
www.allitebooks.com

http://www.allitebooks.org

Learning Node.js for Mobile
Application Development

Make use of Node.js to develop of a simple yet scalable
cross-platform mobile application

Stefan Buttigieg

Milorad Jevdjenic

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Node.js for Mobile Application Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1231015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-049-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Stefan Buttigieg

Milorad Jevdjenic

Reviewers
Danny Allen

Alex (Shurf) Frenkel

Siddique Hameed

Prasanna Ramanujam

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Sumeet Sawant

Technical Editor
Tejaswita Karvir

Copy Editor
Vedangi Narvekar

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Stefan Buttigieg is a medical doctor, mobile developer, and entrepreneur. He
graduated as a doctor of medicine and surgery from the University of Malta. He is
currently enrolled at the University of Sheffield, where he is pursuing a master's
degree in health informatics. He has more than 5 years of experience working in
international medical students' organizations, where he occupied various technical
positions. He founded MD Geeks, an online community that brings together health
professionals, developers, and entrepreneurs from around the world to share their
passion for the intersection of healthcare and information technology. He is mostly
interested in mobile development, especially for the Android and iOS platforms,
open source healthcare projects, user interface design, mobile user experience, and
project management.

Milorad Jevdjenic is a programmer, open source enthusiast, and entrepreneur.
He studied computer science at the University of Gothenburg with a focus on formal
verification methods. Currently, he works as a software developer in the medical
sector and also does independent commercial and pro bono consulting. Milorad is
passionate about technology. He looks upon open source, and open standards
in particular, as the fundamental drivers that are needed to build better societies.
When he is not on the computer tinkering with code, he enjoys hiking, sports,
and fine whiskey.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Danny Allen is a full stack web developer with a focus on user experience design
and implementation. He is a founder and director of the international consultancy,
Wonderscore Ltd.

Skilled across a wide range of backend and frontend technologies, including Python
and Django, JavaScript, AngularJS, Node.js, HTML5, and CSS3, his recent work has
involved e-learning and government projects in the United Kingdom.

Danny currently lives and works in Barcelona, Spain.

His portfolio and contact details can be found at http://dannya.com.

Alex (Shurf) Frenkel has been working in the field of web application
development since 1998 (the beginning of PHP 3.x). He has an extensive experience
in system analysis and project management. Alex is a PHP 5.3 Zend Certified
Engineer (ZCE) and is considered to be one of the most prominent LAMP
developers in Israel. He is also a food blogger. You can view his blog by
visiting http://www.foodstuff.guru.

In the past, Alex was the CTO of ReutNet, one of the leading Israeli web technology
-based companies. He also worked as the CEO/CTO of OpenIview LTD, a company
built around the innovative idea of breaching the IBM Mainframe business with PHP
applications, and as a CTO and chief architect of a start-up named GBooking. He
also provided expert consulting services to different companies regarding various
aspects of web-related technology.

www.allitebooks.com

http://dannya.com
http://www.foodstuff.guru
http://www.allitebooks.org

Frenkel-Online is a project-based company that works with a number of professional
freelance consultants in Israel and abroad. Currently, their permanent staff comprises
several professionals from Israel and abroad for the company's PHP projects, and a
changing number of specialists in other programming languages
for the rest of the projects.

FoodStuff.Guru is a pet project that brings not only high-style food, but also common
food, to the web so that it can be reviewed by people for the people. The blog is
multilingual and can be viewed by visiting http://www.foodstuff.guru.

Siddique Hameed is currently working as a full-stack engineer on Simplify
Commerce (http://simplify.com), a payment gateway platform from MasterCard.
In his diverse career experience, he has crafted software for Fortune 500 companies
as well as startups with industry domains ranging from commerce, social media,
telecom, bio-informatics, finance, publishing, insurance, and so on.

He is a passionate technologist who actively contributes to open source projects.
He speaks frequently at tech events and meet-ups and mentors the participants
of hackathons and code boot camps.

His current focus areas include AngularJS, Ionic, Node.js, HTML5, CSS3, Cloud
computing, mobile applications, and the Internet of Things (IoT). In his spare
time, he likes to tinker with the Raspberry Pi and build DIY gadgets.

I dedicate this to my mom, dad, my beloved wife, Farzana, and my
wonderful daughters, Fareeha and Sameeha!

www.allitebooks.com

http://www.foodstuff.guru
http://simplify.com
http://www.allitebooks.org

Prasanna Ramanujam is a software engineer. He has a master's degree in
software engineering. He is a full-stack developer, and he has been a Node.js
developer since the release of Node.js version 0.2. He has helped architect and scale
the Node.js application at companies in Silicon Valley. He has also published many
private and public NPM modules.

He is passionate about building high-availability systems. He likes to work on
asynchronous programming, distributed computing, and NoSQL databases. He also
likes music, skiing, and water sports. He can be found on Twitter at @prasanna_sr.

I would like to thank my family members and friends for
supporting me.
Also, my sincere thanks to Pooja Mhapsekar and the other members
from Packt Publishing for giving me this opportunity as well as
Shweta Birwatkar for coordinating with me throughout the journey.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Setting Up Your Workspace 1

The Node.js backend 1
Installing Node.js on different systems 2

Windows 2
Linux 3
Ubuntu/Debian 3
Fedora/RHEL/CentOS 3
Verifying your installation 3
Mac OS X 4
Verifying your installation 4

Setting up the Ionic framework and Cordova for Mac OS X 5
Setting up the Ionic framework and Cordova for Windows 6

Setting up the platform dependencies 7
Installing Java 7

Setting up Android Studio for Android, Mac, and Windows 8
Setting up the Android Software Development Kit 10
Setting up your physical Android device for development 11

Enabling Developer options 11
Enabling USB debugging 12
Trusting a computer with installed IDE using secure USB
debugging (devices with Android 4.4.2) 12

Setting up the Environment Variables on Windows 7 and higher 12
Setting up the Environment Variables for iOS on Mac OS X 13

Installing the iOS SDK 13
MongoDB 13

Installation of MongoDB on different Operating System 14
Windows 14
Linux 15

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Ubuntu 15
Fedora/RHEL/CentOS 15

Starting MongoDB 16
Mac OS X 16
Windows 18
Linux and OS X 18

Summary 19
Chapter 2: Configuring Persistence with MongoDB 21

Learning outcomes of MongoDB 21
An introduction to MongoDB 22

Documents 22
Collections 23
Databases 23
An example – a product order database 23

Connecting to MongoDB 24
Linux and Mac OS X 24
Windows 24

Creating a database 24
Creating our collections 25
Creating relations between documents 28
Querying MongoDB 30

Searching by ID 30
Searching by property value 31

Advanced queries 32
Connecting MongoDB and Node.js 32

Setting up a basic project 32
Connecting to MongoDB 34

Summary 36
Chapter 3: Creating an API 39

Learning outcomes of the RESTful API 39
RESTing easy 39
It's all hypermedia 40

GET 41
GET all 41
GET by ID 41

POST 42
PUT 42
DELETE 43

Building a RESTful API with Node.js 43
Setting up the RESTful API 43

Table of Contents

[iii]

The HTTP module 44
Dissecting the HTTP server 45
Returning JSON 46

Implementing our GET handlers 47
Implementing a router 47
Implementing our POST handlers 49
Implementing the DELETE and PUT handlers 51
Testing the API 51

Moving forward 54
Summary 55

Chapter 4: Securing Your Backend 57
Understanding the outcomes of token-based authentication 57

The theoretical bit 57
A small token of trust 58
Playing your role 58
Putting it all together 58
Implementation 59

Adding the new collections 59
Adding an authentication module 60

Creating functions to register and help users log in 61
Registering users 61
Enabling users to log in 62

Extending our API 64
OAuth 66
Time-stamped access tokens 67
Hashing passwords 67

Summary 68
Chapter 5: Real-Time Data and WebSockets 69

Polling 70
WebSockets 70
Using WebSockets in Node.js 70

Setting up our project 70
Installing socket.io 71
Creating a chat interface 71
A basic file server 74

An alternate chat 76
The efficient serving of static files 76
Summary 76

Table of Contents

[iv]

Chapter 6: Introducing Ionic 77
Setting up your Ionic web account 77
Creating your first Ionic application 79
Checking out your Ionic applications with Ionic View 80

Installing Ionic View on Android 80
Installing Ionic View on iOS 81
Testing your application on the iOS Ionic
View App 83
Testing your application on Android 84
Sharing your application with collaborators 86

Going further 87
Summary 87

Chapter 7: Building User Interfaces 89
The structure of an Ionic project 89
Introducing AngularJS 91

The structure of an Angular app 92
Modules 92

Modules within modules within modules 92
Services, controllers, and other beasts 93

The Angular MVC pattern 93
The view 94
The controller 94
The model 94

Putting it all together 95
Modifying an Ionic project 95

Modifying the header 95
Modifying the tab colour, icons, and names 96
Modifying our pages 96

Adding a new tab 98
Creating a new controller 98
Creating a view 98
Adding a state for the new tab 99
Testing the newly created tab 100

Going further 101
Summary 101

Chapter 8: Making Our App Interactive 103
Creating a new project 103
Creating a basic MVC project 104

Creating the view 104
Creating the list view 105

Table of Contents

[v]

Creating the controller 107
Connecting the view and controller 108
Testing the connection 111
Creating the model 112

Services 112
Creating a factory 114

Accessing the device data 115
Accessing native services 115
ngCordova 116
Adding Cordova contacts to our factory 116

Building for native devices 118
Android 118

Emulator 118
A physical device 119

The list view revisited 119
Summary 121

Chapter 9: Accessing Native Phone Features 123
Creating the project 123

Creating the basic app structure 125
Integrating Google Maps into the app 127

Angular directives 131
Creating directives 131
Restricting directives 131
Scope isolation 132
DOM manipulation 133

Putting it all together 135
Adding geolocation via GPS 136
Summary 137

Chapter 10: Working with APIs 139
Setting up Parse 139
Setting up the Ionic project 142
Connecting Parse to our project 142

Defining app states 145
Creating controllers and templates 146

Testing our application 149
Summary 150

Chapter 11: Working with Security 151
An overview of client-side security 151

Client-side security is a convenience 151
The basic components of client-side security 152

Table of Contents

[vi]

Building a secure app 153
Starting off 153
A basic authentication service 160

The login function 160
The isAuthenticated function 162

The getCurrent function 162
Implementing route authentication 162

Summary 166
Chapter 12: Working with Real-Time Data 167

A refresher – WebSockets 167
Getting the lay of the land 168

What we will need 168
Creating the server 168
Building the chat app 172

Setting up the basic app structure 172
The input section 176
The message view 177
The ChatService function 179
Adding WebSockets to the mix 180
Updating the chat view 181

Going further 184
Summary 184

Chapter 13: Building an Advanced Chat App 187
We need some room! 187
Namespaces 188
Creating a multiroom chat application 191

Configuring the basic layout 192
Building the server 201

Summary 203
Chapter 14: Creating an E-Commerce Application
Using the Ionic Framework 205

Designing our application 205
Creating an Ionic project 206
Implementing our designs 206
Setting up the product API 212
Connecting the product API to our Ionic app 213

Summary 217
Index 219

[vii]

Preface
Node.js is a massively popular JavaScript library that lets you use JavaScript to
easily program scalable network applications and web services. People approaching
Node.js for the first time are often attracted by its efficiency, scalability, and the fact
that it's based on JavaScript, the language of the Web. This means that developers can
use the same language to write backend code. Also, it's increasingly being looked upon
as a modern replacement for PHP in web development, which relies on fast-paced data
exchange. This growing community and the large amount of available modules makes
Node.js one of the most attractive development environments.

What this book covers
Chapter 1, Setting Up Your Workspace, explains how to set up your work environment
to develop cross-platform applications by using the Ionic framework as the frontend
tool, Node.js for the backend, and the integrated development environment, Atom.

Chapter 2, Configuring Persistence with MongoDB, goes through the necessary
configurations that are needed to make an instance of MongoDB work with Node.js.
You will learn how to set up security and a database, install the relevant MongoDB
driver for Node.js, and communicate with the database from a Node.js instance.

Chapter 3, Creating an API, looks at how we can set up a uniform interface for sending
and receiving data and basic functionality on the Node.js server by building an
API (Application Programming Interface) that exposes it. We will cover the basic
REST topics and show you how to configure routes to perform simple read/write
operations on our data.

Chapter 4, Securing Your Backend, shows that this type of remedies can be achieved by
building a basic security mechanism in order to control user access. Specifically, we
will deal with token-based authentication and show you how this makes it easy to
limit access to your backend. In doing so, we will introduce the concept of roles and
how they figure in our authentication scheme.

Preface

[viii]

Chapter 5, Real-Time Data and WebSockets, shows you how to enable real-time
data communication using WebSockets. This will allow your server to directly
communicate with connected clients without having to perform polling on
the client side.

Chapter 6, Introducing Ionic, covers all the basic essentials that are needed to set up a
working environment, which is required to efficiently create and share Ionic apps.

Chapter 7, Building User Interfaces, takes the template project that we created in the
past few chapters and modifies it to something closer to what we envisioned by
altering the appearance of the user interface. In addition to this, we will also start
experimenting with the Ionic project code to deeply understand what the project
is made up of.

Chapter 8, Making Our App Interactive, covers a lot of ground, going into the details
of AngularJS and learning more about the interaction of the model, view, and
controller. We will also see how to use the Cordova plugins and ngCordova in
order to access native features. Finally, we will also have a look at how to create
services and use them in order to serve data to the users.

Chapter 9, Accessing Native Phone Features, discusses how to directly work with the
Google Maps API in order to render and work with maps.

Chapter 10, Working with APIs, explores how to access external APIs in order to
send and retrieve data. You will learn how to encode/decode data to/from JSON
in our app in order to provide a standard interface for processing.

Chapter 11, Working with Security, introduces the concept of security in mobile
apps in the context of authenticating and authorizing local users. We will have a
look at how to implement a common login feature, which contacts a remote server
(run by Node.js, of course!) in order to verify that a given pair of user credentials is
correct. We then use this information in order to grant the user access to the rest of
the application.

Chapter 12, Working with Real-Time Data, covers how to set up WebSocket
communication through the mobile app in order to subscribe to dynamic
notifications from a server. We will elaborate on how this helps us develop truly
dynamic applications, such as chat apps. This chapter will further introduce the
concept of push notifications, which will allow our app to get updates from a
server on a dynamic basis.

Preface

[ix]

Chapter 13, Building an Advanced Chat App, expands this mobile app and makes it
more advanced by adding the features of chat rooms and notifications. In doing
so, we will demonstrate how the concept of namespacing works on socket.io,
which is one of the most important aspects of this library.

Chapter 14, Creating an E-Commerce Application Using the Ionic Framework, brings
together the knowledge that you have accumulated from this book and implements
it in an easy-to-use Ionic framework that can be used in your very own projects.

What you need for this book
You'll need the following software:

• Android Studio
• Android Software Development Kit
• The Ionic framework
• MongoDB
• Atom
• XCode

Who this book is for
This book is intended for web developers of all levels of expertise who want to deep
dive into cross-platform mobile application development without going through the
pain of understanding the languages and native frameworks that form an integral
part of developing for different mobile platforms.

This book is also for developers who want to capitalize on the Mobile First strategy
and who are going to use JavaScript for their complete stack.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[x]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

angular.module('supernav.controllers', [])
.controller('MapCtrl', function ($scope) {
 $scope.mapCreated = function (map) {
 $scope.map = map;
 };
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

.state('app.scala', {
 url: '/scala',
 views: {
 'scala-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'scala';
 }
 }
 }
 }
});

Any command-line input or output is written as follows:

console.log('Hello World!');

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Conclude this process by clicking on Create Column, and we are done!".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/1453OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/1453OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1453OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[xii]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

[1]

Setting Up Your Workspace
The overarching goal of this book is to give you the tools and know-how needed
to efficiently construct modern, cross-platform solutions for your users. In this
chapter, we will focus on the tools themselves, showing you how to bootstrap your
development environment to tackle the challenges that we have in store for you in
the remainder of the book. We will also give you a brief introduction to each tool in
order to give you an idea about why they fit into your toolchain. If any such detail
seems unclear at this point, do not worry. We will delve into everything you need to
know about each tool in the relevant parts of the book.

After reading this chapter, you will know how to install, configure, and use the
fundamental software components that we will use throughout this book. You
will also have a good understanding of why these tools are appropriate for the
development of modern apps.

The Node.js backend
Modern apps have several requirements, which cannot be provided by the app
itself, such as central data storage, communication routing, and user management.
In order to provide such services, apps rely on an external software component
known as the backend. The backend will be executed on one or more remote servers,
listen to network requests from the devices that run the app, and provide them
with the services that requests require.

Setting Up Your Workspace

[2]

The backend that we will use in this book is Node.js, a powerful but strange beast
in its category. Node.js, at the time of writing this book, is the only major backend
that is written almost entirely in JavaScript, which in reality is a frontend scripting
language. The creators of Node.js wanted a backend that could be integrated with
the apps written in JavaScript as seamlessly as possible, and you cannot get much
closer to that than Node.js. Beyond this, Node.js is known for being both reliable
and high-performing.

In terms of architecture, Node.js is highly modularized and designed from the
ground up to be extendable through plugins or packages. Node.js comes with its
own package management system, Node Package Manager (NPM), through which
you can easily install, remove, and manage packages for your project. You will see
how to use NPM in order to install other necessary components later in this chapter.

Installing Node.js on different systems
Node.js is delivered as a set of JavaScript libraries, executing on a C/C++ runtime
built around the Google V8 JavaScript Engine. The two come bundled together for
most major operating systems (OS), and we will look at the specifics of installing it
in the following sections.

Google V8 JavaScript Engine is the same JavaScript engine that is used
in the Chrome browser, which is built for speed and efficiency.

Windows
For Windows, there is a dedicated MSI wizard to install Node.js, which can be
downloaded from the project's official website. To do so, go to the main page,
navigate to Downloads, and then select Windows Installer. After it has downloaded,
run the MSI wizard, follow the steps to select the installation options, and conclude
the install. Keep in mind that you will need to restart your system in order to make
the changes effective.

Chapter 1

[3]

Linux
Most major Linux distributions provide convenient installs of Node.js through their
own package management systems. However, it is important to keep in mind that
for many of them, Node Package Manager (NPM) will not come bundled with the
main Node.js package. Rather, it is provided as a separate package. We will show
how to install both in the following section.

Ubuntu/Debian
Open a terminal and issue sudo apt-get update to make sure that you have the
latest package listings. After this, issue apt-get install nodejsnpm in order to
install both Node.js and NPM in one swoop.

Fedora/RHEL/CentOS
On Fedora 18 or later, open a terminal and issue sudo yum install nodejsnpm.
The system will do the full setup for you.

If you are running RHEL or CentOS, you need to enable the optional EPEL
repository. This can be done in conjunction with the install process, so that you
do not need to do it again while upgrading the repository, by issuing the
sudo yum install nodejsnpm --enablerepo=epel command.

Verifying your installation
Now that we have finished the install, let's do a sanity check and make sure that
everything works as expected. To do so, we can use the Node.js shell, which is an
interactive runtime environment for the execution of JavaScript code. To open it,
first open a terminal, and then issue the following to it:

node

This will start the interpreter, which will appear as a shell, with the input line
starting with the > sign. Once you are in it, type the following:

console.log("Hello world!);

Then press Enter. The Hello world! phrase should appear on the next line.
Congratulations, your system is now set up for the running of Node.js!

Setting Up Your Workspace

[4]

Mac OS X
For OS X, you can find a ready-to-install PKG file by going to www.nodejs.org,
navigating to Downloads, and selecting the Mac OS X Installer option. Otherwise,
you can click on Install, and your package file will automatically be downloaded:

Once you have downloaded the file, run it and follow the instructions on the screen.
It is recommended that you keep all the default settings offered unless there are
compelling reasons for you to change something with regard to your specific machine.

Verifying your installation
After the install finishes, open a terminal and start the Node.js shell by issuing
the following command:

node

This will start the interactive node shell, where you can execute JavaScript code.
To make sure that everything works, try issuing the following command to
the interpreter:

console.log("hello world!");

www.nodejs.org

Chapter 1

[5]

After pressing the Enter key, the hello world! phrase will appear on your screen.
Congratulations, Node.js is all set up and good to go!

Setting up the Ionic framework and
Cordova for Mac OS X
After installing Node.js on your Mac, proceed to open your command-line
application and input the following command:

$ sudonpm install -g ionic

After inputting this command, you will be prompted to input your password as
shown in the following screenshot:

If you have already set up the permissions for npm on OS X, you can install Ionic with
the following command:

$ npm install -g ionic

Setting Up Your Workspace

[6]

The preceding command line should result in the following output:

Installing Cordova on OS X is very similar to installing Ionic. You can run the
following command to install Cordova:

$ sudonpm install -g cordova

Setting up the Ionic framework and
Cordova for Windows
Once you have installed Node.js, install Ionic on your Windows machine. The rest
should be straightforward.

Open the command prompt and check whether you have npm installed by running
the following command:

npm

Once you have ensured that you have successfully installed npm, you can go ahead
and run the following command:

npm install -g ionic

Chapter 1

[7]

This step should result in an output, which shows that you have successfully
installed Ionic.

In order to install Cordova, you can also use npm and run the following command:

npm install -g cordova

Once you receive a successful output, you can go ahead and start setting up the
platform dependencies.

An experimental setup for Windows:
In Windows, you will have the opportunity to set up a Vagrant
package, which is a one-stop-shop for the installation of Ionic on your
Windows machine. This is accessible at https://github.com/
driftyco/ionic-box.

Setting up the platform dependencies
To set up the platform dependencies, you need to install Java, which is explained in
the following section.

Installing Java
If you do not have Java installed or if your version is below 6.0, install the Java
JDK by heading over to http://j.mp/javadevkit-download, a customized and
shortened link, and choosing the version that applies to you.

The main recommendation for these projects is that you install a version of JDK
6.0 or higher.

Select the JDK for your OS. On an Intel-based Mac, you can use the following useful
table to check whether your Mac is a 32- or 64-bit OS.

You can check for Processor Name by clicking on the Apple logo in the top-left
corner of your screen, followed by About my Mac:

Processor Name 32- or 64-bit
Intel Core Solo 32 bit
Intel Core Duo 32 bit
Intel Core 2 Duo 64 bit
Intel Quad-Core Xeon 64 bit
Dual-Core Intel Xeon 64 bit

https://github.com/driftyco/ionic-box
https://github.com/driftyco/ionic-box
http://j.mp/javadevkit-download

Setting Up Your Workspace

[8]

Processor Name 32- or 64-bit
Quad-Core Intel Xeon 64 bit
Core i3 64 bit
Core i5 64 bit
Core i7 64 bit

In the case of Windows, if you have a machine that was purchased in the last few
years, you should go for the x64 (64-bit) version.

Setting up Android Studio for Android,
Mac, and Windows
To set up Android Studio for Android, Mac, and Windows, follow these steps:

1. Go to the Android Developers site by visiting http://developer.android.
com.

2. Click on Android Studio, where you will be directed to the landing page.
Your operating system's version will be detected automatically:

http://developer.android.com
http://developer.android.com

Chapter 1

[9]

3. Accept the terms and conditions of the Software Use Agreement and
click on Download:

4. For Mac, double-click on the downloaded file, follow the prompts, and then
drag the Android Studio icon into your Applications folder:

www.allitebooks.com

http://www.allitebooks.org

Setting Up Your Workspace

[10]

5. For Windows, open the downloaded file, and then go through the Android
Studio Setup Wizard to complete the install.

Setting up the Android Software
Development Kit
The process of setting up the Android Software Development Kit (SDK) has
improved vastly with the introduction of Android Studio, as a number of software
packages come pre-installed with the Android Studio install package. As a part of the
preparation for getting started with our Android projects, it will be very helpful to
understand how one can install (or even uninstall) SDKs within Android Studio.

There are a number of ways of accessing the SDK Manager. This can be done from
the main toolbar of Android Studio:

Otherwise, it can be accessed from the Start menu by navigating to
Configure—SDK Manager:

Chapter 1

[11]

This is what the SDK Manager looks like. If you need to install a package, you need
to check the mark of that particular package, click on Install packages, and then
finally accept the licenses:

Setting up your physical Android device
for development
The following are the three main steps that need to be taken in order to enable
your Android Device for development:

1. Enable Developer options on your specific Android device
2. Enable USB debugging
3. Provide your computer with the necessary trust credentials with the installed

IDE via secure USB debugging. (devices with Android 4.4.2)

Enabling Developer options
Depending on your device, this might vary slightly, but as from Android 4.2 and
higher, the Developer options screen is hidden by default.

To enable it, navigate to Settings | About phone and click on the Build number
seven times. You will find Developer options enabled when you return to the
previous screen.

Setting Up Your Workspace

[12]

Enabling USB debugging
USB debugging enables the IDE to communicate with the device via the USB port.
This can be activated after enabling Developer options and is done by checking
the USB debugging using the following this path:

Settings—Developer Options—Debugging—USB debugging

Trusting a computer with installed IDE using
secure USB debugging (devices with Android
4.4.2)
You have to accept the RSA key on your phone or tablet before anything can
flow between the device via the Android Debug Bridge (ADB). This is done by
connecting the device to the computer via USB, which triggers a notification
entitled Enable USB Debugging?

Check off Always allow from this Computer and click on OK.

Setting up the Environment Variables on
Windows 7 and higher
Using Ionic and Cordova to build an Android app might require a modification to
the PATH environment on Windows. This can be done with the following steps:

1. Right-click on My Computer and then click on Properties.
2. Click on Advanced System Settings in the column to the left.
3. In the resulting dialog box, select Environment Variables.
4. Select the PATH variable and click on Edit.
5. Append the following to the PATH based on where you installed the SDK:

;C:\Development\adt-bundle\sdk\platform-
tools;C:\Development\adt-bundle\sdk\tools

Chapter 1

[13]

Setting up the Environment Variables for
iOS on Mac OS X
Developing for iOS requires you to develop from a machine that runs on Mac OS X.
At this point in time, it's not possible to develop iOS applications from Windows.
In the following steps, we will outline how to get started with developing Ionic
apps for iOS.

Installing the iOS SDK
The following are two ways that can be used to download Xcode:

• From the App Store, search for Xcode in the App Store application
• It is available at Apple Developer Downloads, which requires you to

register as an Apple Developer.

Command-line tools are integrated within Xcode. Previously, this was installed
separately. Once you've downloaded and installed Xcode, you are prepared to
handle iOS projects from a machine that has Mac OS X enabled.

MongoDB
In order to store data related to your app and users, your server will need a
database—a piece of software that is dedicated solely to data storage and retrieval.

Databases come in many variants. In this book, our focus is NoSQL databases,
which are so named because they don't use the traditional table-oriented SQL
data access architecture that is used by the more well-known relational databases,
such as Oracle, MySQL, and PostgreSQL. NoSQL databases are very novel in their
design and features and excellent for the tackling of the challenges that one may
face in modern app development.

The NoSQL database that we will use throughout this book is MongoDB (it is often
abbreviated as MDB or simply Mongo). MongoDB is a document-oriented database
that which stores data in documents, which are data structures that are almost
identical to the standard JSON format.

Let's have a look at how to install and get MongoDB running. If you have used a
more traditional DB system, you may be surprised at how easy it is.

Setting Up Your Workspace

[14]

Installation of MongoDB on different
Operating System
MongoDB comes in the form of a package for most major OS and versions.

Windows
MongoDB ships with a complete MSI for installation on Windows systems. To
download it, go to the project's official website, www.mongodb.org, navigate to
Downloads, and select the Windows tab. You will be offered the following three
choices to download:

• Windows 64-bit R2+: Use this if you are running Windows Server 2008,
Windows 7 64-bit, or a newer version of Windows

• Windows 32-bit: Use this if you have a 32-bit Windows installation that is
newer than Windows Vista

• Windows 64-bit legacy: Use this if you are using Windows Vista 64-bit,
Windows Server 2003, or Windows Server 2008.

MongoDB does not run on Windows XP at all.

After you have downloaded the MSI, run it with administrator privileges in order
to perform the installation. The installation wizard will give you a default location
where MongoDB will be installed—C:/mongodb/. You can change this if you desire,
but it is recommended that you keep it as we will assume that this is the location
where MongoDB resides for the remainder of the book.

After the installation has finished, the next step is to configure a data directory
where MongoDB can store the data that we will feed it with. The default location
for this directory is /data/db. We will need to make sure that this directory exists
and is writeable before we start our MongoDB instance for the first time. So, fire
up the command prompt with administrator privileges and issue the md/data/
dbcommand. After doing so, we are good to start the database server itself. To do
so, stay in the command prompt and issue the following command:

C:/mongodb/bin/mongodb.exe

You should receive a confirmation that MongoDB is now running and listening for
connections. All is set!

www.mongodb.org

Chapter 1

[15]

Linux
On Linux, you will find MongoDB ready-packaged on most major distributions.
However, we strongly recommend that you use the project's own repositories in
order to make sure that you always have access to the most current security and
stability updates.

Ubuntu
First off, you will need to enable the official MongoDB repository. To do so, open
a terminal and first import the project's public GNU Privacy Guard (GPG) key
as follows:

sudo apt-key adv --keyserverhkp://keyserver.ubuntu.com:80
--recv7F0CEB10

Once this is done, create a listing for the repository itself by issuing the following
command:

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

Your repository listing is now active. Let's make Advanced Package Tool (APT)
aware of it in order to install MongoDB, as follows:

sudo apt-get update

Finally, issue the following command to install MongoDB:

sudo apt-get install mongodb-org

Fedora/RHEL/CentOS
Our first order of business here is to enable the official MongoDB repository.
To do so, first make sure that you have the nano text editor installed by opening
a terminal and issuing the following command:

sudo yum install nano

After this is done, add the repository by issuing the following command:

sudonano /etc/yum.repos.d/mongodb.repo

Setting Up Your Workspace

[16]

Nano will open a new, blank text file. Copy and paste the following into the file:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

Save and close the file by pressing Ctrl+O, followed by the Enter key. This is followed
by Ctrl+X.

Finally, carry out the installation by issuing the following command:

sudo yum install mongodb-org

Starting MongoDB
After the installation of MongoDB, you will need to start MongoDB as a service in
order to get it running. To do so (on all the distros that were previously mentioned),
open a terminal and run the following command:

sudo service mongodb start

It is important that if you have SELinux running, you must make sure that it allows
MongoDB to access its default port. To do so, issue the following before you issue
the preceding command:

sudosemanage port -a -t mongod_port_t -p tcp 27017

Mac OS X
The easiest way to both install and stay up to date with MongoDB on OS X is by
using the Homebrew package manager. Even if we just use it to install MongoDB
here, you will most likely find it useful later for the installation of other software
packages that you may need for your own projects after you finish this book.

Installing Homebrew is simple; just open a terminal and issue the following command:

ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

When this finishes, make sure that the Homebrew package database is up to date,
as follows:

brew update

Chapter 1

[17]

Finally, install MongoDB by simply issuing the following command:

brew install mongodb

When the install has finished, we will need to define a data directory in order to give a
location for MongoDB to store its data. By default, this directory will be at /data/db.
So, unless you specify something else, you will need to make sure that this directory
exists and is both writeable and readable by the user running your MongoDB instance.
For example, if the user running MongoDB on your system is john, you will have to
issue the following commands:

sudomkdir -p /data/db

sudochmod 0755 /data/db
sudochownmongod:mongod /data/db

Now that this is done, it is time to start up MongoDB. To do so, make sure that you
are logged in as john, open a terminal, and simply issue the following command:

mongodb

That's it! You should receive a notification that MongoDB has started and is listening
for a connection. Your instance is ready to go!

