
www.allitebooks.com

http://www.allitebooks.org

Learning OpenStack

Set up and maintain your own cloud-based
Infrastructure as a Service (IaaS) using OpenStack

Alok Shrivastwa

Sunil Sarat

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning OpenStack

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1261115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-696-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Alok Shrivastwa

Sunil Sarat

Reviewers
Dr. Ketan Maheshwari

Ben Silverman

Commissioning Editor
Akram Hussain

Acquisition Editors
Harsha Bharwani

Rahul Nair

Content Development Editor
Amey Varangaonkar

Technical Editor
Deepti Tuscano

Copy Editor
Kausambhi Majumdar

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Alok Shrivastwa is a technologist from India, currently working as a director of
Cloud Services for Microland Limited in their Center of Innovation. He has a
keen interest in all things physical and metaphysical and is an innovator at heart.
He has worked with multiple large- and medium-sized enterprises, designing
and implementing their network security solutions, automation solutions, VoIP
environments, datacenter designs, public and private clouds, and integrations.

He has also created several tools and intellectual properties in the field of
operationalization of emerging technologies. He has also authored several white
papers and blogs on technology and metaphysical topics, in addition to writing
poems in Hindi. Also, he has been a guest speaker for undergraduate engineering
students in Chennai.

You can connect with him at https://in.linkedin.com/in/alokas or follow him
at @alok_as.

One of the best kept secrets about any form of art, including writing,
is that it is through you and not by you! I would firstly like to thank
God for giving me the knowledge, then the zeal, and finally, the
opportunity to share it with everyone; secondly, my mother, Seema,
without whose support and efforts I wouldn't have even dared to
think about writing this book; thirdly, my father, Arun; and finally,
my sisters, Kawshiki and Abhabya, without whom I would be so
lost. I thank Microland for giving me the opportunities to work with
every technology that I could have wished for.

I would like to thank the reviewers for their patient reviews and the
excellent insights through all the drafts. which have not only helped
me grow as an author, but also helped to shape the book. Thank you
all! All the editors who have worked on the book have really worked
their magic with it and no amount of thanks would suffice. Finally,
I would like to thank Packt Publishers for providing the platform to
connect with all enthusiastic minds, in the form of this book. I truly
hope you enjoy it.

www.allitebooks.com

https://in.linkedin.com/in/alokas
http://www.allitebooks.org

Sunil Sarat is the vice president of Cloud and Mobility Services at Microland Ltd, an
India-based global hybrid IT infrastructure services provider.

He played a key role in setting up and running emerging technology practices dealing
with areas such as public/private cloud (AWS and Azure, VMware vCloud Suite,
Microsoft, and OpenStack), hybrid IT (VMware vRealize Automation/Orchestration,
Chef, and Puppet), enterprise mobility (Citrix Xenmobile and VMware Airwatch), VDI
/app virtualization (VMware Horizon Suite, Citrix XenDesktop/XenApp, Microsoft
RDS, and AppV), and associated transformation services.

He is a technologist and a business leader with an expertise in creating new practices/
service portfolios and in building and managing high performance teams, strategy
definition, technology roadmaps, and 24/7 global remote infrastructure operations.
He has varied experiences in handling diverse functions such as innovation/
technology, service delivery, transition, presales/solutions, and automation.

He has authored white papers, blogs, and articles on various technology- and
service-related areas. Also, he is a speaker at cloud-related events and reviews
technical books. He has reviewed the books Learning Airwatch and Mastering
VMware Horizon 6, Packt Publishing.

He holds various industry certifications in the areas of compute, storage, and
security and also has an MBA degree in marketing.

Besides technology and business, he is passionate about filmmaking and is a
part-time filmmaker as well.

For more information, you can visit his Linkedin profile at https://www.linkedin.
com/in/sunilsarat or follow him at @sunilsarat.

Firstly, I would like to thank the existence for enabling me to write
this book. I would like to thank my family—my mother, Ratna, my
wife, Abhaya, and my twins, Advika and Agnika, for supporting me
throughout. Thanks to my friends KK, Syed, Samina, and Mayank
for their encouragement.

I would like to thank Microland for all the exposure and support
provided, which was instrumental for me to write this book. I am
grateful to my coauthor, Alok Shrivastwa, and last but not least
Packt Publishers for the opportunity and also for the guidance.

www.allitebooks.com

https://www.linkedin.com/in/sunilsarat
https://www.linkedin.com/in/sunilsarat
http://www.allitebooks.org

About the Reviewers

Dr. Ketan Maheshwari is a postdoctoral researcher in the Mathematics and Computer
Science Division at Argonne National Laboratory. He earned his doctoral degree
in 2011 from the University of Nice with the highest honors. His research interests
include distributed and parallel computing with an emphasis on workflow
programming of high-level science and engineering applications.

Dr. Maheshwari's recent paper on clouds, coauthored with colleagues and
collaborators, has won the best paper award at the 2014 HPDC workshops. He has
coauthored several papers in the area of HPC and distributed and cloud computing
in international journals and conferences. He currently serves as an editor in Future
Generation Computer Systems.

Ben Silverman has worn many hats in his career—Unix administrator, Engineer,
Programmer, Consultant, IT manager, and Enterprise OpenStack Architect.
Currently, Ben is currently a Cloud Architect at Mirantis where he works with
product managers, project managers, engineering teams, customers, and sales teams
to develop custom cloud solutions for customers based on the OpenStack platform
and third-party partners.

Previously, Ben was the Lead OpenStack Architect and Engineer at American
Express where he led the challenge of building and running American Express'
first OpenStack private cloud. Previously, Ben was the Lead Technical Architect of
a four-year, $1 billion data center migration project. During this engagement, Ben
faced the challenge of designing strategies to move American Express' production
datacenter from the West Coast to the East Coast.

Ben also holds a Master of Science in Information Management degree from Arizona
State University's W.P. Carey School of Business and enjoys playing the banjo in his
very limited free time.

I'd like to thank my wife, Jennifer, and my sons, Jason and Brayden,
for all their support for my late nights and long days.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: An Introduction to OpenStack	 1

Choosing an orchestrator	 2
Building a private cloud	 4

Commercial orchestrators	 4
OpenStack	 5

When to choose OpenStack?	 5
OpenStack architecture	 6
Service relationships	 8
Services and releases history	 8
Service functions	 9

Keystone	 10
Horizon	 10
Nova	 10
Glance	 11
Swift	 11
Cinder	 11
Neutron	 11
Heat	 12
Ceilometer	 12
Trove	 12
Sahara	 12
Designate	 13
Ironic	 13
Zaqar	 13
Barbican	 13
Manila	 13
Murano	 14
Magnum	 14
Kolla	 14
Congress	 14

Service dependency maps	 14

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Preparing for the OpenStack setup	 16
Selecting the services	 16
Service layout	 16

Controller node	 17
Network node	 17
Compute node	 17
Storage node	 18

Operating system	 18
Network layout	 18

Summary	 20
Chapter 2: Authentication and Authorization Using Keystone	 21

Identity concepts in Keystone	 22
User	 22
Project (or tenant)	 22
Role	 22

Architecture and subsystems	 23
Identity	 24
Resource	 24
Assignment	 24
Policy	 24
Token	 24
Catalog	 24

Installing common components	 25
Setting up the database	 25

Installing MariaDB	 25
Configuring the database	 27
Securing the database	 28
Testing the installation	 28

Setting up the messaging broker	 29
Installing RabbitMQ	 30
Configuring the RabbitMQ server	 31
Testing the installation	 32

Installing Keystone	 33
Setting up the OpenStack repository	 33
Creating the database	 34
Installing the package	 35
The initial configuration	 36

Generating the admin token	 36
Modifying the Keystone configuration file	 36
Populating the Keystone DB	 37
Setting up your first tenant	 39
Creating service endpoints	 42

Table of Contents

[iii]

Verifying the installation	 44
Using Keystone CLI	 44
Using the API	 45

Troubleshooting the installation and configuration	 47
DB sync errors	 48

System language settings	 48
Configuration errors	 48

Failing Keystone commands	 48
Service non-responsive	 48
DNS issues	 48
Network issues	 49

Summary	 49
Chapter 3: Storing and Retrieving Data and Images
using Glance, Cinder, and Swift	 51

Introducing storage services	 51
Working with Glance	 52

Creating the database	 54
Installing the packages	 55
Initial configuration of Glance	 55

Creating a user in Keystone	 56
Creating a Glance service in Keystone	 57
Creating a Glance endpoint	 57
Modifying Glance configuration	 58
Populating the Glance database	 60

Finalizing the installation	 60
Validating the installation	 60

Working with Cinder	 63
Controller node	 64
Creating the database	 64
Installing packages	 65
Initial configuration	 65

Creating a user in Keystone	 65
Creating Cinder service in Keystone	 66
Creating Cinder endpoints	 66
Modifying the configuration files	 67
Populating the Cinder database	 68

Finalizing the installation	 68
Storage node	 68

Understanding the prerequisites	 68
Installing the packages	 70
Modifying the configuration files	 71
Finalizing the installation	 72
Validating the installation	 72

Table of Contents

[iv]

Working with Swift	 73
Controller node	 75
Installing packages	 75
Initial configuration	 76

Creating a user in Keystone	 76
Creating a Swift service in Keystone	 76
Creating a Swift endpoint	 76
Modifying the configuration files	 77

The storage node	 80
Understanding the prerequisites	 80
Installing the packages	 82
Modifying the configuration files	 82
Creating the rings	 83
Distributing the ring	 86
Finalizing and validating the install	 86

Troubleshooting steps	 86
Swift authentication error	 87

Ring files don't get created	 87
Summary	 88

Chapter 4: Building Your Cloud Fabric Controller Using Nova	 89
Working with Nova	 90
Installing Nova components	 91

Installing on the controller node	 91
Creating the database	 92
Installing components	 93
Initial configuration	 93

Installing on the compute node	 97
Installing KVM	 98
Installing Nova compute components	 98
Modifying the host files	 99
Modifying the configuration file	 99
Finalizing the installation	 100

Verifying the installation	 100
Console access	 101
Designing your Nova environment	 102

Logical constructs	 102
Region	 103
Availability zone	 103
The host aggregates	 103

Virtual machine placement logic	 104
Sample cloud design	 104

Troubleshooting installation	 106
Summary	 107

Table of Contents

[v]

Chapter 5: Technology-Agnostic Network Abstraction
Using Neutron	 109

The software-defined network paradigm	 109
What is an overlay network?	 111

Components of overlay networks	 111
Overlay technologies	 112
Underlying network considerations	 113

Open flow	 113
Underlying network consideration	 114

Neutron	 115
Architecture of Neutron	 116

The Neutron server	 116
L2 agent	 117
L3 agent	 117

Understanding the basic Neutron process	 117
Networking concepts in Neutron	 118

Installing Neutron	 120
Installing on the controller node	 120

Creating the database	 121
Installing Neutron control components	 121
Initial configuration	 122
Setting up the database	 126
Finalizing the installation	 126
Validating the installation	 127

Installing on the network node	 127
Setting up the prerequisites	 128
Installing Neutron packages	 128
Initial configuration on the network node	 129
Setting up OVS	 132
Finalizing the installation	 132
Validating the installation	 133

Installing on the compute node	 133
Setting up the prerequisites	 134
Installing packages	 134
Initial configuration	 134
Finalizing the installation	 136
Validating the installation	 136

Troubleshooting Neutron	 137
Summary	 138

Chapter 6: Building Your Portal in the Cloud	 139
Working with Horizon	 139

Some basic terminologies	 140
System requirements to install Horizon	 141
Installing Horizon	 142
The initial configuration of Horizon	 143

Table of Contents

[vi]

Finalizing the installation	 143
Validating the installation	 143
The structure of the Horizon dashboard	 144

Troubleshooting Horizon	 146
Understanding the Horizon log	 147

Summary	 147
Chapter 7: Your OpenStack Cloud in Action	 149

Gathering service requirements	 149
Tenant and user management	 151

GUI	 151
Creating the project	 151
Adding users	 153
Associating users to the project	 154

CLI	 155
Creating the project	 155
Creating the users	 155
Associating users to the roles	 156

Network management	 156
Network types	 156

Physical network	 156
Virtual network	 156

External network	 158
Creating the network	 158
Creating the subnet	 159

Tenant network	 160
Create the tenant network	 160
Creating a subnet	 161
Creating a router	 162

Requesting services	 163
Access and security	 163

Security groups	 163
Key pairs	 164

Requesting your first VM	 164
Creating a security group	 164
Creating a key pair	 167
Launching an instance	 168
Using CLI tools	 171

Behind the scenes - how it all works	 174
Creating VM templates	 176

Installing Oz and its dependencies	 177
RHEL/CentOS	 177
Ubuntu	 177

Oz templates	 177

Table of Contents

[vii]

Creating VM templates using Oz	 180
Uploading the image	 180

Summary	 181
Chapter 8: Taking Your Cloud to the Next Level	 183

Working with Heat	 183
The components of Heat	 184
Heat Orchestration Template (HOT)	 185
Installing Heat	 186

Creating the database	 187
Installing components	 187
The initial configuration	 188
Finalizing the installation	 192

Deploying your first HOT	 192
Ceilometer	 195

Installing Ceilometer	 197
Installing Ceilometer on the controller node	 197

Installing Ceilometer on the compute node	 207
Installing the packages	 207

Installing Ceilometer on the storage node	 208
Enabling Cinder notification	 209
Finalizing the installation	 209

Testing the installation	 209
Billing and usage reporting	 211
Summary	 213

Chapter 9: Looking Ahead	 215
OpenStack distributions	 215

Devstack	 216
Operating system distributions	 216

Ubuntu OpenStack	 216
RedHat OpenStack	 216
Oracle OpenStack	 216

Vendor offerings	 216
VMware integrated OpenStack	 217
Rackspace cloud	 217
HP Helion	 217
Cisco OpenStack	 217
Mirantis OpenStack	 218
SwiftStack	 218
IBM Cloud manager	 218
Suse Cloud	 218

Other public clouds	 218
Choosing a distribution	 219

Table of Contents

[viii]

OpenStack in action	 220
Enterprise Private Cloud	 220
Service providers	 221
Schools/Research centers	 221
Web/SaaS providers	 221

The roadmap	 221
What is in it for you?	 223
Summary	 223

Appendix: New Releases	 225
The releases	 226
Features and differences	 226
Changes in the installation procedure	 230

Adding the repository	 230
The OpenStack client	 230
Installing Keystone	 231
Service configurations	 233

Upgrading from Juno	 234
Cleanup	 234
Backup	 234
Adding the repositories	 235
Running the upgrade	 235
Installing additional components	 235
Updating the DB schema	 235
Modifying configuration files	 235
Restarting services	 236

Index	 237

[ix]

Preface
The cloud is the new IT paradigm, and has moved beyond being probable to being
inevitable. No one can ignore it. Organizations are embracing the cloud for various
reasons such as agility, scalability, capex reduction, and a faster time to market their
products and services. There are choices available in terms of the following:

•	 Ownership and control, with the options of public, private, or hybrid cloud
•	 Delivery model, with the options of SaaS (Software as a Service), PaaS

(Platform as a Service), and IaaS (Infrastructure as a Service).

If the focus of an organization (or a cloud service provider) is on Infrastructure as
a Service, then one needs to look at ways to build a cloud and deliver IaaS to their
users. The cloud operating system, or cloud control layer or cloud software system
or simply put cloud orchestrator, is at the heart of building a cloud delivering
IaaS. While there are many choices available as far as the cloud orchestrator goes,
OpenStack is a popular choice in the open source segment.

OpenStack is rapidly gaining momentum and is poised to become the leader in this
segment. Therefore, it becomes imperative for organizations and IT managers /
support teams to have these critical OpenStack skills. The challenge, however, stems
from the fact that OpenStack is not a single product, but is a collection of multiple
open source projects. Therefore, the challenge really is to have an understanding of
these projects independently, along with their interactions with the other projects
and how they all are orchestrated together. While there is documentation available
from the OpenStack project, it is important to have the necessary knowledge to stitch
all of these services/components together and build your own cloud. There are not
many books/reading material that are available out there to address this challenge.

Preface

[x]

This book is an attempt to provide all the information that is just about sufficient to
kickstart your learning of OpenStack and build your own cloud. In this book, you will
be introduced to all major OpenStack services, the role they play, installation, and the
basic configuration and troubleshooting of each of these services. This book takes a
more practical-oriented approach to learning, as the knowledge from each chapter will
culminate in you being able to build your own private cloud by the time you finish
reading this book. We hope you will enjoy reading this book and more importantly
find it useful in your journey towards learning and mastering OpenStack.

What this book covers
Chapter 1, An Introduction to OpenStack, introduces the concepts of the cloud, IaaS,
and its building blocks. It talks about the core component of the cloud, which is
the Orchestrator, in a bit more detail, looks at various orchestrators available in the
market, and how they compare to OpenStack. This chapter provides a brief history
of OpenStack and introduces its services as well.

Chapter 2, Authentication and Authorization Using Keystone, introduces the concepts
of identity in Keystone. It also deals with the architecture of Keystone and how
Keystone provides identity, token, catalog, and policy services. This is followed by
step-by-step instructions to install, configure, and troubleshoot Keystone.

Chapter 3, Storing and Retrieving Data and Images using Glance, Cinder, and Swift
introduces the concepts of block and object storage in the context of OpenStack. It
introduces the architecture of Cinder, Swift, and Glance. This is followed by step-by-
step instructions to install, configure, and troubleshoot all these storage services.

Chapter 4, Building your Cloud Fabric Controller Using Nova, introduces the concept of a
Cloud Computing Fabric controller and "compute as a service". It also introduces the
architecture of Nova and the different types of controllers that it has. This is followed
by step-by-step instructions to install, configure, and troubleshoot Nova.

Chapter 5, Technology-Agnostic Network Abstraction Using Neutron, introduces the
concepts of "Networking as a Service" and "Software Defined Networking". It talks
about the networking challenges that are introduced by the cloud and how Neutron
handles them. It then introduces the architecture of Neutron. This is followed by
step-by-step instructions to install, configure, and troubleshoot Neutron.

Chapter 6, Building Your Portal in the Cloud, introduces the need for dashboards
in a cloud environment. It also introduces the architecture of Horizon and the
terminologies used in the context of Horizon such as panels, tabs, dashboards,
workflows, actions, tables, URLs, and views. This is followed by step-by-step
instructions to install, configure, and troubleshoot Horizon.

Preface

[xi]

Chapters 7, Your OpenStack Cloud in Action, stitches all the pieces together and
presents how all of the components come together to provide IaaS to users while
highlighting the role each of these components plays. This also introduces aspects
such as user and tenant management using GUI and CLI, network management,
services request, and template creation.

Chapter 8, Taking Your Cloud to the Next Level, introduces two OpenStack optional
components, Ceilometer and Heat. It discusses Heat, Heat API, Heat CF API,
Heat Engine, and Heat Orchestration Templates. This chapter also discusses data
collection, alarms, and meters in Ceilometer, and how can this be used to provide
billing and usage reporting.

Chapter 9, Looking Ahead, introduces the various distributions of OpenStack and
vendor offerings based on OpenStack. It also discusses different use cases where
OpenStack is being used and concludes by briefly touching upon the roadmap.

Appendix, New Releases, introduces the major differences between the last three
releases of OpenStack.

What you need for this book
The following are the software, hardware and OS requirements:

•	 Software required: Ubuntu OpenStack (The Juno release)
•	 Hardware required: Four servers, physical or virtual, with 4 GB RAM / 2

core processors each
•	 OS required: Ubuntu 14.04 LTS

Who this book is for
This book is intended for IT administrators/architects/managers, with a basic
knowledge of IaaS and cloud computing. It is assumed that the readers have a
firm grasp of the Linux operating system, virtualization, networking, and storage
principles. This book will help any reader who is trying to build and enhance their
skills with OpenStack. We believe that this is the right kind of opportunity for
all those readers who have embarked on a journey to build OpenStack skills and
enhance their career in the next generation cloud world.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The roles are defined in the policy.json file located at /etc/keystone/policy.
json."

Any command-line input or output is written as follows:

sudo apt-get install software-properties-common

sudo apt-key adv --recv-keys --keyserver
hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "If you
need to change the defaults for every project, click on Update Defaults and change
to the values you need "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xiii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

An Introduction to OpenStack
Enterprises traditionally ran their IT services by running appropriate applications on
a set of infrastructures and platforms. These were comprised of physical hardware in
terms of compute, storage, and network along with software in terms of hypervisors,
operating systems, and platforms. A set of experts from infrastructure, platform, and
application teams would then put the pieces together and get a working solution
tailored to the needs of the organization.

With the advent of virtualization and later on cloud, things have changed to a
certain extent, primarily in the way things are built and delivered. Cloud, which
has its foundations in virtualization, delivers a combination of relevant components
as a service; be it Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
or Software as a Service (SaaS). In this book, we will only discuss how to provide
a system with IaaS using an OpenStack-based private cloud. The key aspect of
providing a system with IaaS is cross-domain automation. The system that helps
us achieve this is called a Cloud Service Orchestrator or Cloud Platform or Cloud
Controller. For the purposes of this book, we will refer to OpenStack as the Cloud
Service Orchestrator. The Cloud Service Orchestrator or, simply put, the orchestrator
is primarily responsible for the following:

•	 The stitching together of hardware and software to deliver a defined service
(in the context of our book, IaaS)

•	 Automating the workflows that are required to deliver a service

Thus, in a cloud environment, the most important component is the orchestrator.
There are several orchestrators; both free and open-source (FOSS) and commercial,
which can help turn your virtualized IT infrastructure into a cloud.

An Introduction to OpenStack

[2]

Some of the choices in the FOSS segment for the orchestrators are as follows:

•	 OpenStack
•	 Apache CloudStack
•	 Open Nebula

Some choices of commercial orchestrators are as follows:

•	 VMware vRealize Automation and vRealize Orchestrator
•	 VMware vCloud Director
•	 Cisco Intelligent Automation for the cloud (CIAC) and UCS Director
•	 Microsoft Opalis and Systems Center
•	 BMC Atrium

In this book, we embark on a journey to understand the concepts, to install and
configure the components of OpenStack, and finally, to build your own cloud
using OpenStack. At the time of writing this book, OpenStack has been by far the
most famous and widely adopted FOSS orchestrator or Cloud Software Platform in
the market and the most comprehensive offering that provides IaaS among FOSS
alternatives.

In this chapter, we will cover the following:

•	 The differences between commercial orchestrators and FOSS orchestrators,
and where each of these types of orchestrators fit well in today's world

•	 The basic building blocks of a private cloud and how OpenStack is different
from commercial orchestrators in building a private Cloud

•	 The key differences between commercial orchestrators and OpenStack
•	 An introduction to OpenStack architecture, services, and service

dependencies
•	 A preparation for OpenStack setup where we discuss the details of a test

setup, which will lead us on a journey of building our own private cloud
using OpenStack

Choosing an orchestrator
There are some key differences between commercial orchestrators, such as vRealize
Automation and CIAC, and FOSS orchestrators, such as OpenStack. While both of
them attempt to provide IaaS to users, it is important to understand the difference
between both the types of orchestrator in order to appropriately design your Cloud.

Chapter 1

[3]

Let's begin with commercial orchestrators; these provide a base IaaS to their users.
They normally sit on top of a virtualized environment and enable an automated
provisioning of compute, storage, and network, even though the extent of
automation varies. As a part of the toolset, they also typically have a workflow
engine, which in most cases provides us with an extensibility option.

The commercial orchestrators are a better choice when the entire orchestration needs
to be plugged in to the current IT processes. They work wonderfully well when
extensibility and integration are major tasks of the cloud environment, which is
typically seen in large enterprises given the scale of operations, the type of business
critical applications, and the maturity of IT processes.

In such large enterprises, in order to take full advantage of the private cloud, the
integration and automation of the orchestrator in the IT systems of the company
becomes necessary. This kind of orchestration is normally used when minimum
changes are anticipated to be made to the applications. A primary use case of this is
IaaS, where virtual machines are provisioned on a self-service basis and a very small
learning curve is involved.

FOSS orchestrators are less extensible, but more standardized in terms of offerings.
They offer standardized services that a user is expected to use as building blocks
to offer a larger solution. In order to take full advantage of the FOSS orchestrators,
some amount of recoding of applications is required as they need to make use of
the newly offered services. The use cases here are both IaaS and PaaS (for example,
Database as a Service, Message Queue as a Service, and so on).

For this reason, the APIs that are used among the FOSS orchestrators need to have
some common ground. This common ground that we are talking about here is
Amazon Web Services (AWS) API compatibility, as Amazon has emerged as the
gold standard as far as the service-oriented cloud architecture is concerned. At the
time of writing the book, OpenStack Nova still had AWS EC2 API compatibility,
but this may be pushed out to the StackForge project.

•	 Most FOSS orchestrators provide us with a way to use Amazon APIs
wherever possible. It is for this reason that in the next section, we will
compare the services available in OpenStack to the equivalent services
offered by AWS.

An Introduction to OpenStack

[4]

Building a private cloud
Clouds fall under different categories depending on the perspective. If we look at
it from an ownership and control standpoint, they will fall under private, public,
hybrid, and community cloud categories. If we take a service perspective, it could
be IaaS, PaaS, or SaaS. Let's look at the basic building blocks of a private cloud and
understand how commercial orchestrators fit in vis-à-vis OpenStack.

Commercial orchestrators
The following block diagram shows the different building blocks of a cloud that are
normally seen in a private implementation with a commercial orchestrator:

Self Service Portal

M
et

er
in

g
&

B
ill

in
g

API Endpoints

Orchestrator

Workflows & Connectors

ITIL Toolset

Configuration
Management

Monitoring

CMDB

IPAM

Virtualization

Compute Network Storage

VM

App

VM

VM

Enterprise Toolset Integration

Vi
rt

ua
liz

ed
D

at
ac

en
te

r

A private cloud with a commercial orchestrator

As we can see, in this private cloud setup, additional blocks such as Self Service
Portal, Metering & Billing, and Workflows & Connectors sit on top of an already
existing virtualized environment to provision a virtual machine, a stack of virtual
machines, or a virtual machine with some application installed and configured over it.

While most of the commercial orchestrators are extensible, some of them have
prebuilt plugins or connectors to most commonly used enterprise toolsets.

Chapter 1

[5]

OpenStack
OpenStack doesn't natively support integration with enterprise toolsets, but in lieu
of this, it provides more standardized services. OpenStack feels and behaves more
like a public cloud inside an enterprise and provides more flexibility to a user. As
you can see in the following diagram, apart from VM provisioning, services such as
database, image storage, and so on are also provisioned:

Virtualization

C
ei

lo
m

et
er

Horizon API Endpoints

Nova Neutron Cinder

Vi
rt

ua
liz

ed
D

at
ac

en
te

r

Compute Network Storage

VM

DB

Hadoop

Tiered
VM

DNS

Block
Store

Image
Store

A private cloud with OpenStack

Please note that some of these services, which are provided as a part of the standard
offering by OpenStack, can be also be orchestrated using commercial orchestrators.
However, this will take some efforts in terms of additional automation and integration.

When to choose OpenStack?
So the big question is: under what circumstances should we choose OpenStack over
the commercial orchestrators or vice versa? Let's look at the following table that
compares the features that are significantly different.

Please note that the ease of installation and management are not covered in the
following table:

Feature OpenStack Commercial orchestrator
Identity and access
management*

Yes Yes

Connectivity to enterprise
toolsets

Not natively (Possible with
ManageIQ)

Yes

Flexibility to the user Yes Somewhat

An Introduction to OpenStack

[6]

Feature OpenStack Commercial orchestrator
Enterprise control Not natively (Possible with

ManageIQ)
Yes

Standardized prebuilt
services

Yes No (Except virtual
machines)

EC2-compatible API Yes No

So based on the previous table, OpenStack is an amazing candidate for an enterprise
dev-test cloud and for providing public cloud-like services to an enterprise, while
reusing existing hardware.

The currently supported stable release of OpenStack is codenamed
Liberty. This book will deal with Juno, but the core concepts and
procedures will be fairly similar to the other releases of OpenStack.
The differences between Juno, Kilo, and Liberty and the subtle
differences between the installation procedures of these will be dealt
with in the Appendix section of the book.

OpenStack has a very modular architecture. OpenStack is a group of different
components that deliver specific functions and come together to create a full-fledged
orchestrator.

OpenStack architecture
The following architecture diagram explains the architecture of the base components
of the OpenStack environment. Each of these blocks and their subcomponents will be
dealt with in detail in the subsequent chapters:

Chapter 1

[7]

Keystone (Identity & Access Management)

Horizon (Dashboard)

Ceilometer (Monitoring & Billing)

H
ea

t
(O

rc
he

st
ra

tio
n)

Neutron

Nova
(Compute)

AQMP
Glance
(Image)

Cinder
(Block

Storage)

Swift
(Object
Store)

Trove
(DBaaS)

Sahara
(Big Data)

Ironic
(Bare
Metal)

Designate
(DNS)

Zaqar
(Notifications)

Barbican
(Key Management)

An OpenStack block diagram

The gray boxes show the core services that OpenStack absolutely needs to run. The other
services are optional and are called Big Tent services, without which OpenStack can run, but
we may need to use them as required. In this book, we look at the core components and also
look at Horizon, Heat, and Ceilometer in the Big Tent services.

Each of the previously mentioned components has their own database. While
each of these services can run independently, they form relationships and have
dependencies among each other. As an example, Horizon and Keystone provide
their services to the other components of OpenStack and should be the first ones to
be deployed.

www.allitebooks.com

http://www.allitebooks.org

An Introduction to OpenStack

[8]

Service relationships
The following diagram expands on the preceding block diagram and depicts the
different relationships amongst the different services:

Authentication

Horizon

Keystone

Swift

Cinder

Heat (Orchestrate)

Networking

Provisioning

Image

Block Storage

Virtual
Machine

UI

Store
Image

C
el

io
m

et
er

M
on

ito
r

Neutron

Nova

Glance

Service relationships

The service relationship shows that the services are dependent on each other. It is to
be noted that all the services work together in harmony to produce the end product
as a Virtual Machine (VM). So the services can be turned on or off depending
on what kind of virtual machine is needed as the output. While the details of the
services are mentioned in the next section, if, as an example, the VM or the cloud
doesn't require advanced networking, you may completely skip the installation and
configuration of the Neutron service.

Services and releases history
Not all the services of the OpenStack system were available from the first release.
More services were added as the complexity of the orchestrator increased. The
following table will help you understand the different services that can be installed,
or should you choose to install another release in your environment:

Chapter 1

[9]

Release name Components
Austin Nova, Swift
Bexar Nova, Glance, Swift
Cactus Nova, Glance, Swift
Diablo Nova, Glance, Swift
Essex Nova, Glance, Swift, Horizon, Keystone
Folsom Nova, Glance, Swift, Horizon, Keystone, Quantum, Cinder
Grizzly Nova, Glance, Swift, Horizon, Keystone, Quantum, Cinder
Havana Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,

Heat, Ceilometer
Icehouse Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,

Heat, Ceilometer, Trove
Juno Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,

Heat, Ceilometer, Trove, Sahara
Kilo Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,

Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar, Manila,
Designate, Barbican

Liberty Nova, Glance, Swift, Horizon, Keystone, Neutron, Cinder,
Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar, Manila,
Designate, Barbican, Murano, Magnum, Kolla, Congress

The OpenStack services and releases

At the time of writing, the only fully supported releases were Juno,
Kilo, and Liberty. Icehouse is only supported from the security
updates standpoint in the OpenStack community. There are,
however, some distributions of OpenStack that are still available on
older releases such as that of Icehouse. (You can read more about
different distributions in the last chapter of the book.).

Service functions
It is important to know about the functions that each of these services performs. We
will discuss the different services of OpenStack. In order to understand the functions
more clearly, we will also draw parallels with the services from AWS. So if you ever
want to compare your private cloud with the most used public cloud, you can.

Please refer to the preceding table in order to see the services that are available in a
particular OpenStack release.

An Introduction to OpenStack

[10]

Keystone
This service provides identity and access management for all the components of
OpenStack. It has internal services such as identity, resource, assignment, token,
catalog, and policy, which are exposed as an HTTP frontend.

So if we are logging in to Horizon or making an API call to any component, we have
to interact with the service and be able to authenticate ourselves in order to use it.
The policy services allow the setting up of granular control over the actions allowed
by a user for a particular service. The service supports federation and authentication
with an external system such as an LDAP server.

This service is equivalent to the IAM service of the AWS public cloud.

Horizon
Horizon provides us with a dashboard for both self-service and day-to-day
administrative activities. It is a highly extensible Django project where you can add
your own custom dashboards if you choose to. (The creation of custom dashboards is
beyond the scope of this book and is not covered here).

Horizon provides a web-based user interface to OpenStack services including Nova,
Swift, Keystone, and so on.

This can be equated to the AWS console, which is used to create and configure
the services.

Nova
Nova is the compute component of OpenStack. It's one of the first services available
since the inception as it is at the core of IaaS offering.

Nova supports various hypervisors for virtual machines such as XenServer, KVM,
and VMware. It also supports Linux Containers (LXC) if we need to minimize
the virtualization overhead. In this book, we will deal with LXC and KVM as our
hypervisors of choice to get started.

It has various subcomponents such as compute, scheduler, xvpvncproxy,
novncproxy, serialproxy, manage, API, and metadata. It serves an EC2 (AWS)-
compatible API. This is useful in case you have a custom system such as ITIL tool
integration with EC2 or a self-healing application. Using the EC2 API, this will run
with minor modifications on OpenStack Nova.

Nova also provides proxy access to a console of guest virtual machines using the
VNC proxy services available on hypervisors, which is very useful in a private cloud
environment. This can be considered equivalent to the EC2 service of AWS.

Chapter 1

[11]

Glance
Glance service allows the storage and retrieval of images and corresponding
metadata. In other words, this will allow you to store your OS templates that you
want to be made available for your users to deploy. Glance can store your images in
a flat file or in an object store (such as Swift).

Swift
Swift is the object storage service of OpenStack. This service is primarily used to
store and retrieve Binary Large Object (BLOBs). It has various subservices such as
ring, container server, updater, and auditors, which have a proxy server as
their frontend.

The swift service is used to actually store Glance images. As a comparison, the EC2
AMIs are stored in your S3 bucket.

The swift service is equivalent to the S3 storage service of AWS.

Cinder
Cinder provides block storage to the Nova VMs. Its subsystems include a volume
manager, a SQL database, an authentication manager, and so on. The client uses
AQMP such as Rabbit MQ to provide its services to Nova. It has drivers for various
storage systems such as Cloud Byte, Gluster FS, EMC VMAX, Netapp, Dell Storage
Centre, and so on.

This service provides similar features to the EBS service of AWS.

Neutron
Previously known as Quantum, Neutron provides networking as a service. There
are several functionalities that it provides such as Load Balancer as a Service and
Firewall as a Service. This is an optional service and we can choose not to use this,
as basic networking is built into Nova. Also, Nova networking is being phased
out. Therefore, it is important to deal with Neutron, as 99 percent of OpenStack
implementations have implemented Neutron in their network services.

The system, when configured, can be used to create multi-tiered isolated networks.
An example of this could be a full three-tiered network stack for an application that
needs it.

This is equivalent to multiple services in AWS such as ELB, Elastic IP, and VPC.

An Introduction to OpenStack

[12]

Heat
Heat is the core orchestration service of the orchestrator. What this means is that
you can script the different components that are being spun up in an order. This
is especially helpful if we want to deploy multicomponent stacks. The system
integrates with most of the services and makes API calls in order to create and
configure different components.

The template used in Heat is called Heat Orchestrator Template (HOT). It is actually
a single file in which you can script multiple actions. As an example, we can write a
template to create an instance, some floating IPs and security groups, and even create
some users in Keystone.

The equivalent of Heat in AWS would be the cloud formation service.

Ceilometer
Ceilometer service is used to collect metering data. There are several subsystems in
the Ceilometer such as polling agent, notification agent, collector, and API. This also
allows the saving of alarms abstracted by a storage abstraction layer to one of the
supported databases such as Mongo DB, Hbase, or SQL server.

Trove
Trove is the Database as a Service component of OpenStack. This service uses Nova
to create the compute resource to run DBaaS. It is installed as a bunch of integration
scripts that run along with Nova. The service requires the creation of special images
that are stored in Glance.

This is equivalent to the RDS service of AWS.

Sahara
Sahara service is the Big Data service of OpenStack; it is used to provision a Hadoop
cluster by passing a few parameters. It has several components such as Auth
component, Data Access Layer, Provisioning Engine, and Elastic Data Processing.

