
www.allitebooks.com

http://www.allitebooks.org

Learning Material Design

Master Material Design and create beautiful, animated
interfaces for mobile and web applications

Kyle Mew

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Material Design

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-981-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Kyle Mew

Reviewer
Will Haering

Commissioning Editor
Ashwin Nair

Acquisition Editors
Vivek Anantharaman

Harsha Bharwani

Content Development Editor
Priyanka Mehta

Technical Editor
Mohita Vyas

Copy Editor
Angad Singh

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kyle Mew has been programming since the early eighties and has written for
several technology websites. He has also written three radio plays and two other
books on Android development.

I would like to dedicate this book to Amber and thank her for being
a constant inspiration throughout.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Will Haering is a self-taught frontend developer, with significant experience in both
web technologies and data processing. He has been designing and developing sites
and web apps for 5 years, starting as a freelancer and then switching paths to begin
working as a client engineer for Symphony Commerce in San Francisco. Earlier in
2015, he participated in a research project on studying the evidence of gravitational
waves. He did this by processing NASA's test data using Julia. In 2014, as a member
of the Precision Engineering Research Group at the Massachusetts Institute of
Technology, Will developed an audio analysis script with industrial and agricultural
applications. He is currently completing his senior year of high school at Phillips
Exeter Academy. You can find him online at http://www.wch.io/.

www.allitebooks.com

http://www.wch.io/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Material Design	 1

Material properties	 3
Setting up a development environment	 4

Installing Android Studio	 4
Configuring the Android SDK	 5
Emulating Android devices	 8
Connecting a real device	 10

The material theme	 11
Applying styles	 12

Customizing the material theme	 14
Summary	 16

Chapter 2: Building a Mobile Layout	 17
Activities and layouts	 18

RelativeLayouts	 19
LinearLayouts	 20
Gravity properties	 22
Inserting and scaling images	 23
Strings and translation	 25
Screen rotation	 26

Applying material to older devices	 29
The AppCompat support library	 29
Applying the material theme	 30
Adding a material toolbar	 31
Action icons	 34

Summary	 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Common Components	 37
App bar style and code	 38

Applying a material palette	 38
Image assets	 40
Applying actions	 42
The app bar structure	 43

Phones	 43
Tablets and desktops	 44

Capturing action calls with Java code	 44
Menus and dialogs	 46

Menus	 46
Options menu	 47
Contextual menus	 48

Dialogs	 50
Creating a material dialog	 51
Click listeners	 55

Summary	 56
Chapter 4: Sliding Drawers and Navigation	 57

Drawer design	 58
The layout	 59
Navigation components and keylines	 62

Structure and metrics	 62
Ratio keylines	 64
Configuration qualifiers	 66

Drawer functionality	 68
Activating the navigation drawer	 68
Opening fragments	 70
Other sliding drawers	 72

Summary	 73
Chapter 5: Lists, Cards, and Data	 75

Generating lists	 76
Adding list items	 78
Connecting a dataset	 80

Layout managers and adapters	 82
Cards	 85

Tiles	 87
Summary	 88

Chapter 6: Animations and Transitions	 89
Touch feedback	 90

Ripple animations	 90
Revealing and hiding	 93

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Transitions	 94
Exits and entrances	 95
Shared components	 98
Realistic movement	 101

Summary	 102
Chapter 7: Material on Other Devices	 103

Material TV	 104
Banners	 105
TV app structure	 106
Recommendation cards	 108

Wearable material	 110
Connecting to a Wearable device	 110
Managing differently shaped screens	 113
Wearable layouts	 115

Summary	 116
Chapter 8: Material Web Frameworks	 117

Desktop layouts	 118
Package management	 119
Materialize	 120

Setting up	 120
Material theme	 123
Layouts and grids	 123
Cards	 125
Buttons and icons	 126

Material Design Lite	 128
Layouts and grids	 129
Cards	 130

Alternative frameworks and libraries	 132
Summary	 134

Chapter 9: The Materialize Framework	 135
Components	 136

Lists and badges	 136
Navigation bars, menus, and icons	 138
Text input and display	 140

Transitions and motion	 141
Wave animations	 141
Accordions and pop-outs	 142
Dividing content with tabs	 144
Displaying images	 145

Summary	 147

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 10: Material Design Lite	 149
Components	 150

Headers	 150
Navigation bars	 151
Tabs	 152
Search fields	 153
Menus	 154
Forms	 156
Tables	 158

Summary	 160
Index	 163

[v]

Preface
Welcome to Learning Material Design, a comprehensive guide to the latest and
hottest design philosophy for mobile and web applications. More than just a design
language, Material Design represents a powerful shift in how modern digital
interfaces look and behave. Based largely on traditional design principles, Material
Design brings a tactile look and feel to apps and pages, giving screen elements
physical properties such as fluid, realistic motion and the ability to depict a third
dimension using shadows.

Covering all major design principles and guidelines and including enough of the
technologies and code required to implement them, the book is designed so that you
can get started with building your own material interfaces from the very beginning.

All the commonly used material components, such as cards and sliding
drawers, are covered in terms of both design guidelines and code structures.
This element-specific approach is coupled with details on how Material Design
can be applied to interfaces in general, and how to use these guidelines to create
material transitions and navigation processes.

Although concentrating largely on mobile interface design and using the powerful
Android Studio development environment, the latter part of the book focuses on
how the principles learned earlier can be just as easily applied to designs of web
and desktop interfaces with a number of helpful and simple-to-use CSS frameworks,
particularly Materialize and Material Design Lite.

This book is only the beginning of a journey into what may well become one of the
most persistent digital design paradigms we have yet seen. But by the end, you
will have learned not only the design theory behind materials, but also enough
of technical know-how to put what you have learned into practice and be in a
position to create or convert Material Design applications on your own.

Preface

[vi]

What this book covers
Chapter 1, Getting Started with Material Design, introduces some of the basic precepts
of Material Design, but concentrates largely on how to set up a development
environment and create a simple "Hello World" app. This includes an introduction
to the material theme and palette.

Chapter 2, Building a Mobile Layout, is where we concentrate on some fundamental
processes in designing an Android interface, such as the content hierarchy and how
components are positioned and scaled within it. The second portion of this chapter
covers support libraries and how these can help us make Material Design backward
compatible.

Chapter 3, Common Components, covers the most frequently used mobile material
components, such as app bars, menus, and modal dialogs, along with the creation
of action icons for menus.

Chapter 4, Sliding Drawers and Navigation, explains the typical material navigation
techniques, in particular, the navigation menu and sliding drawers.

Chapter 5, Lists, Cards, and Data, is where we see how the recycler view can be used
to organize data in the form of a list, and how separate fields of mixed media can be
applied to the card view widget.

Chapter 6, Animations and Transitions, covers transition from one screen to another,
including hide and reveal animations and how components that are shared across
screens are animated.

Chapter 7, Material on Other Devices, is where we look at how Material Design is
applied to the Android TV and Wear platforms.

Chapter 8, Material Web Frameworks, takes us on a brief tour of one of the most
commonly used technologies for applying Material Design to web pages.
This is done using ready-made CSS and JavaScript frameworks.

Chapter 9, The Materialize Framework, delves deeper into the Materialize web
frameworks, demonstrating how common components, animations, and navigation
are achieved.

Chapter 10, Material Design Lite, is the final chapter. It covers the most popular
material framework—Material Design Lite. As in the previous chapter, we explore
the most commonly used components and features.

Preface

[vii]

What you need for this book
Android Studio and SDK are both open source and free, and instructions on
installation and configuration are included in the book.

Who this book is for
This book is ideal for web developers and designers who are interested in
implementing Material Design in their mobile and web apps. No prior knowledge
or experience of Material Design is required, but some familiarity with procedural
languages such as Java and markup languages such as HTML will provide an
advantage.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Tools directory contains exactly what it says, that is, tools."

A block of code is set as follows:

<TextView
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world" />

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<TextView
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_toRightOf="@+id/profile_pic"
 android:textSize="24sp" />

Preface

[viii]

Any command-line input or output is written as follows:

bower install <package>

bower update <package>

bower search <containing>

bower list

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
then open the SDK manager from the menu via Tools | Android | SDK Manager
or the matching icon on the main toolbar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/LearningMaterialDesign_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/LearningMaterialDesign_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMaterialDesign_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with
Material Design

Google first announced Material Design at their I/O conference in the summer
of 2014, and it has since gone on to create quite a storm among developers and
designers alike. Originally a formalization and expansion of the Google Now
UI, Material Design has grown (and is still growing) into a comprehensive and
systematic set of design philosophies.

Material can be thought of as something like smart paper. Like paper, it has
surfaces and edges that reflect light and cast shadows, but unlike paper, material
has properties that real paper does not, such as its ability to move, change its shape
and size, and merge with other material. Despite this seemingly magical behavior,
material should be treated like a physical object with a physicality of its own.

Material can be seen as existing in a three-dimensional space, and it is this that gives
its interfaces a reassuring sense of depth and structure. Hierarchies become obvious
when it is instantly clear whether an object is above or below another.

Getting Started with Material Design

[2]

Based largely on age-old principles taken from color theory, animation, traditional
print design, and physics, Material Design provides a virtual space where developers
can use surface and light to create meaningful interfaces and movement to design
intuitive user interactions.

This book covers both the design principles and the tools required to create the
elegant and responsive interfaces that have made Material Design so popular and
successful. The journey begins with the Android SDK and Android Studio, which
we will use to build working material UIs for a variety of form factors, ranging from
tiny wearable devices to large flat screen TVs. This will provide a solid foundation
for the design principles behind the subject, and how mobile interfaces are defined
using XML and then brought to life with Java.

With the aspects of design covered, the book concludes by exploring the different
guidelines and tools required to build material web apps. There are several subtle
differences in the design rules, and the possible absence of a touch-screen on desktop
computers requires a different approach to user interaction. More significantly, when
building web pages, we will need to work in HTML, and to implement material, we
will need a tool called Polymer and its associate, Paper Elements.

With the journey outlined, we will begin by taking a quick look at the physical
properties of material, and then we'll dive straight in and produce our first interface.
To do this, we will need to download and configure Android Studio and SDK
tools, as well as create a device emulator to compile and run our apps on. With our
development environment in place, we can then take a look at the material themes
available as default on recent Android versions.

In this chapter, you will learn how to:

•	 Understand the physical properties of material
•	 Install Android Studio
•	 Configure the Android SDK
•	 Install Google support libraries
•	 Create a virtual device
•	 Set up a real device for development
•	 Create a hello world app in Android Studio
•	 Create an Android style with XML
•	 Customize the material theme
•	 Apply a material palette

Chapter 1

[3]

Material properties
As mentioned in the introduction, material can be thought of as being bound by
physical laws. There are things it can do and things it cannot. It can split apart and
heal again, and change color and shape, but it cannot occupy the same space as
another sheet of material or rotate around two of its axes. We will be dealing with
these properties throughout the book, but it is a good idea to begin with a quick look
at the things material can and can't do.

The third dimension is fundamental when it comes to material. This is what gives
the user the illusion that they are interacting with something more tangible than
a rectangle of light. The illusion is generated by the widening and softening of
shadows beneath material that is closer to the user. Material exists in virtual space,
but a space that, nevertheless, represents the real dimensions of a phone or tablet.
The x axis can be thought of as existing between the top and bottom of the screen,
the y axis between the right and left edges, and the z axis confined to the space
between the back of the handset and the glass of the screen. It is for this reason that
material should not rotate around the x or y axes, as this would break the illusion of
a space inside the phone.

The basic laws of the physics of material are outlined, as follows, in the form of a list:

•	 All material is 1 dp thick (along the z axis).
•	 Material is solid, only one sheet can exist in one place at a time and material

cannot pass through other material. For example, if a card needs to move
past another, it must move over it.

•	 Elevation, or position along the z axis, is portrayed by shadow, with higher
objects having wider, softer shadows.

•	 The z axis should be used to prompt interaction. For example, an action
button rising up toward the user to demonstrate that it can be used to
perform some action.

•	 Material does not fold or bend.
•	 Material cannot appear to rise higher than the screen surface.
•	 Material can grow and shrink along both x and y axes.
•	 Material can move along any axis.
•	 Material can be spontaneously created and destroyed, but this must not be

without movement. The arrivals and departures of material components
must be animated. For example, a card growing from the point that it was
summoned from or sliding off the screen when dismissed.

•	 A sheet of material can split apart anywhere along the x or y axes, and join
together again with its original partner or with other material.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Material Design

[4]

This covers the basic rules of material behavior but we have said nothing of its
content. If material can be thought of as smart paper, then its content can only be
described as smart ink. The rules governing how ink behaves are a little simpler:

•	 Material content can be text, imagery, or any other form of visual
digital content

•	 Content can be of any shape or color and behaves independently from
its container material

•	 It cannot be displayed beyond the edges of its material container
•	 It adds nothing to the thickness (z axis) of the material it is displayed on

Setting up a development environment
The Android development environment consists mainly of two distinct components:
the SDK, which provides the code libraries behind Android and Android Studio,
and a powerful code editor that is used for constructing and testing applications
for Android phones and tablets, Wear, TV, Auto, Glass, and Cardboard. Both these
components can both be downloaded as a single package from http://developer.
android.com/sdk/index.html.

Installing Android Studio
The installation is very straightforward. Run the Android Studio bundle and follow
the on-screen instructions, installing HAXM hardware acceleration if prompted, and
selecting all SDK components, as shown here:

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Chapter 1

[5]

Android Studio is dependent on the Java JDK. If you have not previously installed
it, this will be detected while you are installing Android Studio, and you will be
prompted to download and install it. If for some reason it does not, it can be found
at http://www.oracle.com/technetwork/java/javase/downloads/index.html,
from where you should download the latest version.

This is not quite the end of the installation process. There are still some SDK
components that we will need to download manually before we can build our
first app. As we will see next, this is done using the Android SDK Manager.

Configuring the Android SDK
People often refer to Android versions by name, such as Lollipop, or an identity
number, such as 5.1.1. As developers, it makes more sense to use the API level,
which in the case of Android 5.1.1 would be API level 22. The SDK provides a
platform for every API level since API level 8 (Android 2.2). In this section, we will
use the SDK Manager to take a closer look at Android platforms, along with the
other tools included in the SDK.

Start a new Android Studio project or open an existing one with the minimum
SDK at 21 or higher. You can then open the SDK manager from the menu via
Tools | Android | SDK Manager or the matching icon on the main toolbar.

The Android SDK Manager can also be started as a stand alone
program. It can be found in the /Android/sdk directory, as can the
Android Virtual Device (AVD) manager.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Getting Started with Material Design

[6]

As can be seen in the preceding screenshot, there are really three main sections in
the SDK:

•	 A Tools folder
•	 A collection of platforms
•	 An Extras folder

All these require a closer look. The Tools directory contains exactly what it says, that
is, tools. There are a handful of these but the ones that will concern us are the SDK
manager that we are using now, and the AVD manager that we will be using shortly
to create a virtual device.

Open the Tools folder. You should find the latest revisions of the SDK tools and the
SDK Platform-tools already installed. If not, select these items, along with the latest
Build-tools, that is, if they too have not been installed.

These tools are often revised, and it is well worth it to regularly
check the SDK manager for updates.

When it comes to the platforms themselves, it is usually enough to simply install the
latest one. This does not mean that these apps will not work on or be available to
devices running older versions, as we can set a minimum SDK level when setting up
a project, and along with the use of support libraries, we can bring Material Design
to almost any Android device out there.

If you open up the folder for the latest platform, you will see that some items have
already been installed. Strictly speaking, the only things you need to install are
the SDK platform itself and at least one system image. System images are copies
of the hard drives of actual Android devices and are used with the AVD to create
emulators. Which images you use will depend on your system and the form factors
that you are developing for. In this book, we will be building apps for phones and
tablets, so make sure you use one of these at least.

Although they are not required to develop apps, the documentation
and samples packages can be extremely useful.

At the bottom of each platform folder are the Google APIs and corresponding system
images. Install these if you are going to include Google services, such as Maps and
Cloud, in your apps. You will also need to install the Google support libraries from
the Extras directory, and this is what we will cover next.

Chapter 1

[7]

The Extras folder contains various miscellaneous packages with a range of
functions. The ones you are most likely to want to download are listed as follows:

•	 Android support libraries are invaluable extensions to the SDK that provide
APIs that not only facilitate backwards compatibility, but also provide a lot
of extra components and functions, and most importantly for us, the design
library. As we are developing on Android Studio, we need only install the
Android Support Repository, as this contains the Android Support Library
and is designed for use with Android.

•	 The Google Play services and Google Repository packages are required,
along with the Google APIs mentioned a moment ago, to incorporate Google
Services into an application.

•	 You will most likely need the Google USB Driver if you are intending to
test your apps on a real device. How to do this will be explained later in
this chapter.

•	 The HAXM installer is invaluable if you have a recent Intel processor.
Android emulators can be notoriously slow, and this hardware acceleration
can make a noticeable difference.

Once you have downloaded your selected SDK components, depending on your
system and/or project plans, you should have a list of installed packages similar to
the one shown next:

Getting Started with Material Design

[8]

The SDK is finally ready, and we can start developing material interfaces. All that is
required now is a device to test it on. This can, of course, be done on an actual device,
but generally speaking, we will need to test our apps on as many devices as possible.
Being able to emulate Android devices allows us to do this.

Emulating Android devices
The AVD allows us to test our designs across the entire range of form factors. There
are an enormous number of screen sizes, shapes, and densities around. It is vital that
we get to test our apps on as many device configurations as possible. This is actually
more important for design than it is for functionality. An app might operate perfectly
well on an exceptionally small or narrow screen, but not look as good as we had
wanted, making the AVD one of the most useful tools available to us. This section
covers how to create a virtual device using the AVD Manager.

The AVD Manager can be opened from within Android Studio by navigating to
Tools | Android | AVD Manager from the menu or the corresponding icon on the
toolbar. Here, you should click on the Create Virtual Device... button.

The easiest way to create an emulator is to simply pick a device definition from the
list of hardware images and keep clicking on Next until you reach Finish. However,
it is much more fun and instructive to either clone and edit an existing profile,
or create one from scratch.

Click on the New Hardware Profile button. This takes you to the Configure
Hardware Profile window where you will be able to create a virtual device from
scratch, configuring everything from cameras and sensors, to storage and screen
resolution. When you are done, click on Finish and you will be returned to the
hardware selection screen where your new device will have been added:

Chapter 1

[9]

As you will have seen from the Import Hardware Profiles button, it
is possible to download system images for many devices not included
with the SDK. Check the developer sections of device vendor's web
sites to see which models are available.

So far, we have only configured the hardware for our virtual device. We must now
select all the software it will use. To do this, select the hardware profile you just
created and press Next. In the following window, select one of the system images
you installed earlier and press Next again. This takes us to the Verify Configuration
screen where the emulator can be fine-tuned. Most of these configurations can
be safely left as they are, but you will certainly need to play with the scale when
developing for high density devices. It can also be very useful to be able to use
a real SD card. Once you click on Finish, the emulator will be ready to run.

An emulator can be rotated through 90 degrees with left Ctrl + F12.
The menu can be called with F2, and the back button with ESC.
Keyboard commands to emulate most physical buttons, such as call,
power, and volume, and a complete list can be found at http://
developer.android.com/tools/help/emulator.html.

Android emulators are notoriously slow, during both loading and operating, even on
quite powerful machines. The Intel hardware accelerator we encountered earlier can
make a significant difference. Between the two choices offered, the one that you use
should depend on how often you need to open and close a particular emulator. More
often than not, taking advantage of your GPU is the more helpful of the two. Apart
from this built-in assistance, there are a few other things you can do to improve
performance, such as setting lower pixel densities, increasing the device's memory,
and building the website for lower API levels. If you are comfortable doing so, set up
exclusions in your anti-virus software for the Android Studio and SDK directories.

There are several third-party emulators, such as Genymotion,
that are not only faster, but also behave more like real devices.

The slowness of Android emulators is not necessarily a big problem, as most early
development needs only one device, and real devices suffer none of the performance
issues found on emulators. As we shall see next, real devices can be connected to our
development environment with very little effort.

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html

Getting Started with Material Design

[10]

Connecting a real device
Using an actual physical device to run and test applications does not have the
flexibility that emulators provide, but it does have one or two advantages of its own.
Real devices are faster than any emulator, and you can test features unavailable to a
virtual device, such as accessing sensors, and making and receiving calls.

There are two steps involved in setting up a real phone or tablet. We need to set
developer options on the handset and configure the USB connection with our
development computer:

1.	 To enable developer options on your handset, navigate to Settings | About
phone. Tap on Build number 7 times to enable Developer options, which
will now be available from the previous screen.

2.	 Open this to enable USB debugging and Allow mock locations.
3.	 Connect the device to your computer and check that it is connected

as a Media device (MTP).

Your handset can now be used as a test device. Depending on your We need only
install the Google USB. Connect the device to your computer with a USB cable, start
Android Studio, and open a project. Depending on your setup, it is quite possible
that you are already connected. If not, you can install the Google USB driver by
following these steps:

1.	 From the Windows start menu, open the device manager.
2.	 Your handset can be found under Other Devices or Portable Devices.

Open its Properties window and select the Driver tab.
3.	 Update the driver with the Google version, which can be found in the

sdk\extras\google\usb_driver directory.

An application can be compiled and run from Android Studio by selecting Run 'app'
from the Run menu, pressing Shift + F10, or clicking on the green play icon on the
toolbar. Once the project has finished building, you will be asked to confirm your
choice of device before the app loads and then opens on your handset.

Chapter 1

[11]

With a fully set up development environment and devices to test on, we can now
start taking a look at Material Design, beginning with the material theme that is
included as the default in all SDKs with APIs higher than 21.

The material theme
Since API level 21 (Android 5.0), the material theme has been the built-in user
interface. It can be utilized and customized, simplifying the building of material
interfaces. However, it is more than just a new look; the material theme also provides
the automatic touch feedback and transition animations that we associate with
Material Design.

To better understand Android themes and how to apply them, we need to
understand how Android styles work, and a little about how screen components,
such as buttons and text boxes, are defined.

Most individual screen components are referred to as widgets or
views. Views that contain other views are called view groups, and
they generally take the form of a layout, such as the relative layout
we will use in a moment.

Getting Started with Material Design

[12]

An Android style is a set of graphical properties defining the appearance of a
particular screen component. Styles allow us to define everything from font size
and background color, to padding elevation, and much more. An Android theme
is simply a style applied across a whole screen or application. The best way to
understand how this works is to put it into action and apply a style to a working
project. This will also provide a great opportunity to become more familiar with
Android Studio.

Applying styles
Styles are defined as XML files and are stored in the resources (res) directory
of Android Studio projects. So that we can apply different styles to a variety of
platforms and devices, they are kept separate from the layout code. To see how this
is done, start a new project, selecting a minimum SDK of 21 or higher, and using the
blank activity template. To the left of the editor is the project explorer pane. This is
your access point to every branch of your project.

Take a look at the activity_main.xml file, which would have been opened in the
editor pane when the project was created. At the bottom of the pane, you will see a
Text tab and a Design tab. It should be quite clear, from examining these, how the
XML code defines a text box (TextView) nested inside a window (RelativeLayout).
Layouts can be created in two ways: textually and graphically. Usually, they are
built using a combination of both techniques. In the design view, widgets can be
dragged and dropped to form layout designs. Any changes made using the graphical
interface are immediately reflected in the code, and experimenting with this is a
fantastic way to learn how various widgets and layouts are put together. We will
return to both these subjects in detail later on in the book, but for now, we will
continue with styles and themes by defining a custom style for the text view in our
Hello world app.

