be obtained from an ActorSystem reference
(ActorSystem.dispatcher). To get a dispatcher defined in configuration, you can
look them up from the actor system by ID:

system.dispatcher //actor system's dispatcher
system.dispatchers.lookup("my-dispatcher"); //custom dispatcher

Because we can create and obtain these executor-backed dispatchers, we can use
them to define thread-pools/fork-join pools to separate, isolate, and run our work in.
We'll look at when and why we would want to do this shortly. While you don't need
to understand all of the details of the executors to use them effectively, we will visit
them in some detail first.

Scaling Up

[138]

Executors
Dispatchers are backed by executors, so before we look more closely at dispatchers,
we'll cover the two main executor types—ForkJoinPool and ThreadPool.

The thread-pool executor has a queue of work which is assigned to threads.
The threads take work as they become free. Threadpools offer a greater efficiency
over creating and destroying threads as they allow reuse of threads that are an
expensive resource to create and destroy.

The "fork-join-pool" executor uses a divide-and-conquer algorithm to recursively
split tasks into smaller pieces and then assigns the work to be run on different
threads. The results are then combined. While the tasks we are submitting may
not be recursively split as ForkJoinTasks, the fork-join-pool executor has a
work-stealing algorithm that allows an idle thread to "steal" work scheduled for
another thread. Work tends to not distribute and complete evenly, so work stealing
will more efficiently utilize hardware.

Fork-join will almost always perform better than the thread-pool executor—it should
be your default choice.

Creating Dispatchers
To define a dispatcher in application.conf, we need to specify the dispatcher
type and the executor. We can also specify any configuration-specific details of the
executor such as how many threads to use or how many messages to process for
each actor before moving on:

my-dispatcher {
 type=Dispatcher
 executor = "fork-join-executor"

 fork-join-executor {
 parallelism-min = 2 #Minimum threads
 parallelism-factor = 2.0 #Maximum threads per core
 parallelism-max = 10 #Maximum total threads
 }
 throughput = 100 #Max messages to process in an actor before moving
on.
}

Chapter 5

[139]

There are four types of dispatchers that can be used which describe how threads are
shared among actors.

• Dispatchers: Default dispatcher type. The defined executor will be used to
process messages in actors. This should provide optimal performance in
most cases.

• PinnedDispatcher: This gives each actor its own dedicated thread. This
executor creates a thread-pool executor for each actor with each executor
having exactly one thread. This may sound like a good idea if you want to
ensure that an actor always responds immediately, but there are very few use
cases where a pinned dispatcher will perform better than sharing resources.
You can try this if a single actor has to do a lot of important work; otherwise,
pass on this one.

• CallingThreadDispatcher: This dispatcher is unique in that it has no
executor. Instead, the work is run on the calling thread. Its primary use is in
testing, especially in debugging. Because the calling thread does the work,
there is a clear stack trace that shows the complete context of the executed
method that is useful for understanding exceptions. A lock is still obtained
in the actor, so only one thread can execute code in the actor at once, but
multiple threads sending messages to an actor will cause all but one thread to
wait for a lock. The CallingThreadDispatcher is how the TestActorRef is
able to do work synchronously in tests as demonstrated earlier in this book.

• BalancingDispatcher: You will see the BalancingDispatcher referenced in
some Akka documentation—its direct use has been deprecated and replaced
by the BalancingPool router mentioned earlier. BalancingDispatcher
is still used in Akka, but it should only be used indirectly by a router. We
will look at the BalancingPool in action in the Dispatcher section. The
BalancingDispatcher is unique in that it shares a mailbox with all actors
in the pool and optimally creates one thread per actor in the pool. The
BalancingDispatcher Actors pull messages from the mailbox so that there
is never a queue in one actor while another actor is idle. This is a variation on
work stealing as all the actors pull from a shared mailbox—it has a similar
beneficial effect on performance.

Actors can be created with dispatchers that have been configured by building Props
referencing the dispatcher name configured in application.conf:

system.actorOf(Props[MyActor].withDispatcher("my-pinned-dispatcher"))

Scaling Up

[140]

Deciding Which Dispatcher to use where
We've now covered how to create dispatchers and executors, but we don't really
have a clear picture of what to do with them. The purpose of this chapter is to cover
how to best utilize our hardware, so we're now going to look at how we can use
dispatchers to produce an application that is more responsive to our users by being
more resilient to potential performance problems.

We'll skip back to our example of an application that extracts article bodies from
web pages and caches them, and that also serves cached articles to a user. For our
example, let's assume that the user profiles are retrieved from an RDBMS requiring
thread-blocking JDBC calls. This introduces blocking of our limited threads to aid in
highlighting what we're trying to accomplish.

The first step to scaling up is to understand which use cases are most important to
serve immediately and where there may be contention for the resources needed
to serve those important requests. If we use only the default dispatcher, and 1,000
requests come in consisting of 500 blocking (for example, JDBC) and 500 non-blocking
operations, we don't want the blocking operations to tie up all the threads needed to
serve the important requests.

(waiting to be processed)

(processing long-

running/blocking work)

(processing long-

running/blocking work)

Request
Request
Request
Request
Request

Taskthreads

Request
Request
Request
Request
Request
Request
Request
Request

In the preceding diagram, we simplify the scale of this example to show 8 threads
being used by longer running tasks such as blocking IO and heavier processing.
The diagram shows the impact that it has on other requests that are waiting to be
processed because all of the threads available are tied up. The other requests cannot
begin processing until those resources are freed. The waiting tasks might just need to
do short-lived cache reads, but they will have to wait in line for resources to become
free to do the work.

This highlights that having one pool of resources distributed without order can
allow riskier areas of the application to tie up resources that we need to give to our
important primary use cases.

Chapter 5

[141]

We can do better than this by isolating the resources in the areas of risk from
competing with those that serve the important tasks. If we create new dispatchers
and assign any long-running or blocking work to those dispatchers, we can ensure
that the rest of our application remains responsive. We want to separate all of the
heavy and long-running work into independent dispatchers to ensure that resources
are available for other tasks in adverse situations.

By doing this, we can isolate the delays to those areas of the application. If MySQL
goes on the fritz and starts taking 30 seconds to respond, at least other paths through
the application will remain responsive.

This approach requires us to first examine our application's performance,
understanding where the application can block and tie up resources. We need to
categorize the work done in the application.

If we look at our example case, we might categorize work it into the following:

• Article Parsing: Longer running CPU-intensive tasks (10% of requests)
• JDBC Profile Reads from MySQL: Longer running thread-blocking IO

(10% of requests)
• Article Retrieval: Simple non-blocking requests to get articles from remote

in-memory datastore (80% of requests)

Once we have a picture of the types of work that the application is doing, then
we want to understand if there are performance risks there—is it possible that
something could cause resource utilization to spiral out of control, affecting the
rest of the application? Look at both thread blocking and CPU-intensive work and
evaluate if it's possible for them to cause some resource starvation in other important
areas of the application:

• Article Parsing: If someone submits several large books that have been
posted online, all threads could be used up in very intensive long-running
work. It is of moderate risk and can be mitigated by limiting the size of
submissions.

• JDBC Profile Reads: If the database starts taking 30 seconds to respond,
all threads could be used up waiting. It is of higher risk.

• Article Retrieval: Article retrieval does not block and does no heavy work,
so it is low-risk. It is also important to serve this traffic fast as it will account
for most of the traffic.

Scaling Up

[142]

Now that we have identified where higher risk activities might be, we want to isolate
any portion of work that has risk into its own dispatcher so that if/when those
conditions occur, our application will not be negatively affected in other important
areas. This is another example of bulkheading to isolate the impact of failure. Just a
reminder, never make assumptions and always measure how changes affect your
system's performance!

Now that we have categorized our application's work and risk front, we can take any
high risk areas, and isolate them into their own dispatcher. The approach we will use
will look like the following:

executor

article reads

from cache

blocking JDBC

for profile

reads

parse new

articles

dispatcher

default dispatcher

small

fork-join-

pool

large fork-

join-pool

small

fork-join-

pool

Non-Blocking Article Reads and Akka will be okay to run in the default dispatcher
at this point. If we discover other risks, then we can further separate the work later,
but this is a good starting point.

Blocking IO—for example, JDBC Profile Reads for profile information—will get
its own dispatcher with 50 or 100 threads—work that blocks and waits for IO
(that is from a database with JDBC drivers) should be isolated from asynchronous
threadpools because the work will halt all other operations in the application if all
of the threads get tied up waiting for IO. This is probably the most critical of the
changes—we should always try to place blocking IO outside of Akka's dispatcher.

Chapter 5

[143]

Article Parsing will get its own dispatcher with a small number of threads. We're
using the dispatcher for isolation here incase very big jobs are submitted. If big jobs
are submitted, then the work will halt any other work in the queue; thus, to protect
against those exceptional cases, we can isolate the work. In this case, we can also
use the BalancingPool/BalancingDispatcher to distribute work across a pool of
article parsing actors. In addition to giving isolation, using the BalancingPool also
gives a potential improvement in resource utilization by the BalancingPool
work-stealing nature.

Default Dispatcher
There are a couple of approaches that we can take with the default dispatcher.
We can either separate all work out, leaving it only for Akka to use, or we can check
that only async work gets done in the default dispatcher and move any higher-risk
work out. Either way, we should never block in the default dispatcher and have to be
a bit careful with the work that is run in it to prevent resource starvation.

You don't need to do anything to create or use the default dispatcher/threadpool.
We're done. If needed, we can configure the default dispatcher by defining it in the
application.conf file on the classpath similar to the following:

akka {
 actor {
 default-dispatcher {
 # Min number of threads to cap factor-based parallelism
number to
 parallelism-min = 8
 # The parallelism factor is used to determine thread pool size
using the
 # following formula: ceil(available processors * factor).
Resulting size
 # is then bounded by the parallelism-min and parallelism-max
values.
 parallelism-factor = 3.0
 # Max number of threads to cap factor-based parallelism number
to
 parallelism-max = 64
 # Throughput for default Dispatcher, set to 1 for as fair as
possible
 throughput = 10
 }
 }
}

Scaling Up

[144]

You can override default configuration values by defining any values again in your
own application.conf file:

akka {
 actor {
 default-dispatcher {
 # Throughput for default Dispatcher, set to 1 for as fair as
possible
 throughput = 1
 }
 }
}

By default, all work done by Actors will execute in this dispatcher. If you need to get
the ExecutionContext to create futures in, you can access the default threadpool
through your ActorSystem, and then supply it to futures:

ActorSystem system = ActorSystem.create();
CompletableFuture.runAsync(() ->System.out.println("run in ec"),
system.dispatcher());
val system = ActorSystem()
implicit val ec = system.dispatcher
val future = Future(() =>println("run in ec"))

Note: Be careful about the work you do in futures in the default
dispatcher as it will take time away from the actors themselves.
We'll look at how to remedy this in the next section.

In Scala, classes extending Actor already have the dispatcher as an implicit val, so
you do not have to specify it if working with futures in actors. There are few cases
where you want to have futures in your actors—remember that we should prefer
tell over ask so you might want to evaluate your approaches if you're finding
you're working with Futures a lot inside your actors.

That covers the default dispatcher and how to use it and tune it. Now, we'll look at
how to add and use additional executors.

Blocking IO dispatcher use with futures
If you have any blocking work, you want to get it out of the main dispatcher so that
actors can stay lively if your app gets saturated with blocking work.

Chapter 5

[145]

Consider this use case: a user wants to retrieve a user profile from an RDBMS to see
who posted an article. We might have a service interface that looks like the following:

import org.springframework.data.repository.CrudRepository;
import java.util.List;
public interface UserProfileRepository extends
CrudRepository<UserProfile, Long> {
 List<UserProfile>findById(Long id);
 }

For this example, we'll use Spring Data to access a database via JDBC. Spring Data
is an arbitrary choice here for use in the example for a blocking API—it lets us
demonstrate blocking IO with minimal code, but the approach could be for anything
that blocks threads. This interface is actually all the code that you need to query for
JPA-annotated UserProfiles—Spring supplies the implementations for you by
analyzing the method name.

For our example, we have a method called findById that accepts an ID and blocks
the calling thread while waiting for IO to come back from the database.

If we call this method in an actor, we're tying up a thread in our default dispatcher,
not to mention halting the actor from doing any other work:

 //Java
 sender().tell(userProfileRepository.findById(id), self());
 //Scala
 sender() ! userProfileRepository.findById(id)

Again, if we have several requests that come in and hit that block of code (maybe in
a pool of actors), all the threads can be stuck waiting so that no other work is able to
move forward until resources are freed.

The simplest solution in these cases is to run the blocking operations in another set of
threads in a different dispatcher.

First, in our application.conf file we'll create a dispatcher with a bigger pool
of resources:

blocking-io-dispatcher {
 type = Dispatcher
 executor = "fork-join-executor"
 fork-join-executor {
 parallelism-factor = 50.0
 parallelism-min = 10
 parallelism-max = 100
 }
}

Scaling Up

[146]

That will allow up to 50 threads per core to be created with a minimum of 10 and
a maximum of 100 threads. Hundred threads is a large upper limit for a properly
factored and indexed database.

For blocking IO to databases, if you have queries that take a long time to run, you
should examine the run plans and fix your tables and queries instead of adding more
threads. Each thread has a memory overhead, so don't arbitrarily add more threads.
Measure, change, and repeat until optimal, adjusting the threadpool only after your
queries, tables, and indices are optimized.

Now that we have a dispatcher configured, we need to gain access to it to be able to
run the blocking queries in it. We can get a reference to a dispatcher by looking up
the dispatcher from the actor system. In an actor, we would call the following:

//Java
val ec: ExecutionContext = context.system.dispatchers.
lookup("blocking-io-dispatcher")
//Scala
Executor ex = context().system().dispatchers().lookup("blocking-io-
dispatcher");

Once we have the dispatcher references, we can use them with the future APIs to run
the work there:

//Java
CompletableFuture<UserProfile> future = CompletableFuture.supplyAsync(
 () ->userProfileRepository.findById(id)
 , ex);
//Scala
val future: Future[UserProfile] = Future{
 userProfileRepository.findById(id)
 }(ec)

In each of the Scala and Java future APIs, all that we have to do is supply the
dispatcher reference as the second parameter of the future and the dispatcher will
take care of the rest. Once the result is available, the future will complete.

Having the future reference, we can now use it as we normally would in an actor—
likely using patterns.Pipe to send the result to another actor asynchronously.

This use of futures is an important technique—blocking IO will very quickly ruin
your application's performance. I would recommend that you try to use non-
blocking drivers instead of doing this, but if you need to use blocking drivers with
chosen technologies, then this is a reasonable approach.

In the same manner as with blocking IO, any heavy computation done with results
from futures can also be moved to another dispatcher to help actors stay lively.

Chapter 5

[147]

Article parsing dispatcher
For our last example, we'll look at how we can assign actors to another dispatcher.
This is different than taking only a piece of a task and running it in another dispatcher,
like we saw in the JDBC example, because we're actually assigning actors completely
to another dispatcher instead of just some work over there. This is well suited for any
actors that do heavier processing.

We're going to look at two options:

• Defining a Dispatcher to use with an actor pool
• Using the BalancingPool router that uses BalancingDispatcher

Using a configured dispatcher with Actors
Here we'll look at configuring a dispatcher in our application.conf, and
then assigning actors to that dispatcher when we create them. This is fairly
straightforward and does not vary much from many of the other activities we've
looked at so far.

First, we'll create another dispatcher in our application.conf for the article
parsing. We'll assign a smaller number of threads this time:

article-parsing-dispatcher {
 # Dispatcher is the name of the event-based dispatcher
 type = Dispatcher
 # What kind of ExecutionService to use
 executor = "fork-join-executor"
 # Configuration for the fork join pool
 fork-join-executor {
 # Min number of threads to cap factor-based parallelism number to
 parallelism-min = 2
 # Parallelism (threads) ... ceil(available processors * factor)
 parallelism-factor = 2.0
 # Max number of threads to cap factor-based parallelism number to
 parallelism-max = 8
 }
 throughput = 50
}

Scaling Up

[148]

Now, to create actors assigned to the configured dispatcher, we simply call the
withDispatcher method while creating the Props. We'll use a range to create a list
of actors, and then place them in the dispatcher:

//Java
 List<ActorRef>routees = Arrays.asList(1,2,3,4,5,6,7,8).
stream().map(x ->
 system.actorOf(Props.create(ArticleParseActor.class).
 withDispatcher("article-parsing-dispatcher"))
).collect(Collectors.toList());

//Scala
val actors: List[ActorRef] = (0 to 7).map(x => {
 system.actorOf(Props(classOf[ArticleParseActor]).
 withDispatcher("article-parsing-dispatcher"))
 }).toList

Now, we can do anything we like with actors created this way. For example,
we can produce a router to use the actors so that we can easily do work in parallel
with them:

//Java
Iterable<String>routeeAddresses = routees.
 stream().
 map(x ->x.path().toStringWithoutAddress()).
 collect(Collectors.toList());
ActorRefworkerRouter = system.actorOf(new RoundRobinGroup(routeeAddres
ses).props());
//Scala
 valworkerRouter = system.actorOf(RoundRobinGroup(
 actors.map(x =>x.path.toStringWithoutAddress).toList).props(),
 "workerRouter")
workRouter.tell(
 new ParseArticle(TestHelper.file)
 , self());

This is a slightly different syntax for creating a router actor than we saw earlier. We
saw an example of a pool—where the router creates the routee actors. Here, we are
taking pre-existing actors that we created previously and creating a router actor by
passing those actors in using a group load-balancing strategy (RoundRobinGroup).
The router groups take a list of addresses, and then produce the props you need to
produce the router actor. This is very similar to what we would do if the actors were
remote as well.

Note: The Group can also take the name of a dispatcher if you want
the router to be assigned to a dispatcher as well.

Chapter 5

[149]

Using BalancingPool/BalancingDispatcher
Because the actors are local, we have a better option than using the RoundRobinGroup
shown previously. For local actors, we can create a router with a BalancingPool,
which was briefly described earlier in this chapter. The BalancingPool will share
a single mailbox across all actors in the pool and effectively offer "work-stealing"
mechanics to re-distribute load to any idle actors. Using a BalancingPool helps ensure
there are no idle actors when there is work to do because all actors pull messages from
the same mailbox. Technically, it's not work stealing as the router is not re-assigning
work like ForkJoinPool does—it's just that idle actors will pick up the next message
from the shared mailbox. The end result is the same—there is no possibility for one
actor to have several messages queued while another actor has none. As we can
ensure more actors are actively working, this option can often lead to better resource
utilization than the other balancing strategies.

The BalancingPool uses a special dispatcher—BalancingDispatcher. In most
cases, we want the BalancingDispatcher to have a number of threads equivalent to
the number of actors that are used.

First, we'll configure the default BalancingDispatcher executors in the
application.conf to have exactly 8 threads:

//Dispatcher for BalancingPool
pool-dispatcher {
 fork-join-executor { # force it to allocate exactly 8 threads
 parallelism-min = 8
 parallelism-max = 8
 }
}

Then, we make a pool of eight actors—the same number as the number of threads in
the pool dispatcher:

//Java
 ActorRefworkerRouter = system.actorOf(new BalancingPool(8).
props(Props.create(ArticleParseActor.class)),
 "balancing-pool-router");
//Scala
 valworkerRouter = system.actorOf(BalancingPool(8).props(Props(classOf
[ArticleParseActor])),
 "balancing-pool-router")

This is a great way of ensuring work is balanced across all actors when working
locally.

Scaling Up

[150]

Optimal parallelism
There is only one way to determine for certain what the optimal level of parallelism
is on your hardware: measuring. You'll almost always make incorrect assumptions
about where time is spent and how changes impact systems until you actually
measure and adjust.

Using a number of threads far greater than the number of cores in your processor
will reduce performance, so don't arbitrarily choose large pools of actors and assume
more is better. Akka has to switch processing between actors, and your executors
need to balance work between threads. Your OS has to schedule CPU time to the
active threads and context-switch by swapping the state of the active thread in and
out. Because of the overhead, optimal parallelism for the fastest processing times
may actually come in lower than you expect. The only way to know for sure what
impact a change has is to measure!

Homework
• Practice doing work in parallel with both Futures and Actors.
• Try moving the work into different dispatchers.
• Write down some assumptions you have about how things will perform with

more and less threads.
• Measure the performance under high load. Measure multiple times for each

test and average the results. How does raising and lowering the number of
threads and actors impact performance?

• How did your expectations compare to your measurements?
• If you were to make general recommendations about optimal parallelism

based on your observations, what would it be?

Note: it's easier to make generalizations if you have more cores.
You'll probably find things behave differently than you expect.

• Can you determine how many context switches are occurring and how that
impacts performance? On Linux systems, you'll find the info in /proc/
[pid]/status. You may have to look around in ps to find the right Java pid.

Chapter 5

[151]

• Consider a recent application you have worked on—how would you
separate the work into different dispatchers?

• What size of threadpools would you use for the work?

Summary
In this chapter, we looked at two major concepts: scaling up a local application to
take advantage of multicore hardware and isolating work into separate dispatchers
to protect portions of the isolation from performance risks that may be encountered
in other portions of the application.

To scale up, we need to do work concurrently, so we looked at several techniques
for parallelizing work. We examined how to parallelize with futures and with
actors. Then, we looked at how to examine an application to determine how separate
work should be isolated into different dispatchers for different types of work such
as computationally heavy work or blocking IO. Because the isolated dispatchers
get tied up without impacting other ones, we can ensure that the other areas of the
application remain responsive.