This is very close to getting the MapReduce AWS service in your very own cloud.

Chapter 1

[13]

Designate
The Designate service offers DNS services equivalent to Route 53 of the AWS.
The service has various subsystems such as API, the Central/Core service, the Mini
DNS service, and Pool Manager. It has multiple backend drivers that can be used,
examples being PowerDNS, BIND, NSD, and DynECT. We can create our own
backend drivers as well.

Ironic
The Ironic service allows bare metal provisioning using technologies such as the
PXE boot and the Intelligent Platform Management Interface (IPMI). This will
allow bare metal servers to be provisioned provided we have the requisite drivers
for them.

Please remember that the requisite networking elements have to be configured, for
example, the DNS, DHCP configuration and so on, which are needed for the PXE
boot to work.

Zaqar
Zaqar is the messaging and notification service of OpenStack. This is equivalent to
the SNS service from AWS. It provides multitenanted HTTP-based messaging API
that can be scaled horizontally as and when the need arises.

Barbican
Barbican is the key management service of OpenStack that is comparable to KMS
from AWS. This provides secure storage, retrieval, provisioning and management
of various types of secret data such as keys, certificates, and even binary data.

Manila
Manila provides a shared filesystem as a service. At the moment, it has a single
subcomponent called the manila-manage. This doesn't have any equivalent in the
AWS world yet. This can be used to mount a single filesystem on multiple Nova
instances, for instance a web server with shared assets, which will help to keep the
static assets in sync without having to run a block-level redundancy such as DRBD
or continuous rsyncs.

An Introduction to OpenStack

[14]

Murano
Murano is an application catalog, enabling application developers and cloud
administrators to publish various cloud-ready applications in a catalog format.
This service will use Heat at the backend to deliver this and will only work on
the UI and API layer.

Magnum
Magnum introduces Linux Containers such as Dockers and Kubernetes (by Google)
to improve migration option. This service is in some ways like Trove, it uses
an image with Docker installed on it and orchestrates Magnum with Heat. It is
effectively Container as a Service (CaaS) of OpenStack.

Kolla
Kolla is another project that is focused on containers. While it did make its first
appearance in Kilo, it was majorly introduced in the Liberty release. This is aimed
at better operationalization by containerizing OpenStack itself. That means, we can
now run the OpenStack services in containers, and thereby make governance easier.

At the time of writing, the Kolla project supported services such as Cinder, Swift,
Ceph, and Ironic.

Congress
Congress is another project focused on governance. It provides Policy as a Service,
which can be used for compliance in a dynamic infrastructure, thereby maintaining
the OpenStack components to be compliant to the enterprise policy.

Service dependency maps
The following table shows the dependency of services. The Dependent on column
shows all the services, which are needed for successful installation and configuration
of the service. There might be other interactions with other services, but they are not
mentioned here:

Service name Core service Dependent on
Keystone True None
Horizon False Keystone

Chapter 1

[15]

Service name Core service Dependent on
Glance True Swift

Keystone
Horizon

Swift True Keystone
Nova True Keystone

Horizon
Glance
Cinder (Optional)
Neutron (Optional)

Heat False Keystone
Cinder False Keystone
Neutron False Keystone

Nova
Ceilometer False Keystone
Trove False Keystone

Nova
Glance

Sahara False Keystone
Nova
Glance
Swift
Keystone

Magnum False Heat
Nova
Glance
Swift
Keystone

Murano False Heat

Service dependency

An Introduction to OpenStack

[16]

Preparing for the OpenStack setup
In the remainder of this book, we will be installing and configuring various OpenStack
components. Therefore, let's look at the architecture that we will follow in the
remainder of the book and what we need to have handy.

While we can set up all the components of the OpenStack on a single server, it will
not be close to any real-life scenario, so taking this into consideration, we will do a
minimal distributed installation. Since this book is intended to be a beginner's guide,
we shall not bore ourselves with cloud architecture questions.

Selecting the services
As we are aware by now that OpenStack is made up of individual components, we
need to be careful in selecting the appropriate services. As we have already seen
in the dependency maps table, some services are sort of mandatory and the others
are optional depending on the scenario. Too many services and you complicate
the design, too little and you constrain it; so it is imperative that we strike a good
balance. In our case, we will stick to the basic services:

•	 Keystone
•	 Horizon
•	 Nova
•	 Cinder
•	 Swift
•	 Glance

In the optional section, we will choose Neutron. This should help us in getting
a pretty robust cloud with the essential features rolled out in no time.

Service layout
We will be installing these components on virtual machines for our learning
purposes; we will use four different virtual machines to run our cloud:

•	 Controller node
•	 Network node
•	 Compute node
•	 Storage node

Chapter 1

[17]

The following diagram shows the kind of services that will be hosted in each of
the different nodes in the rest of the book. We will identify the servers with the
previously mentioned names:

Controller Node

Keystone

Nova Mgmt

Horizon

Neutron Mgmt

Storage Mgmt

Hypervisor

Open vSwitch

Nova

Network Plugin

Open vSwitch

Network Plugin

DHCP Agent

L3 Agent

Block Storage

Object Storage

Compute Node Network Node Storage Node

The OpenStack service layout

Controller node
The controller node will house the manager services for all the different OpenStack
components such as message queue, Keystone, image service, Nova management,
and Neutron management.

Network node
The network node server will house Neutron components such as the DHCP Agent,
the L3 Agent, and Open vSwitch. This node will provide networking to all the guest
VMs that spin up in the OpenStack environment.

Compute node
The compute node will have the hypervisor installed on itself. For the purpose of this
setup, we will use LXC or KVM to keep things simple. It also houses network agents.

www.allitebooks.com

http://www.allitebooks.org

An Introduction to OpenStack

[18]

Storage node
The storage node will provide block and object storage to the rest of the OpenStack
services. This will be the node that needs to be connected to the iSCSI storage in
order to create different blocks.

Operating system
We will use Linux Ubuntu 14.04 as the operating system of choice to install and
configure the different components. All the previously mentioned nodes should be
running Ubuntu.

Network layout
Since we are going to use Neutron, the following network architecture needs to be
followed:

•	 Management network: This network is available on all the OpenStack
servers.

•	 Tunnel network: This network is used to tunnel the traffic between the
compute nodes and the network node and is available on all the compute
and the network nodes. There can be more than one if we are going for a
multi-tiered environment.

•	 Storage network: This connects the compute and storage nodes. This is used
as a separate network to ensure that there is no network congestion.

•	 External network: This is connected only to the network node and can be
accessed using Neutron. The elastic IPs are configured on this network.

The following diagram shows the different connections in our network. The compute
node is connected to all the networks except the external network. It is to be noted
that the storage and the tunnel network can be completely internal networks. The
management network is primarily the one that needs to be accessible from the LAN
of the company, as this will be the network that the users will need to reach in order
to access the self-service portal:

Chapter 1

[19]

Network Node

Compute Node

Storage Node

Controller Node

M
an

ag
em

en
t

N
et

w
or

k
External Network

Tunnel Network

Storage Network

Internet

Network connectivity

For the purpose of learning, let's set up the network ranges that we will use in our
installation. The following is the table of the network range:

Network Name IP Range
Management Network 172.22.6.0/24
Tunnel Network 10.0.0.0/24
Storage Network 192.168.10.0/24
External Network 192.168.2.0/24

Network ranges

Since we are using this in the lab network, the external network is assumed and will
need to be changed depending on the routing rules.

An Introduction to OpenStack

[20]

Summary
In this chapter, we were introduced to orchestrators, both commercial and FOSS.
At a very high level, we looked at the differences between these two types of
orchestrators and the appropriate use cases for OpenStack. We also looked at the
basic building blocks of a private cloud and their correlation in the OpenStack world.
We looked at the OpenStack architecture and services. And finally, we covered the
lab setup that would be required to learn the deployment of your private cloud using
OpenStack.

We start our journey in the next chapter by learning to install and configure the
common components that form the basis of most of the OpenStack services. The key
topic covered, however, would be installation and configuration of Keystone, which
is the core authentication and authorization service of OpenStack

[21]

Authentication and
Authorization Using Keystone
Most of the OpenStack components have a basic in-built authentication mechanism,
which is adequate for them to function on their own. However, when they have to
come together, Keystone forms the bridge, a common platform for authentication
and authorization.

Keystone was launched in the Essex release and has been deemed a core component
of the OpenStack deployment ever since. In this chapter, we will understand in some
detail the following:

•	 The Keystone architecture and the subsystems
•	 Installing the prerequisite common components
•	 Installing Keystone
•	 Initial configuration
•	 Basic troubleshooting

Please be advised that this will be installed and configured on
the controller node.
The entire installation and configuration of common components
and the core Keystone service takes between 60-90 minutes.

Authentication and Authorization Using Keystone

[22]

Identity concepts in Keystone
Let's understand identity-related concepts that are used in Keystone.

User
User represents a person or a service with a set of credentials such as a user name,
password, or username and an API key. A user needs to be a member of at least one
project, but can be a part of multiple projects.

Project (or tenant)
A group of users in OpenStack is called a project or a tenant. Both of these terms
are used interchangeably and mean the same thing. Please be advised that tenant is
the new terminology, and the term project has seeped in from the initial days when
Keystone was not available. The policies and quotas are all applied at the project or
the tenant level

As shown in the figure, users can be a part of one or more projects.

Role
The role determines what the user is allowed to do. This is controlled by the policy
subsystem of the Keystone service. The roles are defined in the policy.json file
located at /etc/keystone/policy.json.

Chapter 2

[23]

By default, there are only two roles that come with OpenStack:

•	 admin
•	 member

As the name implies, the admin role has all the privileges and a member comes with
limited privileges. In a general deployment, these two are enough with most users
being members.

Roles are associated with the users, and hence a user associated with
an admin role is granted privileges across all the projects that the
user is assigned to. Hence, please use the admin role carefully.
In order to assign a user to multiple projects, we will need to create
a role and add it to the user project pair. We will see this in the later
part of the book.

Architecture and subsystems
Keystone comprises a bunch of services. We will understand them and their
functionalities; before this, let's take a quick look at the Keystone architecture:

In the preceding diagram, you will see the different subsystems of the service and the
common components that will be shared with the other components of OpenStack.
The MySQL server will be used by most of the components of the OpenStack, and
hence it is classified as OpenStack Common. The LDAP service is optional and will
be common from an enterprise tool set perspective.

Authentication and Authorization Using Keystone

[24]

Identity
Identity verifies the credentials and data of the users and user groups. It can store
the user data in the local database (MySQL), or it can connect to the LDAP to get this
data. If the local database is used, this service is capable of performing the CRUD
(Create, Read, Update, and Delete) operations.

Resource
Resource is similar to identity, but it does this for resources, such as projects and
domains. The LDAP-versus-local-database concepts that were discussed in the
preceding section hold true in this case and for assignment as well.

Assignment
The assignment service categorizes different users and resources by providing
information about roles that are assigned to an identity or a resource.

Policy
Policy ties together the role name and what they are authorized to do. This is an
authorization engine, with a rule management interface.

For instance, a user called John Doe is trying to access the OpenStack
environment and tries to log in; the identity subsystem will authenticate
him either locally or using LDAP (as configured). The assignment sub-
system will provide the different roles assigned to John, and the policy
sub-system will provide the action he is allowed to perform.

Token
Token manages the tokens that are assigned to a user once they authenticate so as to
provide a single sign-on experience across all different components of OpenStack.

Catalog
Catalog provides the endpoint registry that is used in order to discover the various
end points. This is internally used by different services and also by the API, should
we choose to use the API in order to interact with the services.

Chapter 2

[25]

Installing common components
There are two common components (database and messaging broker) that are used by
most of the OpenStack services. We will see how to install and configure them. These
are required before we go ahead and install Keystone. Please note that this will be done
only once. If deploying in an enterprise production environment, chances are these
components may already be present and could be shared with other applications.

Setting up the database
For our purpose, we will set up MariaDB as the database of our choice. MariaDB is
a community-driven fork from MySQL. This happened just around the time when
Oracle took over MySQL.

We will be using MariaDB, but MySQL can be also used with little to no modification
and this is true for rest of the topics in the remainder of the book. If you prefer
another database, such as PostgreSQL, this can be used too, but then the appropriate
drivers need to be installed and configured.

Installing MariaDB
We will need the following information handy when installing MariaDB on our
controller node.

Name Info

Access to the Internet Yes

Proxy needed No

Proxy IP and port Not applicable

Database root password dbr00tpassword

Node name OSControllerNode

Node IP 172.22.6.95

Node OS version Ubuntu 14.04.1 LTS

In a production environment, you can have a database cluster in
order to eliminate single points of failure.

Authentication and Authorization Using Keystone

[26]

Please choose the root password in accordance with a password complexity of your
choice or the organization's choice.

In the book, we will use dbr00tpassword as our MariaDB root password. If you are
planning to use a different password, please substitute it in the relevant places.

Using a proxy server
If you are setting this up in an environment where you need to use a
proxy server for Internet access, the following steps need to be taken.
Set the http_proxy and https_proxy environment variables as
shown here:

•	 export http_proxy=http://proxy_ip_
address:proxy_port

•	 export https_proxy=http://proxy_ip_
address:proxy_port

•	 Set the aptitude proxy server by modifying the /etc/apt/
apt.conf file (if the line doesn't exist, please add it)

•	 Acquire::http::Proxy "http://proxy_ip_
address:proxy_port";

Step 1: Setting MariaDB repository
Please log in to the controller node using SSH. Ensure you have permissions to
install the software:

sudo apt-get install software-properties-common

sudo apt-key adv --recv-keys --keyserver
hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

In order to use apt-key with a proxy, please use the following format
of command, substituting proxy_ip and proxy_port:
sudo apt-key adv --recv-keys --keyserver-options http-
proxy=http://proxy_ip:proxy_port --keyserver
hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

sudo add-apt-repository 'deb
http://kartolo.sby.datautama.net.id/mariadb/repo/5.5/ubuntu trusty
main'

Chapter 2

[27]

We first install the software-properties-common package. Chances are you may
already have the package. The next step is optional but it is recommended that you
do it, as this will allow the public key to be installed so that there is no error during
package signing.

The last line is the most important one. However, all it does is add the line in single
quotes to the /etc/apt/sources.list file.

Once the preceding code is done we will update aptitude:.

sudo apt-get update

Step 2: Installing the MariaDB package
Installing the package requires a single command, as follows:

sudo apt-get install mariadb-server python-mysqldb

This will prompt you to download the files and install them. Once complete,
MariaDB is installed and ready for use.

Please ensure that no errors are encountered during this step.

During installation, you will be prompted for the root password, where you will
have to enter our database root password. If you have left it blank, we will set this up
in the next section.

Configuring the database
We will be configuring only the basic settings that are required for OpenStack to run.
The following configurations will be made to the database in order for it to be able to
work properly with the different services of OpenStack:

•	 Allow connections from outside the box
This is needed so that the components on other physical boxes can
communicate with the database

•	 Set UTF8 character sets

Edit the /etc/mysql/my.cnf file. Under the [mysqld] header, you will find
the bind-address keyword pointing to localhost. Set this to the IP address of the
controller node.

www.allitebooks.com

http://www.allitebooks.org

Authentication and Authorization Using Keystone

[28]

Also, add the following lines shown just below the bind-address in order to enable
UTF-8 encoding:

[mysqld]

bind-address = 172.22.6.95

default-storage-engine = innodb

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

Once this is done, restart the database service with the following command:

sudo service mysql restart

The database service is now up and ready for the next step.

Securing the database
This is an optional step. It is recommended that you secure the database in
production environments. If there are enterprise-specific standards, please follow
those. The following command will secure the database:

mysql_secure_installation

On executing the preceding command, you will be prompted for the root password.
Enter the root password if you have set it up during the installation; otherwise, if
there is no root password, press Enter.

Work through the options; the defaults work well. So leave the defaults in force.
You may also choose to change the root password or set one up here.

Testing the installation
If you have followed all the previous steps and no errors were thrown along the way,
then you have a working installation. Let us log in to MariaDB using the following
command (and entering the password):

mysql –u root –p

Chapter 2

[29]

This shows that the database is active and functional:

In order to test that the database is listening on the IP address and not just localhost,
execute the following command:

netstat –ln | grep 3306

This shows the currently listening processes. We grep for 3306 as this is our
database port. You should be able to see something similar to what is shown here:

This shows that the server is accepting connections on the IP address and hence
listening to the network.

Setting up the messaging broker
OpenStack needs a messaging system in order to queue requests and communicate
among different services.

There are several options such as RabbitMQ, ZeroMQ, and Qpid. We will use
RabbitMQ as the AQMP protocol of our choice. As in the case of the database,
this system will also be set up only once and in an enterprise environment; this
component can be shared.

Authentication and Authorization Using Keystone

[30]

Installing RabbitMQ
We will need the following information handy when installing RabbitMQ on our
controller node.

Name Info

Access to the Internet Yes

Proxy needed No

Proxy IP and port Not applicable

Rabbit MQ guest password rabb1tmqpass

Node name OSControllerNode

Node IP 172.22.6.95

Node OS version Ubuntu 14.04.1 LTS

Step 1: Setting up the RabbitMQ repository
We will set up the Rabbit MQ repository in the same way as we set one up for
MariaDB. Execute the following commands:

sudo add-apt-repository 'deb http://www.rabbitmq.com/debian/ testing
main'

wget https://www.rabbitmq.com/rabbitmq-signing-key-public.asc

sudo apt-key add rabbitmq-signing-key-public.asc

There are three commands as you can see. The first one will add the URL to the /
etc/apt/sources.list file.

The second one downloads the signing key, and the third command installs the
signing key. You can choose to skip the second and the third command, and you will
have to just ignore the warnings.

As always, just update the aptitude by using this command:

sudo apt-get update

Step 2: Installing the RabbitMQ package
Installing the package needs a single command:

sudo apt-get install rabbitmq-server

Once the packages are downloaded and installed, you should now have a working
RabbitMQ service.

Chapter 2

[31]

Configuring the RabbitMQ server
There are several configurations that are possible such as clustering the RabbitMQ
server and setting the queue thresholds. However, we will only perform a few basic
configurations:

•	 Allow the guest account to connect from outside the localhost
The guest account is created by default when Rabbit MQ is installed, but
it is restricted only to localhost. We need to open this up so that the other
OpenStack components can use the service.

•	 Set up a password for the RabbitMQ guest user

Since the guest user can now access from outside, we need to set up a
password that we can configure in various OpenStack service configurations.

Type the following command:

echo '[{rabbit, [{loopback_users, []}]}].' >>
/etc/rabbitmq/rabbitmq.config

This just adds a line in the /etc/rabbitmq/rabbitmq.config file. Please note that,
this file is not created by default.

In order to set the guest password, execute the following command:

rabbitmqctl change_password guest rabb1tmqpass

Please use the same password as you have chosen in the preceding table.

In a production environment, we can use different user accounts for
different services of OpenStack in RabbitMQ but, for the purpose of
this book, we will use the guest account.
In the case of production environments, we can use the following
commands to create a RabbitMQ user and disable the guest user.
Please note that, if you do follow this, you will have to change
the RabbitMQ username and password in the configuration files
wherever they occur:
rabbitmqctl delete_user guest

rabbitmqctl add_user openstack rabb1tmqpass

rabbitmqctl set_user_tags openstack administrator

This will add the user openstack and give them administrator
permission. You will then have to change the RabbitMQ section of all
the other configuration files.

Authentication and Authorization Using Keystone

[32]

To restart RabbitMQ server type the following command:

sudo service rabbitmq-server restart

Please ensure the service starts without any errors.

Testing the installation
In order to test the installation, we check whether RabbitMQ is listening on the
network. This can be tested using our good old netstat command:

netstat –lnp | grep beam

You will see a 5672 or 25672 port listening.

In addition to this, we can use the rabbitmqctl tool:

sudo rabbitmqctl status

This will show you the status of the service. The following diagram shows the kind
of output requested:

The status output also shows the version of the RabbitMQ components.

This book assumes that we are installing on a test bed with no additional
firewalls between the different nodes.
In a production environment, however, you may have additional physical
firewalls, IP tables, and so on, that may block access to the ports.
Please ensure that you check with your network and system administrator
and allow the ports for the various services such as MySQL and
RabbitMQ (the port numbers are mentioned in the tables that precede the
installation) for the environment to work.

Chapter 2

[33]

Installing Keystone
After the common components are installed, we can proceed to install Keystone.
We will use the same table to collect all the information that we need before starting
the installation.

Name Info

Access to the Internet Yes

Proxy needed No

Proxy IP and port Not applicable

Node name OSControllerNode

Node IP address 172.22.6.95

Node OS Ubuntu 14.04.1 LTS

Keystone database password k3yst0ne

One time token Will be generated during the install step

In choosing the password, please don't use the @ symbol as it will
conflict during configuration with the URL syntax.

Setting up the OpenStack repository
Before we start our installation, we will add the juno repository from Ubuntu
to the aptitude to install the components. Please remember to do so in all the
nodes where we will be installing the OpenStack components. Please remember
that this needs to be done only once. Execute the following command to set up the
OpenStack repository:

apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu trusty-
updates/juno main" > /etc/apt/sources.list.d/openstack-juno.list

The preceding commands will simply install the cloud key ring component and add
the http://ubuntu-cloud.archive.canonical.com/ubuntu trusty-updates/
juno main line to the openstack-juno.list file.

Finish up by updating the aptitude package manager:

sudo apt-get update

Authentication and Authorization Using Keystone

[34]

Now we are ready to install various OpenStack Juno services.

Depending on the Linux distribution, the repositories are different.
Please note that, in order to get the latest builds, you can compile the
services from the source if you choose to do so.

Creating the database
The next step along the way is creating the database for Keystone. This will be
created in MariaDB, which we installed earlier. Log in to the MySQL client by
using the following command:

mysql –u root –p

Enter the dbr00tpassword password and execute the following command:

create database keystone;

This command will create a database called Keystone; we will now create the
credentials that will be used to access the database.

We will now be granting privileges to the Keystone user, in the
cases where the request originates from localhost or a remote host.
In most versions of most operating systems, calling out the localhost
separately is not needed and is covered by the %wildchar. The
command for localhost is added simply to cover both possibilities.

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost'
IDENTIFIED BY 'k3yst0ne';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED BY
'k3yst0ne';

Chapter 2

[35]

Please replace the password if you are using a different one. Type exit to get out of
the client:

In order to verify that the previous commands (of creating new credentials and
allowing access to only one database) actually took, we will now login using the
Keystone user name and password we created using similar commands that we used
for the root user.

Once you login with the Keystone username, you should be able to see only the
Keystone database (along with information_schema).

Installing the package
We will now install the Keystone package and its client using the aptitude package
manager with the following command:

sudo apt-get install keystone python-keystoneclient

Please verify that the install completes successfully.

Authentication and Authorization Using Keystone

[36]

The initial configuration
The initial configuration of Keystone needs the following to be done:

•	 Generate a token
•	 Modify the Keystone configuration file

The administrator token is generated only for the installation as there are no users
in the system at the moment. Once the default admin user is created, this token is no
longer necessary.

Generating the admin token
The admin token is a random number. We will use the openssl tool in order to
create it:
openssl rand -hex 10

In my case, it is b7098d7d5eb7bf889842; please make a note of this and have it
ready for the next section.

We will also set the environment variable to be used later in the installation and
configuration process, using the following command:
export OS_SERVICE_TOKEN=b7098d7d5eb7bf889842

This will set the service token.

Modifying the Keystone configuration file
The Keystone configuration file is located at /etc/keystone/keystone.conf.
Edit this using your favorite editor by making the following changes:

•	 [default] section:
°° Set the admin_token value to the string you have generated
°° Set the verbose flag to true (we will set it back to false once the

setup is complete)

•	 [database] section:
°° Set the connection string to mysql://keystone:k3yst0ne@

localhost/keystone (or the equivalent in your environment). The
format of the URL is mysql://<username>:<password>@<host>:<p
ort>/<databasename>. (The port is not mentioned as it is the default
3306 port.)
connection=mysql://keystone:k3yst0ne@localhost/keystone

Chapter 2

[37]

•	 [token] section:
°° Set the provider and driver values as shown in the following, if the

following lines already exist, uncomment them:
provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.sql.Token

•	 [revoke] section:

°° Set the MySQL revocation driver:

driver = keystone.contrib.revoke.backends.sql.Revoke

Once the configuration file is completed, it will look as shown in the following
screenshot:

Populating the Keystone DB
We have a blank Keystone database at the moment; we will use the sync command
in order to populate it with base data.

www.allitebooks.com

http://www.allitebooks.org

Authentication and Authorization Using Keystone

[38]

Please ensure that you are running the following command as root:

keystone-manage db_sync keystone

Alternatively, if you don't have root access or are performing it with sudo rights,
then use the following command. (Both commands don't need to run.)

su -s /bin/sh -c "keystone-manage db_sync" keystone

Once this completes, you will see messages as shown in the following screenshot:

You can also log in to the MySQL client and execute the show tables command to
see all the different tables that are created:

Chapter 2

[39]

Restart the service using the following command:

sudo service keystone restart

While modifying the configuration, you will have noted that there was already a
SQL configuration; I am just reminding you of this because Keystone by default
comes with a SQLite database. Since we won't be using this anymore, let's delete it.
It is located at /var/lib/keystone/keystone.db. We will delete this file using the
following command:

rm -f /var/lib/keystone/keystone.db

Setting up your first tenant
We will need to create an administrative tenant (or project) that will allow us to log
in to Horizon (once we install it in the next chapter) and perform other Keystone
related functions. The order in which the components are created is as follows:

•	 Tenant (or project)
•	 Users
•	 Roles

You will need the following information in order to perform the actions:

Name Info
Tenant name firsttenant
Tenant description Our First Tenant
User name admin

User e-mail admin@test.com

Password h3ll0world

Role name admin
Admin token b7098d7d5eb7bf889842
Controller node name OSControllerNode

The role names are defined in the policy.json file in Keystone, so we will use the
admin role.

Authentication and Authorization Using Keystone

[40]

Setting up environment variables
We generated a token in the previous section; we have already exported it in that
section. Please verify this using the env command and check whether OS_SERVICE_
TOKEN is set. If the token is not set (you may have logged out and logged in to the
shell), then you can set it using the following command:

export OS_SERVICE_TOKEN=b7098d7d5eb7bf889842

We should also export the service endpoint. The default port for the Keystone
administrative function is 35357 (you can verify this by the netstat –nlp
command; you will see the server listening on this port). To export service endpoint,
execute the following command:

export OS_SERVICE_ENDPOINT=http://OSControllerNode:35357/v2.0

Please ensure that you are able to ping the name and telnet on the 35357 port.

We can skip this step, but then we have to add the following commands
with two additional parameters, --os-token and --os-endpoint, in
all the commands we execute.

Creating the tenant
Once the environment variables are set up, execute the following command to create
the tenant:

keystone tenant-create --name firsttenant --description "Our First
Tenant"

You will see the output confirming that the tenant has been created.

Chapter 2

[41]

Creating the user
We will now create the user, again using a single command:

keystone user-create --name admin --pass h33l0world --email
admin@test.com

This will create the user called admin:

Creating and mapping the role
In this section, we will create a role called admin and associate it with the admin user
and the firsttenant tenant. Execute the following command to create the role:

keystone role-create --name admin

For mapping, execute the following command:

keystone user-role-add --user admin --tenant firsttenant --role admin

This command will not give us any output. However, we can verify it by the
following command:

keystone user-role-list --tenant firsttenant --user admin

We should be able see the GUID of the tenant and the user that we created earlier.

This task is now complete.

Authentication and Authorization Using Keystone

[42]

Creating service endpoints
In a distributed tool such as OpenStack, it is a good practice for each component
to talk to the others using an API, which means that, even when you are using the
Horizon dashboard, in the backend the functions will be performed using an API.

In order for the APIs to work, Keystone provides a catalog sub-system. This provides
us with the different services of OpenStack and their URLs, so we will start with the
identity service itself.

Keystone has two ports, one is used for administrative functions
(TCP 35357) and the other one is used for the services to authenticate
against it (TCP 5000). The admin port can also be used to authenticate,
but this would be an overkill.

Creating the service
The service needs to be created in the database before its endpoints can be added;
this is done by the following command:

keystone service-create --name keystone --type identity --description
"OpenStack Identity"

Note down the ID as this is needed for the next step. In my case, it is
c0dc26226c42450a82838fc1c18b11fe.

Execute the following command:

keystone service-list

This will show the currently created service, as shown in the following screenshot:

Chapter 2

[43]

Sometimes the system acts up and you will get a HTTP 5XX error; just
restart the service using the service Keystone restart command.

Creating the endpoint
We will need the following information handy:

Name Info

Controller node name OSControllerNode

Service port 5000

Admin port 35357

Service ID (from previous step) c0dc26226c42450a82838fc1c18b11fe

Public URL http://OSControllerNode:5000/v2.0

Internal URL http://OSControllerNode:5000/v2.0

Admin URL http://OSControllerNode:35357/v2.0

Region name dataCenterOne

Before we dive in, we should understand the following things that we have filled:

•	 Public URL: This is the one that should be accessible from outside (by other
departments); so, if you have a different name or FQDN that you are trying
to publish, use that here. Please note that we have used the service port here.

•	 Internal URL: This is same as the public URL but from inside the company.
•	 Admin URL: This is for administrative tasks and allows things such as

creating a user (if we are using a local database).
•	 Region name: This is needed simply because we need to keep the API

EC2-compliant.
•	 V2.0: We have used the Keystone identity version 2.0, even after the 3.0

version is out. We can just change these URLs to v3.0, and the new identity
can be used. However, at the time of writing, the v2.0 version was the most
compatible one.

Authentication and Authorization Using Keystone

[44]

Armed with the preceding information, let's construct the command. This is a
single-line command, but is broken into multiple lines for readability purposes;
the \ instructs the shell executing the command to wait for the remaining:

keystone endpoint-create \

 --service-id c0dc26226c42450a82838fc1c18b11fe \

 --publicurl http://oscontrollernode:5000/v2.0 \

 --internalurl http://oscontrollernode:5000/v2.0 \

 --adminurl http://oscontrollernode:35357/v2.0 \

 --region dataCenterOne

So we have successfully created our endpoint, which the different OpenStack
components can use in order to communicate with the Keystone service.

Verifying the installation
We have at various points verified that the Keystone service is working as expected.
However, let's execute the commands with the actual username and password rather
than using the admin token that we have generated.

Open a new terminal window, or unset the environment variables that we set up:

unset OS_SERVICE_TOKEN OS_SERVICE_ENDPOINT

You don't have to do this if you have opened a new terminal window.

Using Keystone CLI
We will list all the tenants in the system; we should expect to see the one we created:

keystone --os-tenant-name firsttenant --os-username admin --os-
password h33l0world --os-auth-url http://oscontrollernode:5000/v2.0
tenant-list

Chapter 2

[45]

As you can see, we are now using the user credentials in order to execute the
Keystone cli and fetch the information.

We could try the same thing for various other commands such as user-list and
role-list.

Using the API
Under the hood, the Python client uses the RESTful API. You would use the API if
you were trying to call the services directly without using the client. As an example,
consider a developer of a company trying to create hooks in the OpenStack system
from the company's custom request portal so that end users don't get to see the
actual Horizon database, and even the cloud provisioning engine is abstracted from
the end user. We will quickly verify that we are able to use Keystone using the
RESTful API.

This step is optional and is provided only for informational purposes.

We will use curl in order to make the RESTful call. The URI for tenant is /tenants,
so the full URL will be a public URL appended with the API URI, which in our case
is http://oscontrollernode:5000/v2.0/tenants. This is using a GET verb, so we
will need an authentication token in order to execute the following curl command to
get the token:

curl -vv -d '{"auth":{"passwordCredentials":{"username": "admin",
"password": "h33l0world"}}}' -H "Content-type: application/json"
http://localhost:5000/v2.0/tokens | python -m json.tool

Authentication and Authorization Using Keystone

[46]

This will give us the token that we can use in the header:

We extract this token and use it in our next call. The tokens are normally valid for a
few minutes to hours, depending on the configuration of Keystone.

Tokens are akin to authentication cookies in a lot of ways. If you have come across
any kind of a single sign-on (SSO) system for the Web, you may already be aware of
how this functions.

In a single sign-on scenario, when you try to access a protected resource, you send
a request to the resource, the web page in question checks for a presence of a cookie
and whether that cookie is valid. The cookie has information about the user and
sometimes authorization as well.

If the cookie is not present or is present but not valid, then the user is sent to a common
webpage where the SSO system authenticates them and assigns a cookie. The SSO
system then redirects them to the resource and the user is now granted access.

The token system is similar but with some differences, as follows:

1.	 User checks whether they have the valid token.
2.	 If the valid token is not found, a request is made to Keystone.
3.	 Keystone authenticates and assigns a token. It also stores the token in its

localdatabase table called "tokens".

Chapter 2

[47]

4.	 User makes the call to the service, such as Horizon, Nova, or any other
OpenStack service that supports Keystone, with the token.

5.	 The service at the backend checks with Keystone whether the token is valid
and then allows access to the resource.

This way, the services themselves never get access to the user credentials but only
the tokens that are time-bound to expire. This serves two purposes, that of security
and of a single sign-on feel.

curl -s \

 -H "X-Auth-Token: 685590d73e81437da6e97a9b6764213b" \

 http://localhost:5000/v2.0/tenants | python -m json.tool

And we then get the tenants configured in the system, as shown in the following
screenshot:

We can now use the token until its expiry for the particular user.

There are several toolkits and SDK's available for OpenStack in order
to enable faster code development.
Please visit https://wiki.openstack.org/wiki/SDKs for the
different SDKs that are available.
The languages include a varied range of choices such as libraries for
C, C++, Java, Node.Js , Perl, and PHP.

Troubleshooting the installation and
configuration
By following the steps given in this chapter, you shouldn't encounter any issues as
such with the installation. However, let's look at troubleshooting some common
issues, which may help you with a successful installation.

www.allitebooks.com

https://wiki.openstack.org/wiki/SDKs
http://www.allitebooks.org

Authentication and Authorization Using Keystone

[48]

If your installation was successful, you may choose to
skip this section.

DB sync errors
When attempting the database sync in the populate the Keystone DB section, you
may encounter errors. Please follow the following steps to try and fix the errors.

System language settings
The language setting of your computer can cause issues while conducting the initial
database sync. In order to prevent such issues, export the language variables using
the following command:

export LC_ALL=en_US.UTF-8

export LANG=en_US.UTF-8

Configuration errors
Please ensure that the configuration file has the correct SQL URL. The format is
mysql://username:password@host:port/databaseName. If your password has an
@ symbol, the database sync will fail.

Failing Keystone commands
If your Keystone commands are failing, you should check for the following.

Service non-responsive
The service may hang, due to which you will see 5XX errors. Restart the service
using the service Keystone restart command.

DNS issues
Please ensure that you are able to resolve the names that are mentioned in several of
the configuration URLs. If you cannot ping them, check the DNS server configuration
in /etc/resolv.conf (if it is an enterprise environment) or simply ensure that the /
etc/hosts file has the appropriate entries.

Chapter 2

[49]

Network issues
Please ensure that there are no IP table services, that, if present, they are disabled,
or that the proper rules are in place to allow different ports and communications.
Please note, Keystone uses the 5000 and 35357 ports.

Please ensure that the ports are listening to all IP addresses or to an external IP
address rather than to the 127.0.0.1 or localhost. You can verify this by netstat –ln.

Please ensure that you have proper routing rules and a default gateway in place.
The routing table can be checked using the netstat –rn command.

Summary
In this chapter, we discussed the basic need for Keystone and were introduced to the
identity concepts in Keystone. We then discussed the architecture of Keystone and its
various sub-systems. We covered the installation of components that are common to
most of the OpenStack services such as the database and messaging broker—in this
case, MariaDB and RabbitMQ. We then discussed the installation of the Keystone
service. We verified our installation and also covered some basic troubleshooting,
just in case you face any issues during installation.

Having looked at Keystone, in the next chapter we will look at the storage services of
OpenStack: Cinder, Swift, and Glance.

[51]

Storing and Retrieving Data
and Images using Glance,

Cinder, and Swift
This chapter introduces the storage services of OpenStack. There are three major
services whose names we have already seen in the title of this chapter. Now, you
must be wondering why we would need three different services.

We will cover the following topics in this chapter:

•	 Image storage – Glance
•	 Block storage – Cinder
•	 Object storage – Swift
•	 Troubleshooting steps specific to Swift

Introducing storage services
Object storage or binary large object (BLOB) storage is in some form like a file
server. This kind of storage is needed when the requirement is to place files to be
retrieved later. Each of these files is considered as an object, and you really don't care
about the disk or the filesystem in which it is stored at the backend. A good example
of object storage would be Dropbox, Google Drive, or a public cloud AWS, the S3.