Chapter 1

[13]

Open the res node in the project explorer; you can then right-click on the values
node and select the New | Values resource file from the menu. Call this file my_
style and fill it out as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="myStyle">
 <item name="android:layout_width">match_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:elevation">4dp</item>
 <item name="android:gravity">center_horizontal</item>
 <item name="android:padding">8dp</item>
 <item name="android:background">#e6e6e6</item>
 <item name="android:textSize">32sp</item>
 <item name="android:textColor">#727272</item>
 </style>
</resources>

This style defines several graphical properties, most of which should be
self-explanatory with the possible exception of gravity, which here refers to
how content is justified within the view. We will cover measurements and units
later in the book, but for now, it is useful to understand dp and sp:

•	 Density-independent pixel (dp): Android runs on an enormous number
of devices, with screen densities ranging from 120 dpi to 480 dpi and more.
To simplify the process of developing for such a wide variety, Android uses
a virtual pixel unit based on a 160 dpi screen. This allows us to develop for a
particular screen size without having to worry about screen density.

•	 Scale-independent pixel (sp): This unit is designed to be applied to text.
The reason it is scale-independent is because the actual text size on a user's
device will depend on their font size settings.

To apply the style we just defined, open the activity_main.xml file (from res/
layouts, if you have closed it) and edit the TextView node so that it matches this:

<TextView
 style="@style/myStyle"
 android:text="@string/hello_world" />

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Material Design

[14]

The effects of applying this style can be seen immediately from the design tab or
preview pane, and having seen how styles are applied, we can now go ahead and
create a style to customize the material theme palette.

Customizing the material theme
One of the most useful features of the material theme is the way it can take a small
palette made of only a handful of colors and incorporate these colors into every
aspect of a UI. Text and cursor colors, the way things are highlighted, and even
system features such as the status and navigation bars can be customized to give
our apps brand colors and an easily recognizable look.

The use of color in Material Design is a topic in itself, and there are strict guidelines
regarding color, shade, and text, and these will be covered in detail later in the book.
For now, we will just look at how we can use a style to apply our own colors to a
material theme.

So as to keep our resources separate, and therefore easier to manage, we will define
our palette in its own XML file. As we did earlier with the my_style.xml file, create
a new values resource file in the values directory and call it colors. Complete the
code as shown next:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#FFC107</color>
 <color name="primary_dark">#FFA000</color>
 <color name="primary_light">#FFECB3</color>
 <color name="accent">#03A9F4</color>
 <color name="text_primary">#212121</color>
 <color name="text_secondary">#727272</color>
 <color name="icons">#212121</color>
 <color name="divider">#B6B6B6</color>
</resources>

In the gutter to the left of the code, you will see small, colored
squares. Clicking on these will take you to a dialog with a color
wheel and other color selection tools for quick color editing.

Chapter 1

[15]

We are going to apply our style to the entire app, so rather than creating a separate
file, we will include our style in the theme that was set up by the project template
wizard when we started the project. This theme is called AppTheme, as can be seen by
opening the res/values/styles/styles.xml (v21) file. Edit the code in this file
so that it looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="android:Theme.Material.Light">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</
item>
 <item name="android:colorAccent">@color/accent</item>
 <item name="android:textColorPrimary">@color/text_primary</
item>
 <item name="android:textColor">@color/text_secondary</item>
 </style>
</resources>

Being able to set key colors, such as colorPrimary and colorAccent, allows us to
incorporate our brand colors throughout the app, although the project template only
shows us how we have changed the color of the status bar and app bar. Try adding
radio buttons or text edit boxes to see how the accent color is applied. In the following
figure, a timepicker replaces the original text view:

The XML for this looks like the following lines:

<TimePicker
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true" />

Getting Started with Material Design

[16]

For now, it is not necessary to know all the color guidelines. Until we get to them,
there is an online material color palette generator at http://www.materialpalette.
com/ that lets you try out different palette combinations and download color XML
files that can just be cut and pasted into the editor.

With a complete and up-to-date development environment constructed, and a way
to customize and adapt the material theme, we are now ready to look into how
material specific widgets, such as card views, are implemented.

Summary
The Android SDK, Android Studio, and AVD comprise a sophisticated development
toolkit, and even setting them up is no simple task. But, with our tools in place,
we were able to take a first look at one of Material Design's major components:
the material theme. We have seen how themes and styles relate, and how to create
and edit styles in XML. Finally, we have touched on material palettes, and how to
customize a theme to utilize our own brand colors across an app.

With these basics covered, we can move on to explore Material Design further, and in
the next chapter, we will look at layouts and material components in greater detail.

http://www.materialpalette.com/
http://www.materialpalette.com/

[17]

Building a Mobile Layout
Having set up Android Studio and SDK, along with real and virtual devices for
testing on, and having had a brief look at one of the application templates provided
by Android Studio, we are now in a position to take a more detailed look at how
Android layouts are constructed, and how support libraries are used to create
material layouts for older versions of Android.

There are several built-in layout formats provided with the SDK, and more available
from the support libraries. As these layouts can be nested within one another, it is
possible to put together almost any imaginable screen structure. This chapter will
outline how screen components can be scaled, proportioned, and aligned, as well as
how resources such as images and text are kept separate from layout definitions, and
how this simplifies such things as translation. Although the content of this chapter is
essential for creating material layouts, it does largely apply to all Android layouts
in general.

After seeing how alternative layouts can be automatically generated to manage
screen rotation, the latter part of the chapter concentrates on making Material Design
available on older platforms, and how the new toolbar widget can be deployed in
place of the older action bar.

In this chapter, we will cover the following topics:

•	 Create linear and relative layouts
•	 Combine ViewGroups to construct complex layouts
•	 Size widgets using weight properties
•	 Align content with gravity
•	 Scale images
•	 Translate text
•	 Generate layouts for managing screen rotation

Building a Mobile Layout

[18]

•	 Use the AppCompat support library
•	 Apply the material theme to older versions
•	 Replace the old Action Bar with the material toolbar
•	 Apply material action icons

Activities and layouts
Android applications are are made up of one or more screens called activities.
So as to keep design and function separate, the appearance of an activity is defined
in XML, and its behavior with Java. Creating an Android Studio project using the
Blank Activity template is a good way to see how this works.

XML activities contain two types of screen components. There are all the visible
screen objects, called widgets, that we associate with mobile apps, such as buttons,
sliders, and images, and there are invisible container objects known as layouts or
ViewGroups. If you open the activity_main.xml XML file that was created by the
project template, in design mode, you will see that there are seven layouts available
to us at the top of the palette.

Chapter 2

[19]

RelativeLayouts
On the right-hand side of the editor is the component tree; this displays a hierarchical
view of the activity, and we can see that the root layout here is a RelativeLayout, and
that it contains a single widget, TextView. RelativeLayout is an often used layout and
is very useful because, as its name suggests, it allows us to position widgets and even
other layouts relative to each other. This is particularly useful when it comes to the
way a layout manages screen rotation, and it can also save memory as many complex
layouts can be achieved without having to nest ViewGroups inside each other.

To see how relative layouts work, open the XML activity in graphical mode and drag
the TextView to the center of the screen. Now, open the activity in text mode and
add an android:id attribute to TextView, as seen here:

<TextView
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world" />

Once the view has a way of being referred to, other objects can be positioned and
aligned in relation to it and each other if they too have IDs. Return to design mode
and drag and drop some of the widgets or other views onto various parts of the
design screen. This feature of the editor proves a very useful learning tool and allows
us to write and understand code that is written automatically as we add and move
screen components.

Building a Mobile Layout

[20]

As you move items around the screen, a tip will appear at the top, outlining the
attributes that are being applied.

By experimenting a little with this, and examining the code after each change, one
can become proficient very quickly in designing activities using a RelativeLayout.

LinearLayouts
The other most frequently used Android layout is LinearLayout. This layout is
designed for single-column or single-row layouts, such as a list. Every linear layout
has an android:orientation attribute that can take the values, horizontal or
vertical. More complex designs can be achieved with LinearLayouts by nesting
horizontal layouts inside vertical ones and vice versa, as can be seen in this layout:

Chapter 2

[21]

The preceding activity is constructed from three linear layouts, with a horizontal
layout for the images nested alongside a vertical one for the text, inside a horizontal
root layout. This can be seen more clearly by examining the component tree hierarchy:

LinearLayout is a very convenient layout. It might seem that a single row or column
might limit us as designers and developers, but by nesting them inside each other,
we can create sophisticated and complex layouts. One thing that must be noted
about LinearLayouts is that they consume a lot of resources; nesting too many can
reduce performance and should only be done when the required result cannot be
achieved using a RelativeLayout.

Layouts and widgets can be re-positioned with the mouse from
within the component tree.

Another very useful feature of LinearLayout is that relative weights can be assigned
to individual widgets or groups. Widgets with an android:layout_weight attribute
will share the space accordingly. This is best explained by example.

Building a Mobile Layout

[22]

The following is the XML for one of the images in the previous layout:

<ImageView
 android:id="@+id/imageView1"
 android:layout_width="0dp"
 android:layout_height="128dp"
 android:layout_weight="1"
 android:src="@drawable/london_bus" />

The code is the same for all four ImageViews with the exception of their IDs and the
android:src attribute, which points to the individual image resource. Importantly,
they all have the same layout_weight. If we were to change the weights to 1, 2, 2,
and 3 respectively, it would have the following result:

It is worth noting that the layout_width property is set to 0dp; this is because
the property is compulsory, and setting it to other values interferes with the
weight attribute.

RelativeLayouts and LinearLayouts are flexible enough to suit most purposes.
There are several others that we will encounter: in particular, CoordinatorLayout
and TabLayout, which are part of the design support library and created specifically
for Material Design.

We have seen how Android Studio provides a graphical and textual interface
for our layouts, and how the order and hierarchy can be easily edited with the
component tree. There is one other useful way to view and edit an activity and
that is the Properties pane, which we will use next to edit justification, or gravity,
as it is referred to here.

Gravity properties
Just beneath Component Tree is the Properties pane. This provides a very simple
way to add and edit the properties of our layouts and views, often providing
drop-down lists to select from.

Chapter 2

[23]

The gravity and layout_gravity properties control how the content of a view
is justified within that view, and how the view is justified within its parent layout,
respectively. To see the effects of content gravity, create TextView with its height
and width both set to match_parent, and then use the Properties pane to change the
gravity settings. As you can see in the next screenshot, there are over a dozen values
that can be combined in a wide variety of ways:

We have seen, thus far, in this chapter how to position and distribute a variety of
widgets and view groups to form the visual aspect of an Android activity using
built-in components. Often, of course, we will want to include graphics of our own,
such as photographs and other images. As we shall see next, these can be easily
added to the project and included in a layout.

Inserting and scaling images
We saw in the previous chapter that by using density-independent pixels (dips),
we can create layouts for devices of different sizes and resolutions with great
ease. When it comes to including imagery, however, a little more consideration
is required.

Building a Mobile Layout

[24]

There is no difficulty in simply setting the width and height of an ImageView using
the dp unit, but there are times when we risk losing image quality on very -high-
density devices, and we need some way to calculate what size our original pictures
need to be. The Android system assumes that a target device will have a density of
160 dpi (dots per inch); this means that on such a screen, a 100 x 100 pixel image will
take up precisely that much space. But on a 640 dpi screen, the same area would
cover 400 x 400 pixels, and we need to take this into consideration when producing
our original images to avoid a loss of quality. As we will see in a minute, Android
Studio allows us to very easily create alternative layouts for different screen sizes,
but first, we need to see how to actually add images to our projects. Wide selections
of screen densities can be tested directly from the graphical layout editor using the
virtual device menu on the toolbar, as shown next:

Images are stored as a resource in the res/drawable directory. This can be viewed
using your system's file explorer from its sub-menu in the project explorer. Our
chosen images can then simply be pasted into this folder and will then appear in the
project explorer. Any format can be used, but PNGs are preferable and can be loaded
into any view such as an ImageView with the src property, without spaces and
excluding the file extension, as shown here:

android:src="@drawable/some_image"

Chapter 2

[25]

This method of keeping resources and code separate is common throughout Android
projects, and applies to a number of elements that we might not expect, such as
string resources.

Strings and translation
When allocating some text to a view, such as TextView, it might seem logical to set it
with something like the following lines:

<TextView
. . .
android:text="Some Text"
/>

Although this works perfectly well, it is highly discouraged as it muddles content
with structure and makes translation virtually impossible.

Open the strings.xml file in the res/values folder. You will see something
like this:

<resources>
 <string name="app_name">Some App</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="some_text">Some Text</string>
</resources>

All the strings used in our layouts should be defined in this resource file, although
it is not necessary to edit the file directly, as the layout editor provides a very handy
shortcut to define string resources:

1.	 Create or open TextView and provide a hardcoded string literal
android:text value.

2.	 Place the cursor anywhere on the line and an amber quick fix icon
will appear.

Building a Mobile Layout

[26]

3.	 Select this and then the Extract string resource key from the
drop-down, and you will be able to create the resource from a simple dialog:

The real beauty of keeping string resources apart is that it makes producing
translations of our apps very simple indeed. The translations editor can be
opened from the strings.xml file's menu in the project explorer. Simply select
the languages you want to translate into from the Add Locale icon at the top, and
enter the translations in the fields at the bottom. This generates a new strings.xml
file for each language you select, and any Android device running your app will
automatically access these files in the appropriate locations.

Screen rotation
Many Android devices come with sensors that detect the orientation of the
screen. When a device is rotated into landscape mode, the system redraws the
layout according to the XML definition that we designed for portrait. Often, this
is sufficient, but there are many times when a layout does not visually suit this
orientation or make good use of the space. Fortunately, Android makes the process
of managing this remarkably simple.

Chapter 2

[27]

Take the following example of a simple relative layout:

Some layout configurations, although certainly not all, do not use up space well, or
simply do not look nice in landscape mode. This can be mitigated to a degree through
the judicious use of gravity and weight, but a far simpler and more elegant solution is
to create an alternative layout file for landscape viewing. This takes only moments.

The layout configuration menu can be accessed from design mode by clicking on
the leftmost icon and selecting Create Landscape Variation. You can now rearrange
your views and view groups to better suit the screen proportions. Providing you
leave other settings such as android:id the same, this new configuration will be
automatically loaded every time a device is rotated into landscape mode.

Building a Mobile Layout

[28]

Checking the project explorer, you will see that the res/layout/activity_
main.xml node now contains two files, our new configuration being called
activity_main.xml (land). If you look in the appropriate folder in your
AndroidStudioProjects directory, you will see that it is, in fact, in a separate folder
inside app/src/main/res called layout-land.

The configuration menu also allows us how to create layouts for large screens, along
with a host of other useful preview and testing tools.

The material covered in this chapter applies to constructing Android layouts in
general, and is not specific to Material Design. Most of the components and features
that make up material UIs were introduced in API 21, and the way we implement
them depends on whether we are developing for devices running Android 5.0 or
higher, or if we hope to reach a wider audience by applying material to older versions.
Very different approaches are required, depending on the choice we make here, as
each option utilizes different code libraries and objects. There are a few disadvantages
to making material backwards compatible, such as the loss of dynamic shadows and
cards with rounded corners, but this is significantly outweighed by the increased
number of potential users. There are also a number of workarounds we can use so
that users running platform 5.0 or higher will experience all the material features, and
only users of older handsets will get the paired down version. This can be achieved by
creating alternative layouts, resources, and even Java code. All of this will be covered
as we progress, but first we need to take that decision and see how material is applied
on devices running platforms older than 5.0.

To help decide which platforms to target, Google has a very useful dashboard
feature with relatively up-to-date device usage data:

Chapter 2

[29]

Applying material to older devices
The support repository we downloaded in the last chapter provides code that
allows us to apply our designs on handsets going all the way back to Android 1.8,
although the further back you go, the fewer features are supported. For the purpose of
this book, we will make our applications backwards compatible as far back as API 16.

To achieve this, we will be using code provided by the AppCompat support library;
in doing so, we will encounter one of the most significant material components: the
Toolbar, which replaced the previous, less flexible Action Bar.

In older versions of Android, unless switched off, the Action Bar would sit at the top
of each app and could contain our title along with any of the option menu items we
chose, which were expressed as text, icons, or both. It was not really considered a
true part of the UI, but rather an element that sat outside our design.

The new toolbar, although often acting as our app's action bar, is far more flexible
and behaves like any other view within our own UI hierarchy. It can be placed
anywhere, and can contain any elements we choose. Our layouts can even contain
more than one.

The AppCompat support library
If you start a new project and select the Minimum SDK option to be lower than 21,
the AppCompat library will be imported by default. Nevertheless, it is important to
know how to do this so that we can convert existing projects created for 21 or higher,
as well as for importing other support libraries. Open the build.gradle (Module:
app) file from the project explorer. Support libraries should be added to the
dependencies section, and the Appcompat library is the very minimum requirement
for backwards compatibility:

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:23.1.1'
}

To explain the numbers, v7 refers to the minimum API level that the library caters
to, and 23.1.1 references the latest revision. To find this, open the SDK manager
and look in the Rev. column for the extras/Android Support Library files.

Building a Mobile Layout

[30]

If you have not created the project for an older minimum SDK, you will need to edit
the default configuration code to match the following:

defaultConfig {
 applicationId "com.mew.kyle.learningmaterialdesign"
 minSdkVersion 16
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
}

This library alone is not enough to make our apps available to older devices.
For the Android Play store to recognize its range of targeted platforms, this needs
to be declared in the application's AndroidManifest.xml file. This can be found
near the top of the project explorer. Include the highlighted code inside the
manifest's root node:

<uses-sdk
 android:minSdkVersion="16"
 android:targetSdkVersion="23" />

If we were to publish this application, it would now appear in the Play store as
available to all devices with APIs of 16 or higher.

Applying the material theme
The AppCompat library provides a very passable version of material themes,
and this is set up in a similar way to the one we encountered in the previous
chapter. To see how it's done, start a new Android Studio project with a minimum
SDK of 16, create a colors.xml file in the res/values folder, and complete it as
shown as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#FFC107</color>
 <color name="primary_dark">#FFA000</color>
 <color name="accent">#03A9F4</color>
 <color name="text_primary">#DE000000</color>
 <color name="text_secondary">#8A000000</color>>
</resources>

Chapter 2

[31]

Next, edit the res/values/styles.xml file to match the following:

<resources>
 <style name="AppTheme" parent="Theme.AppCompat.Light">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primary_dark</item>
 <item name="colorAccent">@color/accent</item>
 <item name="android:textColorPrimary">@color/text_primary</
item>
 <item name="android:textColor">@color/text_secondary</item>
 </style>
</resources>

The fact that our material theme has now been applied can be seen by running the
app on a device or emulator running Android 4.1. There are some subtle differences
between a true material theme and the one provided by AppCompat.

Material design stipulates an important style rule concerning how text is colored.
Rather than applying grayscales to emphasize the significance of text, transparency is
used as it has a more pleasing effect when placed on colored backgrounds. The rules
for text coloring for primary and secondary text, for dark and light backgrounds, are
as follows:

•	 Primary text on a dark background is 87 percent opaque black: #DE000000
•	 Secondary text on a dark background is 54 percent opaque black: #8A000000
•	 Primary text on a light background is 100 percent opaque white: #FFFFFFFF
•	 Secondary text on a light background is 70 percent opaque white: #B3FFFFFF

Material Design has quite a few style rules like these, and we will cover them as we go.
We have applied our color scheme, but the layout contains the old Action Bar that was
replaced, when Material Design was introduced, by the more flexible Toolbar. This has
several distinct advantages over its predecessor in that it has more functions, it is not
restricted to the top of the screen, and we can have more than one of it.

Adding a material toolbar
To replace the Action Bar with a toolbar, we first have to remove the Action bar.
This is easily done by changing the theme in the res/values/styles.xml file
like this:

<style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">

Building a Mobile Layout

[32]

The toolbar can be added by including this tab in the XML activity:

<android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="56dp"
 android:background="?attr/colorPrimary" />

The use of 56dp as the widget's height is not an arbitrary
selection; it is another Material Design rule that states
that on phones, in portrait mode, the toolbar at the top is
56dp high. This is reduced to 48dp for landscape mode
and increased to 64dp for tablets and desktops.

This toolbar is like any other ViewGroup, in that it sits inside the root layout,
so unlike the original action bar, it is not plush up to the edges of the screen.
To rectify this, open the res/values/dimens.xml/dimens.xml file and change
the margin values as shown:

<dimen name="activity_horizontal_margin">0dp</dimen>
<dimen name="activity_vertical_margin">0dp</dimen>

The toolbar is now positioned and shaded like the original, but has none of the
content or function. When a toolbar is given the functionality of the action bar,
and is used to access the activity's menu, it is referred to as an App Bar. This is
done in the Java element of the activity.

To save time when working with Java, change the settings so that
Java libraries are automatically imported when included in code.
This is done by navigating to Editor | General | Auto Import |
File | Settings.

Open the MainActivity.Java file and edit the class declaration so that it extends
AppCompatActivity like this:

public class MainActivity extends AppCompatActivity {

Now, add the highlighted lines, shown here on the onCreate() method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

Chapter 2

[33]

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 if (toolbar != null) {
 setSupportActionBar(toolbar);
 }
}

This will generate an error. This is because there are two possible libraries that
could be imported here. Press Alt + Enter and select the support version of the
Toolbar, as shown in the following screenshot:

The first of the Java lines we added is a construct that we will come across very
often. The findViewById() method is used to link instances of views to their Java
counterpart.

Testing the project on an emulator running API 16 will immediately demonstrate one
of the shortfalls of the AppCompat theme; despite declaring a color for our status bar,
which works perfectly on API 21 and higher, here it is still black.

However, this and the absence of natural looking shadows are a small price to pay
considering the number of people we can now reach.

Now that we have replaced the old-fashioned Action Bar with a toolbar and set it as
the App bar (sometimes called a primary toolbar), we can take a closer look at how it
works, and how certain types of icons, known as action icons, are applied according
to Material Design rules.

www.allitebooks.com

http://www.allitebooks.org

Building a Mobile Layout

[34]

Action icons
As you will be able to see by examining the MainActivity.Java code, a rudimentary
options menu with a single item has been included, and as we are looking at App bars,
now is a great time to introduce the Material Design action icon. Action icons are the
small, simple, and single-color icons we are used to seeing on App bars, such as the
magnifying glass, search icon, or the hamburger menu icon.

There is no rule against designing your own, but as we haven't yet covered the rules
regarding this, and as Google provides a comprehensive and open source collection
of material-compliant action icons, it makes a great deal of sense to use those.

Visit http://www.google.com/design/icons/ and, for the sake of this exercise,
download two or three action icons of your choice. Following are the ones used for
this exercise:

Save these in your project's drawable folder and open the res/menu/menu_main.xml
file. Replace the settings, <item>, with ones such as the following one for each icon
you have chosen, replacing the highlighted text with values to match your project:

<item
 android:id="@+id/menu_date"
 android:icon="@drawable/time"
 android:orderInCategory="100"
 app:showAsAction="always"

 android:title="Date and Time" />

You can now test this on an emulator or handset to see how we have replaced the
functionality of the action bar.

http://www.google.com/design/icons/

Chapter 2

[35]

There are a few things that need pointing out here. Icons do not have to appear
on the App bar; they can be set to be accessed from the traditional menu icon by
changing the value of app:showAsAction from always to never or ifRoom. Toolbars
can be positioned anywhere on the screen (often at the bottom) by setting the layout
gravity property, for example, android:layout_gravity="bottom|center".
Toolbars can be given logos, alternative titles, and subtitles with the following
Java statements placed after setActionBar(), in the next example:

getActionBar().setTitle("Clock");
toolbar.setSubtitle("tells the time");
toolbar.setLogo(R.drawable.clock_logo);

There are Material Design rules regarding the coloring of action items, which are
shaded in the same way as text: by using transparency. These are as follows:

•	 Action icons on a light background are 54 percent opaque black: #8A000000
•	 Action icons on a dark background are 100 percent opaque white: #FFFFFF

We will return to the toolbar time and again, as it is an essential component of
Material Design, but as an introduction, this will suffice. Before we return to it,
we will become more familiar with other aspects of Material Design.