Connecting to MongoDB
In order to read and write from the MongoDB instance, we will first need to connect
to it. In fact, MongoDB acts as a server in its own right. It exposes its functionality
via a network port on which clients can then connect either through the local
machine, or even over the Internet.

Since this functionality is disabled by default due to it being a
shoddy security practice, it will require a special configuration
of the operating system that MongoDB is running on. We will
not discuss this functionality as it falls outside the scope of this
book, but we will refer to the MongoDB documentation for
several helpful examples of how to achieve it for a variety of OS.

To connect to a MongoDB instance, you will need at least the following information:

• The IP address of the instance: If you are accessing an instance on your
local machine, this will be local host by default.

• The port on which MongoDB is listening: Unless you configure a custom
value, this will always default to port 27017.

Setting Up Your Workspace

[18]

• The database that you are trying to connect to: Don't confuse this with the
MongoDB instance itself. Each MongoDB instance can contain any number
of databases, with each belonging to different users. The instance simply
manages access to them.

Alternatively, you may also need the following:

• A username and its associated password to grant you access to the instance
and any databases therein that you are authorized to interact with.

A very easy way to try out this connectivity yourself and verify that MongoDB
works as expected is by using the MongoDB shell, a tool that comes installed with
MongoDB itself using the methods that we have described previously. How you
access the shell varies depending on your OS. I will show each method in the
following section and then give an example of how to use the shell itself since
this will be the same on all platforms.

Windows
First, make sure that MongoDB is running by following the process that was outlined
previously. After this, issue the following command in your command prompt:

C:\mongodb\bin\mongo.exe

Linux and OS X
First, make sure that MongoDB is running. Then, open a terminal and issue the
following command:

mongo

Now that our shell is running, let's verify that everything works by creating a
database and adding some data to it.

To create a database, issue the following command to the shell:

use Fruits

This will create a database named Fruits, to which we can immediately start
adding data. (What, you were expecting more overhead? Not in MongoDB!)

Chapter 1

[19]

We will not add a collection to our database. A collection is simply a basket of
data entries, which are grouped based on some logical characteristic. For example,
let's suppose that we want a collection of chewy fruits. We then issue the
following command:

db.createCollection("Chewy")

The shell should respond with the { "ok" : 1 } JSON response that tells us that
everything went well. Now, let's add some chewy fruits to our collection, as follows:

db.Chewy.insert({"name" : "pear"});

db.Chewy.insert({"name" : "apple"});

Even if the naming makes it intuitively clear what is going on in the preceding
code, don't worry if you do not understand all the details yet. We will get to this
in due course.

Finally, let's make MongoDB show us the chewy fruits that we stored. Issue the
following command:

db.Chewy.find();

The shell will respond with something like the following:

{ "_id" : ObjectId("54eb3e6043adbad374577df9"), "name" : "apple" }

{ "_id" : ObjectId("54eb4036cdc928dc6a32f686"), "name" : "pear" }

The _id numbers will be different on your system, but you will find that the names
are the same. All the fruits are where we want them to be.

Congratulations, you now have a fully working MongoDB setup ready for action!

Summary
By now, you may have perhaps noted the red thread running through all the
components that we picked for our toolchain; they are all based on JavaScript. This
gives us the ability to write all our logic from top to bottom in one single language
rather than using different ones for different components (Objective-C or Java for the
client, PHP for the server, SQL for the database, or some other unholy combination).
As you will see throughout the remainder of the book, this will make it much easier
for us to write concise, focused, and comprehensible code.

Setting Up Your Workspace

[20]

Once you go through all the preceding steps, I can safely assume that you have the
necessary toolkit and you are ready to tackle the upcoming chapters, where we will
have an opportunity to create our very first Ionic app and make it work on both
Android and iOS devices.

Once you finish setting up your workspace, I recommend that you spend some
time reading the Apache Cordova documentation, especially the documentation
related to the different platform dependencies.

In the next chapter, we will perform further preparations and configure persistence
with MongoDB as part of our preparations for our very own backend for our
Ionic app.

[21]

Configuring Persistence
with MongoDB

In this chapter, we will show you how to configure the persistence layer of your
app, which is responsible for the provision of the central data storage and retrieval
services. For this, we will use MongoDB, the widely popular NoSQL database, and
its associated driver and interface for Node.js.

In this chapter, we'll cover the following topics:

• Configuring documents, collections, and databases
• Connecting to MongoDB using a product order database as an example
• Creating relations between documents
• Querying data and displaying results in the command line

Learning outcomes of MongoDB
After reading this chapter, you will have a solid understanding of the basics of how
MongoDB stores data. You will also learn how to run queries against a MongoDB
instance in order to store, manipulate, and retrieve data on it. You will also understand
how to use the Node.js MongoDB driver for the same ends in order to manipulate your
data directly from Node.js.

Finally, you will have a healthy dose of refreshment of memory as regards the
internal workings of Node.js in order to help you understand how it interconnects
with MongoDB.

Configuring Persistence with MongoDB

[22]

An introduction to MongoDB
Let's start with a short but informative tour of MongoDB, which will give you the
essential knowledge that you need in order to effectively work with it.

First, let's get a good grasp of how data is organized in a MongoDB instance. This
will give us the foundation that is required to understand how storage and retrieval
operations work later on.

Documents
MongoDB is a NoSQL Database Management System (DBMS). This means that
it eschews the traditional table-based data storage model used by SQL-oriented
systems such as MySQL, Oracle, and Microsoft SQL Server. Instead, it stores data
as documents, which are data structures that are almost identical to standard JSON
objects. For example, a MongoDB document can look like this:

{
 "_id" : ObjectId("547cb6f109ce675dbffe0da5"),
 "name" : "Fleur-De-Lys Pharmacy",
 "licenseNumber" : "DL 133",
 "address" : "430, Triq Fleur-de-Lys",
 "geolocation" : {
 "lat" : 35.8938857,
 "lng" : 14.46954679999999
 },
 "postCode" : "BKR 9060",
 "localityId" : ObjectId("54c66564e11825536f510963")
}

This document represents a pharmacy, with some basic information such as the name,
address, and national license number. If you are familiar with JSON, you will feel
right at home; this is the standard object notation. However, note an unusual datatype
in here—the ObjectId. This is a built-in datatype in MongoDB, and it is the default
method that is used to uniquely identify a single document. Every single document
you store in a MongoDB database is guaranteed to have a unique _id member with
respect to that database.

If you are familiar with SQL, you may be tempted to think about it as a
column ID. Don't! An _id uniquely identifies a document in the entire
database, whereas an SQL column ID only uniquely identifies a row in
a table.

Chapter 2

[23]

Collections
Even though you can uniquely identify a document by its _id, life would be a lot
simpler if we could somehow organize documents according to some common
characteristics. This is where the concept of a collection comes into play. Simply
put, a collection is nothing more than a group of documents that exist in a common
folder. For example, we can have a collection named Pharmacies, which will store
documents like our preceding example.

If you are used to SQL, you may instinctively feel that the documents in the same
collection must somehow have the same structure, just like rows in an SQL table
do. Surprisingly, this is not even remotely true. Collections only group documents;
they do not impose any structural demands on them (apart from the need to have
an _id, but this holds for all the documents and has nothing to do with a particular
collection). This means that in the collection that we store our pharmacy-related
data in, we may also store documents that describe fruit, people, cars, or movies.
Whether we should do so is left entirely up to the programmer. This great freedom
of structure is one of the most powerful aspects of MongoDB and a key factor that
sets it apart from the more traditional DBMS.

Databases
We now know that MongoDB stores data as documents in collections. The last storage
concept that we need to mention is the database itself. Simply put, a database in
MongoDB is a top-level organizational structure, which holds a group of collections
along with information about users who may access the database, security settings,
optimizations, and other configuration options. A single MongoDB instance can
manage as many databases as server resources will allow.

It is easy to be misled into thinking that MongoDB itself is the
database. Rather, MongoDB is a DBMS, which can manage an
arbitrary number of databases.

An example – a product order database
Let's put what we have learned so far into practice and construct a simple MongoDB
database that contains data about products, customers, and the orders that the
customers have made for specific products. If you are accustomed to other DBMS
such as MySQL, you may be surprised to see how simple and intuitive the process is.

Configuring Persistence with MongoDB

[24]

Connecting to MongoDB
In order to be able to interact with a MongoDB instance, we first need to be sure that
our server is running it. Then, we can access it through the Mongo shell application.
In Chapter 1, Setting Up Your Workspace, we covered in some detail how to install and
get MongoDB running on your specific operating system. You should go through
these steps if you have not done so already. Once you have verified that MongoDB
is running, open the MongoDB shell for your operating system.

Linux and Mac OS X
Start a console and run the following:

mongo

Windows
Start your command prompt and run the following:

C:\mongodb\bin\mongo.exe

You will see a prompt starting with the > character. From here, we can issue
commands to MongoDB interactively and read the resulting output.

Creating a database
Let's start by defining the database that we are going to work with. In your shell,
execute the following:

> use OrderBase

This will ask MongoDB to switch to a new database, called OrderBase, that we
wish to run the commands against. The response will be as follows:

switched to db OrderBase

But wait, how can we switch to a database that does not exist yet? MongoDB
flexibility to the rescue! When you tell MongoDB to use a database, it will create
that database for you automatically before switching to it.

Chapter 2

[25]

Creating our collections
Now that we have created a database, let's populate it with some collections by
performing the following steps:

1. Run the following to create a collection for Products:
> db.createCollection('Products')

MongoDB will respond with the following:

{ "ok" : 1 }

The preceding code indicates that the command was executed successfully.
Note that the response is returned to us in the JSON format.

2. Let's pause for a minute and break down the preceding command so that
we understand what we just did:

 ° The db is a JavaScript object that represents the currently selected
database. In our case, it is OrderBase.

 ° The createCollection('Products') function is one of the many
member methods of db. Needless to say, it creates a new collection
and adds it to db. Its parameter, a string, is the name of the new
collection.

In other words, working with MongoDB is actually a matter of issuing commands in
pure JavaScript. Not only that, but the data itself and the responses to the commands
are encoded as JSON! It's obvious right away why MongoDB makes a perfect,
seamless fit for JavaScript projects.

1. Let's create two other collections as well to store our orders while we are at it:
> db.createCollection('Orders')

> db.createCollection(Customers'Customers')

You will get the same ok responses as before.

2. Now, let's add some products to our Product collection. In our case, let's say
that a product has the following defining characteristics:

 ° A name of the string type
 ° A price of the float type

Configuring Persistence with MongoDB

[26]

We can represent this as a simple JSON object, as follows:

{
 "name" : "Apple",
 "price" : 2.5
}

3. Inserting name and price into the Products collection is equally simple:
> db.Products.insert({"name" : "Apple", "price" : 2.5})

The response will be as follows:

WriteResult({ "nInserted" : 1 })

The preceding result contains a WriteResult object, giving details about the
outcome of a write operation against the MongoDB instance. This particular
WriteResult instance tells us that the write was successful (as no error was
returned), and that we inserted a total of one new document.

4. Again, let's take a closer look at the command that we just issued:
 ° The db is still the database that we are operating on, which is

OrderBase.
 ° Products is our products collection that belongs to db.
 ° The insert()method belongs to the products collection (note that

even collections are represented as plain JavaScript objects with
properties and methods). It takes a JSON object, such as the one
that we defined in the preceding code, and inserts it into the
collection as a new document.

Now that one of our collections actually contains a document, we can ask
MongoDB to tell us what is in it.

5. Issue the following command:
> db.Products.find()

The find()method tells MongoDB to look up in the documents from the
associated collection. If you pass no parameters to it (an empty find), it will
return all the documents in the collection. Fortunately for us, we do not have
enough documents (yet) to cause too much screen-scrolling from doing so:
{ "_id" : ObjectId("54f8f04a598e782be72d6294"),
 "name" : "Apple",
"price" : 2.5 }

Chapter 2

[27]

This is the same apple that we inserted earlier...or is it? Note that MongoDB
created an ObjectId instance for it and automatically added it to the objects
members. This will always be done (unless you specify a manual _id), since
all the documents in a MongoDB database are required to have their own
unique _id.

If you are running this example on your own machine, you will quickly
note that the _id values for your objects will differ from the ones seen
here since the IDs are randomly generated at the time of insertion.

6. Let's go ahead and insert two more products. However, rather than executing
one insert statement for each of them, we can instead perform a bulk
insertion this time by passing all the objects that we want to insert in a JSON
array, as follows:
> db.Products.insert([{"name" : "Pear", "price" : 3.0},
{"name" : "Orange", "price" : 3.0}])

The response will be as follows:
BulkWriteResult({
 "writeErrors" : [],
 "writeConcernErrors" : [],
 "nInserted" : 2,
 "nUpserted" : 0,
 "nMatched" : 0,
 "nModified" : 0,
 "nRemoved" : 0,
 "upserted" : []
})

This response, a BulkWriteResult method, is clearly a lot more complex
than an ordinary WriteResult. We do not need to concern ourselves with
what its properties mean just yet. It is enough that we can read from it that
two documents were written to the database ("nInserted" : 2).

7. Let's issue another find() method to make sure that our database contains
what we expect:
{ "_id" : ObjectId("54f8f04a598e782be72d6294"), "name" :
"Apple", "price" : 2.5 }

{ "_id" : ObjectId("54f8f6b8598e782be72d6295"), "name" :
"Pear", "price" : 3 }

{ "_id" : ObjectId("54f8f6b8598e782be72d6296"), "name" :
"Orange", "price" : 3 }

Configuring Persistence with MongoDB

[28]

8. Now, let's wrap up by adding some customers as well. We will add our
orders a bit later:
> db.Customers.insert(

[

{"firstName" : "Jane", "lastName" : "Doley"},

{"firstName" : "John", "lastName" : "Doley"}

])

9. Finally, verify that we now have customers to work with by executing the
following command:

> db.Customers.find()

The response will be as follows:

{
"_id" : ObjectId("54f94003ea8d3ea069f2f652"),
"firstName" : "Jane",
"lastName" : "Doley"
},
{
"_id" : ObjectId("54f94003ea8d3ea069f2f653"),
"firstName" : "John",
"lastName" : "Doley"
}

Creating relations between documents
We now know how to create documents in the collections of a database. However,
in real life, it is usually never enough to simply have standalone documents. We
will also want to establish some kind of relations between the documents.

For example, in our database, we store information about customers and products,
but we also want to store information about orders, which essentially are bills of
sale stating that customer X has ordered product Y.

Let's say that Jane wants to order an Pear. To achieve this, we could let our orders
look like this:

{
"customer" :
{
"firstName" : "Jane",
"lastName" : "Doley"

Chapter 2

[29]

},
"product" :
{
"name" : "Pear",
"price" : 3
}
}

However, the disadvantages of this become clear immediately. It leads to massive
data bloating, since the same customer or product can occur in several orders. Hence,
its data will need to be repeated in each of the orders. It also makes maintenance
a nightmare. If we want to update, say, the price of a product, we need to comb
through the database for every single instance where that product appears and
make the change.

A much better approach, as recommended by the MongoDB developers, is to use
manual references. In this approach, we only store the _id of the document that
we wish to refer to rather than the full document.

There are alternative methods built into MongoDB, but generally, they
deal with corner cases and are not optimal for general use. Throughout
this book, we will only use the method described here.

We then let the application accessing the database retrieve information about
the other document(s), which are referred to as needed. Going back to our order
example, this means that the final order document will instead look like this:

{
"customerId" : ObjectId("54f94003ea8d3ea069f2f652")
"productId" : ObjectId("54f8f6b8598e782be72d6295")
}

Note that we appended Id to the property names in the preceding code. This is
a normal convention when dealing with references to other documents, and it is
highly recommended that you follow it.

As we have come to expect from MongoDB by now, inserting this new document
is no harder than the following:

db.Orders.insert({
"customerId" : ObjectId("54f94003ea8d3ea069f2f652"),
"productId" : ObjectId("54f8f6b8598e782be72d6295")
})

www.allitebooks.com

http://www.allitebooks.org

Configuring Persistence with MongoDB

[30]

We can then run db.Orders.find()to assure ourselves that everything went
as expected:

{
"_id" : ObjectId("54f976ccea8d3ea069f2f654"),
"customerId" : ObjectId("54f94003ea8d3ea069f2f652"),
"productId" : ObjectId("54f8f6b8598e782be72d6295")
}

It is important to note that even though our order serves no other purpose but to
tie two other documents together, it still has its own unique ID.

That's it! We have now constructed a simple database for the storage of information
about customers, products, and orders. Next, we will learn how to query it in order
to retrieve data for it.

Querying MongoDB
We are now familiar with the overall structure of data storage in MongoDB as well
as how to insert and perform some rudimentary retrieval using the find()method.
Here, we will look at the more advanced usage of find()in order to do some more
fine-grained data retrieval.

Searching by ID
One of the most common operations on a MongoDB instance is lookups based on
ID. As you may recall, every document in a database has a unique _id field, and
MongoDB makes it easy to find documents using it.

Let's try this out! Start your Mongo shell and open the OrderBase database again.
If you closed it after the last example, you can reopen the database by issuing the
following command:

> use OrderBase

Once the database has been selected, let's say that we want to look up a given
product by ID. We select an ID from the earlier example at random and see what
we end up with. Remember that the ID will be different on your own machine.
So, you will need to select the one that is associated with your own objects:

> db.Products.find(
{
_id: ObjectId("54f8f6b8598e782be72d6295")
})

Chapter 2

[31]

The response that we will get for our example is as follows:

{ "_id" : ObjectId("54f8f6b8598e782be72d6295"), "name" : "Pear",
"price" : 1.5 }

Sure looks like our pear! Now, let's backtrack a bit and see how the lookup works.
Note that we essentially did the same thing as we did when we wanted to see all
the available Products:

db.Products.find()

However, we qualified what we want to find this time by passing a parameter to
find(). As we have grown accustomed to this process by now, the parameter, like
most things in MongoDB, is just in JSON:

{ _id: ObjectId("54f8f6b8598e782be72d6295") }

What we do through this parameter is tell MongoDB that we want to find all
the documents in the Products collection whose _id property is equal to the
corresponding value in our JSON parameter, which is ObjectId("54f8f6b8598e782b
e72d6295")in this case.

Note that the find() method can return several results. When searching for an ID,
this makes little sense, since only one ID can belong to any given document and
as such, there can be at the most one result. To accommodate situations like this,
MongoDB provides another method for collections—findOne(). It works like find(),
with the sole exception being that it returns at most one result, as follows:

> db.Products.findOne({
_id: ObjectId("54f8f6b8598e782be72d6295")
})

Searching by property value
We have seen how easy it is to find documents by ID, and it should come as no
surprise that searching by general property values is equally simple. For example,
let's say that we want to find all the products with the name Orange. We can do the
following:

db.Products.find({"name" : "Orange"})

MongoDB will return the following result:

{ "_id" : ObjectId("54f8f6b8598e782be72d6296"), "name" : "Orange",
"price" : 3 }

Configuring Persistence with MongoDB

[32]

In some cases, several documents in a collection will have the same value for
the property that we are searching for. In that case, MongoDB will return all the
matching ones. Here's an example:

db.Products.find({"price" : 3.0})

This will return all the products with a price of 3.0. In our case, it will return the
following result:

{ "_id" : ObjectId("54f8f6b8598e782be72d6296"), "name" : "Orange",
"price" : 3 },
{ "_id" : ObjectId("54f9b82caf8e5041d9e0af09"), "name" : "Pear",
"price" : 3 }

Advanced queries
What we have covered here barely scratches the surface of everything that
you can possibly do with find(), but it is all that we need to know to be able
to configure a basic persistence layer. Throughout the remainder of this book,
we will incrementally introduce more advanced queries as the need arises.

Connecting MongoDB and Node.js
We now have a solid understanding of the most basic concepts of how MongoDB
works, and it is high time we put them to good work by integrating MongoDB with
Node.js. In this section, we will cover this process step-by-step, and see how we can
interact with the MongoDB databases directly from within a running Node.js instance.

Setting up a basic project
Before we start, please make sure that you have Node.js and Node Package Manager
(NPM) installed on your system. Refer to Chapter 1, Setting Up Your Workspace, for the
steps for your particular operating system.

Once you are set, start off by creating a basic project to experiment a bit with the
MongoDB instance. Create a folder somewhere and call it MongoNode. Next, open
a terminal (OS X/Linux) or the command prompt (Windows), navigate to this
folder, and issue the following command:

npm init

Chapter 2

[33]

This will launch an interactive wizard for the bootstrapping of a basic Node.js
application. In the following code, we provide some standard answers to the
questions that the wizard will ask:

name: (MongoNode)
version: (0.0.0)
description: Simple project demonstrating how to interface with a
MongoDB instance from Node.js
entry point: (index.js)
test command:
git repository:
keywords:
author: Yours Truly
license: (BSD)
About to write to /home/user/IdeaProjects/nodebook-
ch2/MongoNode/package.json:

{
 "name": "MongoNode",
 "version": "0.0.0",
 "description": "Simple project demonstrating how to interface
 with a MongoDB instance from Node.js",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Yours Truly",
 "license": "BSD"
}

Is this ok? (yes)

Once the bootstrapping finishes, create a new file named index.js. Open it in
your favorite text editor and type the following:

console.log('Hello World!');

Save the file and then open a terminal. Navigate into the folder that we just created
and run the following command:

node index.js

Configuring Persistence with MongoDB

[34]

You should get the following familiar output:

Hello World!

We are now assured that Node.js works as expected. So, let's go ahead and see
how we can get in touch with the database that we constructed earlier.

Connecting to MongoDB
Now, let's set up the bare metal to interface with a MongoDB instance. The first thing
that we will need to do is install the official MongoDB driver for Node.js. Inside your
project folder, issue the following command in the terminal:

npm install mongodb -save

This will make npm carry out the complete installation procedure. Once this is
done, we will have all the basic functionalities that we need to interact with the
MongoDB instance.

After the install finishes, create a new file named database.js, open it in your text
editor, and insert the following. Don't worry if it is quite a lot of code as compared
to what we have seen so far; I added quite a lot of commentary to explain what is
going on:

// Our primary interface for the MongoDB instance
var MongoClient = require('mongodb').MongoClient;

// Used in order to verify correct return values
var assert = require('assert');

/**
*
* @param databaseName - name of the database we are connecting to
* @param callBack - callback to execute when connection finishes
*/
var connect = function (databaseName, callback) {

 // URL to the MongoDB instance we are connecting to
 var url = 'mongodb://localhost:27017/' + databaseName;

 // Connect to our MongoDB instance, retrieve the selected
 // database, and execute a callback on it.
 MongoClient.connect(url, function (error, database) {

 // Make sure that no error was thrown

Chapter 2

[35]

 assert.equal(null, error);

 console.log("Successfully connected to MongoDB instance!");

 callback(database);
 });
};

/**
* Executes the find() method of the target collection in the
* target database, optionally with a query.
* @param databaseName - name of the database
* @param collectionName - name of the collection
* @param query - optional query parameters for find()
*/
exports.find = function (databaseName, collectionName, query) {
 connect(databaseName, function (database) {

 // The collection we want to find documents from
 var collection = database.collection(collectionName);

 // Search the given collection in the given database for
 // all documents which match the criteria, convert them to
 // an array, and finally execute a callback on them.
 collection.find(query).toArray(
 // Callback method
 function (err, documents) {

 // Make sure nothing went wrong
 assert.equal(err, null);

 // Print all the documents that we found, if any
 console.log("MongoDB returned the following
 documents:");
 console.dir(documents);

 // Close the database connection to free resources
 database.close();
 })
 })
};

Configuring Persistence with MongoDB

[36]

Next, let's import the database module in the index.js file. Remove everything from
this file and insert the following in it:

var database = require('./database');

This will allow us to use our database interface like a regular Node.js module.

Finally, let's give it a run and make sure that everything works. Insert the following
line in the index.js file:

database.find('OrderBase', 'Products', {});

The preceding command should immediately seem familiar to you; it is the same
as when we ran the following command in our earlier example:

db.Products.find();

Here, we simply wrapped the parameters in logic so that it can be run in the
Node.js instance.

To run the Node.js instance, issue the following command in your terminal again:

node index.js

You should receive something like the following:

Successfully connected to MongoDB instance!

MongoDB returned the following documents:

[{ _id: 54f8f04a598e782be72d6294, name: 'Apple', price: 2.5 },
 { _id: 54f8f6b8598e782be72d6295, name: 'Pear', price: 1.5 },
 { _id: 54f8f6b8598e782be72d6296, name: 'Orange', price: 3 },
 { _id: 54f9b82caf8e5041d9e0af09, name: 'Banana', price: 3 }]

Summary
That's it! You just wrote your first Node.js app by making use of MongoDB! It is very
simple. Note that as we go ahead, we will structure our code a bit differently, but
now, you have the basic know-how that is needed to make it work. Next, we will
study some advanced topics and look at how we can use Node.js and MongoDB in
order to construct a full-fledged API.

Chapter 2

[37]

With this chapter, we provided you with the basic knowledge that is needed to start
building your very own database for your Ionic mobile application, which is one of
the first stepping stones in building your very own backend for your cross-platform
mobile application.

As we move further along, you will realize that the essentials that we learned
through this chapter will provide us with the necessary knowledge that is required
to start building our own API, which will be done in the next chapter.

[39]

Creating an API
No matter how sophisticated your backend is, it will most likely be of no use unless
you can make its services available to your clients in some way. The most common
way to do so is through an Application Programming Interface (API)—a set of well-
defined access methods for your backend. Through this, you allow clients to request
data, perform calculations, and request other services offered by it.

In this chapter, we will look at how to construct such an API according to the
widely used Representational State Transfer (REST) architecture. We will cover
the theoretical basics of REST and then see how to implement its condensed version
using Node.js according to our needs. We will round up by accessing the API via a
REST client in order to see how it works in action.

Learning outcomes of the RESTful API
After reading this chapter, you will understand what a RESTful API is and how
it is structured. You will also have gained a thorough understanding of how to
define data access points in Node.js and work with these through a REST client.

RESTing easy
One of the greatest challenges of the Internet age has always been to make
networked services talk to each other in a uniform and efficient manner. It is the
reason behind why we have developed a plethora of communications protocols
that we depend on today, such as the all-important TCP/IP stack. Protocols like
these make formal communication between applications a straightforward process,
at least as far as the actual bytes on the wire are concerned.

Creating an API

[40]

However, there is no single de facto specification for how applications should
communicate data abstractions to each other. Raw TCP/IP only understands the
exchange of data packets; it knows nothing about abstractions such as customers,
orders or products. To raise the abstraction level and build an interface that allows
intuitive communication with our backend, we will have to rely on a custom
implementation of one or more architectural patterns in order to get what we want.
Today, there are several such patterns in wide usage. You may already be familiar
with terms such as SOAP, WSDL, and perhaps even our target here—REST.

It's all hypermedia
REST is an architectural pattern where two or more applications exchange resources
among themselves through a set of operations on these resources. The resources are
sets of data types that all the involved applications, such as products, customers,
and so on, know about. For example, a client application can either ask a server
application to give it a list of all the resources of a given kind that it stores, or ask
the server to register a new instance of a given resource in its database. All such
operations are communicated only by using the standard HTTP protocol, which
makes the process both intuitive and easy to implement.

At the heart of the RESTful communication are the common HTTP verbs—GET,
POST, PUT, and DELETE. In terms of the popular CRUD (Create/Read/Update/
Delete) acronym, C corresponds to POST, R to GET, U to PUT, and finally D to,
well, DELETE. If you are familiar with HTTP, you will already know that these verbs
represent different request types sent between two HTTP-speaking applications.
For example, when you type www.google.com in the URL field of your browser
and press the Enter key, the browser will issue a GET request to the server the URL
is bound to, asking it to return whatever data is located at server. Typically, this
data is in a standard format such as HTML, XML, or JSON. In the same way, when
you fill out a form on a webpage and press the submit button (or its equivalent), a
request is sent to the server through a POST request, which carries the request data
that you entered for the server to process.

As mentioned before, REST functions by using these verbs to communicate
operations on various resources that the involved parties know about. For example,
in our case, we may want to tell a server the following by using the RESTful requests:

• Fetch all the products that are available on the server (the verb is GET)
• Fetch the product with an ID of abcd1234 (the verb is GET)
• Place a new order with a product named abcd1234 for a customer with

an ID of xyz456 (the verb is POST)

Chapter 3

[41]

• Update the price of the product with an ID of abcd1234 to 500 million dollars
(the verb is PUT)

• Delete the product with an ID of abcd1234 since nobody is buying it
anymore (the verb is DELETE)

By convention, REST uses the following common base URL structure for requests
operating on a given resource (elements in the brackets are optional):

http://<domain>/[api name]/[api version]/<resource>

For our product example, a RESTful base URL for this resource is as follows:

http://myserver.com/myapi/v1/products

In the following section, we will demonstrate how such actions are carried out in
practice using the HTTP verbs.

GET
In the context of REST, a GET request always indicates a retrieval operation. Thus,
we say that the GET requests are the only non-mutating ones among the common
verbs, since they do not change the state of the associated resource on the server.

In REST, there are two standard GET operations that any API should
ideally implement:

GET all
The following are the key features of the GET all operation:

• It sends a blank GET request to the base URL for the resource
• It returns all the resources of a given type
• An example of resources that are given by the GET all operation is

http://myserver.com/myapi/v1/products.

GET by ID
The following are the key features of the GET by ID operation:

• It returns the resource with the specific ID
• An example of this type of operation is http://myserver.com/myapi/v1/

products/abcd1234 (using the path parameters) or http://myserver.com/
myapi/v1/products?id=abcd1234 (using the query parameters)

http://myserver.com/myapi/v1/products

Creating an API

[42]

Whether you should use path parameters or query parameters is entirely up to you,
and it is not mandated by the REST conventions. Here, and for the remainder of the
book, we will use query parameters, since this is the normal HTTP way of doing
things and a bit easier to understand and implement.

POST
POST requests are used in order to create new instances of a given resource.
Normally, a conventional REST server will provide documentation about the
fields of the resource that you need to specify for the creation to succeed.

PUT
PUT is used in order to create or update a resource. It works almost identically
to POST, with the exception that if you supply a resource ID with your request,
the server will first find that specific resource and then replace each field of that
resource with the equivalent field in your request.

For example, consider a situation where your server has a resource of the product
type, as follows:

{
 name: 'Apple',
 price: 50,
 id: 'abcd1234'
}

Let's suppose that you submit a PUT request with the following form data:

{
 id: 'abcd1234'
 price: 500000000,
}

The same resource will have the following state on the server after the transaction
concludes:

{
 name: "Apple",
 price: 500000000,
 id: "abcd1234"
}

Chapter 3

[43]

DELETE
DELETE is used in order to, well, delete a resource on the server. All you need to do
is supply the resource ID in your request. For example, sending a DELETE request to
http://myserver.com/myapi/v1/products/abcd1234 will delete the product with
an ID of abcd1234 on the server.

Building a RESTful API with Node.js
Now that we have covered the basics of REST, let's put it into practice and build
an API for OrderBase, which was constructed in the previous chapter. If you have
not done so already, please take a moment to review the code that we wrote there
in order to make sure that you understand what happens between our API and the
database in this example.

Setting up the RESTful API
Start with creating a workspace for our server. On your drive, create a folder named
order_api, step into this folder, and create and execute the file named api.js.
Finally, open a terminal and execute the following:

npm init

As we saw in the previous chapter, this will give you a few questions to answer
in order to bootstrap the Node.js server. When the questions ask you for the
entry point, be sure to specify api.js, since this is the main file that your server
configuration will be read from.

