

Learning	OpenStack	High	Availability

Table	of	Contents

Learning	OpenStack	High	Availability

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	An	Introduction	to	High	Availability	Concepts

What	does	High	Availability	(HA)	mean?

How	to	measure	high	availability

Common	content	in	the	contract

How	to	achieve	high	availability

Architecture	design	for	high	availability

High	availability	in	OpenStack

Summary

2.	Database	and	Messaging	Services

Installing	MariaDB	with	Galera	clustering

Installation	of	high	availability	RabbitMQ	cluster

Configuring	the	nodes	to	know	each	other

Installing	RabbitMQ	on	the	two	nodes

Constructing	a	RabbitMQ	broker

Restarting	the	RabbitMQ	services	on	the	nodes

Formation	of	cluster

Check	the	status	of	a	cluster

Summary

3.	Load	Balancing	for	Active/Active	Services

The	installation	of	HAProxy	and	keepalived

The	requirement	for	an	experimental	setup

The	keepalived	configuration	on	controller_2

Defining	the	HAProxy	configuration

HAProxy	configuration	for	the	controller_1	node

The	HAProxy	configuration	for	the	controller_2	node

Making	the	controller_1	node	active

Making	the	controller_2	node	active

Summary

4.	Clustering,	Fencing,	and	Active/Passive	Services

Installing	Corosync	and	Pacemaker

Requirements	for	the	experimental	setup

A	secure	Socket	Host	setup

Installing	the	Corosync	package

Sharing	and	generating	Corosync	keys

Creating	a	configuration	file

Starting	Corosync

Starting	Pacemaker

Setting	the	cluster	properties

The	load	balancing	of	high	availability	MySQL

DRBD	replicated	storage

Installing	MySQL

High	availability	RabbitMQ	via	AMQP

Configuring	DRDB

Creating	a	filesystem

Preparing	RabbitMQ	for	Pacemaker	high	availability

Adding	the	RabbitMQ	resources	to	Pacemaker

Configuring	OpenStack	services	for	highly	available	RabbitMQ

Summary

5.	Highly	Available	OpenStack	Services

High	availability	compute	services

Installing	and	configuring	the	Nova	packages

Creating	the	Nova	database

Populating	a	database

The	load	balancing	of	compute	services

Reloading	the	HAProxy	services

High	availability	dashboard	services

Installing	and	configuring	the	dashboard

Configuring	Memcache

Restarting	the	Memcache	services

Load	balancing	of	dashboard	services

Reloading	the	HAProxy	services

High	availability	object	storage	services

Installing	and	configuring	object	storage

Creating	a	disk	partition

Creating	directories

Replicating	data	on	storage	nodes

Installing	a	Swift	proxy

Configuring	Memcache

Creating	a	proxy	configuration	file

Configuring	a	Swift	ring

The	load	balancing	object	store	services

High	availability	image	services

Installing	and	configuring	image	services

Creating	the	Glance	database

Populating	the	databases

The	load	balancing	of	image	services

The	load	balancing	HTTP	REST	API

Creating	a	load	balancing	pool

Adding	a	Virtual	IP	(VIP)

Launching	instances

Security	group	creation

Adding	members	to	the	load	balancing	pool

Setting	a	sample	web	server

Validating	web	servers	with	index.html

Summary

6.	Distributed	Networking

Installing	a	high	availability	distributed	virtual	routing

Control	node	setup

Disabling	reverse	path	filtering

Loading	a	new	kernel

Configuring	the	neutron

Configuring	the	ML2	plugin

Restarting	the	services

A	network	node	setup

Enabling	packet	forwarding	and	disabling	reverse	path	filtering

Loading	a	new	kernel

Configuring	the	neutron

Configuring	the	ML2	plugin

Configuring	the	L3	agent

Configuring	the	DHCP	agent

Configuring	the	metadata	agent

Restarting	the	services

A	compute	node	setup

Enabling	packet	forwarding	and	disabling	reverse	path	filtering

Loading	a	new	kernel

Configuring	neutron

Configuring	the	ML2	plugin

Configure	the	L3	agent

Configuring	the	metadata	agent

Restarting	the	services

Verifying	the	service	operation

Summary

7.	Shared	Storage

An	introduction	to	GlusterFS

Installing	GlusterFS

Configuring	GlusterFS	for	block	storage

Installation	of	GlusterFS

Configuring	the	nodes	for	communication

The	status	of	peers

Creating	a	data	point

Starting	the	volume	services

An	introduction	to	Ceph

Installing	Ceph

Installing	Openssh

Connecting	to	the	Ceph	node

Configuring	the	Ceph	node

Configuring	a	storage	node

Checking	the	status	of	Ceph

Summary

8.	Failure	Scenario	and	Disaster	Recovery

Network	partition	split-brain

Preventing	a	split-brain

Setting	the	server-side	quorum

Setting	the	client-side	quorum

A	real-time	failure	scenario	of	split-brain

Steps	to	resolve	a	split-brain

Choosing	a	split-brain	victim

Force	discard	of	the	victim

Resynchronization

Automatic	failover

Load	balance	as	a	service

The	working	of	a	failover

Getting	all	the	failed	routers

An	LBaaS	agent	failover

Geo-replication

Creating	geo-replication	sessions

Starting	geo-replication

Verifying	a	successful	geo-replication	deployment

A	real-time	failure	scenario

Issues	in	the	master	log	file

Issues	in	the	Slave	log	file

Issue	in	data	synchronization

Issues	in	the	geo-replication	status	display

Summary

9.	The	Principles	of	Design	for	Highly	Available	Applications

The	principles	of	design	features

Micro	services	and	scalability

Fault	tolerance

Cloud	automation

RESTful	application	programming	interface	(APIs)

A	sample	application	deployment

The	application	programming	interface

Database

Web	interface

Queue	services

Worker	services

An	interaction	of	the	application	with	OpenStack

Choosing	the	OpenStack	SDK

Flavors	and	images

Launching	an	instance

Destroying	an	instance

Deploying	the	application	on	a	new	instance

Booting	and	configuring	an	instance

Associating	a	floating	IP	for	external	connectivity

Accessing	the	application

Summary

10.	Monitoring	for	High	Availability

The	Nagios	monitoring	service

Installation	of	the	Nagios	monitoring	service

Installation	of	Nagios	related	packages

Installation	of	the	Nagios	remote	plugin	executor

Configuring	Nagios

HTTPD	configuration

Accessing	the	Nagios	web	interface

OpenStack	services	configuration

OpenStack	services	configuration

Service	definition	creation

Graphite	monitoring	tool

Installing	Graphite

Ceilometer	configuration

Adding	publisher

Carbon	installation

Logstash,	Elasticsearch	and	Kibana

Installing	Logstash

An	Elasticsearch	store

The	Kibana	frontend

Summary

11.	Use	Cases	and	Real-World	Examples

A	case	study	of	Cisco	WebEx

Challenges	with	the	infrastructure	of	Cisco	WebEx

The	solution	with	OpenStack

The	final	outcome

Case	study	of	Huawei

Challenges	with	the	infrastructure	of	Huawei

The	solution	with	OpenStack

The	final	outcome

Case	study	of	Multiscale	Health	Networks

Challenges	with	the	infrastructure	of	Multiscale

The	solution	with	OpenStack

The	final	outcome

Case	study	of	eBay

Challenges	with	eBay	business	process

The	solution	with	OpenStack

The	final	outcome

Summary

Index

Learning	OpenStack	High	Availability

Learning	OpenStack	High	Availability
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1251115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-570-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Rishabh	Sharma

Reviewers

Michael	A	Cossenas

Vinoth	Kumar	Selvaraj

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Nadeem	Bagban

Content	Development	Editor

Rashmi	Suvarna

Technical	Editor

Utkarsha	S.	Kadam

Copy	Editor

Kausambhi	Majumdar

Project	Coordinator

Judie	Jose

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Rishabh	Sharma	is	currently	working	as	a	chief	technology	officer	(CTO)	at	JOB
Forward,	Singapore.	Prior	to	working	for	JOB	Forward,	he	worked	for	Wipro
Technologies,	Bangalore,	as	a	solution	delivery	analyst.	He	was	involved	in	research
projects	of	cloud	computing,	proof	of	concepts	(PoC),	infrastructure	automation,	big	data
solutions,	and	various	giant	customer	projects	related	to	cloud	infrastructure	and
application	migration.

In	a	short	span	of	time,	he	has	worked	on	various	technologies	and	tools	such	as
Java/J2EE,	SAP(ABAP),	AWS,	OpenStack,	DevOps,	big	data,	and	Hadoop.	He	has	also
authored	many	research	papers	in	international	journals	and	IEEE	journals	on	a	variety	of
issues	related	to	cloud	computing.

He	has	authored	five	technical	books	until	now.	He	recently	published	two	books	with
international	publications:

Learning	Chef	(https://www.packtpub.com/networking-and-servers/learning-chef).

Cloud	Computing:	Fundamentals,	Industry	Approach	and	Trends
(http://www.wileyindia.com/cloud-computing-fundamentals-industry-approach-and-
trends.html).

He	is	also	an	open	source	enthusiast	and	writes	for	the	Open	Source	For	You	(OSFY)
magazine.	You	can	get	in	touch	with	him	at	<er.rishabh.sharma@gmail.com>.

I	would	like	to	give	special	gratitude	to	my	spiritual	guru	for	his	guidance	and	blessings.	I
am	very	grateful	to	my	family	for	its	support	and	encouragement	during	this	project.	I
would	like	to	give	my	special	thanks	to	friend	Mr.	Balachandar	Raju	for	assisting	me	in
this	project.

I	am	very	thankful	for	PACKT	publishing	to	provide	me	this	opportunity	to	present	this
book	and	for	his	valuable	support	and	guidance	during	this	endeavor.	Reader’s	views,
comments	and	suggestions	are	welcome.

https://www.packtpub.com/networking-and-servers/learning-chef
http://www.wileyindia.com/cloud-computing-fundamentals-industry-approach-and-trends.html
mailto:er.rishabh.sharma@gmail.com

About	the	Reviewers
Michael	A	Cossenas	is	a	Linux/Network	adminstrator	from	Athens,	Greece.

He’s	been	a	network	security	specialist	working	for	Digital	Sima,	a	company	specialized
in	LAN/WAN	networking.	He	is	now	employed	as	a	subcontractor	for	IBM	Greece	in	the
SO	(Strategic	Outsourcing)	department.	Here,	he	manages	50+	SUSE-based	Linux	servers
for	one	of	their	customers.

His	first	experience	with	Linux	was	back	in	1998,	when	he	used	Red	Hat	Linux	5.2.	Since
then,	Michael	has	worked	on	various	open	source	projects,	including	Zimbra,	Distributed
Replicated	Block	Device	(DRBD),	Kernel-based	Virtual	Machine	(KVM),	and	Postfix.

He	is	also	an	openvpn	forum	moderator.

I	would	like	to	thank	my	family	(my	wife,	Froso,	my	son,	Antony,	and	my	daughter,	Kate)
for	supporting	me	in	these	difficult	times	in	Greece.

Vinoth	Kumar	Selvaraj	is	working	as	an	OpenStack	engineer	at	Cloudenablers,	a	Cloud
Technology	start-up	based	in	Chennai,	India.	At	Cloudenablers,	he	takes	care	of	setting	up
private	and	hybrid	clouds	for	internal/external	customers.	He	also	leads	the	CloudLab
initiatives,	which	involve	the	exploration	and	integration	of	various	products	and	tools
with	the	latest	versions	of	OpenStack.

Also,	he	worked	as	a	reviewer	for	the	book	Openstack	Cloud	Security.

In	his	spare	time,	Vinoth	enjoys	sharing	his	insights	on	technologies	at
http://www.hellovinoth.com.

I	would	like	to	thank	my	Amma,	Appa,	Anna,	and	my	friends	for	their	love	and	support.

My	special	thanks	to	Monisha—my	confidante,	Rathinasabapathy—my	inspiration,	Vinu
Francis—my	Guru,	JayaPrakash—my	mentor,	and	Beny	Raja—my	instructor.

http://www.hellovinoth.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	readPackt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
OpenStack	is	a	set	of	software	tools	and	packages	used	to	build	private	and	hybrid	cloud
computing	platforms.	It	is	one	of	the	most	popular	and	widely	adopted	open	source
software	managed	by	OpenStack	Foundation.	Since	its	introduction	in	2010,	a	huge
number	of	reputed	industries,	including	Red	Hat,	Intel,	HP,	IBM,	AMD,	Canonical,	and
many	others,	support	OpenStack.

The	most	promising	feature	of	OpenStack	is	that	it	provides	a	DIY(Do-It-Yourself)
approach	to	cloud	computing,	and	it	can	easily	embrace	the	new	development	features.
Therefore,	companies	such	as	Google	and	Facebook	created	their	own	data	storage	and
cloud	services	using	OpenStack.

High	availability	typically	means	achieving	99.99%	availability,	and	basically	this	can	be
possible	by	removing	all	single	point	of	failure	(SPOF),	which	is	also	applicable	for
OpenStack.	This	book	covers	all	the	basic	and	advance	approaches	related	to	achieving
high	availability	in	OpenStack	with	detailed	step-by-step	explanations,	hands-on
exercises,	and	screenshots.	These	provide	you	with	a	real-time	practical	understanding	of
implementing	high	availability	in	OpenStack.	Some	customer	case	studies	are	also
included:

http://www.colocationamerica.com/blog/core-advantages-open-stack-for-iaas.htm.

http://www.tomsitpro.com/articles/openstack-costs-benefits,2-684-2.html.

http://www.colocationamerica.com/blog/core-advantages-open-stack-for-iaas.htm
http://www.tomsitpro.com/articles/openstack-costs-benefits,2-684-2.html

What	this	book	covers
Chapter	1,	An	Introduction	to	High	Availability	Concepts,	introduces	the	reader	to	a	basic
understanding	of	high	availability	in	a	production	environment.	The	requirements	and
common	design	patterns	will	be	explained	in	details;	architectural	choices	to	maximize
availability	have	been	critically	discussed.

Chapter	2,	Database	and	Messaging	Services,	explains	how	to	obtain	resilient	and
available	OpenStack	supporting	services,	such	as	database	(MariaDB	with	Galera
clustering)	and	RabbitMQ	with	replicated	queues.

Chapter	3,	Load	Balancing	for	Active/Active	Services,	delves	in	to	the	the	basic	and
advanced	topics	of	network	load	balancing	and	explains	with	detailed	examples,	the
configurations	of	HAProxy	and	keepalived.

Chapter4,	Clustering,	Fencing,	and	Active/Passive	Services,	describe	the	services	in
OpenStack	that	are	still	not	fully	stateless,	and	thus	require	classical	clustering	methods
such	as	Pacemaker.	This	chapter	will	analyze	in	depth	the	construction	of	a	cluster	of
services	with	their	resource	agents	and	dependencies.

Chapter	5,	Highly	Available	OpenStack	Services,	deals	with	the	scaling	and	resiliency	of
all	the	basic	OpenStack	services:	compute,	image,	storage,	object	storage,	and	dashboard.

Chapter	6,	Distributed	Networking,	delves	into	the	details	of	Neutron	Distributed	Virtual
Routers,	multiple	L3	agents	in	active/passive	configuration,	and	third-party	networking
drivers	that	offer	high	availability	options.	The	OpenStack	Networking	services	are	the
most	difficult	to	scale	and	render	highly	available.

Chapter	7,	Shared	Storage,	describes	how	shared	storage	is	a	fundamental	requirement	for
high	availability	and	for	a	quick	recovery	from	a	failure	(evacuating	failed	nodes	with	live
migration).	This	chapter	presents	different	options	to	provide	shared	storage	to	OpenStack
and	explains	their	configuration	and	setup	to	some	extent.

Chapter	8,	Failure	Scenario	and	Disaster	Recovery,	focuses	on	how	for	any	OpenStack
operator	who	strives	to	bring	the	cloud	they	manage	to	higher	availability,	understanding
the	different	ways	that	a	failure	can	occur	and	how	these	can	impact	the	performance	and
availability	of	the	service	is	a	fundamental	skill.	This	chapter	analyzes	different	failure
scenarios	and	proposes	solutions	to	provide	a	swift	and	effective	recovery	to	a	normal
operational	level.

Chapter	9,	The	Principles	of	Design	for	Highly	Available	Applications,	explains	how
having	a	highly	available	cloud	might	not	be	enough,	if	the	application	running	on	top	of	it
doesn’t	take	advantage	of	the	principles	and	concepts	of	a	resilient	design.	This	chapter
mainly	explains	how	correct	application	design	can	help	improve	reliability	and	uptime	of
end	user	services;	particular	focus	has	been	dedicated	to	microservice	architectures	and
distributed	web	applications.

Chapter	10,	Monitoring	for	High	Availability,	covers	how	the	control	and	maintenance	of
a	cloud	is	of	the	utmost	importance;	visibility	in	operations	and	alerting	on	failures	are	the

basis	for	correct	functioning	and	quick	recovery	in	case	of	unexpected	outages	or	planned
maintenance	windows.	The	chapter	introduces	a	few	key	concepts	and	tools	to	correctly
measure	and	control	the	operations	of	an	OpenStack	cloud.

Chapter	11,	Use	Cases	and	Real-World	Examples,	covers	a	number	of	real-world
examples	of	HA	deployments.	The	relevant	lessons	for	a	design	of	similar	resilient	clouds
have	been	distilled	and	are	presented	to	the	reader

What	you	need	for	this	book
This	book	assumes	that	you	are	aware	of	the	fundamental	concepts	of	cloud	computing
and	high	performance	computing.

A	basic	understanding	of	Linux	administration	and	commands	are	beneficial	here.

A	hands-on	experience	of	the	installation	of	different	software	or	packages	on	a	Linux-
based	OS	is	essential	to	the	installation	of	OpenStack’s	packages	and	to	execute	various
commands.

The	approach	adopted	in	this	book	uses	OpenStack	2014.1	(Icehouse)	version,	which
requires	at	least	a	700	MHz	processor	(Intel	Celeron	or	better),	8GB	RAM	(system
memory),	and	120GB	of	hard-drive	space.	The	preferred	OS	is	Ubuntu	12.04	and	higher.

Furthermore,	you	will	need	an	Internet	access	to	download	the	software	packages	that	you
do	not	already	have.

Who	this	book	is	for
This	book	is	for	OpenStack	administrator,	cloud	administrator,	cloud	engineer,	or	cloud
developer	with	some	real	time	understanding	of	cloud	computing,	OpenStack	and
familiarity	with	Linux	command	is	essential	to	start	with	this	book.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

primitive	p_ip_mysqlocf:heartbeat:IPaddr2	\

paramsip="192.168.1.32"	cidr_netmask="24"	\

		op	monitor	interval="30s"

Any	command-line	input	or	output	is	written	as	follows:

Sudo	rabbitmqctl	cluster	status

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“The	default	value	of
the	ENABLED	attribute	value	is	changed	to	1.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/5704OS.pdf.

https://www.packtpub.com/sites/default/files/downloads/5704OS.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	An	Introduction	to	High
Availability	Concepts
Over	the	past	couple	of	years,	cloud	computing	has	made	a	significant	impact	in
transforming	IT	from	a	niche	skill	to	a	key	element	of	enterprise	production	environments.
From	an	Infrastructure	as	a	Service	(IaaS)	point	of	view,	cloud	computing	is	much	more
advanced	than	mere	virtualization;	various	industries	and	online	businesses	have	started
moving	test,	staging,	and	productions	scenarios	roles	to	IaaS	and	started	replacing
traditional	dedicated	resources	with	on-demand	resource	models.

OpenStack	is	one	of	the	most	popular	and	commonly	used	open	source	cloud	computing
platforms,	and	it	is	mainly	used	to	deploy	infrastructure	as	a	service	solution.	Enabling
high	availability	in	OpenStack	is	a	required	skill	for	cloud	administrators	and	cloud
engineers.	This	chapter	will	introduce	you	to	high	availability	concepts,	a	way	of
measuring	and	achieving	high	availability	through	architectural	design	in	OpenStack.

In	this	chapter,	we	will	cover	the	following	topics:

What	does	high	availability	mean?
How	to	measure	high	availability
Architecture	design	for	high	availability
High	availability	in	OpenStack

What	does	High	Availability	(HA)	mean?
The	basic	understanding	of	high	availability	in	the	IT	world	is	when	any	system
continuously	operates	(100	percent	operational)	without	any	down	time	despite
occurrences	of	failure	in	hardware,	software,	and	application.

How	to	measure	high	availability
In	order	to	measure	a	system’s	high	availability,	we	usually	check	the	total	duration	of	the
uptime	of	the	system.	For	example	if	system	availability	is	99	percent,	it	means	that	the
system	is	operational	for	8672.4	hours	throughout	the	year	because	the	total	hours	in	a
year	is	8760.

The	following	formula	is	used	to	calculate	the	total	availability,	and	availability	can	be
increased	using	high	availability	techniques	to	increase	MTTF	and	decrease	MTTR	that
we	are	going	to	discuss	in	this	book	with	respect	to	OpenStack	.Let’s	understand	these
term	in	more	detail:

Mean	time	between	failures	(MTBF):	MTBF	tells	us	the	estimated	time	between
two	frequent	failures	within	a	process	or	a	component,	which	can	be	repairable.
Mean	time	to	failure	(MTTF):	MTTF	is	the	total	estimated	time	of	a	system	where
repairing	is	not	possible.
Mean	time	to	repair	or	replace	(MTTR):	MTTR	is	the	average	estimated	time	to
repair	a	failed	component	or	the	total	replacement	time	of	a	failed	component.

The	formula	to	calculate	availability	is	this:

Availability	=	MTTF	/	(MTTF	+	MTTR)

The	following	table	represents	the	Service	Level	Agreement	(SLA)	for	high	availability
between	a	consumer	and	a	provider:

The	level	of	availability Downtime/day Downtime/month Downtime/year

one	9s(90%) 144.00	minutes 72	hours 36.5	days

two	9s(99%) 14.40	minutes 7	hours 3.65	days

three	9s(99.9%) 86.40	seconds 43	minutes 8.77	hours

four	9s(99.99%) 8.64	seconds 4	minutes 52.60	minutes

five	9s(99.999%) 0.86	seconds 26	seconds 5.26	minutes

The	following	are	some	commonly	used	terms	that	are	used	to	understand	and	measure
high	availability:

Single	point	of	failure	(SPOF):	It	reflects	a	part	or	a	particular	component	of	a
system	that	brings	the	entire	system	to	a	halt;	when	it	fails,	the	whole	system	will
stop	working.	The	consideration	for	a	possibly	single	point	of	failure	identifies	the
critical	components	of	a	complex	system	that	would	cause	a	total	system	failure	in
case	of	any	breakdown.
Recovery	time	objective	(RTO):	It	is	a	very	important	matrix	to	measure	business
continuity.	RTO	determines	the	tolerance	of	a	business	process	when	a	system	is	not
available.	For	high	user	traffic	e-commerce	websites	and	mission	critical	businesses,

RTO	should	be	zero	or	near	to	zero.
Recovery	point	objective	(RPO):	RPO	analysis	is	a	very	critical	metric	for	any
business.	It	is	calculated	as	a	total	amount	of	data	loss	when	a	system	is	not	available.
It	is	measured	in	terms	of	time.
Service	level	agreement	(SLA):	SLA	is	a	mutual	agreement	between	consumers	and
a	service	provider	that	defines	detailed	service	offerings,	delivery	time,	the	quality	of
service	(QoS),	and	the	scope	or	constraints	of	the	offered	services.

Common	content	in	the	contract
Metrics	related	to	performance	assurance	depend	on	the	following	components:

RTO	and	RPO
Uptime	and	downtime	ratio
System	throughput
Response	time

How	to	achieve	high	availability
High	availability	in	a	production	environment	is	achieved	by	removing	single	point	of
failures,	enhancing	replication,	redundancy,	and	fail-over	capability	of	the	system,	and
quickly	detecting	failures	as	they	occur.	High	availability	can	be	achieved	at	many
different	levels	including	the	infrastructure	level,	data	center	level,	geographic	redundancy
level,	and	even	application	level.	The	basic	understanding	of	high	availability	in	the
infrastructure	level	includes	the	following	things:

Multiple	web	servers
Multiple	database	servers
Multiple	load	balancers
Leveraging	different	storage	systems

Here,	multiple	web	servers	means	multiple	web	nodes,	multiple	load	balancers	means
active/passive	load	balancers,	multiple	database	servers	means	replicated	DB	servers,	and
leveraging	different	storage	system	means	the	maximum	utilization	of	all	possible	storage
solutions	with	a	backup	plan	that	provides	redundancy	at	each	layer	of	the	configuration.