In the next chapter, we will build on the concepts here to look at how we can start to
distribute load across multiple machines.

Chapter 6

[153]

Successfully Scaling
Out – Clustering

In the previous chapter, we described how to parallelize work to better utilize the
hardware of a single physical host. We also looked at how to isolate performance
problems to specific dispatchers in a host. In this chapter, we will look at what
happens when we reach the limit of a physical host and need to process the work
across multiple machines. This may sound like a huge feat, but Akka gives us the
tools to get us started quickly.

In this chapter, we will cover the following topics:

• Some of the foundational concepts used in distributed systems
• Introduction to Akka Cluster
• Using Akka Cluster to build distributed systems

Introducing Akka Cluster
We've briefly looked at remoting in earlier chapters in this book. It's helpful to
understand remoting a bit to see how Akka communicates over the network, but in
this chapter, we're going to use Akka Cluster's mechanics instead of simple peer to
peer communication to give us greater resilience and flexibility in our deployments.
In this section, we'll review some clustering concepts and learn about how Akka
Cluster keeps track of nodes to allow our applications to scale out as needed.

Successfully Scaling Out – Clustering

[154]

Let's start by giving a definition of what a cluster is. Wikipedia states that A computer
cluster consists of a set of loosely or tightly connected computers that work together so that,
in many respects, they can be viewed as a single system. To be more specific about our
definition of a cluster in this chapter, we can say that a cluster is a group of machines
(likely VMs), which we will refer to as nodes or members, that are in agreement
about all other nodes who are in the group.

One Giant Monolith or Many Micro
Services?
Since I started slinging code, Martin Fowler has been one of my heroes as a
developer; so, when I see him reasoning about a problem I'm also pondering,
I take notes.

If we're talking about microservices and distributed systems, he has a few articles
on his site http://www.martinfowler.com/, which you might want to read.

The first valuable point is that in the life of an application, while complexity of
an application is low, it can be more efficient for a small team to build a single
large application—a monolith—as opposed to trying to build networked services.
Start by building one application. Once complexity in the application increases,
productivity can fall because teams have to do a lot of coordination of activities to
get code merged, and work on features together. At this point, you can start to see
productivity benefits of using smaller networked services.

The second valuable point is that building with a monolith-first approach will enable
you to understand where services should be separated when you get around to
splitting your services into many smaller applications. Fowler argues that you are
quite likely to pick the wrong services to represent as discreet applications until
you've actually been working on your system for a while.

Once you have some experience and data from running your system in production,
it will be clear which pieces will benefit from being separated in terms of both
performance and team velocity when adding features. As you start deploying
microservices, you can scale up the more loaded services in an asymmetrical
manner so that the most used pieces of the application have their own larger
cluster of servers.

http://www.martinfowler.com/

Chapter 6

[155]

Luckily, Akka can make deployment decisions more of a configuration item rather
than code, but having multiple code bases can greatly ease having large teams work
on a codebase. It eliminates the problem of Brooks Law (adding more resources to
an already late project makes it later) by eliminating communication channels and
isolating code commits to separate repositories (no more merge hell).

Ultimately, you may want to defer considering building a distributed system until
you have a system that is too complex to manage as a monolith, or at least until
you have good data-backed justifications (performance or team effort related) for
deploying in such a manner.

Regardless of whether you decide to build a monolith or services out of the gate,
you may want to put different concerns into libraries from day one. You can get the
benefits of having teams work on different code bases before you're ready to actually
deploy separate applications. Once you want to split your application, it will be
much easier to manage sharing code if you've done this from the start.

Definition of a Cluster
A cluster is a group of servers that exist and talk among themselves. Each server in
a cluster is referred to as a node or member. A cluster should be able to change size
dynamically and survive any failures with minimal impact so that there are two
responsibilities that a cluster needs to handle—failure detection and propagating a
consistent view of all available members throughout the cluster.

Failure Detection
As we start to add nodes beyond one, it becomes more likely that nodes will fail or
that the network will become temporarily partitioned; thus, a cluster is a dynamic
entity that can shrink when servers shut down or become unavailable and that can
grow when servers are added (for example, to handle more load). Nodes of a cluster
do this by sending messages to other members to determine whether those members
are available or not. They determine the availability of the members on the basis of
the reply or absence thereof.

Successfully Scaling Out – Clustering

[156]

If every server talked to every other server in the cluster, then a cluster's performance
would not scale in a linear manner as the overhead of each additional node would
exponentially increase the lines of communication needed. To reduce the complexity
of monitoring the heath of other nodes, failure detection in Akka is done by only
monitoring a certain number of nodes next to a node. For example, in a cluster ring
of six nodes, each node might monitor the two nodes after it for failure. The default
maximum for each node to monitor in Akka Cluster is five nodes:

Node5 Node4

Node6 Node3

Node 2
Health
Checks

Node1 Node2

In Akka, the failure detection is accomplished by sending a heartbeat from one node
to another, and then accepting a response. Akka will calculate the likelihood that a
node is available on the basis of the heartbeat history and current heartbeats. Akka
will mark the node as unavailable and available by calculation with these figures and
the tolerance thresholds configured.

Gossiping an Eventually Consistent View
Considering handling failure detection, each node in the cluster communicates
the known state to its neighbors. Then, those neighbors pass along the known
state to their neighbors and so on until the known state of that node is propagated
throughout the cluster. Nodes will deliberate and come to conclusions about the
members of the cluster.

If a node is inaccessible to one node, it is considered unavailable to all nodes in
the cluster.

This mechanism for eventually propagating the state through the cluster is known as
gossip protocol or epidemic protocol (as information spreads throughout the cluster
like a virus!). Many eventually consistent data-stores, such as Riak and Cassandra,
operate in a very similar manner. The Dynamo paper from Amazon was very
influential in many of these data-stores.

Chapter 6

[157]

We don't need to know too much about the inner workings of Akka cluster at this
point—we only need to understand that Akka will take care of determining if the
state of the cluster changes and will take care of updating everyone in the cluster
with any changes that occur.

We're going to cover many of the details of how cluster works as we build our own
cluster through the rest of this chapter. If you want to get a bit more background
on how Akka Cluster works, there is a document in the Akka documentation called
Cluster Specification. At the time of writing, it as available at http://doc.akka.io/
docs/akka/snapshot/scala/cluster-usage.html.

CAP Theorem
We're going to cover a stateless worker example in this chapter, but we're also going
to cover state being stored in a cluster to understand the trade-offs of design choices.
Eric Brewer's often cited CAP Theorem talks about the compromises of distributed
systems and is a helpful model for reasoning about how a system deals with state
and exceptional events. CAP Theorem is an acronym for the three qualities of
distributed systems, as described in the following, and the compromise of choosing
between them.

C – Consistency
Consistency means that a client will return the most recent value for a given record.
Consider a bank account—if you try to withdraw $400 immediately after depositing
a $400 cheque, you expect the systems to give you the correct balance and allow you
to withdraw the $400.

A – Availability
Availability means that a non-failing node is able to give a reasonable response
(for example, give an accurate picture of whether a write was a success or failure).

P – Partition Tolerance
Partition Tolerance means that a system continues to operate normally if a node is
removed from the network due to a temporary network failure. If data is replicated
across three nodes and one of the nodes becomes temporarily unavailable, then the
system can be said to be partition tolerant if the other two nodes can come to the
same conclusion about the most recent record.

http://doc.akka.io/docs/akka/snapshot/scala/cluster-usage.html
http://doc.akka.io/docs/akka/snapshot/scala/cluster-usage.html

Successfully Scaling Out – Clustering

[158]

Compromises in CAP Theorem
CAP theorem is often cited as the following statement: of the three—Consistency,
Availability, and Partition tolerance—that a distributed system can choose any two.
This is a misleading oversimplification, and if you start reading articles, you'll see a
lot of conflicting rebuttals.

We'll start by assuming that we want a system that has Partition Tolerance and
only talking about the compromises between Availability and Consistency. Why
you ask? In a time-bound request, if a node becomes unavailable, you are really
deciding between responding with an error (preferring Consistency) or continuing
even though there might be inconsistency between servers (preferring Availability).
Waiting around too long means the request will be abandoned so time is a factor at
play and a system must make a decision. We'll look at this a bit more but Eric Brewer
also wrote an article 12 years after his Cap Theorem paper that has further discussion
on this point: http://www.infoq.com/articles/cap-twelve-years-later-how-
the-rules-have-changed:

A C

P

CPAP

CP System – Preferring Consistency
There are different ways in which a consistent distributed store can be implemented.
Perhaps, the simplest example of a strongly consistent data-store would be to have
a master node and any number of secondary nodes on which the data is replicated.
You always write to the primary node, and to ensure the most recent data is read.
Data must always be read from the primary node as well. In the case of the failure
of the master node, the system will no longer be available:

read/write
Primary

replicate
Secondary

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Chapter 6

[159]

Generally, some sort of failover occurs where a secondary node becomes the new
primary node. We give up availability because our system can't be read from or
written to in the case of a partition, and instead goes through a failover process
to elect the new primary node. Once the failover is complete, availability will be
restored. Redis Sentinel, or replicated RDBMSs are great examples of strongly
consistent distributed systems.

You would choose a consistent system if you need ATOMIC reads/writes,
transactions, and so on.

AP System – Preferring Availability
A system that prefers availability and partition tolerance at the cost of consistency is
said to be "eventually consistent." In highly available distributed data-stores such as
Cassandra and Riak, this is a very common model.

We'll look at AP systems in more detail in this chapter because they take a bit of
work to reason about, but we can look at one example of how we might implement
an AP system. Let's assume that there are three replicas of the data on three nodes.
When we write data, the data is written to one node and, then, it is later replicated
across all three nodes. It doesn't matter which one we write into, that node will
coordinate the write across the remaining nodes:

read/write read/write

read/write

replicate
Node1 Node2

Node3

When we read from a node, we only need one node to read the data, so our client
may choose a random node to read from. In this example, our system is eventually
consistent because when we read from a node, and the data may be a bit out of date
(not Consistent), but as we can read and write from any of the nodes, our system is
both Partition tolerant and highly Available. If a node becomes unavailable, we can
just try another node.

Note that this is very hard to get correct because the time and
ordering of events in systems is challenging to determine. Clocks will
never be perfectly synchronized across machines so other approaches
are taken for ordering such as Vector clocks.

Successfully Scaling Out – Clustering

[160]

Consistency as a Sliding Scale
Practically speaking, the choices between the three trade-offs are not toggles but
sliders. In an eventually consistent system, for example, if we have three replicas
of a record we're looking for, we can have low consistency by requiring any of the
nodes to give us the record. We can have greater consistency by having any two of
the three return with the data. And we can have the greatest consistency by requiring
asking all three nodes to provide back a result. When we get back the data from the
nodes, several different mechanisms can be used to order the records, so we'll choose
the newest one. However, doing this can sacrifice partition tolerance. If we need all
three replicas to be available, then we can't tolerate one of the nodes disappearing.
Usually, only requiring a quorum or majority of nodes to be up and give a view is a
good trade-off between consistency and partition tolerance.

Ordering is its own problem as often clocks are not perfectly
synchronized across nodes so other ordering mechanisms are used such
as Vector Clocks.

Similarly, in a CP system, we can sacrifice some consistency for greater availability
by allowing secondary nodes to be read from. If we keep writes on the master, we
still have highly consistent writes, but we allow our reads to be eventually consistent,
so our database becomes AP on reads.

Based on our use cases, we can "tune" our CAP stance to best meet our use case
needs. It is even possible to use blends of these strategies in the same application in
the same data-store for different types of data!

Building Systems with Akka Cluster
We will revisit two problems in this chapter—Article Parsing and the key-value
store. However, in this chapter, we're going to look at how to distribute them across
multiple servers using Akka Cluster. Assuming we have built an application that
needs to scale beyond a single node, and that needs higher availability, we will see
how we can scale our systems up by adding more nodes.

We might not be able to build Cassandra in a day, but believe it or not, we will be
able to produce a horizontally scalable distributed service in this chapter, and we
will also demonstrate some of the common techniques that are used in distributed
solutions while we're at it.

Chapter 6

[161]

Creating the Cluster
In this section, we're going to look at how to create a cluster with Akka's Cluster
module. We looked at remoting earlier in this book very briefly, but we will look
at cluster in much greater detail now. Akka Cluster is built on remoting, but is
powerfully useful. If you use Remoting, you'll need to concern yourself with issues
such as high availability in your infrastructure or code. Cluster takes care of many
of these concerns for you, thus making it a great choice for building your distributed
Actor systems.

Configuring the Project
First, we need to configure Akka to be able to create a cluster. We have to do a few
things to the project—first, add Cluster to the project and, then, add the appropriate
entries in application.conf. You can start a new project using activator new
as we'll go over all of the configuration needed in the project. Completed projects
are available on GitHub at https://github.com/jasongoodwin/learning-akka/
tree/master/ch6 in both Scala and Java.

In our build.sbt file, we first have to add the Akka Cluster dependency:
"com.typesafe.akka" %% "akka-cluster" % "2.3.6"

We'll also add the contrib package. This is a module of contributions from outside
the Akka team—there is an Akka Cluster client in the contrib package that is a bit
simpler to build on. We'll look at the client features a bit later:

"com.typesafe.akka" %% "akka-contrib" % "2.3.6",

Now that Akka Cluster is in the project, we need to add cluster configuration in
src/main/resources/application.conf:

akka {
 actor {
 provider = "akka.cluster.ClusterActorRefProvider"
 }
 remote {
 netty.tcp {
 hostname = "127.0.0.1"
 port = 2552
 }
 }
 cluster {
 seed-nodes = [
 "akka.tcp://Akkademy@127.0.0.1:2552",
 "akka.tcp://Akkademy@127.0.0.1:2551"]
 }
 extensions = ["akka.contrib.pattern.ClusterReceptionistExtension"]
}

https://github.com/jasongoodwin/learning-akka/tree/master/ch6
https://github.com/jasongoodwin/learning-akka/tree/master/ch6

Successfully Scaling Out – Clustering

[162]

There are a few pieces that are significant.

First, configuration for Cluster is very similar to remoting but we change the
provider to ClusterActorRefProvider.

We specify the host and port. We're using the Akka default of 2552 and specifying
the local host IP for testing purposes. To test a cluster on a single machine, you'll
need to start instances on different ports, which can be done by passing in arguments
to sbt on the command line. If you need to pass in any parameters, you can achieve
this using the following:

activator run -Dakka.remote.netty.tcp.port=0

Passing port=0 will have Akka assign a random port.

We specify seed nodes. We'll look at what exactly seed nodes are in a moment, but
please note that the host, port, and ActorSystem are described in the configuration
lines for the seed-nodes. It's important to ensure that the ActorSystem is accurately
for the cluster you are trying to join. Multiple ActorSystems can run in an instance,
so host and port are not enough to connect successfully.

The last line—the extensions line—is to add support for the contrib package's
cluster client, which we'll look at a bit later.

Seed Nodes
You may be wondering what the akka.cluster.seed-nodes configuration is for.
Because a cluster can be of any size, you may not know where all the nodes will be
located. This is especially true if you're deploying in the cloud, where you can have
rapidly changing deployment topology and IPs.

Thanks to the gossip protocol, we can get away with only knowing a couple of
nodes. Most technologies such as Cassandra and Akka refer to these nodes as seed
nodes. There is nothing special about them apart from the fact that we know where
they are accessible.

To understand how this is possible, we'll have a look at how nodes join the cluster.
When a new node joins the cluster, it tries to contact the first seed node. If it
successfully contacts the node, it will announce its location (port and IP). The seed
node will then gossip the new node's location, eventually propagating the change
through the cluster. If contact to the first seed node fails, then the node will try the
next seed node. As long as one seed node is available, then other nodes can join and
leave without requiring any configuration changes:

Chapter 6

[163]

SeedNode2

"Hi!
I'm available at
akkaprd4:2552"

"Hey,
there is a new guy
at akkaprd4:2552"

SeedNode1

Node

When you deploy to production, you should define at least two seed nodes that
will have a constant IP and ensure that at least one of the seed nodes is available all
the time. When a node attempts to join the cluster, it will try to sequentially contact
each seed node. If no seed nodes are available, then the node will not be able to join
the cluster.

When starting the cluster's seed nodes, the seed nodes can be started
in any order, but the first seed node listed must be started to initialize
the cluster.

Subscribing to Cluster Events
We have enough configuration now to create a cluster at runtime, thus, we can start
building. We'll subscribe to cluster events and log any changes to the cluster ring.
After writing the code, we'll test it out and then continue on to look at how we can
design a distributed service and a data-store using this base.

We'll produce an actor first, calling it ClusterController, and use this as the basis
for our other examples. Later, we'll adapt the code to take action on the events. We'll
start by creating the actor, and instantiating a logger, and then the cluster object.

Successfully Scaling Out – Clustering

[164]

In Java, the actor looks like the following:

importstatic.akka.cluster.ClusterEvent.*;
public class ClusterController extends AbstractActor {
 protected final LoggingAdapter log = Logging.getLogger(context().
system(), this);
 Cluster cluster = Cluster.get(getContext().system());
 @Override
 public void preStart() {
 cluster.subscribe(self(), initialStateAsEvents(),
 MemberEvent.class, UnreachableMember.class);
 }
 @Override
 public void postStop() {
 cluster.unsubscribe(self());
 }
 private ClusterController(){
 receive(ReceiveBuilder.
 match(MemberEvent.class, message -> {
 log.info("MemberEvent: {}", message);
 }).
 match(UnreachableMember.class, message -> {
 log.info("UnreachableMember: {}",
message);
 }).build()
);
 }
}

In Scala, the actor looks the following:

class ClusterController extends Actor {
 val log = Logging(context.system, this)
 val cluster = Cluster(context.system)
 override def preStart() {
 cluster.subscribe(self, classOf[MemberEvent],
classOf[UnreachableMember])
 }
 override def postStop() {
 cluster.unsubscribe(self)
 }
 override def receive = {
 case x: MemberEvent => log.info("MemberEvent: {}", x)
 case x: UnreachableMember => log.info("UnreachableMember {}: ",
x)
 }
}

Chapter 6

[165]

First, we define the logger. Then, we get a reference to the Cluster object. We'll look
at the Cluster object and methods available on it throughout this chapter.

We use the Actor preStart and postStop hooks to subscribe to events that we're
interested in. The unsubscribe in the postStop hook is necessary to prevent a leak.
We're going to have our actor subscribe to the following two events:

• MemberEvent: This tells us when there is a change to the cluster state
• UnreachableMember: This tells us when there is a node marked unreachable

Then, we describe the actor's behavior when it receives those events: to simply log
them (for now). We'll examine the different events that occur in the cluster shortly.

Starting the Cluster
As a checkpoint to ensure that everything is accurate and configured correctly,
we'll try to start up a few nodes now. First, we need to make a main where we
programmatically start the actor system and create the ClusterController actor.

In Java:

public class Main {
 public static void main(String... args) {
 ActorSystem system = ActorSystem.create("Akkademy");
 ActorRefclusterController = system.actorOf(Props.
create(ClusterController.class), "clusterController");
 }
}

In Scala:

object Main extends App {
 val system = ActorSystem("Akkademy")
val clusterController = system.actorOf(Props[ClusterController],
"clusterController")
}

Our seed node can be started simply with:

activator run

Successfully Scaling Out – Clustering

[166]

However, we're going to enable jmx remote management of the nodes so that we
can have them leave the cluster gracefully. Thus, we're going to tack on a few extra
parameters —we'll specify the jmx port for the nodes and turn off jmx security
features for use in test. We'll see why we want to enable JMX remote management
shortly. With the jmx configuration, we will start the node like the following:

activator run \
-Dcom.sun.management.jmxremote.port=9552 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

It will start a node on the configured port of 2552. You'll see some logging events
indicating that the first seed node is up and probably a few dead letters messages
as the node attempts to connect to the other configured seed node configured.
Eventually, you'll see our log statement for the MemberEvent:

[INFO] [06/14/2015 12:22:46.756] [Akkademy-akka.actor.default-
dispatcher-3] [akka://Akkademy/user/clusterController] MemberEvent:
MemberUp(Member(address = akka.tcp://Akkademy@127.0.0.1:2552, status =
Up))

In another terminal window, we'll start up the second seed node on port 2551 by
specifying the port as a Java argument:

activator run \
-Dakka.remote.netty.tcp.port=2551 \
-Dcom.sun.management.jmxremote.port=9551 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

The first node running on 2552 should log the status change when the second seed
node connects:

[INFO] [06/14/2015 12:24:40.745] [Akkademy-akka.actor.default-
dispatcher-18] [akka://Akkademy/user/clusterController] MemberEvent:
MemberUp(Member(address = akka.tcp://Akkademy@127.0.0.1:2551, status =
Up))

We'll add one more node now to demonstrate how we might configure nodes
beyond the seed node. Because the seed nodes have defined ports, we can have
Akka assign a random port by configuring it as 0:

activator run -Dakka.remote.netty.tcp.port=0 \
 -Dcom.sun.management.jmxremote.port=9553 \
 -Dcom.sun.management.jmxremote.authenticate=false \
 -Dcom.sun.management.jmxremote.ssl=false

Chapter 6

[167]

After a moment, you'll see the third node connect to the cluster. This is quite
exciting—we now have the basis for building a distributed actor system. Akka takes
care of numerous things for us that would be quite hard to get right ourselves!

Again, remember that you need to start the first node in the seed
node list for the cluster to initialize.