Next, you will need to import the database interface module that we created in Chapter
2, Configuring Persistence with MongoDB. To do so, first install the mongodb driver:

npm install mongodb

Then, you can import the module itself in two ways:

• Copy and paste the database.js file from the previous chapter into the
current directory and add var database = require('./database');
to the top of your api.js file

• Add var database = require([pathToDatabase]) to the top of your
api.js file, where [pathToDatabase] is the full system path to your
database.js file

Once this is done, open the api.js file. Let's start adding some code for our API.

Creating an API

[44]

The HTTP module
The first thing we will need is a way to actually open up the Node.js instance to the
network and enable it to communicate over the HTTP protocol, since this will be the
core driver of our API's functionality.

In order to achieve this, we will include the standard HTTP module in our server.
Add the following line to the top of your api.js file:

var http = require('http');

This will cause Node.js to load the HTTP module, a powerful component that can be
used to listen for and process HTTP requests as well as send responses to the clients.

Now, with the module in place, let's hotwire Node.js to start listening and respond
to simple HTTP requests. Add the following to your file:

var server = http.createServer(function (req, res) {
 res.writeHead(200);
 res.end("I am a fledgling API, and I am alright");
});
server.listen(8080);

console.log('Up, running and ready for action!');

That's it! If this is your first time using the HTTP module, you may be surprised
at how simple this setup is. It is not everyday that you write a fully functioning
HTTP server in seven lines of code! Node.js is just that good.

Let's give the server a run to make sure that it is working alright. Open your favorite
browser and navigate to http://localhost:8080. You will see the following line
of text:

I am a fledgling API, and I am alright

All is well. We are now ready to start making our API do something more interesting
than just show the same text over and over. However, let's take a closer look first at
how the HTTP module actually works and services requests.

http://localhost:8080

Chapter 3

[45]

Dissecting the HTTP server
Looking at our server code, we are really just doing the following two things:

1. Configuring the event loop for our server is what it should do whenever an
HTTP request comes in. This is done by invoking the http.createServer()
method, which takes a callback function as a parameter, which will be
executed for each incoming request.

2. Bind the server to a given network port in the host machine and start
listening for incoming connections on that port.

The interesting bit of the first item is the callback function:

function (req, res) {
 res.writeHead(200);
 res.end("I am a fledgling API, and I am alright");
}

This method takes two arguments, req and res. As you may have guessed, they
refer to the HTTP request and the associated response. The req parameter will contain
all the data associated with the incoming HTTP request, such as origin, headers,
payload, cookies, and more. The res parameter is the HTTP response, which will
be emitted back to the caller when the method is returned.

You may wonder why the response is passed as a parameter to a function that
obviously handles incoming requests. This is a matter of design. The res parameter
is actually created outside the function and passed to it so that you can do what
modifications you see fit to it before the HTTP module takes control again, finalizes
it, and sends it back to the sender.

In our function, we do only the following two things:

• We set the response code of the response to 200, indicating a successful
request cycle.

• We append a string to the body (that is, the payload) of the response—"I
am a fledgling API, and I am alright".

That's it as regards handling and responding to requests (really!).

Let's put this to use and start returning something more interesting.

Creating an API

[46]

Returning JSON
Normally, REST APIs will support serving data in several different formats, such
as JSON and XML. For the sake of simplicity, we will only focus on JSON here. This
makes sense in the context of what we have seen so far, where everything high and
low is JavaScript - and JSON-oriented anyway.

Thankfully, returning a JSON object to our caller is almost trivial; we just need
to make a few adjustments inside our callback function:

• Specify the content type of the response as JSON
• Convert the JSON object that we want to send back to a string

The first adjustment is done by modifying the Content-Type header of our
response. In your code, you have the following code line:

res.writeHead(200);

You can change this to the following code line:

res.writeHead(200, {'Content-Type': 'application/json'});

This additional parameter, passed to the writeHead() method, is a JSON object
with custom values for headers in the response object. If you don't specify headers,
the HTTP module will generally set sensible defaults, but you should always be
explicit when you are certain about what a header should be set to. Here, we want
to make it clear to the client that we are sending them a JSON object as a response,
and we set the Content-Type header accordingly.

To address the second item, let's first add a JSON object to send back to the client.
After the res.writeHead() method, add the following:

var myProduct = {
 name: 'Apple',
 price: 600
};

Next, we need to turn this JSON object into a string in order to package it into the
response. To do so, we can use the native Javascript JSON.stringify() method.
As expected, this method takes a JSON object and returns a string representation
of that object. Modify the following line:

res.end('I am a fledgling API, and I am alright');

Chapter 3

[47]

Change the preceding line to the following:

res.end(JSON.stringify(myProduct));

We're done! Save your changes, restart the Node.js instance (just close and start it
again), and refresh your browser window for the server. You will see the text:

{
 'name':'Apple',
 'price':600
}

We now have a full-fledged, JSON-serving HTTP server ticking. It's about time that
we got down to the serious stuff.

Implementing our GET handlers
Let's begin by implementing basic GET methods for our resources. You may recall
that we mentioned before that a good REST API should at least implement two of
them—GET by ID and GET all. Since we like to be standards-compliant, that is
what we will use here.

Implementing a router
Our first order of business is to provide a way for our Node.js instance to differentiate
between the different URLs that it receives requests for. Until now, our server only
had to handle requests to its root URL (http://localhost:8080/), but in order to do
something more interesting, we want to be able to generate custom responses for more
specific URLs, such as http://localhost:8080/api/products.

Fortunately, Node.js again provides an out-of-the-box way to achieve this—the
URL module.

Add the following just after the var http = require('http'); line:

var URL = require('URL');

This will import the URL module. We can now use it to break down the incoming
requests and take action depending on how their URLs are structured.

http://localhost:8080/
http://localhost:8080/api/products

Creating an API

[48]

Modify the http.createServer() call to look like this:

var server = http.createServer(function (req, res) {

 // Break down the incoming URL into its components
 var parsedURL = URL.parse(req.URL, true);

 // Determine a response based on the URL
 switch (parsedURL.pathname) {
 case '/api/products':
 // Find and return the product with the given id
 if (parsedURL.query.id) {
 findProductById(id, req, res);
 }
 // There is no id specified, return all products
 else {
 findAllProducts(req, res);
 }
 break;
 default:
 res.end('You shall not pass!');
 }
});

Note that we introduced two new methods, findAllProducts and findProductById.
These are utility methods, which we will define separately. Along with them, we will
define some generic helper methods to help make data access less cumbersome for us.
Go ahead and add the following before the createServer() call:

// Generic find methods (GET)

function findAllResources(resourceName, req, res) {
 database.find('OrderBase', resourceName, {}, function (err,
 resources) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(resources));
 });
};

var findResourceById = function (resourceName, id, req, res) {
 database.find('OrderBase', resourceName, {'_id': id}, function
 (err, resource) {

Chapter 3

[49]

 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(resource));
 });
};

// Product methods

var findAllProducts = function (req, res) {
 findAllResources('Products', req, res);
};

var findProductById = function (id, req, res) {
 findResourceById('Products', id, req, res);
};

The generic methods are straightforward. They simply make use of the MongoDB
interface that we created in Chapter 2, Configuring Persistence with MongoDB, in
order to retrieve either all the documents from a specific collection, or just a single
document by its ID. The specific product methods make use of these generic methods
in order to find products in this fashion.

For the sake of brevity, we do not implement similar methods for the customer
and order here; they are identical to the ones used for the product. Just change the
name of the resource and add appropriate paths inside the createServer() method.
You can see the complete example in the source code accompanying the book.

Implementing our POST handlers
We will now move on to adding handlers to create new instances of a resource.
To do so, we need to distinguish not only between the URLs, but also between
the request types. Modify your createServer() invocation so that it looks like
the following:

var server = http.createServer(function (req, res) {

 // breaks down the incoming URL into its components
 var parsedURL = URL.parse(req.URL, true);

 // determine a response based on the URL
 switch (parsedURL.pathname) {
 case '/api/products':

Creating an API

[50]

 if (req.method === 'GET') {
 // Find and return the product with the given id
 if (parsedURL.query.id) {
 findProductById(id, req, res)
 }
 // There is no id specified, return all products
 else {
 findAllProducts(req, res);
 }
 }
 else if (req.method === 'POST') {

 //Extract the data stored in the POST body
 var body = '';
 req.on('data', function (dataChunk) {
 body += dataChunk;
 });
 req.on('end', function () {
 // Done pulling data from the POST body.
 // Turn it into JSON and proceed to store it in the
 database.
 var postJSON = JSON.parse(body);
 insertProduct(postJSON, req, res);
 });
 }
 break;
 default:
 res.end('You shall not pass!');
 }
});

Note that we have introduced another handler method, insertProduct().
We define it, along with its corresponding generic method, like we did before:

// Generic insert/update methods (POST, PUT)

var insertResource = function (resourceName, resource, req, res) {
 database.insert('OrderBase', resourceName, resource, function
 (err, resource) {

Chapter 3

[51]

 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(resource));
 });
};

// Product methods

var insertProduct = function (product, req, res) {
 insertResource('OrderBase', 'Product', product, function (err,
 result) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(result));
 });
};

Again, the implementation of this functionality for the other resources is the same,
with the exception of the name. We do not replicate them here.

Implementing the DELETE and PUT handlers
Handling DELETE and PUT is analogous to handling a GET and POST request
respectively, with the exception of the method being changed. Thus, we recommend
that you refer to the accompanying source code to see the full implementation.

Testing the API
Until now, we have used a normal browser to poke at our API and see what it returns.
However, this is far from optimal. Most browsers only make it easy to send GET
requests, whereas an HTML form or something similar to it is needed in order to
send POST requests. Let's not even get started with the DELETE and PUT requests.

To test the REST API, it is a much better idea to use a dedicated REST client,
which will give you more options, make it easier to send requests, and thoroughly
analyze responses. A very popular (and free) tool is Postman, which is a Chrome
extension. It runs on all major operating systems. You can download it for free
from https://www.getpostman.com/. The install process is very straightforward,
and it will not be covered here.

https://www.getpostman.com/

Creating an API

[52]

Once you have installed Postman, start it up. Let's post away at our API. First, let's
try asking the backend to send us all the products that it currently stores. Enter the
products' root URL in Postman's URL field, make sure that GET is selected among
the methods in the combobox to the right, and then click on the Send button. You
should get something that looks like the following screenshot:

Now, let's try to POST a new product to the backend. Keep the same URL, but
change the method to POST in the combobox to the right. Next, add some data
before sending; select Raw from the button group under the URL field and enter
the following:

Chapter 3

[53]

Click on Send to fire off the request (note how much easier this is than using a plain
browser). Finally, let's pull all the products again in order to make sure that the new
product was indeed added:

Creating an API

[54]

That's it! Our API is working, and we are ready to start moving towards some
serious usage.

Moving forward
In this chapter, we studied the bare bones and built our API from scratch by using
only the functionality provided by the core Node.js modules themselves. We did
this in order to show you how Node.js works in reality and to avoid binding you
to any given framework that already does the things that we implemented here,
in case you use another one in your own career.

That being said, as an addendum, we would still like to point you to some frameworks
that we ourselves recommend in order to build powerful APIs quickly with Node.js:

• Express.js: Express is a framework that can be used to build robust, complete
web applications using Node.js. It comes with a host of powerful features,
including an advanced router, which makes it very easy to handle incoming
requests based on the URL (forget about the switch and if statements like we
did here), extract, parse, and validate data, connect to external data sources,
and much more.
Express.js is largely seen as the de facto framework for Node.js, and it has
a large community and plugins available for it, making it easy to find help
and extra functionality as needed.

For more information on this framework,
visit http://expressjs.com/.

• Loopback.js: This was developed by the same team that created
Express.js. Loopback.js is an Express.js derivative, which is designed solely
for the creation of APIs. It comes with a powerful terminal interface, where
you can quickly create and modify resources, relations between resources,
security, and much more. Loopback automatically generates full RESTful
APIs for your resources, which means that you have to write almost no
code for cases, such as the examples that we looked at in this chapter.

For more information about this framework,
visit http://loopback.io/.

http://expressjs.com/
http://loopback.io/

Chapter 3

[55]

Summary
You should now have a good understanding of the basic concepts of RESTful APIs as
well as how you can implement them using Node.js and access them from a network.

In the next chapter, we will continue improving our API and show how to secure it
in order to prevent unauthorized access to your resources.

[57]

Securing Your Backend
In the previous chapters, we built a rudimentary but functional backend layer by layer
to provide basic services for a basic shop-like app. So far, we haven't been paying
too much attention to security; everyone with access to the server can execute any
command exposed by our API, even if it involves deleting the whole product database!

In this chapter, we are going to remedy this by building a basic security mechanism in
order to control user access. Specifically, we will deal with token-based authentication
and show you how this makes it easy to limit access to your backend. By doing this, we
will introduce the concept of roles and how they figure in our authentication scheme.

Understanding the outcomes of
token-based authentication
After reading this chapter, you will understand what token-based authentication is
and how it can be used to limit the functionality of an API based on a user's status.
You will further understand what roles are and how they affect authentication.
Finally, you will know how to implement this authentication mechanism using
only the technologies that we have introduced so far.

The theoretical bit
Before we start writing code, let's have an overview of the concepts involved and
how they relate both to security and one another.

Securing Your Backend

[58]

A small token of trust
Security has always been one of the most pressing concerns in all areas of software
development. It is almost never enough to have a system that is fast, scalable, and
robust if it doesn't have an adequate mechanism to protect it from malicious users.

In the context of publicly accessible servers such as ours, security is all the more
pressing since our API will be exposed to an entire planet of potentially nasty
people. Somehow, we need to make sure that the people who request services
from it are who they say they are and are allowed to do what they want to do.

A simple yet powerful technique that has emerged to accomplish this is token-based
authentication. In this, each legitimate user is given an access token (usually a hash),
which uniquely identifies the user of a server. The user needs to submit the token
along with every request that requires authentication, and the server in turn validates
the token in order to determine whether access should be granted.

In order to obtain an access token, the user will first need to initially authenticate
themselves to the server in some way. Commonly, this is done via a normal
username-password check. If a correctly matching username and password is
provided, the server responds by generating an access token, certifying that the
user is authenticated to access the server.

Playing your role
In most software systems, not all users are created equal. Some, such as the
administrators, are intended to have broader access to the system than the common
users. There are several schemes that allow us to limit what functions within a system
a user can access, but the most common one probably is to use roles. Put simply, a role
is an attribute that grants its holder a certain level of access to the system. For example,
a user with the role of administrator may have full access to read and write system
records, whereas a user with the role of reader may just be able to read them. Further
more, a user with the role of BookWorm may only have access to read data records
classified as books, and so on.

Putting it all together
Now, it is probably apparent how roles and tokens figure in the authentication
scheme that we want to create. The lifetime of an authenticated request will
proceed in the following way:

1. The server receives an API request.
2. The server checks whether a token is provided.

Chapter 4

[59]

If it is not provided, it returns a 403 (that is, forbidden).
3. The server checks whether the token is in the database.

If it is not in the database, it returns a 403.

4. The server retrieves the user's role.
5. The server verifies that the user's role matches the requirements of the

API call.
If it does not match them, it returns a 403.

6. The server handles the request and returns an appropriate response to
the user.

Implementation
We are now ready to write a functional implementation of the authentication system.

The first thing that we need to do is expand our database to accommodate
the necessary documents. In particular, we need to add the following three
new collections:

• Users: These are the users who can access the server via the API
• Roles: These are the roles that can be assigned to users
• Access Tokens: These are the access tokens for authenticated users

We will also need to add some rudimentary logic to our API to register users
and enable them to log in.

Adding the new collections
Open your MongoDB shell and execute the following:

 use OrderBase;

 db.createCollection('User');

 db.createCollection('Role');

 db.createCollection('AccessToken');

This will create the necessary collections that we need to store users and their roles
and tokens. The new documents will have the following structure:

User:
{
 firstName,
 lastName,

Securing Your Backend

[60]

 email,
 roleID,
 password
}

For now, we will not add any users or tokens (this comes later when we extend the
API), but we will add the roles that we are going to use. To keep it simple, we will
just have two of them:

• Producer: This is the user who sells goods in the shop and who can add
additional products to it.

• Customer: This is the user who buys things from the shop and who can
create orders and retrieve information about products as well as orders
that were created by the current user.

It is understood that default ObjectID generated by MongoDB will be included in
the preceding code. For the access token entity, we simply use ObjectID as the hash
of the token, since this value is guaranteed to be unique with respect to the database
that we are working with.

Adding an authentication module
To maintain modularity and simplify the authentication process, we will create
a separate module to validate the access privileges of a given user.

In your project directory, add the following file named authentication.js.
Open the file and insert the following:

var db = require('./database');

module.exports = {
 database: 'OrderBase',
 collection: 'AccessTokens',
 generateToken: function (user, callback) {
 var token = {
 userID: user._id
 }
 }

 // Persist and return the token
 db.insert(this.database, this.collection, token, function (err,
 res) {
 if (err) {
 callback(err, null);
 } else {

Chapter 4

[61]

 callback(null, res);
 }
 });
},
authenticate: function (user, password, callback) {
 if (user.password ==== password) {
 // Create a new token for the user
 this.generateToken(user, function (err, res) {
 callback(null, res);
 });});
 } else {
 callback({
 error: 'Authentication error',
 message: 'Incorrect username or password'
 }, null);
 }
}
}

Next, import the module into your entry module, as follows:

var authentication = require('./authentication');

Creating functions to register and help users
log in
We will need to add endpoints to our API for the purpose of both creating and
authenticating users who wish to interact with it. In light of what we have done
thus far, this is easy to do.

Registering users
We begin by adding a URL endpoint for adding users. This will be very familiar in
terms of what we already did when creating the REST API in the previous chapter;
all that we are going to do is create a POST method for the user collection. First, add
the following utility method:

var insertUser = function (user, req, res) {
 insertResource('OrderBase', 'User', user, function (err, result)
 {
 res.writeHead(200, {"Content-Type": "application/json"});
 res.end(JSON.stringify(result));
 });
};

Securing Your Backend

[62]

Next, modify your router to include the following case statement:

case 'api/users/register':
 if (req.method === 'POST') {
 var body = "";
 req.on('data', function (dataChunk) {
 body += dataChunk;
 });
 req.on('end', function () {

 // Done pulling data from the POST body.
 // Turn it into JSON and proceed to store.
 var postJSON = JSON.parse(body);

 // validate that the required fields exist
 if (postJSON.email
 && postJSON.password
 && postJSON.firstName
 && postJSON.lastName) {
 insertUser(postJSON, req, res);
 } else {
 res.end('All mandatory fields must be provided');
 }
 });
 }
 break;

This is all we need to register users. Registrations can now be handled through a
simple POST request to the /api/users/register endpoint.

Enabling users to log in
To enable users to log in via our API, we will need to accomplish the following
three things:

• Make sure that the user exists
• Make sure that a matching password was provided by the the user
• Return an access token, which can be used by the user for future access

Luckily, all but the first of the preceding list are taken care of by the authentication
module that we designed earlier. All that we need to do is plug it into our router.
To do this, we will also need to design a new endpoint for the login part.

Chapter 4

[63]

Add the following case to your router configuration:

case 'api/users/login':
 if (req.method === 'POST') {
 var body = "";
 req.on('data', function (dataChunk) {
 body += dataChunk;
 });
 req.on('end', function () {

 var postJSON = JSON.parse(body);

 // make sure that email and password have been provided
 if (postJSON.email && postJSON.password) {
 findUserByEmail(postJSON.email, function (err, user) {
 if (err) {
 res.writeHead(404, {"Content-Type":
 "application/json"});
 res.end({
 error: "User not found",
 message: "No user found for the specified email"
 });
 } else {
 // Authenticate the user
 authenticator.authenticate(
 user, postJSON.password, function(err, token) {
 if(err) {
 res.end({
 error: "Authentication failure",
 message: "User email and password do not match"
 });
 } else {
 res.writeHead(200, {"Content-Type":
 "application/json"});
 res.end(JSON.stringify(token));
 }
 });
 }
 });
 });

 } else {

Securing Your Backend

[64]

 res.end('All mandatory fields must be provided');
 }
 });
}
 break;

In the preceding code, we added the following simple method in order to handle
the looking up of a user by e-mail:

var findUserByEmail = function (email, callback) {
 database.find('OrderBase', 'User', {email: email}, function
 (err, user) {
 if (err) {
 callback(err, null);
 } else {
 callback(null, user);
 }
 });
};

That's all we need as far as user management is concerned for now. Now, let's
add the finishing touch and set up the actual security for our endpoints.

Extending our API
We are now ready to modify our API in order to add the authentication features
that we have developed so far. First, let's determine exactly how the access policies
should work:

• Customers should be able to create (insert) orders and retrieve (get)
information about products and nothing else

• Producers should be able to retrieve information about orders and
products and also insert new products

We will accomplish this by placing a simple token and role check on each
endpoint. The check will simply verify the following:

• The token is legitimate
• The user associated with the token has the role that is necessary to

perform the requested action

Chapter 4

[65]

To start, we will add a new function to the authentication module, which will be
responsible for checking whether a given token is associated with a given role:

tokenOwnerHasRole: function (token, roleName, callback) {
 var database = this.database;
 db.find(database, 'User', {_id: token.userID}, function (err,
 user) {
 db.find(database, 'Role', {_id: user.roleID}, function (err,
 role) {
 if(err){
 callback(err, false);
 }
 else if (role.name ==== roleName) {
 callback(null, true);
 }
 else {
 callback(null, false);
 }
 });
 });
}

This method is all that we need to verify the roles for the token provided (implicitly
checking whether the user who owns the token has the specified role).

Next, we simply need to make use of this in our router. For example, let's secure
the POST endpoint for our product API. Make it look like the following:

case '/api/products':
 if (req.method === 'GET') {
 // Find and return the product with the given id
 if (parsedUrl.query.id) {
 findProductById(id, req, res);
 }
 // There is no id specified, return all products
 else {
 findAllProducts(req, res);
 }
 }
 else if (req.method === 'POST') {
 var body = "";

Securing Your Backend

[66]

 req.on('data', function (dataChunk) {
 body += dataChunk;
 });
 req.on('end', function () {
 var postJSON = JSON.parse(body);

 // Verify access rights
 getTokenById(postJSON.token, function (err, token) {
 authenticator.tokenOwnerHasRole(token, 'PRODUCER',
 function (err, result) {
 if (result) {
 insertProduct(postJSON, req, res);
 } else {
 res.writeHead(403, {"Content-Type":
 "application/json"});
 res.end({
 error: "Authentication failure",
 message: "You do not have permission to perform that
 action"
 });
 }
 });
 });
 });
 }
 break;

That's it! Implementation for the other endpoints is the same, and we will
provide you with the full example source code for them.

Though I have covered some basics here, security remains one of the largest
and most diverse areas of contemporary software development. We believe that
token-based authentication will address a majority of the cases that you are
bound to come across in your career. I would like to offer some suggestions for
future study as well as complements to the topics that you have studied here.

OAuth
One of the most common authentication standards offered by modern web apps is
OAuth (Open Authentication Standard), its second version (OAuth2) in particular.
OAuth makes heavy use of access tokens and is used by (among others) Facebook,
Google, Twitter, Reddit, and StackOverflow. Part of what makes the standard
powerful is that it allows users to sign in with their Google or Facebook accounts,
or even some other account that supports OAuth2, when using your services.

Chapter 4

[67]

There are several mature NPM packages for using OAuth2 with Node.js. In
particular, we recommend you to study the node-oauth2-server package
(https://github.com/thomseddon/node-oauth2-server).

Time-stamped access tokens
To keep things simple and focus on the main concepts, we have allowed our access
tokens in this example to be permanent. This is a very bad security practice since
tokens, like passwords, can be compromised and used to grant unauthorized users
access to the system.

A common way to reduce this danger is to impose a Time To Live (TTL) value on
each access token, indicating how long the token can be used until the user has to
authenticate themselves again in order to get a new token.

Hashing passwords
For the sake of simplicity, we allowed passwords in this example to be stored and
retrieved as plain text. Needless to say, this is an abysmal security practice and nothing
that you should ever do on a production server. Mature Node.js frameworks such
as Express.js provide built-in mechanisms for hashing passwords, and you should
always choose those when available. In the event that you need to hash passwords
on your own, choose the bcrypt module in order to both hash and compare. Here's
an example of the same:

var bcrypt = require('bcrypt');

var userPlaintextPassword = "ISecretlyLoveUnicorns";
var userHashedPassword = "";

// First generate a salt value to hash the password with
bcrypt.genSalt(10, function(err, salt) {
 // Hash the password using the salt value
 bcrypt.hash(userPlaintextPassword, salt,
 function(err, hashedPassword) {
 // We now have a fully hashed password
 userHashedPassword = hashedPassword;
 });
});

// Use the same module to compare the hashed password with
potential
//matches.

https://github.com/thomseddon/node-oauth2-server

Securing Your Backend

[68]

bcrypt.compare("ISecretlyLoveUnicorns", userHashedPassword,
 function(err, result) {
 // Result will simply be true if hashing succeeded.
 });
bcrypt.compare("ISecretlyHateUnicorns", userHashedPassword,
 function(err, result) {
 // result will be false if the comparison fails
});

Summary
In this chapter, you learned about token-based authentication and saw how it can
work in practice to reinforce the backend. To put it into practice, we wrote a simple
token-based access system to protect access to a set of backend data. Our server is
now almost complete, but we must still deal with some other pressing concerns
that modern apps need to face.

In the next chapter, we will explore how to address one of these most
important concerns.

[69]

Real-Time Data and
WebSockets

In this chapter, we will show you how to enable real-time data communication using
WebSockets. This will allow your server to directly communicate with the connected
clients without having any polling on the client side.

I would really love a two-way conversation, John

In its infancy, the Internet was not much of a two-way street. The traditional client-
server architecture was the king, and servers initiating communication with clients
was almost unheard of (and quite possibly seen as quite heretical by some, too).

However, starting with protocols such as Internet Relay Chat (IRC), real-time
chat applications quickly became killer apps over time, with an enormous surge in
popularity among ordinary users (if you are old enough to remember the instant
messaging computer program (ICQ), yes, that is nostalgia that you are feeling).
It was not very long until real-time features took the leap to the HTTP world,
causing browser-based chat services to pop up everywhere. Meanwhile, related
concepts such as push notifications gained popularity, especially with the advent
of the smartphone.

www.allitebooks.com

http://www.allitebooks.org

Real-Time Data and WebSockets

[70]

Polling
Today, real-time features are an integral part of the Internet as we know it. However,
their implementation has not always been optimal. Especially during its early stages,
real-time data communication was almost always implemented by using polling, a
technique where the client regularly contacts the server in order to check whether
its state has changed. If it had (say, if a new message had been made available), the
server responded by sending the updated state back. Needless to say, polling is a
recipe for wasted resource usage. Moreover, it leads to rather choppy programming,
since we find ourselves just repeatedly asking for updates rather than waiting and
taking action on them when they are actually sent.

WebSockets
To avoid polling, we need a full-duplex solution, where the server can communicate
directly with the client without the latter's initiative. Today, perhaps the most
advanced and prevalent solution for this is the WebSocket protocol. A WebSocket
protocol is a direct, two-way connection between the client and the server over the
TCP protocol. It is structured in a way that allows both sides of the connection to
initiate data transfer on their own. WebSockets were standardized in 2011 and are
supported in all major browsers.

Using WebSockets in Node.js
Node.js does not come with a default module for using WebSockets. While we have
tried so far to avoid third-party solutions and just show you how to work with Vanilla
node, this topic is complex enough to put writing a WebSocket handler from scratch
well beyond the scope of the book. Therefore, for the remainder of this chapter, we
will use the excellent socket.io library. We of course do not imply that this is
what you should be using in your own work, and in the Chapter 6, Introducing Ionic,
the Going further section at the end of the chapter, we will direct you to alternative
solutions and reading materials for WebSockets.

Setting up our project
We will set up a separate project for this chapter, demonstrating how we can create
a simple chat application that demonstrates the essentials of using WebSocket.

Chapter 5

[71]

Create a separate project folder and name it chat-app. In this folder, create a blank
file named app.js. Finally, open your terminal or the command prompt, go into
the folder, and run the following:

npm init

Answer the questions prompted by Node.js and make sure that you specify app.js
as the entry point for the application.

Installing socket.io
We will install socket.io, as always, by using our good friend npm. From your
terminal, issue the following command:

npm install socket.io

That's it. We are now good to go. Let's start setting up our server! However, before we
do that, let's start from the top and define a basic chat interface for us to play with.

Creating a chat interface
We are not creating the next WhatsApp (yet!). So, building a full-fledged chat
interface is a bit beyond what we want to achieve in this chapter. Let's go for
something basic, as illustrated in the next screenshot:

Real-Time Data and WebSockets

[72]

To create this layout, create the index.html file in your project folder and insert a
basic HTML setup inside it, as follows:

<!DOCTYPE html>
<html>
 <head >
 <meta charset="UTF-8">
 <title>Socket.IO chat application</title>
 </head>
 <body>
 </body>
</html>

We will now add some custom elements to this markup in order to get the layout
we need for our chat to be nice and user friendly. First, import the Bootstrap CSS
framework by inserting a link into href in the header:

<head lang="en">
 <meta charset="UTF-8">
 <title>Socket.IO chat application</title>
 <link rel="stylesheet"
 href="http://maxcdn.bootstrapcdn.com/bootstrap/
 3.3.4/css/bootstrap.min.css"/>
</head>

Bootstrap, originally developed by Twitter, is a widely used framework that can
be utilized to quickly build responsive web interfaces. As web design is beyond the
scope of this book, we will use it in order to keep manual styling to a minimum.
Don't worry if you are unfamiliar with the framework. It is very intuitive, and
we will explain what you need to know along the way.

Next, let's add a Bootstrap container div to our interface, as follows:

<body>
 <div class="container"></div>
</body>

This is simply an organizational unit that Bootstrap uses to contain a set of UI
elements inside a container so that the layout fits well on the screen being used.

Next, inside the container, let's add a chat-box, as follows:

 <div class="row">
 <div id="chat-box" class="well">
 <ul id="chat-view" class="list-unstyled">
 </div>
 </div>

Chapter 5

[73]

The following are the three classes that are being used in the preceding code:

• The row class, which is similar to the container class, is an organizational
unit that confines the elements that it holds to a single row in the layout.

• The well class, which creates a shaded container, make the elements it
contains more visually distinct.

• The list-unstyled class, which simplifies the ordinary HTML unordered
list tag, removes, among other things, the bullet styling that appears next
to elements.

The end result is shown in the following screenshot:

Now, let's add the elements needed for users to enter their names and submit actual
messages, as follows:

<form action="">
 <div class="row">
 <input type="text"
 id="chat-name"
 class="form-control"
 placeholder="Your name">
 </div>
 <div class="row">
 <input type="text"
 id="chat-message"
 class="form-control"
 placeholder="Enter message">
 <button id="chat-submit"
 type="submit"
 class="btn btn-default">Send
 </button>
 </div>
</form>

By now, you should be familiar with most of the UI elements and what they do,
and the rest is nothing but a standard HTML form (note that we do not provide
an action for the form itself; submissions will be handled dynamically through
JavaScript instead). Note that we added some classes to the form elements. These
are standard Bootstrap layout classes that are used to style the appearance of the
elements themselves. They do not introduce any functionality in themselves, and
as such, we do not need to deal with them in detail here.

Real-Time Data and WebSockets

[74]

That's it! If you open the file in your browser, you will see the following:

The chat obviously does not really do anything at the present time. We will do
something about this in a moment, but first, let's see how we can serve the HTML
file that we just created directly from Node.js.