For	advanced	HA	configurations,	we	also	need	to	plan	about	automatic	failover	and	geo-
replication,	in	case	of	disaster	recovery,	and	also	need	to	design	our	application	for	high
availability.	In	short,	we	can	say	that	there	are	various	advanced	techniques	to	achieve
high	availability,	which	we	will	discuss	in	detail	in	the	following	chapters,	but	the	prime
objective	of	each	technique	is	to	obtain	the	following	five	principals	of	high	availability	as
described	in	this	figure:

High	availability	principles

Architecture	design	for	high	availability
The	following	are	some	common	design	patterns	used	to	design	a	high	availability
architecture.	Let’s	discuss	this	in	detail:

Design	for	failure	consideration:	This	must	be	the	first	and	foremost	concern	of	a
cloud	architect.	Whenever	any	company	or	organization	decides	to	move	to	a	cloud
infrastructure	solution,	it	has	to	plan	for	failure.	If	the	failure	conditions	are	planned
properly,	then	this	will	be	of	little	or	no	consequence	to	the	HA	services	or	the
resources,	and	the	system	will	always	be	available.
Decouple	your	components:	All	the	components	in	a	cloud	infrastructure	should	be
decoupled	and	isolated	from	each	other;	for	example,	whenever	we	have	set	upload
balancing	applications,	traditionally	web	servers	have	been	tightly	coupled	with	the
application	server,	but	this	is	not	the	best	practice.	Isolation	and	decoupling	are
necessary	between	components.	The	following	figure	shows	that	each	web	server	and
application	server	is	highly	coupled:

Decoupled	applications

Web	servers	and	application	servers	can	be	loosely	coupled	and	isolated	by	putting	a
load	balancer	between	them,	as	shown	in	the	following	figure.	Any	web	or
application	server	can	be	easily	scaled	up	or	scaled	down	without	any	dependency.

High	coupling

Build	security	in	every	layer:	While	designing	a	cloud	infrastructure,	building
security	in	each	layer	is	recommended.	As	security	is	the	shared	responsibility	of	the
consumer	and	the	cloud	provider,	the	following	are	some	steps	that	a	consumer	must
take	to	ensure	security:

Enforce	the	principle	of	least	privileges	when	developing	applications
Encrypt	data	during	transitions	state
Try	to	use	a	multiway	and	multifactor	authentication

Design	parallel:	While	designing	a	cloud	infrastructure,	a	parallel	architecture	that	is
fast	and	efficient	should	be	implemented.	Two	possible	approaches	in	parallel
architecture	could	be	as	follows:

A	server	works	on	a	job	sequentially	for	4	h
Four	servers	work	on	a	job	in	parallel	for	4	h

There	is	no	difference	cost-wise,	but	the	second	approach	is	likely	to	be	four	times
faster;	therefore,	a	parallel	design	is	highly	recommended.

Automate	and	test	everything:	When	a	production	environment	is	enabled	to	handle
cloud	service	failure,	you	should	test	your	automated	processes	for	the	occurrence	of
hardware,	software,	and	application	failure.	This	kind	of	automation	is	provided	by
the	cloud	infrastructure	service	provider,	which	allows	you	to	implement	failover
automated	processes	across	instances,	availability	zones,	regions,	and	other	clouds.
You	should	automate	the	data	backups	as	well	because	in	case	of	any	outage	or
disaster,	your	data	must	be	immediately	ready.

Any	disaster	recovery	plan	can	only	be	successful	if	it	is	tested	properly	to	make	sure
it	works.	It	can	be	tested	by	disabling	your	various	cloud	servers	and	associated
services	and	transferring	high	loads	to	your	production	servers	so	that	you	can	test
the	actual	potential	of	your	existing	infrastructure.	Significantly,	cloud	infrastructure
solutions	provide	easily	configurable	disaster	recovery	and	backup	services
nowadays.	Despite	highly	popular	services,	organizations	cannot	effectively	enable
high	availability	services	in	the	cloud	until	they	implement	a	proper	architecture	and
use	the	right	management	tools.

High	availability	in	OpenStack
Many	organizations	go	with	the	OpenStack	cloud	nowadays	to	provide	an	infrastructure	as
a	service	environment	since	OpenStack	has	excellent	hybrid	cloud	features	and	can
leverage	public	cloud	scale	out	feature	through	APIs.	Therefore,	OpenStack	is	quite
capable	of	handling	the	workload	of	mission	critical	applications.

OpenStack	provides	an	easy-to-control	dashboard	to	manage	networking,	storage,	and
computing	resources	and	facilitates	users	to	have	a	provision	for	computing	resources.	The
following	figure	illustrates	the	architecture	of	OpenStack:

An	OpenStack	component

Organizations	that	run	their	production	applications	over	OpenStack,	generally	try	to
achieve	five	9s	(99.999)	of	availability.	Hence,	the	failure	of	any	running	controller	node
or	service	should	not	create	any	kind	of	disruption	on	any	application	running	on	the
resources	provided	or	managed	by	OpenStack.

In	short,	achieving	high	availability	in	OpenStack	means	removing	all	single	points	of
failure,	implementing	redundancy,	and	replicating	component	failover	capability	and
automation.	Also,	workload	should	be	scaled	out	or	scaled	in	according	to	real-time
workload.	We	can	achieve	high	availability	in	OpenStack	in	the	following	ways:

Enabling	multimaster	database	replication	and	building	an	efficient	and	reliable
messaging	cluster	that	forms	the	basis	of	any	highly	available	OpenStack	deployment
Setting	up	open	source	load	balancing	software	such	as	HAProxy	and	keepalived	and
load	balancing	of	HTTP	REST	API’s,	MySQL,	and	AMQP	clusters
Enabling	some	classical	clustering	methods	such	as	a	pacemaker	with	two	or	more
nodes	to	control	active/passive	OpenStack	services
Enabling	OpenStack	services	in	stateless	mode	to	offer	a	scalable	cloud	framework
with	scaling	and	resiliency	of	all	the	basic	OpenStack	services:	compute,	image,
storage,	object	storage,	and	dashboard
Leveraging	third-party	networking	drivers	that	offer	high	availability	options
Enabling	distributed	networking	with	Neutron	Distributed	Virtual	Routers	and
configuring	multiple	L3	agents	in	active/passive	configuration	and	third-party
networking	drivers	that	offer	high	availability	options
Leveraging	software-defined	storage	such	as	GlusterFS,	Ceph,	traditional	enterprise
storage	such	as	NFS,	iSCSI	for	quick	recovery	after	a	failure,	and	backup	services
Enabling	automatic	failover	and	geo-replication	using	swift	and	effective	recovery
technique	such	as	network	partitioning	split	brain

Summary
In	this	chapter,	we	learned	the	fundamentals	of	high	availability	and	what	a	highly
available	design	is	meant	to	achieve	in	a	production	environment.

We	have	also	learned	about	SPOF,	RTO,	RPO	MTTR,	MTTF,	MTTF,	the	concept	of	SLA,
and	the	general	architectural	design	of	a	highly	available	system	with	an	overview	of
OpenStack	high	availability	requirements	and	the	various	ways	of	achieving	high
availability	in	OpenStack.

In	the	next	chapter,	we	will	take	a	deep	dive	into	database	replication	and	how	to	build	an
efficient	and	reliable	messaging	cluster	to	enable	high	availability	in	OpenStack.

Chapter	2.	Database	and	Messaging
Services
In	order	to	store	all	the	information	of	OpenStack	services,	such	as	the	state	of	a	running
instance,	the	availability	of	a	computing	node,	and	other	instance-associated	information,
one	central	database	service	is	used.	As	we	learned	in	the	first	chapter,	we	should	avoid
Single	Point	of	Failure	(SPOF)	to	achieve	high	availability.	Since	DB	is	the	central
operational	component	of	the	OpenStack,	it	must	be	clustered	to	avoid	SPOF	in
OpenStack.

Here,	our	objective	is	to	achieve	resiliency	in	case	of	database	failures	and	enable
OpenStack	components	to	communicate	with	the	database	nodes.	We’ll	also	build	an
efficient	reliable	messaging	RabbitMQ	cluster.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	MariaDB	with	Galera	clustering
Installing	a	high	availability	RabbitMQ	cluster

Installing	MariaDB	with	Galera	clustering
We	are	going	to	build	a	high	availability	database	service.	For	this	experiment,	we	will	use
MariaDB,	which	is	basically	a	fork	of	MySQL	and	has	a	version	control	built	for	Galera
that	is	available	in	an	apt	repository	for	Ubuntu	12.04.	After	this,	we	will	use	Galera
clustering	for	bidirectional	replication.

The	following	is	the	step-by-step	procedure	to	install	and	configure	MariaDB:

1.	 Create	two	OpenStack	controller	servers	and	assign	to	each	of	them	an	IP	address
(192.168.122.1	and	192.168.122.2)—install	all	the	OpenStack	services.	After	a
successful	installation	of	OpenStack	on	the	server	nodes,	launch	the	horizon
dashboard	as	follows.

2.	 The	following	image	depicts	what	you	see	after	you	log	in	with	the	default	user	name
and	password	as	admin	and	OpenStack	respectively.

3.	 After	a	successful	login	via	the	previous	dashboard,	the	OpenStack	cloud	services
will	be	offered	and	monitored	through	the	following	console.	This	includes	all	the
activities	of	the	cloud	administrator	for	the	provision	and	de-provision	of	services
offered	by	OpenStack.

4.	 Then,	add	the	MariaDB	repo	and	install	the	MariaDB	and	Galera	packages	on	the
control	nodes	by	carrying	out	the	following	instructions:

1.	 Open	a	terminal	in	the	controller	node.
2.	 Type	the	following	command	for	the	installation	as	shown	in	the	following

screenshot:

sudo	apt-get	install	python-software-properties

3.	 Type	the	following	command	to	get	the	following	screen:

sudo	apt-key	adv	--recv-keys	--keyserver	

hkp://keyserver.ubuntu.com:80	0xcbcb082a1bb943db

4.	 The	following	debian	packages	are	added	to	the	Ubuntu	debian	package	to
update	the	system	to	support	MariaDB.	So,	add	the	following	lines	at	the	bottom

of	your	/etc/apt/sources.list	file:

deb	http://sgp1.mirrors.digitalocean.com/mariadb/repo/5.5/ubuntu	

precise	main

deb-src	

http://sgp1.mirrors.digitalocean.com/mariadb/repo/5.5/ubuntu	

precise	main

After	opening	the	preceding	sources.list	file	with	any	one	of	the	editors	such
as	vi	and	nano,	add	the	previous	two	lines	of	the	new	debians	at	the	bottom	of	a
file	as	shown	in	the	following	screenshot:

5.	 Now	type	the	following	command:

sudo	apt-get	update

The	preceding	update	command	works	with	Ubuntu’s	packages,	an	upgrade	of
the	existing	software	packages,	an	update	of	the	package	list	index,	and	even	an
upgrade	of	the	entire	Ubuntu	system.	So	by	running	this	command,	the	system
will	be	updated.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have
purchased.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

6.	 Next,	we	will	install	MariaDB	by	typing	the	following	command:

sudo	apt-get	install	mariadb-server

7.	 We	will	see	the	following	information	after	a	successful	installation:

http://www.packtpub.com
http://www.packtpub.com/support

8.	 After	a	successful	installation	of	MariaDB,	the	Galera	configuration	file	needs
to	be	changed	according	to	our	cluster	setup	as	explained	in	the	remaining	steps.

9.	 Find	a	file	called	cluster.conf	under	/etc/mysql/conf.d/cluster.cnf.
10.	 The	(cluster.cnf)	must	be	updated	with	the	attributes	along	with	their	values

as	shown	in	the	following	screenshot	using	the	following	command:

sudo	nano	/etc/mysql/conf.d/cluster.cnf

11.	 Use	wsrep_cluster_address	to	match	the	address	of	our	node	called

controllerNode1	(192.168.122.1)	as	shown	in	the	previous	screenshot.
12.	 Finally,	we	need	to	edit	the	MySQL	configuration	to	remove	the	bind-address

statement	as	shown	in	following	figure.	The	configuration	file	is	called	my.conf
and	resides	under	/etc/mysql.	We	need	to	add	a	comment	with	a	#(hash
symbol)	to	the	bind-address	attribute	in	the	my.conf	file;	however,	before	that,
open	the	file	using	the	following	command:

sudo	nano		/etc/mysql/my.conf

This	command	gives	us	the	following	output:

13.	 Complete	all	the	previously	mentioned	steps	on	both	the	nodes,	and	then	we
should	stop	the	mysql	service	on	both	the	nodes	with	the	following	command:

service	mysql	stop

Installation	of	high	availability	RabbitMQ
cluster
There	are	many	forms	of	high	availability,	replication,	and	resilience	in	the	face	of	various
different	types	of	failure.	A	RabbitMQ	cluster	can	be	made	to	work	in	an	active	and
passive	setup	such	that	persistent	messages	that	have	been	written	to	a	disk	on	the	active
node	can	be	recovered	by	the	passive	node,	should	the	active	node	fail.	Clustering	enables
a	high	availability	of	queues	and	increases	the	throughput.	If	a	node	fails,	queues	that	were
on	the	failed	node	are	lost.	With	the	high	availability	setup	described	in	the	following
steps,	a	different	node	can	recover	the	durable	queues	and	the	persistent	messages	within
them	when	a	node	fails.

For	this	experiment,	we	will	build	two	new	Ubuntu	12.04	LTS	servers	with	the	following
names	and	IP	addresses:

Controller_1	(192.168.56.101)
Controller_2	(192.168.56.102)

We	will	want	the	two	nodes	to	be	able	to	resolve	each	other	by	name.	Then	add	each	node
to	the	other	node’s	/etc/hosts	file	as	shown	in	the	following	section.

Configuring	the	nodes	to	know	each	other
The	following	change	is	for	the	Controller_1	(/etc/hosts):

1.	 Add	the	name	and	IP	address	of	controller_2	using	the	following	command:

sudo		nano	/etc/hosts

2.	 Then,	save	the	preceding	changes	according	to	the	editors	(vi,	nano,	or	some	other
editor)	that	you	are	using.

3.	 Next,	make	the	changes	to	Controller_2	(/etc/hosts).
4.	 Add	the	name	and	IP	address	of	controller_2	using	the	following	command:

sudo		nano	/etc/hosts

5.	 Then,	save	the	preceding	changes.	In	the	nano	editor,	use	Ctrl	+	x	to	exit	from	the
nano	editor	and	type	yes	or	y	to	save	the	file.

Installing	RabbitMQ	on	the	two	nodes
The	following	procedure	must	be	followed	for	both	the	nodes:

1.	 Update	the	system	with	the	sudo	apt-get	update	command.

The	update	command	works	with	Ubuntu’s	packages,	an	upgrade	of	the	existing
software	packages,	an	update	of	the	package	list	index,	and	even	an	upgrade	of	the
entire	Ubuntu	system.

Install	the	RabbitMQ	message	queue	service	on	the	node	using	the	following
command.	The	ntp	package	is	used	for	the	synchronization	of	services	on	multiple
machines:

sudo	apt-get	install	ntp	rabbitmq-server

2.	 After	the	installation	has	completed,	we	should	stop	the	RabbitMQ	services	on	both
the	nodes	with	the	following	command:

sudo	service	rabbitmq-server	stop

Constructing	a	RabbitMQ	broker
We	are	building	a	cluster	of	the	RabbitMQ	nodes	to	construct	a	RabbitMQ	broker,	a
logical	grouping	of	several	Erlang	nodes.	Therefore,	we	need	to	copy	the	erlang	cookie
from	controller_1	to	controller_2:

1.	 We	may	need	to	enable	root	ssh	logon	on	controller_2	for	this	step,	otherwise	we
might	need	to	copy	the	file	to	our	home	directory	on	controller_2	and	then	move	it
to	the	correct	location.	To	enable	root	logon	on	controller_2,	simply	type	passwd
root	and	enter	a	new	password	for	the	root	when	prompted.

2.	 Then	going	back	to	controller_1,	we	can	copy	the	cookie	to	controller_2:	with
the	following	command:

scp	/var/lib/rabbitmq/.erlang.cookie	

root@192.168.56.101:/var/lib/rabbitmq/.erlang.cookie

Restarting	the	RabbitMQ	services	on	the	nodes
To	restart	the	RabbitMQ	services	on	both	the	nodes,	type	the	sudo	service	rabbitmq-server
restart	command	and	run	it	on	your	terminal.	These	commands	are	input	on	the	default
settings	by	restarting	the	RabbitMQ	services.

Formation	of	cluster
Run	the	following	commands	on	controller_2:

rabbitmqctl	stop_app

rabbitmqctl	join_cluster	rabbit@controller_1

rabbitmqctl	start_app

Check	the	status	of	a	cluster
Run	the	following	command	to	know	the	status	of	the	cluster	from	controller_1:

Sudo	rabbitmqctl	cluster	status

Summary
In	this	chapter,	we	had	a	practical	example	of	the	MariaDB	installation	with	Galera
clustering.	We	also	learned	about	the	detailed	installation	and	setup	procedure	of	a	high
availability	RabbitMQ	server.

In	the	next	chapter,	we	will	deep	dive	into	network	load	balancing	with	detailed	examples
on	configurations	for	HAproxy	and	keepalived	and	will	learn	about	load	balancing	of
HTTP	REST	API’s,	MySQL,	and	AMQP	clusters.

Chapter	3.	Load	Balancing	for
Active/Active	Services
To	avoid	a	single	point	of	failure	in	OpenStack,	we	set	up	a	two-node	load	balancer
configuration	with	HAProxy,	and	keepalived.	HAProxy	provides	a	very	consistent	load
balancing	and	high	availability	solution	for	applications,	which	are	based	on	TCP	and
HTTP.

The	two	nodes	monitor	each	other	using	keepalived.	This	is	a	piece	of	software	that	can	be
used	to	achieve	high	availability	by	assigning	a	virtual	IP	to	two	or	more	nodes	and
monitoring	these	nodes,	and	then	failing	over	when	one	of	the	nodes	goes	down.	The
keepalived	can	do	more	than	this,	such	as	load	balancing	and	monitoring.	However,	in	this
chapter,	we’ll	focus	on	a	very	simple	setup,	that	is	IP	failover.

In	this	chapter,	we	will	cover	the	following	main	topic:

The	installation	of	HAProxy	and	keepalived

The	installation	of	HAProxy	and
keepalived
Before	installing	HAProxy	and	keepalived,	we	should	know	the	prerequisites	for	this
experimental	setup.

The	requirement	for	an	experimental	setup
In	this	experiment,	you	will	setup	two	node	clusters	with	Ubuntu	12.04	LTS	installed	on
both	of	these	two	nodes.	These	two	nodes	are	created	with	the	following	names,
controller_1	and	controller_2,	and	they	are	assigned	the	following	IP	addresses,
192.168.56.101	and	192.168.56.102	respectively.

Then	a	third	IP	address,	192.168.1.32,	is	allocated	to	be	used	as	a	virtual	IP	address
(VIP).

The	following	is	the	step-by-step	procedure	to	install	HAProxy	and	keepalived:

1.	 As	an	initial	step	of	this	installation	process,	we	need	to	make	the	kernel	aware	that
we	intend	to	bind	additional	IP	addresses	that	won’t	be	defined	in	the	interfaces	file.

2.	 To	do	this,	we	edit	/etc/sysctl.conf	using	any	one	of	the	editors	mentioned	in	the
previous	chapter.

Then	add	the	following	line:

net.ipv4.ip_nonlocal_bind=1

3.	 To	reflect	the	change	made	in	the	file,	we’ll	run	the	following	command	without
rebooting	the	machine:

sudo	sysctl	-p

4.	 Next,	you	will	install	the	HAProxy	and	keepalived	software	using	the	following
command:

sudo	apt-get	update	&&	apt-get	install	keepalived	haproxy	–y

5.	 After	a	successful	installation	of	the	previous	software,	you	will	get	the	following
screenshot:

Next,	we	define	the	keepalived	configuration.	We	start	by	creating
/etc/keepalived/keepalived.conf	on	both	controller_1	and	controller_2	as
follows:

The	keepalived	configuration	on	controller_1	node.	We	have	to	configure	each	node	in
this	experimental	setup.	So	we	need	to	do	an	initial	start-up	by	configuring	node	1,	called
controller_1.

You	need	to	add	the	following	items	to	the	keepalived.conf	file,	and	you	have	to	set	the
router_id	as	the	hostname,	in	this	case	this	should	be	controller_1.	Then	you	have	to
specify	the	VIP	as	192.168.1.32:

The	keepalived	configuration	on	controller_2
Now	you	need	to	add	the	following	items	to	the	keepalived.conf	file	and	need	to	set	up
the	route_id,	which	means	assign	the	hostname	as	router_id.	You	have	to	set	the
router_id	to	be	the	hostname,	in	this	case	this	should	be	controller_2.	Then	you	have	to
specify	the	VIP	as	192.168.1.32:

Defining	the	HAProxy	configuration
Next,	you	have	to	define	the	HAProxy	configuration	on	controller_1	and	controller_2
as	follows:

Open	the	file	called	haproxy.cfg	under	the	/etc/haproxy/	directories	using	any	editor
with	the	following	command:

sudo	gedit	/etc/haproxy/	haproxy.cfg

HAProxy	configuration	for	the	controller_1	node
In	the	previously	mentioned	file,	change	the	IP	address	of	the	log	location	item	in	the
global	section	and	the	stats	listener	to	controller_1	IP	address,	192.168.56.101.	Then
set	the	username	and	password	in	the	stats	auth	line.	Set	the	password	and	username
according	to	your	machine.	The	username	and	password	belongs	to	the	OpenStack	user:

The	HAProxy	configuration	for	the	controller_2	node
In	the	preceding	haproxy.cfg	file,	change	the	IP	address	of	the	log	location	item	in	the
global	section	and	the	stats	listener	to	controller_2	IP	address,	192.168.56.102.	Then
set	the	username	and	password	in	the	stats	auth	line.	Set	the	password	and	username
according	to	your	machine.	The	global	section	of	parameters	is	globally	utilized	for	the
configuration	of	nodes.	The	default	sections	with	some	parameters	to	set	up	the	process-
related	attributes	and	the	listening	section	provides	a	simple	HAProxy	configuration	to
listen	on	port	80	and	forwards	all	the	requests	to	the	server	that	is	listening	at
192.168.56.102:

Now	we	need	to	enable	HAProxy.	To	do	this,	edit	the	/etc/default/haproxy	file:

The	default	value	of	the	ENABLED	attribute	value	is	changed	to	1	as	follows:

Then	restart	the	services	of	HAProxy	and	keepalived	on	both	the	nodes	(controller_1
and	controller_2)	using	the	following	command:

sudo	service	keepalived	restart

sudo	service	haproxy	restart

After	completing	all	of	these	steps	on	both	the	nodes,	you	should	now	have	a	highly
available	load	balancer	pair.	At	this	point,	our	VIP	should	be	active	on	one	of	the	nodes.
There	are	several	algorithms	available	for	load	balancing	in	the	HAProxy	nodes	such	as
round	robin,	leastcon,	and	source.	In	our	case,	we	are	using	the	round	robin	algorithm	as
the	default	algorithm	for	load	balancing.

Therefore,	we	need	to	ensure	the	proper	functioning	of	this	whole	setup.	So,	we	need	to
make	any	one	of	the	nodes,	either	controller_1	or	controller_2,	active.

Making	the	controller_1	node	active
The	following	procedure	will	make	the	controller_1	node	active	at	first.	In	this	case,	we
have	an	assumption	that	the	controller_1	must	have	VIP	in	an	active	mode.	To	confirm,
we	can	use	the	following	ip	command:

ip	a	|	grep	eth4	(in	this	case	eth4	is	assigned	as	main	NIC)

For	the	confirmation	of	the	activation	of	controller_2	node,	repeat	the	preceding	step	on
the	controller_2	node.