Leaving the Cluster Gracefully
If you try shutting down one of the nodes by killing the process, you'll notice that
Akka marks it unreachable and writes several error messages. In this case, shutting
down the node causes it to become unreachable and Akka will eventually mark it
down. This is because we did not leave the cluster gracefully. Before removing a
node from the cluster, we should announce to the cluster that the node is leaving.

We can do it programmatically by calling cluster.leave with the address of the
node we want to remove:

cluster.leave(self().path().address());

However, we don't have any API that we can use to expose this functionality currently.
So, instead, we'll use jmx and command line tools to remove the node gracefully. We're
going to use a tool that comes with the Akka distribution: akka-cluster.

You may need to download the Akka distribution first to get the akka-cluster tool.
It should be available at http://akka.io/downloads/. Unzip the file, and into the
bin folder.

Now, we can issue commands to the cluster using the tool. Our principle use is to
have the node leave the cluster gracefully. We can shut down the seed node on port
2552 that has JMX exposed on 9552 in the following manner:

./akka-cluster localhost 9552 leave akka.tcp://Akkademy@127.0.0.1:2552

After gracefully removing the node, you'll see it change states from up to exiting and
then to removed.

[INFO] [06/15/2015 20:05:21.501] [Akkademy-akka.actor.default-
dispatcher-3] [akka://Akkademy/user/clusterController] MemberEvent:
MemberExited(Member(address = akka.tcp://Akkademy@127.0.0.1:2552,
status = Exiting))
 [INFO] [06/15/2015 20:05:26.470] [Akkademy-akka.actor.default-
dispatcher-17] [akka://Akkademy/user/clusterController] MemberEvent:
MemberRemoved(Member(address = akka.tcp://Akkademy@127.0.0.1:2552,
status = Removed),Exiting)

http://akka.io/downloads/

Successfully Scaling Out – Clustering

[168]

Cluster Member States
Nodes that join the cluster can be in one of a few different states. Under the hood,
there is a logical leader node that coordinates some of the state changes. The cluster
will logically order nodes and everyone will come to a conclusion about that order.
The first node in the ordered list of nodes is the leader.

The leader responds to requests to join and leave the cluster by changing a
member's state.

When joining the cluster, a joining member announces its state as "Joining."
The leader responds by announcing that the member is Up. Similarly, if a node
announces that it is "Leaving," then the Leader responds by changing that node's
state to "Exiting" and then to "Removed." All these state changes are sent through the
cluster as MemberEvents, which we subscribed to and logged.

Failure Detection
There is one more path out of the cluster that actors can take—nodes can be detected
as unreachable by other members of the cluster that are performing failure detection.
When a node is determined to be unreachable for any reason— for example, crashing
or temporary network failure—then the state of the node does not change, but it
instead is marked with a MemberUnreachable flag. We subscribed to this event in
our ClusterController so that we can become aware of this flag. If the member
becomes reachable again within a reasonable period of time, then it will resume.
If it stays unreachable for a configurable duration, then the leader will mark the
node "Down" and it cannot rejoin the cluster.

From a functional perspective, you can simply watch for the changes in member
state, but the implementation of failure detection is actually based on the probability
of being unreachable (phi) based on data collected from the cluster. If you want to
learn more, the Cluster Specification document has a link to information on how
failure detection is implemented (http://doc.akka.io/docs/akka/snapshot/
common/cluster.html#failure-detector).

We're going to leave the values as their default, but in your deployments, you should
be sure to read the documentation and adjust depending on your network reliability.
Amazon EC2 instances (AWS) is notoriously less reliable than a small network
sitting on a rack, so you might want to be more reactive to temporary partitions
in AWS than you would on your own virtualization infrastructure and network
appliances. After working in large deployments in cloud environments, I've found
that encountering service interruptions due to temporary network failure are more
the norm than the exception in day-to-day operations.

http://doc.akka.io/docs/akka/snapshot/common/cluster.html#failure-detector
http://doc.akka.io/docs/akka/snapshot/common/cluster.html#failure-detector

Chapter 6

[169]

It's worth noting that if a node is marked unreachable, then Akka cluster will not
change states—no new members can join until nodes are either marked down after
being unable to recover from unavailability or are restored.

If nodes becomes unavailable and are marked down, they can't rejoin the cluster
after that point. Two separate clusters can result (forming what is referred to as a
"split brain" scenario). Akka does not currently resolve this phenomenon; thus, once
a node is downed, it needs to shut down and restart to get a new unique ID and
rejoin the cluster.

This wraps up the basics of Akka cluster. We'll look at building out some examples
on our cluster now.

Routing Messages to the Cluster
We looked at how to create a cluster. Now we'll look at how to send messages to the
cluster. We're going to re-introduce our article parsing problem here and allocate a
cluster of nodes to do the work.

Producing a Distributed Article Parse Service
For our first example—a distributed, horizontally scalable service—we're going to
produce a cluster of article parsing services and then have a client route messages to
random members of the cluster.

We've looked at producing a pool of actors that will parse an article from a web page
for us in Chapter 5, Scaling Up.

—we're going to re-use all the code and run it on our cluster example. The receive
block of the actor that we want to cluster looks like the following:

//Java
match(ParseArticle.class, x ->{
 ArticleParser.apply(x.htmlBody).
 onSuccess(body -> sender().tell(body, self())).
 onFailure(t -> sender().tell(new Status.Failure(t), self()));
 }
)
//Scala
 override def receive: Receive = {
 case ParseArticle(htmlString) =>
 val body: String = ArticleParser(htmlString)
 sender() ! body
 }

Successfully Scaling Out – Clustering

[170]

You can refer to Chapter 5, Scaling Up examples on GitHub for the full example.
We're going to put the pool of article parsers in our cluster and start the cluster up.
Once that's complete, we'll demonstrate how to talk to the cluster of services from
another actor system. All that we need to do to make a cluster of services is add
any dependencies missing to our cluster project, and then put the ArcicleParser,
ArticleParseActor, and the ParseArticle messages into the application.

Once you've done that, then we can simply start the actor (or pool of actors) as
has been demonstrated in the section on starting the cluster. Then, our main could
possibly appear as follows:

public class Main {
 public static void main(String... args) {
 ActorSystem system = ActorSystem.create("Akkademy");
 ActorRefclusterController = system.actorOf(Props.
create(ClusterController.class), "clusterController");
ActorRefworkerPool = system.actorOf(new BalancingPool(5).props(Props.
create(ArticleParseActor.class)), "workers");
 }
}

We can start up a few nodes now as covered previously in the section on starting
the cluster. For brevity, we'll do so without enabling remote management. If you're
using Linux, you can do it in one go by backgrounding the tasks:

activator run &
 activator run -Dakka.remote.netty.tcp.port=2551 &
 activator run -Dakka.remote.netty.tcp.port=0 &

Now, we have a three-node cluster running. We'll move onto the client.

Cluster Client for Clustered Services
Building a client to talk to stateless clustered services is fairly straightforward.
Akka Cluster gives some advantages compared with traditional web services
with a load-balancer in front—the cluster can be dynamically scaled up and down
without changing load-balancer configuration. The client itself can route the
messages to random members of the cluster, so the infrastructure requirements are
simpler. Because the client is aware of the cluster, it can rebuild the list of services
available to send messages to as the cluster increases or decreases in size. The
client will internally load-balance requests against all the nodes in the cluster in the
following manner:

Chapter 6

[171]

Custer
Member

Custer
Member

Custer
Member

Client

routed messages

We have a three-node cluster running; thus, we can look at what we need to do to get
a client to talk to it:

1. Enable cluster client in the server project.
2. The client must have the message that you want to send to the service.
3. The client must know about the cluster topology without being a member

of the cluster itself. For this, we will use the Akka Cluster Client in the
Contrib library.

4. The client must then know how to find the actors or routers it wants to send
to and respond to cluster events.

Setting up the Server Project
In the server project, we added the dependencies necessary to use the cluster client.
The Cluster client is in the contrib package, which are contributions from outside
of the Akka team. We added the following dependency:

"com.typesafe.akka" %% "akka-contrib" % "2.3.6"

Then, in the configuration (application.conf), we added an akka extension for
the client:

akka.extensions = ["akka.contrib.pattern.
ClusterReceptionistExtension"]

Successfully Scaling Out – Clustering

[172]

This will start the ClusterReceptionist on the server, which will handle all the
details for our client to be able to talk to the cluster. The cluster receptionist actor is
created on the root path in the server—/user/receptionist. We'll see how this is
used shortly.

After doing that, our main need is to be updated to register the worker with the
ClusterReceptionist. We'll use the balancing pool introduced in Chapter 5, Scaling
Up to create a pool of actors on each server.

First, we'll look at the Java code:

public class Main {
 public static void main(String... args) {
 ActorSystem system = ActorSystem.create("Akkademy");
 ActorRefclusterController = system.actorOf(Props.
create(ClusterController.class), "clusterController");
 // router at /user/workers
ActorRef workers = system.actorOf(new BalancingPool(5).props(Props.
create(ArticleParseActor.class)), "workers");
 ((ClusterReceptionistExtension) akka.contrib.pattern.
ClusterReceptionistExtension.apply(system)).
 registerService(workers);
 }
}

You'll see that we have to cast the ClusterReceptionistExtension—we're calling
the Scala API's apply method. This works perfectly fine for registering the workers.

The Scala example looks a little simpler:

object Main extends App {
 val system = ActorSystem("Akkademy")
 valclusterController = system.actorOf(Props[ClusterController],
"clusterController")
 // router at /user/workers
 val workers =
 system.actorOf(BalancingPool(5).props(Props[ArticleParseActor]),
"workers")
ClusterReceptionistExtension(system).registerService(workers)
}

That's it! If you have nodes running, you'll want to restart them after making
the changes.

Chapter 6

[173]

Setting up the Client Project
We can create a new project for the client. Run activator new and select the
language template of your choice.

Edit the build.sbt file in the new project. You'll need to add the following
dependencies:

libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % "2.3.6",
 "com.typesafe.akka" %% "akka-cluster" % "2.3.6",
 "com.typesafe.akka" %% "akka-contrib" % "2.3.6"
)

You can add any test dependencies you might like as well, such as junit or
scalatest. There is nothing new in our dependency list here.

Next, we have to make/modify application.conf to ensure the provider is correct
are correct and set up the mailbox for the Cluster client:

akka {
 actor {
 provider = "akka.cluster.ClusterActorRefProvider"
 }
contrib.cluster.client {
 mailbox {
 mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox"
 stash-capacity = 1000
 }
 }
}

Be careful about providing too many messages before letting everything get
connected! Messages will be stashed in the Cluster Client.

Sharing the Message Class between Client and
Server
There are a few different ways in which you can share messages across client
and server applications. You can build them both in the same project, you can
include the server project in the client or vice versa, or you can have an extra
project that contains the messages that both projects share. In Chapter 2, Actors and
Concurrency this was demonstrated by publishing a library to the local repository.
Nexus or Artifactory can be installed to host the assets as a solution for teams on
closed-source projects. Sonatype's OSS Repository and Maven Central can be used
for open source projects.

Successfully Scaling Out – Clustering

[174]

If you're following along, take whichever approach you like—preferably putting
the messages in their own project. For the sake of simplicity, in the example, we can
change the ArticleParseActor to accept and return strings:

//Java
match(String.class, x -> {
 ArticleParser.apply(x).
 onSuccess(body -> sender().tell(body, self())).
 onFailure(t -> sender().tell(new Status.Failure(t), self()));
//Scala
 case htmlString: String =>
 val body: String = ArticleParser(htmlString)
 sender() ! body

Changing messages over time can break your applications.
Google's Protocol Buffers can be used in Akka for message
serialization - you may want to learn how to utilize Protocol
Buffers to managing changing messages over time.

Sending Messages to the Cluster
Now that we have the cluster configured to talk to the contrib package's Cluster
Client, we can send messages to the cluster.

We'll take a random article from the Internet, grab the HTML source, and create a
String variable called articleToParse.

We'll send that to a random member of the cluster, and we should then get back the
body of the article from the service. We'll print the result. If you send it a few times,
you will see it go to all members of the cluster.

The following is the Java code for the client project:

public static void main(String[] args) throws Exception {
 Timeout timeout = new Timeout(Duration.create(5, "seconds"));
ActorSystem system = ActorSystem.create("clientSystem");
 Set<ActorSelection>initialContacts = new
HashSet<ActorSelection>();
 initialContacts.add(system.actorSelection("akka.tcp://
Akkademy@127.0.0.1:2552/user/receptionist"));

Chapter 6

[175]

initialContacts.add(system.actorSelection("akka.tcp://
Akkademy@127.0.0.1:2551/user/receptionist"));

 ActorRef receptionist = system.actorOf(ClusterClient.defaultProps(ini
tialContacts));

 ClusterClient.Sendmsg = new ClusterClient.Send("/user/workers",
articleToParse, false);

 Future f = Patterns.ask(receptionist, msg, timeout);
 String result = (String) Await.result(f, timeout.duration());
 System.out.println("result: " + result);
 }

And the following is the Scala code for the client project:

def main(args: Array[String]) {
 val timeout = new Timeout(Duration.create(5, "seconds"))
 val system = ActorSystem.create("clientSystem")
valinitialContacts: Set[ActorSelection] = Set(
 system.actorSelection("akka.tcp://Akkademy@127.0.0.1:2552/user/
receptionist"),
 system.actorSelection("akka.tcp://Akkademy@127.0.0.1:2551/user/
receptionist")
)
 import collection.JavaConversions._
 val receptionist = system.actorOf(ClusterClient.
defaultProps(initialContacts))

 valmsg = ClusterClient.Send("/user/workers", articleToParse, false)

 val f = Patterns.ask(receptionist, msg, timeout)
 val result = Await.result(f, timeout.duration).asInstanceOf[String]
 println("result: " + result)
 }

We'll look at what is happening in the code step by step.

First, we define a timeout variable to use in our test here as we will ask and wait
for the result. In real situations, you will likely be using an actual actor to send and
receive—this is just for the sake of example. We create the actor system for the client.

Now, we need to produce the client that talks to the receptionist in the cluster.
We create the contact list for the receptionists of the seed nodes for our client
to talk to. After getting the set of seed node addresses, we can then create the
ClusterClient actor:

system.actorOf(ClusterClient.defaultProps(initialContacts))

Successfully Scaling Out – Clustering

[176]

At this point, our application is able to connect to the cluster and get information
about any changes to the cluster topology. The receptionist in the remote actor
system will accept a few different messages:

• ClusterClient.Send: This sends a message to a random node.
• ClusterClient.SendToAll: This sends a message to all actors in the cluster.
• ClusterClient.Publish: This sends a message to all actors subscribed

to a topic.

We only need to send the message to a random worker; so, Send is fine for our
case. We make the Send object, describing which actor the message is destined
for (the "workers" router running on each node of the cluster) and wrapping our
message in it:

newClusterClient.Send("/user/workers", articleToParse, false)

Finally, we use ask to send the message to the receptionist ActorRef to deliver,
and to get the result back (shown calling ask method, but in Scala we can also use
the '?' operator):

Patterns.ask(receptionist, msg, timeout);

We take the future that ask gives us and wait for the result—again, this is only for
the sake of an example. You never want to block threads by waiting in your code.

If a node becomes unavailable when you try to send it a message,
your request will time out and fail. It is your responsibility to handle
timeout and retry semantics, or otherwise handle failure cases.

That's all that it takes to use Akka to build distributed workers. Now, there are a lot
of things we would want to do to further improve this system. If there are potentially
lots of messages, we would likely want to put the messages somewhere other than
in the mailbox in memory. Likely, some sort of durable queue or database would be
used instead of ephemeral memory. Though, for real-time processing, this isn't a bad
start. For a client, we would likely want to build timeout and retry mechanics as well
to ensure that we always get the work done that we need done.

Building a Distributed Key Value Store
We've looked at everything that it takes to build on top of Akka cluster and we
looked at a small example of a stateless cluster of workers. If state is involved,
the problem becomes incredibly difficult to get right.

Chapter 6

[177]

In the next section, we'll look at the watchouts, tools, and techniques for handling
distributed systems that contain state such as a key-value store.

Disclaimer – Distributed Systems are Hard
Before we go on to look at how to build a distributed key-value store, I want to give
you a word of warning.

It's not terribly difficult to build distributed systems that appear to work perfectly
fine. You might get confident and feel that it's not all that hard after all. You'll tout
yourself soon as an expert Distributed Systems Person. But stay humble—in reality,
things fail, networks partition, and services become unavailable—and gracefully
handling those scenarios without data loss or corruption is an incredibly difficult
problem. Perhaps, even an unsolvable one with our network technology today.

How applications respond in those error cases can be more important than their
primary functionality because failure is common and, in fact, is inevitable as you
scale up.

Remember that the network is not reliable. In a cluster of 1,000
nodes running in AWS, it's very likely that there will be some
service interruption somewhere in your system at any given time.

So, how do all of these new-fangled NoSql data-stores actually stack up in their
claims of availability and partition tolerance then? There is an interesting series of
articles called Jepsen or Call Me Maybe on aphyr.com that tests several distributed
system's documented claims about resiliency—you might be surprised by how your
favorite technology fairs in some of the tests run in the articles.

This book will not be able to explain all of the techniques or examine all of the
solutions to these problems, so all that I can do as the author is to warn you that it's
a real can of worms and nobody has done a perfect job at solving the distribution
problem yet.

Designing the Cluster
We are going to build a very simple three-node data-store to start demonstrating the
techniques that can be used in distributed systems. We are going to look at a couple
different designs so that you understand the techniques that are used and what the
problems are that distributed systems try to solve.

aphyr.com

Successfully Scaling Out – Clustering

[178]

First, let's begin talking about our cluster and how the client interacts with it. Ideally,
we need our multi-node key-value store to offer a few features:

• Mechanisms for replicating data to gracefully handle a node partition
• Mechanism for giving a consistent view of replicated data—to give the most

recent update when a client requests it (consistency)
• Mechanism for linear scalability—20 nodes can handle twice as much

throughput as 10 nodes

In terms of design goals in meeting those objectives, we would like to have a
database that is highly available, partition tolerant, and able to give a consistent
view of the most recent data. Achieving all three perfectly is not likely possible
with our technology today, but we can take measures to try. We're lucky that a lot
of very smart people have been working on these problems; thus, we have access
to their research and publications.

Basic Key-Value Store Design
We've already looked at how a single node can store an object in a map with a key
associated with it. Using a HashMap gives approximate constant time lookups, so it's
a very efficient choice for storing data in memory.

An actor will accept Get messages with a key, and Put messages with a key and
a value—exactly as demonstrated in Chapter 2, Actors and Concurrency. To recap,
our node will have an actor that looks like the following:

//Java
 private AkkademyDb(){
 receive(ReceiveBuilder.
 match(SetRequest.class, message -> {
 log.info("Received Set request: {}",
message);
 map.put(message.key, message.value);
 sender().tell(new Status.Success(message.
key), self());
 }).
 match(GetRequest.class, message -> {
 log.info("Received Get request: {}",
message);
 Object value = map.get(message.key);
 Object response = (value != null)
 ? value
 : new Status.Failure(new
KeyNotFoundException(message.key));
 sender().tell(response, self());
 }).

Chapter 6

[179]

 matchAny(o ->
 sender().tell(new Status.Failure(new
ClassNotFoundException()), self())
).build()
);
 }

 //Scala
 override def receive = {
 case SetRequest(key, value) =>
 log.info("received SetRequest - key: {} value: {}", key, value)
 map.put(key, value)
 sender() ! Status.Success
 case GetRequest(key) =>
 log.info("received GetRequest - key: {}", key)
 val response: Option[Object] = map.get(key)
 response match{
 case Some(x) => sender() ! x
 case None => sender() ! Status.Failure(new
KeyNotFoundException(key))
 }
 case o =>Status.Failure(new ClassNotFoundException)
 }

I would recommend that you add other messages for common use cases if you're
going to attempt to implement this. Semantics like SetIfNotExist, which sends
back a failure if the node is already there, is useful for handling concurrency
consistently—getting and then setting the value if it does not exist is not at all
consistent enough for a distributed workflow. Redis API docs are a good resource to
look at if you want to see the types of messages and datatypes that are useful for a
key-value store to handle with multiple clients—it's a simple and readable document
that will go a long way to ramp you up in the problem space.

Coordinating Node
Now that we have a picture of how we'll store data in a node, we need to look a
bit higher level at how we want messages to be handled between a client using the
data-store and the cluster.

We have a client example that sends a message to a random node and that's actually
quite a good start for most distributed stores because very often such systems will
implement the concept of a coordinating node that can be any node in the cluster
that will handle talking to other nodes in the cluster to handle the request.

Successfully Scaling Out – Clustering

[180]

It's probably unclear at this point exactly why we would do this, but let's imagine a
coordinating node that needs to talk to three other nodes to get a definitive answer
on what a value is.

Custer
Member

Custer
Member

Custer
Member

Custer
Member

Custer
Member

Custer
Member

Client

If we implement this logic, a client can send the request to any node in the cluster,
and that node becomes the coordinator for the request. That node then goes to the
other nodes and requests the data that it needs to make a decision on what the value
is that is being retrieved. So, we can continue to use the random delivery mechanism
if we implement the coordination logic on the server instead of the client. Because
we're not sure where the client is located, it's safer to move this responsibility
into the cluster itself—we can be more confident that the nodes we need to talk to
have lesser leaps across the network in the majority of circumstances. This is how
Cassandra handles requests for example.

We'll look at two models: one for storing a data set across multiple nodes and one for
replicating data across multiple nodes.