A basic file server
We now have an HTML file for our interface, which we would like the user to
see whenever they connect to the app via their browser. To make this happen, we
need to make our Node.js app listen to HTTP requests and then respond with the
appropriate HTML file. Sounds familiar? Yep, it's time to reintroduce the Node.js
HTTP module. Go ahead and add the following at the top of the app.js file:

var http = require('http');
var url = require('url');
var fs = require('fs');

We have already seen the first two modules. The third one, fs, is the standard
module that is used to handle interactions with the file system. We will need this
module in order to retrieve and serve the HTML file.

Let's create an HTTP server for this end. Add the following to app.js:

var server = http.createServer(function (req, res) {
 var parsedUrl = url.parse(req.url, true);
 switch (parsedUrl.pathname) {
 case '/':
 // Read the file into memory and push it to the client
 fs.readFile('index.html', function (err, content) {
 if (err) {
 res.writeHead(500);
 res.end();
 }
 else {

Chapter 5

[75]

 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(content, 'utf-8');
 }
 });
 break;
 }
});

Let's go through what happens here. Upon receiving an HTTP request, our server
will try to find a match for the path name of the request. If the path is for the root
of the document hierarchy (signified by a normal slash), we want to serve the index.
html document. If this is the requested path, the following happens:

1. The readFile() method, which is part of the fs module, is invoked in
order to load the index.html file.

2. If the load fails (that is, if there was an I/O error), the server responds
with status 500, indicating a server error.

3. If the file is successfully loaded, we add its content (in this case, a string
of HTML content) to the response payload, set the appropriate media
type and code for the response, and serve it back to the client.

By default, a status 404 is served if the client tries to access any other part of the
document hierarchy.

Let's see this in action. Add the following to the end of app.js:

server.listen(8080);

Start the server from your terminal, as follows:

node app.js

Open your browser and visit http://localhost:8080. You will see the following:

http://localhost:8080

Real-Time Data and WebSockets

[76]

An alternate chat
You can find an excellent tutorial on how to build a chat application that is similar to
ours using Express.js and Socket.io at http://socket.io/get-started/chat/.

In fact, the example that we used here is inspired by this one, though we have
modified it in order to make it suitable for the book.

The efficient serving of static files
To keep things brief, and also to get our feet wet when it comes to using the HTTP
module, we served a static HTML file directly from Node.js in our example. In a
production system, static files are usually much more efficient as regards serving
from a standard file server such as Apache or Nginx.

Summary
In this chapter, we covered the basic theory behind WebSockets and why they matter
to modern, real-time web applications. Building on this, we created a simple chat
application by making use of the socket.io library in order to demonstrate real-time
communication between several clients connected to the same server.

http://socket.io/get-started/chat/

[77]

Introducing Ionic
Ionic is a free and open source library of mobile-optimized HTML, CSS, and
JavaScript components, gestures, and tools that can be used to build highly
interactive mobile apps. Being built around the widely used Syntactically
Awesome Stylesheets (Sass) and AngularJS technologies, Ionic offers web
developers with a basic knowledge of HTML, CSS, and JavaScript an opportunity
to develop cross-platform mobile applications.

In this chapter, we'll cover the following:

• Setting up your Ionic web services
• Creating your first Ionic application
• Using Ionic View to test your applications
• Sharing your creation with your collaborators

Setting up your Ionic web account
In Chapter 1, Setting Up Your Workspace, we highlighted the basic essentials of
setting up your workspace for Ionic, which included an installation of the core
Ionic libraries as well as the Android and iOS SDKs.

In this section, we will further elaborate on setting up an account on ionic.io,
which is the web service that allows us to easily deploy and test our creations on
Android and iOS devices through the Ionic View application. Through the Ionic
web service, we will also be able to configure capabilities such as push notifications,
which are an excellent way of interacting with your application's audience.

Introducing Ionic

[78]

In order to start off with setting up your ionic.io web account, visit apps.ionic.
io and click on Sign Up:

The signup screen looks like the following screenshot:

apps.ionic.io
apps.ionic.io

Chapter 6

[79]

When filling in the essential details, you'll be welcomed with the following screen,
which will give you an overall view of setting up your first Ionic project:

Creating your first Ionic application
To start off with your first Ionic project, open up your terminal and run the start
command, as follows:

$ ionic start myfirstionicapp

Then, you will need to change the directory to your Ionic project directory, which is
the same as your project title:

$ cd myfirstionicapp

Once you've navigated to the right directory, you will need to log in to your Ionic
web account with the following command. This will be followed by inputting the
email address associated with your account and your password:

$ ionic login

Once your credentials are verified, you will be able to upload your first creation to
the Ionic web service with the following command:

$ ionic upload

Introducing Ionic

[80]

Once you upload your application, you will be able to see your application with the
Ionic web service apps dashboard, where you will be able to see all your Ionic apps:

Checking out your Ionic applications with
Ionic View
Ionic has launched a very nifty application for iOS and Android where you will be
able to see and test your application creations on your smartphone within minutes.
We will first need to start off by installing Ionic View on your particular device.

Installing Ionic View on Android
Search for the Ionic View App on the Google Play Store and download it to
your device.

Chapter 6

[81]

When you load the application for the first time, you'll see the following screen,
where you will be asked to enter your login credentials:

Once you sign in, a dashboard with your current application should show up.

Installing Ionic View on iOS
Search for Ionic View on the App Store and download it to your device. Once you
install the application, you'll see the following, where you will be asked to enter
your login credentials:

Introducing Ionic

[82]

This is how the LOG IN page looks like:

When you log in for the first time, depending on whether you managed to
successfully upload applications to the Ionic Apps web service by following
the previous instructions, you should be able to see something like this:

Chapter 6

[83]

Testing your application on the iOS Ionic
View App
Once you have loaded the application for the first time and logged in, you will
be able to start testing your applications. You can proceed with this stage by
downloading your application to your device by tapping on Download App:

After downloading the application, you will see what's shown in the following
screenshot, where you will have an option to view the application on your device.
In order to try out your application, tap on View App:

Introducing Ionic

[84]

Your first Ionic application is based on a boilerplate provided by the Ionic framework
to highlight the capabilities of Ionic. To exit the application once you have finished
testing the application, you need to swipe down on the screen with three fingers:

Testing your application on Android
After you log in from the Ionic View App, you will see what's shown in the following
screenshot, where you are provided with a dashboard of all your Ionic applications.
To start testing your applications on Android, use an approach similar to that for the
iOS Ionic View App, where you need to download your app to the device:

Chapter 6

[85]

After tapping on myfirstionicapp, tap on Download files to synchronize the
application data from the Ionic web service to your device:

Once the application is synced to your device, you will see the following. This
enables View App. Tap on the corresponding button to view your application:

Introducing Ionic

[86]

Once you load the application, you will see the following application, which is fully
enabled. This application works within the Ionic View App with the impression of a
working application. As previously note, the application that we created together is
based on a boilerplate produced by the Ionic framework team.

As you may have observed, the design conventions followed for this mobile
application are suitable for each platform, which further enhances the value
proposition that the Ionic framework offers to the developer. That is, cross-platform
applications are adapted to the platform that the device is based on:

Sharing your application with collaborators
Sharing your application with your collaborator is quite straightforward. This
is possible via the Web Service and command line. Doing it via the web service
requires you to click on the gear icon on the Ionic app of your choosing and then
click on Share.

From the command line, you'll first need to navigate to your project directory via
the terminal. Then, you will need to log in by typing the following command:

$ ionic login

Chapter 6

[87]

Once you have logged in, you just need to type the following command and replace
EMAIL with the e-mail address of your chosen collaborator:

$ ionic share EMAIL

Your collaborator will receive an email with an invitation to view the app. We
recommend that they view this email from a mobile device to be able to see the app.

Going further
There are a number of incredible features within the Ionic framework's ecosystem,
which take the framework to the next level. It's worth exploring the different features
of the Ionic framework by checking out their documentation, which is available at
http://docs.ionic.io/.

If you would like to experiment further, it will be worthwhile at this stage to explore
how to set up push notifications for your Ionic app projects, Ionic lab, Ionic analytics
and deploy.

Ionic lab allows you to view the Android and iOS version of your Ionic app side by
side in the browser, which gives you an opportunity to see the salient differences
between the different platforms that are supported by Ionic. In the next chapter, we
will use Ionic lab more frequently, as you should now be able to understand how to
build different user interfaces for our different needs.

Summary
In this chapter, we covered all the basic essentials of setting up a working environment
to efficiently create and share Ionic apps. As previously mentioned, there are a number
of other tools, which we haven't covered in detail in this chapter, that are worth trying
out and which will help you effectively create your app's workflow.

In the next chapter, we will learn the general structure of an Ionic project and how
its components work together to create mobile experiences. These components are
based on web technologies and yet look, feel, and work like native applications.

http://docs.ionic.io/

[89]

Building User Interfaces
In this chapter, you will learn how to add new and unique elements to and modify
your current Ionic project from a practical point of view. Among other things, I will
show you how to modify the tab icons and add a new tab controller. This chapter
will guide you and give you the necessary knowledge that is required to have a
deep understanding of how to create and modify your own mobile applications.

Most importantly, you will also get acquainted with the AngularJS JavaScript
framework, which lies at the heart of the functionality of Ionic.

The entire source code of this modified project is available on the GitHub repository,
which can be viewed by visiting https://github.com/stefanbuttigieg/nodejs-
ionic-mongodb.

The structure of an Ionic project
In the process of creating a project in the previous chapters, we created a directory
entitled myfirstionicapp, which can be found in the root folder. We recommend
that you open this project folder with an Integrated Development Environment
(IDE) or a text editor. In our case, we are comfortable using Atom, which is an
advanced open source text editor.

You can download Atom from https://atom.io/.

https://github.com/stefanbuttigieg/nodejs-ionic-mongodb
https://github.com/stefanbuttigieg/nodejs-ionic-mongodb
https://atom.io/

Building User Interfaces

[90]

Once you open your IDE and add the project folder to your workspace, you will
see the following folder structure:

Let's take a closer look at each of the folders shown in the preceding screenshot
in turn:

• hooks: This folder is where our project will store automatically (or manually)
generated hooks for the underlying Cordova system, which provides most
of of our project's runtime.

• platforms: This folder contains the necessary files and configurations that
are required to deploy a project on a specific platform, such as Android
or iOS.

Chapter 7

[91]

• plugins: This stores the various Cordova plugins for our project. If you
examine it closely, you will observe that it already contains a number of
default plugins such as com.ionic.keyboard, which makes it easier to
work with each platform's native keyboard functionality.

• resources: This contains global and platform-specific resources, such as
app logos, splash screens, and so on.

• scss: This contains the core Sass (Syntactically Awesome Style Sheets)
files for our projects. By modifying these, we can extensively alter the
appearance of our app on the various platforms that it targets.

• www: This is the folder that you will find yourself working with more than
any other folder.
If you have previously worked with web apps, its contents will be familiar
to you:

 ° css: This contains the CSS files for your app.
 ° img: This contains the static images for your app.
 ° js: This contains the JavaScript files for your app. This is also

where most of your custom application logic will reside.
 ° lib: This contains third-party libraries and applications that can

be used in your project. Among other things, this folder contains
AngularJS itself, along with its associated dependencies.

 ° templates: This contains the AngularJS template files, which are
HTML files that may contain AngularJS-specific content, such as
data bindings and directives (don't worry, we will explain what
these are in a bit).

As mentioned earlier, your own work will predominantly be confined to the www
folder. This makes sense, since the projects that we create with Ionic are actually
a special breed of web apps that are customized to run on mobile devices.

Now that we are familiar with the structure of our project, let's dip our toes into
AngularJS, the framework that makes it all work. It only gets better.

Introducing AngularJS
Ionic is powered by the AngularJS framework (which is also commonly just
called Angular), which drives the UI interactions, gestures, animations, and well,
essentially the entire functionality of your app. Understanding it is crucial to the
experience of working with Ionic.

Building User Interfaces

[92]

Angular was initially developed by Google in 2009 in an effort to enhance HTML
with dynamic data binding at the tag level (the name Angular refers to the angular
brackets around the HTML tags). Its architectural philosophy is firmly grounded
in the Model-View-Controller (MVC) pattern and centered around an augmented
HTML syntax for building UIs and a feature-rich, modular core framework to create
business logic.

Due to its extensive nature, writing a concise introduction to Angular is not easy.
As we work our way through the coming chapters, we will gradually go deeper
and increase our knowledge of the framework. Here, we will settle for an outline
of the most important aspects of AngularJS so that you can understand how these
aspects work in the context of Ionic.

The structure of an Angular app
As we work our way through this chapter and the ones that follow, you will
very quickly realize that what you are building with Ionic are actually augmented
Angular apps that are designed for mobile devices. Since this is the case, it is
crucial that you understand how Angular apps are structured.

Modules
The most fundamental module of an Angular app is, well, the module. A module
is a collection of services, controllers, and directives, which provide some specific
functionality to your app. In fact, your Angular app is itself a module!

Defining a module is rather simple:

angular.module('starter', []);

This creates a module named starter. The second argument is meant to contain
a list of dependencies (more on this will be discussed later). This argument is left
empty if the module does not depend on any other modules.

Modules within modules within modules
Modules can load other modules, incorporating their functionality into their own.
This makes it very easy for developers to write and share utility modules, which
can be used by other developers in their own apps (at the time of writing this book,
there are literally tens of thousands of such modules hosted on GitHub, with many
under active development).

Chapter 7

[93]

Remember those empty brackets in the example that we saw just a bit earlier? This
is where you list all the modules the current module should load for its own use.
For example, in our Ionic apps, the ionic module is a fundamental component that
we always want with us:

angular.module('myapp', ['ionic']);

Now, whenever this module is loaded, Angular will automatically load its
dependencies with it.

Services, controllers, and other beasts
As mentioned before, the Angular modules contain other components, which
provide various kinds of functionality to the app. Detailing them here would just
clutter things, so we will introduce them as we go along (if not here, then in the later
chapters, where they are needed). For now, it is sufficient that you just know that
they exist and they together make up the functionality of an Angular module.

The Angular MVC pattern
Now that we have a better understanding of how an Angular app is structured,
it is time to look at how it actually works during runtime.

The functionality of an Angular app revolves around the following three core
concepts:

1. The view is what the user sees and the medium through which the user
primarily interacts with and reads output from your application.

2. The controller responds to the user interaction with the application and
communicates with the model in order to produce appropriate data. It
then updates the view to reflect that data.

3. The model is a collection of data, libraries, services, and other things that
make up your application's business logic. The model is responsible for the
heavy processing in your app, and it is usually where most of your code
will reside.

These three concepts make up the MVC pattern—model-view-controller. This is a
very popular design pattern for modern web apps.

Now that we know how an Angular app functions, let's see how it realizes each of
these three concepts.

Building User Interfaces

[94]

The view
In an Angular app, the view is composed predominantly of standard HTML, which
is augmented by Angular-specific components in order to facilitate dynamic updates.
The following are the two primary components:

• Directives: These are the custom HTML tags, whose function and behavior
are defined from within AngularJS but written like plain HTML. For
example, a tag like the following can be a directive that draws a map
centered on a specific latitude and longitude:
<map lat="39.234" lng="43.453"></map>

• Expressions: These are the expressions that are surrounded by double curly
braces, which evaluate to a given value during the runtime of the application.
Unless specified otherwise, the output of an expression will be updated as
soon as the model of the application changes. The following is an example
of such an expression:

{{ person.firstname }}

The preceding expression does something that is very common in
Angular—resolve the value of some object's member. However, to do
so, we first need to define where that object can be found. This is where
controllers come into the picture.

The controller
In an Angular app, the controller is realized by special module components,
which are fittingly called controllers. You can define them in a module in the
following way:

angular.module('myapp.controllers', [])
controller('MyCtrl', function($scope) {})

The first parameter is the name of the controller. The second parameter is a
function that defines what the controller actually does. This function can take
a variable number of arguments, which represent the dependencies that the
controller will use, much like the way we defined dependencies for modules earlier.

The model
Broadly speaking, the model is everything else in your app. It is the sum total of the
data models. Throughout the following chapters, we will gradually explore the
various components that you can use to compose your model.

Chapter 7

[95]

Putting it all together
Let's finish our brief tour of Angular by showing how to connect the various
components that we have seen so far.

Consider a situation where you first navigate to the index.html, which is available
at the following path myfirstionicapp/www/index.html:

When you navigate here, you will observe the following block of code:

<ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>
</ion-nav-bar>

This block of code determines the header bar of the application, and this is one
of the examples of the User Interface (UI) components, which can be managed
through HTML5.

For documentation and reference purposes, you can refer to the Ionic UI
components at http://ionicframework.com/docs/components.

As you further explore your project, you will see that the main controllers that will
power the interactive functionality of your project are available at the following path:

myfirstionicapp | js | controllers.js

Modifying an Ionic project
In order to build upon the knowledge that we have gained and the work that we
have previously done, we will modify the user interface of the project that we
previously created. We will start off by modifying the header.

Modifying the header
Let's say that we would like to change the header bar to a calm blue color.
Navigate to the index.html file available at www | index.html.

Refer to the body block, and using the reference UI components, change the
ion-nav-bar class to the following:

<ion-nav-bar class="bar-positive">
 <ion-nav-back-button>
 </ion-nav-back-button>
</ion-nav-bar>

http://ionicframework.com/docs/components

Building User Interfaces

[96]

Modifying the tab colour, icons, and names
Since we have decided to change the header color, we will go ahead and modify
the tab bar to make its color match the header color. We should first navigate to
the tabs.html, file which is available at www | templates | tabs.html, and change
the ion-tabs class to the following:

<ion-tabs class="tabs-striped tabs-icon-top
tabs-background-positive tabs-color-active-positive">

The icons need to be further modified to contrast with the new blue color.
So, we will further modify the ion-tabs class to the following:

<ion-tabs class=" tabs-striped tabs-icon-top
tabs-background-positive tabs-color-light">

We will take a step further and attempt to change the icon's graphic. Let's say that
we would like to change the dashboard icon to something that looks more circular.

First of all, we need to refer to the Ionicons documentation, which is available at
http://ionicons.com/cheatsheet.html, and find out the class name in relation
to the circular analytics icon. For this example, we will use ion-ios-analytics.
When we want the user to tap on the icon and activate the dashboard, we want
the icon to be highlighted, whereas when it's not active, we need the user to see
an outline of the icon. In order to achieve this, we will need to declare the icons
that will be used in both an active and inactive state.

In order to do this, we will navigate to the tabs.html file and modify the Dashboard
tab icon in the following way:

<ion-tab title="Dashboard" icon-off="ion-ios-analytics-outline"
icon-on="ion-ios-analytics" href="#/tab/dash">
 <ion-nav-view name="tab-dash"></ion-nav-view>
</ion-tab>

Modifying our pages
In this particular example, we will edit the dashboard page, where we will modify
the content of the list card UI components.

The modification of the dashboard is possible by navigating to the tab-dash.html
file, where we will see the different cards declared in the div class of the list card.

The list card is declared as follows:

<div class="list card">
 <div class="item item-divider">Title of List Card</div>

http://ionicons.com/cheatsheet.html

Chapter 7

[97]

 <div class="item item-body">
 <div>
 List Card Content
 </div>
</div>

By using the Ionic framework, it's possible to include a footer to your card. In our
case, we will add a footer to the Health list card, declaring that the user has walked
10,000 steps today. In order to do this, we will add an item-divider class, thus
modifying the list card as follows:

<div class="list card">
 <div class="item item-divider">Health</div>
 <div class="item item-body">
 <div>
 I really can!
 </div>
 </div>
 <div class="item item-divider">
 Great Job, You did 10,000 steps today!
 </div>
</div>

All the modifications that you made until now will result in a Dashboard tab, which
will look like the following screenshot:

Building User Interfaces

[98]

Adding a new tab
In this project, we would like to add a new tab that highlights the developers of this
application. This will inform the potential users of this app about how to get in touch
with the developers to provide them with the necessary feedback to improve the
app experience.

In order to achieve this, we'll need to perform the following four main steps:

1. Create a new controller entry in controllers.js.
2. Create a new tab controller called tab-about in HTML.
3. Add a new tab entry in the tabs.html file.
4. Consolidate our work in the app.js file and connect everything together.

Creating a new controller
Let's start with adding a controller for the new tab. Head over to controllers.js
and add the following into it:

controller('AboutCtrl', function($scope) {})

Don't worry about the empty function for now. At the moment, our tab does not
need any functionality apart from simply appearing.

Creating a view
Now that we have a controller, we need to implement the view for the new tab.
The first order of business is to make sure that the tab is added to the list of tabs.
To do so, modify tabs.html to include the following:

<!-- About Tab -->
<ion-tab
title="About"
icon-off="ion-ios-information-outline" icon-on="ion-ios-information"
href="#/tab/about">

<ion-nav-view name="tab-about"></ion-nav-view>

</ion-tab>

Chapter 7

[99]

This creates the fundamental bindings for the new tab and adds it to the list of tabs.
However, we will still need to add the content that should open when the user clicks
on the tab. To do so, create a new file called tab-about.html in the templates
folder and put the following code in it:

<ion-view view-title="About">
 <ion-content>
 <div class="list card">

 <i class="icon ion-ios-people"></i>
 Christopher Svanefalk and Stefan Buttigieg

 <i class="icon ion-home"></i>
 Malta and Sweden

 <i class="icon ion-ios-telephone"></i>
 +3569912345678

 <i class="icon ion-ios-world-outline"></i>
 www.ionicframework.com

 </div>
 </ion-content>
</ion-view>

Adding a state for the new tab
Next, we need to add a new navigation state to the controller in order to allow the
user to navigate, with the help of clicks, to the tab-about.html tabs content page.
To do so, open the app.js file and add the following state:

state('tab.about', {
 url: '/about',
 views: {
 'tab-about': {
 templateUrl: 'templates/tab-about.html',
 controller: 'AboutCtrl'
 }
 }
})

Building User Interfaces

[100]

Note that the following is what the preceding code does:

• The url property determines whether the application enters into the state of
accessing the /about URL.

• Inside the views property we determine the path to the view, which should
be loaded when this application enters into the view state. In this case, it is
the tab-about.html file that we created earlier.

• Finally, inside views, we also determine which controller is responsible
for handling this application state. In our case, it is the AboutCtrl controller,
which was defined by us earlier.

Testing the newly created tab
Quick testing is possible through your local browser. Once you save your project
files with your IDE, you will be able to see your app in the prototype form through
your browser:

1. First navigate to the project folder:
cd myfirstionicapp

2. Then, type in the follow command:
ionic serve --lab

The results for this are shown in the following screenshot. These results are adapted
for both iOS and Android. In addition to this, you'll be able to test your application
through a point-and-click interface. This experience is similar to having an iOS or
Android emulator working through a browser:

Chapter 7

[101]

Going further
The importance of setting out your layout and user experience before you start off
with any project is crucial. This will enhance your user experience, and it will be
even more helpful not only while laying out the necessary project structure, but
also throughout the programming process.

You can further customize the look and feel of your application by using Sass. Sass
is marketed as being the most mature, stable and powerful professional grade CSS
extension language, and it allows you to further customize your project.

In order to improve your knowledge of AngularJS, we recommend that you check
out a free video resource, which is available at http://campus.codeschool.com/
courses/shaping-up-with-angular-js, http://campus.codeschool.com/
courses/shaping-up-with-angular-js.

The aforementioned course is sponsored by Google and is available for free for anyone
who would like to dive deeper into AngularJS. Experimenting with different Ionic user
components has become easier than ever, especially with the recent Playground tools
that are available in Ionic Playground, which is available at http://play.ionic.io.

From the Android point of view, in order to take your project to the next level,
there is a free library available, which can be used to integrate the latest iteration
of Google's interactive Material design by installing the Ionic Material library. This
can easily be installed by first ensuring that you have bower installed and then
navigating to your project folder and inputting the following command:

bower install ionic-material

We are hopeful that with this chapter, you will start experimenting with your very
own projects while staying in line with providing remarkable user experience with
the current knowledge that you've gained until now. In the next chapter, we'll take
a step further.

Summary
In this chapter, we took the template project that we created in the past few chapters
and modified it to something closer to what we envisioned by modifying the
appearance of the user interface. In addition to this, we also started experimenting
with the Ionic project code to better understand what the project is made up of.

Furthermore, we provided you with the basic knowledge to start prototyping your
Ionic application within the browser.

http://campus.codeschool.com/courses/shaping-up-with-angular-js
http://campus.codeschool.com/courses/shaping-up-with-angular-js
http://campus.codeschool.com/courses/shaping-up-with-angular-js
http://campus.codeschool.com/courses/shaping-up-with-angular-js
http://play.ionic.io

[103]

Making Our App Interactive
In the previous chapter, we gave you a gist of how to work with user interfaces in
Ionic. While doing so, we also gave you a thorough introduction to AngularJS, the
driving force behind Ionic apps, and explained how you can use it in order to let
users interact with your app.

Here, we will continue building on this while simultaneously exploring new features
of Ionic, including the interaction with the native features of your device. We will
put this all into practice by building a concrete app that will load and display the
contacts from your phonebook. By doing so, you will also learn how to compile
and run the Ionic apps on physical devices (such as iPhones and Android phones),
rather than the emulator that we have used so far.

Creating a new project
Ionic comes with a powerful Command Line Interface (CLI), which quickly
lets you create, modify, and extend Ionic projects. By automating chores such as
module integration and scaffolding, it can drastically improve your productivity.

'Let's use the CLI to create a basic project for us to work with in this chapter.
Go to your working directory and run the following in a terminal:

ionic start phonebook-app blank

This will create a blank app containing only the basic components for a bare-bones
working app. This is suitable for us, since we want to build an app from the ground
up and learn as we go.

Making Our App Interactive

[104]

The ionic start command has several other basic templates as
well. For example, the tabs template gives you a basic app with
tabbed navigation that you can extend, while side menu creates a
basic app with a side menu for navigation.

When this command finishes running, you will have a complete project to work
with. No extra fiddling is required! Now, let's go ahead and add some content in it.

Creating a basic MVC project
Our goal in this chapter is to create an app that can pull information from the
contacts storage of the local device and display it to the user (a phonebook, if
you like). To do so, we need to do the following things:

• Define a view (template file) to display the contact list
• Define a controller in order to handle interactions with the list
• Provide the necessary model logic in order to provide contacts' information.

You may recall that this workflow fits nicely with the overall architecture of
AngularJS, which follows the MVC pattern. We will take care of each item in turn.

Creating the view
Go ahead and add the following folder to your projects:

www/templates

Here, we will store all the view templates that we will use throughout our project.
In this folder, let's create our first view file, as follows:

www/templates/contacts.html

If we need to add additional views to our app, we will do it in the same manner.
Partitioning our views like this not only makes organization easier, but also boosts
performance, since HTML will only be loaded on demand when it is needed, rather
than all at once.

Let's add some content in order to create an actual view:

<ion-view view-title="contacts">
 <ion-content>
 <ion-list>

Chapter 8

[105]

 <ion-item>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Don't concern yourself with the list-related tags yet; we will get to what they do in
a moment. For now, let's look at the two outer ones:

• ion-view: This tag tells Ionic that this is a view that can be dynamically
loaded from other parts of the application. We add the view-title attribute
to it in order to create a label that can be used to refer to the view.

• ion-content: This tag designates a content area in the view, which is
especially good at displaying scrolling data. Since we want to display a
list of contacts of an unknown length, this is what we will want to wrap
our list in.

Creating the list view
Lists are some of the most ubiquitous data structures in apps everywhere. So, it is
no surprise that most frameworks provide powerful tools to work with them. Ionic
is certainly no exception.

Have a look at the code that we added earlier. Especially note the tags inside the
ion-content tag:

<ion-view view-title="contacts">
 <ion-content>
 <ion-list>
 <ion-item>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

The following two tags encapsulate the majority of Ionic's list rendering capabilities
and are generally everything that you need in order to display the list:

• ion-list: This indicates that the wrapped content is a list
• ion-item: This indicates a single data node, which can be rendered in a list

Since each item in our list will be a single contact, we will wrap each of them in an
ion-item tag.

Making Our App Interactive

[106]

At present, our view does not really do much apart from displaying an empty list.
We need to add some markup in order to show the details of the contact wrapped
in each item. Let's do something basic first, such as just showing the name and
mobile number of the contact, if any:

<ion-view view-title="contacts">
 <ion-content>
 <ion-list>
 <ion-item>
 <h2>{{contact.name}}</h2>
 <p>{{contact.number}}</p>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Here, we defined two Angular expressions to render the name and number of
a contact during runtime. The contact in this case is simply a JavaScript Object
Notation (JSON) object holding information about a given person in our contact
list. Next, we will see how to assign a concrete value to this JSON object; this will
take place in the associated controller.

As of AngularJS 1.3, which is the version that is officially shipped
with Ionic at the time of writing this book, it is possible to make
expressions behave in a bind-once fashion. This means that they
take on the values that they initially compute to, and the values
are skipped by the AngularJS DOM update cycle after this, which
improves performance. In our case, this works well, since we will
only display our data once after fetching it, as we will see later.
The downside of this method at this point in time is that updates
to the data model will not be reflected in this view.

To make your expressions bind-once, add two colons (::) before them, as follows:

<ion-view view-title="contacts">
 <ion-content>
 <ion-list>
 <ion-item>
 <h2>{{::contact.name}}</h2>
 <p>{{::contact.number}}</p>
 </ion-item>

Chapter 8

[107]

 </ion-list>
 </ion-content>
</ion-view>

Creating the controller
You may recall that the controller is the glue between your view and model (that is,
your business logic). Its primary responsibility is to handle interactions with your UI
from the user and delegate the processing of an appropriate response to the model.

In the previous chapter, the example controllers were located in a separate JavaScript
file, where they were declared as part of a module. This is a good design practice,
since it makes it much easier to structure your app.

Note that our blank project does not have such a file. So, let's start by creating it.
Add the following file to your project:

www/js/controllers.js

In this file, let's add the following:

angular.module('phonebook.controllers', [])
controller('ContactsCtrl', function ($scope) {
});

Let's recap in brief to see what the preceding code does:

1. We defined a module using the core angular.module() function, which
takes the following parameters:

 ° The first parameter is phonebook.controllers, which is the name
of the module.

 ° The second parameter is an empty list, which indicates that this
module has no external dependencies. If it did, we would list their
names here so that the AngularJS dependency injection system can
resolve them during runtime.

2. Having created a module, we attach a controller to it using the
(aptly named) core function controller(). The following arguments
are passed to this function:

 ° ContactsCtrl, which is the name of the controller, is the
first argument.

Making Our App Interactive

[108]

 ° The second argument is a function that defines what the controller
does. In this controller, we will define any and all the actions that are
taking place in the segment of the app controlled by this controller.
Note that this function takes the $scope parameter (we will get to
what it does a bit later). Just like the dependency list in the module,
this parameter and all the others passed to the function (there can be
any number of parameters or none at all) denote a dependency of this
controller, which will be resolved at runtime using the dependency
injection system.

For now, this is all we need in order to have a full-fledged controller. Next, we will
need to connect it with our view.

Connecting the view and controller
We have the following two choices if we need to bring our newly created view
and controller together:

• We can use an inline view, where we put a reference to the view and
controller directly in the index.html file or another template, which
is in turn loaded from index.html

• We can use a router to associate the view and its controller with a certain
path within the application

Even though we only have one view for now, we will go for the second option.
This might seem redundant, but it makes it much easier to structure the app in
the event that we want to add new navigation states later on (spoiler—we will!)