Making	the	controller_2	node	active
In	this	case,	we	have	an	assumption	that	the	controller_2	must	have	VIP	in	an	active
mode.	To	confirm,	we	can	use	the	following	ip	command:

Notice	that	both	the	local	IP	and	the	VIP	are	shown	here.	If	we	now	reboot	node	1,	then
node	2	will	quickly	pick	up	the	VIP.

Therefore,	we	should	ensure	that	the	Virtual	IP	is	present	on	any	one	of	the	nodes,	such	as
controller_1	or	controller_2,	since	VIP	should	be	active	on	either	controller_1	or
controller_2.

Summary
In	this	chapter,	we	learned	the	basic	and	advanced	topics	of	network	load	balancing	with
detailed	example	configurations	for	HAProxy	and	keepalived.

In	the	next	chapter,	we	will	learn	about	classical	clustering	methods	such	as	pacemaker
cluster	resources	and	their	agents,	start	up	order,	failover	and	recovery,	fencing
mechanisms,	and	the	load	balancing	of	HTTP	REST	API’s,	MySQL,	and	the	AMQP
clusters.

Chapter	4.	Clustering,	Fencing,	and
Active/Passive	Services
Generally,	OpenStack	services	offer	stateless	services	and	manage	them	to	be	as	stateful
services	by	providing	redundant	instances	and	load	balancing	them.	However,	it	is	very
difficult	to	manage	these	services	because	of	multiple	actions	that	are	involved	in	every
request	for	them.	In	this	chapter,	we	will	make	the	stateful	services	highly	available	based
on	active/passive	configuration.

An	active/passive	configuration	means	bringing	additional	resources	online	when	other
resources	fail.	Pacemaker	or	Corosync	applications	are	used	to	bring	back	backup
resources	online	whenever	it	is	necessary.	High	availability	will	be	achieved	via	a	stack	of
components	such	as	Pacemaker	and	Corosync.

In	addition	to	Pacemaker	cluster	configuration,	cluster	resources	and	their	agents,	we	will
also	cove	the	startup	order,	fail	over	and	recovery	and	fencing	mechanisms.

In	this	chapter,	we	will	cover	the	following	main	topics:

Installing	Corosync	and	Pacemaker
The	load	balancing	of	high	availability	MySQL
High	availability	RabbitMQ	via	AMQP

Installing	Corosync	and	Pacemaker
Before	installing	Corosync	and	Pacemaker,	we	should	know	the	prerequisites	for	this
experimental	setup.

Requirements	for	the	experimental	setup
In	this	experiment,	we	will	set	up	two	node	clusters	with	Ubuntu	12.04	LTS	installed	on
both	these	nodes.	These	two	nodes	are	created,	and	they	are	named	as	controller_1	and
controller_2	and	assigned	with	the	192.168.56.101	and	192.168.56.102	IP	addresses,
respectively.	Then	a	third	IP	address,	192.168.1.32,	is	allocated	to	be	used	as	a	Virtual	IP
address	(VIP).

A	secure	Socket	Host	setup
We	can	have	a	Secure	Socket	Host	(SSH)	setup	to	access	all	other	nodes	through	a	key
exchange	so	that	the	host	file	on	the	node	will	look	like	as	follows:

|sudo	nano	/etc/hosts

After	opening	the	host	file,	make	the	changes	as	shown	in	the	following	terminal
screenshot:

Installing	the	Corosync	package
To	make	any	host	node	become	a	part	of	the	pacemaker	cluster,	we	need	to	establish	a
cluster	communication	via	Corosync	that	involves	the	installation	of	the	following
packages:

|sudo	apt-get	install	pacemaker	corosync	crmsh	–y

The	following	image	shows	that	the	Pacemaker	installation	was	successful.

Sharing	and	generating	Corosync	keys
As	an	initial	step	of	installation,	the	Corosync	key	must	be	generated	and	shared	among	all
other	nodes	in	a	cluster.	It	is	necessary	to	log	in	to	each	Corosync	node	and	then	secure
cluster	communication	is	done	in	an	encrypted	manner.	Then	this	key	is	distributed	among
the	cluster	nodes.

|	corosync-keygen

Now,	share	the	keys	with	node2	(controller_2):

rsync	-a	/etc/corosync/authkey	controller_2:/etc/corosync/

Creating	a	configuration	file
Now,	we	need	to	create	a	configuration	for	Corosync	that	is	located	in
/etc/corosync/corosync.conf.	To	edit	this	file,	use	any	of	the	editors	in	Ubuntu	(vi,
nano,	or	gedit	and	so	on).

Sudo	nano	/etc/corosync/corosync.conf

The	cluster	name	and	the	IP	address	must	be	changed	according	to	our	setup	as	follows:

Starting	Corosync
To	ensure	the	corosync	connectivity,	we	have	a	couple	of	tools	corosync-ctgtool	and
corosync-objctl.	The	corosync-ctgtool	is	used	to	check	the	health	of	the	cluster.	Start
the	corosync	service	as	a	normal	system	service,	as	shown	in	the	following:

|	sudo	/etc/init.d/corosync	start

The	corosync-objctl	tool	will	list	down	the	member	list	as	follows:

corosync-objctl	runtime.totem.pg.mrp.srp.members

Starting	Pacemaker
After	Corosync	has	started,	communication	must	be	established	to	check	whether	the
cluster	is	communicating	properly.	The	purpose	of	adding	this	Pacemaker	with	Corosync
is	to	deal	with	failover	of	nodes	in	the	cluster.	Start	the	Pacemaker	with	the	following
commands:

Sudo	nano	/etc/init.d/pacemaker	start

On	a	successful	start	of	the	Pacemaker	services.	It	will	create	an	empty	cluster
configuration	by	default.	This	cluster	does	not	have	any	resources.	We	can	check	the	status
of	this	cluster	using	the	crm	utility	on	the	terminal:

|crm_mon

Setting	the	cluster	properties
The	basic	cluster	properties	need	to	be	set	for	the	pacemaker	cluster	with	the	help	of	the
crm	shell.	The	configuration	file	is	changed	with	the	configure	command.	The	following
are	some	cluster	properties:

no-quorum-policy="ignore":	This	attribute	value	is	set	to	ignore	when	we	are
using	a	two-node	cluster	(in	our	case).	If	we	set	this	value,	both	the	nodes	will	remain
online	and	lose	communication	with	one	another.	This	value	will	be	set	up	when	we
use	three	or	more	nodes	in	the	cluster.
pe-warn-series-max	="1000",	pe-input-series-max	="1000"	and	pe-error-
series-max="1000":	Setting	these	values	to	1000	sends	a	request	to	the	Pacemaker
to	sustain	a	long	history	of	inputs	that	are	processed	by	this	cluster.
cluster-recheck-interval="5min":	Setting	this	value	to	process	a	cluster	state
needs	an	event-driven	approach.	It	is	used	to	make	the	Pacemaker	actions	occur	at
customizable	intervals.	We	can	change	this	value	or	interval	according	to	the	cluster
requirement,	as	shown	in	the	following	screenshot:

|	crm-configure

The	load	balancing	of	high	availability
MySQL
Many	OpenStack	services	use	MySQL	as	the	default	database	server.	Load	balancing	is
necessary	when	any	of	the	nodes	is	overloaded	or	fails	due	to	some	reason.	To	manage	this
failover	situation,	we	need	to	exploit	a	solution	called	high	availability	as	follows.	To
make	this	MySQL	database	server	highly	available,	it	requires	configuring	the	distributed
replicated	block	service	as	explained	in	the	following	sections.

DRBD	replicated	storage
Replications	of	data	between	disks	are	done	with	DRDB;	in	our	case,	the	/dev/sdb	disk
on	controller_1	and	controller_2.	We	need	to	edit	the	configuration	file	of	DRDB	with
the	following	command:

sudo	gedit	/etc/drbd.conf

The	configuration	file	looks	like	the	following:

The	protocol	C	is	used	to	create	connections	between	devices,	and	it	is	used	as	a
replication	protocol.	After	this,	we	have	to	enter	some	of	the	DRBD	commands	for	the
initialization	of	the	replica,	as	follows:

drbdam	create-md	mysql

On	executing	the	preceding	command,	we	will	get	the	initial	device	creation:

Then,	we	need	to	start	replicating	any	one	of	the	nodes,	either	on	controller_1	or
controller_2	using	the	following	command:

drbdam—--force	primary	mysql

Now	the	replication	has	started.	Then,	we	need	to	check	the	status	of	the	replication	as
follows:

cat	/proc/drbd

Installing	MySQL
The	installation	should	be	done	on	both	nodes	(controller_1	and	controller_2)	with	the
following	command:

sudo	apt-get	install	mysql-server

Then,	we	will	add	our	Virtual	IP	(VIP)	to	my.cnf	as	follows:

sudo	gedit	/etc/my.cnf

bind-address	=	192.168.1.32

The	above	changes	have	to	be	done	in	mysql	bind-address	to	listen	to	the	Pacemaker.	So
it	can	understand	what	is	the	IP	address	of	MySQL	to	communicate	with	Pacemaker.

Hence,	the	address	of	MySQL	will	be	bound	to	the	mentioned	address.

Add	the	MySQL	resources	to	Pacemaker.

After	this,	we	will	add	the	configuration	of	Pacemaker	for	the	MySQL	resources	to	the
cluster.	With	the	crm	configuration,	connect	the	Pacemaker	cluster	and	add	the	following
cluster	resources:

primitive	p_ip_mysql	ocf:heartbeat:IPaddr2	\

		params	ip="192.168.1.32"	cidr_netmask="24"	\

		op	monitor	interval="30s"

primitive	p_drbd_mysql	ocf:linbit:drbd	\

		params	drbd_resource="mysql"	\

		op	start	timeout="90s"	\

		op	stop	timeout="180s"	\

		op	promote	timeout="180s"	\

		op	demote	timeout="180s"	\

		op	monitor	interval="30s"	role="Slave"	\

		op	monitor	interval="29s"	role="Master"

primitive	p_fs_mysql	ocf:heartbeat:Filesystem	\

		params	device="/dev/drbd/by-res/mysql"	\

				directory="/var/lib/mysql"	\

				fstype="xfs"	\

				options="relatime"	\

		op	start	timeout="60s"	\

		op	stop	timeout="180s"	\

		op	monitor	interval="60s"	timeout="60s"

primitive	p_mysql	ocf:heartbeat:mysql	\

		params	additional_parameters="--bind-address=192.168.42.101"	\

				config="/etc/mysql/my.cnf"	\

				pid="/var/run/mysqld/mysqld.pid"	\

				socket="/var/run/mysqld/mysqld.sock"	\

				log="/var/log/mysql/mysqld.log"	\

		op	monitor	interval="20s"	timeout="10s"	\

		op	start	timeout="120s"	\

		op	stop	timeout="120s"

group	g_mysql	p_ip_mysql	p_fs_mysql	p_mysql

ms	ms_drbd_mysql	p_drbd_mysql	\

		meta	notify="true"	clone-max="2"

colocation	c_mysql_on_drbd	inf:	g_mysql	ms_drbd_mysql:Master

order	o_drbd_before_mysql	inf:	ms_drbd_mysql:promote	g_mysql:start

After	adding	the	cluster	details	to	mysql,	we	will	get	a	status	as	follows:

Once	the	configuration	has	been	committed,	the	cluster	will	bring	up	the	resources,	and	if
all	goes	well,	you	should	have	MySQL	running	on	one	of	the	nodes,	accessible	via	the
VIP	address.	If	any	communication	loss	occurs	on	any	of	the	active	nodes	in	a	cluster,	that
node	will	be	removed	or	fenced	from	the	cluster.	With	this	fencing	mechanism,	the	fenced
node	is	completely	isolated	from	the	cluster.

To	check	the	cluster	status,	type	the	following	command:

|	crm_mon	-1

High	availability	RabbitMQ	via	AMQP
The	AMQP	server	is	used	as	a	default	server	for	many	OpenStack	services	through
RabbitMQ.	Making	the	service	highly	available	involves	configuring	a	DRDB	device.

Configuring	DRDB
The	configuration	of	DRDB	involves	the	following:

RabbitMQ	can	use	the	configured	DRDB	device
Data	Directory	residing	in	this	RabbitMQ	device	can	be	used	by	this	configuration
Virtual	IP	(VIP)	selects	and	assigns	floating	IPs	in	a	free	manner	among	the	cluster
nodes

The	RabbitMQ	DRDB	resource	configuration	is	done	with	the	following	command:

sudo	nano	/etc/drbd.d/rabbit.res

The	rabbitmq	directory	is	mounted	from	the	DRDB	resource	for	the	Pacemaker-based
rabbirmq	server.	The	rabbitmq	resource	is	configured	as	follows:

A	backing	device	called	/dev/data/rabbitmq	is	used	by	the	previously	mentioned
resource	on	the	cluster	nodes,	controller_1	and	controller_2.	We	will	create	an	initial
device	with	the	following	commands	to	write	the	initial	set	of	metadata	to	the	rabitmq
device	under	the	previously-specified	directory:

drbdadm	create-md	rabbitmq

Creating	a	filesystem
On	successfully	running	a	DRDB	resource,	a	filesystem	needs	to	be	On	successfully
running	a	DRDB	resource,	the	file	system	needs	to	create	for	the	data	that	is	available	in
the	RabbitMQ.	Consider	this	as	a	primary	step	in	the	filesystem	creation	process:

mkfs		-t	xfs	/dev/drbd1

Since	the	resource	name	is	self-explanatory,	we	can	use	an	alternative	device	path	for	an
initial	DRDB	using	the	following:

mkfs	–t	xfs	/dev/drbd/by-res/rabbitmq

For	the	device	to	return	to	the	secondary	running	process	on	the	cluster,	use	the	following
command:

drbdadm	secondary		rabbitmq

Preparing	RabbitMQ	for	Pacemaker	high	availability
We	need	to	check	that	the	erlang.cookie	files	on	both	controller_1	and	controller_2
are	identical	to	ensure	the	Pacemaker	monitoring	functionality.	So	the	erlang.cookie	file
is	copied	controller_1	node	to	controller_2	node,	to	the	RabbitMQ	data	directory	and
to	the	DRDB	file	system	as	follows:

erlang.cookie	file	need	to	copy	from	one	node	to	another:

scp	–p	/var/lib/rabbitmq/.erlang.cookie	controller_2:/var/lib/rabbitmq/

To	mount	a	rabbitmq	directory,	use	the	following	command:

mount	/dev/drbd/by-res/rabbitmq	/mnt

To	copy	erlang.cookie	so	that	it	can	be	mounted	on	a	new	device,	use	the	following

command:

sudo	cp	–a	/var/lib/rabbitmq/.erlang.cookie	/mnt

Finally,	unmount	an	added	directory	as	follows:

sudo	unmount	/mnt

Adding	the	RabbitMQ	resources	to	Pacemaker
Now	we	add	the	Pacemaker	configuration	to	the	RabbitMQ	resources.	The	crm	tool	is
used	to	configure	and	add	the	following	lines	to	the	cluster	resources	as	follows:

|	crm	configure

Type	the	previous	command	in	the	terminal	followed	by	this	code:

primitive	p_ip_rabbitmq	ocf:heartbeat:IPaddr2	\

		params	ip="192.168.1.32"	cidr_netmask="24"	\

		op	monitor	interval="10s"

primitive	p_drbd_rabbitmq	ocf:linbit:drbd	\

		params	drbd_resource="rabbitmq"	\

		op	start	timeout="90s"	\

		op	stop	timeout="180s"	\

		op	promote	timeout="180s"	\

		op	demote	timeout="180s"	\

		op	monitor	interval="30s"	role="Slave"	\

		op	monitor	interval="29s"	role="Master"

primitive	p_fs_rabbitmq	ocf:heartbeat:Filesystem	\

		params	device="/dev/drbd/by-res/rabbitmq"	\

				directory="/var/lib/rabbitmq"	\

				fstype="xfs"	options="relatime"	\

		op	start	timeout="60s"	\

		op	stop	timeout="180s"	\

		op	monitor	interval="60s"	timeout="60s"

primitive	p_rabbitmq	ocf:rabbitmq:rabbitmq-server	\

		params	nodename="rabbit@localhost"	\

				mnesia_base="/var/lib/rabbitmq"	\

		op	monitor	interval="20s"	timeout="10s"

group	g_rabbitmq	p_ip_rabbitmq	p_fs_rabbitmq	p_rabbitmq

ms	ms_drbd_rabbitmq	p_drbd_rabbitmq	\

		meta	notify="true"	master-max="1"	clone-max="2"

colocation	c_rabbitmq_on_drbd	inf:	g_rabbitmq	ms_drbd_rabbitmq:Master

order	o_drbd_before_rabbitmq	inf:	ms_drbd_rabbitmq:promote	g_rabbitmq:start

The	preceding	configuration	file	created	the	following	important	changes	in	the	cluster:

p_ip_rabbitmq:	With	this,	RabbitMQ	will	use	the	Virtual	IP	address
p_fs_rabbitmq:	With	this,	a	filesystem	is	mounted	on	the	node	where	RabbitMQ	is
currently	running
ms_drbd_rabbitmq:	With	this,	the	rabbitmq	DRDB	service	is	managed	by	the
master/slave	set

Other	constraints	such	as	service	group,	order,	and	collocation	are	used	to	ensure	that	all
the	resources	are	started	at	each	node	properly	and	in	the	correct	sequence.

|	crm	configure

After	all	the	changes	are	made	using	crm	configure,	we	commit	the	configuration	by
entering	the	commit	command:

|	commit

Configuring	OpenStack	services	for	highly	available	RabbitMQ
Now	all	the	services	provided	by	OpenStack	point	to	the	RabbitMQ	configuration	for	high
availability	through	a	Virtual	IP	address	instead	of	a	physical	IP	address.

For	example,	the	OpenStack	image	service	points	to	the	Virtual	IP	(change	rabbit_host
to	our	Virtual	IP	in	the	glance-api.con	file).	No	other	changes	are	required	for	the
OpenStack	configuration	services.	So	if	any	node	hosting	this	RabbitMQ	experiences	any
problems	of	service	failover	due	to	some	network	problem,	the	service	can	continue	to	run
without	any	interruption.

Summary
In	this	chapter,	we	learned	that	some	services	in	OpenStack	are	still	not	fully	stateless,
thus	they	require	classical	clustering	methods,	such	as	Pacemaker.	We	have	analyzed	in
depth	the	construction	of	a	cluster	of	services,	with	their	resource	agents	and
dependencies.

We	have	also	learned	the	step-by-step	setting	and	configuration	of	load	balancing	of	high
availability	MySQL	and	high	availability	RabbitMQ	via	AMQP.

In	the	next	chapter,	we	will	have	a	deeper	understanding	of	how	the	OpenStack	services
work	in	cooperation	with	each	other	in	a	stateless	mode	to	offer	a	scalable	cloud
framework.

Chapter	5.	Highly	Available	OpenStack
Services
In	this	chapter,	we	will	build	highly	available	OpenStack	services	such	as	compute
(Nova),	image	(Glance),	object	storage	(Swift),	and	dashboard	(Horizon)	services.	In	the
previous	chapters,	we	successfully	built	high	availability	HAproxy	load	balancers,	servers,
and	all	other	basic	OpenStack	services.	From	the	knowledge	gained	from	the	preceding
chapters,	we	will	systematically	implement	the	core	services	of	OpenStack	in	a	systematic
manner.	In	this	chapter,	we	will	also	learn	the	load	balancing	of	HTTP	REST	APIS.

We	are	going	to	cover	the	following	major	topics	in	this	chapter:

High	availability	compute	services
High	availability	dashboard	services
High	availability	object	storage	services
High	availability	image	services
The	load	balancing	of	HTTP	REST	API

High	availability	compute	services
In	the	previous	chapters,	we	utilized	a	two-node	cluster	with	the	nodes	named	as
controller_1	(192.168.56.101)	and	controller_2	(192.168.56.102).	For	high
availability	compute	services,	we	need	to	add	Nova	on	both	the	nodes	as	explained	in	the
following.

Nova	is	the	main	component	of	OpenStack,	which	hosts	cloud	computing	services	for	the
IaaS	system.	of	OpenStack.	Then	OpenStack	uses	this	system	to	manage	the	services	that
it	offers.	All	other	components	interact	with	this	service	to	provide	complete	cloud
solutions	to	users.

Installing	and	configuring	the	Nova	packages
As	the	initial	step	of	installation,	we	need	to	install	all	the	Nova-related	packages,	and	we
will	do	this	with	a	single	command:

sudo	apt-get	install	nova-api	nova-cert	nova-conductor	nova-consoleauth	

nova-novncproxy	nova-scheduler	python-novaclient

nova-api:	This	API	component	is	used	to	identify	queues	and	send	and	receive
HTTP	requests	from/to	other	services.
nova-cert:	This	daemon	is	used	to	generate	certificates	for	bundled	images	for	EC2
API.
nova-conductor:	This	aids	in	the	functioning	of	all	the	services	of	OpenStack
without	accessing	the	database.
nova-consoleauth:	This	is	used	to	communicate	with	the	backend	database.	All	the
responsibilities	of	users,	projects,	and	groups	are	controlled	by	this	component.
nova-novncproxy:	This	component	is	used	to	access	the	compute	services	via	VNC
Client.
nova-scheduler:	This	is	used	to	allocate	an	appropriate	host	on	each	VM	request
based	on	the	available	algorithms.
python-novaclient:	This	is	the	client	for	OpenStack	Nova	API.

Now	for	the	configuration,	modify	the	nova.conf	file	under	/etc/nova	using	any	of	the
editors	such	as	vi,	nano,	or	edit,	with	the	following	command:

sudo		gedit		/etc/nova/nova.conf

Then	add	the	settings	as	specified	in	the	following	nova.conf	file:

In	the	preceding	settings,	we	assigned	the	controller_1	ip	address	to	my_ip	and

vncserver_listen.	We	assigned	the	controller_2	ip	address	to	my_ip	and
vncserver_listen	of	controller_2.	The	rabbit_hosts	points	to	both	controller_1	and
controller_2.	The	remaining	IP	address	points	to	the	load	balancing	Virtual	IP,	in	our
case,	the	VIP	is	pointing	to	192.168.1.32.

Creating	the	Nova	database
1.	 Connect	the	local	mysql	database	with	the	Nova	database	using	the	following

command:

mysql	-h	192.168.1.32	-u	root	–p

2.	 Create	a	Nova	database	using	the	following	command:

create	database	nova;

3.	 Grant	all	privileges	with	the	following	command	to	the	database	that	we	have
created:

grant	all	on	nova.*	to	nova@'%'	identified	by	'Service123';

4.	 Exit	from	MySQL	using	the	exit	command.

Populating	a	database
The	new	databases	of	any	of	the	nodes	are	populated	(in	our	case,	we	populate	the
database	available	on	controller_1)	with	the	following	command:

sudo	nova-manage	db	sync

Then	we	restart	all	the	Nova	services	as	follows:

service	nova-api	restart

service	nova-cert	restart

service	nova-consoleauth	restart

service	nova-scheduler	restart

service	nova-conductor	restart

service	nova-novncproxy	restart

Instead	of	using	the	preceding	commands,	we	can	use	this	command:

Service	nova-api	nova-cert	nova-consoleauth	nova-scheduler	nova-conductor	

nova-novncproxy	restart

The	load	balancing	of	compute	services
For	compute	services	to	be	load	balanced,	we	need	to	edit	haproxy.cfg	by	adding	the
following	lines	of	code	both	to	controller_1	and	controller_2.

To	edit	the	haproxy.cfg	file	under	/etc/haproxy/,	we	use	the	following	command:

sudo	gedit	/etc/haproxy/haproxy.cfg

Then,	we’ll	make	changes	according	to	the	following	haproxy.cfg	file:

This	config	file	comprises	a	simple	configuration	of	HA	proxy,	where	the	proxy	has	a
frontend	and	backend	and	each	end	has	an	IP	address	and	a	port.	The	frontend	has	an	IP
address	and	a	port	to	listen	to	the	HAProxy.	The	backend	server	defines	a	group	of	servers
(node1	and	node2	in	our	case)	and	IP	addresses	for	load	balancing	purposes	using	specific
algorithms.