Sharding for Linear Scalability
The first problem we will look to solve is how to assign a piece of a problem domain
to different nodes in a cluster. In the case of storing data in a key-value store, it's easy
to see how you might take slices of data (determined by the key) and assign them to
different nodes. In Cassandra, a key used to determine which node data goes to is
called a partition key.

Chapter 6

[181]

For our use case of a very simple key-value store, we can take a key and hash it,
and then execute modulus on the hash to get an integer value. Let's assume we
have three nodes that we want to store data on. A request goes to a node in the
cluster to store a key-value pair—for example, foo as the key and bar as the value.
The coordinating node will execute hashCode() on the key:

"foo".hashCode()
 (101574)

Then, it will call the modulus operator on the hashcode, giving a result of 0, 1, or 2:

101574 % 3
 (0)

Now, if we have three nodes that we want to store data on, then we know if we want
to set or get a value with the key foo that it goes on the first node. This approach of
sharding data is used in many distributed data-stores today.

Redundant Nodes
To have high availability and partition tolerance, we have to tolerate a node
disappearing from the cluster for both reads and writes. If one node disappears,
this should be a non-critical failure and the data-store should continue to operate
to meet our goals.

To accomplish this, we can send all writes to three nodes and hope that the majority
of them respond with an acknowledgment. If only two respond with an ok, we might
be able to handle that on future reads. Now, all the intricacies of this mechanism—
and specifically how to determine the ordering of events—cannot be covered here,
but you can look at lamport clocks or vector clocks if you're motivated to get this
right. We'll look at the mechanics at a high level here using simpler mechanics that
are easier to comprehend.

Let's say a client wants to write a value for key foo of value bar, we want to
persist this to three nodes. We'll try to write the value to three nodes from the
coordinating node.

We can reference the previous diagram—a client will make a request to write and
it goes to three nodes in the cluster. To have a successful write, we might agree
that at least two of the nodes need to acknowledge the write, or maybe all three do.
Adjusting these values tune how it responds to partitions and node failures.

Successfully Scaling Out – Clustering

[182]

Now, if we want to retrieve the value, then we can request the data from any of the
three nodes as a starting point, but what if one node goes down and misses some
writes? In this case, we can request the data from all three nodes, and require the
same value from at least two nodes.

Quorum Decision

Client
Co-ordinating

Node

foo: bar1 foo: bar2 Custer

Member

Custer

Member

Custer

Member

foo: bar1

foo: bar2

Now, we have some way of determining what the majority of nodes think the
value is—we say that two nodes must have the same value to determine which it
should be.

But how do we know the order of values? Was bar1 or bar2 written first? Which
is more recent? We actually don't have any way of determining the ordering of
messages, which it turns out is quite a problem. What happens if one node gets
writes in a different order than another node? Cassandra has another read request
type called a read repair request, which compares the data stored for a key on all of
the replica nodes and tries to propagate the most recent write to the replicas.

The actual ordering of events is an interesting problem. You could start by using
a timestamp in the record to determine which records are most recent, but we
can't guarantee that all machines have the same clock or that events are occurring
infrequently enough to trust the timestamp.

Chapter 6

[183]

There are a couple of papers and algorithms you can look at that describe the
problem and some solutions. Some of the items you may want to look at are Vector
Clocks (Used by many distributed technologies such as Akka and Cassandra) and
Dotted Version Vectors (used by Basho's Riak in recent versions).

• The Dynamo paper from Amazon describes the use of Vector Clocks
in Amazon's Dynamo distributed key-value store—http://www.
allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• Lamport wrote a paper on the problem of ordering in distributed systems in
1978 that is worth a look as well—http://research.microsoft.com/en-
us/um/people/lamport/pubs/time-clocks.pdf

Combining Sharding and Replication
Once we have approaches in place for sharding and replication, we will be able to
combine the two together by first sharding data into a ring and then replicating the
data to the neighboring nodes. Let's say we have five partition keys, and we want
to replicate the data across three nodes; with five nodes, we end up with a topology
that looks like the following, with the numbers representing the hash of the partition
key as demonstrated:

Client key 4, 0, 1

key 3, 4, 0

key 2, 3, 4

key 1, 2, 3

key 0, 1, 2

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf

Successfully Scaling Out – Clustering

[184]

The request goes to a random node that becomes the coordinating node. That node
would then calculate key partition key and go to the three nodes that have the data
set. The retrieval and handing of the data at that point is no different than what we
have looked at.

key 3, 4, 0

key 2, 3, 4

key 1, 2, 3

key 0, 1, 2

key.hashCode() % 5 = 3 co-ordinating
node

key 4, 0, 1
Client go to all

"3" nodes

Pre-Sharding And Redistributing Keys to New
Nodes
What happens if you want to be able to add new nodes? For example, what if you
want to keep your replication factor of 3 and add two new nodes? If our partition
key is only 0–4, then we can't move the data across new nodes.

The trick to this problem is to not use five partition keys but to use a much larger
number. Cassandra has a concept of a vnode—a virtual node—whereby a cluster
has a larger number of shards than nodes out of the gate. If you start by sharding
your database into 64 or 128, then you can add new nodes and move a portion of the
partition keys to new nodes as they come into the cluster.

key 0-31
(32 keys)

key 22-42
(21 keys)

key 32-63
(32 keys)

add a node

move 32-42

move 22-31

key 0-21
(22 keys)

key 43-63
(21 keys)

Chapter 6

[185]

Then the coordinating node can talk to the new node, understanding it has been
assigned a new set of partition keys. Note that moving data around to a new node
is a one-time operation and likely requires you to stop all operations on all nodes
until the re-distribution of partition keys is complete. If your partition is under
heavy write through the operation, it might be difficult to ensure no data loss
through the operation otherwise.

It will be simpler to assign a fixed size to the cluster until you can eventually get to
these features. Akka Cluster has mechanisms to only start a cluster once it reaches a
certain size. If you want to try building your own distributed key-value store, you
should assume it has a fixed size and a known number of partition keys, and add
pre-sharding and re-distributing keys as features later because they are non-trivial
problems to solve.

Addressing Remote Actors
We've focused heavily on implementation details, but to round out this chapter,
we should have a quick look at Actor Addressing again and how to get references
to remote actors.

If we have an ActorRef, calling actorRef.path() will give us the actors
URL—akka://ActorSystem/user/actor.

There are two parts to the path:

• authority: akka://ActorSystem
• path: /user/actor

Authority can be either local (akka://ActorSystem) or remote (akka.tcp://
ActorSystem@127.0.0.7). The path will be the same for both local and remote
actors (/user/actor for example).

An ActorRef will have an ActorPath with a fragment #123456, which is what is
called the actor's UID. An ActorPath will not—it will just have the path.

We looked at ActorSystem.actorSelection earlier, which will let us look up an
Actor with any path and send it messages:

ActorSelectionactorSelection = actorSystem.actorSelection("akka.tcp://
ActorSystem@127.0.0.7/user/my-actor");
valactorSelection = actorSystem.actorSelection("akka.tcp://
ActorSystem@127.0.0.7/user/my-actor")

Successfully Scaling Out – Clustering

[186]

That gives us an actor selection, which we can send messages to. Although, the
actor selection does not assume that an actor exists. If we send messages to an
ActorSelection and the actor does not exist, the message will disappear.
Thus, we can look up an actor and get an ActorRef for a remote actor.

Using akka.actor.Identify to Find a Remote
Actor
All actors by default accept a message—akka.actor.Identify. We can create a new
Identify message and send it to an actor to get an ActorRef:

Identify msg = new Identify(messageId)
 Future<ActorIdentity> identity = (Future<ActorIdentity>) Patterns.
ask(actor, msg, timeout);
valmsg = Identify(messageId)
 val identity: Future[ActorIdentity] = (sentinelClient ? msg).
mapTo[ActorIdentity]

We will receive a response—ActorIdentity(messageId, Some(actorRef)), or
ActorIdentity((path, client), None)—showing that an actor is either present
or absent. This gives us a mechanism for determining if a remote actor exists and
obtaining an ActorRef for it.

Homework
This chapter is a blend of theory and technique. We covered how to use Akka cluster
to run work on and then how to use it to distribute datasets partitioned by key. The
problems are too big to cover in an introductory chapter to Cluster, but if you try to
approach some of the problems presented in this chapter, you should start to get a
good handle on how people solve some of these problems today.

• Build your own worker queue using Cluster.
• Build a distributed key-value store with replication.
• Try to solve the linearization problem—how can you determine ordering?

How can you "repair" nodes that fail and then recover?
• Build a distributed key-value store with sharding.
• Can you combine sharding and replication with minimal changes to the code

you have now as described?

Chapter 6

[187]

• In the sharded model, can you develop a way to redistribute data to new
nodes? Is it harder to do this with replication? About the same difficulty?

• If you build a project, you should open source it and share your discoveries
and learning!

Summary
In this chapter, we covered the basics of how you might design some different
distributed systems. This gives you a few models that you can use for various
problems—don't simply think of sharding/partitioning when dealing with
data—you can use similar techniques for many real-time system problems to be
able to scale out.

If you'd like to learn more about the techniques introduced here, you should both
continue your learning and try to build the solutions to these problems yourself.
In my humble opinion, the best way to learn is to teach and share, so try to start a
distributed computing club or otherwise get some presentations together for your
peers on how these technologies work—organizing your thoughts will help you get
into the details and find your own way in discovering how we're moving to solve
these types of distributed computing problems today.

In the next chapter, we'll discuss what happens in mailboxes when our actors get put
under heavy load and look at how we can adjust mailbox configuration to adapt to
those conditions.

[189]

Handling Mailbox Problems
Congratulations! You've made it through all of the tough content now. You've
learned Akka, you've learned how to scale it, and how to describe your system's
behavior in those situations!

In this chapter, we will look at what happens when you start to hit the limits of your
actor system and how to describe how your system should behave in those situations.

Let's start by setting the stage for the problem and then look at different approaches
we can use to overcome these issues.

Overwhelming your weakest link
To continue our running example, imagine we have an application that extracts
articles and stores the body in our key-value store. The extracted articles are then
displayed on various devices that have a reader application.

You've launched the application and have a growing user base. Everything is working
fine. People can request articles to read from the device on their application; it hits a
public REST API, which makes a request to the parse service. The parse service will
check the store and, if the article has not been parsed, then it will parse it and then
cache it.

Handling Mailbox Problems

[190]

The following figure represents the flow of articles as they are parsed and stored:

Public REST
API

Article Parse
Worker

Article Parse
Worker

Article Parse
Worker

Article Store

Article Store

Article Store

Let's imagine a day when several good events happen. Our app shows up in the
number 1 spot, for example on Hacker News, all day and we get 10x more traffic
than we have ever seen.

First, we start to see timeouts in the REST API application. Response times balloon
when making requests from the API. Eventually, the article parse services crash with
out-of-memory errors, so we start to analyze the traffic in the application under load.
Because article parsing is the most processing intensive piece of the application, lots
of messages will get queued there. This is the slowest service in our data flow.

Public REST
API

Article Parse
Worker Article Store

FastFast
Slow

Remember that messages go into a mailbox in memory. If a service is consuming
messages slower than the rate at which they are delivered, then mailboxes will
become more and more full. Let's look at the events that occurred when we saw the
load, in a bit more detail to understand why they occur. We can look at different
ways in which we can configure our application to make sure it stays up the next
time we're overwhelmed like this.

Chapter 7

[191]

Ballooning response times
The first thing we'll see when we start overwhelming our slow article parse worker
consumer is increasing response times. If our ArticleParser can process 100 articles in
a second, and we send it 101 articles a second, then messages will slowly accumulate.
After 1,000 seconds, there will be 1,000 messages queued up in the mailbox.

Once there is a queue of messages, any messages that have been received first will
need to be processed before any new messages can be processed, so what we will see
is response times start to grow.

The more these unhandled messages are queued, the longer it takes to process
new messages.

Article Parse
Worker

(100 req/s)

Article Store
(1000 req/s

Idle!

1000 msgs
New message:

Will take 10 seconds
to handle

A slow consumer of messages will cause downstream problems as well. If you have
a very fast consumer behind a slow consumer, your response times will be primarily
affected by your slowest consumer. So we have to focus on the slowest consumer to
make our system respond better. One of our goals in a reactive system design is to
ensure it is always responsive, so this violates the responsiveness principle.

Crashing
If we continue to try to push more and more messages through the system, we'll
eventually have a very large number of messages in the slow message consumer's
mailbox, which causes a far worse problem to occur—crashes due to out-of-memory
errors.

Once response times get to this point, people trying to use the service are probably
going to be hitting retry again and again, piling even more messages into the mailbox
of our already overburdened services.

Handling Mailbox Problems

[192]

The default mailbox is unbounded, meaning that the service will accumulate
messages indefinitely. Resources are limited—the JVM only has so much memory
available—so eventually the slow message consumer will have so many messages
in memory that the JVM will not have the memory needed to create new objects and
will crash.

LOTS!

Article Parse
Worker

Eventually
Crashes

Article Store
(1000 req/s

Idle!New message

If we have a cluster of workers, as demonstrated in the previous chapter, the
crashing of one node in the cluster means that other members of the cluster will
suddenly start receiving more messages. The effect is usually a cascading one—more
messages go to the other nodes and eventually they will crash as well. When the
whole system goes down, then we're completely unavailable.

Resiliency
We've covered the reactive tenets in previous chapters. The behavior of our
application violates a couple of the reactive tenets: resiliency and responsiveness.

We'll ignore responsiveness for now and focus on how we can change our
application to stay up instead of crashing when it's overwhelmed.

The crashing is caused by an unbounded mailbox, so we can start by changing the
mailbox of the actor. An unbounded mailbox is an un-defensive position—we assert
that our application will always catch up and handle messages if we don't put a limit
on its size.

Mailboxes
Up to this point, we've largely ignored mailboxes. We've simply known that
messages get placed there, and then messages are processed. That's a perfectly fine
level of abstraction for you until you're facing a reasonably large scale usage. That's
why this chapter is at the end of this book—you're introduced to the mailbox very
early, but you might not need to tune it until you're handling real traffic.

Chapter 7

[193]

Configuring mailboxes
Mailboxes are configured in Akka in one of several different ways. You can refer to
the Akka Mailboxes documentation (https://doc.akka.io/docs/akka/snapshot/
scala/mailboxes.html) if you need more details.

In nearly all cases, actors get their own mailboxes, with the exception being
BalancingDispatcher used by BalancingPool, which shares a mailbox between
all of its actors as covered in Chapter 5, Scaling Up. So there are two areas where an
Actor's mailbox is determined—in the actor configuration and in the dispatcher
configuration.

We'll cover the different ways in which the mailbox configuration can be set.

Selecting a mailbox in deployment configuration
We've programmatically defined and instantiated actors. Akka's deployment
configuration can also be used to configure actors and routers from the
configuration file.

You can define an actor's mailbox (by actor path) in the deployment configuration.
If this is defined, this will take priority over any other configured mailboxes.
In application.conf, you would define an actor's mailbox like the following:

akka.actor.deployment {
 /myactor {
 mailbox = default-mailbox
 }
 }

The actor created at /user/myactor would then have the default mailbox:

ActorRefclusterController = system.actorOf(Props.create(MyActor.
class), "myactor");

 system.actorOf(Props[MyActor], "myactor")

Selecting a mailbox in code
You can also define which mailbox is used in code. Props has a withMailbox
method that can be called to assign a mailbox when the actor is created:

ActorRefclusterController = system.actorOf(Props.create(MyActor.
class).withMailbox("default-mailbox"));

 system.actorOf(Props[MyActor].withMailbox("default-mailbox")

https://doc.akka.io/docs/akka/snapshot/scala/mailboxes.html
https://doc.akka.io/docs/akka/snapshot/scala/mailboxes.html

Handling Mailbox Problems

[194]

Deciding which mailbox to use
The default mailbox will work with all use cases including BalancingPool/
BalancingDispatcher, where a mailbox is shared between multiple actors.

Unless you're using the BalancingPool, you will always have a single consumer of
messages from the mailbox.

Consumer

Producers

Instead of using the default mailbox, in this case you can use
SingleConsumerOnlyUnboundedMailbox, which can be more efficient than the
default mailbox in most cases (remember to always measure performance related
changes). The only time you cannot use this mailbox is with BalancingPool/
BalancingDispatcher, where multiple actors consume messages from the same
mailbox. The queue implementation is single-consumer only.

First we'll define a mailbox in our application.conf:

akka.actor.mymailbox{
 mailbox-type = "akka.dispatch.SingleConsumerOnlyUnboundedMailbox"
 }

Then we can make the actors with the mailbox:

ActorRefclusterController = system.actorOf(Props.create(MyActor.
class).withMailbox("akka.actor.mymailbox"));

 system.actorOf(Props[MyActor].withMailbox("akka.actor.mymailbox")

We will often need to decide whether we want to use a bounded or unbounded
mailbox. Unbounded mailboxes are preferable in most cases for performance
reasons, but what we've set out to do in our example is to use a bounded mailbox to
drop messages. We don't want to run out of memory if we get overwhelmed—we
would rather drop some messages.

Chapter 7

[195]

There are two types of bounded mailboxes—blocking and non-blocking. All
mailboxes are backed by queues. Blocking versus non-blocking in this case means
that the delivery of a message to a full mailbox will either cause the thread to wait
until there is room (blocking) or will drop the message (non-blocking.) We've
decided to drop the messages so we can settle on the NonBlockingBoundedMailbox.
We'll add the mailbox in our configuration:

akka.actor.boundedmailbox{
 mailbox-type = "akka.dispatch.NonBlockingBoundedMailbox"
 mailbox-capacity = 1000000
 }

And then instantiate the actors with it:

ActorRefclusterController = system.actorOf(Props.create(MyActor.
class).withMailbox("akka.actor.boundedmailbox"));

 system.actorOf(Props[MyActor].withMailbox("akka.actor.
boundedmailbox")

Now, if our system gets overwhelmed, we'll lose some messages, but things will
stay up.

What happens if messages get dropped? Well, your systems that communicate
with downstream systems should have timeout and retry semantics baked in.
You can expect that messages will get dropped occasionally, so if you need at least
once processing, you need to build your systems to keep track of requests and retry
them if they fail for any reason. In the case of our example application, the client will
probably get an error, so the user can choose to retry. In your own systems, timeout
and retry mechanisms can easily be built.

Prioritizing messages in mailboxes
There are two other families of mailboxes that you should be aware of: priority
mailboxes and control aware mailboxes. They both serve a similar purpose: allowing
the ordering of messages.

Priority mailboxes allow messages to be prioritized and sorted after they are
delivered to the mailbox. This has a fairly significant performance overhead: the
queue that backs the mailbox—java BlockingPriorityQueue—has to reorder
messages as they come in, which means that both producers and consumers of the
queue have to wait around while messages are shuffled around. Fortunately, there
aren't many cases where reordering messages is important, so you won't need to use
these mailboxes in most use cases.

Handling Mailbox Problems

[196]

There is one case, though, that would be common, and that's if you need to give your
actor some sort of control message to let them know that something has changed that
will affect how they process any queued messages.

Fortunately, there is another mailbox type—a ControlMessageAware mailbox—that
handles messages with an efficient queue but allows any message that extends akka.
dispatch.Controlmessage goes to the front of the queue. This is a much better
solution than priority mailboxes and should be your preference if you need to get a
message to an actor in front of the rest of the queue without more complex ordering.

We don't need to look at these in depth as they are very rarely used, but it's
important to understand that they do exist. The Akka documentation covers their
use in greater detail.

As one final note, it's worth mentioning that if none of the mailboxes fit your use
case, then you can create your own.

Staying responsive under load
We've now looked at how we can drop messages if we get overwhelmed. This lets
our application stay up instead of running out of memory if the mailbox gets too full.

Let's take a minute to look at what happens with our application once it gets under a
very heavy load now.

The application is humming along, and then some promotion of your app happens
again and sends way more traffic to the site than we anticipate or are provisioned to
handle. Just as before, more messages start coming in than we have the capacity to
handle, so they begin to build up in the mailbox. It starts to take longer to handle a
given message because we have to handle the backlog of messages in the mailbox first.

Eventually, under the continued heavy load, the mailbox will reach the bounded
limit we configured. At this point, it will start dropping messages. If we had used
the blocking bounded mailbox, then the thread would sit and wait until the message
could be placed in the mailbox. Either way, now we have a way of ensuring our
application doesn't crash.

But is this a good solution? We can look at the bounded mailbox capacity at a few
levels and determine how we can expect our applications to behave:

• If we have a very small bounded mailbox, any spikes in traffic will cause
messages to be lost, which the application might be able to respond to in a
reasonable amount of time

Chapter 7

[197]

• If we have a very large bounded mailbox, the requests will likely time out
before the actor can reply to them

In either case, the user has to wait for the timeout to occur. If the mailbox is very
small, the dropped message will simply disappear and, so, anyone waiting on a
reply will timeout and fail. If the mailbox is very large or unbounded, even if the
message is eventually processed, anyone waiting for a reply will eventually timeout
and fail, for example, in their browser or dependent application. You'll have to
evaluate your use case to see if either of these are suitable—if you don't care about
the response or can tolerate messages being lost during spikes in traffic, then these
may be acceptable.

For most cases, in real-time systems, waiting for very long periods of time is not
acceptable, especially waiting just to receive an error.

Circuit breakers
With responsiveness as a goal in our systems, any of the situations where we
make users wait for failure are not really acceptable. Similarly, with resiliency as a
goal, allowing systems to become overwhelmed with messages to the point that a
component fails completely is not acceptable either.