Block storage, on the other hand, can be considered as an independent disk drive.
We can choose what filesystem goes into it, and we can access this by volume rather
than by file name.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[52]

Image storage is used more for special cases. It is a service that uses BLOB storage or
sometimes even its own filesystem to store and retrieve virtual machine images such
as AMI in the case of AWS or template in the case of VMware virtualization.

Another popular open source storage solution is Ceph. It provides three major
services to various cloud platforms, namely the Ceph Object Store, the Ceph Block
Device, and the filesystem. It competes with the OpenStack services that will be
discussed in this chapter, and you may even choose to use Ceph with OpenStack
infusing the KVM/QEMU hypervisors.

There are some advantages of using Ceph Block Storage (RBD – RADOS Block
Device) over Cinder, as it is based on Reliable Autonomic Distributed Object Store
(RADOS) and stripes the data across the entire storage cluster providing us with
better IOPS and reliability. However, the integration with Ceph and its architecture
are beyond the journey that we about to embark on, so let's continue with the three
OpenStack services.

The only mandatory service among the three is Glance, which can serve images from
its local filesystem and few other options, such as AWS S3 and Swift. Even though
Glance is the only mandatory storage service, if we don't have Cinder and Swift
services, we will not be able to provide block storage to our VMs and BLOB storage
to our users. In order to keep it simple, we will have Glance configured for local
storage and switch to swift or others as and when required.

Let's start with Glance. We will be using both the controller node and the storage
node for this chapter. So, ensure that you have the storage node installed with two
network cards, as shown in Chapter 1, An Introduction to OpenStack. Also ensure that
you have added the Juno repository.

Working with Glance
As mentioned earlier, Glance is a mandatory service, and without this service, Nova
(compute service) will not know where to pick its images from. We will install
Glance on the controller node itself. The following diagram explains its architecture:

Chapter 3

[53]

Nova

VM Image

glance-api

glance-
registry

AWS S3

Disk

Swift

Hypervisor

Glance has two components: glance-api and glance-registry. As the name suggests,
glance-api provides the API calls required to retrieve and store the images, while
glance-registry handles more of the backend functions regarding where the images
are stored.

Let's start with the installation of Glance. Its installation follows similar steps to those
used for Keystone in the previous chapter. We will use the following checklist to
have all the information ready:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and Port Not Applicable
Node name OSControllerNode

Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS
Glance password g1anc3pwd

Glance repository Local disk
Disk partition info /glance/images/

Glance Keystone password g1anc3keypwd

Glance port 9292

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[54]

Creating the database
Log in to the MySQL instance (MariaDB) installed in the previous chapter using the
root password that we created:

mysql –u root –p

Enter the password:dbr00tpassword

Once in the database, execute the following command:

create database glance;

This will create an empty database called Glance. Let's now set up the Glance
database user credentials:

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' IDENTIFIED
BY 'g1anc3pwd';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED BY
'g1anc3pwd';

Access to the glance database is allowed from all the hosts denoted by %. However,
as previously mentioned, we need to provide explicit permissions for localhost,
hence the two lines.

You can quickly verify that the database has been created by typing the following
command:

show databases

You should see the following output:

Chapter 3

[55]

You will notice that you can see the Keystone and Glance databases
along with the system databases; this is because you are logged into
the root account. If you use the Glance account, you will not be able to
see the Keystone database.
In order to verify that, after exiting the client, execute the following
command:
mysql –u glance –p

When prompted for the password, enter g1anc3pwd. Execute the
show databases; command and you will see only the schema and the
Glance database.

Installing the packages
As a final step in the installation, let's use the package manager to install the
components of Glance:

sudo apt-get install glance python-glanceclient

This will install the two components used by Glance. By default, the service comes
with its SQL lite database like Keystone; hence, after installing and configuring it,
we will delete the database.

Initial configuration of Glance
While performing the initial configuration of the Glance service, we will do the
following:

•	 Create a Glance user in Keystone
•	 Create a Glance service in Keystone
•	 Create a Glance endpoint in Keystone
•	 Modify the configuration file
•	 Populate the Glance database

We will need to use the admin user that we created in the previous chapter in order
to perform Keystone functions.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[56]

Creating a user in Keystone
We will create a user with the name glance and the password g1anc3keypwd:

keystone --os-tenant-name firsttenant --os-username admin --os-
password h33l0world --os-auth-url http://oscontrollernode:5000/v2.0
user-create --name glance --pass g1anc3keypwd

This will create the Glance user in the Keystone in the first tenant, as seen in the
following screenshot:

As we can see, the command is too long and hence confusing. Therefore, we will
export the common variables so that the Keystone command line becomes easier.
Execute the following commands to export the variables:

export OS_TENANT_NAME=firsttenant

export OS_USERNAME=admin

export OS_PASSWORD=h33l0world

export OS_AUTH_URL=http://OSControllerNode:5000/v2.0

After executing the commands, the Keystone commands will be simpler, as seen in
the subsequent configurations.

Next, we will create a service tenant, which will be used to interact with different
services. This is a one-time process. We could ignore and proceed; however, it is a
good practice, so let's follow it:

keystone tenant-create --name service --description "Service Tenant"

We will map the Glance user we just created to this tenant as an administrative role,
by using the following command:

keystone user-role-add --user glance --tenant service --role admin

Chapter 3

[57]

Since we will be exporting these, we can just save the preceding
export commands in a file of our choice and use the source
command to export the variables.
Therefore, in our case, we will save the export statements in the file
called ~alokas/os.txt as follows:
source ~alokas/os.txt

Creating a Glance service in Keystone
We will follow the exact same steps as we followed in the previous chapter, and
since we have exported the environment variables, we can use the command without
passing the various parameters:

keystone service-create --name glance --type image --description
"OpenStack Image Service"

This will create the service in the Keystone, as can be seen in the following
screenshot:

Creating a Glance endpoint
The endpoint helps other services discover Glance. We will need the ID of the Glance
service we created in the previous step. Execute the following command:

keystone service-list

Copy the UID of the glance service, in our case
8d85877e169b40aa82aefdf23df74012. We also need to remember that the default
port for Glance is 9292.

keystone endpoint-create \

 --service-id 8d85877e169b40aa82aefdf23df74012 \

 --publicurl http://OSControllerNode:9292 \

 --internalurl http://OSControllerNode:9292 \

www.allitebooks.com

http://www.allitebooks.org

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[58]

 --adminurl http://OSControllerNode:9292 \

 --region dataCenterOne

You should see something like the following screenshot:

Modifying Glance configuration
Once we have the Keystone commands out of the way, we will have to modify the
Glance configuration file located in /etc/glance/glance-api.conf.

We will need to modify five sections in the file, as follows:

•	 Under the [default] section, we will set up the verbose logging for testing
and we will set up the notification driver to NO Operation (NOOP). We will
set up the RabbitMQ configuration based on our common settings:
notification_driver = noop

verbose = True

rabbit_host = OSControllerNode

rabbit_port = 5672

rabbit_use_ssl = false

rabbit_userid = guest

rabbit_password = rabb1tmqpass

default_store = file.

Chapter 3

[59]

•	 Under the [database] section, we change the connection variable as follows:
connection = mysql://glance:g1anc3pwd@172.22.6.95/glance

This change will ensure that Glance now points to the MySQL we set up
instead of pointing at SQLite database. There will be another configuration
statement currently pointing to the SQLite database in the configuration file;
comment that line.

•	 Under the [keystone_authtoken] section:
auth_uri = http://OScontrollerNode:5000/v2.0

identity_uri = http://OScontrollerNode:35357

admin_tenant_name = service

admin_user = glance

admin_password = g1anc3keypwd

This section provides URLs to retrieve the tokens from Keystone.

•	 Under the [paste_deploy] section, we will set the flavor to Keystone:
flavor = keystone

This sets up glance to use Keystone for authentication.

•	 Under the [glance_store] section, we specify where we will store the
images (:1 mentions the order of directories if multiple of them are used):

filesystem_store_datadir = /glance/images/:1

We have to make the same changes in the Glance registry configuration, with the
exception of the [glance_store] section. The configuration file is located at /etc/
glance/glance-registry.conf.

Verify the contents of the file by executing the following command:
cat /etc/glance/glance-api.conf | grep -v "#" | egrep -v
'^[[:space:]]*$'

This shows only non-commented and non-empty lines from the
configuration.

Let us now create the directory where we store the images:
sudo mkdir –p /glance/images/

sudo chown –R glance:glance /glance/images/

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[60]

We could mount the directory on a separate hard disk in a
development or production environment if we choose to use file
storage in Glance.
Please ensure that you have made the changes to both the files
(API and registry configuration).

Populating the Glance database
To populate the Glance database, as root, execute the following command:

/bin/sh -c "glance-manage db_sync" glance

This should sync the database. If you see any errors, you will need to check the
configuration files.

Finalizing the installation
We will now remove the database that came with Glance:

rm -f /var/lib/glance/glance.sqlite

Then, we will finally restart the Glance components (both API and registry):

sudo service glance-api restart

sudo service glance-registry restart

Validating the installation
There is no better way to validate an installation than to put it in action, so we
will go ahead, download a KVM image from the Internet, and upload it to the
Glance service.

Let us first check that there are no images in the current Glance, by executing the
following command:

glance image-list

Remember to export the variables mentioned earlier in the chapter
for username, password, and so on.

Chapter 3

[61]

You should see the following output:

As you can see there are no images in Glance. We can download any qcow2 format
image, which can be used for KVM or qemu and then upload it. Let us download
a CirrOS image. CirrOS is a minimal distribution which was created for the sole
purpose of testing a cloud environment; hence we will use the image.

Let us navigate to a folder, say, our home folder, using the cd ~ command. We will
download the image by using the wget command:

wget http://download.cirros-cloud.net/0.3.3/cirros-0.3.3-x86_64-
disk.img

This will download a 13 MB file, which can be used in Nova once we get there.

The credentials for this image are (username/password): cirros/
cubswin.

Once the download is complete, we can upload it to the glance registry using the
following command:

glance image-create --name "CirrosTest" --file /var/cirros-0.3.3-
x86_64-disk.img --disk-format qcow2 --container-format bare --is-
public True –progress

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[62]

You should see the following result:

Once the image is uploaded, we can verify it by using the glance image-list
command, as seen in the following screenshot:

This validates that we are able to push the image to the Glance service. This service
will provide the images to Nova, so you may consider putting in different images in
the qcow2 format for the KVM.

Glance is responsible for providing images to the different hypervisors,
so it will store images in any format that the hypervisor will accept. In
the case of multihypervisor deployments (which is beyond the scope of
this book), Glance will hold different images for different hypervisors.
KVM also supports raw images, so those can also be used.

Chapter 3

[63]

Working with Cinder
Cinder provides block store or the equivalent of an LUN as it were to a virtual
machine, which can then format it at its will. We can create logical volumes with
these disks or any other thing that we may want to do with the block storage.

Cinder service has a few components that will run in the management node and
a few that will run on the storage node. The following components are part of
Cinder service:

•	 API
•	 Scheduler
•	 Volume

Out of these, the first two are installed in the controller node and the volume service
is installed on the compute node. The following diagram shows the architecture and
the communication pattern of the Cinder components:

Message Bus (Rabbit MQ)

Nova

Guest
VM

Virtual
LUN

Cinder Client

Cinder API Cinder Scheduler

Cinder-Volume

Cinder
DB

LVM

Cinder-Volume Cinder-Volume

S
to

ra
ge

C
in

de
r

C
om

po
ne

nt
s

The API receives the request from the client (either the Cinder client or an external
API call) and passes the request on to the scheduler, which then passes the request to
one of the Cinder volumes.

The Cinder volumes use one of the physical/virtual storage presented to them as an
LVM and provision a part of it as a block storage device, which can be attached to
the Guest VM on Nova using iSCSI.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[64]

iSCSI is just one of the methods that can be used. We could use Fiber
Channel or even NFS. However, we do need to bear in mind that the
underlying storage connection dictates the speed and performance of
the Cinder volumes themselves.

Controller node
We will need the following information to complete the install on the controller
node, so let us fill the following checklist:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSControllerNode
Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS
Cinder DB password c1nd3rpwd

Cinder Keystone password c1nd3rkeypwd

Creating the database
We will create a blank database after logging in to the MySQL server:

create database cinder;

This will create an empty database called Glance. Let us now set up the Glance
database user credentials:

GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' IDENTIFIED
BY 'c1nd3rpwd';

GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' IDENTIFIED BY
'c1nd3rpwd';

This allows the username called cinder using our password to access the database
called Cinder.

Chapter 3

[65]

Installing packages
We will install three packages on the controller node: the scheduler, the API, and the
client package.

We will use the aptitude package manager to do this by running the following
command:

sudo apt-get install cinder-scheduler python-cinderclient cinder-api

Once the installation is complete, we can move on to the next step.

Initial configuration
Let us proceed to the configuration tasks. We will need to export the variables that
we did in the beginning of the chapter. You could use the tip to save them in a file
and source them.

Creating a user in Keystone
We will create the user using the keystone command as shown in the following
screenshot. The output will show the UID of the user created. Note that the UID
generated will be a different one for you:

keystone user-create --name cinder --pass c1nd3rkeypwd

As the next step, we will add the user to the admin role in the service tenant that we
created while installing Glance:

keystone user-role-add --user cinder --tenant service --role admin

This command doesn't provide any output, so if you see nothing, it is indeed
good news!

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[66]

Creating Cinder service in Keystone
We will create the service in Keystone so that Keystone can publish it to all the
services that need it. However, in Cinder, we need to create two services, one each
for version 1 and version 2.

keystone service-create --name cinder --type volume --description
"OpenStack Block Storage"

keystone service-create --name cinderv2 --type volumev2 --description
"OpenStack Block Storage"

You should see the following result:

We will also have to note down the IDs of both the services that we have used to
create the endpoints, so note it down.

Creating Cinder endpoints
We will need to create two endpoints as well, one per service. At this point, you must
know that Cinder uses 8776 as the default port.

keystone endpoint-create \

 --service-id a3e71c643105452cb4c8239d98b85245\

 --publicurl http://OScontrollerNode:8776/v1/%\(tenant_id\)s \

 --internalurl http://OScontrollerNode:8776/v1/%\(tenant_id\)s \

 --adminurl http://OScontrollerNode:8776/v1/%\(tenant_id\)s \

 --region dataCenterOne

keystone endpoint-create \

 --service-id d9f4e0983eda4e8ab7a540441d3f5f87 \

 --publicurl http://OScontrollerNode:8776/v2/%\(tenant_id\)s \

Chapter 3

[67]

 --internalurl http://OScontrollerNode:8776/v2/%\(tenant_id\)s \

 --adminurl http://OScontrollerNode:8776/v2/%\(tenant_id\)s \

 --region dataCenterOne

You will notice that the URLs for this are different from the other endpoints so
far. This is because it has the tenant ID as a variable, and the URL will be modified
during runtime by the client using the endpoint.

Modifying the configuration files
We modify the configuration file located at /etc/cinder/cinder.conf. We will
modify three sections:

•	 [default] section
•	 [database] section
•	 [keystone_authtoken] section

Note that some sections themselves don't exist in the default configuration shipped
with the distro. You should create them and add the options as follows:

•	 In the [database] section, add the MySQL user credentials:
connection = mysql://cinder:c1nd3rpwd@OSControllerNode/cinder

•	 In the [default] section, modify the RabbitMQ user credentials and the
my_ip. The my_ip is used to allow Cinder to listen on the IP address of the
controller node:
rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

auth_strategy = keystone

my_ip = 172.22.6.95

verbose = true

•	 The [keystone_authtoken] section will have the following information:
auth_uri = http://OScontrollerNode:5000/v2.0

identity_uri = http://OScontrollerNode:35357

admin_tenant_name = service

admin_user = cinder

admin_password = c1nd3rkeypwd

www.allitebooks.com

http://www.allitebooks.org

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[68]

Populating the Cinder database
The Cinder database will be populated using the following command:

/bin/sh -c "cinder-manage db sync" cinder

This command should be run as a root.

Finalizing the installation
The Cinder installation on the controller node is now complete. We will delete the
SQLite database that is installed with the Ubuntu packages:

rm -rf /var/lib/cinder/cinder.sqlite

Let us restart the API and scheduler service to complete this part of the install:

service cinder-scheduler restart

service cinder-api restart

This concludes the first part of Cinder installation.

Storage node
In the second part of the installation, we will install the cinder-volume component on
the storage node.

Understanding the prerequisites
As a prerequisite, we will need to ensure the following:

•	 Storage node IP address is added in the host file of the controller node (or)
DNS server

•	 Storage node has the second hard disk attached to it

As the first step, we will install the LVM tools to ensure we create the volume groups:

apt-get install lvm2

The next step in the process is to create a volume group on the second hard disk.
If we are doing the install in a production environment, the second hard drive
or the other drives will be a part of disk array and will be connected using FC or
iSCSI. If we are using a VM for the production deployment, the storage node can be
connected to the disks using virtual disks or even raw device mappings.

Chapter 3

[69]

We should check the presence of the disks and that they can be detected by the
storage node. This can be done executing the following command:

fdisk –l

In our case, you can see that we have sdb and sdc. We are going to use sdb for the
Cinder service. We will create a partition on the sdb drive:

fdisk /dev/sdb

Create a new partition by using the menu and entering n for new partition and p for
primary partition. Choose the defaults for other options. Finally, enter w to write to
the disks and exit fdisk.

The following screenshot demonstrates the result:

As the next step, we will create an LVM physical volume:

pvcreate /dev/sdb1

On that, we will create a volume group called cinder-volume:

vgcreate cinder-volumes /dev/sdb1

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[70]

As a best practice, we will add sda and sdb to the filter configuration
in the /etc/lvm/lvm.conf file.
The sdb is the LVM physical volume for the volumes used by Cinder
and sda is the operating system partition, which is also LVM in our
case. However, if you don't have LVM in the operating system volume,
then only sdb needs to be added:
filter = ["a/sda/","a/sdb/","r/.*/"]

Therefore, the preceding filter means that it will accept LVMs on the
sda and sdb and reject everything else.

Next, we will add host entries to the /etc/hosts file so that OSControllerNode and
OSStorageNode knows the IP address of each other.

•	 On the storage node:
echo "172.22.6.95 OSControllerNode" >> /etc/hosts

•	 On the controller node:
echo "172.22.6.96 OSStorageNode" >> /etc/hosts

After this, verify that both the servers are able to ping each other by name.

Now, let us look at the checklist for the configuration, presented as follows:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSStorageNode

Node IP address 172.22.6.96
Node OS Ubuntu 14.04.1 LTS
Cinder DB password c1nd3rpwd

Cinder Keystone password c1nd3rkeypwd

Rabbit MQ password rabb1tmqpass

Installing the packages
Before working on this node, ensure that you have added the Juno repository shown
in Chapter 2, Authentication and Authorization Using Keystone.

Chapter 3

[71]

We have already created the Cinder database when we were performing actions on
the controller node, so we can directly start with installation of the packages.

We will install the cinder-volume package; we will install the Python client and
drivers for MySQL, as this node will need to access the database on the controller
node:

apt-get install cinder-volume python-mysqldb

Ensure that the installation is complete.

If you are unable to find the packages, follow the process to add the
Juno repository from the second chapter, where it was done on the
controller node before installing Keystone.

Modifying the configuration files
We will need to modify the /etc/cinder/cinder.conf file as we had done it on the
controller node. We will modify the following sections:

•	 [database] section
•	 [default] section
•	 [keystone_authtoken] section

It is going to be exactly same as we did in the controller node, except for the my_ip
directive, which will in this case, have the IP address of the storage node rather than
the controller node. The configuration modification will look like this:

[default]

rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

auth_strategy = keystone

my_ip = 172.22.6.96

verbose = true

[database]

connection = mysql://cinder:c1nd3rpwd@OSControllerNode/cinder

[keystone_authtoken]

auth_uri = http://OScontrollerNode:5000/v2.0

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[72]

identity_uri = http://OScontrollerNode:35357

admin_tenant_name = service

admin_user = cinder

admin_password = c1nd3rkeypwd

If you have changed the volume group name when creating the LVM,
the name needs to be changed in the /etc/cinder/cinder.conf
under the default section.

Finalizing the installation
To finalize the installation, we will remove the SQLite db that came with the Ubuntu
packages, as we will not use it:

rm -f /var/lib/cinder/cinder.sqlite

We will then restart the Linux target framework that controls iSCSI connections and
then finally the cinder-volume itself:

service tgt restart

service cinder-volume restart

We now have completed the installation of Cinder.

Validating the installation
We will perform a simple validation by executing the following commands on the
controller node:

•	 cinder service-list
•	 cinder list

You should see something like the following:

Chapter 3

[73]

The service-list will show all the nodes that take part in the Cinder service.
As you can see, our two nodes show up, which is as expected. The cinder-list
command shows us the virtual volumes that are created (to be connected to the Nova
instances), but since we don't have any, we don't expect to see any output there.

Working with Swift
Swift, as we already know, is the object store service that stores BLOBs and their
metadata. The important part is that multiple copies of the object are stored
for redundancy and resiliency. In most organizations, three copies of data are
considered good from the redundancy standpoint, but we can choose to have more
or fewer copies.

Naturally, more than one node should be used to store the objects. For the purpose
of this book, we will just use one storage node—that we have also used for Cinder
in the previous section—but this will have a third drive added to it, and use that
for Swift.

Swift is a distributed system. In order to store and find data and ensure its integrity
and redundancy, the architecture revolves around the concept of rings. Rings
essentially are configuration-cum-database files that help in placing the object
on the nodes and searching through them.

The rings essentially map the data to the physical device where the data is being
stored. There are three rings:

•	 Account ring: This maps accounts to containers
•	 Container ring: This maps containers to objects
•	 Object ring: This maps objects to storage partitions

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[74]

So in effect, if we are looking for all the objects stored for a particular account, all the
three rings are checked.

Swift Proxy

Partitio
n

Ring

Replication

Object Store
Node

Object Store
Node

Object Store
Node

Integrity Checks

The preceding diagram shows the different components of the Swift service, where
ring is the key component. Rings are actually modified versions of the consistent
hashing rings.

Let us take an example of the object ring. Say we have three nodes. While creating,
we partition the ring in to multiple parts. Since we are using the modified version
of the consistent hashing ring, we will get an equal partition size. The partitions are
essentially blocks from different nodes where the objects are stored depending on the
name of the file.

We create the partition size at the beginning of the ring creation, and it cannot be
changed once created. The larger the partition size, the bigger the ring will be and
the smoother the object distribution amongst its nodes. Once the partition size is
created, 2^Part_Number is the number of partitions created in the ring.

Rule of thumb states that we need 100 partitions per physical disk that
is being used for Swift, and hence, the part power is calculated by the
following formula:
log2(number of disks * 100)
Always choose the number on the larger side, as these days the memory
(a few megabytes of it) is not a big deal.
Note that the ring partition is not to be confused with the disk partition.

Chapter 3

[75]

The Swift proxy is the frontend between the object store nodes and the users.
In our installation, we will install the proxy on the OSControllerNode and the
ObjectStore on the OSStorageNode.

Controller node
We will install the Swift proxy and some helper packages on the controller node.
Let us prepare the checklist so we have all the information handy:

Name Info
Access to the Internet Yes
Proxy Needed No
Proxy IP and port Not Applicable
Node name OSControllerNode

Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS
Swift Keystone password sw1ftkeypwd

Swift port 8080

Unlike other services, Swift doesn't need access to the database. Hence, we won't
create one. This is because all the data Swift needs is kept in the rings.

Installing packages
We will install the Swift proxy packages and fall back on our reliable aptitude
package manager for this:

apt-get install swift swift-proxy python-swiftclient python-
keystonemiddleware memcached

Ensure these packages are installed. Now, we see some additional packages in this
list. Let us talk about them for a moment. The memcached package caches the objects
to serve them fast to the end users, Swift client to configure the system, and the
Python modules for the Keystone and Keystone middleware.

We also need to understand the difference in the terminologies when it comes to
authentication between Swift and Keystone. These have been explained as follows:

Swift Keystone
Account Tenant / Project
User User
Group Role

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[76]

In order to map the two preceding authentication definitions, the Keystone
middleware is used. Another point to be noted is that the Swift user doesn't have any
rights by default, but there is a user called the swift operator, which can modify the
ACLs on the files. This mapping is also done by the Keystone middleware.

Once the packages are installed, we can move on to the configuration.

Initial configuration
The configuration steps are similar to the other services:

•	 Create a Keystone user and map the roles
•	 Create a service in Keystone
•	 Create an endpoint
•	 Modify configuration files

Creating a user in Keystone
We start by exporting the credentials. Since we have saved it in the file, we will just
source the file by typing source ~alokas/os.txt:

keystone user-create --name swift --pass sw1ftkeypwd

Once the user is created, we will then make it an admin user:

keystone user-role-add --user swift --tenant service --role admin

Creating a Swift service in Keystone
We create the service by using the following command:

keystone service-create --name swift --type object-store --
description "OpenStack Object Storage"

Note down the ID that we will use in the next step of creating the endpoint
(in this case, it is febc806b960b496bb3e000fefe992e2b).

Creating a Swift endpoint
We will create the Swift endpoint with the following command:

keystone endpoint-create \

 --service-id febc806b960b496bb3e000fefe992e2b \

 --publicurl 'http://oscontrollernode:8080/v1/AUTH_%(tenant_id)s' \

Chapter 3

[77]

 --internalurl 'http://oscontrollernode:8080/v1/AUTH_%(tenant_id)s' \

 --adminurl http://oscontrollernode:8080 \

 --region dataCenterOne

Modifying the configuration files
The Swift packages don't come with the configuration files. So, we will need
to download some sample configuration files from GitHub (https://raw.
githubusercontent.com) and then modify them:

mkdir /etc/swift

chown -R swift:swift /etc/swift

This creates a directory for Swift configuration files.

We will first download the swift.conf file from the GitHub repository. The
following command downloads the sample configuration in the directory that we
just created:

curl -o /etc/swift/swift.conf
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/swi
ft.conf-sample

If you are using a proxy server to download the file, add the -x
proxyip:port at the end of the curl command to download
the file.

In this file, we will have to choose a unique suffix and prefix for our environment.
Remember that once chosen, the prefix cannot be changed. In this case, we will use
packtpub for our prefix and suffix. This prefix and suffix are used in the hashing
algorithm.

Edit the /etc/swift/swift.conf file as follows:

•	 In the [swift-hash] section:
swift_hash_path_suffix = packtpubsuffix

swift_hash_path_prefix = packtpub

There will already be default be a storage policy 0 in the file, verify the presence of
the following:

[storage-policy:0]

name = Policy-0

default = yes

https://raw.githubusercontent.com
https://raw.githubusercontent.com

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[78]

As a next step, we will download the proxy-server configuration file and modify its
configuration:

curl -o /etc/swift/proxy-server.conf
https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/pro
xy-server.conf-sample

We will make the following changes to the file:

•	 Under the [DEFAULT] section of the configuration, we will mention the user
account it would use, the configuration directory, and the port on which it
would bind—we have chosen 8080:
bind_port = 8080

swift_dir = /etc/swift

user = swift

•	 In the [pipeline:main] section we will enable the modules:
pipeline = authtoken cache healthcheck keystoneauth proxy-logging
proxy-server

This allows for the logging and Keystone authentication.

•	 In the [app:proxy-server] section, we will enable account management:
allow_account_management = true

account_autocreate = true

•	 In the [filter:authtoken] section, we will configure the Keystone details.
The delay_auth_decision value is set to true so that Swift waits until the
Keystone middleware and Keystone check the user token and respond to
Swift:
paste.filter_factory = keystonemiddleware.auth_token:filter_
factory

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = swift

admin_password = sw1ftkeypwd

delay_auth_decision = true

Chapter 3

[79]

•	 In the [filter:keystoneauth] section, we configure the operator role,
which is effectively a mapping that mentions which role of Keystone will be
considered an operator in Swift. These should exist in the configuration; we
can just uncomment the lines rather than having to retype them:
use = egg:swift#keystoneauth

operator_roles = admin,_member_

•	 Finally, in the [filter:cache] section, we configure the memcached
location, which is the current node in our case:

memcache_servers = 127.0.0.1:11211

The file should appear as seen in the following screenshot:

Note that this is not the full configuration. It merely shows the relevant
sections to give you an idea about how it should look once done.

This concludes the installation of the Swift configuration on the controller node.
Please note that in our case, the controller is also the Swift proxy server. In a
production environment, we will have to perform the steps on all the different nodes
acting as the proxy as the proxy server.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[80]

The storage node
Since we are using the same storage node that we used for Cinder, we already have
the DNS/Hosts file figured out. If we choose to have more than one storage node, the
same principles apply. We will quickly create a single node.

Understanding the prerequisites
The storage nodes use rsync in order to keep multiple copies of data in sync. Also,
the XFS filesystem works very well for the BLOB storage, so we will install both of
those packages:

apt-get install xfsprogs rsync

We will use the fdisk and create two partitions in it using the third drive that we
have mounted (/dev/sdc). Alternatively, we could choose to partition from an
already existing drive. Let us make it into an XFS filesystem and then mount it to a
directory. The reason we have created two partitions is to distribute data uniformly.
In the production environment, there will be several nodes and several drives per
node, and we can choose to create just one partition per drive.

Check that the drive for Swift is visible to the system by looking for the /dev/sdc in
the output of fdisk –l. We will format and partition the disk using the following
command:

fdisk /dev/sdc

We will choose the option n to create a new partition, then p for primary, and then
we will choose the partition number 1. We will leave the initial sector as default, and
for the final sector, we will set the partition size as 50 percent of the disk size. In my
case, since the disk is 100 GB, I will create the first partition as 50 GB and hence use
+50GB for the last sector.

We will repeat the process and leave everything to default for the second partition,
and it will use the remaining space, which is the remaining 50 GB. We will then write
to the partition table and come out of the fdisk utility, and at the end of this, we will
end up with two partitions: /dev/sdc1 and /dev/sdc2.

You can see the screenshot for the fdisk utility earlier in this chapter, when we
created the partition for the Cinder volumes.

As a next step, we will create filesystems on these partitions. XFS is especially suited
for an object store; hence, we will use it:

mkfs.xfs /dev/sdc1

mkfs.xfs /dev/sdc2

Chapter 3

[81]

We will now create folders and mount them:

mkdir -p /srv/node/sdc1

mkdir -p /srv/node/sdc2

Then, we add the new mount points in the /etc/fstab file:

echo "/dev/sdc1 /srv/node/sdc1 xfs
noatime,nodiratime,nobarrier,logbufs=8 0 2 " >> /etc/fstab

echo "/dev/sdc2 /srv/node/sdc2 xfs
noatime,nodiratime,nobarrier,logbufs=8 0 2 " >> /etc/fstab

We will mount the drives using mount –a command and df –k command to verify.

Since we only have one node, we don't actually need to configure rsync. However,
it's a good practice to do so because it makes it easier to add nodes in the future.

Add the following to /etc/rsyncd.conf (after replacing the IP address of the
storage node):

uid = swift

gid = swift

log file = /var/log/rsyncd.log

pid file = /var/run/rsyncd.pid

address = 172.22.6.96

[account]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/account.lock

[container]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/container.lock

[object]

max connections = 2

path = /srv/node/

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[82]

read only = false

lock file = /var/lock/object.lock

In the /etc/default/rsync file, set RSYNC_ENABLE to true and start the service
using service rsync start.

Installing the packages
We will install the account, container, and object components:

apt-get install swift swift-account swift-container swift-object

chown swift:swift /etc/swift

Ensure that the installation is successful.

We will also change the permissions of the /srv/node folder:

chown -R swift:swift /srv/node

Modifying the configuration files
There are three configuration files that we need to modify; we will download a
sample copy from the repository:

curl -o /etc/swift/account-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/acc
ount-server.conf-sample

curl -o /etc/swift/container-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/con
tainer-server.conf-sample

curl -o /etc/swift/object-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/etc/obj
ect-server.conf-sample

Once the files are downloaded, make the following changes in the three different
configuration files.

Account server configuration
In the /etc/swift/account-server.conf file, we need to ensure that the following
settings are present, and are needed:

•	 Under the [Default] section:
bind_ip = 172.22.6.96

bind_port = 6002

Chapter 3

[83]

user = swift

swift_dir = /etc/swift

devices = /srv/node

•	 Under the [pipeline:main] section, we will enable the account server:
pipeline = healthcheck recon account-server

•	 Under the [filter:recon] section, just set up the metrics path:
recon_cache_path = /var/cache/swift

Container server configuration
In the /etc/swift/container-server.conf file, make the same changes as
in case of the account server, but replace the bind_port to 6001, and under the
pipeline:main section, replace account-server with container-server, if it
already doesn't exist.

Object server configuration
In the file /etc/swift/object-server.conf, make the same changes as in
case of the account server, but replace the bind_port to 6000, and under the
pipeline:main section, replace account-server with object-server, if it
doesn't already exist.

We will now create the recon directory and ensure its proper ownership:

mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

We will also copy the /etc/swift/swift.conf file from the controller node to here:
scp root@OSControllerNode:/etc/swift/swift.conf
/etc/swift/swift.conf

Creating the rings
The most important part of the configuration is creating the rings. We will create
three rings: one for account, one container, and one object ring. In order to create
this, we need to select some values, which we will put in the checklist presented in
this section.

We remember from the initial information of Swift that the Swift partition on the ring
is technically just directories, and we discussed the rule of thumb formula to choose
the partition size.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[84]

Since we have two disk partitions (/dev/sdc1 and sdc2) that are being used for
object storage, we will substitute in the formula and get log 2 (2 *100). If you are
using more than one node, the total numbers of disks need to be taken from all the
nodes.

So, our log base 2 calculation yields 7.64, and so rounding it off to the next whole
number, we set the partition size to 8. Since our data is not very important, we can live
with two copies of it. In a production environment, we will use at least three copies.
As discussed in the following table:

Name Info
Part size 8
No of replicas needed 2
Minimum time between moving a partition 1 hour
No. of regions 1
No. of zones 1

If you are familiar with AWS, the regions and zones shown in the table are similar to
the concept of regions and zones in AWS.

Account ring
All the rings are created by a utility called swift-ring-builder.

We create the account.builder file with three arguments, namely, partition size,
number of replicas and minimum time:

cd /etc/swift

swift-ring-builder account.builder create 8 2 1

Once we have created the ring, we will have to add the nodes in there using the
command format:

swift-ring-builder account.builder add r1z1-
management_ip_of_storage_node:6002/device_name weight

We choose port 6002 for the account, 6001 for container, and 6000 for object in our
configuration files above, and we have disk partitions sdc1 and sdc2. The weightage
is a relative number when compared to other nodes; it is recommended that we keep
it directly proportional to the amount of storage on the drive.

swift-ring-builder account.builder add r1z1-172.22.6.96:6002/sdc1
100

swift-ring-builder account.builder add r1z1-172.22.6.96:6002/sdc2
200

Chapter 3

[85]

The preceding commands create the ring; we will follow the exact same steps for the
container and object rings.

Container ring
We create the ring with the same parameters as in the preceding section:

swift-ring-builder container.builder create 8 2 1

We then add the drives:

swift-ring-builder container.builder add r1z1-172.22.6.96:6001/sdc1
100

swift-ring-builder container.builder add r1z1-172.22.6.96:6001/sdc2
200

Note the change in the port number.

Object ring
We create the ring with the same parameters:

swift-ring-builder object.builder create 8 2 1

We then add the drives:

swift-ring-builder object.builder add r1z1-172.22.6.96:6000/sdc1 100

swift-ring-builder object.builder add r1z1-172.22.6.96:6000/sdc2 200

This creates the object rings. Once all the rings are created, we rebalance them:

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

swift-ring-builder account.builder rebalance

Please note that this may take some time depending on
your storage size.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[86]

Distributing the ring
Now we have three files: account.ring.gz, container.ring.gz, and object.
ring.gz in the /etc/swift directory. We need to copy these files to all the other
servers running the Swift proxy or the Swift storage components. Since we have
created it on the storage node, we will copy it over to the OScontrollerNode:

scp object.ring.gz root@OSControllerNode:/etc/swift

scp container.ring.gz root@OSControllerNode:/etc/swift

scp account.ring.gz root@OSControllerNode:/etc/swift

Finalizing and validating the install
As a final step, we will restart the services on the nodes. On the controller node
(and where ever else the proxy is installed):

sudo service memcached restart

sudo service swift-proxy restart

On all the object store nodes:

swift-init all start

This should start all the storage components. If there are errors in the configuration
files, the services will show them here.