Summary
A lot of this chapter has not been about Material Design specifically, but we needed
to cover this ground to see how Android activities are designed, and how material
can be made available to a wider range of devices. This knowledge now enables
us to delve deeper into the rules of Material Design that cover color, proportion,
and movement.

In the next chapter, we will take this a step further and explore some of the most
commonly used material components, including menus, dialogs, and toolbars.
We will also see how to include click-listener callback methods that will allow
us to respond programmatically to user actions.

[37]

Common Components
With software installed and a grounding in the principles of Android layout
design, we are now in a position to explore the components that make up mobile
applications and the material rules that govern their appearance. This chapter covers
some of the most common visual components, dialogs, and menus.

After selecting a material-compliant palette, we revisit the toolbar, again using it to
replace the old action bar, which is itself a member of the menu family. The Asset
Studio is then used to select and configure suitable material icons to represent our
menu items and the layout guidelines for phones, tablets, and desktops, which are
detailed. The chapter then moves on to actual menus and we construct both the
overflow and contextual varieties along with the Java routines required to capture
menu events.

This chapter starts to delve further into the code required to develop Android
applications. This will involve both XML and Java, although XML is our primary
programming tool when it comes to matters of appearance. We will use it to design
a custom dialog to material standards lay out our options menu and dictate many of
its behaviors. Java is used here to respond to user interaction, mainly in the form of
callback methods set in place to be called when our widgets and views are clicked on.

The remainder of this chapter involves creating a custom dialog that adheres to
Material Design principles.

In this chapter we will cover the following topics:

•	 Select a material palette
•	 Create action icons using Asset Studio
•	 Learn the material guidelines for app bars
•	 Capture action calls with Java code
•	 Create menu layouts and code

Common Components

[38]

•	 Create a custom alert dialog
•	 Learn the material guidelines for dialogs
•	 Use a click listener to capture dialog activity

App bar style and code
This first part of the chapter returns to the app bar, this time looking more closely at
the rules and choices as applied to app bar structures and icons. We begin by further
examining the ways we can and should customize material themes.

Applying a material palette
Earlier, we touched upon the material theme and how it is possible to customize
it and apply our own color scheme. It is perfectly possible to apply any set of colors
but Google is quite insistent on how this should be done.

The emphasis with Material Design is on simplicity and using a large number
of colors is not recommended. We need just two or three primary shades and
one accent shade. Ideally, our palettes should be selected from those found at:
www.google.com/design/spec/style/color.html#color-color-palette.

Select two of these swatches. One will be used for your primary colors, which will
be applied to toolbars and status bars, and the other for the accent color, which will
appear in action buttons, sliders, and switches. For this reason, it is important that
these colors contrast well. Whichever color you select, the main primary color should
have a value of 500 and the darker version should be 700. If you want a lighter
version of the primary hue, this should take a value of 100. Select the hue with the
value A200 for the accent color. In this example, we used amber for the primary color
and light blue for the accent:

www.google.com/design/spec/style/color.html#color-color-palette

Chapter 3

[39]

These values should be defined in a file inside the res/values directory. This
is normally called colors.xml, but this is a handy convenience, and you could
actually call it anything you chose. The colors in this example, along with text color
definitions, would then look like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#FFC107</color>
 <color name="primary_dark">#FFA000</color>
 <color name="accent">#40C4FF</color>
 <color name="text_primary">#DE000000</color>
 <color name="text_secondary">#8A000000</color>>
</resources>

This can then be used to customize our theme in the res/values-21/styles.xml
file, as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="android:Theme.Material.Light.
NoActionBar">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark</
item>
 <item name="android:colorAccent">@color/accent</item>
 <item name="android:textColorPrimary">@color/text_primary</
item>
 <item name="android:textColor">@color/text_secondary</item>
 </style>
</resources>

If you are developing for older platforms and are using the AppCompat library, then
the res/values/styles.xml file should be completed as well, and should take the
following form:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">
 <item name="colorPrimary">@color/primary</item>
 <item name="colorPrimaryDark">@color/primary_dark</item>
 <item name="colorAccent">@color/accent</item>
 <item name="android:textColorPrimary">@color/text_primary</
item>
 <item name="android:textColor">@color/text_secondary</item>
 </style>
</resources>

Common Components

[40]

Depending on how you created the file, you might have to add compile 'com.
android.support:appcompat-v7:22.2.1' to the build.gradle file dependencies,
replacing the numbering at the end with whatever revision of the support library you
are using. You might also need to adjust the minSdkVersion in the deafaultConfig
section.

Image assets
Next, we are going to replace the action bar with an app bar, as we did in the
previous chapter, but here, we will look at it in greater depth and see how its icons
can be given functionality using the Java element of the activity.

Open the res/values/dimens.xml file and include the following dimensions:

<dimen name="toolbar_height">56dp</dimen>

Now, instead of adding the toolbar as a widget inside your root layout, create
it as a separate resource file by firstly creating a new layout resource from the
project explorer.

Name the file toolbar_main or something similar and fill it out as follows:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.Toolbar xmlns:android="http://schemas.
android.com/apk/res/android"
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="@dimen/toolbar_height"
 android:background="?attr/colorPrimary"
 android:minHeight="?attr/actionBarSize" />

Chapter 3

[41]

This can now be inserted in the appropriate place in your layout with:

<include
 layout="@layout/toolbar_main"/>

This technique of creating separate files for individual components is
a very handy method; particularly, if we want to use a component in
more than one layout.

As before, open the MainActivity.Java file and make sure the class extends
AppCompatActivity and the following lines are added to the onCreate() method:

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
if (toolbar != null) {
 setSupportActionBar(toolbar);
}

In the previous chapter, we added imagery to our projects by placing them in the
drawable directory, and although this works perfectly well in most cases, the editor
comes equipped with a very useful tool for generating images, especially icons, the
Asset Studio.

From the drawable folder's menu in the project explorer, navigate to New | Image
Asset. Then, select Action Bar and Tab Icons as Asset Type and then an icon from
the collection of clip art:

Common Components

[42]

Use the trim and padding options to control the size of the icon, and choose a theme
depending on whether your toolbar background color is light or dark. Provide a
suitable name and click on Next.

Asset Studio automatically creates icons for us across four screen densities and
places them in the correct folders so that they are deployed on the appropriate
devices. It even applies the required 54 percent opaque black that Material Design
uses for icons. All we have to do to include these in our app bar is to add an icon
property to the appropriate menu item.

Applying actions
These icons are kept in the drawable folder and can be included in our menu/action
bar by including items along the following lines, in the menu_main.xml file:

<item
 android:id="@+id/menu_search"
 android:icon="@drawable/ic_action_search"
 android:orderInCategory="100"
 android:title="@string/search_title"
 app:showAsAction="ifRoom" />

Note that the preceding example uses a reference to a string resource, and so must be
accompanied by a definition in the strings.xml file as follows:

<string name="search_title">Search</string>

Chapter 3

[43]

Menu items are automatically included in the app bar, with the title being taken from
the name="app_name" string's definition in the strings file. When constructed in
this fashion, these components are positioned according to material guidelines.

The app bar structure
Although the techniques we have applied here conform to material guidelines
without us having to do very much other than ensure its height, there will still be
times when we are replacing the action bar with a custom toolbar layout, and we
will need to know how to space and position the components.

Phones
There are just a few simple structural rules to remember when it comes to app bars.
These cover margins and padding, width and height, and positioning; and they
differ across platforms and screen orientation.

•	 layout_height of an app bar in the portrait mode is 56 dp, and 48 dp
in landscape.

•	 App bars fill either the screen width or the width of their containing
column. They cannot be divided into two. They have a layout_width
of match_parent.

•	 An app bar has an elevation of 2 dp greater than the sheet of material it
controls.

•	 The exception to the preceding rule is, if a card or dialog has its own toolbar,
then the two can share the same elevation.

•	 App bars have padding of exactly 16 dp. This means the contained icons
must have no padding or margins of their own and therefore, share edges
with this margin.

•	 The title text takes its color from your theme's primary text color and the
icons from the secondary text.

Common Components

[44]

•	 The title should be positioned at 72 dp from the left of the toolbar and 20 dp
from the bottom. This applies even when the toolbar is expanded.

•	 The title's text size is set with android:textAppearance="?android:attr/
textAppearanceLarge".

Tablets and desktops
When constructing app bars for tablets and desktops, the rules are identical with the
following exceptions:

•	 The toolbar height is always 64 dp
•	 The title is indented by 80 dp and does not move down when the bar is

expanded
•	 The app bar's padding is 24 dp, with the exception of the top, where it

is 20 dp

We have succeeded in constructing an app bar according to material guidelines,
but action icons are of no use if they do not perform an action. Next we will see
how to interact with our design using Java to provide some functionality.

Capturing action calls with Java code
Very often, an app or activity will have more actions than can reasonably fit on an
app bar. The most sensible way to manage this is to have an overflow menu in the
form of a drop-down list, but whether the action appears on the app bar or in the
options menu, the way we program it is the same. In fact, action icons are really just
extensions of the menu. To see how the XML menu works together with Java, start a
new project and follow this exercise:

1.	 Using the Asset Studio, select two action icons as shown in the following
screenshot and call them ic_action_camera and ic_action_video:

Chapter 3

[45]

2.	 Replace the action bar with an app bar, as we did earlier in the chapter.
3.	 Complete the menu_main.xml file as follows:

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=".MainActivity">

 <item
 android:id="@+id/menu_video"
 android:icon="@drawable/ic_action_video"
 android:orderInCategory="100"
 android:title="Video"
 app:showAsAction="ifRoom" />

 <item
 android:id="@+id/menu_camera"
 android:icon="@drawable/ic_action_camera"
 android:orderInCategory="100"
 android:title="Camera"
 app:showAsAction="ifRoom" />

</menu>

4.	 Open the MainActivity.Java file and edit the onOptionsItemSelected()
method like this:
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 Intent intent;
 int id = item.getItemId();

 switch (id) {
 case R.id.menu_camera:
 intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 startActivity(intent);
 break;
 case R.id.menu_video:
 intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 startActivity(intent);
 break;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Common Components

[46]

The purpose of this simple example is just to demonstrate how and where menu
selections can be captured in Java. The onOptionsItemSelected(item) method is a
callback method and its code is executed whenever the user selects an item from the
options menu.

It is worth taking a moment to examine the example we used here. Intents make up
an integral part of any Android app and are abstract operations that are used to start
and communicate with other activities. In this case, we used one to start an activity
in another app, either the device's native camera app or a choice of applicable
installed applications. This process also ensures our activities are placed correctly on
the system stack, as can be seen by using the back key from the camera activity or
returning to the example after having pressed home from the camera.

We've now seen how to use action icons as options menu items and how they should
be styled according to Material Design. There are also guidelines on how menus
themselves should be designed, along with a bit of code on how to implement them,
and this is what we will take a look at next.

Menus and dialogs
Menus are an important interface in most applications, and although primary actions
should always be performed by more obvious means, such as a button, lists of
secondary actions are usually best made available through a menu.

When using a material or AppCompat theme, most of the material metrics and scales
for menus are applied automatically, but occasionally, there are times when we will
want to customize a dialog to use as a menu. This section covers how to implement
a few common menu features such as submenus, groups, and checkmarks; how
to generate popup menus; and finally, how to construct custom dialogs using the
material widget, CardView.

Menus
The menus used up until now in this chapter have been designed to demonstrate
how an app bar can be used as a menu, but there are times when we want more from
such as submenus and menus that are context sensitive. The first thing to do here is
to see what more can be done with the app bar overflow menu.

A complete list of menu elements and syntax can be found
at http://developer.android.com/guide/topics/
resources/menu-resource.html.

http://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/guide/topics/resources/menu-resource.html

Chapter 3

[47]

Options menu
The options menu will conform to material guidelines, aligning, scaling, and coloring
text and widgets without us having to do anything at all other than apply a material
theme. All that remains is to see how some basic menu functions are implemented.

The preceding screenshot shows a menu with four items. The bottom one is actually
a simple submenu, which can be seen from the following snippet taken from the
main menu XML file:

<item
 android:id="@+id/submenu"
 android:orderInCategory="4"
 android:title="Format">
 <menu>
 <item
 android:id="@+id/submenu_word_wrap"
 android:checkable="true"
 android:checked="true"
 android:title="Word wrap" />
 <item
 android:id="@+id/submenu_font"
 android:title="Font" />
 </menu>
</item>

Menus can be nested inside each other wherever and however we please, simply
by embedding menu nodes inside items. The two highlighted lines in the preceding
code demonstrate how an item can have a checkmark provided and set.

Common Components

[48]

Submenu items are handled in Java the same way other app bar and overflow menus
are, with the onOptionsItemSelected() method, and the status of the checkmark
can be received and set as follows:

case R.id.submenu_word_wrap:
 if (item.isChecked()) item.setChecked(false);
 else item.setChecked(true);
 return true;

When we want only one item to be selected from a selection, this can be achieved by
nesting your selection inside a <group> element, for example:

<group android:id="@+id/some_group"
 android:checkableBehavior="single"]
 android:enabled="true" >
 <item
 ... />
 <item
 ... />
</group>

Other values for checkableBehavior are none and
all.

The onOptionsItemSelected() callback is a very handy way to manage quite
complex menus structures, but there are many times that we want to call a menu
from elsewhere in an activity. This can be done with either a popup or a contextual
menu. Both are implemented in a very similar fashion, so we shall explore the
contextual menu as it is the more interesting of the two.

Contextual menus
Often, we want choices that are specific to an individual component or group rather
than an activity or entire app. Android contextual menus perform this function using
a long press in the same manner that a right-click is used on a PC. This is performed
in a similar manner to the options menu, as can be seen in the following exercise:

1.	 Start a new project or open one where you have a widget you wish to apply a
context menu to. TextView created by the template project will do fine for the
sake of this exercise.

Chapter 3

[49]

2.	 Create a new menu resource file in the res/menu folder called something like
menu_context.xml, and type in your options, for example:
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/action_share"
 android:title="Share" />
 <item
 android:id="@+id/action_save"
 android:title="Save" />
 <item
 android:id="@+id/action_delete"
 android:title="Delete" />
</menu>

3.	 Open the MainActivity file and include the following lines in the
onCreate() method:
TextView contextMenu = (TextView) findViewById(R.id.text_view);
registerForContextMenu(contextMenu);

4.	 Add a onCreateContextMenu() method to the activity and complete it as
follows, inflating the menu we just created:
public void onCreateContextMenu(ContextMenu menu, View view,
ContextMenu.ContextMenuInfo info) {
 super.onCreateContextMenu(menu, view, info);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_context, menu);

5.	 Create another method called onContextItemSelected() and fill it out as
seen here:
public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info = (AdapterView.
AdapterContextMenuInfo) item.getMenuInfo();
 int id = item.getItemId();

 switch (id) {
 case R.id.action_share:
 doShare(info.id);
 return true;
 case R.id.action_save:
 doSave(info.id);
 return true;
 case R.id.action_delete:
 doDelete(info.id);
 return true;
 default:
 return false;
 }
}

Common Components

[50]

6.	 Routines such as doShare(), doSave(), and doDelete() will of course
reflect your own project's purposes, but for the sake of this example, you can
use something like the following:

private void doShare(long id) {
 Toast.makeText(this, "Shared" + id, Toast.LENGTH_LONG).show();
}

Menus form an essential part of any application whenever a simple selection from
a list is required. When slightly more complex decisions are required, we turn to
the dialog.

Dialogs
Menus are in the technical sense just a simple form of dialog. Unlike menus, dialogs
interrupt the flow of an application, which cannot continue until a choice has been
made by the user or the dialog dismissed. For this reason, dialogs must be used
sparingly and only when an important decision has to be made.

Dialogs can be generated easily with the SDK and the process explained very
quickly. However, from a material perspective, we can learn all we need to know
about their structure and appearance by designing a custom dialog.

Dialogs can contain up to three sections: Title, Content, and ACTION(S).

Chapter 3

[51]

The following list explains each of these three sections in detail:

•	 The use of a title requires no explanation. However, for the sake of simplicity,
titles should be used only when necessary and should be as brief and
succinct as possible.

•	 Dialog content can vary from a simple list to a date-picker. Alert dialogs,
which interrupt user flow, should only ever have one choice or selection.

•	 Actions confirm a user's choice and should dismiss the dialog once pressed.
The number of actions should be kept to a minimum and should generally be
affirmative or dismissive, for example OK and CANCEL or CONNECT and
IGNORE, with the affirmative action always to the right of the dismissive.

Along with this structure comes the usual set of material metrics and there is no
better way to learn them than to apply them directly to an XML layout.

Creating a material dialog
In this section, we will create a simple custom alert dialog from scratch, ensuring that
it complies with all Material Design guidelines including those regarding touchable
targets. The exercise can be carried out on a new project or one that you are working
on that requires a dialog:

1.	 Either open or start a project and apply your custom colors and theme.
2.	 Navigate to New | Layout resource file in the layout folder with a

LinearLayout root, called something like dialog_example.xml.
3.	 Using the design interface, generate the following layout:

Common Components

[52]

4.	 Now, locate the method that you will be using to call the dialog (you can use
onCreate() for testing purposes) and add the following lines:
final Dialog dialog = new Dialog(this);
dialog.setContentView(R.layout.dialog_example);
dialog.show();

If you were to compile and run the project now, you would see that there is an
unexplained space at the top of the widget. This is because the title is included, by
default, as part of the Dialog object. We could use this, rather than create our own
by including a call to its setTitle() method, for example, dialog.setTitle(R.
string.dialog_title). For now, we will remove it and use our custom layout to
define the title. This can be done by inserting the following line before the call to
setContentView():

dialog.requestWindowFeature(Window.FEATURE_NO_TITLE);

To best understand the content guidelines, we will take each of the three elements
one by one.

Title
The padding around the title is 24dp, with the space underneath being 20dp.
This, along with the correct text settings, can be defined as:

<TextView
 android:id="@+id/text_title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingBottom="20dp"
 android:paddingLeft="24dp"
 android:paddingRight="24dp"
 android:paddingTop="24dp"
 android:text="@string/dialog_title"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:textColor="@color/text_primary" />

Content
Formatting the content is even simpler as it too has a padding around it of 24dp
and the 20dp space between it and the title has already been taken care of. The XML
rendition looks like this:

<TextView
 android:id="@+id/text_content"
 android:layout_width="wrap_content"

Chapter 3

[53]

 android:layout_height="wrap_content"
 android:paddingBottom="24dp"
 android:paddingLeft="24dp"
 android:paddingRight="24dp"
 android:text="@string/dialog_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:textColor="@color/text_secondary" />

Actions
The layout of the action section of an alert dialog poses a far more interesting challenge
than merely learning the correct margins, not to help those among us with fat thumbs,
the touchable target area for the buttons must be larger than the button itself. There are
several solutions to this conundrum, but let's first define the action area itself.

The design guidelines stipulate that the action section must be 52dp high with an
8dp padding on all sides. The buttons themselves are aligned on the right but gravity
is set to the end rather than the right, so as to cater to those locales where content is
read from right to left. All this can be achieved with the following entry:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="52dp"
 android:gravity="center_vertical|end"
 android:orientation="horizontal"
 android:padding="8dp">

This brings us to the buttons. These must be none narrower than 64dp, which is
easily managed with the android:minWidth property, as is the height of 36dp
and the 8dp margin between buttons. The interesting part comes when deciding
how to make buttons with a height of 36dp have a touchable height of 48dp. One
way of handling this is with the TouchDelegate class, which is very effective but
can take some coming to grips with. For those with an interest, the documentation
can be found at http://developer.android.com/reference/android/view/
TouchDelegate.html. Another method would be to embed each button in a larger
clickable ViewGroup. This works equally well but the additional layouts will have
an unnecessary effect on performance.

The solution we will use here is to use TextViews instead of buttons. The issue of an
expanded touchable target is instantly resolved, as we simply make the text views
48 dp high, plus there is no need for extra coding, layouts, customizing themes,
or removing button borders.

http://developer.android.com/reference/android/view/TouchDelegate.html
http://developer.android.com/reference/android/view/TouchDelegate.html

Common Components

[54]

Buttons can be made borderless with the this attribute:
style="?android:attr/borderlessButtonStyle".

All this, along with the guideline that buttons must never be narrower than 64dp,
can be expressed in XML as:

<TextView
 android:id="@+id/text_remove"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:height="48dp"
 android:clickable="true"
 android:gravity="center_vertical|center_horizontal"
 android:minWidth="64dp"
 android:text="@string/remove"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:textColor="@color/accent" />

Both buttons have identical markup with the obvious exception of the text itself.
Calling dialog.show() should now render a dialog like this:

This might seem like a lot of effort to go to in order to produce a dialog that could
have been generated for us, and commands such as dialog.setTitle(String)
and .setContent(String) are the more obvious route if all we need is a standard
dialog; although, we could have used the base class AlertDialog rather than
Dialog. Doing it this way is not only a great way to become acquainted with the
guidelines but also leads the way to creating original designs that still comply with
material guidelines.

Although it is set automatically here, for your
reference, dialogs have an elevation of 48dp.

Chapter 3

[55]

Click listeners
None of this is of any use if we cannot connect the dialog to some procedural code.
This can be done in two ways. Firstly, the method to be called can be specified in any
view from its XML markup. This can be done with:

android:onClick="someMethod"

Here, someMethod() is defined in the corresponding Java activity.

Alternatively, a click listener can be implemented in Java that will be called
whenever the button is clicked. In the preceding example and in the same method
that you used to call the dialog, create a reference to the XML view you want to
respond to as follows:

TextView cancelButton = (TextView) dialog.findViewById(R.id.text_
cancel);

Then, create this onClickListener:

cancelButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 dialog.dismiss();
 }
});

The listener here is a great way to respond to a single button, but in
cases where an activity has several, it is a better idea to implement an
onClickListener for the whole class, which can be done with the
public class MainActivity extends Activity implements
View.OnClickListener and then handle all click events for the
activity from the onClick() method.

With the knowledge of how to construct and code material-compliant dialogs,
we can conclude our brief look around three of the most commonly used
application components and move on to components more commonly
associated with Material Design.

Common Components

[56]

Summary
Dialogs and menus form an integral part of any application, in particular on mobile
platforms where space is limited. As always, the material approach is to keep these
clean and simple, in content as well as appearance. We have seen what the guidelines
are and how they can be applied with XML, as well as seeing how these interfaces
connect to and are controlled by our Java code.

Dialogs and menus are elements of most applications and are by no means peculiar
to Material Design and this chapter has covered only the visual aspects. There are
of course many screen components that are specific to Material Design such as the
floating action button and navigation drawer, many of which are catered to in a
support library of their own, the design library.

In the next chapter, we will explore the way users navigate around an Android app.
This will involve creating a sliding navigation drawer and the use of fragments
to display alternative content. We will also cover ratios and designing for varying
screen densities.

[57]

Sliding Drawers and
Navigation

In the previous chapter, we saw how Material Design applies to several everyday
app components, and when designing material interfaces, you will, no doubt,
include these along with many other general purpose widgets and views. There
are some components, however, that are specific to Material Design, such as the
sliding navigation drawer that we will be dealing with in this chapter. Regardless
of side, drawers appear above all other components with the exception of the status
and navigation bars. They can be thought of as existing just off screen. They can be
thought of as existing just off screen as demonstrated by the following diagram:

Sliding Drawers and Navigation

[58]

Two support libraries are required to set up the siding navigation drawer: the v4
library and the design library. Of all the support libraries supplied by the SDK, it is
the design library that is, perhaps, the most useful to the material designer. Where
before, a great deal of coding was required to construct material components from
existing ones, the design library makes them available as classes in their own right,
which allows us to include them in our layouts and code, just as we would any other
view or view group.