Reloading	the	HAProxy	services
Finally,	we	need	to	reconfigure	the	HAProxy	services	using	the	following	command:

sudo	service	haproxy	reload

Then,	check	for	high	available	Nova	services	by	sourcing	our	credentials	using	the
following	command.	This	sourcing	command	helps	to	check	whether	the	high	availability
of	the	Nova	service	has	been	enforced	in	the	given	images	list:

sudo	source	credentials

nova	image-list

High	availability	dashboard	services
The	highly	available	dashboard	service	called	Horizon	is	used	to	implement	a	web-based
dashboard	interface	for	all	the	OpenStack	services	including	Swift,	Cinder,	Keystone,
Nova	and	so	on.

Installing	and	configuring	the	dashboard
As	the	initial	step	of	dashboard	installation,	we	need	to	install	the	complete	package	of
dashboard	services	using	the	following	command:

sudo	apt-get	install	apache2	memcached	libapache2-mod-wsgi	openstack-

dashboard

Then,	we	need	to	edit	the	local_settings.py	file	under	/etc/openstack-dashboard/
using	any	of	the	editors	such	as	gedit,	vi,	and	nano,	as	follows:

sudo	gedit		/etc/openstack-dashboard/local_settings.py

Change	the	OPENSTACK_HOST	IP	address	to	our	own	Virtual	IP	(VIP)	(192.168.1.32)	as
follows:

Configuring	Memcache
We	need	to	edit	the	memcached.conf	file	under	/etc/	using	any	of	the	editors,	as	follows:

sudo	gedit	/etc/memcached.conf

After	this,	we	need	to	change	the	listening	address	from	127.0.0.1	to	the	192.168.56.101
address	of	controller_1	and	192.168.56.102	of	controller_2:

Restarting	the	Memcache	services
Since	we	made	some	changes	in	the	memcached.conf	file,	we	need	to	restart	the	services
using	the	following	commands:

service	apache2	restart

service	memcached	restart

Load	balancing	of	dashboard	services
The	haproxy	load	balancers	need	some	modification	in	the	haproxy.conf	file	under
/etc/haproxy/haproxy.cfg	as	follows:

sudo	gedit	/etc/haproxy/haproxy.cfg

The	haproxy	file	needs	to	change	as	shown	here:

The	preceding	file	contains	the	dashboard	configuration	to	access	all	the	services	on	the
web	interface	and	Memcache	to	listen	to	the	controller	using	192.168.1.32.

Reloading	the	HAProxy	services
We	need	to	reconfigure	the	HAProxy	services	using	the	following	command:

service	haproxy	reload

Then,	we	can	open	our	dashboard	(Horizon)	using	the	http://192.168.1.32/horizon
URL	and	log	in	with	admin	as	a	username	and	password	as	password.

High	availability	object	storage	services
The	high	availability	object	storage	services	offer	a	facility	to	store	and	retrieve	data	with
a	simple	API.	We	can	scale	and	optimize	these	services	for	the	concurrency,	availability,
and	durability	of	the	entire	dataset.	Then,	this	Swift	service	acts	as	a	backing	storage	for
high	availability	glance	services.

Installing	and	configuring	object	storage
First,	we	will	install	all	the	required	packages	for	the	object	storage	using	the	following
command:

sudo	apt-get	install	swift	swift-account	swift-container	swift-object	

xfsprogs

After	the	installation	of	the	packages,	we	must	create	a	swift	configuration	file	for	the
object	storage,	in	which	we	have	to	define	a	hash	for	all	the	Swift	servers	uniquely.	The
swift.conf	file	must	be	edited	and	the	same	must	be	copied	to	all	the	swift	nodes
uniquely.

To	configure	the	swift	configuration	file,	we	must	use	the	following	command:

sudo	gedit	/etc/swift/swift.conf

Then,	make	the	following	changes	in	the	preceding	file:

Creating	a	disk	partition
We	have	to	create	a	disk	partition	for	a	Swift	storage,	then	only	we	can	use	this	object
storage.	However,	we	must	format	storage	node	as	an	XFS	filesystem,	as	shown	in	the
following:

Next,	create	a	directory	to	mount	disk	partition	and	provide	ownership	for	a	Swift	user:

echo	"/dev/sdb1	/srv/node/sdb1	xfs	noatime,nodiratime,nobarrier,logbufs=8	0	

0"	>>	/etc/fstab

Create	a	new	directory	with	the	name	sdb1,	as	follows:

sudo	mkdir	-p	/srv/node/sdb1

Now,	provide	read	ownership	for	the	node	as	follows:

sudo	chown	-R	swift:swift	/srv/node

Creating	directories
We	need	to	create	some	directories	for	Swift	as	follows:

mkdir	-p	/var/swift/recon

chown	-R	swift:swift	/var/swift/recon

Create	a	new	directory	with	the	name	Swift	and	provide	change	ownership	to	read	the	file
as	follows:

mkdir	/home/swift

chown	-R	swift:swift	/home/swift

Replicating	data	on	storage	nodes
All	Swift	must	do	a	resync	to	replicate	data	among	the	storage	nodes	using	the	following
command:

sudo	gedit	/etc/rsync.conf

Now,	add	the	following	changes	in	the	preceding	file:

We	must	change	the	IP	address	to	192.168.1.37	for	swift	node_1,	192.168.1.38	for
swift	node_2,	and	192.168.1.40	for	swift	node_3.

Then,	enable	RSYNC_ENABLE	to	be	true.	Make	the	value	true	by	modifying	the	rsync	file
under	/etc/,	as	follows:

sudo	gedit	/etc/default/rsync

Now,	we	restart	the	rsync	service	by	using	the	following	command:

service	rsync	start

Follow	the	preceding	steps	on	both	the	Swift	nodes	to	complete	the	process.

Installing	a	Swift	proxy
Once	again,	we	install	the	following	components	on	all	the	Swift	nodes,	swift	node_1,
swift	node_2	and	swift	node_3:

sudo	apt-get	install	swift-proxy	memcached	python-keystoneclient	python-

swiftclient	python-webob

Configuring	Memcache
We	configure	the	memcached	file	to	listen	with	the	local	IP	address	(in	this	case,	the	IP	is
192.168.1.37):

sudo	gedit	/etc/memcached.conf

Change	the	listening	address	to	VIP,	as	follows:

Then,	restart	memcached	with	the	following	command:

service	memcached	restart

Creating	a	proxy	configuration	file
The	configuration	file	will	be	created	with	the	following	command:

sudo	gedit	/etc/swift/proxy-server.conf

Now,	make	the	following	changes	in	the	preceding	file:

Configuring	a	Swift	ring
In	this	step,	we	will	create	a	Swift	ring	configuration	and	then	add	our	storage	locations.
We	need	to	copy	the	file	from	/etc/swift	to	the	other	two	Swift	nodes	(swift	node_2
and	swift	node_3)	with	the	following	command:

scpscp	-r	*.ring.gz	root@192.168.1.38:/etc/swift

scpscp	-r	*.ring.gz	root@192.168.1.42:/etc/swift

Then,	we	will	restart	all	the	swift	services	using	this	command:

swiftswift-init	restart	all

The	load	balancing	object	store	services
Separately	add	all	the	swift	nodes	for	the	balancer	configuration	using	haproxy.cfg.	To
do	this,	we	need	to	edit	the	haproxy.cfg	file	under	/etc/haproxy/	using	the	following
command:

sudo	gedit	/etc/haproxy/haproxy.cfg

The	haproxy.cfg	file	needs	to	be	edited	as	follows:

These	changes	have	to	take	effect	only	after	the	reload	of	the	haproxy	configuration	that	is
done	using	the	following	command:

sudo	service	haproxy	reload	

Then,	check	for	the	high	availability	swift	service	with	this:

sudo	swift	stat

However,	we	must	source	some	enviromental	variables	as	follows:

export	OS_USERNAME=admin

export	OS_PASSWORD=password

export	OS_TENANT_NAME=admin

export	OS_AUTH_URL=http://192.168.1.32:35357/v2.0

On	successfully	obtaining	the	variables,	run	the	following	command:

sudo	swift	stat,

We	will	get	the	following	output:

High	availability	image	services
In	high	availability	glance,	a	service	acts	as	a	backend	storage	for	the	object	storage	called
Swift.	Image	service	is	used	to	store	the	images	in	a	shared	manner.

Installing	and	configuring	image	services
As	the	initial	step	of	activating	image	services,	we	have	to	install	the	Python	glance	client
using	this:

sudo	apt-get	install	glance	python-glanceclient

Now,	we	need	to	modify	several	image	service	files	for	this	implementation.	The	first	file
that	we	must	modify	is	glance-api.conf	that	is	available	under	/etc/glance/.	The
modification	is	done	using	following	command:

sudo	gedit	/etc/glance/glance-api.conf

We	changed	our	Virtual	IP	for	Swift,	database,	and	authentication:

Then,	we	need	to	modify	the	next	file	called	glance-registry.conf	available	under
/etc/glance.	This	is	done	as	follows:

sudo	gedit	/etc/glance/glance-registry.conf

The	following	changes	are	to	be	done	in	the	preceding	glance-registry.conf	file:

The	next	file	to	be	edited	is	the	glance-cache.conf	file,	available	under	/etc/glance:

sudo	gedit	/etc/glance/glance-cache.conf

The	following	changes	have	to	be	done	in	the	preceding	file:

Creating	the	Glance	database
Create	a	new	database	and	grant	all	privileges	with	the	following	command	on	the	mysql
terminal:

mysql	-h	192.168.1.32	-u	root	–p

create	database	glance	character	set	utf8	collate	utf8_general_ci;

Here	is	the	output	after	running	the	first	command:

The	Glance	database	offers	all	privileges	so	that	it	can	be	accessed	from	all	other
OpenStack	services:

grant	all	on	glance.*	to	glance@'%'	identified	by	'Service123';

flush	privileges;

Finally,	quit	with	the	exit	command.

Populating	the	databases
Populate	the	new	tables	on	any	node	with	some	data	using	the	following	command:

sudo	glance-manage	db_sync

Restart	the	glance	service	with	the	following	commands:

sudo	service	glance-api	restart

sudo	service	glance-registry	restart

The	load	balancing	of	image	services
To	load	the	balance	image	service,	we	need	to	edit	the	haproxy.cfg	file	under
/etc/haproxy/	using	the	following	command:

sudo	gedit	/etc/haproxy/haproxy.cfg

Then,	we	need	to	edit	the	file	with	the	following	changes:

For	the	preceding	changes	to	take	effect,	we	need	to	reload	the	haproxy	file	with	the
following	command:

sudo	service	haproxy	reload

Next,	we	load	balance	the	Glance	service	backend	with	Swift	storage.	For	testing	purpose,
we	can	add	a	new	image	to	the	Glance	service	using	the	following	commands:

wget	http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img

glance	image-create	--name	cirros	--is-public=true	--disk-format=qcow2	--

container-format=ovf	<	cirros-0.3.1-x86_64-disk.img

You	can	view	all	glance	images	with	this	command:

sudo	glance	image-list

The	load	balancing	HTTP	REST	API
Here	we	consider	a	Python-based	module	to	act	as	a	web	server	that	is	running	on	two
different	instances	(web_1	and	web_2)	on	the	OpenStack	infrastructure.	The	basic
index.html	file	running	on	these	nodes	acts	as	sample	HTTP	application.

Creating	a	load	balancing	pool
An	IP	pool	is	created,	as	follows,	with	the	name	Ib_pool_1:

The	Add	Pool	table	dropdown	menu	is	selected	with	the	following	data:

Provider	=	haproxy:	This	is	the	default	option
Subnet	=	10.10.10.0/24:	This	attribute	is	a	subnet	used	to	attach	the	instances	to	the
subnet	and	for	load	balance
Protocol	=	HTTP:	In	this,	we	can	have	other	protocol	options	also
Load	Balancing	Method	=	ROUND_ROBIN:	In	this,	we	can	have	other	load
balancing	method	options	also

Adding	a	Virtual	IP	(VIP)
All	the	running	servers	are	attached	with	this	Virtual	IP	(VIP).	The	VIP	setting	is	done	as
follows:

All	fields	are	filled	with	the	following	data:

Name	=	vip_1:	This	is	the	name	of	the	VIP
Specify	a	free	IP	=	10.10.10.254:	This	is	used	as	the	VIP
Protocol	Port	=	80:	The	VIP	listens	via	this	port,	and	this	must	match	with	the
incoming	request
Protocol	=	HTTP:	In	this,	we	can	have	other	protocol	options	also

Launching	instances
There	are	two	instances	running	as	follows.	The	two	instances	(web_1	and	web_2)	run	via
the	Horizon	services	of	OpenStack:

Security	group	creation
The	SSH	and	HTTP	access	is	given	to	the	launched	instances,	and	the	security	group	must
be	configured	as	follows.

Adding	members	to	the	load	balancing	pool
The	add	members	interface	will	show	the	launched	instances	as	follows:

The	following	attributes	of	load	balancing	are	changed	as	per	requirements.	In	this	case,
we	have	to	change	the	values	of	the	attributes	as	follows:

Pool	=	lb_pool_1:	This	is	the	load	balancing	pool	name.
Members	=	web_1	and	web_2:	These	are	the	two	instances.
Protocol	Port	=	80:	The	port	between	the	VIP	and	the	other	member	servers.	This
must	match	with	the	listening	port	of	the	instance.

Setting	a	sample	web	server
To	get	a	list	of	the	instances	created	in	the	previous	section,	use	the	following	command:

nova	list

We	need	to	do	the	ssh	for	an	instance	called	web_1::

sudo	ip	netns	exec	qrouter-e9c35b5e-1778-431c-8b86-5f1a45dfafa9	ssh	

fedora@10.10.10.2

To	create	a	basic	index.html	file	on	the	first	instance	(web_1),	use	the	following
command:

Sudo	–i

Cat	>	index.html

SSH	into	the	first	instance	(web_2)	using	this:

sudo	ip	netns	exec	qrouter-e9c35b5e-1778-431c-8b86-5f1a45dfafa9	ssh	

fedora@10.10.10.4

To	create	a	basic	index.html	file	on	the	first	instance	(web_2),	use	the	following
command:

Sudo	–i

Cat	>	index.html

To	run	the	Python	simple	server	(the	HTTP	server)	module	that	comes	along	with	an
instance	(Fedora)	on	web_1,	run	the	following	command:

Python	-m

On	web_2,	run	this	command:

Python	-m

Validating	web	servers	with	index.html
Run	index.html	with	the	WGET	command	and	ensure	that	the	VIP	is	listening	and	can	be
used	for	load	balancing	on	each	instance.

On	web_1,	we	need	to	run	the	following	command:

sudo	ip	netns	exec	qrouter-e9c35b5e-1778-431c-8b86-5f1a45dfafa9	wget	-O	-	

http://10.10.10.254

On	web_2,	we	need	to	run	this	command:

sudo	ip	netns	exec	qrouter-e9c35b5e-1778-431c-8b86-5f1a45dfafa9	wget	-O	-	

http://10.10.10.254

Summary
From	this	chapter,	we	have	a	better	understanding	of	how	OpenStack	services	work	in	a
stateless	mode	in	cooperation	with	one	another	to	offer	a	scalable	cloud	framework.	We
have	learned	the	step-by-step	and	detailed	configurations	setup	of	high	availability
compute	services,	dashboard,	object	storage,	and	image	services	and	also,	the	load
balancing	of	HTTP	REST	API.

In	the	next	chapter,	we	will	learn	OpenStack	networking	services,	which	are	the	most
difficult	to	scale	and	render	highly	available.

Chapter	6.	Distributed	Networking
OpenStack	networking	services	are	the	most	difficult	to	scale	and	render	highly	available.
This	chapter	will	delve	into	the	details	of	the	Neutron	Distributed	Virtual	Routers
(DVR),	multiple	L3	agents	in	active/passive	configuration,	and	third-party	networking
drivers	that	offer	high	availability	options.

The	DVR	architecture	expands	the	heritage	architecture	by	giving	direct	connectivity	to
other	external	networks	on	compute	nodes.	Floating	IP	address-enabled	instances	route
between	project	and	external	networks,	live	on	the	compute	nodes	to	eliminate	a	single
point	of	failure,	and	solve	performance	issues	with	heritage	network	nodes.

With	a	fixed	or	floating	IP	address,	the	routing	also	exists	completely	on	the	compute
nodes	for	the	instances	that	use	networks	on	the	same	distributed	virtual	router.	However,
the	fixed	IP	address	instances	depend	on	the	network	node	for	routing	and	for	SNAT
services	between	project	and	external	networks.

In	the	Juno	(initial)	release,	DVR	supports	VXLAN	and	GRE	project	networks.	All	other
releases	support	traditional	flat	and	VLAN	external	networks.	In	this	chapter,	we	are	going
to	learn	the	setting	up	of	three	different	nodes	such	as	controller	node,	compute	node,	and
network	node	for	the	installation	of	a	high	availability	Distributed	Virtual	Routing
(DVR).

Installing	a	high	availability	distributed
virtual	routing
To	install	the	Open	VSwitch	Level	3	High	Availability,	we	need	to	set	up	the	three
different	nodes	such	as	controller	node,	compute	node,	and	network	node.	This	provides
external	connectivity	on	the	compute	nodes.	The	following	sections	explain	the	procedure
for	the	installation	of	network	services	on	these	nodes.

Control	node	setup
The	following	is	the	procedure	for	a	control	node	setup:

SQL	server	with	neutron	DB	and	the	neutron-server.conf	file	must	be	configured
The	message	queue	service	and	the	neutron-server.conf	file	configuration	must	be
done	according	to	the	message	queue	server
Configuration	must	be	done	in	the	neutron-server.conf	file	according	to	the
OpenStack	Identity	Service
The	Nova.conf	file	is	also	configured	to	adopt	the	OpenStack	compute	services,
neutron	server	service,	and	ML2	plugin	and	its	dependencies

Disabling	reverse	path	filtering
The	kernel	needs	to	be	configured	to	disable	the	reverse	path	filtering	by	editing	the
sysctl.conf	file	under	the	/etc	directory	using	any	one	of	the	editors	(such	as	vi,	nano,
and	gedit)	and	changing	the	values	of	the	net.ipv4.conf.default.rp_filter	and
net.ipv4.conf.all.rp_filter	attributes	to	zero:

|	sudo	gedit	/etc/sysctl.conf

Loading	a	new	kernel
The	new	kernel	must	be	loaded	with	the	help	of	the	configuration	of	the	kernel	file,	as
follows:

|	sudo	sysctl	-p

Configuring	the	neutron
We	need	to	configure	the	neutron	file	by	changing	the	following	base	configurations	using
the	neutron.conf	file	under	/etc/neutron:

|	sudo	gedit	/etc/neutron/neutron.conf

Configuring	the	ML2	plugin
This	ML2	plugin	is	used	for	the	OpenStack	networking	service	to	develop	numerous
network-layering	technologies,	which	are	very	difficult	in	the	real-time	data	center
networking.	The	networking	technologies,	such	as	Linux	bridge,	hyper	2	agents,	and
openvswitch	are	created	to	be	used	instead	of	traditional	monolithic	plugins	related	with
L2	agents.	Hence,	ML2	simplifies	the	addition	of	all	new	networking	technologies	related
to	L2.	We	have	to	change	the	VLAN	and	VXLAN	according	to	our	environment,	as
follows:

Restarting	the	services
Restart	the	services	to	make	changes	over	the	servers	using	the	following	command:

|	sudo	service	openstack-neutron	restart

A	network	node	setup
The	following	is	the	procedure	for	a	network	note	setup:

Configuration	must	be	done	in	the	neutron-server.conf	file	according	to	the
OpenStack	identity	service
The	ML2	plugin,	the	L3	agent,	the	Open	vSwitch	agent,	the	metadata	agent,	the	open
vSwitch	service,	the	DHCP	agent,	and	dependencies.

Enabling	packet	forwarding	and	disabling	reverse	path	filtering
The	kernel	needs	to	be	configured	to	disable	the	reverse	path	filtering	and	to	enable	packet
forwarding	by	editing	the	file	under	the	/etc/	directory	using	any	one	of	the	editors	(such
as	vi,	nano,	and	gedit)	and	changing	the	values	of	the
net.ipv4.conf.default.rp_filter	and	net.ipv4.conf.all.rp_filter	attributes	to
zero,	and	then	changing	the	value	of	an	attribute	called	net.ipv4.ip_forward	to	1.

Edit	the	/etc/sysctl.conf	file	using	following	command:

|	sudo	gedit	/etc/sysctl.conf

Loading	a	new	kernel
The	new	kernel	must	be	loaded	with	the	help	of	the	configuration	of	the	kernel	file	as
follows:

|	sudo	sysctl	-p

Configuring	the	neutron
We	need	to	configure	the	neutron	file	by	changing	the	following	base	configurations	using
the	neutron.conf	file	under	/etc/neutron:

|	sudo	gedit	/etc/neutron/neutron.conf

Configuring	the	ML2	plugin
Configure	the	ML2	plugin	using	any	one	of	these	editors:	vi,	nano,	and	gedit,	as	follows:

|	sudo	gedit	/etc/neutron/plugins/ml2/ml2_conf.ini

We	have	to	change	the	VLAN	and	VXLAN	according	to	our	environment,	as	shown	in	the
following	sections.

Configuring	the	L3	agent
Configure	the	L3	agent	using	one	of	the	editors	as	follows	and	change
external_network_bridge	to	no	value:

|	sudo	gedit	/etc/neutron/l3_agent.ini

Configuring	the	DHCP	agent
Configure	the	DHCP	agent	using	any	one	of	the	editors,	as	follows:

|	sudo	gedit	/etc/neutron/dhcp_agent.ini

Configuring	the	metadata	agent
Configure	the	metadata	agent	using	any	one	of	the	editors,	as	follows,	and	change	the
METADATA_SECRET	value	according	to	the	environment:

|	sudo	gedit	/etc/neutron/metadata_agent.ini

Restarting	the	services
The	services	(Open	vSwitch,	the	Open	vSwitch	agent,	the	L3	agent,	the	DHCP	agent,	the
Metadata	agent,	and	neutron)	are	restarted,	as	follows	to	reflect	the	changes:

|	sudo	service	neutron-server	restart

|	sudo	service	neutron-dhcp-agent	restart

|	sudo	service	neutron-l3-agent	restart

|	sudo	neutron-metadata-agent	restart

|	sudo	service	neutron-openvswitch-agent	restart

A	compute	node	setup
The	following	is	the	procedure	for	a	compute	node	setup:

Configuration	must	be	done	in	the	neutron-server.conf	file	according	to	the
OpenStack	identity	service
Configuration	must	be	done	in	the	neutron-server.conf	file	according	to	the
OpenStack	computer	hypervisor	service
The	ML2	plugin,	the	L3	agent,	the	Open	vSwitch	agent,	the	metadata	agent,	the	Open
vSwitch	service,	the	DHCP	agent,	and	dependencies

Enabling	packet	forwarding	and	disabling	reverse	path	filtering
The	kernel	needs	to	be	configured	to	disable	the	reverse	path	filtering	and	to	enable	packet
forwarding	by	editing	the	file	under	the	/etc/	directory	using	any	of	the	editors	(such	as
vi,	nano,	and	gedit)	and	changing	the	values	of	the	net.ipv4.conf.default.rp_filter
and	net.ipv4.conf.all.rp_filter	attributes	to	zero,	and	then	changing	the	value	of	an
attribute	called	net.ipv4.ip_forward	to	1.

Edit	the	/etc/sysctl.conf	file	using	following	command:

|	sudo	gedit	/etc/sysctl.conf

Loading	a	new	kernel
A	new	kernel	must	be	loaded	with	the	help	of	the	configuration	of	the	kernel	file,	as
follows:

|	sudo	sysctl	-p

Configuring	neutron
We	need	to	configure	the	neutron	file	by	changing	the	following	base	configurations	using
a	neutron.conf	file	under	/etc/neutron:

|	sudo	gedit	/etc/neutron/neutron.conf

Also,	change	the	value	of	router_distributed	to	true.