In order to validate, just execute the swift stat command, and you will get the
output stating that Swift is configured:

We should now be able to create objects and upload them. But we will park the
thought for now and revisit this when we test our cloud.

Troubleshooting steps
In the previous chapter, we have seen some troubleshooting steps, which are also
applicable here, such as checking the configuration files for extra spaces in the URI
configuration and restarting the services and the location of the log files.

Chapter 3

[87]

There are some additional troubleshooting steps specific to Swift, which have been
discussed in this section.

Swift authentication error
If the Swift service doesn't start or gives an authentication error when upi try to
execute the swift stat command, follow these steps:

•	 Check the Swift endpoint:
°° Execute the command Keystone endpoint-list and check that Swift's

endpoint has the AUTH_ variable in the URI of the public and the
private endpoint address.

°° If there is an error in the endpoint, just delete it with the Keystone
endpoint-delete command and recreate it as shown in this chapter.

•	 Check the Swift configuration files:
°° Check that the tempauth is not enabled in the pipeline. The tempauth

is the temporary authentication module of Swift. Since we are
offloading the authentication to Keystone, it needs to be enabled.

•	 Check that the /etc/swift directory has all the required configuration files
and permissions:

°° Ensure that the /etc/swift directory is owned by Swift, that it has
the configuration file swift.conf, and depending on the node type,
it has policy, account, and object configuration files.

•	 Check that the ring files have been redistributed:
°° Ensure that the .gz ring files for all the three rings are available on all

the nodes irrespective of it being a proxy or a storage node.
°° If not available, copy it to all the nodes using the scp example.

Ring files don't get created
If the ring files don't get created, ensure that you have typed in the rebalance
command for all the three. The rebalance command is the one that creates the
ring.gz file, and it needs to be run in the case of all the three rings individually.

Storing and Retrieving Data and Images using Glance, Cinder, and Swift

[88]

Summary
In this chapter, we covered three types of storage services in OpenStack: BLOB
storage Swift, block storage Cinder, and image storage Glance. We discussed the two
components of Glance, API and registry, and installation of the service. Followed
by this, we discussed the three components of Cinder, API, scheduler, and volumes
and installation of the service. Finally, we discussed the two components of Swift,
Swift Proxy and rings. We also discussed the three types of rings: account, container,
and object rings. In addition, we verified our installation and covered some basic
troubleshooting just in case you face any issues during installation.

Now that we have seen how to build a storage base to store images and other stuff,
in the next chapter, we shall look at building a cloud fabric controller using Nova,
which is considered the pivot around which most of the OpenStack components
function.

[89]

Building Your Cloud Fabric
Controller Using Nova

In the previous chapter, we looked at the different types of storage options available
in OpenStack and the associated services.

In this chapter, we will set up and configure what is considered to be the heart of the
OpenStack system, the cloud computing fabric controller. It defines drivers that work
with a variety of virtualization technologies such as Xen and KVM. It is the single,
most important component of the system. All that we have set up, and will set up in
future chapters, in some form or another will revolve around this central component.
In this chapter, we will need a third server, OSComputeNode. The node is set up
with Ubuntu 14.04.01 similar to the other nodes and has three network connections
(management, storage, and tunnel network). We will use KVM as the hypervisor of
our choice, as we already have the test cirros image in the Qemu Copy On Write
(QCOW2) format when we created the Glance service.

In this chapter, we will cover the following topics:

•	 Working with Nova
•	 Installing Nova
•	 Exploring how the console subsystem works
•	 Designing the Nova environment

Building Your Cloud Fabric Controller Using Nova

[90]

Working with Nova
Nova has various components that we will install. A representation of the
communication flow among the components is shown in the following block diagram:

Users

Volume Storage Hypervisor Nova
Database

Nova Scheduler Nova Volume Nova Compute Nova Conductor

AQMP (Rabbit MQ)

Nova API Nova Console

Nova utilizes other services such as Glance to provide images and Cinder for block
volumes, which is also not shown in the block diagram. Nova supports multiple
hypervisors such as KVM, Qemu, XenServer, and VMware.

The Nova Compute service is the one that takes care of communication with different
hypervisors using virtualization drivers. Each and every supported Hypervisor has a
driver associated with it. You can see the drivers and the code associated with these in
the nova/nova/virt directory of the source code. Also, please note that the optional
components such as nova-xvpnvncproxy, nova-spicehtml5proxy, or euca tools are not
shown in the block diagram.

The block diagram shows the major functional components of Nova, and they can
be installed on a single node or multiple nodes as they all communicate using the
message bus. However, there are certain restrictions on the high availability aspect
of the design, which is beyond the scope of this book.

Nova, like all OpenStack components, exposes all of its functionalities using APIs.
Any custom code implementing the API, Horizon, or the command-line utilities can
be used to request and modify compute resources. However, a console-based access
mechanism is also given to the user; they can use this to login to the guest virtual
machines that have been spun up.

Chapter 4

[91]

The Nova API is the subsystem that is responsible for accepting the API calls from
different sources; with Nova, we can also offer users access to their virtual machine
consoles, a functionality which is not exposed in public clouds, such as that of AWS.

The console is not a mandatory component, especially if we are just trying to match
the features of the public cloud. The console functionality is dependant on different
services such as the VNC proxy and console authentication. Depending on the
hypervisor, we may need more than these services to enable the console feature.

So, once Nova API gets a request, what does it do next? It leaves the request on
the Advanced Message Queueing Protocol (AMQP) message queue for the Nova
Scheduler to pick up. The Nova scheduler is responsible for finding a physical
server with the available resources to fulfill the request. It finds the server, and
again leaves the request in the message queue.

Nova Compute is the service that runs on the hypervisor and interacts with it.
It picks up the message from the queue and creates the compute resource. The
ephemeral storage for this compute is processed by the Nova Volume. If we need
permanent storage, then we have already set up Cinder in the previous chapters;
this can expose the block storage to the compute resource that we create.

Of course, the record for all actions is kept in the database, but in the case of Nova,
the Nova Conductor is responsible for writing and reading from the database in
order to keep the data coherent and avoid locking issues.

We will install all the components with the exception of Nova Compute on the
Controller node. Nova compute will be installed on the compute node.

Installing Nova components
We will install most of the components on the controller node and the core
components on the compute node. The communication is controlled by the AMQP
message bus and all the subcomponents talk to each other using RabbitMQ, which
we set up initially.

Installing on the controller node
The controller node follows the same installation procedure that we have seen in the
previous services. On the controller node, we will perform the following:

•	 Creating a database
•	 Installing the services

Building Your Cloud Fabric Controller Using Nova

[92]

And after this, we will configure the system by following these steps:

•	 Creating a Keystone user, service, and endpoints
•	 Modifying the configuration files

As usual, let's create our checklist to ensure we have all the pre-requisites before hand:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSControllerNode

Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS
Nova DB password n0vapwd

Nova Keystone password n0vakeypwd

Nova port 8774

Creating the database
We create a blank database after logging in to the MySQL server by typing the
following command:

mysql –u root –p

Enter the dbr00tpassword. password.

Once in the database, execute the following command:

create database nova;

This will create an empty database called Nova. Let's now set up the nova database
user credentials as discussed before:

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' IDENTIFIED BY
'n0vapwd';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED BY 'n0vapwd';

All this does is allow the username called nova using our password to be able to
access the database called nova.

Chapter 4

[93]

Installing components
The Nova control components are installed using the aptitude package manager with
the following command:

apt-get install nova-api nova-cert nova-consoleauth nova-novncproxy
nova-scheduler python-novaclient nova-conductor

Let's talk about these components:

•	 nova-api: The Nova API accepts the API calls made to the Nova service; we
can have multiple instances of this load balanced in a larger deployment.

•	 nova-cert: This is one of the support services of Nova. This is used to
manage the x509 certificates that are generated and managed to secure the
communications between the components.

•	 nova-consoleauth: This is a part of the Nova console subsystem; it provides
authentication for users who want to use the Nova console.

•	 nova-novncproxy: Being a part of the Nova Console subsystem, this provides
access to the compute using browser-based novnc clients.

•	 nova-scheduler: This component makes the decision regarding the compute
node on which the virtual machine will reside. This service balances the load
between multiple compute nodes. However, since in our setup we have a
single compute node, all our VM's will reside here.

•	 nova-conductor: This proxies the connection to the Nova database.
•	 python-novaclient: This provides the Nova command-line tools. We

can install the other proxy components such as the XVPN VNC proxy or
the Spice HTML 5 proxy; since they are not needed for now, however, we
will ignore them for the moment. If you do have to install them, then the
controller node will be the ideal place to install these components.

Once the command is executed, let's wait for the packages to be downloaded and
installed, which might take some time depending on the Internet connection speed.

Initial configuration
Let's now look at the initial configuration steps you need to keep in mind.

Creating the Nova user in Keystone
We will create the user in Keystone using the following command; by now, you
are familiar with exporting credentials in order to use the different OpenStack
command-line utilities:

keystone user-create --name nova --pass n0vakeypwd

Building Your Cloud Fabric Controller Using Nova

[94]

You should be able to see the following output:

We then add the user to the admin role by the following command:

keystone user-role-add --user nova --tenant service --role admin

Creating the Nova service in Keystone
The Nova service is created using the following command:

keystone service-create --name nova --type compute --description
"OpenStack Compute"

The following screenshot demonstrates the output:

We will have to note the ID of the service, which we will use in the next section.
In our case, this is 885fb274a5084daf92b09d378bab56a7.

Creating the Nova endpoint in Keystone
The endpoint is created using the following command; you have to replace the ID
with the ID you got during your service creation:

keystone endpoint-create \

 --service-id 885fb274a5084daf92b09d378bab56a7\

 --publicurl http://OSControllerNode:8774/v2/%\(tenant_id\)s \

Chapter 4

[95]

 --internalurl http://OSControllerNode:8774/v2/%\(tenant_id\)s \

 --adminurl http://OSControllerNode:8774/v2/%\(tenant_id\)s \

 --region dataCenterOne

This will create the Nova endpoint in Keystone.

Modifying the configuration file
We will now be modifying a single configuration file, /etc/nova/nova.conf.
The following changes are done to this file:

•	 In the [database] section, do the following:
°° We will set the database connection string in the file, as this:

connection = mysql://nova:n0vapwd@OSControllerNode/nova

•	 In the [default] section, these changes are done:
°° Configure the Rabbit MQ access, as shown here:

rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

°° Set the authentication strategy to Keystone, as follows:
auth_strategy = keystone

°° Set the management IP address:
my_ip = 172.22.6.95

°° Set the VNC configuration:
vncserver_listen = 172.22.6.95

vncserver_proxyclient_address = 172.22.6.95

•	 In the [keystone_authtoken] section, do the following:
°° Set the Keystone configuration as:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = nova

admin_password = n0vakeypwd

Building Your Cloud Fabric Controller Using Nova

[96]

•	 In the [glance] section, do as follows:

°° Set the Glance Host:
host = OSControllerNode

The file will look like the following screenshot:

Populating the database
We can populate the database using the following command (under root):

/bin/sh -c "nova-manage db sync" nova

Ensure that the database is created and we don't have any errors.

If there are any errors, please check the connection string
that is mentioned in the nova.conf file and ensure that
the MySQL instance is up.

Chapter 4

[97]

Finalizing the installation
We will delete the SQLite database file and restart all the services by the
following command:

rm -rf /var/lib/nova/nova.sqlite

service nova-api restart

service nova-cert restart

service nova-consoleauth restart

service nova-scheduler restart

service nova-conductor restart

service nova-novncproxy restart

If you have installed any other services such as html5 proxy, please restart them as
well. This concludes the installation on the controller node.

Installing on the compute node
The compute virtualization is so prevalent that all the hardware components,
especially the CPUs, are virtualization-enabled, which in essence is the CPU being
virtually split and supporting additional command sets that let the virtual machine
manager control the CPUs more effectively and offer a better performance.

These flags are masked when we install a hypervisor on an already virtualized
machine, hence hardware support is not present. This doesn't actually mean
that you cannot do this, but just means that now the second-level guests will be a
little slower in their performance, as they have to do this virtualization in software
rather than in hardware.

It should also be noted that some virtualization platforms don't work when they
are nested (as an example, KVM), and hence Qemu needs to be used. However,
modern hypervisors such as VMware also allow these CPU flags to be passed down
to the guest OS as well so that the guest can run a hypervisor if it so chooses. Since
virtualization is beyond the purview of this book, we will park this topic for now.

On the compute node, we will install the hypervisor, which in our case is KVM. If you
are also using, for example, VMware to run this node in a virtualized environment,
you will have to expose the AT-V flags and hardware acceleration so that you can
run KVM.

In order to test whether we can run KVM, execute the following command:

egrep -c '(vmx|svm)' /proc/cpuinfo

Building Your Cloud Fabric Controller Using Nova

[98]

If this returns 1, which means that it can see the VT flags in the CPU and it will be
able to use the CPU virtualization instruction set, in this case we are okay to proceed
with KVM; otherwise, we have to use Qemu. Another way to test is to install the
cpu-checker package and execute the kvm-ok command):

sudo apt-get install cpu-checker

kvm-ok

If the output is KVM acceleration can be used, we can go ahead and use KVM;
otherwise, we have to use Qemu.

Installing KVM
Let's install the packages that are needed for KVM using aptitude:

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-
utils

Optionally, if we intend to install a GUI to manage the KVM instances, install the
Ubuntu GUI (or the stripped down version of it):

sudo apt-get install --no-install-recommends ubuntu-desktop

Once this is installed, we can install the virtualization manager:

sudo apt-get install virt-manager

The optional steps can be ignored if we don't want the GUI. Most people working with
KVM will not be interested in the GUI; in our case, we will not be installing it.

Installing Nova compute components
Nova compute components are installed by executing the following command:

sudo apt-get install nova-compute sysfsutils

Let's talk about the following components that we are installing:

•	 nova-compute: This component is responsible for communicating with the
hypervisor locally in order to create and manage the guest operating system

•	 sysfsutils: We also install the system's filesystem utilities that are used to
see the different storages available; this will be used by the Nova volume,
(installed as a part of nova-compute) in order to create the ephemeral storage

We have to ensure that the preceding components are installed without any errors.

Chapter 4

[99]

Modifying the host files
On the controller nodes and the storage nodes, we need to modify the host entries
to include the compute node and vice versa on the compute node so that they can
resolve each other.

Modifying the configuration file
We will now modify the configuration file at /etc/nova/nova.conf; there are very
subtle differences between what we changed in the controller node; for example, we
don't need the database section and there are some changes in the VNC configuration.
The variables are taken from the checklist that we prepared previously:

•	 In the [default] section, do this:
°° Configure the RabbitMQ access:

rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

°° Set the authentication strategy to Keystone:
auth_strategy = keystone

°° Set the management IP address:
my_ip = 172.22.6.97

°° Set the VNC configuration:
vncserver_listen = 0.0.0.0

vnc_enabled = True

vncserver_proxyclient_address = 172.22.6.97

novncproxy_base_url =
http://OSControllerNode:6080/vnc_auto.html

•	 In the [keystone_authtoken] section, do the following:
°° Set the Keystone configuration:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = nova

admin_password = n0vakeypwd

Building Your Cloud Fabric Controller Using Nova

[100]

•	 In the [glance] section, do as follows:
°° Set the Glance host:

host = OSControllerNode

If we don't have KVM installed, modify /etc/nova/nova-
compute.conf and set virt_type = qemu (instead of kvm).

Finalizing the installation
We will restart the nova-compute service and remove the SQLite database by the
following command:

rm -rf /var/lib/nova/nova.sqlite

service nova-compute restart

This concludes the installation on the compute node.

Verifying the installation
The installation can be verified on the controller node. Once on the controller node,
export the credentials and list the nova services using this command:

nova service-list

Please verify that you can see both the controller services and the compute services,
as shown in the following screenshot:

Chapter 4

[101]

Execute the following command:

nova image-list

glance image-list

Both of them should show the cirros image that we uploaded during the Glance
installation. This also shows that Nova can see the images stored by Glance.

Console access
Since one of the key differentiators when compared to the public cloud is the console,
and as, in this section, we will also install the console components, let's take a look at
how the console subsystem works.

Later in the book, when we install the dashboard component, we will then be able
generate the console URL right from the dashboard. However, we can also generate
the URL using the nova CLI command:

nova get-vnc-console

This will generate the VNC URL that points to the proxy. The URL will be of
the following format: http://ProxyIP:Port/?token=axyasaas. The proxy IP
address is set in the nova.conf files in the previous configuration, as shown in
the following figure:

Console
AuthenticationVNC Proxy

Keystone

VM

Browser

Access to VNC

VNC Access

Validate Token Check Access

Building Your Cloud Fabric Controller Using Nova

[102]

The following happens when the console URL is accessed:

1.	 Browser/Client connects to VNC Proxy.
2.	 VNC Proxy talks to nova-consoleauth to authorize the user's token.
3.	 VNC Proxy maps the token to the private host and the port of an instance's

VNC server.
The compute host specifies the address that the proxy should use to connect
in the nova.conf file.

4.	 VNC Proxy initiates a connection to the VNC server and continues proxying
until the session times out or a user closes the session.

Designing your Nova environment
In a production environment, we could be running several of the tens to hundreds of
Nova compute nodes. There will be possibly one component that will be used more
than any other component.

Designed properly, Nova can be used to support multiple hypervisors on a cloud
and provision instances in different regions. While we are not going to supply a
guide on how to perform the advanced configuration of Nova, we will definitely
take a look at this theoretically.

Logical constructs
The following diagram shows the different logical constructs of Nova. When
architecting a production environment, we will need to think about which of
these we would use depending on requirements and the scale of the cloud
that we are deploying:

Availability Zone Availability Zone

Availability Zone

Region Region

Host Aggregate

All Nova
Services

Keystone

Chapter 4

[103]

In this diagram, we have not shown a Nova cell as this was still an experimental
feature during the time of writing the book, however, it's fairly similar to that of
region, with the exception that the nova-api service is also shared.

Region
This is the top level construct and has all the components of Nova installed. If there
are two regions, then we will have two full blown Nova installations (of all the Nova
services), and the only component that is common between the two regions is that
both of them use the same Keystone component for authentication.

Availability zone
An availability zone (AZ) doesn't really need any new services, but it uses the
same set of the nova services that are installed for the region. This is merely a
configuration change and can be quickly modified.

The reason you may want to use availability zones is to show the users the presence
of fault-tolerant hardware—for example, hardware with different power supplies,
and so on. A user can normally request a nova instance to be booted on the AZ.
An AZ cannot exist without the host aggregates, as they in some ways are simply
a way to expose the host aggregates to the end users.

The host aggregates
To overly simplify this, you can consider host aggregates as tags that are used to
group compute servers. These could be servers with certain common traits, such
as Hypervisors, or performance, such as servers with SSD drives or flash storage.
The order of configuration, however, happens to be that the host aggregate is first
created and then they can be placed in an AZ, if needed.

It should also be noted that a single compute node can be placed in multiple
aggregates, just like adding multiple tags. The Nova API doesn't actually allow
the choosing of host aggregates, so we normally expose this as an AZ for users
to choose from.

However, the host aggregates can be chosen by the use of metadata, which can
be added on both the aggregate and, say, the nova flavor, to push the servers to
a certain host aggregate.

Both AZ and host aggregates can be used together. They can even be used separately.
A good use case for using them together a multihypervisor cloud.

Building Your Cloud Fabric Controller Using Nova

[104]

Virtual machine placement logic
The following logic is used in a virtual machine placement:

1.	 The client chooses the region.
2.	 The client queries Keystone for the Nova endpoint of that region.
3.	 The client submits the request to the Nova API of that region.
4.	 The Nova system lists the compute nodes in the region.
5.	 The Nova system then filters it with the AZ metadata and the second level

filters the host aggregate (in the request) metadata.
6.	 The Nova system finds the compute nodes that are suitable for handling the

VM, depending upon the size of the VM.
7.	 One of the compute nodes is then chosen in a round robin fashion, and the

VM is spun up on this node.

In our case, we have not created any availability zones or host aggregates for the
purpose of simplicity, but the logic remains the same regardless.

Sample cloud design
So, in order to understand what we have seen so far, let's take a fictitious example
where your company will need the private cloud with the following qualities:

•	 Two major datacenters—that is, London and Boston
•	 Support required for two hypervisors: VMware (for production workloads)

and KVM (for development workloads)
•	 Each DC will be fed by two separate power grids
•	 There will be servers with SSD as internal storages that need to be used for

caching static content

Now with this in mind, let's take a look at how we should proceed from here on.

Chapter 4

[105]

Since we have two datacenters, we can create this as two different regions. This way,
each region will be independent of the other. We could also look at creating Nova
cells, if we do not want the clients to first query Keystone for the endpoint URL or
just use a single endpoint URL. Since they are an experimental feature, we will stick
with two regions.

In each region, we will create two AZs. The servers belonging to the AZs will
be connected to different power grids. This way, we can tell our users to create
application servers on the different AZs for high availability.

Now, it comes down to the host aggregates. For this one, we need to think a little
more. So we have this question: will the SSD servers be available for both the dev
test environment and production environment?

Please remember, this is not for the OpenStack environment,
but for the applications that will be running on the virtual
machines that will be spun up and managed by OpenStack.

We can have up to four host aggregates in the preceding scenario:

•	 VMware-normal
•	 VMware-SSD
•	 KVM-normal
•	 KVM-SSD

Now depending on the actual use case that is supplied, we can have all four host
aggregates or just three of them. We may even have more host aggregates created
based on other classifications as well.

So, this is how we can design our Nova deployment. Please do note that in this case,
we have also created the multihypervisor cloud, and the compute nodes that are
working with VMware will talk to vSphere and provision the virtual machines. So,
they can be a little under-sized, as all they do is just make API calls. The compute
nodes, which also have the KVM hypervisor installed, will be bigger as they are
hosting the virtual machines.

Building Your Cloud Fabric Controller Using Nova

[106]

The following figure shows our sample cloud design:

VMware-Normal KVM-Normal

KVM-SSDVMware-SSD

Keystone

Nova API

Scheduler

VNC Proxy

Other Nova
Services

Boston

Nova API

Scheduler

VNC Proxy

Other Nova
Services

London

AZ
1

AZ
2

KVM

Nova Compute +
KVM

VMware

Nova Compute

vSphere

C
lu

st
er

 N
od

e
1

C
lu

st
er

 N
od

e
2

C
lu

st
er

 N
od

e
n

So, as you can see that we have only installed Keystone in the London region, and
the Boston region is also using the same server.

The diagram also takes the liberty to show the Nova compute instance sizes and
functions, in case of the different hypervisors.

Troubleshooting installation
Troubleshooting an installation of Nova is similar to the ones described in the
previous chapters. While we have still not spun up an instance, let's take a look at
some failure scenarios when we do spin an instance up and it refuses to come up.

Please remember that the Nova log files are situated in the /var/
log/nova/ directory of the nodes where any of the Nova services
are installed.

Chapter 4

[107]

Here are some of the preliminary checks:

1.	 Check the Keystone log to see an authentication or token failures.
2.	 Check whether RabbitMQ is functional and reachable from all the different

compute nodes.
3.	 Check whether the installation and configuration have been done properly.

If the authentication was not a problem, we follow the following procedure:

1.	 Check nova-api.log on the controller node to check whether the request
was properly received. If the request was not properly handled, you will
see the reason here.

2.	 Execute the nova list command and note down the instance ID of
the system.

3.	 Execute the nova console-log <uuid of the VM> command to see the logs.

These logs should point you to the right direction. If the system is stuck at building
or scheduling, and the VM has not begun to be built yet, then there can be two
possible reasons:

•	 Not enough resources
•	 Issues with the hypervisor

The first log file to be checked will be of the nova scheduler; then check
nova-compute.log on the compute node. These are general guidelines and further
troubleshooting may be needed on the hypervisor side.

Summary
In this chapter, we were introduced to Nova, the key service of OpenStack that
provisions and manages compute resources, which is also called the Cloud Fabric
Controller. We then looked at the various components of Nova such as Nova
scheduler, Nova compute, Nova API, Nova volume, Nova conductor, and Nova
console, and their interactions among themselves using a messaging queue. Finally,
we looked at the installation and configuration of these components on the compute
node and the controller node.

After storage and compute services, the next step is to set up a networking service.
We will set up Neutron for networking in the next chapter and take it forward.

[109]

Technology-Agnostic Network
Abstraction Using Neutron

In the previous chapters, we started with basic Ubuntu Linux boxes and progressed
to having compute as a defined service. Now, we move on to network connectivity.
In this chapter, we will set up Neutron and perform some basic software-defined
networking, which will allow us to provide our Nova instances with the networking
they need.

Falling as it does in the learning series intended for beginners, this book will
allow us to explore some straightforward examples. Once a basic understanding
about networking and Neutron itself is gained, Neutron can be used to configure
networking in some fancy ways.

In this chapter, we will cover the following topics:

•	 Understanding the software-defined network paradigm
•	 Getting started with Neutron
•	 Installing Neutron
•	 Troubleshooting Neutron

The software-defined network paradigm
Before we jump straight onto the architecture, installation, and basic configuration
of the Neutron service, let's spend some time looking at some of the problem
statements that Software-Defined Networking (SDN) tries to solve and the different
approaches that it uses in order to solve them. You may choose to skip directly to
the Neutron section; if you so choose, you will still be able to follow the OpenStack
installation and configuration part of the book.

Technology-Agnostic Network Abstraction Using Neutron

[110]

The biggest challenge that the cloud and multitenanted environments have posed
since their inception is in the realm of network and security. We have dealt with
multitenanted networks in the past, in the context of hosted datacenter service
providers, and the answer to requirement for separation was Virtual Local Area
Networks (VLANs), which worked well as they provided isolated segments, and the
inter-VLAN routing was almost always through a firewall providing security as well.

We have come a long way since the hosted datacenter model to this new cloud
world. While the basic idea of sharing resources by use of virtualization is no
different from the old paradigm, the way we implement it has changed drastically.

As an example, say, if you wanted to use a hosted datacenter service in the pre-cloud
world; you would put in a request, and then someone in the hosting provider's
network team would create a new VLAN for you, among other things.

In the cloud world, however, services are auto-provisioned, so we could potentially
have many tenants requesting resources in a day. Also, they may request more than
one VLAN to create, say, three-tier architecture, not to mention the implications
for security.

So now to the main question; does VLAN still not cut it? The answer is subjective;
however, let's take a look at the shortcomings of the VLAN technology:

•	 We can have a maximum of 4,094 VLANs—remove some administrative and
pre-assigned ones, and we are left with just over 4,000 VLAN's. Now this
becomes a problem if we have say 500 customers in our cloud and each of
them is using about 10 of them. We can very quickly run out of VLANs.

•	 VLANs need to be configured on all the devices in the Layer 2 (Switching)
domain for them to work. If this is not done, the connectivity will not work.

•	 When we use VLANs, we will need to use Spanning Tree Protocol (STP)
for loop protection, and thereby we lose a lot of multipathing ability (as
most multi-path abilities are L3 upwards and not so much on the Layer 2
network).

•	 VLANs are site-specific, and they are not generally extended between two
datacenters. In the cloud world, where we don't care where our computing
resources stay, we would like to have access to the same networks, say for a
disaster recovery (DR) kind of scenario.

One of the methods that can alleviate some of the aforementioned problems is the
use of an overlay network. We will then also take a look at an upcoming technology
that is also used, called Open Flow.

Chapter 5

[111]

What is an overlay network?
An overlay network is a network running on top of another network. The different
components or nodes in this kind of network are connected using virtual links rather
than physical ones.

The following diagram shows the concept of overlay networking between three
datacenters connected by an ISP:

An overlay network is created on top of a physical network, and the physical
network determines the multipath and failover conditions, as the overlay is only as
good as the network below it.

An overlay network generally works by encapsulating the data in a format that the
underlay network understands and optionally may also encrypt it.

Components of overlay networks
An overlay network normally contains the following components:

•	 Physical connectivity and an underlay routable/switched network
•	 Overlay endpoints

Technology-Agnostic Network Abstraction Using Neutron

[112]

Overlay endpoint devices that need the connectivity. It should be noted that the
overlay endpoint must be able to route/switch on its own, as the underlying network
normally has no idea of the protocols that are being transported by the overlay.

Overlay technologies
There are several overlay technologies that help in creating overlay networks, some
more complicated than others but ultimately solving similar problem statements.

Let's take a brief look at a few of them and understand some of the working
concepts. We will not be covering how these are configured on the network layer or
any advanced concepts, as these are beyond the scope of this book.

GRE
Generic Routing Encapsulation (GRE) is possibly one of the first overlay technologies
that existed. It was created in order to start creating standardization in the network
Layer-3 protocols.

If you remember, before TCP/IP became the de facto standard for networking,
there were several Layer 3 protocols, such as SPX/IPX, Banyan, and Apple Talk.
The service providers could definitely not run all of these, as it would become a
networking nightmare. Hence, GRE tunneling was used.

GRE encapsulates every layer-3 payload you throw at it inside an IP packet, by
setting the destination as the address of the remote tunnel endpoint, and then sends
it down the wire; it performs the opposite function on the IP packet at the other end.
This way, the underlay network sees the packet as a general IP packet and routes
it accordingly. Thus, the endpoints can happily now talk another language if they
choose to.

A new form of GRE called Multipoint GRE (MGRE) evolved in the later years to
help with the multipoint tunnel requirements.

VXLAN
Virtual Extensible LAN (VXLAN) is an advancement of the VLAN technology itself.
It actually brings in two major enhancements, described as follows:

•	 Number of VXLANs possible: Theoretically, this has been beefed up to
16 million VXLANs in a network, thereby giving ample room for growth.
However, the devices may support between 16,000–32,000 VXLANs.

Chapter 5

[113]

•	 Virtual tunnel endpoint (VTEP): VXLAN also supports VTEP, which can be
used to create a Layer-2 overlay network atop the Layer 3 endpoints.

Underlying network considerations
Overlay technologies are supported in most devices, and if they are not, then they
may just be a software update away. The requirements, as we have already seen,
are that it needs a routable underlay network and the impact is determined by the
properties of the underlying network itself. However, let's take some pointers from
one of the most used networks (TCP IP over Ethernet networks).

The Maximum Transmission Unit (MTU) is the largest Protocol Data Unit (PDU)
that is normally transmitted in any layer. We just need to bear in mind that the
usable MTU decreases a little due to the encapsulation that is needed. In case of
Ethernet, the MTU is 1,500 bytes.

When using the overlay, the actual MTU, and thereby the maximum segment size
(MSS), are reduced. In order to alleviate the problem, you may choose to use jumbo
frames (up to a 9,000-byte MTU). If you are unable to use this, then the data transfer
speeds will reduce because the amount of data being sent in each packet is reduced
(if the MTU was adjusted) or due to fragmentation (if the MTU was not adjusted).

Open flow
Open flow is a new technology that works on the principle of the separation of the
control and data planes in the network technology. In traditional networks, these
planes reside in the device, but with open flow, the data plane would still reside in
the switch, and the control plane is moved to a separate controller.

Open flow is considered the beginning of SDN itself, as we can now define the path
that the packets need to follow entirely in the software without having to change any
configuration on the devices themselves. Since open flow, there have been several
topics added to the concept of SDN, principally to make it backward compatible.

Technology-Agnostic Network Abstraction Using Neutron

[114]

The following diagram presents how the forwarding is done in case of an open flow
system in place:

The devices talk to the controller and forward the packet details. The controller then
tells the device the data path to follow, after which the device caches this information
and uses it to forward future packets.

There are several examples of open flow controllers that are available in the market,
but some popular ones are as follows:

•	 Open daylight
•	 Flood light
•	 NEC open flow controller
•	 Arista controller
•	 Brocade vyatta controller

Underlying network consideration
The underlying network devices should be able to understand open flow itself. So
while in most cases this may be a software upgrade, it could potentially also mean
upgrading the network hardware if the devices don't already decouple the data and
control planes.

Chapter 5

[115]

Equipped with this information, let us look at the Neutron component of OpenStack.

Neutron
Neutron replaced an older version of the network service called Quantum, which
was introduced as a part of the Folsom release of OpenStack. Before Quantum came
into the picture, the networking of the Nova components was controlled by Nova
networking, a subcomponent of Nova. The name of the networking component was
changed from Quantum to Neutron due to a trademark conflict (Quantum was a
trademark of a tape-based backup system).

While Neutron is the way to go, if you need only simple networking in your cloud,
you can still choose to use the Nova network feature and ignore the Neutron
service completely. But if you do go the Neutron route, you can easily offer several
services, such as load balancing as a service (using HA proxy) and VPN as a service
(openswan). Neutron has a component on the controller node called the neutron
server, along with a bunch of agents and plugins that communicate with each other
using a messaging queue. Depending on the type of deployment, you can choose the
different agents that you want to use.

Some plugins that are available today with Neutron include but are not limited to
the following:

•	 NEC openflow
•	 Open vSwitch
•	 Cisco switches (NX-OS)
•	 Linux bridging
•	 VMware NSX
•	 Juniper opencontrail
•	 Ryu network OS
•	 PLUMgrid Director plugin
•	 Midokura Midonet plugin
•	 OpenDaylight plugin

You can choose to write more of these, and the support is expanding every day.
So, by the time you get on to implementing it, maybe your favorite device vendor
will also have a Neutron plugin that you can use.

Technology-Agnostic Network Abstraction Using Neutron

[116]

In order to view the updated list for plugins and drivers, refer to the
OpenStack wiki page at https://wiki.openstack.org/wiki/
Neutron_Plugins_and_Drivers.

Architecture of Neutron
The architecture of Neutron is simple, but it is with the agents and plugins where
the real magic happens! Neutron architecture has been presented in the following
diagram:

Let's discuss the role of the different components in a little detail.

The Neutron server
The function of this component is to be the face of the entire Neutron environment
to the outside world. It essentially is made up of three modules:

•	 REST service: The REST service accepts API requests from the other
components and exposes all the internal working details in terms of
networks, subnets, ports, and so on. It is a WSGI application written in
Python and uses port 9696 for communication.

•	 RPC service: The RPC service communicates with the messaging bus and its
function is to enable a bidirectional agent communication.

•	 Plugin: A plugin is best described as a collection of Python modules that
implement a standard interface, which accepts and receives some standard
API calls and then connects with devices downstream. They can be simple
plugins or can implement drivers for multiple classes of devices.

https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers
https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers

Chapter 5

[117]

The plugins are further divided into core plugins, which implement the core
Neutron API, which is Layer 2 networking (switching) and IP address management.
If any plugin provides additional network services, we call it the service plugin—for
example, Load Balancing as a Service (LBaaS), Firewall as a Service (FWaaS), and
so on.

As an example, Modular Layer 2 (ML2) is a plugin framework that implements
drivers and can perform the same function across ML2 networking technologies
commonly used in datacenters. We will use ML2 in our installation to work with
Open vSwitch (OVS).

L2 agent
The L2 agent runs on the hypervisor (compute nodes), and its function is simply
to wire new devices, which means it provides connections to new servers in
appropriate network segments and also provides notifications when a device is
attached or removed. In our install, we will use the OVS agent.

L3 agent
The L3 agents run on the network node and are responsible for static routing,
IP forwarding, and other L3 features, such as DHCP.

Understanding the basic Neutron process
Let's take a quick look at what happens when a new VM is booted with Neutron.
This shows all the steps that take place during the Layer 2 stage:

1.	 Boot VM start.
2.	 Create a port and notify the DHCP of the new port.
3.	 Create a new device (virtualization library – libvirt).
4.	 Wire port (connect the VM to the new port).
5.	 Complete boot.

Technology-Agnostic Network Abstraction Using Neutron

[118]

Networking concepts in Neutron
It is also a good idea to get familiar with some of the concepts that we will come
across while dealing with Neutron, so let's take a look at some of them. The
networking provides multiple levels of abstraction:

•	 Network: A network is an isolated L2 segment, analogous to a VLAN in the
physical networking world.

•	 Subnet: This is a block of IP addresses and the associated configuration
state. Multiple subnets can be associated with a single network (similar to
secondary IP addresses on switched virtual interfaces of a switch).

•	 Port: A port is a connection point to attach a single device, such as the NIC
of a virtual server, to a virtual network. We have seen physical ports to
which we plug our laptops or servers into them; the virtual ones are quite
analogous to those, with the difference that these ports belong to a virtual
switch and we connect it using a virtual wire to our servers.