In this chapter we are going to discuss the following topics:

•	 Create a working navigation drawer
•	 Design a header
•	 Build a navigation menu
•	 Understand ratio keylines
•	 Design for a range of screen densities
•	 Activate the navigation drawer
•	 Use fragments
•	 Build other types of sliding drawers

Drawer design
Some of the most useful and frequently used material components are sliding
drawers that slide in and out of the screen when needed. The most widely used of
these is the NavigationView, which slides in from the left and forms a top level
menu, providing access to the rest of the app's content. More often than not, it will
contain a header that can display an image and/or pertinent text.

Chapter 4

[59]

Prior to the design library, components like the NavigationView had to be
constructed from other views, and although the library vastly simplifies this process
and saves us from having to implement many material principles by hand, there are
still several guidelines that we need to be aware of. The best way to appreciate these
guidelines is by building a navigation sliding drawer from scratch. This will involve
creating the layouts, applying material guidelines regarding component ratios, and
connecting all this together with Java.

The layout
Setting up a working sliding drawer with a header and NavigationView is a little
more involved than the components we have dealt with so far, and it is not easy to
test until quite a bit of code has been entered and resources have been provided.
We will start by setting up the project and constructing the main XML layout:

1.	 Start a new Android Studio project and provide it with your own customized
colors and theme.

2.	 Add the following line to your styles.xml file:
<item name="android:statusBarColor">@android:color/transparent</
item>

Sliding Drawers and Navigation

[60]

3.	 Open the Gradle Scripts build.gradle (Module: app) file and add the
highlighted dependencies that follow:
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:22.2.1'
 compile 'com.android.support:design:22.2.1'
}

4.	 In the layout directory, create a new layout called toolbar.xml and
complete it as shown here:
<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.Toolbar xmlns:android="http://schemas.
android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="56dp"
 android:background="@color/primary" />

5.	 Open activity_main and replace the code with the following lines:

<android.support.v4.widget.DrawerLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/drawer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context=".MainActivity">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <include
 android:id="@+id/toolbar"
 layout="@layout/toolbar" />

 <FrameLayout
 android:id="@+id/fragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </FrameLayout>

 </LinearLayout>

Chapter 4

[61]

 <android.support.design.widget.NavigationView
 android:id="@+id/navigation_view"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 app:headerLayout="@layout/header"
 app:menu="@menu/menu_drawer" />

</android.support.v4.widget.DrawerLayout>

As you can see, the root layout here is DrawerLayout, as provided by the support
library. Note the fitsSystemWindows property; this is what makes the drawer extend
up to the top of the screen under the status bar. Having set the statusBarColor option
to android:color/transparent in the style, the drawer is now visible through the
status bar:

This effect is not available on devices running Android versions
older than 5.0 (API 21), even with AppCompat, and this will alter
the apparent aspect ratio of the header and clip any images. To
counter this, create an alternative styles.xml resource that does
not set the fitsSystemWindows property.

The rest of the layout consists of a LinearLayout and NavigationView itself. The
linear layout contains our app bar and an empty FrameLayout. FrameLayouts are
the simplest of layouts, containing only a single item, and are generally used as a
placeholder, which in this case will contain content based on the user's selection from
the navigation menu.

This defines our sliding drawer rather well, but we still need to provide the header,
along with the menu highlighted in the main activity that was previously mentioned.

Sliding Drawers and Navigation

[62]

Navigation components and keylines
As mentioned earlier, side navigation views usually contain a header and a menu.
We are familiar with menus and how they operate, but there are aspects of the
header, which as material designers, we need to know about. In particular, the
way that specific aspect ratios are used to define where borders between certain
components, known as ratio keylines, are allowed and need to be adhered to, and
how this is managed across devices with varying screen densities. Next, we will
provide the XML for both components, and then explain the structure, followed by
ratio keylines and how they are implemented.

Structure and metrics
The header and menu components are entered as files, separate from the main
activity code. Follow these steps to implement them:

1.	 Create a New in the Menu resource file in the menu directory called menu_
drawer.xml and fill it out as shown:
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/drama"
 android:icon="@drawable/drama"
 android:title="@string/drama" />
 <item
 android:id="@+id/film"
 android:icon="@drawable/film"
 android:title="@string/film" />

 <item
 android:id="@+id/sport"
 android:icon="@drawable/sport"
 android:title="@string/sport" />

 <item
 android:id="@+id/news"
 android:title="@string/news">
 <menu>
 <item
 android:id="@+id/national"
 android:icon="@drawable/news"
 android:title="@string/national" />

Chapter 4

[63]

 <item
 android:id="@+id/sub2"
 android:icon="@drawable/international"
 android:title="@string/international" />

 </menu>
 </item>
</menu>

2.	 Find appropriate icons for each item and place them in your drawable
directory.

3.	 Place an image called header_background in the drawable directory.
The size is not important here, but ensure that the image ratio is 4:3,
for example, 640 x 480.

4.	 Create another layout resource file called header.xml and fill it out as
shown here:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="192dp"
 android:background="@drawable/header_background"
 android:orientation="vertical">

 <TextView
 android:id="@+id/feature"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/details"
 android:gravity="left"
 android:paddingBottom="8dp"
 android:paddingLeft="16dp"
 android:text="@string/feature"
 android:textColor="#FFFFFF"
 android:textSize="14sp"
 android:textStyle="bold" />

 <TextView
 android:id="@+id/details"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignStart="@+id/feature"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="16dp"
 android:gravity="left"
 android:paddingLeft="16dp"

Sliding Drawers and Navigation

[64]

 android:text="@string/details"
 android:textColor="#FFFFFF"
 android:textSize="14sp" />

</RelativeLayout>

The menu is similar to those we have already seen, and you need not make your
menu as long as the one here, but make sure that you include a sub-menu, as these
are displayed differently when it comes to navigation drawers.

Most of the metrics of sliding drawers and navigation views, such as margins and
text sizes, are taken care of for us, thanks to the design library. However, the size,
position, and color of text on a drawer header are not. Despite sharing a background,
the text should be thought of as a 56 dp high component in its own right. It should
have an internal padding of 16 dp and 8 dp of spacing between the lines. This, along
with the correct text color, size, and weight can be derived from the preceding code.

The height of the header, 192 dp, may well seem puzzling and requires some
explanation as to how it was calculated. Generally, the use of density-independent
pixels saves us having to concern ourselves with target screen densities. There are
times, however, when we need to take this into consideration if we want our apps to
conform to material guidelines.

Ratio keylines
When an element, such as a sliding drawer, fills the entire height of a screen and is
divided into vertical segments, as our drawer is, between header and content, these
divisions can occur only at certain points known as ratio keylines. These points are
determined by the ratio between the width of the element and how far from the top
the division occurs. There are six such ratios allowed in material layouts, and they
are defined as width to height (width:height) and are as follows:

16:9
3:2
4:3
1:1
3:4
2:3

Chapter 4

[65]

In the example here, a 4:3 ratio was chosen, the width of the drawer being 256 dp.
We could also have produced a header with a 16:9 ratio and set layout_height
at 144dp.

Ratio keylines only relate to the distance from the top of the containing element;
you cannot have one 16:9 view below another. However, you can place one view
beneath another, if it extends from the bottom of that view down to another of the
ratio keylines.

Sliding Drawers and Navigation

[66]

Having understood the guidelines regarding allowed ratios, we can now look at why
setting layout_height in this way will produce undesirable results when tested
across varying screen densities. Fortunately, there is a convenient solution to this
situation.

As covered briefly in an earlier chapter, Android uses a universal pixel unit: the
device-independent pixel. This uses a base scale of 160 dpi. This means that a 100 x
100 dp view would cover 200 x 200 actual pixels on a 320 dpi device. Although this
system works reasonably well in most situations, it falls down if we want to maintain
ratio keylines.

There is a simple formula to calculate dp from px for any given screen density:

dp = (px x 160) / dpi

Say that we have a 240 dpi screen that is 480 px wide. This would translate
into a screen that was 320 dp wide. Three-quarters of this would be 240 dp and we
could use this to generate a 4:3 layout. As you can see, different screen densities will
yield different results, and the height of 192 dp that we used here will only produce
a 4:3 image when the layout containing it is 256 dp wide, which is only the case on a
240 dpi device.

The ratios recommended in Material Design are not selected arbitrarily. They are,
in fact, derived from traditional design paradigms and are considered universally
pleasing to the human eye, even the tiniest distortion can completely ruin this effect.
Fortunately, ensuring that these ratios are maintained across all devices is not a
difficult task, as we shall see next.

Configuration qualifiers
Android devices come with a wide variety of screen densities, and it would be
impossible to cater to all of them. Instead, densities are divided into six categories,
which, in almost all circumstances, produce desirable results. These categories are
as follows:

•	 ldpi: 120 dpi
•	 mdpi: 160 dpi
•	 hdpi: 240 dpi
•	 xhdpi: 320 dpi
•	 xxhdpi: 480 dpi
•	 xxxhdpi: 640 dpi

Chapter 4

[67]

It is, of course, a simple matter to calculate the correct height for any view at any
density, for example, on a 320 dpi device the drawer would equate it to 192 dp wide,
and so we would have to set the header layout_width to 144dp.

The solution is to create separate resources for each density grouping.
Fortunately, we do not need to recreate the entire layout for each density, but only
the dimens.xml file. This is achieved through the use of configuration qualifiers in
the directory names.

To see how this is done, complete the following steps:

1.	 Open the res/dimens.xml/dimens.xml file and add the following line:
<dimen name="header_height">192dp</dimen>

2.	 Change the layout_height definition in the header:
android:layout_height="@dimen/header_height"

3.	 Create six new folders in your res directory called values-ldpi, values-
mdpi, and so on.

4.	 Create a dimens.xml file in each of these folders. The New thingy resource
dialog will allow you to select the relevant directory that will not be visible in
the project explorer right away.

5.	 Calculate the correct header_height for each density group and include this
in each dimens file. For example:
<resources>
 <dimen name="header_height">144dp</dimen>
</resources>

A very similar process can be applied when it comes to scaling
images for a range of pixel densities. This can ensure high-quality
images on devices capable of displaying them without using up
memory unnecessarily on less sophisticated devices. This can
be achieved with qualified drawable directories, for example,
drawable-xhdpi. The scaling required for any given density is
easily calculated as dpi/160.

We have created our sliding drawer along with a header and NavigationView, and
ensured that ratio keylines are adhered to across most screen densities. However,
we still cannot see it. To do so, we will need to connect it all together with Java.

Sliding Drawers and Navigation

[68]

Drawer functionality
Many recent widgets and views are not viewable using Android Studio's preview
or design modes, and although there are frequent updates to rectify these issues,
there will always be times when the only way to view a layout is to run it on an
emulator or device. As it stands, the code we have will not compile until we enter
the Java code explained in the following two parts of the exercise. Firstly, we will
connect our app bar, drawer, and navigation view, and secondly, we will see how
to link navigation items to the rest of our apps. The chapter concludes with a look at
alternative ways to implement sliding drawers.

Activating the navigation drawer
Once the following code has been entered, it will be possible to view and test your
navigation bar:

1.	 Open the MainActivity file and add the following lines in the onCreate()
method to replace the action bar with our toolbar:
toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);

2.	 Beneath this, add the following lines to configure the drawer:
drawerLayout = (DrawerLayout) findViewById(R.id.drawer);
ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this,
drawerLayout, toolbar, R.string.openDrawer, R.string.closeDrawer)
{

@Override
public void onDrawerOpened(View v) {
 // YOUR CODE HERE
 super.onDrawerOpened(v);
}

@Override
public void onDrawerClosed(View v) {
 // YOUR CODE HERE
 super.onDrawerClosed(v);
}

};

drawerLayout.setDrawerListener(toggle);
toggle.syncState();

Chapter 4

[69]

3.	 Finally, add this code to set up the navigation view:
navigationView = (NavigationView) findViewById(R.id.navigation_
view);

navigationView.setNavigationItemSelectedListener(new
NavigationView.OnNavigationItemSelectedListener() {

 @Override
 public boolean onNavigationItemSelected(MenuItem item) {
 drawerLayout.closeDrawers();

 switch (item.getItemId()) {
 case R.id.drama:
 Toast.makeText(getApplicationContext(), "drama",
Toast.LENGTH_SHORT).show();
 return true;
 case R.id.film:
 Toast.makeText(getApplicationContext(), "film",
Toast.LENGTH_SHORT).show();
 return true;
 case R.id.news:
 Toast.makeText(getApplicationContext(), "news",
Toast.LENGTH_SHORT).show();
 return true;
 case R.id.sport:
 Toast.makeText(getApplicationContext(), "sport",
Toast.LENGTH_SHORT).show();
 return true;
 default:
 return true;
 }
 }
 });

Sliding Drawers and Navigation

[70]

The preceding Java code allows us to view our drawer on a device or emulator,
but it does very little when a navigation item is selected. What we really need,
actually, is to be taken to another part of the app. This is very simply achieved and
we will come to it in a moment. First, there are one or two points in the previous
code that require mentions.

The line beginning with ActionBarDrawerToggle is what causes the hamburger
that opens the drawer to appear on the app bar, although you can, of course, open
it with an inward swipe from the left of the screen. The two string arguments,
openDrawer and closeDrawer, are there for reasons of accessibility, and are read out
for users who are unable to see the screen clearly. They should say something like
Navigation drawer opening and Navigation drawer closing. The two callback methods,
onDrawerOpened() and onDrawerClosed(), were left empty here simply to
demonstrate where these events can be intercepted to trigger further code.

OnNavigationItemSelectedListener() is very similar to the other listeners we have
encountered. The call to drawerLayout.closeDrawers() is essential, as otherwise,
the drawer would remain open. As it stands, the response is a simple pop-up message.
Obviously, what we want is for the menu to direct us to another part of the application.
This is not a difficult task and also provides a good opportunity to introduce one of the
SDK's most useful and versatile classes: the fragment.

Opening fragments
From what we have learned so far, it would be safe to imagine that separate activities
would be used for apps with more than one function, and although this is often the
case, it can be an expensive drain on resources and activities always filling the entire
screen. Fragments operate like mini-activities, in that they have both Java and XML
definitions, and fragments also have many of the same callbacks and functionality
that activities do. Unlike activities, fragments are not top-level components and must
reside within a host activity. The advantage of this is that we can have more than one
fragment per screen.

Chapter 4

[71]

As it is simply for show, we will be doing no coding for this particular fragment, and
we need to do little more than set up the class itself. Create a new Java class called
ContentFragment and complete it as shown in the following lines, making sure you
import android.support.v4.app.Fragment rather than the standard version:

public class ContentFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.content,container,false);
 return v;
 }
}

As for the XML element, create a layout file called content.xml and place whatever
views and widgets you choose inside it. All that is needed now is the Java code to
call it when a navigation item is selected.

Open the MainActivity.Java file and replace one of the toasts in the switch
statement with this code:

ContentFragment fragment = new ContentFragment();
android.support.v4.app.FragmentTransaction transaction =
getSupportFragmentManager().beginTransaction();
transaction.replace(R.id.fragment, fragment);
transaction.addToBackStack(null);
transaction.commit();

The example we have built here is solely to demonstrate the basic anatomy of
drawer layouts and NavigationViews. Clearly, to add any real functionality, we
would need a fragment for each item in our menu, and the line, transaction.
addToBackStack(null), is actually redundant unless we do so. Its function is to
ensure that the order in which a user accesses each fragment is recorded by the
system in the same way it records which activities are used so that when they press
the back key, they will return to the previous fragment. Without it, they would be
returned to the previous application.

The NavigationView is an essential component of many material applications, but
it is not the only use of sliding drawers, nor is it necessary to have a drawer slide in
and out from the left.

Sliding Drawers and Navigation

[72]

Other sliding drawers
Although it is quite possible to have the NavigationView slide in from the right, it
should always be kept to the left as this provides a consistent experience for users.
There are times, however, when another sliding drawer would suit our purposes,
and this is easily achieved; although right-sided drawers should not be used
for primary or top level actions, but rather as a convenient method of accessing
secondary functions such as volume controls or share options. The following image
demonstrates how the right-sided drawer relates to the other screen components:

Unlike the left-sided navigation drawer that is never wider than the screen width
minus the primary toolbar's height, a right-sided drawer can extend all the way
across the screen.

Creating a drawer that slides in and out from the right requires nothing more than
setting the content's layout_gravity option, which can be seen by adding this view
to the activity_main layout in the same node as the NavigationView:

<ListView
 android:id="@+id/right_drawer"
 android:layout_width="180dp"
 android:layout_height="match_parent"
 android:layout_gravity="end"
 android:background="@color/primary_dark" />

There is a lot more to be said about sliding drawers and navigation, but as far as it
goes for setting them up and understanding what is required to adhere to Material
Design guidelines, we have done enough to be getting on with.

Chapter 4

[73]

Summary
We have seen in this chapter how to put together a sliding navigation drawer using
DrawerLayout from the v4 support library and the NavigationView from the design
library. In doing this, we have learned about the permitted aspect ratios that are
allowed on full-length view groups. We have seen how qualifying directory names
can help us develop resources that can cater to all kinds of device configurations,
how all this can be brought to life using Java, and how fragments provide a simple
and efficient way to provide as many screens and layouts as our app might require.

In the next chapter, we will be taking a little bit of an artistic detour and exploring
the iconography and typography of Material Design, and how we can apply these
concepts to our own applications.

www.allitebooks.com

http://www.allitebooks.org

[75]

Lists, Cards, and Data
Modern smartphones and tablets are capable of accessing and managing large
amounts of data, and due to the limited screen space on most of these devices,
handling large data sets poses an interesting challenge. Prior to Android 5, these data
sets were usually handled with ListView, but this was notoriously inefficient and so
Android 5 introduced RecyclerView, which intelligently manages large lists and grids.

RecyclerView is also more flexible than ListView, as we can create custom layouts
for individual lists or grid items, and one of the best ways to achieve this is with
CardView, which also came out with Android 5 and has become synonymous with
Material Design.

As we see how these views are implemented, we will also take a deeper look at
what has to be the material designer's most useful tool: the design support library.
In particular, we will be using CoordinatorLayout, which automates many material
functions such as swipe-to-dismiss and animations.

In this chapter we will cover the following topics:

•	 Applying new support libraries
•	 Implementing CoordinatorLayout
•	 Using RecyclerView to produce lists
•	 Managing data with an adapter
•	 Learning typographical rules
•	 Implementing CardViews and tiles

Lists, Cards, and Data

[76]

Generating lists
There is quite a lot of code involved in putting these components together, and the
best way to see how this is done is to get straight down to it:

1.	 Create a new project in Android Studio and apply a material theme by
creating a colors.xml file and editing the style files to apply it. You will
need to ensure that you have the following dependencies applied in your
build.gradle file:
dependencies {
compilefileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:appcompat-v7:23.0.0'
compile 'com.android.support:design:23.0.0'
compile 'com.android.support:recyclerview-v7:23.0.0'
compile 'com.android.support:cardview-v7:23.0.0'
}

2.	 As before, create a separate toolbar layout called toolbar.xml, along the
lines of the code here:
<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.Toolbarxmlns:android="http://schemas.
android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="56dp"
android:background="@color/primary" />

3.	 Include the toolbar in your activity_main.xml layout, like so:
<include
android:id="@+id/toolbar"
 layout="@layout/toolbar" />

4.	 Then, replace the action bar by using .NoActionBar in the theme of your
choice and adding the following lines to the onCreate() method of the
MainActivity.java file:
Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
if (toolbar != null) {
setSupportActionBar(toolbar);
 }

These previous steps are something that we will generally have to do every time we
start a new project, and as such, will not be referred to again here.

Chapter 5

[77]

CoordinatorLayout is an extremely useful tool that simplifies and automates many
material features, as its name suggests, by coordinating the child views and widgets
it contains. It is very simple to apply to our main layout XML file; simply add the
code here, beneath where you have included the toolbar:

<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:id="@+id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_below="@+id/toolbar">

</android.support.design.widget.CoordinatorLayout>

RecyclerView can be placed inside the CoordinatorLayour, like so:

<android.support.v7.widget.RecyclerView
android:id="@+id/list"
android:layout_width="match_parent"
android:layout_height="match_parent" />

The editor fills RecyclerView with dummy data so that we can preview our activity,
but to populate it with actual data we will need to set up a layout manager and
a data adapter. First, we need to decide what data we want to represent. This we
will do using CardView, which has become a ubiquitous part of Material Design,
a typical example of which can be seen here:

Lists, Cards, and Data

[78]

Adding list items
To keep things simple, we will create cards with a small image and two lines of text,
similar to what we might find in a contact list. There is quite a lot of code to this
layout, but it gives us the opportunity to apply Material Design spacing and text.
Following is the complete listing with definitions that pertain particularly to material
being highlighted:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayoutxmlns:android="http://schemas.android.com/apk/res/
android"
xmlns:card_view="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">

<android.support.v7.widget.CardView
android:id="@+id/card_view"
android:layout_width="match_parent"
android:layout_height="wrap_content">

<RelativeLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="16dp">

<ImageView
android:id="@+id/profile_pic"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_alignParentTop="true"
android:layout_marginRight="16dp" />

<TextView
android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@+id/profile_pic"
android:textSize="24sp" />

<TextView
android:id="@+id/status"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Chapter 5

[79]

android:layout_below="@+id/name"
android:textSize="16sp"
android:layout_toRightOf="@+id/profile_pic" />

</RelativeLayout>

</android.support.v7.widget.CardView>

</LinearLayout>

Although we cannot view this layout until we have linked it together with the data
we want to use, it should be clear from the XML that we have created a layout that
will look like the following one:

Before we create our data, there are one or two things that need pointing out
about this new class. Firstly, CardViews have their corners rounded and their
elevation set automatically to comply with material guidelines. However, it is
often useful to be able to set these manually with XML, and this can be done
with the following commands:

card_view:cardElevation="4dp"
card_view:cardCornerRadius="6dp"

Neither of these properties will work on Android versions prior to 5.0 and
alternative layouts are usually required, although there is a very handy method of
determining the SDK version during runtime. When you wish to set the elevation,
where possible, but ignore the command on older devices, the following clause can
be used:

if (Build.VERSION.SDK_INT>= Build.VERSION_CODES.LOLLIPOP) {
someWidget.setElevation(4);
}

Lists, Cards, and Data

[80]

You may notice that some margins and padding look different on CardViews when
tested on older versions. Rather than resort to creating alternative layout resources,
the card_view:cardUseCompatPadding="true" property will often resolve this.

Text size is very important when it comes to Material Design and only certain sizes
are permitted in certain contexts. In the current example, we selected 24 sp for the
header text and 16 for the subhead. Generally speaking, nearly all the text we will
ever display in a Material Design application will be 12, 14, 16, 20, or 34 scalable
pixels. There is a certain level of flexibility when it comes to selecting which size
to use and when, but the following image should provide a good guide:

On the rare occasions that you might need a larger font, you should select from 45,
56, or 112 sp, the largest of these being Roboto light.

It is always well worth taking into account that the use of scalable pixels is intended
to allow users to set the font size on their devices to suit their own needs, and
that very often you will have no control over how text is actually rendered on a
downloaded app.

As you will know, Google developed the Roboto family of fonts for material
applications, and it has been designed specifically for its style and readability on
handheld devices. It can be downloaded from https://www.google.com/fonts/
specimen/Roboto.