Routing is normally configured in the app.js file. So, that is where we will go
next. Open the file and make sure that it has the following content:

angular.module('phonebook', ['ionic', 'phonebook.controllers'])
.run(function ($ionicPlatform) {
 $ionicPlatform.ready(function () {
 if (window.cordova&&window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if (window.StatusBar) {
 StatusBar.styleDefault();
 }
 });
})
.config(function ($stateProvider, $urlRouterProvider) {
 $stateProvider

Chapter 8

[109]

 .state('contacts', {
 url: '/',
 templateUrl: 'templates/contacts.html',
 controller: 'ContactsCtrl'
 });
 $urlRouterProvider.otherwise('/');
});

Let's consider what is going on here, particularly in the config function. Here, we
set up the core navigation settings for our app by configuring the routing module
exposed by $stateProvider and $urlRouterProvider. By default, Ionic uses the
ui-router (for more information, visit https://github.com/angular-ui/ui-
router). This router is state-oriented. That is, it lets you structure your app as a
state machine, where each state can be connected to a path and a set of views and
controllers. This setup makes it very easy to work with nested views, which is a
frequent case when developing for mobile devices, where navigation elements like
tabs, side menus, and the like are very common.

Knowing this, let's consider what this code actually does:

1. The config function itself takes two arguments, $stateProvider and
$urlRouterProvider. Both are configuration interfaces belonging to ui-
router and can be used to configure the router when the app bootstraps.

2. We use the $stateProvider argument in order to add the state contacts
to our app. When the application is in this state, we make the following
properties hold:

 ° The current path within the app is root (/),that is, we are in this
state whenever we are at the initial path of the app.

 ° The template to be loaded for this state is templates/contacts.
html, which is the same view template that we created earlier.

 ° The controller associated with this view is ContactsCtrl, which
was defined earlier as well. Since our phonebook.controllers
module is loaded as a dependency for our app (see the first line
of app.js), we only need to name the controller, and the
dependency injection system will do the rest.

3. Finally, we configure a default route for our app. This is the route our
navigation will resolve to if no other valid route is provided. In our case,
we always default to the start screen.

https://github.com/angular-ui/ui-router
https://github.com/angular-ui/ui-router

Making Our App Interactive

[110]

That's all we need to get the routing going! Next, we need to make sure that the
index.html file has the necessary content to load all the files that we configured
so far, including the new contacts view. Open it, and make sure that it has the
following content:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1, user-scalable=no, width=device-width">
 <title></title>

 <link href="lib/ionic/css/ionic.css" rel="stylesheet">
 <link href="css/style.css" rel="stylesheet">

 <!-- ionic/angularjsjs -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>

 <!-- cordova script (this will be a 404 during development)
 -->
 <script src="cordova.js"></script>

 <!-- your app's js -->
 <script src="js/controllers.js"></script>
 <script src="js/app.js"></script>
 </head>
 <body ng-app="phonebook">

 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button></ion-nav-back-button>
 </ion-nav-bar>

 <ion-nav-view></ion-nav-view>

 </body>
</html>

Pay attention to the highlighted parts:

• The script tag simply imports the phonebook.controllers module.
• The ion-nav-bar tag creates a standard navigation bar, which displays

content specific to the current navigation context that the app is in.

Chapter 8

[111]

If you own an Android device, this will be similar to the action bar at the top,
where you have your app logo, the name of the current view, and so on
Likewise, if you own an iPhone, this bar will be the bottom bar, which
commonly holds the app's navigation tabs

• The ion-nav-back-button tag creates a button to go backwards from the
current navigation context to the previous one, much like a back button in a
browser.

• Finally, ion-nav-view is a special tag, which tells AngularJS where the
routing system should bind the templates. In our case, this is where the
templates/contacts.html template will be rendered when our navigation
context is the contacts state, as we defined in our router config earlier.

Testing the connection
This is all we need for a basic setup of our app. To make sure it runs, let's try it out in
the emulator. From the root of your project folder, run the following in a terminal or
command line:

ionic serve

You should see the following output of the preceding command:

Making Our App Interactive

[112]

Depending on the browser you run your emulator in, you may
not see the top or bottom bar. This is not generated by Ionic, but
rather by a Chrome plugin, which automatically sets the size of the
window to match that of an iPhone 6. The plugin is called Mobile/
Responsive Web Design Tester, and we recommend that you try
it for your own projects.

Creating the model
We now have a working view and controller. Next, we need a model that can
provide the data we need in response to user input.

Services
In AngularJS, it is considered good design practice to keep as little logic in the
controllers as possible. Remember that controllers should only be the glue between
the view and the model. They should ideally not be responsible for doing any of the
heavy fetching and crunching of data. For that, AngularJS provides the services.

Services are objects that are injected into other components of your app on demand
by the dependency injection system. If you look back at the app.js code, you have
seen some of them already; both the $stateProvider and $urlRouterProvider
arguments fall in this category.

If you look at advanced AngularJS apps, you will start seeing services pretty
much everywhere. They make up a large part of almost any app and can be used
to contain almost any kind of functionality. For example, we can create a service
that encapsulates access to a given REST API, allowing us to query it by a set of
utility functions while the service itself handles connections to the server, security,
and so on. Likewise, we can define a service that represents a set of mathematical
operations, which can be fed simple data in order to get arithmetic results.

Services are singletons, which means that only a single instance of each exists
during runtime.

Implementing your business logic in this fashion is important for several reasons,
some of which are as follows:

• It provides modular interfaces to work with a certain aspect of your app's
business logic. Your model can be built around several services, each
providing a single, essential feature of your app's functionality.

Chapter 8

[113]

• It is efficient, since you only have a single instance of each service available
throughout your entire app.

• It makes it easier to extend your app, as units of functionality can be defined
and injected wherever they are needed.

Now that we have established how awesome services are, the natural question is,
how are we going to go about their creation?

Creating services
AngularJS provides several ways to create services. These ways are referred to as
recipes. There are five of them in total—constants, values, providers, factories, and
services. Each varies in complexity and the use cases that are suitable for them:

• Constants: The most simple service, this is used to define a single constant,
which is available throughout the entire application. It varies from the other
four in the sense that it is immediately instantiated when an app starts up,
which means that it can be used during the configuration phase of the app's
lifecycle. Constants are often used to contain constant values such as base
URLs.

• Values: This is similar to constants, with the notable exception that it is
not available during the configuration phase of the app. It may also be
used in decorators.

• Factories: Whereas constants and values are used to store simple values,
factories begin making things much more interesting:

 ° They provide factory functions, which can be used to define logic
rather than just values. This means that a factory can provide
multiple functions, which compute values based on input.

 ° Factories can have dependencies, which means that you can
construct them using other services.

 ° Factories are lazily instantiated, which means that they are only
instantiated when they are needed.

For our app here this is the recipe that we will be using, and as such you
will see its example soon. In fact, we contend that factories will fit most of
the available use cases for most apps.

• Services: Services are very, very similar to factories. While there are some
minor differences in semantics, their real contribution is to provide a concise
syntax. Using a factory or service is almost always a matter of preference. Oh,
and in case you are wondering about the name, the AngularJS developers
themselves regret calling it services, likening it to naming your child child.

Making Our App Interactive

[114]

• Providers: Finally, the most advanced recipe is the provider, which offers
the full range of functionality offered by services (no, not the ones that we
just mentioned; we are talking about the actual services—the naming was
a pretty bad idea, wasn't it?) In particular, Providers allow you to expose
the service to configuration during the config phase of the app before the
service is actually used during the run phase. It is worth while (and perhaps
surprising) to note that the provider is actually the only recipe for services;
the previous four are just syntactic sugar simplifying its use. Because it is so
complex, it is an overkill for most cases, which is why there are other options
to choose from depending on how complex your model logic is.

So much knowledge, so little space! Let's put what we have learned to good use by
actually creating a factory to retrieve contacts.

Creating a factory
Like controllers, it is customary to place your service definitions in their own file
(or files, if you prefer to have each service recipe in its own file. Here, we use a
common file for all of them). In your project directory, create the following file:

js/services.js

In this file, put the following:

angular.module('phonebook.services', [])
.factory('contactsFactory', function contactsFactory() {
 return {
 all: function () {
 return [];
 }
 }
});

Let's have a look at what we have done:

We created a module named phonebook.services to host our services

We defined a basic factory service named contactsFactory

The service which exposes a single utility method is called all, which currently
does not do anything (we will change this soon, don't worry).

Now, we need to modify the app.js and index.html files in order to make the app
aware of the new service. Make sure that the app.js file starts with the following:

angular.module('phonebook', ['ionic',
'phonebook.controllers','phonebook.services'])

Chapter 8

[115]

This injects the services module into the main app. Now, we just need to import the
file the module is located in. To do so, make sure that your JavaScript imports in
index.html look like this:

<!-- your app's js -->
<script src="js/controllers.js"></script>
<script src="js/services.js"></script>
<script src="js/app.js"></script>

That's it! We now have the groundwork of our app in place. However, if you run
the emulator again, you will notice that not much has changed. We are still greeted
by the same blank screen. Now, it is time to add some actual content to our app by
loading the contact list.

Accessing the device data
Now that the basics of our app are have been implemented, it is time to add some
serious data to it. In our case, we want to load the contacts stored on the device that
our app is running on so that we can show them in the list that we created earlier.

Accessing native services
You may recall that Ionic is built on top of the Cordova platform, which provides
the core interaction with the underlying operating system and hardware. In order
to access native services, such as the contact list, we will frequently have to make
use of Cordova directly.

In this particular case, we are in a very easy spot; Cordova not only has a full-fledged
plugin to interact with the contacts, but also sports a very convenient CLI method
to install it.

Go to your project directory and run the following from a terminal or command line:

cordova plugin add org.apache.cordova.contacts

This will install the Cordova Contacts plugin, which will be placed in the
following folder:

plugins/org.apache.cordova.contacts

Feel free to inspect the files before we move on. Next, we need to integrate this
plugin with Ionic so that we can use it in our app.

Making Our App Interactive

[116]

ngCordova
Cordova itself knows nothing about either Ionic or AngularJS. So, accessing its
services in an Angular fashion will often require wrapper code. Fortunately,
there is already an extensive library for this exact end—ngCordova.

To install it, go to the root of your project folder and run the following from a
terminal:

bower install ngCordova

This will install everything we need. Next, let's again import it into our app by
modifying the app.js and index.html files. In app.js, make sure that your app
dependencies now include ngCordova, as follows:

angular.module('phonebook',
 [
 'ionic',
 'ngCordova',
 'phonebook.controllers',
 'phonebook.services
])

Likewise, in index.html, make sure that we import the corresponding JS library,
as follows:

<!-- AngularJS bindings for Cordova -->
<script src="lib/ngCordova/dist/ng-cordova.min.js"></script>

Adding Cordova contacts to our factory
The last step here is to integrate the Cordova contacts with the contactsFactory
service in order to let it serve the contacts available on the device. Open the js/
services.js file and make sure that it contains the following:

angular.module('phonebook.services', [])
.factory('contactsFactory', function contactsFactory($q,
$cordovaContacts) {
 /**
 * Turns a raw contact into something more suitable for viewing.
 *
 * @paramrawContact
 */
 function processContact(rawContact) {
 return {

Chapter 8

[117]

 name: rawContact.name ? rawContact.name.formatted : '',
 number: rawContact.phoneNumbers ?
 rawContact.phoneNumbers[0].value
 }
 }

 return {
 all: function () {
 // It may take some time to fetch all contacts, so we defer
 it.
 var deferred = $q.defer();
 $cordovaContacts.find({multiple: true}).then(function
 (contacts) {

 varprocessedContacts = [];
 contacts.forEach(function (contact) {
 processedContacts.push(processContact(contact));
 });

 deferred.resolve(processedContacts);
 }, function (error) {
 deferred.reject(error);
 });
 return deferred.promise;
 }
 }
});

The important parts are highlighted. Let's figure out what is going on:

• We inject the following dependencies for our factory:
 ° $q: This is the AngularJS service that is used to work with

promises. This will allow us to create deferred functions,
which resolve to a value at a later stage. At that point,
something can be done with their results.

 ° $cordovaContacts: This is the Cordova contacts plugin itself
that is wrapped by ngCordova.

• Since raw contact data is rather clunky, we define a utility method in order
to process it into something more lightweight.

• We create a promise, which is returned to whoever uses our service. The
promise in this case is that at some point, we will deliver either a list of
contacts, or an error indicating why we could not do so.

Making Our App Interactive

[118]

• We invoke the find() function of cordovaContacts, which is very similar
to the MongoDB function with the same name; it simply returns all the
available contacts.

• If we can get the list of contacts, we resolve the promise and hand over
the list to the caller.

• If we cannot get the list of contacts, we reject the promise, indicating that
we were not able to get what was requested. An error message created by
cordovaContacts is returned to the user.

Our service is now all configured and good to go. There is still one major hurdle
though. Emulators have no contacts for us to display! In order to move on, we will
first have to take a detour and see how to deploy the app on physical devices before
we finally wrap up our app by showing the contacts to the user.

Building for native devices
So far, everything we have done in Ionic has been tested in emulators or remote
services. Now that we have an app that uses real phone features, it is time we finally
went all the way and built the ultimate end-product—a mobile app.

Building and deploying Ionic apps on physical devices is remarkably easy thanks
to the Ionic CLI. We will demonstrate how to do so in the following section.

Android
From the root of your project folder, run the following:

ionic platform add android

This will add all the files that are necessary to deploy your app on an
Android device.

Next, we have two options for the running of our app—an actual Android emulator
or a physical device.

Emulator
To run the app in the emulator, first build the project by running the following:

ionic build android

Finally, start the emulator and deploy the app by running the following:

ionic run

Chapter 8

[119]

A physical device
Running an app on a physical device is just as simple as running the app on the
emulator. First, connect an Android device that can accept APK installations over
USB (see Chapter 1, Setting Up Your Workspace, for instructions on setting this up).
Once this is done, run the following:

ionic build android

Finally, run the following to install and run the APK on your connected device:

ionic run

Once the app is deployed, it will start automatically on your device.

The list view revisited
We will now add the finishing touches to our app, as follows:

1. Use logic to display the contacts that we pulled from the contact list
2. Add the pull-to-refresh feature in order to enable users to dynamically

refresh the list of users.

First, let's modify the contacts.html file in order to handle the rendering of the
list itself. Open the file and make sure that it looks like this:

<ion-view view-title="contacts">
 <ion-content class="has-header">
 <ion-refresher
 pulling-text="Pull to refresh"
 on-refresh="doRefresh()">
 </ion-refresher>
 <ion-list>
 <ion-item collection-repeat="contact in contacts"
 type="item-text-wrap">
 <h2>{{contact.name}}</h2>

 <p>{{contact.number}}</p>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Making Our App Interactive

[120]

Most things look the same, but we have highlighted some important changes:

• We added an ion-refresher tag, which creates a pull-to-refresh interface
for our view. When the user swipes a finger downward over the screen, the
text Pull to refresh will be shown. If the full gesture is then carried out (that
is, swipe and drop), the doRefresh() function, which was defined in the
scope of this view, will be called. We will define this function in just a bit.

• We added a collection-repeat attribute to the ion-item tag. This is
a variation of the ng-repeat AngularJS attribute, which means that one
ion-item will be created for each contact number in the contacts collection.
The contacts collection needs to be defined in the scope of the view, which
will be done next.

Modify the controllers.js file to make it look like the following code:

angular.module('phonebook.controllers', [])
.controller('ContactsCtrl', function ($scope, contactsFactory) {
 // List of contacts
 $scope.contacts = [];

 $scope.doRefresh = function () {
 contactsFactory.all().then(
 function (contacts) {
 $scope.contacts = contacts;
 $scope.$broadcast('scroll.refreshComplete')
 },
 function (error) {
 alert(error);
 $scope.$broadcast('scroll.refreshComplete')
 },
 function (notify) {
 console.log("Just notifying");
 });
 };
});

Let's consider what happened here:

• We created and bound the empty contacts list to the scope tag injected
into this controller. This corresponds to the same contacts list that the
collection-repeat directive in our view uses.

Chapter 8

[121]

• Likewise, we bound the doRefresh function, which we already saw in
the view, to our scope. We made it do the following:

 ° Call the all() method of the contactsFactory class. This gives
us a promise that a list of contacts will be delivered at some point
in the future.

 ° If the promise is fulfilled, we bind the resulting list to the scope.
Angular will respond to this change by refreshing the view in order
to accommodate this change in the model and populating the list
with contact information using collection-repeat.

 ° If the promise fails, we display an error message.

Angular promises allow us to listen to progress notifications
from promises. We do not use this feature here, but we simply
catch such messages.

That's it! You should now be able to run your app and browse your contacts.
Go through the build steps for native devices again and try it out!

Summary
In this chapter we covered a lot of ground, going into great depth as regards
AngularJS and learning more about the interaction of a model, view, and controller.
We also saw how to use Cordova plugins and ngCordova in order to access native
features (something that we will be doing a lot of in the future chapters). Finally,
we saw how to create services and use them in order to serve data to our users.

We also recommend the usage of your favorite browser's inspect element tools,
which can give you an insight into any display errors that you might run into
when running the application.

[123]

Accessing Native Phone
Features

The main thing that sets hybrid apps apart from ordinary, mobile-friendly web apps
is the ability to interact with the operating system and hardware of the underlying
mobile device. Modern devices offer a plethora of services to app developers,
from GPS and database functionality to Bluetooth, NFC, and other communication
technologies. Making good use of these services allows us to build apps that meet
the needs of mobile users in the best way possible.

In this chapter, we will continue building on the brief introduction to mobile services
that we saw in the last chapter, and we'll do some refreshing as necessary. Our goal
is to use the GPS receiver, which is one of the most ubiquitous smartphone features,
in order to build a simple navigation app. In doing so, we will also get familiar with
a new, fundamental AngularJS component called the directive.

Creating the project
We will start off by setting up the basic structure of our app. As before, we will go
for a blank project and build our app from scratch to make sure that we understand
how everything works:

1. Create a new project folder for your app. Next, enter into the folder and
execute the following from your terminal or command line:
ionic start superNav blank

Accessing Native Phone Features

[124]

2. Ionic will now download and configure everything you need in order
to deploy a basic app (albeit not a very interesting one). You can see
what it looks like by going into your project folder and executing the
following command:

ionic serve -l

The output of this command is shown in the following screenshot:

Now that we have the basics in place, let's start adding some basic functionality.

Chapter 9

[125]

Creating the basic app structure
We want to keep our app as simple as possible—a single screen with a map, together
with a toolbar where we can place buttons for various utilities, such as finding the
user's current location.

Let's create a basic view that meets this requirement.

Open your app's index.html file and make sure that it looks like the following:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1, user-scalable=no, width=device-width">
 <title></title>

 <link href="lib/ionic/css/ionic.css" rel="stylesheet">
 <link href="css/style.css" rel="stylesheet">

 <!-- ionic/angularjs js -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>

 <!-- cordova script (this will be a 404 during
 development) -->
 <script src="cordova.js"></script>

 <script
 src="https://maps.googleapis.com/maps/api/js?key=
 AIzaSyB16sGmIekuGIvYOfNoW9T44377IU2d2Es&sensor=true"></script>

 <!-- your app's js -->
 <script src="js/app.js"></script>
 </head>

 <body ng-app="supernav" ng-controller="MapCtrl">
 <ion-header-bar class="bar-stable">
 <h1 class="title">SuperNav</h1>
 </ion-header-bar>

 <ion-content scroll="false">

Accessing Native Phone Features

[126]

 <div id="map"></div>
 </ion-content>

 <ion-footer-bar class="bar-stable">
 </ion-footer-bar>
 </body>
</html>

The browser preview should now look like this (if you closed the server after the
previous step, feel free to start it up again and leave it running; it will automatically
load any changes made to the underlying sources):

A little bit more content, but nothing exciting as of yet. Have patience; we are
getting there.

Chapter 9

[127]

Integrating Google Maps into the app
Next, we want to integrate the most essential feature of our UI—the map. To do so,
we will use Google Maps, one of the most popular map services.

If you have ever used the Google Maps application on a mobile device or checked
directions to a location on Google, you are already familiar with what Google Maps
looks like and some of what it can do. In essence, Google Maps is a complete package
that offers everything—scalable maps, satellite imagery, geocoding, and much more.
For our purposes here, it is perfect.

To integrate Google Maps into the app , we need to import the Google Maps
JavaScript SDK, which is freely available. To do so, add the following import
to the index.html file:

<script
src="https://maps.googleapis.com/maps/api/js?sensor=true">
</script>

Next, we will need to designate an area of the UI where the app should be drawn.
Change the existing div id tag to the following:

<div id="map" ng-controller="MapCtrl"></div>

In order to render the map properly, we will need to add some custom CSS to force
the map to fill its parent container. Open the www/css/style.css file and add the
following to it:

#map {
 display: block;
 width: 100%;
 height: 100%;
}

.scroll {
 height: 100%;
}

Also note that we added a binding for a controller for our map. We will use this in
order to perform the initial configuration needed in order to render and work with
the map. So, let's go ahead and add it! Create the www/js/controllers.js file in
your project and make sure that it contains the following:

angular.module('supernav.controllers', [])
.controller('MapCtrl', function ($scope) {

Accessing Native Phone Features

[128]

 $scope.mapCreated = function (map) {
 $scope.map = map;
 };

 function initialize() {
 var mapOptions = {
 center: new google.maps.LatLng(57.661577, 11.914768),
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.TERRAIN
 };

 $scope.map = new google.maps.Map(
 document.getElementById('map'), mapOptions
);

 $scope.onCreate({map: map});

 }

 if (document.readyState === "complete") {
 initialize();
 } else {
 google.maps.event.addDomListener(window, 'load', initialize);
 }
});

Here, we defined a new supernav.controllers module, which will contain the
controllers of our app. For now, it only has one such controller—MapCtrl. Let's
go through it and consider what it does:

1. We first defined the map scope variable, which will be used to simply refer
to the map that we are working with. We also defined a scope function in
order to bind a value to this variable.

2. We defined the initialize local function, which will be used in order
to set up and configure a Google Maps instance as follows:

 ° Here, we defined the mapOptions object, which provides the initial
settings for the map to be created. It has the following properties:

Chapter 9

[129]

center: This property includes latitude and longitude coordinates
for the point on the Earth's surface on which the map will initially be
centered on. The coordinate pair is passed as an instance of Google
Maps' own LatLng object.
zoom: This is the degree of zooming the location that needs to be
applied to the map.
mapTypeId: This is the kind of map that we want to show. Google
Maps supports several different view modes, ranging from raw
satellite imagery to detailed views of roads, businesses, and more.

 ° We then created the actual Map object. We pass the following to
its constructor:
This is the part of the Document Object Model (DOM) where
we want to bind the map. In our case, it is the div with the map
ID, which was earlier defined in our view. We used the standard
getElementById DOM function in order to retrieve a reference.
Then we have mapOptions that we defined earlier.
Finally, after the map has been created, we bind it to the map scope
object that we defined earlier.

3. Finally, if the DOM is fully loaded, we attempt to execute the initialize
function that we just defined. If the DOM is not ready yet, we instead
register it as a callback that needs to be run once it is.

4. All we need to do now is make sure that the controller is properly loaded
and put in charge of the map. To do so, first make sure that the JavaScript
file is imported by adding the following to your index.html file:
<script src="js/controllers.js"></script>

5. Next, modify the app.js file in order to make sure that the module is
listed as a dependency, as follows:

angular.module('supernav', ['ionic',
'supernav.controllers'])

www.allitebooks.com

http://www.allitebooks.org

Accessing Native Phone Features

[130]

That's it! The browser preview should now look like this:

We have come pretty far already. While we do not have any advanced navigation
capabilities yet, we have successfully built a basic app that people can use just for
the purpose of browsing the maps of the world. Not bad for work that took just
10 minutes!

Before we move on though, it is worth pausing and considering the architectural road
that we have travelled so far. Everything we have done here is standard AngularJS
practice—create a view for the element that we want to display (in this case, a map),
create a controller for it and some logic, and activate the controller by integrating
the map into the app. However, you may recall that we mentioned earlier in the book
that the the greatest advantage of AngularJS is the creation of enhanced HTML. We
have already seen how this works through data binding, live DOM updates, and other
things. However, AngularJS also offers us the ability to define custom HTML tags in
order to define elements, which can be reused in several parts of the application. Our
map, which we created here, is a good candidate. What if we could just encapsulate it
in a <map> tag? We can, and to get there, we need to talk about directives.

Chapter 9

[131]

Angular directives
Simply put, directives are custom HTML elements. You write them like ordinary
HTML elements, but their functionality is defined entirely programmatically. Thus,
they extend the standard HTML syntax by letting us add whatever we need to it in
order to build truly dynamic pages.

Creating directives
Like the services and controllers that we have already seen, directives are defined
as components of modules, and AngularJS gives us the tools that are necessary to
create them. We will explore this process by creating a directive for the map that
we created earlier.

The first thing that we will need to do is create a new file named www/js/
directives.js for the directives of our project. Create this file and add the
following to it:

angular.module('supernav.directives', [])
.directive('map', function () {
 return {}
});

The directive module function is used to define a directive for a module, and as you
might have guessed, its first parameter is the name of the directive itself, while the
second one is a factory function that gives us an object describing how the directive
works. In that sense, directives are similar to the services that we studied earlier.

Restricting directives
Let's start building the factory function for our map directive. The first thing that we
should do is add a restriction to the directive in order to tell the AngularJS parser
which kinds of HTML elements this particular directive may occur as:

angular.module('supernav.directives', [])
.directive('map', function () {
 return {
 restrict: 'E'
 }
});

Accessing Native Phone Features

[132]

Right now, you are probably exclaiming, E? What is this E of which you speak? Well,
AngularJS allows us to confine a directive to the following three different classes
of elements:

• E (Elements): These are your standard HTML tags, such as <map></map>
• A (Attributes): These are the element attributes, such as <div map></div>
• C (Classes): These are the customized element class attributes that are

mapped to the directive, such as <div class="map"></div>

You are not required to stick with just one restriction. For example, you can also
write the following in order to restrict it to elements and attributes:

angular.module('supernav.directives', [])
.directive('map', function () {
 return {
 restrict: 'EA'
 }
});

Hence, the Angular parser will detect the directive if you write either <map></map>
or <div map></map>.

You will frequently find that it makes sense to restrict directives
only to a single kind of element. This is good practice as it reduces
the complexity of your app.

Scope isolation
Just like controllers, directives are able to access the scope in which they are
operating. However, it is also possible (and generally considered good practice)
to create an isolated scope for the directive. This scope will contain a set of data
that only the current instance of the directive is aware of. In addition to this, scope
isolation also helps you create reusable widgets, which enhance code quality.

We achieve this by defining scope injection points in our directive, which will
take the form of the standard HTML attributes:

angular.module('supernav.directives', [])
.directive('map', function () {
 return {
 restrict: 'E',

Chapter 9

[133]

 scope: {
 onCreate: '&'
 }
});

Here, we defined an injection point called onCreate, which maps the directives to a
function in the parent scope that we are isolating (the & symbol signifies a binding
by delegation). For example, let's say that we want to inject the onCreate method
from MapCtrl into the isolated scope. We will then write our directive like this:

<map on-create="mapCreated(map)"></map>

At this point, the map parameter is not bound. Later, we will see how to define and
pass it to the function from within the directive itself in the next section.

However, before we move on, did you observe that although we name our
injection point onCreate, we wrote it as on-create in the actual HTML? This is
due to an AngularJS process called normalization. Through this, attributes and
tags are translated into a more concise form. Part of the process involves replacing
hyphen-bound words with camel-cased words. We will give you the reference to
the documentation if you wish to know more about how it works, since understanding
it is not crucial to developing our directive here.

DOM manipulation
Ultimately, we want our map directive to expand and show a map where it occurs in
the DOM. To do so, we will need to allow it to actually manipulate the DOM itself.

The typical way to achieve this is by providing the directive with a link function,
which allows it to look into the DOM update process. Let's add one link to our map
directive, as follows:

angular.module('supernav.directives', [])
.directive('map', function () {
 return {
 restrict: 'E',
 scope: {
 onCreate: '&'
 },
 link: function ($scope, $element, $attr) {
 function initialize() {
 var mapOptions = {

Accessing Native Phone Features

[134]

 center: new google.maps.LatLng(43.07493, -89.381388),
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map($element[0], mapOptions);

 $scope.onCreate({map: map});

 google.maps.event.addDomListener(
 $element[0], 'mousedown', function (e) {
 e.preventDefault();
 return false;
 });
 }

 if (document.readyState === "complete") {
 initialize();
 } else {
 google.maps.event.addDomListener(window, 'load',
 initialize);
 }
 }
 }
});

Looks oddly familiar, doesn't it? This is the same initialize function and
associated map setup procedure that we defined in our controller earlier,
albeit with some slight modifications. We have already covered how this works.
So, let's go over how it figures in the context of the link function:

The link function takes the following three parameters:

• $scope: This is the scope under which the directive is rendered.
• $element: This is the tag to which the directive is bound, which is

<map> in our case. The tag is wrapped in the JQuery-like jqLite library,
which allows us to perform direct manipulations on it.

• $attr: This defines the attributes for the directive element along with
their associated values.

Inside the initialize function itself, we now use $element[0] in order to get the
name of the tag itself (map in our case). We also use the $scope parameter in order
to call the onCreate delegate in the parent scope (note how we explicitly need to
define the parameter name and its associated value in this case).

Chapter 9

[135]

Putting it all together
We now have a full-fledged directive, and it's time to integrate it into our app. First,
make sure that the new directive is properly loaded. The first line of the app.js file
should look like this:

angular.module('supernav', ['ionic', 'supernav.controllers',
'supernav.directives'])

Likewise, the index.html file should contain the following import:

<script src="js/directives.js"></script>

Next, make sure that the ion-content section in index.html now looks like this:

<ion-content scroll="false">
 <map on-create="mapCreated(map)"></map>
</ion-content>

Next, since we moved the rendering logic for the map into the directive, remove it
from the controller.js file, which should now look like this:

angular.module('supernav.controllers', [])
.controller('MapCtrl', function ($scope) {
 $scope.mapCreated = function (map) {
 $scope.map = map;
 };
});

Finally, we need to make some slight modifications to style.css in order to make
sure that the map directive will render on app properly. Make sure that it looks
like this:

map {
 display: block;
 width: 100%;
 height: 100%;
}

.scroll {
 height: 100%;
}

That's it! Ensure that you reload the preview in your browser if necessary. It should
look just the same as it did when we were not using a directive. We have succeeded
in putting all together!

Accessing Native Phone Features

[136]

Adding geolocation via GPS
Now that we have an even better working map view, let's go ahead and add some
basic navigation features to it, namely, the ability to focus the map on our current
physical location.

First, let's add a button to the footer toolbar for now. Make sure that the ion-
footer-bar tag looks like the following:

<ion-footer-bar class="bar-stable">
 <a ng-click="centerOnUser()" class="button button-icon icon
ion-navigate">
</ion-footer-bar>

Your preview should now look like this:

Chapter 9

[137]

Now, we need to hook into the location capabilities of the native device in order
to find the user's current location. Fortunately, this can be done directly through
the HTML5 geolocation interface. To see it in action, let's add the following to the
controller.js file inside the MapCtrl controller:

$scope.centerOnUser = function () {
 console.log("Centering on user");
 if (!$scope.map) {
 return;
 }

 navigator.geolocation.getCurrentPosition(function (pos) {
 console.log('Got pos', pos);
 $scope.map.setCenter(
 new google.maps.LatLng(pos.coords.latitude,
 pos.coords.longitude));
 }, function (error) {
 alert('Unable to get location: ' + error.message);
 });
};

Note what we did here.

We defined the centerOnUser() scoped function. This function is in turn bound
to the location button that we just defined in the index.html file.