Configuring	the	ML2	plugin
Configure	the	ML2	plugin	using	any	one	of	these	editors:	vi,	nano,	and	gedit,	as	follows:

|	sudo	gedit	/etc/neutron/plugins/ml2/ml2_conf.ini

We	have	to	change	the	VLAN	and	VXLAN	according	to	the	environment,	as	explained	in

the	following	sections.

Configure	the	L3	agent
Configure	the	L3	agent	using	one	of	the	editors,	as	follows	and	change	the
external_network_bridge	option	to	have	no	value:

|	sudo	gedit	/etc/neutron/l3_agent.ini

Configuring	the	metadata	agent
Configure	the	metadata	agent	using	any	one	of	the	editors	and	change	the
METADATA_SECRET	value	according	to	the	environment,	as	follows:

|	sudo	gedit	/etc/neutron/metadata_agent.ini

Restarting	the	services
The	services	(Open	vSwitch,	the	Open	vSwitch	agent,	the	L3	agent,	and	the	Metadata
agent)	are	restarted,	as	follows,	to	reflect	the	changes:

|	sudo	service	neutron-server	restart

|	sudo	service	neutron-l3-agent	restart

|	sudo	neutron-metadata-agent	restart

|	sudo	service	neutron-openvswitch-agent	restart

Verifying	the	service	operation
The	presence	and	operations	of	the	agents	are	verified	with	following	command:

|	sudo	neutron	agent-list

Summary
In	this	chapter,	we	have	learned	the	setting	up	of	the	controller	node,	compute	node,	and
network	node	for	the	installation	of	a	high	availability	distributed	virtual	router.	which
includes	disabling	the	reverse	path	filtering,	the	loading	of	the	new	kernel,	the
configuration	of	Neutron,	the	ML2	plugin,	the	L3	agent,	the	DHCP	agent,	and	the
metadata	agent.

In	the	next	chapter,	we	are	going	to	learn	about	the	configuration	of	different	shared
storage	options	for	OpenStack.

Chapter	7.	Shared	Storage
For	any	OpenStack	operator	who	strives	to	bring	the	cloud	they	manage	to	a	higher
availability,	understanding	all	the	different	ways	that	a	failure	can	occur	and	how	these	can
impact	the	performance	and	availability	of	the	service	is	a	fundamental	skill.	This	chapter
is	a	fundamental	requirement	for	high	availability	and	quick	recovery	from	a	failure.	In
this	chapter,	different	options	to	provide	shared	storage	to	OpenStack	will	be	presented,
and	their	configuration	and	setup	will	be	explained	to	some	extent.

In	this	chapter,	we	will	cover	the	following	main	topics:

An	introduction	to	GlusterFS
Installing	GlusterFS
An	introduction	to	Ceph
Installing	Ceph

An	introduction	to	GlusterFS
GlusterFS	is	designed	for	today’s	high-performance,	virtualized	cloud	environments.
Unlike	traditional	data	centers,	cloud	environments	require	multitenancy	along	with	the
ability	to	grow	or	shrink	resources	on	demand.

Installing	GlusterFS
The	block	storage	service	of	OpenStack	is	an	iSCSI	solution	that	uses	a	Logical	Volume
Manager	(LVM).	The	volumes	provided	by	this	service	will	be	attached	to	only	one
instance	at	a	time.	However,	OpenStack	offers	drivers	for	using	different	backend	storage
from	different	vendors.	NFS	is	a	conventional	method	used	as	a	backup	store	for
OpenStack,	such	as	GlusterFS	and	Ceph.

In	the	following	section,	we	will	see	how	GlusterFS	is	configured	as	backend	storage	for
OpenStack	block	storage.	Hence,	cinder	volumes	services	will	be	accessed	from	their
server	for	GlusterFS.

Configuring	GlusterFS	for	block	storage
Even	though	OpenStack	provides	most	of	the	services	to	host	the	virtual	machines	on	its
own	cloud,	it	still	depends	on	some	other	third-party	tools	to	support	the	OpenStack
backend	storage	for	cinder	services.

The	following	sections	explain	the	steps	for	the	configuration	of	GlusterFS.

Installation	of	GlusterFS
The	following	command	must	be	typed	on	the	terminal	to	install	GlusterFS:

|	sudo	apt-get	install	glusterfs-server

Then,	ensure	that	GlusterFS	was	properly	installed	on	the	two	nodes	(controller_1	and
controller	_2)	using	the	following	command:

|	sudo	glusterfs	-–version

After	a	successful	installation,	we	will	get	the	following	result:

Configuring	the	nodes	for	communication
Now	both	the	servers	want	to	communicate	with	each	other	by	editing	the	entries	in
/etc/hosts	using	the	following	command:

|	sudo	gedit	/etc/hosts

Now	we	need	to	run	the	following	command	on	both	the	nodes:

|	sudo	gluster	peer	probe	gluster1

|	sudo	gluster	peer	probe	gluster2

After	a	successful	communication	between	these	nodes,	we	will	ensure	that	the	GlusterFS
nodes	are	properly	communicating	with	each	other.

The	status	of	peers
Now	we	have	to	check	the	status	of	peers	on	the	two	servers.	On	server	1,	we	have	to
check	the	peer	status	by	the	following	command:

|	sudo	gluster	peer	status

On	server	2,	we	have	to	check	the	peer	status	by	the	following	command:

|	sudo	gluster	peer	status

Creating	a	data	point
As	an	initial	step	in	data	point	creation,	we	need	to	create	a	new	directory	called	gluster
under	a	/mnt/gluster	directory	using	the	following	command:

|	sudo	mkdir	-p	/mnt/gluster

Then	we	have	to	create	a	volume	in	which	we	will	have	all	the	other	data	residing	in	it.
This	volume	is	called	a	data	point.	After	this,	we	will	run	the	following	command	on	the
machines	(that	is,	the	servers):

|	sudo	gluster		volume	create	datapoint	replica	2	transport	tcp		

gluster1:/mnt/gluster		gluster2:/mnt/gluster

Starting	the	volume	services
We	start	the	data	point	volume	services	using	the	following	command:

|	sudo	gluster	volume	start	datapoint

Finally,	we	have	to	run	the	commands	to	ensure	that	the	GlusterFS	is	up	and	running,
using	PS	on	both	of	the	nodes	(controller_1	and	controller_2):

|	sudo	ps	aux	|	grep	gluster

To	make	sure	of	the	availability	of	the	volumes,	run	the	following	gluster	command:

|	sudo	gluster	volume	info

An	introduction	to	Ceph
Ceph	is	an	open	source,	scalable,	and	software-defined	object	store	system,	which
provides	object,	block,	and	file	system	storage	in	a	single	platform.	Ceph	has	a	capability
to	self-heal,	self-manage,	and	does	not	have	a	single	point	of	failure.	It	is	a	perfect
replacement	for	a	traditional	storage	system	and	an	efficient	storage	solution	for	the	object
and	block	storage	of	cloud	environments.

Installing	Ceph
The	following	command	is	used	to	install	ceph:

|	sudo	apt-get	update	&&	sudo	apt-get	install	ceph-deploy

Installing	Openssh
Openssh	is	installed	using	the	following	command:

|	sudo	aptitude	-y	install	openssh-server

The	required	privileges	are	provided	to	ceph	using	the	following	command:

|	sudo	chmod	440	/etc/sudoers.d/ceph

Connecting	to	the	Ceph	node
An	ssh	pair	is	created	and	sent	to	be	connected	to	the	ceph	nodes	with	non-passphrase
with	a	command	called	|	sudo	ssh-keygen.	Then	the	configuration	file	of	the	.ssh	file	is
to	be	edited	as	follows:

|	sudo	vi	~/.ssh/config

Then	the	ssh	key	is	sent	to	the	ceph	nodes	as	follows:

This	key	is	sent	to	all	other	nodes	using	the	following	commands:

|	sudo	ssh-copy-id	ceph02

|	sudo	ssh-copy-id	ceph02

Configuring	the	Ceph	node
The	Ceph	configuration	must	be	done	on	the	servers	as	follows:

|	sudo	aptitude	-y	install	ceph-deploy	ceph-common	ceph-mds

Configuring	a	storage	node
Now	we	configure	the	storage	node	on	the	server.	In	our	scenario,	we	have	to	create	the
/storage01,	/storage02,	and	/storage03	directories	on	the	ceph01,	ceph02,	and	ceph03
nodes,	as	follows:

|	sudo		ceph-deploy	osd	prepare	ceph01:/storage01	ceph02:/storage02	

ceph03:/storage03

|	sudo	ceph-deploy	osd	activate	ceph01:/storage01	ceph02:/storage02	

ceph03:/storage03

Checking	the	status	of	Ceph
Finally,	we	check	the	status	of	ceph	with	the	following	command:

	|	sudo	ceph	mds	stat

On	successful	execution	of	the	preceding	command,	we	get	the	status	of	ceph,	as	follows.
Then	the	live	migration	must	be	implemented	on	each	compute	node	available	in	the
OpenStack	cloud	environment.	Through	this,	we	can	recover	from	node	failures	with	a
host	evacuation:

Summary
In	this	chapter,	we	have	learned	the	installation	and	usage	procedures	of	GlusterFS	and
Ceph	that	provide	us	with	a	shared	storage	for	OpenStack,	their	configuration	and	the
detailed	steps	for	setup.

In	the	next	chapter,	we	will	analyze	different	failure	scenarios	and	propose	solutions	to
provide	a	swift	and	effective	recovery	to	achieve	a	normal	operational	level.

Chapter	8.	Failure	Scenario	and	Disaster
Recovery
In	this	chapter,	we	will	cover	the	context	of	recovering	from	different	failure	scenarios.
This	includes	network	partition	split-brain,	automatic	failover,	and	geo-replication.

We	are	going	to	learn	the	following	topics	in	this	chapter:

Network	partition	split-brain
Automatic	failover
Geo-replication

Network	partition	split-brain
When	two	or	more	replicated	copies	of	a	file	in	two	different	clusters	become	divergent
and	independent	from	each	other,	then	such	a	situation	is	called	split-brain.	In	this
situation,	the	members	of	the	two	clusters	assume	that	the	other	nodes	are	dead	even
though	they	are	not	dead	in	their	own	cluster.	Because	of	this	network	failure,	there	is	no
way	to	avoid	this	situation	programmatically.	So	cluster	will	run	as	two	different
independent	clusters.	When	this	spilt-brain	occurs,	the	applications	will	not	be	able	to	do
their	operations,	such	as	file	read	and	write,	on	the	clusters.

There	are	numerous	split-brain	situations	in	real	time.	Split-brain	occurs	at	various	levels
such	as	storage	and	file.	For	example,	the	automatic	healing	of	a	split-brain	situation	is	not
possible	since	the	contents	of	the	file	a	split-brain	are	different.	The	only	way	to	resolve	a
split-brain	is	to	manually	inspect	the	file	contents	and	decide	on	the	true	copy	of	the	file
called	as	the	source	copy.	The	modified	copy	is	called	as	sink	copy.

Preventing	a	split-brain
The	best	way	to	prevent	a	split-brain	is	by	enabling	the	quorum	enforcement	on	the	server
and	client.	As	an	initial	step	of	prevention,	the	nodes	in	any	one	of	the	partitions	must	stop
running	to	avoid	inconsistencies.

Setting	the	server-side	quorum
The	quorum	enablement	on	a	particular	volume	to	participate	in	the	server	quorum	is	as
follows:

|	sudo	gluster	volume	set	VOLNAME	cluster.server-quorum-type	server

We	have	to	configure	the	quorum	percentage	ratio	for	a	trusted	storage	pool	as	follows.
The	bricks	of	the	volume	that	are	participating	in	the	quorum	on	all	the	nodes	go	offline
when	network	outages	occur	and	if	the	quorum	is	not	met:

|	sudo	gluster	volume	set	all	cluster.server-quorum-ratio	51%

51%	of	the	nodes	are	on	a	storage	pool	online	and	the	pool’s	network	connectivity	is	given
to	the	nodes.	On	disconnecting	the	storage	pool	from	the	network,	the	bricks	that	are
running	on	the	nodes	will	prevent	write	operations	from	running.

Setting	the	client-side	quorum
We	have	to	change	the	quorum-type	value	to	auto.	So	this	will	permit	write	operations	to
all	the	files	only	if	the	percentage	of	active	replicate	bricks	is	more	than	half	the
percentage	of	the	total	nodes	that	constitute	the	replica.	This	is	done	using	the	following
command:

	|	sudo	gluster	volume	set	VOLNAME	quorum-type	auto

In	this	example,	any	one	of	the	two	bricks	in	the	replica	must	be	running	to	allow	a	write
operation.

A	real-time	failure	scenario	of	split-brain
The	split-brain	real-time	scenario	is	explained	in	this	section	by	considering	DRBD.

In	this,	after	the	detachment	of	the	replication	network	and	in	case	the	default	procedure	is
set	for	fencing,	this	will	lead	to	an	occurrence	of	split-brain.

The	divergence	occurred	because	the	contents	of	the	backup	devices	of	the	distributed
replicated	storage	system’s	resources	are	available	on	both	clusters.

After	this,	the	write	operations	will	have	to	be	done	on	the	both	sides	of	a	cluster.

On	a	successful	reconnection,	the	DR	will	not	be	able	to	find	the	right	and	wrong	set	of
data	in	this	operation.

In	this	DRBD	failure	scenario,	the	peer	will	not	reconnect	to	the	DRDB	in	the	beginning,
but	it	will	be	available	in	a	state	of	connection,	that	is,	in	a	state	of	standalone	or	WFC
Connection.	We	will	receive	the	kernel	log	messages,	which	is	similar	to	what	we	received
in	the	split-brains:

kernel:	block	drbd0:	Split-Brain	detected,	dropping	connection!

This	means	that	the	split-brain	is	detected	on	priority	and	the	connection	is	shut	down.

Steps	to	resolve	a	split-brain
The	following	are	the	steps	that	we	need	to	follow	when	there	is	an	occurrence	of	a	split-
brain	situation.

Choosing	a	split-brain	victim

Suppose	we	have	to	opt	for	a	node	and	if	there	is	any	modification	in	it,	it	will	be
discarded	manually.	We	call	this	as	a	split-brain	victim	node.	Then	we	need	to	enable	the
maintain	mode	when	we	run	the	pacemaker	cluster.	If	the	victim	is	in	a	primary	role,	bring
down	all	the	applications	that	are	using	this	resource.	After	this,	the	victim	must	be
switched	to	a	secondary	role	as	follows:

|	victim#	drbdadm	secondary	resource

When	the	WF	Connection	of	a	state	occurs	in	the	connection	of	a	resource,	we	can
disconnect	it	with	the	help	of	the	following	command:

|	victim#	drbdadm	disconnect	resource

Force	discard	of	the	victim

With	the	following	command,	the	changes	required	on	the	victims	must	be	done	as	a	force
discard:

.	|	victim#	drbdadm—--discard-my-data	connect	resource

Resynchronization

We	begin	the	resynchronization	process	automatically	when	WFC	Connection	is	in	the
network	state.	If	the	survivors	available	in	a	split-brain	are	in	a	standalone	state	of

connection,	then	it	will	reconnect	with	the	following	commands:

|	survivor#	drbdadm	connect	resource

Then	the	victims	of	the	spiltbrain	will	immediately	get	started.	The	SyncSource	data	is
used	to	overwrite	the	victims.

Automatic	failover
Network	as	a	Service	(NaaS)	is	a	layer	of	OpenStack	with	the	name	neutron.	The	plugin
of	Neutron	is	the	Load	Balancer	as	a	Service	(LBaaS)	that	offers	an	abstraction	layer.
Network	as	a	service	is	one	of	the	important	services	provided	by	OpenStack.	This
network	layer	is	provided	under	the	name	of	neutron,	which	is	the	technical	name	of	the
OpenStack	network	service.	The	Load	Balancer	as	a	service	provides	an	abstraction	layer
via	plugins.	This	is	used	to	handle	communication	with	other	load	balancers.	It	is	feasible
to	configure	the	LBaaS	module	with	the	diverse	drivers	of	different	load	balancers.

The	Load	balance	and	the	neutron	server	network	host	run	on	the	same	host.	This	acts	as	a
gateway	to	our	own	cloud.	For	the	production	system,	the	high	availability	must	be
ensured	when	none	of	the	instances	running	on	the	cloud	are	reachable.

This	scenario	is	a	level	1	incident,	and	each	administrator	or	system	architect	must	try	to
eliminate	such	Single	Point	of	Failure	(SPOF)	services	to	guarantee	a	maximum
accessibility	for	the	cloud.

Load	balance	as	a	service
The	load	balance	service	does	not	have	an	automated	and	integrated	failover	for	all	the
load	balancing	driver	modules.	Redware	is	a	load	balancer	driver,	which	supports	the
Havana	HA	functionality.	A	VRP	protocol	such	as	keepvid	is	a	layer	7	load	balancer	that	is
not	supported	by	LbaaS.

The	neutron	and	LBaaS	will	work	on	an	HA	LBaaS	agent	with	a	virtual	router
redundancy	protocol	(vrrp)	that	supports	most	software	load	balancer	plugins,	but	this
characteristic	is	unfortunately	not	ready	yet.

Another	move	towards	a	small	development	overhead	is	modifying	the	responsible	LBaaS
—an	agent	of	the	LB	instances.

We	describe	the	procedure	to	make	the	LBaaS	highly	available	in	a	significant	duration	of
time.	This	is	a	process	similar	to	the	general	high	availability	implementation	of	Neutron.
The	load	balance	instance	is	changed	to	another	instance,	yet	when	running	agents	of	the
LBaaS	with	a	pacemaker	and	for	a	shared	storage,	the	config	files	do	not	have	the
capability	to	create	a	new	LBaas	instance	that	can	be	supported	with	an	explicit	load
balancer	agent.

A	couple	of	LBaaS	agents	are	deployed	on	a	single	server	to	get	the	high	availability.	A
storage	volume	must	be	attached	to	each	networking	server.	As	the	LB	agents	start	all	the
instances,	the	directory	files	are	available	on	both	the	servers	using	stored	and	shared
configurations:

/var/lib	/neutron	/lbaas/	

The	working	of	a	failover
A	working	of	a	failover	is	described	here	with	CLI	tools	and	an	API	calling	example.	On
breaking	the	host	and	LBaaS	that	are	running	together,	the	pacemaker	will	control	the
resources	such	as	the	failover	of	an	L3	agent	and	LBaaS.	These	two	resources	are
implemented	for	a	working	failover:

|	sudo	l3	agent	failover

This	works	in	a	very	simple	way,	as	the	failover	of	running	routers	is	handled	and	ports
are	attached	with	the	instances.	If	any	node	fails,	we	must	detach	it	from	the	ports.

Getting	all	the	failed	routers
As	we	seen	in	the	following	code:

|	sudo	neutron	router-list-on-l3-agent

The	following	two	methods	are	used	to	get	the	agent	id:

Each	pacemaker	config	file	is	deposited	with	the	id.
Then,	the	good	server	host	name	is	read	and	its	agent	id	is	got.	The	same	is	done	for
the	load	balance	as	a	service	host	through	the	neutron	API	call.

|	sudo	neutron	agent-list	|	grep	L3

With	the	pacemaker,	the	failover	must	be	done	for	a	situation	where	all	the	routers	fail	for
the	L3	agent.	Then,	detaching	and	attaching	of	all	the	routers	to	the	running	L3	agent	takes
place.

An	LBaaS	agent	failover
The	previous	L3	agent	failover	method	cannot	carry	out	the	load	balancing	service
through	the	Application	Programming	Interface,	because	only	a	few	functions	are
available	here.	So,	we	need	to	change	the	DB	entries.	For	a	better	data	loss	recovery,	users
must	take	a	backup	of	the	old	DB	entries	while	we	change	the	DB	entries.	There	are
plenty	of	ways	to	do	so	for	the	database	credentials.	All	the	preceding	information	resides
on	all	the	servers	and	in	the	config	files	of	each	agent.	The	OpenStack	OSLO	Python
library	is	the	best	choice	to	get	all	the	available	and	required	information.

If	we	have	a	working	DB	connection	to	the	Neutron	database,	we	will	need	to	revise	some
entries	in	the	load	balancer	agent	binding	pool	table	of	the	Neutron	database.	Then,	all	the
node	ids	are	changed	from	a	good	to	a	bad	state.

For	example,	see	the	following:

bad	agent	id:	c784b7fb-8094-4d3b-a8b1-804d90a80784

good	agent	id:	7e7700a3-02b2-4bd3-9c45-eca938c3f975

update	poolloadbalanceragentbindings	set	agent_id='7e7700a3-02b2-4bd3-9c45-

eca938c3f975'	where	agent_id='c784b7fb-8094-4d3b-a8b1-804d90a80784';

We	can	use	the	API	call	example	of	the	L3	agent	failover	to	get	both	agent	IDs.	When	this
is	done,	we	can	restart	the	agents	on	the	servers	that	are	termed	as	good,	and	all	the	agent
instances	will	be	spawned	with	VIP	ports.	These	L3	agents	switch	between	the	routers	and
the	agents	before	we	start	the	LBaaS	agent.

Geo-replication
Geo-replication	is	a	continuous,	distributed,	synchronous,	and	incremental	replication
service	used	to	replicate	from	one	host/site	to	another.	The	mirror	process	and	the
replication	process	are	done	among	the	master	and	slave	agents	using	a	graphical
replication	approach	to	represent	the	master	and	slave.

The	master	stores	volumes.	The	slaves	store	local	volumes	or	remote	volumes.	The
replication	of	data	across	the	geographically	distributed	storage	pools	is	done	through
mirroring	the	data.	Thus,	this	produces	a	backup	of	data	for	disaster	recovery.

Creating	geo-replication	sessions
To	create	a	common	pem	file,	we	need	to	run	the	following	command	on	the	master,	and	it
should	have	a	password-less	SSH	connection	configuration:

gluster	system::	execute	gsec_create

Create	the	geo-replication	session	using	the	following	command:

|	gluster	volume	geo-replication	MASTER_VOL	SLAVE_HOST::SLAVE_VOL	create	

push-pem	[force]

To	set	up	the	pem	file	on	the	slaves	or	slave	nodes,	the	pem	option	is	required.	For	example,
see	the	following:

|		gluster	volume	geo-replication	master-vol	example.com::slave-vol	create	

push-pem

Verify	the	status	of	the	created	session	by	running	the	following	command:

The	master	and	slave	volumes	of	geo-replication	are	created	and	the	status	of	these
volumes	is	checked	via	the	following	command:

|	gluster	volume	geo-replication	MASTER_VOL	SLAVE_HOST::SLAVE_VOL	status

Starting	geo-replication
To	start	geo-replication,	use	one	of	the	following	commands,	and	as	an	initial	step	we	need
to	start	a	geo-replication	session	between	the	hosts:

#gluster	volume	geo-replication	master-vol	example.com::slave-vol	start

The	command	will	start	the	geo-replication	on	all	the	nodes	because	they	are	a	part	of	the
volumes	of	the	master	node.	Even	if	a	node	is	lost,	the	command	will	be	successful
because	the	node	is	a	part	of	a	volume	of	the	master	node.	The	replica	pair	that	is	used	for
the	replication	session	must	be	active	on	any	one	of	the	replica	nodes	and	will	be	passive
on	all	remaining	nodes.

On	a	successful	execution	of	the	command,	it	will	take	some	more	minutes	for	the	entire
session	to	initialize	and	become	stable.	Then,	we	need	to	start	the	geo-replication	session
forcefully	between	the	hosts:

#	gluster	volume	geo

For	example,	type	the	following	command:

|	gluster	volume	geo-replication	master-vol	example.com::slave-vol	start	

force

As	a	part	of	the	master	volume,	the	preceding	command	will	force	start	the	geo-replication
on	the	nodes.	This	command	should	be	able	to	start	the	geo-replication	sessions	on	many
nodes	when	there	is	a	lack	of	ability	to	successfully	initiate	the	geo-replication	session.
The	previous	command	is	used	to	start	over	a	replication	session	when	the	session	has
terminated	or	it	has	not	started.