Circuit breaker is a pattern where some path through your application is monitored
for the latency of the responses or error. Messages pass through the circuit breaker as
they normally would, with the response time on the messages being measured. This
state is "closed."

response
time

measured

producer consumercircuit
breaker

Once a certain latency threshold is reached, the circuit breaker will change states to
'open' and will immediately fail all requests.

producer circuit
breaker

try later!

open

Handling Mailbox Problems

[198]

Then, after a period of time, the circuit breaker will change states to "'half-open'" and
try sending a request.

producer consumercircuit
breaker

response
time

measured

fail most try a sample

If the request comes back quickly, we can assume that the service has recovered
and the circuit breaker can change states back to "open".

It turns out that this is exactly what we want.

If the circuit breaker opens, in this condition this system gains the following:

• Responsiveness: The service will respond with failures quickly
• Resiliency: Instead of overwhelming downstream services until they crash,

the circuit breaker will let them recover

Note that the circuit breaker will also respond to errors the same way as timeouts.
If many errors are occurring, it will also cause the circuit breaker to open. The Akka
circuit breaker does not discriminate between timeouts and other failures (this is
probably what we want!) but you can certainly implement your own if you want to
change that behavior. If a downstream system starts failing under heavy load, we
can often make similar assumptions—that it needs time to recover from the load—so,
often the circuit breaker pattern will be a good idea to implement in order to protect
downstream systems.

Circuit breaker listeners
We might not know exactly how and when our circuit breakers will trip when we
put them into production. So, what we want to do is to collect data. Remember, we
always want to measure any assertions we make about how things actually perform
as we're often very, very wrong.

Chapter 7

[199]

Fortunately, the circuit breaker has hooks that let us add behavior on the different
events that occur—onOpen, onClose, and onHalfOpen.

You want to alert, or at least log, on these events so that you can determine how your
circuit breakers are behaving.

Circuit breaker examples
Circuit breakers work on futures, not on actors, so they have a use beyond only using
them for actors. Even if you're not using Akka in your project, you should consider
whether circuit breakers can be used to protect your systems.

We'll have a look at a simple CircuitBreaker example now in front of a service that
takes some time to respond. For the example, we'll use a local actor, but we'll add a
delay to the response to simulate network time and processing time.

To see the circuit breaker in action, we'll make a producer that produces messages
at a slightly faster rate than the target actor can handle. We'll make a producer that
produces messages every 50 ms and we'll make the consumer take 70 ms to respond.
This way, messages will slowly queue and the response times will get larger and
larger until the circuit breaker trips.

We'll use the key-value store example again and introduce the 70 ms delay.

In Java:

 match(GetRequest.class, message -> {
 Thread.sleep(70); //slow down the actor's response
 Object value = map.get(message.key);
 Object response = (value != null)
 ? value
 : new Status.Failure(new
KeyNotFoundException(message.key));
 sender().tell(response, self());

In Scala:

 case GetRequest(key) =>
 Thread.sleep(70)
 val response: Option[Object] = map.get(key)
 response match {
 case Some(x) => sender() ! x
 case None => sender() ! Status.Failure(new
KeyNotFoundException(key))
 }

Handling Mailbox Problems

[200]

In our calling class, we'll create a circuit breaker that will trip when latency becomes
greater than one second.

In Java:

CircuitBreaker breaker =
 new CircuitBreaker(system.scheduler(),
 10,
 FiniteDuration.create(1, "second"),
 FiniteDuration.create(1, "second"),
 system.dispatcher()).
 onOpen(() -> {
 System.out.println("circuit breaker opened!");
 }).
 onClose(() -> {
 System.out.println("circuit breaker opened!");
 }).
 onHalfOpen(() -> {
 System.out.println("circuit breaker opened!");
 });

In Scala:

val breaker =
 new CircuitBreaker(system.scheduler,
 maxFailures = 10,
 callTimeout = 1 seconds,
 resetTimeout = 1 seconds).
 onOpen(println("circuit breaker opened!")).
 onClose(println("circuit breaker closed!")).
 onHalfOpen(println("circuit breaker half-open"))

You can see the parameter names in the Scala example—they are equivalent.
We build the CircuitBreaker with the following:

• Max number of failures before the breaker trips (either timeout or failure in
the future)

• The call timeout (what latency to fail at)
• The reset timeout (how long to wait before changing to half-open and trying

a request)

Then, we also register a log event on the circuit breaker opening, changing state to
half open and changing the state to close.

Using the circuit breaker is simple—we supply a 0-argument lambda that returns
a future (a producer function.) For our example, we'll use ask.

Chapter 7

[201]

We'll make a call every 50 ms, and the actor will respond in 70 ms, so the messages
will queue. Then the mailbox will fill, response times will balloon, and eventually the
circuit breaker will open.

In Java:

 Timeout timeout = Timeout.apply(2000);

 ActorRefdb = system.actorOf(Props.create(SlowAkkademyDb.class));
 Await.result(Patterns.ask(db, new SetRequest("key", "value"),
timeout), timeout.duration());

 for(inti=0; i<10000000; i++){
 Future future = breaker.callWithCircuitBreaker(()
->Patterns.ask(db, new GetRequest("key"), timeout));
 toJava(future).handle((x,t) -> {
 if(t != null){
 System.out.println("got it: " + x);
 }else{
 System.out.println("error: " + t.toString());
 }

 return null;
 });

 Thread.sleep(50);
 }

In Scala:

 implicit val timeout = Timeout(2 seconds)
 valdb = system.actorOf(Props[FastSlowAkkademyDb])
 Await.result(db ? SetRequest("key", "value"), 2 seconds)

 (1 to 1000000).map(x => {
 Thread.sleep(50)
 valaskFuture = breaker.withCircuitBreaker(db ? GetRequest("key"))
 askFuture.map(x => "got it: " + x).recover({
 case t => "error: " + t.toString
 }).foreach(x =>println(x))
 })

In some cases, you might want to roll out your own circuit breaker or be careful with
what you consider to be a failure in a future. The circuit breaker counts any and all
failures and will trip after the maxFailures is reached. If your futures fail in ways
that you don't want your circuit breaker to fail, you can wrap the responses in a Try
instead of failing the future so that the future is successful.

Handling Mailbox Problems

[202]

There is one more strategy that you can think about to overcome overwhelming
your consumers. If you have a hot producer—something that will endlessly send
requests—then you might want to turn the way you supply messages around so
that actors ask for messages to process instead of simply receiving endless piles
of messages.

Another related concept—"Back-Pressure"—talks about slowing down the flow
of messages to what the slowest consumer can handle to avoid overwhelming
downstream systems. You can certainly implement something like this yourself
but the Reactive Streams proposal deals with this specific problem with a defined
standard.

From https://www.reactive-streams.org/—Reactive Streams is an initiative
to provide a standard for asynchronous stream processing with non-blocking
back pressure. This encompasses efforts aimed at runtime environments
(JVM and JavaScript) as well as network protocols.

There are now multiple implementations of Reactive Streams, including one from
the Akka team (Akka Streams). Reactive Streams is a fairly large topic, so we won't
introduce the technologies here, but know that people are working on this problem
actively and it might be worth looking at Reactive Streams—in particular if you have
"hot" producers that have a nearly endless supply of requests that they can make.

Reactive Streams take a blend of approaches, both receiving requests with a
mechanism to slow flow down if a service becomes overwhelmed (back-pressure)
and asking for extra work if there is capacity in the pipe line.

Reactive Streams is an exciting topic, but is still in its infancy at the time of writing.
Akka Streams is still marked experimental but is nearing GA and Typesafe are
spending a lot of time in holding seminars and letting people know about the
progress in the space.

You can learn more about Reactive Streams at http://www.reactive-streams.org/.

The Akka Streams Reactive Streams implementation documentation can be found at
http://doc.akka.io/docs/akka-stream-and-http-experimental/snapshot/.

https://www.reactive-streams.org/
http://www.reactive-streams.org/
http://doc.akka.io/docs/akka-stream-and-http-experimental/snapshot/

Chapter 7

[203]

Homework
You should try to build an application that overwhelms a mailbox and then try
different approaches to stop the mailbox from being overwhelmed.

• Try overwhelming a mailbox in a local actor system (you can sleep the
actor's thread by a few milliseconds to simulate the effect processing has on
throughput). See how the application behaves.

• Try overwhelming a mailbox in a distributed application built with cluster.
Try sending very large messages instead of implementing delays. What
do you observe in the health of the cluster when it is overwhelmed with
messages? What happens to the health of the cluster when the network is
overwhelmed?

• Can you think of a solution to the observed issue of the network reaching
saturation?

• Try to implement reactive streams and see if you can stop any errors from
occurring. (It will take some effort to learn reactive streams as the material is
not covered here.)

Summary
This chapter is at the end stages of this book because you might not need to think of
mailbox too much in your day to day activities. It's important to understand the effects
that changes to the mailbox have in your systems. Implementing a bounded mailbox
might seem like a good choice to stop you systems from crashing, but we want to
respond to the user as fast as possible—even in failure scenarios—so it will often be
better to fail quickly instead of drop messages once your systems are at their capacity.
This chapter introduced you a few of the tools you can use to adapt your applications
once they are running at very high scale and are being pushed to their limit.

In the next chapter, we will be learning about behavior-driven testing and
development. We will also take a look at domain modeling with actors and classes.

[205]

Testing and Design
While both testing and design-related items have been demonstrated throughout
this book, they were presented as secondary to the specific details of the toolkit that
were being introduced. Now that much of the Akka toolkit has been introduced,
we're going to examine some general approaches to design and testing in somewhat
greater detail.

Testing and design may seem like unrelated topics, but they have a tendency to
affect one another. For code to be testable, it has to be reasonably designed. Also,
if code is well designed, it will inherently be easy to make assertions about its
behavior and to test them.

On the topic of testing, we will explore the basic concepts in Behavior Driven
Development (BDD)—and see how we can both document and test our Actors with
those approaches. Good testing approaches are one of the most powerful tools for
documenting and describing our code. Tests cannot go out of date or deviate from
the application's behavior—generally, as soon as they have lost their validity, they
will fail and, therefore, force the engineer to change them to reflect the application's
behavior.

On the topic of design, we will cover a few basic strategies on the level of code in
actors that can help ease the task of testing their behavior. However, we will also
examine how we can keep our application flexible and easy to maintain as it grows
by creating context boundaries around different pieces of our application. We'll
examine how and where we may want to make those boundaries and will look at
how it relates to scaling in Akka.

We will cover the following topics in this chapter:

• Domain-driven design and modeling with Actors and Classes
• Behavior-driven testing and development

Testing and Design

[206]

Example problem
For this chapter, we're going to pick up a new problem from scratch so that we can
go over the process of doing some analysis and design and use that work to test and
build. For the example in this chapter, we'll look at how we might build pieces of a
chatroom application. You work in an organization and have been asked to produce
something for use within the office. As it's meant for use inside a private network,
the client can talk to the server using Akka remoting.

Looking at the macro level, our supported feature set might look something like
the following:

• Application will have a lobby where different chatrooms are displayed
• From the lobby, users can join a chatroom or leave a chatroom
• When a user joins a chatroom, they will receive a recent history of the chat
• Obviously, whenever someone posts, everyone will receive the update that

who is in the room

The user client will be written by some other team, and then it will interact with our
application. As it's a native application, or a swing application, we don't need an
HTTP API and we can use actor remoting to interact with the actors.

Approaching application design
There are arguably a couple of approaches that can be taken when writing code—the
more traditional waterfall approaches where design and analysis are done upfront,
and then code is built, or the Agile, especially Extreme Programming, camps, where
you might keep upfront analysis to a minimum, and instead iteratively build and
refactor your code to good design as you go.

Realistically, it's never one case or the other as you'll always do some analysis
upfront, and you'll always make discoveries as you build that will force you to
rethink and redesign your solution until completion. However, looking at some
projects a few years after inception I can say that when you're starting a new project,
you want to get the application foundation designed correctly or you'll be building
on a rickety tower for years to come.

Chapter 8

[207]

As we're starting a new piece of work here, I think it's prudent to look at the
design before we begin. We'll work from the top down to see how we can slice
the application into separate components to be able to build and test each one in
isolation. By separating pieces of the domain into distinct modules, we can ensure
we build simpler pieces. You can assign a developer to work on one piece, and he/
she will be able to pick it up and understand it in a few days without needing to
understand the entire system from front to back.

To begin designing our chat application, we can look at how we might create a
domain model to represent what we're trying to build in a way that is simple and
clear. Using object-oriented approaches, we aim to build classes that blend behavior
and data while not knowing too much about the pieces it interacts with. Creating
classes that have these qualities allows our application to change and grow over time
with minimal cost.

Looking at the brief description of requirements, it's easy to identify a few major
entities of the domain:

• Chatroom: A chatroom has a topic or name that uniquely identifies it.
• User: When a user registers, they acquire a username.
• Lobby: A lobby contains a list of chatrooms. It may contain a list of active

users as well. Likely one lobby exists but, as our application scales, it's
possible that we may network together multiple offices or create different
lobbies for different teams.

I also find it very helpful to talk about where state may exist in the problem upfront.
Because we have an asynchronous environment where several users are interacting
with server state at the same time, it will help us decide how to best use Akka to
build the application. The following areas could have state:

• Lobby: It will contain a list of all chatrooms
• Chatroom: It will contain a history of messages and a list of all current users

who need to receive updates to the chat

We know that Akka is a very good choice for encapsulating state in concurrent
systems, so likely these areas are good targets to implement with actors.

Testing and Design

[208]

High-Level design
Our chatroom will have a client/server model. We now know that it has a client that
is accessed by a user, and then on the server side we have a lobby and a chatroom as
distinct elements of the domain. By creating a clear context boundary around those
three elements, we can look at any one of them in isolation.

get list of ChatRooms

Client

post/get Chat Messages

Lobby

ChatRoom

"B"

ChatRoom

"A"

announce Online

We can look at the interactions of the components of the domain in the
following way:

• Client gets a list of chatrooms from the lobby
• When new chatrooms come online, they announce that they are available

so that clients can see them
• Clients can join the chatrooms
• Clients can post messages to the chat chatrooms
• Clients will receive updates from the chat chatrooms

We'll look at turning this into specifications shortly, but by listing out basic
interactions we can identify the components of the problem. Listing the components,
we can draw context boundaries that separate them, allowing us to work on each of
these components in isolation from the other elements. We also gain the ability to
easily test these components if we don't couple them together.

As one final benefit, with what we know about Akka's location transparency,
if we keep the chatroom separate from the lobby we could likely run chatrooms
on different servers. One lobby could let everyone know what rooms are available,
and then we could scale the chatrooms out as needed. Now that we have a picture
of the higher-level components, we can pick one of the components and focus on
designing it.

Chapter 8

[209]

Designing, building, and testing the
Domain model
Designing, building, and testing are very much intertwined pieces of the development
process. There are numerous approaches that we could take. I'm going to prescribe
some upfront analysis describing the domain model and its behaviors, and then use
that written analysis to extract the domain model and produce tests. In the following
section, we'll look specifically at the chatroom and how users interact with it.

Specifications
I'm going to make the assumption that you have used a chatroom of some sort
before, such as Slack, Hipchat, Google Hangouts, or Campfire. If you haven't used
any of those tools, you should evaluate introducing one into your development
team—group chat can be a real boon for engineering teams. We'll focus on an
individual chatroom design for the moment, and we can start by describing our
expectations for the behavior of the chatroom. A few simple statements about
the application's behavior in different contexts can easily be used as lightweight
specifications that can drive our building and testing.

Behavioral specifications can be used for lightweight design documentation and
tests. A useful format for writing specifications is the Given When Then format:

• Given the world is in a particular state
• When some event occurs
• Then some observable outcome is expected

In this format, we are describing the context or state of the application, the event that
occurs in the application or to the application, and then the consequence or observable
outcome of that action. You might be able to see how unit tests are often informally
broken up into those three distinct concerns as well—setup, action, and assertion.

For a chatroom actor, we might define the behavior for a few simple scenarios in the
following way.

• Scenario: User Joins Chatroom:
 ° Given a chatroom has no users, when it receives a request from

a user to join the chatroom, then it should add the user to its list of
joined users

 ° Given a chatroom has a chat history, when a user joins the chatroom,
then it should receive the last 10 posts to the chatroom from the
history

Testing and Design

[210]

• Scenario: Post to chatroom:

 ° Given a chatroom has a joined user, when the chatroom receives
a request to post to the chatroom from a user in the room, then it
should update the chat history

 ° Given a chatroom has a joined user, when the chatroom receives a
request to post to the chatroom, then it should notify the joined users

These are basic and incomplete specifications, but there is enough here to
demonstrate. We can add more specifications later and change the behavior of the
application to accommodate those additions.

Designing the Domain model
Now that we have this written down, we can actually use this to both design and test.
The great thing about specifications and the language that we use when talking to each
other about the problem domain is that it makes designing and naming quite simple.
Eric Evans, in his book Domain Driven Design, describes the words that we and the
users use when talking about the application and calls that the Ubiquitous Language.
The great thing about the ubiquitous language that we are using is that it hints at both
the structure and the names that we may want to use in our domain model.

If we revisit the specifications we just wrote for the chatroom, we can pull out all the
pieces of the domain model described with our ubiquitous language and just make a
list of those elements:

• Chatroom
• User
• Join chatroom request
• Joined users
• Post to chatroom
• Chat history

Quite incredibly, by writing down the specifications, we've described most of
the domain model! We can look at the specifications and pull out everything we
can identify with the words that we use to describe the things. The only piece
left is deciding how to arrange it all together. We know that, in object-oriented
programming, we want to group behavior and data wherever possible, so we'll use
that as a heuristic for placing related data and behavior in classes. And we know that
Akka helps us deal with state, so we'll also use that heuristic to understand what
would benefit from being an actor.

Chapter 8

[211]

We can deduce the following:

• Chat room has a list of user references called joinedUsers, which can
change (state)

• Chat room has a list of posts called chatHistory, which can change (state)
• Join request contains a user reference

The chatroom itself will probably benefit from being an actor as it contains state.
Nothing else needs to have any mutating state, so we can use immutable objects
for the other elements we identified. We can get to building and testing now that
we have an idea of what our domain model looks like and now that we have
specifications describing its behavior.

Testing and building the Domain model
Now that we have identified the elements of the domain, we can proceed with
testing and building. Often developer unit testing and building the items to be tested
benefit from being done together as one task. It's easier to capture all the small edge
cases in tests if you write the tests while building the behavior, so you end up with a
nice set of unit tests that describe the behavior you've expressed when all is said and
done. If you've never used the Test Driven and Behavior Driven approaches, I would
encourage experimenting with these approaches while you work as you are much
more likely to end up with a useful set of tests than if you approach testing after you
finish building.

The approach that I'll introduce is to take the specification, write a test that translates
the specification, and then fill out the code to make that test/specification pass.

First, we know that users exist remotely, so a good place to start is by modeling that
remote item. We'll have some sort of user entity representation somewhere else,
but the chatroom doesn't need to be concerned with it necessarily. The chatroom
only needs to know where to send updates to and information to get the entity
information for display. We don't have the user entity modeled at this point,
so we'll just use a simple UserRef in our case.

In Java:

public class UserRef {
 public final ActorRef actor;
 public final String username;
 public UserRef(ActorRef actor, String username) {
 this.actor = actor;

Testing and Design

[212]

this.username = username;
 }
}

In Scala:

case class UserRef(actor: ActorRef, name: String)

The UserRef will have the name to display and then an actor ref that we can
send updates to. This is all the user info that the chatroom itself will need at this
point in time.

The chatroom has to keep two pieces of data: joined users and chat history. Because
these items represent state, and multiple users will be trying to access and change
the state, we can guess that the chatroom itself would benefit from being an actor.
Because the chatroom will be an actor, we'll model the Post request and Join request
as immutable messages. We'll call them starting with a verb name (this may be a
small deviation from Java naming conventions but is common with message names).
This is expressive of the intent of the message. Then we will have the message
include any data relevant to the request.

In Java:

public class Messages {
 static public class JoinChatroom {
 public final UserRefuserRef;
 public JoinChatroom(UserRefuserRef) {
 this.userRef = userRef;
 }
 }
 static public class PostToChatroom{
 public final String line, username;
 public PostToChatroom(String line, String username) {
 this.line = line;
this.username = username;
 }
 }
}

In Scala:

case class JoinChatroom(userRef: UserRef)
case class PostToChatroom(line: String, username: String)

Chapter 8

[213]

Now that we have the messages, we can build the skeleton of the chatroom.
We won't implement any logic yet—just create the actor. Because we also know
the state, we can add those fields to the actor as well at this point:

• Chatroom has a list of user references called joinedUsers, which can
change (state)

• Chatroom has a list of posts called chatHistory, which can change (state)

In Java:

public class Chatroom extends AbstractActor{
 List<Messages.PostToChatroom>chatHistory = new
ArrayList<Messages.PostToChatroom>();
 List<UserRef>joinedUsers = new ArrayList<UserRef>();
 @Override
 public PartialFunction<Object, BoxedUnit> receive() {
 return ReceiveBuilder.
 matchAny(o ->System.out.println("received unknown message")).build();
 }
}

In Scala:

class Chatroom extends Actor {
var joinedUsers: Seq[UserRef] = Seq.empty
var chatHistory: Seq[PostToChatroom] = Seq.empty

override def receive = {
case _ =>
println("received unknown message ")
 }
}

Building by specification
Revisiting the specifications we wrote, we can start to build the class and the tests.
We'll take one of the specifications here and show how we might build the test.
Then, we'll implement the behavior. The class can be built by adding each
specification one at a time. After completing one specification here, we'll take
a look at different ways of testing Actors.