In this function, we have the navigator.geolocation.getCurrentPosition
function, a part of the HTML5 standard, in order to retrieve the current location
of the user. This function takes a callback as an argument, which in turn takes a
position object, pos, as an argument.

Inside the callback, we use the latitude and longitude value stored in pos in order
to recenter the map using the setCenter() method provided by Google Maps.

You can now try out the navigation for yourself in the preview. Clicking on the
location button should change the focus of the map to your current location.
That's it. We are done!

Summary
In this chapter, we worked directly with the Google Maps API in order to render
the map and work with maps. While this is perfectly fine, we also recommend that
you check out the module that can be found at http://angular-ui.github.io/
angular-google-maps/#!/, which makes it even easier to work with Google Maps
in AngularJS.

http://angular-ui.github.io/angular-google-maps/#!/
http://angular-ui.github.io/angular-google-maps/#!/

Accessing Native Phone Features

[138]

Apart from the navigation features that we covered here, there are of course a
plethora of services offered by mobile devices. Fortunately, almost all of the services
have a corresponding Cordova plugin, which will let you make use of these services.
We recommend that you refer to the Cordova plugin registry, which can be found at
http://plugins.cordova.io/#/, whenever you need to find one.

You can do much, much more with Google Maps than what we explored here. We
highly recommend that you explore the developer's page for Google Map, which
can be found at https://developers.google.com/maps/, to get a better view of
the available possibilities regarding Google Map.

The navigation app that we built here is really the map starter app in Ionic.
You can find the complete source code for it at https://github.com/driftyco/
ionic-starter-maps.

In this chapter, you learned how to use native phone features and Google Maps in
order to build a simple navigation app. Most importantly, you also studied directives
in AngularJS, a powerful feature that lets you create custom HTML elements.

http://plugins.cordova.io/#/
https://developers.google.com/maps/
https://github.com/driftyco/ionic-starter-maps
https://github.com/driftyco/ionic-starter-maps

[139]

Working with APIs
During the creation process of an application, in today's dynamic living and working
environments, connecting your mobile application to a backend will facilitate the
process of data storage and connection of data to companion web applications,
which will provide users with enhanced capabilities and a satisfactory experience.

Introducing a backend into your project can be facilitated through the use of the
Parse.com REST API. Parse offers an easy-to-use, straightforward, and scalable
platform, which can be implemented within an application based on the
Ionic framework.

As we go through this chapter, we will start off by setting up a Parse backend and
an Ionic project. After this, we will create a connection between them to achieve
our desired effect.

Setting up Parse
The first step that is required to get this project up and running is to visit
www.parse.com and create an account or log in to that site if you already have
an account. In the free plan, you will get a file storage of 20 GB, a database
storage of 20 GB, and the ability to transfer up to 2 TB of data.

If you're using Parse.com for the first time, you will be welcomed by the
following screen:

www.parse.com

Working with APIs

[140]

Let's name the app Ionic-ToDo. Once the app has been created, you will see the
following screen if this is the first application that you created with Parse. Make
sure that you note down the Application ID and REST API Key:

Chapter 10

[141]

The next part involves proceeding to the Data Browser. In this view, click on Add
Class in the sidebar. The role of a class is to store data in the Parse application instance.
In our case, we will name the class Todo and choose Custom as the class type:

To finalize the class creation process, click on Create Class, and you will have your
class ready. In the data browser, you'll see that your newly created class already
has some properties:

• objectId: This is a unique ID that represents an individual Todo item in
the collection

• createdAt: This tells us when the Todo item was added to Parse
• updatedAt: This tells us when the Todo item was last updated

In order to personalize the Todo application and allow for the creation of to-dos,
we need a custom property to hold the contents of a Todo item. In the Data
Browser, click on +Col, and the following dialog box will pop up:

Working with APIs

[142]

For this property, we will choose String as the type of column and input
todo-content in the name field. Conclude this process by clicking on Create
Column, and we are done!

Once we have the class ready, we can start creating our Ionic app.

Setting up the Ionic project
We will create the Ionic app by running the following command:

ionic start ionictodo blank

This will create a blank Ionic starter app named whichapp, which will give us the
necessary setup that is required to connect the Parse service to our project.

Connecting Parse to our project
In order to connect the Parse data to our project, we will need to create an
AngularJS service that performs the necessary CRUD operations to interact
with the Parse REST API.

Chapter 10

[143]

The code editor of our choice is Atom, the GitHub open source editor. Start by
adding the project folder to Atom by navigating to it:

File | Add Project Folder

Create a file named services.js with the following path:

www | js | services.js

Start by connecting the services. Define the service as follows:

angular.module('ionictodo.services',[]).factory('Todo',['$http',
function($http){
 return {

 }
}]);

At this stage, our factory object Todo is an empty object, and we will need to add
the necessary Parse.com API methods to it. It's important to note that the hostname
is https://api.parse.com in all cases. /1/ means that we are using version 1 of
the API.

The following is the factory object with the five required methods:

angular.module('ionictodo.services',[]).factory('Todo',
['$http','PARSE_CREDENTIALS',function($http,PARSE_CREDENTIALS){
 return {
 getAll:function(){
 return $http.get('https://api.parse.com/1/classes/Todo'',{
 headers:{
 'X-Parse-Application-Id': PARSE_CREDENTIALS.APP_ID,
 'X-Parse-REST-API-Key':PARSE_CREDENTIALS.REST_API_KEY,
 }
 });
 },
 get:function(id){
 return $http.get('https://api.parse.com/1/classes/Todo/'+id,{
 headers:{
 'X-Parse-Application-Id': PARSE_CREDENTIALS.APP_ID,
 'X-Parse-REST-API-Key':PARSE_CREDENTIALS.REST_API_KEY,
 }
 });
 },
 create:function(data){

Working with APIs

[144]

 return $http.post
 ('https://api.parse.com/1/classes/Todo',data,{
 headers:{
 'X-Parse-Application-Id': PARSE_CREDENTIALS.APP_ID,
 'X-Parse-REST-API-Key':PARSE_CREDENTIALS.REST_API_KEY,
 'Content-Type':'application/json'
 }
 });
 },
 edit:function(id,data){
 return $http.put
 ('https://api.parse.com/1/classes/Todo/'+id,data,{
 headers:{
 'X-Parse-Application-Id': PARSE_CREDENTIALS.APP_ID,
 'X-Parse-REST-API-Key':PARSE_CREDENTIALS.REST_API_KEY,
 'Content-Type':'application/json'
 }
 });
 },
 delete:function(id){
 return $http.delete
 ('https://api.parse.com/1/classes/Todo/'+id,{
 headers:{
 'X-Parse-Application-Id': PARSE_CREDENTIALS.APP_ID,
 'X-Parse-REST-API-Key':PARSE_CREDENTIALS.REST_API_KEY,
 'Content-Type':'application/json'
 }
 });
 }
 }
}]);

We will also need to declare the PARSE_CREDENTIALS value service, as follows:

.value(PARSE_CREDENTIALS 'PARSE_CREDENTIALS',{
 APP_ID: 'yourappid',
 REST_API_KEY:'yourrestapikey'
});

Replace yourappid and yourrestapikey with your previously noted application
ID and REST API key respectively.

Chapter 10

[145]

Defining app states
In order to connect the different apps' functions, we will need to define some states
for our app, which are as follows:

• todos: This lists all the to-do items
• createTodo: This allows users to create a new to-do item
• editTodo: This allows users to update a to-do item

The app states are defined in the app.js file named whichfile, which is available
at the following path:

www | js | app.js

Replace the existing app.js code with the following code:

angular.module('ionictodo', ['ionic','ionictodo.
controllers','ionictodo.services'])

.run(function($ionicPlatform,$state) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show
 the accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 $state.go('todos');
 });
}).config(function($stateProvider){
 $stateProvider.state('todos',{
 url:'/todos',
 controller:'TodoListController',
 templateUrl:'views/todos.html'
 }).state('createTodo',{
 url:'/todo/new',
 controller:'TodoCreationController',
 templateUrl:'views/create-todo.html'
 }).state('editTodo',{
 url:'/todo/edit/:id/:content',

Working with APIs

[146]

 controller:'TodoEditController',
 templateUrl:'views/edit-todo.html'
 });
});

Creating controllers and templates
Once you have defined the states, you need to create the controllers and provide
a template for each of them. Since we would like to edit and create tasks in a list
view, we will define the following three controllers:

• TodoListController

• TodoCreationController

• TodoEditController

In order to implement the controllers, we will need to create a new file entitled
controllers.js, which should be available at the following path:

www | js | controllers.js

In this file, we will declare all our controllers whichcontrollers, which will be
done with the help of the following code:

angular.module('ionictodo.controllers',[]).controller('TodoListControl
ler',['$scope','Todo',function($scope,Todo){

 Todo.getAll().success(function(data){
 $scope.items=data.results;
 });

 $scope.onItemDelete=function(item){
 Todo.delete(item.objectId);
 $scope.items.splice($scope.items.indexOf(item),1);
 }

}]).controller('TodoCreationController',['$scope','Todo','$state',func
tion($scope,Todo,$state){

 $scope.todo={};

 $scope.create=function(){
 Todo.create({content:$scope.todo.content}).success
 (function(data){

Chapter 10

[147]

 $state.go('todos');
 });
 }

}]).controller('TodoEditController',['$scope','Todo','$state','$stateP
arams',function($scope,Todo,$state,$stateParams){

 $scope.todo={id:$stateParams.id,content:$stateParams.content};
 $scope.edit=function(){
 Todo.edit($scope.todo.id,
 {content:$scope.todo.content}).success(function(data){
 $state.go('todos');
 });
 }
}]);

For each controller, we require templates to present the controllers. We will start off
with the todo list controller, which uses ion-list to display all the items in the todo
list. In order to start off with this process, we will create a new folder in www, which
will be named views. Within the views folder, we then need to design three new
HTML files named create-todo.html, edit-todo.html, and todos.html.

For todos.html, we need to declare the ion-list UI element as follows:

<ion-header-bar class="bar-positive">
 <div class="buttons">
 <button class="button button-icon icon ion-ios7-minus-outline"
 ng-click="data.showDelete = !data.showDelete;"></button>
 <h1 class="title">All Todo Items</h1>
 <button class="button" ui-sref="createTodo">New</button>
 </div>
</ion-header-bar>
<ion-content>
 <ion-list show-delete="data.showDelete">
 <ion-item ng-repeat="item in items | orderBy: '-createdAt'"
 item="item"
 href="#/todo/edit/{{item.objectId}}/{{item.content}}">
 {{item.content}}
 <ion-delete-button class="ion-minus-circled"
 ng-click="onItemDelete(item)"></ion-delete-button>
 </ion-item>
 </ion-list>
</ion-content>

Working with APIs

[148]

The creation of a new todo list is presented with a text area and an Add button.
When you click on this button, the $scope.create() method gets called. Navigate
to create | todo.html. This should be presented in the code as follows:

<ion-header-bar class="bar-positive">
 <div class="buttons">
 <button class="button" ui-sref="todos">Back</button>
 <h1 class="title">Create Todo</h1>
 </div>
</ion-header-bar>

<ion-content>
 <div>
 <ion-list>
 <li class="item item-input item-stacked-label">
 <textarea type="text" placeholder="Start typing..."
 name="content" rows="10" ng-model="todo.content"
 required></textarea>

 <ion-button class="button button-block button-positive"
 ng-click="create()">
 Add
 </ion-button>
 </ion-list>
 </div>
</ion-content>

The ability of editing a todo list is a necessary feature in any to-do list app, and in
our project, we will create an edit-todo.html file that allows the modification of
an existing to-do item, as follows:

<ion-header-bar class="bar-positive">
 <div class="buttons">
 <button class="button" ui-sref="todos">Back</button>
 <h1 class="title">Edit Todo</h1>
 </div>
</ion-header-bar>

<ion-content>
 <div>
 <ion-list>
 <li class="item item-input item-stacked-label">
 <textarea type="text" name="content" rows="10"
 ng-model="todo.content" required></textarea>

Chapter 10

[149]

 <ion-button class="button button-block button-positive"
 ng-click="edit()">
 Update
 </ion-button>
 </ion-list>
 </div>
</ion-content>

Testing our application
At this stage, we have produced the basic functionality of our application and we
are ready to test the application in the browser.

On your terminal, navigate to the project directory. Once you're in the project folder,
run the following command:

ionic serve --lab

When you execute the command, your browser will automatically load live
screenshots of the application running in Android and iOS side by side.
The screen will look like this:

Working with APIs

[150]

At this stage, once you add new items, they might not show up instantly within
your application and you will be required to refresh the page.

Summary
When connecting the app to APIs, the topics that we covered in this chapter are just
the tip of the iceberg as regards the possibilities. There are endless opportunities
available if you wish to extend such an application, from the perspective of the UI
to the API extensibility.

First, we can provide an option of deleting or archiving the completed to-do lists.
We can also add an option of a pull-to-refresh feature in order to update lists of to-
do items. From the point of view of user experience, we can add more interactive
controls, such as swiping to the left or right to mark a to-do item as a completed task.
The basis of the knowledge that we have built in this chapter will make you familiar
with the necessary concepts that are required to take on more complex tasks, which
will be faced by us in the next chapter.

[151]

Working with Security
User management and conditional access in various forms has become almost
ubiquitous in modern apps, and modern users expect the possibility of logging in
with an account that they already have or registering and using a new one. Further,
they expect that the data that they make available under their accounts will remain
secure and in compliance with the applicable privacy legislation.

In this chapter, we will explore how we can add security to our Ionic application,
which meets most of these demands. We will start by explaining how routing
between views in Ionic works and how we can secure access to individual routes.
Finally, we will give some pointers to further reading, including advanced
authentication concepts such as OAuth.

An overview of client-side security
We will start off by briefly discussing some core concepts that are involved in
securing client applications, such as the apps that we are developing in this book.

Client-side security is a convenience
The first thing that you need to know about client-side security is that there really is
no such thing as client-side security. The app that you deliver to your users, whether
native or hybrid, is exposed to the possibility of tampering, reverse engineering,
cracking, and a number of other things that fundamentally compromise its integrity.
Thus, you can never really trust client applications with the important part of
security in your app, which is ultimately required to safeguard your users' private
information and make sure that unauthorized users cannot access data that they
should not be allowed to access. In particular, this data is private and cannot be
accessed by other users. In fact, many of the most severe blows in terms of security
failures of larger companies has been due to user data being compromised and
leaked en-masse to unauthorized parties.

Working with Security

[152]

However, you can provide security that is good enough for the app's intended use.
For example, even if it will not guarantee complete security, you can still attempt to
deter less severe privacy invaders from trying to glean personal data from an app
by using more advanced security measures such as fingerprint scanners on some
devices, or by using encryption on local data while forcing users to pick very
strong encryption keys.

The fact that client-side security is not a final measure in safeguarding your users'
data should of course not deter you from using it. In fact, client-side security brings
a lot of benefits in terms of how we structure our apps. Importantly, it allows us to
to create rich user experiences, where the sections of the app accessible to the user
can be limited based on the users' authentication status.

The basic components of client-side security
While details may vary across different systems and implementations, there
are some fundamental concepts of client-side security that are in use almost
everywhere. The following are some of the concepts:

• Authentication tokens: These are data that uniquely identify an
authenticated user in a system. They are granted by the system itself—or
an associated, trusted system—in response to the user providing legitimate
authentication information to the system. For example, this information can
be a username-password pair, a fingerprint/iris scan, or some other trusted
means of authentication.

• Secure local storage: In order to improve user experience, we most certainly
do not want to force our users to authenticate themselves every single time
they use the app. Just imagine a situation where you had to log in again to
every single account on your device every time you restarted it! In order
to work around this, we use some kind of secure storage, where the access
tokens stored under the previous step are preserved. The app itself then
simply extracts the token from this storage and uses it in order to perform
authenticated communication with the server. The term secure local storage
implies some necessary security measures as regards how access tokens are
stored and retrieved. This is necessary since a compromised access token
will allow an unauthorized party to be masked as the legitimate user. On
most mobile devices, there are native features for storage where security is
handled by the resident operating system. In other cases, developers can opt
to use other solutions, such as an encrypted file storage that require some
external mechanism to unlock the system.

Chapter 11

[153]

• Secure communication: Access tokens can be compromised in storage.
Furthermore, they are also open to theft while in transit. For example,
various types of man-in-the-middle attack, where an attacker is masked as a
legitimate endpoint for a network connection, can be used in order to intercept
an access token during a transfer in order to steal it and consequently, the
user's access privileges. In most cases, secure communication is nothing that
you as a developer have to worry about implementing manually. Encrypted
connections via HTTPS are increasingly becoming the standard way of
communication across the Internet, and they provide very robust security
for data over network endpoints. Meanwhile, support for it is present in the
network stacks of virtually all major operating systems, both for stationary
and mobile devices.

Building a secure app
Now that we have a better understanding of client-side security and its drawbacks,
let's put it into practice by developing an app with the following features:

• There is a public home screen that can be seen by everybody who uses
the app

• There is a private part that shows some personal information about a user,
which is only accessible to authenticated users

• There is logic for the authentication of users through a simple log-in form
• There is logic for the authorization and authentication of users to access

the otherwise private parts of the application

Starting off
Let's start with the configuration of our basic project structure. If you have read the
book until this point, this should be second nature to you by now! Go to a desired
project directory, and from there, just run the following from your terminal or
command line:

ionic start secureApp

This will create a basic, blank Ionic app. Let's add some basic structure to it. The
first thing that we want to do is add two basic navigation states—home and public.
Navigate to your app's www/js folder and make sure that app.js has the following:

angular.module('secureApp', [])
.run(function ($ionicPlatform) {

Working with Security

[154]

 $ionicPlatform.ready(function () {
 // Hide the accessory bar by default (remove this to show
 // the accessory bar above the keyboard for form inputs)
 if (window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if (window.StatusBar) {
 // org.apache.cordova.statusbar required
 StatusBar.styleDefault();
 }
 });
})
.config(function ($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('app', {
 url: "/app",
 abstract: true,
 templateUrl: "templates/menu.html"
 })
 .state('app.home', {
 url: "/home",
 views: {
 'menuContent': {
 templateUrl: "templates/home.html"
 }
 }
 })
 .state('app.private', {
 url: "/private",
 views: {
 'menuContent': {
 templateUrl: "templates/private.html"
 }
 }
 });
 // if none of the above states are matched, use this as the
 fallback

Chapter 11

[155]

 $urlRouterProvider.otherwise('/app/home');
 });

This will set up the essential navigation states for the app, which fortunately are very
few at this point! However, we still need to add the necessary templates. Inside the
www directory, create a templates directory and add the following three files to the
path www/templates/menu.html:

<ion-side-menus enable-menu-with-back-views="false">
 <ion-side-menu-content>
 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button></ion-nav-back-button>
 <ion-nav-buttons side="left">
 <button class="button button-icon button-clear
 ion-navicon"
 menu-toggle="left">
 </button>
 </ion-nav-buttons>
 </ion-nav-bar>
 <ion-nav-view name="menuContent"></ion-nav-view>
 </ion-side-menu-content>
 <ion-side-menu side="left">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Left</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item menu-close
 href="#/app/home">
 Home
 </ion-item>
 <ion-item menu-close
 href="#/app/private">
 Private
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-side-menu>
 </ion-side-menus>

Working with Security

[156]

The following code snippet represents the home.html templates at the path www/
templates/home.html:

<ion-view view-title="Search">
 <ion-content class="has-header">
 <h1>A secure app!</h1>
 <div class="card">
 <div class="item item-text-wrap">
 This app contains extremely secretive confidential
 mustneverbeseen-ish information that will cause a
 disaster if it leaks out. It will also kill all
 dolphins. Please save the dolphins.
 </div>
 </div>
 </ion-content>
</ion-view>

The following code snippet represents the private.html templates at the path www/
templates/private.html:

<ion-view view-title="Search">
 <ion-content class="has-header">
 <h1>Secret content!</h1>
 <div class="card">
 <div class="item item-text-wrap">
 You are authorized to see the grand secrets
 of the Universe!
 </div>
 </div>
 </ion-content>
</ion-view>

That's all that we need for the basic setup. You can verify it by running the following
in a terminal or command line in the root folder of your directory:

Ionic serve -l

Chapter 11

[157]

You will see the following:

Working with Security

[158]

A dire warning indeed! Let's see if we can get around it. If you click on the app icon
at the top left of the app screen (either for Android or iOS), you can bring out the
navigation drawer that we created in the www/templates/menu.html file:

Chapter 11

[159]

If you select the Private link from the list, you would expect the app to stop us from
accessing information that could potentially put an end to Flipper once and for all,
but alas:

Not good! To remedy this, we will need to find a way to block the user from accessing
certain content unless they are authenticated and that, even if they hack their way into
accessing the content, there is no useful data for them to find anywhere.

Working with Security

[160]

A basic authentication service
The first step in adding basic security to our app is to create an authentication
service, which can be used in order to carry out authentication requests. We want
this service to provide the following functionalities:

• It should be able to log a user in. This function should take a username and
password and, if they match, return an authentication token that the user
can use in order to verify their identity to the system.

• It should be able to check whether a user is currently authenticated in the
app. This will be necessary whenever we wish to check whether a user
should have access to the system or not.

Let's go ahead and build such a service. Add the services.js file in the www/js
folder and insert the following content in it:

angular.module('secureApp.services', [])
.factory('AuthFactory', function ($scope, $timeout) {
 var currentUser = null;
 var login = function (username, password) {
 return null;
 };
 var isAuthenticated = function () {
 return false;
 };
 var getCurrent = function () {
 return isAuthenticated() ? currentUser : null;
 };
 return {
 login: login,
 isAuthenticated: isAuthenticated,
 getCurrent: getCurrent
 }
});

This gives us a skeleton to work with. Let's start adding some meat to it incrementally.

The login function
The purpose of the login function is simply to take a username and password and
check them against an existing list of such pairs. To get it working, we will first need
to add some mock data to our service (in real life, you will of course pull the data
from a remote server).

Chapter 11

[161]

Go ahead and make sure that the LoginFactory contains the following:

var validUsers = [
{
 firstName: 'Johanna',
 lastName: 'Doe',
 username: 'johnny',
 password: 'suchsecret'
},
{
 firstName: 'Jane',
 lastName: 'Doe',
 username: 'zo1337',
 password: 'muchhide'
},
{
 firstName: 'Mary',
 lastName: 'Doe',
 username: 'bl00dy',
 password: 'wow'
}
];

Now, we simply need to add the following to the body of the login function:

var login = function (username, password) {
 var deferred = $q.defer();
 // We use timeout in order to simulate a roundtrip to a server,
 // which will be present in any realistic authentication
 scenario.
 $timeout(function () {
 // Clear any existing, cached user data before logging in
 currentUser = null;
 // See if we can find a matching username-password match
 validUsers.forEach(function (user) {
 if (user.username === username && user.password ===
 password) {
 // If we have a match, cache it as the current user
 currentUser = user;
 deferred.resolve();
 }
 });
 // If no match could be found, reject the promise
 if (!currentUser) {

Working with Security

[162]

 deferred.reject();
 }
 }, 1000);
 // Return the promise to the caller
 return deferred.promise;
};

What we do here in terms of authentication is really quite simple. We only match
usernames and passwords against a pre-defined array. If a match is found, we
cache the matched user and add it to the factories context. It will now be
accessible via the getCurrent() function.

The isAuthenticated function
The purpose of this function is to allow the system to check whether the current
user is presently logged in or not. We can simply implement it in terms of
whether there is a cached user from a successful login event available:

var isAuthenticated = function () {
 return currentUser ? true : false;
};

The getCurrent function
This function is simple, and it simply returns the current cached user:

var getCurrent = function () {
 return isAuthenticated() ? currentUser : null;
};

Implementing route authentication
Now that we have a working authentication service, let's use it in order to safeguard
the world's dolphins and seal off the private part of our app. To do so, first make
sure that the index.html file correctly imports the new service, as follows:

<script src="js/services.js"></script>

Next, modify the app.js file to import that file as well:

angular.module('secureApp',
[
 'ionic',
 'secureApp.services',
])

Chapter 11

[163]

Now, in the app.js file, modify the routing config for the private part of the app so
that it looks like the following code:

.state('app.private', {
 url: "/private",
 views: {
 'menuContent': {
 templateUrl: "templates/private.html",
 resolve: {
 isAuthenticated: function ($q, AuthFactory) {
 if (AuthFactory.isAuthenticated()) {
 return $q.when();
 } else {
 $timeout(function () {
 $state.go('app.home')
 },0);
 return $q.reject()
 }
 }
 }
});

What is going on here? To answer this, consider what we want to achieve. If the
user is not authenticated, we want to send them back to the home screen until they
have logged in. In order to do so, we perform the following steps:

1. We add a resolve hook for the transition to the app.private state.
In terms of the router, this is a function that has to be resolved before
the navigation commences.

2. Inside this hook, we use the AuthFactory.isAuthenticated function that
we defined earlier. However, for resolve to work as expected, the return
value of the hook needs to be a promise method. Thus, we use $q to return
a when resolution if the user is logged in and a reject event if they are not.

3. If the user is not logged in, we use $state in order to tell the router to
redirect the control to the home page again.

Finally, all we need to do is add an actual login screen for the app. To do so,
start by adding a new file to keep controllers for our app at the path www/js/
controllers.js. Make sure that this file has the following content:

angular.module('secureApp.controllers', ['secureApp.services'])
.controller('AppCtrl', function ($scope, $ionicModal, $timeout,
AuthFactory) {

Working with Security

[164]

 // Form data for the login modal
 $scope.loginData = {};
 // Create the login modal that we will use later
 $ionicModal.fromTemplateUrl('templates/login.html', {
 scope: $scope
 }).then(function (modal) {
 $scope.modal = modal;
 });
 // Triggered in the login modal to close it
 $scope.closeLogin = function () {
 $scope.modal.hide();
 };
 // Open the login modal
 $scope.login = function () {
 $scope.modal.show();
 };
 // Perform the login action when the user submits the login form
 $scope.doLogin = function () {
 AuthFactory.login($scope.loginData.username,
 $scope.loginData.password)
 .then(function () {
 $scope.closeLogin();
 });
 };
});

To render the login screen itself, add a template for to the path www/templates/
login.html:

<ion-modal-view>
 <ion-header-bar>
 <h1 class="title">Login</h1>
 <div class="buttons">
 <button class="button button-clear"
 ng-click="closeLogin()">
 Close
 </button>
 </div>
 </ion-header-bar>
 <ion-content>
 <form ng-submit="doLogin()">
 <div class="list">
 <label class="item item-input">

 Username

Chapter 11

[165]

 <input type="text"
 ng-model="loginData.username">
 </label>
 <label class="item item-input">

 Password

 <input type="password"
 ng-model="loginData.password">
 </label>
 <label class="item">
 <button class="button button-block button-positive"
 type="submit">
 Log in
 </button>
 </label>
 </div>
 </form>
 </ion-content>
</ion-modal-view>

Finally, let's tie everything together by making sure that the app loads our newly
defined controller. Load it in index.html:

<script src="js/controllers.js"></script>

Next, make sure that it is listed as a dependency in app.js:

angular.module('secureApp',
[
 'ionic',
 'secureApp.services',
 'secureApp.controllers'
])

We are now building our app. You can try it out by running it yourself. Try logging
in with wrong credentials (according to the ones that we defined) in order to convince
yourself that the app really blocks the user from going where they should not.

Working with Security

[166]

Summary
In this chapter, you gained a basic understanding of how client-side authentication
works and what its basic limitations are. You also saw how to create a basic app that
implements some of the basic concepts to create an app in order to see how the app
works in practice.

In the next chapter, you'll learn how to set up web socket communication through
the app in order to subscribe to dynamic notifications from a server.

[167]

Working with Real-Time Data
In today's app ecosystem, real-time features of various sorts are more or less
becoming staple. Chat applications (and chat features for existing apps) are ever
more common, push notifications bring news and views to users without them
having to look for it, and so on.

In this chapter, we will take a look at how we can incorporate some choice real-time
features into our Ionic apps. We will do so by building a simple chat application
without authentication, where at least two people can get together and talk about
the wonders of life. In doing so, we will revisit what we learnt earlier about web
sockets, as we will need to create a simple server for this end.

A refresher – WebSockets
Before we move on, let's have a quick refresher on an important concept that
we visited earlier—WebSockets.

WebSockets is a standardized Internet protocol, which allows for direct
server-to-client communication over a network. This is rather unusual in the world
of traditional client-server architecture, where almost all communication is initiated
by the client and the server simply responds to such communication.

WebSockets makes it easy to build real-time apps because the server can dynamically
push new data to the connected clients as soon as its state changes. This is ideal
for chat applications, in which we would otherwise have to use more tedious
and resource-consuming approaches, such as polling, in order to approximate
the same effect.

For a deeper understanding of WebSockets, please refer to Chapter 5, Real-Time
Data and WebSockets, where we dealt with them in depth.

Working with Real-Time Data

[168]

Getting the lay of the land
In this chapter, we are going to build a chat application that is hauntingly reminiscent
of the one that we saw in Chapter 5, Real-Time Data and WebSockets. The big difference,
of course, is that our client will be an Ionic app this time, which will be able to interact
fully with browser clients that are also connected to the same server. In doing so, we
demonstrate how easy it is to build apps that almost seamlessly interact with apps on
other platforms that use the same server.

What we will need
To get our app working, we will need:

• A server that can both receive and relay messages via WebSockets.
• An app that can connect to a server using WebSockets and send, receive,

and process messages over the same protocol. All the sent data should be
rendered in a way that is meaningful to the user.

In the spirit of this book, we will of course use Node.js for our server. To add
WebSocket support to it, we will use the socket.io library, which you already
saw in Chapter 6, Introducing Ionic.

For the client, we will use the standard socket.io client library, which was seen
in Chapter 5, Real-Time Data and WebSockets, (observed a trend here?). However, we
will make some clever use of it in order to make things work smoothly on the app
side of things.

Let's go ahead and start setting things up!

Creating the server
The first thing that we need to do is create a WebSocket server to relay messages
between our clients. Find a suitable project folder, open your terminal/command
line, and run the following:

npm init

This will create the basic Node.js project structure. You can enter whatever values
you see fit:

{
 "name": "ionic-chat-server",
 "version": "1.0.0",

Chapter 12

[169]

 "description": "A websocket server for chatting.",
 "main": "server.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "csvan",
 "license": "MIT"
}

Now, let's install the dependencies that we will need. Run the following command:

npm install socket.io

This will install socket.io, which is all we will need in order to get our
server running.