Verifying	a	successful	geo-replication	deployment
In	a	successful	geo	replication	environment,	the	status	of	the	replication	is	given	the
following	command:

#	gluster	volume	geo-replication	MASTER_VOL	SLAVE_HOST::SLAVE_VOL	status

For	example,	type	the	following	command:

|	gluster	volume	geo-replication	master-vol	example.com::slave-vol	status

A	real-time	failure	scenario
The	location	of	log	files	is	an	important	issue	in	Gluster	geo-replication	that	will	occur	in
real	time.	In	a	cluster	slave	in	a	general	volume,	the	sessions	of	this	replication	try	to
associate	their	log	files	to	the	slave	volumes.	The	master	file	monitors	the	volume	of	the
master,	and	initiation	of	changes	in	the	slaves	is	done	using	the	slave	files.	The	mount
point	that	is	used	for	the	master	volume	monitor	is	maintained	using	the	master0gluster
file.

Issues	in	the	master	log	file
To	do	geo-replication,	the	master	log	file	is	retrieved	via	the	following	command:

|	gluster	volume	geo-replication	<MASTER><SLAVE>	config	log-file

For	example,	voulme1	is	considered	to	be	a	volume	for	a	sample	master	and	slaves	such	as
example.com:

|	gluster	volume	geo-replication	Volume1	example.com:/data/remote_dir	

config	log-file

Issues	in	the	Slave	log	file

When	we	get	log	files	on	the	slave	nodes,	the	geo-replication	is	done	through	the
following	commands:

The	command	to	run	geo-replication	on	the	master	node	of	the	cluster:	

|gluster	volume	geo-replication	Volume1	example.com:/data/remote_dir	config	

session-owner5f6e5200-756f-11e0-a1f0-0800200c9a66

The	details	of	the	owner	are	displayed	in	the	session	as	follows:

|	gluster	volume	geo-replication	/data/remote_dir	config	log-file	

/var/log/gluster/${session-owner}:remote-dir.log

	The	session	details	of	the	owner	is	replaced	with	the	following	command:	

/var/log/gluster/5f6e5200-756f-11e0-a1f0-0800200c9a66:remote-dir.log

Issue	in	data	synchronization

Data	synchronization	on	the	available	host	and	remote	machines	is	achieved	through	geo
replication.	At	this	time,	we	may	get	an	issue	with	data	synchronization.	The	solution	to
sort	out	this	problem	is	also	given	in	this	section.	We	start	with	a	real-time	data
synchronization	issue	as	follows.

Description:	GlusterFS	geo-replication	displays	the	status	as	OK,	but	the	files	are	not
synced,	only	directories	and	symlink	is	synced	with	the	error	messages	in	the	log	as
follows:

[2011-05-02	13:42:13.467644]	E	[master:288:regjob]	GMaster:	failed	to	sync	

./some_file`

Solution:	GlusterFS	geo-replication	invokes	rsync	v3.07	in	the	host	and	the	remote
machine	to	check	whether	we	have	the	desired	version	installed.

Issues	in	the	geo-replication	status	display

A	regular	checking	of	status	is	also	an	important	issue	of	display	notification.	This	status
may	be	updated	and	displayed	very	often	to	know	the	status	of	the	geo-replication
immediately.	In	this	section,	we	will	provide	a	real-time	scenario	of	Display	notification	of
Geo-replication.

Description:	GlusterFS	geo-replication	displays	the	status	as	faulty	very	often	with	a	back
trace	similar	to	the	following:

2015-08-07	14:06:18.378859]	E	[syncdutils:131:log_raise_exception]	<top>:	

FAIL:	Traceback	(most	recent	call	last):	File	

"/usr/local/libexec/glusterfs/python/syncdaemon/syncdutils.py'',	line	152,	

in	twraptf(*aa)	File	

"/usr/local/libexec/glusterfs/python/syncdaemon/repce.py'',	line	118,	in	

listen	rid,	exc,	res	=	recv(self.inf)	File	

"/usr/local/libexec/glusterfs/python/syncdaemon/repce.py'',	line	42,	in	

recv	return	pickle.load(inf)	EOFError

Solution:	This	means	that	the	remote	procedure	call	communication	between	the	master
module	and	slave	module	is	divided,	and	this	can	happen	for	various	reasons.	The
following	pre-requisites	should	be	satisfied	to	check	for	proper	communication	among	the
clusters:

The	host	and	remote	nodes	or	machines	are	setup	with	a	password-less	secure	socket
host.
With	the	help	of	synchronization	of	the	data	called	sync	data,	the	geo-replication
module	can	mount	the	Gluster	volume	on	the	machine	on	which	the	FUSE	is
installed.	We	need	to	check	whether	the	volume	gets	started	if	the	slave	survives	as	a
volume.
Then	check	all	the	necessary	permissions	of	the	directory	that	is	created	as	a	plain
directory	of	the	slave.
If	the	machine	is	installed	with	the	3.2	version	of	glusterFS,	then	this	will	have	the
master	as	the	default	location	and	will	be	prefixed	to	the	customized	location	of
master	using	gluster	command	for	customized	location	where	gsyncd	is	available.

Summary
In	this	chapter,	we	learned	about	network	partition	split-brain,	the	different	methods	of
preventing	split-brain,	a	real-time	failure	scenario	for	split-brain,	automatic	failover
including	LBaaS	agent	failover,	and	had	a	detailed	understanding	of	geo-replication	with	a
real-time	failure	scenario.

In	the	next	chapter,	we	are	going	to	learn	about	application	design	for	high	availability.

Chapter	9.	The	Principles	of	Design	for
Highly	Available	Applications
Having	a	highly	available	cloud	might	not	be	enough	if	the	application	running	on	top	of	it
does	not	take	advantage	of	the	principles	and	concepts	of	resilient	design.	This	chapter
will	mainly	explain	how	a	correct	application	design	can	help	improve	the	reliability	and
uptime	of	end	user	services;	particular	focus	will	be	given	to	micro	services	architectures
and	distributed	web	applications.

In	this	chapter,	you	are	going	to	learn	the	following	topics:

The	principles	of	design	features
A	sample	application	deployment
An	interaction	of	the	application	with	OpenStack

The	principles	of	design	features
There	are	numerous	design	features	and	principles	that	need	to	be	considered	for	the
applications	that	are	deployed	in	the	OpenStack	cloud.	The	following	are	the	design
principles	of	the	distributed	web	application	deployment.

Micro	services	and	scalability
A	software	architecture	style	or	design	pattern	helps	to	support	application	modularity.
With	this	pattern,	the	maintainability	and	reusability	of	the	independent	services	are
achieved.	In	this,	a	complex	application	is	composed	of	independent	processes.	The
communication	among	the	processes	is	via	special	APIs.	So	this	process	of	decoupling	can
scale	out	all	the	unique	components	as	required.	This	will	ensure	the	features	of	scale	out
and	fault	tolerance	in	cloud	applications	are	available.

Generally,	cloud	applications	are	run	on	instances	provided	by	the	cloud	infrastructure.
Instead	of	utilizing	more	number	of	instances	on	which	the	applications	are,	running	them
utilizes	only	a	few	small	instances.	Modularity	is	ensure	if	this	capacity	with	micro
services	architectures	is	utilized	for	the	applications	that	are	running	on	small	instances.
Hence,	the	scalability	of	the	running	applications	is	increased,	as	there	is	a	need	for	more
capacity	to	be	available	on	all	instances.

Fault	tolerance
Fault	tolerance	is	an	important	feature	of	cloud	computing	to	achieve	resilience	when
there	is	a	change	in	the	environment.	In	cloud	computing,	large	and	expensive	servers	are
replaced	by	small	virtual	machines	to	cut	down	the	cost	of	server	maintenance	and	human
resources.	These	virtual	machines	are	disposable	when	they	are	not	being	used	by	the
cloud	automation	capability.	When	something	goes	wrong	with	the	virtual	machines,	the
cloud	automation	processes	will	shut	down	the	virtual	machines	and	spin	up	new
machines.	In	the	traditional	cloud	approach,	we	have	an	unavoidable	situation	of	failures,
which	includes	underpinning	the	resources	of	the	cloud	infrastructure.	Hence,	we	will
design	our	application	with	a	higher	degree	of	fault	tolerance	capability	that	can	adapt	to
all	the	changes	in	the	cloud.

Cloud	automation
Applications	that	are	running	on	the	cloud	can	scale	up	and	scale	down	automatically	to
meet	demand.	We	do	not	have	too	many	steps	for	any	component	deployment	process	to
run	the	applications	on	the	cloud.	The	automation	reduces	the	time	taken	for	recovery	of
the	application	when	it	faces	any	component	failures.	Thus,	resilience	and	fault	tolerance
will	increase	automatically.

RESTful	application	programming	interface	(APIs)
In	this	OpenStack	cloud	environment,	all	the	applications	that	are	running	on	cloud	is
called	as	cloud	applications.	A	representational	state	transfer	API	is	used	in	fractal
applications	such	as	other	cloud	applications.	To	connect	with	the	API	directly,	we	must
integrate	with	the	cloud	components.	Thus,	we	can	improve	the	software	quality	and	we
can	achieve	feasible	automated	testing.

A	sample	application	deployment
To	facilitate	the	previously	mentioned	design	principles	in	a	real-time	cloud	deployment,
we	consider	a	sample	real-time	fractal	application.	This	cloud	application	is	used	to
generate	some	fractals	in	which	mathematical	equations	are	used.	The	micro	service
architecture	is	used	in	this	application	to	decouple	the	application’s	logic	functions	so	that
we	can	easily	handle	the	changes	in	independent	functions.

The	following	figure	shows	this	application’s	architecture.	It	consists	of	various
components,	such	as	the	following:

Application	programming	interface
Database
Web	interface
Queue	service
Worker	services

Fractal	Application	Service	Architecture

The	application	programming	interface
These	types	of	componenst	are	support	with	API,	by	which	we	can	connect	to	the
applications	that	are	running	on	the	OpenStack	infrastructure	directly

Database
This	database	is	used	to	service	from	the	other	components,	and	we	can	get	an	idea	of	how
these	components	are	communicating	with	each	other.	All	these	API-related	services	are
stored	in	this	database.

Web	interface
This	web	interface	is	used	to	work	with	APIs.	Access	to	all	the	APIs	is	done	through	this
interface	to	view	the	complete	details	of	repeating	pattern	images	using	this	cloud
application.

Queue	services
Message	queue	services	are	used	to	communicate	between	the	services	of	the	queue
service	cloud	application.	This	work	queue	is	used	to	disseminate	the	tasks	among	the
various	work	services.

In	our	application,	the	message	queue	offers	requests	of	works	that	are	brought	from	the
work	services	one	at	a	time	even	though	we	will	have	a	unique	service	or	multiple
services.	This	type	of	cloud	application	has	a	request	list.	All	these	requests	are	serviced
by	any	one	of	the	resources	that	is	available	in	the	resource	pool.

Worker	services
The	worker	service	will	receive	messages	from	the	queues	of	a	worker	as	shown	in	the
following	figure.	Then	the	messages	are	processed	to	create	a	fractal	file	that	consists	of
equivalent	images.	In	addition,	we	can	access	these	images	on	the	web	interface	provided
by	OpenStack.

Work	Service	Request	Process

An	interaction	of	the	application	with
OpenStack
We	have	an	assumption	of	access	to	the	OpenStack	cloud.	Our	application	is	running	on
the	instances	provided	through	this	cloud	infrastructure.

Choosing	the	OpenStack	SDK
As	an	initial	step	of	this	process,	the	application	that	is	interacting	with	the	OpenStack
cloud	infrastructure	has	to	choose	the	OpenStack	software	development	kit	(SDK)
according	to	the	language	we	prefer	to	develop	and	deploy.	The	OpenStack	SDK	is
available	in	various	languages	such	as	Python,	Java,	Ruby,	PHP,	and	Node.js.

Flavors	and	images
We	have	to	choose	the	flavor	and	the	type	of	images	that	are	used	to	create	an	instance	on
which	our	fractal	application	is	running.	The	flavors	are	used	to	fix	the	size	of	an	instance,
which	comprises	of	a	number	of	VCPU,	RAM	capacity,	and	hard	disk	capacity.	As	shown
in	the	following	command:

<NodeImage:	id=2cccbea0-cea9-4f86-a3ed-065c652adda5,	name=ubuntu-14.04,	

driver=OpenStack		...>

<NodeImage:	id=f2a8dadc-7c7b-498f-996a-b5272c715e55,	name=cirros-0.3.3-

x86_64,	driver=OpenStack		...>

Our	fractal	applications	can	run	on	any	type	of	distributions	such	as	

Ubuntu,	fedora,	OpenSUSE,	and	Debians.	These	distributions	are	available	as	

ready-made	operating	systems	to	create	virtual	machines	for	our	

application.

<OpenStackNodeSize:	id=1,	name=m1.tiny,	ram=512,	disk=1,	bandwidth=None,	

price=0.0,	driver=OpenStack,	vcpus=1,		...>

<OpenStackNodeSize:	id=2,	name=m1.small,	ram=2048,	disk=20,	bandwidth=None,	

price=0.0,	driver=OpenStack,	vcpus=1,		...>

<OpenStackNodeSize:	id=3,	name=m1.medium,	ram=4096,	disk=40,	

bandwidth=None,	price=0.0,	driver=OpenStack,	vcpus=2,		...>

Launching	an	instance
A	user	has	to	select	the	required	images	and	flavor	to	launch	an	instance	on	which	the
fractal	application	is	going	to	be	deployed.	After	choosing	a	flavor	and	an	image	from	the
preceding	list,	the	user	has	to	create	an	instance	using	an	identified	flavored	image.	Then
the	new	instances	will	appear	as	follows:

<Node:	uuid=1242d56cac5bcd4c110c60d57ccdbff086515133,	name=testing,	

state=RUNNING,	public_ips=[],	private_ips=[],	provider=OpenStack…>

The	launched	instance	has	an	instance	id,	name,	and	an	assigned	public	and	private	id.
This	also	includes	a	state	that	shows	the	status	as	running,	and	other	various	states.

Destroying	an	instance
The	following	line	of	Python	code	will	destroy	an	instance.	If	we	do	not	destroy	an
instance,	it	will	incur	a	cost	in	utilizing	the	resources	from	the	cloud.	After	this,	if	we	try
to	list	the	instance,	it	will	disappear	from	the	list	of	running	instances.

conn.destroy_node	(testing_instance)

Deploying	the	application	on	a	new	instance
To	deploy	an	application	on	the	running	instances,	it	may	require	some	additional
instances.	The	first	resource	is	a	key	pair.	By	default,	the	key	pair	is	installed	on	the	new
instance.	We	have	a	public	and	private	key.	The	public	key	is	available	in	the
.ssh/id_rsa.pub	location.	Key	pair	generation	is	done	as	follows:

print('Checking	for	existing	SSH	key	pair…')

keypair_name	=	'demokey'

pub_key_file	=	'~/.ssh/id_rsa.pub'

The	network	access	is	also	an	important	resource	for	an	instance	to	launch	the	application.
The	OpenStack	cloud	will	filter	all	the	traffic	that	occurs	in	the	network.	For	this,	we	need
to	create	a	security	group	and	assign	it	to	an	instance.	Thus,	the	instance	has	HTTP	and
SSH	access:

if	security_group_exists:

				print('Security	Group	'	+	all_in_one_security_group.name	+	'	already	

exists.	Skipping	creation.')

else:

				all_in_one_security_group	=	

conn.ex_create_security_group(security_group_name,	'network	access	for	all-

in-one	application.')

				conn.ex_create_security_group_rule(all_in_one_security_group,	'TCP',	

80,	80)

				conn.ex_create_security_group_rule(all_in_one_security_group,	'TCP',	

22,	22)

The	user	data	is	also	a	resource	that	has	to	be	preinstalled	in	the	image	of	an	instance.
Through	this,	the	OpenStack	configures	the	instance	to	boot	with	the	specified	image:

userdata	=	'''#!/usr/bin/env	bash

curl	-L	-s	

https://git.OpenStack.org/cgit/stackforge/faafo/plain/contrib/install.sh	|	

bash	-s—\

				-i	faafo	-i	messaging	-r	api	-r	worker	-r	demo

'''

Booting	and	configuring	an	instance
After	configuring	with	the	previously	mentioned	settings,	the	instance	is	ready	to	be
launched	on	the	OpenStack	infrastructure.	Then	the	user	has	to	wait	for	a	few	seconds	to
build	an	instance	on	which	our	fractal	application	will	run.

if	instance_exists:

				print('Instance	'	+	testing_instance.name	+	'	already	exists.	Skipping	

creation.')

else:

				testing_instance	=	conn.create_node(name=instance_name,		image=image,

																																								size=flavor,	

ex_keyname=keypair_name,

																																								ex_userdata=userdata,	

ex_security_groups=[all_in_one_security_group])

				conn.wait_until_running([testing_instance])

Associating	a	floating	IP	for	external	connectivity
The	floating	point	IP	is	an	internet	routable	IP	address	for	an	instance.	This	id	is	used	for
an	instance	to	be	reachable	from	the	Internet.	Usually,	the	OpenStack	instances	have	an
outbound	network	access.

print('Checking	for	unused	Floating	IP…')

unused_floating_ip	=	None

for	floating_ip	in	conn.ex_list_floating_ips():

				if	floating_ip.node_id:

								unused_floating_ip	=	floating_ip

								break

The	conn.ex_list_floating_ips()	function	is	used	to	select	an	IP	address	from	a	pool
of	IP	addresses.	This	address	is	then	assigned	to	an	instance,	so	the	preceding	code	will
return	the	floating	point	IP	address	as	follows:

<OpenStack_1_1_FloatingIpAddress:	id=4536ed1e-4374-4d7f-b02c-c3be2cb09b67,	

ip_addr=203.0.113.101,	pool=<OpenStack_1_1_FloatingIpPool:	

name=floating001>,	driver=

<libcloud.compute.drivers.OpenStack.OpenStack_1_1_NodeDriver	object	at	

0x1310b50>>

Then	we	attach	this	IP	to	an	instance	as	follows:

if	len(testing_instance.public_ips)	>	0:

				print('Instance	'	+	testing_instance.name	+	'	already	has	a	public	ip.	

Skipping	attachment.')

else:

				conn.ex_attach_floating_ip_to_node(testing_instance,	

unused_floating_ip)

Accessing	the	application
The	following	code	will	start	the	fractal	application	deployment.	So	we	can	view	the
running	application	on	the	web	browser.

print('The	Fractals	app	will	be	deployed	to	http://%s'	%	

unused_floating_ip.ip_address)

If	we	need	to	log	in	to	the	instance	via	ssh,	we	have	to	get	the	key	pair	as	follows:

$	ssh	-i	~/.ssh/id_rsa	USERNAME@IP_WORKER_1

Summary
In	this	chapter,	we	learned	the	basic	features	of	application	design	for	high	availability
such	as	micro	services	and	scalability,	fault	tolerance,	cloud	automation,	and	the	RESTful
application	programming	interface	(APIs).We	have	also	understood	the	various
components	of	application	architecture	and	the	detailed	interactions	between	these
components	in	OpenStack.

In	the	next	chapter,	we	are	going	to	learn	about	basic	and	advanced	monitoring	of	the
infrastructure	components	of	OpenStack.

Chapter	10.	Monitoring	for	High
Availability
The	control	and	maintenance	of	a	cloud	is	of	the	outmost	importance;	visibility	in
operations	and	alerts	on	failures	are	the	basis	of	a	correct	functioning	and	quick	recovery
in	case	of	unexpected	outages	or	planned	maintenance	windows.	This	chapter	will
introduce	few	key	concepts	and	tools	to	correctly	measure	and	control	the	operations	of	an
OpenStack	cloud.

In	this	chapter,	we	will	specifically	concentrate	on	open	source	cloud	monitoring	services
such	as	Nagios,	Graphite,	and	Elasticsearch/Logstash/Kibana.

In	this	chapter,	you	are	going	to	learn	about	the	following	topics:

The	Nagios	monitoring	service
The	Graphite	monitoring	tool
Logstash,	Elasticsearch,	and	Kibana

The	Nagios	monitoring	service
The	open	source	Nagios	project	is	used	to	monitor	the	complete	cloud	infrastructure	to
make	sure	that	the	applications,	the	services	running	on	the	systems,	and	the	processes	and
functions	of	the	business	are	working	properly.	Nagios	can	alert	the	person	who	has	been
involved	in	the	monitoring	process	of	infrastructure	through	email	or	any	other	special
intimation	service,	then	the	concern	staff	can	start	their	remediation	process.	Therefore,
outages	will	not	occur	in	the	business	process	and	their	customers.	All	the	unseen	outages,
sudden	changes	in	the	service	utilization	of	customers,	and	other	service-related	issues	on
the	infrastructure	can	be	easily	monitored	and	reported.

For	OpenStack	infrastructure-related	services,	this	monitoring	system	will	be	used	to	offer
alert	and	monitoring	for	the	OpenStack	network	and	OpenStack	infrastructure.

Installation	of	the	Nagios	monitoring	service
This	open	source	system	will	alert	or	email	the	administrator	by	monitoring	the	hosts’
machines	and	the	services	running	on	the	machines	when	an	issue	arises	and	will	even
help	to	resolve	these	issues.

Installation	of	Nagios	related	packages
As	an	initial	step	of	installation,	we	have	to	install	packages	such	as	nagios-plugins,	php,
gd,	gd	level,	gcc,	glibc,	glibc-common,	and	openssl	using	the	following	command:

#sudo	install	nagios	nagios-devel	nagios-plugins*	gd	gd-devel	php	gcc	glibc	

glibc-common	openssl

Installation	of	the	Nagios	remote	plugin	executor
Nagios	remote	plugin	Executor	(NRPE)	scripts	are	used	to	check	the	status	of	the
services	running	on	the	host,	and	they	help	to	send	reports	back	to	the	Nagios	system.	This
Executor	is	added	as	an	add-on	to	all	the	remote	nodes	available	in	the	cloud
infrastructure.	To	get	information	about	all	the	nodes,	we	have	to	do	this	for	all	the	nodes.
Therefore,	this	plugin	must	be	installed	on	all	the	available	remote	nodes.

We	need	to	install	this	plugin	as	a	root	user	on	remote	machines.	To	do	this,	we	need	to
execute	a	command	as	follows:

#sudo	install	-y	nrpe	nagios-plugins*	openssl

Then	we	can	view	all	the	plugins	under	the	/usr/lib64/nagios/plugins	directory	of	the
machine.

Configuring	Nagios
We	have	to	do	some	minimal	configuration	to	set	up	this	monitor	system.	All	the
information	related	to	the	remote	machines	and	local	machines	must	be	sent	to	the	server.
It	has	a	web	interface	that	allows	you	to	view	the	status	of	related	machines	together.	To
do	this,	we	need	to	do	the	following:

The	user	name	and	password	of	the	web	interface	will	check	and	do	some	basic
configuration	according	to	the	environment
We	need	to	add	a	service	of	monitoring	using	OpenStack	to	the	local	server
Finally,	we	need	to	inform	the	Nagios	server	to	identify	the	host	under	monitoring
and	the	service	of	these	hosts	will	be	monitored	in	the	near	future
On	all	the	remote	machines,	we	have	to	install	and	configure	the	Nagios	NRPE	of	the
following	distributed	hosts

The	following	files	describe	the	important	configuration	files	for	the	Nagios	system	on	the
OpenStack	cloud	environment:

/etc/nagios/nagios.cfg:	This	is	Nagios’s	most	important	file,	and	the	main	config
file.
/etc/nagios/cgi.cfg:	This	is	the	configuration	file	for	the	common	gateway

interface.
/etc/httpd/conf.d/nagios.conf:	This	is	the	configuration	file	for	httpd.
/etc/nagios/passwd:	A	Nagios	user	can	get	their	password	from	this	config	file.
/usr/local/nagios/etc/ResourceName.cfg:	All	the	user	related	settings	are	done
on	this	file.
/etc/nagios/objects/ObjectsDir/ObjectsFile.cfg:	All	the	groups	and	service
related	information	are	stored	in	the	object	file,	in	which	all	the	definition	of	the
users,	services,	and	groups	are	collated.
/etc/nagios/nrpe.cfg:	All	the	remote	machines’	NPRE’s	are	available	in	this
config	file.