Connecting a dataset
Android comes equipped with the SQLite library, which is a powerful tool for
creating and managing complex databases. One could easily fill an entire chapter,
or even a whole book, on the subject, but as this does not really bear any relation to
Material Design, we will create a very simple dataset just so that we can test out our
RecyclerView.

https://www.google.com/fonts/specimen/Roboto
https://www.google.com/fonts/specimen/Roboto

Chapter 5

[81]

If you would like to learn more about SQLite, comprehensive documentation can
be found at http://developer.android.com/reference/android/database/
sqlite/SQLiteDatabase.html.

For the sake of brevity, the example here contains only three entries; however, it is
very easy to expand if you choose. To add this data, create a new Java class called
Contact.Java and complete like so:

public class Contact {
intprofilePic;
 String name;
 String status;
private List<Contact> contacts;

Contact(intprofilePic, String name, String status) {
this.profilePic = profilePic;
this.name = name;
this.status = status;
 }

private void loadData() {
contacts = new ArrayList<>();
contacts.add(new Contact(R.drawable.picture01, "Bill", "Currently
offline"));
contacts.add(new Contact(R.drawable.picture02, "Sally", "Currently
busy"));
contacts.add(new Contact(R.drawable.picture03, "Janet", "Available to
chat"));
 }
}

As you can see, you will require some images for this exercise. The images selected
for demonstration were 64 x 64 dp. This means that you will need to scale these up
for higher density devices. For example, the xxhdpi version will need to be 256 x 256
actual pixels.

Although RecyclerView is a fantastic tool for managing and binding data in an
efficient manner, it does require quite a bit of setting up. Apart from the view
and the data, there are two other elements required to bind the data to our view:
LayoutManager and the data adapter.

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Lists, Cards, and Data

[82]

Layout managers and adapters
As already mentioned, RecyclerViews manage their data using RecyclerView.
LayoutManager and RecyclerView.Adapter. LayoutManager can be thought of
as belonging to RecyclerView and it is this that communicates with the adapter,
which in turn is bound to our data in a fashion depicted in the following figure:

To add the layout manager, open your main activity Java file and include the
following two fields:

private Toolbar toolbar;
privateRecyclerViewrecyclerView;

In the onCreate() method, add the following lines:

recyclerView = (RecyclerView) findViewById(R.id.list);
recyclerView.setHasFixedSize(true);

RecyclerView.LayoutManagerlayoutManager = new
LinearLayoutManager(this);
recyclerView.setLayoutManager(layoutManager);

Chapter 5

[83]

ArrayList<Contact> contacts = new ArrayList<Contact>();

RecyclerView.Adapter adapter = new RecyclerViewAdapter(contacts);
recyclerView.setAdapter(adapter);

This is all we do to set up the LayoutManager, but the Adapter class needs
to be created more or less from scratch. Create a new public Java class called
RecyclerViewAdapter.java and ensure that it extends RecyclerView.
Adapter<RecyclerViewAdapter.ContactViewHolder>. This will generate
an error; click on the red quick-fix icon and implement the methods suggested.

These three methods, once filled out, will look like the following:

@Override
publicContactViewHolderonCreateViewHolder(ViewGroup parent,
intviewType) {
 View v = LayoutInflater.from(parent.getContext()).inflate(R.
layout.card_layout, parent, false);
ContactViewHoldercontactViewHolder = new ContactViewHolder(v);
returncontactViewHolder;
}

@Override
public void onBindViewHolder(ContactViewHolder holder, int position) {
holder.profilePic.setImageResource(contacts.get(position).profilePic);
holder.name.setText(contacts.get(position).name);
holder.status.setText(contacts.get(position).status);
}

@Override
publicintgetItemCount() {
returncontacts.size();
}

Lists, Cards, and Data

[84]

You will also need to add the onAttachedToRecyclerView() method, like so:

@Override
public void onAttachedToRecyclerView(RecyclerViewrecyclerView) {
super.onAttachedToRecyclerView(recyclerView);
}

And finally, ViewHolder:

public static class ContactViewHolder extends RecyclerView.ViewHolder
{
CardViewcardView;
ImageViewprofilePic;
TextView name;
TextView status;

publicContactViewHolder(View itemView) {
super(itemView);
cardView = (CardView) itemView.findViewById(R.id.card_view);
profilePic = (ImageView) itemView.findViewById(R.id.profile_pic);
name = (TextView) itemView.findViewById(R.id.name);
status = (TextView) itemView.findViewById(R.id.status);
 }
}

The ViewHolder pattern is the final part of our data jigsaw. It speeds up long lists by
only making one call to findViewById(), which is a resource-hungry process.

The example can now be run on an emulator or handset, and will have an output
similar to that seen here:

Chapter 5

[85]

The example we have worked through here explains enough of how RecyclerView
works to be able to implement one in a variety of situations. We used a
LinearLayoutManager here to create our list, but there is also GridLayoutManager
and StaggeredGridLayoutManager that work in a very similar fashion.

The CardView, on the other hand, is used in a wide variety of different application
settings, and from a Material Design perspective, there is a lot more to cover.

Cards
CardView is probably the most frequently used and flexible material component,
and as such, there are a considerable number of guidelines concerning its structure,
appearance, and function. Cards are described by Google as being entry points to
more detailed information. This means that they should provide a small number of
actions in the form of buttons, clickable images, and often, simply the card itself.

The way we used cards in the previous section, to create a list, is probably not the
best example of how to employ CardView. Generally, with lists of items with very
similar content, a simple divider provides a far less cluttered layout, and cards were
used here just to demonstrate RecyclerViews in an easily digestible fashion.

Cards come into their own when they can be be presented in a collection where they
do not all share identical layouts. In fact, one of the things that makes cards so useful
is that although they are required to have uniform widths, there is no necessity for
them to share their heights, format, content, or color.

Lists, Cards, and Data

[86]

The preceding CardView is a good example of how blocks of content can be
structured. It is explained as follows:

•	 The Header at the top is optional; it contains an avatar, a title, and a subtitle
•	 It should be 72 dp high and have 16 dp padding all round, meaning that the

avatar should have a diameter of 40 dp
•	 The title is 14 sp or 24 sp when there is no avatar
•	 The subtitle is 14 sp and uses your secondary text transparency
•	 The image has a 16:9 aspect ratio, although 1:1 is also allowed
•	 The supporting text is 14 sp and has padding of 24 dp at the bottom and 16

dp on the other sides
•	 Actions are all caps 16sp, and should use your accent color or another color

with strong emphasis

Cards are a very dynamic component, able to be moved, rearranged, and dismissed.
The elevation for a card at rest is 2 dp, and 8 dp when selected and moving,
although if your cards are contained in a CoordinatorLayout, this will be handled
automatically.

Chapter 5

[87]

Tiles
Despite CardView's versatility, it is not always the best solution. Its ideal use is to
display content that cannot be formatted identically in every instance. When content
is homogeneous across an entire collection, such as in a photo gallery, then a cleaner,
simpler layout can be created using tiles rather than cards. For example, take a look
at the following image:

As can be seen in the example, tiles do not have rounded corners or shadows, but
provide a very clean interface for items that each have a single action and identical
layout format.

There is no specific widget or view for tiles, and they can be constructed with
ImageViews, TextViews, or whatever else suits our purposes.

Lists, Cards, and Data

[88]

Summary
Representing data in lists and grids is a powerful technique that makes up a large
part of many applications, and the layouts and views provided by the design and
support libraries allow us to create the clean and simple layouts associated with
Material Design.

CardView lies at the heart of many successful material layouts, and is one of the
most useful and recognizable material views, allowing us to present content in an
intuitive manner.

One of the things Material Design is best known for is animation. Not only does does
this make our apps look fantastic, but can also be very functional and instructional,
giving the user a clearer sense of application flow and purpose, and this is what we
will be tackling in the next chapter.

[89]

Animations and Transitions
Of all of Material Design's features, animation is probably the most important
and exciting. Not only does it allow for the creation of beautiful, dynamic, and fun
interfaces, but animation can also serve a useful purpose instructing and directing
the user in a visual rather than written fashion. For example, when a user swipes a
component and it disappears from the screen, it is obvious that the item has been
dismissed. Likewise, when a component is tapped and it expands to provide more
detail, there is no need to explain its functionality as this is visually apparent.

The vast majority of the time, the default material animations are perfectly suited
to our purposes and are very easy to implement, particularly when using the
CoordinatorLayout provided by the design support library. However, it is possible,
and often desirable, to generate custom animations. Not only is this a lot of fun,
it is also a great way to learn the material guidelines regarding motion.

In this chapter, we will learn how to:

•	 Understand touch feedback
•	 Generate ripple animations
•	 Hide and reveal elements
•	 Create logical transitions
•	 Manage entrances and exits
•	 Animate shared components across activities
•	 Understand motion and material physics

Animations and Transitions

[90]

Touch feedback
One of the primary objectives of Material Design is to create a tactile experience
for the user. It is essential to inform the user instantly, whenever they interact with
any active component. This can be done in a variety of ways, such as increasing the
elevation of a view upon contact, but the most common and stylish way is the ripple
effect animation, which, as its name suggests, sends a ripple of color across a view,
layout, or screen, emanating from the point of contact.

Ripple animations
The ripple animation effect is one of the most widely recognized material animations
and provides a great example of what Google refers to as responsive interaction.
Ripples are applied automatically to clickable widgets such as buttons, but there are
many situations where they would be perfectly applied to other views, such as image
and text views, or even entire layouts.

Fortunately, adding the ripple touch response to other views and screen components
is remarkably simple. The following XML definition demonstrates just how to add
the ripple effect to any view:

<TextView
android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:clickable="true"

 android:text="@string/ripple_example" />

Chapter 6

[91]

The two highlighted lines in this snippet allow us to include this effect very simply
on almost any view we choose. Trying this out, you will see that the ripple effect
stops at the border of the view we applied it to. We can extend the effect though,
by changing the android:background attribute as follows:

"?android:attr/selectableItemBackgroundBorderless"

This will have the effect of allowing the ripple to continue beyond the border of its
defining view until it reaches the borders of its parent container. This provides us with
the ability to control the emphasis that a particular action has. A ripple that spreads
only across a particular widget explains to the user that that widget has been activated,
but a ripple that fills a whole card or screen immediately informs the user that the
action has a wider affect and that a more significant transition is taking place.

It is very handy to be able to apply the ripple effect to any view of our choice, but
there is more we can do if we drill down a little and create our own ripple animation
from scratch.

A ripple animation can be created in XML very simply, using the RippleDrawable
class. Open the res/drawable folder and create a new XML file called something
along the lines of ripple.xml. The very least it requires to work is the following code:

<?xml version="1.0" encoding="utf-8"?>
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
android:color="?android:colorControlHighlight">
</ripple>

It can then be associated with a view of our choice in a very similar manner to the
previous example. Simply set the background property as shown next:

android:background="@drawable/ripple"

There is a lot more that can be done now that we have direct control over the
animation. For example, if you have tested the previous code, you will have noticed
that it produces a borderless ripple. With XML, we can create our own border very
simply with a mask.

Animations and Transitions

[92]

Masks are defined mainly by their shape. This can be rectangle, round, oval, and
ring, depending on the shape of the view or view group that we wish to bind our
ripple within, which is usually rectangle. The example here creates a bounded
rectangle animation, and sets the color of the ripple to our accent color, as defined in
our material theme:

<?xml version="1.0" encoding="utf-8"?>
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
android:color="?android:colorControlHighlight">

<item android:id="@android:id/mask">
<shape android:shape="rectangle">
<solid android:color="?android:colorAccent" />
</shape>
</item>

</ripple>

The preceding code is almost self explanatory, but it is important to note that the
ID value must be mask, and the use of solid in the color definition has alternative
settings, not all of which will work for every animation. To see and experiment with
these options, select the value and press Ctrl + Space.

Pressing Ctrl + Space can be used across Android
Studio to examine available options.

It is all very well to know how to acknowledge user input, but of course, we need
to respond to these interactions. Very often, the most useful application of material
animation is to take the user from one activity to another in a meaningful and logical
fashion, but before we get to these transitions, we need to cover situations where the
user remains within the same activity, but their actions reveal or hide components
within it.

Chapter 6

[93]

Revealing and hiding
Placing views and view groups in a layout and setting them as invisible, to be revealed
later, is a lightweight and useful technique for changing the appearance of a screen
without having to load separate activities or fragments. Furthermore, the circular
reveal is designed specifically with material in mind.

Any view can be hidden and revealed, but for the sake of this exercise, we will use
the following ImageView XML definition:

<ImageView
android:id="@+id/image_view"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:src="@drawable/some_image"
android:visibility="invisible" />

Reveal animations can be triggered by almost any event, but here we will simply use
a button press. In your Java activity file, declare the button and image views as fields:

private ImageView imageView;
private Buttton button;

These need to be associated with their XML counterparts in the onCreate() method:

imageView = (ImageView) findViewById(R.id.image_view);
button = (Button) findViewById(R.id.button);

Next, we need to set up a click listener, which can be done by changing the class
declaration so that it implements View.OnClickListener, as shown next:

public class MainActivity extends Activity implements View.
OnClickListener

This will require that you then implement the onClick() method. This is where
we will place our code to trigger the animation. When you are finished, it will look
like this:

@Override
public void onClick(View v) {
int x = imageView.getWidth() / 2;
int y = imageView.getHeight() / 2;
int endRadius = Math.max(imageView.getWidth(), imageView.getHeight());

Animations and Transitions

[94]

Animator circularReveal = ViewAnimationUtils.
createCircularReveal(imageView, x, y, 0, endRadius);
imageView.setVisibility(View.VISIBLE);
circularReveal.start();
}

Reversing the direction of the animation and causing the view to become invisible
again is a tiny bit more complex. Firstly, we need to calculate the start radius rather
than the end one, and secondly, we need an animation listener to detect when the
animation is complete so that we can make the view invisible again. The code should
look like this:

int x = imageView.getWidth() / 2;
int y = imageView.getHeight() / 2;
int startRadius = imageView.getWidth();
Animator circularReveal = ViewAnimationUtils.
createCircularReveal(imageView, x, y, startRadius, 0);

circularReveal.addListener(new AnimatorListenerAdapter() {
@Override
public void onAnimationEnd(Animator anim) {
super.onAnimationEnd(anim);
imageView.setVisibility(View.INVISIBLE);
}
});

circularReveal.start();

The circular reveal animation provides an elegant and efficient way to create and
destroy material dynamically. It can be applied to any view, and also view groups,
although it has to be borne in mind that it is best suited for creating a single sheet
of material rather than a complex layout.

Many applications, if not most, contain more than one activity, and one of the
most important uses of animation in Material Design is to inform the user of
these transitions.

Transitions
Android versions with an API level of 21 or higher come with a set of
material-design-compliant transition animations. As one would imagine,
transition animations give us control over how components exit a screen
and how they enter. This is all made possible with the TransitionManager.

Chapter 6

[95]

Exits and entrances
The best introduction to the TransitionManager is to see it in action. This can be
achieved with a simple example, where we get to see the types of animation available
to us before tackling the mechanics of actually moving from one activity to another.
This will also give us the opportunity to take a quick look at the GridLayout, which
we have not yet covered:

1.	 Start a new Android project with an API level of 21 or higher.
2.	 Inside the root layout, add a GridLayout.
3.	 You will need to include the ID, rowCount, and columnCount attributes in

the layout definition, as highlighted next:
<GridLayout xmlns:android="http://schemas.android.com/apk/res/
android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/view_group"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
android:columnCount="2"
android:rowCount="2"
 tools:context=".MainActivity">

4.	 This example demonstrates a 2 x 2 grid, but you could, of course, have more
if you so chose.

5.	 Find or create some images and put together a simple layout like the one
seen next:

Animations and Transitions

[96]

6.	 Provide IDs for each image, using a naming convention along the lines of the
one seen here:
<ImageView
android:id="@+id/image_01"
android:layout_column="0"
 android:layout_row="0"
 android:clickable="true"
 android:src="@drawable/image_01" />

7.	 In the steps, GridLayout, include a button.
8.	 Open your activity Java file and declare it so that it implements a click

listener, as we did in the previous example:
public class MainActivity extends Activity implements View.
OnClickListener

9.	 Create fields for the GridLayout and your images:
private ViewGroup viewGroup;
private ImageView image_01, image_02, image_03, image_04;

10.	 Associate these views with their XML counterparts in the onCreate()
method:
viewGroup = (ViewGroup)findViewById(R.id.view_group);
image_01 = (ImageView)findViewById(R.id.image_01);
image_02 = (ImageView)findViewById(R.id.image_02);
image_03 = (ImageView)findViewById(R.id.image_03);
image_04 = (ImageView)findViewById(R.id.image_04);

11.	 Complete the onClick() method, as shown here:
@Override
public void onClick(View v) {
TransitionManager.beginDelayedTransition(viewGroup, new
Explode());
 toggle(image_01, image_02, image_03, image_04);
}

12.	 Finally, add the toggle() method:
private static void toggle(View... views) {
for (View v : views) {
boolean isVisible = v.getVisibility() == View.VISIBLE;
 v.setVisibility(isVisible ? View.INVISIBLE : View.
VISIBLE);
 }
}

Chapter 6

[97]

You can now compile and run the project to see the effect of the explode transition. As
you would imagine, explode is not the only transition available to us. To see how these
work, simply replace Explode() in the onClick() method with any of the following:

•	 Slide()

•	 Fade()

•	 AutoTransition()

Slide and fade should require no explanation, however, AutoTransition might.
What it does is fade out non-shared components, then move and resize shared
elements, and finally fade in new views and widgets, and this is very often the
ideal solution for material layouts.

As you try out the preceding alternative animations, you may notice that
the editor fails to recognize them. This is most likely due to the classes
having not been imported. Although it can often be rectified by pressing
Alt + Enter, there is a far simpler way to organize your imports. From the
File menu, navigate to Settings | Editor | General | Auto Import and
check the boxes, as shown here:

The previous example is not strictly speaking a transition, as all the animations
take place within a single activity, but it is a good way to explore the animations
themselves. Once we move on to see how switching between two or more activities
is achieved, we also get to see one of the coolest features of material animation,
which involves how transitions work when a component is shared across both
exiting and entering activities.

Animations and Transitions

[98]

Shared components
Very often, when an app transitions from one activity to another, there will be
elements that appear in both. For example, a user might select a thumbnail image
from a grid with the intention of viewing a larger version of the image, and this
image would be considered a shared element. In this example, we would want the
other images to slide, fade, or explode out of sight, but we would not want our
selected image to disappear and then reappear, as this would involve unnecessary
movement and could even be considered confusing. Ideally, what we are after is
for our shared element to move and grow smoothly from its original position to its
resting place in the opened activity.

Programming this kind of behavior is fortunately quite simple. At its very simplest,
all we need to do is enable transition animations in our theme, and this will produce
the default fade transition whenever a user navigates from one activity to another.
More excitingly, we can define our own transitions for entries and exits, as well as
shared components.

To enable transitions in your application, simply include the following item in your
custom style definition:

<item name="android:windowContentTransitions">true</item>

To create a custom transition, you will need to create a new folder in the res directory
called transition. You can then create XML files to define each of your transitions.
More than likely, you will have one for entering shared components, one for exiting
shared objects, as well as an entering and exiting transition for other elements, and if
your app contains a wide variety of components, you may have a lot more.

Chapter 6

[99]

If you are thinking that this sounds like a lot of work, it is well
worth bearing in mind that the default implementation of transition
animations is set up with Material Design in mind, and probably is
all you will ever need.

XML transitions are defined with the transitionSet tag. These can be quite
complex and contain long strings of behavior, but they can also be very simple.
For example, creating a file such as res/transition/some_transition.xml,
and completing it as shown next, would be sufficient to re-size a view:

<transitionSet xmlns:android="http://schemas.android.com/apk/res/
android">
<changeBounds/>
</transitionSet>

This example contains only one element, but transitionSets can contain many,
and following is a list of other elements we can include:

<changeBounds/>
<changeClipBounds/>
<changeImageTransform/>
<autoTransition/>
<explode/>
<fade/>
<slide/>

The best way to see how these work is to try them out, although it is worth knowing
now that changeImageTransform will scale and rotate images when necessary.

When we choose to apply more than one effect, we can also decide if we want
our animations to be applied simultaneously or sequentially by editing the
transitionSet tag to the following:

<transitionSet xmlns:android="http://schemas.android.com/apk/res/
android"
android:transitionOrdering="sequential">

Or, we can also do this:

<transitionSet xmlns:android="http://schemas.android.com/apk/res/
android"
android:transitionOrdering="together">

From a material perspective, sequential ordering is preferred, as having too many
things happen at once can reduce the clarity of the transition, but bearing that in
mind, there are many elegant and logical simultaneous material transitions.

Animations and Transitions

[100]

We can also target a specific view or view group in our transitions; the following
example brings these features of custom transitions together:

<transitionSet xmlns:android="http://schemas.android.com/apk/res/
android"
android:transitionOrdering="together">
<slide/>
<fade android:fadingMode="fade_in" >
<targets>
<target android:targetId="@id/some_view" />
</targets>
</fade>
</transitionSet>

Once we have defined a transition like this, we can apply it to our app via our style
definition, as shown next:

<item name="android:windowEnterTransition">@transition/my_entrance_
transition</item>
<item name="android:windowExitTransition">@transition/my_exit_
transition</item>

For shared element transitions, use the following:

<item name="android:windowSharedElementEnterTransition">@transition/
my_image_transition</item>
<item name="android:windowSharedElementExitTransition">@transition/
my_image_transition</item>

Of course, once this is done, we will need a project with more than one activity.
This will involve at least two Java activity classes and an XML layout for each. To
test out our transitions, the activities do not need to do very much; a single button
or clickable view will be enough to start a new activity. This can be achieved with a
single line, most usually within an onClick() method:

startActivity(intent, ActivityOptions.makeSceneTransitionAnimation(th
is).toBundle());

When this code is called, and there is an exit transition defined for the activity, then
this animation will be triggered. Note that if there is also an entry transition defined
for the incoming activity, then this too will be called.

Chapter 6

[101]

Finally, we need a way to inform the system which elements are shared, and this
is done by providing the corresponding elements in each activity with a common
name. This is done with the transitionName attribute, as shown next:

<ImageView
android:id="@+id/some_image"
android:transitionName="shared_name"
android:src="@drawable/shared_image" />

The SDK provides many powerful tools for animation, and one could easily write an
entire book on the subject. From a material point of view, we are fortunate that we can
rely on the default settings and provided transitions to generate the kinds of motion
that are so important to the Material Design experience. Whether we intend to stick
to the default implementations or explore custom animations further, there are some
specific material guidelines regarding what Google refers to as authentic motion.

Realistic movement
As mentioned at the beginning of the book, material needs to be thought of as
sharing many of the properties found in real-world objects, such as existing in a
three-dimensional space and casting shadows. Nowhere are the physical properties
of material more important than when it is in motion.

Material should be thought of as having its own laws of physics, and although no
knowledge of actual physics is required, a general understanding of how everyday
objects behave is probably the best way to understand authentic motion.

Material should be thought of as having mass and being subject to friction. Real world
objects cannot go from stationary to moving at a particular speed instantaneously.
They must first overcome their own inertia so as to accelerate, which in turn generates
momentum. Similarly, they cannot stop then without resisting that momentum. By
mimicking these behaviors, material provides a virtual environment that feels almost
tangible, and certainly recognizable to the user.

Think of the cartoons we watched as children; quite often a character would run over
the edge of a precipice and continue running until they realized their error. Now,
despite the ridiculousness of the idea, this illusion was maintained by very carefully
thought out motion and timing. Had the character suddenly fallen downward, which
does not coincide with the way we experience everyday objects falling, the illusion
would been utterly destroyed and the humor lost.