Testing and Design

[214]

Scenario: User Joins Chatroom

• Given a chatroom has no users, when it receives a request from a user to join
the chatroom, then it should add the user to its list of joined users

In Java, we'll continue to use Junit, but C supports Given, When, Then style of
specification testing with appropriate annotations—it's worth taking a look if you're
starting a new project:

public class ChatroomTest extends TestCase {
 static ActorSystem system = ActorSystem.apply();

 @Test
 public void testShouldAddUserToJoinedUsersWhenJoiningTest() {
 //Given a Chatroom has no users
 Props props = Props.create(Chatroom.class);
 TestActorRef<Chatroom> ref = TestActorRef.create(system, props,
"testA");
 Chatroom chatroom = ref.underlyingActor();
 assertEquals(chatroom.joinedUsers.size(), 0);

 //When it recieves a request from a user to join the chatroom
 UserRefuserRef = new UserRef(system.deadLetters(), "user");
 Messages.JoinChatroom request = new Messages.JoinChatroom(userRef);
 ref.tell(request, system.deadLetters());

 //It should add the UserRef to its list of joined users
 assertEquals(chatroom.joinedUsers.get(0), userRef);
 }
}

Note that we can start the test name with the word "should"—as Dan North writes,
this helps us write descriptive test names that will print useful information when
the tests run. The actual structure of the test reflects our given when the format is as
shown in the comments. The comments themselves may not be necessary, but here
this demonstrates how the specification relates to the code.

In Scala, we have better DSLs with the common testing tools, so we can more directly
structure our test to reflect the specification:

class ChatroomSpec
 extends FunSpec with Matchers {

 val system = ActorSystem()

Chapter 8

[215]

 describe("Given a Chatroom has no users"){
 val props: Props = Props.create(classOf[Chatroom])
 val ref: TestActorRef[Chatroom] = TestActorRef.create(system, props,
"testA")
 val chatroom: Chatroom = ref.underlyingActor
 chatroom.joinedUsers.size should equal(0)
 describe("when it receives a request from a user to join the
chatroom"){
 val userRef: UserRef = new UserRef(system.deadLetters, "user")
 val request: JoinChatroom = JoinChatroom(userRef)
 ref ! userRef
 it("should add the UserRef to the list of joined users"){
 chatroom.joinedUsers.head should equal(userRef)
 }
 }
 }
}

This maps more directly to the Given When Then format to show how you might use
FunSpec to layer your tests. While this demonstrates the specification quite directly, in
real scenarios I would avoid creating too much nesting and duplicate things instead
so that your tests aren't bleeding—unlike your production code, duplication can be
appropriate in tests. There are several ways in which you can structure tests using
ScalaTest—check out the API and see which suits you best.

At this point, we need to run the test and ensure that it fails with the expected
problem. Running the failing test is an important step as it gives us confidence that
our test is validating the correct thing. Here we can see the test failing because there
are no joined users in the list, as expected. Then, when it passes, we know that the
behavior is correctly implemented to meet the specification:

[info] - should add the UserRef to the list of joined users ***
FAILED ***
[info] java.util.NoSuchElementException: head of empty list

At this point, we've covered the basics of designing and testing a new project. To
recap, we can draw a lot of the design from the way we describe it. We've identified
where state exists, and in any case where we identified state in a concurrent
environment, we can decide to implement it with an actor. Any behavior that doesn't
have mutable state accessed from multiple places at the same time, we can probably
simplify by using plain objects. As an example, maybe we want to represent the
ChatHistory in a class instead of simply a list. As the ChatHistory is only accessed
by the chatroom, the ChatHistory object could be a plain object implementing
getRecentHistory with a simple unsynchronized method as the actor safely
handles only one message at a time.

Testing and Design

[216]

After checking the test fails, you can implement the behavior, then ensure the test
passes in a traditional TDD/BDD manner, and then move on to implement the
next specification in the same way—building the test and then implementing the
behavior. Each edge case you find and build for should have a corresponding test.
In my opinion, this is the most reliable way to build maintainable code.

Next, we'll look at some different aspects of the akka-testkit module that we can use to
help us build clear and expressive tests.

Testing actors
The akka-testkit module is a component of Akka that gives us several tools to test our
Actors. We'll extend our chatroom example to look at a couple of tools in the testkit
that can improve on our testing.

We'll cover two major concerns here–unit-testing underlying actor behavior and
testing Actor responses.

Testing Actor behavior and state
We've looked at synchronous testing previously but, to recap here, using
TestActorRef gives us a way to test request and response with Actors without
needing to await messages. Using Awaits is a more flexible and realistic approach
to testing Actors, but for testing Actor behavior in isolation, there are a couple of
approaches we can use.

In the previous example, you'll note that we don't wait for the message to be
processed. Because we created the actor using Akka Testkit's TestActorRef, the
Actor will use the calling thread (via CallingThreadDispatcher) to process the
message, so we immediately get free synchronous testing by creating the actor
with TestActorRef. This is the first thing that Akka testkit gives us; we've already
demonstrated it.

Next, testkit's TestActorRef gives us access to the object behind the ActorRef,
which gives us the ability to inspect it in ways we normally cannot and do not want
to use. Without this, we'd have to use messages to check the internal state of the actor
for validation in the tests. At this point, then, we might have to add features only for
the sake of being able to test the actor accurately, which is not desirable. If we can
access the underlying actor, then we can test its state with minimal code and less
test-induced design damage.

Chapter 8

[217]

We'll look at how we can use this feature of testkit to shape how we might write
and test actor code when using the TestActorRef. We know that the Akka
TestActorRef gives us access to the underlying actor, and that if we can get access
to the underlying actor, we can validate any fields and methods exposed in that
actor. But if we construct our actors with the behavior in a method instead of in the
receive block, then we can actually test an actor like a plain class. This can be a real
benefit to creating clear and simple tests of Actor behavior without worrying too
much about sending and receiving messages. We want to validate the integration as
well, but for scoping in on just the behavior, we can test the underlying object itself.
Let's take a look at the test we created previously and see how we can use the access
to the underlying actor to our advantage.

First, we'll look at the implementation of the behavior in the last specification:

• Scenario: User Joins chatroom

 ° Given a chatroom has no users, when it receives a request from
a user to join the chatroom, then it should add the user to its list
of joined users.

We'll write a method in the actor to express the behavior.

In Java:

public class Chatroom extends AbstractActor{
 List<Messages.PostToChatroom>chatHistory = new
ArrayList<Messages.PostToChatroom>();
 List<UserRef>joinedUsers = new ArrayList<UserRef>();

 @Override
 public PartialFunction<Object, BoxedUnit> receive() {
 return ReceiveBuilder.
 match(Messages.JoinChatroom.class, this::joinChatroom).
 matchAny(o ->System.out.println("received unknown message")).build();
 }
 public void joinChatroom(Messages.JoinChatroommsg) {
 joinedUsers.add(msg.userRef);
 }
}

In Scala:

class Chatroom extends Actor {
 varjoinedUsers: Seq[UserRef] = Seq.empty
 varchatHistory: Seq[PostToChatroom] = Seq.empty
 override def receive: Receive = {
 case x: JoinChatroom =>

Testing and Design

[218]

joinChatroom(x)
 case _ =>
println("unimplemented")
 }
def joinChatroom(joinChatroom: JoinChatroom) {
 joinedUsers = joinedUsers :+ joinChatroom.userRef
 }
}

Note that the behavior is placed into a method instead of the receive block itself.
With the behavior expressed in a method, we can test and change it without
worrying about the actual delivery of the message. In the test, then, we can use Akka
testkitTestActorRef to get and test the underlying actor behavior.

In Java:

 @Test
 public void testShouldAddUserToJoinedUsersWhenJoiningTest() {
 Props props = Props.create(Chatroom.class);
TestActorRef<Chatroom> ref = TestActorRef.create(ActorSystem.apply(),
props, "testA");
 Chatroom chatroom = ref.underlyingActor();
UserRefuserRef = new UserRef(system.deadLetters(), "user");
 Messages.JoinChatroom request = new Messages.JoinChatroom(userRef);
chatroom.joinChatroom(request);
assertEquals(chatroom.joinedUsers.get(0), userRef);
 }

In Scala:

describe("Given a Chatroom has no users (Unit example)"){
 val props: Props = Props.create(classOf[Chatroom])
val ref: TestActorRef[Chatroom] = TestActorRef.create(ActorSystem(),
props, "testA")
val chatroom: Chatroom = ref.underlyingActor
chatroom.joinedUsers.size should equal(0)
 describe("when it receives a request from a user to join the
chatroom"){
 valuserRef: UserRef = new UserRef(system.deadLetters, "user")
 chatroom.joinChatroom(JoinChatroom(userRef))
 it("should add the UserRef to the list of joined users"){
 chatroom.joinedUsers.head should equal(userRef)
 }
 }
 }

Chapter 8

[219]

You can see in this case that it's not much simpler—but instead of sending the
message, we just call the method directly instead. If we have several methods we
want to test inside an actor, this can greatly help us decompose and test smaller-
grained details of its behavior.

Testing Message flow
Being able to test the underlying behavior in an actor is obviously useful, but what if
we want to test sending and receiving messages in more complex situations? What
happens if we want to mock another actor's behavior to ensure that the integration
points are successfully built?

Let's look at a couple of scenarios where other actors are involved, and we'll look
at two main approaches: using the test class as an actor and using a mock probe as
an actor.

Using the test Itself as an Actor
Now we're going to look at how to have the test class itself receive messages so that
we don't need to examine any extra external actors when checking for message flow
from an actor under test. First, let's take the following specification.

• Scenario: User joins chatroom
 ° Given a chatroom has a chat history, when a user joins the chatroom,

then it should receive the last 10 posts to the chatroom from the
history.

In this case, we want to ensure that, when a user joins the chatroom, they receive
the updates from the history. We have two actors involved then: The chatroom and
the User actor that is referenced in the UserRef. Because we don't care about any
of the details of the user actor, all we want to do is test that a message comes out
of the chatroom actor with the appropriate data. The simplest approach for testing
interaction between one actor and the subject is to use the test itself as the receiver.
Akka testkit lets the test itself receive messages, so where you're testing responses,
you can express the assertions with an API that is made for doing so:

 @Test
 public void testShouldSendHistoryWhenUserJoin() {
 new JavaTestKit(system) {{
 //Given
 Props props = Props.create(Chatroom.class);
TestActorRef<Chatroom> ref = TestActorRef.create(system, props);
 Chatroom chatroom = ref.underlyingActor();
 Messages.PostToChatroom msg = new Messages.PostToChatroom("test",
"user");

Testing and Design

[220]

chatroom.chatHistory.add(msg);
 //When
UserRef userRef = new UserRef(system.deadLetters(), "user");
 Messages.JoinChatroom request = new Messages.JoinChatroom(userRef);
 ref.tell(request, getRef());

 //Then
 List expected = new ArrayList<Messages.PostToChatroom>();
 expected.add(msg);
 expectMsgEquals(duration("1 second"), expected);
 }};
 }

For Java, the points to note here are that we send the message with the test ref as the
sender—ref.tell(request, getRef()), and, then, the test itself expects a message
with one of the expectMsg* methods. We check for exact equality, but you can test
the class type for example.

In Scala, instead of creating an anonymous TestKit object as in Java, the test class
itself works, which makes for a nicer syntax.

We have to change the test class definition:

classChatroomSpec(_system: ActorSystem) extends TestKit(_system) with
ImplicitSender
 with Matchers with FunSpecLike {

Then the class becomes an actor, so the specification can look like the following:

 describe("Given a Chatroom has a history"){
 val props = Props.create(classOf[Chatroom])
 val ref = TestActorRef.create(system, props)
 val chatroom: Chatroom = ref.underlyingActor
 valmsg = PostToChatroom("test", "user")
 chatroom.chatHistory = chatroom.chatHistory.+:(msg)

 describe("When a user joins the chatroom"){
 val userRef = UserRef(system.deadLetters, "user")
 val request = JoinChatroom(userRef)
 ref ! request

 it("(the user) should receive the history"){
 expectMsg(1 second, List(msg))
 }
 }
 }

Chapter 8

[221]

That's a bit clearer than the Java syntax—knowing that the test is an actor, then when
we call tell, we know that the test itself will implicitly be the sender and, hence,
receive the reply. The only point to mention is the expectMsg method—this will stop
the test and await the noted reply. The test will fail if the expectation is not met in the
time passed in the method call.

Using TestProbes as mock Actors
Next, we'll look at the post message specification for the chatroom and look at how
we can mock an external actor in a test.

• Scenario: Post to chatroom:

 ° Given a chatroom has a joined user, when the chatroom receives a
request to post to the chatroom, then it should notify the joined users

This gives us an opportunity to look at the joined user as a mock that expects a
message and see how that might look in code.

Here it is in Java:

 @Test
 public void testShouldSendUpdateWhenUserPosts() {
 //Given
 Props props = Props.create(Chatroom.class);
 TestActorRef<Chatroom> ref = TestActorRef.create(system, props);
 Chatroom chatroom = ref.underlyingActor();
 final TestProbe probe = new TestProbe(system);
 UserRefuserRef = new UserRef(probe.ref(), "user");
chatroom.joinChatroom(new Messages.JoinChatroom(userRef));

 //When
Messages.PostToChatroommsg = new Messages.PostToChatroom("test",
"user");
 ref.tell(msg, probe.ref());
 //Then
probe.expectMsg(msg);
 }

In Scala:

describe("Given a Chatroom has a joined user"){
 val props = Props.create(classOf[Chatroom])
 val ref = TestActorRef.create(system, props)
 val chatroom: Chatroom = ref.underlyingActor
val probe: TestProbe = new TestProbe(system)
 valuserRef: UserRef = new UserRef(probe.ref, "user")
 chatroom.joinChatroom(JoinChatroom(userRef))

Testing and Design

[222]

 describe("when someone posts to the chatroom"){
 val msg = PostToChatroom("test", "user")
 ref.tell(msg, probe.ref)
 it("(joined user) should get an update"){
 probe.expectMsg(msg)
 }
 }
 }

You'll notice that this looks quite similar to the previous test, except that the test
probe is sent as the joined user, and then the assertions are made with the TestProbe
as well (probe.expectMsg). TestProbes have additional behavior such as the ability
to send messages, so they truly can be used to both mock out any Actor behavior and
make assertions about receipt. They're a powerful tool to keep in your toolbox when
working with actors.

Testing Advice
We've looked at some techniques to test on different levels. We've looked at how
to unit test the code in an actor, then how to test an actor from the perspective of
the test sending the actor messages, and, finally, how to create test probes to mock
the interaction from an actor to our actor under test. Using test probes, we could
certainly test many different integration scenarios.

It can be hard to know what to test and what not to test. The best advice I heard
was probably from Kent Beck in a response to a thread on test coverage on Stack
Overflow. He said, I get paid for code that works, not for tests, so my philosophy is to test
as little as possible to reach a given level of confidence. The thread is available at http://
stackoverflow.com/questions/153234/how-deep-are-your-unit-tests.

What I would take from that in relation to testing your actors is to target the biggest
bang for your buck. You don't need to test both the underlying behavior and the
integration of an Actor to be confident that it works and that you won't introduce
regressions, so test accordingly. Test where you need to be confident that it works.

Because the TestActorRef uses the CallingThreadDispatcher, you have
mechanisms that will let you test your actors synchronously without using Thread.
Sleep.expectMsgon probes or in the test when using the test as a sender gives you
another way to wait longer than needed. Using mechanisms like these can be better
than putting sleep in your tests because your tests will stay fast-running. It's very
important to have a test suite that takes as little time as possible to run—if you let a
few suites get into your code that callThread.sleep, the cost in breaking flow or
the avoidance of running the whole suite can get higher.

http://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests
http://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests

Chapter 8

[223]

It can be a bit harder to write the tests to be fast, but I'd recommend prioritizing
speed when writing your tests because you want your team to really be able to lean
on the tests for confidence. Figure out how to get your tests to run without any calls
to Thread.sleep—it's almost always possible with the tools Akka gives us.

If you are using mechanisms such as Sleep, the other thing to look out for is flaky
tests. It's possible to write tests that usually pass and then intermittently fail. If
someone picks up the code after you and they randomly see tests failing, it'll very
likely cost them some time trying to understand if they broke something in the
code or not. Again, tests where the test thread has to wait for an external event can
be the cause of these tests that intermittently fail. It's better to rearrange the test so
that the test or a probe is in the middle of the behavior to be able to catch the event
when it occurs and make assertions then, instead of waiting an arbitrary period and
then validating the outcomes. In complex cases, you can use things such as Java's
CountDownLatch to wait for several events to finish.

If you're not experienced with writing tests, I'd just like to note here that the
objectives in your production code can be relaxed a bit when testing. Specifically,
duplication in your tests is fine. Do not worry about factoring out duplication if
having a similar setup over and over documents the API and behavior very clearly
in each specification.

Homework
To ensure you can see how to work with the tools provided, I would recommend
that you do finish implementing the specifications and some others:

• Ensure when a user posts, it receives back an OK.
• Ensure that, when a user is joined and posts, the user does not receive its

own update.
• Continue to design the application. If you were to replace the ChatHistory

with its own class instead of a simple list, and were to implement a
getRecentHistory function, would a plain class be enough? What would
the benefits be of using an actor, if any? What would the drawbacks be?

Testing and Design

[224]

Summary
Testing and designing with Actors has a bit of a learning curve. The most important
thing to realize about Actors is that they are not always the best approach—plain
classes should be used when it's simpler to do so. But, in the domain, where is state
and concurrency exist together, then Actors are generally a safe bet. Actors can be
more involved to build and test than simple classes. There are excellent tools to
help us build actors and their tests, though, and this chapter rounds out the end of
this book by covering some of those tools, not only in the process of designing and
testing, but also in using the technology available to better express our test cases.

In the next chapter, we will look at some extra features in Akka, some items
related to deployment and monitoring, and some steps you can take in your
continuing journey.

[225]

A Journey's End
You have made it to the Journey's end. You are now armed with a bit of knowledge
about building concurrent and distributed systems with Akka and Scala or Java8.

I expect a wide variety of readers to be here—some with distributed computing
experience, and some with none. Either way, the material requires practice to master.

The Akka toolkit is quite large and the documentation is a very thorough and useful
reference to all of its parts. This book has hopefully showed you why and when to
use many of Akka's different tools. This chapter will highlight a few outstanding
features and modules that you may want to be aware of, and some next steps,
as follows:

• Other Akka features and modules:
 ° Logging
 ° Event Bus
 ° Agents
 ° Akka Persistence
 ° Akka I/O
 ° Akka Streams and Akka HTTP

• Next steps:

 ° Learning about Domain Driven Design
 ° Deployment tools
 ° Monitoring logs and events

A Journey's End

[226]

Other Akka Features and Modules
From the outset, this book has said that it will not cover every last corner of the Akka
toolkit, but instead focus on helping you learn about distributed computing using
Akka. Akka is quite a large tool kit, and all of the most important core pieces have
been well covered.

Now that we're at the end of our journey here, it's a good time to highlight a few
areas of the toolkit that you might want to take a look at in more depth. I'll give a
brief introduction to them here so you're aware of some of the interesting extensions.

Logging in Akka
We briefly introduced logging in Akka early in the book, but we'll review logging
again here briefly to show how to use more advanced features. Akka by default will
log to the console; however, it offers an event handler for slf4j that is available by
importing an slf4j backend into your project such as Logback.

To use the slf4j logger, you'll need to provide the Akka slf4j module (it's not in
the Akka core), and you'll also need to provide an slf4j backend such as Logback.
You can add these dependencies to your build.sbt file using the following code:

"ch.qos.logback" % "logback-classic" % "1.0.0" % "runtime",
"com.typesafe.akka" %% "akka-slf4j" % "2.3.11"

Then, in your application configuration (the application.conf file), you can
declare the Akka slf4j event handler to be used as follows:

akka {
 event-handlers = ["akka.event.slf4j.Slf4jEventHandler"]
loglevel = "DEBUG"
}

You can put a logback.xml file into your project's resources folder to enable fine-
grained log control and more extended control over appenders. If you wanted to log to
both a file (logs/app.log) and the console, a basic configuration will look like this:

<configuration>
<appender name="FILE" class="ch.qos.logback.core.FileAppender">
<file>logs/app.log</file>

<encoder>
<pattern>%date %level [%thread] %logger{10} [%file:%line] %msg%n</
pattern>
</encoder>
</appender>

Chapter 9

[227]

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%msg%n</pattern>
</encoder>
</appender>

<root level="debug">
<appender-ref ref="FILE" />
<appender-ref ref="STDOUT" />
</root>
</configuration>

To use Akka logging in the application, you can either create a logger explicitly,
passing in an ActorSystem object:

//java
LoggingAdapter log = Logging.getLogger(getContext().system(), this);

//scala
val log = Logging(context.system, this)

Or, if using Scala, you can mix in the logging trait into your actor:

class MyActor extends Actor with akka.actor.ActorLogging {
 log.info("actor startup: {}", self.toString)
}

Note that Akka will accept a variable length argument list as parameters in the
messages, where it will replace each pair of brackets,{}, with the parameters in
the order they are provided. Exceptions can be logged by passing them as the
first argument:

#+BEGIN_SRC
//java
log.debug("params {} {} {}", param1, param2, param3);
log.error(e, "exception encountered: "); //exceptions are first arg

//scala
log.debug("params {} {} {}", param1, param2, param3)
log.info(e, "exception encountered: ") //exceptions are first arg
#+END_SRC

A Journey's End

[228]

There are performance benefits to letting logger handle the string interpolation, as it
will execute the interpolation only if the log level is set so that the logger will actually
log the event. If the event is not logged, then the string interpolation will not occur.
Thus, this is generally better than doing something such as this:

#+BEGIN_SRC
log.debug("this actor is " + self().toString);
#+END_SRC

The preceding code will always create the joined string in memory, even if the
message is never logged.