HTTPD	configuration
The	predefined	user	name	and	password	of	the	Nagios	system	are	nagiosadmin	when	we
initially	install	the	system.	We	can	get	this	information	from	a	file	under	the
/etc/nagios/cgi.cfg	directory.

We	need	to	configure	this	Nagios	system	in	our	environment	as	a	root	user	using	the
following	command.	In	this,	we	can	change	the	predefined	password	of	the	default	user	to
nagiosadmin:

#sudo	htpasswd	-c	/etc/nagios/passwd	nagiosadmin

If	we	need	to	create	a	new	user	for	Nagios,	then	we	will	execute	the	following	command:

#	sudo	htpasswd	/etc/nagios/passwd	newUserName

We	have	to	edit	a	file	called	contacts.cfg	under	the	/etc/nagios/objects	directory	to
change	the	email	address	of	the	user	called	newUserName	(in	our	case)	using	the
following	command:

define	contact{

								contact_name			nagiosadmin												;	Short	name	of	user

								[...snip…]				

								email										yourName@example.com			;

								}

After	doing	the	preceding	changes,	we	have	to	check	Nagios	for	the	basic	configuration	as
follows.	Then	if	we	get	any	errors	with	the	basic	configuration,	we	have	to	check	the
parameters	available	in	the	nagios.cfg	file:

#sudo	nagios	-v	/etc/nagios/nagios.cfg

Whenever	the	system	starts,	the	infrastructure	monitoring	process	also	begins.	Therefore,
we	need	to	check	that	Nagios	starts	automatically.	To	check	for	the	auto	start,	run	the
following	command:

#sudo	chkconfig	--add	nagios

#sudo	chkconfig	nagios	on

Finally,	we	have	to	restart	the	Nagios	system	and	change	the	httpd	service	using	the
following	command:

#sudoservice	httpd	restart

#sudo	service	nagios	start

Accessing	the	Nagios	web	interface
We	can	access	the	Nagios	web	interface	for	login	with	the	created	username	and
password:

OpenStack	services	configuration
The	OpenStack	services	that	require	a	monitoring	service	are	added	to	the	file	called
commands.cfg	available	under	/etc/nagios/objects.	This	list	consists	of	different
services	of	OpenStack	to	be	monitored.	Therefore,	we	have	to	write	a	code	of	script	that	is
used	to	add	the	services	available	to	the	list	as	follows.	The	scripts	are	added	to	the	file
under	the	/usr/lib64/nagios/plugins	directory.	The	following	script	of	code	is	used	to
check	this:

#!/bin/env	bash

export	OS_USERNAME=userName

export	OS_TENANT_NAME=tenantName

export	OS_PASSWORD=password

export	OS_AUTH_URL=http://identityURL:35357/v2.0/

data=$(nova	list		2>&1)

rv=$?

if	["$rv"	!=	"0"]	;	then

				echo	$data

				exit	$rv

fi

echo	"$data"	|	grep	-v	-e	'--------'	-e	'|	Status	|'	-e	'^$'	|	wc	-l

Then	in	the	commands.cfg	file	under	the	/etc/nagios/objects/	directory,	each	script	is
specified	using	the	following	command:

define	command	{

command_line																/usr/lib64/nagios/plugins/nova-list

command_name												nova-list

}

Using	the	define	command,	all	the	required	services	are	defined	as	follows	by	editing	the
localhost.cfg	file	under	/etc/nagios/objects/:

define	service	{

								check_command			nova-list

								host_name							localURL

								name												nova-list

								normal_check_interval			5

								service_description					Number	of	nova	vm	instances

								use													generic-service

								}

Finally,	the	services	are	restarted	using	this	command:

#sudo	service	nagios	restart

OpenStack	services	configuration
We	set	up	an	NRPE	on	each	remote	node,	then	execute	the	following	command	as	a	root
user,	then	add	the	Nagios	server	IP	address	to	the	allowed_host	attribute.	Also,	add	any
services	for	monitoring	purposes	under	a	directory	called	/etc/nagios/nrpe.cfg:

allowed_hosts=127.0.0.1,	NagiosServerIP

command[keystone]=/usr/lib64/nagios/plugins/check_procs	-c	1:	-w	3:	-C	

keystone-all

Then,	open	the	NRPE	ports	as	follows:

#	sudo	iptables	-I	INPUT	-p	tcp	--dport	5666	-j	ACCEPT

#	sudo	iptables-save	>	/etc/sysconfig/iptables

Finally,	restart	the	NRPE	services	after	all	the	preceding	changes	are	done	properly:

#	sudo	service	nrpe	start

Service	definition	creation
All	the	services	must	be	added	to	the	service	list	for	monitoring	purposes.	Only	after	this,
the	Nagios	system	will	automatically	monitor	the	services	listed	in	the	file	when	the
system	starts.	For	this,	we	have	to	create	a	file	called	services.cfg	under	a
/etc/nagios/objects	directory:

##Basic	remote	checks#############

define	service{

		use	generic-service

		host_name	remoteHostName

		service_description	PING

		check_command	check_ping!100.0,20%!500.0,60%

}

define	service{

		use	generic-service

		host_name	remoteHostName

		service_description	Load	Average

		check_command	check_nrpe!check_load

}

define	service{

		use	generic-service

		host_name	remoteHostName

		service_description	Identity	Service

		check_command	check_nrpe!keystone

}

The	preceding	file	consists	of	the	status	of	the	identity	service,	and	it	checks	for	the	load

and	server’s	starting	heartbeat.	All	these	information	are	reported	to	the	Nagios	server.

After	the	preceding	step,	verification	must	be	done	to	ensure	that	the	changes	are	made	to
the	files.

For	this,	we	need	to	execute	the	following	command:

#	sudo	nagios	-v	/etc/nagios/nagios.cfg

As	a	last	step	of	this	Nagios	installation,	we	have	to	restart	the	Nagios	service	as	follows
and	then	access	the	Nagios	server	web	interface:

#	sudo	service	nagios	restart

Graphite	monitoring	tool
The	Graphite	tool	is	an	open	source	tool,	which	is	used	to	store	the	time	series	data	from
various	sources	and	use	them	to	generate	a	graphical	representation.	So	all	the	service-
related	activities	are	monitored	through	the	graphs	generated	by	this	tool.	This	tool	is	used
to	identify	resource	utilization	of	the	cloud.	It	comprises	of	three	main	components:
Carbon,	Whisper,	and	Graphite	web	app.

In	this	section,	we	will	try	to	push	the	metrics	of	OpenStack	ceilometers	into	the	graphite
tool.	Due	to	some	of	the	issues	in	ceilometer,	we	will	not	reach	the	performance	of	cloud
monitoring.	So	the	data	from	the	compute	node	will	be	directly	sent	to	the	backend	of	the
Graphite	tool	to	avoid	network	bottlenecks.

Installing	Graphite
We	already	know	the	procedure	to	install	the	ceilometer	service	on	the	OpenStack
infrastructure.	For	this,	we	need	to	install	the	ceilometer	OpenStack	package	in	the
system.

Ceilometer	configuration
The	Ceilometer	configuration	files	need	the	following	changes:

The	RabbitMQ	settings	need	to	be	changed
The	Keystone	service	settings	need	to	changed
We	have	to	configure	the	Graphite	settings	as	mentioned	in	the	following	file:

rabbit_host=10.10.10.10

rabbit_userid=OpenStack	

rabbit_password=bla

rabbit_virtual_host=/

os_username=ceilometer

os_password=pass

os_tenant_name=services

os_auth_url=https://keystone.bla.com/v2.0

os_region_name=region1

[graphite]

prefix	=	stats.whateverkeyyoulike.endwithdot.

append_hostname	=	true	#This	will	add	the	hypervisorname	to	the	prefix

Adding	publisher
The	Graphite	end-points	need	to	be	added	to	the	publishers	by	editing	the	file	under	a
directory	called:

#sudo	nano	/usr/lib/python2.6/site-packages/ceilometer-2014.1.1-py2.6.egg-

info/entry_points.tx

The	file	content	needs	a	few	changes	as	follows:

append_hostname	=	true	[ceilometer.publisher]

graphite	=	ceilometer.publisher.graphite:GraphitePublisher

After	adding	the	publishers,	we	have	to	restart	the	ceilometer	agents	available	in	the
OpenStack	infrastructure.

Carbon	installation
Carbon	is	one	of	the	components	of	Graphite,	and	is	responsible	for	receiving	metrics	over
the	network	and	writing	them	to	disk	using	a	storage	backend.

The	initial	step	of	installing	a	carbon	is	as	follows,	after	which	we	need	to	adjust	the
default	configuration	of	the	carbon	according	to	our	requirement	and	environment:

#sudo	apt-get	install	-y	graphite-carbon

Then	we	have	to	enable	the	carbon	cache	option	available	in	the	Graphite	—carbon	file
under	/etc/default	using	the	following:

#	echo	"CARBON_CACHE_ENABLE=true"	>	graphite-carbon	

After	enabling	the	value	to	be	true,	we	have	to	restart	the	Graphite	cache	service	using	the
following:

#sudo	service	carbon-cache	restart

We	can	access	the	graphite	through	the	same	IP	address	as	we	did	for	Nagios:

Logstash,	Elasticsearch	and	Kibana
These	are	open	source	technologies	for	the	efficient	storage,	analysis	and	retrieval	of	any
type	of	log	files.	The	backend	storage	will	be	provided	using	elasticsearch,	and	Kibana	is
used	to	generate	reports	via	various	chats	instantly.	In	this	OpenStack	cloud	environment,
all	the	logs	files	that	are	generated	will	be	considered	for	analyzing	some	resource
utilization	according	to	the	policies.	There	is	a	log	of	built-in	functions	available	for
various	purposes	with	the	analyzed	log	files.

Installing	Logstash
To	install	logstash,	we	need	a	Java	runtime.	We	can	check	with	the	system	whether	Java
will	be	available	using	this	command	as	follows:

#sudo	java	–version

As	an	initial	step	of	the	Logstash	installation,	we	have	to	download	the	binary	as	follows.
Before	this,	we	need	to	configure	logstash	and	run	it	on	the	terminal:

#	sudo	curl	-O	

https://download.elasticsearch.org/logstash/logstash/logstash-1.4.1.tar.gz

Then	find	logstash-1.4.1	under	a	tar	file	and	run	it	as	follows:

#sudo	bin/logstash	–e	'input	{	stdin	{}}	output	{	stdout	{}}'

Next,	we	have	to	type	a	few	lines	(unstructured	format)	similar	to	log	file	contents	as
follows:

Hello	world

2015-08-21T01:	22:14.405+0000	0.0.0.0	hello	world

Stdin	–	input	for	the	logstash	file

Stdout-	outpur	for	the	logstash	file	

With	the	help	of,	this	logstash	file	can	directly	get	the	configuration	details	from	the
command	line.	Therefore,	there	is	no	need	to	edit	the	file	in	every	iteration	and	testing	can
be	easily	done.

An	Elasticsearch	store
It	is	very	tedious	that	every	time	the	log	file	contents	have	to	be	typed	using	STDOUT.	So
instead	of	this,	Elasticsearch	is	used	to	act	as	a	backup	store	to	store	all	the	messages	that
are	send	to	logstash.

As	an	initial	step	of	the	Elasticsearch	installation,	we	need	to	download	the	Elasticsearch
tar	file	as	follows:

#	sudo	curl	-O	

https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearc

h-1.4.2.tar.gz

Then	un-tar	the	file	using	the	tar	xzvf	command	and	run	the	following	code:

#	sudo	bin/logstash	-e	'input	{	stdin	{	}	}	output	{	elasticsearch	{	host	

=>	localhost	}	}'

By	default,	logstash	and	elasticsearch	are	well	suited	to	run	the	commands.	Hence,	we
can	avoid	the	other	configurations	in	the	elasticsearch	backend	process.

The	Kibana	frontend
With	the	analyzed	data	availability,	an	open	source	Kibana	will	handle	the	visualization	of
the	required	results	from	the	log	files	stored	in	the	Elasticsearch.	We	can	plot	our	own
tables	and	charts,	and	do	an	advanced	level	of	data	analytics	using	this	tool.	We	will	show
our	own	results	through	the	previously	mentioned	mediums	in	a	frontend	dashboard.

Summary
In	this	chapter,	we	learned	about	basic	and	advanced	monitoring	of	the	infrastructure
components	of	an	OpenStack	cloud	with	a	step-by-step	configuration	of	open	source	tools
such	as	Nagios	and	Graphite,	and	were	given	an	overview	of	Logstash,	Elasticsearch,	and
Kibana.

In	the	next	chapter,	we	will	learn	about	the	use	cases	of	HA	deployments	with	real-world
examples	and	learn	some	best	practices	of	OpenStack.

Chapter	11.	Use	Cases	and	Real-World
Examples
In	this	last	chapter,	we	are	going	to	learn	from	the	different	case	studies	of	a	variety	of
industries	that	are	reaping	the	benefits	of	the	high	availability	of	OpenStack.	After	going
through	all	these	case	studies,	we	will	get	a	clear	picture	in	our	mind	about	how	the
infrastructure	challenges	of	various	industries	are	addressed	by	OpenStack.	In	this	way,
we	will	attain	the	approach	to	implement	a	high	availability	of	OpenStack	in	our
organization.

The	following	are	the	categories	of	case	studies	covered	in	this	chapter:

An	Oracle,	CISCO,	Yahoo,	and	HP	Helion	Cloud	case	study	of	Cisco	Webex
A	case	study	of	Huawei
A	case	study	of	Multiscale	Health	Networks
A	case	study	of	eBay

A	case	study	of	Cisco	WebEx
Cisco	WebEx	is	a	very	critical	business	service	and	never	goes	down.	This	is	one	of	the
most	popular	web	conferencing	services	adopted	by	many	organizations	across	the	globe.

Challenges	with	the	infrastructure	of
Cisco	WebEx
Being	a	pioneer	in	software	as	a	service,	Cisco	WebEx	is	required	to	continuously
innovate	the	IT	operations	infrastructure.	The	following	are	some	critical	challenges	of
Cisco	WebEx	:

Due	to	its	worldwide	accessibility,	the	underlying	infrastructure	must	be	highly
available	and	robust
WebEx	services	are	highly	critical	and	very	confidential	for	every	client	such	as
screen	sharing,	voice	and	video	sharing,	and	other	collaborative	services	that	cannot
easily	go	in	the	public	cloud
There	are	many	key	supporting	services	such	as	recording	stage,	analytics,	and
system	management	that	require	a	cloud-based	agility	solution	and	cost	saving	also.

The	solution	with	OpenStack
Cisco	recognized	the	potential	of	OpenStack,	and	OpenStack	decided	to	go	with	it	for
commercial	and	overall	operational	benefits.	With	the	help	of	OpenStack	high	availability,
all	the	cloud	services	are	available	for	all	the	requests	coming	from	critical	applications,
which	run	on	the	cloud	for	the	WebEx	services.	Due	to	a	need	for	a	large	number	of
resources	and	uninterrupted	services	for	the	users	of	WebEx,	OpenStack	high	availability
ensures	that	all	the	resource	requirements	are	met	at	every	point	of	the	services.

So	WebEx	users	are	expected	to	replace	dead	virtual	machines	with	the	help	of	relaunched
hypervisors	immediately	on	the	NOVA	computing	nodes	using	this	HA	facility	of
OpenStack.	Cinder	volume	protects	from	data	loss	if	there	is	any	critical	loss	of	storage
and	ensures	that	block	volume	is	rarely	lost	by	the	service	providers,	as	shown	in	the
following	figure:

In	the	previous	figure,	we	can	see	the	Keepalived	nodes	and	how	the	VRRP	is	utilized	for
HAProxy	services	on	the	nodes	in	real-time	use	cases.	The	nova-api	is	used	to	do
customization	among	the	HAProxy	nodes	according	to	requirements.

Then	the	high	availability	and	load	balancing	capabilities	are	provided	through	pacemaker
cluster	communications	done	on	these	Cisco	WebEx	services.	In	addition,	a	configuration
of	Distributed	Replicated	Block	Device	for	the	RabbitMQ	service	is	used	to	get	the	data
from	RabbitMQ	as	shown	in	the	preceding	diagram.	VRRP	will	aid	movement	among	the
cluster	nodes	in	the	HA	OpenStack	infrastructure.

The	final	outcome
Following	are	the	final	outcome	after	implementing	high	availability	OpenStack	solution	:

Lowering	the	overall	infrastructure’s	recurring	costs	and	improving	roadmap
alignment	between	infrastructure	and	software	layers
In	the	event	of	failures,	such	as	memory	out	of	bounds	or	failures	with	the	software,
and	panics	in	the	operating	system	of	WebEx,	keepalived	and	active—the	active
mode	using	VIP—are	used	to	remove	the	failures
A	single	point	of	failure	is	greatly	avoided	in	the	case	of	any	system	downtime	and	if
data	loss	occurs	within	the	WebEx-running	servers	when	data	moves	between	a	user
and	WebEx
There	is	a	great	reduction	in	the	overall	cost	spent	towards	the	recovery	of	failures

Case	study	of	Huawei
Huawei	is	a	giant	that	provides	cloud	computing-based	solutions,	and	they	have	in-house
development	environments	such	as	virtual	desktop	infrastructure,	which	is	used	by	more
than	45,000	internal	employees	of	Huawei.	With	this	kind	of	infrastructure,	Huawei	could
recognize	the	promising	benefits	of	OpenStack	for	internal	infrastructure	as	well	as	for
client-based	applications.

Challenges	with	the	infrastructure	of	Huawei
Based	on	the	cloud	requirements	of	Huawei	corporations,	the	deployment	architecture	of
the	cloud	infrastructure	will	have	some	serious	challenges,	as	follows,	and	will	have	some
significant	hardware	needs	for	the	infrastructure:

Due	to	the	large	number	of	users,	there	is	a	need	for	the	high	availability	of	a	service
for	all	the	users	at	all	the	times
Since	Huawei	has	isolated	network	components,	there	is	a	need	for	security	using
firewalls	between	internal	and	external	users
To	manage	the	image-specific	use	cases	of	Huawei	on	Ubuntu	machine	images	and	a
requirement	for	high-end	Ethernet	cards	to	provide	a	high	speed	internet	facility

The	solution	with	OpenStack
With	the	help	of	OpenStack	high	availability	deployment,	the	storage	component	called
Swift	will	ensure	simplified	storage	for	all	storage	requirements	of	Huawei,	such	as	design
files,	media	files,	and	other	logs.

To	ensure	the	security	access	and	storage	access	of	the	all	the	previously	mentioned	files
between	internal	and	external	users	of	Huawei,	the	HA	OpenStack	provides	the	Swift
storage	component	integrated	with	the	keystone	security	service	as	a	solution.	To	avoid
the	previously	mentioned	challenges,	the	keystone	lists	all	the	authorized	users	of	the	swift
storage.	Using	this	technique,	the	token	for	each	client	is	used	to	identify	each	permissible
user	as	well.

The	final	outcome
Following	are	the	final	outcome	after	implementing	high	availability	OpenStack	solution	:

The	availability	of	resources	from	the	OpenStack	cloud	for	all	the	users	of	Huawei	is
satisfied	with	the	high	availability	architecture	of	OpenStack	with	a	minimal	cost	of
operations	and	maintenance	since	it	is	an	open	source	technology
Keystone	token	facility	will	ensure	the	correctness	of	data	available	for	both	internal
and	externals	users	with	Swift	storage
A	huge	demand	for	all	Ubuntu	images	is	provided	with	the	Swift	object	store
capability	by	a	highly	available	MySQL—MySQLMaster	Master	that	has	the	ability
of	failover	and	scalability

Case	study	of	Multiscale	Health	Networks
Multiscale	Health	Networks	is	one	of	the	most	popular	companies	of	the	health	and
services	industry,	which	targets	the	specific	requirements	of	life	sciences	and	health	care
using	high	performance	computing,	cloud	computing,	and	virtualization-based	solutions.
Multiscale	provides	services	in	five	western	states	(US),	and	has	more	than	65,000
employees.

Challenges	with	the	infrastructure	of
Multiscale
The	sudden	increase	in	the	data	storage	needs	of	healthcare	industries	made	them	move	to
the	cloud	to	reduce	the	computing	cost	of	the	customers	for	any	healthcare	company.	So
for	any	requirements	of	storage,	the	healthcare	industry	has	moved	towards	to	the	cloud
infrastructure	for	its	optimization.	The	following	are	the	major	challenges	faced	by	any
health	care	organization:

Need	to	enable	multitenancy	with	full	isolation	of	any	type	of	hypervisors
Access	control	mechanisms	have	to	be	provided	to	the	heterogeneous	storage	service
for	the	applications
Also,	they	must	ensure	data	correctness	via	access	control	for	a	high	level	of
encryption	and	should	have	the	capability	for	high	recoverability	when	there	is	data
loss

The	solution	with	OpenStack
Since	Multiscale	wants	on-premises	data	entry	and	remote	deployment,	therefore	after
evaluating	multiple	open	source	cloud	provider	options,	Multiscale	decided	to	go	with
OpenStack.

The	final	outcome
Following	are	the	final	outcome	after	implementing	high	availability	OpenStack	solution	:

A	high	performance	computing	facility	is	enabled	via	a	Torque	script.	Hence,	any
number	of	nodes	in	the	cluster	can	be	added	or	deleted	at	any	time
To	automate	the	bare	metal	nodes	provisions,	the	VLAN	can	cause	any	one	of	the
projects	to	plug	into	the	instances	of	the	bare-metal	hypervisor

Case	study	of	eBay
Today	eBay’s	on-premise	cloud	offers	various	features	such	as	multitenant,	self-service,
and	multiregion.	These	features	have	come	up	on	the	cloud	where	all	the	critical
applications,	platforms	for	the	development	of	applications.	Therefore,	the	company	needs
to	build	a	cloud	that	has	agility,	scalability,	and	robustness.

Challenges	with	eBay	business	process
In	recent	years,	the	e-commerce	technology	has	revolutionized	the	online	market	business
in	a	crucial	way	that	essential	workloads	are	processed	in	their	own	data	center.	This	has
happened	due	to	the	following:

ebay	to	avoid	supplier	lock-in	using	this	infrastructure
eBay’s	critical	applications	are	yielding	the	benefit	of	high	availability	and	failover
for	efficient	business	to	compete	with	other	market	vendors

The	solution	with	OpenStack
All	online	marketing	businesses	have	jumped	into	this	data	centre	environment	to	deal
with	very	high	and	decisive	workloads.	These	e-commerce	websites	are	running	with
millions	of	users	and	purchases	during	every	day	of	their	business.	To	overcome	this
situation,	online	marketing	businesses	have	started	to	adopt	cloud	technology.	Industries
are	fully	operating	their	heavy	computations	on	their	on-premise	cloud.	Today,	enormous
market	traffic	is	powered	by	cloud	computing,	that	is,	the	OpenStack	cloud.

The	final	outcome
Following	are	the	final	outcome	after	implementing	high	availability	OpenStack	solution:

Transparency	of	services	is	the	most	important	feature	of	any	industry	to	secure	their
assets	and	data	when	their	applications	are	deployed	in	the	cloud
With	an	on-premise	infrastructure,	security	is	ensured	for	the	client	as	they	run	their
business	in	the	cloud
Asset	transparency	makes	this	feature	secure	and	useful	when	a	client	wants	to
deploy	the	app	in	the	cloud

Summary
In	this	chapter,	we	saw	a	variety	of	the	case	studies	of	different	industries	that	includes
Cisco,	Huawei,	Multiscale	Health	Networks,	and	eBay.

As	we	have	learned,	all	types	of	industry	have	some	critical	infrastructure	challenges	that
can	be	easily	overcome	with	OpenStack	high	availability-based	solutions.