•	 Router: A router is a device that can route traffic between different subnets
and networks. Any subnets on the same router can talk to each other without
a routing table if the security groups allow the connection.

In order to express this better, let's take a look at the following diagram, which shows
the connectivity between the Compute node and Network nodes—the management
network is used by administrators to configure the nodes and other management
activities (these networks and their purposes have been described in Chapter 1, An
Introduction to OpenStack):

Chapter 5

[119]

The Tunnel Network exists between the compute nodes and the network node and
serves to build a GRE Tunnel between the two. This GRE Tunnel, as we know,
encapsulates different networks created on the compute nodes, so that the physical
fabric doesn't see any of it. In our configurations, we will set up the VLAN ranges for
this purpose.

The network node primarily performs the Layer 3 functionality, be it routing
between the different networks or routing the networks to an external network using
its external interface and the OVS bridge created on the Network Node. In addition,
it also performs other L3-related functions such as firewalling and load balancing.
It also terminates the elastic IPs at this level.

So let's take a look at how this would look in the real world:

As you can see from the diagram, the physical network has absolutely no idea of the
existence of the different VLANs, which will now be assigned to different tenants or
the same tenant for different purposes. We can create as many VLANs as needed,
and the underlying physical network will not be affected.

The virtual router in the network node will be responsible for routing between
the different VLANs, and the router may also provide access to the Internet using
another network interface in the network node (we call it the external network).

Technology-Agnostic Network Abstraction Using Neutron

[120]

To summarize, ports are the configurations on the networks where the guest VM can
be connected. The network is equivalent to the virtual switch VLAN in which there
may be one or more subnets. It is on a layer 2 network domain. Different networks
are connected to the router on the Network Node using a GRE Tunnel, and each
network is encapsulated with a single VLAN ID for identification.

Installing Neutron
The installation of this service takes place over three nodes: the controller node,
the network node, and the compute node.

•	 The controller node will have the Neutron server component
•	 The compute nodes will have the L2 agents installed
•	 The Network node will have the Layer 3 agents installed

Installing on the controller node
The same installation procedure that we have seen in the previous services will be
followed on the controller node. We will carry out the following steps:

1.	 Create a database.
2.	 Install the services.

After this, we will initially configure the system, and perform the following steps:

1.	 Create a Keystone user, service, and endpoints.
2.	 Modify configuration files.

As usual, let's create our checklist to ensure we have all the prerequisite data
beforehand:

Name Info

Access to the Internet Yes

Proxy Needed No

Proxy IP and port Not applicable

Node name OSControllerNode

Node IP address 172.22.6.95

Node OS Ubuntu 14.04.1 LTS

Chapter 5

[121]

Name Info

Neutron DB password n3utron

Neutron Keystone password n3utronpwd

Neutron port 9696

Nova Keystone password n0vakeypwd (From the
previous chapter)

Rabbit MQ password rabb1tmqpass

Metadata password m3tadatapwd

Creating the database
We create a blank database after logging in to the MySQL server:

mysql –u root –p

Enter the password: dbr00tpassword

Once in the database, execute the following command:

create database neutron;

This will create an empty database called neutron. Let us now set up the Nova
database user credentials as we did earlier:

GRANT ALL PRIVILEGES ON nova.* TO 'neutron'@'localhost' IDENTIFIED BY
'n3utron';

GRANT ALL PRIVILEGES ON nova.* TO 'neutron'@'%' IDENTIFIED BY
'n3utron';

This allows the username neutron, using our password, to access the database
called neutron.

Installing Neutron control components
The Neutron control components are installed using the aptitude package manager
by using the following command:

sudo apt-get install neutron-server neutron-plugin-ml2 python-
neutronclient

Ensure that these are installed successfully.

Technology-Agnostic Network Abstraction Using Neutron

[122]

Initial configuration
Now, let's look at some of the initial configuration tasks on the controller node.

Creating the Neutron user in Keystone
Create the user in Keystone; by now, you will be familiar with exporting the
credentials in order to use the different OpenStack command line utilities:

keystone user-create --name neutron --pass n3utronpwd

You should see something like the following screenshot:

Then assign the admin role to the user by running the following command:

keystone user-role-add --user neutron --tenant service --role admin

Creating the Neutron service in Keystone
The Neutron service is created using the following command:

keystone service-create --name neutron --type network --description
"OpenStack Networking"

The service will look as follows:

We will have to note the id of the service, which we will use in the next section. In
our case the id is 73376c096f154179a293a83a22cce643.

Chapter 5

[123]

Creating the Neutron endpoint in Keystone
The endpoint is created using the following command, where you replace the ID
with the ID you received during service creation:

keystone endpoint-create \

 --service-id 73376c096f154179a293a83a22cce643\

 --publicurl http://OSControllerNode:9696 \

 --internalurl http://OSControllerNode:9696 \

 --adminurl http://OSControllerNode:9696 \

 --region dataCenterOne

The following is the output:

Modifying the configuration files
On the controller node, we have a few files to modify:

•	 /etc/neutron/neutron.conf: This file is used to configure Neutron
•	 /etc/neutron/plugins/ml2/ml2_conf.ini: This file helps configure the

ML2 plugin
•	 /etc/nova/nova.conf: This allows Nova to use Neutron rather than the

default Nova networking

Let's view one file at a time. However before we proceed, we will need the ID of the
service tenant that we created. We can obtain it by using the Keystone command
keystone tenant-list and picking the ID of the service tenant.

Technology-Agnostic Network Abstraction Using Neutron

[124]

We will have to export the variables (or source the file, as we have done in the past)
as shown in the following screenshot:

So, the service tenant ID is 8067841bed8547b0a21459ff4c8d58f7. This will be
different for you, so substitute this in the following configuration.

In the etc/neutron/neutron.conf file, make the following changes:

•	 Under the [database] section:
connection = mysql://neutron:n3utron@OSControllerNode/neutron

•	 Under the [default] section:
rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

auth_strategy = keystone

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

notify_nova_on_port_status_changes = True

notify_nova_on_port_data_changes = True

nova_url = http://OSControllerNode:8774/v2

nova_admin_auth_url = http://OSControllerNode:35357/v2.0

nova_region_name = dataCenterOne

nova_admin_username = nova

nova_admin_tenant_id = 8067841bed8547b0a21459ff4c8d58f7

nova_admin_password = n0vakeypwd

verbose = True

Chapter 5

[125]

•	 Under the [keystone_authtoken] section:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = neutron

admin_password = n3utronpwd

These changes need to be done in the Neutron configuration.

Now, in the /etc/neutron/plugins/ml2/ml2_conf.ini file, make the following
changes:

•	 In the [ml2] section, enable the GRE and flat networking as follows:
type_drivers = flat,gre

tenant_network_types = gre

mechanism_drivers = openvswitch

•	 In the [ml2_type_gre] section, enable the tunnel ID ranges—these don't
need to be in the physical network, as they will only be between the compute
and network node:
tunnel_id_ranges = 1:1000

•	 In the [securitygroup] section, make the following changes:
enable_security_group = True

enable_ipset = True

firewall_driver=
neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

The next set of changes is to be made in the /etc/
nova/nova.conf file.

•	 In the [default] section, set the following:
network_api_class = nova.network.neutronv2.api.API

security_group_api = neutron

linuxnet_interface_driver = nova.network.linux_net.
LinuxOVSInterfaceDriver

firewall_driver =
nova.virt.firewall.NoopFirewallDriver

Technology-Agnostic Network Abstraction Using Neutron

[126]

•	 In the [neutron] section, enable the metadata-related configuration, which
will be enabled on the network node:

url = http://OSControllerNode:9696

auth_strategy = keystone

admin_auth_url = http://OSControllerNode:35357/v2.0

admin_tenant_name = service

admin_username = neutron

admin_password = n3utronpwd

service_metadata_proxy = True

metadata_proxy_shared_secret = m3tadatapwd

This will enable Neutron for Nova in line with the configuration.

Setting up the database
The Neutron database can now be populated by running the following command as
root user:

/bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf
--config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade juno"
neutron

Ensure that the command does not result in an error. If it does result
in an error, check if the configuration settings have been changed
according to the preceding section.

Finalizing the installation
To finalize the installation, delete the SQLite database that comes along with the
Ubuntu packages:

rm –rf /var/lib/neutron/neutron.sqlite

Restart all the services, including Nova and Neutron, by running the following
commands:

service nova-api restart

service nova-scheduler restart

service nova-conductor restart

service neutron-server restart

At this point, the installation is complete on the controller node.

Chapter 5

[127]

Validating the installation
In order to validate the installation, let's execute some Neutron commands:

neutron ext-list

neutron agent-list

Make sure that the commands do not throw up any error.

Installing on the network node
The network node is the fourth and final node that we will be using for our setup.
This node needs to have at least three network cards—you may recall this from the
architecture design that we saw in Chapter 1, An Introduction to OpenStack:

•	 Management network
•	 External network
•	 Tunnel network

The roles of these networks are fairly straightforward: the management network
installs and manages the nodes; the external network provides access to the network;
and the tunnel network is used to tunnel traffic between the compute nodes and the
network nodes.

Before we begin working, let's prepare our checklist so that we have all the
information about the system handy, as follows:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSNetworkNode

Node IP address 172.22.6.98 – Mgmt network
10.0.0.1 – Tunnel interface

Node OS Ubuntu 14.04.1 LTS
Neutron DB password n3utron

Neutron Keystone password n3utronpwd

Neutron port 9696
Nova Keystone password n0vakeypwd (From the previous chapter)

Technology-Agnostic Network Abstraction Using Neutron

[128]

Name Info
Rabbit MQ password rabb1tmqpass

Metadata password m3tadatapwd

External interface eth2

Setting up the prerequisites
On the network node, we will need to make some changes, which will help us set up
network forwarding before we go into the actual installation.

We start by editing the /etc/sysctl.conf file to ensure the following parameters
are set:

•	 net.ipv4.ip_forward=1

•	 net.ipv4.conf.all.rp_filter=0

•	 net.ipv4.conf.default.rp_filter=0

These lines are needed on the network node in order for it to be able to forward
packets from one interface to the other, essentially behaving like a router. We also
disable the Reverse Path (rp) filter so that the kernel doesn't do the source validation;
this is required so that we can use the elastic IPs. In order to ensure that the changes
take effect, reload the system control as follows:

sudo sysctl –p

This command reloads the sysctl.conf file that we modified.

Installing Neutron packages
We will install the Neutron packages for the ML2 plugin and the OVS agents along
with Layer 3 and DHCP agents:

sudo apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-
agent neutron-l3-agent neutron-dhcp-agent

Depending on your Internet speed, this might take
some time.

Once the packages are installed, we will configure them. The Neutron configuration
is similar to that on the controller node; the ML2 Plugin, DHCP agent, and the L3
agents are additional. We will also configure the metadata agent, which will be used
to push the metadata on all the compute nodes when they come up.

Chapter 5

[129]

Initial configuration on the network node
Now, let us look at some of the initial configuration tasks on the network node.

Neutron configuration
In the /etc/neutron/neutron.conf file, make the following changes:

•	 Under the [database] section:
°° Remove any connection string that is present, as the database access

is not needed directly by the network node

•	 Under the [default] section:
rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

auth_strategy = keystone

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

verbose = True

•	 Under the [keystone_authtoken] section:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = neutron

admin_password = n3utronpwd

ML2 plugin
In the /etc/neutron/plugins/ml2/ml2_conf.ini file, make the following changes.

•	 In the [ml2] section, enable GRE and flat networking as follows:
type_drivers = flat,gre

tenant_network_types = gre

mechanism_drivers = openvswitch

Technology-Agnostic Network Abstraction Using Neutron

[130]

•	 In the [ml2_type_gre] section, enable the tunnel ID ranges; these don't need
to be in the physical network, as they will only be between the compute and
network node:

°° tunnel_id_ranges = 1:1000

•	 In the [securitygroup] section, make the following changes:
enable_security_group = True

enable_ipset = True

firewall_driver=
neutron.agent.linux.iptables_firewall.OVSHybridIpt
ablesFirewallDriver

•	 In the [ml2_type_flat] section, make this change:
flat_networks = external

•	 Under the [ovs] section for OVS (set the interface address for GRE),
make these changes:
local_ip = 10.0.0.1

enable_tunneling = True

bridge_mappings = external:br-ex

•	 Under the [agent] section, enable the GRE tunnels:

tunnel_types = gre

Configuring agents
We will configure three agents for Neutron: the Layer 3 agent for routing, the DHCP
agent to provide DHCP services to the compute nodes, and the metadata agent,
which will push the metadata on to the compute nodes.

Layer 3 agent
The Layer 3 agent will provide the routing services; we only have to provide
the external bridge name. Open and edit the /etc/neutron/l3_agent.ini file
as follows:

•	 In the [default] section, edit the following:

interface_driver =
neutron.agent.linux.interface.OVSInterfaceDriver

use_namespaces = True

external_network_bridge = br-ex

router_delete_namespaces = True

verbose = True

Chapter 5

[131]

Layer 3 agent
This is configured by the /etc/neutron/dhcp_agent.ini file:

•	 Under the [default] section, make these changes:
interface_driver =
neutron.agent.linux.interface.OVSInterfaceDriver

dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq

use_namespaces = True

dhcp_delete_namespaces = True

verbose = True

We can also configure other settings using the masquerading file. We can set any
DHCP option; for example, it is recommended that we lower the MTU of the
interface by 46 bytes so there will be no fragmentation. If we have jumbo frame
support, then this step may not be required.

dnsmasq_config_file = /etc/neutron/dnsmasq-neutron.conf

We just add the preceding line in the dhcp_agent.ini file and then create a new file
called /etc/neutron/dnsmasq-neutron.conf and the line:

dhcp-option-force = 26,1454

This sets the DHCP option 26 (MTU setting) to 1454. Please note that, if the operating
system doesn't honor this setting, it will not have any impact.

Configuring the metadata agent
We finally configure the metadata agent using the etc/neutron/metadata_agent.
ini file as follows:

•	 Under the [default] section:

auth_url = http://OSControllerNode:5000/v2.0

auth_region = dataCenterOne

admin_tenant_name = service

admin_user = neutron

admin_password = n3utronpwd

nova_metadata_ip = OSControllerNode

metadata_proxy_shared_secret = m3tadatapwd

verbose = True

Technology-Agnostic Network Abstraction Using Neutron

[132]

Please remember that the metadata shared password should be the
same on both the controller node configuration that we did and on
the network node.

Setting up OVS
The entire Neutron configuration is based on the OVS. We need to create a bridge
(br-ex) that will point to the external network.

service openvswitch-switch restart

ovs-vsctl add-br br-ex

We now need to add the interface to the external bridge. This interface should be the
one pointing to the external physical network world. In my case, it is eth2. Modify it
to reflect the right interface name in your environment:

ovs-vsctl add-port br-ex eth2

This adds the external network to the bridge that OpenStack knows as br-ex.

Verify that the interface is added by executing the following command:

ovs-vsctl show

You will receive confirmation as shown in the following screenshot:

Finalizing the installation
We now need to restart all the services we have installed by running the following
commands:

sudo service neutron-plugin-openvswitch-agent restart

sudo service neutron-l3-agent restart

sudo service neutron-dhcp-agent restart

sudo service neutron-metadata-agent restart

Chapter 5

[133]

Validating the installation
On the controller node, after exploring the environment variables for authentication,
execute the following command:

neutron agent-list

You will see the four agents we configured on the network node, as in the following
screenshot:

Installing on the compute node
We need to install and configure the Neutron plugins, and these need to be done
on every compute node so that the system can communicate with the network node.
We now go back to our familiar checklist:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSComputeNode

Node IP address 172.22.6.97 – Mgmt network
10.0.0.5– Tunnel interface

Node OS Ubuntu 14.04.1 LTS
Neutron DB password n3utron

Neutron Keystone password n3utronpwd

Neutron port 9696
Nova Keystone password n0vakeypwd (from the previous chapter)
Rabbit MQ password rabb1tmqpass

Technology-Agnostic Network Abstraction Using Neutron

[134]

Setting up the prerequisites
We start by editing the /etc/sysctl.conf file to ensure the following parameters
are set:

net.ipv4.conf.all.rp_filter=0

net.ipv4.conf.default.rp_filter=0

This disables the Reverse Path (rp) filter so that the kernel doesn't perform the
source validation. The kernel will start dropping the packets if we don't set this,
as sometimes the packets may actually be destined to another IP address. In order
to ensure that the changes take effect, reload the system control:

sysctl –p

This command reloads the sysctl.conf file that we modified.

Installing packages
Install the ML2 plugin and OVS agent by running the following command:

sudo apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-
agent

Ensure that the components are installed successfully.

After this, start OVS by running the following command:

sudo service openvswitch-switch restart

Initial configuration
Now, let us look at some of the initial configuration tasks on the compute node.

Neutron configuration
In the /etc/neutron/neutron.conf file, make the following changes:

•	 Under the [database] section:
°° Remove any connection string that is present, as the database access

is not needed directly by the network node

Chapter 5

[135]

•	 Under the [default] section:
rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

auth_strategy = keystone

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

verbose = True

•	 Under the [keystone_authtoken] section:
auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = neutron

admin_password = n3utronpwd

ML2 plugin
In the /etc/neutron/plugins/ml2/ml2_conf.ini file, make the following changes:

•	 In the [ml2] sections, enable GRE and flat networking:
type_drivers = flat,gre

tenant_network_types = gre

mechanism_drivers = openvswitch

•	 In the [ml2_type_gre] section, enable the tunnel ID ranges; these don't need
to be in the physical network as they will only be between the compute and
network nodes:
tunnel_id_ranges = 1:1000

•	 In the [securitygroup] section, change the following:
enable_security_group = True

enable_ipset = True

firewall_driver=
neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

•	 Under the [ovs] section for OVS (set the interface address for GRE), set the
following parameters:
local_ip = 10.0.0.5

enable_tunneling = True

Technology-Agnostic Network Abstraction Using Neutron

[136]

•	 Under the [agent] section, enable the GRE tunnels:

tunnel_types = gre

Nova configuration
Edit the /etc/nova/nova.conf file and make the following changes:

•	 In the [default] section, set the different drivers:
network_api_class = nova.network.neutronv2.api.API

security_group_api = neutron

linuxnet_interface_driver= nova.network.linux_net.
LinuxOVSInterfaceDriver

firewall_driver =
nova.virt.firewall.NoopFirewallDriver

•	 In the [neutron] section, make these changes:

url = http://OSControllerNode:9696

auth_strategy = keystone

admin_auth_url =
http://OSControllerNode:35357/v2.0

admin_tenant_name = service

admin_username = neutron

admin_password = n3utronpwd

Finalizing the installation
Finally, restart all the components that we installed on the compute node:

sudo service nova-compute restart

sudo service neutron-plugin-openvswitch-agent restart

This concludes the installation of Neutron in our OpenStack environment.

Validating the installation
Validate the installation in the same way as we did for the Network node.
On the controller, after exporting the credentials, execute the following command:

neutron agent-list

Chapter 5

[137]

We already had four entries from our installation on the network node, but now you
can see an entry has been created for the compute node as well:

Troubleshooting Neutron
The troubleshooting of Neutron has a very similar procedure when it comes
to OpenStack.

The logs are located in the /var/logs/neutron directory. Depending on the services
that are installed on the node, the following files are found:

•	 dhcp-agent.log for the neutron-dhcp-agent service
•	 l3-agent.log for the neutron-l3-agent
•	 metadata-agent.log for the neutron-metadata-agent
•	 openvswitch-agent.log for the neutron-openvswitch-agent service
•	 server.log for the neutron-server

These log files contain information related to the services and can help in
determining the case of the problem.

However, before we rummage through the logs, we perform the following steps:

1.	 We will ping the network interfaces connecting the compute node and the
network node to ensure that the underlying network connectivity is ruled
out. If the problem is between the underlying network, we may have to
follow the troubleshooting steps for the underpinning system.

2.	 As a next step, we will check the status of the network interfaces and bridges
by the ip a | grep state, and ensure all the bridges are up. Once this is
confirmed and the configurations are checked, the system will work.

3.	 In order to troubleshoot further, we will need to follow how Neutron
connects the different components. The virtual machine running on QEMU
or KVM normally connects to the tap interface, which is connected to the
internal bridge and then connected to the external bridge interface.

Technology-Agnostic Network Abstraction Using Neutron

[138]

4.	 We can find which tap a virtual machine is using by looking at the XML file
of the instance located at /etc/libvirt/qemu/. The file will be of the format
instance-<instance id>.xml.

5.	 We can set up mirroring to a dummy interface in order to troubleshoot this
further. We can use tools similar to tcpdump, iptables, and the openvswitch
control tools to troubleshoot this pretty much as we did for the underpinning
network system.

Summary
In this chapter, you were introduced to Neutron, which is a networking service, and
how is it different from the Nova network service. You then looked at Neutron's
architecture and learnt about its components, such as Neutron server, L2 agent, and
L3 agent. You also briefly learnt about networking concepts before you proceeded to
install and configure Neutron.

Neutron also hopes to integrate with a pluggable IP Address Management System
(IPAM) in order for enterprises to be able to easily assign IP addresses. In the coming
years, Neutron will see new plugins and drivers and the overall system being made
extremely modular. The ability to work with any kind of networking will soon be a
reality rather than just a dream.

In the next chapter, we will look at Horizon, a portal to OpenStack.

[139]

Building Your Portal
in the Cloud

Horizon is the web component of OpenStack. It is an extensible component, which
means new views can be added without losing consistency in its look and feel, as it
provides the necessary core classes and templates for developers to use. In this chapter,
we will look at the architecture of Horizon and install it in our environment. After
completing this, we will have our cloud ready and take it for a spin in the next chapter.

In this chapter, we will cover the following topics:

•	 Working with Horizon
•	 Installing and configuring Horizon
•	 Troubleshooting Horizon

Working with Horizon
Horizon is a component of OpenStack that is slightly different from the others.
This is a Django web application, and its sole purpose is to provide a user interface
for other components of OpenStack services such as Nova and Swift.

One more thing about Horizon is that it does not actually use a database like other
services, as all the information that it needs is pulled out from the other components
using their respective APIs. In order to use Horizon, the use of Keystone is a must,
which means we cannot use the individual authentication modules that the services
themselves provide.

Building Your Portal in the Cloud

[140]

If you have followed the book to this point, all our services have been already
authenticated using Keystone, so we can proceed. However, if we have anything
that is locally authenticated, then that needs to be changed.

Some basic terminologies
Let's discuss some terminologies used in the context of Horizon; this will help us in
the remaining part of the chapter and also when we are either creating or modifying
Horizon dashboards:

•	 Panel: This is the main UI component. Every panel has its own directory
and a standardized directory structure. The panels are configured in the
<Dashboard Name>/<Panel Name>/panel.py file.

•	 Panel groups: These are used to organize similar panels together and
provide a top-level drop-down. These are configured using the dashboard.
py file.

•	 Dashboard: This is a top-level UI component. A dashboard contains panel
groups and panels. They are configured using the dashboard.py file. Some
of the dashboards installed by default are admin, identity, project, and
so on.

•	 Tab groups: A tab group contains one or more tabs. A tab group can be
configured per panel using the tabs.py file.

•	 Tabs: Tabs are units within a tab group. They represent a view of the data.
•	 Workflows: A workflow is a series of steps that allow the collection of user

inputs. Workflows are created under <Dashboard Name>/<Panel Name>/
workflows/workflow.py.

•	 Workflow steps: A workflow consists of one or more steps. A step is a
wrapper around an action that understands its context within a workflow.
Using workflows and steps, we can build multiple input forms that guide a
user through a complex configuration process or a multistep input in order
to accomplish something.

•	 Actions: An action allows us to spawn a workflow step. Actions are typically
called from within a data table. Two of the most common actions are
DeleteAction and LinkAction.

•	 Tables: Horizon includes a componentized API to dynamically create tables
in the UI. Data tables are used to display information to the user. Tables are
configured per panel in the tables.py file.

Chapter 6

[141]

•	 URLs: URLs are needed to track context. URLs are configured in the urls.py
file.

•	 Views: A view displays a data table and encompasses the main panel frame.
Views are configured per panel in the views.py file.

Examining some of these components on the UI, as shown in the following
screenshot, will give us a better understanding:

System requirements to install Horizon
Some system requirements need to be kept in mind while installing the Horizon
dashboard:

•	 Since Horizon is going to use the memory cache, the amount of RAM in the
server will have to be planned based on the number of concurrent users that
are planned.

•	 The system needs Python 2.6 or 2.7 with Django installed. Please check the
versions using the following commands:

python -c "import sys; print(sys.version)"

python -c "import django; print(django.get_version())"

You should be able to see the versions of Python and Django as shown here:

Building Your Portal in the Cloud

[142]

As you can see in our case, Python version 2.7.6 and Django version 1.6.1 are
being used.

•	 A routable IP is required because this system needs to be accessible to all the
users.

•	 If this machine is set behind a load balancer, some form of persistence needs
to be enabled. The persistence methods in the order of preference are cookie
persistence and source hash persistence. If the load balancer doesn't support
either, then we should enable a source address persistence on the load
balancer as the last resort.

•	 This machine should be able to reach all the endpoints that have been
configured in Keystone.

•	 You can use the same features as any web application including proxy pass,
reverse proxying, and so on.

Installing Horizon
The installation is very simple; we will install the dashboard and memory cache.
Let's fill in our familiar check list:

Name Info
Access to Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSControllerNode

Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS
Keystone installed on 172.22.6.95
Admin username Admin

Admin password h33l0world

Now run the following command:

sudo apt-get install openstack-dashboard apache2 libapache2-mod-wsgi
memcached python-memcache

Ensure that the command is successful and the packages are installed successfully.
This will install Horizon on our controller node.

Chapter 6

[143]

The initial configuration of Horizon
The initial configuration of Horizon is simple as well, we need to modify a single /
etc/openstack-dashboard/local_settings.py file and configure three aspects:

•	 The location of the Keystone server
•	 The hosts that are allowed to access Horizon (the source IP addresses)
•	 The location of Memcache Daemon

Edit the previously mentioned file and set the values as:

•	 OPENSTACK_HOST = "172.22.6.95": This will set OSControllerNode for the
Keystone services

•	 ALLOWED_HOSTS = ['*']: We are allowing all the hosts to access the
Horizon dashboard

•	 CACHES: This sets the location to 127.0.0.1 (or to localhost)

You should see something like the following screenshot:

Finalizing the installation
In order to finalize the installation, we restart the apache and memcached services
using these commands:

sudo service apache2 restart

sudo service memcached restart

This concludes the installation of the Horizon dashboard.

Validating the installation
Once the installation has been completed, open a browser (which is
HTML5-compatible and has JavaScript and cookies turned on). You can
use Firefox, Google Chrome, or any up-to-date browser.

Building Your Portal in the Cloud

[144]

The dashboard will be available at (replace the IP with your controller node's IP
address)

http://172.22.6.95/horizon/

You will need to authenticate with the admin credentials, and you should be able to
log in to the dashboard:

After you've logged in, the page will look as follows:

The structure of the Horizon dashboard
While it is not necessary to know this, it is good to know about the structure.
This helps us to make connections with the terminologies that we discussed
previously, as an example. Let's see the structure of the dashboard.

Chapter 6

[145]

You can view this yourself after you have installed Horizon, with the following
instructions:

1.	 Install a program called tree:
sudo apt-get install tree

2.	 Navigate to the directory where the dashboards are installed:
cd /usr/share/openstack-
dashboard/openstack_dashboard/dashboards

3.	 In order to see the structure of any dashboard, just type tree <dashboard
name>, so take a look at the settings of the dashboard:
tree settings

4.	 You will see the directory structure of the dashboard, as shown in the
following screenshot:

In the preceding screenshot, you can see that we have dashboard settings and
multiple panels such as user and password, and that each of them has URLs, views,
and so on.

Building Your Portal in the Cloud

[146]

Troubleshooting Horizon
Horizon being a Django application follows the standard Django logging model.
The configuration of logging is set in the /etc/openstack_dashboard/local_
settings.py file; if we have to modify the logging levels, we need to look at the
logger_root and handler_file section of file/etc/keystone/logging.conf.

Let's take a look at the different logging levels for both standard OpenStack services
and Horizon in escalating levels of severity:

Logging levels OpenStack standard Horizon

DEBUG Yes Yes
INFO Yes Yes
AUDIT Yes No
WARNING Yes Yes
ERROR Yes Yes
CRITICAL Yes Yes
TRACE Yes No

When we set the logging levels to DEBUG, all the different messages are logged; when
we set the logging level to anything else, the logs for that level and the ones on a
higher level are logged. This is true for both Horizon and OpenStack services.

The TRACE logs are shown wherever there is a stack trace to be shown. In Horizon,
the TRACE logs are shown almost at all times, as the underlying Python call will
generate the stack trace.

You can configure Horizon to send different logs to different files and apply filters
in exactly the same way you would do for any other Django application, but this is
beyond the scope of the book and so is not covered here.

Coming to the errors that you can face in Horizon, one is the installation error; this
error is normally caused by a wrong version of Python and related libraries. The
second most common error is the HTTP500 Internal server error, which normally
ensues from one of the underlying systems—for instance, Apache not functioning
properly or an error in configuration.

Chapter 6

[147]

Understanding the Horizon log
The Horizon log normally has two parts: the actual log and the Python stack trace.
Let's take look at the following log, as an example:

2015-08-22 01:08:51 17409 CRITICAL cinder [-] Bad or unexpected
response from the storage volume backend API: volume group

 cinder-volumes doesn't exist

2015-08-22 01:08:51 17409 TRACE cinder Traceback (most recent call
last):

2015-08-22 01:08:51 17409 TRACE cinder File "/usr/bin/cinder-volume",
line 48, in

 in check_for_setup_error

Some more of the stack trace follows:

2015-08-22 01:08:51 17409 TRACE cinder raise
exception.VolumeBackendAPIException(data=exception_message)

2015-08-22 01:08:51 17409 TRACE cinder VolumeBackendAPIException: Bad
or unexpected response from the storage volume

 backend API: volume group cinder-volumes doesn't exist

2015-08-22 01:08:51 17409 TRACE cinder

As you can see, the first line shows that the problem is with the Cinder service and the
other lines are the stack trace of the service. So, in order to troubleshoot this further, we
will have to go to the Cinder logs and continue the troubleshooting from here.

Horizon can also throw errors if you have installed custom dashboards that interfere
with the normal functioning of Horizon's other dashboards. Hence, if you have created
a new dashboard, panel, or anything else, you may want to run the tests on another
instance of Horizon using the run_tests.sh script. Remember to use a different port
rather than the standard port on which the Horizon production is running.

Summary
So far, we have learned about the various components of OpenStack such as
Keystone, Nova, Swift, Cinder, Glance, and Neutron. In this chapter, we have looked
at Horizon, which is fundamentally the web interface to all these components.

In the next chapter, we will see how all the components we have installed and
configured so far will work together to provide a cloud-based Infrastructure as a
Service. This is where we will see Horizon put to use, to configure services, request
virtual machines, storage, and so on.

[149]

Your OpenStack Cloud
in Action

Finally, we are at the chapter towards which we were inching gradually in the
previous chapters. In this chapter, we will put together all that we have set up and
see a real life scenario of us being a cloud provider to, say, our internal development
team. We will stitch everything together and see all the services we have set up in
action, so without any further ado let's dive in.

To be specific, we will cover the following topics in this chapter:

•	 Gathering service requirements
•	 Managing your network
•	 Requesting services
•	 Creating VM templates

Gathering service requirements
We hope that you are ready to start pointing, clicking and typing commands, but
before we do just that, let's create a scenario for which we will be providing services.

So, we are a part of the IT wing of a company whose core business is software
development. The company wants to make its processes agile and speed up the time
to market the products it has been developing, and so we have been tasked with
providing a private cloud environment to the various development and testing teams.

Your OpenStack Cloud in Action

[150]

We have successfully done that by setting up our OpenStack environment and we
have our first customer at our door, who is a project manager for a new product that
has been conceptualized. They need an environment where the developers can freely
spin instances up and down.

So, we have to ask the following questions:

•	 What is the name of the project?
•	 Project members – We will create individual accounts and will send the

project to them as this is not yet Active Directory Integrated
•	 Operating systems required – Please note that this can be predefined by us as

a part of corporate standards
•	 Networking configuration needed – We may choose to give the project

members access to create their own networks, but in our case, we will set up
everything for them for the first time

•	 Quotas (The maximum number of instances, RAM, CPU, and so on) – This
is required to set a quota, by default, and a tenant/project will be allowed a
certain amount of resource that you can check out on the Horizon dashboard
as shown in the following:

If you need to change the defaults for every project, click on Update
Defaults and change to the values you need.

Chapter 7

[151]

Of course, the actual capacity also needs to be available in order to perform these
actions. The ones shown in the preceding screenshot are merely limits that the
system will enforce and not allow the users to request over these limits.

So our fictitious project manager gives us the following information:

•	 Project/Tenant Name: TestingCloud
•	 Users: John Doe (john.doe@test.com), Jane Doe (jane.doe@test.com)
•	 Networking requirement: Single Layer 2 network with external access,

DHCP IP addressing
•	 Quotas: Defaults are fine

So, armed with the preceding information, we go on to take our cloud out for a spin.

Tenant and user management
The first task will be to create the new tenant/project in Keystone and add the users,
Jane and John Doe, as users and members. We will also be adding our admin account
as an admin on the new tenant, so we can support them in the future.

We can perform these actions in two ways, the command line and the GUI; you can
choose either of the methods depending on your preference (please remember that
only one of them needs to be followed).

GUI
Log in to Horizon, by going to http://<controllernodeIP>/horizon, which in
our case is http://172.22.6.95/horizon. Authenticate using the admin credentials
that we have been using, admin/h33l0world

Creating the project
To create the project, follow these steps:

1.	 Click on Identity | Projects (On the left pane)
You would already see the existing tenants, admin and service tenant that we
created in the beginning.

2.	 Now click on Create Project, as seen in the following screenshot:

Your OpenStack Cloud in Action

[152]

Please see the chapter on Keystone; projects and
tenants are interchangeably used.

3.	 We can modify the quota for this project by going to the Quota tab, but since
the project manager was fine with the defaults, we don't update the values.
Click on Create Project.

The project is now created, as shown here:

Chapter 7

[153]

Adding users
To add users, follow these steps:

1.	 Navigate to Identity | Users.
2.	 You should be able to see the currently created admin and the service users;

let's click on Create User, and then we can create the accounts for Jane Doe
and John Doe and give them the password, Pa55word. We will also associate
them with a new tenant and give them member permissions.

Repeat the preceding steps for the second user, and now both the users have been
created in the system.

Your OpenStack Cloud in Action

[154]

Associating users to the project
The users that we have created are already associated with the project as members,
but we need to add our admin user as an admin to the project, and potentially other
users that were created before could be added by this method, or we can change the
role mapping of the user using this method. To do this, follow these steps:

1.	 Click on Identity | Projects and click on Modify Users.

2.	 Click on + next to the admin user, and it will be added to the right-hand side.
You can then choose the roles. We choose both the admin and member roles
for this user.

We can choose to give more roles to Jane and John from this screen, or remove them
from the project.

So, the first part of setting up the project is done. You can test this by logging out of
the portal and logging in as Jane or John, as shown in the following screenshot:

Chapter 7

[155]

If a user is assigned to multiple projects, they can change the current project from the
top of the screen as shown in the previous screenshot.

CLI
In order to do the same things we did using the GUI while using the CLI, all it takes
is a bunch of commands:

If you have already created the users and project using GUI, then
this is just for your information and need not be followed.

We log in to the controller node, and as with all the CLI commands, we export the
authentication parameters in the command line using the source command or
individually using the export command. We have stored it in the os.txt file in our
home folder.

source ~alokas/os.txt

Creating the project
To create a project, we execute the create tenant command:

keystone tenant-create --name TestingCloud --description ""

Remember that the tenant and the project are interchangeable.

This should create the project.

Creating the users
We create the users in the project using the user-create command:

keystone user-create --name johnd --pass Pa55word --email
john.doe@test.com

keystone user-create --name janed --pass Pa55word --email jane.doe@test.
com

Your OpenStack Cloud in Action

[156]

Associating users to the roles
We now associate the users to the tenant and map them to the member roles, using
the following commands:

keystone user-role-add --user johnd --tenant TestingCloud --role member

keystone user-role-add --user janed --tenant TestingCloud --role member

keystone user-role-add --user admin --tenant TestingCloud --role admin

Network management
After Keystone changes, we need to set up the networks that the tenant will use.
Since the tenant needs access to the Internet, we will need two networks; one is the
tenant network, which is created per tenant, and the other is an external network,
which is shared by all the tenants. Hence we need to create this only once. Since this
is our first tenant, we will be creating both the networks. For the next tenant, we will
not create the external network, but just reuse it, should Internet access be needed.