This covers almost everything you'll need to know about logging in Akka. For
additional information on configuring logging, you will want to check the Logback
documentation. Rolling log files, multiple appenders, and other advanced features
can be handled by configuring Logback, especially using logback.xml. For very
advanced use cases, Logback also supports configurations written in the groovy
programming language.

Message Channels and EventBus
The EventBus object in Akka can be used to publish and subscribe to events to send
messages to multiple actors. Pub/Sub approaches can be built with very little code by
sending subscribe messages to an actor that will in turn hold a list of actors. However,
Akka also describes a mechanism to handle this, where you listen for a topic.

Eventbus is a part of the core Akka library, so no extra imports are required.

Using an event bus requires choosing and extending a classifier that will describe
the event type and how to target subscribers. Classifiers are described in the
documentation referenced at the end of this section.

IRemember you can always use actor hierarchies to send messages with
actorSelection as well. Event Bus should come to mind if you have very specific
topic subscription to handle that hierarchies are not suitable for.

To use the event bus, there are three types that we're concerned with foremost and that
we'll declare as types in Scala, or define with type arguments in Java, as follows:

• Classifier Type: what the topic type is for the message
• Event Type: what data type is provided on the publish event:

 ° Needs a topic (you'll define the logic for the topic)
 ° Optionally needs some other data to publish

• Subscriber Type

Chapter 9

[229]

Multiple Classifiers are available. As a quick example, assume we have a message
called EventBusMessage, and we want to use the Event Bus to have actors subscribe
and publish to them. The event bus doesn't need to use actors—it can implement any
pub/sub behavior you require. A simple LookupClassifier object will describe the
type of the event, the topic/classifier type, and how to lookup the classification of the
topic for subscribers. In the case of LookupClassifier, the subscribers need to have
an ordering.

A simple Java message might look like this:

public class EventBusMessage {
 public final String topic;
 public final String msg;

 public EventBusMessage(String topic, String msg) {
this.topic = topic;
 this.msg = msg;
 }
}

The following are the Java and Scala event bus examples:

public class JavaLookupClassifier extends
LookupEventBus<EventBusMessage, ActorRef, String> {

 @Override public String classify(EventBusMessage event) {
 return event.topic;
 }

 @Override public void publish(EventBusMessage event, ActorRef
subscriber) {
subscriber.tell(event.msg, ActorRef.noSender());
 }

 @Override public int compareSubscribers(ActorRef a, ActorRef b) {
 return a.compareTo(b);
 }

 // determines the initial size of the index data structure
 @Override public intmapSize() {
 return 128;
 }
}

A Journey's End

[230]

class ScalaLookupClassifier extends EventBus with LookupClassification
{
 type Event = EventBusMessage
 type Classifier = String
 type Subscriber = ActorRef

 override protected def classify(event: Event): Classifier = event.
topic

 override protected def publish(event: Event, subscriber:
Subscriber): Unit = {
 subscriber ! event.msg
 }

 override protected def compareSubscribers(a: Subscriber, b:
Subscriber): Int =
a.compareTo(b)

 //initial size of the index data structure
 override protected defmapSize: Int = 128
}

The preceding code implements some pretty basic logic such as how to determine
the topic, what to do with a publish event for any relevant subscribers, and a
requirement—how to compare subscribers. Also, the beginning size for the map
needs to be declared, although it will adjust automatically as needed.

You might use it like this:

JavaLookupClassifier lookupBus = new JavaLookupClassifier;
lookupBus.subscribe(myActor, "greetings");
lookupBus.publish(new EventBusMessage("time", System.
currentTimeMillis().toString));
lookupBus.publish(new EventBusMessage("greetings", "hello"));

val lookupBus = new JavaLookupClassifier
lookupBus.subscribe(myActor, "greetings")
lookupBus.publish(new EventBusMessage("time", System.
currentTimeMillis().toString))
lookupBus.publish(new EventBusMessage("greetings", "hello"))

In this case, our actor subscribes to the topic greetings. Then, we publish an event
with the topic time and the topic greetings. As you can probably guess, the only
message that gets to the actor will be the one sent with the topic "greetings."

Chapter 9

[231]

The Akka documentation has examples and explanation for the classifiers if you
want to further explore using Akka's Event Bus features. The Akka documentation
can be found here:

• http://doc.akka.io/docs/akka/snapshot/java/event-bus.html

• http://doc.akka.io/docs/akka/snapshot/scala/event-bus.html

Agents
The Akka Agent module is inspired by Clojure's Agents, which are reactive constructs
to help handle shared access to state. A better way to think about the Agent is much
like a Java AtomicInteger, but for any value or type. It holds that state, and allows
you to execute atomic operations on the value stored in a thread-safe manner, while
allowing access to read the value safely.

More formally put, Agents provide a single storage location for a single value and
allow modification of that value by providing a function. Agents allow safe atomic
and transactional access to their value, giving a mechanism for safe concurrent access
to state much like an actor would.

The advantage of Agents is that they are a bit lighter weight than using actors to
encapsulate state. If you see a single stateful value or object that you need to safely
handle, you can consider if an Agent might be a good fit, especially if you're thinking
about how to make operations atomic (that is, checking the value, and then setting
the value if it meets a certain condition where race conditions would be problematic).
Thus, when you need to access a single value from across threads, Agents offer a nice
alternative. to Actors.

Agents are not a core feature in Akka, and so they are in a separate module that you
need to place in your project's build.sbt file:

"com.typesafe.akka" %% "akka-agent" % "2.3.6"

A fairly standard example is a bank account withdrawal where we first need to check
to see if there is enough money in the bank account; and then, if there is, we can
withdraw the money. Because two threads could check the account, and then deduct
the money from the account, we need the account check-and-set operation to be one
atomic operation so that we ensure the value isn't modified after it's read.

http://doc.akka.io/docs/akka/snapshot/java/event-bus.html
http://doc.akka.io/docs/akka/snapshot/scala/event-bus.html

A Journey's End

[232]

If we used an integer shared across threads, it would be possible to do something
like this if two people try to withdraw $20 from an account at the same time:

1. Account has $25.
2. Husband and wife try $20 withdrawal simultaneously.
3. Husband checks to see if account has more than $20. Account has $25.
4. Wife checks to see if account has more than $20. Account has $25.
5. Husband withdraws $20, setting account to $5.
6. Wife withdraws $20, setting account to $5 (illegal!.).

Because the account had enough money in it when both threads checked the account,
both threads proceeded to try to withdraw the money. However, when the second
thread deducted the amount, it didn't see that someone else had already taken
the money. The bank has now lost $20 and would not know where it went! The
application would generally appear to act normal, but if two transactions happen
at the same time, money disappears and nobody notices. If this happened a few
hundred thousand times before someone caught the issue, the bank could have
potentially lost hundreds of thousands of dollars!

We need the check and set operation to be atomic (one complete unit of work) to
provide this functionality safely. Doing this with an actor is certainly possible as the
actor will only handle one message at a time, but it's a bit more succinct to do this
with an agent.

Agents use actors and threads in their underlying implementation, so we need
to provide an execution context for them. We'll create an actor system and use its
dispatcher to create the agent with the $25 in the account:

import akka.actor.ActorSystem;
import akka.agent.Agent;

//Java
ActorSystem system = ActorSystem.create();
Agent<Integer> account = Agent.create(25, dispatcher);

//Scala
val system = ActorSystem()
implicit valec = system.dispatcher
val account = Agent(25)

Chapter 9

[233]

You can get the value with Agent.get() or Agent.apply:

Integer currentValue = account.get();
valcurrentValue = account()

Note that getting the value will immediately return the value,
although operations may be pending.

To update the value with the check-and-set operation, we can provide a function
(int =>int) describing the operation using send. For Java, you need to provide a
Mapper function:

//Java
final Integer ammountToWithdraw = 20;
account.send(new akka.dispatch.Mapper<Integer, Integer>() {
 public Integer apply(Integer i) {
 if(ammountToWithdraw<= i)
 return i - ammountToWithdraw;
 else
 return i;
 }
 });

//Scala
valammountToWithdraw = 20
account.send { i =>
 if(i>= 20) {
i - 20
 } else i
}

These operations are fire-and-forget, and they run in the other thread pool, so you
would need to complete a future if you want to get the result of the operation back
from the agent. The alter method is identical, except it returns the result of the
operation in future.

A Journey's End

[234]

Scala offers us some extra flexibility to be able to complete this operation. In Scala,
you can use a transaction block to allow multiple agents to participate in one atomic
operation, and return the result of that block. If we want to move money from one
account to another, for example, then the transaction block can be used to have
multiple agents interact, as shown in the following code:

import scala.concurrent.stm._
val wifeAccount = Agent(25)
val husbandAccount = Agent(0)
val wasSuccess = atomic { txn =>
 if(wifeAccount() >= 20) {
wifeAccount.send(_ - 20)
husbandAccount.send(_ + 20)
 true
 } else false
}

Agents can be a useful little abstraction to have in your tool belt. Again, think of
places you could use AtomicInteger. Now, you have an AtomicAnything object
and it's called an Agent.

Documentation for Agents can be found here:

• http://doc.akka.io/docs/akka/snapshot/java/agents.html

• http://doc.akka.io/docs/akka/snapshot/scala/agents.html

Akka Persistence
Another module that may be of interest is Akka Persistence. Akka Persistence gives
a mechanism to maintain actor state through crashes/JVM restarts or restarts of the
actor by a supervisor.

It's common to misunderstand the name of the library to mean that it has a
mechanism to use external persistence mechanisms such as databases and key-value
stores. You would not use Akka persistence to store user information or account
information, for example.

Remember that, by default, when an actor restarts, it loses any internal state and only
keeps its constructor arguments. Akka Persistence offers the ability to add a journal
of events that an actor has encountered so that an actor can be run through those
events again after restarting to restore its state. By re-applying the journal of events,
the actor will fast-forward, recollecting any internal state. For instance, if you're
building a metrics library, an in-memory counter collecting latency information from
an endpoint would be able to more accurately collect data by using persistence. If the
actor restarted, it would be able to roll forward through events since its last flush,
and then pass that information along successfully.

http://doc.akka.io/docs/akka/snapshot/java/agents.html
http://doc.akka.io/docs/akka/snapshot/scala/agents.html

Chapter 9

[235]

Note that the Akka Persistence module is marked experimental at the time of writing
(Akka 2.4 was released GA a couple weeks before the last editing was completed
on this book.) Binary compatibility is not guaranteed across minor versions while
modules are marked experimental; thus, it should be added to a project with some
caution that understands the state of the component. More information is available
on Akka Persistence in the Akka documentation.

Akka I/O
Akka I/O was introduced in Akka 2.2, which was a joint effort from the Akka and
Spray teams based on Spray's underlying I/O module. It offers some lower-level
TCP and Socket abstractions to build your own network communication. As Akka
itself tries to raise the level of abstraction, this book has focused on introducing Akka
as a toolkit that takes care of network communication concerns for you. However, if
you want to handle TCP communication yourself, then there are tools in Akka that
can help you do so.

Handling your own TCP communication is a fairly advanced topic and is beyond
the scope of this book, but there are some libraries that you can read, such as the
Brando Redis client library, that will give some good examples of how to handle
TCP communication using Akka I/O. It can be accessed at https://github.com/
chrisdinn/brando. Redis communication is a good example for analysis as it is
quite simple.

Akka streams and HTTP
Akka Streams have been discussed briefly in the chapter on Mailbox-related items.
Streams is one of the more interesting new modules in Akka as a reactive streams
implementation. Akka HTTP is built on top of Akka Streams with help from the
Spray team.

Akka Streams and Reactive Streams in general are a more advanced topic. If you
would like to explore Akka Streams, I would recommend beginning with learning
about Reactive Streams. As Akka HTTP is built on Akka Streams, you would likely
want to learn about Akka Streams before exploring this topic. Akka HTTP, as the
name suggests, offers an abstraction to build HTTP Client or Server applications.

https://github.com/chrisdinn/brando
https://github.com/chrisdinn/brando

A Journey's End

[236]

Deployment Tools
One last topic to bring up is the deployment of applications. Because this is a
book targeting developers, it does not cover deployment of applications from the
infrastructure perspectives.

Because Akka Cluster helps applications talk to each other, your work is basically
done once your application is able to build clusters. But building new application
nodes at the infrastructure level can be an intensive feat.

At a minimum, I'd recommend you look at tools such as Puppet, Chef, Salt, and
Ansibe right out of the gate—don't wait until you deploy to start handling these
concerns. Get to deployment automation in your dev and QA environments. The
problem with these tools is that they may still be too oriented to server inventories.
Thus, tools such as Mesos and ConductR, which abstract away the multiple nodes
underneath, might be the right approach. They will help you treat multiple nodes in
a datacenter like a pool of resources, rather than distinct entities. Whatever approach
you take, as a rule of thumb nobody should ever need to log into your servers once
your DevOps concerns are sufficiently mature.

It's a big area to cover and is a specialization on its own more in the field of operations,
but you don't need a dedicated DevOps engineer to make this happen—you just
need to work beside your operations team as a Developer/Engineer to start to grow
the discipline. Start a group that meets for a couple hours a week and tries to nail
down how to get your dev and QA environments under automation. Once you've
got that covered, you can start to look at how to tie in new nodes to a cluster in your
production deployment environment once you see how the general automation
practices work. You'll be doing your team a big service if you can plant the seed.

A brief example of what ConductR can do is that it will take your infrastructure
and "bundle" applications and handle replication of the "bundles" across the
infrastructure for you, as shown in following figure:

Chapter 9

[237]

visualizer ferry-boat

project-doc
charon-shop

project-doc

charon-shop

visualizer

ferry-boat

project-doc

ferry-boat

charon-shop

10.0.1.235 10.0.2.120

visualizer

10.0.2.117

visualizer

ferry-boat project-doc
charon-shop

10.0.3.198

Have a look at the ConductR whitepaper from Typesafe if you'd like to understand
the problems with yesterday's approaches in the context of applications today. It's a
problem area that has a lot of intense activity, and Typesafe has tools and approaches
that integrate with applications on which you build the Typesafe platform.

Monitoring Logs and Events
Finally, after talking about deployment, we need to quickly glance over how to
monitor your application. There are probably three major concerns to examine to
ensure your application is maintainable:

• Events and Metrics: Number of successes, failures, amount of traffic, and
latency.

• Logs: Internal application behavior and details of failures.
• Health: Is it up? Is it healthy? And, is it working as expected?

For general event and metrics, tools like Statsd or Metrics can be used to put internal
counters and timers in your app and "ship them" to another service where graphs
are produced. AppDynamics and NewRelic are partners of Typesafe and offer SaaS
solutions for similar concerns if you don't want to handle these in house.

A Journey's End

[238]

Logs at scale can be very difficult to handle, and I've seen some big systems be set
to Error or even Off. Whatever approach you take, you probably don't want to be
scrubbing through multiple files on many different servers to understand what's
going on with your application. The ELK stack—Elasticsearch, Logstash, and
Kibana—is a very good stack of tools that will allow an agent to send log events to a
cluster of Logstash services where events are indexed and then put into Elasticseach
for fast queying. Kibana sits in front of Elasticsearch as a very capable frontend to
query and analyze log events. I would really recommend this type of solution, even
if it's not ELK. You want a centralized log collection in your systems to improve its
maintainability.

Being able to "see inside" your running systems is critical to understand the health
of your live systems. Being able to interpret the events requires views of the data
that are easy to understand. NewRelic is easy to get started with as it's a SaaS model.
If you don't mind working with infrastructure more, tools such as Graphite can
visualize events collected with statsd to help you recognize trends in your data
related to performance or errors, for example. Here is a screenshot from the Graphite

Next Steps
To really grow with the material in this book, you'll need to keep venturing forward
on your journey. I have to assume that you want to learn about building distributed
things if you're reading this book. In this next section, I'll provide a few more
activities and resources outside of the Akka documentation that you might want to
check out to help you understand other related concerns.

Writing some Actor Code
At this point, if you have not already, I would strongly advise that you go back over
the homework problems in each section and try to accomplish the tasks.

The initial chapters up to Chapter 4, Actor Lifecycle – Handling State and Failure, in
particular, are enough to work from for quite a while. Build a local concurrent
application with Akka first. This material, and what you will certainly build on from
it, is the most important foundational work.

Chapter 9

[239]

Chapter 5, Scaling Up, and further chapters, while I believe they are the most
interesting pieces, are more advanced topics, and I myself have worked on very large
systems with Akka that have employed very few of the techniques only because
some of the modules, like clusters, are newer, or they may not be needed for some
use cases (for example, adjusting the mailbox configuration.)

While I've talked about Akka as a distribution toolkit a lot in this book, it arguably
has a use as both a concurrency framework and a distribution toolkit. Understanding
when to use each is a fine balancing act, and you should always prefer simplicity
until you have a good reason to make a change. Very often, using futures will be
enough for concurrency. Thus, it takes a fairly critical examination of the problems to
employ Akka's actors in the right places, and I've seen a few cases where Actors were
probably a worse decision than simply using futures. It's only through experience
that you'll develop the foresight to understand where the right place is to use Actors.

Certainly, though Akka will seldom be a bad choice for distribution problems,
I would definitely learn the material in Chapter 6, Successfully Scaling Out – Clustering,
with zeal to be confident enough with Cluster to employ it in your projects. Tools like
Zookeeper can coordinate nodes in a cluster, Principles of Reactive Programming. It
also covers a rather broad set of concerns as far as systems coordinating and talking;
not only understanding who is available and who isn't, but also how to get messages
between systems without introducing much complexity to the code that you must
yourself maintain.

Coursera Courses
I reviewed some courses on Coursera while reaching the end of writing this book.
There are a couple of courses that I thought might be helpful to someone trying
to learn a bit more about how Akka works, or to advance their own Distributed
Computing skills and knowledge.

The second iteration of the Principles of Reactive Programming course on Coursera
from École Polytechnique Fédérale de Lausanne wrapped up around the time I
was finishing this book. The last couple of weeks cover Akka, Cluster, and related
topics. I feel that it would be a good piece of material to review for anyone looking
for some more information on Reactive Programming in general, and to have some
more homework assigned to them to help them learn. It might reiterate some of the
concepts in this book, but will certainly help to re-enforce the topics. It can be found
at https://www.coursera.org/course/reactive.

The Functional Programming in Scala course is also great for learning about
functional programming if you're currently a Java Developer. It can be accessed at
https://www.coursera.org/course/progfun.

https://www.coursera.org/course/reactive
https://www.coursera.org/course/progfun

A Journey's End

[240]

One of the best courses you could take to accompany this book is Cloud Computing
Concepts from the University of Illinois at Urbana-Champaign covers. It covers
many of the topics that the Akka team used to build Cluster. Concepts such as
Gossip Protocol (week 2) and time and ordering concepts such as Vector Clocks,
used to achieve a consistent view of the cluster (week 4), are covered in great detail
in this course. Understanding these concepts in detail will certainly help you in your
journey. This course can be found here:

• Part 1: https://www.coursera.org/course/cloudcomputing
• Part 2: https://www.coursera.org/course/cloudcomputing2

Summary
We've had a good look at how to use Akka throughout this book. This book has
tried to be a read that shows you how to build distributed systems, and has covered
many of the concerns that you should understand once you step into the world of
high-scale distributed computing. This last chapter highlighted some areas of Akka
that you should be aware of, some deployment concerns, and additional areas of
education that you can move on to as the next steps in your personal journey. I
hope that this book has been helpful in introducing the concepts that you need to
get off the ground using Akka. It's an interesting and powerful toolkit. While the
documentation covers how to use Akka, it doesn't always show you where and
when you want to use the different portions of the framework. I hope that this book
covered the "why" and "when" so that you understand how great these tools are, and
how they can help you.