Index
A

application	interaction,	OpenStack
about	/	An	interaction	of	the	application	with	OpenStack
SDK,	selecting	/	Choosing	the	OpenStack	SDK
flavor,	selecting	/	Flavors	and	images
images,	selecting	/	Flavors	and	images
instance,	selecting	/	Launching	an	instance
instance,	destroying	/	Destroying	an	instance
application,	deploying	on	new	instance	/	Deploying	the	application	on	a	new
instance
instance,	booting	/	Booting	and	configuring	an	instance
instance,	configuring	/	Booting	and	configuring	an	instance
floating	IP,	associating	for	external	connectivity	/	Associating	a	floating	IP	for
external	connectivity
application,	accessing	/	Accessing	the	application

architecture	design,	High	Availability	(HA)
about	/	Architecture	design	for	high	availability

automatic	failover
about	/	Automatic	failover

B
block	storage

GlusterFS,	configuring	for	/	Configuring	GlusterFS	for	block	storage

C
Carbon

installing	/	Carbon	installation
case	study,	Multiscale	Health	Networks

about	/	Case	study	of	Multiscale	Health	Networks
case	study,	of	Cisco	WebEx

about	/	A	case	study	of	Cisco	WebEx
case	study,	of	eBay

about	/	Case	study	of	eBay
case	study,	of	Huawei

about	/	Case	study	of	Huawei
Ceph

about	/	An	introduction	to	Ceph
installing	/	Installing	Ceph
status,	checking	of	/	Checking	the	status	of	Ceph

Ceph	node
connecting	to	/	Connecting	to	the	Ceph	node
configuring	/	Configuring	the	Ceph	node

challenges,	eBay	business	process
about	/	Challenges	with	eBay	business	process
solution,	with	OpenStack	/	The	solution	with	OpenStack
final	outcome	/	The	final	outcome

Cisco	WebEx
case	study	/	A	case	study	of	Cisco	WebEx
infrastructure,	challenges	/	Challenges	with	the	infrastructure	of	Cisco	WebEx

cluster
forming	/	Formation	of	cluster
status,	checking	of	/	Check	the	status	of	a	cluster

compute	node	setup
procedure	/	A	compute	node	setup
packet	forward,	enabling	/	Enabling	packet	forwarding	and	disabling	reverse
path	filtering
reverse	path	filtering,	disabling	/	Enabling	packet	forwarding	and	disabling
reverse	path	filtering
kernel,	loading	/	Loading	a	new	kernel
neutron,	configuring	/	Configuring	neutron
ML-2	plugin,	configuring	/	Configuring	the	ML2	plugin
L3	agent,	configuring	/	Configure	the	L3	agent
metadata	agent,	configuring	/	Configuring	the	metadata	agent
services,	restarting	/	Restarting	the	services
service	operation,	verifying	/	Verifying	the	service	operation

configuration,	DRDB
about	/	Configuring	DRDB

filesystem,	creating	/	Creating	a	filesystem
RabbitMQ,	preparing	for	Pacemaker	high	availability	/	Preparing	RabbitMQ	for
Pacemaker	high	availability
RabbitMQ,	preparing	for	Pacemaker	high	availability	/	Preparing	RabbitMQ	for
Pacemaker	high	availability
RabbitMQ	resources,	adding	to	Pacemaker	/	Adding	the	RabbitMQ	resources	to
Pacemaker

configuration,	of	Nagios	/	Configuring	Nagios
content,	in	contract

about	/	Common	content	in	the	contract
controller_1	node

making	active	/	Making	the	controller_1	node	active
controller_2	node

making	active	/	Making	the	controller_2	node	active
control	node	setup

procedure	/	Control	node	setup
Corosync

installing	/	Installing	Corosync	and	Pacemaker
starting	/	Starting	Corosync

Corosync	package
installing	/	Installing	the	Corosync	package

D
design	features

principles	/	The	principles	of	design	features
DRDB

configuring	/	Configuring	DRDB

E
eBay

case	study	/	Case	study	of	eBay
eBay	business	process

challenges	/	Challenges	with	eBay	business	process
Elasticsearch

about	/	An	Elasticsearch	store
experimental	setup,	requisites

about	/	Requirements	for	the	experimental	setup
secure	Socket	Host	setup	/	A	secure	Socket	Host	setup
Corosync	package,	installing	/	Installing	the	Corosync	package
generation	of	Corosync	keys,	sharing	/	Sharing	and	generating	Corosync	keys
generation	of	Corosync	keys,	generating	/	Sharing	and	generating	Corosync
keys
configuration	file,	creating	/	Creating	a	configuration	file
Corosync,	starting	/	Starting	Corosync
Pacemaker,	starting	/	Starting	Pacemaker
cluster	properties,	setting	/	Setting	the	cluster	properties

G
Galera	clustering

MariaDB,	installing	with	/	Installing	MariaDB	with	Galera	clustering
geo-replication

about	/	Geo-replication
starting	/	Starting	geo-replication

geo-replication	sessions
creating	/	Creating	geo-replication	sessions

GlusterFS
about	/	An	introduction	to	GlusterFS
installing	/	Installing	GlusterFS,	Installation	of	GlusterFS
configuring,	for	block	storage	/	Configuring	GlusterFS	for	block	storage
nodes	for	communication,	configuring	/	Configuring	the	nodes	for
communication
status	of	peers,	checking	/	The	status	of	peers
data	point,	creating	/	Creating	a	data	point
volumes,	starting	/	Starting	the	volume	services

Graphite
about	/	Graphite	monitoring	tool
installing	/	Installing	Graphite

H
HAProxy

installation,	prerequisites	/	The	installation	of	HAProxy	and	keepalived
installing	/	The	requirement	for	an	experimental	setup

HAProxy	configuration
defining	/	Defining	the	HAProxy	configuration
for	controller	1	node	/	HAProxy	configuration	for	the	controller_1	node
for	controller_2	node	/	The	HAProxy	configuration	for	the	controller_2	node

High	Availability	(HA)
about	/	What	does	High	Availability	(HA)	mean?
measuring	/	How	to	measure	high	availability
achieving	/	How	to	achieve	high	availability
architecture	design	/	Architecture	design	for	high	availability

High	Availability	(HA),	in	OpenStack
about	/	High	availability	in	OpenStack

high	availability	compute	services
about	/	High	availability	compute	services
Nova	packages,	installing	/	Installing	and	configuring	the	Nova	packages
Nova	packages,	configuring	/	Installing	and	configuring	the	Nova	packages
Nova	database,	creating	/	Creating	the	Nova	database
population	of	database	/	Populating	a	database
load	balancing,	of	compute	services	/	The	load	balancing	of	compute	services
HAProxy	services,	reloading	/	Reloading	the	HAProxy	services

high	availability	dashboard	services
about	/	High	availability	dashboard	services
dashboard,	installing	/	Installing	and	configuring	the	dashboard
dashboard,	configuring	/	Installing	and	configuring	the	dashboard
Memcache,	configuring	/	Configuring	Memcache
Memcache	services,	restarting	/	Restarting	the	Memcache	services
load	balancing,	of	dashboard	services	/	Load	balancing	of	dashboard	services
HAProxy	services,	reloading	/	Reloading	the	HAProxy	services

high	availability	image	services
about	/	High	availability	image	services
image	service,	installing	/	Installing	and	configuring	image	services
image	service,	configuring	/	Installing	and	configuring	image	services
Glance	database,	creating	/	Creating	the	Glance	database
databases,	populating	/	Populating	the	databases

high	availability	object	storage	services
about	/	High	availability	object	storage	services
object	storage,	installing	/	Installing	and	configuring	object	storage
object	storage,	configuring	/	Installing	and	configuring	object	storage
disk	partition,	creating	/	Creating	a	disk	partition
directories,	creating	/	Creating	directories

data,	replicating	on	storage	nodes	/	Replicating	data	on	storage	nodes
Swift	proxy,	installing	/	Installing	a	Swift	proxy
Memcache,	configuring	/	Configuring	Memcache
proxy	configuration	file,	creating	/	Creating	a	proxy	configuration	file
Swift	ring,	configuring	/	Configuring	a	Swift	ring
load	balancing,	of	object	store	services	/	The	load	balancing	object	store	services

high	availability	RabbitMQ,	via	AMQP
about	/	High	availability	RabbitMQ	via	AMQP

high	availability	RabbitMQ	cluster
installing	/	Installation	of	high	availability	RabbitMQ	cluster

highly	available	RabbitMQ
OpenStack	services,	configuring	for	/	Configuring	OpenStack	services	for
highly	available	RabbitMQ

Huawei
case	study	/	Case	study	of	Huawei
infrastructure,	challenges	/	Challenges	with	the	infrastructure	of	Huawei

I
infrastructure	challenges,	Cisco	WebEx

about	/	Challenges	with	the	infrastructure	of	Cisco	WebEx
solution,	with	OpenStack	/	The	solution	with	OpenStack
final	outcome	/	The	final	outcome

infrastructure	challenges,	Huawei
about	/	Challenges	with	the	infrastructure	of	Huawei
solution,	with	OpenStack	/	The	solution	with	OpenStack
final	outcome	/	The	final	outcome

infrastructure	challenges,	Multiscale	Health	Networks
about	/	Challenges	with	the	infrastructure	of	Multiscale
solution,	with	OpenStack	/	The	solution	with	OpenStack
final	outcome	/	The	final	outcome

installation,	Carbon	/	Carbon	installation
installation,	Corosync	/	Installing	Corosync	and	Pacemaker
installation,	Corosync	package	/	Installing	the	Corosync	package
installation,	Graphite

about	/	Installing	Graphite
Ceilometer	configuration	/	Ceilometer	configuration
publisher,	adding	/	Adding	publisher

installation,	HAProxy	/	The	requirement	for	an	experimental	setup
installation,	Keepalived	/	The	requirement	for	an	experimental	setup
installation,	Logstash	/	Installing	Logstash
installation,	MariaDB

with	Galera	clustering	/	Installing	MariaDB	with	Galera	clustering
installation,	MySQL	/	Installing	MySQL
installation,	Nagios	monitoring	service	/	Installation	of	the	Nagios	monitoring	service
installation,	Nagios	related	packages	/	Installation	of	Nagios	related	packages
installation,	Nagios	remote	plugin	executor	/	Installation	of	the	Nagios	remote	plugin
executor
installation,	of	high	availability	RabbitMQ	cluster

about	/	Installation	of	high	availability	RabbitMQ	cluster
nodes,	configuring	/	Configuring	the	nodes	to	know	each	other
RabbitMQ,	installing	on	two	nodes	/	Installing	RabbitMQ	on	the	two	nodes

installation,	Pacemaker	/	Installing	Corosync	and	Pacemaker
installation,	RabbitMQ

on	two	nodes	/	Installing	RabbitMQ	on	the	two	nodes

K
Keepalived

installation,	prerequisites	/	The	installation	of	HAProxy	and	keepalived
installing	/	The	requirement	for	an	experimental	setup

Keepalived	configuration
on	controller_2	/	The	keepalived	configuration	on	controller_2

Kibana
about	/	The	Kibana	frontend

L
LBaaS	agent	failover

about	/	An	LBaaS	agent	failover
Load	Balancer	as	a	Service	(LBaaS)

about	/	Automatic	failover,	Load	balance	as	a	service
working,	of	failover	/	The	working	of	a	failover
failed	routers,	obtaining	/	Getting	all	the	failed	routers

load	balancing,	of	high	availability	MySQL
about	/	The	load	balancing	of	high	availability	MySQL
DRBD	replicated	storage	/	DRBD	replicated	storage

load	balancing,	of	HTTP	REST	API
about	/	The	load	balancing	HTTP	REST	API
load	balancing	pool,	creating	/	Creating	a	load	balancing	pool
Virtual	IP	(VIP),	adding	/	Adding	a	Virtual	IP	(VIP)
instances,	launching	/	Launching	instances
security	group	creation	/	Security	group	creation
members,	adding	to	load	balancing	pool	/	Adding	members	to	the	load	balancing
pool
sample	web	server,	setting	/	Setting	a	sample	web	server
web	servers,	validating	with	index.html	/	Validating	web	servers	with	index.html

load	balancing,	of	image	services
about	/	The	load	balancing	of	image	services

Logical	Volume	Manager	(LVM)
about	/	Installing	GlusterFS

Logstash
about	/	Logstash,	Elasticsearch	and	Kibana
installing	/	Installing	Logstash

M
MariaDB

installing,	with	Galera	clustering	/	Installing	MariaDB	with	Galera	clustering
mean	time	between	failures	(MTBF)	/	How	to	measure	high	availability
mean	time	to	failure	(MTTF)	/	How	to	measure	high	availability
mean	time	to	repair	or	replace	(MTTR)	/	How	to	measure	high	availability
Multiscale	Health	Networks

case	study	/	Case	study	of	Multiscale	Health	Networks
infrastructure,	challenges	/	Challenges	with	the	infrastructure	of	Multiscale

MySQL
installing	/	Installing	MySQL

N
Nagios

configuring	/	Configuring	Nagios
HTTPD	configuration	/	HTTPD	configuration

Nagios	monitoring	service
about	/	The	Nagios	monitoring	service
installing	/	Installation	of	the	Nagios	monitoring	service

Nagios	related	packages
installing	/	Installation	of	Nagios	related	packages

Nagios	remote	plugin	executor
installing	/	Installation	of	the	Nagios	remote	plugin	executor

Nagios	web	interface
accessing	/	Accessing	the	Nagios	web	interface

Network	as	a	Service	(NaaS)
about	/	Automatic	failover

network	node	setup
procedure	/	A	network	node	setup
packet	forward,	enabling	/	Enabling	packet	forwarding	and	disabling	reverse
path	filtering
reverse	path	filtering,	disabling	/	Enabling	packet	forwarding	and	disabling
reverse	path	filtering
kernel,	loading	/	Loading	a	new	kernel
neutron,	configuring	/	Configuring	the	neutron
ML-2	plugin,	configuring	/	Configuring	the	ML2	plugin
L3	agent,	configuring	/	Configuring	the	L3	agent
DHCP	agent,	configuring	/	Configuring	the	DHCP	agent
metadata	agent,	configuring	/	Configuring	the	metadata	agent
services,	restarting	/	Restarting	the	services

network	partition	split-brain
about	/	Network	partition	split-brain
real-time	failure	scenario	/	A	real-time	failure	scenario	of	split-brain

nodes
RabbitMQ	services,	restarting	on	/	Restarting	the	RabbitMQ	services	on	the
nodes

Nova	packages
nova-api	/	Installing	and	configuring	the	Nova	packages
nova-cert	/	Installing	and	configuring	the	Nova	packages
nova-conductor	/	Installing	and	configuring	the	Nova	packages
nova-consoleauth	/	Installing	and	configuring	the	Nova	packages
nova-novncproxy	/	Installing	and	configuring	the	Nova	packages
nova-scheduler	/	Installing	and	configuring	the	Nova	packages
python-novaclient	/	Installing	and	configuring	the	Nova	packages

O
Openssh

installing	/	Installing	Openssh
Openstack

High	Availability	(HA)	/	High	availability	in	OpenStack
OpenStack	SDK	/	Choosing	the	OpenStack	SDK
OpenStack	services

configuring,	for	highly	available	RabbitMQ	/	Configuring	OpenStack	services
for	highly	available	RabbitMQ
configuring	/	OpenStack	services	configuration	,	OpenStack	services
configuration

P
Pacemaker

installing	/	Installing	Corosync	and	Pacemaker
starting	/	Starting	Pacemaker

Pacemaker	high	availability
RabbitMQ,	preparing	for	/	Preparing	RabbitMQ	for	Pacemaker	high	availability

principles,	of	design	features
about	/	The	principles	of	design	features
micro	services	/	Micro	services	and	scalability
scalability	/	Micro	services	and	scalability
fault	tolerance	/	Fault	tolerance
Restful	application	programming	interface	(APIs)	/	RESTful	application
programming	interface	(APIs)

Q
quality	of	service	(QoS)	/	How	to	measure	high	availability

R
RabbitMQ

installing,	on	two	nodes	/	Installing	RabbitMQ	on	the	two	nodes
preparing,	for	Pacemaker	high	availability	/	Preparing	RabbitMQ	for	Pacemaker
high	availability

RabbitMQ	broker
constructing	/	Constructing	a	RabbitMQ	broker

RabbitMQ	services
restarting,	on	nodes	/	Restarting	the	RabbitMQ	services	on	the	nodes

real-time	failure	scenario,	geo-replication
about	/	A	real-time	failure	scenario
issues,	in	master	log	file	/	Issues	in	the	master	log	file
slave	log	files	/	Issues	in	the	Slave	log	file
issues,	in	data	synchronization	/	Issue	in	data	synchronization

real-time	failure	scenario,	of	split-brain
about	/	A	real-time	failure	scenario	of	split-brain

recovery	point	objective	(RPO)	/	How	to	measure	high	availability
recovery	time	objective	(RTO)	/	How	to	measure	high	availability
reverse	path	filtering,	disabling

about	/	Disabling	reverse	path	filtering
new	kernel,	loading	/	Loading	a	new	kernel
neutron,	configuring	/	Configuring	the	neutron
ML-2	plugin,	configuring	/	Configuring	the	ML2	plugin
servers,	restarting	/	Restarting	the	services

S
sample	application	deployment

about	/	A	sample	application	deployment
application	programming	interface	/	The	application	programming	interface
database	/	Database
web	interface	/	Web	interface
queues	service	/	Queue	services
worker	services	/	Worker	services

Secure	Socket	Host	(SSH)
about	/	A	secure	Socket	Host	setup

service	definition
creating	/	Service	definition	creation

Service	Level	Agreement	(SLA)	/	How	to	measure	high	availability
single	point	of	failure	(SPOF)	/	How	to	measure	high	availability
Single	Point	of	Failure	(SPOF)

about	/	Automatic	failover
split-brain,	preventing

about	/	Preventing	a	split-brain
server-side	quorum,	setting	/	Setting	the	server-side	quorum
client-side	quorum,	setting	/	Setting	the	client-side	quorum

split-brain,	resolving	steps
about	/	Steps	to	resolve	a	split-brain
split-brain	victim,	selecting	/	Choosing	a	split-brain	victim
force	discard,	of	victim	/	Force	discard	of	the	victim
resynchronization	process	/	Resynchronization

status
checking,	of	Ceph	/	Checking	the	status	of	Ceph

storage	node
configuring	/	Configuring	a	storage	node

successful	geo-replication	deployment
verifying	/	Verifying	a	successful	geo-replication	deployment

Swift	/	The	solution	with	OpenStack

V
virtual	router	redundancy	protocol	(vrrp)

about	/	Load	balance	as	a	service

	Learning OpenStack High Availability
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. An Introduction to High Availability Concepts
	What does High Availability (HA) mean?
	How to measure high availability
	Common content in the contract
	How to achieve high availability
	Architecture design for high availability
	High availability in OpenStack
	Summary
	2. Database and Messaging Services
	Installing MariaDB with Galera clustering
	Installation of high availability RabbitMQ cluster
	Configuring the nodes to know each other
	Installing RabbitMQ on the two nodes
	Constructing a RabbitMQ broker
	Restarting the RabbitMQ services on the nodes
	Formation of cluster
	Check the status of a cluster
	Summary
	3. Load Balancing for Active/Active Services
	The installation of HAProxy and keepalived
	The requirement for an experimental setup
	The keepalived configuration on controller_2
	Defining the HAProxy configuration
	HAProxy configuration for the controller_1 node
	The HAProxy configuration for the controller_2 node
	Making the controller_1 node active
	Making the controller_2 node active
	Summary
	4. Clustering, Fencing, and Active/Passive Services
	Installing Corosync and Pacemaker
	Requirements for the experimental setup
	A secure Socket Host setup
	Installing the Corosync package
	Sharing and generating Corosync keys
	Creating a configuration file
	Starting Corosync
	Starting Pacemaker
	Setting the cluster properties
	The load balancing of high availability MySQL
	DRBD replicated storage
	Installing MySQL
	High availability RabbitMQ via AMQP
	Configuring DRDB
	Creating a filesystem
	Preparing RabbitMQ for Pacemaker high availability
	Adding the RabbitMQ resources to Pacemaker
	Configuring OpenStack services for highly available RabbitMQ
	Summary
	5. Highly Available OpenStack Services
	High availability compute services
	Installing and configuring the Nova packages
	Creating the Nova database
	Populating a database
	The load balancing of compute services
	Reloading the HAProxy services
	High availability dashboard services
	Installing and configuring the dashboard
	Configuring Memcache
	Restarting the Memcache services
	Load balancing of dashboard services
	Reloading the HAProxy services
	High availability object storage services
	Installing and configuring object storage
	Creating a disk partition
	Creating directories
	Replicating data on storage nodes
	Installing a Swift proxy
	Configuring Memcache
	Creating a proxy configuration file
	Configuring a Swift ring
	The load balancing object store services
	High availability image services
	Installing and configuring image services
	Creating the Glance database
	Populating the databases
	The load balancing of image services
	The load balancing HTTP REST API
	Creating a load balancing pool
	Adding a Virtual IP (VIP)
	Launching instances
	Security group creation
	Adding members to the load balancing pool
	Setting a sample web server
	Validating web servers with index.html
	Summary
	6. Distributed Networking
	Installing a high availability distributed virtual routing
	Control node setup
	Disabling reverse path filtering
	Loading a new kernel
	Configuring the neutron
	Configuring the ML2 plugin
	Restarting the services
	A network node setup
	Enabling packet forwarding and disabling reverse path filtering
	Loading a new kernel
	Configuring the neutron
	Configuring the ML2 plugin
	Configuring the L3 agent
	Configuring the DHCP agent
	Configuring the metadata agent
	Restarting the services
	A compute node setup
	Enabling packet forwarding and disabling reverse path filtering
	Loading a new kernel
	Configuring neutron
	Configuring the ML2 plugin
	Configure the L3 agent
	Configuring the metadata agent
	Restarting the services
	Verifying the service operation
	Summary
	7. Shared Storage
	An introduction to GlusterFS
	Installing GlusterFS
	Configuring GlusterFS for block storage
	Installation of GlusterFS
	Configuring the nodes for communication
	The status of peers
	Creating a data point
	Starting the volume services
	An introduction to Ceph
	Installing Ceph
	Installing Openssh
	Connecting to the Ceph node
	Configuring the Ceph node
	Configuring a storage node
	Checking the status of Ceph
	Summary
	8. Failure Scenario and Disaster Recovery
	Network partition split-brain
	Preventing a split-brain
	Setting the server-side quorum
	Setting the client-side quorum
	A real-time failure scenario of split-brain
	Steps to resolve a split-brain
	Choosing a split-brain victim
	Force discard of the victim
	Resynchronization
	Automatic failover
	Load balance as a service
	The working of a failover
	Getting all the failed routers
	An LBaaS agent failover
	Geo-replication
	Creating geo-replication sessions
	Starting geo-replication
	Verifying a successful geo-replication deployment
	A real-time failure scenario
	Issues in the master log file
	Issues in the Slave log file
	Issue in data synchronization
	Issues in the geo-replication status display
	Summary
	9. The Principles of Design for Highly Available Applications
	The principles of design features
	Micro services and scalability
	Fault tolerance
	Cloud automation
	RESTful application programming interface (APIs)
	A sample application deployment
	The application programming interface
	Database
	Web interface
	Queue services
	Worker services
	An interaction of the application with OpenStack
	Choosing the OpenStack SDK
	Flavors and images
	Launching an instance
	Destroying an instance
	Deploying the application on a new instance
	Booting and configuring an instance
	Associating a floating IP for external connectivity
	Accessing the application
	Summary
	10. Monitoring for High Availability
	The Nagios monitoring service
	Installation of the Nagios monitoring service
	Installation of Nagios related packages
	Installation of the Nagios remote plugin executor
	Configuring Nagios
	HTTPD configuration
	Accessing the Nagios web interface
	OpenStack services configuration
	OpenStack services configuration
	Service definition creation
	Graphite monitoring tool
	Installing Graphite
	Ceilometer configuration
	Adding publisher
	Carbon installation
	Logstash, Elasticsearch and Kibana
	Installing Logstash
	An Elasticsearch store
	The Kibana frontend
	Summary
	11. Use Cases and Real-World Examples
	A case study of Cisco WebEx
	Challenges with the infrastructure of Cisco WebEx
	The solution with OpenStack
	The final outcome
	Case study of Huawei
	Challenges with the infrastructure of Huawei
	The solution with OpenStack
	The final outcome
	Case study of Multiscale Health Networks
	Challenges with the infrastructure of Multiscale
	The solution with OpenStack
	The final outcome
	Case study of eBay
	Challenges with eBay business process
	The solution with OpenStack
	The final outcome
	Summary
	Index