Although far from easy to explain, the manner in which solid objects accelerate and
decelerate is something the human mind is keyed into. We understand intuitively
that heavy objects take longer to accelerate and slow down than light objects.

Animations and Transitions

[102]

The acceleration/deceleration process is by no means symmetrical; entry and exit
transitions are not simply mirrors of each other. Acceleration is an accumulative
process, the faster you are going, the faster you can go, and deceleration is the
reverse, rather than the mirror of it.

Most times, we will never have to worry about this, but authentic motion is a
significant part of material animation, and when generating animations from
scratch, realistic movement can make all the difference.

Summary
Animation is probably material's most distinguishing feature, and it allows us
to create beautiful and dynamic applications that engage and delight the user.
As Material Design has grown, animating apps has become considerably easier,
and many of the guidelines are now baked into the SDK. It is the simplicity and
naturalness of these animations that make Material Design a language that will
be around for a very long time.

In this chapter, we saw how to use motion to respond to user interaction, and how to
take the user from one activity to another in a seamless and intuitive fashion. Using
philosophies taken from traditional animation gives material applications a physical
and natural feel.

Having covered layouts, data management, common material components, and
motion, we can now take a look at implementing material on a wider variety of
devices, which is a journey we will begin in the next chapter.

[103]

Material on Other Devices
So far, this book has been primarily concerned with material for handheld devices
such as phones and tablets. This is largely due to the fact that Android Studio is
purpose built and comes with a myriad of material tools, making it ideal for learning
Material Design principles.

Of course, material is far from limited to these devices, or even Google devices, and
is now appearing on a growing number of platforms including an increasing number
of iOS applications.

Having mastered the fundamentals of Material Design, we can now take a look at
how it is applied across a wide variety of form factors, ranging from the minute
screens of wearables, right up to the 10 feet of many TV devices.

In this chapter, you will learn how to:

•	 Run the TV project template
•	 Include an application banner to the home screen
•	 Apply manifest permissions and feature uses
•	 Implement the Leanback Support Library
•	 Understand TV application structure
•	 Create a recommendation card
•	 Pair a wearable device with a handset
•	 Manage different Wearable screen shapes
•	 Create Wearable layouts

Material on Other Devices

[104]

After mobile devices, material is found most often on our desktops, as web pages
and stand alone applications. There are some interesting differences between mobile
and desktop material, and these require a different set of tools such as MDL, which
we will examine in detail later in the book. For now, we will see how material can be
applied to other Google and Android devices, starting with Android TV.

Material TV
Televisions offer an exciting challenge for developers and designers alike. Most large
screens are designed to be viewed from up to 10 feet away, and the controls differ
from the touchscreens that we are used to dealing with. The interface too is very
different, with the toolbar being replaced by a sidebar index or browse lane, and the
content being represented in rows of categories. These two elements move in tandem
with each other; the lane slides upward as each row is highlighted as shown in the
following image:

Most Android TV apps take advantage of the Leanback Library, which provides
numerous widgets specifically designed for TV, along with the Leanback theme,
which is a TV-optimized version of the material theme.

The Leanback Library is a v17 library, which means it will only work
with API levels of 17 (Android 4.2.2) or higher.

The sheer size of today's televisions allows us to represent our apps graphically with
far more than a simple icon, and TV apps allow a 320 x 180 dp space called a banner
for each app on the home screen.

Chapter 7

[105]

Banners
The home screen is the entry point for Android TV users. From here, they can search
for content, adjust settings, and access applications and games. In the first view the
user will get of our app will be on this screen in the form of a banner image. This is
what they will use to launch the app.

Every TV app has a banner image. This is a 320 x 180 dp bitmap that should portray
what our app does in a simple and efficient manner. For example:

Banners can contain colorful photographic imagery too, but text should always
be kept bold and to a minimum. The banner can then be declared in the project
manifest. To see how this is done, and how other manifest properties relevant
to TV apps can be set, follow these steps:

1.	 Start a new project, selecting TV as Target Android Device and Android TV
Activity as the activity template.

2.	 Add your image to the drawable folder and call it banner or something
like that.

3.	 Open the manifests/AndroidManifest.xml file.
4.	 Delete the following line:

android:banner="@drawable/app_icon_your_company"

5.	 Edit the opening <application> node to include the following
highlighted line:
<application
 android:allowBackup="true"
android:banner="@drawable/banner"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/Theme.Leanback">

Material on Other Devices

[106]

6.	 In the root <manifest> node, add the following attribute:
<uses-feature
 android:name="android.hardware.microphone"
 android:required="false" />

This last <uses-feature> node is not strictly required, but will make your app
available to older televisions that do not have microphones included. If your app
relies on voice control, then omit this attribute.

If you are building for TV alone, then this is all you need to do in terms of making your
app available in the TV section of the Play Store. However, you may be developing
an application such as a game that can be played on other devices. In this case, also
include the following clause to make it available to devices that can be rotated:

<uses-feature
android:name="android.hardware.screen.portrait"
android:required="false" />

In these situations, you should also set "android.software.leanback" to
required="false", and revert to the material or AppCompat themes.

You may be wondering why we moved the banner declaration from the main
activity to the application as a whole. This was not strictly necessary, and what we
have done is simply apply one banner to the whole app, regardless of how many
activities it contains. Unless you want separate banners for each activity, this is
usually the best way to go.

If you are not starting your project from the template, you will need to implement
Theme.Leanback yourself, and include this dependency in your build.gradle file:

compile 'com.android.support:leanback-v17:23.0.1'

If you have taken a look around the TV template code, you will have realized that
there is a lot to coding an Android TV application; far more than can be covered
here. Examining the template code yields some valuable clues as to how TV apps
are put together.

TV app structure
A large number of TV apps offer a limited set of functions, and this is usually all that
is required. For the most part, users want to:

•	 Browse for content
•	 Search for content
•	 Consume content

Chapter 7

[107]

The Leanback Library provides fragment classes for each of these. A typical browse
view is provided by BrowserFragment and the template demonstrates this with a
simple example, along with SearchFragment.

The consumption view is provided by PlaybackOverlayFragment, and is probably
the simplest of views comprising of little more than a VideoView and the controls.

There is also DetailsFragment that provides content-specific information.
The content and layout of this view are dependent on the subject matter and
can take any form you choose, with the regular rules of Material Design applying.
The design view scrolls up from the bottom of the consumption view.

Material on Other Devices

[108]

The Leanback Library makes light work of bringing Material Design to TV devices.
If you decide to use views from elsewhere, then the same material rules that apply
to them elsewhere, will apply here too. Before moving on to other form factors, it is
worth mentioning that background images need to have a 5 percent bleed around
the edges to ensure they reach the sides of all TV screens. This means that a 1280 x
720 px image needs to be 1408 x 792 px.

Despite the Leanback Library taking care of all our Material Design considerations,
there is one situation where we need to be aware of the guidelines, and that is the
recommendation card.

Recommendation cards
The top row of the Android TV home screen is the recommendation row. This
allows the user to quickly access content based on their viewing history. Content
can be recommended because it is a continuation of previously viewed content,
or related in some way based on the user's viewing history.

When designing recommendation cards, there are only a handful of design factors
we need to consider. These cards are constructed from an image or large icon, a title,
a subtitle, and application icon, as shown as follows:

There is a certain amount of flexibility when it comes to the aspect ratio of the card
image. The width of the card must never be less than two-third of its height or more
than one and a half. There must be no transparent elements within the image and it
must not be less than 176 dp in height.

Chapter 7

[109]

Large expanses of white can be quite harsh on many televisions. If
you need large areas of white, use #EEE rather than #FFF.

If you take a look at the recommendation row on a live Android TV set, you will see
that, as each card is highlighted, the background image changes, and we too should
provide a background image as well for each recommendation card. These images
must differ from the one on the card and be 2016 x 1134 px to allow for a 5 percent
bleed, and ensure that they leave no gaps around the edge of the screen. These
images too should have no transparent sections.

There is a great deal to programming recommendations and unfortunately too much
to cover here. There is, however, a very useful guide in the official documentation,
which can be found at http://developer.android.com/training/tv/discovery/
recommendations.html.

The challenge of designing for such large screens affords us the opportunity to
include colorful and vibrant imagery with high-quality graphics. At the other end
of this size spectrum falls the wearable device, where space is at a premium and a
totally different approach is required when applying Material Design.

http://developer.android.com/training/tv/discovery/recommendations.html
http://developer.android.com/training/tv/discovery/recommendations.html

Material on Other Devices

[110]

Wearable material
Whereas TV apps are almost exclusively for finding and consuming video content,
Wearable apps can, and do, perform a huge number of functions, and for this reason
are more like handheld apps. Although heavily dependent on the card, almost any
widget can be used in an Android Wear application, and just as with handheld
applications, there are a series of specific rules governing the sizes, margins, and
positioning of screen components.

Unlike most devices that operate independently, Wearable Android devices need to
be coupled with a handset that does most of the processing, and before we can explore
material layouts, we need to see how this pairing is achieved at a technical level.

Connecting to a Wearable device
It is not necessary to have access to a physical Wearable device to develop and
design apps for Wear, as this can be done with an emulator created with the AVD
manager. If you have not already done so, ensure that you have downloaded the
appropriate system image for the API platform you are intending to design for, as
demonstrated in the following image taken from the SDK Manager:

As you will know, Android Wear devices are available with both round and square
faces. There are two distinct approaches to managing this distinction, and to see how
this is done best, it is a good idea to create two emulators, one for each format.

Size: small

Ratio: long

Density: hdpi

Size: small

Ratio: long

Density: hdpi

Android Wear Round Android Wear Square

320px 280px

320px

280px

1.85"

1.00"

Chapter 7

[111]

There is also a chinned version available, but for testing purposes, this can be
considered the same as the round version.

How you pair the wearable AVD will depend on whether you are coupling it with
a real handset or another emulator. If you are using a handset, you will need to
download the Android Wear app from https://play.google.com/store/apps/
details?id=com.google.android.wearable.app.

Then locate the adb.exe file, which is probably located somewhere around
user\AppData\Local\Android\sdk\platform-tools\.

Open the command window here and issue the following command:

adb -d forward tcp:5601 tcp:5601.

You can now launch the companion app and follow the instructions to pair
the devices.

You will need to issue this port-forwarding command
each time you connect the handset.

If you are pairing your wearable emulator with an emulated handset, then you will
need an AVD that targets Google APIs rather than a regular Android platform.
You can then download com.google.android.wearable.app-2.apk. There are
many places online where this can be found. I used http://www.apkmirror.com/
apk/google-inc/android-wear/android-wear-1-3-0-2223019-android-apk-
download/. The APK should be placed in your sdk/platform-tools directory,
where it can be installed with the following command:

adb install com.google.android.wearable.app-2.apk

Now, start your Wearable AVD and enter adb devices into the command prompt,
making sure that both emulators are visible with an output similar to this:

List of devices attached
emulator-5554 device
emulator-5555 device

Enter adb telnet localhost 5554 at the command prompt, where 5554 is the
phone emulator. Next, enter adb redir add tcp:5601:5601. You can now use the
Wear app on the handheld AVD to connect to the watch.

https://play.google.com/store/apps/details?id=com.google.android.wearable.app
https://play.google.com/store/apps/details?id=com.google.android.wearable.app
http://www.apkmirror.com/apk/google-inc/android-wear/android-wear-1-3-0-2223019-android-apk-download/
http://www.apkmirror.com/apk/google-inc/android-wear/android-wear-1-3-0-2223019-android-apk-download/
http://www.apkmirror.com/apk/google-inc/android-wear/android-wear-1-3-0-2223019-android-apk-download/

Material on Other Devices

[112]

When creating an Android Wear project, you will need to include two modules:
one for the Wearable component and one for the handset by check both boxes in the
project window as seen in this screenshot:

Android provides a Wearable UI Support Library that provides some very useful
features for Wear developers and designers. If you have created a Wearable project
using the wizard, this will have been included during setup. Otherwise, you will
need to include the following dependencies in the module: wearbuild.gradle file:

compile 'com.google.android.support:wearable:1.3.0'
compile 'com.google.android.gms:play-services-wearable:8.1.0'

You will also require these dependencies in the module: mobile build file:

wearApp project(':wear')
compile 'com.google.android.gms:play-services:8.1.0'

Note that these libraries will, no doubt, have been updated by the time you read this,
and you will need to check using the SDK Manager for the latest version.

Version numbers can be replaced with a + symbol, for example: com.
google.android.gms:play-services:+. This is supposed to
compile the latest version but cannot be guaranteed to work on all
future versions.

Chapter 7

[113]

Managing differently shaped screens
Android Wearable devices come in two basic shapes: square and round. There is a
chinned round version but this can be considered the same as the round screen from
a design point of view.

In advance, we have no idea which of these shapes our apps will be running on, and
there are two solutions to this conundrum. The first, and most obvious, is to simply
create a layout for each shape, and this is very often the best solution. If you have
a Wearable project created with the wizard, and you open the res/layout folder
in the Wear module, you will see that template activities for both shapes have
been included.

We still need a way to detect the screen shape when the app is run on an actual
device or emulator so that it knows which layout to inflate. This is done with
WatchViewStub, and the code to call it has to be included in the onCreate()
method of the main Java activity file, as shown as follows:

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_
view_stub);
stub.setOnLayoutInflatedListener(new WatchViewStub.
OnLayoutInflatedListener() {
@Override
public void onLayoutInflated(WatchViewStub stub) {
mTextView = (TextView) stub.findViewById(R.id.text);
}
});
}

This can then be implemented in XML like this:

<android.support.wearable.view.WatchViewStub xmlns:android="http://
schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/watch_view_stub"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:rectLayout="@layout/rect_activity_main"
app:roundLayout="@layout/round_activity_main"
tools:context=".MainActivity"
tools:deviceIds="wear"></android.support.wearable.view.WatchViewStub>

Material on Other Devices

[114]

The alternative to creating separate layouts for each screen shape is to use a layout
that itself is aware of the screen shape. This comes in the form of BoxInsetLayout,
which adjusts padding settings for round screens and only positions views within
the highlighted square, as seen in the following screenshot:

BoxInsetLayout can be used, like any other layout, as the root ViewGroup in your
main XML activity:

<android.support.wearable.view.BoxInsetLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_height="match_parent"
android:layout_width="match_parent"
android:padding="15dp">

. . .

</android.support.wearable.view.BoxInsetLayout>

The padding of 15 dp is only applied to square screens, as 15 dp is also the margin
width and height that the round screen exhibits at its widest points, and 15 dp is
always subtracted from any padding we set for the root view on a round screen.

The convenience of BoxInsetLayout is offset by its lack of flexibility, and as we are
material designers, it is always preferable to maintain complete control over settings
such as margins and padding, and for this reason, we should generally opt for the
distinct layout option.

Chapter 7

[115]

Whichever of the previously mentioned methods we adopt, we will no doubt want
to create custom layouts of our own, and these will inevitably utilize the card view.

Wearable layouts
Nearly all content in an Android Wear app is presented using the CardView.
There are strict guidelines regarding the size, text, and positioning of the cards.
At its simplest, a card will contain a title, an app icon, and a single line of text.

The rules for this card are as follows:

•	 The card has an 8 dp margin around its bottom and sides
•	 It cannot be shorter than 72 dp
•	 The icon is 32 x 32 dp and is inset 8 dp from the right-hand side edge
•	 The baseline of the content text is 16 dp from the bottom of the card
•	 The text is indented by 16 dp and cannot extend closer than 16 dp to the

right-hand side edge
•	 Each line of text is 28 dp tall
•	 The font for both lines is Roboto Condensed Light 20 sp
•	 The text color of the title is #A2A2A2
•	 The content text color is #434343

The same principles can be applied to two-line content messages, with the card
being 96 dp high. This is the highest a card can be on Wear, and if you have more
lines of text, then the card needs to be scrollable with the extra text underneath the
screen. Generally speaking, lengthy text is to be avoided on Wearable devices, and
the principles here can be used to construct most of the cards we will need. There
is, however, a handy toolkit that can be downloaded from http://developer.
android.com/design/downloads/index.html.

http://developer.android.com/design/downloads/index.html
http://developer.android.com/design/downloads/index.html

Material on Other Devices

[116]

Wearables represent a powerful opportunity for developers, and a clear, well
thought out design can make all the difference to an app that, more often than not,
will rarely receive more than a quick glance.

Summary
Designing for the very small and the very large brings interesting challenges for
developers and designers alike. In both cases, Material Design allows us to create
attractive and easy-to-understand interfaces. This is especially the case with Wearables,
where the interface will most likely be a companion app to one running on a handset,
and material provides a great shared medium for both.

After phones and tablets, it is the desktop that has seen the largest uptake of Material
Design, and although it is perfectly possible to take what we have learned and create
Material Designs using conventional web technology, there are some very useful tools
that are available to us. The remaining chapters of this book cover the technologies that
are most frequently used and easily mastered when it comes to creating material web
pages and apps; namely CSS frameworks, which have many of the features of Material
Design built into them.

[117]

Material Web Frameworks
Developing and designing for desktop environments differs in many ways from
mobile environments. There is the larger screen, the absence of a touchscreen, and
most significantly, a large number of browsers and operating systems that our page
or app may find itself running on.

Although Android Studio and SDK are really the only choice when it comes to
developing Android apps, there are a lot of options when it comes to web design.
By far the fastest way to develop is with a CSS framework. This generally provides
the CSS and JavaScript files that make up an empty web project. Which of these
frameworks we use depends on several factors, including the purpose of our project
and previous experience.

In this chapter, we will take an introductory look at two of the most commonly
used frameworks, Materialize and Material Design Lite (MDL). We will also briefly
cover some of the other tools available, and these will demonstrate the different
approach required when implementing Material Design on the Web.

In this chapter, we will cover the following topics:

•	 Explore desktop layout structure
•	 Install the Bower package manager
•	 Materialize
•	 Download and set up Materialize
•	 Add a navigation bar
•	 Apply elevation and shadow
•	 Apply a material color theme
•	 Layout an adaptive page
•	 Include and layout cards

Material Web Frameworks

[118]

•	 Customize buttons
•	 Apply material icons
•	 MDL
•	 Install MDL
•	 Apply a color theme with MDL
•	 Implement MDL layouts
•	 Create MDL cards
•	 Take a look at Angular.js and other frameworks

Before exploring the different design tools, we need to take a look at how designing
for desktops differs from designing for mobile devices. The extra space available to
us means that a different set of metrics and layouts can be utilized to make the most
of this.

Desktop layouts
The enormous variety of layouts employed on the Web makes for an interesting
set of challenges. A typical desktop layout for a web page has many of the features
similar to those of the layouts we've covered so far, such as an app bar and side
navigation drawers. Following is one such example:

The preceding example has a primary toolbar (known as a navigation bar on desktop
apps) just as its mobile counterparts do. On a desktop, this component should
always be present and is 64 dp high unless it is expanded, in which case, it should be
128 dp. The navigation drawers can, and often do, have secondary toolbars of their
own, as can the main content canvas as well.

Chapter 8

[119]

Desktop navigation drawers can be fixed or opened from the navigation bar's icons.
The bar has a 20 dp padding at the top and bottom, one padding of 24 dp to the
right and left, and the title text is indented 80 dp from the left-hand side edge.
The maximum width for the left navigation drawer is 400 dp. The right-hand
side one can be variable depending on its content.

When working with wider screens, it is often a better use of space to
use tabs across the top rather than use a navigation drawer. These
tabs have a minimum width of 160 dp, a maximum width of 264 dp,
and a height of 48 dp.

Installing and employing web frameworks is a simple task; we simply place the
framework files inside our project directory, set up a link to them in our index.
html file, and start coding. However, keeping track of dependencies and updates,
especially if we are using more than one framework, can become something of a
chore. This can be largely avoided, thanks to the help from package managers,
which keep our frameworks nicely up-to-date with a minimum input from us.
There are a lot of such package managers around; however, very few people
would disagree that Bower is by far the best suited for our needs here.

Package management
Package managers are by no means essential to install web frameworks,
and depending on our needs, there are several ways to install/implement
web frameworks:

•	 Download files directly into a project folder
•	 Link to the framework via a Content Delivery Network (CDN)
•	 Build the project yourself from the source code
•	 Install using a package management tool such as Bower

To install Bower on your system, you will first need to install the Node Package
Manager (NPM), which can be done from the Node.js website: https://nodejs.
org/en/.

This is a straightforward installation, after which you can install Bower from the
command window with the following:

npm install -g bower

https://nodejs.org/en/
https://nodejs.org/en/

Material Web Frameworks

[120]

The -g installs Bower globally, so it can be accessed from any of your projects.
The most commonly used and most useful Bower commands are the following:

bower install <package>

bower update <package>

bower search <containing>

bower list

Using Bower update without specifying the package will update all the installed
packages. If you are yet to decide which technologies you are going to adopt, you
may want to install them directly or link them to a CDN before you decide. In the
following examples, we will demonstrate both these techniques.

Materialize
Materialize is one of the easiest ways to implement Material Design in our web pages,
as well as very helpful in automatically adjusting elements such as text size to take
differing screen sizes. It provides a limited but pertinent set of material components,
such as navigation drawers, ripple effects, and cards. The best way to learn about
Materialize is to try it out for ourselves.

Setting up
If you have ever used Bootstrap, you will recognize immediately how
Materialize is structured. You will begin by downloading the files from
this link: http://materializecss.com/getting-started.html.

You will note that there are two main downloads available, Materialize and Sass:

http://materializecss.com/getting-started.html

Chapter 8

[121]

Until you become familiar, and for the sake of this exercise, it is recommended to
start with the standard version. From a learning point of view, downloading the
files is a better option, as this allows us to examine and edit these files. However,
you can also use a CDN to access these resources remotely. This has the advantage
of lightening the load on our servers slightly and can often lead to quicker loading
times. The HTML for the CSS components is as follows:

<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/materialize/0.97.1/css/
materialize.min.css">

For the JavaScript, use the following:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
materialize/0.97.1/js/materialize.min.js">
</script>

The files you have downloaded simply have to be placed in your project directory
alongside your index.html file. If you take a look around, you will see that there
are two versions of the CSS and JavaScript files. The materialize.min.css and
materialize.min.js files have been compressed, and these are the files you
should use in your published site, as they consume less space. The uncompressed
versions are far better for developing, as they are far more readable as can be seen
by examining them.

With our downloaded files in the right place, linking them in HTML is very simple.
The minimum code required is this:

<!DOCTYPE html>
<html>

<head>
<title>Materialize Demo</title>
<link type="text/css" rel="stylesheet" href="css/materialize.min.css"
media="screen,projection"/>
</head>

<body>
. . .
<script type="text/javascript"
src="https://code.jquery.com/jquery-2.1.1.min.js">
</script>
<script type="text/javascript"
src="js/materialize.min.js">
</script>
</body>

</html>

Material Web Frameworks

[122]

This, of course, will produce a blank page. To check that we have really linked our
project correctly, add the following code to the top of the body tag:

<nav class="amber lighten-2">
<div class="nav-wrapper z-depth-1">
<div class="container">
Materialize Demo
</nav>

This will produce a navigation toolbar, as can be seen here:

With very little coding, we have produced an app bar with the correct font, size, and
spacing. We will return to the container class shortly as this is significant, but for
now, note that shadow and elevation are generated here with z-depth. This does not
give us the flexibility that Android does, and we only have five levels of elevation
available, as shown in the following screenshot. This is a limitation of the framework
rather than the platform itself.

Materialize produces very flexible UIs that adapt to the screen
size of the browser they are running on. To inform browsers that
the page is optimized for handheld devices, use this code: <meta
name="viewport" content="width=device-width,
initial-scale=1.0"/>.