Next, create the server.js file in the current folder and add the following content
to it:

var http = require('http');
var url = require('url');
var fs = require('fs');
var server = http.createServer(function (req, res) {
 var parsedUrl = url.parse(req.url, true);
 switch (parsedUrl.pathname) {
 case '/':
 // Read the file into memory and push it to the client
 fs.readFile('index.html', function (err, content) {
 if (err) {
 res.writeHead(500);
 res.end();
 }
 else {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(content, 'utf-8');
 }
 });
 break;
 }
});
// Connect the websocket handler to our server
var websocket = require('socket.io')(server);

// Create a handler for incoming websocket connections

Working with Real-Time Data

[170]

websocket.on('UserConnectedEvent', function (socket) {
 console.log("New user connected");

 // Tell others a new user connected
 socket.broadcast.emit('UserConnectedEvent', null);

 // Bind event handler for incoming messages
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new chat message');

 // By using the 'broadcast' connector, we will
 // send the message to everyone except the sender.
 socket.broadcast.emit('MessageReceivedEvent', chatData);
 });
});
server.listen(8080);

Looks familiar, doesn't it? This is pretty much the exact same server that we
developed back in Chapter 5, Real-Time Data and WebSockets! It even has that beautiful,
modern chat UI that we built there. All that we need to do is serve it. To do so,
add the index.html file to the current folder and add the following to it:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Socket.io chat application</title>
 <link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
 bootstrap/3.3.4/css/bootstrap.min.css"/>
</head>
 <body>
 <ul id="messages">
 <div class="container">
 <div class="row">
 <div id="chat-box" class="well">
 <ul id="chat-view" class="list-unstyled">
 </div>
 </div>
 <form action="">
 <div class="row">
 <input type="text"
 id="chat-name"

Chapter 12

[171]

 class="form-control"
 placeholder="Your name">
 </div>
 <div class="row">
 <input type="text"
 id="chat-message"
 class="form-control"
 placeholder="Enter message">
 <button id="chat-submit"
 type="submit"
 class="btn btn-default">Send
 </button>
 </div>
 </form>
 </div>
 <script src="/socket.io/socket.io.js"></script>
 <script src="https://code.jquery.com/jquery-
 1.11.0.min.js"></script>
 <script>
 var websocket = io();
 var appendChatMessage = function (sender, message) {
 $('#chat-view').append($('').text(sender + ': ' +
 message));
 };
 var clearChatField = function () {
 $('#chat-message').text('');
 };
 // Notify the server when we send a new message

 $('#chat-submit').click(function () {
 var chatData = {
 name: $('#chat-name').val(),
 message: $('#chat-message').val()
 };
 appendChatMessage(chatData.name, chatData.message);
 clearChatField();
 websocket.emit('newChatMessage', chatData);
 return false;

Working with Real-Time Data

[172]

 });

 // Update the state of the chat when we receive a new chat
 message
 websocket.on('new chat message', function (chatData) {
 appendChatMessage(chatData.name, chatData.message);
 });
 </script>
 </body>
</html>

That's all there is to it. Our browser-based chat is now all up and running...again! I
won't explain how everything works here. Checkout Chapter 5, Real-Time Data and
WebSockets, if anything seems unclear. Whenever you are ready, let's head right
on and get started with our app client.

Building the chat app
One of our primary concerns when developing mobile experiences is creating an
interface that is intuitive for users to use. Fortunately, Ionic comes loaded with some
very convenient features to make this possible. Before we get there though, let's set
up the basics.

Setting up the basic app structure
Let's start by creating a basic app. Create a suitable project folder, which is different
from that of the chat server that we created earlier. Navigate to the folder, open a
terminal/command line, and run the following:

ionic start ionic-chat-app blank

As we have seen before, this will create an empty Ionic project for us to fill with love
and good things. Have a look around. Not much to see here, right? We will change
that soon enough. Hang tight.

It's early, but let's get our Ionic preview server going right away so that we can see
the app live. Without changing anything, run the following from your terminal /
command line:

ionic serve -l

Chapter 12

[173]

This will bring up the preview for both the Android and iOS displays. As expected,
there is not much to see here yet:

Let's go ahead and set up the basics. The first thing that we need to deal with is
routing. In the js/app.js file, make sure that you have the following:

angular.module('ionic-chat-app', ['ionic'])
.run(function ($ionicPlatform) {
 $ionicPlatform.ready(function () {
 if (window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if (window.StatusBar) {

Working with Real-Time Data

[174]

 StatusBar.styleDefault();
 }
 })
})
.config(function ($stateProvider, $urlRouterProvider) {
 // Configure the routing
 $stateProvider.
 state('app', {
 url: "/app",
 abstract: true,
 templateUrl: 'index.html'
 })
 .state('app.chat', {
 url: '/chat',
 templateUrl: 'templates/app-chat.html'
 });
 $urlRouterProvider.otherwise('/app/chat');
});

Here, we defined a basic, abstract state called app, which we will leave as the root
state for the app as a whole. The only child state of this state is app.state, which
will contain the actual chat view and associated logic.

It may seem counter-intuitive to add states for an app that we really only want to
have a single view of. However, this is a good architectural precaution to take in
case we want to expand the app further.

Now, let's add some basic view information. Create a templates folder in your app's
www folder and then proceed to create a file named app-chat.html in it, which has
the following content:

<ion-view view-title="chat">
 <ion-content class="padding">
 Chat awesomeness goes here!
 </ion-content>
</ion-view>

Chapter 12

[175]

Now, your app preview should look like this:

This is slightly better, but we're not quite there yet. Next, we will add the actual chat
layout to it.

Working with Real-Time Data

[176]

The input section
Go ahead and modify the app-chat.html file so that it looks like this:

<ion-view view-title="chat">
 <ion-content class="padding">
 </ion-content>
 <div class="bar bar-footer bar-balanced">
 <label class="item-input-wrapper">
 <input id="message-input" type="text" placeholder="Message">
 </label>
 <button class="button button-small">
 Submit
 </button>
 </div>
</ion-view>

Here, we attached a footer to our app—an element that will be permanently fixed
to the bottom of the viewport. Inside this footer, we defined an input field to add a
message and an associated button to actually send it. To make the input box scale
appropriately, we need to add the following to the css/style.css file:

#message-input {
 width: 100%;
}

Having done all this, we will end up with the following:

So far, so good. Gotta love that spicy green touch. On we go!

Chapter 12

[177]

The message view
Now, let's create the part of our app that will display all the messages in our most
important chat.

Modify the templates/app-chat.html file so that the <ion-content> tag looks
like the following:

<ion-content>
 <div class="list">

 <h2>Me</h2>
 <p>Anyone out there!?</p>

 <h2>Anyone</h2>
 <p>Yes.</p>

 <h2>Me</h2>
 <p><3</p>

 </div>
</ion-content>

The preceding code creates a standard Ionic list that contains a set of item-avatar
elements. These are standard list items in Ionic, which make it easy to show an
avatar image, a heading, and some text, as shown in the following example from
the Ionic element reference:

Working with Real-Time Data

[178]

However, in our case, we will skip over the actual images and just use the header
and text. These two make for a very convenient way of showing a single chat
message along with the name of the person sending it.

Next, add the following to the css/style.css file:

.item-avatar {
 padding-left: 16px;
}
.other-chatbox {
 text-align: right;
}

The preceding code is needed in order to override the default Ionic styling for the
item-avatar element. This allows for the title and text to be positioned either right
or left. This will bring the final look closer to the more popular chat apps, where the
texts of other participants are usually positioned to the right of the flow, whereas
our own are positioned to the left.

Your preview should now look like this:

That does it for a very basic chat interface. Now, let's go ahead and add some logic
to it all.

Chapter 12

[179]

The ChatService function
In order to communicate with the WebSocket server, we will create a service that
will allow us both to send messages to the server as well as subscribe to the events
sent by it.

To start off, create a file named js/services.js and insert the following code in it:

angular.module('ionic-chat-app-services', [])
.service('ChatService', function ChatService($rootScope) {
 this.emit = function (message) {
 // Send a message
 };
 this.on = {
 userConnected: function (callback) {
 $rootScope.$on('UserConnectedEvent',
 function (event, user) {
 callback(user);
 })
 },
 messageReceived: function (callback) {
 $rootScope.$on('MessageReceivedEvent',
 function (event, message) {
 callback(message);
 })
 }
 }
});

Our service here exposes the following two core features to the user:

• Emit: This allows the user to broadcast a message to the server
• On: This allows the user to subscribe to the following two events:

 ° UserConnectedEvent: This is fired whenever a new user connects
to the app

 ° MessageReceivedEvent: This is fired whenever a new message
is received from the server

The passing of messages in the preceding code is implemented by means of the
$rootScope function, which already provides us with a robust mechanism.
We merely wrap it up in order to meet our own ends.

To integrate service into our app, add the following to the index.html file:

<script src="js/app.services.js"></script>

Working with Real-Time Data

[180]

Next, list the chat services as a dependency in the js/app.js file, as follows:

angular.module('ionic-chat-app',
[
 'ionic',
 'ionic-chat-app-services'
])

Adding WebSockets to the mix
Now that the service is connected to the app, let's bring WebSockets into play
to actually make it do something fun! To start off, add the following to the
index.html file in order to import the socket.io client library:

<script src="https://cdn.socket.io/socket.io-x.x.x.js"></script>

Replace the x.x.x in the preceding code with whatever version of socket.io you
are running on your server (if you are not sure, check the package.json file in the
chat server project that we created earlier).

This will give us the global object named io, which can be used to interact with
a WebSocket server. Global objects are evil. Very evil. So, as a matter of good
principle, we will make the best effort to contain it in our chat service, as follows:

angular.module('ionic-chat-app-services', [])
.service('ChatService', function ChatService($rootScope) {

 // Init the Websocket connection
 var socket = io.connect('http://localhost:8080');

 // Bridge events from the Websocket connection to the rootScope
 socket.on('UserConnectedEvent', function(user) {
 $rootScope.emit('UserConnectedEvent', user);
 });
 socket.on('MessageReceivedEvent', function(message) {
 $rootScope.emit('MessageReceivedEvent', message);
 });

 /*
 * Send a message to the server.
 * @param message
 */
 this.emit = function (message) {

Chapter 12

[181]

 socket.emit('MessageSentEvent', message);
 };
 this.on = {
 userConnected: function (callback) {
 $rootScope.$on('UserConnectedEvent',
 function (event, user) {
 callback(user);
 })
 },
 messageReceived: function (callback) {
 $rootScope.$on('MessageReceivedEvent',
 function (event, message) {
 callback(message);
 })
 }
 }
});

What we have done here is pretty straightforward and can be summarized
as follows:

• We listen for events from the WebSocket server using the on function
and simply pass these events along to the $rootScope function. By doing
so, the other parts of our app can register listeners and callbacks for these
events in order to act on them.

• We use the emit function of the socket in order to send messages back to
the server.

This concludes the hard logic behind our app. Next, we will tie it all together by
making our chat view dynamic.

Updating the chat view
Whenever you or another connected user submits something to the chat, you want
the chat display to show the new message. If that sounds like a job for ng-repeat,
that's because it...well...really isn't.

While ng-repeat is a very powerful directive on its own, it can unfortunately incur
severe performance penalties as data sets grow over time, especially when it comes
to mobile devices, where processing power is limited. To work around this, Ionic
offers another directive to render dynamic datasets—collection-repeat. Without
much intervention from our side, collection-repeat will do a lot of the really
heavy lifting when it comes to working with collections.

Working with Real-Time Data

[182]

However, before we can do this, we will need to add a controller for our chat view.
Go ahead and create the js/app.controllers.js file. Import it and add it as a
dependency in index.html and app.js respectively:

<script src="js/app.controllers.js"></script>

angular.module('ionic-chat-app',
[
 'ionic',
 'ionic-chat-app-services',
 'ionic-chat-app-controllers'
])

Next, let's add some basic content to the file:

angular.module('ionic-chat-app-controllers', [])
.controller('ChatController', function ($scope) {
});

Finally, let's bind the controller to our app's chat state. In app.js, make sure
that your state definition looks like the following:

$stateProvider.
state('app', {
 url: "/app",
 abstract: true,
 templateUrl: 'index.html'
})
.state('app.chat', {
 url: '/chat',
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController'
});

We are now ready to start adding some serious functionality to our app!
Go ahead and add the following to your controller:

angular.module('ionic-chat-app-controllers', [])
.controller('ChatController', function ($scope, ChatService) {
 // The chat messages
 $scope.messages = [];
 // Notify whenever a new user connects
 ChatService.on.userConnected(function (user) {
 $scope.messages.push({
 name: 'Chat Bot',

Chapter 12

[183]

 text: 'A new user has connected!'
 });
 });
 // Whenever a new message appears, append it
 ChatService.on.messageReceived(function (message) {
 message.external = true;
 $scope.messages.push(message);
 });
 $scope.inputMessage = '';
 $scope.onSend = function () {
 $scope.messages.push({
 name: 'Me',
 text: $scope.inputMessage
 });
 // Send the message to the server
 ChatService.emit({
 name: 'Anonymous',
 text: $scope.inputMessage
 });
 // Clear the chatbox
 $scope.inputMessage = '';
 }
});

Finally, modify the templates/app-chat.html file in order to connect to the
controller data, as follows:

<ion-view view-title="chat">
 <ion-content>
 <div class="list">
 <a collection-repeat="message in messages"
 class="item item-avatar"
 ng-class="{'other-chatbox' : message.external}">
 <h2>{{message.name}}</h2>
 <p>{{message.text}}</p>

 </div>
 </ion-content>
 <div class="bar bar-footer bar-balanced">
 <label class="item-input-wrapper">
 <input id="message-input"
 type="text"
 placeholder="Message"
 ng-model="inputMessage">

Working with Real-Time Data

[184]

 </label>
 <button class="button button-small"
 ng-click="onSend()">
 Submit
 </button>
 </div>
</ion-view>

Note that we are bringing the fabled collection-repeat function into play here
with pretty much no configuration needed! The app will now respond both to our
own message sending events as well as others' messages that are coming in from
the server. Fire it up in your preview and try it out!

Going further
Here, to keep things simple, we simulated our chat app on the emulator. However,
we could have of course had even more fun if we actually got it running on a set
of physical devices. If you are the kind of person with so much money that you
can pick up a bunch of iPhones and Android devices on your way back from the
grocery store (or just have a lot of friends with the same devices), why not make it
a fun project of hosting your chat server on an actual VPS (Virtual Private Server)
and connect the project to it? You and your friends can discuss plans for world
domination in your very own app!

The VPS that you want to use is up to you, but we can think of several options for
you to consider. Check out https://www.digitalocean.com/ and https://www.
linode.com/ to fire up your backend. There are also several more specific solutions
that enable you to fire up your backend with less configuration such as Heroku.
Many of the prominent services make it extremely easy to configure the more
crucial elements of server functionality such as DNS.

Once you configure your VPS and run your chat server, change the target domain
in your app from localhost to the domain/IP of your server. Invite your friends
and chat away! However, in order to make sure that the integrity of your users is
protected, make sure that you enable communication only over HTTPS for actual
live applications.

Summary
In this chapter, we explored how we can incorporate real-time functionality into
an Ionic app using socket.io. In the process of doing so, we built a simple chat
application, which can be expanded later in order to learn advanced real-time features.

https://www.digitalocean.com/
https://www.linode.com/
https://www.linode.com/

Chapter 12

[185]

In the next chapter, we'll take a look at how to set up WebSocket communication
through the app in order to subscribe to dynamic notifications from a server. We
will elaborate on how this helps us develop truly dynamic applications such as
chat apps.

[187]

Building an Advanced
Chat App

In the previous chapter, we developed a rudimentary chat application, which
allowed an arbitrary number of users to connect to each other and talk anonymously.

In this chapter, we are going to expand this app and make it more advanced by
adding features for chat rooms and notifications. In doing so, we will demonstrate
how the concept of namespacing works on socket.io, which is one of the most
important aspects of this library.

We need some room!
So far, the most advanced thing that we have done with WebSockets in our apps
has simply been sending data back and forth across a single WebSocket interface.
We paid very little attention to partitioning and basically just let it all go on as a
free-for-all app. However, in real life, we will frequently find ourselves in situations
where we want to partition WebSocket connections and only let certain users have
access to a subset of partitions.

To see how this can work, consider the case of a group chat. Here, rather than having
just a single solitary chat interface, users instead have access to a multitude of them;
each hosts its own members and conversation. To implement this, we can extend
our existing chat server to simply start new node instances for the chat rooms that
we want to open, with each of them having its own port, as follows:

// [snip]

// Connect the websocket handler to our server
var websocket = require('socket.io')(server);

Building an Advanced Chat App

[188]

// Create a handler for incoming websocket connections
websocket.on('UserConnectedEvent', function (socket) {
 console.log("New user connected");
 // Tell others a new user connected
 socket.broadcast.emit('UserConnectedEvent', null);
 // Bind event handler for incoming messages
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new chat message');
 // By using the 'broadcast' connector, we will
 // send the message to everyone except the sender.
 socket.broadcast.emit('MessageReceivedEvent', chatData);
 });
});

// Define a separate port for each server we want to start
var port = 8080; // get from terminal args, for example

server.listen(port);

However, this becomes clunky very quickly. Since we will need to fire up a new,
separate V8 instance for each server, chances are that we will very soon get angry
knocks at the office window from the guy down the hall whose super-important
stock analysis algorithm just crashed due to a lack of memory space. He may want
to hurt us and do terrible things to our pets, all because we could not find a smoother
way to make use of WebSockets.

Or, well, maybe we can, after all.

This is where the concept of a namespace comes into play. Imagine a situation where
we can just partition a single socket.io instance into several different endpoints,
each of which can service its own set of clients. It turns out that we can!

Namespaces
Remember how we set up our original websocket server? For that take a look at
the following code:

// [snip]

// Connect the websocket handler to our server
var websocket = require('socket.io')(server);
// Create a handler for incoming websocket connections
websocket.on('UserConnectedEvent', function (socket) {
 console.log("New user connected");

Chapter 13

[189]

 // Tell others a new user connected
 socket.broadcast.emit('UserConnectedEvent', null);
 // Bind event handler for incoming messages
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new chat message');
 // By using the 'broadcast' connector, we will
 // send the message to everyone except the sender.
 socket.broadcast.emit('MessageReceivedEvent', chatData);
 });
});

Here, we simply used the main socket.io instance in order to directly register
socket connections and their respective callbacks. However, looking a little closer,
what we actually did was connect all the incoming connections to a namespace,
even if this happened implicitly. Take a look at the following snippet from the
preceding code:

websocket.on('UserConnectedEvent', function (socket) {
 console.log("New user connected");
 // Tell others a new user connected
 socket.broadcast.emit('UserConnectedEvent', null);
 // Bind event handler for incoming messages
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new chat message');
 // By using the 'broadcast' connector, we will
 // send the message to everyone except the sender.
 socket.broadcast.emit('MessageReceivedEvent', chatData);
 });

What is actually happening here is that we are registering the connections on the
root namespace (written as /), which is the one namespace that socket.io gives
us to work with even if we specify no other namespaces. This goes to show that
namespaces are actually essential for the way socket.io works internally. In
fact, every single connection that you have going will be associated with a single
namespace, even if it is an implicit one!

Your users connect to the root namespace whenever they connect directly to
the URL of your WebSocket server. For example, they can do this by doing the
following on the client side:

var socket = io.connect('http://localhost:8080');

You are in effect telling socket.io that you wish to establish a connection to the
root namespace.

file://192.168.0.200/Current-Titles/000_Product%20ID/4653_Learning%20Node.js%20for%20Mobile%20Application%20Development/Index) >> endobj 1365 0 obj << /A 1366 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [233.998 202.95 347.397 192.987] /StructParent 295 /Subtype /Link /Type /Annot >> endobj 1364 0 obj [1365 0 R] endobj 1367 0 obj << /Filter /FlateDecode /Length 1721 >> streamH���mo�6�����w��M� ���QR��X�v-�tX���Pd��"��$�5�}���d

Building an Advanced Chat App

[190]

The problem is that if we perform the preceding steps (as we have done until now),
all the messages that we send to the server are open for broadcasting to all the other
connected clients as well (this happens even if you have other namespaces defined,
as we will see later). This is not very convenient if we want to concentrate on
communications.

Let's say that we want to divide communications in order to let users subscribe
to websocket channels, which sends information that interests them. For example,
let's say that we are building a chat application that will let them speak about various
programming languages such as Java, Scala, and JavaScript. In that case,
we can define namespaces on the server side by doing the following:

websocket.of('/java').on('UserConnectedEvent', function (socket) {
 console.log("New user connected to the Java channel");
 socket.broadcast.emit('UserConnectedEvent', null);
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new Java chat message');
 socket.broadcast.emit('MessageReceivedEvent', chatData);
});

websocket.of('/scala').on('UserConnectedEvent',
function (socket) {
 console.log("New user connected to the Scala channel");
 socket.broadcast.emit('UserConnectedEvent', null);
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new Scala chat message');
 socket.broadcast.emit('MessageReceivedEvent', chatData);
});

websocket.of('/javascript').on('UserConnectedEvent',
function (socket) {
 console.log("New user connected to the Java channel");
 socket.broadcast.emit('UserConnectedEvent', null);
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new Javascript chat message');
 socket.broadcast.emit('MessageReceivedEvent', chatData);
});

The important parts of the code are emphasized. Note how we use the of function
in order to create the actual namespace. The argument of the function is the name
of the namespace relative to the root namespace (/).

After the namespace is created, we register socket connections in a way that is
familiar to us by now after having (albeit unknowingly!) done the same thing
with the root namespace earlier.

Chapter 13

[191]

We can now make use of these modifications to the server by having the client
connect to any given namespace available. For example, for the ones that we have
already defined here, you can connect to each of them like this (respectively):

var javaSocket = io.connect('http://localhost:8080/java');

var scalaSocket = io.connect('http://localhost:8080/scala');

var javascriptSocket = io.connect('http://localhost:8080/javascript');

Then, proceed to operate on them just as you would in the case of any other single
WebSocket connection, as follows:

javaSocket.on('UserConnectedEvent', function (user) {
 console.log('User connected to the Java channel:', user);
});

This is all pretty straightforward, as you will note as you dig in a little deeper.
Let's do so by dusting off the simple chat application that we wrote in the last
chapter and giving it some genuine namespacing love.

Creating a multiroom chat application
Let's take a brief refresher on the basic Chat App that we built during the course of
the previous chapter:

Building an Advanced Chat App

[192]

This app effectively sets up a connection to the WebSocket server and lets us talk to
random strangers who, for some reason, are loitering in the kitchen and using the
Wi-Fi connection. What we want to do here is give these strangers (and ourselves)
the possibility to pick separate chat rooms depending on what they are keen to talk
about. Since we love programming, programming languages are of course going
to be the be-all-and-end-all of what is on the menu.

Configuring the basic layout
In order to create a nice way to navigate between different chat rooms, we will
use a tabbed layout, where each tab will correspond to a single chat room.

This means that we will need to make several changes to our HTML as well as the
routing for our app. Start out by modifying the index.html file. Make sure that it
looks like the following:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1,
 maximum-scale=1, user-scalable=no, width=device-width">
 <title></title>
 <link href="lib/ionic/css/ionic.css" rel="stylesheet">
 <link href="css/style.css" rel="stylesheet">
 <!-- IF using Sass (run gulp sass first), then uncomment
 below and remove the CSS includes above
 <link href="css/ionic.app.css" rel="stylesheet">
 -->
 <!-- ionic/angularjs js -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>
 <!-- cordova script (this will be a 404 during development)
 -->
 <script src="cordova.js"></script>
 <!-- your app's js -->
 <script src="https://cdn.socket.io/socket.
 io-1.3.5.js"></script>
 <script src="js/app.services.js"></script>
 <script src="js/app.controllers.js"></script>
 <script src="js/app.directives.js"></script>
 <script src="js/app.js"></script>

Chapter 13

[193]

 </head>
 <body ng-app="ionic-chat-app">
 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>
 </ion-nav-bar>
 <ion-nav-view></ion-nav-view>
 </body>
</html>

I highlighted the most important part in the preceding code. Here, we created a
navigation bar, which corresponds to a toolbar at the top of the screen in Ionic. If
you are familiar with Android, you will recognize this as the action bar. Below
this navigation bar, we then attached the actual view, which is currently loaded.

Next, we will attach a series of tabs to this layout, which will let us select the
chat room that we wish to interact with. In the templates folder, create a file
named tabs.html and make sure that it has the following content:

<ion-tabs class="tabs-icon-top tabs-color-active-positive">
 <!-- Node chat -->
 <ion-tab title="Node Chat"
 icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/app/node">
 <ion-nav-view name="node-view">
 </ion-nav-view>
 </ion-tab>
 <!-- Javascript chat -->
 <ion-tab title="JS Chat"
 icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/app/javascript">
 <ion-nav-view name="javascript-view">
 </ion-nav-view>
 </ion-tab>
 <!-- Haskell chat -->
 <ion-tab title="Haskell Chat"
 icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/app/haskell">
 <ion-nav-view name="haskell-view">

Building an Advanced Chat App

[194]

 </ion-nav-view>
 </ion-tab>
 <!-- Erlang chat -->
 <ion-tab title="Erlang Chat"
 icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/app/erlang">
 <ion-nav-view name="erlang-view">
 </ion-nav-view>
 </ion-tab>
 <!-- Scala chat -->
 <ion-tab title="Scala Chat"
 icon-off="ion-ios-chatboxes-outline"
 icon-on="ion-ios-chatboxes"
 href="#/app/scala">
 <ion-nav-view name="scala-view">
 </ion-nav-view>
 </ion-tab>
</ion-tabs>

Here, we used the ion-tabs directive, which in essence acts like a horizontal list
consisting of ion-tab instances. Note how we associate each tab with a single
language view and URL. The router will use both in order to deduce the exact
state the app should be in when a tab is clicked. Let's see how it does so. Open
the app.js file and make sure that it looks like the following:

angular.module('ionic-chat-app',
[
 'ionic',
 'ionic-chat-app-services',
 'ionic-chat-app-controllers'
])
.run(function ($ionicPlatform) {
 $ionicPlatform.ready(function () {
 if (window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if (window.StatusBar) {
 StatusBar.styleDefault();
 }
})
})

Chapter 13

[195]

.config(function ($stateProvider, $urlRouterProvider) {
 // Configure the routing
 $stateProvider
 // Each tab has its own nav history stack:
 .state('app', {
 url: '/app',
 abstract: true,
 templateUrl: "templates/tabs.html"
 })
 .state('app.node', {
 url: '/node',
 views: {
 'node-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'node';
 }
 }
 }
 }
})
.state('app.javascript', {
 url: '/javascript',
 views: {
 'javascript-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'javascript';
 }
 }
 }
 }
})
.state('app.haskell', {
 url: '/haskell',
 views: {
 'haskell-view': {

Building an Advanced Chat App

[196]

 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'haskell';
 }
 }
 }
 }
})
.state('app.erlang', {
 url: '/erlang',
 views: {
 'erlang-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'erlang';
 }
 }
 }
 }
})
.state('app.scala', {
 url: '/scala',
 views: {
 'scala-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {
 chatRoom: function () {
 return 'scala';
 }
 }
 }
 }
});
$urlRouterProvider.otherwise('/app/node');
})

Chapter 13

[197]

Note how we coupled each single tab with a given application state. In doing so,
we also tell the app how it should render the view under each tab. In our case, we
have a common view for each single chat, templates/app-chat, which is familiar
to us from our previous work. Let's take a look at the following code:

<ion-view view-title="chat">
 <ion-content>
 <div class="list">
 <a collection-repeat="message in messages"
 class="item item-avatar"
 ng-class="{'other-chatbox' : message.external}">
 <h2>{{message.name}}</h2>
 <p>{{message.text}}</p>

 </div>

 </ion-content>
 <div class="bar bar-footer bar-balanced">
 <label class="item-input-wrapper">
 <input id="message-input"
 type="text"
 placeholder="Message"
 ng-model="inputMessage">
 </label>
 <button class="button button-small"
 ng-click="onSend()">
 Submit
 </button>
 </div>
</ion-view>

Finally, add some custom CSS to the css/style.css file in order to adjust the
formatting according to our needs; this will also be familiar, as we saw this in
the previous chapter:

#message-input {
 width: 100%;
}

.item-avatar {
 padding-left: 16px;
}

.other-chatbox {
 text-align: right;
}

Building an Advanced Chat App

[198]

Your view should now look like what's shown in the following screenshot:

Now, let's add some actual logic to our app in order to get the actual chat logic
going. We are going to implement the namespace pattern that we discussed earlier in
this chapter, adding one room for each tab. First, define the following controller
in the app.controllers.js file, as follows:

angular.module('ionic-chat-app-controllers', [])
.controller('ChatController', function ($scope,
ChatService, chatRoom) {

Chapter 13

[199]

 var connection = ChatService.connect(chatRoom);
 // The chat messages
 $scope.messages = [];
 // Notify whenever a new user connects
 connection.on.userConnected(function (user) {
 $scope.messages.push({
 name: 'Chat Bot',
 text: 'A new user has connected!'
 });
 $scope.$apply();
 });
 // Whenever a new message appears, append it
 connection.on.messageReceived(function (message) {
 message.external = true;
 $scope.messages.push(message);
 $scope.$apply();
 });
 $scope.inputMessage = '';
 $scope.onSend = function () {
 $scope.messages.push({
 name: 'Me',
 text: $scope.inputMessage
 });
 // Send the message to the server
 connection.emit({
 name: 'Anonymous',
 text: $scope.inputMessage
 });
 // Clear the chatbox
 $scope.inputMessage = '';
 }
});

This controller works very much like what we are used to from the previous app,
with the exception that it takes as a parameter the name of the chat room that we
should connect to. This name is resolved in app.js in conjunction with the view
being resolved, as follows:

.state('app.scala', {
 url: '/scala',
 views: {
 'scala-view': {
 templateUrl: 'templates/app-chat.html',
 controller: 'ChatController',
 resolve: {

Building an Advanced Chat App

[200]

 chatRoom: function () {
 return 'scala';
 }
 }
 }
 }
});

The relevant part is emphasized. We simply bind chatRoom to whatever the name
of the corresponding language room for the view is in this case.

Finally, we need to expand the ChatService module in order to make sure that we
can connect to an individual chat room. Open the app.services.js file and make
sure that it has the following:

angular.module('ionic-chat-app-services', [])
.service('ChatService', function ChatService($rootScope) {
 function ChatConnection(chatName) {
 this.chatName = chatName;
 // Init the Websocket connection
 var socket = io.connect('http://localhost:8080/' +
 chatName);
 // Bridge events from the Websocket connection to the
 rootScope
 socket.on('UserConnectedEvent', function (user) {
 console.log('User connected:', user);
 $rootScope.$emit('UserConnectedEvent', user);
 });
 /*
 * Send a message to the server.
 * @param message
 */
 socket.on('MessageReceivedEvent', function (message) {
 console.log('Chat message received:', message);
 $rootScope.$emit('MessageReceivedEvent', message);
 });
 this.emit = function (message) {
 console.log('Sending chat message:', message);
 socket.emit('MessageSentEvent', message);
 };
 this.on = {
 userConnected: function (callback) {
 $rootScope.$on('UserConnectedEvent', function
 (event, user) {

Chapter 13

[201]

 callback(user);
 });
 },
 messageReceived: function (callback) {
 $rootScope.$on('MessageReceivedEvent', function
 (event, message) {
 callback(message);
 });
 }
 }
 }
 /**
 * Establishes a new chat connection.
 *
 * @param chatName name of the chat room to connect to
 * @returns {ChatService.ChatConnection}
 */
 this.connect = function (chatName) {
 return new ChatConnection(chatName);
 }
});

In its previous incarnation, this service simply made a socket connection and
serviced it. Here, we produce socket connections instead based on the namespace
that we are connecting to. This allows us to set up a separate service instance for
each individual socket.

That's all that we need for the client! Let's turn to the server in order to wrap
things up.