Congratulations on making it to the end and good luck on your journey!

https://www.coursera.org/course/cloudcomputing
https://www.coursera.org/course/cloudcomputing2

[241]

Index
A
Actor

about 3, 4
configured dispatcher, using

with 147, 148
creating 21, 38, 39
killing 111
messaging patterns 73
remote access, enabling to 63
responding, via future 45, 46
selecting, for concurrency 129
terminating 111
testing 216
test, using as 219-221
working in parallel with 130-132

Actor, anatomy
about 34
Java Actor API 34-36
Scala Actor API 37, 38

Actor behavior
testing 216-218

Actor Code
writing 238, 239

Actor Model
about 3-5
examples 6, 7

Actor response, defining to message
about 22
in Java 23, 24
in Scala 24, 25

Actor state
testing 216-219

Actor system
about 4, 5
main method, used for starting 64

Agent module
about 231-234
references 234

Akka
about 3
adding, to build.sbt 20
examples 10, 11

akka.actor.Identify
used, for finding Remote Actor 186

Akka application
creating 19

Akka Cluster
about 9, 153
creating 161
leaving 167
project, configuring 161
starting 165, 166
systems, building with 160

akka.cluster.seed-nodes
configuration 162, 163

akka-cluster tool
reference link 167

Akka features, and modules
about 226
Agent 231-234
Akka HTTP 235
Akka I/O 235
Akka Persistence 234, 235
Akka Streams 235

[242]

EventBus object 228-230
logging 226-228
Message Channels 228-230

Akka HTTP 9, 235
Akka I/O

about 235
reference link 235

Akka Mailboxes
reference link 193

Akka Persistence 234, 235
Akka Streams 235
Akka Streams Reactive Streams

reference link 202
Akka Testkit

about 25
Java source code 26
Scala source code 26-28

Amazon Web Server (AWS) 100
application design

approaching 206, 207
article parsing dispatcher 147
Ask message pattern

about 73, 77, 78
callbacks execute, in another execution

context 82
complexity of Actors 85, 86
example application, designing with 78-82
hidden overhead 85
timeouts, need for 83
timeout stacktraces, drawbacks 84

B
BalancingDispatcher

about 139
using 149

BalancingPool
about 135
using 149

behavior
defining, in Finite State

Machine (FSM) 121-123
Behavior Driven Design (BDD) 205
blocking

versus event-driven APIs 41-45

broker 104
build.sbt

Akka, adding to 20
modifying 66

C
CallingThreadDispatcher 139
CAP Theorem

about 157
availability 157
consistency 157
partition tolerance 157

circuit breaker listeners 198
circuit breakers

about 197, 198
examples 199-202

client
building 66
producing 65

cluster
about 155
basic key-value store design 178, 179
designing 177
failure detection 155, 156
messages, routing to 169

cluster client, building for clustered services
about 170, 171
client project, setting up 173
distributed key value store, building 176
Message class, sharing between client and

server 173
messages, sending to cluster 174-176
server project, setting up 171, 172

cluster events
subscribing to 163-165

cluster member states
about 168
failure detection 168

code
mailbox, sending in 193
validating, with unit tests 25

compromises, in CAP theorem
about 158
AP system 159

[243]

consistency, as sliding state 160
CP system 158, 159

concurrency
Actor, selecting for 129
futures, selecting for 129

conditional statements 115, 116
configured dispatcher

using, with Actors 147, 148
Consistent Hashing 135
Coursera Courses

about 239
references 239, 240

crashing 191, 192

D
DB

preparing 60
starting 65

DB Functionality
implementing 62, 63

default dispatcher 143, 144
dependencies

adding, from Maven Central 21
deployment configuration

mailbox, sending in 193
deployment tools 236, 237
dispatchers

about 139
creating 138, 139
deciding, for usage 140-142
working with 136, 137

distributed article parse service
producing 169, 170

Distributed Computing
Fallacies 99

Distributed System
composing 59, 60

distribution
evolution 9

domain model
building 209-213
building, by specification 213-215
designing 209-211
specifications 209

testing 209-213
Domain Specific Languages (DSL) 78
drunken sushi chef 106

E
Eclipse

about 16
project, importing into 18, 19
project, preparing for 17

Eclipse (Scala-Ide)
installing 17

Elasticsearch 238
environment

setting up 11
EventBus object

about 228-230
references 231

event-driven APIs
versus blocking 41-45

event-driven programming models 41
events

monitoring 237, 238
Eventually Consistent View 156, 157
example application

designing, with Ask message pattern 78-82
example problem

stage, setting with 71, 72
executors 138

F
failure

about 103
isolating 104

Failure Cases, Futures
code, executing 55
handling 55
recovering from failure 55
recovering from failure, asynchronously 56

Fallacies, of Distributed Computing
about 99
homogeneous network 103
infinite bandwidth 101
network topology doesn't change 102

[244]

one administrator 102
reliable network 100
secure network 101
zero latency 100
zero transport cost 102

fault-tolerance
evolution 8

Finite State Machines (FSM)
about 118-120
behavior, defining in 121-123

Forward message pattern 73, 94, 95
future cheat-sheet 59
futures

about 41, 51
Actor, responding via 45, 46
anatomy 53
combining 57
composing 56
failure cases, handling 55
failure, expressing in types 51
IO dispatcher use, blocking with 144-146
Java8 examples, preparing 51
latency, expressing in types 51
operations, chaining together 56
Scala examples, preparing 52
selecting, for concurrency 129
success cases, handling 53
working in parallel with 130, 131

H
High-Level design 208

I
IDE

installing 16
installation, Eclipse (Scala-Ide) 17
installation, IntelliJ CE 16
installation, Java

on Linux 12
on OS X 12
on Unix 12
on Windows 12

installation, Scala 13

installation, Typesafe Activator
about 13
on Linux 14
on OS X 14
on Unix 14
on Windows 13

integrated development
environment (IDE) 3

integration tests 67
IntelliJ CE

installing 16
IO dispatcher

usage, blocking with futures 144-146

J
Java

configuration, ensuring 13
Java8 examples

about 46
Actor creation 47, 48
Scala futures 46
test case 46, 47

Java Actor API 34-36
Java Database Connectivity (JDBC) 41
Java, installing

about 12
on Linux 12
on OS X 12
on Unix 12
on Windows 12

K
keys

redistributing, to nodes 184, 185
Kibana 238

L
language

selecting 11
Linux

Java, installing on 12
Typesafe Activator, installing on 14

[245]

lists of futures
dealing with 58, 59

location transparency
evolution 9

logging, in Akka 226-228
logs

monitoring 237, 238
Logstash 238

M
mailboxes

about 192
configuring 193
deciding, for configuration 194
messages, prioritizing in 195
selecting, in code 193
selecting, in deployment configuration 193

mailing address 4
Maven Central

dependencies, adding from 21
message

about 4
making 21
making, in Java 22
making, in Scala 22

Message Channels 228-230
message flow

testing 219
messages

about 61
immutable 73-76
preparing 60
prioritizing, in mailboxes 195
publishing 64
routing, to cluster 169
stashing, between states 114

messaging delivery 73
messaging patterns, Actor

Ask 73, 77, 78
Forward 73, 94, 95
Pipe 73, 96, 97
Tell 73, 86, 87

microservices
reference link 154

mock Actors
TestProbes, using as 221, 222

Moore's Law 127, 128
multicore architecture, as distribution

 problem 128, 129

N
node

coordinating 179, 180
keys, redistributing to 184, 185

O
offline state 113
online state 113
optimal Parallelism 150
OS X

Java, installing on 12
Typesafe Activator, installing on 14

OS X JDK8 installer (dmg), Oracle
download link 12

P
PinnedDispatcher 139
Pipe message pattern 73, 96, 97
pre-sharding 184
project

core functionality 72
creating 15, 16
importing, into Eclipse 18, 19
preparing, for Eclipse 17
scaffolding 65
sketching 72

promises 41, 51
Props 39, 40

[246]

R
Reactive Manifesto 31
Reactive platform 31
Reactive Streams

about 202
reference link 202

Reactive system design 31, 32
Reactive Tenet Correlation 33, 34
reactive tenets

about 32
Elastic 32
event-driven/message-driven 33
resilient 33
responsive 32

Red Hat Enterprise Linux (RHEL) 12
redundancy 104
redundant nodes 181-183
remote access

enabling, to Actor 63
Remote Actors

addressing 185, 186
finding, akka.actor.Identify used 186

resiliency 192
responsive

staying, under load 196
restarts

used, for transition through states 124
right Scala version

obtaining, with %% 21
Round Robin 134
Round-trip Delay Time (RTD or RTT) 119
Routees

supervising, in Router Pool 135
Router 133, 134
Router Group

messages, sending to Actor 135
Router Pool

messages, sending to Actor 135
Routees, supervising in 135

routing logic 134
Routing Strategies

BalancingPool 135
Consistent Hashing 135

Round Robin 134
Scatter Gather 134
Smallest Mailbox 134
Tail Chopping 134

S
SBT Project

setting up 19
Scala

installing 13
Scala Actor API 36-38
Scala example

about 48
Actor Creation 49
test case 48

Scala futures
working with 46

Scala-Ide
download link 17

Scatter Gather 134
sharding, and replication

combining 183, 184
sharding, for linear scalability 180
Simple Build Tool (SBT) 13, 19
skills Check-point 45
sleeping 52
Smallest Mailbox 134
stage

setting, with example problem 71, 72
stash leaks 118
state container

defining 121
states

about 113
defining 120
messages, stashing between 114
offline state 113
online state 113

success cases, futures
code, executing with result 53
handling 53
result, transforming 53
result, transforming asynchronously 54

[247]

supervision
about 104
Actor lifecycle 109, 110
DeathWatch 111
evolution 8
lifecycle monitoring 111
messages, in restart 110
messages, in stop 110

supervision hierarchies 105
supervision strategies 106
supervisor strategies

defining 107, 108
systems

building, with Akka Cluster 160

T
Tail Chopping 134
Tell message pattern

about 73, 86, 87
designing with 87-94

test
running 28
threads, blocking in 50
using, as Actor 219, 221

testing
advice 222

TestProbes
using, as mock Actors 221, 222

threads
blocking, in tests 50

transitioning state 114
Typesafe Activator

download link 13
Typesafe Activator, installing

about 13
on Linux 14
on OS X 14
on Unix 14
on Windows 13

U
Ubiquitous Language 210
unit tests

code, validating with 25
Unix

Java, installing on 12
Typesafe Activator, installing on 14

V
Vector Clocks

reference link 183
Virtual Machine (VM) 103

W
Windows

Java, installing on 12
Typesafe Activator, installing on 13

Thank you for buying
Learning Akka

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Akka Essentials
ISBN: 978-1-84951-828-4 Paperback: 334 pages

A practical, step-by-step guide to learn and build
Akka's actor-based, distributed, concurrent, and
scalable Java applications

1. Build large, distributed, concurrent, and
scalable applications using the Akka's
Actor model.

2. Simple and clear analogy to Java/JEE
application development world to explain
the concepts.

3. Each chapter will teach you a concept
by explaining it with clear and lucid
examples– each chapter can be read
independently.

Scala for Machine Learning
ISBN: 978-1-78355-874-2 Paperback: 520 pages

Leverage Scala and Machine Learning to construct
and study systems that can learn from data

1. Explore a broad variety of data processing,
machine learning, and genetic algorithms
through diagrams, mathematical formulation,
and source code.

2. Leverage your expertise in Scala programming
to create and customize AI applications
with your own scalable machine learning
algorithms.

3. Experiment with different techniques,
and evaluate their benefits and limitations
using real-world financial applications,
in a tutorial style.

Please check www.PacktPub.com for information on our titles

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate Java
code with the power of Scala

1. Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

2. Leverage the full power of modern web
programming by building scalable and
reactive applications.

3. Easy to follow instructions and real world
examples to help you integrate java code
and tackle big data challenges.

Learning Concurrent
Programming in Scala
ISBN: 978-1-78328-141-1 Paperback: 366 pages

Learn the art of building intricate, modern, scalable
concurrent applications using Scala

1. Design and implement scalable and
easy-to-understand concurrent applications.

2. Make the most of Scala by understanding
its philosophy and harnessing the power
of multicores.

3. Get acquainted with cutting-edge technologies
in the field of concurrency, with a particular
emphasis on practical, real-world applications.

Please check www.PacktPub.com for information on our titles

	_GoBack
	Preface
	Starting Life as an Actor
	What's in this book?
	Chapter overview
	What is Akka
	Actor Model origins
	What's an Actor anyway?
	Actors and Message passing
	The Evolution of supervision and fault tolerance in Erlang
	The Evolution of distribution and location transparency

	What we will build
	Example 1 – handling distributed state
	Example 2 – getting lots of work done

	Setting up your environment
	Choosing a language
	Installing Java – Oracle JDK8
	Installing on Windows
	Installing on OSX
	Installing on Linux or Unix (Universal instructions)

	Ensuring Java is configured in your environment
	Installing Scala
	Installing Typesafe Activator
	Windows
	Linux/Unix/OSX
	OSX

	Creating a new project
	Installing an IDE
	Install IntelliJ CE
	Eclipse

	Creating your first Akka application – setting up the SBT project
	Adding Akka to build.sbt
	A note on getting the right Scala version with %%
	Adding other Dependencies from Maven Central

	Creating your first Actor
	Making the Message first
	Defining Actor response to the Message

	Validating the code with unit tests
	Akka Testkit

	Running the test

	Homework
	Summary

	Actors and Concurrency
	Reactive system design
	The 4 reactive tenets
	Responsive
	Elastic
	Resilient
	Event-driven/message-driven
	Reactive Tenet Correlation

	Anatomy of an Actor
	Java Actor API
	Scala Actor API

	Creating an actor
	Props

	Promises, futures, and event-driven programming models
	Blocking versus event-driven APIs
	Skills check-point

	Having an Actor respond via a future
	Java example
	Scala example
	Blocking threads in tests

	Understanding futures and promises
	Future – expressing failure and latency in types

	Preparing the DB and messages
	The messages
	Implementing the DB functionality
	Enabling remoting
	Main
	Publishing the messages
	Starting the DB

	Producing the client
	Scaffolding the project
	Modifying build.sbt
	Building the client
	Testing

	Homework
	General learning
	Project homework

	Summary

	Getting the Message Across
	Setting the stage with an example problem
	Sketching the project
	Core functionality

	Messaging delivery
	Messages should be immutable
	Ask message pattern
	Designing with Ask
	Callbacks execute in another execution context
	Timeouts are required
	Timeout stacktraces aren't useful
	Ask has overhead
	Complexity of Actors and Ask

	Tell
	Designing with Tell
	Forward
	Pipe

	Homework
	General learning
	Project homework

	Summary

	Actor Lifecycle – Handling State and Failure
	The 8 Fallacies of Distributed Computing
	The network is reliable
	Bandwidth is infinite
	The network is secure
	Network topology doesn't change
	There is one administrator
	Transport cost is zero
	The network is homogeneous

	Failure
	Isolating failure
	Redundancy

	Supervision
	Supervision hierarchies
	Supervision strategies and the drunken sushi chef
	Defining supervisor strategies
	Actor lifecycle
	Messages in restart, stop
	Terminating or killing an Actor
	Lifecycle monitoring and DeathWatch
	Safely restarting

	State
	Online/Offline state
	Transitioning state
	Stashing messages between states

	Conditional statements
	Hotswap: Become/Unbecome
	Stash leaks
	Finite State Machines (FSM)
	Defining states
	Defining the state container
	Defining behavior in FSMs

	Using restarts to transition through states

	Homework
	Summary

	Scaling Up
	Moore's law
	Multicore architecture as a distribution problem
	Choosing Futures or Actors for concurrency
	Doing work in parallel
	Doing work In parallel with futures
	Doing work in parallel with Actors
	Introducing Routers
	Routing logic
	Sending Messages to All Actors in a Router
Group/Pool
	Supervising the Routees in a Router Pool

	Working with Dispatchers
	Dispatchers explained
	Executors
	Creating Dispatchers
	Deciding Which Dispatcher to use where
	Default Dispatcher
	Blocking IO dispatcher use with futures
	Article parsing dispatcher
	Using a configured dispatcher with Actors
	Using BalancingPool/BalancingDispatcher

	Optimal parallelism

	Homework
	Summary

	Successfully Scaling
Out – Clustering
	Introducing Akka Cluster
	One Giant Monolith or Many Micro Services?
	Definition of a Cluster
	Failure Detection
	Gossiping an Eventually Consistent View

	CAP Theorem
	C – Consistency
	A – Availability
	P – Partition Tolerance
	Compromises in CAP Theorem
	CP System – Preferring Consistency
	AP System – Preferring Availability
	Consistency as a Sliding Scale

	Building Systems with Akka Cluster
	Creating the Cluster
	Configuring the Project
	Seed Nodes
	Subscribing to Cluster Events
	Starting the Cluster
	Leaving the Cluster Gracefully

	Cluster Member States
	Failure Detection

	Routing Messages to the Cluster
	Producing a Distributed Article Parse Service
	Cluster Client for Clustered Services
	Setting up the Server Project
	Setting up the Client Project
	Sharing the Message Class between Client and Server
	Sending Messages to the Cluster
	Building a Distributed Key Value Store
	Disclaimer – Distributed Systems are Hard

	Designing the Cluster
	Basic Key-Value Store Design
	Coordinating Node
	Redundant Nodes

	Combining Sharding and Replication
	Pre-Sharding And Redistributing Keys to New Nodes

	Addressing Remote Actors
	Using akka.actor.Identify to Find a Remote Actor

	Homework
	Summary

	Handling Mailbox Problems
	Overwhelming your weakest link
	Ballooning response times
	Crashing

	Resiliency
	Mailboxes
	Configuring mailboxes
	Deciding which mailbox to use

	Staying responsive under load
	Circuit breakers
	Circuit breaker listeners
	Circuit breaker examples

	Homework
	Summary

	Testing and Design
	Example problem
	Approaching application design
	High-Level design

	Designing, building, and testing the Domain model
	Specifications
	Designing the Domain model
	Testing and building the Domain model
	Building by specification

	Testing actors
	Testing Actor behavior and state
	Testing Message flow
	Using the test Itself as an Actor
	Using TestProbes as mock Actors

	Testing Advice
	Homework
	Summary

	A Journey's End
	Other Akka Features and Modules
	Logging in Akka
	Message Channels and EventBus
	Agents
	Akka Persistence
	Akka I/O
	Akka streams and HTTP

	Deployment Tools
	Monitoring Logs and Events
	Writing some Actor Code
	Coursera Courses

	Summary

	Index
	who-is-this-book-for
	whats-in-this-book
	chapter-overview
	what-is-akka
	actor-model-origins
	beginnings-as-the-actor-model-of-concurr
	evolution-of-supervision-and-fault-toler
	todo-draw-a-diagram
	what-we-will-build
	example-1-handling-distributed-state
	example-2-getting-work-done
	setting-up-your-environment
	choosing-a-language
	installing-java---oracle-jdk8
	installing-on-windows
	installing-on-osx
	installing-on-linux-or-unix-universal-in
	installing-scala
	installing-typesafe-activator
	windows
	linuxunixosx
	osx
	creating-a-project
	installing-an-ide
	install-intellij-ce
	eclipse
	installing-eclipse-scala-ide
	preparing-the-project-for-eclipse
	importing-the-project-into-eclipse
	add-akka-to-build.sbt
	a-note-on-getting-the-right-scala-versio
	creating-your-first-actor
	make-the-message-first
	define-actor-response-to-the-message
	validating-the-code-with-unit-tests
	akka-testkit
	running-the-test
	_GoBack
	homework
	pongactor
	_GoBack
	_GoBack
	actor-lifecycle-handling-state-and-failu
	_GoBack
	the-8-fallacies-of-distributed-computing
	the-network-is-reliable
	bandwidth-is-infinite
	the-network-is-secure
	network-topology-doesnt-change
	there-is-one-administrator
	transport-cost-is-zero
	the-network-is-homogeneous
	failure
	isolating-failure
	redundancy
	supervision-hierarchies
	supervision-strategies-and-the-drunken-s
	defining-supervisor-strategies
	actor-lifecycle
	safely-restarting
	state
	onlineoffline-state
	transitioning-state
	stashing-messages-between-states
	hotswap-becomeunbecome
	stash-leaks
	finite-state-machines-fsm
	defining-states
	defining-the-state-container
	defining-behavior-in-fsms
	using-restarts-to-transition-through-sta
	homework
	summary
	moores-law
	multi-core-architecture-as-a-distributio
	doing-work-in-parallel
	doing-work-in-parallel-with-futures
	doing-work-in-parallel-with-actors
	introducing-routers
	routing-logic
	sending-messages-to-all-actors-in-a-rout
	supervising-the-routees-in-a-router-pool
	working-with-dispatchers
	dispatchers-explained
	executors
	creating-dispatchers
	deciding-which-dispatcher-to-use-where
	default-dispatcher
	article-parsing-dispatcher
	optimal-parallelism
	homework
	_GoBack
	introducing-akka-cluster
	one-giant-monilith-or-many-micro-service
	what-is-a-cluster
	failure-detection
	gossiping-an-eventually-consistent-view
	cap-theorem
	a---availability
	p---partition-tolerance
	compromises-in-cap-theorem
	ap-system---preferring-availability
	partition-tolerance-as-a-sliding-scale
	building-systems-with-akka-cluster
	creating-the-cluster
	configuring-the-project
	seed-nodes
	subscribing-to-cluster-events
	starting-the-cluster
	leaving-the-cluster-gracefully
	cluster-member-states
	failure-detection-1
	routing-messages-to-the-cluster
	producing-a-distributed-article-parse-se
	cluster-client-for-clustered-services
	setting-up-the-server-project
	setting-up-the-client-project
	sharing-the-message-class-between-client
	sending-messages-to-the-cluster
	redundant-nodes
	addressing-remote-actors
	using-akka.actor.identify-to-find-a-remo
	homework
	overwhelming-your-weakest-link
	balooning-response-times
	crashing
	resiliency
	mailboxes
	configuring-mailboxes
	selecting-a-mailbox-in-deployment-config
	selecting-a-mailbox-in-code
	deciding-which-mailbox-to-use
	prioritizing-messages-in-mailboxes
	staying-responsive-under-load
	circuit-breakers
	circuit-breaker-listeners
	circuit-breaker-examples
	_GoBack
	example-problem
	approaching-application-design
	high-level-design
	designing-building-and-testing-the-domai
	specifications
	designing-the-domain-model
	testing-and-building-the-domain-model
	building-by-specification
	testing-actors
	testing-actor-behavior-and-state
	testing-message-flow
	using-the-test-itself-as-an-actor
	__DdeLink__670_1370826210
	using-testprobes-as-mock-actors
	homework
	summary
	_GoBack