Although the Materialize package comes with material icons and the Roboto font,
many people like to include other Google icons, which can be done using the
following code within the HTML head:

<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

Chapter 8

[123]

Material theme
We were also able to set the background color with nav class="amber lighten-2".
The lighten setting is not usually required in a toolbar and is just included as an
example. As with z-depth, there are five settings from lighten-1 to lighten-5. There
are also accent and darken settings, and between the three, we can very easily create
the same color themes that we did for mobiles. We can also use hexadecimal values,
as can be seen from the following image:

Applying our color theme to a page is only the beginning; we need to know how to
lay out our pages and add some of the familiar material features and components,
such as ripple effects and cards. Firstly, we need to look at the general layout of
Materialize web pages and how grids with a fixed number of columns are used to
create material-compliant layouts that adapt to different screen sizes.

Layouts and grids
Whatever approach we take to design an interface, be it material or any other type of
design, we have to consider how this will appear on very different sizes of screens.
Materialize makes use of a grid system as used in traditional graphic design to
organize pages:

Material Web Frameworks

[124]

These grids are made up of 12 columns that not only allow a lot of pleasing ratios,
but also provide a way to easily configure layouts for both desktop and mobile
browsers. The preceding layout can be achieved with the following HTML:

<div class="row">
<div class="container">
<div class="col s12">12 columns</div>
<div class="col s3">3 columns</div>
<div class="col s9">9 columns</div>
</div>

The container class we mentioned earlier is a simple but a useful way of centering
content and creating 15 percent margins on each side of a desktop screen and 12.5
percent on handsets. More often, it can be used when defining the whole body, but
can also be placed almost anywhere.

It should be easy to see from the code how column widths are assigned. The s prefix
(the .s class) stands for small and instructs the host browser to apply these column
widths on phone screens. However, defining them for only one screen size will have
the same affect on all screens, and we could just as easily use m or l for medium
tablets or large desktops. Tablets are defined with any screen width between 600
and 992 px.

The example here may work fine on a desktop, but on a small screen, the three-wide
column may be too narrow. This can easily be catered to with the following edit:

<div class="row">
<div class="container">
<div class="col s12">full width</div>
<div class="col s12 m3">full width on phones</div>
<div class="col s12 m9">full width on phones</div>
</div>

Alternatively, we could have simply made the column a little wider on handsets
or, could have a separate setting for each format, such as the following:

<div class="col s5 m4 l3">variable width</div>
<div class="col s7 m8 l9">variable width</div>

On some occasions, there will be times when we would rather not display a
component at all on a small device, in which case we can use this:

<div class="hide-on-small-only"></div>

Having seen quickly how we layout our pages, we can now see how to add content.

Chapter 8

[125]

Cards
Cards are the most widely used material components, and this is true for desktop apps
as much as any other platform. They are very simple to implement with Materialize.
It is a good idea to nest the code inside a container class and probably within a row
with col class definitions so that you can account for different form factors:

<div class="card">
<div class="card-image">

Postcard
<div class="card-content">
<p>Having a great time.</p>
<p>Weather is lovely.</p>
<p>Wish you were here xxx</p>
</div>
<div class="card-action">
send
save
</div>
</div>
</div>

Material Web Frameworks

[126]

It is also possible to set the maximum height of a card with the following:

<div class="card small|medium|large">

This produces cards with maximum heights of 300, 400, and 500 dp.

As it stands, the preceding card will not elevate when the cursor
passes over it. This can be achieved with <div class="card-
panel hoverable"> and can be used on most elements and not
just cards.

As ubiquitous as the card is, every app and page requires at least one clickable icon
or button. These are very easy to introduce and use, as we shall see now.

Buttons and icons
Buttons, icons, and buttons with icons are very simple to use with Materialize and
cover the range of buttons we have been using. The font directory we downloaded
contains over 750 material icons, which can be used exactly like a font.

There are three main button types at our disposal here: the floating action button,
the raised button, and the flat button. They can each be created and customized with
as little as a single line of markup. Before we do so, we have to link our page to the
icons by including the following line of code in the <head> tag of our HTML:

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

The following buttons and icons can then be added to this:

<!-- FLOATING ACTION BUTTONS -->

<i class="material-icons">thumb_up</i>

<i class="material-icons">thumb_up</i>

<!-- RAISED BUTTONS -->
plain button

 <i
class="material-icons left">thumb_up</i>button with icon

Chapter 8

[127]

<!-- FLAT BUTTON -->
flat button

The classes and settings here allow us to create buttons that elevate when hovered
over and to apply the ripple animation we encountered earlier in the book:

An icon can be placed on the right-hand side of a button with the
following code:

<i class="material-icons right">

The material icons that we are using here can be sized, colored, and otherwise
treated like a font and can be included with the following:

<i class="material-icons">icon_name</i>

Although material icons can be sized as a font is, there is a shortcut using which
we can apply size using the tiny, small, medium, and large classes. For example:

<i class="large material-icons">thumb_up</i>

Material Web Frameworks

[128]

A full catalog of all the 750 plus material icons can be found at the following link:
https://materialdesignicons.com/.

A lot more could be written about Materialize, and the documentation on its site at
http://materializecss.com/ is a great place to continue. For now, we have to
take a look at the other frameworks that are available, such as MDL.

Material Design Lite
The Material Design Lite framework, which is made by Google, operates in the same
way as Materialize and most other CSS frameworks by providing CSS and JavaScript
that are written to create material-compliant components and animations.

The Lite descriptor should not be taken to mean that MDL should be considered
as being inferior or pared down. There are fewer components available to us than
in many frameworks but the term Lite refers more to it being lightweight in the
software sense. It has a very low memory overhead and few dependencies. Although
it does have fewer components than other frameworks, it is nevertheless powerful
enough to satisfy the requirements for a vast majority of material designers and
developers. Furthermore, its light weight lends itself to working alongside other
libraries and frameworks.

As with Materialize, MDL can be either downloaded and included in our project
directories, or linked via a content delivery system. Either way, the files can be found
at this link: http://www.getmdl.io/started/index.html.

https://materialdesignicons.com/
http://materializecss.com/
http://www.getmdl.io/started/index.html

Chapter 8

[129]

MDL has a very handy theme preview tool on their site under the CUSTOMIZE tab:

This will generate a min.css file, which you can either download from the center of
the color wheel, replacing the one in your project folder, or edit the link in the head
element of your index.html file to match, for example:

<link rel="stylesheet" href="https://storage.googleapis.com/code.
getmdl.io/1.0.5/material.amber-light_blue.min.css" />

With a theme in place, we can now see how the other common elements of a material
web app are applied, starting as before with layouts.

Layouts and grids
MDL uses a slightly different HTML structure for its grid such that each row is
contained in a nesting div element. The simple two-row structure that we built
earlier in Materialize can be replicated in MDL with the following code:

<div class="mdl-grid">
<div class="mdl-cell mdl-cell--12-col">Twelve columns</div>
</div>

<div class="mdl-grid">
<div class="mdl-cell mdl-cell--3-col">Three columns</div>
<div class="mdl-cell mdl-cell--9-col">Nine columns</div>
</div>

Material Web Frameworks

[130]

There is no container class in MDL, and you will need to provide your own CSS,
for example:

.mdl-grid {
padding: 0!important;
}

.mdl-cell {
padding: 24px 0;
background: #FF8F00;
text-align: center;
}

Hopefully, the similarities and differences between Materialize and MDL are
becoming more apparent, and in the following section, looking at how cards are
implemented in MDL will clarify things further.

Cards
MDL provides more control over components' size and shape than we saw with
Materialize in the last section. As material designers, this means that we have to
consider the principles we learned earlier regarding things such as font size and style,
and image aspect ratios. This makes MDL flexible as well as straightforward to use.

To recreate the card from the previous example using MDL, we need to set the aspect
ratio of the image section with CSS. For example:

.mdl-card {
width: 512px;
}

.mdl-card__title {
color: #FFF;
height: 288px;
background: url('../images/river.jpg') center / cover;
}

Chapter 8

[131]

.mdl-card__menu {
color: #FFF;
}

Here, we chose the values 512 and 288 to create a 16:9 ratio. The freedom this
system gives us means that we can create any ratio we like. The HTML part takes
care of the rest, like this:

<div class=" mdl-card mdl-shadow--2dp">
<div class="mdl-card__title">
<h2 class="mdl-card__title-text">Postcard</h2>
</div>

<div class="mdl-card__supporting-text">
<p>Having a great time</p>
<p>Weather is lovely</p>
<p>Wish you were here xxx</p>
</div>

<div class="mdl-card__actions mdl-card--border">
<a class="mdl-button mdl-button--colored mdl-js-button mdl-js-ripple-
effect">Send
</div>

<div class="mdl-card__menu">
<button class="mdl-button mdl-button--icon mdl-js-button mdl-js-
ripple-effect">
<i class="material-icons">share</i>
</button>
</div>
</div>

Material Web Frameworks

[132]

It is good to that see that with MDL, we can create more suitable shadows and set
elevation in dp using the mdl-shadow class and do not have to estimate the depth as
we did with Materialize. ripple-effect too is very simple to implement as is the
card menu, which also demonstrates how icons are implemented.

The classes provided by MDL cover nearly all our design needs, and as mentioned
earlier, MDL is designed to work alongside other frameworks, a feature particularly
helped by the fact that all MDL classes begin with the mdl- prefix that avoid
any clashes.

We will continue using MDL in the concluding chapters, so this will suffice as an
introduction. MDL provides most of our design needs and is perfect to learn Material
Design for the Web; however, it does have some limitations, and as our expertise
grows, we will find ourselves wanting to explore other avenues, and there is, of
course, a wide selection of tools we could use.

Alternative frameworks and libraries
There are a good number of web frameworks and libraries designed to implement
Material Design and these differ in the number of components they provide and the
levels to which they can be customized. Undoubtedly, the most powerful framework
is polymer.

Polymer is a framework that uses Web Components. These are a set of standards that
allow web developers to reuse and customize widgets and other components in a
way similar to traditional component-based development. Polymer provides a wide
range of these elements, and those that will interest us, as material designers, are the
paper elements.

Polymer is a powerful and flexible tool but it also requires a fair degree of technical
know-how. For example, it is not a simple matter to test your site locally, and you
will need to set up a server with Python, or test on a remotely hosted server.

To install polymer using Bower, use the following:

bower install --save Polymer/polymer#^1.0.0

Paper elements are not part of the default library and have to be installed separately.
The full set of polymer elements can be found at: https://elements.polymer-
project.org/?utm_source=scotch.io.

https://elements.polymer-project.org/?utm_source=scotch.io
https://elements.polymer-project.org/?utm_source=scotch.io

Chapter 8

[133]

The catalog contains the full list of paper elements and these can be installed directly
from the command window with bower install polymerelements/<element>,
for example:

bower install polymerelements/paper-card

Polymer's true power lies in the way elements can be easily customized and the way
data is encapsulated. As a framework, polymer takes more time than most to master,
although the rewards are a far more flexible and powerful tool than the others.

Another all-purpose web framework that contains material elements is Angular JS.
This well-established tool attempts to occupy the middle ground between a library
of JavaScript functions and an empty but complete HTML project. The material
branch of Angular is Angular Material, which can be found at: https://material.
angularjs.org/latest/.

The way in which Angular is implemented is very intuitive. For example, a button
may be customized simply like this:

.md-button {
font-size: 14px;
margin: 16px 8px 16px 8px;
min-width: 72px;
padding: 0 8px 0 8px;
text-align: center;
text-transform: uppercase;
}

www.allitebooks.com

https://material.angularjs.org/latest/
https://material.angularjs.org/latest/
http://www.allitebooks.org

Material Web Frameworks

[134]

There are a growing number of material frameworks, and they are too many to cover
here. If you are interested in looking further into the topic, the following links are
well worth checking out:

•	 Material UI: http://www.material-ui.com/#/home
•	 Bootswatch Paper: http://bootswatch.com/paper/#
•	 MUI: https://www.muicss.com/
•	 Leaf: http://getleaf.com/

As mentioned, we will be using MDL for the remainder of the book but this chapter
and the frameworks' own documentation should be enough to apply the demonstrated
points to any of these frameworks.

Summary
Building material web apps and pages is, in many ways, far easier than mobile
devices. A great deal of the work is done for us. Provided we are happy to accept
out-of-the-box solutions, material web UIs can be assembled in minutes. Frameworks
such as MDL and Materialize are very well documented and very easy to become
familiar with quickly. Many frameworks can work together, allowing us to select the
features we want the most.

Spending the time to master a more sophisticated tool such as polymer is very often
worth the effort, as the level of customization that the framework can provide will
open up a world of possibilities.

Material design is ultimately a visual language and should transcend individual tools
and platforms. It is the principles regarding proportion, light, color, and motion and
not which HTML tag we use or which library we download that make an interface
a material one or otherwise. Material Design websites and apps are becoming more
and more abundant, and as we shall see in the next chapter, the lessons learned in the
earlier part of the book can be applied equally well to desktop screens and the Web;
it is simply a matter of using a different toolset.

http://www.material-ui.com/#/home
http://bootswatch.com/paper/#
https://www.muicss.com/
http://getleaf.com/

[135]

The Materialize Framework
We introduced the Materialize framework in the previous chapter and set up
a project with it. There is a lot more to the framework than we have seen and
it contains extensive CSS and JavaScript elements, as well as many predefined
material components. One of Materialize's greatest strengths is the minimal
amount of code required to implement Material Design. This means that we can
cover a lot of ground in this chapter, as most components and elements can be
demonstrated quickly and easily, starting with the built-in material components.

It should be noted, particularly for those without a lot of experience with
frameworks, that there are many more components available than those covered
here. Web frameworks generally, and not just Material Design ones, make available
all of the commonly found components such as buttons, checkboxes, and sliders.

In this chapter, you will learn how to:

•	 Create a collection list
•	 Add badges to list items
•	 Include a logo and links to a navigation bar
•	 Add a drop-down menu to the navigation bar
•	 Include text input fields
•	 Apply responsive text fields
•	 Generate wave animations
•	 Customize a wave animation
•	 Configure and apply collapsibles
•	 Implement tab divisions of content
•	 Display images with Material box

The Materialize Framework

[136]

Components
Materialize comes with a good collection of material components, such as cards and
buttons, which we saw in the previous chapter as well as how to set them up. As a
reminder, the minimum HTML you will need in your index.html file is as follows:

<!DOCTYPE html>
<head>
<title>Materialize Demo</title>
<link type="text/css" rel="stylesheet" href="css/materialize.min.css"
media="screen,projection"/>
</head>

<body>
 . . .
<script type="text/javascript"
 src="https://code.jquery.com/jquery-2.1.1.min.js">
</script>
<script type="text/javascript"
 src="js/materialize.min.js">
</script>
</body>

The markup for these components is intuitive and very simple to follow and allows
us to produce material-compliant interfaces in next to no time. One of the most
common components on any Web page is item lists.

Lists and badges
Materialize provides the collection class for organizing content into lists.
For example, the following HTML will produce a nicely divided list:

<ul class="collection">
<li class="collection-item">Jellybean
<li class="collection-item">Kit-kat
<li class="collection-item">Lollipop
<li class="collection-item">Marshmallow

It is very easy to add to this setup. For example, the following edit would add a
header to the list.

<ul class="collection with-header">
<li class="collection-header"><h4>Android versions</h4>
<li class="collection-item">Jellybean
 ...

Chapter 9

[137]

Items can be turned into links as shown next:

<div class="collection">
Jellybean
...
</div>

These links can be highlighted with <href="some_link.
html" class="collection-item active">.

One of the most common components on material web pages is the badge. These are
small notifications that are normally used to inform the user that a new or yet unseen
event has occurred, such as a new or unread message from a contact. Badges come in
two flavors: regular and new, as can be seen in the following screenshot:

Badges are very simple to implement, as the following code demonstrates:

<div class="collection">
Adam
Betty1
Carl3
Deborah
</div>

The Materialize Framework

[138]

The list items demonstrated here are very simple and contain only a single line of
text, or a link, but they can be customized to suit more complex purposes using
regular HTML elements, such as <p> and
, to add extra lines, and <src> to
include imagery. In fact, one of Materialize's main advantages is how easy it is to
include familiar HTML structures. This can be very clearly seen in other components
too, such as the navigation bar.

Navigation bars, menus, and icons
We touched briefly on the navigation bar in the previous chapter, but this component
generally makes up a significant part of an interface, as it generally contains top-level
navigation, and requires a closer look.

Materialize allows us to easily add links, icons, and drop-down menus to our
navigation bar, to align elements, and to configure them to work on a variety of
screen sizes.

The preceding screenshot can be generated with the following markup:

<nav>
<div class="nav-wrapper">
Learning Material Design
<ul class="left hide-on-med-and-down">
Android Studio
Materialize
MDL

</div>
</nav>

This code is very straightforward, and we could have had the logo on the right-hand
side and the links on the left, had we omitted right in the third row and left in
the fourth. The use of hide-on-med-and-down ensures that the links will not show
up on medium or smaller screens, and Materialize is so responsive that you can
demonstrate this simply by resizing your browser window. Icons can be included in
the same way as we did in the last chapter.

Chapter 9

[139]

To indicate which page the user is currently on, we can set a link to be
highlighted as current with <li class="active">Materialize</
li>, and this can be seen in the previous screenshot.

As you would imagine, implementing a drop-down menu can be achieved with
very little code, but it is very slightly more involved than the previous elements.

A drop-down menu requires two elements: a definition and an activation.
A definition might look something like this:

<ul id="my_menu" class="dropdown-content">
<a>menu item
<a>menu item
<li class="divider">
<a>menu item

We can then activate this from wherever we want our menu using this markup:

Menu<i
class="material-icons right">arrow_drop_down</i>

In this example, we added text and an icon simply by way of demonstration,
and usually only one of these will be required. Finally, we need to add a little bit
of JavaScript. This can be added anywhere in the code, providing it comes after
jQuery is loaded with the following line:

<script src="https://code.jquery.com/jquery-2.1.1.min.js"/>

The function itself should look like this:

<script type="text/javascript">
 $(document).ready(function(){
 $('.dropdown-button').dropdown();
 });
</script>

Interfaces very often require some form of user input, and the way that Material
Design handles text field input is characteristically intuitive and elegant, as we
shall see next.

The Materialize Framework

[140]

Text input and display
The Material Design approach to user text input is not only attractive, but it also
manages space very efficiently, and clearly informs users as to what is happening
and what is expected of them.

When a material text input field is selected by the user, the input prompt, or
placeholder, slides elegantly up and away from the input area, which itself is then
highlighted. This approach not only uses less space than traditional text input
techniques, but is also highly intuitive.

The preceding input field can be created with markup along the lines of the
following:

<div class="row">
<form class="col s12">
<div class="row">
<div class="input-field col s6">
<input id="place_of_birth" type="text">
<label for="place_of_birth">Place of birth</label>
</div>
</div>
</form>
</div>

A hint can be placed in the input area by using a placeholder definition as shown
as follows:

<input placeholder="A Hint" id="place_of_birth" type="text">

Other inputtypes include password and email, and icons can be added by including
a tag, such as the following one, before the <input> tag:

<i class="material-icons prefix">phone</i>

Chapter 9

[141]

Larger text fields can be produced as shown next:

<textarea id="my_textarea" class="materialize-textarea"></textarea>

Unlike many other material frameworks, Materialize not only dynamically resizes
widgets and frames to suit different screen and window sizes, but can also change
font size and line spacing to make lengthy text read easily on any device. This is
achieved with Materialize's flow-text class, and it will even resize text as the user
resizes a browser window. It can be implemented as shown here:

<p class="flow-text">Lengthy text goes here...</p>

Materialize provides a lot of very useful components, and is one of the most responsive
frameworks available for Material Design. Of course, Material Design really comes into
its own when we apply motion in the form of transitions and animations.

Transitions and motion
One of Material Design's most appealing characteristics is the way elements move.
Having content slide in and out of view allows us to manage data in a way that
keeps the interface as uncomplicated as possible, while allowing users to access
deeper content as and when they choose.

Wave animations
The wave effect is probably the most widely recognized material animation,
and implementing it with Materialize could not be easier. In its simplest form,
it looks like this:

OK

The default implementation provides a gray ripple effect, but the framework
provides seven other colors, plus a simple way to generate our own custom colors
with CSS. The seven provided colors are:

waves-light
waves-red
waves-yellow
waves-orange
waves-purple
waves-green
waves-teal

The Materialize Framework

[142]

They are implemented as shown here:

OK

These colors are fine for very many purposes, but creating our own custom waves
is very simple, as can been seen in the following snippet, which creates an amber
wave effect.

.waves-effect.waves-amber .waves-ripple {
 background-color: rgba(253, 153, 0, 0.7);
}

It is important to set the alpha channel to 70 percent opaque so that the button text
is still visible during the animation.

Waves can also be configured to create a circular pattern, rather than a rectangular
one, by simply adding the waves-circle class, as shown here:

class="waves-effect waves-circle waves-teal

Confirming user interaction with motion is one of Material Design's stronger
features. Another is to use motion to reveal and hide content according to its
relevance. Materialize achieves this very nicely with a set of accordions and
pop-outs called collapsibles.

Accordions and pop-outs
Frames that collapse and expand to hide and reveal information are a very useful
way to organize content, as they keep the interface simple but still allow the user to
access the information that interests them.

Chapter 9

[143]

The preceding screenshot demonstrates how the accordion looks before it is clicked
on, and the following one shows its state once an item has been selected:

The collapsible is contained in an unordered list tag like this:

<ul class="collapsible" data-collapsible="accordion">

Each item is then contained in a tag, as shown as follows:

<div class="collapsible-header"><i class="material-icons">cloud</
i>Tuesday</div>
<div class="collapsible-body"><p>Tuesday will be cloudy with cold
spells
Maximum temperature will be around 5 degrees

Expect
showers later</p></div>

Materialize collapsibles come in two flavors: the inline accordion, as seen earlier,
and a pop-out version that provides a little more emphasis on the selected item,
as shown next:

The Materialize Framework

[144]

To apply a pop-out accordion, simply add the popout class like this:

<ul class="collapsible popout" data-collapsible="accordion">

Collapsibles can also be configured to open with one or more items already visible.
Simply add the active class, as shown here:

<div class="collapsible-header active"><i class="material-
icons">cloud</i>Tuesday</div>

This way, the collapsibles we have touched on here will only open one segment at
a time. However, it is quite possible to have more than one open, and this can be
achieved by changing the class from accordion to expandable like this:

<ul class="collapsible" data-collapsible="expandable">

Expandables and collapsibles are not the only way to neatly organize and hide
content that is not relevant. Another way is through the use of tabs, and as we
will see next, Materialize provides classes to implement material-compliant tabs.

Dividing content with tabs
Tabs are not a new way to divide content, and have their origin in paper stationary.
The only difference with material tabs is their appearance—in particular, the
pleasing way in which the tab underscore animates as it switches from one to
another, and of course, the use of the Roboto family of fonts.

As we have come to expect, the implementation of material tabs is remarkably
simple with Materialize. A structure such as the preceding one can be implemented
with the following HTML:

<div class="row">
<div class="col s12">
<ul class="tabs">
<li class="tab col s3">Monday
<li class="tab col s3">Tuesday

Chapter 9

[145]

<li class="tab col s3">Wednesday
<li class="tab col s3">Thursday

</div>
<div id="mon" class="col s12">Some content</div>
<div id="tue" class="col s12">Tuesday will be cloudy with cold
spells
Maximum temperature will be around 5 degrees

Expect
showers later</div>
<div id="wed" class="col s12">Some content</div>
<div id="thu" class="col s12">Some content</div>
</div>

Just as with collapsibles, tabs can be set as open by default or as disabled and
unavailable to be opened. These can be achieved with the following edits:

<li class="tab col s3">Monday
<li class="tab col s3 disabled">Tuesday

Material design not only provides great ways to display and organize textual
content, it is also a fantastic framework to show off high-quality imagery.