Building the server
We have already seen how to create namespaces on the server. So, let's adjust our
own accordingly. However, in order to make it much neater, let's do so by iterating
over a list with all the names of the namespaces that we wish to create:

var http = require('http');
var url = require('url');
var fs = require('fs');
var server = http.createServer(function (req, res) {
 var parsedUrl = url.parse(req.url, true);
 switch (parsedUrl.pathname) {
 case '/':

Building an Advanced Chat App

[202]

 // Read the file into memory and push it to the client
 fs.readFile('index.html', function (err, content) {
 if (err) {
 res.writeHead(500);
 res.end();
 }
 else {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(content, 'utf-8');
 }
 });
 break;
 }
});
server.listen(8080);
server.on('listening', function () {
 console.log('Websocket server is listening on port', 8080);
});
// Connect the websocket handler to our server
var websocket = require('socket.io')(server);
// Configure the chat rooms
['node', 'javascript', 'haskell', 'erlang',
'scala'].forEach(function (chatRoom) {
 websocket.of('/' + chatRoom).on('connection',
 function (socket) {
 console.log("New user connected to", chatRoom);
 // Tell others a new user connected
 socket.broadcast.emit('UserConnectedEvent', null);
 // Bind event handler for incoming messages
 socket.on('MessageSentEvent', function (chatData) {
 console.log('Received new chat message', chatData);
 // By using the 'broadcast' connector, we will
 // send the message to everyone except the sender.
 socket.broadcast.emit('MessageReceivedEvent', chatData);
 });
 });
});

That's it! You can now start up your server, connect the app to server, and try it out.
Pay special attention to your server console when you switch between the rooms.
You will see the separate connections to separate rooms being made. Finally, see for
yourself that the namespacing actually works. The messages that you send to one
chat will only be visible to the users who are already connected to it.

Chapter 13

[203]

It is actually possible to partition the socket.io connections even
further than what we did here. The socket.io connection also
features the concept of rooms, which are essentially partitions of
a single namespace. We recommend that you study this closely.
The official documentation of socket.io contains a great deal of
examples. To view this documentation, visit http://socket.io/
docs/rooms-and-namespaces/.

Summary
In this chapter, you created an advanced chat application, which allows its users to
chat across several rooms using the important socket.io concept of namespacing.
You learned how to configure namespaces on the server itself as well as how to
connect to them from the client.

In the next chapter, we will wrap up what you learned so far by looking at how we
can implement a common piece of functionality—an e-commerce application.

http://socket.io/docs/rooms-and-namespaces/
http://socket.io/docs/rooms-and-namespaces/

[205]

Creating an E-Commerce
Application Using the Ionic

Framework
In this chapter, we will bring together all the knowledge that we accumulated in this
book until now and implement it in an easy-to-use Ionic framework, which can be
applied in our own projects.

In particular, in this chapter, we will build on the work that has already been done in
Chapter 3, Creating an API, and we will use this work with an Ionic project, which will
be accessible through an Android or iOS smartphone.

Designing our application
As part of the application development process, it is important that we understand
how we will structure our application and connect it to the product API in order to
achieve our final goal of creating a basic e-commerce application.

For this particular project, we will work on two main screens—the product's list
items, the controller, and the product page. In addition to this, we will also focus
on creating a basic functional side menu and a rudimentary purchasing option,
which is nonfunctional at this stage.

Creating an E-Commerce Application Using the Ionic Framework

[206]

Creating an Ionic project
We will start off our project by creating a project based on one of the Ionic starter
templates that we didn't have an opportunity to use in the previous chapters. The
side menu templates provide us with a side menu, a list item's view, and a list item's
detailed view. This template should give us the necessary groundwork to create the
ideal e-commerce application.

Open your terminal and input the following command:

$ ionic start grocerApp sidemenu

The preceding command will create a project folder with the sidemenu project. In
order to further understand how this template works, we encourage you to first
navigate to the project folder and then input the following command:

$ ionic serve --lab

This will open the browser of your choice and give you a side-by-side view of
how the application will look on an Android and iOS device:

Implementing our designs
When implementing our designs, we need to reflect the necessary changes within
the app's code. We will first start off by modifying our controllers.

Chapter 14

[207]

We will first begin by navigating to app.js, which is available at the path www/js/
app.js.

We will replace the existing code in app.js with the following:

angular.module('starter', ['ionic', 'starter.controllers'])

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show the
 accessory bar above the keyboard
 // for form inputs)
 if (window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 cordova.plugins.Keyboard.disableScroll(true);

 }
 if (window.StatusBar) {
 // org.apache.cordova.statusbar required
 StatusBar.styleDefault();
 }
});

.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider

 .state('app', {
 url: '/app',
 abstract: true,
 templateUrl: 'templates/menu.html',
 controller: 'AppCtrl'
 })

 .state('app.search', {
 url: '/search',
 views: {
 'menuContent': {
 templateUrl: 'templates/search.html'
 }
 }
})

state('app.products', {

Creating an E-Commerce Application Using the Ionic Framework

[208]

 url: '/products',
 views: {
 'menuContent': {
 templateUrl: 'templates/products.html',
 controller: 'ProductsCtrl'
 }
}
})

.state('app.single', {
 url: '/products/:productId',
 views: {
 'menuContent': {
 templateUrl: 'templates/product.html',
 controller: 'ProductCtrl'
 }
 }
});
// if none of the above states are matched, use this as
the fallback
$urlRouterProvider.otherwise('/app/products');
});

The aforementioned code will allow us to implement the different screens that
form a part of our app, namely the products page, the individual product, and
the search functionality, which will not be implemented in the current version of
the application.

The next step in our modification stage is to implement the necessary changes in
our app controllers, which are based in the controllers.js file. Go ahead and
replace the existing code with the following:

angular.module('starter.controllers', [])

.controller('AppCtrl', function($scope, $ionicModal, $timeout) {

 // Form data for the login modal
 $scope.loginData = {};

 // Create the login modal that we will use later
 $ionicModal.fromTemplateUrl('templates/login.html', {
 scope: $scope
 }).then(function(modal) {

Chapter 14

[209]

 $scope.modal = modal;
 });

 // Triggered in the login modal to close it
 $scope.closeLogin = function() {
 $scope.modal.hide();
 };

 // Open the login modal
 $scope.login = function() {
 $scope.modal.show();
 };

 // Perform the login action when the user submits the login form
 $scope.doLogin = function() {
 console.log('Doing login', $scope.loginData);

 // Simulate a login delay. Remove this and replace with
 your login
 // code if using a login system
 $timeout(function() {
 $scope.closeLogin();
 }, 1000);
 };
})

.controller('ProductsCtrl', function($scope) {
 $scope.products = [
 { title: 'Apples', id: 1 ,price:1.00,
 image:'http://loremflickr.com/30/30/apples'},
 { title: 'Carrots', id: 2,price:2.00,
 image:'http://loremflickr.com/30/30/carrots' },
 { title: 'Tomatoes', id: 3 ,price:3.00,
 image:'http://loremflickr.com/30/30/tomatoes'},
 { title: 'Pears', id: 4, price:1.50,
 image:'http://loremflickr.com/30/30/pears' },
 { title: 'Grapes', id: 5, price:1.00,
 image:'http://loremflickr.com/30/30/grapes' },
 { title: 'Plums', id: 6, price: 2.50,
 image:'http://loremflickr.com/30/30/plums' },
 { title: 'Olives', id:7, price: 0.50,
 image:'http://loremflickr.com/30/30/olives'}
];

Creating an E-Commerce Application Using the Ionic Framework

[210]

})

.controller('ProductCtrl', function($scope, $stateParams) {
});

As you can see in the preceding code, we declared an array of products. At
this point in time, this declares a product title through the title variable, the
product ID through id, and price through price. Last but not least, in order to
spice things up, we also added a link to a thumbnail image generator supported
by http://loremflickr.com.

The current setup will not reflect in the frontend of our mobile application
because we haven't done the necessary changes in the HTML files.

We will first rename playlist.html and playlists.html to product.html
and products.html respectively. We can find both of these files at the www/
templates/playlist.html and www/templates/playlists.html path.

We will then navigate to the menu.html file, which is available at the www/
templates/menu.html path.

We will replace the existing code in the preceding path with the following:

<ion-side-menus enable-menu-with-back-views="false">
 <ion-side-menu-content>
 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>

 <ion-nav-buttons side="left">
 <button class="button button-icon button-clear
 ion-navicon" menu-toggle="left">
 </button>
 </ion-nav-buttons>
 </ion-nav-bar>
 <ion-nav-view name="menuContent"></ion-nav-view>
 </ion-side-menu-content>

 <ion-side-menu side="left">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Shop Menu</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item menu-close href="#/app/search">

http://loremflickr.com

Chapter 14

[211]

 Search
 </ion-item>
 <ion-item menu-close href="#/app/products">
 Products
 </ion-item>
 <ion-item menu-close href="#">
 Basket
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-side-menu>
</ion-side-menus>

In the preceding code, we replaced the old reference to different template files with
the more recent ones, which reflect our most recent changes.

Following this, we will proceed and modify the product.html file to to give our
application a more product-like appearance. In addition to this, this page will also
include an image placeholder, Product Description, Price, and a rudimentary
Add to Basket button. In future iterations of the application, this will allow users
to add a product to a virtual shopping basket when they wish to buy the necessary
items. We will replace the existing code in product.html with the following:

<ion-view view-title="Product">
 <ion-content>
 <h1>Product</h1>

 <p>Product Description</p>

 <p>Price</p>
 <button class="button button-balanced">
 Add to Basket
 </button>
 </ion-content>
</ion-view>

In the final step of modifying the HTML files, we will need to modify the products.
html file to show the product title and product image using AngularJS. Replace the
existing code with the following:

<ion-view view-title="The Grocer Shop">
 <ion-content>
 <ion-list>
 <ion-item ng-repeat="product in products">

Creating an E-Commerce Application Using the Ionic Framework

[212]

 <a class="item item-thumbnail-left"
 href="#/app/products/{{product.id}}">

 <h2>{{product.title}}</h2>
 <p>EUR {{product.price}} per kilogram</p>

 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

In the aforementioned code, we extracted the product.image and product.title
declared in app.js and reproduced it in the ion-view tag. We also personalized it
and included the currency and how much the product costs per kilogram.

Setting up the product API
What we have implemented until now is a very simplified version of what we would
like to achieve. Since we want to create projects that use MongoDB, Node.js and Ionic,
we should take the opportunity to create an application that connects to our locally
stored backend with a view of using this knowledge to connect to Internet-based
servers powered by Node.js and MongoDB.

In order to take advantage of this section, you will need to follow the instructions
available in Chapter 3, Creating an API, that are required to set up your very own
Node.js server and include a basic set of data.

Once you've performed all the necessary steps, go ahead and find out what the current
entries on our server are by first running the mongodb database. We will do this by first
navigating to the order_api folder and running the following command:

sudo mongod

We shall start the Node.js server in our terminal by using the following command:

node api.js

If you adhered to the instructions given in Chapter 3, Creating an API, the following
message will appear:

Up, running and ready for action!

Chapter 14

[213]

At this point, we will open the installed REST client and pass the following command:

http://localhost:8080/api/products

If you have a response similar to the one as follows, then you should consider your
attempt at creating a server to be successful:

[
 {
 "_id": "55be0d021259c5a6dc955289",
 "name": "Apple",
 "price": 2.5
 },
 {
 "_id": "55be0d541259c5a6dc95528a",
 "name": "Oranges",
 "price": 1.5
 },
 {
 "_id": "55be0d6c1259c5a6dc95528b",
 "name": "Pear",
 "price": 3
 },
 {
 "_id": "55be0d6c1259c5a6dc95528c",
 "name": "Orange",
 "price": 3
 }
]

Connecting the product API to our Ionic app
Once you have managed to get a response from the server and have the server and
database up and running, you need to replace the existing array in the app.js file
with the one from the local host.

Since the web server is based locally, you will need to enable cross-origin resource
sharing, which is currently attainable in the easiest way through Google Chrome and
by enabling the CORS (cross-origin Resource sharing) Chrome extension, which is
available at https://goo.gl/oQNhwh. The extension is also available at the Chrome
Web Store if you look for Allow-Control-Allow-Origin: *.

https://goo.gl/oQNhwh

Creating an E-Commerce Application Using the Ionic Framework

[214]

We will first start off our project by navigating to the ionic.project file, which is
available in the root folder, and adding the following code to ionic.project:

"proxies": [
 {
 "path": "/api",
 "proxyUrl": "http://cors.api.com/api"
 }
]

The http://cors.api.com/api URL here acts as a placeholder URL in order to
enable local development and cross-origin resource sharing.

This modification will help us add a proxy URL, which will allow cross-origin
resource sharing.

We will also modify the gulpfile.js file by adding two variables and two tasks,
as follows:

var replace = require('replace');
var replaceFiles = ['./www/js/app.js'];

gulp.task('add-proxy', function() {
 return replace({
 regex: "http://cors.api.com/api",
 replacement: "http://localhost:8080/api",
 paths: replaceFiles,
 recursive: false,
 silent: false
 });
})

gulp.task('remove-proxy', function() {
 return replace({
 regex: "http://localhost:8080/api",
 replacement: "http://cors.api.com/api",
 paths: replaceFiles,
 recursive: false,
 silent: false
 });
})

http://cors.api.com/api

Chapter 14

[215]

To make sure that the gulpfile functions correctly, we encourage you to make
sure that gulp is installed correctly by running the following command:

sudo npm install gulp -g

Using gulp, we will also need to install replace. This is a gulp dependency, which
will allow us to add the proxy functionality to the project by allowing for string
replacement. This can be enabled by running the following command:

sudo npm install --save replace

In order to facilitate cross-origin resource sharing in Ionic, we will also need to use
a factory method, which will be done by creating a new JavaScript file entitled
services in the www/js folder, which contains the following code:

angular.module('starter.services', [])
factory('Api', function($http, ApiEndpoint) {
 console.log('ApiEndpoint', ApiEndpoint);

 var getApiData = function() {
 return $http.get(ApiEndpoint.url + '/products');
 };

 return {
 getApiData: getApiData
 };
})

In order to create the preceding code, we will need to reference services.js in the
index.html file and app.js file. We will add the following code to the index.html
head tag:

<script src="js/services.js"></script>

In addition to this, we will update the app.js file to include our new constant, which
has already been referenced in the services.js file. This will be updated as follows:

angular.module('starter', ['ionic', 'starter.controllers','starter.
services'])

.constant('ApiEndpoint', {
 url: 'http://localhost:8080/api'
})

Creating an E-Commerce Application Using the Ionic Framework

[216]

In order to facilitate your coding experience, we uploaded all our
code to the GitHub repository, which is available at https://
github.com/stefanbuttigieg/nodejs-ionic-mongodb/
tree/master/chapter-14.

The connection of our locally created REST API to our Angular controller will
be made available to the user by updating the product controller entitled
ProductsCtrl. The code needs to be updated as follows:

.controller('ProductsCtrl', function($scope, Api) {
 $scope.products = null;
 Api.getApiData().then(function(result) {
 $scope.products = result.data;
 });
})

This code modification removes the JSON array and replaces it with code that
extracts data from the JSON available on the local web server and makes it available
in our controller. The finishing touch has to be implemented through the products.
html file. Here, we will update the file to contain a generic image placeholder. We
will make slight modifications to the products.html file to make it work with our
very own JSON file:

<ion-view view-title="The Grocer Shop">
 <ion-content>
 <ion-list>
 <ion-item ng-repeat="product in products">
 <a class="item item-thumbnail-left"
 href="#/app/products/{{product.id}}">

 <h2>{{product.name}}</h2>
 <p>EUR {{product.price}} per kilogram</p>

 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Once the preceding code is implemented, feel free to navigate to the root folder
of the grocerApp software and run the following command:

ionic serve --lab

https://github.com/stefanbuttigieg/nodejs-ionic-mongodb/tree/master/chapter-14
https://github.com/stefanbuttigieg/nodejs-ionic-mongodb/tree/master/chapter-14
https://github.com/stefanbuttigieg/nodejs-ionic-mongodb/tree/master/chapter-14

Chapter 14

[217]

The final app should look like this:

Summary
In this chapter, we brought together a number of skills that we managed to develop
over the past few chapters. It's important to note that we managed to connect an API
that we created from scratch and a cross-platform application that we implemented
via the Ionic framework. As regards to e-commerce, there are a number of open
source solutions such as Traider.io and ReactionCommerce. These solutions have
expanded functionalities and are in the process of improving through community
contributions, especially with regards to the REST API services. In addition to this,
they make use of MongoDB and Node.js.

The Ionic framework is an ever-growing platform in all aspects. As we mentioned
earlier in this book, the Ionic framework team released a number of updates with a
number of new features. We are excited about this, and we believe that it's priceless
to invest energy and time to further understand this platform.

[219]

Index
A
advanced chat app

building 187
multiroom chat application,

creating 191, 192
namespaces 188-191
requisites 187, 188

Advanced Package Tool (APT) 15
advanced queries, MongoDB

defining 32
Allow-Control-Allow-Origin 213
alternate chat 76
Android

about 118
Android Studio, setting up for 8-10
emulator 118
physical device 119

Android Debug Bridge (ADB) 12
Android Developer

URL 8
Android Software Development Kit (SDK)

setting up 10, 11
Android Studio

setting up, for Android 8-10
setting up, for Mac 8-10
setting up, for Windows 8-10

Angular app
structure 92

Angular directives
about 131
creating 131
DOM manipulation 133, 134

restricting 131, 132
scope isolation 132, 133

AngularJS
about 91, 92, 142
Angular MVC pattern 93
components, connecting 95
modules 92

Angular MVC pattern
about 93
controller 93, 94
model 93, 94
view 93, 94

API
building, with Node.js 54
testing 52-54

application
testing 149

Application Programming Interface
(API) 39

app states
defining 145

Atom
URL 89

authentication module
adding 60, 61
API, extending 64-66
functions, creating for logging in 61
functions, creating for registering 61
OAuth 66
passwords, hashing 67
time-stamped access tokens 67
users log in, enabling 62-64
users, registering 61, 62

[220]

B
backend, Node.js 1
basic authentication service, secure app 160

getCurrent function 162
isAuthenticated function 162
login function 160, 161

basic components, client-side security
authentication tokens 152
secure communication 153
secure local storage 152

basic MVC project
connection, testing 111
controller, creating 107
creating 104
list view, creating 105, 106
model, creating 112
services 112
services, creating 113
view and controller, connecting 108-110
view, creating 104, 105

bootstrap CSS framework 72

C
CentOS

MongoDB, installing on 15
Node.js, installing on 3

chat application
basic app structure, setting up 172-175
building 168-172
ChatService function 179
chat view, updating 181-183
input section 176
message view 177, 178
requisites 168
server, creating 168-172
WebSockets, adding to mix 180, 181

client-side security
about 151, 152
basic components 152
overview 151

collections
adding 59, 60
creating 25-28

Command Line Interface (CLI) 103
Cordova

setting up, for Mac OS X 5, 6
setting up, for Windows 6, 7

CORS (cross-origin Resource sharing)
reference 213

CRUD (Create/Read/Update/Delete) 40
customer 60

D
database

creating 24
Database Management System (DBMS) 22
Debian

Node.js, installing on 3
DELETE handlers

implementing 51
DELETE requests 43
device data

accessing 115
Cordova, adding to factory 116-118
native services, accessing 115
ngCordova 116

directives 94
Document Object Model (DOM) 129
documents

relations, creating between 28-30

E
e-commerce application

creating 205
designing 205
designs, implementing 206-211
Ionic project, creating 206
product API, connecting to Ionic

app 213-216
product API, setting up 212

Environment Variables
setting up, on Windows 7 12

Environment Variables, for iOS
setting up, on Mac OS X 13

expressions 94

[221]

Express.js
about 54
URL 54

F
Fedora

MongoDB, installing on 15
Node.js, installing on 3

folder structure, Ionic project
about 90
hooks 90
platforms 90
plugins 91
resources 91
scss 91
www 91

G
GET handlers

implementing 47
GET request

about 41
GET all 41
GET by ID 41, 42

GNU Privacy Guard (GPG) 15
Google Maps

integrating, into simple navigation
map 127-130

Google V8 JavaScript Engine 2
grade CSS extension language 101

H
Heroku 184
Homebrew package manager 16
HTTP module 44
HTTP server

dissecting 45
HTTP verbs

DELETE 40, 43
GET 40, 41
POST 40, 42
PUT 40, 42

I
instant messaging computer program

(ICQ) 69
Integrated Development Environment

(IDE) 89
Internet Relay Chat (IRC) 69
ion-content 105
Ionic 77
Ionic application

creating 79, 80
sharing, with collaborators 86, 87
testing, on Android 84-86
testing, on iOS Ionic View App 83, 84

Ionic applications, checking out with
Ionic View

about 80
Ionic View, installing on Android 80, 81
Ionic View, installing on iOS 81, 82

Ionic Box
URL 7

Ionic framework
setting up, for Mac OS X 5, 6
setting up, for Windows 6, 7

Ionicons documentation
URL 96

Ionic Playground
URL 101

Ionic project
folder structure 90
header, modifying 95
icons, modifying 96
modifying 95
names, modifying 96
new tab, adding 98
pages, modifying 96, 97
setting up 142
structure 89-91
tab colour, modifying 96

Ionic web account
setting up 77-79

ion-view 105
iOS SDK

installing 13

[222]

J
Java

installing 7, 8
Java JDK

URL, for downloading 7
JavaScript Object Notation (JSON)

object 106
JSON

returning 46

L
link function

$attr parameter 134
$element parameter 134
$scope parameter 134
about 134

Linux
MongoDB, installing on 15
MongoDB, running on 18, 19
Node.js, installing on 3

Loopback.js
about 54
URL 54

M
Mac

Android Studio, setting up for 8-10
Mac OS X

Cordova, setting up for 5, 6
Environment Variables for iOS,

setting up on 13
Ionic framework, setting up for 5, 6
MongoDB, running on 16, 17
Node.js, installing on 4

Mobile/Responsive Web Design Tester 112
Model-View-Controller (MVC) pattern 92
module

about 92, 93
controllers 93
services 93

MongoDB
about 13, 22
and Node.js, connecting 32

collections 23
connecting to 17, 24, 36
databases 23
defining 21
documents 22
in Linux 24
in Mac OS X 24
installing, on CentOS 15
installing, on Fedora 15
installing, on Linux 15
installing, on RHEL 15
installing, on Ubuntu 15
installing, on Windows 14
in Windows 24
product order database 23
querying 30
running, on Linux 18, 19
running, on Mac OS X 16
running, on Windows 18
searching, by ID 30, 31
searching, by property value 31
starting 16
starting, on Mac OS X 17
URL 14

MongoDB instance
connecting to 17

multiroom chat application, advanced
chat app

basic layout, configuring 192-201
creating 191, 192
server, building 201, 202

N
native devices

Android 118
building for 118
list view 119-121

new project
creating 103

new tab
adding 98
new controller, adding 98
state, adding 99, 100
testing 100
view, adding 98

[223]

ngCordova 116
Node.js

and MongoDB, connecting 32
backend 1
installation, verifying 3, 4
installing, on CentOS 3
installing, on Debian 3
installing, on different systems 2
installing, on Fedora 3
installing, on Linux 3
installing, on Mac OS X 4
installing, on RHEL 3
installing, on Ubuntu 3
installing, on Windows 2
RESTful API, building 43
URL 4

node-oauth2-server package
reference 67

Node Package Manager (NPM) 2, 3, 32
normalization 133
NoSQL databases 13

O
OAuth 66, 151
OAuth2 66
operating systems (OS) 2

P
Parse

app states, defining 145
connecting, to Ionic project 142-144
controllers, creating 146-148
setting up 139-142
templates, creating 146-148

physical Android device, enabling for
development

Developer options, enabling 11
secure USB debugging, used for trusting

computer 12
steps 11
USB debugging, enabling 12

platform dependencies
setting up 7

Playground tools 101
polling 70
POST handlers

implementing 49-51
Postman

URL 51
POST requests 42
producer 60
product, RESTful base

URL 41
project

setting up 32, 33
providers 114
PUT handlers

implementing 51
PUT requests 42

R
relations

creating, between documents 28-30
Representational State Transfer (REST) 39
REST 40
RESTful API

building, with Node.js 43
defining 39
setting up 43

RHEL
MongoDB, installing on 15
Node.js, installing on 3

router
implementing 47-49
references 47

S
secure app

basic authentication service 160
building 153-159
route authentication, implementing 162-165

services
about 113
constants 113
factories 113
factory, creating 114, 115
values 113

[224]

simple navigation app
basic app structure, creating 125, 126
creating 123, 124
geolocation, adding via GPS 136, 137
Google Maps, integrating into 127-130
implementing 135
smartphone features, using 123

singletons 112
static files 76
Syntactically Awesome Stylesheets

(Sass) 77

T
TCP/IP

defining 39, 40
Time To Live (TTL) value 67
token-based authentication

about 57
access token 58
implementing 58, 59
overview 57
role, playing 58

U
Ubuntu

MongoDB, installing on 15
Node.js, installing on 3

ui-router
reference 109

User Interface (UI) components 95

V
Vanilla node 70
VPS (Virtual Private Server)

about 184
URL 184

W
WebSockets 70, 167
WebSocket, using in Node.js

basic file server 74, 75
chat interface, creating 71-73
project, setting up 70
socket.io, installing 71

Windows
Android Studio, setting up for 9, 10
Cordova, setting up for 6, 7
Ionic framework, setting up for 6, 7
MongoDB, installing on 14
MongoDB, running on 18
Node.js, installing on 2

Windows 7
Environment Variables, setting up on 12

Windows 32-bit 14
Windows 64-bit legacy 14
Windows 64-bit R2+ 14
www folder, Ionic project

css 91
img 91
js 91
lib 91
templates 91

Thank you for buying
Learning Node.js for Mobile Application

Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Node.js Blueprints
ISBN: 978-1-78328-733-8 Paperback: 268 pages

Develop stunning web and desktop applications with
the definitive Node.js

1. Utilize libraries and frameworks to develop
real-world applications using Node.js.

2. Explore Node.js compatibility with AngularJS,
Socket.io, BackboneJS, EmberJS, and GruntJS.

3. Step-by-step tutorials that will help you to
utilize the enormous capabilities of Node.js.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Please check www.PacktPub.com for information on our titles

Node Cookbook
Second Edition
ISBN: 978-1-78328-043-8 Paperback: 378 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node.js, with coverage
of Express 4 and Socket.IO frameworks and the
new Streams API

1. Work with JSON, XML, web sockets to make
the most of asynchronous programming.

2. Extensive code samples covering Express 4
and Socket.IO.

3. Learn how to process data with streams
and create specialized streams.

Node.js By Example
ISBN: 978-1-78439-571-1 Paperback: 220 pages

Learn to use Node.js by creating a fully functional
social network

1. Plan and implement a modern
Node.js application.

2. Get to know the most useful
Node.js capabilities.

3. Learn how to create complex
Node.js applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Your Workspace
	The Node.js backend
	Installing Node.js on different systems
	Windows
	Linux
	Ubuntu/Debian
	Fedora/RHEL/CentOS
	Verifying your installation
	Mac OS X
	Verifying your installation

	Setting up the Ionic framework and Cordova for Mac OS X
	Setting up the Ionic framework and Cordova for Windows
	Setting up the platform dependencies
	Installing Java

	Setting up Android Studio for Android, Mac, and Windows
	Setting up the Android Software Development Kit
	Setting up your physical Android device for development
	Enabling Developer options
	Enabling USB debugging
	Trusting a computer with installed IDE using secure USB debugging (devices with Android 4.4.2)

	Setting up the Environment Variables on Windows 7 and higher
	Setting up the Environment Variables for iOS on Mac OS X
	Installing the iOS SDK

	MongoDB
	Installation of MongoDB on different Operating System
	Windows
	Linux
	Ubuntu
	Fedora/RHEL/CentOS

	Starting MongoDB
	Mac OS X
	Windows
	Linux and OSX

	Summary

	Chapter 2: Configuring Persistence with MongoDB
	Learning outcomes of MongoDB
	An introduction to MongoDB
	Documents
	Collections
	Databases
	An example – a product order database

	Connecting to MongoDB
	Linux and Mac OS X
	Windows

	Creating a database
	Creating our collections
	Creating relations between documents
	Querying MongoDB
	Searching by ID
	Searching by property value

	Advanced queries
	Connecting MongoDB and Node.js
	Setting up a basic project
	Connecting to MongoDB

	Summary

	Chapter 3: Creating an API
	Learning outcomes of the RESTful API
	RESTing easy
	It's all hypermedia
	GET
	GET all
	GET by ID

	POST
	PUT
	DELETE

	Building a RESTful API with Node.js
	Setting up the RESTful API
	The HTTP module
	Dissecting the HTTP server
	Returning JSON

	Implementing our GET handlers
	Implementing a router
	Implementing our POST handlers
	Implementing the DELETE and PUT handlers
	Testing the API

	Moving forward
	Summary

	Chapter 4: Securing Your Backend
	Understanding the outcomes of
token-based authentication
	The theoretical bit
	A small token of trust
	Playing your role
	Putting it all together
	Implementation

	Adding the new collections
	Adding an authentication module
	Creating functions to register and help users log in
	Registering users
	Enabling users to log in

	Extending our API
	OAuth
	Time-stamped access tokens
	Hashing passwords

	Summary

	Chapter 5: Real-Time Data and WebSockets
	Polling
	WebSockets
	Using WebSockets in Node.js
	Setting up our project
	Installing socket.io
	Creating a chat interface
	A basic file server

	An alternate chat
	The efficient serving of static files
	Summary

	Chapter 6: Introducing Ionic
	Setting up your Ionic web account
	Creating your first Ionic application
	Checking out your Ionic applications with Ionic View
	Installing Ionic View on Android
	Installing Ionic View on iOS
	Testing your application on the iOS Ionic
View app
	Testing your application on Android
	Sharing your application with collaborators

	Going further
	Summary

	Chapter 7: Building User Interfaces
	The structure of an Ionic project
	Introducing AngularJS
	The structure of an Angular app
	Modules
	Modules within modules within modules
	Services, controllers, and other beasts

	The Angular MVC pattern
	The view
	The controller
	The model

	Putting it all together

	Modifying an Ionic project
	Modifying the header
	Modifying the tab colour, icons, and names
	Modifying our pages

	Adding a new tab
	Creating a new controller
	Creating a view
	Adding a state for the new tab
	Testing the newly created tab

	Going further
	Summary

	Chapter 8: Making our App Interactive
	Creating a new project
	Creating a basic MVC project
	Creating the view
	Creating the list view

	Creating the controller
	Connecting the view and controller
	Testing the connection
	Creating the model
	Services
	Creating a factory

	Accessing the device data
	Accessing native services
	ngCordova
	Adding Cordova contacts to our factory

	Building for native devices
	Android
	Emulator
	A physical device

	The list view revisited
	Summary

	Chapter 9: Accessing Native Phone Features
	Creating the project
	Creating the basic app structure
	Integrating Google Maps into the app

	Angular directives
	Creating directives
	Restricting directives
	Scope isolation
	DOM manipulation

	Putting it all together
	Adding geolocation via GPS
	Summary

	Chapter 10: Working with APIs
	Setting up Parse
	Setting up the Ionic project
	Connecting Parse to our project
	Defining app states
	Creating controllers and templates

	Testing our application
	Summary

	Chapter 11: Working with Security
	An overview of client-side security
	Client-side security is a convenience
	The basic components of client-side security

	Building a secure app
	Starting off
	A basic authentication service
	The login function

	The isAuthenticated function
	The getCurrent function

	Implementing route authentication

	Summary

	Chapter 12: Working with Real-Time Data
	A refresher – WebSockets
	Getting the lay of the land
	What we will need

	Creating the server
	Building the chat app
	Setting up the basic app structure
	The input section
	The message view
	The ChatService function
	Adding WebSockets to the mix
	Updating the chat view

	Going further
	Summary

	Chapter 13: Building an Advanced Chat App
	We need some room!
	Namespaces
	Creating a multiroom chat application
	Configuring the basic layout
	Building the server

	Summary

	Chapter 14: Creating an E-Commerce Application Using the Ionic Framework
	Designing our application
	Creating an Ionic project
	Implementing our designs
	Setting up the product API
	Connecting the product API to our Ionic app

	Summary

	Index