We will use the command line to create the external network and the provider
network, as the functionality provided by the GUI is limited when it comes to
network management.

Before we go into actually creating the networks, we will deal with some
terminologies that we will use, such as the network type, physical network,
and virtual network.

Network types
In order for us to be able to create and manage networks, let's understand some
terminologies that we will use in the remainder of this section.

Physical network
This is the network connecting the OpenStack servers with each other and the
physical world.

Virtual network
A Layer 2 network whose ports can be connected to the Nova compute and different
agents. With the OVS, there are several implementations of the virtual network, and
they are explained as follows.

Chapter 7

[157]

Tenant network
Tenant network can be created by the tenants or the administrator for a tenant. The
network can be used internally by the VMs of the tenant, and the physical world is
not directly exposed to them. They need to go through one of the provider networks
if they want to get out of the network.

Provider network
Provider network is administratively created and is used to bridge the tenant
network and the physical network; tenants can be selectively given access to use the
provider networks.

Implementations of virtual networks
The virtual networks can be implemented in one of the following ways depending
on whether they are being used for the provider network or the tenant network.
Each of the implementations has a different use case that it can be used for:

•	 Local network: A local network is a network that can only be realized
on a single host. This is only used in proof of concept or development
environments. Since we have a dedicated network node, we won't use it in
our examples, but if we are doing a single node deployment or some tests,
we can surely use it.

•	 Flat network: A flat network is a network that does not provide any
segmentation options. A traditional L2 Ethernet network is a flat network.
It is like a single switch without any VLANs. This should ideally be never
used for tenants networks because the tenants will be able to see each other's
traffic, unless of course that is the intent.

•	 VLAN network: A VLAN network is one that uses VLANs for segmentation.
When you create a new network in Neutron, it will be assigned a VLAN ID
from the range you have configured in your Neutron configuration. It actually
sends the traffic out that is tagged to the physical switch, and hence needs
the ports to the OpenStack servers that are trunked. Each of the tenants is
separated, because each one is assigned to a VLAN. This is great for isolation
where the different tenants may choose to have overlapping subnets and don't
want to see each other's traffic, such as in a multi-tenanted situation.

•	 GRE and VXLAN network: These are the best networks to scale. They are
very similar. They are both overlay networks that work by encapsulating
network traffic. Similar to VLAN networks, each network you create receives
a unique tunnel id, but unlike VLAN networks, we don't need to worry
about the physical switch configuration, as the actual switch will never see
these VLANs. In our configuration, we have GRE, but not VXLAN.

Your OpenStack Cloud in Action

[158]

External network
The external network is a provider network, which will have access to the Internet
connection. In our case, we have created the external network as an RFC1918 address.
Please note that in production environments, RFC1918 (private IP addresses) are
typically used when the range is routable inside the enterprise environment. If a
public-facing cloud is required, this network is typically on public IP addresses.

Creating the network
We log into the controller node and export the admin credentials (since this is a
provider network) sourcing the file (or export the variables manually):

source ~alokas/os.txt

neutron net-create ext-net --router:external True --provider:physical_
network external --provider:network_type flat

This will give the following output:

We create the network using the net-create command as shown in the preceding
screenshot, since this is a provider network of the type flat. This will act as the
Internet switch for all the different tenants. Let's take a look at the different parameters:

•	 net-create <name>: This is a Neutron subcommand to create a network
with a particular name. In this case, we are unimaginatively calling it
ext-net, short for external network.

•	 --router:external True: We are setting that an external router needs to be
used for this network, so the Layer 3 process will kick in.

Chapter 7

[159]

•	 --provider:physical_network <name>: This sets the physical network
name. If you remember, we created an external bridge and we gave it a name
in our ML2 plugin configuration We need this name. In our case, the name
is external. If you need to locate this, please log in to the network node
and open the /etc/neutron/plugins/ml2/ml2_conf.ini file and look for
bridge_mappings.

•	 --provider:network_type <network_type>: We can choose from a range
of types that we discussed previously, flat, vlan, vxlan, gre, and so on.
Since we want this to be a flat switch where all the tenants can connect, we
set this to flat.

Creating the subnet
The external network is created; we also need to create a subnet so that the IP
addresses that are assigned to this network can be given out. In our case, our
external network has an IP address 172.22.104.100/24, so we will take some 20 IP
addresses that are unassigned and create a subnet. Let's have the information handy
to substitute in the command.

Name Value
Network Address 172.22.104.0/24
Gateway 172.22.104.250
IP pool start address 172.22.104.150
IP pool end address 172.22.104.200

The command format to create a subnet is shown as follows:

neutron subnet-create <Network_Name> <NetworkID> --name <Subnet_name>

 --allocation-pool start=<IP_StartAddress>,end=<IP_End_Address>

 --disable-dhcp --gateway <GatewayAddress>

Substituting, we get the following command. (Please ensure not to leave any space
between the comma in the start and end IP address.)

neutron subnet-create ext-net 172.22.104.0/24 --name ext-subnet \

 --allocation-pool start=172.22.104.150,end=172.22.104.200\

 --disable-dhcp --gateway 172.22.104.250

Your OpenStack Cloud in Action

[160]

The subnet is then created and associated with ext_net. Please note that one or
more networks can be created and associated with a network, but each subnet needs
a network.

This step needs to be executed only once.

Tenant network
Our tenant needs a network for itself. For this, we will create a network, subnet,
and router so that they can use the external network.

Create the tenant network
The following information should come in handy while creating the network:

Name Value
Network name cloud-network
Subnet name cloud-subnet
Subnet 192.168.5.0/24
Subnet start 192.168.5.2
Subnet end 192.168.5.254
Subnet gateway 192.168.5.1
Router name cloud-router

Chapter 7

[161]

We source all the variables and admin credentials; we override the tenant name so
that the new network is created in the new tenant:

source ~alokas/os.txt

export OS_TENANT_NAME=TestingCloud

neutron net-create cloud-network

Creating a subnet
We now create a subnet with the same format of the command that we used in the
previous section with the exception that we don't give a start and an end IP address,
thereby allowing the subnet to go as far and wide as possible:

neutron subnet-create --name cloud-subnet --gateway 192.168.5.1
cloud-network 192.168.5.0/24

As we can see, the subnet has used all the available IP addresses in the pool as we
would have wanted it to.

Your OpenStack Cloud in Action

[162]

Creating a router
The router is an essential piece that will connect the tenant subnet to the external
subnet. This is done in three easy steps:

1.	 Create the router
2.	 Add the tenant subnet
3.	 Add the gateway as external subnet

neutron router-create cloud-router

neutron router-interface-add cloud-router cloud-subnet

neutron router-gateway-set cloud-router ext-net

This will give the following output:

You will get a confirmation that the interface has been added and its gateway has
been set.

Since the images they need are already in the Glance repository, we are now ready to
hand over the cloud to the development team for them to use. If more images need
to be added in the repository for different operating systems, please follow the same
steps as mentioned in Chapter 3, Storing and Retrieving Data and Images using Glance,
Cinder, and Swift.

Now it is time to look at the cloud from a consumer's point of view. In our example,
we have Jane and John Doe, who will be the users. John is the creative artist and
hence prefers the GUI, and Jane being an extremely tech savvy user, prefers the CLI
or a programmatic access route. Once we as IT administrators send them emails
about the cloud being ready for their consumption, they decide to quickly test
whether this works for their needs.

Chapter 7

[163]

Requesting services
Let's first take a look at how John tries to request cloud services. He logs into the
Horizon portal using his credentials that we created.

When he logs in, he will see a screen and the TestingCloud tenant, as this is the only
one he is associated with. Also, he will only see the project section as he is only a
member of the project. He is also presented with the dashboard showing the limits of
his project and what has already been consumed:

Now, in order to request for services, he needs to go into the corresponding panel
and request for them.

Before this is done, let's understand some base constructs of access and security that
the user will be using in order to access his services. If you are familiar with AWS,
the same constructs apply here.

Access and security
We can see the different components from the access and security panel in the
project dashboard.

Security groups
Security groups are at a high level, a basic layer 3 firewall that is wrapped around
every compute instance that is launched inside a group. Every instance needs to be
launched inside a security group. This contains inbound and outbound rules.

Your OpenStack Cloud in Action

[164]

It is also worthwhile to note that servers that are in the same security group also need
to have rules permitting them to talk to each other, if they decide to do so. A common
good practice is to create a security group per tier/application, whichever way the
security needs of the enterprise are met. By default, a default security group is created,
which has an – Allow rule. It is recommended that you do not use this security group.

Key pairs
Key pairs are in essence a public/private RSA key (asymmetric encryption) that
helps you to log in to the instances that were created without a password. You can
choose to create a key outside the OpenStack environment and then import it so that
you can continue using your key pairs both inside and outside the OpenStack cloud.

In order to generate a key pair on any Linux machine with ssh-keygen, type the
following command:

ssh-keygen -t rsa -f <filename>.key

And after this, just import the public part of your key pair. You should keep the
private key somewhere safe.

If you are using Windows, download the Puttygen executable from the Internet say,
www.putty.org, and generate the key pair as shown in the following by choosing
SSH2-RSA and clicking on the Generate button.

OpenStack also lets you create a key pair by clicking on the Create Keypair button.
It will download the private key to your desktop. Please ensure you keep this safe,
because it is not backed up anywhere else and without it, you would lose access to
any instances that are protected by the key.

Requesting your first VM
Now that we have understood the access and security mechanism, John is ready to
request his first VM using the portal. As followers of best practices, we will create a
security group for our VM and a key pair to go with it.

Creating a security group
Creating a security group is easy; what actually requires a little thought is the rules
that need to go in it. So before we create our security group, let's for a moment think
about the rules we would put in.

There are two types of rules—ingress and egress (in and out); this is from the
perspective of the VM. Any traffic that we need to permit to the VM will be ingress
and from the VM will be egress.

www.putty.org

Chapter 7

[165]

So, we need to think about this for a moment. Say we are creating a Linux web
server, we will need just one port to be permitted in, Port 80? Maybe, but remember,
this security group filters all the traffic, so if we only permit port 80 in, we won't
be able to SSH into the machine. So the rules should include every type of traffic
you want to be allowed to the machine: traffic to the applications, management,
monitoring, everything.

So, in our case, we will allow port 22, 80, and 443 for management and application,
and then we will permit port 161 to monitor using SNMP. We will allow all ports
from the machine outwards. (This might not be allowed in a secure environment,
but for now this is alright). As discussed in the following table:

Direction Protocol Port Remote
In TCP 22 0.0.0.0/0
In TCP 80 0.0.0.0/0
In TCP 443 0.0.0.0/0
In UDP 161 0.0.0.0/0
Out ANY 0.0.0.0/0

In a production environment, the SSH access also needs to be
locked down and the access needs to be allowed only from your
administrative subnet.

As you can see, we can create the rules, and we have set any source/destination
as the IP range. We could even control this depending on the application. It is also
worthwhile knowing that the remote can be an IP CIDR or even a security group.
So if we want to permit the servers in the web security group to talk to servers in the
app security group, we can create these rules in that fashion.

So, now that we know our security group rules, let's create them. Click on Access
& Security, choose the Security Group Tab, and click on Create Security Group.

Your OpenStack Cloud in Action

[166]

It will ask for a name and description, fill that in, and click on Create Security
Group, you will see that the security group has been created.

By default, this will block all incoming traffic and permit outgoing. We will need to
set the rules as we have planned, so let's go ahead and click on Manage Rules:

We will then add rules that we have planned for by clicking on the Add Rule button.
There are some predefined rules for ports, we can use these or create custom ones.

Chapter 7

[167]

After adding the rules, our configuration should look like the following:

The servers in the same security group, while communicating with
each other, will also be subjected to the security group rules. So, if we
want to permit these, we will have to explicitly permit them. As the
best practice, we should use the security group as the remote source/
destination.

Once our security group is created, we proceed to the next step.

Creating a key pair
We can choose to create a key pair in the OpenStack system or outside it, and then
just import the public key. The import option is used in case we want to use an
existing key that we used somewhere else, or we can use an external system for
enterprise key management. For our purposes, we will just create a key pair.

Click on Access & Security and then click on the Key Pairs tab and click on Create
Key Pair:

Give the key pair a name, and it will be created. Please remember to download the
private key and store it in a safe place.

Your OpenStack Cloud in Action

[168]

Launching an instance
Now that we are ready, head over to the instances panel, which displays the
currently running instances for the project. Click on Launch Instance.

We will have to fill in some information in all the tabs:

Since we only have one AZ created (by default), we will just use that. We will have to
fill in the following details to launch an instance:

•	 Instance Name: The instance name as it will be shown in the console.
•	 Flavor: This is the size of instance that will be launched. There are some

predefined values that we can see using the nova flavor-list command:

We can also create a new flavor using the nova flavor-create command.

Chapter 7

[169]

•	 Instance Boot Source: The instance boot source specifies where to boot the
instance from; since we are going to use the cirros test image that we created,
we will choose that in this case.

•	 Key Pair: Choose a key pair to use. (We choose the one we created.)
•	 Security Groups: Choose one or more security groups to use. (We choose

Webserver.)

Your OpenStack Cloud in Action

[170]

•	 Networking: We choose the tenant network to use. We can choose to add
more than one NIC card, if there are multiple networks. However, in our
case, as an administrator, we only created a single NIC:

These are mandatory fields, but we can also inject a post creation customization
script and even partitioning in the next tabs, but for our purposes, let's click on the
Launch button.

Once the request is submitted, we will see the instance in the list and see the status as
scheduled, shown in the following screenshot:

If we go back to where we installed Nova, the scheduler service is responsible for
choosing the appropriate compute node on which the instance should reside. The
instance powers on after a while and you can SSH into the instance using the private
key that you created.

John can similarly request other services such as a block volume, by going to the
volumes panel and clicking on Create Volume. So he requests a 5 GB volume so that
he can store the images that he will work on, and this will be available even after the
instance is terminated.

Chapter 7

[171]

On clicking on Create Volume, a volume is created. It can then be attached to the
instance that we just created. However, after the volume is mounted on the OS, the
operating system tools need to be used (such as the fdisk/disk manager) to partition
and format the volume and mount it.

Using CLI tools
Jane, unlike John, is fond of command line (CLI) utilities and wants to perform the
same tasks using either CLI tools or a scriptable method. She can choose to either use
the APIs directly or install command line tools.

So, say Jane has a Linux machine that she uses as a development machine (running
CentOS). She can install command line tools on her machine using either the Python
PiP, or she can install them using the yum package manager.

Your OpenStack Cloud in Action

[172]

The package name format is python-<project>client, so we can replace the
project by Keystone, Glance, Nova, Cinder, and so on. For example, Jane will execute
the following commands for the Nova, Glance and Cinder command line tools:

yum install python-novaclient

yum install python-cinderclient

yum install python-glanceclient

Once the tools are installed, Jane would log in to the GUI once, navigate to the
Access & Security panel, click on the API Access tab, and click on Download
Openstack RC File:

This will download a shell script that will help Jane to set the environment variables
for the command line tools to work. After running the script, it will also prompt for
Jane's password and will set the password as an environment variable. She will then
have the ability to fire commands to perform the same functions as John, but using
the command line tools instead.

Generating a key pair
In order to create a key pair using the CLI tools, Jane should execute the
following command:

nova keypair-add jane-key

Chapter 7

[173]

This command will create a key called jane-key and display the private key on
screen, which Jane has to copy and store in a secure location.

Requesting a server
In order to request a server using the command line, Jane needs some information.
She needs the flavor ID, image ID, and key name.

She can execute the following command:

nova flavor-list

She will get a list of flavors with their IDs and will see the list of images using the
following command:

nova image-list

Jane would now see the following:

So if she wants to spin up a machine, which is m1.tiny, with the cirros test image
and with the machine name of janesbox, she can use the following command:

nova boot --flavor 1 --key_name jane-key --image 34b205dc-63aa-4b66-
a347-2ab98451252d janesbox

Your OpenStack Cloud in Action

[174]

You have to replace the value of your image ID in the preceding command, and your
key name, as shown here:

You can see that the machine starts to build like the one we built with the GUI:

So, with the CLI we can perform the same functions as that from the portal. More
tech savvy people can make calls directly using a programming language of their
choice using the APIs offered by the system.

Behind the scenes - how it all works
We have seen the entire process of requesting a service using both the GUI and the
CLI, so as a recap let's take a look at how the process works behind the scenes. If
we had to write our own toolsets using the RESTful API, these are the steps that we
would take. The following ones show the major calls that are made in the process.

Chapter 7

[175]

Knowing this, we should also be able to troubleshoot where a problem is, by
isolating the step at which the machine fails to build and by looking at the
appropriate log file:

1.	 Authenticate and generate a token: As the first step, a call is made to the
Keystone service, the credentials are presented, the tenant and the user
are authenticated and a token is retrieved. This token is used in all the
subsequent API calls, either directly or through Horizon that determines the
level of access across all the services.

2.	 Make a call to Glance for images: As the second step, the user would make a
call to the Glance service to retrieve the images that are allowed by the user,
while using the token as the common authentication mechanism (if the token
has not yet expired).

3.	 Make a call to Nova for a list of flavors: The next call is made to Nova to
determine the list of flavors (sizes) of the machine.

4.	 Make a call to Nova for a list of available keys and security groups: The
next call is made to Nova to determine the different security keys that are
available, so we can choose the key name. Another call is made for the
security groups and a list for these is obtained.

5.	 Make a call to Neutron for available networks: The next call is made to
Neutron for the available networks that can be used and connected to the
Nova instance.

The previously mentioned calls can be made sequentially or in parallel or can
even be prefetched and kept. Once the calls are made, the parameters can be
passed when the request is made to Nova.

6.	 The Nova API accepts the call: The Nova API service accepts the call and
puts the request in the messaging queue.

7.	 The Nova scheduler chooses compute: The Nova scheduler service picks up
the message and finds the appropriate compute node where the instance can
be brought online and puts the message back in the queue.

8.	 The Nova compute interacts with Hypervisor: The Nova compute service
spins up the instance by sending the appropriate command to Hypervisor.
The Nova compute can work with a variety of Hypervisors, such as Xen,
KVM, and VMware.

9.	 A call is made to the Neutron API: Nova makes a call to the Neutron API
for a port where the VM can be connected. Neutron allocates a port in the
network defined in the call.

Your OpenStack Cloud in Action

[176]

This way the entire machine is booted and then given to the user. The user can then
choose to attach additional services such as a block storage using Cinder and an
elastic IP address using Neutron. The process almost remains similar.

Once the machine is booted, we can take a look at its Network topology to see how it
is connected to the environment:

Creating VM templates
Up until now, we have been using the cirros template that we downloaded from
the Ubuntu website to testing our cloud. We now need to create our own virtual
machine templates that we can use. These templates need to be created as per the
standards of our organization and this is how we like them best.

The following tools may be used to create the images. There are others as well,
just choose the one that works best for you depending on the images that you are
trying to build. As an example VMBuilder that ships with Ubuntu can only create
Ubuntu images:

•	 Oz
•	 Packer
•	 Disk image builder
•	 VM builder

In this chapter, we will use a tool called Oz. This nifty little tool can install the
operating system and represents it as disk images. It actually installs the images
using libvirt, so those packages are prerequisites to use the tool.

Chapter 7

[177]

Installing Oz and its dependencies
On the machine where we intend to create the template, we can install Oz and its
dependencies.

It is advised that these be separate from the OpenStack nodes.

RHEL/CentOS
Installing Oz on the RHEL or CentOS is easily accomplished using the following
command:

yum -y install kvm libvirt oz qemu-kvm

The preceding command installs Oz and its dependencies.

Ubuntu
On Ubuntu, we need a few more packages. So we execute the following commands:

apt-get install build-essential kvm libguestfs-tools python-all
genisoimage mtools openssh-client

Once the pre-requisites are installed, we will use git to pull the packages, compile
them, and install them:

mkdir ~/oz

cd ~/oz

git clone https://github.com/clalancette/oz.git oz-git

cd ~/oz/oz-git

dpkg-buildpackage -us –uc

cd ~/oz

dpkg -i oz_*_all.deb

This will install Oz on the system.

Oz templates
Oz uses template files in order to feed information to Oz as to what kind of
machine needs to be built. This template is a kind of XML file, is readable,
and easily understandable.

Your OpenStack Cloud in Action

[178]

Let's take a look at a sample template file, which will use an ISO file in order to
create a CentOS installation, which in effect will use a kickstart file to help with the
installation:

<template>

 <name>centos64</name>

 <os>

 <name>CentOS-6</name>

 <version>4</version>

 <arch>x86_64</arch>

 <install type='iso'>

 <iso>http://mirror.rackspace.com/CentOS/6/isos/x86_64/CentOS-6.4-
 x86_64-bin-DVD1.iso</iso>

 </install>

 </os>

 <description>CentOS 6.4 x86_64</description>

</template>

The preceding template is the Oz template that is created. You can download sample
templates for Oz from the following URL:

https://github.com/rcbops/oz-image-build/tree/master/templates

You can find Oz templates for several of the OSs that we normally build using
Oz. However, for our purposes, we will use the previous template and save it as
centos64.tdl, and we will now create a kickstart file to go along with this template.

You can choose to put all the customizations in the kickstart file itself.

Let's type the following in to a file and call it myCentOS.ks:

install

text

key --skip

keyboard us

lang en_US.UTF-8

skipx

network --device eth0 --bootproto dhcp

rootpw myRootPwd!

firewall --disabled

authconfig --enableshadow --enablemd5

https://github.com/rcbops/oz-image-build/tree/master/templates

Chapter 7

[179]

selinux --disabled

timezone --utc America/Chicago

bootloader --location=mbr --append="console=tty0 console=ttyS0,115200"

zerombr yes

clearpart --all

part /boot --fstype ext4 --size=200

part swap --size=512

part / --fstype ext4 --size=1024 --grow

repo --name=epel --baseurl=http://ftp.nluug.nl/pub/os/Linux/distr/fedora-
epel/6/x86_64/

reboot

%packages

@core

@base

%post

rpm -Uvh http://ftp.nluug.nl/pub/os/Linux/distr/fedora-epel/6/x86_64/
epel-release-6-8.noarch.rpm

rm -f /etc/udev/rules.d/70-persistent-net.rules

sed -i '/HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0

sed -i '/UUID/d' /etc/sysconfig/network-scripts/ifcfg-eth0

sed -i 's,UUID=[^[:blank:]]* / ,/dev/vda3 / ,' /etc/fstab

sed -i 's,UUID=[^[:blank:]]* /boot,/dev/vda1 /boot,' /etc/
fstab

sed -i 's,UUID=[^[:blank:]]* swap,/dev/vda2 swap,' /etc/
fstab

rm -f /root/anaconda-ks.cfg

rm -f /root/install.log

rm -f /root/install.log.syslog

find /var/log -type f -delete

This will serve as my base file. You can change the root password and the time zone,
and also add additional post-customization tasks.

Once we have created these files, we are now in a position to create the template.

Your OpenStack Cloud in Action

[180]

Creating VM templates using Oz
We will now build a VM using the Oz tool and convert its disk by running the
following command:
oz-install -p -u -d1 -a myCentOS.ks centos64.tdl

The system uses the kickstart file in order to complete the installation. We can use
a similar method for Ubuntu, using a pre-seed file, and achieve the same thing.

The machine disk will be created in the /var/lib/libvirt/images/ folder, with the
file name centos64.dsk. (Please note the <name> tag in the tdl file.)

We will now need to convert this to the QCOW2 format. We do this using the qemu-
img tool:
qemu-img convert /var/lib/libvirt/images/centos64.dsk -O qcow2
/root/centos64_x86_64.qcow2

Now we have an image that we can upload to our Glance repository, either using the
command line tool or using Horizon.

Uploading the image
Let's upload the image using the Horizon portal. Log in to the portal as admin and
navigate to the Admin dashboard and the Images panel.

Click on the Create Image button.

Chapter 7

[181]

Once you fill in the details and click the Upload button, the image will be uploaded
in the Glance repository.

Summary
In this chapter, we have put to use all that we learned in the previous chapters and
saw the cloud in action. We have used both the GUI and the CLI method to achieve
this. We have discussed tenant and user management, understood different types of
networks in the context of OpenStack, and set up a provider network and a tenant
network. We looked at security groups and key pairs. Finally, we launched our
first VM (IaaS) in a self-service fashion. We also got a flavor of what really happens
behind the scenes and how all of this work together, which is a very critical element
that aids in troubleshooting, if the need arises.

Now that we have a basic cloud functioning, in the next chapter we will discuss
some more advanced topics.

[183]

Taking Your Cloud to the
Next Level

In the previous chapters, we looked at all the essential components required to
build IaaS. In this chapter, we will look at how to install and configure two optional
OpenStack services, namely Heat and Ceilometer.

Although these services are optional, in a production environment, it is definitely
recommended that we have at least Ceilometer installed to meter different
components, which can then be used to integrate with a billing system of your
choice (for example, Velvica).

Heat, on the other hand, can help the users to use a template in order to orchestrate
the entire stack.

In this chapter, we will cover the following topics:

•	 Installing and configuring Heat
•	 Installing and configuring Ceilometer
•	 Testing the installation
•	 Billing and usage reporting

Working with Heat
Heat is the orchestration engine of OpenStack. A Heat system can take care of
provisioning an entire stack by requesting various services from other services of
OpenStack (Nova, Cinder, and so on.) based on a text template. It can also be used
to modify a currently running stack and delete it when we are done with it, so the
entire life cycle of the stack can be managed using Heat.

Taking Your Cloud to the Next Level

[184]

Heat is functionally similar to AWS's CloudFormation and is compatible with AWS
CF template, in addition to its own template format—Heat Orchestration Template
(HOT).

The Heat system supports the REST API, which is native to other OpenStack services
and supports an AWS CloudFormation-style Query API.

The components of Heat
The Heat system does not have many subcomponents. The subcomponents and their
functions are as follows:

•	 Heat: This is the command-line client, which is used to talk to the Heat API
component to execute the API calls. This is mainly used by the administrators
to execute a CloudFormation template.

•	 Heat API: This component accepts the API calls made to it and interfaces
with the main subcomponent, the Heat engine. This accepts the REST-style
API calls.

•	 Heat CF API: This component accepts the Query-style API that is native to
the AWS CloudFormation. It performs the same functions as the Heat API.

•	 Heat engine: The Heat engine is the main subcomponent. It orchestrates the
launch of the templates and passes the events back to the calling resource.

The following diagram demonstrates the architecture of the Heat system quite clearly:

API Calls to Other Services

Heat API Head Cloud Formation API

Heat Engine

Heat Client

Restful API Calls Query API Calls

Chapter 8

[185]

Heat Orchestration Template (HOT)
While the format of the template is not yet set in stone, this format attempts to replace
the CloudFormation (CFN) template that is currently in use. We shall briefly look at
the template formats, just enough to understand how to read, modify, and create them.

Each HOT has the following fields:

•	 Heat template version tag: This is a mandatory field.
•	 Description: This is an optional field that is used to describe the template.
•	 Resources: This is a required field that describes the different resources that

a stack will have, for example, a compute instance or a block storage for all
the resources.

°° Properties: These are the properties of the resource that need to
be passed.

°° Parameters: These are the properties that can be passed to the
template during run time, allowing it to not be hard coded. These
can have restrictions and constraints applied to them so that the
user passes the same values to the template.

Input parameters: These are the parameters that have to be filled
in while requesting a use of the template, as an example, the input
parameter can be the machine size that you want for a stack or a key
you want to pass in.
Output parameters: These are passed back to the user after the
template is executed, as an example, the ID of a machine, its IP
address, and so on.

A simple Heat Orchestration Template, which will request an instance with a
predefined set of parameters, is shown in the following code. In this, we can see
that the machine size needs to be passed during the runtime, and if it's not passed,
it defaults to the m1.small size.

heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

parameters:

 instance_type:

 type: string

 label: Instance Type

Taking Your Cloud to the Next Level

[186]

 description: Type of instance (flavor) to be used

 default: m1.small

resources:

 my_instance:

 type: OS::Nova::Server

 properties:

 key_name: my_key

 image: MyCustomTemplate

 flavor: { get_param: instance_type }

We can create multiple resources in a template and the Heat engine will orchestrate
them in a sequence. We can even create nested templates in order to pass the
variables between a child and a parent template allowing us to create an intricate
orchestration process.

Writing HOT is beyond the purview of the book. However, after understanding the
constructs of HOT, we should be able to now read and understand the different ones
that are available freely on the Internet.

Installing Heat
The installation of Heat services is straightforward and we will be installing them on
the controller node. The installation follows the same principles and processes that
we followed for the other services:

•	 Creating the database
•	 Keystone configurations (Creating users and endpoints)
•	 Installing packages
•	 Configuring packages
•	 Cleaning up

Let's start with the familiar checklists that we have been using so far, by filling in
the details:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not Applicable

Chapter 8

[187]

Name Info
Node name OSControllerNode
Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS

Heat DB password h3atpwd

Heat Keystone password h3atkeypwd

CloudFormation port 8000
Heat orchestration port 8004
Region dataCenterOne

Creating the database
We create a blank database after logging in to the MySQL server:

mysql –u root –p

Enter the dbr00tpassword password. Once in the database, execute the following
commands:

create database heat;

This will create an empty database called Heat. Let's now set up the heat database
user credentials:

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' IDENTIFIED BY
'h3atpwd';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' IDENTIFIED BY 'h3atpwd';

All this does is allows the username heat, using our password, to be able to access
the database called heat.

Installing components
The Heat components are installed using the aptitude package manager with the
following command:

sudo apt-get install heat-api heat-api-cfn heat-engine python-heatclient

This installs the components. We do need to ensure that the command completes
successfully and the components are installed.

Taking Your Cloud to the Next Level

[188]

The initial configuration
Let's now look at configuring Heat, which includes similar steps followed for other
OpenStack services, such as creating a Keystone user and Keystone services and
endpoints. However, a small difference in comparison to the other services is that for
Heat, we will need to create some additional roles as well.

Creating a Heat user in Keystone
We will create a user in Keystone, and by now, you are familiar with how to export
credentials in order to use the different OpenStack command-line utilities:

keystone user-create --name heat --pass h3atkeypwd

We should see something like the following screenshot:

We then add the user to the admin by running the following command:

keystone user-role-add --user heat --tenant service --role admin

Creating additional Heat stack roles
Up until now, we have been dealing with just two roles—admin and member, we
will now create two new roles called heat_stack_owner and heat_stack_user.

The heat_stack_owner role needs to be assigned to the people who will manage
the stacks themselves and the heat_stack_user role is for the people who use
these stacks:

keystone role-create --name heat_stack_owner

keystone role-create --name heat_stack_user

We should not assign both the heat_stack_user and owner roles
to the same user, as this will cause some conflicts. The heat_stack_
user role is assigned automatically to any users that are created
using HOT.

Chapter 8

[189]

We hope that you remember our users, Jane and John Doe, from our previous
chapter. We will now assign the owner role to the user John (and to our admin user)
in the tenant called TestingCloud that we created in our previous chapter, in the
following way:

keystone user-role-add --user johnd --tenant TestingCloud --role
heat_stack_owner

keystone user-role-add --user admin --tenant TestingCloud --role
heat_stack_owner

This will give John and the admin users permissions to manage the stacks. This can
also be done using the Horizon portal, the same way we assigned the member roles
in the previous chapter.

Creating Heat services in Keystone
There are two services that need to be created for the Heat system, one for the
regular REST API and the second one for the Query API that will be used in case
of a CloudFormation call, as follows:

keystone service-create --name heat-cfn --type cloudformation \

--description "Orchestration"

keystone service-create --name heat --type orchestration \

--description "Orchestration"

You should see something like the following screenshot:

Taking Your Cloud to the Next Level

[190]

We will have to note the ID of both the services, which we will use in the next section.

In our case, the IDs are as follows:

•	 Heat: 7934f03d9ec944fd87fec4f5f65bc0e8
•	 Heat-CFN: 70bae78b99be4fbeb03e96dbe66af189

Creating Heat endpoints in Keystone
We will create two endpoints, one for the cloud formation and the other for Heat.
Please ensure you replace the service-id with what you got in your previous step.

Creating the endpoint can be done as shown here:

keystone endpoint-create \

 --service-id 7934f03d9ec944fd87fec4f5f65bc0e8\

 --publicurl http://OSControllerNode:8004/v1/%\(tenant_id\)s \

 --internalurl http://OSControllerNode:8004/v1/%\(tenant_id\)s \

 --adminurl http://OSControllerNode:8004/v1/%\(tenant_id\)s \

 --region dataCenterOne

The second endpoint is created with the port and the service-id of the
CloudFormation service that was created earlier, as follows: (Substitute it with the
heat-cfn endpoint ID.)

keystone endpoint-create \

 --service-id 70bae78b99be4fbeb03e96dbe66af189 \

 --publicurl http://OSControllerNode:8000/v1 \

 --internalurl http://OSControllerNode:8000/v1 \

 --adminurl http://OSControllerNode:8000/v1 \

 --region dataCenterOne

This will create the Heat endpoints in Keystone.

Modifying the configuration file
We will now modify a single configuration file, /etc/heat/heat.conf. The
following changes are done in the configuration file:

•	 In the [database] section, the following are done:
°° We will set the database connection string as:

connection = mysql://heat:h3atpwd@OSControllerNode/heat

•	 In the [default] section, this is done:

Chapter 8

[191]

°° Configure the RabbitMQ access as follows:
rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

°° Set the Heat metadata server as:

heat_metadata_server_url = http://OSControllerNode:8000

heat_waitcondition_server_url =
http://OSControllerNode:8000/v1/waitcondition

•	 In the [keystone_authtoken] section, the following are done:
°° Set the Keystone configuration:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = heat

admin_password = h3atkeypwd

•	 In the [ec2authtoken] section, the following settings are made:

°° Set the authentication URL:

auth_uri = http://OSControllerNode:5000/v2.0

Populating the database
We can populate the database using the following command (under root):

/bin/sh -c "heat-manage db_sync" heat

Ensure that the database is created and there are no errors. If there
are any errors, please check the connection string that is mentioned
in the heat.conf file and ensure that the MySQL instance is up.

Taking Your Cloud to the Next Level

[192]

Finalizing the installation
We will delete the SQLite database file and restart all the services by running the
following commands:

rm -f /var/lib/heat/heat.sqlite

service heat-api restart

service heat-api-cfn restart

service heat-engine restart

This concludes the installation steps that are needed for the Heat system to run.

Deploying your first HOT
Now that we have completed the hard work of setting up Heat, let's create a sample
HOT and create a stack.

The template is very similar to what we saw in the previous section, and it simply
requests a single server and takes the parameters as an image name, network ID,
and machine size.

Create a file in directory /var and name it as test-stack.yml. The contents of the
file are shown as follows. If we look carefully, we have set the default machine size
to be m1.tiny, so if we do not override this, we will get an m1.tiny machine. The
contents of the file are as shown:

heat_template_version: 2014-10-16

description: Testing stack with a single server

parameters:

 image_id:

 type: string

 description: Image use to boot a server

 net_id:

 type: string

 description: Network ID for the server

 instance_type:

 type: string

 label: Instance Type

Chapter 8

[193]

 description: Type of instance (flavor) to be used

 default: m1.tiny

resources:

 server:

 type: OS::Nova::Server

 properties:

 image: { get_param: image_id }

 flavor: { get_param: instance_type }

 networks:

 - network: { get_param: net_id }

Once the template is created, we will export the credentials for the TestingCloud
tenant. The only difference between the admin credentials that we have been
exporting so far is the name of the tenant.

We have also added the admin user in the heat_stack_owner role, so this will work
just fine. Alternatively, we can use John's credentials that we created. We will export
the credentials as shown here:

export OS_TENANT_NAME=TestingCloud

export OS_USERNAME=admin

export OS_PASSWORD=h33l0world

export OS_AUTH_URL=http://OSControllerNode:5000/v2.0

We will need the following information to pass to the template:

•	 Network ID
•	 Image name
•	 Flavor name

We can then execute the following commands to view the available choices:

nova flavor-list

nova image-list

nova net-list

Taking Your Cloud to the Next Level

[194]

We have just one image that we have created, CirrosTest. We will use this. We can
leave the flavor information to the default m1.tiny value, and we will need the ID
for cloud-network so that our computer can be connected to this system:

So, we can have values as follows:

•	 Parameter: net_id= c83453d6-599f-4b01-aedf-7b8561eff67c

•	 Parameter: image_id=CirrosTest

•	 Parameter: instance_type=m1.tiny

We will now create the stack using the Heat client with the parameters as shown in
the following. The stack will be called as mystack.