Displaying images
Materialize provides a very cool lightbox-like plugin to display single images and
image carousels. Material box images communicate their interactivity by lightening
up as the pointer moves over them, and once clicked, the image enlarges, centers
itself, and darkens the background.

Adding a single image is very simple and utilizes familiar HTML tags, for example:

<img class="materialboxed" data-caption="A caption" width="640"
height="426" src="images/some-image.jpg">

This defines the size of the image and adds an optional caption at the foot of the
image. This provides a very pleasing way to showcase individual images, but
Material box really comes into its own when displaying a series of images in a slider
or carousel fashion. To implement a carousel, we use the slider and slides classes,
which must be nested as shown:

<div class="slider">
<ul class="slides">
 ...

</div>

The Materialize Framework

[146]

The individual images are expressed as list items and can be defined as shown in the
following example:

<div class="caption left-align">
<h3>A large caption</h3>
<h5 class="light grey-text text-lighten-2">With a smaller subtitle</
h5>
</div>

We could also have used center-align or right-align on the text, which also slides the
caption into view from the appropriate direction.

Material design is very much a visual language, and presenting images elegantly lies
at the very heart of most material interfaces, and Materialize implements this in an
easy-to-follow fashion.

Chapter 9

[147]

Summary
The Materialize framework provides a very good balance between power and
simplicity. With a little knowledge of HTML, attractive interfaces can be put
together very quickly and efficiently.

Another advantage of using a framework like this is that we don't need to overly
concern ourselves with matters such as metrics and typography, because the
material guidelines are applied automatically.

For the more adventurous, Materialize also provides some powerful JavaScript
plugins to track and respond to users' navigation around a page, and to further
customize components.

There are a growing number of user-friendly CSS frameworks for Material Design,
and each has its own advantages and disadvantages. Materialize occupies a position
that sits nicely between ease of use and sophistication. It is easy to pick up, and with
a little effort, complex and beautiful interfaces can be designed.

Another easy-to-learn but powerful framework is Material Design Lite (MDL),
which we encountered briefly in the previous chapter. We will return to MDL in
the next chapter and dig a little deeper to see just what we can achieve with it.

[149]

Material Design Lite
In the last chapter, we saw how the Materialize framework provides an intuitive way
to create material web pages. Material Design Lite (MDL), as we saw in Chapter 8,
Material Web Frameworks, offers a similarly simple mechanism and is probably even
easier to pick up. The reason for this is the slightly different approach used by MDL.
This approach involves starting with standard HTML elements and then adding the
MDL classes. This not only makes it very easy to learn, but also makes it the ideal
tool for adapting our existing web pages into Material Design ones. Perhaps the
best way to think of MDL is as an enhanced set of traditional HTML components.
Another differing feature is how many of the desired effects can be implemented
with some very simple and intuitive CCS.

In this chapter, you will learn how to:

•	 Create a page layout with a transparent header
•	 Add navigation options
•	 Customize the header
•	 Include a side bar
•	 Add tabs
•	 Create a search field
•	 Add drop-down menus
•	 Implement forms
•	 Create floating text labels
•	 Apply pattern attributions
•	 Add tables

Material Design Lite

[150]

Components
Components lie at the heart of Material Design, and despite the framework's claim to
provide only a limited set of components, MDL actually provides a comprehensive
number of them. They have also been designed to meet all the material criteria we
encountered earlier in the book, and in terms of appearance alone, MDL is probably
the most attractive. The framework also provides some very elegant features such as
transparent headers that are not available or easy to implement in other frameworks.

Headers
Most web designs begin with the overall layout, and in Material Design, this nearly
always involves a navigation bar. If we are creating a site that utilizes a lot of vivid
imagery, very pleasing results can be achieved with a transparent navigation bar.
Firstly, it may be worth recapping how we link our index.html code with the
framework, both of which will occupy the same directory:

<!DOCTYPE html>
<html>
<head>
<script src="https://storage.googleapis.com/code.getmdl.io/1.0.0/
material.min.js"></script>
<link rel="stylesheet" href="https://storage.googleapis.com/code.
getmdl.io/1.0.0/material.amber-blue.min.css">
<link rel="stylesheet"href="https://fonts.googleapis.com/
icon?family=Material+Icons">
</head>
<body>
 . . .
</body>
</html>

Note that you should use the .min versions of the framework files for
your published site, and the unzipped versions during development.

Chapter 10

[151]

Navigation bars
MDL is even easier to operate than materialize, when implementing the navigation
bar. We will need the following snippet of CSS, which can either be set inline or in a
separate stylesheet:

<style>
 .my-layout-transparent {
 background: url('my-background.jpg') center / cover;
 }
 .my-layout-transparent .mdl-layout__header,
 .my-layout-transparent .mdl-layout__drawer-button {
 color: white;
 }
</style>

We can now add the following HTML to the body of our page:

<div class="my-layout-transparent mdl-layout mdl-js-layout">
<header class="mdl-layout__header mdl-layout__header--transparent">
<div class="mdl-layout__header-row">
Learning Material Design
<nav class="mdl-navigation">
Android Studio
Materialize
MDL
</nav>
</div>
</header>
</div>

Material Design Lite

[152]

It is more usual in such a layout to have the links right-aligned, and this can be
achieved easily by including a spacer after the title:

<div class="mdl-layout-spacer"></div>

We could, of course, provide the same navigation via a sliding drawer if we chose,
and this can be added after the header, with markup along these lines:

<div class="mdl-layout__drawer">
Learning Material Design
<nav class="mdl-navigation">
Android Studio
Materialize
MDL
</nav>
</div>

We can also set the sidebar to be fixed on wider screens with the following class:

<div class="mdl-layout mdl-js-layout mdl-layout—fixed-drawer">

To create a header that scrolls with the page rather than remaining fixed at the top,
replace the relevant line of code with this one:

<header class="mdl-layout__header mdl-layout__header—scroll">

Alternatively, we can create a header that shrinks when the user scrolls down, but
nevertheless remains visible at all times. This can be achieved with this line:

<header class="mdl-layout__header mdl-layout__header—waterfall">

The CSS component of this waterfall header looks like this:

.my-layout-waterfall .mdl-layout__header-row .mdl-navigation__
link:last-of-type {
 padding-right: 0;
}

Tabs
Depending on the purpose of our page, it may often be preferable to organize
content using tabs. This is equally easy to set up in MDL with the following header:

<header class="mdl-layout__header">
<div class="mdl-layout__header-row">
Learning Material Design
</div>

Chapter 10

[153]

<div class="mdl-layout__tab-bar mdl-js-ripple-effect">
Android
Studio
Materialize
MDL
</div>
</header>

This will produce an output like the following one, along with ripple-effect
animations:

Search fields
Many material web pages, and other types as well, contain a search field in the
header, and these too are simple to include. The following code demonstrates how
this is done:

<div class="mdl-textfield mdl-js-textfield mdl-textfield--expandable">
<label class="mdl-button mdl-js-button mdl-button--icon" for="search-
expandable">
<i class="material-icons">search</i>

Material Design Lite

[154]

</label>
<div class="mdl-textfield__expandable-holder">
<input class="mdl-textfield__input" type="text" id="search-expandable"
/>
<label class="mdl-textfield__label" for="search-expandable">Search
text</label>
</div>

Menus
One of the most effective ways to maintain a clutter-free interface is to hide less used
functions behind menus. This way, a myriad of functionality can take up no more
space than a mere icon.

Menus are easily implemented and can be placed anywhere on a page, but are
usually placed on the navigation bar. We can define the button that triggers the
menu like this:

<button id="my-menu-lower-left"
 class="mdl-button mdl-js-button mdl-button--icon">
<i class="material-icons">more_vert</i>
</button>

With the menu itself implemented this way:

<ul class="mdl-menu mdl-menu--bottom-left mdl-js-menu mdl-js-ripple-
effect"
 for="my-menu-lower-left">
<li class="mdl-menu__item">New Contact
<li class="mdl-menu__item">Settings
<li class="mdl-menu__item">About
<li class="mdl-menu__item">Close

Chapter 10

[155]

For a right-aligned menu, simply use the following class instead:

mdl-menu—bottom-left

To disable a menu item and make it unavailable to the user, simply use
disabled class rather than class. To add a ripple effect to a menu item,
use the following line:

class="mdl-menu mdl-js-menu mdl-js-ripple-effect"

MDL menus do not strictly require CSS, but quite often a little tweaking can
make a nice difference, as shown next:

<style>
 #my-menu-lower-right {
 margin-right: 40%;
 }

 body {
 padding: 24px;
 background: #F3F3F3;
 position: relative;
 }
</style>

Material Design Lite

[156]

Forms
We saw in previous chapters how the Material Design approach to entering text with
floating labels is not only visually appealing, but also preserves information while
using the least possible space.

Floating text labels are very simply implemented within MDL using the <form>
HTML element and the mdl-textfield—floating-label MDL class.

Although there is more to it, at the simplest level, a text field with a floating label can
be defined as follows:

<form action="#">
<div class="mdl-textfield mdl-js-textfield mdl-textfield--floating-
label">
<input class="mdl-textfield__input" type="text" id="my-textfield">
<label class="mdl-textfield__label" for="my-textfield">Enter text
here...</label>
</div>
</form>

The CSS component being as follows:

body {
 padding: 24px;
 background: #FBFBFB;
 position: relative;
}

Chapter 10

[157]

A more traditional text field without a floating title can be produced like this:

<form action="#">
<div class="mdl-textfield mdl-js-textfield mdl-textfield">
<input class="mdl-textfield__input" type="text" id="my-textfield">
<label class="mdl-textfield__label" for="my-textfield">Enter text
here...</label>
</div>
</form>

Often, there are times when we need to be specific about the type of character being
entered, such as a telephone number or zip-code. Input characters can be policed
using a pattern attribute, as shown next:

<form action="#">
<div class="mdl-textfield mdl-js-textfield mdl-textfield--floating-
label">
<input class="mdl-textfield__input"type="text" pattern="-?[0-9]*(\.[0-
9]+)?" id="my-input-field">
<label class="mdl-textfield__label" for="sample4">Telephone
number...</label>
Numbers only
</div>
</form>

Material Design Lite

[158]

A full list of pattern attributes can be found at:http://www.w3.org/TR/html5/
forms.html#the-pattern-attribute. When one line of input is not enough
to suit our purposes, we can use the textarea class. For example:

<div>
<textarea type="text" rows="3" id="my-textarea"></textarea>
<label for="address">Your address</label>
</div>

There are many occasions where the data we want to express or the information we
need from a user are not simply lines of text or numbers, and this is where tables
come into play.

Tables
Tables of mixed content data are one of the most challenging components to present
attractively, but Material Design does a fair job at this task, and in particular, the
MDL version, which can apply shadows and nicely animated checkboxes.

As with other MDL components, we use traditional HTML and then include our
MDL classes to provide the Material Design look and feel, as can be seen in the
following markup:

<table class="mdl-data-table mdl-js-data-table mdl-data-table--
selectable mdl-shadow--2dp">
<thead>
<tr>
<th class="mdl-data-table__cell--non-numeric">Item</th>
<th>Weight</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td class="mdl-data-table__cell--non-numeric">Tea (loose leaf)</td>
<td>250g</td>
<td>$3.99</td>

http://www.w3.org/TR/html5/forms.html#the-pattern-attribute
http://www.w3.org/TR/html5/forms.html#the-pattern-attribute

Chapter 10

[159]

</tr>
<tr>
<td class="mdl-data-table__cell--non-numeric">Coffee (ground)</td>
<td>500g</td>
<td>$4.25</td>
</tr>
<tr>
<td class="mdl-data-table__cell--non-numeric">Chocolate (drinking)</
td>
<td>1kg</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

MDL does not offer quite the range of components that some frameworks do,
but it does implement them very elegantly, and the way it fits in so nicely with
vanilla HTML makes designing web interfaces very quick and easy. Another great
advantage of MDL is that it comes with some very helpful and instructive template
sites. These can be found at: http://www.getmdl.io/templates/index.html.

There are a growing number of CSS and JS frameworks available to the Material
Designer, and of course, for the more adventurous, there is no reason to not implement
it without a framework at all, using our own stylesheets and JavaScript. For most of
us though, frameworks such as MDL provide the perfect balance between power
and simplicity.

http://www.getmdl.io/templates/index.html

Material Design Lite

[160]

Summary
This concludes our look at material frameworks and Material Design as a whole.
Although based largely on traditional design principles, it nevertheless introduces
some very fresh elements to digital design.

Conceived originally for the smaller screens of phones and tablets to portray
a wealth of information in an uncluttered fashion, Material Design can now be
found on all screen sizes from smart watches to giant TV screens.

There are, of course, a lot of ways to organize content neatly and efficiently, but
Material Design offers more in the form of a design language that gives our products
a uniform feel across platforms, while still allowing us to customize and give our
apps and pages a brand identity without breaking the overall feel of Material Design.

At the heart of Material Design lies a set of components, such as cards and floating
action buttons. These behave, as the name suggests, like a form of virtual material,
with physical properties such as thickness and opacity, and exist in a virtual world
where they cast shadows and move as real-world objects do, accelerating and
decelerating as they move.

These principles of motion and light are independent of the tools we use to apply
them, but in this book we have seen which tools are available and learned enough
about them to create interfaces for both mobile apps and web pages.

The Material Design guidelines are covered perfectly well within Google's own
documentation, but they provide nothing on how to implement any of these
concepts with code. The code in this book demonstrates how these principles
can be turned into a working interface, hopefully without straying too far from
the design principles themselves.

Android Studio may have appeared daunting at first, and there is a lot to it, but it is
growing into an increasingly accessible and helpful tool. For anyone with a good feel
for design, it will take only a little perseverance to build on what we have learned
here, and create complex and valuable applications. For the more experienced coder,
hopefully we will have connected the theory of Material Design to the technical
know-how required to put it into practice.

A much smaller part of the book is devoted to applying Material Design to web
apps and pages, and this is partly because the mobile environment is still material's
natural environment. More so because material for the web requires less technical
knowledge to implement, and using CSS frameworks means that we do not have
to concern ourselves with margin widths and the like, as we do with mobile apps.

Chapter 10

[161]

Whether you are building new apps and sites, or adapting existing ones, Material
Design represents a significant shift in how we interact with our devices now, and
how we will in the future.

Hopefully, this book is only the beginning of a long adventure. It can be nothing more
than a starting point, and with a little perseverance anyone can master any and all of
the tools introduced here and create sophisticated material apps and sites in no time.

Material Design is here to stay. It is a wonderfully sweet set of ideas and concepts,
and it is already changing the way we expect our devices to behave. Everyone
involved in writing this book hopes that it has been, and will continue to be,
useful and helpful.

[163]

Index
A
action icons

about 34, 35
URL 34

activities
about 18
XML activities 18

adapters 82-85
Android devices

development environment, setting up 4
emulating 8, 9

Android emulators
about 9
reference link 9

Android SDK
configuring 5-8
reference link 4

Android Studio
installing 4, 5

Android style 12
Android Virtual Device (AVD) 5
Angular Material

URL 133
app bar

action calls, capturing with Java
 code 44-46

actions, applying 42, 43
coding 38
image assets 40-42
layout_height 43
material palette, applying 38, 39
structure 43
styling 38

app bar structure
about 43
desktops 44
rules 43
tablets 44

AppCompat support library 29, 30
AutoTransition 97

B
badges

adding, to list items 136, 137
Bower package manager

installing 119

C
cards

about 85, 86
tiles 87

CardView 85
collapsibles

applying 142-144
configuring 142-144

collection list
creating 136, 137

components, Materialize framework
about 136
badges 136, 137
icons 138
lists 136, 137
menus 138
navigation bar 138
user text, display 140, 141
user text input fields, including 140, 141

[164]

components, MDL
about 150
forms 156-158
headers 150
menus 154, 155
navigation bars 151, 152
search fields 153
tables 158, 159
tabs 152

content
tab divisions, implementing 144, 145

Content Delivery Network (CDN) 119
contextual menus 48-50

D
dataset

connecting 80, 81
densities

categories 66
density-independent pixels (dips) 23
desktop layout structure

exploring 118, 119
dialogs

about 46-51
click listeners 55
material dialog, creating 51, 52

E
elements

hiding 93, 94
revealing 93, 94

F
findViewById() method 33
floating text labels

creating 156-158
forms, MDL 156-158
fragment

about 70
opening 70, 71

G
Genymotion 9
gravity properties 22, 23

H
HAXM 4
header, MDL

about 150
customizing 150

I
images

displaying, with Material box 145, 146
inserting 24
scaling 24

installation, Android Studio 4, 5

J
Java code

used, for capturing action calls 44-46
Java JDK 5

K
keylines, sliding drawers

about 62
ratio keylines 64-66

L
layouts

about 18
LinearLayouts 20-22
managers, adding 82-85
RelativeLayouts 19, 20

Leanback Library 104
LinearLayouts 20-22
list

generating 76, 77
items, adding 78-80

[165]

M
material

about 1
action icons 34, 35
AppCompat support library,

importing 29, 30
applying, to older devices 29
properties 3
theme, applying 30, 31
toolbar, adding 31, 33

Material box
used, for displaying images 145, 146

material color palette generator
reference link 16

Material Design Lite. See MDL
material dialog

action section 53, 54
content 52
creating 51, 52
padding, around title 52

material frameworks
Angular JS 133
Bootswatch Paper, URL 134
Leaf, URL 134
Material UI, URL 134
MUI, URL 134
polymer 132

Materialize
about 117-120
buttons 126-128
cards 125, 126
components 136
file download, URL 120
grids 123, 124
icons 126-128
layouts 123, 124
setting up 120-122
theme, setting 123
transitions 141
URL 128

material theme
about 11, 12
customizing 14, 15
styles, applying 12-14

Material TV
about 104
app structure 106-108
banners 105, 106
DetailsFragment 107
guide, URL 109
recommendation cards 108, 109

MDL
about 117, 128, 149
cards 130-132
components 150
grids 129, 130
layouts 129
template sites 159
URL 128

menus
about 46, 154, 155
contextual menus 48-50
elements, URL 46
options menus 47, 48

N
navigation bar

about 151, 152
drop-down menu, adding 139
link, including 138, 139
logo, including 138, 139

navigation components, sliding drawers
configuration qualifiers 66, 67
metrics 62-64
structure 62-64

navigation drawer
activating 68-70

NavigationView 58
Node Package Manager (NPM)

URL 119

[166]

O
options menus 47, 48

P
page layout

creating, with transparent header 150
polymer

about 132, 133
URL 132

R
ratio keylines 64-66
real device

connecting 10, 11
realistic movement

animating, across activities 101
RecyclerViews 82
RelativeLayouts 19, 20
ripple animation effect

generating 90-92
Roboto

reference link 80

S
scale-independent pixel (sp) 13
screen rotations

performing 26-28
search field, MDL

creating 153
shared components

animating, across activities 98-101
sliding drawers

design 58, 59
fragments, opening 70, 71
functionality 68
implementing 68
keylines 62
layout 59-61
left-sided navigation drawer 72
navigation components 62
navigation drawer, activating 68-70
right-sided drawers 72

SQLite
reference link 81

string resources
defining 25, 26

T
tables, MDL 158, 159
tabs

used, for content division 144, 145
used, for organizing content 152

text input fields
including 140, 141

TouchDelegate
URL 53

touch feedback
about 90
ripple animation effect, generating 90-92

transition animations
about 94
entrances, managing 95-97
exits, managing 95-97
realistic movement 101, 102
shared components, animating

across activities 98-101
TransitionManager

about 94
using 95

translation 25, 26

W
wave animations

generating 141
wearable devices

about 110
cards 115
connecting to 110-112
different shaped screens, managing 113-115
layouting 115
URL 111

Thank you for buying
Learning Material Design

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3
to adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size.

2.	 Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations.

3.	 Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers.

Creating Flat Design Websites
ISBN: 978-1-78398-004-8 Paperback: 112 pages

Design and develop your own flat design websites
in HTML

1.	 Learn what flat design is and how you can
create your own flat design projects.

2.	 Discover how to create flat designs without
losing any functionality or ease of use.

3.	 Learn how to develop your HTML website
using frameworks to save time.

Please check www.PacktPub.com for information on our titles

HTML5 and CSS3 Responsive
Web Design Cookbook
ISBN: 978-1-84969-544-2 Paperback: 204 pages

Learn the secrets of developing responsive websites
capable of interfacing with today's mobile Internet
devices

1.	 Learn the fundamental elements of writing
responsive website code for all stages of the
development lifecycle.

2.	 Create the ultimate code writer's resource using
logical workflow layers.

3.	 Full of usable code for immediate use in your
website projects.

Mastering Responsive
Web Design
ISBN: 978-1-78355-023-4 Paperback: 334 pages

Push your HTML and CSS skills to the limit and build
professional grade, responsive websites

1.	 Take your RWD skills to the next level with
HTML5 and CSS3 best practices that will give
you a solid foundation to build out from.

2.	 Harness the power of the CSS pre-processor
Sass to speed up the creation of your CSS.

3.	 Each chapter dives deep in to different aspects
of RWD and is designed to get you up to speed
with the latest developments in professional
web design.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Material Design
	Material properties
	Setting up a development environment
	Installing Android Studio
	Configuring the Android SDK
	Emulating Android devices
	Connecting a real device

	The material theme
	Applying styles

	Customizing the material theme
	Summary

	Chapter 2: Building a Mobile Layout
	Activities and layouts
	RelativeLayouts
	LinearLayouts
	Gravity properties
	Inserting and scaling images
	Strings and translation
	Screen rotation

	Applying material to older devices
	The AppCompat support library
	Applying the material theme
	Adding a material toolbar
	Action icons

	Summary

	Chapter 3: Common Components
	App bar style and code
	Applying a material palette
	Image assets
	Applying actions
	The app bar structure
	Phones
	Tablets and desktops

	Capturing action calls with Java code

	Menus and dialogs
	Menus
	Options menu
	Contextual menus

	Dialogs
	Creating a material dialog
	Click listeners

	Summary

	Chapter 4: Sliding Drawers and Navigation
	Drawer design
	The layout
	Navigation components and keylines
	Structure and metrics
	Ratio keylines
	Configuration qualifiers

	Drawer functionality
	Activating the navigation drawer
	Opening fragments
	Other sliding drawers

	Summary

	Chapter 5: Lists, Cards, and Data
	Generating lists
	Adding list items
	Connecting a dataset
	Layout managers and adapters

	Cards
	Tiles

	Summary

	Chapter 6: Animations and Transitions
	Touch feedback
	Ripple animations

	Revealing and hiding
	Transitions
	Exits and entrances
	Shared components
	Realistic movement

	Summary

	Chapter 7: Material on Other Devices
	Material TV
	Banners
	TV app structure
	Recommendation cards

	Wearable material
	Connecting to a Wearable device
	Managing differently shaped screens
	Wearable layouts

	Summary

	Chapter 8: Material Web Frameworks
	Desktop layouts
	Package management
	Materialize
	Setting up
	Material theme
	Layouts and grids
	Cards
	Buttons and icons

	Material Design Lite
	Layouts and grids
	Cards

	Alternative frameworks and libraries
	Summary

	Chapter 9: The Materialize Framework
	Components
	Lists and badges
	Navigation bars, menus, and icons
	Text input and display

	Transitions and motion
	Wave animations
	Accordions and pop-outs
	Dividing content with tabs
	Displaying images

	Summary

	Chapter 10: Material Design Lite
	Components
	Headers
	Navigation bars
	Tabs
	Search fields
	Menus
	Forms
	Tables

	Summary

	Index