The format is as shown:

heat stack-create –f <filename of HOT template> -P <Parameters>
"Stack Name"

Substituting our values, we get the following: (We could even use the names, and
they will be translated.)

heat stack-create -f /var/test-stack.yml \

 -P "image_id=CirrosTest;net_id=c83453d6-599f-4b01-aedf-
7b8561eff67c;instance_type=m1.tiny" myStack

Chapter 8

[195]

The output would look as shown here:

We can see that the stack creation is in progress. We will need to wait until the stack
is deployed, you can test the status using the following command:

heat stack-list

We have successfully tested the orchestration module of OpenStack, and we can
manage our stacks using HOT, if need be. This enhances the functionality of the
cloud that enables complicated stacks to be defined and easily spun up by users.
This can be used in the cases where the platform team defines the stacks that are
allowed and the templates to be shared with users to spin up new stacks at their will.

It is worthwhile to note that this is merely another abstraction layer, and the
restrictions that are set by the other layers still apply. As an example, the user can
only use the network that is assigned to a project, and they can only spin up the
maximum number of instances allowed by the quota, so on and so forth.

The next service that we will add to our cloud is Ceilometer, which is a telemetry
module used to measure the different aspects of the cloud for the purposes of billing.

Ceilometer
Ceilometer is another optional module that can be installed in the OpenStack
environment. This is a telemetry system, and its function is to collect the usage
statistics from different components of OpenStack and to store and warn when the
data breaches certain thresholds. The output can be used for billing, auditing, and
capacity planning purposes, and whatever your need may be. It is a good idea to run
a Ceilometer service in the OpenStack environment only if we need metering data
for billing purposes. If we need to just perform capacity planning in a private cloud
without any need to bill downstream users, then we can ignore this component.

Please note that this system does not provide billing information, and an external
billing system needs to be used if you need to generate showback/chargeback
reports for your company.

Taking Your Cloud to the Next Level

[196]

The following diagram shows the different major components of the Ceilometer
system:

Polling

Nova Glance Cinder Neutron

Notifications

Collector Data Store API External
Systems

Central Agent
Event Listener

Event Bus

Compute
Agent

As shown in the diagram, the Data Store component is the heart of the system,
where all data will finally reside. The key aspects of the system are, as follows:

•	 Data collection
•	 Data access
•	 Meters
•	 Alarms

The system allows us to write custom agents, if we need to. However, this is beyond
the scope of our book, and therefore let's concentrate on the basics:

•	 Data collection: Data is collected from the various different services of the
OpenStack system. There are three kinds of inputs that are fed to the system:

°° User action: A user performing a CRUD action on a resource
generated.

°° Polling: The Ceilometer agent polls the different services for data.
°° Audit: The regular audit events generated by the service.

Chapter 8

[197]

There are agents, such as the compute agent, which sit right on the the
compute node, and they keep sending information. Another central agent's
function is to poll the different services and gather information, and the
OpenStack notifications goes to the event listener. All of these feed the data
into the collector using the Ceilometer event bus.
This was done so that Ceilometer is turned into a distributed system.
The collector component then dumps the data into the data store.

•	 Data access: The next important thing is how we fetch the data that has
been stored in the data store by the collector accumulating it from various
methods from various sources. The API element, which is Keystone
authenticated, provides a REST API which we can then use to either fetch
raw data or data in different meters.

•	 Meters: Ceilometer has three kinds of meters, or ways, in which it stores and
interprets raw data:

°° Cumulative: Increasing over time (for example, instance hours).
°° Delta: Changing over time (for example, bandwidth).
°° Gauge: This includes discrete items like floating IPs and fluctuating

values such as disk IO.

These meters are for now sufficient to cater to the needs of the different
OpenStack services.

•	 Alarms: Ceilometer also provides the capability to send out alarms when the
collected data crosses a certain defined threshold conditions.

Installing Ceilometer
Ceilometer is installed on the controller node, the agent for compute is installed on
the compute node, and Glance, Cinder and, Swift are configured with notifications,
so we will be making modifications to the various nodes of our installation.

Installing Ceilometer on the controller node
The control components on Ceilometer are installed on the controller node. There is a
little difference when it comes to Ceilometer. We will be using a MongoDB rather than
the regular MySQL(MariaDB) installation that we have used for the other services.

This is because the MongoDB is a NoSQL database that is especially suited for data
sources with high volume and where fast access is needed. This forms a perfect fit for
the purposes of Ceilometer.

Taking Your Cloud to the Next Level

[198]

Installing and configuring MongoDB
We install the MongoDB and its client using the following command:

apt-get install mongodb-server mongodb-clients python-pymongo

We will now configure the MongoDB to listen on the controller node's IP address.
We will make the following changes to the /etc/mongodb.conf file:

•	 Change bind_ip to the controller node's IP address (Please set this to your
controller node's IP address). This will allow MongoDB to listen to the
requests from outside the nodes as well:
bind_ip = 172.22.6.95

•	 Make the MongoDB journal space small, since this is just a learning server.
In the production server, you may skip this step:

smallfiles = true

Once the configuration changes have been made, we will stop the service, delete the
old journal files, and start the service using this command:

service mongodb stop

rm /var/lib/mongodb/journal/prealloc.*

service mongodb start

You should be able to see the MongoDB service listening on the IP address, using the
netstat –lnp command.

Before continuing any further, let's fill our checklist so that we have the values handy:

Name Info
Access to the Internet Yes
Proxy needed No
Proxy IP and port Not applicable
Node name OSControllerNode

Node IP address 172.22.6.95
Node OS Ubuntu 14.04.1 LTS

Ceilometer DB password c3ilpwd

Ceilometer Keystone password c3ilkeypwd

Chapter 8

[199]

Creating the database
The database will be created in the MongoDB and will have a different format:

mongo --host OSControllerNode --eval '

 db = db.getSiblingDB("ceilometer");

 db.addUser({user: "ceilometer",

 pwd: "c3ilpwd",

 roles: ["readWrite", "dbAdmin"]})'

Executing the preceding command creates the database and adds the user with
read/write and DB admin roles. The following output can be seen upon the
successful creation of the database in MongoDB:

Installing packages
We will install packages using the Aptitude package manager with the following
command:

apt-get install ceilometer-api ceilometer-collector ceilometer-agent-
central \

 ceilometer-agent-notification ceilometer-alarm-evaluator
ceilometer-alarm-notifier \

 python-ceilometerclient

Taking Your Cloud to the Next Level

[200]

Let's look at the various components and the functions they perform:

•	 ceilometer-api: This forms the frontend that accepts API calls from
external systems and taps into the data source to respond to queries.

•	 ceilometer-collector: This is the collector module, which aggregates the
inputs from different sources and saves the data in the data source, or it can
also send the data to an external consumer.

•	 ceilometer-agent-central: This performs polling functionality and keeps
polling the different services of OpenStack. We can have multiple central
agents for scalability and performance purposes in an installation.

•	 ceilometer-agent-notification: This service consumes messages from
the message queue and builds event and metering data.

•	 ceilometer-alarm-evaluator: This service determines which alarms to fire
due to the values crossing the threshold over a sliding time window.

•	 ceilometer-alarm-notifier: This is used to set the alarms based on
threshold for v.

•	 ceilometer-client: This is used to fire away the Ceilometer commands to
test and configure the system.

These packages are installed on the controller server.

Initial configuration
Let's now look at configuring Ceilometer!

Creating the Ceilometer user in Keystone
After exporting the admin credentials, either using individual export commands
or sourcing the file, as we have done in the past, let's create Keystone user using
the command:

keystone user-create --name ceilometer --pass c3ilkeypwd

You should get an output like the following screenshot:

Chapter 8

[201]

The user account is created.

We will then add the created account as an admin in the service tenant using the
following command:

keystone user-role-add --user ceilometer --tenant service --role
admin

Creating the Ceilometer service
We will create the service for Ceilometer in Keystone using the following command
with the type as metering:

keystone service-create --name ceilometer --type metering \

--description "Telemetry"

You should get the following screen:

We will note down the ID, as it will be needed in the next step. In our case, it is
b843a8c5485b4ad7a4f038cdfea1e668.

Creating the Ceilometer endpoint
We will create the endpoint using the following command, please be sure to replace
your service ID here:

keystone endpoint-create \

 --service-id b843a8c5485b4ad7a4f038cdfea1e668 \

 --publicurl http://OSControllerNode:8777 \

 --internalurl http://OSControllerNode:8777 \

 --adminurl http://OSControllerNode:8777 \

 --region dataCenterOne

Taking Your Cloud to the Next Level

[202]

You should see something like the following screenshot:

The service is now created successfully.

Generating a random password
We will now generate a random password using the following command, which we
will use as a metering secret:

openssl rand -hex 10

Note the output down, that will be similar to the following screenshot, and we will
use this in place of the metering secret:

In our case, it is a17a568977c28b18b8ec.

Editing the configuration files
We need to edit the configuration file located at /etc/ceilometer/ceilometer.
conf. We need to make the following changes:

•	 In [database] section, this has to be done:
°° We will set the database connection string, as follows:

connection = mongodb://ceilometer:c3ilpwd@
OSControllerNode:27017/ceilometer

Chapter 8

[203]

•	 In [default] section, we will do the following:
°° Configure the RabbitMQ access as:

rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

°° Set the authentication strategy to keystone as:

auth_strategy = keystone

•	 In the [keystone_authtoken] section, the following is done:
°° Set the Keystone configuration as:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = ceilometer

admin_password = c3ilkeypwd

•	 In the [service_credentials] section, the following settings are done:
°° Set the service credentials as:

os_auth_url = http://OSControllerNode:5000/v2.0

os_username = ceilometer

os_tenant_name = service

os_password = c3ilkeypwd

•	 In the [publisher] section, we will do the following:

°° Set the metering_secret: (this is the random password that we
generated earlier.)

metering_secret = a17a568977c28b18b8ec

Taking Your Cloud to the Next Level

[204]

Enabling the Glance notification
We need to edit the /etc/glance/glance-api.conf and /etc/glance/glance-
registry.conf configuration files. In both of them, we will enable the notification
as follows:

•	 In the [DEFAULT] section, the following configurations are done:
°° Configure notification and RabbitMQ, as follows:

notification_driver = messagingv2

rpc_backend = rabbit

rabbit_host = controller

rabbit_password = rabb1tmqpass

Ensure both the files are updated with the configurations. If
there are any conflicting values, then comment out the old
configurations. (For example, you may see that notification_
driver may be set to no operation.)

Enabling the Cinder notification
We will need to configure a notification in the configuration file of Cinder located at
/etc/cinder/cinder.conf:

•	 In the [DEFAULT] section, do the following:

°° Configure notifications, as follows:

control_exchange = cinder

notification_driver = messagingv2

This will enable the notification in the Cinder system; we will then restart the
Cinder services.

Enabling the Swift notification
Enabling the Swift notification will need some additional steps:

We have to create a ResellerAdmin role in Keystone, which will be used in order
to federate the authentication with Keystone. In addition, Ceilometer will require
access to the Swift folders, and hence the group modification needs to be done on
Ceilometer's account.

Chapter 8

[205]

Creating the ResellerAdmin role
In order to create a ResellerAdmin role, we will export our admin credentials using
the export commands or by sourcing the file where the export commands are set,
as we have done in the past.

We then execute the following command:

keystone role-create --name ResellerAdmin

We have to note down the ID that is generated so that we can use this in the next
command. In our case, this is 259165da71bc40e983e0d3218ffe31d0.

We will then associate the role with the Ceilometer user account in the service tenant
using the following command: (Remember to substitute your role ID appropriately.)

keystone user-role-add --tenant service --user ceilometer \

 --role 259165da71bc40e983e0d3218ffe31d0

This will associate the role. We could also do this using the Horizon frontend, as we
have seen in the previous chapter.

Enabling notifications
We need to perform these steps on all the Swift proxy nodes. In our case, we have
only installed it on the controller, and hence we will configure it only here.

The file that we will be modifying is /etc/swift/proxy-server.conf. We will
make the following changes:

•	 In the [filter:keystoneauth] section, we will do the following:
°° Add the ResellerAdmin role, as follows:

operator_roles = admin,_member_, swiftoperator,
ResellerAdmin

Taking Your Cloud to the Next Level

[206]

•	 In the [pipeline:main] section, we will do this:
°° Add ceilometer just before the proxy-server, as shown here:

pipeline = healthcheck cache authtoken keystoneauth proxy-
logging ceilometer proxy-server

•	 In the [filter:ceilometer] section (create this if it doesn't exist), we
configure as follows:

°° Configure the notifications, as follows:

use = egg:ceilometer#swift

log_level = WARN

Once the configuration changes are made, we will need to restart the Swift proxy
service as explained in the Finalizing the installation subsection.

Allowing Swift access to Ceilometer files
We will allow Swift user access to the Ceilometer configuration files by adding the
Swift user to the Ceilometer group:

usermod -a -G ceilometer swift

This way the Swift user also has permissions for Ceilometer.

Finalizing the installation
As a final step, we will restart all the services:

service ceilometer-agent-central restart

service ceilometer-agent-notification restart

service ceilometer-api restart

service ceilometer-collector restart

service ceilometer-alarm-evaluator restart

service ceilometer-alarm-notifier restart

service glance-registry restart

service glance-api restart

service cinder-api restart

service cinder-scheduler restart

service swift-proxy restart

Once we complete this, we move on to the next step of installing the compute agents.

Chapter 8

[207]

Installing Ceilometer on the compute node
On the compute node, we will install the compute agent, which will send the details
to the collector via the message bus.

Log in to OSComputeNode (in our case, 172.22.6.97).

Installing the packages
We will install one package called the compute agent using the package manager:

apt-get install ceilometer-agent-compute

Let's look at the function of the component

Ceilometer-Agent-Compute
The ceilometer-agent-compute function polls for the resource utilization statistics
and sends it to the collector.

Once we have installed the package, we will need to follow some steps to
configure this.

Initial configuration
We will need to configure the Ceilometer agent, and we will enable notifications in
the configuration for Nova.

In the file located at /etc/ceilometer/ceilometer.conf, we need to make the
following changes:

•	 In the [default] section, we will do the following:
°° Configure the RabbitMQ access, as follows:

rpc_backend = rabbit

rabbit_host = OSControllerNode

rabbit_password = rabb1tmqpass

•	 In the [keystone_authtoken] section, we will do the following settings:
°° Set the Keystone configuration, as shown here:

auth_uri = http://OSControllerNode:5000/v2.0

identity_uri = http://OSControllerNode:35357

admin_tenant_name = service

admin_user = ceilometer

admin_password = c3ilkeypwd

Taking Your Cloud to the Next Level

[208]

•	 In the [service_credentials] section, we will do as shown here:
°° Set the service credentials, as follows:

os_auth_url = http://OSControllerNode:5000/v2.0

os_username = ceilometer

os_tenant_name = service

os_password = c3ilkeypwd

os_endpoint_type = internalURL

os_region_name = dataCenterOne

•	 In the [publisher] section, we will do the following:

°° Set the metering_secret (it's the random password that we
generated earlier):
metering_secret= a17a568977c28b18b8ec

Enable Nova notification
In the Nova configuration file, we will enable the notifications. In the /etc/nova/
nova.conf file, we will do the following:

•	 In the [default] section, we will do this:

°° Set the notifications, as follows:
instance_usage_audit = True

instance_usage_audit_period = hour

notify_on_state_change = vm_and_task_state

notification_driver = messagingv2

Finalizing the installation
The preceding changes conclude the installation process in the compute node.
This needs to be done in every compute node in the environment. We will restart
the services in order for the configurations to take effect, as shown:

service ceilometer-agent-compute restart

service nova-compute restart

Installing Ceilometer on the storage node
On the storage node, we will enable the notifications for Cinder.

Chapter 8

[209]

Enabling Cinder notification
We will need to configure the notification in the Cinder configuration file located
at /etc/cinder/cinder.conf:

•	 In the [DEFAULT] section, we will do the following:

°° Configure notifications, as follows:

control_exchange = cinder

notification_driver = messagingv2

This will enable the notification for the Cinder service; we will then restart the
Cinder services.

Finalizing the installation
The services need to be restarted to complete the installation:

service cinder-volume restart

The notifications on the Cinder system are now enabled.

Testing the installation
Now that Ceilometer has been installed, we need to be able to test it. In order to do
so, we will use the controller node and export the admin credentials.

In order to see the current meters, we will execute the following command:

ceilometer meter-list

This will show the current metered units. Since we do not have anything metered,
it will show something like the following screenshot:

We see the image and the image size at the two meters that are available.

Taking Your Cloud to the Next Level

[210]

We will now perform some functions and ensure that Ceilometer picks them up. One
such simple task is downloading an image from Glance. So, we have one image that
we called CirrosTest, let's just download it and ensure that the metering is correct.

We can download the image using the following command:

glance image-download "CirrosTest" > sample.img

This just downloads the image from Glance and stores it locally as a file called
sample.img.

Once this is done, we execute the same command one more time and we will see that
the download now appears, as shown:

Now, since this is a metering system, we should be able to see the amount using
the following command (you can substitute any meter name to get the statistics of
that meter):

ceilometer statistics –m image.download

You should be able to see the following screen:

We notice that the Max amount shows the value 13200896.0. We can verify the size
of the image by executing the ls –l command on the downloaded file:

ls -l sample.img

Chapter 8

[211]

This will indeed confirm that a file of that size was downloaded. You should see
something like the following screenshot:

If we download the file multiple times, we can verify that the count in the Ceilometer
statistics will keep incrementing.

Billing and usage reporting
After Ceilometer has been configured, we will need a billing system that can use this
data and present it to the user in a usable format.

Some of the meters that are used in case of the guest virtual machine would typically
be as follows:

Name Type Unit Meaning
cpu cumulative ns The total CPU time used
cpu_util gauge % The average CPU utilization. of

the instance
disk.ephemeral.
size

gauge GB The ephemeral disk size

disk.read.bytes cumulative B The total number of bytes read
disk.read.
requests

cumulative request The total number of read
requests made

disk.root.size gauge GB The root disk size for the
instance

disk.write.bytes cumulative B The total number of bytes
written to the disk

disk.write.
requests

cumulative request The total number of write
requests to the disk

instance gauge instance The number of instances in
existence

instance:m1.large gauge instance The number of large instances
in existence

instance:m1.
medium

gauge instance The number of medium
instances in existence

instance:m1.small gauge instance The number of small instances
in existence

Taking Your Cloud to the Next Level

[212]

Name Type Unit Meaning
instance:m1.
xlarge

gauge instance The number of extra large
instances in existence

memory gauge MB The memory allocated by the
hypervisor to the instance

network.incoming.
bytes

cumulative B The total number of bytes
incoming to a network interface

network.incoming.
packets

cumulative packet The total number of packets
incoming to a network interface

network.outgoing.
bytes

cumulative B The total number of bytes
outgoing from a network
interface

network.outgoing.
packets

cumulative packet The total number of packets
outgoing from a network
interface

vcpus gauge vcpu The number of virtual CPU's

The meter definitions are stored in a file called /etc/ceilometer/meter/data/
meter.yaml, a standard meter definition looks like the following:

metric:
 - name: 'meter name'
 event_type: 'event name'
 type: 'type of meter eg: gauge, cumulative or delta'
 unit: 'name of unit eg: MB'
 volume: 'path to a measurable value eg: $.payload.size'
 resource_id: 'path to resouce id eg: $.payload.id'
 project_id: 'path to project id eg: $.payload.owner'

We can use the preceding format and create new meters as required in Ceilometer.

The OpenStack foundation currently has a project, which functions as a billing
system called the CloudKitty.

The CloudKitty project installers are not yet available, but one can easily install it
from the source. It also has a basic Horizon integration to show the billing aspects.
We can use any billing system as long as it can make REST requests to the system. It
should be able to pull data from Ceilometer and present it in any format it deems fit
to the end user.

Chapter 8

[213]

Summary
Having looked at all the basic services of OpenStack in the previous chapters,
in this chapter we have discussed some optional services such as orchestration
(using Heat) and metering (using Ceilometer), which will definitely be the next step
for any enterprise when adopting OpenStack.

There are several other modules that are available in Juno, but we haven't discussed
them here. These modules include Designate, Manila, and so on, which can be
explored as you start playing with your OpenStack installation and get more
comfortable.

With this, we come to the end of the installation and configuration of OpenStack
components. In the next chapter, we shall look at various distributions and use cases
of OpenStack.

[215]

Looking Ahead
After having travelled together in this wonderful OpenStack journey so far, we
are now nearing the close. We have seen in the previous chapters how a private
or a public cloud can be set up with OpenStack, and how we can choose to offer its
flexibility beyond just the standard compute, storage, and networking aspects of an
IaaS cloud by adding several other OpenStack components.

In this chapter, we will look at where OpenStack currently stands in the market and
in the near future. We will also look at some of the major deployments and who is
backing them. We will look at how OpenStack clouds will look in the future. We will
conclude this book by looking at a more important question: What is in it for you?

To be specific, we will discuss the following major topics in this chapter:

•	 The different OpenStack distributions
•	 Seeing OpenStack in action via several use cases

OpenStack distributions
In this book, we have installed the OpenStack components using the aptitude
package manager after adding the Ubuntu repositories. We could have installed
the components in several other ways, and there are several distributions available,
which provide either the packages or scripts needed to install the system. We can, of
course, install the components from the source by cloning the Git repository for the
packages and using the install script, but several vendors have come up with their
own distributions.

Looking Ahead

[216]

Devstack
Devstack is a development distribution, as the name suggests, and it can install
all the components either in a single box or multiple ones that can be chosen
at installation. This is a good and quick way to test the features of the different
components apart from developing them further and fixing bugs, if you choose
to contribute. Devstack is available for installation on Ubuntu, Fedora, and RHEL
currently, but can also be installed on the other distros as well.

Operating system distributions
The operating system distribution vendors are creating distributions of OpenStack,
which can be easily installed on their respective operating systems by packaging and
making the distributions available as repositories. In this very book, we have used an
OS distribution of OpenStack (Ubuntu). Let's look at the major ones.

Ubuntu OpenStack
Ubuntu OpenStack is designed to run on the Long Term Support (LTS) editions
of Ubuntu and has releases for Kilo, Juno, and Icehouse. It also has the support
of most popular hypervisors right from ESXi, Hyper-V, KVM, Qemu, and LxC
(Linux Containers). You can also get a production-grade 24x7 support.

RedHat OpenStack
RedHat OpenStack is designed to work on Enterprise Linux edition and has
support only for ESXi and KVM. It currently is on the Juno release, and Kilo is
soon launching.

Oracle OpenStack
Oracle OpenStack is installed on top of Oracle Enterprise Linux. The key difference
is that this is possibly the only distribution to support Solaris. Xen and KVM
hypervisors are supported by this distribution.

Vendor offerings
Several vendors offer their products and services along with OpenStack. These
vendors range from Hypervisor vendors with tight integration to their platform
to cloud providers providing public, private, or hybrid offerings. There are certain
other offerings based on just a few components of the stack, but not the full stack,
such as the storage service alone.

Chapter 9

[217]

Since an exhaustive list will be pointless as new vendors are being added very
often, the list will soon be obsolete. We will, therefore, look at some key and
famous offerings.

VMware integrated OpenStack
At the time of writing the book, VMware-integrated OpenStack was the only
distribution that came from a hypervisor vendor. You can get this for free, if you
have an enterprise plus license from VMware. This is integrated nicely into the
vSphere web client and deploys a production grade, highly available OpenStack
in just a matter of a few clicks, and is tightly integrated with the ESXi Hypervisor.
The latest available version is based on the Kilo release.

This is slowly but surely becoming quite popular among enterprises that have
already made huge investments in terms of VMware licenses for hypervisors.

Rackspace cloud
Rackspace needs a special mention in this book, not only because they run a famous
public cloud based on OpenStack, but also because if it was not for them, we would
not even have OpenStack, as Rackspace and NASA actually started this project in
2010. They are still, however, on Icehouse with the Xen hypervisor.

HP Helion
In the FOSS segment for cloud products, OpenStack and Eucalyptus were two
products that were solving the same problems. HP acquired Eucalyptus and has
added it to its Helion cloud offerings. However, what most people do not realize is
that there are two offerings, and if someone wants AWS-like APIs they can choose
HP Helion Eucalyptus, or if they prefer OpenStack, they can choose the OpenStack
version of it.

Cisco OpenStack
Cisco has an OpenStack distribution running on its UCS chassis and provides
mostly private cloud solutions for enterprises that enable an easy deployment
of a supported OpenStack installation in their datacenters.

Looking Ahead

[218]

Mirantis OpenStack
Mirantis OpenStack is one of the most flexible and at the same time, an open
distribution of OpenStack and more importantly, you can purchase support here.
In addition, the hypervisor support for this distribution ranges from Xen, Docker,
Hyper-V, ESXi, LXC (Linux containers), QEMU, and KVM. Actually, this is an
exhaustive list of what OpenStack supports (other than the bare metal provisioning
that is code named Ironic). So if you want more supported choices in terms of
hypervisors, look no further.

SwiftStack
SwiftStack is an example of a partial OpenStack implementation. It only implements
as the name implies, Swift, the object store service of OpenStack. Therefore, this
forms a choice if you want to use an object store (AWS S3 equivalent). You can also
connect this with your in-house Swift deployment of OpenStack.

IBM Cloud manager
The IBM Cloud manager is from the tech giant IBM, which provides integration with
the z/VM hypervisor running on mainframes. It also provides some management
toolsets along with their distribution. Their current release is based on Juno.

Suse Cloud
Based on OpenStack and Crowbar, this private cloud offering supports mixed
hypervisor cloud deployments based on the Icehouse release of OpenStack.

Other public clouds
There are several vendors (aside from the ones we previously discussed), whose
public clouds are designed using OpenStack. Here are a few to name (in no
particular order):

•	 Internap (www.internap.com)
•	 Anchor Cloud (www.anchor.com.au)
•	 Ultimum Cloud (ultimum.io)
•	 Dream compute (www.dreamhost.com)
•	 Kloud open (https://kionetworks.com)
•	 Elastx ops (elastx.com)

www.internap.com
www.anchor.com.au
ultimum.io
www.dreamhost.com
https://kionetworks.com
elastx.com

Chapter 9

[219]

These are a few in a long list of service providers working with OpenStack. This list
continues to change very frequently, and in order to see the most updated list, be
sure to visit the OpenStack market place for the different distributions:

https://www.openstack.org/marketplace/distros/.

Choosing a distribution
After having understood the services, the purposes of the services, and the
architecture, here are a few things to keep in mind while choosing a distribution if
you are looking to implement OpenStack for your company's private cloud:

•	 Service Level Agreements (SLA): You need to take a look at the kind of
support and the SLAs that the different providers offer.

•	 Hypervisor support: Not all the distributions support all hypervisors, even
if the underlying OpenStack does. You should choose the distribution that
supports the ones you are using currently and intend to use in the future.
Also, read the fine print as to what happens when you configure OpenStack
with the hypervisors that the distribution does not support—it would work,
but it might invalidate the entire support contract, or just the hypervisor that
is not supported.

•	 Operating system support: Almost all the distributions support Windows
and Linux, but say if you need Solaris support, you may have to get a
distribution that does this.

•	 Update speed: We should also check the frequency at which a distribution
is updated and how quickly it is updated after a release cycle of OpenStack,
patches, and so on, especially if you are anxious to get the new features and
like to be on the cutting-edge side of things.

•	 Lock in: Check whether the distribution locks into some proprietary
technology, such as hardware or software. You may have to decide whether
this is something your company can live with.

•	 Additional tools: Many of the distributions sometimes package additional
tools that help to manage or administer OpenStack better. For example, Suse
offers a Suse Studio, which makes it easy to manage templates and converts
them from one format to the other.

https://www.openstack.org/marketplace/distros/

Looking Ahead

[220]

In order to help with the choosing, let's look at the following table, which lists the
hypervisor and operating system support for a few distributions normally used in
the private cloud world.

Distribution name Hypervisor support OS support
Ubuntu OpenStack Hyper-V, QEMU, KVM, ESXi, LXC Linux, Windows

Red Hat OpenStack ESXi, KVM Linux, Windows

VMWare Integrated
OpenStack

ESXi Linux, Windows

Mirantis OpenStack Xen, Docker, Hyper-V, ESXi, LXC,
QEMU, KVM

Linux, Windows

Oracle OpenStack for Solaris Solaris Solaris

Oracle OpenStack Xen, KVM Linux, Windows,
Solaris

Cisco OpenStack QEMU, KVM Linux, Windows
IBM Cloud Manager z/VM, PowerVM, ESXi, Hyper-V,

KVM
Linux, Windows

Suse Cloud Xen, Hyper-V, ESXi, KVM Linux, Windows
Dell Red Hat Cloud KVM Linux, Windows
HP Helion OpenStack ESXi, KVM Linux, Windows

OpenStack in action
OpenStack being the most successful FOSS segment cloud product, the
implementations of this are too many to detail. In this section, we will look
at some of the most common use cases where you might see OpenStack in action.

Enterprise Private Cloud
Enterprise Private Cloud is one of most common use cases, and the most likely
reason why you are reading this book. If you are in the IT organization of any
enterprise that chooses to offer private cloud to its different business units, which
now demand agility, flexibility, lower time-to-market, and so on, OpenStack is the
right choice wherein you can offer an Amazon Web Services style of services while
exposing APIs to support cloud native applications.

Some of the enterprises that have adopted this are eBay, Alcatel-Lucent, BMW,
PayPal, NASA, and Sony, among several others.

Chapter 9

[221]

Service providers
If you are in a service provider line of business, such as a datacenter provider, you
may want to start offering cloud services. OpenStack's distributed nature can easily
help you build a service provider-grade cloud for multiple tenants, and you can
throw some additional integrations over and above the stock OpenStack offering,
such as toolsets and SLAs.

There are several service providers that use OpenStack today, some of them are
already mentioned in the previous sections. Some additional names are AT&T,
Telstra CCS (Cisco Cloud Services), Korea Telecom, Dream Host, and so on .

Schools/Research centers
Even schools use OpenStack in their labs to quickly provision different kinds of
workloads for students, staff, and research faculty who are conducting projects or
research in various fields of their study. Not being dependent on the IT team greatly
reduces the time required to start a project.

Some of the notable examples are CERN, MIT CSAIL, and so on.

Web/SaaS providers
These sorts of companies need agility. There are several hundreds of them and their
success criteria depends on how quickly they can bring in new features to their
products, hence the Dev/Test and the entire DevOps paradigm for them becomes
key to survival, and OpenStack can help them achieve just that. These companies
inevitably use OpenStack or an equivalent to help them in this area.

Some examples in this segment would be MercadoLibre.com, Platform 9, and so on.

These are a few segments where OpenStack saves the day for various organizations
and their IT staff.

The roadmap
The OpenStack roadmap is nothing short of exciting when we look at it. There are
over a hundred companies backing OpenStack, it has over 6000 contributors and
is slowly becoming the de-facto cloud standard. There are several new OpenStack
services that have been added in the newly-released Kilo and several others that are
planned for the next major release of Liberty and beyond that.

MercadoLibre.com

Looking Ahead

[222]

With the complete suite of the different OpenStack products, OpenStack is currently
quite ahead in the market compared to any of its competitors in the FOSS segment.
Coming second in this segment is OpenNebula, which is far behind in terms of
adoption numbers.

The following diagram shows the full roadmap for OpenStack since its inception
in 2010. At this point, there are 12 programs that are already part of OpenStack and
four that are in active development (they already have had interim beta releases that
can be used in Kilo) to be included in the next release of Liberty.

Liberty (2015) & Beyond
Adding Zaqar - Queue Management
Adding Manilla - Shared File System
Adding Designate - DNS Service
Adding Barbican - Key Management

Austin (2010)
Nova
SwiftBexar (2011)

Added Glance

Cactus (2011)

Diablo (2012)

Essex (2012)
Added Keystone, Horizon

Folsom (2013)
Added Cinder, Neutron

Havana (2014)
Added Ceilometer, Heat

Grizzly (2014)

Icehouse (2015)
Added Trove

Juno (2015)
Added Sahara

Kilo (2015)
Added Ironic

We have already covered in the first chapter of the book, the services and the
functions they perform that are being added to Liberty, as the developer versions
in Kilo have been released as well. The previous diagram shows the addition of the
stable releases of the projects to the corresponding OpenStack releases.

With all the projects, both the stable ones and the ones under development,
OpenStack comes remarkably close to Amazon Web Services and its offering.
So when deployed, OpenStack can provide both the feel and functionality of the
public cloud giant in-house and can run in a controlled environment.

Chapter 9

[223]

What is in it for you?
Our belief is that this is possibly the most exciting time to be associated with
OpenStack, as the demand for professionals in this field is ginormous and the
adoption of OpenStack keeps increasing with every new core service that gets
added to the stack.

We have also seen some large backing from companies such as Google, and right
now, OpenStack is rightly being called the Linux of the Cloud.

Earlier this year (2015), a survey of 3,000 IT decision makers found that about a
third were deploying private clouds to enhance enterprise operations. Half of these
were using OpenStack as the underlying platform. Most of the enterprise IT teams
worth their salt are using OpenStack or are surely considering it. However, the
real challenge is, many companies are not moving their most critical operations,
including native applications, to OpenStack when building private or hybrid cloud
environments. Why? The primary reason is that there is a massive gap in the skills
required to properly implement and manage platforms such as OpenStack.

We believe that this is the right kind of opportunity for all of you who have made a
start by reading this book to go ahead, build on your skills, and enhance your career
in the next generation cloud world. "May the force be with you".

Summary
In this chapter, we looked at the different distributions of OpenStack and vendor
cloud offerings based on OpenStack. We then looked at the different use cases and
the roadmap.

With this chapter, we have finally concluded our journey in this book. At the end
of this, we hope that you now have enough knowledge to install and configure
OpenStack to set up your first private cloud.

[225]

New Releases
As you are aware by now, our book is based on the Juno release of OpenStack.
However, there have been newer releases during the writing of this book. In this
section, we shall look at the major differences among the last three releases of
OpenStack. The latest release is Liberty, which was launched on October 15, 2015,
right before the publication of this book.

The core concepts and services of the releases were very similar in all the three
releases, and most changes have been related to advanced concepts and a new
"Big Tent" approach to services. The focus of our book has been primarily around the
basic or mandatory services. Nevertheless, it is worthwhile to know the differences
among the releases so as to keep our knowledge level up to date.

"Big Tent" is the new approach to OpenStack services. Earlier, we had an "integrated
release" that included multiple projects and was growing. However, the challenge
in this was that not every new project made sense for every OpenStack cloud and
not every new project was actually being deployed. Therefore, a new model called
"Big Tent" has been adopted, in which there are projects that are considered to be
core and mature and then there is everything else. Among the projects that are
core include the Nova compute, Swift storage, Glance image, Horizon dashboard,
Neutron network, and Keystone identity.

We will cover the following important topics in this appendix:

•	 Understanding the newer releases
•	 Changes in the installation procedures of the new releases
•	 Upgrading from Juno

New Releases

[226]

The releases
Kilo release is the 11th OpenStack release, and has multiple improvements and
bug fixes mainly to enhance the core and Big Tent services of the OpenStack. This
adds a few new services (as shown in the first chapter) in the area of infrastructure
components.

Liberty is the 12th release of OpenStack, and has major improvements in the area of
the governance, manageability, and extensibility aspects of OpenStack. The Liberty
release added new services mainly in the field of governance and operationalization
of OpenStack. This was done effectively to cater to the needs of enterprises and help
them to efficiently and effectively manage their OpenStack-based private clouds.

The table in the next section summarizes the major additions/changes to the
services of OpenStack that we have covered in this book. Most of these changes
are on the advanced aspects of OpenStack and build upon the same concepts that
were discussed earlier in the book. This is not an exhaustive list, and just shows the
changes that were made to the top of the list based on the demand (or expectations)
from the community itself.

If you are interested in all the new features and changes that were made in
the releases, you should look at the release notes located at the following:
Kilo: https://wiki.openstack.org/wiki/ReleaseNotes/Kilo
Liberty: https://wiki.openstack.org/wiki/ReleaseNotes/
Liberty

Features and differences
The following table shows a snapshot of the new features and the difference they
made to the last two releases.

https://wiki.openstack.org/wiki/ReleaseNotes/Kilo
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty

Appendix

[227]

OpenStack Project Kilo Liberty

Nova •	 Nova scheduler has
been improved, and
now Kilo is preparing
to split it as its own
project.

•	 NUMA has been
completed.

•	 The EC2 API has been
deprecated and a new
Stack Forge project
has been introduced
to do the EC2 API
translation.

•	 The v2.1 API layer has
been introduced.

•	 Cells were introduced.
This construct,
when used, allows a
multiregion style of
Nova deployment.

•	 NFV: Network
Functions
Virtualization.

•	 Improvement to
schedulers has
been made. This
includes customizable
schedulers.

•	 v2.1 API has
seen substantial
modifications.

Swift •	 Support for erasure
codes to store
large infrequently-
used data. This is
fundamentally similar
to RAID.

•	 Composite tokens
allow data deletion
with the consent of
both user and service.

•	 The overall
performance has been
improved on slower
drives and latency
spikes has been
reduced.

•	 Ring operations have
been made easier with
ring-builder-analyzer
to test ring-related
operation.

•	 Erasure coding has
been improved.

•	 Per object metadata
has been included to
explode archives.

New Releases

[228]

OpenStack Project Kilo Liberty

Glance •	 Supports multiple
swift containers.

•	 Artifact repository
was introduced to
store different artifacts
such as the Heat
templates and the
Murano application
packages.

•	 Image verification
has been added by
allowing the signing
of a Glance image
with a private key for
integrity checks.

•	 S3 Proxy was
introduced to allow
images to be stored
to and retrieved from
the S3 backend using a
HTTP proxy.

Cinder •	 Supports rolling
upgrades.

•	 New volume types
have been introduced.

•	 New drivers namely
Dell Storage Center
and Cloud Founders
Open vStorage have
been added.

•	 Quota enforcement
in hierarchal tenants/
projects has been
added.

•	 A nondisruptive
backup has been
added.

Neutron •	 Advanced services
have been split into
their own repositories.

•	 MTU and path
advertisement.

•	 IPv6 Router: More
support for IPv6.

•	 The pluggable IPAM
(IP Address Manager)
layer has been added.

•	 IPv6 prefix delegation
has been added.

•	 Bandwidth quotas at
port level have been
added.

•	 A new reference
implementation
of LBaaS (Load
Balancing as a Service)
has been added.

Appendix

[229]

OpenStack Project Kilo Liberty

Horizon •	 Based on Django 1.8.
•	 Improvements have

been made to support
Federated Identity.

•	 Support for themes
has been added.

•	 New views have been
added such as the
new Launch instance
and network topology
pages.

•	 Control of the
IDP-specific (Identity
provider) WebSSO
configuration has been
enabled.

Keystone •	 The WSGI architecture
implementation has
been made.

•	 Fernet tokens, which
are non-persistent
tokens with symmetric
encryption keys, have
been added.

•	 Hierarchical multi-
tenancy: The projects/
tenants nested under
another tenant feature
have been added.

•	 Support has been
given to and
improvement made to
the identity federation.

•	 Multi cloud
authentication
improvements have
been made.

•	 Greater control over
IDP has been enabled.

Ceilometer •	 Additional meters
have been added.

•	 A role base access
control has been
added for the API.

•	 IP v6 support has been
added.

•	 New alarm service
called Aodh added.

•	 There has been
improved
performance.

•	 New meters can easily
be added.

New Releases

[230]

OpenStack Project Kilo Liberty

Heat •	 New template
functions have been
added.

•	 Multiregion stacks can
now be deployed.

•	 There has been
improved scaling
using nested stacks.

•	 New resources such as
Barbican, Designate,
and Keystone have
been added.

Most of these features are configured by modifying the service configuration
files. For the purpose of this book, most of these fall under the realm of advanced
configuration, and hence are beyond the purview of the book.

Changes in the installation procedure
The installation mainly remains the same, except for the differences mentioned in the
following sections.

Adding the repository
We will need to add the appropriate repository for the version that we need to
install, so if we were to install the Kilo release, we will add the Kilo repository as
shown (we added the repository in Chapter 2, Authentication and Authorization Using
Keystone, before installing Keystone):

apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu trusty-
updates/kilo main" > /etc/apt/sources.list.d/cloudarchive-kilo.list

For a Liberty release, the repository can be added as follows:

apt-get install software-properties-common

add-apt-repository cloud-archive:liberty

The OpenStack client
The Juno release had individual clients with the python-<projectname>client
format, for example, python-keystoneclient, python-novaclient, and so on.
In the Kilo and Liberty releases, this is being replaced by a single client called
python-openstackclient. This replaces all of the previous clients.

Appendix

[231]

We can install the client by executing the following command:

apt-get install python-openstackclient

Once this is done, we no longer need to install the individual clients.

In the Kilo release, you still use the older clients, but it will throw
a deprecation notice on the screen. With the new client, we can use
the same commands as with the older clients.

Installing Keystone
In both Kilo and Liberty, the Keystone service needs to be installed a little differently.
The older method will still work, but it is being deprecated in favor of using the
WSGI Apache methodology.

So, in order to enable that, after we have installed the Keystone service, we will
execute the following steps:

1.	 Disable the Keystone service from starting automatically, as this will now be
proxied via the Apache server:
echo "manual" > /etc/init/keystone.override

2.	 Install the Apache and Apache WSGI modules:
apt-get install keystone apache2 libapache2-mod-wsgi \

memcached python-memcache

3.	 Edit the /etc/apache2/apache2.conf file and add the ServerName directive
to the hostname of the controller node.

4.	 Create a new file, /etc/apache2/sites-available/wsgi-keystone.conf,
and paste the following content in it:
Listen 5000

Listen 35357

<VirtualHost *:5000>

 WSGIDaemonProcess keystone-public processes=5 threads=1
user=keystone group=keystone display-name=%{GROUP}

 WSGIProcessGroup keystone-public

 WSGIScriptAlias / /usr/bin/keystone-wsgi-public

 WSGIApplicationGroup %{GLOBAL}

 WSGIPassAuthorization On

New Releases

[232]

 <IfVersion >= 2.4>

 ErrorLogFormat "%{cu}t %M"

 </IfVersion>

 ErrorLog /var/log/apache2/keystone.log

 CustomLog /var/log/apache2/keystone_access.log combined

 <Directory /usr/bin>

 <IfVersion >= 2.4>

 Require all granted

 </IfVersion>

 <IfVersion < 2.4>

 Order allow,deny

 Allow from all

 </IfVersion>

 </Directory>

</VirtualHost>

<VirtualHost *:35357>

 WSGIDaemonProcess keystone-admin processes=5 threads=1
user=keystone group=keystone display-name=%{GROUP}

 WSGIProcessGroup keystone-admin

 WSGIScriptAlias / /usr/bin/keystone-wsgi-admin

 WSGIApplicationGroup %{GLOBAL}

 WSGIPassAuthorization On

 <IfVersion >= 2.4>

 ErrorLogFormat "%{cu}t %M"

 </IfVersion>

 ErrorLog /var/log/apache2/keystone.log

 CustomLog /var/log/apache2/keystone_access.log combined

 <Directory /usr/bin>

 <IfVersion >= 2.4>

 Require all granted

 </IfVersion>

 <IfVersion < 2.4>

 Order allow,deny

Appendix

[233]

 Allow from all

 </IfVersion>

 </Directory>

</VirtualHost>

5.	 Create a soft link of the file, as follows:
ln -s /etc/apache2/sites-available/wsgi-keystone.conf \

/etc/apache2/sites-enabled

6.	 Restart the Apache service. This way, Apache will be the frontend for all the
requests coming to Keystone. The Keystone service doesn't need to be started
automatically.

This is a major installation difference when it comes to the Kilo or the Liberty release
compared to Juno. The older installations of Keystone will still work in the Kilo release.

Service configurations
In the service configuration, there is only one notable difference. In all the
configuration files for the different services, wherever we have the [keystone_
authtoken] section, we will have to make the following modifications:

Juno Kilo/Liberty
[keystone_authtoken]

auth_uri = http://controller:
5000/v2.0

identity_uri = http://
controller:35357

admin_tenant_name = service

admin_user = <Service_UserName>

admin_password = <Service
keystone pwd>

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = <Service Username>

password = <Service keystone pwd>

As we can see, there are three new fields to be added (auth_plugin, project_
domain_id, and user_domain_id) and identity_uri is replaced with auth_url
and admin_tenant_name with project_name.

This configuration is found in all the different service files and needs to be replaced
to use the Apache WSGI configuration.

New Releases

[234]

You can find the install guides for the Kilo and Liberty releases for the
Ubuntu OpenStack distribution at the following:
http://docs.openstack.org/kilo/install-guide/install/
apt/content/ch_preface.html

http://docs.openstack.org/liberty/install-guide-
ubuntu/overview.html

Upgrading from Juno
The Juno install can be upgraded to the Kilo release and then finally can be upgraded
to the Liberty release with the following procedure.

The controller node needs to be upgraded first followed by the storage, compute,
and finally network nodes. The configuration of the services needs to be done in the
same order as the installation, so in our book, we have followed this order: Keystone,
Glance, Cinder, Swift, Nova, Neutron, and Horizon.

Cleanup
Any instances or volumes, which are in an inconsistent state needs to be purged
or cleaned. This should be done from the CLI or Horizon portal. For some rogue
entities, we may need to remove them from the database directly (please note that it
is not recommended that the database be touched directly).

We will remove the null UUIDs of the Nova instances with the following command:

nova-manage db null_instance_uuid_scan

Backup
Create a backup of all the nodes, if they are virtual, using a snapshot. The MySQL
database backup can be performed using the mysqldump command. The following
command format is used:

mysqldump -u root -p[root_password] [database_name] >
/backup/path/dbname.sql

In order to restore the nodes, we use the mysql command line as follows:

mysql -u root -p[root_password] [database_name] < dumpfilename.sql

http://docs.openstack.org/kilo/install-guide/install/apt/content/ch_preface.html http://docs.openstack.org/liberty/install-guide-ubuntu/overview.html
http://docs.openstack.org/kilo/install-guide/install/apt/content/ch_preface.html http://docs.openstack.org/liberty/install-guide-ubuntu/overview.html
http://docs.openstack.org/kilo/install-guide/install/apt/content/ch_preface.html http://docs.openstack.org/liberty/install-guide-ubuntu/overview.html
http://docs.openstack.org/kilo/install-guide/install/apt/content/ch_preface.html http://docs.openstack.org/liberty/install-guide-ubuntu/overview.html

Appendix

[235]

Adding the repositories
We will add the new repository as shown in the previous section. After adding the
repository, execute this command:

apt-get update

Running the upgrade
Running the upgrade is performed by the following command:

apt-get upgrade

During the upgrade, you will be asked whether you want to keep the existing
configuration files or replace them with samples. We recommend that you keep
your existing configurations.

Installing additional components
We will install the OpenStack client as described in previous sections and also install
the Apache and WSGI modules for Apache as shown previously.

Updating the DB schema
The database schema has changed in the new version, so we will now update it
using the commands that we used during the installation. For example, look at
the following:

•	 Keystone: keystone-manage db_sync
•	 Nova: nova-manage db_sync
•	 Glance: glance-manage db_sync
•	 Cinder: cinder-manage db_sync

Modifying configuration files
We will modify the configuration files as shown previously (by modifying the
keystone_authtoken section) and also make the WSGI configuration for Apache
for Keystone as shown in the previous section of this appendix.

New Releases

[236]

Restarting services
We will need to restart every service in the same order that we restarted them during
the installation. We also recommend a full clean reboot of the OpenStack nodes.

[237]

Index
A
access and security panel, project

dashboard
about 163
key pairs 164
security groups 163

account ring 73, 84
actions 140
Advanced Message Queueing Protocol

(AMQP) 91
Amazon Web Services (AWS) 3
Anchor Cloud

URL 218
assignment 24
availability zone (AZ) 103

B
Barbican 13
basic terminologies, Horizon

about 140
actions 140
dashboard 140
panel 140
panel groups 140
tab groups 140
tables 140
tabs 140
URLs 141
views 141
workflows 140

billing and usage reporting 211, 212
binary large object (BLOB) 51
block storage 51

C
catalog 24
Ceilometer

about 12, 195, 196
components 200
initial configuration 200
installation, testing 209-211
installing 197
installing, on compute node 207
installing, on storage node 208
key aspects 196

ceilometer-agent-compute function 207
Ceilometer files

Swift access, allowing to 206
CentOS

Oz, installing on 177
Ceph 52
Cinder

about 11
controller node 64
database, creating 64
initial configuration 65
installation, finalizing 68, 72
installation, validating 72, 73
packages, installing 65
storage node 68
working with 63

CirrOS 61
Cisco OpenStack 217
CLI

about 155
project, creating 155
users, associating to roles 156
users, creating 155

[238]

CLI tools
key pair, generating 172
server, requesting 173, 174
using 171

commercial orchestrators 4
common components

installing 25
components, Ceilometer

ceilometer-agent-central 200
ceilometer-agent-notification 200
ceilometer-alarm-evaluator 200
ceilometer-alarm-notifier 200
ceilometer-api 200
ceilometer-client 200
ceilometer-collector 200

components, overlay network 111, 112
compute node

about 17
Ceilometer, installing on 207
initial configuration tasks 134
Nova components, installing on 97

Congress 14
considerations, for selecting OpenStack

distribution
additional tools 219
Hypervisor support 219
lock in 219
operating system support 219
Service Level Agreements (SLA) 219
speed update 219

console access 101, 102
Container as a Service (CaaS) 14
container ring 73, 85
controller node

about 17
initial configuration tasks 122
Nova components, installing on 91

controller node, Cinder 64
controller node, Swift 75

D
dashboard 140
data access, Ceilometer 197
database, Cinder

creating 64

database, Glance
creating 54, 55

data collection, Ceilometer
about 196
audit 196
polling 196
user action 196

Data Store component 196
DB sync errors

about 48
configuration errors 48
system language settings 48

dependencies, Oz
installing 177

Designate 13
Devstack 216
disaster recovery (DR) 110
distributions, OpenStack market place

reference link 219
Dream compute

URL 218

E
Elastx ops

URL 218
Enterprise Private Cloud 220
external network

about 158
creating 158, 159
subnet, creating 159, 160

F
failing Keystone commands

about 48
DNS issues 48
network issues 49
service non responsive 48

fields, Heat Orchestration Template (HOT)
description 185
Heat template version tag 185
resources 185

flat network 157

[239]

G
Generic Routing Encapsulation (GRE) 112
Glance

about 11, 52
database, creating 54, 55
initial configuration 55
installation, finalizing 60
installation, validating 60-62
packages, installing 55
working with 52, 53

glance-api component 53
glance-registry component 53
GRE network 157
GRE Tunnel 119, 120
GUI

about 151
project, creating 151, 152
users, adding 153
users, associating to project 154, 155

H
Heat

about 12, 184
initial configuration 188
installing 186
working with 183, 184

Heat API 184
Heat CF API 184
Heat engine 184
Heat Orchestration Template (HOT)

about 184, 185
deploying 192-195
fields 185, 186

Heat system
subcomponents 184

Horizon
about 7, 10, 139
basic terminologies 140, 141
initial configuration 143
installing 142
system requisites, for installation 141, 142
troubleshooting 146
working with 139

Horizon dashboard
structure 144, 145

Horizon log 147
HP Helion 217
Hypervisor 90

I
IBM Cloud manager 218
identity 24
identity-related concepts, Keystone

about 22
project 22
role 22
user 22

image
uploading, Horizon portal used 180, 181

image storage 52
Infrastructure as a Service (IaaS) 1
initial configuration, Ceilometer

about 200
Ceilometer endpoint, creating 201, 202
Ceilometer service, creating 201
Ceilometer user, creating in

Keystone 200, 201
configuration file, editing 202, 203
random password, generating 202

initial configuration, Cinder
about 65
Cinder database, populating 68
Cinder endpoints, creating 66, 67
Cinder service, creating in Keystone 66
configuration files, modifying 67
user, creating in Keystone 65

initial configuration, Glance
about 55
Glance configuration, modifying 58, 59
Glance database, populating 60
Glance endpoint, creating 57
Glance service, creating in Keystone 57
user, creating in Keystone 56

initial configuration, Heat
about 188
additional Heat stack roles,

creating 188, 189
configuration file, modifying 190, 191
database, populating 191
Heat endpoints, creating in Keystone 190

[240]

Heat services, creating in Keystone 189
Heat user, creating in Keystone 188

initial configuration, Horizon 143
initial configuration, Keystone

about 36
admin token, generating 36
endpoint, creating 43
environment variables, setting up 40
first tenant, setting up 39
Keystone configuration file, modifying 36
Keystone DB, populating 37-39
service, creating 42
service endpoints, creating 42
tenant, creating 40
user, creating 41

initial configuration steps,
Nova components

about 93
configuration file, modifying 95
database, populating 96
Nova endpoint, creating in Keystone 94
Nova service, creating in Keystone 94
Nova user, creating in Keystone 93

initial configuration, Swift
about 76
configuration files, modifying 77, 79
Swift endpoint, creating 76
Swift service, creating in Keystone 76
user, creating in Keystone 76

initial configuration tasks, on
compute node

about 134
ML2 plugin 135
Neutron configuration 134, 135
Nova configuration 136

initial configuration tasks, on controller
node

about 122
configuration files, modifying 123-126
Neutron endpoint, creating in

Keystone 123
Neutron service, creating in Keystone 122
Neutron user, creating in Keystone 122

initial configuration tasks, on
network node

about 129
agents, configuring 130

DHCP agent, configuring 131
Layer 3 agent, configuring 130
metadata agent, configuring 131
ML2 plugin 129, 130
Neutron configuration 129

installation, Ceilometer
about 197
testing 209-211

installation, Ceilometer on compute node
about 207
finalizing 208
packages, installing 207

installation, Ceilometer on controller node
about 197
Cinder notification, enabling 204
database, creating 199
finalizing 206
Glance notification, enabling 204
MongoDB, configuring 198
MongoDB, installing 198
packages, installing 199, 200
Swift notification, enabling 204

installation, Ceilometer on storage node
about 208
Cinder notification, enabling 209
finalizing 209

installation, Cinder
finalizing 68, 72
validating 72, 73

installation, common components
about 25
database, configuring 27
database, securing 28
database, setting up 25
messaging broker, setting up 29

installation, Glance
finalizing 60
validating 60, 62

installation, Heat
about 186
components, installing 187
database, creating 187
finalizing 192
initial configuration 188

installation, Horizon
about 142
finalizing 143

[241]

validating 143
installation, Keystone

about 33
database, creating 34, 35
OpenStack repository, setting up 33
verifying 44
verifying, Keystone CLI used 44
verifying, RESTful API used 45-47

installation, MariaDB
about 25
MariaDB package, installing 27
MariaDB repository, setting up 26
testing 28, 29

installation, Neutron control
components 121

installation, Neutron on compute node
about 133
finalizing 136
packages, installing 134
prerequisites, setting up 134
validating 136

installation, Neutron on controller node
about 120
database, creating 121
database, setting up 126
finalizing 126
validating 127

installation, Neutron on network node
about 127
finalizing 132
Neutron packages, installing 128
OVS, setting up 132
prerequisites, setting up 128
validating 133

installation, Nova
troubleshooting 106

installation, Nova components
about 91
verifying 100, 101

installation, Nova components on
 compute node

about 97, 98
configuration file, modifying 99
finalizing 100
host files, modifying 99
KVM, installing 98

installation, Nova components on
 controller node

about 91
database, creating 92
finalizing 97
nova-api 93
nova-cert 93
nova-conductor 93
nova-consoleauth 93
nova-novncproxy 93
nova-scheduler 93
pre-requisites 92
python-novaclient 93

installation procedure, changes
about 230
Keystone, installing 231, 233
OpenStack client 230
repository, adding 230
service configurations 233

installation, RabbitMQ
about 30
RabbitMQ package, installing 30
Rabbit MQ repository, setting up 30
testing 32

install guides, Kilo
reference link 234

install guides, Liberty
reference link 234

instance
launching 168-171

Intelligent Platform Management
 Interface (IPMI) 13

internal URL 43
Internap

URL 218
Ironic 13

K
key aspects, Ceilometer

alarms 197
data access 197
data collection 196
meters 197

key pair
about 164
creating 167

[242]

Keystone
about 7, 10, 21
identity-related concepts 22, 23
initial configuration 36
installation, verifying 44
installing 33

Keystone architecture
about 23
assignment 24
catalog 24
identity 24
policy 24
resource 24
token 24

Keystone CLI
used, for verifying Keystone

installation 44
Keystone package

installing 35
Kilo

about 226
reference link 226
versus Liberty 227-230

Kloud open
URL 218

Kolla 14

L
L2 agent 117
L3 agent 117
LDAP service 23
Liberty

about 226
reference link 226
versus Kilo 227-230

Linux Containers (LXC) 10
local network 157
logical constructs, Nova

about 102
availability zone (AZ) 103
host aggregates 103
region 103

Long Term Support (LTS) 216

M
Magnum 14
Manila 13
MariaDB

installing 25
MariaDB package

installing 27
MariaDB repository

setting up 26
Maximum Transmission Unit (MTU) 113
meters, Ceilometer

cumulative 197
delta 197
gauge 197

Mirantis OpenStack 218
Modular Layer 2 (ML2) 117
MongoDB

configuring 198
installing 198

Multipoint GRE (MGRE) 112
Murano 14

N
network 118
networking concepts, Neutron

about 118
network 118
port 118
router 118
subnet 118

network layout, OpenStack setup
external network 18
management network 18
storage network 18
tunnel network 18

network management 156
network node 17
network types

about 156
physical network 156
virtual network 156

Neutron
about 11, 115
installing 120
installing, on compute node 133

[243]

installing, on controller node 120
installing, on network node 127
networking concepts 118, 119
troubleshooting 137

Neutron architecture
about 116
L2 agent 117
L3 agent 117
Neutron server 116, 117

Neutron control components
installing 121

Neutron process
basics 117

Neutron server
about 116
plugin 116
REST service 116
RPC service 116

Neutron service 8
NO Operation (NOOP) 58
Nova

about 10
installation, troubleshooting 106
logical constructs 102
working with 90, 91

Nova API 91
Nova components

initial configuration steps 93
installing 91

Nova Compute 90, 91
nova-compute component 98
Nova Conductor 91
Nova environment

designing 102
Nova Scheduler 91
Nova Volume 91

O
object ring 73, 85
object storage 51
Open flow

about 113, 114
underlying network considerations 114

OpenStack
about 5
selecting, circumstances 5, 6

URL, for wiki page 116
OpenStack architecture 6, 7
OpenStack Common 23
OpenStack distributions

about 215
Devstack 216
operating system distributions 216
public clouds 218
selecting 219, 220
vendor offerings 216

OpenStack, in action
about 220
Enterprise Private Cloud 220
research centers 221
school 221
service providers 221
Web/SaaS providers 221

OpenStack setup
network layout 18
operating system 18
preparing for 16
service layout 16
services, selecting 16

Open vSwitch (OVS) 117
operating system distributions

about 216
Oracle OpenStack 216
RedHat OpenStack 216
Ubuntu OpenStack 216

Oracle OpenStack 216
orchestrator

commercial orchestrators 4
selecting 2, 3

overlay network
about 111
components 111, 112
underlying network considerations 113

overlay technologies
about 112
Generic Routing Encapsulation (GRE) 112
Virtual Extensible LAN (VXLAN) 112

Oz
dependencies, installing 177
installing 177
installing, on CentOS 177
installing, on RHEL 177
installing, on Ubuntu 177

[244]

used, for creating VM templates 180
Oz templates

about 177, 179
reference link 178

P
packages, Ceilometer

ceilometer-agent-compute function 207
initial configuration 207, 208
installing 207
Nova notification, enabling 208

packages, Cinder
installing 65

packages, Glance
installing 55

packages, Swift
installing 75, 76

panel 140
panel groups 140
physical network 156
Platform as a Service (PaaS) 1
policy 24
port 118
private cloud

building 4
project 22
Protocol Data Unit (PDU) 113
provider network 157
proxy server

using 26
public clouds

about 218
Anchor Cloud 218
Dream compute 218
Elastx ops 218
Internap 218
Kloud open 218

public URL 43
Puttygen

URL 164

Q
Qemu Copy On Write (QCOW2) 89

R

RabbitMQ
installation, testing 32
installing 30

RabbitMQ package
installing 30

Rabbit MQ repository
setting up 30

RabbitMQ server
configuring 31, 32

Rackspace cloud 217
RedHat OpenStack 216
releases 226
Reliable Autonomic Distributed Object

Store (RADOS) 52
resource 24
resources field, Heat Orchestration

Template (HOT)
input parameters 185
output parameters 185
parameters 185
properties 185

RESTful API
used, for verifying Keystone

installation 45-47
Reverse Path (rp) filter 128
RHEL

Oz, installing on 177
roadmap 221, 222
role 22, 23
router 118

S
Sahara 12
sample cloud design 104, 105
sample configuration files, GitHub

URL 77
SDK, OpenStack

URL 47
security group

about 163
creating 164-167

Self Service Portal 4
service dependency maps 14
service functions

about 9
Barbican 13

[245]

Ceilometer 12
Cinder 11
Congress 14
Designate 13
Glance 11
Heat 12
Horizon 10
Ironic 13
Keystone 10
Kolla 14
Magnum 14
Manila 13
Murano 14
Neutron 11
Nova 10
Sahara 12
Swift 11
Trove 12
Zaqar 13

service layout
about 16
compute node 17
controller node 17
network node 17
storage node 18

Service Level Agreements (SLA) 219
service providers 221
service relationships 8
service requirements

gathering 149-151
services

requesting 163
services history 8
single sign-on (SSO) 46
Software as a Service (SaaS) 1
Software-Defined Networking (SDN) 109
software-defined network

paradigm 109, 110
Spanning Tree Protocol (STP) 110
storage node 18
storage node, Cinder

about 68
configuration files, modifying 71, 72
packages, installing 70
prerequisites 68-70

storage node, Swift
about 80
account server configuration,

modifying 82, 83
configuration files, modifying 82
container server configuration,

modifying 83
install, finalizing 86
install, validating 86
object server configuration, modifying 83
packages, installing 82
prerequisites 80, 81
rings, creating 83, 84
rings, distributing 86

storage services 51
subcomponents, Heat system

Heat 184
Heat API 184
Heat CF API 184
Heat engine 184

subnet 118
Suse Cloud 218
Suse Studio 219
Swift

about 11
controller node 75
initial configuration 76
packages, installing 75, 76
storage node 80
working with 73-75

Swift access
allowing, to Ceilometer files 206

Swift authentication error
about 87
ring files 87

Swift notification
enabling 205, 206
ResellerAdmin role, creating 205

SwiftStack 218
sysfsutils component 98

T
tab groups 140
tables 140
tabs 140
tenant 22, 151

[246]

tenant network
about 157, 160
creating 160, 161
router, creating 162
subnet, creating 161

token 24
troubleshooting steps, Swift 86
Trove 12
Tunnel Network 119

U
Ubuntu

Oz, installing on 177
Ubuntu OpenStack 216
Ultimum Cloud

URL 218
upgrading, from Juno

about 234
additional components, installing 235
backup 234
cleanup 234
configuration files, modifying 235
DB schema, updating 235
repositories, adding 235
services, restarting 236
upgrade, running 235

URLs 141
user 22
user management 151

V
vendor offerings

about 216
Cisco OpenStack 217
HP Helion 217
IBM Cloud manager 218
Mirantis OpenStack 218
Rackspace cloud 217
Suse Cloud 218
SwiftStack 218
VMware integrated OpenStack 217

views 141
Virtual Extensible LAN (VXLAN)

about 112
enhancements 112, 113

Virtual Local Area Networks (VLANs) 110
virtual machine placement logic 104
Virtual Machine (VM)

about 8
requesting 164

virtual network
about 156
implementing 157
provider network 157
tenant network 157

Virtual tunnel endpoint (VTEP) 113
VLAN network 157
VM templates

creating 176
creating, Oz used 180

VMware integrated OpenStack 217
VXLAN network 157

W
workflows 140
Workflows & Connectors 4
workflow steps 140

Z
Zaqar 13

Thank you for buying
Learning OpenStack

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance,
and Horizon

1.	 Learn how to install and configure all the
core components of OpenStack to run an
environment that can be managed and
operated just like AWS or Rackspace.

2.	 Master the complete private cloud stack from
scaling out compute resources to managing
swift services for highly redundant, highly
available storage.

OpenStack Essentials
ISBN: 978-1-78398-708-5 Paperback: 182 pages

Demystify the cloud by building your own private
OpenStack cloud

1.	 Set up a powerful cloud platform using
OpenStack.

2.	 Learn about the components of OpenStack
and how they interact with each other.

3.	 Follow a step-by-step process that exposes
the inner details of an OpenStack cluster.

Please check www.PacktPub.com for information on our titles

Mastering OpenStack
ISBN: 978-1-78439-564-3 Paperback: 400 pages

Design, deploy, and manage a scalable OpenStack
infrastructure

1.	 Learn how to design and deploy an OpenStack
private cloud using automation tools and
best practices.

2.	 Gain valuable insight into OpenStack
components and new services.

3.	 Explore the opportunities to build a
scalable OpenStack infrastructure with
this comprehensive guide.

OpenStack Cloud Security
ISBN: 978-1-78217-098-3 Paperback: 160 pages

Build a secure OpenStack cloud to withstand all
common attacks

1.	 Design, implement, and deliver a safe and
sound OpenStack cluster using best practices.

2.	 Create a production-ready environment
and make sure your cloud storage and
other resources are secure.

3.	 A step-by-step tutorial packed with
real-world solutions that helps you learn
easily and quickly.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to OpenStack
	Choosing an orchestrator
	Building a private cloud
	Commercial orchestrators
	OpenStack

	When to choose OpenStack?
	OpenStack architecture
	Service relationships
	Services and releases history
	Service functions
	Keystone
	Horizon
	Nova
	Glance
	Swift
	Cinder
	Neutron
	Heat
	Ceilometer
	Trove
	Sahara
	Designate
	Ironic
	Zaqar
	Barbican
	Manila
	Murano
	Magnum
	Kolla
	Congress

	Service dependency maps

	Preparing for the OpenStack setup
	Selecting the services
	Service layout
	Controller node
	Network node
	Compute node
	Storage node

	Operating system
	Network layout

	Summary

	Chapter 2: Authentication and Authorization Using Keystone
	Identity concepts in Keystone
	User
	Project (or tenant)
	Role

	Architecture and subsystems
	Identity
	Resource
	Assignment
	Policy
	Token
	Catalog

	Installing common components
	Setting up the database
	Installing MariaDB
	Configuring the database
	Securing the database
	Testing the installation

	Setting up the messaging broker
	Installing RabbitMQ
	Configuring the RabbitMQ server
	Testing the installation

	Installing Keystone
	Setting up the OpenStack repository
	Creating the database
	Installing the package
	The initial configuration
	Generating the admin token
	Modifying the Keystone configuration file
	Populating the Keystone DB
	Setting up your first tenant
	Creating service endpoints

	Verifying the installation
	Using Keystone CLI
	Using the API

	Troubleshooting the installation and configuration
	DB sync errors
	System language settings
	Configuration errors

	Failing Keystone commands
	Service non-responsive
	DNS issues
	Network issues

	Summary

	Chapter 3: Storing and Retrieving Data and Images using Glance, Cinder, and Swift
	Introducing storage services
	Working with Glance
	Creating the database
	Installing the packages
	Initial configuration of Glance
	Creating a user in Keystone
	Creating a Glance service in Keystone
	Creating a Glance endpoint
	Modifying Glance configuration
	Populating the Glance database

	Finalizing the installation
	Validating the installation

	Working with Cinder
	Controller node
	Creating the database
	Installing packages
	Initial configuration
	Creating a user in Keystone
	Creating Cinder service in Keystone
	Creating Cinder endpoints
	Modifying the configuration files
	Populating the Cinder database

	Finalizing the installation
	Storage node
	Understanding the prerequisites
	Installing the packages
	Modifying the configuration files
	Finalizing the installation
	Validating the installation

	Working with Swift
	Controller node
	Installing packages
	Initial configuration
	Creating a user in Keystone
	Creating a Swift service in Keystone
	Creating a Swift endpoint
	Modifying the configuration files

	The storage node
	Understanding the prerequisites
	Installing the packages
	Modifying the configuration files
	Creating the rings
	Distributing the ring
	Finalizing and validating the install

	Troubleshooting steps
	Swift authentication error
	Ring files don't get created

	Summary

	Chapter 4: Building Your Cloud Fabric Controller Using Nova
	Working with Nova
	Installing Nova components
	Installing on the controller node
	Creating the database
	Installing components
	Initial configuration

	Installing on the compute node
	Installing KVM
	Installing Nova compute components
	Modifying the host files
	Modifying the configuration file
	Finalizing the installation

	Verifying the installation
	Console access
	Designing your Nova environment
	Logical constructs
	Region
	Availability zone
	The host aggregates

	Virtual machine placement logic
	Sample cloud design

	Troubleshooting installation
	Summary

	Chapter 5: Technology-Agnostic Network Abstraction Using Neutron
	The software-defined network paradigm
	What is an overlay network?
	Components of overlay networks
	Overlay technologies
	Underlying network considerations

	Open flow
	Underlying network consideration

	Neutron
	Architecture of Neutron
	The Neutron server
	L2 agent
	L3 agent

	Understanding the basic Neutron process
	Networking concepts in Neutron

	Installing Neutron
	Installing on the controller node
	Creating the database
	Installing Neutron control components
	Initial configuration
	Setting up the database
	Finalizing the installation
	Validating the installation

	Installing on the network node
	Setting up the prerequisites
	Installing Neutron packages
	Initial configuration on the network node
	Setting up OVS
	Finalizing the installation
	Validating the installation

	Installing on the compute node
	Setting up the prerequisites
	Installing packages
	Initial configuration
	Finalizing the installation
	Validating the installation

	Troubleshooting Neutron
	Summary

	Chapter 6: Building Your Portal
in the Cloud
	Working with Horizon
	Some basic terminologies
	System requirements to install Horizon
	Installing Horizon
	The initial configuration of Horizon
	Finalizing the installation
	Validating the installation
	The structure of the Horizon dashboard

	Troubleshooting Horizon
	Understanding the Horizon log

	Summary

	Chapter 7: Your OpenStack Cloud
in Action
	Gathering service requirements
	Tenant and user management
	GUI
	Creating the project
	Adding users
	Associating users to the project

	CLI
	Creating the project
	Creating the users
	Associating users to the roles

	Network management
	Network types
	Physical network
	Virtual network

	External network
	Creating the network
	Creating the subnet

	Tenant network
	Create the tenant network
	Creating a subnet
	Creating a router

	Requesting services
	Access and security
	Security groups
	Key pairs

	Requesting your first VM
	Creating a security group
	Creating a key pair
	Launching an instance
	Using CLI tools

	Behind the scenes - how it all works
	Creating VM templates
	Installing Oz and its dependencies
	RHEL/CentOS
	Ubuntu

	Oz templates
	Creating VM templates using Oz
	Uploading the image

	Summary

	Chapter 8: Taking Your Cloud to the
Next Level
	Working with Heat
	The components of Heat
	Heat Orchestration Template (HOT)
	Installing Heat
	Creating the database
	Installing components
	The initial configuration
	Finalizing the installation

	Deploying your first HOT

	Ceilometer
	Installing Ceilometer
	Installing Ceilometer on the controller node

	Installing Ceilometer on the compute node
	Installing the packages

	Installing Ceilometer on the storage node
	Enabling Cinder notification
	Finalizing the installation

	Testing the installation
	Billing and usage reporting
	Summary

	Chapter 9: Looking Ahead
	OpenStack distributions
	Devstack
	Operating system distributions
	Ubuntu OpenStack
	RedHat OpenStack
	Oracle OpenStack

	Vendor offerings
	VMware integrated OpenStack
	Rackspace cloud
	HP Helion
	Cisco OpenStack
	Mirantis OpenStack
	SwiftStack
	IBM Cloud manager
	Suse Cloud

	Other public clouds
	Choosing a distribution

	OpenStack in action
	Enterprise Private Cloud
	Service providers
	Schools/Research centers
	Web/SaaS providers

	The roadmap
	What is in it for you?
	Summary

	Appendix: New Releases
	The releases
	Features and differences
	Changes in the installation procedure
	Adding the repository
	The OpenStack client
	Installing Keystone
	Service configurations

	Upgrading from Juno
	Cleanup
	Backup
	Adding the repositories
	Running the upgrade
	Installing additional components
	Updating the DB schema
	Modifying configuration files
	Restarting services

	Index

